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ABSTRACT 
 

Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total 

nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. 

However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (CN-) possessing 

the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best 

efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), free 

cyanide (CN-) still enters MWSSs through various pathways; hence, it has been suggested that CN- resistant 

or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms 

in SNaD have been observed to adopt a multiphase growth strategy to sequentially degrade CN- during 

primary growth and subsequently degrade TN during the secondary growth phase. However, CN- degrading 

microorganisms are not widely used for SNaD in MWSSs due to the inadequate application of suitable 

microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, 

Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage 

SNaD. 

The use of CN- degrading or resistant microorganisms for SNaD is a cost-effective method compared to the 

use of other methods of CN- removal prior to TN removal, as they involve multi-stage systems (as currently 

observed in MWSSs). The use of CN- degrading microorganisms, particularly when used as a consortium, 

presents a promising and sustainable resolution to mitigate inhibitory effects of CN- in SNaD. However, 

SNaD is known to be completely inhibited by CN- thus it is imperative to also study some thermodynamic 

parameters of SNaD under high CN- conditions to see the feasibility of the process. The Gibbs free energy 

is significant to understand the feasibility of SNaD, it is also vital to study Gibbs free energy to determine 

whether or not the biological reaction is plausible. The relationship between the rate of nitrification and 

Gibbs free energy was also investigated.  

The attained results showed that up to 37.55 mg CN-/L did not have an effect on SNaD. The consortia 

degraded CN- and achieved SNaD, with degradation efficiency of 92.9 and 97.7% while the degradation 

rate of 0.0234 and 0.139 mg/L/hr for ammonium-nitrogen (NH4-N) and CN- respectively. Moreover, all the 

free Gibbs energy was describing the individual processes were found to be negative, with the lowest Gibbs 

free energy being -756.4 and -1830.9 Kcal/mol for nitritation and nitratation in the first 48 h of the 

biological, reaction respectively. Additionally, a linear relationship between the rate of NH4-N and nitrite-

nitrogen (NO2-N) degradation with their respective Gibbs free energy was observed. Linear model was also 

used to predict the relationship between NH4-N, NO2-N degradation and Gibbs free energy. These results 

obtained showed a good correlation between the models and the experimental data with correlation 

efficiency being 0.94 and 0.93 for nitritation, and nitratation, respectively.  
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From the results found it can be deduced that SNaD is plausible under high cyanide conditions when 

cyanide degrading or tolerant microorganisms are employed. This can be a sustainable solution to SNaD 

inhibition by CN- compounds during wastewater treatment.  

Furthermore, a single strain was purified from the consortium and identified as Acinetobacter courvalinii. 

This bacterial strain was found to be able to perform sequential CN- degradation, and SNaD; an ability 

associated with multiphase growth strategy of the microorganism when provided with multiple nitrogenous 

sources, i.e. CN- and TN. The effect of CN- on nitrification and aerobic denitrification including enzyme 

expression, activity and protein functionality of Acinetobacter courvalinii was investigated. It was found 

that CN- concentration of up to 5.8 mg CN-/L did not affect the growth of Acinetobacter courvalinii. In 

cultures whereby the A. courvalinii isolate was used, degradation rates of CN- and NH4-N were found to be 

2.2 mg CN-/L/h and 0.40 mg NH4-N/L/h, respectively. Moreover, the effect of CN- on NH4-N, nitrate-

nitrogen (NO3-N) and NO2-N oxidizing enzymes was investigated, with findings indicating CN- did not 

affect the expression and activity of ammonia monooxygenase (AMO), but affected the activity of nitrate 

reductase (NaR) and nitrite reductase (NiR). Nevertheless, a slow decrease in NO2-N was observed after 

the addition of CN- thus confirming the activity of NaR and the activation of the denitrification pathway by 

the CN-. Moreover, five models’ (Monod, Moser, Rate law, Haldane, and Andrew’s model) ability to 

predict SNaD under CN- conditions, indicated that only Rate law, Haldane and Andrew’s models, were 

suited to predict both SNaD and CN- degradation. Due to low degradation rates of NH4-N and CN-, 

optimization of SNaD was essential. Therefore, response surface methodology was used to optimize the 

SNaD under CN- conditions.  

The physiological parameters that were considered for optimization were temperature and pH; with the 

result showing that the optimum for pH and temperature was 6.5 and 36.5oC respectively, with NH4-N and 

CN- degradation efficiency of 50 and 80.2%, respectively. Furthermore, the degradation kinetics of NH4-N 

and CN- were also studied under the optimum conditions in batch culture reactors, and the results showed 

that up to 70.6% and 97.3% of NH4-N and CN- were simultaneously degraded with degradation rates of 

0.66 and 0.41 mg/L/h, respectively. The predictive ability of RSM was further compared with cybernetic 

models, and cybernetic models were found to better predict SNaD under CN- conditions. These results 

exhibited a promising solution in the management of inhibition effected of CN- towards SNaD at an 

industrial scale.  

Keywords: Aerobic denitrification; ammonia-oxidizing; biological nitrogen removal; cybernetic model; 

diauxic; free cyanide; Gibbs free energy; metabolic network; metabolism; modeling; nitrification; 

nitrification; nitrite-oxidizing bacteria; RSM models; simultaneous nitrification and aerobic denitrification; 

total nitrogen; wastewater treatment; 
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LAYOUT OF THESIS 
 

The general aim of this research study was to elucidate the metabolic network and modeling of simultaneous 

nitrification and aerobic denitrification (SNaD) under cyanogenic conditions using CN- resistant/ tolerant 

microorganisms for SNaD as a single-stage process under CN-. The experimental part of this study was 

conducted at the Cape Peninsula University of Technology, Bioresource Engineering Research Group 

(BioERG), South Africa. The references at the end of this thesis are listed in accordance with the CPUT 

Harvard method of referencing. 

The thesis is divided into the following chapters: 

• Chapter 1: Introduction; this chapter provides background information about total nitrogen 

biological removal and the challenges that affect total nitrogen removal, particularly inhibition of 

nitrification and aerobic denitrification by cyanide compounds. Additionally, it provides a problem 

statement, hypothesis, objectives, significance of study and delineation. 

• Chapter 2: This chapter focuses on the literature consulted for which the detailed background of 

the developments and the challenges that are experienced during SNaD are explained, moreover, 

the sustainable methods to resolve these challenges are also reviewed. 

• Chapter 3: This chapter focuses on literature consulted to highlight the significance of metabolic 

network modeling in wastewater treatment plants; furthermore, the cybernetic modeling approach 

is also reviewed.  

• Chapter 4: This chapter lists the materials and methods used to achieve the aims of the study. 

• Chapter 5: This chapter focuses on the kinetic modelling of free energy for SNaD under a high 

cyanide environment.  

• Chapter 6: This chapter focuses on the biokinetics of SNaD by cyanide degrading bacteria under 

cyanide laden conditions.  

• Chapter 7: The results on the predictive capability of RSM and cybernetic models for cyanogenic 

SNaD facilitated by cyanide resistant bacteria, are listed in this chapter.  

• Chapter 8: This chapter presents the overall summary and conclusions and also provides answers 

to the research question listed in Chapter 1. Recommendations for future research, are also listed 

in this chapter. 



ix 

• Chapter 9: This chapter consists of literature citations used in this study, in accordance with the 

CPUT Harvard style of referencing. 
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Correlation coefficient      R2      



19 

Cyanide degrading bacteria     CDB      

Cyanide hydratases      CHTs       

Cyanide monooxygenase     CNO       

Degradation rate constant of the enzyme (mg/g.h) 𝑏𝑏       

Degree Celsius       °C      

 Denaturing gradient gel electrophoresis    DGGE       

Dilution term due to growth rate (mg/g.h)  𝑟𝑟𝑔𝑔       

di-Nitrogen       N2       

Dissimilative nitrate respiration regulator   DNR      

Dissolved oxygen      DO      

Electrodialysis       ED       

Extracellular polymeric substances    EPS       

Flavin adenine dinucleotide     FADH2       

Fluorescence in-situ hybridization    FISH       

Flux balance approach      FBA       

Free ammonium      FA       

Free cyanide       F-CN      

Free energy change (Kcal/mol)    ∆G       

Fumarate and nitrate reductase     FNR       

Gibbs energy (Kj/mol)     ∆G      

Heme iron atom of the heme protein    His-Fe2+-His     

Hydrogen cyanide      HCN      

Hydroxylamine oxidoreductase     HAO       
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Inductive rate (mg/g.h)     𝛼𝛼𝑒𝑒𝑒𝑒       

Ion exchange       IE       

Linear function       F       

Maximum level of enzyme 𝑒𝑒𝑖𝑖(mg/L)   𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚       

Maximum rate (mg/g.h)     𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚      

Membrane biofilm reactors     MBfRs       

Model fitting constant      n       

Municipal wastewater sewage systems    MWSSs      

Nicotinamide adenine dinucleotide    NADH       

Nicotinamide adenine dinucleotide phosphate   NADPH      

Nitrate nitrogen      NO3-N      

Nitrate reductase      Nar       

Nitric and nitrous oxide reductases    NorB/NosZ      

Nitric oxide       NO       

Nitric oxide reductase      Nor       

Nitrite nitrogen       NO2-N      

Nitrite oxidoreductase      NXR       

Nitrite reductase      Nir       

Nitrous oxide       N2O       

Nitrous oxide reductase      Nos       

Number of variables      k       

Polyhydroxyalkanoates      PHA       

Polymerase chain reaction     PCR      
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Potassium cyanide      KCN      

Rate of degradation (mg/h)    r       

Represents the variables     xi      

Residual associated to the experiments.   ɛ       

Response surface methodology     RSM      

Saturation constant (mg/L)    𝐾𝐾𝑖𝑖        

Sequence batch reactor      SBR       

Simultaneous nitrification denitrification   SNaD       

Specific degradation rate of the substrate   Vm       

Specific growth rate (h-1)    µ      

Substrate constant (mg/ L)    Ki       

Substrate inhibition constant (mg/ L)   Ks       

Temperature (ºC)     T      

Terminal restriction fragment length polymorphism  T-RFLP      

Thiocyanate       SCN       

Time (h)      t      

Total nitrogen       TN      

Universal gas constant      R       

Wastewater treatment plant     WWTP      
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CHAPTER 1 

INTRODUCTION 
 

1.1.  Introduction  

Human activities such as the use of nitrogen-rich fertilizers result in excessive nitrogen being disposed into 

municipality wastewater treatment plants (WWTP) (Medhi et al., 2017). Nitrification and denitrification 

have been extensively used in WWTP to treat reactive nitrogen into less toxic compounds. These processes 

are performed by ammonia oxidising bacteria (AOB) which oxidise ammonia- nitrogen (NH4-N) to nitrite-

nitrogen (NO2-N) and nitrate oxidising bacteria (NOB) which further oxidises NO2-N into nitrite-nitrogen 

(NO3-N) (Alzate Marin et al., 2016). However, nitrification and denitrification are sensitive to toxic 

pollutant loadings such as free cyanide, i.e., as little as 1-2 mg/L of cyanide (CN-) inhibit metabolic 

functions of AOB and NOB, inhibiting nitrification and denitrification resulting in the deterioration in the 

performance of total nitrogen treatment processes (Kim et al., 2011a). 

Regardless of the toxicity of CN- to biological processes that are performed in WWTP, industrial wastewater 

containing high CN- loading still enter municipality WWTP (Akinpelu et al., 2016); hence, some studies 

have suggested that cyanide-resistant microorganism must be used for nitrification and denitrification in 

order to avoid inhibition effect of CN- (Han et al., 2013b; Richards & Shieh, 1989). In order to understand 

nitrification and denitrification, mathematical models are developed to predict these processes. These 

models are crucial for proper control of the processes (Seifi & Fazaelipoor, 2012).  

Some scientists have tried to model nitrification and denitrification (Khamar et al., 2015); however, due to 

changes in metabolic functions of the microorganism in the presence of CN-, such models would become 

reductant. Overall, existing models cannot be used to predict nitrification and denitrification when under 

cyanide conditions. Hence, this study focused on developing a simplified metabolic network and models 

for simultaneous nitrification and denitrification in the presence of CN- for single-stage systems. 

 

1.2.  Problem statement 

Nitrification and denitrification are biological processes used in WWTP for the removal of total dissolved 

nitrogen. However, these processes are susceptible to inhibition due to the slow growth of organisms 

involved in these processes. Furthermore, cyanide possesses the highest inhibition effect on these processes 

(Wild et al., 1994). Despite the known toxicity of cyanide in biological processes; it still enters the 

municipality WWTP through various pathways. Hence, some studies have suggested the use of cyanide-

resistant microorganisms for nitrification and denitrification (Han et al., 2013; Richards & Shieh, 1989).  
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These microorganisms are able to thrive under high cyanide conditions by converting cyanide into less 

toxic compounds. Additionally, the metabolic functions of these microorganisms’ changes in the presence 

of CN-; hence, the nitrification and denitrification behavior of these cyanide-resistant microorganisms is 

different from that of non-cyanide tolerant microorganisms. Therefore, mathematical models developed to 

predict the behavior of nitrification and denitrification in non-cyanide conditions cannot be used to describe 

nitrification and denitrification in cyanogenic conditions.  

This will include the metabolic networks facilitating nitrification and denitrification. Hence, there is a need 

to develop metabolic network models that can be used to describe metabolic functions of nitrification and 

denitrification of the microorganisms under cyanogenic conditions. This will assist in proper controlling of 

nitrification and aerobic denitrification under cyanogenic conditions. The application of cyanogenic 

bacteria will be more practically applicable in WWTP. 

 

1.3. Hypothesis 

Metabolic functions of bacterial strain used for nitrification and sequential denitrification differ when 

different toxicants are present in the wastewater thus mathematical models developed with nitrogen as a 

sole toxicant cannot suitably predict both nitrification and denitrification in cyanogenic conditions. 

1.4.  Research questions 

• Will the cyanide resistant/ tolerant microorganisms achieve SNaD under CN- condition? 

• What is the maximum concentration of CN- can the isolated bacteria perform SNaD? 

• Can the normal mathematical models predict SNaD under CN- conditions well? 

• What will be the optimum conditions for the isolated bacteria to perform SNaD under CN- 

conditions? 

• Can response surface methodology (RSM) models be used to predict SNaD under CN-? 

• Can Cybernetic models be used for prediction of metabolic network of SNaD under CN-? 

 

1.5.  Aims and objectives 

Aim 1: Study feasibility of using cyanide resistant mix consortium for SNaD under CN-laden conditions. 

Objective 1: Isolation of mix consortium from a CN- environment. 

Objective 2: Perform SNaD kinetic studies catalysed by the isolated mix consortium. 
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Objective 3: Model Gibbs free energy of the rate-limiting step (nitrification) of SNaD under CN- 

conditions. 

 Aim 2: Assessing the predictive capability of different mathematical models towards simultaneous 

nitrification and aerobic denitrification.  

Objective 1: Isolation of cyanide resistant single bacterial strain from the isolated mix consortium. 

Objective 2: Assessing the ability of the isolated bacteria to perform SNaD under cyanogenic conditions.  

Objective 3: Evaluating the predictive ability of different mathematical model towards removal/ 

degradation of multiple nitrogenous source (NH4-N and CN-) 

Objective 4: Study the effect of free CN- on nitrifying and denitrifying enzymes. 

Aim 3: Optimisation of SNaD under CN- conditions and development of cybernetic models for SNaD 

prediction. 

Objective 1: Study Physico-chemical (pH and Temperature) conditions that affect SNaD and CN- 

degradation. 

Objective 2: Develop a simplified SNaD metabolic network for the development of a simple cybernetic 

model. 

Objective 3: Comparison of RSM and cybernetic model predictive capability towards SNaD under CN- 

conditions. 

 

1.6.  Delineation of the study 

This study did not look at:  

• The detailed of the gene responsible for simultaneous nitrification and aerobic denitrification, and 

• The toxicity of the isolated strain on the wastewater treatment plant resident bacterial strains. 
 

1.7.  Significance of the research 

CN- enters wastewater treatment plants from different industrial sources and inhibits biological processes 

performed in traditional wastewater treatment plants; hence, the use of cyanogen resistant microorganisms 

is recommended especially for sensitive processes such as nitrification and denitrification. In order to 

control these processes under cyanogenic conditions, metabolic network models that will predict the 

behavior of these processes under cyanogenic conditions are required; hence, the aim of this study is to 
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develop such a modeling network model that will describe nitrification and denitrification under cyanogenic 

conditions. 
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CHAPTER 2: 

LITERATURE REVIEW 1 
 

2.1. Introduction 

Excessive nitrogenous compounds in wastewater discharged into water bodies such as rivers can result in 

dissolved oxygen (DO) depletion and eutrophication in the receiving rivers (Ali & Okabe, 2015). Due to 

governmental regulations in place to regulate treated wastewater discharge standards, it is important that 

wastewater containing a high concentration of nitrogenous compounds must be treated prior to discharge 

(Duan et al., 2015). This type of wastewater can be treated by biological processes such as simultaneous 

nitrification and aerobic denitrification (SNaD) or Physico-chemical processes such as ammonium 

stripping, chemical precipitation of ammonia, electrochemical conversion, and many other treatment 

technologies (Norton-Brandão et al., 2013). 

However, biological treatment of total nitrogen (TN) laden wastewater via traditional methods, i.e., 

nitrification and subsequent anoxic denitrification in a two-step set-up, is the desired method for treatment 

of TN in generic municipal wastewater sewage systems (MWSSs) because these methods are efficient at a 

larger scale. Overall, biological treatment uses the metabolic activity of living organisms in consortia for 

pollutant removal, with microorganisms such as bacteria primarily being used in an agglomerated symbiotic 

biological potpourri of reactions in sequential or parallel processes. Nonetheless, biological treatment 

methods are not always suitable to treat some industrial wastewater due to the toxicity of organic and other 

substances therein (Oller et al., 2011), which reduces these methods’ efficiency. 

An example is coking wastewater, which contains a high concentration of free cyanide (FCN), which 

decomposes to ammonium-nitrogen, nitrates, and nitrite, herein referred to as TN and phenolics. Such 

wastewater, if treated in an inefficient primary process, would culminate in the inhibition of biologics of 

downstream processes such as nitrification and denitrification, resulting in the disposal of partially treated 

wastewater still containing a high concentration of TN. Moreover, when primary and secondary wastewater 

treatment processes experience increased toxicant loading such as FCN from industrial processes in 

combination with secondary pollutants, e.g., phenolics or heavy metals, the discharged FCN containing 

wastewater would further contribute to receiving surface water pollution, a challenge which is further 

exacerbated by runoff from agricultural operations whereby the use of cyanogen-based pesticides is still in 

practice, especially in developing countries. In certain instances, the remedial strategy implementable to 

minimize FCN inhibition toward primary and secondary processes such as nitrification and denitrification 

sometimes involves the use of adsorbents such as activated carbon as a sorbent (Kim et al., 2008) for FCN 

adsorption. Conversely, the application of physical processes such as activated carbon would incur 



29 

additional operational costs associated with the procurement of the adsorbent and its disposal, including 

regeneration if it is to be used in multi-cycle operations. 

Additionally, the use of sorbents such as activated carbon is less effective in eliminating the inhibitory 

effect of FCN in nitrification and subsequent denitrification, particularly when periodic spillovers to these 

processes downstream occur and when inadvertent adsorption-desorption processes in the primary process 

occur due to process conditions variation, including wastewater quality changes. This can also be due to 

the low absorption capability of poor quality activated carbon used in some operations and because the 

affinity of FCN to activated carbon is low (Kim et al., 2007). Therefore, it is prudent to invest in and 

investigate a sustainable method to eliminate the inhibition of FCN towards nitrification and denitrification. 

Kim et al. (2013) suggested the use of FCN degrading bacteria to eliminate cyanide inhibition towards 

nitrification and subsequent denitrification. Furthermore, although both nitrification and anoxic 

denitrification occur as separate processes at an industrial scale (Han et al., 2014), several research studies 

have indicated the use of simultaneous nitrification and aerobic denitrification (SNaD), which effectively 

culminates in the integration of a traditional two-stage process into a single-stage process (Shoda & 

Ishikawa, 2015; Chen et al., 2012) with an added benefit of having a reduced footprint; albeit, there is 

minimal literature on the utilization of SNaD as a sustainable process in which FCN degrading bacterial 

consortia are used, a practice yet to be adopted at an industrial scale. 

 

2.2. Nitrification and Subsequent Denitrification: An Obsolete Technology 

The secondary treatment in wastewater uses biological processes due to its cost-effectiveness and 

environmental benignity compared to physical treatment technologies, which are expensive and produce 

toxic by-products. Biological treatment plays a crucial role during nutrient removal and for the prevention 

of eutrophication in receiving water bodies (Banning et al., 2015). Nitrification and subsequent 

denitrification are among the important biological processes that are currently being successfully employed 

in MWSSs for the removal of TN (Oller et al., 2011). Generally, the process of TN removal is initiated with 

aerobic ammonium-nitrogen (NH4-N) oxidation in a two-step process with the first step being nitritation 

and the second being nitratation. During nitritation, ammonia-oxidizing bacteria (AOB) oxidize NH4-N to 

NH2OH through ammonia monooxygenase (AMO) biocatalysis; the NH2OH is oxidized further into NO2
− 

through hydroxylamine oxidoreductase (HAO) (Banning et al., 2015). 

This process is known as nitrification through the nitrite route and is ideal as it reduces carbon source 

requirements by up to 40%, thus reducing costs associated with carbon source utilization. The second step 

involves the oxidation of NO2
− into NO3

− by nitrite-oxidizing bacteria (NOB) catalyzed by nitrite reductase 

(NIR) (Ge et al., 2015b; Levy-Booth et al., 2014). Although nitrification is successfully applied in MWSSs 

for TN removal, it is a highly sensitive process (Shoda & Ishikawa, 2014). The effluent from nitrification 

is further processed in an anaerobic reactor for anoxic denitrification, whereby microorganisms oxidize 



30 

nitrates into gaseous nitric oxide (NO) and nitrous oxide (N2O) bio-catalytically facilitated by nitric and 

nitrous oxide reductases (NorB/NosZ). Furthermore, these exhaust gasses are reduced into di-nitrogen (N2) 

gas, which acts as a terminal acceptor for electron transport phosphorylation under anaerobic conditions 

(Toyoda et al., 2015). Anoxic denitrification also catalyzes the formation of the N–N bond from process 

(denitrification) intermediates, i.e., NO and N2O (Clough et al., 2017). Nitrification and denitrification 

pathways, as well as the enzymes involved, can be depicted summarily in Figure 2.1. 

 

Figure 2.1. Diagram representing nitrification and subsequent denitrification. 

Denitrification was also proven to occur under aerobic conditions (He et al., 2016); hence, this development 

offered a possibility for SNaD that is more cost-effective for TN removal than the traditional nitrification 

and the subsequent denitrification processes currently used in MWSSs (Shoda & Ishikawa, 2015; Chen et 

al., 2012). Some of the microorganisms that were proven to carry out denitrification under completely 

aerobic conditions include Pseudomonas alcaligenes AS-1, Pseudomonas species (sp.) 3–7, Pseudomonas 

sp. Rhodoferax ferrireducens, Agrobacterium sp. LAD9, Rhodococcus sp. CPZ 24, Bacillus subtilis A1, 

Pseudomonas stutzeri YZN-001, Acinetobacter calcoaceticus HNR, Bacillus methylotrophicus L7, 

Diaphorobacter sp., Acinetobacter sp. Y1, Acinetobacter junii YB, and Marinobacter sp (Shoda & 

Ishikawa, 2015; Chen et al., 2012; Zhang et al., 2012). 

In addition, a number of other aerobic denitrifying bacteria have been isolated and identified, e.g., 

Paracoccus (Micrococcus) denitrificans, Hyphomicrobium strains, Hyphomicrobium vulgare, Moraxella 

species, and Kingella denitrificans (Liu et al., 2016). Although nitrification and denitrification were proven 

to be sustainable methods for treating TN, more research was done to improve these processes such that 
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they are more sustainable, more cost-effective, and easy to operate. Some of the important genes and the 

processes that are responsible for nitrification and denitrification are highlighted in Table 2.1. 

Table 2.1. Genes responsible for nitrification and denitrification and their functions (Clough et al., 2017). 

Category of  
Affected 
Process 

Gene or  
Locus Encoded Gene Product and Their Functions 

Regulation anr 
Fumarate and nitrate reductase (FNR)-like global redox regulator 

for the  
expression of denitrification genes. 

 Dnr, fnrD FNR-like regulator that affects the expression of nirS and norCB. 

 Fixk2 FNR-like regulator that affects anaerobic growth on nitrate. 

 fnrP FNR-like regulator that affects the expression of narGH. 

 narL 
Nitrate responsive transcription factor of Pseudomonas of a narXL 

two-  
component system. 

 nirI A membrane protein with similarity to NosR affects nirS 
expression. 

 nirR Pseudomonas locus that affects the synthesis of nirS and LysR 
regulator. 

 nirY (orf 
286) 

FNR-like regulator that affects expression nirS and norCB in 
Paracoccus  

and Rhodobacter sp. 

 nnrS Activate transcription of nirK and nor genes in Rhodobacter 
sphaeroides. 

 nosR Membrane-bound regulator required for transcription of nosZ. 

 rpoN Sigma factors affect denitrification in Ralstonia eutropha 

Nitrate  
respiration narD Plasmid bone locus for eutropha respiratory nitrate reduction. 

 narG α-subunit of nitrate reductase respiration that binds to 
molybdopterin guanine dinucleotide (MGD). 
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 narH Β-subunit of nitrate reductse respiration that binds to Fe-S cluster. 

 narI Cytochrome b subunit of respiratory nitrate reductase. 

 narJ Protein required for nitrate reductase assembles. 

Periplasmic 
nitrate  

reduction 
napA The large subunit of periplasmic of nitrate reductase that binds to 

bis- molybdopterin guanine dinucleotide (MGD) and Fe-S cluster. 

 napB Small subunit of periplasmic of nitrate reductase, a diheme 
cytochrome c. 

 napD 
Cytoplasmic protein with presumed maturation function, 

homologous to  
Escherichia Coli napD (YojF). 

 napE Putative monotopic membrane protein; there are no known 
homologs. 

Nitrite 
respiration nirB Cytochrome c552. 

 nirC Monoheme cytochrome c with a putative function in NirS 
maturation. 

 nirK, nirU Cu-containing nitrite reductase. 

 nirN orf507 It affects anaerobic growth and in-vivo nitrite reduction, similar to 
NirS. 

 nirQ Gene product that affects catalytic functions of NirS and NorCB. 

 nirS (denA) Cytochrome cd, nitrate reductase. 

Heme D1  

Biosynthesis nirD Gene product affects heme D. Biosynthesis or processing. 

 nirE S-Adenosyl-l-Methionine uropophyrinogen III methyltransferase. 

 nirF Needed for heme D biosynthesis and processing; similar to NirS. 

 nirG Gene product affects heme D. Biosynthesis or processing. 



33 

 nirH Gene product affects heme D. Biosynthesis or processing. 

 nirJ, orf393 Needed for heme D biosynthesis and processing; similar  
to PqqE, NifB, and MoaA. 

 nirL Gene product affects heme D. Biosynthesis or processing. 

NO respiration norB Cytochrome b subunit of NO reductase. 

 norC Cytochrome c subunit of NO reductase. 

 norD, orf6 Affect availability under denitrifying conditions. 

 norE, orf2, 
orf175 Membrane protein: homologous with COX III. 

 norF Affect NO and nitrite reductase. 

 norQ Affect NirS and NorCB function; homolog of NirQ. 

N2O respiration Fhp R. eutropha flavohemoglobin affects N2O and NO reduction. 

 nosA, oprC Channel-forming outer membrane protein; Cu-processing for NosZ. 

 nosD Periplasmic plastic involved in Cu insertion into NosZ. 

 nosF ATP or GDP binding protein involved in Cu insertion into NosZ. 

 nosL Part of nos gene cluster; putative outer membrane lipoprotein. 

 nosX Affect nitrous oxide reduction in Sinorhizobium meliloti. 

 nosY Inner membrane protein involved in Cu processing for NosZ. 

 nosZ Nitrous oxide reductase. 

Electron 
transfer azu Azurin. 

 cycA Cytochrome C2 (C550). 

 napC Tetraheme cytochrome c; homologous to NirT. 
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 nirM 
(denB) Cytochrome C551. 

 nirT Putative membrane-anchored tetraheme c-type cytochrome. 

 paz Pseudoazurin. 

Functionally  
unassigned Orf396 A putative 12 span membrane protein of Pseudomonas stutzeri 

homologous to NnrS. 

 nirX A Paracoccus putative cytoplasmic protein; homologous to NosX. 

 orf7, orf63 Pseudomonas gene downstream of dnr and fnrD. 

 orf247 Putative member of the short-chain alcohol dehydrogenase family. 
 

2.3. Recent Advances in Nitrification and Denitrification Processes: Future Perspectives 

Denitrification was believed to occur under completely anoxic conditions (Shoda & Ishikawa, 2015; Chen 

et al., 2012), while nitrification emerged as an aerobic process (Zhang et al., 2012). Furthermore, the growth 

of nitrifiers depends on DO, which is lethal to traditional denitrifiers. Conversely, some microorganisms 

that are capable of heterotrophic nitrification and aerobic denitrification have been reported; hence, SNaD 

has recently drawn attention due to its potential to reduce cost related to the second anoxic tank whereby 

denitrification would have occurred (He et al., 2016; Ji et al., 2015; Khardenavis et al., 2007). 

Additionally, aerobic denitrification can also regulate and maintain the pH in the reactor since nitrification 

causes acidification (Zhang et al., 2012). Aerobic denitrification occurs in two ways—the first is due to 

aerobic respiration aided by an enzyme known as periplasmic nitrite reductase (NAR)—see Figure 2.2 (A). 

This enzyme is essential for the conversion of nitrate to nitrite under aerobic conditions (He et al., 2016). 

However, due to the sensitivity of N2O reduction enzymes to DO, a significant amount of NO and N2O are 

emitted to the environment (Zheng et al., 2014). The second mechanism is through the transfer of DO into 

the activated sludge flocs for nitrification, which results in the diffusion competition whereby the DO 

consumption becomes greater in the outer zone of the floc, thus reducing DO penetration into the interior 

of the floc and leading to an anoxic zone in the center [see Figure 2.2 (B)] of flocs, which is suitable for 

denitrification (Pal et al., 2015). 

The increase in operational costs resulting from the dosing of synthetic and industrial-grade chemicals in 

the biological MWSSs (Chen et al., 2009) was a major driver for SNaD development for a low-cost and 

environmentally benign process. This involves the use of agricultural waste to sustain microbial growth 
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during SNaD. The ability of SNaD microorganisms to grow onto agricultural waste is due to the availability 

of trace elements of micro and macro-nutrients on the waste itself, which can serve as readily available 

nutrient sources and a biomass immobilization matrix for microbial proliferation (Ntwampe & Santos, 

2013; Santos et al., 2013). 

Mekuto et al. (2013) also proved that agricultural waste can be used as a sole supplementation source of 

microbial growth during biodegradation of FCN-TN. However, the microorganism or consortia may also 

convert some unintentional sources within the agricultural waste into undesirable and desirable 

biomolecules such as citric, lactic, succinic acid, and alcohols (Sauer et al., 2008) during wastewater 

treatment. Furthermore, these biomolecules can also cause fluctuations in the wastewater pH, which will 

eventually lead to the inhibition of some essential microbial populations that are responsible for the 

biological processes in the MWSSs. 

  

Figure 2.2. Diagram representing (A) different simultaneous nitrification and aerobic denitrification 

mechanisms as well as simultaneous nitrification and aerobic denitrification via nitrite route. (B) 

Representation of floc in activated sludge with aerobic and anoxic zone. 

Additionally, activated sludge processes are known to be relatively high energy-consuming processes that 

lead to the escalation of plant operational costs, thus making biological processes less sustainable, 

especially in developing countries. This has led to strategies aiming at improving the operational conditions 

of these biological processes (Singh & Srivastava, 2011) by altering reactor configurations. Consequently, 

it has been reported that 2% of all electrical power in the USA is used by MWSSs, and a further 40–60% 

of all the energy is used for aeration and mechanical devices such as stirrers and diffusers (including 

nozzles), with only 5–25% of supplied air embedded oxygen being successfully transferred to the 

wastewater as DO and the rest becoming only pneumatically expunged oxygen in bubbles purged without 

transfer (Aybar et al., 2014). 

A B 
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As a result, the replacement of conventional activated sludge systems by cost-effective reactors was eminent 

for lowering operational costs and thus the adherent of the sequence batch reactor (SBR). Initially, the SBR 

was shown to be cost-effective for nitrification and sequential anoxic denitrification; hence, such reactors 

are easily adaptable to operate in a different mode and allow for both nitrification and aerobic denitrification 

to occur in the same tank, resulting in SNaD (Ma et al., 2017; Mahvi, 2008). Moreover, SBR is popular and 

is of interest since it was proven to save up to 60% of the expenses required by conventional activated 

sludge processes whilst being highly versatile and efficient. Additionally, it has a short retention time 

compared to other conventional activated sludge processes, which require 3–8 h of continuous aeration 

(Singh & Srivastava, 2011). In addition, other reactors, including the membrane biofilm reactors (MBfRs), 

are also known to be cost-effective and highly efficient (Aybar et al., 2014; He et al., 2017). A summary of 

process configurations is denoted in Figure 2.3. 

 

Figure 2.3. Principles of sequence batch reactor (SBR) and how interchangeable they can be with 

membrane biofilm reactors (MBfR) systems. 

Modeling is another important aspect of sustaining a smooth operation of a process, e.g., wastewater 

treatment. Most MWSS plants are processes controlled using advanced process control models and systems. 

For SNaD in SBR type processes, modeling has been applied to predict and control environmental process 

conditions and wastewater quality for the SNaD to succeed. Different mathematical models have been used 

to predict oxidation of TN; however, these models fail to explore metabolic activities and networks of the 

microbial populations used during SNaD (Koch et al., 2000; Sin et al., 2008; Seifi & Fazaelipoor, 2012). A 

recently proposed mathematical exposition to explain SNaD is illustrated in Kanyenda et al. (2018). 
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These mathematical models also fail to accurately address the metabolic networking of microbial 

populations responsible for SNaD (Edwards et al., 2002). Thus, they cannot be used to describe biological 

processes used in MWSSs, since biological processes rely on the metabolic networking of microbial 

populations, particularly for consortia-catalyzed systems.  

 

2.4. Overall Remarks on Simultaneous Nitrification and Aerobic Denitrification (SNaD): Advances 
and Limitations 

All these improvements have contributed to a significant difference in the smooth operation of nitrification 

and denitrification for TN removal. Moreover, these improvements have also made a considerable reduction 

in the operational cost of these processes. Nevertheless, with all the efforts made to advance nitrification 

and denitrification, MWSSs still face challenges—they are easily inhibited by many contaminants present 

in the wastewater, resulting in a negative impact on the operation and rendering the overall process 

ineffective. Hence, efforts have been made to address such challenges. 

 

2.5. Challenges in Simultaneous Nitrification and Aerobic Denitrification (SNaD) processes 

The major challenges SNaD is currently facing are the slow growth rate and the sensitivity to temperature, 

pH, DO concentration, and toxicants, which negatively affect nitrifying and denitrifying organisms (Cui et 

al., 2014; Papirio et al., 2014). Additionally, high shear stress resulting from aeration can also result in the 

slow growth of nitrifying and denitrifying microorganisms (Lochmatter & Holliger, 2014), causing 

excessive biomass wash-out during wastewater treatment and resulting in reduced TN removal efficiency 

and SNaD failure (Szabó et al., 2016). 

This could ensure SNaD susceptibility to inhibition by toxicants and heavy metals present in the 

wastewater. High concentrations of heavy metal are usually found in nitrogen-rich wastewaters from 

anaerobic digestates, e.g., anaerobically digested piggery and dairy slurries (Li et al., 2015a). Although 

heavy metals affect SNaD, they are required in small quantities to enhance microbial growth and stimulate 

the activity of microorganisms by stimulating enzymes and co-enzymes that play important roles in SNaD, 

e.g., copper and molybdenum, which are constituents of nitrite reductase and nitrite oxidoreductase, 

respectively, while other known enzymes involved in SNaD depend on other heavy metals such as nickel-

dependent hydrogenase, ATP-dependent zinc metalloprotease FtsH 1, and zinc-containing dehydrogenase 

(Li et al., 2015b).  

Although minute amounts of heavy metals such as Fe, CU, Co, Ni, and Zn are essential in wastewater 

treatment, their toxicity towards nitrifying and denitrifying microorganisms is mainly influenced by metal 

speciation, sludge health sloughing, and the type of reactor used (Aslan & Sozudogru, 2017). Moreover, 

denitrification inhibition by high concentrations of nitrate in wastewater also affects the metabolism of 

nitrifying and denitrifying organisms. Another challenge that hinders the practicality of SNaD is the 
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inhibition of denitrifiers by DO. Additionally, operational, maintenance, and process control strategies can 

produce better reactor performance in general wastewater systems but can also hamper SNaD, especially 

under rudimentary process control conditions that facilitate undesirable loadings and environmental 

conditions (Show et al., 2013).  

Another challenge with SNaD is the elongated start-up and stabilization period, with the NH4-N and NO2
- 

concentrations within the system able to affect the growth of SNaD by stunting the microbial community 

proliferation during this period. Low NH4-N and NO2
- concentrations can also result in substrate limitation 

and can thus lead to a low growth rate of the SNaD microbial populations. Two start-up procedures for 

SNaD are known to exist, with the first involving directed evolution of the SNaD microorganisms by 

adaption to increasing NH4-N and NO2
- concentrations. The second procedure involves the physical 

inoculation with anoxic denitrifying consortium after the primary (nitrification) step of the SNaD has been 

initiated. Then, the nitrification and the partial aerobic denitrification in SNaD can thereafter ensue such 

that they are well established in one process unit (Zhang et al., 2014). The inhibition of SNaD by FCN is 

another common challenge, as FCN has been reported to possess the highest inhibitory effect toward SNaD; 

furthermore, some microorganisms suited for SNaD have been reported to use FCN as a nitrogenous source 

(Luque-Almagro et al., 2016). 

 

2.6. Prevention of Biomass Washout During the Start-Up of SNaD 

Environmental engineers have been making efforts to reduce the start-up time of SNaD microorganisms in 

order to reduce biomass washout and maintain the TN removal efficiency (Lochmatter & Holliger, 2014). 

Different reactors with low retention times have been designed and studied, including the fluidized bed 

reactor, the membrane reactor, the gas lift reactor, the rotating biological reactor, and the up-flow anaerobic 

sludge blanket; however, a portion of biomass is still washed out with the effluent in all these systems, 

particularly for unstable periods, due to the cases overloading to increase wastewater treatment through-

put, which induces biomass sloughing and flotation and which results in wash-out (Huang et al., 2016). 

The sequencing batch reactor has been found to be the more suitable reactor for the growth of SNaD 

microorganisms and is efficient in biomass retention. The possibility of immobilization of SNaD 

microorganisms as biofilm on the surface carriers has also been explored as another alternative to reducing 

biomass washout. The materials that have been well studied as surface carriers include zeolite, polyethylene 

sponge strips, porous non-woven fabrics, novel acrylic resin materials, bamboo charcoal, and polyurethane 

spheres (Daverey et al., 2015). 

Szabó et al. (2016) also showed that by gradually improving biomass, settling can also reduce SNaD 

washout. Parameters such as changing DO aeration strategy and contaminant load adaptation during the 

early stage of the start-up as well as the availability of soluble chemical oxygen demand (COD), which can 
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readily be consumed prior to the commencement of the aeration phase at a low temperature (20 °C) and a 

neutral pH, have been found to greatly affect the retention of biomass in SNaD. These parameters have 

been studied in order to optimize the functionality of the SNaD (Daverey et al., 2015; Gunatilake, 2015). 

Furthermore, washout can be prevented by toxicant removal by the addition of psycho-chemical pre-

treatments, which might involve chemical precipitation, adsorption, ion exchange, and electrochemical 

deposition. 

Additionally, these psycho-chemical pre-treatments may result in additional process operational costs; 

hence, it is imperative to shift to a biotechnological approach to avoid slow startup and biomass retention 

by controlling the inhibition of SNaD organisms by toxic pollutants present in wastewater. FCN degrading 

bacteria have been reported to have a fast-growing rate; hence, they can provide a practical solution to the 

inhibition of FCN and eliminate challenges associated with the slow growth of SNaD microorganisms 

(Luque-Almagro et al., 2016). 

 

2.7. Inhibition Mechanism of Simultaneous Nitrification and Aerobic Denitrification by Pollutants 

With all the efforts that have been made to improve SNaD, this process still faces challenges, such as 

inhibition by toxic pollutants. This is due to the slow growth of NOB, making SNaD prone to inhibition. It 

has been shown that SNaD is more sensitive to FCN and phenol loading; as little as 1–2 mg/L of hydrogen 

cyanide (HCN) could result in complete inhibition of metabolic functions of both AOB and NOB, even in 

consortia bio-catalyzed SNaD. The presence of high concentrations of FCN in the MWSSs can render the 

secondary treatment processes ineffective subsequent to the disposal of wastewater containing a high 

concentration of TN, resulting in the deterioration of the MWSS’s effluent quality (Kim et al., 2011; 

Akinpelu et al., 2016). Different inhibition mechanisms of SNaD by different pollutants have been reported. 

Primary inhibition involves the deactivation of the actions or the activity of ammonia monooxygenase 

(AMO), which is an important enzyme in the primary step of nitrification, through inhibition of the 

respiration system of the microorganism by exogenous ligands that attach to the heme protein (His-Fe2+-

His) (Wu et al., 2017). The heme protein is required for the mediation of the redox processes and respiration, 

which aid in the reduction of dissolved compounds by bacteria in MWSSs (Ruser & Schulz, 2015). 

Secondary inhibition is through the binding of an inhibitor to the active site of the enzyme prohibiting the 

binding of the substrate (i.e., NH4-N), thus inhibiting its oxidation. Another inhibition phenomenon 

involves the removal of the AMO-Cu co-factor through chelation, culminating in the formation of an 

unreactive complex and rendering the whole SNaD process ineffective. The presence of Cu co-factors has 

been found to play a crucial role in the activity of AMO, which affects the oxidation of NH4-N. The last 

enzymatic inhibition involves substrate oxidation, which causes the substrate to be highly reactive, resulting 

in the premature excretion of the AMO as a secondary metabolite (Ruser & Schulz, 2015). FCN has been 
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proven to greatly inhibit SNaD in activated sludge systems, primarily due to inadequate AMO activity (Kim 

et al., 2008). FCN inhibits nitrification and denitrification by acting as an exogenous ligand, which binds 

into His-Fe2+-His in three sequential steps, which are: (1) the ionic exchange of the endogenous ligand; (2) 

the formation of a reactive penta-coordinated species; and (3) the binding of the external ligand (De Sanctis 

et al., 2006). 

Additionally, Inglezakis et al. (2017) showed that the specific NH4--N uptake rate is less inhibited compared 

to a specific oxygenation rate. It was thus concluded that the autotrophic biomass was less sensitive to FCN 

than heterotrophic biomass. The inhibition of SNaD by FCN has been widely studied by many, including 

Kim et al. (2011). Moreover, efforts have been made to try to eradicate SNaD inhibition by using techniques 

such as the application of pretreatment systems with adsorption processes and the addition of a step whereby 

microorganisms are used to treat FCN to acceptable concentrations that have a lessened impact on TN 

removal subsequent to SNaD. 

 

2.8. FCN Wastewater in Municipal Wastewater Sewage Systems (MWSSs) and Its Impact on 
Nitrification and Denitrification: A Culture of Illegal Wastewater Dumping 

FCN is a toxic carbon-nitrogen radical found in various inorganic and organic compounds, some of which 

are used on an industrial scale. A common form of FCN is hydrogen cyanide (HCN), which can be an 

odorless gas characterized by a faint, bitter, almond-like odor (Safa et al., 2017; Tiong et al., 2015). Cyanide 

can be found in different forms depending on the pH; at high pH, it is found as an ion of FCN and evaporates 

as HCN at neutral pH, pKa 9.2. Additionally, FCN has a high affinity for metals and thus can form 

complexes with metals found in nature even when released in agricultural soil (Itoba-Tombo, 2019). These 

metal FCN complexes can be categorized into two categories—weak acid dissociable (WAD) and strong 

acid dissociable (SAD) FCN (Han et al., 2014; Luque-Almagro et al., 2011). Microorganisms and animals 

also produce minute quantities of FCN as a protection mechanism, e.g., cassava, corn, and lima beans, 

forages (alfalfa, sorghum, and Sudan grasses), and horticulture plants (ornamental cherry and laurel). FCN 

is often released as a nitrogenous source when the plant is under stressed environmental conditions (Gupta 

et al., 2010). 

As such, FCN enters MWSSs via illegal disposal of wastewater, mostly from different industries (Luque-

Almagro et al., 2016), and as runoff from the disposal of FCN containing agricultural wastes in landfills, 

the use of FCN containing pesticides, and through the use of FCN containing tar salts. FCN is known for 

being a metabolic inhibitor of many microorganisms, and as little as 0.3 mg/L can result in the loss of 

biological activity in microorganisms (Basheer et al., 1992). It alters the metabolic functions of the 

organism by forming a stable complex with transient metals that plays a significant role in the functioning 

of the proteins, including micro and macro-metallo contents within cells, which play an important role in 

nutritional sustenance of biomass intended for FCN bioremediation (Tiong et al., 2015). In the wastewater 
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treatment process catalyzed by biomass, this can result in the inhibition of SNaD (Han et al., 2014; Han et 

al., 2013). 

Some microorganisms produce minute quantities of cyanide for defensive purposes (Khamar et al., 2015), 

albeit they are able to carry out most metabolic functions in the presence of low FCN. Furthermore, some 

organisms are able to survive FCN expressing specialized enzymes for the degradation of FCN into NH4-

N and CO2 through nicotinamide adenine dinucleotide (NADH)-linked cyanide monooxygenase (CNO), 

including enzymes such as nitralase and cyanide hydratases (CHTs) (Khamar et al., 2015; Rinágelová et 

al., 2014); these can be rendered ineffective by chelation reaction-side blockages and promotion of 

redundancy in the overall functionality of the bio-catalysis process. 

FCN has been reported to be a highly poisonous compound known to man (Luque-Almagro et al., 2018), 

and it is hyper-toxic under aerobic conditions, which would mean higher toxicity for aerobic organisms 

used in SNaD. It inactivates the respiration of many microorganisms by binding to the cytochrome-c 

oxidase (Murugesan et al., 2018). However, some microorganisms have developed a metabolic FCN 

detoxification mechanism. These mechanisms have been studied in numerous microorganisms, which 

culminated in an interest in the research community in SNaD, even under toxicant loading and particularly 

under FCN loading. Studies have also shown that these microorganisms can either use FCN primarily as a 

nitrogenous or as a carbon source by converting it to NH4-N and CO2 through NADH-linked cyanide 

oxygenase (Dwivedi et al., 2016). FCN degradation in aerobic conditions can be expressed as highlighted 

in Equation 1. 

2𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑂𝑂2 →
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

2𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (1) 

whereby the hydrogen cyanate is therefore hydrolyzed into NH4-N and CO2 (Equation 2): 

𝐶𝐶𝐶𝐶𝐶𝐶 + 2𝐻𝐻2𝑂𝑂 → 𝑁𝑁𝑁𝑁4+ + 𝑂𝑂2− 
(2) 

 

2.9. Current Solutions to the Challenges in Simultaneous Nitrification and Aerobic Denitrification 
(SNaD) 
2.9.1. Physical Process Used as Remedial Strategy to Decrease the Inhibitory Effect of FCN on SNaD 

Chemical methods have been employed to decrease the concentrations of FCN prior to SNaD. One of the 

few chemical methods used includes alkaline chlorination oxidation. This method is a preferred chemical 

method since it is highly effective; however, alkaline chlorination (and thus oxidation) results in undesirable 

byproducts and produces excess hypochlorite, which is a toxicant. Chemical precipitation by ferrous sulfate 

is another method that is preferred for FCN removal due to its cost-effectiveness and availability of the salt, 

but it produces large quantities of toxic sludge. Ion exchange can also be used to lower FCN concentration, 
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although it is difficult to operate and has high input costs (Cui et al., 2014). Activated carbon has also been 

widely used to effectively remove pollutants in MWSSs (Ramavandi, 2016). However, activated carbon 

has been reported to be less effective at removing metals and some inorganic pollutants—especially FCN—

due to their low adsorbability in poor quality wastewater. It was reported that the adsorption capability of 

activated carbon depends on the potpourri of available chemical species, thus some research has suggested 

modification of different activated carbon functional groups to enhance selective adsorption capability 

(Singh at al., 2016). The use of such activated carbon can result in increased production cost, which would 

in turn increase operational costs of SNaD, thus making this option a less desirable remedial strategy for 

TN reduction when considering the inhibition of FCN. Thus, more appropriate and less costly methods are 

required, with some biological processes being proposed as suitable approaches (Özel et al., 2010). 

 

2.9.2. Biological Systems Responsible for Lowering FCN Concentration Prior to SNaD 

As a remedial strategy, the elimination of FCN by microbial processes carried out during wastewater 

treatment is usually employed to detoxify FCN into NH4-N. These microorganisms use different 

mechanisms for FCN degradation with five different FCN degradation mechanisms known, which are 

hydrolytic, oxidative, reductive, substitution/transfer, and synthesis pathways (Gupta et al., 2010). The 

hydrolytic, the oxidative, and the reductive pathways are because of enzymatic actions for which FCN is 

transformed into simple organic or inorganic byproducts such as NH4-N and CO2, and the other two 

mechanisms (substitution/transfer and synthesis mechanisms) are responsible for the assimilation of FCN 

(Gupta et al., 2010). 

These pathways are used for the assimilation of FCN as a nitrogen and a carbon source. The hydrolytic 

pathway is catalyzed by five different enzymes, including cyanide hydratase, nitrile hydratase, and 

thiocyanate hydrolase. These enzymes have specific activators for and direct hydrolysis of FCN. 

Additionally, some hydrolyze the triple bond between the carbon and the nitrogen elements to form 

formaldehyde. Others, including nitrilase and cyanidase, are effective in the microbial metabolic activity 

and the conversion of FCN into NH4-N and a carboxylic acid (Inglezakis et al., 2017; Dwivedi et al., 2016). 

The oxidative pathway involves oxygenolytic conversion of the FCN into CO2 and NH4-N, although this 

pathway requires an addition of a carbon source, e.g., agricultural waste extracts, and nicotinamide adenine 

dinucleotide phosphate (NADPH) to catalyze the degradation pathway (Inglezakis et al., 2017; Dwivedi et 

al., 2016). Moreover, the oxidative pathway is divided further into two distinctive pathways involving three 

enzymes, namely, cyanide monooxygenase, cyanase, and cyanide dioxygenase. The reductive pathway 

occurs anaerobically and is catalyzed by nitrogenase to convert FCN to methane and ammonium (Sharma 

et al., 2019), a process that is not facilitated in SNaD. 
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The substitution/transfer pathway catalyzes FCN assimilation for growth purposes with the aid of rhodenase 

and mercaptopyruvate sulfurtransferase by using FCN as a nitrogen source. The synthesis pathway is 

another FCN assimilation pathway that involves the production of an amino acid, β-cyanoalanine, and ϒ-

cyano-α-aminobutyric acid, using other amino acid residues as precursors that react with the FCN 

compound (Sharma et al., 2019). Conversely, FCN degradation has been found to be significantly inhibited 

by some by-products of NH4-N oxidation, such as those analogous to organic acids (Kao et al., 2003). 

To date, there is still minimal literature on the exploitation of FCN resistant or tolerant organisms with an 

ability to mediate the inhibition effect of FCN compounds in MWSSs. Additionally, Mekuto et al. (2015) 

also reported SNaD at 100–300 mg FCN/L loading by the Bacillus species. According to the authors, whilst 

the use of cyanide degrading bacteria to lower toxicity levels of FCN is environmentally benign, the 

additional reactors in series prior to SNaD can be beneficial for FCN degradation, which can escalate 

operational costs in MWSSs. 

Some FCN degrading microorganisms displayed the ability to degrade FCN subsequent to SNaD. This led 

to Kim et al. (2008) proposition of using FCN degrading microorganisms for SNaD, which is an interesting 

phenomenon that promotes the simultaneous removal of the FCN compound and TN and eventually results 

in the implementation of SNaD in lower operational cost associated settings, even in an FCN biodegradation 

reactor. 

 

2.9.3. Overall Remarks on Remedial Strategies in Place to Mitigate FC in SNaD 

Although efforts have been made to address the inhibition of SNaD by FCN, the current strategies in place 

have their limitations; for example, the activated carbon is not effective in the absorption of FCN. Hence, 

this option is not an appropriate remedial strategy to lower FCN in wastewater on a large scale. The use of 

FCN degrading bacteria to lower FCN concentration to acceptable standards prior to SNaD has attracted 

more attention since it is an environmentally benign option. However, this option can result in the escalation 

of operational costs associated with the maintenance of the primary reactor designated for FCN degradation. 

Hence, it is important that this option be re-evaluated to minimize costs. 

 

2.10. A Proposed Sustainable Solution: Environmental Benignity at the Core of SNaD Development 
2.10.1. Application of FCN Resistant Microorganisms in Simultaneous Nitrification and Aerobic 
Denitrification (SNaD) Under Cyanogenic Conditions 

Research has shown that there are FCN resistant microorganisms that can remain active even in 

concentrations above 18 mg FCN/L (Chen et al., 2008). Kim et at. (2013) successfully achieved SNaD 

under high FCN conditions using FCN degrading bacteria in a single reactor process (Han et al., 2014). 

Microorganisms use different mechanisms to resist the influence of FCN through the enzymatic mechanism 

for FCN degradation through the degradation of FCN into less toxic compounds (cyanotrophic organisms) 
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via different pathways, as previously mentioned, e.g., hydrolytic pathway, oxidative pathway, reductive 

pathway, substitution/transfer pathway, and synthesis pathway (Gupta et al., 2010; Basheer et al., 1992). 

Pseudomonas pseudoalcaligenes CECT5344 was sequenced, and it was revealed that four nitrilase genes 

were responsible for CN-assimilation and six other C-N hydrolase/nitrilase superfamily genes were found 

in cyanotrophic strains (Gupta et al., 2010). Nitrilases have been reported to play a role in the nitrogen 

metabolism of Colwellia sp. Arc7-635 (Lin et al., 2019). 

Generally, heterotrophic bacteria that degrade FCN are typically able to assimilate NH4-N, i.e., a byproduct 

of FCN biodegradation, as a nitrogenous source. Thus, it has been reported that some of the FCN degrading 

bacteria are also nitrogen assimilators. The number of nitrifying bacteria has been found in FCN rich 

environments—an indication of the adaption of nitrifying and denitrifying microorganisms to FCN (Watts 

et al., 2016). Ryu et al. (2015) reported simultaneous nitrification and thiocyanate (SCN) degradation, 

demonstrating that FCN and SCN degrading bacteria can be used to mediate the FCN inhibition effect in 

SNaD systems. Other genes in P. pseudoalcaligenes CECT5344 indicated a presence of 

polyhydroxyalkanoates (PHA) synthesis, which has a potential to biodegrade numerous toxicants, including 

aromatic compounds such as phenol (Luque-Almagro et al., 2016). 

Although some scientists have suggested the use of FCN degrading microorganisms to eliminate FCN 

inhibition on SNaD (Inglezakis et al., 2017; Salazar-Benites et al., 2016; Mekuto et al., 2018), more work 

still needs to be done in order to understand these processes when the wastewater experiences high 

concentrations of FCN compounds, including other secondary toxicants such as heavy metals (see Table 

2.2). Furthermore, the description of SNaD using numerical models is underdeveloped. 

Therefore, proper models that describe the behavior of these FCN degrading bacteria in SNaD, even when 

performing nitrification including denitrification under high FCN loading conditions, need to be developed 

and evaluated. Furthermore, the thermodynamics of SNaD under FCN conditions need to be assessed to 

theoretically elucidate the feasibility of these processes on an industrial scale. This will provide insight into 

SNaD facilitated by FCN degrading bacteria, which will enable the proper control of SNaD under high FCN 

conditions. 

Table 2.2. Studies that have successfully used cyanide degrading microorganisms for nitrification and 

aerobic denitrification. 

Microorganis
m Description of Process Examined Reference 

Bacillus sp Free cyanide (FCN) biodegradation subsequent nitrification 
and aerobic denitrification 

(Mekuto et 
al., 2015) 
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CN− degrading  
consortium 

Heterotrophic nitrification—aerobic denitrification potential 
of cyanide  

and thiocyanate degrading microbial communities under  
cyanogenic conditions 

(Mekuto et 
al., 2018) 

Enterobacter 
sp.,  

Yersinia sp. 
And  

Serratia sp 

Nitrification and aerobic denitrification under cyanogenic  
conditions 

(mpongwana 
et al., 2016) 

Pseudomonas  
fluorescens 

Elimination of cyanide inhibition through cultivation of 
cyanide  

degrading bacteria 

(Han et al., 
2014) 

Thiobacillus 
and  

Micractinium 
Simultaneously remove SCN and total nitrogen (Ryu et al., 

2015) 

 

2.11. Conclusion 

SNaD system development faces many challenges; among these is the inhibition of SNaD consortia by 

FCN, a predominant challenge in most MWSSs. FCN is a byproduct of most industrial processes, such as 

electroplating and ore processing in the mining industry. FCN enters MWSSs through various pathways, 

which include runoffs from cyanide spills or disposal of FCN containing wastewater from numerous 

industries. Different psycho-chemical methods have been used to treat FCN prior to the SNaD process; 

however, these methods produce undesirable byproducts and they are expensive. Hence, it is important that 

a sustainable solution to the FCN inhibition of SNaD be developed. Biological removal of cyanide has been 

thoroughly studied, and it is the most commonly used method due to its cost-effectiveness and 

sustainability. This method has been used as pre-treatment of FCN prior to the influent entering the SNaD; 

nevertheless, this procedure increases the cost associated with the operation of the SNaD systems. 

The ability of FCN degrading microorganisms to carry out simultaneous nitrification and SCN degradation 

has also been recommended for SNaD. This approach not only provides a solution to the inhibition of FCN 

but also provides a solution to the slow growth rate of common SNaD microorganisms. Therefore, the 

application of FCN degrading microorganisms could provide a sustainable solution to the inhibition of 

SNaD by other toxic pollutants and prevent biomass washout. The utilization of FCN resistant or degrading 

microorganisms for SNaD has been suggested by other scientists. However, for the use of FCN resistant or 

degrading microorganisms to minimize the inhibition effect of FCN towards processes of TN removal, 

mathematical and thermodynamic models are required to better understand SNaD as a sustainable approach 

to eradicating the inhibition effect of FCN in SNaD systems. There is still limited information about the 
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employment of these suitable microorganisms for SNaD; thus, this paper discusses the application of FCN 

resistant or degrading microorganisms for SNaD to reduce the effect of FCN inhibition, even under 

conditions whereby agricultural waste can be used as a supplementary nutrient source and as an 

immobilization surface for improved efficacy of microbial proliferation for the advancement of SNaD. 
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CHAPTER 3: 

LITERATURE REVIEW 2 
 

3.1. Introduction 

Water pollution has become a worldwide challenge (Ceissen et al., 2015), with water becoming a scarce 

resource in many arid and semi-arid countries (Eliasson et al., 2015). It is important to implement a rigid 

wastewater treatment plan to promote the conservation of water (Lyu et al., 2016). and the reduction of 

environmental contaminants; thus, prevention of environmental degradation.  

Biological processes are the core technology used for nutrient removal in particular total nitrogen removal 

(TN). Moreover, biological nitrogen removal (BNR) has drawn much interest due to its efficiency and cost-

effectiveness (Peng & Zhu, 2006; Zhang et al., 2011). Stringent government regulations with regards to the 

disposal of water containing TN are currently in place and are strictly enforced globally (Chen et al., 2018). 

Hence, the need for appropriate understanding and proper control of TN removal processes which has 

become essential for BNR (Seifi & Fazaelipoor, 2012) since improper controlling of BNR can result in 

serious environmental and public health challenges (Hamed et al., 2004).  

Substantial studies have been conducted to improve TN removal efficiency, thus lowering quantity TN 

being disposed into water bodies. These improvements include the use of microorganisms capable of 

simultaneously removing NH4-N and NO3-N under similar conditions, resulting in simultaneous 

nitrification and aerobic denitrification (SNaD) (Chen et al., 2012). Nevertheless, SNaD has been found to 

be heavily inhibited by heavy metals especially free cyanide (FCN); hence, the application of cyanogenic 

microorganisms that are able to use FCN and simultaneously degrade NH4-N have been suggested (Kim et 

al., 2008). 

Modeling plays an important role in accurate facilitation, controlling and designing of BNR (Gao et al., 

2010). Various mathematical models have been developed for conventional nitrification and denitrification 

of wastewater (Sin et al., 2008). Although these mathematical models have been successfully employed, 

they have their limitations, i.e. most traditional models focus on nitrification and denitrification of which 

nitrification have been proven to be a two-step process, though in majority of wastewater treatment plants, 

nitrite accumulates insignificantly, making the model redundant (Gao et al., 2010; Sin et al., 2008). 

 In other cases, nitrite plays a crucial role in wastewater treatment; especially in SNaD through the nitrite 

route. These traditional models are less effective in such cases as they do not comprehensively pronounce 

nitrite accumulation and depletion. Additionally, since wastewater consists of different contaminants, these 

mathematical models do not account for microbial diauxic growth which is an important phenomenon in 
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wastewater treatment plants (WWTP). Moreover, these mathematical models do not describe metabolic 

networks of microbial populations of which BNR depends; hence, this review highlights the significance 

of metabolic network modeling of microorganisms used for SNaD for removal of multiple nitrogenous 

compounds. 

 

3.2. Biological wastewater treatment: Total Nitrogen (TN) removal 

Wastewater treatment has been used worldwide for pollutant removal and generally uses activated sludge 

processes which are known to be highly efficient (Ye et al., 2012). The activated sludge process uses 

bacterial suspension for the removal of toxins using biological mechanisms. These treatments have been 

efficiently used to lower TN, phosphorus and organic carbon (Gernaey et al., 2004). Furthermore, biological 

wastewater treatment plays an important role in preventing anthropogenic damage to the environment 

(Ofiteru et al., 2010). 

TN removal occurs in a secondary treatment process, whereby the settled wastewater is introduced into a 

specially designed bioreactor under the semi-aerobic conditions. Most prokaryotic microorganisms 

dominate the wastewater treatment plants (Table 3.1) and use nitrogenous compounds as an energy source 

for their growth (Samer, 2015). The important role these microorganisms play in wastewater treatment has 

led to the elucidation of the interactions by advanced molecular techniques that determine the dynamics of 

the microbial communities in the wastewater treatment plant. These molecular methods can identify the 

role played by each microorganism in the TN removal process (Fig. 3.1) (Wagner et al., 2002). These 

methods include fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) 

and terminal restriction fragment length polymorphism (T-RFLP) ( Ofiteru et al., 2010).  

 
 

Figure 3.1. Metabolic network and pathways for TN removal by AOB and NOB. 
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Table 3.1. Organisms used for TN removal of different wastewater sources (McLellan et al., 2010). 

Taxonomy 
Order/family 

Genus (species) Percentage of sequence tags 

Human waste Sewage 
wastewater 

Surface water 

Lachnospiraceae  40.78 5.49 0.03 

Bacteroidaceae Bacteroides 11.17 1.98 <0.01 

Ruminococcaceae Faecalibacterium 7.28 1.35 ND 

Bifidobacteriaceae Bifidobacterium 7.28 0.74 ND 

Ruminococcaceae  4.87 0.91 0.02 

Ruminococcaceae Subdoligranulum 4.13 0.38 ND 

Lachnospiraceae Roseburia 4.09 0.37 ND 

Bacteroidaceae Bacteroides 
ovatus 

2.25 0.17 ND 

Lachnospiraceae Dorea 2.17 0.30 ND 

Ruminococcaceae Ruminococcus 2.16 0.31 ND 

Coriobacteriaceae Collinsella 1.07 0.24 ND 

Alcaligenaceae Sutterella 1.00 0.05 0.01 

Porphyromonadaceae Parabacteroides 0.99 1.33 <0.01 

Clostridia  0.95 0.17 <0.01 

Akkermansiaceae Akkermansia 0.93 0.08 ND 

Peptostreptococcaceae  0.76 0.20 <0.01 

Lachnospiraceae Lachnospira 0.71 0.07 ND 

Bacteroidaceae Bacteroides 
fragilis 

0.58 0.06 ND 

Bacteroidaceae Bacteroides 
massiliensis 

0.57 0.12 ND 

Ruminococcaceae Papillibacter 0.48 0.06 <0.01 

Total  95.24 14.35 0.07 

The development of new high throughput technologies used for sequencing to identify microbial 

communities within a short period of time has made genomic sequencing, transcription, and proteomic data 
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readily available; e.g. elucidation of microbial populations involved in biological processes for SNaD. 

Important as this data is, there is a lack of data analysis tools that are capable of performing phenotypic 

characteristics of microorganisms and the exploration of SNaD. On the other hand, scientists are also using 

genic information to generate new understanding by automated genome annotation, metabolic network 

reconstruction, protein structure determination and, regulatory network reconstruction from microarray data 

(Edwards et al., 2002; Le et al., 2004; Zhou et al., 2015).   

 

3.3. Microbial population and contaminant metabolism in wastewater 
3.3.1. Microbial metabolic interactions in wastewater treatment 

Microorganisms are mostly found as sludge flocs or biofilm that are composed of a number of immersed 

species in wastewater treatment plants (Sheng et al., 2010). The function of these biofilms or flocs is 

determined by a number of factors including reaction rates of individual organisms. The matrix architecture, 

movement of substrate into biofilm or flocs, the composition of the extracellular polymeric substances 

(EPS) being produced and the interaction of microorganisms as a whole, also plays a role (Andersson et al., 

2011). 

EPS has been found to pose a significant impact on the protection of nitrifying and denitrifying biofilms 

from toxic contaminants. EPS significantly influence the physicochemical properties of microbial 

aggregates and many other properties of flocs including their structure, surface charge, flocculation, settling 

properties, dewatering properties, and adsorption ability (Sheng et al., 2010). The interactions of microbial 

species in wastewater is either metabolism-based or driven by ecological traits. The metabolic interaction 

involves the communication of different species through their metabolic products, i.e., the degradation of 

NH4-N which then induces nitrifying and denitrifying enzymes leading to the initiation of SNaD (Wang et 

al., 2015). Moreover, the interaction between species can be either described as positive, negative or a 

neutral interaction (Table 3.2) (Perez-Garcia et al., 2016). To understand such an interaction metabolic 

network modeling is essential as the symbioses between different microbial species in the biocatalysis for 

TN removal during SNaD as this can be a rate-limiting step in wastewater treatment. 

Table 3.2. Diagram representing microbial metabolic interaction versus ecological interaction. Where blue 

circles are species A, red circles are species B, and squares are substrates. 

Symbiotic relationship Ecological interaction Metabolic interaction 

 

0/+ 

Commensalism 

 

 

 

Food chain 
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-/- 

Competition 

 

 

 

 

Substrate competition 

 

 

+/- 

Parasitism 

 

 

 

 

Food chain with by-product inhibition 

 

 

 

 

+/+ 

Mutualism 

 

 

 

 

Syntrophy 

 

 

 

 

0/- 

Amensalism 

 

 

 

 

By-product inhibition 

 

 

 

3.3.2. Microbial metabolism during the removal of TN in wastewater treatment plant 

The secondary sludge process is composed of biological solids and inert sludge is responsible for the 

removal of TN and other nutrients in wastewater (Ye et al., 2012). The microorganisms remove TN through 

metabolic functions of immersed species within (Hu et al., 2012).   

Most WWTP uses aerobic metabolism to remove TN through chemotrophic bacteria which nitrify NH4-N 

into nitrate via the nitrite-nitrogen route (Low & Chase, 1999). Cellular metabolism comprises of the uptake 

and the transformation of TN using a complex network of reactions that are facilitated by specific enzymes. 

The production of components from TN removal known as metabolites and other metabolic by-products 



53 

which are then excreted into the abiotic phase are also part of cellular metabolism. During microbial 

facilitated TN removal, microbial metabolism releases a part of the substrate-bound carbon from the organic 

substrates present in wastewater during growth and assimilate a portion of it into individual cells (Low & 

Chase, 1999). 

To achieve such carbon source assimilation two processes are known as catabolism and anabolism for 

which catabolism can be referred to as a biological processes involved into a breaking down of complex 

compounds into simple and small molecules, while anabolism is a process whereby the cell builds the 

molecules that it requires for growth. Understanding of these metabolic processes are important in 

optimisation and controlling of biological process and also provides the necessary information required for 

improved metabolic performance (Ramkrishna & Song 2012). 

Oxidation:        𝐶𝐶𝑆𝑆 + 𝑁𝑁𝑁𝑁4 +  𝑂𝑂2 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 →  𝑁𝑁𝑁𝑁3− + 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2𝑂𝑂 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸   (3) 

Biosynthesis: 𝐶𝐶𝑆𝑆 + 𝑁𝑁𝑁𝑁4 + 𝑂𝑂2 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → 𝐶𝐶𝑥𝑥𝐻𝐻𝑥𝑥𝑁𝑁𝑁𝑁𝑥𝑥 ( 𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)    (4) 

Where 𝐶𝐶𝑠𝑠is a carbon source. 

 

3.4. The role of Thermodynamics and Stoichiometric analysis in metabolic networking 

Thermodynamics has been used to predict the feasibility of the wastewater process under defined 

conditions, and it useful to study energy requirements and needs during the oxidation of pollutants for 

biological (Kushwaha et al., 2010). It can be used to study the viability of nitrification and denitrification 

(Wang et al., 2016). Moreover, since most reactions are redox reactions, the principle of an electron 

equivalent approach is necessary in accounting for electron flow and energy (Ebeling et al., 2006). During 

autotrophic nitrification, energy is generated from the oxidation of NH4-N. The biomass yield coefficient 

and specific oxygen uptake can be estimated using the Eq.3 and 4 (Liu & Wang, 2012). Although notable 

work has been done to study thermodynamics and stoichiometric analysis of SNaD under defined 

conditions. Overall there is still minimal reporting of thermodynamic analysis of wastewater treatments. 

 

3.5. Metabolic pathways identified in the biological treatment of wastewater  

There are different pathways associated with organic matter reduction by chemo-organotrophs. The first 

one is the pyruvate formation during glycolysis, which is the most common pathway for microbial energy 

production in wastewater treatment plants. The energy produced during this process can be used as 

adenosine 5′-triphosphate (ATP), reduced nicotinamide adenine dinucleotide (NADH) and reduced flavin 

adenine dinucleotide (FADH2); however, this pathway results in minute energy production and the process 

does not require oxygen respiration hence it occurs under anaerobic conditions (Angenent et al., 2004; 

Blackall et al., 2002).  



54 

The second pathway is the Entner–Doudoroff pathway which is similar to glycolysis in producing pyruvate 

but less effective in ATP production. Among other few organisms, Pseudomonas sp uses this pathway for 

organic carbon reduction (Conway, 1992). During the process, the pyruvate is eventually used in the citric 

acid cycle to produce NADH and FADH2 which are responsible for the high transfer potential of electron 

transport. These electrons move to molecular oxygen resulting in a large quantity of free energy to be 

transferred. The citric acid intermediates can also be withdrawn in order to form the materials required for 

microbial proliferation (Sokic-Lazic & Minteer, 2008). 

 During cellular respiration, the catabolised carbon is removed from the cell as CO2 (Fig. 3.2). Chemosmotic 

process of oxidative phosphorylation is then used to conserve free energy transferred to NADH or FADH2 

through respiratory assemblies that contain a series of electron carriers that are positioned across the cell's 

cytoplasmic membrane. When the electron carriers are transferring electrons from NADH or FADH2 to O2, 

the protons are being pumped out of the cell cytoplasm simultaneously (Low & Chase, 1999).  

This generates a proton motive gradient across the membrane which then provides a driving force for the 

flow of the protons back into the cytoplasm, on the other hand, NAD+ needs to be reduced through a 

fermentative process that utilises organic matter in order for anaerobic catabolism to proceed. Since these 

processes involve the formation of ATP, the overall ATP production becomes lower in anaerobic 

catabolism than in aerobic processes, thus anaerobic metabolism has lower biomass production than aerobic 

metabolism (Low & Chase, 1999).  

The modeling of microbial metabolism in the wastewater treatment ensures the appropriate process control 

and optimisation can be conducted for these cultures. Hence, some models are currently used to describe 

biological processes in the wastewater treatment plants, but with limitations such as failing to express the 

biological reality (Ofiteru et al., 2010).  
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Figure 3.2. The role of the ATP–ADP cycle in cell metabolism during wastewater treatment (Sokic-Lazic 

et al., 2008). 

 
3.6. Metabolic network modeling in wastewater treatment 
3.6.1. Significance of metabolic network modeling in the wastewater treatment 

With all the current molecular advancements in studying the dynamics of the microbial population 

responsible for TN removal in the wastewater treatment plants, more genomic and protein expression data 

are increasingly becoming available to better understand phenotypic characteristics of each microorganism 

and their role in the TN removal (Ye et al., 2012). 

Genome‐scale metabolic network reconstructions (GENREs) can be employed successfully as a 

representation of microbes. However, with all the molecular data available we still do not understand the 

mechanisms that cause the microbial communities to interact and function as a whole (Biggs et al., 2015; 

Ao, 2005). Furthermore, the quality of wastewater changes periodically and molecular information 

currently available is not adequate to explain metabolic phenotypes that are expressed under certain 

environmental conditions (Edwards et al., 2002). 

Considering the importance of the microbial communities in the wastewater treatment, there is a necessity 

to assess beyond the descriptive model approach by applying more functional, predictive models describing 

microbial community structure and function. Predictive models are important to improve many processes 
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such as the rational probiotic design of efficient chemical‐producing consortia, or optimal bioremediation 

communities (Biggs et al., 2015).  

Additionally, predictive models are essential for novel exploration to answer basic questions in microbial 

ecology functioning, thus giving us an insight into the development of microbial communities in wastewater 

treatment plants. Although, some models have been successfully used to describe well-studied processes 

such as traditional nitrification and subsequent denitrification further analysis is required (Ofiteru et al., 

2010). Some models fail to describe the metabolic process that occurs in wastewater treatment plants. Thus, 

it is important to develop metabolic network models that will describe metabolic phenotypes within the 

WWTP (Le et al., 2004). A basic metabolic network diagram is denoted in Fig. 3.3. 

 

Figure 3.3. A simple fictional metabolic network (Ao, 2005). 

 

3.6.2. Suitable metabolic network modeling approaches for biological wastewater treatment 

Since the WWTP is composed of different sources of carbon, nitrogen, phosphate and sulfur e.t.c (Table 

3.3), it is critical to consider diauxic growth when modeling biological wastewater treatment (Suga et al., 

1975). Diauxic growth was first described by Monod as a sequential utilisation of carbon source by 

microorganisms in a batch system. This phenomenon is characterised by the appearance of two exponential 

growth phase which is separated by the lag phase.  
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Generally, in diauxic growth, the maximum specific growth rate of a microorganism is higher on the 

preferred substrate than on a less preferred substrate (Narang et al., 1997). Thus the modeling approaches 

that are suitable to model metabolic networking must incorporate diauxic growth. However, elsewhere 

(Ramkrishna & Song, 2012; Narang et al., 1997), a flux balance approach and cybernetic modeling have 

been proposed to be suitable for modeling system functionality while considering diauxic growth.  

Table 3.3. Organic constituents and nitrogen matters other than those identified in wastewater treatment 

plants (Wagner et al., 2002). 

Type No. Compound name Conc. of 
the 

compoun
d (μg/L) 

TOC 
coefficie

nt 

TOC 
Conc. (μg 

C/L) 

RT (min) 

Alkyl and 
aromaticity 

hydrocarbon 

1 Dodecane, 2-methyl-8-propyl- 1.99 0.85 1.69 21.82 

 2 Cyclotetradecane, 1,7,11-
trimethyl-4-(1-methylethyl)- 

2.42 0.86 2.07 35.05 

 3 Pentadecane 6.19 0.85 5.26 23.07 

 4 Hexadecane, 2,6,10,14-
tetramethyl- 

2.91 0.85 2.47 23.20 

 5 Cyclohexadecane 7.01 0.86 6.01 24.14 

 6 Cyclohexadecane, 1,2-diethyl- 1.85 0.86 1.59 28.84 

 7 Heptadecane 3.31 0.85 2.81 21.73 

 8 Octadecane 0.57 0.94 0.53 29.97 

 9 Nonadecane, 1-chloro- 1.25 0.75 0.94 28.94 

 10 Eicosane 3.10 0.85 2.64 24.35 

 11 Cyclopentasiloxane, 
decamethyl- 

0.45 0.59 0.27 12.97 

 12 Cinnoline, 3-phenyl- 1.75 0.87 1.52 26.83 

 13 Naphthalene 0.16 0.94 0.15 13.45 

 14 2-Methylnaphthalene 0.07 0.93 0.07 15.55 

 15 Phenanthrene 0.06 0.94 0.06 22.95 

 16 Fluoranthene 0.02 0.95 0.02 25.48 

 17 Benzo(b)fluoranthene 0.18 0.95 0.17 33.72 
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 18 Benzo(k)fluoranthene 0.13 0.95 0.12 33.75 

 19 Ideo(1,2,3-cd)pyrene 0.74 0.92 0.68 37.17 

 20 Dibenzo(a,h)anthracene 0.52 0.95 0.49 37.25 

 21 Benzo(ghi)perylene 1.12 0.96 1.07 37.77 

 22 Toluene 0.75 0.92 0.69 3.75 

 23 Benzo(a)pyrene 0.27 0.95 0.26 34.50 

Alkene 24 7-Hexadecene, (Z)- 1.21 0.86 1.03 31.01 

 25 1-Octadecene 8.60 0.87 7.49 26.59 

 26 Cyclohexene, 1-methyl-3-(1-
methylethenyl)-, (.+/-.)- 

2.85 0.86 2.46 13.79 

 27 8-Heptadecene 11.25 0.86 9.64 24.94 

 28 2,6,10,14,18,22-
Tetracosahexaene, 

2,6,10,15,19,23-Hexamethyl-, 
(all-E)- 

22.90 0.88 20.11 34.02 

 29 9-Nonadecene 1.87 0.86 1.60 35.17 

 30 17-Pentatriacontene 1.59 0.86 1.36 38.06 

 31 Acenaphthylene 0.14 0.95 0.13 18.01 

 32 1-Nonadecene 0.90 0.86 0.77 30.92 

Alcohols 33 1-Hexanol, 2-ethyl- 6.30 0.74 4.65 10.38 

 34 7-Octen-2-ol, 2,6-dimethyl- 1.63 0.77 1.26 11.29 

 35 1,6-Octadien-3-ol, 3,7-
dimethyl- 

1.07 0.76 0.81 11.86 

 36 Phenylethyl alcohol 1.98 0.79 1.56 12.21 

 37 Isoborneol 1.37 0.78 1.07 13.19 

 38 Cyclohexanol, 5-methyl-2-(1-
methylethyl)-, 

(1alpha,2beta,5alpha)-(+/−)- 

7.45 0.76 5.66 13.32 

 39 3-Cyclohexene-1-methanol, 
.alpha.,.alpha.4-trimethyl- . .α. 

9.67 0.77 7.49 13.66 

 40 6-Octen-1-ol, 3,7-dimethyl-, 
(R)- 

1.16 0.74 0.86 14.37 
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 41 5-Cholestene-3-ol, 24-methyl- 6.46 0.84 5.43 37.50 

 42 Farnesol isomer a 1.11 0.81 0.90 33.75 

 43 Beta-sitosterol 11.01 0.78 8.58 38.40 

 44 Benzyl alcohol 0.92 0.68 0.63 10.60 

 45 Cholestanol 35.37 0.82 29.08 36.22 

 46 Cholesterol 59.32 0.84 49.79 35.56 

Organic 
acids 

47 Hexanoic acid, 2-methyl- 7.90 0.65 5.10 10.94 

 48 Hexanoic acid, 2-ethyl- 1.42 0.67 0.94 12.44 

 49 6-Octadecenoic acid, (Z)- 40.59 0.77 31.09 27.26 

 50 Octadec-9-enoic acid 3.02 0.77 2.31 27.31 

 51 Octadecanoic acid 45.26 0.76 34.43 27.54 

 52 Heptadecanoic acid 2.05 0.76 1.55 26.34 

 53 n-Hexadecanoic acid 103.27 0.75 77.45 25.27 

 54 Dodecanoic acid 7.32 0.72 5.27 19.89 

 55 Oleic acid 1.00 0.77 0.77 33.46 

 56 Benzenepropanoic acid 0.61 0.72 0.44 16.41 

 57 Tetradecanoic acid 11.45 0.74 8.44 22.64 

Ketone 58 Cyclohexanone 0.92 0.73 0.68 7.07 

 59 Bicyclo[2.2.1]heptan-2-one, 
1,7,7-trimethyl-, (1R)- 

2.21 0.79 1.75 12.75 

 60 9,10-Anthracenedione 5.06 0.65 3.30 25.42 

 61 Androstan-17-one, 3-hydroxy-
, (3.alpha.,5.beta.)- 

1.05 0.79 0.83 31.18 

 62 Cholest-4-en-3-one 1.18 0.84 0.99 37.72 

Phenolic 63 Phenol 8.43 0.77 6.46 9.45 

 64 Chloroxylenol 8.93 0.61 5.48 17.16 

 65 4-Methylphenol 1.44 0.78 1.12 11.52 

 66 4-Chloro-3-methyl phenol 0.14 0.58 0.08 15.57 
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Nitrogenous 
compounds 

67 5H-1-pyrindine 2.84 0.76 2.15 15.59 

 68 Quinoline, 2-methyl- 1.68 0.84 1.40 15.81 

 69 Pyridine, 3-(1-methyl-2-
pyrrolidinyl)-, (S)- 

2.22 0.74 1.65 16.48 

 70 Azobenzene 0.09 0.79 0.07 20.86 

 71 Caffeine 13.66 0.49 6.76 23.85 

 72 Pyridine-3-carboxamide, 
oxime, N-(2-

trifluoromethylphenyl)- 

1.55 0.59 0.91 40.97 

Ether 73 3-tert-Butyl-4-hydroxyanisole 4.35 0.73 3.19 18.45 

 74 Triethylene glycol 
monododecyl ether 

2.13 0.59 1.27 28.67 

 75 Bis(2-chloroisopropyl)ether 0.35 0.42 0.15 10.94 

Amine 76 2H-Indazol-3-amine, 2-
methyl- 

3.39 0.68 2.30 18.84 

 77 Benzenesulfonamide, N-ethyl-
2-methyl- 

4.23 0.50 2.11 21.25 

 78 Aniline 0.10 0.35 0.04 9.27 

 79 N-nitroso-di-n-propylamine 0.21 0.55 0.12 11.29 

Ester 80 Cyclopentaneacetic acid, 3-
oxo-2-pentyl-, methyl ester 

4.16 0.69 2.87 21.17 

 81 1,2-Benzenedicarboxylic acid, 
bis(2-methylpropyl) ester 

17.30 0.69 11.95 24.03 

 82 1,2-Benzenedicarboxylic acid, 
diisooctyl ester 

9.60 0.74 7.09 31.47 

 83 7-Trimethylsilyloxy-7-
methyloctanoic acid, 
trimethylsilyl ester 

4.45 0.70 3.09 37.14 

 84 Dimethyl phthalate 0.09 0.62 0.06 18.22 

 85 Diethyl phthalate 2.75 0.65 1.78 20.33 

 86 di-n-Butyl phthalate 2.45 0.69 1.69 25.19 

 87 di-n-Octyl phthalate 0.03 0.74 0.02 33.20 

 88 bis(2-Ethylhexyl)phthalate 2.32 0.74 1.71 31.48 
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Others 89 Kitazin P 1.16 0.54 0.63 23.74 

 90 Cyclic octa atomic sulfur 4.61 0.27 1.23  
 

3.6.3. Flux balance approach (FBA) for modeling wastewater treatment plant 

Flux balance analysis is one of the widely accepted methods of modeling metabolism and is a popular 

approach to model biological systems such as activated sludge systems. This analysis can be done by 

quantifying the rate of reactions within the network formed by the chemical compounds and the sequence 

chemical reaction within the microbial metabolism (Perez-Garcia et al., 2014). It uses linear programming 

to predict fluxes thus providing knowledge on reaction stoichiometry, the composition of biomass and 

constraints i.e., limit on the uptake or excretion rate of nutrients and by-products respectively.  

Flux balance provides detailed information about all the enzymes involved in a metabolic process 

(Kauffman et al., 2003) and can also be used for rational design of strain, prediction of theoretical yields 

and identification of bottlenecks or in understanding the metabolism for optimisation of processes (Boyle 

& Morgan, 2009). Moreover, flux balance analysis is used to describe the potential behavior of an organism 

under specific environmental conditions (Kauffman et al., 2003). 

In previous years’ flux balance analysis was successfully applied to model photosynthetic metabolism of 

Cyanobacteria Synechocystis sp and to model metabolic network of other cyanobacteria such as 

Arthrospira platensis (Boyle & Morgan, 2009; Wiechert, 2001). FBA is often used by metabolic engineers 

to quantitatively simulate microbial metabolism (Kauffman et al., 2003).  

This modeling approach is a constraint-based model whereby the metabolic fluxes (reactions) are balanced 

around each node (metabolite) and it relies on the use of linear programming to predict, for example, the 

maximisation yield for biomass (Ramkrishna & Song, 2012). This modeling approach assumes that the 

metabolic networks will reach a steady-state and not be constrained by the stoichiometry. Generally, the 

mass balance is described by linear equations (Mahadevan et al., 2002)-see Eq 5. 

𝐴𝐴 ∗ 𝑣𝑣 = 0           (5) 

Where A is m X n stoichiometric matrix of the reactions, n is the number fluxes and m is the number of 

metabolites. If a metabolic network consists of (m) metabolites and (n) fluxes, then the mass conservation 

equation for each metabolite can be (Eq 6): 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴𝐴𝐴,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇, 𝜇𝜇 = ∑𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖        (6) 
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Where X is the biomass concentration, z is the vector of metabolite concentrations, µ is the growth rate, A 

is the stoichiometric matrix of the metabolic network and wi is the quantity of growth precursors needed 

per gram (DW) of biomass. 

More constraints such as non-negative metabolite and the effect of flux level, limits on the rate of change 

of constituents fluxes, as such therefore nonlinear constraints can be applied on the transport fluxes in order 

to obtain a realistic prediction of the metabolite concentrations and the metabolic fluxes. Below is the 

general dynamic optimization problem (Eq 7). 

MAX  ŵ𝑒𝑒𝑒𝑒𝑒𝑒  ∅ (𝑍𝑍, 𝑣𝑣,𝑋𝑋)|𝑡𝑡=𝑡𝑡𝑡𝑡 

Z(t), V(t), X(t) 

   + ŵ𝑖𝑖𝑖𝑖𝑖𝑖 ∑ ∫ 𝐿𝐿�𝑧𝑧. 𝑣𝑣.  𝑋𝑋(𝑡𝑡)�𝛿𝛿�𝑡𝑡 − 𝑡𝑡𝑗𝑗�𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑀𝑀
𝑗𝑗=0  

   S.t.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴𝐴𝐴 

   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 

   𝜇𝜇 = ∑𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖 

   𝑡𝑡𝑗𝑗 = 𝑡𝑡0 + 𝑗𝑗 𝑡𝑡𝑗𝑗−𝑡𝑡0
𝑀𝑀

  𝑗𝑗 = 0 … .𝑀𝑀 

   𝐶𝐶(𝑣𝑣, 𝑧𝑧) ≤ 0  |𝑣̇𝑣| ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚̇    ∀𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓] 

   𝑧𝑧 ≥ 0  𝑋𝑋 ≥ 0    ∀𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓]    

   𝑧𝑧(𝑡𝑡0) = 𝑧𝑧0   𝑋𝑋(𝑡𝑡0) = 𝑋𝑋0       (7) 

 

3.6.4. Cybernetic modeling 

Genomic and biochemical information has been widely used to construct the cell metabolic network in the 

wastewater treatment plants; nevertheless, this information is inadequate to completely describe metabolic 

phenotypes expressed by an organism under various environmental conditions. Furthermore, metabolic 

phenotypes are described as flux distribution through the metabolic flux network (Edwards et al., 2002). 

The biological information in the WWTP is growing rapidly, yet there is still insufficient information that 

describes, in mathematical expressions, cellular metabolism of microorganisms.  

Microbial growth consists of thousands of chemical reactions, some of the reactions become readily 

apparent when a microorganism grows on multiple simple substrates. The behavior of these 
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microorganisms in multiple substrates condition varies as some microbes may exhibit simultaneous 

utilization of substrate while others may use substrates sequentially for the benefit a whole process. It is 

critical to understand the internal regulatory processes responsible for these varied behavior patterns of 

microorganisms under certain conditions (Kompala et al., 1984).  

In order to understand this phenomenon, cybernetic models have been employed to model microbial growth 

on multiple substrates. This model was first reported by (Ramkrishna et al., 1982). Cybernetic modeling 

considers the primary goal of microorganisms to maximise the growth rate (Patnaik, 2000). Additionally, 

it assumes that when microorganisms are subjected to limited resources for enzyme induction, they will 

allocate the limited resources for the induction of key enzymes (Mandli et al., 2015).  

These modeling approaches can be used to model microbial and diauxic growth which is an important 

process in the wastewater treatment plant. Metabolism can be manipulated by controlling the synthesis of 

enzymes that are responsible for the reactions within the metabolic network, even when the reactions are 

performed under limited resource conditions. There are two vectors which are referred to as cybernetic 

variables. U and V, where u is a fractional allocation of resources required for enzyme synthesis, so that 

∑ 𝑢𝑢𝑖𝑖 = 1𝑛𝑛𝑖𝑖
𝑖𝑖−1  and v represents the activity of different enzymes. Hence, we must have 0 ≤ 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖 ≤ 1, 𝑖𝑖 =

1,2 u which is required to balance the reaction. For example, if the maximum synthesis rate 𝑟𝑟𝐸𝐸  for enzyme 

𝐸𝐸𝑖𝑖 is regulated then 𝑢𝑢𝑖𝑖𝑟𝑟𝐸𝐸𝑖𝑖. 𝑣𝑣𝑖𝑖 are needed for estimated regulated reaction rates; therefore, if 𝑟𝑟𝑖𝑖 is the rate of 

𝑖𝑖th reaction when enzyme 𝐸𝐸𝑖𝑖 is fully active, the regulated 𝑖𝑖th reaction can be represented as 𝑣𝑣𝑟𝑟𝑟𝑟𝑖𝑖. The 

reaction rates are determined by specifications 𝛹𝛹,𝑢𝑢, 𝑣𝑣 . Therefore, the system dynamics can be described 

as in Eq 8: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝛹𝛹,𝑢𝑢, 𝑣𝑣)           (8) 

It is known that the ultimate goal of an organism is to maximise or minimise its functions that are required 

for microbial survival over any time interval (𝑡𝑡, 𝑡𝑡 + 𝜏𝜏) which can be described in terms of the state vector 

𝛹𝛹. This function can be denoted as ∆𝐽𝐽 = 𝐽𝐽(𝑡𝑡 + 𝜏𝜏) − 𝐽𝐽(𝑡𝑡), thus the goal of the organism can be described as 

in Eq 9: 

MAX ∆𝐽𝐽 

Z(t), V(t), X(t)           (9) 

such that: 

∑ 𝑢𝑢𝑖𝑖 = 1𝑛𝑛𝑖𝑖
𝑖𝑖−1  0 ≤ 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖 ≤ 1         (10) 
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𝜇𝜇𝑖𝑖 and 𝑣𝑣𝑖𝑖 are the variables of interest in cybernetic models and they are at time 𝑡𝑡; however, the planning 

horizon is at  (𝑡𝑡, 𝑡𝑡 + 𝜏𝜏). When Equation 3 has been solved then  𝜇𝜇𝑖𝑖 and 𝑣𝑣𝑖𝑖 can be defined making Equation 

6 a fully descriptive model. 

 

3.7. Conclusions 

TN removal is an important process in wastewater treatment as it takes advantage of microbial metabolic 

pathways for efficient removal of TN to acceptable levels. Considering the significance of the microbial 

population in TN removal, it is important to put a special emphasis on BNR operation and its control in 

order to promote the smooth operation of this process. Models have been successfully applied in 

mathematical expression of TN removal processes; however, these models do not consider the metabolic 

involvement of processes such as SNaD, which makes it complex, during the manipulation of certain 

pathways responsible. The current review, therefore emphasises the importance of network modeling.  



65 

CHAPTER 4 
 

 

 

 

 

MATERIALS AND METHODS 
 

 

 

 



66 

CHAPTER 4: 

MATERIALS AND METHODS 
4.1. General background 

The experiments for this study were separated into 3 phases in order to achieve the aims and the objectives 

as listed in Chapter 1, section 1.5. 

 

4.1. PHASE 1: Thermodynamic evaluation of SNaD under cyanide-laden conditions 

This Phase aims to Assess the feasibility of nitrification and aerobic denitrification under high CN- 

conditions through thermodynamics modeling. 

 

4.1.1. Isolation and Inoculum Development 

The consortia were isolated from CN- containing waste at the Bioresource Engineering research group 

(BioERG), Cape Peninsula University of Technology (CPUT) and it was sequenced at Inqaba Biotech SA 

for identification. They were cultured into a complex media at sterile conditions for 5 days; thereafter, it 

was transferred into 100 ml of basal media containing: 7.9 g Na2HPO4, 1.5 g KH2PO4, 0.5 g MgSO4.7H2O 

and 1 mL trace elemental solution. The trace elemental solution was composed of: 1.1 g 

(NH4)6Mo7O2.4H2O, 50 g EDTA, 2.2 g ZnSO4.7H2O, 5.5 g CaCl2, 5.0 g FeSO4.7H2O, 5.06 g MnCl2.4H2O, 

1.61 g CoCl2.6H2O, 1.57 g CuSO4.5H2O (per liter). The consortia were incubated at 36.5oC for 48 h and 

was used as an inoculum for the reactor experiment. 

 

4.1.2. Reactor Experimental Runs 

The basal media as indicated in section 4.1.1 was used for the reactor experiment. 1 L reactor was used for 

this experiment. It was inoculated with 10% of the 48 h culture and the microorganisms were grown for 5 

days, the contaminants were added on day 6. The pH and temperature were maintained at 6.5 and 36.5°C 

throughout the experiment respectively. A concentration, i.e. 285 and 37.55 mg/L of NH4-N and CN- were 

then added to the reactors, respectively. After the addition of the toxicant, the reactors were tightly closed 

and covered with foil to avoid ammonium stripping and volatilization of CN-. Samples were collected every 

24 h to analyze residual CN-, NH4-N, NO2-N, and NO3-N using test kits obtained from Merck SA and 

Merck ANOVA Spectroquant. All the analysis was performed in duplicates. The bases of the cyanide test 

kit are based on the reaction of cyanide with Chloramines-T and pyridine-barbituric acid (Lambert et al., 

1975). The ammonium test kit function based on the reaction of Berthelot reagent, ammonium, chlorine 

and phenolic compounds, to form indophenol dyes (Patton and Crouch, 1977). The nitrate test kit uses 

concentrated sulphuric acid in the presence of a benzoic acid derivative to produce a calorimetrically 
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quantifiable by-product, while the nitrite test kit is based on the reaction of nitrite ions with sulfanilic acid 

to form diazonium salt (Rider & Mellon, 1946). The microbial growth rate in the cultures was determined 

using a UV-VIS spectrophotometer at 660 nm. 

 

4.1.3. Bioenergetic/Thermodynamic Models 

The free energy (∆G) equation for nitrification can be expressed as: 

𝑁𝑁𝑁𝑁4 − 𝑁𝑁 + 1.052 ⟶  𝑁𝑁𝑁𝑁2− +  𝐻𝐻+∆𝐺𝐺 = 65 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �[𝑁𝑁𝑁𝑁2−](10−𝑝𝑝𝑝𝑝)2

[𝑁𝑁𝑁𝑁4−𝑁𝑁][𝑂𝑂2]1.5�     (11) 

𝑁𝑁𝑁𝑁2− + 0.52  ⟶𝑁𝑁𝑁𝑁3− ∆𝐺𝐺 = 18.5 + 𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙 � [𝑁𝑁𝑁𝑁2−𝑁𝑁]
[𝑁𝑁𝑁𝑁2−𝑁𝑁][𝑂𝑂2]0.5�      (12) 

Where ∆G is a free energy change in Kcal/mol, NH4-N is the molar concentration of ammonium ions, NO2-

N is the molar concentration of NO2-N and O2 is a molar concentration of oxygen gas, R is the universal 

gas constant and T is temperature. However, when the experiment is operated at steady-state with constant 

Temperature, pH and abundance of O2 Eq. (11) and (12) becomes: 

∆𝐺𝐺 = 65 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �[𝑁𝑁𝑁𝑁2−𝑁𝑁]
[𝑁𝑁𝐻𝐻4−𝑁𝑁]

�           (13) 

∆𝐺𝐺 = 18.5 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �[𝑁𝑁𝑁𝑁3−𝑁𝑁]
[𝑁𝑁𝑁𝑁2−𝑁𝑁]

�          (14) 

The model used to estimate the rates with respect to their corresponding Free energies is as explained by 

Mirbagheri et al. (2010). The model assumes that when nitrifying bacteria remain constant then the rate of 

microbial growth could be described as a function of ∆G, therefore: 

µ = 𝐹𝐹∆𝐺𝐺            (15) 

Where µ is a growth rate, F is a linear function. However µ = (1/X)(dx/dt) and Y= dx/dt, ds/dt the equation 

can be rearranged as follow: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑋𝑋
𝑌𝑌
𝐹𝐹∆𝐺𝐺            (16) 

Where X is biomass concentration and Y is biomass yield. At steady-state and when the bacterial yield is 

constant the equation can be rearranged as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹∆𝐺𝐺            (17) 
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The value of ∆G was determined as using with equations 13 and 14, thereafter, Eq. 17 was for linear 

regression using polymath 10.0. 

 

4.2. PHASE 2: Assessing the predictive capability of existing models 

The aim of this phase was to compare the predictive capability of existing mathematical models towards 

simultaneous nitrification and aerobic denitrification under high CN- conditions. 

 

4.2.1. Isolation and identification of the bacterial isolate of interest 

The isolate used in this study was isolated from CN- containing waste at the Bioresource Engineering 

Research Group (BioERG) laboratory, Cape Peninsula University of Technology, Cape Town, South 

Africa. This organism was sub-cultured to obtain pure colonies and subjected to toxicant (CN-) resistance 

testing to determine the highest CN- concentration it can withstand subsequent to gram staining. The 

genomic DNA was extracted from the pure cultures using the Quick-DNA™, Fungal/Bacterial Miniprep 

kit, to target the 16S rRNA gene (Zymo Research, Irvine, CA, Catalogue No. D6005). This region was 

amplified using the OneTaq® Quick-Load® 2X Master Mix (Zymo Research, Irvine, CA, Catalogue No. 

M0486) and the primers which were used were the 16S-27F and 16S-1492R with sequence (5’ to 3’) 

AGAGTTTGATCMTGGCTCAG, and CGGTTACCTTGTTACGACTT, respectively.  

The PCR products were run on an agarose gel and the gel fragments were extracted using the Zymoclean™ 

Gel DNA Recovery Kit (Zymo Research, Irvine, CA, Catalogue No. D4001). The extracted fragments were 

sequenced in the forward and reverse direction using the Nimagen BrilliantDye™ Terminator Cycle 

Sequencing kit v3.1 and further purified using the Zymo Research, ZR-96 DNA Sequencing Clean-up kit™. 

The purified fragments were analyzed using the ABI 3500XLGenetic Analyzer (Applied Biosystems, 

ThermoFisher Scientific, Massachusetts, USA). CLC Bio Main Workbench v7.6 was used to analyze the 

files generated by the ABI 3500XL Genetic Analyzer and results were obtained through a BLAST search 

(NCBI). 

 

4.2.2 Batch culture experiments 

A basal medium similar to the one used in 4.1.1 was used for SNaD and CN- degradation studies. 

Erlenmeyer flasks (250mL) were used with a working volume of 100 mL of basal media. The media was 

inoculated with a loop full of an overnight agar grown bacterial culture. The inoculated media was initially 

grown for 72 h without NH4-N and CN-, thereafter; 20 mgNH4-N /L and 20 mg CN-/L were added to the 

inoculated basal medium whereby samples were collected on a 24 h interval for 168 h to analyze CN-, NH4-

N, NO2-N, NO3-N and microbial growth at OD660 nm. The biomass concentration at OD660 nm was 

calculated by Eq. 18 (from calibrated values in triplicate). 
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OD660 = 0.0089 (CFU) - 0.3097        (18) 

 
4.2.3. Enzyme extraction 

To analyze the activities of the enzymes, i.e. AMO, NaR and NiR, cold acetone was added to the collected 

samples, forming a pellet that was separated from the supernatant by centrifuging each sample at 5000 g 

for 15 min. The pellet was lysed using a sonicator and the supernatant was collected by centrifugation at 

16000 rpm for 5 min. Thereafter, the precipitate was washed three times and resuspended in phosphate (360 

mg/L) buffer solution (pH 7.4). NH4-N and CN- solutions were prepared and the enzyme extracts were 

added into the NH4-N and CN- solutions, while the changes in CN- (09701), NH4-N (00683), NO2-N 

(110057) and NO3-N (14773) were monitored and analyzed using the Merck test kits (Merck & Co., New 

Jersey, USA). 

The activity of the NH4-N oxidizing enzyme was monitored by measuring the changes in NH4-N after the 

addition of the enzyme extracts into the NH4-N solution. The formation of NO3-N from NO2-N and the 

disappearance of NO3-N were also monitored in order to determine the activity of both NO3-N and NO2-N 

oxidizing enzymes, i.e. NaR and NiR. The CN- degrading enzymes were monitored with the changes in the 

concentration of CN-. 

4.2.4. Analytical procedure(s) 

All the test kits used for the analyses of the samples in this study were obtained from Merck SA a subsidiary 

of Merck & Co., New Jersey, USA. Furthermore, the Merck Spectroquant Nova 60 instrument was used to 

quantify the residual CN-, NH4-N, NO2-N, and NO3
- concentrations. The tests were conducted as per the 

manufacturer’s instructions. 

 

4.2.5. Kinetics model developed 

During CN- biodegradation, microorganisms convert CN- to NH4-N which was then used as a nitrogenous 

source. Mekuto et al. (2015) reported the ability of cyanide degrading bacteria to degrade CN- and 

subsequently utilize NH4-N, with a further indication that some microorganisms are able to use NH4-N and 

CN- as nitrogenous sources simultaneously. It has been shown by Mpongwana et al. (2016) that when a 

cyanide degrading microorganism is used for nitrification and denitrification under cyanide conditions, the 

microorganism undergoes, multiple growth phases, i.e. mostly diauxic growth; hence, growth models that 

describe diauxic growth must be considered when evaluating growth kinetic parameters of such 

microorganisms when removing TN. The multiphase growth rate was first described by Monod. (1942) as 

a sequential utilization of substrates accompanied by distinct exponential growth phases during a period in 

which the individual substrates were utilized.  
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In this study, Monod’s and other models were also used to describe simultaneous CN- degradation, and 

SNaD, with all the experiments being carried out in a closed system (1L batch culture). The rate of toxicant 

pollutant degradation can be described as in Eq. 19. 

−dCa
dt

= 𝑟𝑟𝑎𝑎 = 𝐾𝐾𝑖𝑖𝐶𝐶𝑎𝑎𝑛𝑛          (19) 

Where ra is the rate of pollutant degradation, Ki is the saturation constant, Ca is the concentration of the 

pollutant, -dCa/dt is the disappearance rate of the pollutant, and n is the model fitting constant. 

When TN is the sole nitrogenous source, the system is considered to be a non-inhibited system. As such, 

Monod's’ proposed kinetic model (Eq. 20) for non-inhibited systems, is deemed suitable to model such 

systems. 

−𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑚𝑚∗𝐶𝐶𝑎𝑎
𝐾𝐾𝑖𝑖+𝐶𝐶𝑎𝑎

           (20) 

Where Vm, is the maximum specific degradation rate of the pollutant.  

Haldane (Annuar et al., 2008) also represented pollutant degradation kinetics using a model as shown in 

Eq. 21. 

−𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑚𝑚C𝑎𝑎

𝐶𝐶𝑎𝑎+ 𝐶𝐶𝑎𝑎
2

𝐾𝐾𝑖𝑖

           (21) 

Due to the possibility of inhibition of SNaD by CN-, a model (Andrew’s model) representing the kinetics 

of a primary pollutants’ degradation in which a secondary inhibitory pollutant is present, was deemed 

necessary to use, as presented in Eq. 22 (Annuar et al., 2008). 

𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑉𝑉𝑚𝑚 �1− �𝐾𝐾𝑖𝑖
𝐶𝐶𝑎𝑎
�� �1 + �𝐶𝐶𝑎𝑎

𝐾𝐾𝑠𝑠
��        (22) 

Where Ks is a secondary pollutants’ inhibition constant. 

 
4.2.6. Regression of experimental data and estimation of model kinetic parameters 

Mathematical models describing CN- and NH4-N accumulation and degradation were fitted to the 

experimental data generated. Additionally, the models describing NH4-N degradation with pollutant 

inhibition were also fitted into NH4-N accumulation and accumulation experimental data. A nonlinear 

regression function on Polymath 6.0 software was used for simulations, thus the generation of simulation 

data (using estimated kinetic parameters) that was compared to experimental data. 
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4.2.7. Data handling and kinetic parameters 

The data were computed and analyzed using Microsoft Excel v2016. The mean was determined using Eq. 

23; Moreover, Polymath 6.0 was used to estimate kinetic parameters in Eq. (s) 19, 21 and 22. The data 

obtained from polymath was plotted using Microsoft Excel v2016. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑𝑋𝑋
𝑛𝑛

           (23) 

Where ∑𝑋𝑋 is the sum of the data points, while n is the number of experimental experiments conducted. 

 

4.3. PHASE 3: Optimisation and evaluation of predictive ability of RSM and Cybernetic models 

The aim of this phase was to optimise SNaD and cyanide degradation, subsequent to evaluation of 

predictive ability of RSM versus the cybernetic model for SNaD and CN- degradation. 

 

4.4. Microbial isolation and identification 

The bacteria used for this study was isolated from CN- containing waste at the Bioresource Engineering 

Research Group (BioERG) facility at the Cape Peninsula University of Technology (CPUT), South Africa. 

Isolates were cultured on nutrient agar to obtain pure colonies. Thereafter, they were grown on nutrient agar 

(NA) containing different concentrations of CN- 10 to 300 mg/L of CN- to determine the highest 

concentration of CN- that they can withstand, subsequent to gram staining. The cyanide tolerant bacteria’s 

16S RNA was sequenced and identified the bacteria as Acinetobacter courvalinii, accession number 

AB602910.1 or NR_148843.1 (Stephen et al., 1997). 
 

4.5. Response surface methodology 
4.5.1. Central composite design experiments 

The central composite design was used for the optimization of SNaD under CN- conditions. This was done 

by determining the independents variables, i.e. temperature and pH, optima which have been reported to 

affect SNaD (Mekuto et al., 2015). In this study, a 13-run experimental plan which included the variation 

in independent variables (temperature and pH) was generated using central composite design (CCD) (see 

Table 4.1).  
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Table 4.2. The dependent variables included in the central composite design experiments and their high, 

medium, low concentrations.  

Factor Name Units Type Low 
Actual 

High 
Actual 

Low 
Coded 

High 
Coded 

A Temperature deg C Numeric 34.00 39.00 -1.000 1.000 

B pH  Numeric 4.00 9.00 -1.000 1.000 
 

The experimental design used for this study is shown in Table 4.2, with the corresponding response being 

primarily TN removal and CN- degradation. Synthetic wastewater containing NH4-N /L (20 mg) and CN- 

/L (20 mg) were used for these experiments. The isolated strain was grown in a 250 mL multiport 

Erlenmeyer flask with 40 mL basal media containing: 1.5 g KH2PO4, 7.9 g Na2HPO4, 0.5 g MgSO4.7H2O 

and 1 mL of trace elemental solution per liter. The trace element solution contained (per liter): 50 g EDTA, 

2.2 g ZnSO4.7H2O, 5.5 g CaCl2, 5.06 g MnCl2.4H2O, 5.0 g FeSO4.7H2O, 1.1 g (NH4)6Mo7O2.4H2O, 1.57 g 

CuSO4.5H2O, 1.61 g CoCl2.6H2O. The isolate was allowed to grow for 24 h prior to the addition of 

toxicants; KCN as CN- and NH4SO4 as NH4-N. The Erlenmeyer flasks that were used for this experiment 

had a sealable sampling port to avoid volatilization of CN-. After the addition of the toxicant, each 

experiment was monitored for 5 h and samples were taken after every 1 h to analyse for CN-, and TN as 

NH4-N, NO2-N, and NO3-N, using Merck test kits and a Merck Spectroquant. All the experiments were 

done in duplicates with control experiments that did not contain the microorganism in order to account for 

the volatilization of CN- and NH4-N stripping. 

Table 4.3. Central composite design variables. 

Run A: Temperature deg 
C 

B: pH 

1 36.5 6.5 

2 36.5 2.96 

3 36.5 6.5 

4 34 4 

5 36.5 6.5 

6 36.5 6.5 

7 34 9 

8 39 4 
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9 36.5 6.5 

10 40.04 6.5 

11 32.96 6.5 

12 36.5 10.04 

13 39 9 
 

To determine the critical points (maximum, minimum, target or within range) a polynomial function that 

contains quadratic terms were used (Eq. 24) (Mekuto et al., 2015). 

𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑘𝑘
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖2𝑘𝑘

𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗𝑘𝑘
1<𝑖𝑖<𝑗𝑗 + 𝜀𝜀     (24) 

Where k is the number of variables, β0 is the constant term, βi is the coefficients of the linear parameters, 

βij is the coefficients of the interaction parameters, βii is the coefficients of the quadratic parameter, xi 

represents the variables, and ɛ is the residual associated with the experiments. 

4.6. Statistics analyses 

The statistical analyses were centered on the lack of fit test which describes the fitness of mean and reduced 

the quadratic model of TN removal and the sequential model sum of squares. The model as represented in 

Eq.1 indicated the relationship between the dependent variables and TN removal efficiency by the isolate 

in CN- containing wastewater. Furthermore, the significance of each variable in the model was analysed 

using Analysis of Variance (ANOVA) with a Multiple Regression Analysis being used to analyse the 

experimental data obtained. 

 

4.7. Cybernetic model  
4.7.1. Batch culture experiment 

A basal media similar to that used for the RSM experiments was used in batch cultures; although, the 

experiment was carried out in 1 L reactors. The media was inoculated with 100 mL of an overnight grown 

culture (24 h) incubated at 36.5 oC, with the media being maintained at a pH of 6.5 throughout the 

experiment. The culture was incubated for 168 h prior to the supplementation of CN-/L (40mg) and NH4-

N/L (250mg); a combination that was shown to have little growth inhibition during toxicity assessments, 

with 2mL samples being taken periodically (24 h intervals) for analyses, i.e. CN-, NH4-N, NO2-N, and NO3-

N. Enzymes, assumed to have been produced extracellularly, were extracted using cold acetone daily from 

the cultures, to quantify maximum enzyme activity (𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚). 
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4.7.2. Enzyme activity assessments 

The suspended bacterial cells in samples were removed by centrifuging each sample at 5000 g for 5 min; 

thereafter, to the cell-free supernatant, cold acetone was added, forming a precipitate which was then 

separated from the supernatant by centrifugation at 16000 g for 15 min. The precipitate was washed (n = 3) 

and resuspended in 360 mg/L phosphate buffer solution (pH 7.4) at -18oC. NH4-N and CN- solutions with 

initial concentration of 10 mg/L were prepared and the enzyme extract was added into the solution, while 

the changes in CN- (09701), NH4-N (00683), NO2-N (110057) and NO3-N (14773) were monitored and 

analyzed using the Merck test kits and a Spectroquant (Merck, South Africa). 

 

4.7.3. Analytical procedure 

All the test kits used for the analysis of the samples were obtained from Merck SA. Furthermore, a Merck 

Spectroquant Nova 60 instrument was used to analyse residual CN-, NH4-N, NO2-N, and NO3-N. The kits 

were used as per the manufacturer’s instructions. 

 

4.7.4. Model development 

 

Figure 4.1. Simplified metabolic network diagram of SNaD under cyanide-laden conditions. Key: S1: NH4-

N, S2: CN-, M1: NH4-N, M2: NO2-N, M3: NO3-N and P1: N2 

A simplified model for prediction of SNaD as well as CN- degradation in a single reactor was developed as 

shown in Fig 1. Two nitrogenous compounds NH4-N and CN- were used as pollutants with S1 and S2 

presenting NH4-N which is assimilated none-enzymatically into the cell and CN- respectively, while M1, 

M2, and M3, represented intermediates, NH4-N, NO2-N, and NO3-N respectively. The biomass used was 

deemed capable of using both NH4-N and CN- as primary pollutants to be degraded. The biomass converts 

CN- into NH4-N for which a part of NH4-N is assimilated for proliferation and the other portion is further 

converted into intermediates NO2-N, and NO3-N. The presence of NO3-N can induce denitrification 

enzymes production thus resulting in the initiation of the denitrification process which involves the 

conversion of NO3-N denoted as M3 into nitrogenous gas (N2) denoted as P1. Under optimized conditions, 

it has been shown that when the biomass is provided with NH4-N and CN- it undergoes multiphase growth 
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while simultaneously degrading the pollutants. Therefore, the predictive capability of cybernetic models 

was evaluated to estimate the simultaneous degradation of NH4-N and CN- using the cyanide degrading 

bacteria Acinetobacter courvalinii. The model was developed based on the metabolic reaction network as 

illustrated in Fig 4.1. All these processes are catalysed by specific enzymes, i.e. ammonia monooxygenase 

(AMO), nitrate reductase (NaR) and nitrite reductase (NiR). When modeling metabolic networks, two 

vectors are considered important for cybernetic variables. These vectors are 𝑢𝑢 and 𝑣𝑣, for which 𝑢𝑢 is a 

fractional allocation of resources needed for enzyme synthesis, such that ∑ 𝑢𝑢𝑖𝑖 = 1𝑛𝑛𝑖𝑖
𝑖𝑖−1  and with v 

representing the activity of the different enzymes. Conditions 0 ≤ 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖 ≤ 1, whereby   𝑖𝑖 = 1,2, 3, 4. u is 

needed for balancing the reaction. For example, when the maximum synthesis rate 𝑟𝑟𝐸𝐸 for enzyme 𝐸𝐸𝑖𝑖 is 

regulated then 𝑢𝑢𝑖𝑖𝑟𝑟𝐸𝐸𝑖𝑖. Moreover, 𝑣𝑣𝑖𝑖 is required to estimate the regulated reaction rates; thus, 𝑟𝑟𝑖𝑖 will be the 

rate of the 𝑖𝑖th reaction when enzyme 𝐸𝐸𝑖𝑖 is fully active. The regulated 𝑖𝑖th reaction can also be written as 𝑟𝑟 =

𝑣𝑣𝑟𝑟𝑟𝑟𝑖𝑖. 

Monods’ model was used to express the rate of TN removal (𝑟𝑟𝑖𝑖) for pollutant 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗 catalysed by enzyme 

𝑒𝑒𝑖𝑖 to form intermediate 𝑀𝑀2 and 𝑀𝑀3 (Eq. 25). 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠1

𝑠𝑠1+𝐾𝐾𝑖𝑖
� 𝑒𝑒1
𝑒𝑒𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚�                 𝑖𝑖 = 1, 2, 3, 4        (25) 

The cell growth rate was model using rate law equation (1st order) indicated in Eq. 26. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑔𝑔𝑋𝑋           (26) 

Where 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the are maximum pollutant removal rate and 𝐾𝐾𝑖𝑖 is the pollutant saturation constant, 𝑋𝑋 is cell 

concentration and 𝑟𝑟𝑔𝑔 is the cell growth rate.  

Enzyme synthesis for the two pollutants, 𝑆𝑆1 and 𝑆𝑆2 was assumed to be maximized as the growth rate of 

biomass increased such that (Eq. 27);  

𝑢𝑢 = 𝑟𝑟𝑖𝑖/𝑀𝑀𝑖𝑖
∑ 𝑟𝑟𝑗𝑗2
𝑗𝑗=1 /𝑀𝑀𝑖𝑖

     𝑣𝑣 = 𝑟𝑟𝑖𝑖/𝑀𝑀𝑖𝑖
max (𝑟𝑟𝑖𝑖 / 𝑀𝑀𝑖𝑖)

     𝑖𝑖 = 1, 2, 3, 4        (27) 

It was hypothesised that NH4-N was broken down into NO2-N via AMO (represented by 𝑒𝑒2) catalysis while 

CN- was decomposed by cyanide degrading enzyme(s) represented as 𝑒𝑒1. The intermediate NO2-N was 

further broken down into NO3-N facilitated by NiR represented in the diagram as 𝑒𝑒3, with NO3-N being 

further decomposed into N2 by NaR represented as 𝑒𝑒4. The model, Eq. 28, would thus represent the rate of 

enzyme(s) synthesis responsible for the SNaD under cyanogenic conditions. 

𝑑𝑑𝑒𝑒1
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑒𝑒𝑒𝑒 + 𝑟𝑟𝑒𝑒𝑒𝑒𝑢𝑢𝑖𝑖 − (𝐷𝐷𝑔𝑔 + 𝑏𝑏𝑖𝑖)𝑒𝑒𝑖𝑖         (28)  
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Where 𝛼𝛼𝑒𝑒𝑒𝑒 represents an inductive rate, 𝑏𝑏𝑖𝑖 is the activity of the enzyme responsible for decomposition of a 

pollutant, 𝑟𝑟𝑒𝑒𝑒𝑒 the decomposition rate of the nitrogenous pollutant, bi is the degradation rate constant of the 

enzyme, 𝐷𝐷𝑔𝑔 dilution term due to growth rate. The model parameters were estimated by polymath software 

v6.0 using experimental data.  
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CHAPTER 5: 

KINETIC MODELLING OF FREE ENERGY FOR 
SIMULTANEOUS NITRIFICATION AND 

AEROBIC DENITRIFICATION UNDER HIGH 
CYANIDE ENVIRONMENTS 

 

5.1. Introduction 

Cyanide (CN-) is a toxic compound known to inhibit most biological process that is being performed in 

wastewater treatment plants (WWTP). Nitrification and denitrification are among the process that are 

heavily affected by CN- compounds (Kapoor et al., 2016; Kim et al., 2008). Remedial procedures such as 

the use of activated carbon have been recognized to eradicate inhibition effect of toxic compounds on 

nitrification and denitrification; however, the use of activated carbon is not feasible in CN- containing 

wastewater due to its low absorption capability; furthermore, the use of activated carbon may also result in 

additional costs (Kim et al., 2008). Han et al. (2013) proposed that cyanide degrading bacteria must be 

employed to eliminate the inhibition effect of CN- toward nitrification and denitrification. Mpongwana et 

al. (2016) has proven the feasibility of using cyanide degrading bacteria as a remedial option for inhibition 

of nitrification and denitrification by CN-.  

However, the application of cyanide degrading microorganisms is not yet established in a large scale 

WWTP due to fear of irretrievable process failure, thus more information that will ease the process control 

is still required. This study investigates the thermodynamics to understand the simultaneous nitrification 

and aerobic denitrification (SNaD) by cyanide degrading consortium in the presence of high CN- conditions. 

The Gibbs free energy of nitritation and nitratation were investigated since nitritation is known to be a rate-

limiting step.  A linear relationship is known to exist between the rate of biochemical reaction and their 

respective free energies (Rottenberg & Gutman, 1977). The Gibbs free energy was selected for this study 

since it is known to be a driving force of a reaction. The reaction is judged based on the principles of 

whether the reaction is spontaneous (∆G<0), at equilibrium (∆G=0) and impossible if (∆G˃0) (Zhang et 

al., 2010). 

 

5.2. Objectives 

The objectives of this section was to: 

• Isolate and identify a cyanide resistant mix consortia. 
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• Asses the feasibility of using the cyanide resistant mix consortia for SNaD at CN- environments. 

• Model Gibbs free energy of SNaD under CN- environments. 

 

5.3. Materials and methods 

The mix consortium was isolated at Bioresource Engineering research group (BioERG), Cape Peninsula 

University of Technology (CPUT). It was sequenced and identified at Inqaba biotech SA. The mix consortia 

were grown in a 250 mL Erlenmeyer flask containing 100 mL of basal media explained in section 4.1.1. 

Thereafter it was incubated at 36.5oC for five days, samples were collected every 24 h to analyse NH4-N, 

NO2-N, NO3-N, and CN-. (All the experiments were conducted in duplicates). 

 

5.4. Result and Discussion 

An experiment was conducted to study the effect of high CN- concentrations on the ability of cyanide 

degrading mix consortia to achieve SNaD. The experiment was conducted in a batch reactor. The results 

obtained reveal that 37.55 mg/L of CN- did not affect the SNaD. The consortia rapidly degraded CN- from 

37.55 to 12 mg/L in the first 48 h of the experiment. This could be a defensive mechanism for the consortia 

to detoxify the CN- concentration into less toxic concentrations. The consortia achieved nitrification, 

denitrification and cyanide degradation simultaneously.  

The degradation efficiency over 288 h was found to be 92.9%, 97.7% with the degradation rate of 0.0234 

and 0.139 mg/L/hr for nitrification and CN- degradation respectively. The removal efficiency found in this 

study is greater than that of a study conducted by Kapoor et al. (2016). Furthermore, Han et al. (2013) found 

similar results when using cyanide degrading bacteria for nitrification subsequent denitrification. However, 

the conversion of NH4-N to NO2-N did not make a stoichiometric logic as the concentration of NH4-N used 

did not correspond with the NO2-N produced. This phenomenon could be an indication of the residual NO2-

N being used for microbial proliferation or may be caused by high nitrite reductase which rapidly converts 

NO2-N into NO3-N. Jin et al. (2014) also found similar results in a study conducted using Pseudomonas sp. 

ADN-42 for Heterotrophic SNaD under saline conditions. The existence of denitrification was 

demonstrated by the decrease in the NO3-N -see Fig. 5.1. Nevertheless, the production of the nitrogenous 

gasses was not examined during this study. 
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Figure 5.1. Graphs representing simultaneous nitrification, denitrification, and cyanide degradation. A: 

NH4-N and CN- degradation. B: NO2-N and NO3-N accumulation and degradation. 

 

Table 5.4. Model variables for nitritation and nitratation 

Model F a R2 variance R2 adj 

 𝒅𝒅[𝑵𝑵𝑵𝑵𝟒𝟒−𝑵𝑵]
𝒅𝒅𝒅𝒅

= 𝑭𝑭∆𝑮𝑮 -
0.0001 - 0.93 0.0001 0.93 

𝒅𝒅[𝑵𝑵𝑵𝑵𝟐𝟐 − 𝑵𝑵]
𝒅𝒅𝒅𝒅

= 𝑭𝑭∆𝑮𝑮
+ 𝒂𝒂 

 

0.001 1.85 0.93 0.0140 0.93 

 

Gibbs free energy (∆G) was plot as a function of [NO2-N]/[NH4-N] and [NO3-N]/[NO2-N], all the valued 

of Gibbs free energy were found to be negative for both nitritation and nitratation. This is an indication of 

thermodynamic feasibility and the spontaneity of nitritation and nitratation under the CN- conditions 

(Kushwaha et al., 2010; Khataee et al., 2013). At the beginning of the experiment, the Gibbs free energy 

was low with the lowest free energy of -756.4 and -1830.9 Kcal/mol for nitritation and nitratation 

respectively. This shows that the reaction was more rapid at the beginning of the experiment (Chowdhury 
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et al., 2011), as the concentration of the toxicant becomes exhausted the free Gibbs energy increases. It has 

been documented that when a rate of reaction has a strongly negative ∆G values, it implies that they are 

kinetically controlled, meaning they are feasible in wide concentration ranges, this is more likely to occur 

in oxidation reaction with stronger electron accepter like oxygen and nitrate (Rodríguez et al., 2008).  

This could also be linked with microorganisms reaching the stationary phase, thus the decrease in energy. 

Literature claims that there’s a linear relationship that exists between biochemical reaction with their 

corresponding ∆G (Rottenberg & Gutman, 1977). The relationship between the rate of NH4-N and NO2-N 

degradation and their corresponding ∆G was studied and it was apparent that there is a linear correlation 

between the rate of NH4-N and NO2-N degradation and their corresponding ∆G. Lüttge et al. (2006), also 

reported a linear relationship between the rate of albite dissolution and their corresponding ∆G. 

Furthermore, the Linear models were used to predict the relationship between the rate of NH4-N and NO2-

N degradation with their corresponding ∆G. the model fitted well into the experiment with correlation 

coefficient of 0.94 and 0.93 for nitritation and nitratation respectively. Additionally, the observed rate of 

NH4-N and NO2-N degradation was plotted against the predicted rate of degradation for both NH4-N and 

NO2-N, the result showed that the observed rate and the predicted rate had a good linear correlation with 

the correlation coefficient of 0.97 and 0.93 for nitritation and nitratation respectively- Fig 5.2 and 5.3. 
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Simulation of the model 

 

∆G as a function of 

[product]/[reactant] 

 

Figure 5.2. Parity plots of predicted rate nitritation values versus experimental values. simulations of the 

linear model data into a rate of NH4-N degradation versus Gibbs free energy data and ∆G as a function of 

[product]/[reactant]. 

 Model: Change = a + F*G 
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Simulation of the 

model 

 

∆G as a function of 

[product]/[reactant] 

 

Figure 5.3. Parity plots of predicted rate nitratation values versus experimental values. simulations of the 

linear model data into a rate of NO2-N degradation versus Gibbs free energy data and ∆G as a function of 

[product]/[reactant]. 

 
5.5. Conclusion 

The isolated consortia presented an interesting characteristic, it performed nitrification, denitrification and 

degraded CN- simultaneously. The Gibbs free energy was also studied to confirm the feasibility of the 

nitrification and aerobic denitrification under high CN- conditions. Negative ∆G were obtained for both 

nitratation and nitritation, this indicated that the reactions are feasible, spontaneous and rapid. Furthermore, 

the relationship between the rate of NH4-N and NO2-N degradation and ∆G was investigated, the results 

showed that there is a linear correlation between rate of NH4-N and NO2-N degradation and their respective 

∆G. The equilibrium constant was also investigated (results not shown) since the nature of equilibrium 

constant can also articulate whether the reaction is spontaneous or not, an increase in equilibrium constant 

with the decrease in ∆G was observed, this is also a proof that SNaD reaction occurs spontaneously and 

does not require additional energy.  
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CHAPTER 6:  

BIO-KINETICS OF SIMULTANEOUS 
NITRIFICATION AND AEROBIC 

DENITRIFICATION (SNAD) BY A CYANIDE 
DEGRADING BACTERIA UNDER CYANIDE-

LADEN CONDITIONS 
 

6.1. Introduction 

Untreated total nitrogen (TN) containing wastewater in the environment can result in eutrophication, thus 

the treatment of such wastewater containing TN is crucial in wastewater treatment plants (WWTPs) (Duan 

et al., 2015). This type of wastewater may be treated by either physicochemical or biological methods. Most 

municipal and industrial wastewater treatment plants use biological methods such as simultaneous 

nitrification and aerobic denitrification (SNaD) for the treatment of contaminated water due to the cost-

effectiveness of such processes (Ge et al., 2015a; He et al., 2016). 

However, SNaD is sensitive to toxicant loading (Daims et al., 2015; Li et al., 2014; Kim et al., 2008), 

particularly free cyanide (CN-) (Daims et al., 2015). Physical and chemical methods have been used to 

reduce CN- effects on SNaD; however, these methods are relatively expensive, complex and produce 

undesirable by-products such as hypochlorite, and toxicant loaded sludge (Kapoor et al., 2015). Hence, the 

biological removal of CN- prior to SNaD has recently received the most attention. Biological CN- removal 

has been proven to be an ideal option because of its cost-effectiveness and environmental benignity 

(Inglezakis et al., 2017). Although biological CN- removal reduces the production of undesirable by-

products, conducting CN- degradation in a separate reactor with SNaD in sequential two-stage reactor 

systems, may result in the escalation of costs associated with the operation of the multiple independent 

reactors dedicated to the biodegradation of CN- and TN. Han et al. (2014) proposed that CN- degrading and 

resistant microorganisms can be used for SNaD in order to lower the inhibition effect of CN- towards SNaD 

in a single reactor system. 

Mekuto et al. (2015) reported that Bacillus species were capable of degrading up to 300 mg CN-/L and 

subsequently utilize the by-products which were NH4-N, NO3-N, and NO2-N. Additionally, Mpongwana et 

al. (2016) isolated a CN- tolerant strain capable of simultaneous CN- degradation and SNaD. However, the 

applicability of CN- degrading and resistant microorganisms is still restricted due to the lack of information 

necessary to adequately control SNaD under high CN- loading conditions. Hence, this paper reports on the 

isolation of an organism that simultaneously degrades CN- while performing SNaD, with the phenomena 
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of simultaneous CN- degradation and NH4-N removal being modeled by the determination of kinetic 

parameters using numerous decay models. The mechanism by which CN- affects the nitrification and 

denitrification enzymes is still not documented, thus making it difficult to apply CN- resistant 

microorganisms in SNaD systems, in which CN- laden wastewater is being treated. To also address this 

research gap, the expression and activity of ammonia monooxygenase (AMO), nitrate reductase (NaR) and 

nitrite reductase (NiR) present in the CN- resistant isolates’ supernatant, deemed suitable for this research, 

was also conducted. 

 
6.2. Objectives 

• Isolation of a single strain of cyanide resistant bacteria from the isolated mix consortium. 

• Asses the ability of the isolated single strain to perform SNaD under CN- conditions. 

• Evaluating the predictive capability of different mathematical models towards simultaneous 

nitrification and aerobic denitrification under CN- environments. 

• Evaluate the effect of CN- on nitrifying and denitrifying enzymes. 

 

6.3. Materials and methods 

The single microorganism was isolated from the mix consortium. The Isolated strain was subjected to 

toxicity test, whereby it was grown in a nutrient agar containing varied concentrations of NH4-N and CN-. 

The 16sRNA of the isolated strain was sequenced at Inqaba biotech SA using 16S-27F and 16S-1492R 

primers with sequence (5’ to 3’) AGAGTTTGATCMTGGCTCAG, and CGGTTACCTTGTTACGACTT, 

respectively. Thereafter, the basal medium mentioned in section 4.1.1 was used for batch culture 

experiments, the microorganism was initially grown for 3 days subsequent to the addition of 20 mg NH4-

N/L and 20 mg CN-/L into the basal media. samples were collected at a 24 h’ interval for 7 days to examine 

CN-, NH4-N, NO2-N, NO3-N and microbial growth at OD660 nm. The analysis was performed using Merck 

SA test kits and ANOVA Spectroquant as per manufactures instructions. The effect of CN- on the 

nitrification and denitrification enzyme was examined. The enzymes were extracted by primary lysing of 

the cell using sonicator; thereafter, the enzymes were collected from the free cell extract using cold acetone. 

The free cell extract was also analysed by FTIR to assess whether the CN- attaches to the proteins of the 

cell. 
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6.4. Results and Discussion 
6.4.1. Identification of bacterial Isolate 

The CN- resistant bacterial strain was characterized by sequencing 16sRNA using the universal primers 

27F and 1492R to amplify the target region. The results were obtained by a BLAST search. The sequence 

on NCBI indicated that the isolated bacteria was Acinetobacter courvalinii, accession number 

AB602910.1/NR_148843.1. 

 

6.4.2. Degradation kinetics of Cyanide and NH4-N 

An experiment was conducted to investigate the growth of A. courvalinii under CN- conditions, subsequent 

to CN- and TN biodegradation studies by the isolate. The growth of A. courvalinii was shown not to be 

affected by CN- concentration of up to 20 mg CN-/L; therefore, it was selected for the assessment of its 

ability to perform SNaD under cyanogenic conditions. The isolate was found to possess a special ability of 

sequential utilization of CN- and TN by exploiting its multi-phased growth attributes, by initially utilizing 

of CN- and subsequently, NH4-N, which was evident by the appearance of a secondary logarithmic phase 

as seen in Fig. 6.1A.  

Fig. 6.1A demonstrates that A. courvalinii utilized CN- primarily, from a concentration of 20 mg CN-/L to 

5.8 mg CN-/L followed by NH4-N. The rate of degradation for both CN- and NH4-N was 2.2 mg CN-/L/h 

and 0.40 mg NH4-N/L/h, respectively. Moreover, a cyanide degrading consortium was also assessed (Fig 

10.1 Appendix A) as it was having similar attributes to the isolate used in this study; albeit, due to a large 

percentage of organisms within the consortium being identified as unknown (Fig 10.2 Appendix A), the 

results were not included nor discussed herein. Overall, an increase of CN- in the first 24 h was observed, 

with a subsequent CN- decrease from 58.1 mg CN-/L to 5.8 mg CN-/L, being observed. The initial increase 

in CN- was associated with the activation of the ANR cascade which results in the production of HCN and 

denitrification enzymes (NAR, NIR, NOR, and N2OR) Fig. 6.1A.  

Arai et al. (1997) reported the regulation of ANR cascade for transcription of denitrification enzymes 

resulting in the production of HCN by Pseudomonas aeruginosa. Moreover, the Pseudomonadaceae have 

been reported to possess aerobic denitrification capability needed in the aiding and furtherance of SNaD 

(Yunjie et al., 2020). A courvalinii exhibited similar characteristics to those of Pseudomonas sp. 

Mpongwana et al. (2016) also reported an increase in CN- concentration during the expression of 

denitrification enzymes. For this study, a decrease in NH4-N from 64.2 to 28.4 mgNH4-N/L was observed, 

indicating an initiation of nitrification from the threshold limit of 5.8 mg CN-/L Fig. 6.1A. This indicated 

that a concentration of 5.8 mg CN-/L did not completely inhibit nitrification; albeit, this concentration is 

above the threshold concentration of CN- known to completely inhibit nitrification reaction (Kim et al., 

2008). Kim et al. (2007) reported the complete inhibition of nitrification by 1 mg CN-/L. The inhibition is 

largely associated with enzyme redundancy, non-production and deactivation.  
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The NAR which is activated during the regulation of ANR is a significant enzyme that aid in aerobic 

respiration; thus, converting NO3-N back into NO2-N during aerobic denitrification (Mpongwana et al., 

2019). The increase of CN- during the experiment, confirmed the ability of the A. courvalinii to induce 

ANR advocated for its ability to carry out SNaD. Minute accumulation of NO2-N was observed compared 

to NO3-N which was produced in significant quantities in the first 24 h of the experiments Fig. 6.1B. This 

was deemed normal as some studies have reported that NO2-N accumulate in insignificant quantities during 

SNaD (Sin et al., 2008). The NO2-N increase between 48-72 h, was associated with the conversion of NO3-

N to NO2-N catalysed by NAR during aerobic respiration culminating in the distinct feature of SNaD, a 

phenomenon also supported by the observed decrease in NO3-N between 24 and 72 h which corresponded 

with the increase of NO2-N, confirming the ability of A courvalinii to carry-out aerobic respiration thus 

performing SNaD.  

A multi-phased growth as observed in Fig. 6.1A confirmed multiple distinct dual lag phases with a 

stationary phase being observed between 72-96 h. This stationary phase was associated with biomass 

switching utilization from one nitrogenous source to another, i.e. from using CN- to NH4-N. The first lag 

phase from 0-72 h was linked with the isolates’ growth as a result of CN- presence, using it as a source of 

nitrogen, while the second lag phase from 96-120 h was linked with the growth of A courvalinii as a result 

of NH4-N consumption and/or removal, with growth rate being 1.35 and 3.12 h-1 for first and second growth 

phases, respectively. This indicated that A courvalinii grows well when supported by less toxic nitrogenous 

source (NH4-N) than when growing in an inhibitory toxicant (CN-) even if it’s a nitrogenous sourcethat can 

be utilized by the organism. However, the rate of NH4-N removal was low thus, optimization studies are 

needed, in order to increase the nitrification efficiency, which is the initial step in SNaD. Subsequent to the 

monitoring of TN and CN- removal, five models were used to assess their predictive ability of SNaD under 

CN- conditions, with kinetic parameters in each model being determined.  
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Figure 6.1. Biodegradation kinetics of NH4-N and CN- by Acinetobacter courvalinii. A: Growth of 

Acinetobacter courvalinii, sequential degradation of CN- and NH4-N. B: NO3-N and NO2-N accumulation 

and degradation. 

Table 6.1. Estimated kinetic parameter values for the models for NH4-N degradation, a rate-limiting step 

in nitrification 

 Fitting constants and the values of kinetic 
parameter 

(±95% confidence interval) 

  

Model Vm (h-1) Ki (mgL-1) Ks (mgL-1) n (-) R2 variance 

Rate law 

−
𝐝𝐝𝐝𝐝𝐝𝐝
𝐝𝐝𝐝𝐝

= 𝒓𝒓 = 𝑲𝑲𝒊𝒊𝑪𝑪𝒂𝒂𝒏𝒏 

- 6.29E-05 - 2.27 0.9
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Haldane 

−
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

=
𝑽𝑽𝒎𝒎𝐂𝐂𝒂𝒂

𝑪𝑪𝒂𝒂 + 𝑪𝑪𝒂𝒂𝟐𝟐
𝐊𝐊𝐢𝐢

 

0.45 23.94 - - 0.9
2 

0.02 

Model with substrate inhibition 

Andrews 

−
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝑽𝑽𝒎𝒎[𝟏𝟏 −
𝑲𝑲𝒊𝒊

𝑪𝑪 𝒂𝒂
][𝟏𝟏

+
𝑪𝑪𝒂𝒂
𝑲𝑲𝒔𝒔

] 

0.36 27.54 13.22 - 0.94 0.02 

*Equations 2 to 6 were obtained from Annuar et al (2008) 
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Figure 6.2. Parity plots of predicted values versus experimental values. Assimilations of the model data 

into NH4-N degradation experimental data (Rate law, Haldane, and Andrew). 

The predictive capability of the three models on NH4-N degradation was analyzed. This was done 

by simulating the predicted model data in comparison to experimental data and also by plotting parity plots 

to assess the relationship between predicted data with the observed experimental values. The selected 

models included the Rate law, Haldane and Andrew’s models. The experimental data were fitted into the 

models to estimate kinetic constant in each model, using Polymath 6.0 software. The Rate law and Haldane 

models adequately described the experimental data of the nitrification step with a determination coefficient 

(R2) of 0.91 and 0.92, respectively.  

Furthermore, the adjusted determination coefficient (Adj R2) was 0.89 and 0.89 respectively, with such a 

high Adj R2 signifying a high significance, thus suitability of the estimated model kinetic constants. 

Furthermore, the variance was 0.015 and 0.016 for the generic rate law and the Haldane model, respectively. 

This variance is very low and is evidence that the predicted (modeled) values generated using estimated 

Model Parity Plots Assimilation of Models into Experimental data 

Rate law 

−
dCa
dt

= 𝑟𝑟 = 𝑉𝑉𝑚𝑚𝐶𝐶𝑎𝑎𝑛𝑛 

  

Haldane 

𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑉𝑉𝑚𝑚C𝑎𝑎

𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑎𝑎2
Ki

 

  

Andrews 
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𝑑𝑑𝑑𝑑

= −𝑉𝑉𝑚𝑚[1 −
𝐾𝐾𝑖𝑖
𝐶𝐶 𝑎𝑎

][1

+
𝐶𝐶𝑎𝑎
𝐾𝐾𝑠𝑠

] 

  

y = 0,7976x + 0,1103
R² = 0,9633

0
0,2
0,4
0,6
0,8

1

-0,5 0 0,5 1

Pr
ed

ic
te

d 
ra

te
 o

f 
N

H
4-

N
 d

eg
ra

da
tio

n

Observed rate of NH4-N degradation

First Order

Linear (First
Order)

-0,2
0

0,2
0,4
0,6
0,8

1

0 50 100 150

d[
N

H
4-

N
]/d

t

Time (h)

Experiment

First Order

y = 0,9192x + 0,0222
R² = 0,9192

-0,2
0

0,2
0,4
0,6
0,8

1

-0,5 0 0,5 1

Pr
ed

ic
te

d 
ra

te
 o

f 
N

H
4-

N
 d

eg
ra

da
tio

n

Observed rate of NH4-N degradation

Haldane

Linear (Haldane)

-0,2
0

0,2
0,4
0,6
0,8

1

0 50 100 150

d[
N

H
4-

N
]/d

t

Time (h)

Experiment

Haldane

y = 0,9402x + 0,0164
R² = 0,9402

-0,2

0

0,2

0,4

0,6

0,8

1

-0,5 0 0,5 1

Pr
ed

ic
te

d 
ra

te
 o

f N
H

4-
N

 
de

gr
ad

at
io

n

Observed rate of NH4-N degradation

Andrews

Linear
(Andrews)

-0,2

0

0,2

0,4

0,6

0,8

1

0 50 100 150

d[
N

H
4-

N
]/d

t

Time (h)

Experiment

Andrews



92 

kinetic parameters did not differ much from experimental data. Similarly, Andrews model-generated data 

with substrate inhibition was also compared to experimental data. The model gave a better fit with a 

correlation coefficient of 0.94 and a linear correlation efficiency of 0.98 and an Adj R2 0.90. 

The average standard deviations were compared for the selection of the better predicting model for NH4-N 

degradation as a limiting step, with a standard deviation of Haldane, Rate law and Andrews model being 

0.041, 0.043, and 0.036, respectively. However, for the selection of the model that is adequate in predicting 

multiple nitrogenous pollutants (CN-, NH4-N, NO2-N and NO3-N) removal, the prediction ability of the 

model towards CN- degradation needed to be considered. The parity plot indicated a satisfactory correlation 

between the experimental rate of NH4-N degradation and the predicted rates with R2 being 0.96, 0.92, and 

0.94 for Rate law, Haldane and Andrew’s model respectively.  

Moreover, the variance for Andrews’s model also proved the significance of the model with variance being 

0.015. This variance was minute which indicated that there was a negligible difference between the model 

and experimental data (see Fig. 6.2 and Table 6.1). Monod and Moser models were also assessed for their 

predictive ability of NH4-N and CN- degradation rates; however, they did not fit well into the experimental 

data (Fig. 10.3 and 10.4, Appendix A). 

Table 6.2. Estimated values of kinetic parameters for the models for CN- degradation 

 Values of kinetic Parameter (±95% 
confidence interval) 

  

Model Vm (h-1) Ki (mgL-1) Ks (mgL-

1) 
n (-) R2 variance 

Rate law 

−
𝐝𝐝𝐝𝐝𝐝𝐝
𝐝𝐝𝐝𝐝

= 𝒓𝒓 = 𝑲𝑲𝒊𝒊𝑪𝑪𝒂𝒂𝒏𝒏 

- 3.33E-05 - 2.65 0.92 0.05 

Haldane 

𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

=
𝑽𝑽𝒎𝒎𝐂𝐂𝒂𝒂

𝑪𝑪𝒂𝒂 + 𝑪𝑪𝒂𝒂𝟐𝟐
𝐊𝐊𝐢𝐢

 

0.36 11.36 - - 0.95 365.43 
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Model Parity Plots Assimilation of Models into Experimental data 

Rate law 

−
dCa
dt
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Haldane 
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𝐶𝐶 𝑎𝑎

][1

+
𝐶𝐶𝑎𝑎
𝐾𝐾𝑠𝑠

]   

Figure 6.3. Parity plots of predicted values versus experimental values. Assimilations of the model data 

into CN- degradation experimental data (Rate law, Haldane, and Andrews).   

Overall, the models used and reported in this research also fitted the CN- degradation data well. The models 

that gave a better fit were the rate law (R2 = 0.92, Adj R2 =0.90, variance= 0.052 and standard deviation= 

0.076) and Haldane model (R2= 0.95, adj R2= 0.94, variance= 0.034 and standard deviation= 0.061)- see 

Table 3. Andrew models’ had a poor prediction of CN- degradation with (R2=-0.99, adj R2= -2.31, variance= 

1.75, and standard deviation= 0.38). This indicated that CN- degradation was not inhibited by the presence 

of NH4-N, as some organisms would rather alternatively use the less inhibitory pollutant; although, 

inhibitory compound biodegradation might be a favorable alternative. Andrew’s model was developed to 

predict substrate utilization in systems with substrate inhibition, thus the models’ inability to model CN- 

removal.  
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Ge et al. (2015) studied the kinetics of SNaD under high phenol concentrations using bacterial strains 

capable of phenol degradation, heterotrophic nitrification, and aerobic denitrification. Additionally, 

Vasiliadou et al. (2006) also studied the kinetics of denitrification with nitrate inhibition. Additionally, Li 

et al. (2019) also determined that the Haldane model predicted CN- well with R2 being 0.99 These studies 

indicated the feasibility of SNaD even under inhibitory pollutant loading. Moreover, the kinetic parameters 

obtained were comparable to those obtained for this study (Table 6.3).  

Overall, the variance and standard deviation of the model showed that all three models predicted NH4-N 

degradation better as opposed to CN- degradation. This was shown with the higher variances and standard 

deviation of CN- degradation than those of NH4-N degradation. Although, all three models adequately 

represented NH4-N removal with high R2 and adj R2, the rate law and Andrews models had higher average 

standard deviation and variance for predicted rate of CN- degradation in comparison to actual experimental 

data; thus rendering unusable as candidate prediction models for removal systems with multiple nitrogenous 

pollutants.  

Moreover, Haldanes’ model was selected as a better predictor of NH4-N removal under CN- conditions. 

This decision was based on its standard deviation and the variance being the lowest for both NH4-N and 

CN- degradation, indicating that the predicted rate of NH4-N and CN- by Haldane had a minute deviation 

from the experimental data thus qualifying it as a better model to be used for multiple nitrogenous pollutants 

systems, especially, SNaD.   

The result obtained it this study were consistent with those that were previously reported by Pradhan et al. 

(2019) describing dual substrate kinetics of ammonia oxidation by Haldane model, with R2 > 0.98 and adj 

R2 > 0.98 and low standard errors (RMSE) < 0.61. Additionally, Wang et al. (2019) reported a high 

correlation between Haldane prediction and experimental data with adjusted R2 (0.995), Ks (2.997 ± 0.041 

mg/L) and Ki (64.736 ± 0.023 mg/L). 

 

Table 6.3. Kinetic parameters obtained from different studies assessing nitrification and aerobic 

denitrification 
 

Model Kinetic parameters  

 𝑽𝑽𝒎𝒎 𝑲𝑲𝒔𝒔 𝑲𝑲𝒊𝒊 n Reference  

Haldane 0.323 9.65 152.40 - (Kim et al., 
2008) 

SNaD under high 
phenol concentrations 
using A strain capable 
of phenol degradation 
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(Haldane model with 
substrate inhibition) 

0.45 - 23.94 - This study SNaD in CN- 

(Haldane model 
without substrate 

inhibition) 

Rate law - - 0.047 1 (Ge et al., 
2015a) 

Degradation of 
ammonia nitrogen 
under high phenol 

concentrations. 

- - 6.29E-05 2.27 This study SNaD in CN- 

Andrews 0.0485 28.63 24.284  (Ge et al., 
2015a) 

Denitrification with 
nitrate inhibition 

0.36 13.22 27.54 - This study SNaD in CN- 

*Ks is pollutant inhibition constant, Ki is the saturation constant, Ca is the concentration of the pollutant, n is the model fitting constant and Vm, is the maximum specific 

degradation rate of the pollutant 

6.4.3. Effect of Cyanide on AMO, NaR, and NiR 
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Figure 6.4. The activity of NH4-N, NO3-N and NO2-N oxidizing enzymes and CN- degrading enzyme. A: 

Effect of CN- on the induction of NH4-N, NO3-N and NO2-N oxidizing enzymes by A. courvalinii. B: Effect 

of CN- on free cell NH4-N, NO3-N and NO2-N oxidizing enzymes  

Enzyme inhibition can occur in different ways such as the binding of an inhibitor onto an active site or for 

example a site of the AMO responsible for NH4-N oxidation. The second inhibition mechanism can involve 

the removal of the Cu co-factor of AMO which in turn affects the activity of AMO (Ruser, 2015). To assess 

the effect of CN- towards SNaD, enzyme extracts from A. courvalinii cultivated in batch cultures were used. 

The effect of CN- towards the expression of NH4-N (AMO), NO3-N (NaR) and NO2-N (NiR) oxidizing 

enzymes (Fig. 6.4A) was evaluated. 

The activity and presence of AMO, NaR, and NiR was conducted using cell-free extracts by the addition 

of the enzyme solution into solutions of NH4-N. The results revealed that A. courvalinii was able to express 

AMO, and not NaR and NiR; this was shown by the decrease of NH4-N and the accumulation of NO2-N; 

however, there was minimal NO2-N oxidation observed thus minimal NO3-N formation and accumulation 

detected (see Fig. 6.4B). This observation led to a hypothesis that CN- inhibited the expression of NO3-N 

and NO2-N oxidizing enzymes or results in the excretion of non-active NO3-N and NO2-N oxidizing 

enzymes.  

In addition, the competitive inhibition by the addition of CN- to free cell extract was examined. This 

experiment aimed to determine the effect of CN- on the expressed NH4-N, NO3-N, and NO2-N oxidizing 

enzymes, of which the outcomes indicated that the presence of CN- did not have an effect on the NH4-N 

reducing enzyme; albeit, a slow decrease of NO2-N was observed which suggested the activation of 

denitrification. Additionally, no NO3-N accumulation was observed which meant that A. courvalinii 

converted NO2-N directly to N2. 
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The activation of NO2-N genes when CN- was added to bacterial cultures, could be a confirmation that A. 

courvalinii expresses an ANR protein in response to the presence of CN- as a protective mechanism for the 

cyanide-resistant bacteria used in this research in order to mitigate against the toxicity of the CN-. 

Furthermore, the activation of this protein can lead to the induction of NAR, NIR, NOR, and N2OR 

although this was not confirmed in this study (Duan et al., 2015). 

 

6.5. Conclusions 

The growth of Acinetobacter courvalinii accession number AB602910.1/NR_148843.1 was not affected by 

CN-. Furthermore, this microorganism was shown to carry-out SNaD under higher CN- concentration than 

the threshold concentration which is known to completely inhibit SNaD. The predictive ability of the rate 

law, Haldane, and Andrews models was assessed with results indicating that the rate law, Haldane, and 

Andrew’s models were better models to predict NH4-N removal as the initial step in SNaD, with high R2 

and adj R2; thus, the evaluation of models ability to also predict CN- degradation, with the standard deviation 

and variance being a criterion for selection of the better predicting model. The Haldane model was found 

to have the lowest standard deviation for both CN- and NH4-N removal among all models evaluated. Thus 

it’s selection as a model that is suitable to predict the detoxification of TN in wastewater, using SNaD even 

under CN- laden conditions.  

The influence of CN- on AMO, NaR, and NiR also showed that CN- did not affect the expression and 

activity of NH4-N oxidizing enzymes and the assumption was made that non-viable NO3-N and NO2-N 

reducing enzymes were expressed. This hypothesis comes from the observation of the slow decrease in 

NO2-N after the addition of CN- on crude enzyme extract assays, confirming the activity of NO3-N reducing 

enzyme and activation of the denitrification pathway by the CN-. Although A. courvalinii has been shown 

to be able to detoxify TN under CN- conditions Physico-chemical parameters still need to be investigated 

in order to optimize the degradation efficiency of isolate, A. courvalinii. 
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CHAPTER 7:  

PREDICTIVE CAPABILITY OF RESPONSE 
SURFACE METHODOLOGY AND 

CYBERNETIC MODELS FOR CYANOGENIC 
SIMULTANEOUS NITRIFICATION AND 

AEROBIC DENITRIFICATION (SNAD) 
FACILITATED BY CYANIDE-RESISTANT 

BACTERIA 
 

7.1. Introduction 

The growth of a microorganism under multiple carbon source conditions can influence its performance 

even in large-scale wastewater treatment processes (Van Dedem & Moo-Young, 1975; Narang & Pilyugin, 

2007; Solopova et al., 2014). Similarly, wastewater can be composed of different nitrogenous compounds 

from several industries. Current methods to treat this type of wastewater consist of traditional two-stage 

biological processes known as aerobic nitrification and anoxic denitrification. These treatment processes 

have different operating conditions and requirements such as dissolved oxygen concentration, carbon 

source requirements and retention time, with throughput rates of the wastewater being treated in the 

processes being of outmost importance. Due to high energy consumption associated with the second reactor 

dedicated to anaerobic denitrification, some studies have indicated the possibility of simultaneous 

nitrification and aerobic denitrification (SNaD).  

This process is advantageous than traditional nitrification subsequent to denitrification, providing for cost-

effectiveness (Kim et al., 2008; Zhang et al., 2015; Jin et al., 2014). Moreover, SNaD is a highly effective 

method for total nitrogen (TN), i.e. ammonium nitrogen (NH4-N), nitrate-nitrogen (NO3-N) and nitrite-

nitrogen (NO2-N), removal from wastewater (He et al., 2016), although, the microorganism(s) used during 

TN removal are highly sensitive to toxicant loading, thus, SNaD is the least effective of industrial 

wastewater treatment methods owing to a high concentration of contaminants that may completely inhibit 

SNaD (Choi & Hu, 2009; Papirio et al., 2014). 

The coking industry is among the industries that produce wastewater containing high quantities of 

pollutants such as NH4-N in the form of ammonium sulfate, thiocyanide (SCN), free cyanide (CN-), etc 

(Ma et al., 2015). This type of wastewater may result in serious environmental contamination and other 

challenges associated with the disposal of such contaminated wastewater if not treated (Feng et al., 2015; 

Carrera et al., 2003; Kim et al., 2011a; Kim et al., 2011b) using processes such as SNaD; albeit, some 
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inhibitory pollutants might render this process ineffective. Kim et al. (2008) have reported that CN- does 

possess the highest inhibitory effect on SNaD.  

CN- containing wastewater is produced in various other industries including mining, steel making, chemical 

manufacturing, and petroleum industries. CN- has been known to be more poisonous than other cyanide 

compounds. However, some microorganisms have been reported to be able to use CN- and other TN 

constituents as nitrogenous sources, thus their suitability to be used in SNaD operations. The mechanism 

of CN- tolerance and conversion, as also observed for TN removal, occurs through four general pathways 

that are hydrolytic; oxidative; reductive; and substitution/transfer mechanisms (Kapoor et al., 2016; Luque-

Almagro et al., 2016; Razanamahandry et al., 2016).  

Moreover, some studies reported the ability of cyanide degrading bacteria to degrade CN- and subsequently 

nitrify and aerobically denitrify (Mekuto et al., 2015). An example is that of Mekuto et al. (2018) who 

successfully demonstrated the use of cyanide degrading bacteria for nitrification and aerobic denitrification 

under cyanogenic conditions. Ryu et al. (2015) also reported complete SNaD and simultaneous SCN 

degradation. These findings have led to the proposition of applying cyanide degrading bacteria for SNaD 

to eliminate the inhibitory effect of CN- towards SNaD, which can further reduce operational costs 

associated with the reactor designated for biological pretreatment of CN- (Han et al., 2013) and for 

downstream denitrification.  

Moreover, the application of cyanide degrading bacteria will not only resolve the inhibitory effect of CN- 

towards SNaD, it will also resolve the challenge of slow-growing microorganisms responsible for SNaD 

since cyanide degrading bacteria have higher growth rates (Ojaghi et al., 2018; Kandasamy et al., 2015). 

This will likely improve process performance and compensate for biomass washout. In addition, some 

cyanide degrading bacteria have been reported to also possess other important genes such as the gene 

responsible for polyhydroxyalkanoates (PHA) synthesis which can be used as an energy source when 

produced extracellularly during the biodegradation of pollutants, including other aromatic compounds 

(Luque-Almagro et al., 2016).  

This is another advantageous trait of cyanide degrading bacteria. Han et al. (2013) have recommended the 

application of CN- degrading bacteria for TN removal from wastewater containing a high quantity of CN- 

as an alternative to mediate the effect of CN- on SNaD with others concurring to such a strategy (Park et 

al., 2008; Han et al., 2013a; Han et al., 2013b). However, there is still limited information on the application 

of these microorganisms on a full-scale wastewater treatment process due to the possibility of unknown 

risks occurring. In a previous study conducted by Mpongwana et al. (2016), it was also indicated that SNaD 

is feasible by using CN- tolerant bacteria to treat CN- containing wastewater whereby the bacteria exhibited 

multiphase growth pattern phenomenon when supplied with both CN- and NH4-N; albeit, other 

physiological conditions might have played a role. Generally, SNaD and CN- degradation is known to be 
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affected by physiological conditions such as pH and temperature, which must be optimal for process 

performance efficiency.  

Response surface methodology (RSM) has been widely used to predict and optimize cyanide degradation 

and SNaD operations (Mekuto et al., 2013), with no study having compared and assessed the capability of 

RSM and cybernetic models to predict the performance of SNaD under CN- conditions. CN- was chosen as 

the inhibitor in the research reported herein since it possesses a high inhibition capability for nitrification 

and denitrification (Inglezakis et al., 2017). This study also determined the optimum physiological 

conditions of the bioreactor required to facilitate SNaD in the presence of CN- when cyanide resistant 

bacteria are employed. Moreover, the cybernetic models were also developed to assess their predictive 

ability of SNaD under CN- conditions in comparison to the RSM model developed. 

 

7.2. Objectives 

• Optimisation of Physico-chemical conditions that affect simultaneous nitrification and aerobic 

denitrification under high cyanide conditions. 

• Development of a simple cybernetic model to predict simultaneous nitrification and aerobic 

denitrification under high cyanide conditions. 

• Compare the predictive ability of RSM models with cybernetic models towards simultaneous 

nitrification and aerobic denitrification under high cyanide conditions. 

 

7.3. Materials and methods 

The experimental design for optimization of SNaD under CN- conditions were designed using RSM 

software. a 13-run experimental plan with variation in independent variables temperature and pH was 

generated by RSM. A basal media mentioned in section 4.1.1 was used for this study. The isolated strain 

was grown for 2 days prior to the addition of 20 mg NH4-N/L and 20 mg CN-/L. samples were collected on 

a 1 h interval for analysis of CN-, NH4-N, NO2-N, and NO3-N using Merck SA test kits and Merck ANOVA 

Spectroquant, all the experiments were conducted in duplicate. Multiple regression analysis was used to 

analyse the data. The kinetic experiments were conducted at optimised conditions in 1L batch reactor using 

the basal medium previously mentioned in section 4.1.1. The media was inoculated with 100 mL of 

overnight culture and was incubated for 168 h prior addition of 42.05 mg CN-/L and 246.5 mg NH4-N/L, 

2mL samples were withdrawn on a 24 h interval for analysis of NH4-N, CN-, NO2-N and NO3-N. 5 mL 

sample was also collected at the beginning of the experiment to analyse the enzyme. The enzymes were 

extracted according to section 4.2.3. Cybernetic models were developed in reference to Fig. 4.1 for the 

prediction of SNaD. 
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7.4. Results and discussion  
7.4.1. Predictive ability of Response Surface Methodology 
7.4.1.1. Analysis of variance (ANOVA) for TN removal 
 

The central composite design was used to study the interaction between the independent variables, pH and 

temperature, that affect SNaD for TN removal. Table 3 shows analysis of variance (ANOVA) of the 

quadratic model used to describe TN removal. The model F-value of 17.01 for TN removal was higher than 

1.0, which indicated that the variation between the model and experimental data was higher. 

The predicted values of the RSM were compared with the experimental values, with the p-value being 

0.0009 for the model, which is smaller than the alpha level of 0.05. This meant that there was a 

consequential relationship between the predicted values and the actual values of TN removal. However, 

other parameters such as the deviation of the model values from the actual data points (standard deviation), 

R2, adjusted R2 and predicted R2 need to be considered in order to judge the adequacy of the model – see 

Table 7.1. 

Table 7.1. Analysis of variance (ANOVA) of the quadratic parameters for SNaD process used for TN 

removal under CN- conditions  

Source Sum of Squares df Mean Square F-value p-value  

Model 12482.87 5 2496.57 17.01 0.0009 significant 

A-Temperature 1167.65 1 1167.65 7.96 0.0257  

B-pH 631.10 1 631.10 4.30 0.0768  

AB 70.78 1 70.78 0.4824 0.5097  

A² 5558.29 1 5558.29 37.88 0.0005  

B² 6434.58 1 6434.58 43.85 0.0003  

Residual 1027.19 7 146.74    

Lack of Fit 1027.19 3 342.40    

Pure Error 0.0000 4 0.0000    

Cor Total 13510.06 12     
 

The quadratic model was also used to predict SNaD under CN- conditions. The significance of the 

parameters was determined using values of "Prob> F" less than 0.05, thus, in this case, A, A2, and B2 were 

found to be significant for the model. Therefore, the model was improved by reducing it from Eq. 29 to Eq. 

30. 
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TN removal = 78.57 - 12.08A - 8.88B + 4.21AB - 28.27A2 - 30.41B2     (29)  

TN removal = 78.57 -12.08 A - 28.27A2 - 30.41B2       (30) 

 

Figure 7.1. Surface response plot showing the interaction between pH, Temperature and TN removal.  

 

The visualization of the predicted model was obtained using a surface response plot – see Fig 7.1. In this 

study, the response was set to maximize the degradation efficiency of TN in an SNaD system that contains 

multiple nitrogenous sources, i.e NH4-N, NO2-N and NO3-N, with CN- as a secondary nitrogenous source 

or pollutant. Acinetobacter courvalinii was found to remove up to 78.6% of TN via SNaD from an initial 

concentration of 20 mg NH4-N/L within 5 h of incubation. Li et al. (2015) reported that Pseudomonas 

stutzeri YZN-001 could remove NH4-N at 37 oC rapidly; however, the removal of NO2-N and NO3-N only 

occurred at 30 oC. The surface plot for TN removal under cyanogenic conditions as shown in Fig 7.1, 

indicated that the maximum operational efficiency for the SNaD containing CN- was located inside the 

experimental region. This was a confirmation of the optimum being 6.5 and 36.5 oC. Moreover, the plateau 

in surface response plots in Fig 7.1 indicated the suitability of operational conditions for SNaD, it also 

highlighted that the lowest degradation efficiency for TN removal and CN- degradation was observed at 

temperature and pH of 40.04 oC and 6.5 with degradation efficiencies of approximately 5 %. When the 

temperature is 36.5 oC with pH being 2.96 or 10.04 the degradation efficiency for TN removal was found 

to be 46.1 and 5.6%, respectively. This indicated that changes in pH and temperature affect TN removal. 
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7.4.1.2. Batch reactor experiment and model simulations 
 

  

Figure 7.2. Degradation kinetics of TN and cyanide in a batch culture reactor. A: TN and CN- degradation 

and cell concentration over time. B: model fitting into biomass plot. 

To generate data for the models, removal (degradation) kinetics of TN were studied at optimized conditions 

in 1L reactors. The initial (higher) concentration of 40 mg CN-/L and 250 mg NH4-N/L were used and the 

experiment was conducted for 264 h. The results indicated that up to 70.5 % of TN was removed within 

264 h, see Fig. 7.2A. Duan et al. (2015) reported that a nitrification efficiency of 91.82 ± 1.98 % after 42 h 

by Vibrio diabolicus SF16 was achievable in a system that does not contain CN-. Furthermore, He et al. 

(2015) also reported an NH4-N removal efficiency of 93.6% after 96 h of incubation with Pseudomonas 

tolaasii Y-11; albeit, the utilization of pollutants by a specific species might be sequential, with the 

organism utilizing the easily biodegradable pollutant with a less complex structure first, subsequent to the 

degradation of the second less desirable pollutants which sometimes results in multi-phased growth of the 

organism(s) used. The cell concentration was also studied and modeled (Fig. 7.2A). The data points of 

predicted growth rate versus actual growth rate were scattered, with numerous outliers from the trend line 

(Fig. 7.2B) which signifies that the first-order equation did not adequately represent the growth model. 

Moreover, the R2 of 0.5303 was low, thus indicating poor prediction of the growth observed. Overall, the 

microorganism used in this study primarily degraded TN including CN- simultaneously, which is an 

interesting trait considering that CN- is a known inhibitor to nitrification, with as little as 1 mg CN-/L 

completely inhibiting nitrification (Kim et al., 2008).  
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7.5. Prediction ability of RSM in comparison to cybernetic models 
 

 
 
 
 
 
 
 
RSM 
Model 

  
 
 
 
 
 
Cybernetic 
Model 
 

  

Figure 7.3. A comparison of the prediction ability of RSM and cybernetic models. A: prediction of TN 

removal efficiency by RSM model; B: parity plot comparing predicted total nitrogen removal efficiency 

and actual total nitrogen removal efficiency by RSM; C: Rate of TN removal predicted by cybernetic model; 

D: parity plot for comparing predicted rate of TN removal with actual rate of TN removal by cybernetic 

model.  

When comparing modeled and actual SNaD performance under optimum conditions, the correlation 

coefficient (R2) of 0.92 was observed; although this high R2 was observed, R2 alone cannot verify whether 

the model is adequate or not, since R2 can improve with the extension of dependent variables scale 

regardless of whether the variable is significant or not. Thus the adjusted R2 (0.87) and predicted R2 (0.46) 

were considered (Table 7.3). Adjusted R2 is normally used to compare the explanatory power of a regression 

model, while the Adjusted R2 only account for variables that improve the model; therefore, the addition of 
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less significant variables decreases the Adjusted R2. Overall, the Adjusted R2 is considered more reliable 

compared to the correlation coefficient. Hence, the Adjusted R2 was used to evaluate the adequacy of the 

model culminating in the selection of a suitable model describing SNaD for TN removal under CN- 

conditions.  

As the Adjusted R2 of 0.87 was higher; therefore, the model was deemed adequate. However, the difference 

between predicted R2 and adjusted R2 was above 0.2, indicating that there would be challenges with the use 

of the model. Hence, the model was reduced to expression as highlighted in Eq. 30. This was further 

confirmed by the average standard deviation (12.11) for TN removal with standard error (SE) of 5.284 

(Table 7.3). The SE for TN removal indicated that the RSM model could be improved to represent the 

experimental data more adequately. The parity plot for TN removal was used to compare the predicted TN 

removal efficacy and the actual TN removal efficiency. The data points of the RSM model deviated from 

the trendline indicating a larger deviation of the data points from the trend line. 

Table 7.2. Model parameter estimations 

Fitting constants and the values of kinetic parameters 

(±95% confidence interval) 

Parameters Values 

ri
max 0.02 mg/g.h 

Ki1 2.91 mg/L 

αe1 0.89 mg/g.h 

αe2 1.42 mg/g.h 

αe3 0.29 mg/g.h 

αe4 0.03 mg/g.h 

re1 30.42 mg/g.h 

re2 791.97 mg/g.h 

re3 454.71 mg/g.h 

re4 0.11 mg/g.h 

b1 0.76 mg/g.h 

b2 20.29 mg/g.h 

b3 227.64 mg/g.h 

b4 0.01 mg/gd.h 
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𝒓𝒓𝒈𝒈 0.001 Cell/L/h 

Cybernetic models were developed to predict maximum pollutant utilization rates which are presented as 

S1 and S2 for TN and CN- respectively via catalysis by numerous enzymes. A cybernetic model was 

simulated by estimating unknown parameters using experimental data as listed in Table 7.2. The model 

successfully described the rate of TN removal with (R2 of 0.97, indicating a 97% suitability. Moreover, the 

Adjusted determination coefficient (Adj R2 = 0.96) was very high with the difference between R2 and the 

Adj R2 being 0.006. This difference is minute; therefore, it advocated for the high significance of the model. 

Furthermore, the variance (0.002), standard error (0.0035) and standard deviation (0.012) for TN removal 

were low, demonstrating that there’s an insignificant difference between the predicted values from the 

model and the actual experimental values. Although the RSM model was shown to adequately represent 

TN removal, the adjusted R2 of the cybernetic model was higher than that of the RSM model. Thus, 

cybernetic models were selected as the best model to predict TN removal using SNaD. Furthermore, the 

parity plot for RSM and the cybernetic model were compared. The parity plot of cybernetic model had data 

points scattered closer to the trend line as opposed to RSM model which numerous outliers showing a 

significant deviation from the trend line (Fig, 7.3B, and D), supporting the statement that cybernetic model 

better predicted TN removal better in CN- using SNaD. 

Table 7.3. Statistical analysis of RSM and cybernetic models for SNaD under CN- conditions 

Model Std Dev SE 
Mean 

R-squared Adjusted 
R-squared 

Predicted R2 

RSM 12.11 5.284 0.9240 0.8697 0.46 

Cybernetic 0.012391 

 

0.0035 0.966119 

 

0.962731 

 

- 

Two-sided    Confidence = 95%    Population = 99% 

 

7.6. TN/ CN- biocatalysis  
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Figure 7.4. (a) NH4-N and CN- removal/ degradation. (b) NO2-N, and NO3-N removal. simulation of the 

cybernetic model into (c) level of key enzyme e1 over time. (d) level of key enzyme e2 over time. (e) level 

of key enzyme e3 over time. (f) level of key enzyme e4. 

SNaD involves a process whereby NH4-N is converted into NO2-N and further to NO3-N which activates 

the production of denitrification enzymes that convert NO3-N into N2. Enzyme activity was determined by 

extracting free-cell enzymes supplemented into solutions consisting of pollutants, NH4-N and CN-. The 

decrease in the pollutants and the accumulation of the intermediates NO3-N and NO2-N were observed. The 

decrease in NH4-N and CN- was slow in the first two minutes of the reaction with a degradation rate of 0.83 

and 1.1 mg/L/min, respectively. The degradation rates increased after the fourth minute, with the rate 

increased up to 1.64 and 1.73 mg/L/min were observed, respectively; albeit, the rate of degradation 

decreased after 5 min. Since the degradation was conducted at ambient temperature to simulate real-life 

WWTP conditions, the decrease in the pollutants indicated the presence of TN and CN- degrading enzymes; 

moreover, the increase and decrease of intermediates NO2-N and NO3-N indicated the presence of 

denitrification enzymes; hence, the isolated microorganisms was deemed to be capable to carry-out SNaD 

even in the presence of CN-. The enzyme synthesis model successfully described individual enzyme activity 

with R2 above 0.7 indicating a good fit of the activity models.  

 

7.7. Conclusion 

Response surface methodology was used to determine the optimum conditions for TN removal under CN- 

conditions using A. courvalinii, a CN- tolerant bacterium with TN removal capabilities in SNaD. The 

optimum pH and temperature were found to be 6.5 and 36.5 oC, with degradation efficiency of 78.6 % for 

TN and a significant (80.2 %) for CN- degradation, respectively. Degradation kinetics of TN were also 
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studied in a batch reactor under the optimum conditions with the results obtained indicating that TN was 

degraded simultaneously with CN- at an efficiency of 70.5 % and 97.3 %, respectively. Moreover, 

cybernetic modeling was found to be better at predicting SNaD under cyanogenic conditions with a higher 

adjusted R2 (0.96) as opposed to the RSM models with an adjusted R2 of 0.87. The cybernetic models used 

in this study were simplified models; thus they do not provide illuminating insights into cellular responses. 

Hence, additional experiments are needed to elucidate metabolic flux distributions better and to further 

develop models for SNaD process prediction as well as optimisation.
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CHAPTER 8:  

SUMMARY AND CONCLUSION 
 

8.1 Summary and Conclusions 

Treatment of TN has become the core of WWTP(s) since wastewater containing high quantities of TN 

results in eutrophication. Treatment approaches for TN removal involve chemical, physical and biological 

treatment technologies, with biological treatment being an ideal method due to its cost-effectiveness. 

Traditional biological treatment of TN involves a two-stage process known as aerobic nitrification 

subsequent to anoxic denitrification. However, due to high energy consumption resulting from the operation 

of multiple reactors, various studies have proven the probability of some microorganisms to perform 

denitrification under aerobic conditions. This has led to the proposition to conduct nitrification and 

denitrification in a single reactor, giving birth to a process currently known as SNaD. This process is crucial 

in the WWTP since it is cost-effective and more sustainable compared to the two-stage aerobic nitrification 

subsequent to anoxic denitrification. Due to the significance of this process in WWTP, SNaD has drawn 

attention to the scientific world over the past few years.  

Thus, a number of studies have been conducted, aiming to improve this process and make it more 

sustainable, despite all the improvements which have been done on SNaD, this process still encounters 

some challenges that make it difficult to implement under certain conditions such as the presence of high 

quantities of other toxic pollutants. Inhibition of SNaD by other pollutants present in the WWTP is one of 

the major challenges that hinder the application of the SNaD especially in industrial WWTP which contains 

highly toxic chemicals such as ammonium sulfate, SCN, CN-. These pollutants can be lethal to the microbial 

population responsible for SNaD. CN- is counted among the most toxic compounds towards SNaD, with as 

little as 1 mg/L of CN- known to completely inhibit SNaD. This has led to the application of chemical and 

physical pre-treatment methods to treat wastewater containing CN- prior to SNaD; however, these methods 

are costly and complicated to operate.  

Biological CN- removal has been used as an ideal pre-treatment alternative to detoxify treat CN- prior 

wastewater enters SNaD reactor. Although the biological CN- removal has been deemed the best technique 

for the treatment of CN-, the operation of the pretreatment reactor may result in accumulation of operational 

cost. Hence, some studies have suggested the application of CN- degrading microorganism for SNaD, 

although the application of CN- degrading bacteria have been proven to be possible, the cyanide resistant/ 

tolerant microorganisms have not yet been applied for SNaD in large-scale wastewater operations due to 

limited information that is crucial in controlling of the SNaD performed by CN- degrading/ tolerant 

microorganisms. Thus, the aim of this study was to investigate a modeling approach suitable to describe 

SNaD under CN- conditions since modeling plays an important role in accurate facilitation of SNaD 
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process. Thermodynamic kinetics of SNaD under high CN- loadings were initially investigated to assess 

the feasibility of SNaD process performed by cyanide resistant/ degrading mix consortium that was isolated 

from cyanogenic environments.  

The results obtained indicated that CN- did not affect the performance of a mix consortiums’ nitrification 

abilities. The consortia were shown to degrade CN- and sufficiently remove NH4-N and CN- respectively. 

A linear relationship was found to exist between nitrification rates and their respective Gibbs free energy 

with negative Gibbs free energy observed. This confirmed the feasibility of TN removal under high CN- 

conditions. For a proof of concept, from the mix consortia, a single strain was also isolated and was 

identified as Acinetobacter courvalinii (accession number AB602910.1). The strain was capable of 

degrading CN- and subsequent removal of TN under cyanogenic environments. Furthermore, five 

mathematical models (Monod, Moser, rate law, Haldane, and Andrew’s model) were assessed for their 

ability to predict SNaD under CN- conditions; albeit, only the Rate law, Haldane, and Andrew models 

successfully predicted SNaD under CN- conditions.  

Moreover, the rate law and Haldane models were also shown to predict CN- degradation. Overall, the 

Haldane model was selected as a better predictor of systems with multiple nitrogenous sources due to low 

variance and standard deviation, which indicated an insignificant deviation of the predicted data from the 

experimental data for both NH2-N and CN- degradation. Initially, the degradation rates of NH4-N and CN- 

by A. courvalinii were low; hence, physiological parameters optimization using RSM. Under optimum 

conditions for TN removal and CN- degradation the predictive ability of the RSM model generated was 

compared with the cybernetic models, with a cybernetic model being selected as the better predictor for TN 

removal in SNaD-CN- systems; although both RSM and cybernetic models were found to adequately 

represented TN removal. These results exhibited a promising clarification of the SNaD process under CN- 

conditions and provide a solution in the control, management SNaD even under CN- conditions. 

 

8.2 Recommendations for future work 

From a consortium able to perform SNaD, a cyanide degrading microorganism capable of degrading CN- 

and perform SNaD simultaneously was successfully isolated. This demonstrated that even at an individual 

species level, SNaD could be performed even under CN-. The physio-chemical conditions were studied to 

optimize CN- degradation and SNaD; moreover, the predictive ability of RSM and cybernetic models was 

also studied. Although cybernetic models developed were successfully used to describe SNaD under high 

cyanogenic conditions; the metabolic network used to develop the cybernetic models was a simplified 

network. It is recommended that a more detailed metabolic network for SNaD under CN- conditions be 

constructed for the development of a more robust model which will describe the SNaD even when a 

consortium is used for such a system. This model can provide an illuminating insight into cellular response 
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for SNaD. Additional experiments are also needed to be conducted to better understand the metabolic flux 

distribution in SNaD-CN- and SNaD-toxicant systems. 
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CHAPTER 10: 

APPENDIX A 
 

  

Figure 10.1. Simultaneous nitrification and aerobic denitrification performed by cyanide degrading 

mix consortia under high cyanide conditions. (a) NH4-N and CN- degradation profile. (b) NO2-N and 

NO3-N degradation and accumulation profile. 
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Figure 10.2. metagenomics report for the consortium. (a): Kingdom classification. (b): Phylum 

classification. (c): Class classification. (d); Order classification. E: Family classification. 

Table 10.1. Estimated values of kinetic parameters for the models for NH4-N degradation, a limiting 

step in nitrification 

 Fitting constants and the values of kinetic 
Parameter (±95% confidence interval) 

  

Model Vm (h-1) Ki (mgL-1) Ks (mgL-1) N (-) R2 variance 
Monod 
 
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝐕𝐕𝐕𝐕∗𝑪𝑪𝑪𝑪
𝐊𝐊𝐊𝐊+𝐂𝐂𝐂𝐂

  

- 1.19 92.91 - - 0.48 0.09 

Moser 
 
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝑽𝑽𝒎𝒎[ 𝑪𝑪𝒂𝒂𝒏𝒏

𝑲𝑲𝒊𝒊+𝑪𝑪𝒂𝒂𝒏𝒏
]  

0.26 1.55 - -0.24 0.09 0.23 

 

Table 10.2. Estimated values of kinetic parameters for the models for CN- degradation, a limiting 

step in nitrification 

 Fitting constants and the values of kinetic 
parameter  

(±95% confidence interval) 

  

Model Vm (h-1) Ki (mgL-1) Ks (mgL-1) n (-) R2 variance 
Monod 
 

𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

=
𝐕𝐕𝐕𝐕 ∗ 𝑪𝑪𝑪𝑪
𝐊𝐊𝐊𝐊 + 𝐂𝐂𝐂𝐂

 

-0.32 -9.50 - - 0.28 0.48 

Moser 
 
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝑽𝑽𝒎𝒎[
𝑪𝑪𝒂𝒂𝒏𝒏

𝑲𝑲𝒊𝒊 + 𝑪𝑪𝒂𝒂𝒏𝒏
] 

0.026 44.43 - 0.98 0.75 0.22 

Model with substrate inhibition 

E 
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Andrews 

−
𝒅𝒅𝑪𝑪𝒂𝒂
𝒅𝒅𝒅𝒅

= 𝑽𝑽𝒎𝒎[𝟏𝟏 −
𝑲𝑲𝒊𝒊

𝑪𝑪 𝒂𝒂
][𝟏𝟏 +

𝑪𝑪𝒂𝒂
𝑲𝑲𝒔𝒔

] 

-0.29 -1.39 43.42 - -0.99 1.75 
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Monod 
 
𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

=
Vm∗𝐶𝐶𝐶𝐶
Ki+Ca

  

  
Moser 
 
𝑑𝑑𝐶𝐶𝑎𝑎
𝑑𝑑𝑑𝑑

=

𝑉𝑉𝑚𝑚[ 𝐶𝐶𝑎𝑎𝑛𝑛

𝐾𝐾𝑖𝑖+𝐶𝐶𝑎𝑎𝑛𝑛
]

  

  
   

Figure 10.3. Parity plots of predicted values versus experimental values. Assimilations of the model data 

into NH4-N degradation experimental data (Monod and Moser). (a) parity plot for the Monod equation. (b) 

simulation of predicted rate of reaction by Monod into experimental data. (c) parity plot for Moser equation. 

(d) simulation of predicted rate of reaction by Moser into experimental data. 
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Figure 10.4. Parity plots of predicted values versus experimental values. Assimilations of the model data 

into CN- degradation experimental data (Monod, Moser, and Andrews).  (a) parity plot for the Monod 

equation. (b) simulation of predicted rate of reaction by Monod into experimental data. (c) parity plot for 

Moser equation. (d) simulation of predicted rate of reaction by Moser into experimental data. 
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