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ABSTRACT 

Occurrence of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems may aggravate the 

water crisis currently being experienced in the Western Cape province of South Africa. However, 

there is dearth of data on the levels of PAHs, necessary for effective assessment of water quality 

as well as remediation strategies. This study therefore assessed levels of PAHs in two important 

freshwater systems in the Western Cape Province, South Africa. The potential of grape leaf litter 

for PAH abatement was also investigated. 

A solid-phase extraction - gas chromatography - flame ionisation detection (SPE-GC-FID) method 

was developed to simultaneously determine the 16 United States Environmental Protection 

Agency (US EPA) priority PAHs in environmental samples. Levels of 16 US EPA priority PAHs 

were assessed in water, sediment and plants from seven selected sites on the Diep and 

Plankenburg Rivers. Seasonal variations of some water quality parameters and PAHs levels in 

water and sediment samples were determined from the selected sites. Activated carbons 

produced from Vitis vinifera (grape) leaf litter were utilised for PAH-remediation.  

The SPE-GC-FID method developed for the 16 US EPA priority PAHs determination gave 

acceptable linearity (R2 > 0.999). Instrument detection limits ranged between 0.02 and 0.04 µg/mL 

and instrument quantification limits of between 0.06 and 0.13 µg/mL. Recovery studies were also 

acceptable (70.35 - 100.83%) with the exception of naphthalene that had lower recoveries. 

The average ∑16 PAHs detected in water samples at a given site, over a one-year period ranged 

from 73.90 to187.11 µg/L. The highest PAHs levels were detected in water samples from industrial 

areas of both rivers; chrysene (Chy) followed by benzo[a]anthracene (BaA) were the most 

abundant PAHs detected in water samples. Higher PAHs levels were detected in sediment 

samples relative to water samples; the average ∑16 PAHs detected in sediment samples at a 

given site, over a one-year period ranged from 6.048 to 39.656 µg/g. PAHs levels were also 

highest in sediment samples from industrial areas of the two rivers; benzo[b]fluoranthene (BbF) 

followed by benzo[k]fluoranthene (BkF) were the most abundant PAHs detected in sediment 

samples. The average ∑16 PAHs detected in plant samples [Phragmites australis (common reed) 

and Eichhornia crassipes (water hyacinth)] at a given site, ranged between 62.11 and 226.72 µg/g. 

Highest levels of PAHs were therefore detected in plant samples, suggesting possible 

bioaccumulation of PAHs in plant tissues. The bioaccumulation of PAHs by the plants also 

indicates the phytoremediation potential of these plants for PAHs remediation.  

The levels of PAHs measured in water and sediment samples were subjected to probabilistic risk 

assessment to predict the possibility of regulatory values being exceeded. The average 

percentage exceedence of 63.26 and 42.81 were obtained for PAHs in water samples of the Diep 
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and Plankenburg Rivers respectively, while the corresponding average percentage exceedence 

obtained for sediment samples were 63.71 and 77.20.  

Vitis vinifera (grape) leaf litter showed enormous prospect as precursor for activated carbon. The 

yield of activated carbons obtained from grape leaf litter ranged from 44.65 to 58.40% and the 

Brunauer-Emmett-Teller (BET) surface area of up to 616.60 m2/g was obtained for activated 

carbons. The estimated adsorption capacities of the ZnCl2 and H3PO4 activated carbons for 

phenanthrene removal from aqueous solutions were 94.12 and 89.13 mg/g respectively. 

The environmental samples analysed were heavily contaminated with the 16 US EPA priority 

PAHs and the probabilistic risk assessment suggested risks of the carcinogenic PAHs at the levels 

measured in the environment. Vitis vinifera leaf litter, showed enormous potential as renewable 

precursor for activated carbon production, capable of removing varied contaminants from 

wastewater. 

Keywords: PAHs; Adsorption; Activated carbon; GC-FID; Freshwater; Vitis vinifera; Western 

Cape. 

  



v 
 

ACKNOWLEDGEMENTS 

I wish to thank: 
 

▪ The God almighty, for the gift of life and the grace for the journey. 

▪ Prof BO Opeolu, my supervisor for her kindness, support and encouragement. 

▪ Prof OS Fatoki, Prof RG Snyman and Dr VA Jackson, my co-supervisors and Dr Olatunji; for 

their support and immense contributions to the project.  

▪ Mr Joshua Adekunle Awe and Mrs Elizabeth Arinola Awe, my parents, for being my pillar of 

support. I am so blessed to have you to call dad and mom.  

▪ Mr Tony Wagbafor and family, for the love, support and encouragement. 

▪ Adebayo, Temilola and Omotola Kolade, my siblings and their spouses (Titilayo, Ifewumi and 

Fiyinfoluwa respectively); for their love. 

▪ Chief MO Awe, Mrs Omolara Ojo, Dr Olusegun Oguntoke, Mrs Oluwakemi Oyedokun, Mr Ade 

Emmanuel Toke, my uncles and aunts; for their prayers, support and encouragement. 

▪ Mr David Kok, Prof Merrill Wicht, Mr Jacobs and all the staff of the Department of Chemistry, for 

their kindness and technical support. 

▪ Mr Ademola Rabiu and Prof Tunde Ojumu, for giving me access to their laboratory.  

▪ Bamidele, Oluwadara, Oputu, Michael, Wole, Justino and all other colleagues, for making the 

journey bearable. 

▪ Olwethu Bonke, Okuhle September, Joyce Pankendem Olpa and all other students for the kind 

assistance. 

▪ Mrs Erere Wagbafor-Awe, my jewel, for the love, peace, support and loyalty. I love you. 

 



vi 
 

DEDICATION 

This work is dedicated to the sweet memory of my grandmother, Madam Victoria Omobola Awe. 
(1914/07/16 - 2016/07/28) 



vii 
 

TABLE OF CONTENTS 

DECLARATION .......................................................................................................................... ii 

ABSTRACT ............................................................................................................................... iii 

ACKNOWLEDGEMENTS........................................................................................................... v 

DEDICATION ............................................................................................................................ vi 

TABLE OF CONTENTS ........................................................................................................... vii 

LIST OF FIGURES ..................................................................................................................... x 

LIST OF TABLES ..................................................................................................................... xii 

LIST OF APPENDICES ........................................................................................................... xiv 

GLOSSARY ............................................................................................................................. xv 

CHAPTER ONE .......................................................................................................................... 1 

INTRODUCTION ........................................................................................................................ 1 

1.1 Background .................................................................................................................. 1 

1.2 Problem statement ........................................................................................................ 5 

1.3 Broad objective of the research .................................................................................... 6 

1.4 Limitation of the Study .................................................................................................. 6 

CHAPTER TWO ......................................................................................................................... 7 

LITERATURE REVIEW .............................................................................................................. 7 

2.1 Polycyclic Aromatic Hydrocarbons (PAHs) ................................................................... 7 

2.1.1 Background Information on the 16 US EPA Priority PAHs ................................... 11 

2.2 Sources of PAHS in the aquatic environment .............................................................. 22 

2.3 Routes of exposure and toxicity of PAHs to aquatic organisms................................... 26 

2.4 Routes of exposure and toxicity of PAHs to humans ................................................... 30 

2.5 Occurrence and distribution of PAHS in aquatic environments .................................... 36 

2.6 Extraction of PAHS from environmental matrices ........................................................ 39 

2.6.1 Extraction of PAHS from water samples ............................................................... 39 

2.6.2 Extraction of PAHS from solid matrices ................................................................ 43 

2.7 Analysis of PAHs ........................................................................................................ 48 

2.8 Evidence and monitoring of PAHs in South African environment ................................ 51 

2.9 Remediation of PAHs ................................................................................................. 53 

2.9.1 Conventional remediation methods for PAHs....................................................... 53 

2.9.2 Remediation of PAHs using nanoparticles ........................................................... 58 

2.9.3 Bioremediation of PAHs ....................................................................................... 58 

2.10 Adsorption remediation technology ............................................................................. 76 



viii 
 

2.10.1 Adsorption isotherm models ................................................................................ 76 

2.10.2 Adsorption kinetic models .................................................................................... 79 

2.11 Diep River ......................................................................................................................... 83 

2.12 Plankenburg River ............................................................................................................ 83 

CHAPTER 3 ............................................................................................................................. 84 

METHODOLOGY ..................................................................................................................... 84 

3.1 Method of analysis ...................................................................................................... 84 

3.1.1 Chemicals ............................................................................................................ 84 

3.1.2 Method development on GC-FID ......................................................................... 84 

3.1.3 Extraction and SPE clean-up of PAHs from samples ........................................... 86 

3.1.4 Method validation ................................................................................................ 87 

3.2 Study area .................................................................................................................. 89 

3.2.1 The Diep River sites ............................................................................................ 89 

3.2.2 The Plankenburg River sites ................................................................................ 91 

3.3 Sampling and sample pre-treatment ................................................................................... 93 

3.3.1 Sampling and pre-treatment of water ........................................................................ 93 

3.3.2 Sampling and pre-treatment of sediment .................................................................. 93 

3.3.3 Sampling and pre-treatment of plant samples ........................................................... 94 

3.4 Quality assurance and quality control steps ................................................................ 94 

3.5 Analysis of grape leaf litter .......................................................................................... 95 

3.5.1 Determination of moisture content ....................................................................... 95 

3.5.2 Determination of ash content ............................................................................... 95 

3.5.3 Crude fibre content determination ........................................................................ 96 

3.5.4 Elemental analysis ............................................................................................... 96 

3.6 Production and characterisation of activated carbons ................................................. 97 

3.6.1 Adsorbent preparation ......................................................................................... 97 

3.6.2 Adsorbent characterisation .................................................................................. 98 

3.7 Adsorption studies .............................................................................................................. 98 

3.7.1 Optimisation of parameters ....................................................................................... 99 

3.7.2 Adsorption Isotherms ......................................................................................... 100 

3.7.3 Kinetic studies ................................................................................................... 103 

3.8 Analysis of data ........................................................................................................ 103 

 



ix 
 

CHAPTER 4 ........................................................................................................................... 104 

RESULTS AND DISCUSSION ............................................................................................... 104 

4.1 GC-FID method optimisation and validation .............................................................. 104 

4.1.1 Chromatographic separation .............................................................................. 104 

4.1.2 Linearity, detection limit and quantification limit ................................................. 104 

4.1.3 Precision ............................................................................................................ 107 

4.1.4  Recovery of PAHs ............................................................................................. 108 

4.2 Water quality parameters of the Diep and Plankenburg Rivers water samples ......... 111 

4.2.1  Temperature ...................................................................................................... 111 

4.2.2 pH ...................................................................................................................... 112 

4.2.3 Electrical conductivity (EC) ................................................................................ 114 

4.2.4  Total dissolved solids (TDS) .............................................................................. 115 

4.2.5  Salinity ............................................................................................................... 117 

4.3 Levels of PAHS in the Diep and Plankenburg Rivers ................................................ 120 

4.3.1 Levels of PAHs in surface water samples .......................................................... 120 

4.3.2 Levels of PAHs in sediment samples ................................................................. 135 

4.3.3 Levels of PAHs in plant samples of the Diep and Plankenburg Rivers ............... 146 

4.3.4 Probabilistic risk assessment of PAHs in water and sediment samples ............. 155 

4.4  Remediation of PAHS from aqueous solution ............................................................ 161 

4.4.1 Characterisation of adsorbents produced from V. vinifera leaf litter ................... 161 

4.4.2  Adsorption of phenanthrene on obtained activated carbons .............................. 169 

CHAPTER 5 ........................................................................................................................... 196 

CONCLUSIONS AND RECOMMENDATIONS ....................................................................... 196 

5.1 Conclusions ...................................................................................................................... 196 

5.2 Recommendations ............................................................................................................ 198 

REFERENCES ....................................................................................................................... 199 

APPENDICES......................................................................................................................... 232 



x 
 

LIST OF FIGURES 

Figure 2.1: Structures of the two to four ringed US EPA priority PAHs obtained with 

CambridgeSoft ChemDraw Ultra 12.0 Wizard ............................................................................. 9 

Figure 2.2: Structures of the five to six ringed US EPA priority PAHs obtained with CambridgeSoft 

ChemDraw Ultra 12.0 Wizard ................................................................................................... 10 

Figure 2.3: Uptake and elimination pathways of toxicant by organisms [Adapted from: Mackay & 

Fraser (2000)] ........................................................................................................................... 27 

 
Figure 3.1: Map showing the sampling sites at the Diep River .................................................. 90 

Figure 3.2: Map showing the sampling sites at the Plankenburg River ...................................... 92 

 
Figure 4.1: Chromatogram of the 16 US EPA priority PAHs .................................................... 105 

Figure 4.2: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 

samples of the Diep River ....................................................................................................... 121 

Figure 4.3: Annual distribution of 16 US EPA PAHs in water samples of the Diep River ......... 123 

Figure 4.4: Fractions of PAHs in water samples of the Diep River .......................................... 125 

Figure 4.5: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 

samples of the Plankenburg River .......................................................................................... 127 

Figure 4.6: Annual distribution of 16 US EPA PAHs in water samples of the Plankenburg River

 ............................................................................................................................................... 129 

Figure 4.7: Fractions of PAHs in water samples of the Plankenburg River .............................. 130 

Figure 4.8: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 

samples of the Diep and Plankenburg Rivers ......................................................................... 131 

Figure 4.9: Fractions of PAHs in water samples of the Diep and Plankenburg Rivers ............. 132 

Figure 4.10: Seasonal variations and annual average levels of 16 US EPA PAHs in sediment 

samples of the Diep River ....................................................................................................... 136 

Figure 4.11: Annual distribution of 16 US EPA PAHs in sediment samples of the Diep River . 137 

Figure 4.12: Fractions of PAHs in sediment samples of the Diep River ................................... 138 

Figure 4.13: Seasonal variations and annual average levels of 16 US EPA priority PAHs in 

sediment samples of the Plankenburg River ........................................................................... 140 

Figure 4.14: Annual distribution of 16 US EPA priority PAHs in sediment samples of the 

Plankenburg River .................................................................................................................. 141 

Figure 4.15: Fractions of PAHs in sediment samples of the Plankenburg River ...................... 142 

Figure 4.16: Seasonal variations and annual average levels of 16 US EPA priority PAHs in 

sediment samples of the Diep and Plankenburg Rivers .......................................................... 144 

Figure 4.17: Occurrence of PAHs in P. australis tissues of the Diep River (site DB) ............... 149 



xi 
 

Figure 4.18: Occurrence of PAHs in P. australis tissues of the Plankenburg River ................. 153 

Figure 4.19: Fractions of PAHs in plant samples of the Diep and Plankenburg Rivers ............ 154 

Figure 4.20: BET isotherm plots for nitrogen adsorption capacity of produced activated carbons

 ............................................................................................................................................... 165 

Figure 4.21: FTIR spectra of produced chars vs raw biomass ................................................. 167 

Figure 4.22: Scanning electron micrographs of produced activated carbons, charred and raw 

biomass (magnification: x1000 vs x5000) ............................................................................... 168 

Figure 4.23: Effect of solution pH on phenanthrene adsorption using activated carbons ......... 170 

Figure 4.24: Effect of adsorbent dosage on phenanthrene removal using activated carbons .. 172 

Figure 4.25: Effect of initial concentration of phenanthrene on activated carbons’ efficiency ... 175 

Figure 4.26: SEM images of activated carbons before and after adsorption of phenanthrene from 

aqueous solution ..................................................................................................................... 178 

Figure 4.27a: Langmuir adsorption isotherm plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac) ............................................................................................. 180 

Figure 4.27b: Freundlich adsorption isotherm plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac)……………………………………………………………………..181 

Figure 4.27c: Temkin adsorption isotherm plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac)……………………………………………………………………..182 

Figure 4.27d: Dubinin-Radushkevich adsorption isotherm plots for phenanthrene removal using 

activated carbons (ZAac, ZBac and PAac)…………………………………………………………..184 

Figure 4.28: Effect of contact time on phenanthrene adsorption using activated carbons ....... 186 

Figure 4.29a: Pseudo-first order adsorption kinetic plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac) ............................................................................................. 188 

Figure 4.29b: Pseudo-second order adsorption kinetic plots for phenanthrene removal using 

activated carbons (ZAac, ZBac and PAac) .............................................................................. 190 

Figure 4.29c: Elovich adsorption kinetic plots for phenanthrene removal using activated carbons 

(ZAac, ZBac and PAac) .......................................................................................................... 192 

Figure 4.29d: Weber Morris intraparticle diffusion adsorption kinetic plots for phenanthrene 

removal using activated carbons (ZAac, ZBac and PAac) ....................................................... 194 

Figure 4.30: Intra particle diffusion kinetics for phenanthrene removal using activated carbons

 ............................................................................................................................................... 195 



xii 
 

LIST OF TABLES 

Table 2.1: Properties of the 16 US EPA Priority PAHs ................................................................ 8 

Table 2.2: Toxic equivalent factors (TEFs) for the 16 US EPA priority PAHs ............................ 18 

Table 2.3: PAH ratios used for pyrogenic and petrogenic source assignment ........................... 25 

Table 2.4: PAH Content in Food ............................................................................................... 31 

Table 2.5: Detected levels of PAHs in different food samples ................................................... 32 

Table 2.6: A summary of methods used to analyse PAHs in water samples ............................. 42 

Table 2.7: A summary of methods used to analyse PAHs in sediment samples........................ 45 

Table 2.8: A summary of methods used to analyse PAHs in plant samples .............................. 47 

Table 2.9: Summary of conventional remediation approaches utilised for PAH-degradation ..... 54 

Table 2.10: Phytoremediation approaches for PAH-degradation ............................................... 60 

Table 2.11: Bioreactors utilised for PAH-degradation ................................................................ 65 

Table 2.12: Biosorption approaches for PAHs remediation ....................................................... 71 

Table 3.1: Specifications and the operating conditions of the GC-FID ....................................... 85 

Table 3.2: Description of sampling sites of the Diep River ........................................................ 89 

Table 3.3: Description of sampling sites of the Plankenburg River ............................................ 91 

 

Table 4.1: Calibration data and linearity for the 16 US EPA Priority PAHs .............................. 106 

Table 4.2: Repeatability and reproducibility of GC-FID analysis of 16 US EPA priority PAHs.. 107 

Table 4.3: Average percentage recovery of the 16 US EPA priority PAHs from milli-Q water .. 109 

Table 4.4: Percentage recovery of PAHs in plant and sediment samples (n = 3) .................... 110 

Table 4.5a: Seasonal variation of temperature (oC) in the Diep River water samples .............. 112 

Table 4.5b: Seasonal variation of temperature (oC) in the Plankenburg River water samples . 112 

Table 4.6a: Seasonal variation of pH values in the Diep River water samples ........................ 114 

Table 4.6b: Seasonal variation of pH values in the Plankenburg River water samples ............ 114 

Table 4.7a: Seasonal variation of electrical conductivity (µS/cm) values in the Diep River water 

samples .................................................................................................................................. 115 

Table 4.7b: Seasonal variation of electrical conductivity (µS/cm) values in the Plankenburg River 

water samples......................................................................................................................... 115 

Table 4.8a: Seasonal variation of TDS (mg/L) values in the Diep River water samples ........... 116 

Table 4.8b: Seasonal variation of TDS (mg/L) values in the Plankenburg River water samples

 ............................................................................................................................................... 116 

Table 4.9a: Seasonal variation of salinity (mg/L) in the Diep River water samples .................. 118 

Table 4.9b: Seasonal variation of salinity (mg/L) in the Plankenburg River water samples ..... 118 

Table 4.10: Correlation matrix of water quality parameters measured on site ......................... 119 

Table 4.11: Fractions of PAHs congeners in water samples of the Diep River ........................ 124 



xiii 
 

Table 4.12: Fractions of PAHs congeners in water samples of the Plankenburg River............ 129 

Table 4.13: Annual average concentrations of PAHs in water samples of the Diep and 

Plankenburg Rivers ................................................................................................................ 133 

Table 4.14: Regulatory threshold limits of PAHs in sediment and water for the protection of aquatic 

life ........................................................................................................................................... 134 

Table 4.15: Fractions of PAHs congeners in sediment samples of the Diep River .................. 138 

Table 4.16: Fractions of PAHs congeners in sediment samples of the Plankenburg River ...... 142 

Table 4.17: Annual average concentrations of PAHs in sediment samples of the Diep and 

Plankenburg Rivers ................................................................................................................ 145 

Table 4.18a: Levels of PAHs (mean (n = 3) ± SD) in E. crassipes samples of the Diep River . 147 

Table 4.18b: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Diep River……...148 

Table 4.19a: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Plankenburg River 

(sites PA and PB) ................................................................................................................... 151 

Table 4.19b: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Plankenburg River 

(sites PC and PD) ................................................................................................................... 152 

Table 4.20a: Summary of statistics of the tests of the Weibull distribution of the annual 

concentrations (µg/L) of PAHs in water samples of the Diep River ......................................... 156 

Table 4.20b: Summary of statistics of the tests of the Weibull distribution of the annual 

concentrations (µg/L) of PAHs in water samples of the Plankenburg River………………………157 

Table 4.21a: Summary of statistics of the tests of the Weibull distribution of the annual 

concentrations (µg/g) of PAHs in sediment samples of the Diep River .................................... 159 

Table 4.21b: Summary of statistics of the tests of the Weibull distribution of the annual 

concentrations (µg/g) of PAHs in sediment samples of the Plankenburg River…………………160 

Table 4.22: Ash, moisture, crude fibre and atomic elements of raw grape leaf litter ................ 161 

Table 4.23: Yield, burn-off, attrition and elemental composition of the chars ........................... 163 

Table 4.24: Textural properties of produced activated carbons ............................................... 164 

Table 4.25: Effect of aqueous solution pH on phenanthrene removal using activated carbons170 

Table 4.26: Effect of adsorbent dosage on phenanthrene removal from solution using activated 

carbons ................................................................................................................................... 173 

Table 4.27: Effect of initial concentration on phenanthrene removal from solution using activated 

carbons ................................................................................................................................... 176 

Table 4.28: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm constants for the 

adsorption of phenanthrene onto activated carbons obtained from V. vinifera ........................ 183 

Table 4.29: Adsorption kinetics parameters for the removal of phenanthrene from aqueous 

solution using activated carbons obtained from V. vinifera ...................................................... 193  



xiv 
 

LIST OF APPENDICES 

Appendix A: Calibration plots for the 16 US EPA priority PAHs ............................................... 232 

Appendix B: Pictures from sampling sites ............................................................................... 234 

Appendix C1: Seasonal occurrence (average ±SD) of PAHs in the Diep River water samples (sites 

DA and DB) ............................................................................................................................ 235 

Appendix C2: Seasonal occurrence (average ±SD) of PAHs in the Diep River water samples (site 

DC) ......................................................................................................................................... 236 

Appendix D: ANOVA statistical analysis (multivariate tests) of data from the Diep River water 

samples .................................................................................................................................. 237 

Appendix E1: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River water 

samples (sites PA and PB) ..................................................................................................... 238 

Appendix E2: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River water 

samples (sites PC and PD) ..................................................................................................... 239 

Appendix F: ANOVA statistical analysis (multivariate tests) of data from the Plankenburg River 

water samples......................................................................................................................... 240 

Appendix G1: Seasonal occurrence (average ±SD) of PAHs in the Diep River sediment samples 

(sites DA and DB) ................................................................................................................... 241 

Appendix G2: Seasonal occurrence (average ±SD) of PAHs in the Diep River sediment samples 

(site DC) ................................................................................................................................. 242 

Appendix H1: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River sediment 

samples (sites PA and PB) ..................................................................................................... 243 

Appendix H2: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River sediment 

samples (sites PC and PD) ..................................................................................................... 244 

Appendix I: ANOVA statistical analysis (multivariate tests) of data from the Diep and Plankenburg 

River sediment samples (compound Vs sites) ........................................................................ 245 

Appendix J: ANOVA statistical analysis (multivariate tests) of data from the Diep and Plankenburg 

River sediment samples (compound Vs seasons) ................................................................... 246 

Appendix K: Sediment physicochemical properties ................................................................. 247 

Appendix L: Weibull plots of PAHs levels in water samples from the Diep and Plankenburg Rivers

 ............................................................................................................................................... 248 

Appendix M: Weibull plots of PAHs levels in sediments from the Diep and Plankenburg Rivers

 ............................................................................................................................................... 250 

  



xv 
 

GLOSSARY 

Acy Acenaphthylene 

AHR  Aryl Hydrocarbon Receptor 

Ant Anthracene 

AOAC  Association of Official Analytical Chemists 

ASE  Accelerated Solvent Extraction 

BaA Benzo[a]anthracene 

BaP Benzo[a]pyrene 

BbF Benzo[b]fluoranthene 

BET  Brunauer-Emmett-Teller 

BgP Benzo[g, h, i]perylene 

BkF Benzo[k]fluoranthene 

Can Acenaphthene 

CAS  Chemical abstracts service 

CCME Canadian Council of Ministers of the Environment 

Chy Chrysene 

C PAHs  Carcinogenic polycyclic aromatic hydrocarbons 

CPE  Cloud point extraction 

CSTR  Continuous stirred-tank reactors 

CYP  Cytochrome P450 

DBA Dibenzo[a, h]anthracene 

DCM  Dichloromethane 

DEAT Department of Environmental Affairs and Tourism 

DL  Detection limit 

DLLME  Dispersive liquid-liquid micro-extraction 

DNA  Deoxyribonucleic acid 

DWAF  Department of Water Affairs and Forestry 

DWEL  Drinking water equivalent level 

EC  Electrical conductivity 

EDS  Energy-dispersive spectroscopy 

EFSA  European food safety authority 

ELISA  Enzyme-linked immuno-sorbent assay 

EPA  Environmental protection agency 

FBB  Fluidised-bed bioreactor 

FID  Flame ionisation detector 



xvi 
 

FLD  Fluorescence detector 

Flt Fluoranthene 

Flu Fluorene 

FPF  Fish potency factor 

FTIR  Fourier transform infrared 

FWS  Free-water surface 

GC  Gas chromatography 

HMW High molecular weight 

HPLC  High pressure liquid chromatography 

HSDB  Hazardous substances data bank 

IARC  International Agency for Research on Cancer 

ICH  International Council for Harmonisation 

IcP Indeno[1, 2, 3-cd]pyrene 

ICSC  International chemical safety cards 

LC  Liquid chromatography 

LEDs  Light-emitting diodes 

LLE  Liquid-liquid extraction 

LMW  Lower molecular weight 

LPME  Liquid-phase micro-extraction 

MASE  Microwave-assisted solvent extraction 

MCL  Maximum contaminant level 

MS  Mass spectrophotometer  

Nap Naphthalene 

NCBI National Centre for Biotechnology Information 

NP  Nitropyrene 

NTP  National toxicology program 

OLEDs  Organic light-emitting diodes 

OPAHs  Oxygenated polycyclic aromatic hydrocarbons 

PAHs Polycyclic aromatic hydrocarbons 

PCR  Polymerase chain reaction 

PDMS  Polydimethylsiloxane 

Phe Phenanthrene 

POPs Persistent organic pollutants 

PVC  Polyvinyl chloride 

Pyr Pyrene 



xvii 
 

QL  Quantification limit 

RfD  Reference dose 

RSD  Relative standard deviation 

SBSE  Stir bar sorptive extraction 

SDME  Single-drop micro-extraction 

SEM  Scanning electron micrograph 

SFE  Supercritical fluid extraction 

SLE  Solid-liquid extraction 

SLME  Supported-liquid membrane extraction 

SPE  Solid-phase extraction 

SPMD Semipermeable membrane device 

SPME  Solid-phase micro-extraction 

SSF  Subsurface flow 

TDS  Total dissolved solids 

TEF  Toxic equivalent factor 

TPPBs  Two-phase partitioning bioreactors 

TSS  Total suspended solid 

UAE  Ultrasound-assisted extraction 

UATR  Universal attenuated total reflectance 

USAEME  Ultrasound-assisted emulsification-micro-extraction 

US EPA  United states environmental protection agency 

UV  Ultraviolet 

WHO World health organisation 



1 
 

CHAPTER ONE 

INTRODUCTION  

1.1 Background 

As water is essential to human existence, the aquatic system is of immense importance. 

Contamination thus limits its availability as a resource, which could possibly result in human health 

problems, reduced biodiversity, environmental degradation, hunger and poverty, amongst others. 

Amongst these contaminants are Polycyclic Aromatic Hydrocarbons (PAHs) (Christensen & Arora, 

2007).  

Polycyclic aromatic hydrocarbons are persistent organic chemical compounds, which are found to 

be ubiquitous environmental contaminants (Sun et al., 2009). PAHs are of environmental concern, 

as they have been shown to be carcinogenic, mutagenic and teratogenic (Yamada et al., 2003). 

PAHs’ persisting and highly hydrophobic (lipophilic) nature, results in their bioaccumulation in 

aquatic organisms. They have been shown to display acute toxicity and sub-lethal effects on 

aquatic organisms (Olivella et al., 2006; Cardellicchio et al., 2007; Boitsov et al., 2009). 

Polycyclic aromatic hydrocarbons are not listed in the Stockholm Convention on persistent organic 

pollutants (POPs) [a treaty South Africa signed] but are covered by the POPs-Protocol under the 

United Nations Economic Commission for Europe’s Convention on Long Range Transboundary 

Air Pollution (Choi et al., 2009; Quinn et al., 2009). The Stockholm Convention on POPs is a global 

treaty to protect human health and the environment from chemicals that remain intact in the 

environment for long periods of time (Choi et al., 2009).The United States Environmental 

Protection Agency (US EPA) listed 16 PAHs as priority pollutants in wastewaters and 24 in soils, 

sediments, hazardous solid waste and ground water (Christensen & Bzdusek, 2005; US EPA, 

2014) based on their potential health hazards to animals and humans. Degger et al. (2011a) 

reported on the widespread contamination of the marine environment of South Africa by PAHs. 

Lipid weight PAHs levels of 0.29 to 2.10 µg/g in mussels and 0.26 to 0.72 µg/g in semi-permeable-

membrane-devices (SPMDs) were reported. Nieuwoudt et al. (2011) on the other hand reported 

on the widespread contamination of aquatic environment of South Africa by PAHs. The sediment 

samples were reported to be the most impacted with PAHs and levels ranged between 0.112 to 

61.764 µg/g. Both studies stressed the fact that there is paucity of data on PAHs in South Africa 

and the need for more extensive data on PAHs in aquatic systems of South Africa was highlighted. 

Data on contaminants are crucial in identifying pollution sources, mapping out clean up strategies, 
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meeting environmental management and policy objectives as well as formulating policy and 

guidelines for freshwater ecosystems.  

PAHs have multiple anthropogenic (combustion of fossil fuel and biomass as well spillage of 

petroleum products) and natural sources (forest fires, volcanic emissions, and natural oil seeps 

amongst others), and are easily and widely dispersed through air and water, resulting in their 

global presence and impact on humans’ and aquatic biota’s health, air and water quality and other 

environmental media [soils, sediments, flora and fauna amongst others] (Ravindra et al., 2008; 

Wang et al., 2014). Asia and Africa have particularly high PAHs burden, because of heavy reliance 

on combustion of solid fuels for cooking and heating (Ravindra et al., 2008; Lea-Langton et al., 

2018). This burden is exacerbated with lack of proper guidelines and regulations for PAHs, which 

is evident in the unabated oil spillage and gas flaring occurrences reported by Ejiba et al. (2016). 

PAHs have been detected in various environmental matrices, reported detected levels as far back 

as the 80’s and 90’s ranged from ng/L to µg/L in surface water samples and 1000 to 10000 µg/kg 

in river sediments, up to g/kg in soil close to industrial areas, up to 200 µg/kg in smoked food (fish 

and meat), up to 400 µg/kg in food crop grown on contaminated soil and up to up to 950 ng/m3 in 

ambient air (near oil processing plant) amongst others (WHO, 1998a). In more recent years, levels 

of PAHs monitored in the different compartments (water, sediment and biota) of the aquatic 

ecosystems worldwide had been reported; ∑18 PAHs that ranged from 3749 to 22324 µg/kg in 

surface sediments [USA] (Kim et al., 2018), ∑15 PAHs from 910 to 1520 ng/L, 404 to 883 ng/g, 

397 to 1935 ng/g, and 1585 to 3539 ng/g in surface water, surface sediment, soil and leaf samples 

respectively [China] (Li et al., 2010a), ∑16 PAHs from 105 to 513 ng/g in fish tissue (bighead carp 

and silver carp fishes) [China] (Zhao et al., 2014b), ∑16 PAHs from 2886 to 5482 ng/g in surface 

sediment [Iran] (Abdollahi et al., 2013), ∑10 PAHs from 13.17 to 26.38 mg/L and from 27.10 to 

55.93 mg/kg in surface water and sediment samples [South Africa] (Edokpayi et al., 2016) and 

∑16 PAHs from 3.75 to 22.30 mg/kg [across northern France and Belgium] (Rabodonirina et al., 

2015) amongst others. The sediment compartment has received tremendous attention relative to 

others (e.g. surface water and plant). Dissolved pollutants in water are however more bioavailable 

to effect toxicity relative to those in sediments and accumulated levels in plants threatens dietary 

quality (a key factor in epidemiology) (Neff et al., 2005; Abdel-Shafy & Mansour, 2016). Hence, 

this study provides data on levels of the 16 US EPA priority PAHs in sediments, water and plants. 

The capabilities of PAHs causing acute (eye and dermal irritation, acute haemolysis and nausea 

amongst others), sub-chronic (growth inhibition, mortality, diarrhoea and severe anaemia amongst 

others) and chronic (cancer, silicosis and chronic bronchitis amongst others) toxicities on 

sufficiently exposed organisms have also been reported (WHO, 1998a; Machado et al., 2014). 
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Various organisms in vivo/in vitro and human in vitro assays have confirmed the deleterious effects 

of PAHs which include genotoxicity, carcinogenicity and embryotoxicity amongst others (Ma & Lu, 

2007; Machado et al., 2014; Ajayi et al., 2016; Santos et al., 2018a). The guppy, Poecilia vivipara 

(widely distributed fish in most of the tropical and subtropical world) was utilised by Machado et 

al. (2014), the fish expressed oxidative stress and DNA damage on phenanthrene exposure for 

just 96 h.  

The toxic nature of PAHs had prompted various international, national and state agencies to 

formulate guidelines and regulations, to reduce environmental PAH-levels, as well as limit human 

PAH-exposures. The reduction in the detected levels of some individual PAH has since been 

observed, even though five-fold increase were observed over a 150-year period in the total PAHs 

levels in soils and sediments (WHO, 1998a). Agencies that have given guidelines and regulations 

on PAHs include International Agency for Research on Cancer (IARC), World Health Organisation 

(WHO), Occupational Safety and Health Administration (OSHA), Environmental Protection 

Agency (EPA) and National Institute for Occupational Safety and Health (NIOSH) amongst others 

[Agency for Toxic Substances and Disease Registry (ATSDR), 1995]. The EPA for example, gave 

carcinogenic classification, probable effect level, maximum contaminant level in various 

environmental media, procedure of analysis and proposed remediation strategies amongst others 

for priority PAHs. 

To assess environmental quality, monitor health-effects and ascertain the suitability of food for 

consumption, PAHs have been quantified by various techniques (chromatographic and biotic) 

(Poster et al., 2006; Ye et al., 2009). The liquid and gas chromatography (LC and GC) are the 

commonly utilised techniques for the measurement of PAHs, however the GC is preferred based 

on selectivity, resolution, sensitivity and analysis time (Poster et al., 2006). Fast GC, with reduced 

analysis time for PAHs are often limited to flame ionisation detector (FID), electron capture 

detector (ECD) and time-of-flight mass spectrometry (TOF-MS) detection methods, having good 

detector response (Poster et al., 2006). Therefore, GC-FID, GC-ECD and GC-TOF-MS are the 

techniques that are easily adaptable for the routine separation, detection and quantification of 

PAHs extracted from environmental matrices.  

To ensure healthy ecosystems, enormous resources have been and are being channelled into 

remediating PAH-impacted aquatic ecosystems worldwide, especially as a result of oil spillage 

(Shahriari & Frost, 2008). However, the aquatic ecosystems have not been rid of these recalcitrant 

contaminants. Wastewater treatment prior to discharge into aquatic ecosystems and clean-up of 

aquatic ecosystems that have been impacted with PAHs from anthropogenic (oil spillage, 
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domestic, industrial and vehicular combustion of material for energy) and natural sources (forest 

and prairie fires, green waste, volcanic eruption) are often achieved at astronomical costs 

(Shahriari & Frost, 2008; De-Gisi et al., 2016; Grubesic et al., 2017). These exorbitant costs 

(infrastructural and associated costs) cannot be maintained by developing countries for which the 

feeding, sanitation, basic infrastructural needs and other socio-economical needs are already 

proving to be challenging. Therefore, researchers are focusing on achieving cleaner freshwater 

ecosystems through affordable and sustainable technologies, involving the use of agricultural 

waste biomass and microorganisms (Calheiros et al., 2012; Reungoat et al., 2012; Matamoros et 

al., 2016). 

Wastewater consists of diverse contaminants that cannot be addressed efficiently by a single 

remediation approach (Reungoat et al., 2012). The concurrent application of more than one 

remediation approach for wastewater treatment is receiving particular attention to enhance the 

efficient removal/remediation of contaminants, as well as their by-products (Bollmann et al., 2016; 

Mujtaba & Lee, 2017). The use of adsorbents in remediation processes in combination with 

microorganism, have gained increased popularity (Mujtaba & Lee, 2017; Louis et al., 2018; 

Lefèvre et al., 2018). Production of adsorbents that could replace expensive and conventional 

adsorbents currently available now, for wastewater treatment becomes imperative. Activated 

carbon (which can be produced from agricultural waste biomass) has been described as one of 

the most promising adsorbents used in wastewater treatment due to its high surface area and high 

capacity for organic pollutants removal from water (Louis et al., 2018).  

Grapes were first cultivated in Mediterranean countries over thousands of years ago, (Spinelli et 

al., 2012). The cultivation of grape is now common all over the world, surface covered with 

vineyards amounted to almost eight million hectares worldwide, as at 2008 and often represents 

a very profitable endeavour (Spinelli et al., 2012). The total harvest of Vitis vinifera (grape) 

worldwide is about 60 million metric tons per year and about 80% of the harvest being utilised in 

wineries (Lafka et al., 2007). In South Africa, 101,259 hectares (ha) of land are used for grape 

wine cultivation, which places South Africa at 14th place in terms of hectares used for wine grape 

production and the 7th largest producer of wine in the world (Siphugu & Terry, 2011). 

Consequently, wastes from wineries could serve as precursors for agricultural based activated 

carbons. This provides an opportunity to explore the possible utilisation of this resource for the 

abatement of recalcitrant PAHs, in a way that will provide environmental and economic benefits, 

as well as reducing the problems associated with their disposal. This informed the production of 

activated carbons from leaf litter for PAH removal from water.  
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1.2 Problem statement 

South Africa is a semi-arid country with shortage of freshwater resources having only 8.6% of 

rainfall available as surface water (Department of Environmental Affairs and Tourism (DEAT), 

2006) and the annual major dam levels for City of Cape Town (a major city of the Western Cape 

Province) has been monitored at 37.4% in 2017 (www.capetown.gov.za). Pollution of this scarce 

resource by PAH-containing substances could have far reaching negative implications on the 

water resources of the country. Water is indeed a crucial ecological resource perhaps after air; 

contaminated surface water may percolate to the aquifer through infiltration and direct input from 

sinking streams (Ruggieri et al., 2017).  

Polycyclic aromatic hydrocarbons (PAHs) being mutagenic, carcinogenic and teratogenic have 

been reported to be the most dangerous of all anthropogenic contaminants released into the 

environment (Degger et al., 2011b). The aquatic system is the ultimate repository of human waste 

(Chakraborty et al., 2016) and as such, environmental water resources need to be continually 

monitored for these pollutants. The high lipophilic and persistent nature of PAHs result in their 

transport through the food chain (Olivella et al., 2006; Chen et al., 2011), predisposing humans 

and animals to the negative impacts of these toxic chemicals. 

Crop cultivation in South Africa depends largely on irrigation. Thus, irrigating with PAH-

contaminated water may result in food-shortage as PAHs absorbed by plants has been shown to 

inhibit plant growth and development (Tomar & Jajoo, 2014).  

Abatement and control of these pollutants depend largely on temporal and spatial distribution data 

of these PAHs. Hence, the present study is imperative as it seeks to provide data on the levels of 

16 US EPA PAHs in water, plant and sediment samples in Rivers of Western Cape Province facing 

acute shortage of freshwater resources. These data are needed to effectively control the release 

of PAHs into aquatic environments. The need for remediation strategies of wastewater, including 

biosorption, also becomes imperative to prevent the pollution of receiving waters, for sustainable 

use of freshwater resources for agricultural, recreational and domestic activities. 

This study therefore aimed at developing a GC-FID method for the simultaneous analysis of the 

16 priority US EPA PAHs in water, sediment and plant samples. Spatial and seasonal variations 

of the compounds were monitored in surface water and sediment samples over a 12 months 

period. The uniqueness of this study lies in the fact that it will provide the baseline data on levels 

of 16 priority PAHs in plant samples around industrial, residential and agricultural areas of the City 
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of Cape Town. The potential of activated carbons produced from grape leaf litter for possible 

remediation capabilities of PAHs in water was also investigated. 

1.3 Broad objective of the research 

The broad objective of this study was therefore to assess levels of PAHs in the Diep and 

Plankenburg Rivers and possible abatement of the compounds using activated carbons derived 

from grape leaf litter.  

The specific objectives are: 

1. To assess the spatial and seasonal occurrence of the 16 US EPA priority PAHs in 

the Diep and Plankenburg Rivers. 

2. To examine the distribution of the 16 US EPA priority PAHs between the rivers’ 

compartments (water and sediment). 

3. To determine the possibility of the 16 US EPA priority PAHs accumulation in plants 

[Eichhornia crassipes (water hyacinth) and Phragmites australis (common reed)]. 

4. To determine the potential of activated carbons produced from grape leaf litter for 

PAH removal. 

1.4 Limitation of the Study 

Remediation studies were carried out as batch experiments only; flow through systems were not 
investigated.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are compounds of two or more fused arene structures, 

made up of hydrogen and carbon. The low hydrogen-to-carbon ratio in PAH-compounds makes 

them the most stable form of hydrocarbons, which occur in complex mixtures rather than single 

compounds in the environment (Ravindra et al., 2008). PAHs are produced in the environment 

primarily by incomplete combustion of organic materials originating from anthropogenic sources, 

while natural processes like volcanic eruption and forest fire also contribute to ambient PAH-levels 

(Okuda et al., 2010). 

There are numerous PAH compounds and they differ based on the number and position of 

aromatic rings, and the location of substituents on the basic ring structure. Mobile PAH compounds 

from two-ringed (naphthalene) to seven-ringed (coronene) range have attracted environmental 

concerns over the years. This is because they are carcinogenic, mutagenic, tetratogenic, 

endocrine-distruptive and have a global environmental spread (Eisler, 1987; Bixian et al., 2001; 

Okuda et al., 2010). The best known compound of PAH is benzo[a]pyrene with five rings, being 

the first chemical carcinogen to be discovered (Ravindra et al., 2008). 

Humans are generally exposed to the adverse effects of PAHs through dermal, oral and inhalation 

pathways (Wakefield, 2007). The United State Environmental Protection Agency (US EPA) has 

classified 16 of these PAHs as priority pollutants (US EPA, 2014). Information about these 16 

priority US EPA PAH compounds is given in Table 2.1 and the structures of these PAHs shown in 

Figures 2.1 and 2.2. 
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Table 2.1: Properties of the 16 US EPA Priority PAHs  

 International Agency on Research on Cancer (IARC) Classification: 
Group 1: Carcinogenic to humans. Group 2A: Probably Carcinogenic to humans. 
Group 2B: Possibly Carcinogenic to humans. Group 3: Not classified as to its Carcinogenicity to humans. 
Group 4: Probably not Carcinogenic to humans

PAH Abbreviation CAS 
number 

Chemical 
Formula 

Number 
of fused 
rings 

Molecular 
weight 

Partition 
Coefficient 
log(KOW) 

Solubility 
in water 
(mg/L) 

Carcinogenic 
potency 
classification  

Naphthalene Nap 91-20-3 C10H8 2 128.2 3.28 3.10E+01 2B 

Acenaphthylene Acy 208-96-8 C12H8 3 152.2 4.07 1.60E+01 3 

Acenaphthene Can 83-32-9 C12H10 3 154.2 3.98 4.24E+00 3 

Fluorene Flu 86-73-7 C13H10 3 166.2 4.18 1.98E+00 3 

Phenanthrene Phe 85-01-8 C14H10 3 178.2 4.45 1.10E+00 3 

Anthracene Ant 120-12-7 C14H10 3 178.2 4.45 4.34E-02 3 

Fluoranthene Flt 206-44-0 C16H10 4 202.3 4.90 2.06E-01 3 

Pyrene Pyr 129-00-0 C16H10 4 202.3 4.88 1.35E-01 3 

Benzo[a]anthracene BaA 56-55-3 C18H12 4 228.2 5.61 9.40E-03 2B 

Chrysene Chy 218-01-9 C18H12 4 228.3 5.16 1.60E-03 2B 

Benzo[b]fluoranthene BbF 205-99-2 C20H12 5 252.3 6.04 1.50E-03 2B 

Benzo[k]fluoranthene BkF 207-08-9 C20H12 5 252.3 6.06 8.00E-04 2B 

Benzo[a]pyrene BaP 50-32-8 C20H12 5 252.3 6.06 1.62E-03 1 

Benzo[g, h, i]perylene BgP 191-24-2 C22H12 6 276.3 6.50 2.60E-04 3 

Indeno[1,2,3-cd]pyrene IcP 193-39-5 C22H12 6 276.3 6.58 2.20E-05 2B 

Dibenzo[a, h]anthracene DBA 53-70-3 C22H14 5 278.4 6.84 2.49E-03 2B 

Adapted from National Centre for Biotechnology Information (NCBI) [2005]; Ferrarese et al. (2008); International Agency on Research on Cancer (IARC) [2016] 
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Figure 2.1: Structures of the two to four ringed US EPA priority PAHs obtained with CambridgeSoft ChemDraw Ultra 12.0 Wizard 
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Figure 2.2: Structures of the five to six ringed US EPA priority PAHs obtained with CambridgeSoft ChemDraw Ultra 12.0 Wizard 
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2.1.1 Background Information on the 16 US EPA Priority PAHs 

2.1.1.1 Naphthalene (C10H8): Nap 

This is the smallest of the PAHs, consisting of only two fused benzene rings with a characteristic 

strong odour that smells like tar. It is also known as naphthene, naphthelin, white tar and tar 

camphor (International Agency for Research on Cancer (IARC), 2002). It has a relative molecular 

mass of 128.17, occurs as white monoclinic crystals with a boiling-point of 217.9oC and has a 

melting point of 80.2oC. It is slightly soluble in water (31 - 34 mg/L at room temperature), soluble 

in methanol and ethanol, but highly soluble in benzene, acetone, carbon disulphide, diethyl ether 

and chloroform (Lide & Miline, 1996; O’Neil, 2001). Naphthalene is volatile at room temperature 

and sublimes substantially at temperature above its melting-point (O’Neil, 2001). It occurs naturally 

in fossil fuels (coal tar and crude oil) and it is also found in cigarette smoke, car exhaust and other 

smoke of organic origin (Gervais et al., 2010). Naphthalene is used as moth repellent, in the 

production of azo dyes, surfactants and dispersants, tanning agents, toilet deodorant blocks, as 

well as insecticides (O’Neil, 2001). Naphthalene is largely employed commercially in the 

manufacturing of chemicals like phthalic anhydride used as softeners in polyvinyl chloride (PVC) 

plastics (O’Neil, 2001; Gervais et al., 2010). 

Diarrhoea, fever, tachycardia, tachypnoea, painful urination, dermal and eye irritation, cataracts, 

acute haemolysis and haemolytic anaemia amongst others are some of the adverse effects of 

acute exposure to naphthalene in humans. Long term exposure, could possibly result in cancer, 

based on an animal study (IARC, 2002; Wakefield, 2007; Gervais et al., 2010). Though classified 

as group 2B (Table 2.1), it could influence the toxicity and carcinogenicity of PAHs mixtures 

through an array of interactions, which could eventually lead to either enhancement or inhibition 

of the metabolic activation of a carcinogenic PAH to a mutagenic form (Spink et al., 2008).  

2.1.1.2 Acenaphthylene (C12H8): Acy 

This can be described as a naphthalene molecule with an additional C2H2 unit attachment, 

resulting in a three-ringed structure. It is also known as cyclopenta[de]naphthalene and 

acenaphthalene with a relative molecular mass of 152.19. It is a colourless or yellow crystalline 

powder with a melting point between 92 – 93oC, a boiling point between 265 – 275oC and unlike 

most PAHs, does not fluorescence (National Center for Biotechnology Information (NCBI), 2004). 

It has a solubility of 16.1 mg/L in water at room temperature, and is soluble in alcohol, ether and 

benzene (Hazardous Substances Data Bank (HSDB), 1983). It has a flash point of 122.2oC, and 
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produces acrid smoke and irritating fumes when decomposed by heat (HSDB, 1983). 

Acenaphthylene is highly reactive with all atmospheric oxidants such as OH and NO3 radicals, Cl 

atoms and O3 due to the presence of the C2H2 unit which makes it relatively unique amongst PAHs 

(Riva et al., 2016). Based on its reactivity, it can undergo thermal/photo dimerisation to produce 

heptacyclene dimers (Santos et al., 2006). Like most PAHs, it occurs naturally in coal tar and 

crude oil. It can be produced and released into to the environment as products of combustion 

caused by natural fire resulting from lightening, volcanic activities and spontaneous combustion 

(NCBI, 2004; HSDB, 1983). Acenaphthylene is used in the production of dyes, plastics, fungicides, 

insecticides, pesticides, resins and also employed in biochemical or cancer research (NCBI, 2004; 

Santos et al., 2006). Acenaphthylene is capable of causing eye, skin and respiratory tract irritation, 

chronic cough, bronchitis, and bronchogenic; however its carcinogenic ability has not been 

established (HSDB, 1983). Occupational exposure is the most probable route of human exposure, 

but significant daily intake of acenaphthylene has been shown in studies of human population diet 

(Martorell et al., 2012). The daily intake of dietary acenaphthylene estimated from the standard 

meal of a male adult (bodyweight of 70 kg) was found to be the highest (12.7 µg/day) of the 16 

priority US EPA PAHs investigated by the study.  

2.1.1.3 Acenaphthene (C12H10): Can 

Structurally, acenaphthene is like acenaphthylene, differing only by having the central double-

bond in the five-membered ring structure replaced by a single bond (Figure 2.1), giving structural 

stability to acenaphthene. This also makes acenaphthene incompatible with strong oxidising 

agents, such as ozone and chlorinating agents. It forms crystalline complexes with desoxycholic 

acids (Thorwirth et al., 2007; National Toxicology Program (NTP), 1992), and is also known as 1, 

2-dihydroacenaphthylene, naphthyleneethylene, and 1, 8-ethylenenaphthalene with a relative 

molecular weight of 154.20. It is a white needle like crystal with a melting point of 93.6oC, a boiling 

point of 279oC and a flash point of 135oC (NCBI, 2004). It is readily soluble in benzene and toluene, 

slightly soluble in alcohol and chloroform and poorly soluble in water (0.4 mg/100 mL) 

(International Chemical Safety Cards (ICSC), 2006). Acenaphthene can be derived from coal tar 

and is largely employed in the production of dyes, plastics, pharmaceuticals, insecticides as well 

as fungicides (NCBI, 2004). Acenaphthene is also used as an intermediate to produce naphthalic 

acids, naphthalic anhydride and acenaphthylene. Irritation of the eyes, skin and mucous 

membranes are forms of its physiological effects and if swallowed, could result in acute vomiting 

(HSDB, 1983). This compound is very toxic to aquatic organisms and capable of causing long-

term effects in the aquatic system, such as morphological alterations and reduction in aquatic 

population (Peterson & Bain, 2004). Also, human exposure have been linked with cancer and 
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cardiovascular diseases (ICSC, 2006). Its ability to produce nuclear and cytological changes in 

microbial and plant species have also been established (NCBI, 2005). 

 2.1.1.4 Fluorene (C13H10): Flu 

This is also known as 9H-Fluorene, Diphenylenemethane, ortho-Biphenylenemethane, Fluoren 

and 2,3-Benzindene with a relative molecular weight of 166.22. It occurs as white leaflets, 

sublimes under vacuum and when impure fluorescent (NTP, 1992). It has a boiling point of 295oC, 

melting point of 116 - 117oC, highly soluble in benzene, ether, hot alcohol and acetone, but 

insoluble in water (NCBI, 2004). Fluorene is said to be a major component of the total 

environmental PAHs with tobacco smoking being the major route of human exposure. Human 

exposure through inhalation of polluted air, and ingestion of food and water contaminated by 

combustion effluents also occurs (IARC, 1983). Fluorene can be produced in the following ways: 

i). the reaction of acetylene and hydrogen in red-hot tube; ii). boiling charcoal with fuming HNO3; 

iii). palladium-catalysed boiling of 2,2’-Dibromodiphenylmethane with hydrazine hydrate; and iv). 

zinc reduction of diphenylene ketone (NCBI, 2004). It is used as a petroleum component but is 

largely utilised as the precursor to other fluorene compounds used in the production of 

pharmaceuticals, dyes, thermoset plastics, pesticides and in recent years, in the production of 

luminophores for their applications in light-emitting diodes (LEDs) (NCBI, 2004; Guo et al., 2011). 

While there are no evidence to suggest that fluorene has carcinogenic properties, it could cause 

numerous non-cancer effects with chronic exposure such as; eye and dermal irritation, eye and 

dermal photosensitivity, bronchitis, leukoplakia and erythema amongst others (HSDB, 1983). 

2.1.1.5 Phenanthrene (C14H10): Phe 

This PAH is also known as Ravatite; a tricyclic aromatic hydrocarbon which occurs as colourless 

monoclinic crystals with a faint aromatic smell and exhibits blue fluorescence in solution (NTP, 

1992). It has a relative molecular weight of 178.23, boiling point of 340oC, melting point of 101oC, 

flash point of 171oC and sublimes. Phenanthrene is soluble in organic solvents such as ethanol, 

benzene and acetone but has a solubility of 1.15 mg/L in water at 25oC (NCBI, 2004). 

Phenanthrene is one of the most abundant PAHs (major constituent of crude oil and coal tar) and 

represents the semi-volatile organic compounds in the environment (Zhao et al., 2016). Under 

ambient conditions, it can undergo photochemical reactions forming more polar oxygenated and 

nitro-forms. Compounds of higher hydrophilicity that can be easily reabsorbed in the alveolus, and 

the quinone form contributes to oxidative stress (Zhao et al., 2016). Phenanthrene can be used in 

the production of dyes, drugs and explosives, as well as in carbon black feed stock and as a 
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precursor for phenanthrenequinone which is largely employed in the syntheses of dyes, 

agrochemicals and preservatives (NCBI, 2004). Phenanthrene has been detected in various 

environmental matrices such as coastal estuaries and marine sediment, drinking water. It has 

been reported to be an abundant PAH in fresh- and brackish water as well as in seafood and 

aquatic organisms (Dailianis et al., 2014; Machado et al., 2014). The potential of phenanthrene 

causing neurotoxicity, endocrine- and reproductive disruption, cytotoxicity, genotoxicity, oxidative 

damage and growth impairment in fish has been reported by Machado et al. (2014). The potential 

toxicity of phenanthrene has earned it a classification of priority pollutant as well as one of the 

most aggressive contaminants in numerous countries (Machado et al., 2014). 

2.1.1.6 Anthracene (C14H10): Ant 

This is the parent molecule for tricyclic aromatic hydrocarbons made of three benzene rings joined 

side by side, also known as paranaphthalene, anthracin, green oil and anthracen. It occurs as 

white to yellow solid, colourless when pure, darkens in sunlight, has a faint aromatic smell and 

can be derived from coal tar. It has a molecular weight of 178.23, boiling point of 342oC, melting 

point of 218oC, and flash point of 121oC (NCBI, 2005), is soluble in ethanol, methanol, benzene, 

chloroform, and toluene, slightly soluble in acetone but have a solubility of 1.29 mg/L in distilled 

water at 25oC. Anthracene can be easily oxidised to anthraquinone which is a very important fine 

chemical employed in the production of dyes, pigments and hydrogen peroxide (Wang et al., 

2015a; Ghosh et al., 2016). Anthraquinone is also employed to enhance the Kraft process in paper 

production and as signalling unit in molecular sensors (Wang et al., 2015a; Ghosh et al., 2016). 

Anthracene forms the base of a number of commercially available colourants as the core is 

anthraquinone with multiple substitutes (Langdon-jones & Pope, 2014). Also, several compounds 

derived from anthracene are utilised for their photo-physics, rich redox properties and biological 

significance and have found application in organometallic chemistry, biological imaging, DNA 

binding, sensing, and actinide coordination chemistry (Langdon-jones & Pope, 2014). 

As a chronic pollutant, anthracene has been detected in various natural environments and its 

potential to bioaccumulate in aquatic organisms is high with organisms expressing oxidative stress 

and neurotoxicity (Chevremont et al., 2013; Palanikumar et al., 2012). 

2.1.1.7 Fluoranthene (C16H10): Flt 

Fluoranthene poses a significant threat to aquatic ecosystems as it is a major fraction of PAH 

burden in aquatic environments and evidence of its toxicity to aquatic organisms has been 

reported (Zezulka et al., 2013). Fluoranthene is classified as a non-alternant PAH, having a fusion 
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of naphthalene and benzene unit joined by a five-membered ring (Figure 2.1) and it is also known 

as 1,2-Benzanaphthene, with a molecular weight of 202.26. It is a structural isomer of pyrene, but 

less thermodynamically stable compared to pyrene, which is an alternant PAH (Monte et al., 

2012). Fluoranthene is obtainable as light yellow or colourless fine crystals, having a boiling point 

of 384oC, melting point of 111oC, soluble in non-polar solvents and practically insoluble in water 

(NCBI, 2004). 

In the atmosphere, fluoranthene can undergo a gas-phase reaction with NO3/NO2 to predominantly 

generate 2-nitrofluoranthene. The nitrated derivatives could possibly be more life threatening as 

they have been shown to exhibit increased mutagenicity at concentrations lower than that of the 

parent fluoranthene (Wang et al., 2015b). Also, toxicity of fluoranthene and increased toxicity of 

photo-modified fluoranthene (more polar and hence, more bioavailable) has been expressed in 

plant with decreased growth, chlorophyll content and protein synthesis (Tomar & Jajoo, 2015). 

Thus, fluoranthene contamination may be a risk factor for food security. 

2.1.1.8 Pyrene (C16H10): Pyr 

Pyrene consist of four ortho- and peri-fused arene rings (Figure 2.1), resulting in a flat aromatic 

system and the parent class of peri-fused PAH. Pyrene is also known as benzo[def]phenanthrene 

and can be obtained as a solid in various forms having a pale yellow colour or colourless when 

pure with a molecular weight of 202.25 (NCBI, 2005). Pyrene is capable of exhibiting blue 

fluorescence while in solid form and in solution, has a boiling point of 404oC, melting point of 

156oC, is soluble in ethanol, ethyl ether, benzene, toluene and carbon disulphide, slightly soluble 

in carbon tetrachloride but virtually insoluble in water with a solubility of 0.135 mg/L at 25oC 

(HSDB, 1983; IARC, 1983). 

Like most PAHs, pyrene and its derivatives are commercially used to produce dye and dye 

precursors (Zhang et al., 2012). In recent years, the unique fluorescent properties of pyrene has 

resulted in its use in sensor probes for the detection of guest molecules (O2 or NH3), organic 

molecules and metals (Pinheiro et al., 2014). This application has resulted in low cost, high 

sensitivity, selectivity and versatility in the diagnostic detection of cysteine, which plays a pivotal 

role in varieties of biological processes and whose elevated levels are associated with several 

adverse effects, such as neurotoxicity, Parkinson’s disease, Alzheimer’s disease, and adverse 

pregnancy outcomes, amongst others (Rani & John, 2016). 

The reaction of pyrene with nitrogen oxides yields nitro derivatives with 1-nitropyrene(NP), 1,6-

diNP and 1,8-diNP shown to be of major importance as they are possibly carcinogenic and 
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mutagenic to humans (Miet et al., 2009). Also, the developmental toxicity of low-level pyrene to 

aquatic organisms has been established (Zhang et al., 2012).  

2.1.1.9 Benzo[a]anthracene (C18H12): BaA 

Benzo[a]anthracene is a crystalline PAH made-up of four fused arene rings (Figure 2.1). It occurs 

as colourless leaflets, plates or powder and exhibits a greenish-yellow fluorescence. It is also 

known as tetraphene, benzanthrene and naphthanthracene. It has a boiling point of 435oC, melting 

point of 167oC, dissolves readily in benzene, soluble in acetone and diethyl ether, sparingly soluble 

in acetic acid and virtually insoluble in water (NCBI, 2004; IARC, 1983). Benzo[a]anthracene 

reacts with nitrogen oxides to give the nitro derivatives and also undergo Diels-Alder, catalytic 

hydrogenation, oxidation (giving quinones and diols) reactions (IARC, 1983). Being a luminogenic 

molecule, it could be employed in sensors, bioimaging and organic light-emitting diodes, amongst 

others (Maity et al., 2016). 

It is highly hydrophobic (log Kow = 5.6-5.9), has a high propensity to bioaccumulate in lipid-rich 

tissues and also, accumulate in aquatic sediments round the world contributing up to 10% of the 

total PAH-content (Le Bihanic et al., 2015). It has been shown to be carcinogenic, having a 2B 

classification; possibly carcinogenic to humans by IARC (Table 2.1) and B2 classification; 

probable human carcinogen by US EPA (US EPA, 1990). Its metabolite, 3,4-diol-1,2-epoxide is 

more potent at effecting cytotoxicity and genotoxicity in humans as shown via the in vitro 

hepatocyte culture system (Song et al., 2012). It is also toxic to marine phytoplankton, causing 

reduction in photosynthetic efficiency and population biomass (Othman et al., 2012). Therefore, it 

could exert toxic effects on exposed organisms either as the parent compound or by its metabolic 

products. 

2.1.1.10 Chrysene (C18H12): Chy 

This is a crystalline solid, having a symmetrical structure made up of four fused arene rings (Figure 

2.1) with two Bay-regions that are highly reactive for the formation of potent carcinogenic species 

(Xiu et al., 2016). It is also known as 1,2-benzophenanthrene and benzo[a]phenanthrene with a 

molecular weight of 228.29. Chrysene derives its name from chrysos (gold) based on its golden-

yellow colour when first obtained in its impure state, due to tetracene (chrysene isomer) impurities. 

However, at high levels of purity; it is colourless, has strong blue fluorescence, boiling point of 

448oC and a melting point of 254 – 256oC (NCBI, 2004; IARC, 1983). It is moderately soluble in 

benzene, slightly soluble in alcohol, ether, carbon bisulfide, glacial acetic acid and acetone and 

virtually insoluble in water with a solubility of 1.89 x 10-3 mg/L at 25oC (HSDB, 1983; IARC, 1983). 
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Chrysene has been utilised as fluorescer and materials that contain chrysene are largely 

employed for wood preservation (creosote), roof coatings, electrode caking materials amongst 

others. Chrysene is classified 2B by IARC (Table 2.1) and forms part of the “dirty-four-PAH” 

(benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) whose sum is 

concluded by European Food Safety Authority (EFSA) to be the most suitable indicator for PAHs 

in food in order to minimise health risks from dietary PAHs exposure (Xiu et al., 2016). 

Also, chrysene can undergo oxidation reaction to yield oxides, diols and quinones; and yields nitro 

derivatives from reaction with nitrogen oxides (Murray et al., 1996; IARC, 1983). The 6-

nitrochrysene derivative has a toxic equivalent factor (TEF) of 10 compared to the parent 

compound having TEF of 0.01 (Albinet et al., 2008), which is suggestive of a more potent 

derivative causing various toxic effects. Its ability to accumulate and metabolise in aquatic 

organisms have been shown, within which toxic effect (oxidative damage) was exerted (Ren et 

al., 2015; Xiu et al., 2016). 

2.1.1.11 Benzo[b]fluoranthene (C20H12): BbF 

This is a colourless non-alternant PAH congener, consisting of five fused rings (Figure 2.2), is also 

known as Benzo[e]acephenanthrylene; 3,4-benzofluoranthene; 2,3-Benzofluoranthene with a 

molecular weight of 252.32. It has a boiling point of 481oC; melting point of 168oC; is readily soluble 

in benzene; slightly soluble in acetone and virtually insoluble in water (HSDB, 1983; IARC, 1983). 

It can undergo oxidation reactions with atmospheric oxidants generating more toxic compounds 

such as nitro-BbF and oxygenated BbF derivatives (Zhang et al., 2014). 

It is one of the most toxic PAHs with a toxic equivalent factor (TEF) of 0.1 (Table 2.2). The high 

toxicity of BbF was shown by Xiu et al. (2014), who reported that BbF was accumulated and 

metabolised in an aquatic organism in which lipid peroxidation, protein oxidation and DNA damage 

occurred with potency just below that of BaP. Also, the potential of BbF at low doses to cause 

dysfunctional male reproductive system in humans that are maternally exposed to low dosage has 

been shown, as male mice that were maternally exposed expressed dysregulated sperm function 

(Kim et al., 2011).  
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Table 2.2: Toxic equivalent factors (TEFs) for the 16 US EPA priority PAHs 

PAH TEFsa TEFsb TEFsb 

Naphthalene - - 0.001 

Acenaphthylene 0.001 - 0.001 

Acenaphthene 0.001 - 0.001 

Fluorene 0.001 - 0.001 

Phenanthrene 0.001 - 0.001 

Anthracene 0.01 - 0.01 

Fluoranthene 0.001 - 0.001 

Pyrene 0.001 - 0.001 

Benzo[a]anthracene - 0.1 0.1 

Chrysene - 0.01 0.01 

Benzo[b]fluoranthene - 0.1 0.1 

Benzo[k]fluoranthene - 0.1 0.1 

Benzo[a]pyrene - 1 1 

Benzo[g, h, i]perylene - 0.01 0.01 

Indeno[1,2,3-cd]pyrene - 0.1 0.1 

Dibenzo[a, h]anthracene - 1 1 

a Data by Malcom and Dobson (1994), Adapted from Kim et al. (2013) 
b Data by Doornaert and Pichard (2003), Adapted from Albinet et al. (2008) 
c Data by Nisbet and LaGoy (1992), Adapted from Fang et al. (2004) 
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2.1.1.12 Benzo[k]fluoranthene (C20H12): BkF 

This is a pale-yellow needle-shaped PAH, made-up of five fused rings (Figure 2.2), also known as 

8,9-benzofluoranthene, 11,12-benzofluoranthene, dibenzo[b, jk]fluorene and is an isomer of BbF 

with a molecular weight of 252.31, boiling point of 480oC and melting point of 215.7oC (IARC, 

1983). It is soluble in benzene, acetic acid and ethanol, but insoluble in water (IARC, 1983). 

Derivatives are formed upon its reaction with strong oxidising agents, electrophiles, peroxides, 

nitrogen oxides and sulphur oxides (NTP, 1992). 

Its possible utilisation in optical sensors for in situ, selective, sensitive and simple determination 

of nitro-aromatic compound species which are of great environmental concern has been explored 

(Patra & Mishra, 2001). In that, its fluorescence can be quenched by the formation of nitro 

derivatives. Also, its possible use in materials for blue-green emissive organic light-emitting diodes 

(OLEDs) with improved luminescence spectra has been demonstrated (Lee et al., 2013). 

The TEF of BkF (0.1) is the same as that of BbF, just second to that of BaP (Table 2.2). This is 

indicative of a highly toxic PAH, which can also be metabolised into more potent mutagens and 

carcinogens like dihydrodiol epoxide and orthoquinone (Spink et al., 2008). Pan et al. (2005) also 

indicated that BkF could be bioaccumulated, bio-transformed and eventually effect changes in 

normal cellular functions and antioxidant damage in exposed organisms. 

2.1.1.13 Benzo[a]pyrene (C20H12): BaP 

This is a high molecular weight PAH, consisting of five fused arene rings (Figure 2.2), having a 

crystalline structure and a molecular weight of 252.31 (NCBI, 2004). It has a boiling point of 310-

312oC and melting point of 178oC; is readily soluble in chloroform; soluble in ether, xylene, toluene 

and benzene; slightly soluble in methanol and ethanol; and virtually insoluble in water (IARC, 

1983; NCBI, 2004). 

It is one of the most potent mutagenic and carcinogenic PAHs, as it is the only PAH classified as 

group 1 by IARC (Table 2.1) with a TEF of 1 (Table 2.2). Also, it can be readily adsorbed in tissues 

and metabolised by cytochrome P450 enzymes to yield ultimate potent PAH mutagens (Spink et 

al., 2008; Guo et al., 2017). The deleterious properties of BaP such as embryo-toxicity, 

teratogenicity, colonic-toxicity, cytotoxicity and genotoxicity have been presented (Kazerouni et 

al., 2001; Genies et al., 2013; Ajayi et al., 2016; Jiang et al., 2016; Muthusamy et al., 2016). These 

hazardous properties have been shown to be enhanced by co-exposure with other toxicants (Guo 

et al., 2017; Huang et al., 2016a; Muthusamy et al., 2016).  
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Hence, occupational human exposure, passive and active smoking, ingestion via food and water 

and inhalation via polluted air are important exposure pathways (Yao et al., 2016). This is a 

concerning, because BaP has the highest carcinogenic capability of all the 16 priority pollutant 

PAHs. 

2.1.1.14 Benzo[g, h, i]perylene (C22H12): BgP 

This is a pale yellow-green crystalline solid, made-up of six peri-condensed rings (Figure 2.2), with 

a molecular weight of 276.33. It is also known as 1,12-benzoperylene having a boiling point of 

550oC and a melting point of 278oC (NCBI, 2005). BgP solubility in water is very poor (2.60 x 10-4 

mg/L), but soluble in 1,4-dioxane, dichloromethane, benzene and acetone (IARC, 1983). Like 

some other PAHs, it is a constituent of products such as creosote, tar paints, water proof 

membranes and serves as intermediates in dye production (IARC, 1983). 

Amongst the 16 priority PAHs, BgP has been reported to be the most detected PAH contaminant 

in the atmosphere and serves as a potent tracker of pollution from gasoline combustion (Amador-

Muñoz et al., 2013; Amador-Muñoz et al., 2011; Guzmán-Torres et al., 2009). Although classified 

in group 3 (Table 2.1) and lacking a “classic” Bay-region needed for the formation of ultimate 

mutagens (Platt et al., 2008), BgP has been shown to synergistically promote the deleterious 

effects of BaP (Cherng et al., 2001). Also, the mutagenicity of BgP has been reported through the 

formation of 3,4-arene oxide metabolites responsible for BgP DNA adducts formation (Platt et al., 

2008).  

2.1.1.15 Indeno[1,2,3-cd]pyrene (C22H12): IcP 

This is a yellow plate or needle-shaped solid high-molecular-weight (HMW) PAH with a six 

condensed rings structure (Figure 2.2). It is also known as ortho-phenylenepyrene, with a 

molecular mass of 276.33 and exhibits greenish-yellow fluorescence (IARC, 1983). It has a boiling 

point of 536oC; melting point of 164oC; insoluble in water but soluble in organic solvents (NCBI, 

2005).  

It is highly toxic; classified in group 2B as a possible human carcinogen (IARC, 2016) (Table 2.1) 

and having a TEF of 0.1, similar to the TEF value for BkF (Table 2.2). Barron et al. (2004) reported 

on the possible high potency of IcP, as the fish potency factor (FPF) reported for IcP and BkF are 

consistently high compared to that of other PAHs. Though IcP is a non-alternant PAH and lacking 

in Bay-region, IcP mutagenic metabolites have been identified elsewhere (Rice et al., 1985). 
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2.1.1.16 Dibenzo[a, h]anthracene (C20H14): DBA 

Structurally, composed of five fused arene rings (Figure 2.2) and occurs as colourless plates or 

leaflets with a molecular weight of 278.35 (IARC, 1983). It is also known as benzo[k]tetraphene 

and has a boiling point of 524oC; melting point of 267oC; poor water solubility (2.49 x 10-3 mg/L); 

slight solubility in diethyl ether and ethanol; good solubility in benzene, xylene, toluene, 

cyclohexane and most organic solvent (IARC, 1983; NCBI, 2005). 

Dibenzo[a, h]anthracene has the highest octanol-water partition coefficient (log Kow) at 6.84 (Table 

2.1) of the 16 priority US EPA PAHs, signifying very high lipophilicity (Ferrarese et al., 2008). High 

log Kow show the tendency of chemical to remain sorbed onto organics (Ferrarese et al., 2008). 

This is a highly toxic PAH, classified in group 2B by IARC (Table 2.1) and have the same TEF (1) 

as BaP as shown in Table 2.2. It can be metabolically transformed by enzymes into more potent 

carcinogens and mutagens as reported by Shou et al. (1996) and Wood et al. (1978). DBA is 

highly potent in effecting tumours even at a low doses and the 3,4-dihydrodiol metabolite has been 

reported to be highly tumorigenic (Buening et al., 1979).   
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2.2 Sources of PAHS in the aquatic environment 

Polycyclic aromatic hydrocarbons are environmental pollutants that have been detected in 

environmental matrices (water, sediments, and biota) from aquatic ecosystems (Patrolecco et al., 

2010; Pérez-Fernández et al., 2015; Gu et al., 2016). They are introduced into the aquatic 

environment from natural and anthropogenic sources. Natural sources of PAHs include forest 

fires, volcanic emissions, natural oil seeps, coal deposits, plant debris and certain biological 

(biogenic) processes (Grueiro-Noche et al., 2010; Orecchio, 2010). The biosynthesis of PAHs 

naturally by plants and microbes are grouped as biological sources of PAHs (Wilcke et al., 2000). 

Anthropogenic sources of PAHs in aquatic environments can be grouped into pyrogenic and 

petrogenic; where pyrogenic PAHs are composed mainly of high molecular weight PAHs and the 

petrogenic PAHs are composed mainly of low molecular weight PAHs (Dong & Lee, 2009). 

Pyrogenic sources include the combustion of fossil fuel such as which occurs in automobiles, 

power plants, industries that burn coal and petroleum, and waste incinerators, amongst others 

(Dong & Lee, 2009). Petrogenic sources include crude oil and petroleum products such as 

kerosene, petrol, diesel, lubricating oil, and asphalt (Boonyatumanond et al., 2007). PAHs derived 

from anthropogenic sources have been shown to enter aquatic systems through direct discharges, 

run-off and atmospheric deposition (dry/wet deposition, air-water gaseous exchanges) 

(Bouloubassi et al., 2006). Those sourced from atmospheric deposition and biological activities 

are removed from surface water by sorption on particles that subsequently undergo downward 

settling into the sediment (Bouloubassi et al., 2006). The sediment compartment of aquatic 

systems serves as a sink for the PAHs that do not undergo dilution, evaporation and 

biodegradation in surface water. Sediments therefore constitute an important source of 

information regarding the sequence of contaminant input events into aquatic systems (Quiroz et 

al., 2005; Hu et al., 2010; Barakat et al., 2011).  

The PAHs sourced from atmospheric deposition are emitted into the environment from sources 

which include stationary (domestic and industrial), mobile, agricultural, and natural sources 

(Ravindra et al., 2008). Domestic sources of PAHs are mainly from the combustion and pyrolysis 

of wood, oil, coal, garbage or other organic substances for heating, cooking and for waste disposal 

purposes. Industries are sources of anthropogenic PAHs emission from various activities such as 

aluminum and coke production, iron and steel production, rubber tyre manufacturing, cement 

manufacturing, bitumen and coal exploration amongst others. The 1998 Aarhus Protocol on POPs 

that came to force in 2003, recommended four PAHs (benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene and Indeno[1,2,3-cd]pyrene) as indicators for stationary 
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PAHs emission sources (UNECE (United Nations Economic Commission for Europe), 1998). 

Mobile PAH emission are sourced from vehicles such as ships, boats, automobiles, aircrafts, 

helicopters, trains and others which are equipped with either a compression or spark ignition 

internal combustion engines (Cheruyiot et al., 2015). PAHs emission from agricultural sources 

have been shown to be primarily from open burning of agricultural biomass under sub-optimum 

combustion conditions to dispose crop and forest residue as well as for land preparation (Ravindra 

et al., 2008). The emission of PAHs from natural occurrences such as forest, woodland and 

moorland fires (as a result of lightning or spontaneous combustion of dry fuel), volcanic eruption, 

diagenesis process in fossil fuel formation, microbes and plants biosynthesis and cosmic dust also 

arises (Ravindra et al., 2008; Cheruyiot et al., 2015; Pérez-Fernández et al., 2015).  

2.2.1 Source apportionment 

The entry of PAHs into the aquatic systems is from multiple sources. To control the release of 

PAHs into an aquatic system, it is essential to identify the prime source of the contaminating PAHs. 

Criteria exist that allow scientists to apportion PAHs that enter aquatic systems from pyrogenic or 

petrogenic sources. The examination of the 5-ringed PAHs for instance, could be used to 

distinguish petrogenic from pyrogenic PAHs (Abdel-Shafy & Mansour, 2016). The 5-ringed PAHs 

are more prevalent in petrogenic relative to pyrogenic PAHs, because the formation of the 5-ringed 

PAH is more favoured by the extensive time required for petroleum hydrocarbon formation. 

Whereas, the formation of the more stable 6-ringed PAH is favoured with the rapidness with which 

pyrolysis takes place (Abdel-Shafy & Mansour, 2016). Advances have been and are being made 

in the identification of PAHs sources as well as distinguishing pyrogenic- from petrogenic PAHs. 

Ahrens & Depree (2010) employed compositional signature and diagnostic PAH isomer ratios to 

distinguish pyrogenic PAHs from coal tar and petrogenic PAHs from bitumen, which were reported 

to be the parent sources of PAHs in sediments of the aquatic system. To apportion PAH sources, 

Yan et al. (2006) utilised the following ratios: Flt / (Flt + Pyr) or Flt / 202 ratio (202 is the sum of Flt 

and Pyr masses); Ant / (Ant + Phe) or Ant / 178 ratio; BaA / (BaA + Chy) or BaA / 228 ratio; C0 / 

(C0 + C1)P/A ratio, where C0 is parent PAHs with mass I78 (sum of Phe and Ant masses) and C1 is 

alkyl homologues at the same mass; C0 / (C0 + C1)F/P ratio, where C0 is parent PAHs with mass 

202 (sum of Flu and Pyr masses) and IcP / (IcP + BgP) ratio. Yunker et al. (2002) selected PAH 

ratios that best exhibited the potential to differentiate natural and anthropogenic PAH sources. 

They suggested that a good knowledge of the relative thermodynamic stability of different parent 

PAHs, the distinctive characteristics of PAH sources, and compositional changes in PAH between 
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source and sediment (such as the relative stability of different PAH isomers and PAHs from various 

sources) are the keys to selecting PAH ratios for source apportionment. 

PAHs sourced from fossil fuels, liquid-fuel combustion and solid-fuel (biomass/coal) combustion 

can be distinguished by four-ring and larger parent PAH ratios; whereas PAHs sourced from 

petroleum combustion can be distinguished by having smaller parent PAHs ratios and C0 / (C0 + 

C1) ratios. The differentiation approach is based on differences in the relative stability of PAHs 

under low and high temperature regimes (Yunker et al., 2012). A higher Phe/Ant ratio (>10) is 

proposed to indicate petrogenic pollution, while a proposed ratio of <10 indicates a pyrogenic 

source, since Phe is more thermodynamically stable than Ant. Similarly, Pyr is more 

thermodynamically stable than Flt and they are often associated with each other in natural 

matrices. A pyrogenic source is inferred when there is predominance of Flt over Pyr; while it is 

petrogenic source when Pyr is more abundant than Flt (Li et al., 2012). 

The use of diagnostic ratios of PAH isomer pairs that show an inverse abundance relationship in 

different source materials presents a precise method for source assignment. The use of a ratio of 

one isomer to the sum of its isomer concentration is often preferred, because it gives less 

variability than using the simple ratio of two isomers. Preferred ratios for PAHs source assignment 

include those that have the less thermodynamically stable isomer in the numerator, so that ratios 

increase as combustion input increases for ease of comparison (Yunker et al., 2012; Yunker et 

al., 2002; Yan et al., 2006; Ahrens & Depree, 2010). 

The presence of high molecular weight (HMW, four- to six- rings) PAHs have been associated 

with pyrolytic sources, whereas lower molecular weight (LMW, two- to three-rings) PAHs have 

been associated with petrogenic sources. A ratio of LMW/HMW >1 generally indicates a 

petrogenic origin of pollution; whereas a ratio of<1, indicates that the PAHs have a pyrolytic origin 

(Aldarondo-Torres et al., 2010). PAH ratios used for pyrogenic and petrogenic assignment are 

highlighted in Table 2.3. 
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Table 2.3: PAH ratios used for pyrogenic and petrogenic source assignment 

PAH Ratio Petroleum origin 
value range 

Pyrogenic origin value range Mixed origin value 
range 

Reference 

Liquid fossil fuel 
combustion 

Biomass combustion 

Phe / Ant >15 <10 <10 10 - 15 Ruiz et al. (2011) 

Ant / (Ant + Phe) <0.10 >0.10 >0.10  Ruiz et al. (2011); Yunker 
et al. (2012) 

Flt / Pyr <1 >1 >1  Ruiz et al. (2011) 

Flt / (Flt + Pyr) <0.40 0.40-0.50 >0.50  Liu et al. (2008); Ruiz et 
al. (2011); Yunker et al. 
(2012) 

BaA / (BaA + Chy) <0.20 >0.35 >0.35 0.20 - 0.35 Yunker et al. (2002); Ruiz 
et al. (2011) 

BaA / Chy >2 <2 <2  Kuppusamy et al. (2017) 

BaP / (BaP + Chy) < 0.3 0.3 – 0.7  0.07 – 0.24 (coal)  Kuppusamy et al. (2017) 

IcP / (IcP + BgP) <0.20 0.20-0.50 >0.50  Ruiz et al. (2011); Yunker 
et al. (2012); 
Keshavarzifard et al. 
(2014) 

IcC / (IcC + BgP) <0.10 0.10-0.30 >0.30  Yunker et al. (2012) 

DjA / (DjA + DhA) <0.25 0.25-0.60 >0.60  Yunker et al. (2012) 

Pic / (DhA + Pic) <0.20 0.20-0.50 >0.50  Yunker et al. (2012) 

1,7 / (2,6+1,7)-DMP ̴0.45 - 0.80 < ̴0.45 >0.70 0.45 - 0.70 Yunker et al. (2012) 

M-Phe / Phe >1 
2 - 6 (fresh petroleum) 

<1 <1  Garrigues et al. (1995) 

∑ LMW PAHs / ∑ HMW 
PAHs 

>1 <1 <1  Kuppusamy et al. (2017) 

 

PAH Ratio Value range Emission origin Reference 

BaP / BgP > 0.6 Traffic  Kuppusamy et al. (2017) 

BbF / BkF 2.5 - 3 Aluminium smelter  Kuppusamy et al. (2017) 

Phe / Ant 2 – 8 Vehicle  Kuppusamy et al. (2017) 

Parent PAHs in the ratio are Phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), benzo [a]anthracene (BaA), chrysene (Chy), indeno[1,2,3-cd] pyrene (IcP), benzo[g, 
h, i]perylene (BgP), indeno[7,1,2,3-cdef]chrysene (IcC), dibenzo [a, j] anthracene (DjA), dibenzo [a, c/a, h]anthracene (DhA), picene (Pic), 1,7 and 2,6-dimethylphenanthrenes 
(DMP) and M-Phe = the sum of 3-methylphenanthrene, 2-methylphenanthrene, 9-methylphenanthrene and 1-methylphenanthrene.
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2.3 Routes of exposure and toxicity of PAHs to aquatic organisms 

An improved understanding regarding exposure routes of aquatic ecosystems to PAHs has 

become essential as it has been found that the level of toxicity could be affected by the exposure 

route of PAH (Van Veld et al., 1997). Aquatic organisms have also been sufficiently utilised as 

biomarkers and to investigate the probable toxic effects (especially fish) of PAHs on humans 

(Carls et al., 2008; Machado et al., 2014; Xiu et al., 2016). Fishes have long been identified as 

suitable alternatives to rodents in carcinogenesis studies or as supplementary models based on 

their availability, economy, latency of tumorigenic response, and ease of exposure and 

maintenance (Hawkins et al., 1988).  

Aquatic organisms can be exposed to PAHs through contaminated food, water and sediment, with 

the intestine and gills being the dominant exposure routes in fish (Van Veld et al., 1997; Baumard 

et al., 1998). There is a relationship between bioavailability of PAHs to aquatic organisms and 

their water solubilities. Solubilities also depend on factors such as: lipid levels, organic carbon, 

sediment surface area, dissolved organic matter, dissolved or suspended material, salinity, 

hydrogen ion concentration and octanol-water partition coefficient (Meodor et al., 1995; Baumard 

et al., 1998; Ter Laak et al., 2009). Feeding habits and habitat also play a role in toxicant exposure 

to these organisms (Baumard et al., 1998). Figure 2.3 gives the general uptake and elimination 

pathways of toxicants by organisms. 

PAHs, being hydrophobic compounds, are readily absorbed into fatty tissues of aquatic organisms 

by dermal absorption. They are also taken up through gill ventilation, ingestion of contaminated 

sediment or suspended particles, and from consumption of other contaminated species 

(Patrolecco et al., 2010). The passive uptake of contaminants from the ambient environment via 

respiratory and/or dermal surface is specifically referred to as bioconcentration, while the exposure 

through combination of contaminated food uptake and bioconcentration is termed bioaccumulation 

(Mackay & Fraser, 2000; Hou et al., 2013). Bioaccumulation via contaminated food may result in 

biomagnification, a process in which pollutant concentration in an organism of higher trophic level 

exceeds that in organism of lower level at a steady state within a food chain (Hou et al., 2013). 

Hence, bioavailable PAHs could be bioaccumulated and biomagnified in aquatic organisms. They 

may also be bio-transformed into possibly more potent metabolites, leading to deleterious effects 

on the organisms. 
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Figure 2.3: Uptake and elimination pathways of toxicant by organisms [Adapted from: Mackay & 

Fraser (2000)] 

  

Organism within a 
mass balance 

envelope

Growth
dilution

Respiration 
(air and 
water)

Dermal 
diffusion

food

Respiration 
(air and 
water)

Dermal 
diffusion

Egestion of 
feces and 

urine

Metabolic 
Conversion

Reproductive losses
(birth, egg laying)



28 
 

The potential of the PAHs to produce toxic symptoms and effects in organisms has been 

documented (Hatch & Burton, 1999; Incardona et al., 2006; Kim et al., 2007). The LMW PAHs are 

known to produce acute lethal toxicity, while some of the HMW PAHs have a higher potential for 

causing chronic toxicity to organisms (Eisler, 1987). Chronic exposure of organisms to the PAHs 

produces many different effects including cancer (of various tissues), induction of cardiovascular 

diseases, loss of fertility, immunosuppression, mutations and endocrine disruption 

(Boonyatumanond et al., 2007; Toyooka & Ibuki, 2007). The toxicity of PAHs to aquatic biota can 

be greatly enhanced by exposure to ultraviolet (UV) light and temperature increases (Hatch & 

Burton, 1999; Engraff et al., 2011). Increases in temperature and UV light intensity are capable of 

increasing the mobility of PAHs in aqueous solution, and conversion to more reactive and potent 

intermediates (Hatch & Burton, 1999; Toyooka & Ibuki, 2007; Engraff et al., 2011). 

Photo-induced toxicity of PAHs to Hyalella azteca (lawn shrimp) and Chironomus tentans (midge) 

was reported by Hatch and Burton (1999). The study established that PAHs toxicity to these 

organisms was greatly enhanced when there was a simultaneous exposure to ultraviolet light 

(UV), and that species-specific behaviour also played a significant role in such toxicity. Photo-

induced toxicity of anthracene and fluoranthene was reported to result from the sensitisation of 

PAHs occurring within the biological tissue. 

Ruiz et al. (2011) linked neoplastic disorders (abnormal growths) observed in mussels (Mytilus 

spp) to the toxic effect of five- to six- ring PAHs congeners. This biotoxic effect was deduced from 

the correlations observed between mutagenic PAHs congener’s accumulation and gonadic 

neoplastic disorder occurrences. 

Pang et al. (2012) studied the effect of bioturbation by the oligochaete Lumbriculus variegates on 

the bioavailability of PAHs in electronic-waste contaminated sediment. Toxic effects of the PAHs 

on the oligochaete and the epi-benthic amphipod Hyalella azteca were also studied. Various 

bioturbation levels were achieved by employing L. variegates of different densities. L. variegates 

bioaccumulated up to 22.47±3.87 µg/g lipid of 28 different PAHs after 28 days of exposure to 

contaminated sediment. The highest bioturbation level achieved at highest density, gave the 

highest mortality of H. azteca and the lowest worm growth. PAH-bioaccumulation was also 

reported to be lowest at the highest bioturbation level. Sub-lethal toxicity caused by migration of 

PAH-contaminated sediment to the sediment surface and water column because of bioturbation 

(which is interrelated to density) was reported to be responsible for decrease in PAH-

bioaccumulation and increase in mortality.  
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Fish embryos are popularly used for investigating the biotoxic effects of PAHs on aquatic 

organisms, because fish embryos and larvae are highly sensitive to PAH mixtures from different 

sources. Incardona et al. (2006) investigated the developmental toxicity of four types of PAHs on 

zebrafish embryos. The types of damage reported included liver abnormalities, pericardial 

oedema, dorsal curvature, cardiovascular defects, incomplete cardiac looping, reduced cardiac 

chambers, intracranial haemorrhage, yolk sac oedema and reduced body length. It was concluded 

that the modes of action leading to toxicity in aquatic species exposed to PAHs are either dioxin-

like or nonpolar-narcosis-like. It was proposed that the PAHs are pharmacologically active 

compounds that have specific cellular targets. Zebrafish embryos exposed to Pyr, Chy and BaA 

experienced toxicity mediated by the activation of aryl hydrocarbon receptors (AHR). In addition, 

these PAHs agents induced cytochrome P4501A (CYP1A) enzymes in different tissues and 

organs. Dissolved PAHs are also known to induce cardio-toxicity in fish embryos (Carls et al., 

2008). Abnormal cardiac looping, pericardial oedema and intracranial haemorrhaging were 

reported as the biotoxic effects observed in zebrafish embryos exposed to PAHs and effects 

increased as molecular size and alkyl substitution of dissolved PAHs increased (Carls et al., 2008). 

Also, PAHs become oxidised during combustion (i.e. when pyrolysed) or when photo-oxidised, to 

generate oxygenated PAHs (OPAHs), that may be quite toxic. Knecht et al. (2013) used zebrafish 

embryos to examine malformations, gene expression changes and mitochondrial functions 

induced by a structurally diverse set of 38 different OPAHs. Of the 38 OPAHs investigated 1,4-

naphthoquinone was the most toxic (producing 100% mortality 24 hours’ post fertilisation in 

embryos exposed, at all tested concentrations). Apart from mortality, yolk sac oedema and body 

axis curvature were the most common morphological biotoxic effects reported, in which oxidative 

stress played a key role in causing toxicity. 
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2.4 Routes of exposure and toxicity of PAHs to humans 

PAHs released from biological, petrogenic and pyrogenic sources contaminate air, food, soil, 

sediments, vegetation and water (Phillips, 1999; Srogi, 2007). Therefore, human intake of PAHs 

are via inhalation, dermal contact as well as dietary and accidental ingestion of these pollutants 

are of great concern (Moen et al., 1996; Singh et al., 2008; Xia et al., 2009). PAHs are adsorbed 

through the respiratory tract, skin and gastrointestinal tract into the bloodstream that distributes 

adsorbed PAHs and their consequent metabolites to other body tissues (Singh et al., 2008). 

Occupational, environmental and dietary sources could considerably increase PAHs burden in 

humans. Coke oven workers, auto-mechanics, spray painters and ship engine room workers 

expressed higher PAH burdens (enhanced by smoking) compared to the general population 

(VanRooij et al., 1993; Moen et al., 1996; Kamal et al., 2011). Dermal uptake has been shown to 

be the major route of PAH uptake, as compared to respiratory uptake in occupationally exposed 

humans (VanRooij et al., 1993; Boogaard & van Sittert, 1994). 

Diet is also a significant PAH exposure route to humans, as certain foods have been reported to 

have high PAH content which could be enhanced by preparation methods (Buckley & Lioy, 1992; 

Olatunji et al., 2014). Foods with high PAH content and those with low PAH content are presented 

in Table 2.4, whereas, the detected levels of PAHs in various foods, with the impact of food 

preparation method on processed food PAH content are shown in Table 2.5. Also, increased PAH 

concentrations in higher trophic levels via food web transmission have been reported (Zhang et 

al., 2015). 

To ascertain and assess occupational and dietary PAHs exposure in humans, the metabolite 1-

hydroxypyrene in urine has been largely utilised as the biomarker (Buckley & Lioy, 1992; Moen et 

al., 1996), while parent PAHs are assessed in blood samples (Singh et al., 2008; Kamal et al., 

2011). Therefore, unmetabolised PAHs and monohydroxyl PAH-metabolites can be utilised as 

biomarkers of PAH exposure in humans (Rossella et al., 2009). 
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Table 2.4: PAH Content in Food 

Low PAH Content High PAH Content 

Cereal Fried food 

Oatmeal Vegetable oils 

Fruits: Tomatoes, Apples Charcoal broiled/smoked meat and fish 

Fluid milk Potato chips 

Alcoholic beverages Green leafy vegetables 

Cheese Toasted bread 

Fish/shellfish Roasted coffee 

 Mayonnaise 

 Tea 

 Adapted from Buckley & Lioy (1992); Menzie et al. (1992).
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Table 2.5: Detected levels of PAHs in different food samples 

Food Sample Detected level Analytical 
technique 

% Recovery Reference 

Meat and meat products 13.434 µg/kg (∑16 PAHs) HPLC-FLD/UV 48 to 113 % 
(48 to 105 % for 
naphthalene and 
others 55 to 113%) 

Falcó et al. (2003) 

Fish and shellfish 7.894 µg/kg (∑16 PAHs) 

Vegetable 0.887 µg/kg (∑16 PAHs) 

Tubers 3.606 µg/kg (∑16 PAHs) 

Fruits 0.946 µg/kg (∑16 PAHs) 

Eggs 2.423 µg/kg (∑16 PAHs) 

Milk 1.532 µg/kg (∑16 PAHs) 

Dairy products 6.636 µg/kg (∑16 PAHs) 

Cereals 14.454 µg/kg (∑16 PAHs) 

Pulses 2.742 µg/kg (∑16 PAHs) 

0ils and fats 63.237 µg/kg (∑16 PAHs) 

Smoked meat 92.200 µg/kg (∑16 PAHs) GC-MS ≥ 85% Alomirah et al. (2011) 

Smoked fish 259.000 µg/kg (∑16 PAHs) 

Grilled vegetables 111.000 µg/kg (∑16 PAHs) 

Charcoal-barbecued chicken 9.460 µg/kg (∑7 PAHs) HPLC-FLD 70 to 116% Chung et al. (2011) 

Wood-barbecued chicken 1.870 µg/kg (∑7 PAHs) 

Raw chicken ND 

Kitchen range hood oil 122.980 µg/kg (∑16 PAHs) GC-MS 70 to 128% Wu & Yu (2012) 

Fried food stall oil 58.320 µg/kg (∑16 PAHs) 

Olive oil 827.270 µg/kg (∑16 PAHs) 

Peanut oil 41.470 µg/kg (∑16 PAHs) 

Pepper oil 3.000 µg/kg (Benzo[a]pyrene) GC-MS 78 to 85% Wang & Guo (2010) 
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Food Sample Detected level Analytical 
technique 

% Recovery Reference 

Smoked bread 3.500 µg/kg (∑10 PAHs) HPLC-FLD 66 to 107% 
 

Fasano et al. (2016) 

Smoked Paprika 9937.000 µg/kg (∑10 PAHs) 

Smoked meat sausage 1779 µg/kg (∑10 PAHs) 

Smoked cheese 88 µg/kg (∑10 PAHs) 

Raw beef ND GC-FID 84 to 94% Olatunji et al. (2014) 

Smoked beef 14.430 µg/kg (∑4PAHs) 

Grilled beef 6.720 µg/kg (∑4PAHs) 

Boiled beef 3.320 µg/kg (∑4PAHs) 

Raw pork ND 

Smoked pork 10.630 µg/kg (∑4PAHs) 

Grilled pork 8.970 µg/kg (∑4PAHs) 

Boiled pork 4.610 µg/kg (∑4PAHs) 

Raw chicken ND 

Smoked chicken 10.520 µg/kg (∑4PAHs) 

Grilled chicken 5.060 µg/kg (∑4PAHs) 

Boiled chicken 2.690 µg/kg (∑4PAHs) 

16 PAHs: 16 US EPA priority PAHs 
10 PAHs: fluoranthene, pyrene, benzo [a] anthracene, Chrysene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Benzo [a] pyrene, Dibenzo [a, h] pyrene, Benzo [g, h, i] 
perylene, Indeno [1,2,3-cd] pyrene. 
7 PAHs: Chrysene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Benzo [a] pyrene, Benzo [g, h, i] perylene, Indeno [1, 2, 3-cd] pyrene and Dibenzo [a, h] anthracene. 
4 PAHs: Benzo [k] fluoranthene, Benzo [a] pyrene, Indeno [1, 2, 3-cd] pyrene and Benzo [g, h, i] perylene. 
ND: Not detected 
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Exposure to PAHs, make humans susceptible to the toxic effects of PAHs (WHO, 1998b). The 

exposure of ancient populations to PAHs from cultural use of natural bitumen (chewing like gum, 

body application for rituals, cast for broken bones, basket or tomol canoe making) and 

consumption of PAH-contaminated water and marine food have been linked to prehistoric health 

decline as expressed in; reduced cranial size and stature, periosteal lesions, cribra orbitalia and 

tooth enamel hypoplasia (Warmlander et al., 2011). More recently, PAHs have been implicated to 

cause oxidative stress, induce immunological alteration and consequently lipid peroxidation in 

blood plasma of coke oven workers that were occupationally exposed to chronic PAHs levels 

(Jeng et al., 2011). Human exposure to PAHs was also linked to cases of oesophageal cancer, 

which is the 8th most common cancer and 6th most frequent cause of cancer death in the world 

(Roshandel et al., 2012). Also linked to PAHs exposure was the reduction of blood mitochondrial 

DNA content, a condition associated with type II diabetes, soft cell sarcoma, ovarian cancer, 

breast cancer, gastric cancer, hepatocellular carcinoma as well as renal cell carcinoma (Pieters 

et al., 2013). The activation/metabolism of PAHs taken up in humans by cytochrome P450 

enzymes is one of the principal pathways proposed for PAHs toxicity (Toyooka & Ibuki, 2007).  

However, apart from PAH-activation by the cytochrome P450 enzymes to produce ultimate potent 

PAH mutagens in humans, it has also been reported that the human colon microbiota are also 

capable of PAH-activation to estrogenic metabolites (1-hydroxypyrene and 7-hydroxyBaP) with 

increased toxicity (Wiele et al., 2005; Spink et al., 2008). Ajayi et al.(2016) also reported colonic 

toxicity in mice exposed to PAH. They reported that BaP induced oxidative and nitrosative stress, 

which resulted in colon injury. Mice have been largely utilised to explore the deleterious effects 

that could be caused by xenobiotics and other substances in humans (Belles et al., 2016; Costa 

et al., 2016; Oliveira et al., 2016). 

The implication of PAH-exposure on pregnancy and female reproductive system was investigated 

by Zhao et al. (2014a), utilising pregnant mice. They demonstrated that BaP is an endocrine 

disruptive toxicant capable of causing endometrium morphology impairment, reduction in the 

number of implantation sites and oestrogen and progesterone imbalance. Furthermore, BaP was 

reported to induce the phosphorylation of H2AX (linked to double-strand DNA breaks), cause 

plasma membrane remodelling (remodelled both lipid and protein content) and expression of 

P2X7 receptor in modelled placenta (Wakx et al., 2016). Hence, exposure to PAHs could result in 

their infertility and may effect developmental toxicity to foetuses during pregnancy. 
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Kim et al. (2007) however, examined the mode of PAH-toxicity as expressed by various stress 

genes of Escherichia coli. These authors investigated the ability of selected PAHs to effect DNA 

damage, oxidative stress, membrane and protein damage utilising stress response genes in 

Escherichia coli. The stress responsive genes utilised were those capable of responding 

specifically to DNA damage, oxidative damage, and membrane and protein damage. Benzo [a] 

pyrene and naphthalene were reported to effect DNA damage and as such may be classified as 

genotoxic. 

Furthermore, enhanced toxic effect has been reported for co-exposure of PAHs with other 

toxicants or even binary PAH-mixtures and complex PAH-mixtures. For instance, the capability of 

PAH-exposure to enhance atherosclerosis was demonstrated in mice fed with atherogenic diet. 

BaP incorporated diet was shown to cause increased levels of reactive oxygen species and 

inflammatory biomarkers (Uno et al., 2014). BaP was therefore implicated in enhanced aorta 

toxicity because it was linked to the development of lesions in the organ. The co-exposure of BaP 

and sulphur dioxide was reported to have led to enhanced cell morphology alterations, protein 

expression changes and apoptosis in the liver of mice (Qin et al., 2015). 

 Also, the binary mixture of benzo [a] pyrene (BaP) and dibenzo [a, l] pyrene and a complex 

mixture of PAHs in urban air particulate matter extracts have caused more than an additive 

response, in inducing cytochrome P450 enzymes and activating DNA-damage signalling. PAHs 

toxicity are linked mainly to the larger PAHs (>3 aromatic rings). The PAHs having ≥5 aromatic 

rings are likely to pose a larger risk to human health, and these are classified as being either 

probable or actual carcinogens in humans (Jarvis et al., 2013). 
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2.5 Occurrence and distribution of PAHS in aquatic environments 

The levels of contaminants in an aquatic environment may vary with seasons (temporal 

distribution), spatially and also within various media in the aquatic environment such as vegetation, 

sediment and water (Wang et al., 2012b; Li et al., 2017). Data on pollution trends are of great 

importance to increase understanding in cause-effect relationships, agent identification, source 

identification as well as developing appropriate strategies for adequate and effective control of 

contaminants, all essential for environmental management and protection (Gómez-Gutiérrez et 

al., 2007; Campillo et al., 2017).  

Liu et al. (2016b) reported significant temporal variation in levels of PAHs in water sampled from 

the urban river networks of Shanghai (China). Average detected level of total dissolved 16 PAHs 

in water samples in winter was 183.54 ng/L (levels ranged from 71.92 to 460.53 ng/L) and in 

summer was 106.67 ng/L (levels ranged from 46.53 to 221.54 ng/L). They attributed the 

consequent variation to mobility and dilution effect. The study stations were reported to have 

shallow-water level and slow flowing water velocity in winter that resulted in poor scour and dilution 

ability of the rivers, hence the higher PAHs levels in winter. The average detected level of the 16 

PAHs in sediment samples from the study in winter was 4944.97 ng/g (ranged from 352.37 to 

36198.23 ng/g) and in summer was 2336.63 ng/g (ranged from 456.11 to 14948.40 ng/g). The 

significant seasonal variation in sediment samples was attributed to flooding in summer, possibly 

causing dilution effect on PAHs, coupled with accelerated microbial degradation of PAHs resulting 

from the elevated temperatures in summer.  

Natural occurrences and anthropogenic activities have also been reported to cause seasonal 

variations in PAHs levels particularly in developing countries (Wang et al., 2017a). In winter, there 

is serious pollution from huge levels of uncontrolled or poorly controlled coal combustion and 

biomass burning used for warmth and daily cooking, resulting in elevated levels of PAHs in winter 

as compared to summer (Wang et al., 2017a).  

The effect of different climatic regimes could be easily inferred from temporal distribution data, 

while site characteristics is easily inferred from spatial distribution data with pollution point sources 

being easily identified (Liu et al., 2016a). Spatial distribution will be more defined in an environment 

with poor dilution effect and low mobility of pollutants (Liu et al., 2016b). Anthropogenic activities 

have been identified as the predominant sources of PAHs in the environment with industrial 

activities and urbanisation being of major concern. This is because elevated PAHs levels have 

been reported for sites at close proximity to these activities (Liu et al., 2016a; Busso et al., 2018). 
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The mean total of 16 US EPA PAHs detected in Ligustrum lucidum leaves obtained from Cordoba 

City, Argentina at industrial, urban and peri-urban areas were 168.04 ng/g, 112.62 ng/g and 94.87 

ng/g, respectively (Busso et al., 2018). The PAHs levels reported for the industrial areas were 

higher than those reported for the urban areas and almost doubled those reported for the peri-

urban areas. Thus, the release of PAHs into the environment from industrial sources must be 

regularly assessed. The report also highlighted that PAHs bioaccumulate in plant tissues and 

could serve as effective biomarker for PAHs contamination.  

Various processes and exchange take place between the compartments of the aquatic systems, 

which are either abiotic (air, water and solid materials) or biotic (flora and fauna) (Duursma & 

Carroll, 1996). The distribution of contaminants between the compartments is determined by their 

chemical-physical affinity for the compartment matrix or matrices and the transfer parameters 

regulating apparent equilibria (Duursma & Carroll, 1996). Compartmental distribution of 

contaminants should be monitored, to generate data that could assist in understanding and 

predicting contaminant transfer between compartments, as well as accumulation and loss of 

contaminants in abiotic and biotic systems. How contaminants interact with certain matrix or 

matrices could also suggest the time of pollution and help in identifying the suitable marker for 

further monitoring regime (Duursma & Carroll, 1996).  

The distribution of PAHs in water, pore water, sediment, soil and vegetables was reported by 

Zhang et al. (2004a). The order of PAHs mean concentrations in the samples were as follows: 

levels in vegetable (48300 ng/g) > sediment (433 ng/g) > soil (313 ng/g) > pore water (140 µg/L) 

> water (72.4 µg/L). A clear indication that PAHs prefer to affiliate and adhere to organic 

environments due to their particular properties, including hydrophobicity, low volatility and high 

octanol-water partition coefficient (Kow) (Gharibzadeh et al., 2016). The magnitude of detected 

levels in vegetables was a clear indication of PAH bioaccumulation by plants and the ease of 

PAHs entering the food chain (Yang et al., 2017). 

The distribution of PAHs in different plant tissues has also been studied by researchers (Wang et 

al., 2008; Wang et al., 2012b; Wang et al., 2017b). The levels of ∑PAHs reported for different 

tissues of Phragmites australis (tissues mean was higher than level in sediment) were 170.1 ng/g 

(leaves), 75.2 ng/g (stem) and 79.1 ng/g (root) (Wang et al., 2012b). The higher PAHs levels in 

leaves relative to those in roots was attributed to dry and wet atmospheric deposition of PAHs on 

leaves in addition to the translocated PAHs from sediments through root uptake. It was also found 

that the lower molecular weight PAHs (phenanthrene and fluoranthene) were more abundant in 
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leaves compared to roots, validating the fact that uptake of PAHs from the atmosphere is an 

important pathway in the bioaccumulation of PAHs in plants. 

Therefore, leafy vegetables could be a major exposure route of humans to PAHs. Irrigation of 

these vegetables with PAHs contaminated freshwater especially around informal settlements 

could further increase their PAHs burden. Also, the use of contaminated waters in aquaculture is 

concerning. 

Plants are therefore relevant biomonitoring agent in assessing anthropogenic contaminants in the 

environment based on their ability to uptake and bioaccumulate these contaminants (Agunbiade 

et al., 2009; Sojinu et al., 2010; Wang et al., 2012b). Plant’s density, wide spread, immobility and 

continuous exposure to contaminants, are also some of the features that made them to have been 

successfully utilised as biomonitoring agents in aquatic environments (Esmaeilzadeh et al., 2017). 

Amongst the plants that have been successfully utilised as biomonitoring agents in aquatic 

environment are Phramites australis and Eichornia crassipes (Agunbiade et al., 2009; Wang et 

al., 2012b). The P. australis (common reed) is a macrophyte plant found widely distributed in 

temperate and tropical regions of the world. It is a perennial reed grass with cane-like stems that 

develop from an extensive creeping rhizome system, the stems can grow up to 6 m in height, 

leaves are between 20 to 70 cm long and 1 to 5 cm broad (Mal & Narine, 2004). The E. crassipes 

(water hyacinth) is a member of the pickerelweed family (Pontederiaceae), that originated in the 

tropical South America (Agunbiade et al., 2009). Eichornia crassipes is invasive and one of the 

most notorious and lethal floating aquatic weed that grows up to 2 m above and 1 m below water 

surface (Thamaga & Dube, 2018). The wide spread of these plants had been reported to be as a 

result of anthropogenic activities (Thamaga & Dube, 2018), making them ideal as biomonitoring 

agents in environmental assessment 
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2.6 Extraction of PAHS from environmental matrices 

As far back as 1974, scientists have seen the need to develop rapid analytical methods for the 

analysis of PAHs and their metabolites (Salmon et al., 1974). However, most analytical 

instruments lack the capability to identify and/or quantify analytes of interest directly in matrices 

and analytes may also occur at ultra-trace levels. Extraction of analytes from complex matrices 

(effluent, sludge, surface water and sediment amongst others) therefore becomes highly important 

in analytical processes. Hence, prior to instrumental analysis, PAHs are extracted, pre-

concentrated and cleaned to remove interfering substances in a process called sample 

enrichment. Sample enrichment allows for the monitoring and quantification of PAHs at trace/ultra-

trace levels in the environment. A wide range of extraction techniques including conventional 

techniques (liquid-liquid extraction (LLE), solid-liquid extraction (SLE) and soxhlet extraction) and 

non-conventional (newer and more sophisticated) techniques [microwave-assisted solvent 

extraction (MASE), ultrasound-assisted extraction (UAE), accelerated solvent extraction (ASE), 

liquid-phase micro-extraction (LPME), Solid-phase extraction (SPE), solid-phase micro-extraction 

(SPME), stir bar sorptive extraction (SBSE), supported-liquid membrane extraction (SLME), 

extracting-syringe technique (ESy), supercritical fluid extraction (SFE) and single-drop micro-

extraction (SDME)] were developed to achieve less solvent consumption, improved extraction 

throughput, higher recoveries, better reproducibility, higher efficiency, improved quality and 

sensitivity, cost effectiveness and greener techniques (Marcé & Borrull, 2000; Lambropoulou & 

Albanis, 2007; Ramos, 2012; Sanchez-Prado et al., 2015). 

Krüger et al. (2011) described SPE, SPME and SBSE as acceptable and better alternatives to 

LLE methods as they are based on equilibrium extraction and reported higher PAH level of up to 

288% with SBSE than with LLE. Equilibrium extraction methods are fast and allow for parallel 

analyses of samples. However, equilibrium extraction methods are generally relatively expensive. 

Thus, researchers continue to search for extraction and pre-concentration techniques that are 

both experimentally effective and economically feasible. 

2.6.1 Extraction of PAHS from water samples 

Extraction of PAHs in water is achieved quite easily with organic solvents using the conventional 

LLE technique as PAHs have poor solubility in water and have high solubility in organic solvents 

(Hexane, DCM, cyclohexane, acetone, carbon disulphide, diethyl ether and chloroform) (O’Neil, 

2001; NCBI, 2004). However, to address the shortcomings of the conventional LLE technique 

(high cost and toxicity of organic solvents), modernised techniques like Dispersive liquid-liquid 
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micro-extraction (DLLME), which is rapid, simple and relatively cheap has been developed for the 

determination of PAHs in water. Rezaee et al. (2006) studied parameters that could affect the 

performance of DLLME for the extraction of PAHs from water samples. Under optimised 

conditions, the method achieved PAH recoveries of between 82.0-111.0% for spiked (5.0 µg/L) 

samples. A linear range of 0.02-200 µg/L and 0.007 – 0.030 µg/L detection limit were reported for 

most PAHs analysed. The comparison of DLLME to other modernised techniques (LPME and 

SPME), confirmed DLLME to be a fast (few seconds), simple, inexpensive and effective extraction 

technique (Rezaee et al., 2006). 

Cloud point extraction (CPE) is a surfactant-based separation phenomenon that has been applied 

for extracting/pre-concentrating organic contaminants in water samples prior to gas 

chromatography (GC) or high pressure liquid chromatography (HPLC) analyses (Bingjia et al., 

2007; Ling et al., 2007). In contrast to LLE, CPE does not utilise toxic or expensive organic 

solvents, making it more economical and environmentally friendly. Bingjia et al. (2007) utilised 

silicon surfactants, rather than anionic-cationic ones in a CPE process for extracting PAHs from 

water, because most anionic and cationic surfactants require high acid or salt concentrations that 

may damage chromatographic columns. Moreover, utilising common surfactants requires a clean-

up step prior to HPLC analysis, because most surfactants retain an organic moiety that produces 

fluorescence signals that masks PAH detection (Ferrer et al., 1996). 

The stir bar sorptive extraction (SBSE) technique is also utilised for PAHs analysing in water 

samples (García-Falcón et al., 2004). The enrichment of volatile and semi-volatile analytes is 

achieved by SBSE technique by sorbing analytes into a polydimethylsiloxane (PDMS) layer that 

is coated onto a stir bar, after which the adsorbed analytes are thermally desorbed. The efficacy 

of SBSE is attributed to the fact that sorption onto the PDMS layer is a weaker process than 

adsorption onto conventional adsorbents such as silica and alumina. The weaker interaction 

process allows analytes to be desorbed at lower temperatures, which minimises the loss of 

thermolabile solutes and unstable analytes tend not to degrade (Baltussen et al., 1999). The SBSE 

method produces results that have good linearity, precision, sensitivity, high analyte enrichment 

and also avoids using toxic/expensive solvents. García-Falcón et al. (2004) assessed the use of 

SBSE/HPLC-fluorescence detector (FLD) for determining eight PAHs in water samples and 

achieved a relative recovery of about 100%. 

Ozcan et al. (2010) on the other hand, compared the ultrasound-assisted emulsification-micro-

extraction (USAEME) technique to the LLE and SPE techniques for the extraction of 16 US EPA 

priority PAHs. Chloroform was selected as the extracting solvent for the USAEME method, and 
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recoveries from water samples were ≥90 %. The recovery efficiency was comparable to that of 

LLE. USAEME was demonstrated to be robust, viable, rapid and an easy method for extracting 

PAHs from water samples. 

Oliferova et al. (2005) and Liang et al. (2006) used an automated one-step on-line technique, that 

combined pre-concentration and analysis of PAHs in water samples. This technique utilised an 

SPE approach that has been reported to be fast and reliable in performing trace analysis (Hennio, 

1999). The SPE is a practical extraction method that is suitable for automation, because it does 

not require sophisticated equipment and provides high pre-concentration efficiency (Oliferova et 

al., 2005). LLE coupled with the SPE step have been widely accepted for the extraction and 

enrichment of PAHs from aqueous media. LLE is still one of the most commonly employed 

extraction techniques because of its simplicity, robustness, ease of application, efficiency, wealth 

of available analytical data and wide acceptance in most standard methods (Lambropoulou & 

Albanis, 2007). Various extraction methods that have been applied for the extraction of PAHs in 

water samples are presented in Table 2.6. 
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Table 2.6: A summary of methods used to analyse PAHs in water samples 

Sample Sampling area Extraction method/Analytical 
technique 

Detection 
limit 

% Recovery Reference 

Urban road runoff Beijing, China SPE/GC-MS 0.7 - 2.8 ng/L 41 - 117 % Zhang et al. (2008a) 

Surface water Yellow River, China SPE/GC-MS 0.13 - 0.92 ng/L 35 - 95 % Sun et al. (2009) 

River water Hyogo, Japan SPE/HPLC-ESI-MS (ESI-electrospray 
ionisation) 

0.001 – 0.03 
ng/mL 

88 – 97% Takino et al. (2001) 

River water Xinyang, China SPE/HPLC-FLD 0.10 - 0.25 ng/L 80 - 120% Liu et al. (2016a) 

Produced water Sergipe, Brazil LLE/GC-MS 5 - 15 μg/L 

 

62 - 114 %, except for 
Phe. 

Dorea et al. (2007) 

Surface water Vhembe District, South 
Africa 

LLE-SPE/GC-TOF-MS (TOF-time of 
flight) 

NR 

 
96 – 149% Edokpayi et al. (2016) 

Surface runoff Limpopo Province, South 
Africa 

LLE/GC-FID 44 – 4290 μg/L 67 – 102% Nekhavhambe et al. 
(2014) 

Groundwater Salvador City, Bahia, 
Brazil 

SDME/GC-MS 0.01 – 0.03 μg/L 36 -152% Santos et al. (2017) 

Surface water Johannesburg City, South 
Africa 

SPMD/GC-MS NR 55 - 115% Amdany et al. (2014) 

River, well, and surface 
water 

Tehran, Iran DLLME/GC-FID 0.007-.030 μg/L 82 - 111% Rezaee et al. (2006) 

Surface river water Pontelandolfo, Italy DLLME/GC-IT-MS 
(IT-ion trap) 

0.001 -0.009 
μg/L 

97 -108% Avino et al. (2017) 

NR: not recorded 
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2.6.2 Extraction of PAHS from solid matrices 

Classical organic solvent extraction of analytes from solid matrices are based mostly on the correct 

choice of solvent coupled with the use of heat and/or agitation (Picó, 2013). However, these 

techniques generally take hours or days to implement, which has necessitated the development 

of modern methods that miniaturised the implementation of the classical ones for PAH-extraction 

from solid matrices. The use of optimised Accelerated Solvent Extraction (ASE) was reported to 

give higher extraction efficiency compared to classical soxhlet method for PAHs extraction from 

plant samples. The range of 53 -117% recovery of matrix spiked standards obtained with ASE 

were said to meet the EPA 8270 method requirements (Yin et al., 2011). A consistent extraction 

efficiency was obtained in 50 min with ASE in contrast to 36 h for the classic soxhlet method. 

In order to overcome the limitation with soxhlet extraction method, the use of microwave heating 

instead of electrical heating has also been utilised, termed Microwave-Assisted Solvent Extraction 

(MASE) method (Luque de Castro & Priego-Capote, 2012). Apart from heating, microwave energy 

also promotes the partitioning of analytes from sample matrix into the extractant (Sanchez-Prado 

et al., 2015). However, MASE application is limited to extracting solvents that absorb microwave 

energy and safety concerns due to the high pressure and temperature involved (Sun et al., 1998; 

Sanchez-Prado et al., 2015). 

Ultrasonic extraction (UE) is another technique, being utilised as an alternative to conventional 

techniques. It gives equivalent or better recoveries, requires lower volume of toxic extractants and 

does not require sophisticated and highly expensive instrumentation (Sun et al., 1998; Kayali-

Sayadi et al., 2000).  

2.6.2.1 Extraction of PAHS from sediment samples 

To assess the pristine state of aquatic ecosystems, it is of utmost necessity to assess sediments, 

as they serve as effective sinks for pollutants such as PAHs and could also act as or constitute 

secondary source of pollutants in aquatic ecosystems (Gu et al., 2017). As a result, the integrity 

of assessment data for aquatic ecosystems will depend largely on the extraction procedure 

adopted for sediment matrices. The health risks posed by pollutants via dermal adsorption can 

also be estimated from the levels of pollutants detected in sediment samples (Duodu et al., 2017). 

Soxhlet extraction, ultrasonic agitation/sonication, mechanical agitation, accelerated solvent 

extraction (ASE)/pressurised liquid extraction (PLE), supercritical fluid extraction (SFE), subcritical 

fluid extraction, microwave-assisted extraction (MAE), solid phase micro-extraction (SPME), 
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magnetic solid phase extraction (MSPE), fluidised-bed extraction, thermal desorption as well as 

pyrolysis (Py) or high temperature distillation (HTD) extraction are some of the extraction 

techniques that have been adopted for the extraction of PAHs from sediment and soil samples 

(Banjoo & Nelson, 2005; Lau et al., 2010). Factors like temperature, extracting solvent type, 

moisture content and other characteristics of the media (carbon content, clay content and particle 

size) influences the efficiency of these extraction techniques (Lau et al., 2010). Mixture content for 

instance has been reported to reduce extraction efficiency of organic solvents like hexane and 

dichloromethane, in extracting PAHs from sediment (Song et al., 2002; Banjoo & Nelson, 2005). 

The choice of extracting solvent thus becomes critical in solving the challenge pose by moisture. 

The use of acetone-hexane/dichloromethane mixture in such situation has been reported to 

preventing clumping of wet sediment and also improves the extraction efficiency (Song et al., 

2002; Banjoo & Nelson, 2005). 

Comparable or even better recoveries are achievable with ultrasonic agitation in less time as 

compared to soxhlet traditional method in the extraction of PAHs from sediment samples (Marvin 

et al., 1992; Banjoo & Nelson, 2005). Banjoo and Nelson (2005) reported that for most analytes, 

recoveries of over 90% were achieved in 30 min with ultrasonication as compared to 3 h with KOH 

reflux method for the extraction of PAHs from sediments. Ultrasonication was described as having 

excellent extraction efficiency, precision and recovery for PAHs with little sample preparation, low 

set-up cost and high sample throughput. The integration of extraction and clean-up steps, in a 

one-step/on-line approach is also attractive, as the advantages of modern extraction techniques 

(low time, low solvent as well as high sample throughput) are further improved as shown by (Choi 

et al., 2014). They reported that a one-step integrated PLE and clean-up method for the analysis 

of 34 PAHs (parent and alkylated) in sediments achieved over 50% reduction in time and solvent 

requirements relative to unintegrated PLE methods previously utilised. The method was also 

described to be accurate and adequate for the analysis of PAHs, with mean recoveries of 92% 

and 94% reported for low and high PAHs concentrations spiked-matrix respectively and a mean 

recovery of 86% for certified reference material concentrations. The thermal desorption technique 

is another attractive technique, as it does not require solvents or high pressure extraction 

instruments and allows for direct analysis of solid samples by GC (Banerjee & Gray, 1997). Some 

extraction methods that have been utilised for the extraction of PAHs from different sediment 

samples and their respective percentage recoveries achieved are presented in Table 2.7. 
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Table 2.7: A summary of methods used to analyse PAHs in sediment samples 

Sample Sampling area Extraction 
method/Analytical 
technique 

Detection limit % Recovery Reference 

Surface sediments Queensland, Australia ASE/GC-MS 0.19 - 0.35 ng/g 81 - 103% Duodu et al. (2017) 

Core sediments Heilongjiang Province, 
China 

ASE/GC-MS 1 -16 ng/g 45 – 104% Sun and Zang (2013) 

Sediments Beijing, China UE/GC-MS 0.02 - 0.38 ng/g 62 - 101% Zhang et al. (2004b) 

Surface sediments Yunnan Province, China UE/GC-MS 0.2 - 2 ng/g 82 - 105% Gu et al. (2017) 

Sediments Edo State, Nigeria UE/GC-FID 0.001 - 0.003 µg/kg 78 - 102% Tongo et al. (2017) 

Core sediments Shandong Province, 
China 

Soxhlet/GC-IT-MS NR 85 – 99% Zhang et al. (2016) 

Sediments Ohio, USA Soxhlet/GC-MS NR 78% on average Gu et al. (2003) 

Sediments Finland Soxhlet/GC-FID 0.5 ng/g NR Hyötyläinen and Olkari 
(1999) 

Sediments Bayelsa State, Nigeria Soxhlet/GC-FID NR NR Okafor and Opuene 
(2007) 

Reclaimed mudflat 
sediments 

Mumbai, India SLP/GC-MS 0.09 – 0.52 ng/g 80 – 120% Basavaiah et al. (2017) 

Sediment Johannesburg, South 
Africa 

MAE/HPLC-FLD NR 61 – 93% Sibiya et al. (2013) 

ASE: accelerated solvent extraction. GC-MS: gas chromatography mass spectrophotometer. UE: ultrasonic extraction. SLP: solid-liquid-partitioning. NR: not 

recorded 
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2.6.2.2 Extraction of PAHS from plant samples 

Pollutants in plants are easily transferred into the food chain, resulting in biomagnification over 

two or more trophic levels (Meodor et al., 1995), thus posing a direct health risk to humans as 

humans occupy a high trophic level and depend largely on plants and herbivores for food. 

Although, the biomagnification of PAHs in humans is not expected (PAHs are actively bio-

transformed by vertebrates), PAHs metabolites have been reported to be more potent than parent 

PAHs in causing estrogenic effects (Wiele et al., 2005). Plants serve as good indicators for use in 

environmental monitoring programs (Wang et al., 2012b), as pollutants in sediments, water and 

the atmosphere bioaccumulate in plants through absorption (by root, stem and leaf tissues), 

atmospheric deposition on leaves and gas phase uptake via stomata (Kargar et al., 2017). These 

multiple pathways by which plants could uptake PAHs, have often resulted in elevated PAH levels 

in plant samples relative to other media (water, soil as well as sediment) (Li et al., 2010a). To have 

a robust and satisfactory data for ecosystem management purposes, efficient extraction methods 

are therefore needed for accurate analyses of pollutants in plants. Various organic solvents which 

include methanol, acetone, toluene, chloroform, dichloromethane, n-hexane as well as 

cyclohexane have been widely applied in different extraction methods (ASE, PLE, soxhlet, 

ultrasonic and MAE amongst others), for the extraction of PAHs from plant samples (Pavelkajr et 

al., 1998; Sushkova et al., 2014). Ultrasonic agitation/sonication is a preferred method to soxhlet 

which requires high energy coupled with other drawbacks (Pavelkajr et al., 1998). The MAE 

method, in which temperature and pressure could be optimised for PAHs extraction from plant 

samples, represents a very attractive technique, even with high set-up cost relative to sonication 

method (Pavelkajr et al., 1998).  

The coextraction of hydrophobic plant pigments (chlorophylls and carotene) by extraction methods 

necessitated a clean-up step, which could be achieved through gel permeation chromatography 

or SPE (Dugay et al., 2002). A selective ultrasonic extraction coupled with a SPE step was 

described by Dugay et al. (2002) for the extraction of PAHs from plants. The procedure achieved 

an average recovery of 70, 74, 79 and 89% for naphthalene, acenaphthylene, acenaphthene and 

chrysene, while over 94% mean recoveries were reported for the rest of the 16 US EPA priority 

PAHs. Some reported extraction methods for the extraction of PAHs in plant samples are 

presented in Table 2.8.
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Table 2.8: A summary of methods used to analyse PAHs in plant samples 

Sample Sampling area Extraction method/Analytical 
technique 

Detection limit % Recovery Reference 

Tissues of wetland 
plants 

Shanghai, China ASE/GC-MS NR 79 – 102% Wang et al. (2012b) 

Pine leaves Izmir, Turkey UE/GC-FID NR NR Kargar et al. (2017) 

Moringa Herbal Tea Nigeria UE/GC-FID 0.30 µg/kg 90 – 109% Benson et al. (2017) 

Tree leaves Beijing, China SLE-ASE/GC-MS NR 72 -105% Wang et al. (2008) 

Vegetables Tianjin, China ASE/GC-MS NR 49 – 92% Tao et al. (2004) 

Gingko leave Tokyo PFE, PE/GC-MS 
(PFE- Pressurised fluid extraction, PE-
Polytron extraction) 

NR > 65% Murakami et al. 
(2012) 

Holm oak leaves Campania and 
Tuscany, Italy 

UE/GC-HRMS 0.001 – 0.003 μg/mL 
(Instrument) 

≤ 70% De Nicola et al. 
(2015) 

Vegetables Thessaloniki, Greece Soxhlet/HPLC-FLD NR 71 -92% Kipopoulou et al. 
(1999) 

Wild plants, vegetables 
and rice stalks 

Guangdong Province, 
China 

Soxhlet/GC-MS NR 69 – 95% Wang et al. (2012a) 

NR: not recorded 
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2.7 Analysis of PAHs 

Sample clean-up is often required to ensure data integrity prior to the instrumental analysis of 

PAHs, as analyte signals could be largely obscured/masked by the presence of other interfering 

entities (elemental sulphur, surfactant and humic materials) (Ferrer et al., 1996; Pietzsch et al., 

2010). To achieve effective determination of PAHs from environmental matrices, column 

chromatography (automated in some instances with the use of prepacked SPE cartridges with 

varieties of stationary phases) has been widely utilised for clean-up (Okuda et al., 2010; 

Nekhavhambe et al., 2014; Thea et al., 2016). Silica gel, polystyrene-divinylbenzene SPE, and 

gel permeation chromatography are popular clean-up methods to ensure data integrity (Wang & 

Guo, 2010). 

To separate, identify and quantify PAHs after the extraction and clean-up protocols, GC rather 

than LC is often preferred, mainly because GC methods generally provide greater selectivity, 

resolution and sensitivity (Poster et al., 2006). Some PAHs also have poor solubility in mobile 

phase solvents popular with LC (methanol and acetonitrile) (IARC, 1983), which may result in poor 

elution of target compounds. Generally, GC are more often fitted with flame ionisation detectors 

(FIDs) than any other detector and have been in use since 1958 (Holm, 1999). Gas 

chromatography coupled with flame ionisation detectors (GC-FID) have been used to analyse 

PAHs in environmental samples (Moreda et al., 1998; Zhou et al., 2000; Li et al., 2011). Zhou et 

al. (2000) quantified the levels of the 16 US EPA priority PAHs in water (106 - 945 ng/L), pore 

water (1 - 3548 ng/L) and sediment (247 – 480 ng/g), with the mean recovery range of 66 to 96%. 

Flame ionisation detectors is universally used to analyse trace levels of organic compounds, due 

to its high sensitivity, wide linear range, detection of most organics and non-detection of most inert 

gases, other than methane (Wang et al., 2010b). It is also a detector that is insensitive to modest 

changes in operating parameters such as fuel and oxidant gas flow, environmental air pressure 

and temperature (Kuipers & Müller, 2010). 

The Minjiang River Estuary in Southeast China was monitored for the16 US EPA priority PAHs in 

water, pore water, sediment, soil and vegetable samples using GC-FID. Prior to GC analysis, the 

PAHs in water samples were extracted and cleaned-up using SPE, while ultra-sonication was 

used to extract PAHs from sediment, soil and vegetation samples (Zhang et al., 2004a). 

Recoveries ranged from 79 to 111%, 85 to 101% and 63 to 81% in water, sediment and vegetable 

samples, respectively. The limit of detection for water samples ranged from 0.07 to 1.10 ng/L and 

the values were from 3.3 to 53.0 pg/g for sediment, soil and vegetable samples. The mean of each 
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detected PAHs ranged from 0.44 to 18.2 µg/L (water), 0.93 to 23.00 µg/L (pore water), 4.2 to 70.2 

ng/g (sediment), 2.2 to 55.5 ng/g (soil) and 9.3 to 24600 ng/g (vegetables). 

The GC-FID was also utilised for the determination of 16 priority PAHs in coastal sediment of 

Lebanon (Manneh et al., 2016) after Soxhlet extraction was performed for PAHs extraction. 

Recoveries ranged between 80 and 120%, detection limits ranged from 0.20 to 2.10 ng/g and the 

concentration of ∑16 PAHs at studied sites ranged from 1.22 to 731.90 µg/kg. Therefore, GC-FID 

is sufficiently adoptable for the analysis of PAHs in environmental samples. Tables 2.6 to 2.8 

shows further instances where GC-FID has efficiently been utilised for PAH analysis  

Mass spectrophotometer (MS) is another detector that is often coupled with GC and commonly 

utilised for PAHs analysis (Gu et al., 2003; Kannan & Perrotta, 2008; Santos et al., 2017). In MS, 

ions are produced and measured and eventually gives mass spectrum, showing fragmentation 

patterns and accurate mass for effective identification of substances. Variation in MS comes from 

the differences in its main components, including the ion source [electron impact (EI), chemical 

ionisation (CI), field ionisation (FI) and atmospheric pressure ionisation (API) (Mendham et al., 

2000)], mass analyser and detector [magnetic sector analyser, quadrupole mass filter, ion trap 

detector and time-of-flight analyser are the different types of mass analysers, while photographic 

plates, Faraday cup, electron multipliers, channel electron multiplier and scintillation detectors are 

the different types of detectors utilised in mass spectrometry (Mendham et al., 2000)]. The 

recovery of 82 to 117% and 0.40 to 263 ng/L limit of detection were obtained on GC coupled with 

quadrupole MS, utilising SPE [oasis HLB (hydrophilic-lipophilic balance)] for analyte enrichment 

in the determination of 16 US EPA PAHs in wastewater (Sánchez-Avila et al., 2009). The levels 

of detected PAHs ranged from 0.009 to 5.050 µg/L, showing the high sensitivity of GC-MS in 

determining trace levels of PAHs. See Tables 2.6 to 2.8 for more evidence on the high sensitivity 

of GC-MS. 

Unlike FID, MS can be coupled with LC in hyphenated LC-MS techniques which are applicable in 

the analyses of PAHs in environmental matrices with the development of efficient interfaces 

(Takino et al., 2001). The different ion sources in MS spectrometry for liquid phase input include; 

field desorption (FD), desorption chemical ionisation (DCI), fast atom bombardment (FAB), plasma 

desorption (PD), laser desorption, Secondary Ion mass spectrometry (SIMS), atmospheric 

pressure ionisation (API), thermospray (TSP), plasmaspray (PS), electrospray ionisation (ESI) 

and particle beam interface (PBI) (Mendham et al., 2000). Titato and Lancas (2006) compared a 

hyphenated mass spectrometric protocol, that has atmospheric pressure chemical ionisation 

(APCI) interface (HPLC-APCI-MS) with HPLC-UV- diode-array detection (DAD) protocol (HPLC-
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UV-DAD), for the determination of selected PAHs in water samples. Detection- and quantification 

limits obtained ranged from 0.05 to 0.12 µg/mL and 0.165 to 0.396 µg/mL, respectively for the 

HPLC-APCI-MS protocol. The detection- and quantification limits obtained ranged from 0.0010 to 

0.0300 µg/mL and 0.0033 to 0.0999 µg/mL, respectively for the HPLC-UV-DAD technique. They 

reported that, structural information obtainable from HPLC-APCI-MS makes the technique 

valuable, even though the HPLC-UV-DAD technique has higher sensitivity for the determination 

of PAHs in water samples based on better detection limit and quantification limit values obtained. 

A highly sensitive HPLC-MS hyphenated protocol, has however been reported for the 

determination of PAHs in water by Takino et al. (2001). The protocol utilised SPE (using blue-

chitin cartridges) coupled with HPLC-ESI-MS with silver nitrate as post column reagent. The 10 

PAHs analysed were separated by reversed-phase LC with analytes forming complexes with Ag+ 

on mixing with the AgNO3 solution. The molecular ions of the PAHs were then transferred by the 

complexes through charge transfer, using in-source collision induced dissociation. The detection 

limit of the method; ranged from 1 to 30 pg/mL, the recovery ranged from 88 to 97% and the levels 

of the10 PAHs analysed in river water; ranged from 6 to 12 pg/mL. Hence, the HPLC-ESI-MS 

protocol described above is powerful in the determination of trace levels of PAHs in water due to 

enhanced selective enrichment by the SPE (blue-chitin cartridges), efficiency in separation by 

reversed-phase LC and the high sensitivity of the ESI-MS. 

Liquid chromatographic (LC) methods, including HPLC coupled with a fluorescence detector 

(HPLC-FLD) have also been employed for PAHs analyses (Williamson et al., 2002; Pietzsch et 

al., 2010). HPLC does not require a high-pressure cylinder of carrier gas, it is easier to maintain 

than GC as the detector does not come into contact with the sample solution and the analysis 

technique is non-destructive (Okuda et al., 2006). The downside is that there is the likelihood that 

co-extractives will have chemical properties that are similar to some PAH isomers and may 

therefore exhibit similar fluorescence properties. Co-extractives are not always removed when 

conventional silica-gel column clean-up methods are used, possibly negatively affecting the 

precision and accuracy of PAHs analysis when using HPLC-FLD (Okuda et al., 2006). A rapid 

HPLC fluorimetric detection which does not require a clean-up step was developed for the 

determination of PAHs (Kayali-Sayadi et al., 2000). The method employed a low solvent solid-

liquid extraction by means of ultrasonic agitation and hypersil green PAH column. Recoveries 

reported for the method ranged from 70 to 98% for most of the PAHs and detection limits ranged 

from 0.100 to 0.448 µg/L. The use of HPLC-FLD technique for PAH analysis is limited to PAHs 

that have fluorescence, however the technique could be interfaced with MS to give a powerful 

identification and quantification tool.  
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Enzyme-linked immuno-sorbent assay (ELISA) and immuno-polymerase chain reaction (IPCR) 

are biotic techniques that have been applied to analyse PAHs (Barceló et al., 1998; Ye et al., 

2009). Immuno-PCR detection method was developed by combining polymerase chain reaction 

(PCR) with ELISA through a chimeric protein, a molecule capable of linking DNA and antibodies 

(Ye et al., 2009). The ELISA involves an antigen-antibody interaction with the analyte, in which 

the antibodies or antigens are immobilised on a solid phase (Hennion & Barcelo, 1998). A real 

time fluorescent quantitative IPCR assay was carried out by Ye et al. (2010), for the determination 

of fluoranthene in environmental water samples. They reported a method recovery range of 90 to 

116%, detection limit of o.6 fg/mL and that the analyte can be quantified in the concentration range 

of 1 fg/mL to 100 ng/mL. This technique is promising because it is highly sensitive, cheap and it 

can be carried out rapidly in real time [through automation] (Oubina et al., 1997; Ye et al., 2009).

 

2.8 Evidence and monitoring of PAHS in South African environment 

South Africa, being a developing country and one of the largest economies in Africa, has 

witnessed a surge in urbanisation and industrialisation over the past decades. Increased levels of 

contaminants in the environment are often linked to rapid urbanisation and industrialisation 

(Mcmichael, 2000). As a result, there has been an increase in the need to assess the presence 

and levels of contaminants like PAHs in our environment, so as to guide policy makers in making 

policies for sustainable growth, that will ensure water, food and energy security (Amdany et al., 

2014; Nekhavhambe et al., 2014; Geldenhuys et al., 2015). 

Nieuwoudt et al. (2011) reported that, they carried out the initial assessment of PAHs in soils and 

sediments, focusing on industrial, residential and agricultural areas of central South Africa. The 

assessment conducted covered mainly the Free State and Gauteng provinces. They reported that 

the levels of total PAHs monitored ranged between 44 and 39,000 ng/g and that of carcinogenic 

PAHs ranged between 19 and 19,000 ng/g. The authors recommended that there is an ever-

increasing need for regular PAHs assessment in industrial and residential areas that should 

include more environmental matrices. 

Okedeyi et al. (2013) focused on the levels of 15 PAHs in soils at the vicinity of three coal-fired 

power plants in South Africa. The plants selected for the study are situated in Mpumalanga, Free 

State and Gauteng provinces. The levels of total PAHs monitored ranged between 9.73 and 61.24 

µg/g and those of carcinogenic PAHs ranged between 4.03 to 34.78 µg/g. Soils from sites close 



52 
 

to coal-fired plants (power stations) were significantly contaminated by PAHs with high 

carcinogenic burden. 

Amdany et al. (2014) assessed the levels of freely dissolved PAHs in water samples of selected 

water bodies around Johannesburg (South Africa). The total concentrations of the 16 US EPA 

priority PAHs ranged from 33.49 to 126.78 ng/L. The concentrations of the freely dissolved PAHs 

were reported to be at least one or two orders of magnitude higher than levels of freely dissolved- 

organochlorine pesticides (OCPs) [ranged from 0.146 to 36.937 ng/L], polychlorinated biphenyls 

(PCBs) [ranged from 0.021 to 0.121 ng/L] and dichlorodiphenyltrichloroethane (DDT) with its 

metabolites (ranged from 0.03 to 0.55 ng/L) at the selected sites. Thus, PAHs are ubiquitous in 

South African environmental media at higher concentrations compared to other persistent organic 

pollutants (POPs).  

The levels of PAHs in water and sediment samples of rivers and surface run-off of Limpopo 

province was reported by Nekhavhambe et al. (2014). Only six PAHs were identified and 

quantified by the study, with total PAHs levels in water samples from both rivers and surface run-

off ranging between 29.2 and 3,064.8 µg/L, while higher levels were reported for sediment 

samples (111.6 to 61,764 µg/kg). High PAH-toxicity burden above acceptable levels were 

envisaged from the data obtained from the six PAHs of even low toxicity quantified. 
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2.9 Remediation of PAHs 

PAHs do not degrade easily under natural environmental conditions, therefore, different methods 

are often needed to accelerate the degradation and/or removal of PAHs from contaminated 

environmental matrices (Haritash & Kaushik, 2009). Some conventional remediation methods that 

have been used include soil washing, solidification and stabilisation, incineration, thermal 

treatment, as well as advanced oxidation. Summary of conventional remediation approaches that 

have been utilised for PAH-degradation is presented in Table 2.9. Physicochemical methods such 

as adsorption, volatilisation, photolysis amongst others, have also been used for PAH remediation 

(Miller & Olejnik, 2001; Gong et al., 2007; Megharaj et al., 2011). 

2.9.1 Conventional remediation methods for PAHs 

Soil Washing: Soil washing allows for the desorption of PAHs that have been strongly adsorbed 

by soil or sediment due to PAHs hydrophobicity, low volatility, and high octanol-water partition 

coefficient (Kow) (Gharibzadeh et al., 2016). Solvents (water, organics, and vegetable oil), 

supercritical fluids, subcritical fluids and cyclodextrins were reported to have been utilised for soil 

washing (Gan et al., 2009). The use of surfactants, which are amphiphilic compounds have been 

largely shown to enhance the desorption of PAHs from soil or sediment during soil washing (Ahn 

et al., 2008; López-Vizcaíno et al., 2012). Due to the unique structure of surfactants, they enhance 

the solubility of PAHs significantly by partitioning PAHs into the hydrophobic cores of surfactant 

micelles and promote mass transfer of PAHs from soil or sediment into an aqueous phase (by 

micelles that decreases the interfacial tension between the PAHs and water) (Ahn et al., 2008). 

Hence, soil washing aided by surfactants allows for rapid reclamation of soil or sediment that has 

been impacted with PAHs that would have required a continuing bioremediation process. 

López-Vizcaíno et al. (2012) described the use of surfactant aided soil washing for PAH 

remediation. They employed anionic, cationic and non-ionic surfactants and utilised metallic salts 

(AlCl3.6H2O and FeCl3) as coagulants in the study. The anionic surfactant yielded the highest 

removal efficiency for the PAHs, with over 90% contaminant removal recorded. In contrast, the 

cationic surfactant had a removal efficiency of 30%. Aluminium and iron salts were reported to be 

the most commonly used coagulants for the treatment of wastewater generated from surfactant 

aided soil washing.  
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Table 2.9: Summary of conventional remediation approaches utilised for PAH-degradation 

PAHs 

remediated 

PAH –matrix Approach used Reagent/condition used Primary 

mechanism 

Removal 

efficiency 

Reference 

16 US EPA PAHs Contaminated soil Soil washing Sunflower oil (solvent) and 

active carbon for recycling 

Dissolution and mass 

transfer 

81.0-100.0% Gong et al. 

(2005) 

3- ringed PAHs Soil Soil washing Soybean oil (solvent) and tea 

saponin (surfactant) 

Dissolution and mass 

transfer 

Up to 98.2% 

(after two 

consecutive 

washing cycle) 

Ye et al. (2017) 

Nap and Phe contaminated  

soil 

Soil washing Cyclodextrin enhanced Solubilisation and 

desorption 

80% (Nap) 

64% (Phe) 

Badr et al. 

(2004) 

Acy Contaminated 

water 

Chemical oxidation  Ozone Ozonation and 

disintegration 

95 – 100% Rivas et al. 

(2000) 

16 US EPA PAHs Aged contaminated 

sediment 

Chemical oxidation hydrogen peroxide, modified 

Fenton’s reagent, activated 

sodium persulfate, and 

potassium permanganate 

Oxidation and 

disintegration 

Up to 98.0% 

(with modified 

Fenton’s 

reagent) 

Ferrarese et al. 

(2008) 

16 US EPA PAHs Contaminated soil Chemical oxidation Fenton-like reagent 

(magnetite as catalyst) 

Oxidation and 

disintegration 

> 90% Usman et al. 

(2012) 

Phe subcritical water (< 

374oC and < 221 

bar) 

Thermal treatment and 

chemical oxidation 

Deionised water and hydrogen 

peroxide 

Degradation and 

oxidation 

Up to 100% Yang and 

Hildebrand 

(2006) 

Flu Soil Thermal treatment Microwave heating Thermal desorption 

and degradation 

100% Falciglia et al. 

(2016) 

3-ringed PAHs: Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene and Anthracene. Nap: Naphthalene. Phe: Phenanthrene. Acy: Acenaphthylene. Flu: Fluorene 
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The treatment of generated wastewater from PAHs remediation by surfactant aided soil washing 

have also attracted research interests (Ahn et al., 2008; Gharibzadeh et al., 2016).The use of 

bioremediation approach for soil washing effluent treatment and the possible reusability of the 

biologically recycled surfactant solution was reported by Gharibzadeh et al. (2016). This approach 

requires the use of surfactants that are not toxic to microorganisms to allow for pollutant 

biodegradation. The method achieved complete biodegradation of pollutant in effluent within 

seven days of enriched bacterial consortium inoculation and after seven consecutive washing 

cycles with the recycled surfactant solution >99% PAHs removal efficiency was achieved, which 

stood at 74.4% with the first washing. Hence, no need for large volume of water and huge quantity 

of expensive surfactants. 

Furthermore, the use of tea saponin (a biological amphipathic compound) to aid soil washing by 

soybean oil-water solvent was reported (Ye et al., 2017). The washing method achieved up to 

96% PAHs removal after two consecutive washing cycles and It was reported that the bio-

accessibility of the residual PAHs in the soil were extremely low. Hence, the residual PAHs posed 

limited risk to human and ecological health. The reusability of the saponin aided soil washing 

effluent was made possible by PAH-degrading strain of Sphingobium sp, which achieved 93 to 

98% mineralisation of the PAHs that were made bioavailable by the tea saponin soybean oil-water 

solvent. The solvent utilised for washing was made up of 15.0 mL/L soybean oil and 7.5 g/L tea 

saponin. 

In another study, Li et al. (2014) reported the use of biochar from wheat straw for selective removal 

of PAHs from soil washing effluent. The method achieved 72 to 99% selective PAHs removal 

efficiency and >87% surfactant recovery, being that the biochar micropores were not accessible 

for the surfactant employed. Remediation of soil or sediment impacted with PAHs by soil washing 

seems promising, but requires excavation, high volume of solvent and expensive or fine 

surfactants, making the approach non-economical. 

Solidification/Stabilisation (S/S): This approach involves the use of cementing agents such as 

portland cement, blast furnace slag, flay ash, natural or modified clay, waste/by-product with 

cementitious properties, proprietary additives and quicklime to immobilise contaminants within a 

given media, rendering the contaminants passive with extremely low or no bioavailability (Ma et 

al., 2018; Antemir et al., 2010). Solidification is the physical inclusion of contaminants into solid 

mass with lower permeability and stabilisation is the conversion of contaminants into less soluble 

forms (Antemir et al., 2010). The S/S remediation approach is quite attractive, because it does not 
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require high energy input, causes less atmospheric emissions, lifecycle secondary environmental 

impact is minimised and in some cases can be incorporated with concrete works (Ma et al., 2018).  

Karamalidis and Voudrias (2007) demonstrated that PAHs in oil refinery sludge could be stabilised 

in a cement-based solidification process. The effectiveness of two types of cements (portland and 

blended cement) for stabilising and solidifying PAH-contaminated sludge was studied. Results 

showed that portland cement was more effective than blended cement for immobilising 

acenaphthylene, acenaphthene, fluorene, Pyrene, benzo[a]anthracene, Chrysene, 

benzo[b]fluoranthene, benzo[a]pyrene and indeno[1,2,3-cd]pyrene. The study showed that 12 of 

16 higher PAHs were leached from the oil sludge that had been stabilised by blended cement (the 

four PAHs that remained stable were naphthalene, phenanthrene, benzo[k]fluoranthene, and 

dibenzo[a, h]anthracene). The use of only hydraulic binders like cements is insufficient for 

chemical immobilisation of PAHs, as PAH-molecules cannot be incorporated into the cement 

matrix (Mulder et al., 2001). Additives, such as clay modifiers and adsorbents, [capable of forming 

physico-chemical bond with PAHs and binders (organic matter, chloride salts and sulphates)] have 

been studied for being capable of improving compactness and strength when used in chemical 

immobilisation approach, even in the presence of secondary impurities. Ma et al. (2018) employed 

portland cement, activated carbon and sulfonated oil for the treatment of PAH-contaminated soil. 

The sulfonated oil significantly improved the unconfined compressive strength of the treated soil, 

resulting in improved resistance to disintegration and reduction in leaching. 

Thermal Treatment: This approach has been reported to be effective in the remediation of PAHs 

from contaminated soil through PAHs volatilisation or destruction under high temperatures 

(Kuppusamy et al., 2017; Falciglia et al., 2016). The incineration of contaminated soil at elevated 

temperatures (870 to 1200oC) was reported to effectively destroy PAHs (Gan et al., 2009). 

However, the drawbacks of the technology include the need for moisture removal, high energy 

demand, excavation, generation of toxic off-gases (hydrogen chloride, sulphur oxides, nitrogen 

oxide, dioxins and furans) and emission of metals, necessitated the development of other thermal 

treatment approaches such as in-situ thermal desorption (ISTD) (Hosseini, 2006) and microwave 

thermal treatment (Falciglia et al., 2018). The ISTD approach does not require excavation as the 

name implies. The treatment is carried out on site and the emission of toxic off-gases into the 

environment were prevented with the incorporation of carrier gas or vacuum system that sweeps 

volatilised products into the gas treatment unit for secondary treatment or off-site disposal 

(Kuppusamy et al., 2017). The microwave thermal treatment approach on the other hand, does 

not rely on heat transfer but utilises electromagnetic radiation that allows for uniform, selective 

and rapid heating and have high flexibility for application without excavation or disturbance of 
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contaminated media (Chien, 2012). Microwave thermal treatment of PAHs to achieve remediation 

was studied by Robinson et al. (2009). More than 95% of the PAHs in light- and heavy-

contaminated soils were removed, which demonstrated the remediation efficacy of microwave 

energy.  

Chemical Oxidation: This approach is described as one of the in-situ technologies that have the 

efficacy to degrade both LMW and HMW PAHs in contaminated media through oxidants injection 

(Lemaire et al., 2013). The technique gained popularity, because it is rapid and aggressive in the 

remediation of PAH impacted media as compared to biological techniques that are sensitive to 

contaminant type and concentration (Ferrarese et al., 2008). Ozone, permanganate, fenton’s 

reagents, percarbonate and activated persulfate are the common oxidants that have been utilised 

in the remediation of contaminated media (Lemaire et al., 2013). Fenton’s reagent, activated 

persulfate and perozone are the most common oxidants with advanced oxidation processes 

(AOPs), which utilises various reactant combinations to enhance the production of highly reactive 

radicals that are capable of degrading most recalcitrant compounds (Ferrarese et al., 2008). 

O’Mahony et al. (2006) demonstrated the potential of chemical oxidation for PAH removal by using 

ozone to degrade phenanthrene in different soil samples. The study showed higher removal 

efficiency of Phe from sandy soil in contrast to clayey soil. They also reported that water content 

of soil reduced the potency of ozone treatment, due to the negative correlation that existed 

between the two parameters. 

A major drawback in the application of chemical oxidation technique, is the determination of 

optimal doses of the oxidising solution for field application, an overdose may negatively affects 

soil microbial communities and alters soil organic matter (Chen et al., 2009; Ranc et al., 2016). 
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2.9.2 Remediation of PAHs using nanoparticles 

Nanotechnology has received lots of attention from scientists in the remediation of recalcitrant 

contaminants in the environment, based on the fact that nanomaterials have unique physical and 

chemical properties (Rizwan et al., 2014). Chang et al. (2005) reported the use of nanoscale zero-

valent iron (nZVI) for the removal of pyrene from contaminated soil. The massive specific area of 

the nanoparticles was credited for pyrene removal efficiency and they reported a 72% pyrene 

removal in an optimal time of 60 min at 150 rpm agitation speed with 0.1 g/g dosage of nZVI. The 

incorporation of nanoparticles with other remediation approaches was reported by Chen et al. 

(2015). They utilised Na2S2O3 for the remediation of 16 PAHs in sediments via chemical oxidation, 

that was simultaneously activated by temperature and nZVI. The PAH removal efficiency of 

Na2S2O3 (10.7 to 39.1%) was increased to up to 90% by the addition of nZVI (0.01 g/L) at 700C. 

The removal of acenaphthene in aqueous solution utilising magnetic nanoparticles was also 

reported by Huang et al. (2016b). They reported acenaphthene removal of above 85% and up to 

2250 mg/Kg sorption capacity for the adsorbents. Nanotechnology has thus been efficiently 

applied for the remediation of PAHs in different environmental matrices. However, nanotoxicology 

has received lots of attention in recent years due to safety concerns about nanoparticles (by 

scientists and the general public) and their potential impact on the environment and biota (Nowack, 

2008). 

2.9.3 Bioremediation of PAHs 

Bioremediation utilises biological organisms/materials to mineralise/immobilise contaminants. 

Examples of techniques used include bioventing, bioleaching, land farming, composting, 

bioaugmentation, Rhizofiltration, biostimulation and biosorption. Bioremediation is a cost-effective 

and environmentally friendly means of remediation, as treatment efficacy does not adversely affect 

site material or its indigenous flora and fauna (Ang et al., 2005; Haritash & Kaushik, 2009; 

Megharaj et al., 2011). Microorganisms degrade PAHs in tandem with their natural potential to 

utilise hydrocarbons as an energy source (Larsen et al., 2009). Hence, PAHs are biodegraded or 

biotransformed into less complex metabolites, and are eventually mineralised by aerobic or 

anaerobic processes into more basic chemical entities such as H2O, CO2 or CH4 (Haritash & 

Kaushik, 2009). Megharaj et al. (2011) showed that bioremediation is a promising treatment 

approach for PAH-remediation in the environment. 
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2.9.3.1 Phytoremediation/phytobial remediation of PAHs 

Phytoremediation is an attractive technique for the clean-up of contaminated sites and can be 

defined as the proficient use of plants to remove, detoxify or immobilise environmental 

contaminants in a growth matrix (soil, water or sediments) through natural-, biological-, chemical- 

or physical activities and processes of the plant (Ciura et al., 2005). It is an emerging technology 

which deserves to be considered for remediating contaminated sites, because it is cost-

effectiveness, aesthetic advantages and long term applicability (Su & Wong, 2004; Agunbiade et 

al., 2009). Phytoremediation approaches that have been utilised for PAH-degradation are 

presented in Table 2.10.
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Table 2.10: Phytoremediation approaches for PAH-degradation 

. 

PAHs 
Investigated 

PAH–matrix Plant and 
material(s) used 

PAH-removal 
pathway(s) 

Result/Removal efficiency Reference 

Phe and Pyr Contaminated soil Maize (Zea mays L.) 
and surfactants 

Bioaccumulation, abiotic 
and microbial dissipation 

Negligible plant PAH-uptake with higher PAH-level 
in leaf (66.8 ng/g) compared to root (58.2 ng/g). 
Surfactants have no significant effect on PAH-
uptake by maize plant but enhanced PAHs 
desorption in soil (up to 89% for Pyr). 

Liao et al. (2015) 

Pyr Contaminated soil Medicago sativa, 
Brassica napus and 
Lolium perenne 

Microbial dissipation Up to 32%.  D’Orazio et al. 
(2013) 

Phe and Pyr Aqueous solution  
 

Red clover (Trifolium 
pretense L.) and 
nonionic surfactant 

Plant uptake and 
bioaccumulation 

Significant PAH-accumulation in root and shoot 
were recorded without surfactant and uptake 
increased with duration from 0 to 228 h. The level 
of PAHs in plant increased with Tween 80 
(surfactant) soil treatment from 0 to 6.6 mg/L with 
18 to 155% increase in plant PAH-uptake. 
However, higher surfactant levels inhibited plant 
PAH-uptake. PAHs levels in root were higher in 
root as compared to shoot. 

Gao et al. (2008) 

16 US EPA PAHs Oil treated soil Mangrove Bruguiera 
gymnorrhiza 

Plant uptake and 
bioaccumulation 

99% of accumulated PAHs were in root and 1% in 
leaf. Two to three ringed PAHs were mainly 
accumulated by the plant. Only 2 to 3-ringed PAHs 
(Phe is the only 3-ringed PAH) were accumulated 
in leaf, whereby root accumulated 2-,3-,4- and 5-
ringed PAHs (BaP is the only 5-ringed PAH) but 
no uptake of 6-ringed PAHs. 

Naidoo and 
Naidoo (2016) 

Phe and Pyr Aged soil Cucurbita pepo 
(Gold rush) and 
purine alkaloid 
(caffeine)  

Plant uptake and 
bioaccumulation 

PAHs water solubility increased with caffeine 
concentration. Caffeine enhanced PAHs uptake by 
the plant. The shoot level of Phe increased from 
0.09 to 0.13 µg/g with caffeine treatment while Pyr 
level increased from 0.17 to 0.47 µg/g. The root 
level of Phe increased from 1.5 to 6.3 µg/g with 
caffeine treatment, while the Pyr level increased 
from 3.0 to 10.6 µg/g. 

Navarro et al. 
(2009) 

Phe and Pyr  spiked soils Tall fescue, 
ryegrass, 
alfalfa and rape 
seed 

Plant uptake and 
bioaccumulation 

Combined plants cultivation gave 98.3 to 99.2 % 
Phe removal and 79.8 to 86.0 % Pyr removal. 

Cheema et al. 
(2010) 

Phe = Phenanthrene. Pyr =Pyrene 
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Some phytoremediation processes that have been effectively applied include: 

1. Phytoextraction: This is also known as phytoaccummulation, and refers to the process by 

which plant roots take up contaminants from soil and translocate them to above ground 

plant parts (shoot and leaves) (Garbisu & Alkorta, 2001). 

2. Rhizofiltration: This is similar in concept to phytoextraction, but it is process by which plant 

uptake contaminants from water rather than contaminated soils (Anderson et al., 1993). 

3. Phytostabilisation: This is a process in which certain plant species are used to immobilise 

soil and water contaminants. Contaminants are absorbed and adsorbed by plant roots or 

are precipitated in the rhizosphere. Such action prevents the mobility of contaminants in 

soil, water and air, and reduces bioavailability of the contaminants, thereby preventing their 

spread through the food chain (Anderson et al., 1993). 

4. Phytostimulation: This is a process in which microbial degradation of contaminants are 

stimulated in the plant root zone; it is also called plant-assisted bioremediation (Khan et 

al., 2004). 

5. Phytotransformation: This is the degradation of contaminants via plant metabolism to non-

toxic metabolites or end products (Khan et al., 2004). 

There are at least four pathways by which phytoremediation achieve reduced contaminant loads, 

including (i). abiotic losses, (ii). indigenous microbial degradation, (iii). root tissue-enhanced 

dissipation as well as (iv). root exudate-enhanced biodegradation (Sun et al., 2010). Additionally, 

the rhizosphere of plants used for bioremediation is exceedingly important in contributing to the 

dissipation of contaminants (Ma et al., 2010). Eelgrass (Zostera marina) is a plant that has been 

studied for its capability to remove PAHs from contaminated sediments (Huesemann et al., 2009). 

Eelgrass was reported to translocate PAHs (irrespective of the number of aromatic rings) from a 

contaminated substrate into its component body parts, with bioaccumulation factors that 

amounted to approximately 3 and 1 in roots and shoots respectively. They reported 73% total 

PAHs removal from sediments, whereby only 25% dissipation occurred in controls (without 

eelgrass). Eelgrass stimulated microbial biodegradation of PAHs was however proposed to be the 

main PAHs remediation pathway after eliminating possible losses to the water column or 

absorption and PAHs transformation by the plant. Elsewhere, a similar potential of various plant 

species for phytoremediation of persistent organic pollutants (POPs) from contaminated sites have 

been reported (Tesar et al., 2002; Euliss et al., 2008; Lin and Mendelssohn, 2009).  
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The concept of phytobial remediation takes advantage of the synergistic relationship that may 

exist between microbes and plants (Sun et al., 2010). This concept explores the ability of plants 

to enhance the microbial degradation of contaminants. Yu et al. (2011) reported that ryegrass 

enhanced the growth of Acinetobacter sp., linking this phenomenon to specific circumstances that 

occur in the rhizosphere of ryegrass root. Plants secrete photosynthate in root exudates, which 

supports the growth and metabolic activities of diverse fungal and bacterial communities in the 

rhizosphere (Alkorta & Garbisu, 2001).  

The phytoremediation capabilities of plants have been enhanced by inoculating them with 

microorganisms (arbuscular mycorrhizal fungus) to enhance PAH degradation. Gao et al. (2011) 

enhanced phytoremediation of PAHs by inoculating alfalfa (Medicago sativa L.) with Glomus 

mosseae and Glomus etunicatum. After 70 days of the arbuscular mycorrhizal phytoremediation 

(AMPR) experiments in greenhouse pots, more than 98.6% and 88.1% PAHs (phenanthrene and 

pyrene) were dissipated in soils by G. mosseae and G. etunicatum respectively, whereby 

insignificant dissipation (< 3.24%) was attributed to plant uptake. 

These remediation processes may be carried out either in-situ or ex-situ, using bioaugmentation 

and/or biostimulation enhancement. The in-situ approach involves treating contaminated material 

on-site. Conversely, the ex-situ approach involves the physical removal of contaminated material 

via excavation or pumping prior to treatment (Boopathy, 2000; Farhadian et al., 2008).  

Since PAHs are known toxicants, the effects on plants utilised for phytoremediation have been 

explored. Zhang et al. (2010) studied the effect of PAHs on plant growth in constructed wetlands. 

The study showed that different plant species interact differently with PAHs. They reported that 

the growth of Baumea juncea and Schoenoplectus validus increased with increasing naphthalene 

concentration while the growth of Juncus subsecundus decreased at high naphthalene levels in a 

hydroponic system. The authors concluded that PAHs affect wetland plant growth in a species-

specific manner, and the effect is independent of PAH type and media. 
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2.9.3.2 Bioremediation Systems for PAHs Degradation 

A bioremediation system mainly utilises microbial degradation processes in a technical and 

controlled treatment system to metabolise organic contaminants to inorganic materials such as 

carbon dioxide, water, inorganic salts and perhaps methane (Langwaldt & Puhakka, 2000; 

Farhadian et al., 2008). Bioremediation systems are employed to treat wastewater and runoff prior 

to discharge into aquatic systems. Remediation processes are carried out either in aerobic or 

anaerobic conditions (Gan et al., 2009). Anaerobic bioremediation processes have received 

increased attention in wastewater treatment due to advantages such as low energy consumption, 

low quantity of sludge generation and biogas recovery (Wen et al., 1999). A bioremediation system 

can be formed either with a bioreactor or in a constructed wetland. A bioreactor is a contained 

vessel, in which biological treatment takes place, while a constructed wetland utilises inherent 

natural geochemical and biological processes extant in a wetland ecosystem to accumulate and 

remove contaminants from influent waters (Van Stempvoort & Biggar, 2008). 

2.9.3.2.1 Bioreactors 

A bioreactor is highly effective at increasing bioavailability of poorly soluble compounds in the 

aqueous phase, and some of the bioreactors that have been utilised for PAH-biodegradation 

include fluidised-bed bioreactor (FBB), membrane bioreactor (MBR) as well as two-phase 

partitioning bioreactor (TPPB) [Kuyukina et al., 2009; Mozo et al., 2011]. Kuyukina et al. (2009) 

employed a FBB with immobilised Rhodococcus cells to treat petroleum-contaminated water. The 

advantages of FBB are based on its hydrodynamic and mass transfer phenomena. Rhodococcus 

cells were used because the Rhodococcus genus has diverse metabolic activities that enhance 

the degradation of petroleum hydrocarbons in the environment. Sawdust, polyvinyl alcohol cryogel 

and polyacrylamide cryogel were the hydrophobic carriers examined to immobilise Rhodococcus 

cells. The highest cell immobilisation yield and stable metabolic activity was reported for a 

hydrophobised sawdust-supported biocatalyst and was utilised in the FBB. A 46 - 70% removal of 

two to three ring PAHs was achieved for the contaminated water. Sawdust was therefore 

established as a non-toxic, economically viable, biodegradable and effective immobiliser in the 

FBB system for the treatment of PAH contaminated water. 

Membrane bioreactors operates as biological reactors to which a filtration module is added for the 

removal of contaminants (Wisniewski & Grasmick, 1998). Mozo et al. (2011) reported the use of 

membrane bioreactors for PAHs degradation. The authors examined PAH-degradation rates in 

two membrane bioreactor types; a cross-flow membrane bioreactor (which generates high shear 
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stress) and a semi dead-end membrane bioreactor (generates a low shear stress). The semi dead-

end membrane bioreactor removed PAHs more efficiently and non-biotic (sorption and 

volatilisation) processes contributed more to removal of PAHs. However, higher degradation rates 

were reported for the cross-flow membrane bioreactor relative to the semi dead-end membrane 

bioreactor. Shear stress was found to be a predominant factor that influenced PAH-removal. High 

shear stress dispersed bacteria and generated copious quantities of dissolved and colloidal 

matter, thus increasing PAHs bio-availability. 

Two-phase partitioning bioreactors have also been applied to achieve PAH-degradation 

(Guieysse & Viklund, 2005; MacLeod & Daugulis, 2005). The concept of TPPB is based on using 

water immiscible and biocompatible organic solvent that is allowed to float on the surface of a cell-

containing aqueous phase (Daugulis, 2001). This arrangement allows for optimal substrate 

delivery to microbes in the bioreactor. MacLeod and Daugulis (2005) noted that the pathways for 

microbial substrate uptake in TPPBs were predominantly, uptake of dissolved substrates in 

aqueous phase, biosurfactant-enhanced uptake of hydrophobic substrates, and substrate uptake 

when in direct contact with the organic phase. Mahanty et al. (2008) utilised silicone oil as non-

aqueous phase liquid and Mycobacterium frederiksbergense for biodegradation of pyrene in a 

TPPB. Results also showed that complete biodegradation of pyrene was achieved and thus 

TPPBs were efficient in enhancing the microbial biodegradation of the PAHs. 

Elsewhere, a roller bioreactor was also designed and tested for PAH-degradation. Purwaningsih 

et al. (2004) inoculated a roller bioreactor with Pseudomonas putida to degrade naphthalene. Such 

roller bioreactors are regarded to be ideal for bioremediation studies because they limit stripping 

losses of analytes better than traditional continuous stirred-tank reactors (CSTR). Table 2.11 

shows more evidence of studies where bioreactors have been employed in remediating PAHs.
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Table 2.11: Bioreactors utilised for PAH-degradation 

PAHs 
remediated 

PAH –matrix Bioreactor/material Organism used Primary 
mechanism 

Removal 
efficiency 

Reference 

BaA and BaP Water Mini-bioreactors (batch 
continuous stirred tank reactor 
(CSTR) and tubular semi-
continuous reactor) packed 
with alginate beads 

Selenastrum 
capricornutum and 
Scenedesmus 
acutus 

Biodegradation, 
sorption and 
photooxidation 

At 6 h up to 78% 
BaA removal and 
66% for BaP, while 
at 15 h up to 90% 
BaA removal and 
85% BaP removal 
for both organisms 
during basic 
bioassay with 90 
beads. Up to 92% 
PAH- removal in 
CSTR and 85% in 
semi-continuous 
reactor 

García de 
Llasera et al. 
(2018) 

Pyr Aqueous and 
Organic 
phases  

Two-phase partitioning 
bioreactor (TPPB) 

Mycobacterium 
frederiksbergense 

Biodegradation  Up to 100.0 % Mahanty et 
al. (2008) 

Nap, Flu, Phe, 
Ant, Flt, Pyr, BaA, 
BbF, BaP and 
DBA 

Aqueous and 
Organic 
phases  

Two-liquid-phase bioreactor 
(TLPB) 

Contaminated soil 
and agricultural soil 
as inocula 

Biodegradation Complete 
degradation of Nap, 
Flu, Phe, Ant, Flt and 
Pyr were achieved 
within 4 to 50 days 
for both inocula. 
Other PAHs were 
degraded to varying 
extent at the end of 
170 days except for 
DBA. Higher PAH 
degradation was 
achieved with 
contaminated soil 
inocula as compared 
to that from 
unpolluted 
agricultural soil 

Wang et al. 
(2010a) 

Phe, Ant, Flt, Pyr, 
BaA, Chy, BbF, 
BkF, BaP, DBA, 
BgP, and IcP 

Manufactured 
gas plant soil 

Mushroom compost NR Biodegradation Up to 98.0% Sasek et al. 
(2003) 
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PAHs 
remediated 

PAH –matrix Bioreactor/material Organism used Primary 
mechanism 

Removal 
efficiency 

Reference 

Nap, Acy, Can, 
Flu, Phe, Ant, Flt, 
Pyr, BaA, Chy, 
BbF, BkF, BaP, 
DBA, BgP, and 
IcP 

coal-tar 
contaminated 
soil 

laboratory-scale in-vessel 
composting reactors 

NR Biodegradation  Up to 90.0% Antizar-
Ladislao et 
al. (2005)  

Nap soil model 
systems 

NR Pseudomonas sp. 
HOB1 

Biodegradation 97.0 % of 2000 ppm 
of Nap degraded in 
24 hours and culture 
showed potential to 
tolerate Nap 
concentration of up 
to 60000 ppm.  

Pathak et al. 
(2009) 

Nap, Phe, BaP, 
and BgP 

Spiked garden 
soil 

spent mushroom compost fungi, bacteria and 
enzymes 

Biodegradation 
and Sorption 

Over 90.0% Lau et al. 
(2003) 

Nap: Naphthalene. Pyr: Pyrene. Phe: Phenanthrene. BaP: Benzo [a] pyrene. BgP: Benzo [g, h, i] perylene. Ant: Anthracene. Flt: Fluoranthene. BaA: Benzo [a] anthracene. 

Chy: Chrysene. BbF: Benzo [b] fluoranthene. BkF: Benzo [k] fluoranthene. DBA: Dibenzo [a, h] anthracene. IcP: Indeno [1,2,3-cd] pyrene. Acy: Acenaphthylene. Can: 

Acenaphthene. Flu: Fluorene.  
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2.9.3.2.2 Constructed Wetlands 

Wetlands serve as natural water purification ecosystems, in part, because the microphyte and 

microbial organisms that inhabit them can biotransform contaminants into products that are not 

harmful to the ecosystems (Yao et al., 2017; Sabia et al., 2018). Wetland microorganisms have 

been shown to induce enzymes for organic compounds assimilation, for use as substrates for cell 

growth and energy sources (Tran et al., 2013). Constructed wetlands are engineered to mimic 

natural wetlands, in the form of plants, soil and microorganisms that are associated with natural 

water purification in natural wetlands and are employed to remove contaminants from wastewater 

effluents (Kivaisi, 2001). The potential that constructed wetlands have for removing pollutants can 

be maximised if components that contribute to pollutant removal are selected carefully (Dordio & 

Carvalho, 2013). Much research has been dedicated to selecting the proper macrophytic plant 

species for PAH degradation in constructed wetlands (Zhang et al., 2008b). The main mechanisms 

by which contaminants are reduced in wetland ecosystems include sedimentation, filtration, 

chemical precipitation, adsorption, microbial interaction as well as plant uptake (Kivaisi, 2001). 

Constructed wetlands are successful because they are easy to use, require low maintenance, 

have low construction costs and have high remediation efficiency (Cottin & Merlin, 2008). Different 

types of constructed wetlands have been successfully designed and used for treating wastewater 

from various anthropogenic sources (Vymazal, 2009). Tromp et al. (2012) investigated the 

efficiency of a vertical-flow constructed wetland for removing eight PAHs from road runoff. More 

than 80% PAH-removal was achieved for most of the 11 PAHs (anthracene, phenanthrene, 

fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[a]pyrene, 

benzo[k]fluoranthene, dibenzo[a, h]anthracene and benzo[g, h, i]perylene), all amongst the 16 US 

EPA priority PAHs. The highest % removal was 94, reported for fluoranthene-, 

benzo[a]anthracene- and benzo[a]pyrene removal and the authors indicated that sedimentation 

played a very important role in PAH retention/removal. 

Giraud et al. (2001) studied the biodegradation of anthracene and fluoranthene in a constructed 

wetland system, and the role of fungi present within the system. This study demonstrated that 

constructed wetlands may serve as a media appropriate for isolating fungi capable of degrading 

PAHs. A total of 40 fungal species were isolated and assayed for capacity to degrade anthracene 

and fluoranthene from a liquid medium. Absidia cyclindrospora was the species most capable of 

degrading both compounds, with over 80% removal efficiencies. The workers also reported that 

fluoranthene was more susceptible to fungal depletion than was anthracene. The targeted 

contaminants in constructed wetlands were more easily degraded by strains that had previously 

been exposed to soils that were contaminated rather than to non-contaminated ones. Moreover, 
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the number of fungal colonies increased in soils that were contaminated with fluoranthene, which 

suggested that some fungal species might fluoranthene as a nutrient source. Fluoranthene was 

efficiently degraded by 33 species of fungi that had been isolated from contaminated wetlands, 

while only two species achieved >70% anthracene degradation. Giraud et al. (2001) suggested 

that microbial (especially fungal) biotransformation contributed greatly to PAH-biodegradation in 

the wetland system. 

Fountoulakis et al. (2009) studied the removal of PAHs from domestic wastewater in pilot scale 

constructed subsurface flow (SSF) and free-water surface (FWS) constructed wetlands. Average 

PAH removal efficiencies of 79.2% and 68.2% for SFF and FWS respectively were reported. 

Settling and sedimentation were suggested as the most likely removal processes in SSF, because 

PAH mean removal efficiencies correlated well with total suspended solid (TSS) removal 

efficiencies. The correlation for the mean PAHs removal rate in the FWS system was much lower, 

suggesting that photo-degradation could have been the main PAH removal process from this 

system. 

2.9.3.3 Biosorption 

Different biomass types have been used in both industrial and environmental applications; in 

biofuel production and the manufacture of renewable adsorbents for contaminants amongst 

others. Biomass have several attributes that makes them ideal in remediation approaches which 

include availability, low cost, high contaminant removal efficiency and environmental friendliness 

(Demirbaş, 2001; Opeolu et al., 2011). Agricultural wastes are such biomass, which contains 

hemicellulose, lignin, extractives, lipids, proteins, simple sugars, hydrocarbon forms, and starch 

[with functional groups that facilitate adsorption] (Dordio & Carvalho, 2013). Lignin in agricultural 

biomass is thought to be a major component that adsorbs organic pollutants like PAHs (Ho et al., 

2005). 

The non-polar nature of PAHs, limits their bioavailability and biodegradation rates which makes 

them subject to biosorption (adsorption by biomass), previously described by Chen et al. (2011) 

as being amongst the most economical and effective techniques for removing organic pollutants 

at low concentrations. Biosorption is defined as a physico-chemical process for sorbing chemicals 

in/on biological matrices/surfaces (Chen et al., 2010). Biosorption avoids the generation of toxic 

sludge and can be used under a broad range of operating conditions such as pH, adsorbate 

concentration and temperature, amongst others (Wang & Qin, 2005). Biosorption studies have 
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been performed on heavy metals, dyes, pesticides and on other organic pollutants (Aksu, 2005; 

Garg et al., 2007; Opeolu et al., 2011). 

Biosorption approaches have also been integrated with other remediation approaches to 

effectively remediate impacted media, such as in biomass recycling of effluent during soil washing 

(Li et al., 2014) and in the inoculation of biomass with microorganisms to enhance contaminant 

biodegradation (Xiong et al., 2017). Some biosorption approaches for PAHs remediation are 

presented in Table 2.12. 

Plant residues (dead biomass generally from crops) have also attracted research interest for their 

biosorption application as it has been shown that they have high sorption affinity for POPs and 

are easy to modify (Chen et al., 2011). Plant residues are often preferred over living biomass, 

because they are not affected by toxic wastes, do not require nutrients, and can often be 

regenerated and reused for many treatment cycles. Dead biomass may also be used or stored for 

extended periods at room temperature without putrefaction occurring (Aksu, 2005). Plant residues, 

wood chips, ryegrass root, orange peels, bamboo leaves and pine needles were studied by Chen 

et al. (2011) for their capacity to adsorb PAHs in batch biosorption experiments. Phenanthrene 

sorption coefficients reported, ranged from 2484 to 5306 L/kg and the lowest was for wood chips, 

which has low vibration band intensity for lignin and high sugar content (60.6%). The results 

showed that plant residues with high lignin content have enormous potential for removing PAHs 

and suggested that lowering the polar components (mainly sugar) of plant derived biosorbents 

could enhance sorption capability. Modified pine bark (through acid hydrolysis) with increased 

lignin content has also been reported to display enhanced phenanthrene-sorption (from 62.91% 

to up to 91.16% PAH-removal) compared to the raw pine bark that has low lignin content (Li et al., 

2010b). Lignin was assumed to be the main sorption medium in pine bark for organic pollutants 

due to its hydrophobic nature. 

Biomass from grape have also been studied for their adsorption potential; grape peel for dye-

sorption (Saeed et al., 2010) and grape waste from wine production for Cr (VI)-sorption (Chand et 

al., 2009). Chand et al. (2009) reported that Cr (VI) was selectively adsorbed over other metal ions 

tested by cross-linked grape waste gel. The adsorption of Cr (VI) was highly dependent on pH, 

with maximum adsorption (1.91 mol/Kg) at pH 4.These studies established the potential of grape 

waste as an effective adsorbent. Saeed et al. (2010) reported the sorption of crystal violet dye by 

grape fruit peel. The studies demonstrated that grape fruit peel could be used as a cost-effective 

adsorbent for the removal of crystal violet dye from aqueous solution. Crystal violet removal was 

reported to be dependent upon process parameters such as pH, sorbate and sorbent 
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concentration, and contact time as shown by batch adsorption studies. The adsorption of diuron 

(3-(3,4-dichlorophenyl)-1,1-dimethylurea) an organic herbicide from water onto chemically 

activated carbons produced from grape seeds has also been studied (Al-Bahri et al., 2012). They 

reported that, the best adsorbent produced, had a surface area and mesopore volume of 1139 

m2/g and 0.24 cm3/g respectively. The uptake of diuron by the adsorbent was time dependent and 

it was reported that most uptake occurred in the first 8 h. The quantity adsorbed at 8 h, initial 

diuron concentration (C0) of 65.7 µmol/L, adsorbent dosage of 50 mg was 61.2 µmol/g at 25oC. 

Varied temperatures [15 to 45oC at initial diuron concentration of 65.7 µmol/L] and initial 

concentrations (24.2 to 141.7 µmol/g at 25oC) led to increase in amount of diuron adsorbed, from 

59.3 to 63.5 µmol/g and 20.5 to 129.1 µmol/g respectively. They concluded that waste agricultural 

biomass from grape can serve as a precursor for adsorbents that could be favourably applied for 

the adsorption of organic contaminants from aqueous solutions. High removal efficiencies (88 -

95%) were reported by Fagbayigbo et al. (2017) for the removal of perfluorooctane sulfonate 

(PFOS) and perfluorooctanoic acid (PFOA) from aqueous solution onto activated carbons 

produced from grape leaf litter. They also reported maximum adsorption capacity of 75.13 and 

78.90 mg/g for PFOS and PFOA respectively.  
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Table 2.12: Biosorption approaches for PAHs remediation 

PAHs PAH-Matrix Biomass Biomass 

modification 

Carbon content (C) and surface 

area (SA) of Adsorbent 

Percentage 

removal 

Reference 

16 US EPA PAHs Contaminated soil Dried willow 
(DW) (Salix 
viminalis) and 
wheat straw 
(WS) 

Pyrolysed at 
600 – 700oC 

C were 52.20% and 53.87%, while 
BET SA were 5.3 m2/g and 26.3 m2/g 
for biochars from dried willow and 
wheat straw respectively. 

Biochars reduction of 
bioaccessible PAHs in 
soil were 29.3% and 
38.0% for DW and WS 
biochars respectively. 

Oleszczuk et al. 
(2017) 

16 US EPA PAHs Polluted soil Sawdust and 
wheat straw 

Pyrolysed at 
300oC and 
500oC 

Biochar at 
300oC 

Biochar at 
500oC 

Wheat straw biochar 
gave relatively higher 
efficiency and the one 
produced at 500oC 
enhanced the 
degradation of 3-,4-,5- 
and 6-ringed PAHs by 
69.95%, 45.96%, 
37.92% and 30.66% 
respectively.  

Kong et al. (2018) 

C: 51.59% and 
63.94% 
BET SA: 4.78 
m2/g and 5.96 
m2/g for biochars 
from sawdust 
and wheat straw 
respectively.  

C: 81.29% and 
88.10%. BET 
SA: 28.46 m2/g 
and 33.46 m2/g 
for biochars 
from sawdust 
and wheat straw 
respectively.  

Pyr and BaP Simulated 
wastewater 

Enteromorpha 
prolifera 

Pyrolysed at 
temperature 
range of 200 to 
600oC, 20g 
each was then 
activated with 
mixture of 1M 
HCl (180 mL) 
and conc. HF 
(20 mL) 

Biochar at 
500oC 

Activated 
biochar at 
500oC  

Biochar produced at 
500oC gave the 
highest efficiency with 
59.8% and 48.1% 
removal of Pyr and 
BaP respectively. 
Higher removal was 
achieved with the 
biochar after acid 
treatment with 92.5% 
and 85.2% Pyr and 
BaP removal 
respectively. 

Qiao et al. (2018) 

C: 22.81% 
BET SA: 7.33 
m2/g 

C: 38.27% 
BET SA: 205.32 
m2/g 

BaA, BbF, BkF, BaP 
and DBA 

Water Coconut waste 
(CW) and 
Orange waste 
(OW) 

Pyrolysed at 
350oC to give 
biochars (BCW 
and BOW 

Raw (CW & OW) Biochar (BCW 
& BOW) 

PAHs adsorption 
capacity of adsorbents 
were in the ranges of 
34 to 87%(CW), 23 to 
64% (OW), 41 to 86% 
(BCW) and 23 to 88% 
(BOW). No significant 
difference in PAHs 
adsorption by raw CW 
and the resulting 
biochar. 

de Jesus et al. 
(2017) 

C: 43.31% and 
40.52%  
BET SA: 118.612 
m2/g and 
109.971 m2/g 

C: 61.04% and 
59.98% 
BET SA: 
233.869 m2/g 
and 261.233 
m2/g  
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PAHs PAH-Matrix Biomass Biomass 

modification 

Carbon content (C) and surface 

area (SA) of Adsorbent 

Percentage 

removal 

Reference 

Phe Aqueous solution Debarked 
loblolly pine 
(Pinus taeda) 

Pyrolysed at 
different 
temperatures 
(300,350,500 
and 700oC), 
then activated 
with NaOH i.e. 
3g of pyrolysed 
biomass was 
treated with 40 
mL of 4 M 
NaOH.  

Pyrolysed 
biomass 

Activated 
biochar 

Activation of biochars 
with NaOH greatly 
enhanced their PAH 
sorption ability, 
especially those 
obtained from low 
temperature pyrolysis 
(300 and 350oC), with 
that obtained at 300oC 
exhibiting good initial 
sorption efficiency 
(156 mg/g) after 30 
min and higher 
adsorbed PAH 
concentration at 
equilibrium, while that 
produced at 700oC 
binds the PAH more 
strongly. 

Park et al. (2013) 

C obtained were 
23.6, 56.3, 79.4 
and 87.1%, while 
BET SA were 
1.41,7.37,239 
and 321 m2/g for 
biochars 
obtained at 300, 
350,500 and 
700oC 
respectively. 
(Raw biomass: 
11.0% C and 
0.38 m2/g BET) 

C obtained were 
79.7, 77.4, 86.5 
and 83.8%, 
while BET SA 
were 1250, 702, 
346 and 57.0 
m2/g for 
activated carbon 
obtained from 
biochar 
produced  
at 300, 350,500 
and 700oC 
respectively. 

Pyr: Pyrene. Bap: Benzo[a]pyrene. Phe: Phenanthrene. BaA: Benzo[a]anthracene. BbF: Benzo[b]fluoranthene. BkF: Benzo[k]fluoranthene. DBA: Dibenzo[a, h]anthracene.
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Application of pyrolytically modified biomass (biochar) with improved biosorption efficiency in 

remediation approaches have been widely successful (Li et al., 2014; Xiong et al., 2017). Biochars 

are produced through carbonisation, a thermochemical process, called slow pyrolysis which 

converts biomass into solid char. This solid char is a residue with higher fixed carbon that results 

from the cracking of the weakest oxygenated bonds in the biomass. Char, pyrolysis vapours and 

gases are the main products of carbonisation. This process is carried out in an inert atmosphere 

(Peláez-Samaniego et al., 2008; Ioannidou & Zabaniotou, 2007). Pyrolysis of biomass can be 

classified as a heterogeneous chemical reaction. The reaction involves the breakage and 

redistribution of chemical bonds, changing reaction geometry and the interfacial diffusion of 

reactants and products (White et al., 2011). The solid char (biochar) shows different properties 

than the parent biomass materials. The remarkable differences are mainly in porosity, surface 

area, pore structure (micropores and macropores) and physicochemical properties such as 

composition, elemental constituent and ash content. Also, the biochar has variable charges and 

functional groups which enhances its adsorption and cation exchange capacity (Anawar et al., 

2015). This is as a result of thermal treatment, which removes the moisture and the volatile matter 

content of biomass (Ioannidou & Zabaniotou, 2007). 

Li et al. (2014) produced biochars from wheat straw through pyrolysis at 400oC, 600oC and 800oC, 

which were utilised to selectively adsorb PAHs from soil washing effluents. The produced biochars 

were characterised and it was reported that the characteristics were highly dependent on pyrolytic 

temperature. Biochar carbon content increased with pyrolytic temperature, while oxygen, 

hydrogen and sulphur contents decreased. Hence, biochar produced at elevated temperature 

exhibited high aromaticity. The biochar surface area and total pore volume also increased with 

increase in pyrolytic temperature, whereas the pore width decreased. The biochar produced at 

800oC yielded the highest PAH removal efficiency (95.8 – 98.6%), followed by the biochar 

produced at 600oC (82.4 – 93.4%) and lastly the biochar produced at 400oC (71.8 – 88.1%). 

Hydrogen bonding, hydrophobic and π – π interaction; electrostatic attraction/repulsion and 

micropore filling were the mechanisms highlighted to be responsible for biochar-organic pollutant 

interactions. 

Xiong et al. (2017) inoculated biochar produced from rice straw with PAH-degrading 

Mycobacterium gilvum for enhanced PAH-biodegradation. Biochars were also produced from 

sewage sludge and pig manure (all pyrolysed at 500oC under limited oxygen atmosphere). Results 

showed that the biochar from plant origin (rice straw) showed the largest specific surface area 

(68.1 m2/g), pore volume (0.17 cm3/g) and surface basic groups (0.172 mmol/g), and was selected 
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as the inoculum immobiliser/carrier for the batch biodegradation study. The biochar-microbe 

composite was reported to show superior phenanthrene, fluoranthene and pyrene degradation in 

historically contaminated soil with degradation improvement of 15.5% for phenanthrene, 45.55% 

for fluoranthene and 42.6% for pyrene relative to M. gilvum cells alone after 18 days incubation. 

This was attributed to biochar improved PAHs mass transfer from the soil to the biochar-

composite, where subsequent PAHs degradation took place.  

The capability of six biochars produced from varied materials (maize stover residues, pine wood, 

switchgrass, food waste, digested dairy manure and paper mill waste) in the stabilisation of 

sewage sludge to reduce freely dissolved PAHs (dominated by Phe (46%), Flu (19%) and Pyr 

12%)) content was investigated by Oleszczuk et al. (2014). Biochars capability significantly 

increased with increases in biochar-dose from 2% to 5%. Biochar feedstock was also shown to 

play a significant role in biochar-organic pollutant affinity, with biochar having lower polarity index 

(O/C), being more effective in the reduction of PAHs. Biochar obtained from switchgrass gave the 

highest effectiveness in PAH reduction, while biochar from pinewood showed relatively large freely 

dissolved PAH reduction. However, the poorest PAH reduction was reported for biochar obtained 

from the nonplant origin (digested dairy manure). The obtained reduction of PAHs ranged from 

17.4 to 58.0% while the reduction of freely dissolved PAHs ranged from 38.3 to 69.0%. 

Biochar can also be converted into activated carbon through either chemical activation or physical 

activation (Mohan et al., 2006). Activated carbon is a crude form of graphite with random or 

amorphous structure, which is highly porous, exhibiting a broad range of pore sizes from visible 

cracks, crevices to slits of molecular dimensions (Mohan et al., 2006). Activated carbon is used 

extensively in industrial purification and chemical recovery operations. They are particularly 

advantageous because of their high internal surface area and active surface. In general, higher 

surface area results in higher adsorption capacity (Williams & Reed, 2006). 

Chemical activation is a single step method for preparation of activated carbon in the presence of 

chemical agents. Physical activation involves carbonisation of carbonaceous materials followed 

by activation of the resulting char in the presence of activating agents such as CO2 or steam. The 

chemical activation usually takes place at a temperature lower than that used in physical 

activation, therefore a higher carbon yield, as a result of lower burn-off and improvement in pore 

structure development due to chemical effects (Sudaryanto et al., 2006). Various dehydrating 

reagents and oxidants have been used for the activation of char from different biomass; H3PO4 for 

tobacco stems (Li et al., 2008) and KOH for cassava peels (Sudaryanto et al., 2006). Other 

reagents that have been used include zinc(II)chloride, ammonium salts, borates, calcium oxide, 
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ferric and ferrous compounds, nickel salts, hydrochloric acid, nitric acid and sulfuric acid (Mohan 

et al., 2006). 

Gustafsson et al. (2017) reported the use of activated carbon from softwood kraft lignin in an in-

situ remediation approach for PAHs impacted sediments. The PAH-sorption test conducted on 

softwood and hardwood kraft lignin showed that without chemical modifications, they are both 

poor sorbents. However, when the softwood lignin was activated by KOH (lignin: KOH, 1:3) and 

carbonised at 700oC, the resultant activated carbon had sorption capability in water and 

contaminated sediments comparable to those of commercially available activated carbons. The 

amendment of the contaminated sediment to have 1% composition of activated carbon, resulted 

in 80% PAHs concentration reduction in pore water and reduced the bioavailability of larger PAHs 

by 54% on average in sediments. Up to 90% reduction in pore water desorption and bioavailability 

of contaminants in sediments was achieved. Furthermore, the high affinity of activated carbons 

for pollutants was shown by the study conducted by Oleszczuk et al. (2012). They investigated 

the utilisation of activated carbons and biochar in the amendment of sewage sludge in order to 

decrease pore water concentrations of PAHs. The polarity index (O/C) of the utilised adsorbents 

showed that activated carbons (O/C of 0.08 to 0.10) had fewer surface polar functional groups, 

hence higher aromaticity as compared to biochar (O/C of 0.19 to 1.12) and similar trend is true for 

adsorbents from plant origin as compared to other feedstocks. Carbon contents were observed to 

be higher in activated carbons (81.1 to 91.78%) compared to biochar (19.22 to 41.57%). Also from 

the study by Oleszczuk et al. (2012), activated carbons were reported to have exhibited higher 

influence on freely dissolved PAHs as compared to biochars. Addition of 5% dose of activated 

carbons to sewage sludge achieved up to 95% reduction in freely dissolved PAHs concentration, 

whereby biochars at 10% dose only achieved up to 57.7% reduction. Thus, chemical activation is 

effective in promoting sorption capabilities of biochars. 
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2.10 Adsorption remediation technology  

A wide range of treatment technologies such as precipitation, coagulation-flocculation, 

sedimentation, flotation, filtration, membrane processes, electrochemical techniques, biological 

processes, chemical reactions, adsorption and ion exchange have been developed for the 

purification of wastewaters (Foo & Hameed, 2010; Munir et al., 2017; Sarasidis et al., 2017). 

Adsorption treatment technology is a surface phenomenon, it is efficient, promising and a broadly 

used essential approach in wastewater treatment processes, due to its simplicity, economic 

viability, technical feasibility and environmental friendliness (Foo & Hameed, 2010). Adsorption is 

the adhesion of atoms, ions, biomolecules or molecules of gas, liquid or dissolved solids to a 

surface via chemical and physical bonds. It involves separation of a substance or adsorbate from 

one phase, followed by its accumulation onto the surface of the adsorbent (Abdullah et al., 2009). 

The process creates a film on the surface of the adsorbent, when the adsorbate is transferred onto 

the surface of the adsorbent until equilibrium has been reached (Gökmen & Serpen, 2002). 

The optimum removal efficiency of an adsorbent for a given adsorbate can be determined, which 

involves the investigation of a range of factors that may influence sorption. These include pH, 

contact time, weight of adsorbent, initial concentration of adsorbate, temperature, agitation speed 

and/or time, and particle size, amongst others. 

2.10.1 Adsorption isotherm models 

Adsorption equilibria information is the most important piece of information in understanding an 

adsorption process. No matter how many components are present in the system, the adsorption 

equilibria of pure components are the essential ingredient for the understanding of how much 

those components can be accommodated by a solid adsorbent (Hamdaoui & Naffrechoux, 2007). 

Adsorption isotherms are therefore used to describe the equilibrium of an adsorption process, 

which is the equilibrium relationship between the concentration in the fluid phase and 

concentration in the adsorbent particles at a given temperature (Gökmen & Serpen, 2002). In 

modelling adsorption data, more than one candidate model is often fitted to the experimental data 

with the aim of studying the closeness of experimental data to the theoretical (model) data 

obtained from known isotherm models with known background theories (Akpa & Unuabonah, 

2011). The two commonly used isotherms are Langmuir and Freundlich, while others include 

Temkin, Dubinin-Radushkevich and Redlich-Peterson isotherm models (Qu et al., 2009; Dada et 

al., 2012). 
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2.10.1.1 Langmuir isotherm model 

The Langmuir model has been described as the simplest theoretical model, valid for monolayer 

sorption onto a surface with a finite number of identical adsorption sites (Abdullah et al., 2009; Liu 

et al., 2010). The model gives a quantitative description of adsorbate-monolayer formation on the 

outer surface of an adsorbent, besides which no further adsorption takes place. The model 

therefore represents the distribution of adsorbates between the adsorbent and the liquid phase 

(Dada et al., 2012). The Langmuir model assumes the following: 

1. That a fixed number of adsorbate molecules are adsorbed onto well-defined localised sites 

of the adsorbent; 

2. That all adsorption sites have uniform energies; 

3. That each site holds one adsorbate molecule; 

4. That there is no transmigration of adsorbate in the plane of the adsorbent surface i.e. 

adsorbate molecules in neighbouring sites do not interact (Abdullah et al., 2009). 

The nonlinear Langmuir isotherm is represented as follows: 

 𝒒𝒆 =
𝑸𝑲𝑳𝑪𝒆

𝟏+(𝒂𝑳𝑪𝒆)
         Equation 2.1 

where 𝑞𝑒 (mg/g) represents solid phase equilibrium concentration, Ce (mg/dm3) represents liquid 

phase equilibrium concentration, Q an energy term which is equal to unity in most cases and KL 

(dm3/g) and aL (dm3/g) are the Langmuir constants (El Qada et al., 2006). 

2.10.1.2 Freundlich isotherm model 

The Freundlich model is an empirical equation usually employed to interpret non-ideal sorption on 

heterogenous surface as well as multilayer sorption or surfaces supporting sites of varied 

adsorptive energies (Qu et al., 2009; Liu et al., 2010; Abdullah et al., 2009). The model assumes 

that the stronger binding sites are preferentially occupied and that binding strength decreases with 

increasing degree in site occupation (Qu et al., 2009). Also, that the adsorption sites are non-

identical and are not always available (El Qada et al., 2006). the model is characterised by the 

heterogeneity factor ‘1/n’ mathematically (El Qada et al., 2006). 

 The nonlinear Freundlich isotherm is represented as follows: 

𝒒𝒆 = 𝑲𝑭𝑪𝒆

𝟏

𝒏          Equation 2.2 
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where 𝑞𝑒 (mg/g) is the amount of solute adsorbed, Ce (mg/dm3) is solute concentration in 

equilibrium solution, KF ((mg/g)/(dm3/g)n) is Freundlich isotherm constant and n is the 

heterogeneity factor. The KF value relates adsorption capacity and 1/n is the constant that relates 

to adsorption intensity (El Qada et al., 2006). 

2.10.1.3 Temkin isotherm model 

Temkin isotherm model contains a factor that explicitly takes into account the adsorbent-adsorbate 

interaction (Qu et al., 2009; Foo & Hameed, 2010). The model assumes that the decrease in the 

heat of sorption of all molecules in the layer is linear rather than logarithmic with coverage due to 

adsorbent-adsorbate interaction (Qu et al., 2009; Foo & Hameed, 2010). Extremely low and high 

concentration values are ignored in the model and its derivation is characterised by a uniform 

distribution of binding energies (Foo & Hameed, 2010). 

The nonlinear Temkin isotherm model is represented as follows: 

𝒒𝒆 =
𝑹𝑻

𝒃𝑻
 𝒍𝒏(𝑲𝑻𝑪𝒆)        Equation 2.3 

where 𝑞𝑒 is the amount of solute adsorbed, KT represent Temkin isotherm equilibrium binding 

constant (L/g), Ce is solute concentration in equilibrium solution, bT is the Temkin isotherm 

constant, R is the universal gas constant (8.314 J/mol K), T is the absolute temperature (K) and 

RT/bT = B (J/mol), which is the Temkin constant related to heat of sorption (Qu et al., 2009). 

2.10.1.4 Dubinin-Radushkevich model 

The Dubinin-Radushkevich model is an empirical equation developed originally to describe the 

adsorption pathway of subcritical vapours onto microporous solids such as activated carbons and 

zeolites (Nguyen & Do, 2001). It is however, applicable in describing the sorption nature of the 

sorbate onto sorbent heterogenous surface and in examining the characteristics, the mean free 

energy and the porosity of adsorbents (Akar et al., 2010). The model has been successfully 

applied to distinguish between the physical and chemical adsorption of solutes, having the mean 

free energy per adsorbate molecule (E) expressed as follows:  

 𝑬 =  [
𝟏

√𝟐𝑩𝑫𝑹
]         Equation 2.4 

where BDR is the Dubinin-Radushkevich isotherm constant (Foo & Hameed, 2010). 
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2.10.1.5 Redlich-Peterson model 

The Redlich-Peterson Model is a hybrid isotherm usually employed as a compromise between 

Langmuir and Freundlich isotherms, and the model incorporates three parameters into an 

empirical expression (Foo & Hameed, 2010). The model has the advantageous significance of 

both Langmuir and Freundlich models, making it versatile and applicable in either homogeneous 

or heterogeneous systems (Qu et al., 2009; Foo & Hameed, 2010). 

The Redlich-Peterson model is represented as follows: 

𝒒
𝒆= 

𝑲𝑹𝑷𝑪𝒆

𝟏+ (∝𝑪𝒆)𝜷

         Equation 2.5 

where KRP (L/g) and (αCe)
 β are Redlich-Peterson isotherm constants and β ranges between 0 and 

1 (Qu et al., 2009). 

2.10.2 Adsorption kinetic models 

Adsorption kinetic information is necessary for the design of sorption systems. Kinetic models help 

in investigating sorption mechanisms and the potential rate controlling steps like mass transfer 

and chemical reaction processes (Ho & McKay, 1998). While chemical kinetics explains the rate 

of chemical reactions and the factors affecting the reaction rate, measurement of sorption rate 

constants could evaluate the basic qualities of a good sorbent such as the contaminant removal 

efficiency of the sorbent. Pseudo-first order and Pseudo-second order models are the most 

commonly used models to explain adsorption kinetics (Abdullah et al. 2009). The Elovich model 

and Weber Morris intraparticle diffusion model have both been employed too (Wu et al., 2009). 

 2.10.2.1 Pseudo-first order model 

The pseudo-first order model was first used to describe the kinetics of sorption onto solid surface 

in a liquid-solid phase system around 1898 by Lagergren, who studied the sorption of oxalic acid 

and malonic acid onto charcoal (Ho & McKay, 1998). This kinetic model has since been employed 

by numerous scientists to describe the sorption of different solutes onto solid surfaces: sorption of 

Cu (II) from aqueous solution onto fly ash (Panday et al., 1985); sorption of phenol, m-cresol, o-

cresol and p-cresol from aqueous solution onto fly ash and impregnated fly ash (Singh & Rawat, 

1994); sorption of tannic acid, humic acid and dyes (reactive red RR222 and methylene blue) from 

water onto activated clay (Chang & Juang, 2004). In first order mechanism, the film diffusion is an 
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important rate controlling-step and the initial rate of solute sorption can be characterised by mass 

transfer (Aksu, 2005).  

The pseudo-first order equation is generally represented as follows: 

ⅆ𝒒𝒕

ⅆ𝒕
= 𝒌𝟏(𝒒𝒆 − 𝒒𝒕)        Equation 2.6 

where 𝒒𝒆 and 𝒒𝒕 are the sorption capacity (mg/g) at equilibrium and at time t (min) respectively 

and 𝑘1 is the model sorption rate constant (1/min) (Abdullah et al., 2009). 

Integrating the pseudo-first order rate expression above gives: 

𝒍𝒐𝒈(𝒒𝒆 − 𝒒𝒕) =  𝒍𝒐𝒈𝒒𝒆 −
𝒌𝟏

𝟐.𝟑𝟎𝟑
𝒕      Equation 2.7 

2.10.2.2 Pseudo-second Order Model 

The pseudo-second order mathematical rate expression was first presented by Blanchard and co-

workers in 1984, to predict the removal rate of heavy metals from water by means of natural 

zeolites (Plazinski et al., 2013). Blanchard and co-workers assumed that the metallic concentration 

varies very slightly during the first hours and that the kinetic order is two with respect to the number 

(n0 - n) of available sites for the exchange of NH4
+ ions fixed on zeolites by divalent metallic ions 

(M2+) in solution, which they gave the differential and integrated equations respectively as follows: 

− 
ⅆ𝒏 

ⅆ𝒕
 = 𝑲(𝒏𝟎 − 𝒏)𝟐           Equation 2. 8 

 
𝟏

(𝒏𝟎−𝒏)
 −  𝜶 =  𝑲𝒕        Equation 2. 9 

Where 𝒏 is the amount of M2+ removed/fixed or the amount of NH4
+ released at each instant, 𝒏𝟎 

is the exchange capacity and 𝑲 is the rate constant (Blanchard et al., 1984; Ho, 2006). 

In more recent time however, pseudo-second order rate expression based on adsorbent capacity 

has been presented for adsorption kinetics as follows:  

ⅆ𝒒𝒕

ⅆ𝒕
=  𝒌𝟐 (𝒒𝒆 − 𝒒)𝟐        Equation 2.10 

Integrating the pseudo-second order rate expression above gives: 
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𝒕

𝒒𝒕
 =  

𝟏

(𝒌𝟐𝒒𝒆)𝟐  +  
𝒕

𝒒𝒆
        Equation 2.11 

where 𝑘2 (g/ (mg min)) = pseudo-second order model rate constant (Qu et al., 2009). 

Experimental data obtained from adsorption experiments of PAHs onto activated carbons, have 

been reported to be well fitted by pseudo-second order kinetic model (Shi et al., 2013; Rad et al., 

2014; Lamichhane et al., 2016). Shi et al. (2013) reported a correlation coefficient (R2) of 0.9991 

and adsorption rate of 31.95 mg/(g. min) at 0.08 g/L activated carbon dosage, when experimental 

data obtained from naphthalene adsorption onto high surface area activated carbon were fitted by 

pseudo-second order kinetic model. 

2.10.2.3 Elovich Model 

The Elovich model which describes chemical adsorption mechanism in nature, was originally 

presented in 1939 and has been reported to fit satisfactorily to a number of chemisorption 

processes, a wide array of slow adsorption rates and valid for adsorption on heterogenous 

surfaces (Wu et al., 2009; Aljeboree et al., 2017). The adsorption of metals, dyes, humic acid, 

phenols as well as PAHs onto varied adsorbents have been reported to follow Elovich kinetic 

model (Wu et al., 2009; Demirbas et al., 2004; Olu-owolabi et al., 2014; Lamichhane et al., 2016).  

The Elovich model expression is represented as follows: 

ⅆ𝒒𝒕

ⅆ𝒕
=  𝜶 𝒆𝒙𝒑(−𝜷𝒒𝒕)        Equation 2.12 

Where 𝛼 and 𝛽 are constants during an experiment. 

𝛼 (mg/ (g. min)) = initial adsorption rate 

𝛽 (g/mg) = Elovich desorption constant (Wu et al., 2009) 

2.10.2.4 Weber Morris Intraparticle Diffusion Model 

The Weber Morris intraparticle diffusion model was developed by Weber and Morris and can be 

utilised when intraparticle diffusion is involved in a sorption process, to establish the region where 

intraparticle diffusion is the rate-limiting step and also to determine the intraparticle diffusion rate 

in such system (Aksu, 2005). If a plot of quantity of solute sorbed versus the square root of the 
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contact time result in a linear relationship with the straight line passing through the origin, 

intraparticle diffusion is the rate limiting step in such sorption system (Weber & Morris, 1963).  

The rate expression for intraparticle diffusion can be represented as follows:  

𝒒𝒕  = 𝒇 (
𝑫𝒕

𝒓𝒑
𝟐)

𝟏
𝟐⁄

 = 𝑲 (𝒕
𝟏

𝟐⁄ )       Equation 2.13 

where 𝑟𝑝 is the radius of adsorbing particle, 𝐷 is the effective diffusivity of solute within the particle 

and 𝐾 is the intraparticular diffusion rate (Aksu, 2005). 
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2.11 Diep River 

The Diep River rises from the Riebeek-Kasteel Mountains and flows south-westerly through 

Malmesbury, Table View and Milnerton, to drain into Milnerton Lagoon. The river is about 65 km 

long and forms an extensive vlei (wetland) at the Table Bay coastline, known as Rietvlei, which is 

largely utilised for recreational activities. Hence, the tidal inlet at the Milnerton lagoon and the 

wetland system (Rietvlei) constitute the important features of the Diep River (Mafejane et al., 2002; 

Jackson et al., 2009). 

The Diep River catchment has industrial areas, agricultural areas, formal and informal settlements 

and wastewater treatment works with a total area of 1495 km2. The catchment is low and flat 

(making it ideal for crop cultivation) but has isolated mountains (the Perdeberg, Kasteelberg and 

Paarlberg mountains) on its eastern boundary. The Diep River catchment is bound by the following 

towns: Riebeek-West (to the north), Paarl (to the east), Atlantis (to the west) and Milnerton (to the 

south) (Mafejane et al., 2002). 

The Messelbark River is the major tributary of the Diep River, while the Riebeek River, Klein River, 

Swart River, Platklip River and the Sout River are the others. The Diep River and its tributaries 

experience high water level in winter due to rainfall, but low water level and even dries up at certain 

locations in summer due to high evaporation regimes (Mafejane et al., 2002). Also, due to 

extensive siltation over the years as a result of catchment erosion, the Diep Rietvlei system serves 

as storage area of sediment-rich water during river floods and after the flood there is reduction in 

water level (Paulse et al. 2009). 

2.12 Plankenburg River 

The Plankenburg River rises from the mountains of the Boland region, Western Cape, South 

Africa. It is about 10 km long and flows through Stellenbosch (known for winery) and Kayamandi 

township (informal residence) (Jackson et al., 2009). The Plankenburg River is the major tributary 

of the Eerste River in the Stellenbosch area, with the Kromme and the Jonkershoek Rivers being 

the other tributaries of the Eerste River in this area. The Plankenburg River flows south-easterly 

and joins the Eerste River at the Adam Tas bridge, that ultimately opens into the ocean at 

Macassar beach. The Plankenburg River services various industrial and agricultural activities, 

which includes irrigation of edible crops. Some of the establishments on the Plankenburg River 

catchment includes: clothing factory, cheese factory, spray painting, mechanical workshops, 

wineries and dairy factories (Nleya, 2005; Paulse et al., 2009).  
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CHAPTER 3 

METHODOLOGY 

3.1 Method of analysis 

3.1.1 Chemicals 

The 16 US EPA PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, 

anthracene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a, h]anthracene, Benzo[g, h, i]perylene and 

Indeno[1,2,3-cd]pyrene) standards were purchased from Supelco, Bellefonte, PA, USA. 

Dichloromethane (DCM), n-hexane, other solvents and chemicals were obtained from Sigma-

Aldrich (South Africa). 

3.1.2 Method development on GC-FID  

A SPE-GC-FID method was developed for the simultaneous determination of the 16 US EPA 

priority PAHs. 

3.1.2.1 Standards and calibration solutions 

Stock solutions (1000 µg/mL) of the 16 PAHs were prepared in dichloromethane by dissolving 

0.01 g of each PAH with dichloromethane (DCM) in 10 mL standard flask. A working mixture 

(cocktail), containing each of the 16 PAHs at 1000 µg/mL was also prepared. The stock solutions 

were subsequently transferred into amber vials and kept refrigerated at 4oC. Calibration standards 

(1 µg/mL, 2 µg/mL, 5 µg/mL, 10 µg/mL and 50 µg/mL) were serially prepared from the stock 

solution by diluting with appropriate volume of dichloromethane and stored at 4oC prior to GC-FID 

analysis. 

3.1.2.2 GC-FID instrumentation and analytical conditions 

Chromatographic analysis was performed on Agilent 7890A GC-FID system equipped with an 

auto sampler and Agilent Chemstation software. An Agilent DB-EUPAH column (20 m x 0.18mm 

I.D) with 0.14 µm film thickness was utilised for the separation. The GC-FID parameters [injector 

temperature, injection type (split/splitless), oven temperature programming, carrier gas flow and 

detector temperature] were optimised for the simultaneous detection and quantification of the 16 

US EPA priority PAHs in a cocktail. Nitrogen gas was used as carrier gas at a constant flow of 

1.2591 mL/min. Split injection (3:1) was used with injection volume of 1 µl. Hydrogen (32 mL/min), 
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air (380 mL/min) and nitrogen (28 mL/min) were used as auxiliary gases for the flame ionisation 

detector. A summary of the GC-FID operating parameters utilised is presented in Table 3.1. 

 

Table 3.1: Specifications and the operating conditions of the GC-FID 

Parameters Specification/Operating Condition 

Instrument Agilent 7890A GC-FID equipped with auto sampler 

Column  DB-EUPAH column (20 m, 0.18mm I.D, 0.14 µm film thickness) 

Injector temperature 250oC 

Injection volume 1 µL 

Injection mode Split (3:1) 

Carrier gas  Nitrogen 

Column flow rate 1.2591 mL/min. 

Oven temperature programming  100oC (1 min hold), ramped at 5oC/min to 200oC (1 min hold), 
ramped at 10oC/min to 250oC (5 min hold), ramped at 5oC/min 
to 300oC (3 min hold). 

Detector temperature 320oC 
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3.1.2.3 Analyte identification and calibration 

After the GC-FID conditions have been optimised for the detection of 16 PAHs in a cocktail, each 

of the standard solutions of the 16 PAHs were individually injected for GC-FID analysis to 

determine its average retention time, as well as to identify each analyte. This was performed ten 

times for each standard solution. The identified average retention time for each analyte was 

subsequently used to set up a calibration method with the Chemstation software on the GC-FID 

with the calibration standards (1 µg/mL, 2 µg/mL, 5 µg/mL, 10 µg/mL and 50 µg/mL). 

3.1.3 Extraction and SPE clean-up of PAHs from samples 

The clean-up of PAHs in water, sediment and plant samples were carried out with C18 solid phase 

extraction tubes (Supelclean ENVI -18 SPE tubes 6mL), purchased from Supelco, Bellefonte, 

USA. 

3.1.3.1 PAHs extraction and SPE clean-up from water samples  

The extraction of PAHs from water samples were carried out with n-hexane in five extraction 

sequences (25, 20, 15, 10 and 10 mL) and utilised 250 mL of milli-Q water as matrix for the 

recovery procedure. Clean-up was done on SPE tubes that have been preconditioned with n-

hexane and DCM (3 mL each of DCM, n-hexane and DCM/hexane (1:1) sequentially). 

The extraction was carried out by placing 250 mL water sample into a precleaned 500-mL 

separating funnel, then the required volume of the extracting solvent was added, and the funnel 

corked. The content of the funnel was thoroughly mixed for 1 min, then allowed to stand for 2 h 

for the separation of the organic phase from the polar phase. The organic phase was then carefully 

collected, by first letting out the heavier polar phase from the funnel. The combined organic phase 

from 5 extractions was then cleaned up as described below. 

3.1.3.2 PAHs extraction and SPE clean-up from sediment samples  

Stones and sewage were carefully removed from air dried sediment samples, before they were 

sieved through a 250 µm aperture. Analytes from 2 g, of sieved sediment samples were extracted 

with n-hexane and DCM in three extraction sequences using ultrasonic agitation at 30oC in a total 

time of 30 min i.e. extraction with 20 mL n-hexane for 20 min, extraction with 10 mL DCM/n-hexane 

(1:3) for 10 min and lastly with 10 mL n-hexane for 10 min.  



87 
 

The extraction was carried out by placing the prepared sediment sample (2 g) into 50-mL amber 

bottle. Thereafter, the extracting solvent was added, the bottle was then covered with aluminium 

foil and carefully swirled before placing it into the sonicator that had been allowed to reach the 

required temperature (30oC), then sonicated for the required time for each extraction sequence. 

The extract was then carefully decanted into a clean amber bottle. The extracts from the three 

extraction sequences were combined and cleaned up as described below. Sediment cleaned with 

n-hexane and DCM by means of ultrasonic agitation, was used for the recovery study. 

3.1.3.3 PAHs extraction and SPE clean-up from plant samples  

Plant samples were washed with milli-Q water, air dried, milled and sieved through a 250 µm 

aperture, after which analytes from 2 g of plant samples were extracted with n-hexane and DCM 

in three extraction sequences as described for sediment samples. Plant cleaned with n-hexane 

and DCM by means of ultrasonic agitation, was used for the recovery procedure. 

The clean-up of extracts from matrices were carried out using solid phase extraction (SPE) tubes, 

fitted onto a vacuum manifold with the vacuum regulated to give a flow rate of 4 - 5 mL/min. About 

1 g Na2SO3 was placed in each tube to remove water residue in extracts. Extracts were then 

passed through preconditioned SPE tubes and 3 mL DCM was used to release any analytes 

trapped by the solid phase. The 3 mL DCM washing was repeated thrice. The resulting eluents 

were reduced to less than 1 mL by a rotary evaporator at 100 rpm and 30oC water bath 

temperature. These were then placed in a 1 mL standard flask and made up to mark with DCM. 

The extracts were then transferred into amber vials and analysed using GC-FID. The extraction 

methods described above are based on the methods described by Manoli and Samara (1999), 

Zhou et al. (2000) and Chen et al. (2007). 

3.1.4 Method validation  

The optimised analytical method obtained from series of experimental runs, was validated by the 

established International Conference on Harmonisation (ICH) parameters such as linearity range, 

detection limit, quantification limit, precision, accuracy and recovery (ICH, 2005).  

3.1.4.1 Linearity, detection limit and quantification limit  

The linearity of method response to analyte’s quantification was obtained from the plot of peak 

areas against calibration standards of analytes obtained through the Chemstation software 

(Appendix A), while the detection limits (DL) and quantification limits (QL) were obtained from the 
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standard deviation of the analyte’s blank (s) and slope of the calibration curve (b) using the 

formulae below:  

𝑫𝑳 =
𝟑𝒔

𝒃
               Equation 3.1 

𝑸𝑳 =
𝟏𝟎𝒔

𝒃
         Equation 3.2 

3.1.4.2 Precision 

The precision of the GC-FID for simultaneous analysis of the 16 US EPA priority PAHs in DCM 

was evaluated from the relative standard deviation (RSD) of repeatability (within-run precision) 

and reproducibility (between-run precision) data, obtained from six runs. The repeatability was 

evaluated in one day, while reproducibility was evaluated over six days. 

3.1.4.3 Accuracy 

The accuracy of the method was evaluated by recovery of analytes (16 US EPA PAHs) from 

spiked matrices (mill-Q water, hexane/DCM cleaned plant and sediment samples), which was 

carried out in triplicate. Analytes from spiked matrices were extracted and cleaned up as described 

for each matrix, while unspiked matrices were utilised as blanks. Analytes recovered from spiked 

matrices were analysed through external standard calibration method as described by Zakeri-

Milani et al. (2005) to validate the method. 
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3.2 Study area 

This study focused on two rivers in the Western Cape, South Africa; the Diep and Plankenburg 

Rivers. They were selected for this study, because there are various anthropogenic activities such 

as industrial, domestic and agricultural activities along their banks that may contribute to PAH 

burden of both rivers. Also, due to the importance of the Diep River as a freshwater ecosystem in 

the Western Cape Province (having a natural wetland system and its utilisation for human activities 

and landuse practices). The anthropogenic source(s) contribution to PAH burden of these rivers 

were therefore investigated in 2015, over a 12-month period at seven identified sites to determine 

both the seasonal and spatial variations in PAHs concentrations.  

3.2.1 The Diep River sites 

Studies have shown that the Diep River, an important freshwater ecosystem (utilised for irrigation 

and recreation) in the Western Cape, South Africa have been impacted as a result of 

anthropogenic activities (Jackson et al., 2009; Shuping et al., 2011; Daso et al., 2016). Wastewater 

effluents from residential and industrial areas have been reported as priority point sources of 

contaminants to the Diep River (Paulse et al. 2009). The 16 US EPA priority PAHs from 

anthropogenic sources to this important freshwater ecosystem were therefore investigated. 

Description of the three sampling sites (DA, DB and DC) in the Diep River is presented in Table 

3.2 and shown in Figure 3.1. 

 

Table 3.2: Description of sampling sites of the Diep River 

Site symbol Site vicinity Longitude Latitude 

DA Nature reserve and 
boating club (Table Bay 
Nature Reserve) 

-33.837625 S 18.519621 E 

DB Residential and industrial 
(Channel at Theo Marais 
sports club) 

-33.859170 S 18.499011 E 

DC Residential and 
recreational (Milnerton 
Woodbridge) 

-33.881853 S 18.489755 E 
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Figure 3.1: Map showing the sampling sites at the Diep River 
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3.2.2 The Plankenburg River sites 

The Plankenburg River has been said to be heavily polluted as it receives sewage from 

Kayamandi, effluent from wineries and other industries and agricultural activities in its upper 

catchment (Nleya, 2005). Continuous monitoring of the impacts of these anthropogenic activities 

on the River is needed. This will enable pollution control and clean-up strategies of this important 

freshwater ecosystem. Four sampling sites were therefore identified in the Plankenburg River for 

this study. The sites PA, PB, PC and PD are described in Table 3.3 and presented in Figure 3.2.

Table 3.3: Description of sampling sites of the Plankenburg River 

Site symbol Site vicinity Longitude Latitude 

PA Agricultural and residential -33.906662 S 18.8463319 E 

PB Informal settlement of 
Kayamandi 

-33.919695 S 18.852591 E 

PC Industrial area -33.925036 S 18.851910 E 

PD Industrial area of Adam 
Tas bridge 

-33.930769 S 
 

18.851696 E 
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Figure 3.2: Map showing the sampling sites at the Plankenburg River
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3.3 Sampling and sample pre-treatment 

Surface water, sediment and plant samples were collected from selected sites for this study. The 

choice of sampling bottles, sample preservation method, holding time and analytical method were 

carried out based on established procedures (Hildebrandt et al., 2006). All sampling tools were 

washed with phosphate-free detergent (contrad concentrate) and rinsed with tap water. The tools 

were subsequently soaked in 0.1 M HNO3 for 24 h, rinsed in milli-Q water and again soaked in 

acetone for 30 min, rinsed with DCM and dried. Amber bottles with Teflon-lined lids were utilised 

for water sampling.  

3.3.1 Sampling and pre-treatment of water 

Water samples in triplicate were collected once a month, consistently for a year at the selected 

sites. The sampling regime was grouped into summer (Jan, Feb and Dec), autumn (March, April 

and May), winter (June, July and August) and spring (Sept, Oct and Nov). Water samples were 

collected in pre-cleaned 500 mL amber bottles in triplicates at each site, by carefully lowering the 

containers below the water surface and 1 mL of 100 mg/L NaN3 added to inhibit bacteria growth 

during transportation. Samples were stored on ice at 4oC and transported to the laboratory for 

subsequent analyses. Water samples were analysed from each triplicate sample bottle, to obtain 

triplicate analyses. The extraction, clean-up and GC-FID analyses were done within 24 h of 

sample collection. Physicochemical parameters [temperature, pH, total dissolved solids (TDS), 

salinity and conductivity] of water samples were determined on site using a PCS teslr 35 handheld 

multi-parameter gauge.  

3.3.2 Sampling and pre-treatment of sediment 

Surface sediment samples were collected once a month, consistently over a one-year period at 

the seven sites, covering summer (Jan, Feb and Dec), autumn (March, April and May), winter 

(June, July and August) and spring (Sept, Oct and Nov). Sampling of sediments was done after 

water sampling to avoid perturbation and resuspension of the sediment system into the water 

phase. Sediment samples were collected with the use of a stainless-steel grab sampler and the 

top 1 cm surface layer was carefully removed with a stainless-steel spoon. Five representatives 

of the 1 cm top sediment layer samples were collected at each point to obtain a composite 

sediment sample. The samples were wrapped in aluminium foil pre-treated with DCM and then 

transported to the laboratory in an ice chest at 4oC (Guo et al., 2007). Samples were air dried prior 
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to further analysis. The nature of sediments at each site was investigated through the 

determination of fractional organic carbon, organic matter and particulate matter of sediment.  

3.3.3 Sampling and pre-treatment of plant samples  

The plant samples obtained at the Diep River were from the species of Eichhornia crassipes (water 

hyacinth) [at sites DA and DC] and Phragmites australis (common reed) [site DB]. At the 

Plankenburg River the plant used for biomonitoring was Phragmites australis (common reed). The 

choice of plant species obtained was based on plant prevalence at each sampling point. 

Photographs taken from sampling sites are presented in Appendix B. Representative plant 

samples were collected by complete uprooting/scooping; samples were wrapped in aluminium foil 

and transported to the laboratory in an ice chest at 4oC. The represntive P. australis samples were 

pooled into roots, stems and leaves, after rising thoroughly with milli-Q water, while the 

representative E. crassipes samples were kept as a whole and rinsed (Wang et al., 2012b). 

Samples were air dried prior to further analysis. Plant samples assessed for possible PAH 

bioaccumulation were collected in August towards the end of the sampling regime. 

3.4 Quality assurance and quality control steps 

The following quality assurance steps were followed, to ensure high quality of data were obtained 

and used in this study: 

1. Analytical grade reagents and milli-Q water were utilised, to prevent contamination 

of the analytical procedure from external contributions. 

2. Procedural blanks were included in each batch of analysis to determine and correct 

any external contribution.  

3. Samples were analysed in triplicates and standard deviation calculated to ascertain 

the reproducibility of analytical procedures. 

4. Water samples were collected into amber glass bottles, covered with Teflon-lined 

lids and strict adherence to sampling procedure, handling and preservation steps 

were observed according to standard procedures.  

5. Precision, accuracy, linearity, sensitivity and method recovery were determined to 

validate the analytical methods utilised. 

6. Spiked water, sediment and plant samples were processed to determine 

percentage recoveries. 

7. Instruments were calibrated prior to use as required and ensured no drift in 

instrumental readings. 
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3.5 Analysis of grape leaf litter  

Dried grape leaf litter, an agricultural waste was collected by hand at a vineyard in Stellenbosch, 

Western Cape, South Africa, into a precleaned sack. It was transported to the laboratory and 

stored in a cool dry place until further processing. 

The suitability of grape leaf litter as precursor for activated carbons was assessed by the 

determination of moisture, ash and crude fibre contents and elemental composition. 

3.5.1 Determination of moisture content 

About 5 g sample of pulverised grape leaf litter was placed into a clean and dry ceramic crucible 

and dried at 105oC for 3 h in an oven. The crucible was then removed from the oven and placed 

in the desiccator to cool and its weight was determined. The sample was then further dried at 

105oC, the mass checked at 30 min intervals until a constant mass was obtained (Association of 

Official Analytical Chemists (AOAC), 1990). The experiment was carried out in triplicate. Moisture 

content was calculated using Equation 3.3. 

% Moisture = 
𝑾𝟎−𝑾𝟏 

𝑾𝟎
 𝒙 𝟏𝟎𝟎%      Equation 3.3 

W1 = mass of the grape leaf litter at constant weight 

W0 = Initial weight of grape leaf litter before drying at 105oC. 

3.5.2 Determination of ash content 

Grape leaf litter sample (2 g) of dried grape leaf litter was weighed into a clean, dry crucible and 

placed into a furnace at 550oC for 2 h. After the 2 h, the furnace was switched off and allowed to 

cool to 200oC, before the crucible and its contents were removed and placed in a desiccator for 

complete cooling. The mass of the resulting ash was then determined (Maynard, 1970). Ash 

content was calculated using Equation 3.4. 

% Ash content = 
𝑾𝟏 

𝑾𝟎
 𝒙 𝟏𝟎𝟎%       Equation 3.4 

W1 = mass of ash 

W0 = initial mass of dried grape leaf litter. 
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3.5.3 Crude fibre content determination  

Approximately 1 g of pulverised grape leaf litter was weighed into a 500-mL quick fit round bottom 

flask and 150 mL hot 0.128 M H2SO4 was added to the sample. In order to prevent foaming, n-

octanol (two to four drops) was also added to the mixture in the flask. It was refluxed for 30 min at 

98oC. The refluxed mixture was then filtered hot under vacuum and washed thrice with hot milli-Q 

water using 30 mL each time and sucked dry. This was then transferred into the 500-mL flask and 

hot 150 mL 0.223 M KOH was added with a further addition of two to four drops of n-octanol and 

refluxed for another 30 min at 98oC. It was then filtered hot under vacuum and washed with 30 mL 

hot deionised water thrice, then sucked dry under vacuum. The sample was then washed thrice 

using 25 mL acetone and filtered under vacuum each time, after which it was dried at 130oC in an 

oven until a constant weight was obtained (AOAC, 1990). The resulting residue was ashed at 50oC 

for 2 h in a furnace and the weight of the resulting ash determined. The crude fibre was calculated 

using Equation 3.5. 

% Crude fibre = 
𝑾𝟐−

, 𝑾𝟑
,  

𝑾𝟏
,  𝑿𝟏𝟎𝟎%       Equation 3.5 

W’1 = Initial weight of grape leaf litter 

W’2 = weight of residue before ashing 

W’3 = weight of ash. 

3.5.4 Elemental analysis 

The elemental composition of the raw milled biomass was obtained through Energy-dispersive X-

ray spectroscopy (EDS). The EDS protocol which is carried out in tandem with the SEM imaging, 

rapidly determined elemental contents of biomass except for elements such as hydrogen, helium, 

lithium and beryllium that are light in weight at an energy of 25 kV. The biomass is coated with 

gold prior to elemental analysis by EDS, because the protocol is carried out under high energy 

(Darmawan et al., 2016). 
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3.6 Production and characterisation of activated carbons 

Activated carbons were produced from grape leaf litter using H3PO4 and ZnCl2 as the activating 

agents. 

3.6.1 Adsorbent preparation 

The leaf litter was milled and sieved with a standard mesh to obtain a particle size of ≤ 25 mesh 

(≤ 707 microns). The sieved milled leaf litter was then impregnated with the activating agent at 

5:2, 5:1 and 10:1 biomass to activating agent ratios, respectively. The slurry after impregnation 

was sonicated at 50oC for 3 h before drying at 110oC overnight. 20 g of the impregnated biomass 

was then carbonised at 600oC for 1 h and N2 flow of 150 mL/min. The furnace was then switched 

off and allowed to cool to 200oC with the nitrogen gas still flowing. The gas supply was cut off at 

200oC, the produced activated carbon was obtained and placed in a desiccator to cool. The 

charred biomass was subsequently weighed and percentage yield and burn off calculated. The 

carbonised biomass was washed with hot 1 M HCl, followed by milli-Q water until all acid was 

removed, then dried at 50oC for 5 h. The carbonisation method was based on that reported by 

Sudaryanto et al. (2006). The % yield, burn off and attrition were calculated using Equations 3.6 

to 3.8. 

% Yield = 
𝑴𝟏

𝑴𝟐
 𝒙 𝟏𝟎𝟎%         Equation 3.6 

% burn off = (100 - % yield)        Equation 3.7 

M1 = mass of charred biomass 

M2 = mass of uncharred biomass 

The % attrition was calculated using the equation below: 

% Attrition = 
𝑨−𝑩

𝑨
 𝒙 𝟏𝟎𝟎%         Equation 3.8 

A = Initial weight of charred biomass before washing with hot 1 M HCl and milli-Q water. 

B = Final weight of Charred biomass after washing with hot 1 M HCl and milli-Q water. 
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3.6.2 Adsorbent characterisation 

3.6.2.1 Fourier transform infrared (FTIR) spectrometry 

The FTIR spectra of the produced activated carbons and raw grape leaf litter (recorded over 4000 

- 400 cm-1 range) were obtained on a Universal Attenuated Total Reflectance (UATR) Infrared 

spectrometer Perkin Elmer Spectrum 2 (UK). The crystal area of the instrument was cleaned prior 

to analysis and background correction made. The samples were placed directly on the crystal area 

of the universal diamond attenuated total reflectance (ATR) top-plate. The pressure arm was 

positioned over the crystal-sample area, then locked into a precise position above the diamond 

crystal and force applied to the sample, pushing it onto the diamond surface. The sample was 

then scanned to obtain the spectrum. 

3.6.2.2 Scanning electron microscopic analysis (SEM)  

The surface morphologies of prepared adsorbents were obtained, using scanning electron 

microscope (Nova Nano SEM 230, USA). A gold sputtering device (JOEL, JFC-1600) was utilised 

in coating samples with a fine layer of gold for clarity in obtained surface morphology. The 

elemental contents of activated carbons were also obtained by EDS (Darmawan et al., 2016). 

3.6.2.3 Brunauer-Emmett-Teller (BET)  

An Automatic Adsorption Instrument (Quanta chrome Corp. Nova-1000 g gas sorption, USA) was 

utilised in obtaining the textural properties of the produced activated carbons. The BET surface 

area, total pore volume, micropore area, micropore volume and pore size were obtained. 

Degassing of samples was carried out at 170oC for 13 h, before the adsorption and desorption of 

liquid N2 at 77 K. MicroActive 4.00 software (TriStar II 3020 version 2.00) was utilised to generate 

the BET surface area and the BJH (Barrett, Joyner and Helenda) pore distribution of the activated 

carbons.  

3.7 Adsorption studies 

Adsorption studies were carried out using phenanthrene as the adsorbate. Phenanthrene is one 

of the most abundant PAHs and an acceptable representative of semi volatile organic compounds 

(Rad et al., 2014; Gupta, 2015). Activated carbons produced from grape leaf litter were used as 

adsorbents for phenanthrene removal from aqueous solution in batch experiments. Parameters 

such as contact time, adsorbent load, pH and initial concentration were investigated to establish 
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the optimum values for adsorbents efficiencies. The obtained data was fitted into adsorption kinetic 

models and isotherms to evaluate the quality of produced adsorbents and to describe the 

mechanism of the sorption process. 

 

3.7.1 Optimisation of parameters 

Effect of parameters (pH, adsorbent dosage, initial concentration and contact time) on the 

adsorption of phenanthrene on activated carbons were investigated in batch experiments carried 

out in triplicates. Due to the poor solubility of phenanthrene in water, milli-Q water containing 30% 

acetonitrile was utilised for this study.  

3.7.1.1 Effect of pH on the adsorption of phenanthrene 

To investigate the effect of pH, 25 mL of 1 mg/L adsorbate solutions with varying pH values (3 - 

12) and 0.1 g activated carbon was utilised. The desired pH of the 0.1 mg/L phenanthrene solution 

was prepared from 10 mg/L solution with the addition of either 0.1 M HCl or 0.1 M NaOH to adjust 

the pH as required for obtaining the pH values of 3, 6, 9 and 12 investigated. A 25 mL 

phenanthrene solution that has been adjusted to the required pH was then added to 0.1 g activated 

carbon in a 50-mL amber bottle and covered with Teflon-lined lid. This was thereafter placed into 

an orbital shaker at 298 K and allowed for 180 min at 100 revolutions per minute (rpm). After which 

1 ml was filtered through a GHP acrodisc syringe filter (0.2 µm, 13 mm), prior to GC-FID analysis 

for the quantification of the residual phenanthrene. 

3.7.1.2 Effect of adsorbent dosage on the adsorption of phenanthrene 

The effect of adsorbent dosage was studied using 25 mL of 1 mg/L adsorbate solution at pH 3 

with varying weights (0.01 – 0.1 g) of adsorbents. The investigated weights (0.01, 0.025, 0.050, 

0.075 and 0.1 g) of adsorbents were carefully weighed into 50-mL amber bottles and 25 mL of 

phenanthrene solution added and covered with Teflon-lined lids. The bottles and their contents 

were then placed into the orbital shaker at 298 K and allowed for 180 min at 100 rpm. Thereafter, 

1 mL solution from each of the bottles was filtered through GHP filter and the filtrates analysed 

with GC-FID for the residual phenanthrene. 
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3.7.1.3 Effect of initial phenanthrene concentrations on adsorption capacity  

The effect of initial concentration was studied using 25 mL of adsorbate solution of varying 

concentrations. The concentrations investigated were 1, 2, 3, 4 and 5 mg/L that have been 

adjusted to pH 3. Aliquot 25 mL of the phenanthrene solutions were measured into 50-mL amber 

bottles containing 0.1 g of adsorbents. The experiments were carried out in an orbital shaker at 

298 K, 100 rpm for 180 min and the GHP filtrates analysed. 

3.7.1.4 Effect of contact time on phenanthrene adsorption 

The effect of contact time on the adsorption of phenanthrene was also investigated by varying the 

time the mixture of adsorbent and phenanthrene solution used in the orbital shaker at 298 K. 

Phenanthrene concentration of 1 mg/L (25 mL) that have been adjusted to pH 3 and 0.1 g of 

adsorbents were utilised. The time intervals investigated were 10, 20, 40, 60, 80, 120, and 180 

min respectively. Amber bottles with Teflon-lined lids were used and the GHP filtrates analysed.  

The percentage of phenanthrene removal and the equilibrium adsorption capacity (𝑞𝑒) were 

estimated using Equations 3.9 and 3.10 respectively. 

 

% 𝑨ⅆ𝒔𝒐𝒓𝒃𝒆ⅆ =  
𝑪𝟎 − 𝑪𝒕

𝑪𝟎
 𝑿 𝟏𝟎𝟎       Equation 3. 9 

𝒒𝒆  =  
𝑽 (𝑪𝟎 − 𝑪𝒆)

𝒎
          Equation 3. 10 

Where 𝐶0 (mg/L), 𝐶𝑒 (mg/L) and 𝐶𝑡 (mg/L) are initial, equilibrium and after time t concentration of 

adsorbate, respectively, V (L) is the volume of adsorbate solution, m (g) is the mass of adsorbent 

and 𝑞𝑒 (mg/g) is the equilibrium adsorption capacity of adsorbent (Gupta, 2015). 

 

3.7.2 Adsorption Isotherms 

Adsorption isotherm models were used to describe adsorption behaviour of analytes onto the 

surface of adsorbents at equilibrium. The amount of phenanthrene adsorbed, and removal 

efficiency of adsorbents could be deduced from the adsorption isotherm models. 
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3.7.2.1 Langmuir isotherm 

The sorption of phenanthrene onto single layer of selected activated carbons surface was studied 

with Langmuir isotherm model. Langmuir isotherm model postulates that, there is no 

transmigration of adsorbate in the plane of adsorbent surface for single layer adsorption onto a 

surface with a finite number of identical sites and uniform energies of adsorption (Tiwari et al., 

2013). A linearised equation for Langmuir isotherm model is given in Equation 3.11 

𝟏

𝒒𝒆
=

𝟏

𝒒𝒎
+

𝟏

𝒒𝒎  𝑲 𝑳 𝑪𝒆
        Equation 3. 11  

Where qe is the amount of adsorbate adsorbed per gram of the adsorbent at equilibrium (mg/g), 

qm represent the maximum monolayer coverage capacity (mg/g), KL is Langmuir isotherm constant 

(L/mg) and Ce is the equilibrium concentration of adsorbate (mg/L). 

The separation factor or equilibrium parameter (RL) which is the crucial feature of the Langmuir 

isotherm model (Weber & Chakravorti, 1974) is presented as: 

𝑹𝑳 =
𝟏

𝟏+(𝟏+𝑲𝑳𝑪𝒐)
             Equation 3. 12 

Where, Co is the initial adsorbate concentration (mg/L). 

The nature of adsorption can be adjudged from the value of RL; RL > 1 unfavourable, RL = 1 linear, 

0 < RL < 1 favourable and RL = 0 irreversible (El Qada et al., 2006). 

3.7.2.2 Freundlich isotherm 

The adsorption characteristic of phenanthrene onto heterogeneous surfaces of the produced 

activated carbons was investigated by Freundlich adsorption isotherm. This isotherm model, 

assumes that the adsorbent has a heterogenous surface with adsorption sites that have different 

energies of adsorption that are not always available (Walker & Weatherley, 2001).The linearised 

Freundlich adsorption isotherm equation is presented as: 

𝐥𝐨𝐠 𝒒𝒆 = 𝐥𝐨𝐠 𝑲𝒇 −
𝟏

𝒏
𝐥𝐨𝐠 𝑪𝒆       Equation 3. 13  

Where; 

𝒒𝒆= amount of adsorbate adsorbed per gram of adsorbent at equilibrium (mg/g) 

Kf = Freundlich isotherm constant (mg/g) 
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n = adsorption intensity 

Ce = concentration of adsorbate at equilibrium (mg/L) 

The Freundlich constant n gives an indication of adsorption intensity, while Kf gives an indication 

of adsorption capacity. The extent of non-linearity between solution concentration and adsorption 

depends on n. Linear adsorption, chemical adsorption and favourable physical adsorption 

processes are indicated by n = 1, n < 1, and n > 1 respectively (Aljeboree et al., 2017). 

3.7.2.3 Temkin isotherm 

Experimental data obtained were assessed with Temkin isotherm model. Indirect 

adsorbent/adsorbate interactions influence on adsorption isotherms could be evaluated (Rahim & 

Garba, 2016). The model ignores the extremely low and large adsorbate concentration values and 

assumes that the heat of adsorption of all of the molecules in the layer would decrease linearly 

instead of logarithmically with coverage due to adsorbate/adsorbent interactions (Aljeboree et al., 

2017).The linear equation is expressed as:  

𝒒𝒆 = 𝑩 𝐥𝐧 𝑲𝑻 + 𝑩 𝐥𝐧 𝑪𝒆       Equation 3. 14 

Where 𝐵 (J/mol) and KT are Temkin constants related to heat of sorption and maximum binding 

energy respectively, R is the gas constant (8.31 J/mol K), and T (K) is the absolute temperature. 

3.7.2.4 Dubinin-Radushkevich isotherm 

Experimental data obtained were also fitted into the Dubinin-Radushkevich isotherm model, which 

had been widely utilised to describe adsorption onto microporous materials of carbonaceous origin 

(Nguyen & Do, 2001; Dada et al., 2012; Sun et al., 2016). The linear equation is expressed as: 

𝐥𝐧 𝒒𝒆 =  𝐥𝐧(𝒒𝑫𝑹𝑩) − (𝑲𝒂ⅆ𝜺𝟐)       Equation 3. 15 

Where 𝒒𝒆 is the amount of adsorbate adsorbed per gram of adsorbent at equilibrium (mg/g), 𝑞𝐷𝑅𝐵 

is the theoretical isotherm saturation capacity (mg/g), 𝐾𝑎𝑑 is the Dubinin-Radushkevich isotherm 

constant (mol2/kJ2) and 𝜀 is the Dubinin-Radushkevich isotherm constant (Dada et al., 2012). 
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3.7.3 Kinetic studies  

To gain valuable information into the reaction pathways, the rate of adsorption and the mechanism 

of adsorption, adsorption kinetics study were carried out. These insights were needed to establish 

the efficiency of adsorbents and to determine the optimum operating conditions for the adsorption 

process (Ho & McKay, 1999). Experimental data obtained were subjected to four kinetic models 

(pseudo-first order kinetic, pseudo-second order kinetic, Elovich and intra-particle diffusion 

models). 

3.8 Analysis of data 

Statistical Package for the Social Science (SPSS) utility 24, was utilised to obtain the Pearson 

correlation and ANOVA multivariate test results of data obtained from environmental studies. The 

Microsoft EXCEL software was used for descriptive statistics. The Weibull probabilistic and 

percentile ranking methodologies were utilised to determine the exceedence of detected levels of 

PAHs in sediment and water samples relative to quality guidelines. 
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CHAPTER 4 
RESULTS AND DISCUSSION 

4.1 GC-FID method optimisation and validation  

4.1.1 Chromatographic separation 

The LLE-SPE-GC-FID chromatogram of the investigated 16 US EPA priority PAHs obtained from 

the optimised GC-FID operation conditions is presented in Figure 4.1. The optimised GC 

parameters were used for the separation of the compounds, with acceptable resolution, sharp 

peaks and adequate sensitivity for analytes. A constant carrier gas flow, rather than constant 

column pressure also resulted in high stability of the method. 

4.1.2 Linearity, detection limit and quantification limit  

The developed method was validated based on linearity range, detection limits, quantification 

limits, precision and accuracy (ICH, 2005). The calibration range, regression plot, retention time, 

goodness of fit (R2), detection limit (DL) and quantification limit (QL) for each analyte are presented 

in Table 4.1. The detector response for all the analytes in the concentration range studied was 

linear. The method is suitable for the determination of the 16 PAHs, because the R2 values 

obtained for the analytes were above 0.999 (Opeolu et al., 2010). The calibration plots obtained 

using the instrument software are presented in Appendix A. 

The DL for the analytes were between 0.02 and 0.04 µg/mL while the QL were between 0.06 and 

0.13 µg/mL. These results confirmed that this method sensitivity was adequate for the detection 

and quantification of trace levels of PAHs in environmental samples. 
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Figure 4.1: Chromatogram of the 16 US EPA priority PAHs 

Nap: Naphthalene. Acy: Acenaphthylene. Can: Acenaphthene. Flu: Fluorene. Phe: Phenanthrene. Ant: 

Anthracene. Flt: Fluoranthene. Pyr: Pyrene. BaA: Benzo[a]anthracene. Chy: Chrysene. BbF: 

Benzo[b]fluoranthene. BkF: Benzo[k]fluoranthene. Bap: Benzo[a]pyrene. IcP: Indeno[1, 2, 3-cd]pyrene. 

DBA: Dibenzo[a, h]anthracene. BgP: Benzo[g, h, i]perylene.   
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Table 4.1: Calibration data and linearity for the 16 US EPA Priority PAHs 

 

  

S/N Analytes Range 
(µg/mL) 

Retention 
time 
(min) 

Calibration Plot 
 

DL 
(µg/mL) 

QL 
(µg/mL) 

R2-
value 

1 Naphthalene 1-50 4.564 5.4075X + 2.1775 0.021699 0.07233 0.9998 

2 Acenaphthylene 1-50 10.360 5.5171X + 2.1721 0.023226 0.07742 0.9998 

3 Acenaphthene 1-50 10.921 5.6338X + 2.0741 0.022638 0.07546 0.9998 

4 Fluorene 1-50 13.074 5.5333X + 2.6089 0.024982 0.08327 0.9998 

5 Phenanthrene 1-50 17.941 5.2637X + 2.1914 0.026242 0.08747 0.9998 

6 Anthracene 1-50 18.092 5.2186X + 1.9472 0.027505 0.09168 0.9997 

7 Fluoranthene 1-50 23.787 5.5493X + 1.9110 0.026586 0.08862 0.9998 

8 Pyrene 1-50 24.856 5.0500X + 3.2924 0.023940 0.07980 0.9998 

9 Benzo[a]anthracene 1-50 29.171 4.9504X + 1.5474 0.027034 0.09011 0.9998 

10 Chrysene 1-50 29.549 5.1841X + 1.7904 0.028507 0.09502 0.9997 

11 Benzo[b]fluoranthene 1-50 35.364 4.9805X + 1.6059 0.024576 0.08192 0.9998 

12 Benzo[k]fluoranthene 1-50 35.512 4.9533X + 1.8516 0.027695 0.09232 0.9997 

13 Benzo[a]pyrene 1-50 37.447 4.6564X + 1.5607 0.027480 0.09160 0.9997 

14 Indeno[1,2,3-cd]pyrene 1-50 42.272 5.3699X + 0.9102 0.017514 0.05838 0.9999 

15 Dibenzo[a, h]anthracene 1-50 42.400 4.6555X + 2.7787 0.037713 0.12571 0.9995 

16 Benzo[g, h, i]perylene 1-50 43.709 4.9071X + 1.8434 0.025306 0.08435 0.9998 
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4.1.3 Precision 

The repeatability and reproducibility data obtained were used for precision measurement by 

calculating the relative standard deviation (RSD) [Table 4.2]. The % RSD for repeatability ranged 

between 1.2% and 2.0% and that for reproducibility ranged between 1.1% and 3.2%. Hence, the 

method had good precision and was robust like those previously utilised in chromatographical 

analyses (Zakeri-Milani et al., 2005; Wei and Jen, 2007; Opeolu et al., 2010). Zakeri-Milani et al. 

(2005) reported %RSD range of 0.48 to 5.30 and 0.22 to 1.33 for repeatability and reproducibility 

respectively. They developed HPLC mehtod for the simultaneous determination of naproxen, 

ketoprofen and phenol. 

Table 4.2: Repeatability and reproducibility of GC-FID analysis of 16 US EPA priority PAHs 

 
 

PAHs Within-day (Repeatability) (n=6) Between-day (Reproducibility) (n=6) 

Initial 
conc. 
(µg/mL) 

Mean Conc. 
(µg/mL) 

%RSD Initial 
Conc. 
(µg/mL) 

Mean Conc. 
(µg/mL) 

%RSD 

Naphthalene 9.714 9.391 ± 0.191 2.036 9.303 9.240 ± 0.115 1.244 

Acenaphthylene 6.866 6.679 ± 0.111 1.667 6.621 6.584 ± 0.084 1.272 

Acenaphthene 9.172 8.911 ± 0.155 1.743 8.834 8.782 ± 0.116 1.317 

Fluorene 10.309 10.029 ± 0.165 1.643 9.926 9.855 ± 0.109 1.110 

Phenanthrene 8.092 7.933 ± 0.104 1.316 7.862 7.847 ± 0.131 1.673 

Anthracene 9.918 9.713 ± 0.136 1.396 9.618 9.575 ± 0.136 1.418 

Fluoranthene 9.619 9.447 ± 0.127 1.350 9.346 9.354 ± 0.190 2.026 

Pyrene 10.694 10.516 ± 0.146 1.392 10.390 10.470 ± 0.337 3.217 

Benzo[a]anthracene 10.969 10.784 ± 0.145 1.344 10.669 10.651 ± 0.197 1.851 

Chrysene 10.142 9.977 ± 0.127 1.274 9.884 9.886 ± 0.175 1.774 

Benzo[b]fluoranthene 9.803 9.668 ± 0.112 1.153 9.544 9.548 ± 0.131 1.374 

Benzo[k]fluoranthene 11.826 11.575 ± 0.182 1.570 11.479 11.445 ± 0.210 1.836 

Benzo[a]pyrene 10.447 10.261 ± 0.135 1.316 10.153 10.137 ± 0.160 1.579 

Indeno[1,2,3-cd]pyrene 10.846 10.587 ± 0.148 1.394 10.528 10.491 ± 0.177 1.684 

Dibenzo[a, h]anthracene 10.793 10.626 ± 0.184 1.729 10.408 10.448 ± 0.171 1.637 

Benzo[g, h, i]perylene 11.269 11.037 ± 0.152 1.376 10.922 10.909 ± 0.171 1.571 
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4.1.4  Recovery of PAHs 

The accuracy of analytical procedure was inferred from average percentage recovery obtained 

from triplicate analysis of PAHs extracted from spiked matrices. The recovery of PAHs from 

aqueous matrix is presented in Table 4.3. The lowest average percentage recovery of 60.05 ± 

9.45% was obtained for naphthalene while average percentage recovery of over 80% (which 

ranged between 83.69 ± 1.47% and 96.44 ± 3.01%) were obtained for all other analytes in 

aqueous media. The high volatility of naphthalene was suspected to be responsible for its low 

recovery and high bias relative to other larger PAHs. A smaller recovery percentage (36.28%) was 

reported for naphthalene by Karyab et al.(2013).  

The percentage recovery obtained for spiked plant samples ranged from 62.13 ± 3.77% to 100.83 

± 3.92%, while that of spiked sediment samples ranged from 47.98 ± 3.03% to 96.51 ± 5.02% 

(Table 4.4). The relatively high and acceptable recoveries obtained are consistent with those 

reported in literatures (Wei & Jen, 2007; Qiao et al., 2008; Liu et al., 2013; Ma et al., 2013). Qiao 

et al. (2008) reported recovery ranges of 62.1 to 106.5% and 58.7 to 96.3% for the US EPA 

individual PAHs in water and sediment samples respetively. The recovery ranges for four 

surrogate standards (naphthalene-d8, phenanthrene-d10, fluororene-d10 and perylene-d12) in 

water and sediment samples reported by Liu et al. (2013) were 51.5 to 97.8% and 60.2 to 99.8% 

respectively. The described methods are therefore suitable for the analysis of the 16 priority US 

EPA PAHs in water, sediment and plant samples.  
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Table 4.3: Average percentage recovery of the 16 US EPA priority PAHs from milli-Q water 

 

PAHs Reference 

(µg/mL) 

x̄ (µg/mL) 

n=3 

% Recovery 

Naphthalene 1.3937 0.8369 ± 0.271 60.05 ± 9.45 

Acenaphthylene 1.0248 0.8747 ± 0.061 85.36 ± 5.99 

Acenaphthene 1.3534 1.1330 ± 0.020 83.69 ± 1.47 

Fluorene 1.4596 1.3480 ± 0.037 92.36 ± 2.53 

Phenanthrene 1.1725 1.0740 ± 0.015 91.62 ± 1.28 

Anthracene 1.3915 1.2720 ± 0.017 91.39 ± 1.19 

Fluoranthene 1.3596 1.2930 ± 0.020 95.07 ± 1.46 

Pyrene 1.4462 1.3670 ± 0.032 94.50 ± 2.24 

Benzo[a]anthracene 1.5057 1.4170 ± 0.024 94.14 ± 1.60 

Chrysene 1.4179 1.3410 ± 0.025 94.60 ± 1.78 

Benzo[b]fluoranthene 1.4020 1.3180 ± 0.023 94.00 ± 1.64 

Benzo[k]fluoranthene 1.5836 1.4970 ± 0.026 94.54 ± 1.66 

Benzo[a]pyrene 1.4564 1.3440 ± 0.023 92.25 ± 1.55 

Indeno[1,2,3-cd]pyrene 1.5148 1.4070 ± 0.027 92.92 ± 1.81 

Dibenzo[a, h]anthracene 1.4703 1.4180 ± 0.440 96.44 ± 3.01 

Benzo[g, h, i]perylene 1.5570 1.4640 ± 0.027 94.02 ± 1.76 
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Table 4.4: Percentage recovery of PAHs in plant and sediment samples (n = 3) 

PAHs Reference 
(µg/g) 

Plant 
x̄ (µg/g) 

% Recovery 
in plant 

Sediment 
x̄ (µg/g) 

% Recovery 
in sediment 

Naphthalene 1.103 0.685 ± 0.04 62.13 ± 3.77 0.529 ± 0.03 47.98 ± 3.03 

Acenaphthylene 0.791 0.605 ± 0.01 76.51 ± 1.83 0.556 ± 0.04 70.35 ± 5.04 

Acenaphthene 1.056 0.829 ± 0.02 78.50 ± 1.63 0.788 ± 0.05 74.60 ± 4.73 

Fluorene 1.108 0.774 ± 0.02 80.95 ± 1.67 0.876 ± 0.05 79.04 ± 4.72 

Phenanthrene 0.827 0.744 ± 0.02 89.92 ± 2.47 0.725 ± 0.04 87.70 ± 5.00 

Anthracene 0.927 0.825 ± 0.02 89.00 ± 2.58 0.806 ± 0.05 86.88 ± 5.05 

Fluoranthene 0.963 0.887 ± 0.02 92.09 ± 2.37 0.863 ± 0.06 89.59 ± 5.91 

Pyrene 1.031 0.927 ± 0.04 89.95 ± 3.86 0.906 ± 0.05 87.88 ± 5.13 

Benzo[a]anthracene 0.991 1.000 ± 0.04 100.83 ± 3.92 0.916 ± 0.07 92.39 ± 6.67 

Chrysene 1.033 0.967 ± 0.03 93.59 ± 2.97 0.931 ± 0.05 90.10 ± 5.06 

Benzo[b]fluoranthene 0.964 0.882 ± 0.03 91.51 ± 3.20 0.903 ± 0.05 93.65 ± 5.30 

Benzo[k]fluoranthene 1.122 1.001 ± 0.04 89.26 ± 3.51 1.054 ± 0.06 93.99 ± 5.05 

Benzo[a]pyrene 1.007 0.770 ± 0.04 90.98 ± 3.50 0.902 ± 0.05 89.57 ± 5.31 

Indeno[1,2,3-cd]pyrene 1.180 1.104 ± 0.03 93.53 ± 3.95 1.049 ± 0.07 88.83 ± 5.92 

Dibenzo[a, h]anthracene 0.926 0.877 ± 0.04 94.68 ± 2.76 0.894 ± 0.05 96.51 ± 5.02 

Benzo[g, h, i]perylene 1.083 0.990 ± 0.04 91.43 ± 3.41 0.976 ± 0.07 90.12 ± 6.22 
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4.2 Water quality parameters of the Diep and Plankenburg Rivers water samples 

4.2.1  Temperature 

Anthropogenic activities (including land use, sewage and effluent discharges) and climate change 

have negatively impacted the quality of surface water globally. This has resulted in less 

productivity, resource potentials and environmental functions of these natural resources of socio-

economic and environmental importance (Caissie, 2006; Sallam and Elsayed, 2015; Cui et al., 

2017; Korkanç et al., 2017). The need for water quality assessment for informed resource 

management decisions, therefore becomes imperative (Korkanç et al., 2017). The quality of 

surface water depends on a combination of factors (temperature, pH, salinity, amongst others.) 

that may be classified mainly as physical, chemical and biological characteristics (Korkanç et al., 

2017). 

Temperature is one of the parameters that is widely assessed to determine the overall health of 

aquatic ecosystems. Aquatic biota are highly sensitive to fluctuations in temperature (thermal 

pollution); changes in temperature may cause death, algal blooms and introduction of alien 

species in certain instances (Caissie, 2006; de Vries et al., 2008; Hester and Doyle, 2011; Wolf et 

al., 2014). Also, many physical and chemical water characteristics such as; solubility of oxygen 

and other gases, chemical reaction rate and toxicity, and microbial activities are strongly 

influenced by temperature (Dallas, 2008). Hence, toxicity and bioavailability of PAHs in the aquatic 

environment can be influenced by temperature profiles of water bodies. 

Heated discharges, flow modifications, riparian vegetation removal and global climate change are 

the causes of thermal regime changes in aquatic ecosystems (Dallas, 2008). Almost 90% of 

thermally impacted freshwaters globally, are long-range impacts and are caused mainly by once-

through cooling systems from old power plants (Raptis et al., 2017). A temperature change of 

1.5oC and 3oC in salmonid and cyprinid waters respectively, above the natural water temperature 

as a result of thermal pollution, are not allowed in several US states (Raptis et al., 2017). This 

highlights the sensitivity of aquatic lives to temperature changes and the importance of 

temperature in water quality assessment. 

The average temperature of water samples collected at various seasons ranged between 12.40oC 

and 24.17oC at the sampling sites (Tables 4.5a and 4.5b). Seasonal total temperature average 

was highest in summer for both the Diep and Plankenburg River (23.17 and 19.60oC respectively) 

and lowest in winter (15.22 and 12.62oC respectively). This corresponds to variation in solar 

radiation. However, the highest temperature (24.17oC) was recorded in autumn at site DB, in 
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proximity to a refinery, which may suggest anthropogenic impact. Although, the water temperature 

was below 25oC (acceptable limit for no risk, as indicated by the South African water quality 

guidelines for aquatic ecosystems), at all the sites (Department of Water Affairs and Forestry 

(DWAF), 1996a). 

Table 4.5a: Seasonal variation of temperature (oC) in the Diep River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site DA 23.300 ± 0.707 21.900 ± 1.706 14.500 ± 0.700 17.750 ± 0.778 

Site DB 23.900 ± 1.838 24.167 ± 0.961 17.133 ± 2.401 21.100 ± 1.697 

Site DC 22.300 ± 1.131 20.933 ± 0.981 14.033 ± 0.681 18.150 ± 1.061 

 Average 23.167 ± 0.808 22.333 ± 1.660 15.222 ± 1.671 19.000 ± 1.830 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site DC: 
Woodbridge (downstream). 

 
 
Table 4.5b: Seasonal variation of temperature (oC) in the Plankenburg River water samples  

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site PA 19.990 ± 1.146 19.267 ± 1.662 12.400 ± 2.762 17.350 ± 0.071 

Site PB 19.550 ± 0.212 19.200 ± 1.136 12.700 ± 2.402 17.000 ± 0.283 

Site PC 19.800 ± 0.141 19.300 ± 1.418 12.733 ± 2.421 16.650 ± 0.495 

Site PD 19.050 ± 0.778 19.233 ± 0.723 12.633 ± 2.290 16.000 ± 0.566 

 Average 19.598 ± 0.407 19.250 ± 0.043 12.617 ± 0.150 17.714 ± 0.576 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. Site PC: Substation in 
industrial area. Site PD: Industrial area at Adam Tas bridge. 

 

4.2.2 pH 

The pH of surface water is an important factor, that could influence the availability of nutrients and 

toxins to plants and animals (Agunbiade et al., 2009; Sallam and Elsayed, 2015). Agunbiade et 

al. (2009), reported that metal contaminants are more bioavailable to plant between pH 5.5 and 

6.5. Water pH could be electrometrically measured using a pH meter giving an indication of 

hydrogen ion (H+) concentration of water (Wurts & Durborow, 1992; DWAF, 1996a). The pH of 

natural waters results from complex acid-base balance of different dissolved compounds 

especially carbon dioxide-bicarbonate-carbonate equilibrium system, that can also be influenced 

by temperature (DWAF, 1996b). Also, pH is influenced by other parameters such as carbon 

dioxide, alkalinity and hardness (Wurts & Durborow, 1992). Acidification and alkalinisation of 

natural water caused by conditions that favour H+ production (lower pH) and neutralisation of H+ 

(higher pH) respectively are the processes that occur, because of changes in pH regimes.  
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The average water pH values for selected sites of the Diep River ranged from 7.16 to 7.98; 

corresponding values for the Plankenburg River were 6.37 to 7.15 (Tables 4.6a and 4.6b 

respectively). The pH range recorded fell within the recommended levels set by the Department 

of Water and Sanitation of South Africa (6 - 9) for domestic, recreational and agricultural water 

use (DWAF, 1996b), but the summer average of two sites [PC (6.37) and PD (6.38)] fell outside 

the optimum levels set by World Health Organisation (6.5 to 9.5) for water meant for recreational 

activities (WHO, 2006). Therefore, water from these two sites may not be suitable for recreational 

activities in summer as effluents from industries seem to influence the water pH values at these 

sites.  

The hydrolysis of released organic contaminants coupled with rivers’ natural pH buffering 

mechanism could be responsible for pH values of over 7.50 recorded in most instances at the 

Diep River. High pH levels of up to 9.02 in water samples from Msunduzi River (South Africa), 

have been previously attributed to the hydrolysis of organic-derived wastes by Munyengabe et al. 

(2017). They reported pH values that ranged from 5.89 to 9.02 in surface water relative to the 6.0 

to 7.5 range for natural surface water. 

In the Plankenburg River, the low pH values recorded especially at sites PC and PD (industrial 

areas) could be as a result of acidic industrial effluents and emissions (Sallam and Elsayed, 2015). 

The pH of surface water had been reported to display random seasonal fluctuation (Cui et al., 

2017). Azizi et al. (2018) reported average pH value of 8.4, across the four seasons of summer 

(8.27), autumn (8.35), winter (8.27) and spring (8.71). The average pH value (8.71) recorded in 

spring in their study, was significantly different from and higher than those of the three other 

seasons. Wang et al. (2018), on the other hand reported mean pH values in autumn (8.30) and 

winter (8.26) that were higher than those in spring (8.21) and summer (8.10). Seasonal random 

flunctuation in pH, was observed in this study. Summer average pH value was highest for the Diep 

River (7.82) , but lowest for the Plankenburg River (6.63). Catchment activities and sundry of 

environmental effects may therefore be responsible for variations in pH values recorded.
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Table 4.6a: Seasonal variation of pH values in the Diep River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site DA 7.750 ± 0.537 7.610 ± 0.475 7.193 ± 0.157 7.160 ± 0.028 

Site DB 7.895 ± 0.247 7.613 ± 0.415 7.330 ± 0.147 7.975 ± 0.530 

Site DC 7.815 ± 1.124 7.860 ± 0.745 7.917 ± 0.385 7.920 ± 0.523 
 

Average 7.820 ± 0.073 7.694 ± 0.143 7.480 ± 0.385 7.685 ± 0.455 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site 
DC: Woodbridge (downstream). 

 
Table 4.6b: Seasonal variation of pH values in the Plankenburg River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site PA 6.930 ± 0.127 7.107 ± 0.231 7.153 ± 0.127 7.130 ± 0.140 

Site PB 6.845 ± 0.177 6.993 ± 0.253 7.153 ± 0.277 7.095 ± 0.163 

Site PC 6.365 ± 0.219 6.717 ± 0.206 6.863 ± 0.061 6.930 ± 0.028 

Site PD 6.380 ± 0.042 6.633 ± 0.195 6.880 ± 0.428 6.810 ± 0.141 
 

Average 6.630 ± 0.299 6.863 ± 0.224 7.012 ± 0.163 6.991 ± 0.149 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. Site PC: Substation in 
industrial area. Site PD: Industrial area at Adam Tas bridge. 
 

4.2.3 Electrical conductivity (EC) 

The EC of surface waters is said to be a function of the geology of an area. It suggests the 

presence of dissolved ions in water that could alter the taste and contribute to water hardness 

(Edokpayi et al., 2015). Discharges (agricultural, domestic and industrial sewage) and runoff 

wastewater into water resources can however result in conductivity increase, rendering the water 

inapt for irrigation and domestic use (Korkanç et al., 2017). Sea water intrusion into rivers is 

another way surface waters are impacted, changing the pH, EC, and the TDS regimes (Kumar et 

al., 2015; Sylus & Ramesh, 2015). The EC values at the selected sites ranged between 582 and 

6340 µS/cm (Tables 4.7a and 4.7b). The total seasonal average EC values obtained in spring 

were the highest for both the Diep (3249 µS/cm) and the Plankenburg (842 µS/cm) Rivers. 

Electrical conductivity values above the permissible level (0 to 1500 µS/cm) by the Department of 

Water and Sanitation of South Africa (DWAF, 1996b) were mainly recorded in the Diep River water 

samples. Apart from wastewater runoff into the rivers, tidal waves and river flows which are 

influenced by sundry and dynamic environmental conditions, possibly contributed to the high EC 

values recorded. These effects are more pronounced in the site DC which can be regarded as the 

zone of dispersion based on its closeness to the sea, with an EC value of 6340 µS/cm in spring. 

The EC range from this study is higher than those observed by Kumar et al. (2015) [49.8 to 1926 
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µS/cm] and Sylus & Ramesh (2015) [10 to 2500 µS/cm], from their investigation of seawater 

intrusion into coastal aquifers. However, the EC range observed in this study is lower than that 

reported by Tauhid Ur Rahman et al. (2017) from their assessment of rivers, ponds and tube wells. 

They reported EC average value of up to 7186.7 µS/cm. 

 

Table 4.7a: Seasonal variation of electrical conductivity (µS/cm) values in the Diep River water 
samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site DA 1182 ± 611 988 ± 302 1177 ± 288 1790 ± 215 

Site DB 1145 ± 651 1120 ± 379 1218 ± 219 1616 ± 276 

Site DC 2792 ± 2267 4990 ± 3298 4859 ± 3205 6340 ± 693 

 Average 1706 ± 940 2366 ± 2273 2418 ± 2114 3249 ± 2679 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site DC: 
Woodbridge (downstream). 

 
 
Table 4.7b: Seasonal variation of electrical conductivity (µS/cm) values in the Plankenburg River 
water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site PA 675 ± 109 620 ± 020 644 ± 067 885 ± 114 

Site PB 671 ± 101 585 ± 062 626 ± 078 852 ± 122 

Site PC 708 ± 051 627 ± 041 582 ± 044 834 ± 132 

Site PD 699 ± 129 605 ± 019 589 ± 039 798 ± 120 

Average 688 ± 018 609 ± 019 610 ± 030 842 ± 036 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. Site PC: Substation in 
industrial area. Site PD: Industrial area at Adam Tas bridge. 

 

4.2.4  Total dissolved solids (TDS) 

The TDS is a measure of various dissolved inorganic salts in water and has a direct relationship 

with EC. Various inorganic salts are present in water naturally because of dissolution of minerals 

in rocks, soils and decomposing vegetation. Hence, TDS levels in surface water is also a function 

of the geology of the area that the water had contact (DWAF, 1996b). However, undesirable 

elevated levels of TDS could arise from salt intrusion, mining, irrigation water, oil field refinery, and 

domestic wastewaters (Kent & Landon, 2013; Feng et al., 2014; Sharma et al., 2017). Elevated 

levels of TDS have been reported to impact water odour and colour, resulting in poor growth 

performance of animals and post egg fertilisation impairment in aquatic organisms (Brix et al., 

2010; Sharma et al., 2017). Total dissolved solids are therefore used as an index of water quality, 
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permissible limits range between 600 to < 1000 mg/L (Kut et al., 2019). The TDS values obtained 

from selected sites at different seasons are presented in Tables 4.8a and 4.8b for the Diep and 

Plankenburg Rivers respectively. The observed trend was similar to those obtained for EC. The 

TDS range (415 to 4340 mg/L) recorded in this study, is higher than those observed by Kumar et 

al. (2015) [1.21 to 774 mg/L] and Sylus & Ramesh (2015) [25 to 1800 mg/L]. Higher TDS values 

were observed in winter and spring relative to summer and autumn in both rivers. This observation 

is consistent to that of Kut et al. (2019). They reported higher TDS range of 121 to 1924 mg/L in 

wet season relative to 121 to 1467 mg/L in dry season. Storm water during the wet season must 

have enhanced the TDS values during the wet periods. 

 

Table 4.8a: Seasonal variation of TDS (mg/L) values in the Diep River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site DA 849 ± 426 705 ± 205 829 ± 199 1235 ± 191 

Site DB 813 ± 463 795 ± 270 863 ± 156 1140 ± 184 

Site DC 1937 ± 1561 3211 ± 2070 3325 ± 2152 4340 ± 594 
 

Average 1200 ± 639 1570 ± 1422 1672 ± 1431 2238 ± 1821 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site 
DC: Woodbridge (downstream). 
 

 
Table 4.8b: Seasonal variation of TDS (mg/L) values in the Plankenburg River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site PA 479 ± 77 440 ± 14 449 ± 47 603 ± 113 

Site PB 478 ± 76 428 ± 18 443 ± 52 584 ± 83 

Site PC 507 ± 45 443 ± 28 415 ± 29 590 ± 95 

Site PD 498 ± 86 432 ± 13 420 ± 28 564 ± 88 
 

Average 491 ± 14 436 ± 07 432 ± 17 585 ± 16 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. Site PC: Substation in 
industrial area. Site PD: Industrial area at Adam Tas bridge. 
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4.2.5  Salinity 

The amount of dissolved salts (mainly NaCl, KCl and MgCl2) in water is known as salinity (Hussain 

et al., 2017). Salinity is a very important parameter in aquatic systems as it controls physical 

attributes of surface waterbodies such as, density and heat capacity in conjunction with 

temperature and pressure. Salinity also influences the development and growth of aquatic 

organisms, and only a few species are said not to be affected by salinity changes (Bœuf & Payan, 

2001). Salinity also poses serious problems in crop production; they include delayed germination, 

high seedling mortality, poor crop stand, stunted growth and reduced yields (Al-Dakheel et al., 

2015). Hence, crop irrigation and aquaculture using high salinity water threatens food security. 

The salinity values obtained for water samples of studied sites are presented in Tables 4.9a and 

4.9b for the Diep and Plankenburg Rivers respectively. The observed salinity trend was similar to 

those of EC and TDS. The recorded seasonal salinity ranged from 915 to 5231 mg/L and 529 to 

681 mg/L for the Diep and Plankenburg Rivers respectively. Most of the observed seasonal salinity 

values across the studied sites of the Diep River exceeded the permissible value (<1000 mg/L) 

recommended for the protection of freshwater life (Kaushal et al., 2005). However, salinity values 

observed for the Plankenburg River were well below 1000 mg/L. The higher salinity levels in the 

Diep River relative to the Plankenburg River could be attributed to seawater intrusion which is 

evident at site DC (zone of dispersion) having the highest salinity range of 2252 to 5231 mg/L. 

The changes in the seasonal salinity values may be attributed to wastewater/storm water runoff 

and oceanic water intrusion into the aquatic system. A lower average salinity values of up to 

4236.4 mg/L was reported by Tauhid Ur Rahman et al. (2017). They reported that salinity intrusion 

was responsible for the high salinity levels measured and scarcity of safe drinking water in the 

coastal regions of Bangladesh. The heavy reliance on irrigation for crop production and rising 

groundwater tables, are also important causes of river salinisation (Cañedo-Argüelles et al.,2013). 

The high salinity recorded may therefore be as a result of unadsorbed salt from irrigation water, 

used in crop farming on the river catchments. Spring salinity values were generally higher relative 

to other seasons, this is contrast with the report of Ruiz et al. (2011). They reported that salinity 

values were stable, but only declined at the beginning of late winter-early spring due high rain fall. 

The washing of unadsorbed soil salt from irrigation water into the rivers may therefore be 

responsible for the high salinity values recorded in this study during spring, in contrast to that 

reported by Ruiz et al. (2011). 
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Table 4.9a: Seasonal variation of salinity (mg/L) in the Diep River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site DA 992 ± 384 981 ± 320 1165 ± 288 1414 ± 135 

Site DB 915 ± 498 1096 ± 464 1225 ± 229 1280 ± 175 

Site DC 2252 ± 1787 5231 ± 3690 5018 ± 3336 5195 ± 630 
 

Average 1386 ± 751 2436 ± 2421 2469 ± 2207 2630 ± 2223 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site 
DC: Woodbridge (downstream). 

 
 
Table 4.9b: Seasonal variation of salinity (mg/L) in the Plankenburg River water samples 

 Summer 
(Dec, Jan & Feb) 

Autumn 
(March to May) 

Winter 
(June to August) 

Spring 
(Sept to Nov) 

Site PA 531 ± 60 575 ± 75 616 ± 59 681 ± 72 

Site PB 529 ± 61 561 ± 71 601 ± 70 645 ± 63 

Site PC 559 ± 15 577 ± 27 559 ± 44 631 ± 75 

Site PD 545 ± 66 562 ± 57 569 ± 35 611 ± 80 
 

Average 541± 14 569 ± 08 586 ± 27 642 ± 30 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. Site PC: Substation in 
industrial area. Site PD: Industrial area at Adam Tas bridge. 

 

Correlation between the water quality parameters measured on site 

Conductivity, TDS and salinity showed identical trends across the seasons with higher values in 

wet regime relative to dry regime as shown in (Table 4.7 to Table 4.9). The Pearson correlation 

obtained through SPSS, showed that strong positive correlation existed between these three 

parameters (conductivity, TDS and salinity) as shown in Table 4.10. A 99.9% correlation existed 

between conductivity and TDS, 98.7% correlation between conductivity and salinity and 98.2% 

correlation between TDS and salinity. Strong correlations between EC, TDS and salinity in water 

samples are because EC depends on dissolved salts in water (Priya & Arulraj, 2011). Conductivity, 

TDS and salinity also gave positive significant correlation with pH, at 65.0%, 65.5% and 64.3 % 

respectively.



119 
 

 

Table 4.10: Correlation matrix of water quality parameters measured on site 

 pH Temperature Conductivity TDS Salinity 

pH Pearson Correlation 1     

Sig. (2-tailed)      

N 28     

Temperature Pearson Correlation .345 1    

Sig. (2-tailed) .073     

N 28 28    

Conductivity Pearson Correlation .650** .073 1   

Sig. (2-tailed) .000 .712    

N 28 28 28   

TDS Pearson Correlation .655** .074 .999** 1  

Sig. (2-tailed) .000 .708 .000   

N 28 28 28 28  

Salinity Pearson Correlation .643** .044 .987** .982** 1 

Sig. (2-tailed) .000 .824 .000 .000  

N 28 28 28 28 28 

**. Correlation is significant at the 0.01 level (2-tailed). 
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4.3 Levels of PAHS in the Diep and Plankenburg Rivers  

4.3.1 Levels of PAHs in surface water samples 

4.3.1.1 Levels of PAHs in surface water samples of the Diep River 

The seasonal average levels of 16 priority US EPA PAHs in water samples of the Diep River were 

assessed at studied sites. The summary of data obtained is presented in Appendices C1 and C2. 

The seasonal averages of individual PAH detected at the studied sites on the Diep River, ranged 

between 0.12 µg/L and 72.38 µg/L. This range was comparable to another study in South Africa 

by Nekhavhambe et al. (2014) who reported 0.1 µg/L to 137 µg/L range in river water samples. 

However, a lower range of 33.5 ng/L to 126.8 ng/L was reported in South Africa by Amdany et al. 

(2014) who studied the bioavailable fraction of POPs in surface water. Seasonal regimes 

influenced the detected levels of PAHs, with highest levels recorded in summer. The seasonal 

levels measured, were in the order of summer > autumn > winter > spring, except for site DA 

(Figure 4.2). In summer (with elevated temperature and low precipitation), water level became 

critically low and more pronounced downstream. This could be responsible for more concentrated 

levels of PAH contaminants. Liu et al. (2016a) also reported high PAHs concentrations during 

elevated temperature period and low PAHs concentrations during flood period. 

The prevalence of carcinogenic PAHs (benzo[a]anthracene, chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and dibenzo[a, h]anthracene) in 

water samples analysed is of major concern, representing up to 72.36 % of the PAHs in water 

samples at the studied sites of the Diep River (Appendices C1 and C2). This poses potential risk 

to aquatic lives and human health through possible exposures via food webs. 

The site near a refinery (site DB) was the most contaminated site on the Diep River, with 16 US 

EPA priority PAHs annual average of 169.47 µg/L, followed by the downstream site (site DC) at 

99.81 µg/L and the lowest level was recorded upstream, at the nature reserve (site DA) with annual 

average of 73.91 µg/L (Figure 4.2). This suggests that, detected levels of PAHs were also site-

specific and dependent on anthropogenic activities near sampling sites. Prevalence of petrogenic 

(3-ringed) PAHs at site DB relative to other sites was observed. 
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Figure 4.2: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 
samples of the Diep River 
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The influence of site’s anthropogenic activities and seasons on detected levels of PAHs were 

examined statistically using two-way ANOVA multivariate test. The result showed that both 

sampling sites and seasonal regimes had significant effects on the levels of PAHs detected 

(P<0.05). However, sampling sites showed more significant effect on the detected levels of PAHs, 

based on the F-values of 14.787 and 4.268 obtained for sites and seasons respectively (Appendix 

D). 

Acenaphthylene, acenaphthene, phenanthrene, anthracene, benzo[a]anthracene, chrysene, 

indeno[1, 2, 3-cd]pyrene, dibenzo[a, h]anthracene and benzo[g, h, i]perylene were found to be 

present in all the water samples analysed through the four seasons. The annual percentage 

distribution for each PAH in water samples from studied sites on the Diep River is shown in Figure 

4.3, with chrysene as the highest contributor to the overall PAH-burden, followed by benzo [a] 

anthracene. The least contributors were benzo [a] pyrene, benzo [b] fluoranthene and benzo [k] 

fluoranthene with approximately 1% contribution each, to the overall water PAH-burden. The 

contribution of each PAH in water samples over a one-year period is in the order chrysene 

(20.51%) > benzo[a]anthracene (17.10%) > dibenzo[a, h]anthracene (9.24%) > indeno[1, 2, 3-

cd]pyrene (9.03%) > phenanthrene (8.47%) > benzo[g, h, i]perylene (5.91%) > fluoranthene 

(5.85%) > anthracene (5.21%) > naphthalene (3.87%) > acenaphthylene (3.36%) >fluorene 

(2.88%) > pyrene (2.41%) > acenaphthene (2.13%) > benzo[k]fluoranthene (1.41%) > 

benzo[b]fluoranthene (1.34%) > benzo[a]pyrene (1.27%). The 4-ringed PAHs were the highest 

contributors (45.89%), followed by the high molecular weight (HMW) PAHs (5- and 6-ring) 

(28.20%) and the low molecular weight (LMW) PAHs (2 and 3-ring) were the lowest contributors 

(25.92%). This is an indication of pyrogenic sourced PAHs (Hong et al., 2016). Edokpayi et al. 

(2016), also reported that pyrogenic sources (i.e. combustion of bushes and other biomass) were 

the sources of PAHs detected in water samples from a South African River. 
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Figure 4.3: Annual distribution of 16 US EPA PAHs in water samples of the Diep River 
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The PAHs distribution in water samples from the studied sites were relatively comparable. The 4-

ringed PAHs were the most abundant, followed by the 3-ringed congeners, except for site DC 

where there were more 5-ringed congeners relative to the 3-ringed congeners. The least abundant 

was the 2-ringed PAH as shown in Table 4.11 and Figure 4.4. The abundance of 4-ringed PAHs 

in water samples have been reported previously (Santos et al., 2018b). The dominance of the 4-

ringed PAHs is obvious amongst the 16 US EPA PAHs, however the prevalence of the 3-ringed 

PAHs at site DB relative to sites DA and DC, suggest petrogenic contribution from anthropogenic 

activities near site DB. The 3-ringed PAHs are dominant in petroleum, their prevalence is usually 

linked to atmospheric deposition and petroleum contamination, while the prevalence of the 4-

ringed PAHs at all the sampling sites suggested that PAHs contaminations were predominantly 

from pyrogenic sources. This observation is in line with that of Santos et al. (2018b), who assessed 

the distribution and seasonal variations of PAHs in a tropical estuarine system. 

Table 4.11: Fractions of PAHs congeners in water samples of the Diep River 

PAHs Site 

DA DB DC 

% 2-ringed 4.46 3.13 4.65 

% 3-ringed 17.70 28.32 14.63 

% 4-ringed 50.14 42.06 49.23 

% 5-ringed 13.24 11.74 15.85 

% 6-ringed 14.46 14.75 15.65 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. Site DC: 
Woodbridge (downstream). 
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Figure 4.4: Fractions of PAHs in water samples of the Diep River
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4.3.1.2 Levels of PAHs in surface water samples of the Plankenburg River 

The spatial and temporal (seasonal) distribution of 16 US EPA priority PAHs were also assessed 

in water samples of the Plankenburg River. Results obtained from the assessment are presented 

in Appendices E1 and C2. The seasonal average of each detected PAH in water samples from 

the Plankenburg River at the studied sites ranged between 0.39 µg/L and 67.50 µg/L. Temporal 

variation was observed in PAHs levels at the studied sites, with the highest levels recorded in 

summer with the exception of site PC (Figure 4.5). Elevated levels of PAHs in summer months 

and prevalence of carcinogenic PAHs (which ranged between 39.36 to 87.17%) were also 

observed in water samples of the Plankenburg River similar to those of the Diep River. 

Spatial variation was also observed in the annual average levels of the total 16 US EPA priority 

PAHs, with the highest level (187.11 µg/L) at the site located in an industrial area (site PC), 

followed by the site in an informal settlement (site PB) with a total PAHs value of 149.51µg/L 

(Figure 4.5). The upstream site of the river (site PA), which is in an agricultural area and the 

downstream site (site PD) close to its conflux, both had lower levels (119.06 µg/L and 119.57 µg/L 

respectively). High levels of PAHs in the industrial area and low levels upstream were also 

observed for the studied sites of the Diep River. Hence, anthropogenic activities around the 

sampling sites contributed to the occurrence of PAHs at both rivers. Numerous studies had 

observed similar trends, points associated with industrial activities often have higher levels of 

PAHs (Liu et al., 2016a; Ranjbar Jafarabadi et al., 2017; Cetin et al., 2017). 

 



127 
 

 

 

Figure 4.5: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 
samples of the Plankenburg River 

119.06
149.51

187.11

119.57

0

50

100

150

200

250

300

S
u

m
m

e
r

A
u

tu
m

n

W
in

te
r

S
p

ri
n

g

A
v

e
ra

g
e

S
u

m
m

e
r

A
u

tu
m

n

W
in

te
r

S
p

ri
n

g

A
v

e
ra

g
e

S
u

m
m

e
r

A
u

tu
m

n

W
in

te
r

S
p

ri
n

g

A
v

e
ra

g
e

S
u

m
m

e
r

A
u

tu
m

n

W
in

te
r

S
p

ri
n

g

A
v

e
ra

g
e

PA PB PC PD

P
A

H
s
 l

e
v

e
ls

/µ
g

.L
-1



128 
 

Statistical analysis (two-way ANOVA, multivariate test) showed that sampling sites had significant 

effect on total concentrations of PAHs measured in water samples from the Plankenburg River 

(P< 0.05, F= 9.223), relative to seasonal variations (P > 0.05, F=2.733) as shown in Appendix F. 

Anthropogenic activities near sampling sites had been reported previously to significantly 

influence the total concentration of PAHs measured relative to seasonal variations (Ravindra et 

al., 2006). Ravindra et al. (2006) identified vehicular emission as an import anthropogenic source 

of PAHs. Chen et al. (2007) also reported that there were no obvious seasonal variations in PAHs 

concentrations in water samples during their study carried out over four seasons. They reported 

∑15PAHs concentrations that ranged from 70.3 to 1844.4 ng/L. 

Acenaphthylene, phenanthrene, anthracene, benzo[a]anthracene, chrysene, indeno[1, 2, 3-

cd]pyrene, dibenzo[a, h]anthracene and benzo[g, h, i]perylene were frequently detected across 

the studied sites. The annual distribution pattern of the studied PAHs is shown in Figure 4.6. 

Occurrence was similar to that found in the Diep River; chrysene followed by benzo[a]anthracene 

were the highest contributors to the PAH-burden in water samples. The order is chrysene 

(20.92%) > benzo[a]anthracene (18.62%) > indeno[1, 2, 3-cd]pyrene (11.76%) > phenanthrene 

(8.32%) > dibenzo[a, h]anthracene (6.56%) > anthracene (5.17%) > benzo[b]fluoranthene (4.99%) 

> benzo[g, h, i]perylene (4.93%) > fluorene (4.10%) fluoranthene (3.42%) > benzo[k]fluoranthene 

(3.03%) > acenaphthylene (2.04%) > pyrene (2.00%) > naphthalene (1.80%) > benzo[a]pyrene 

(1.21%) > acenaphthene (1.11%). The 4-ringed PAHs were also the most abundant in water 

samples of the Plankenburg River, while the 2-ringed PAH was the least abundant (Table 4.12 

and Figure 4.7). 
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Figure 4.6: Annual distribution of 16 US EPA PAHs in water samples of the Plankenburg River 

  

 

Table 4.12: Fractions of PAHs congeners in water samples of the Plankenburg River 

PAHs Site 

PA PB PC PD 

% 2-ringed 1.60 2.01 1.44 2.34 

% 3-ringed 17.04 28.31 15.76 22.54 

% 4-ringed 50.21 37.35 45.03 49.17 

% 5-ringed 13.35 15.60 18.11 15.03 

% 6-ringed 17.80 16.73 19.66 10.93 
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Figure 4.7: Fractions of PAHs in water samples of the Plankenburg River
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The annual average of the 16 US EPA priority PAHs in water samples from the studied sites on 

the Diep and Plankenburg rivers ranged between 73.90 and 187.11µg/L; the concentrations of 

carcinogenic PAHs ranged between 49.56 and 133.95 µg/L. The site PC on the Plankenburg River 

(associated with industrial activities) had the highest annual average of PAHs measured (Figure 

4.8). Generally, the distribution pattern of the PAHs was observed to be similar, with higher PAH 

levels detected at sites associated with industrial activities (petroleum refining and chemical 

production) i.e. sites DB and PC (Figure 4.8). The 4-ringed PAHs were detected as the most 

abundant in water samples of the two rivers (Figure 4.9). The prevalence of 4-ringed and heavier 

PAHs in aquatic systems have been attributed to biomass combustion and due to poor solubility 

of PAHs in water, the heavier PAHs are expected to settle into the sediment compartment (Guo 

et al., 2007; Chen & Chen, 2011; Santos et al., 2018b). 

The annual average of each detected PAH in the investigated rivers, ranged between 0.45 and 

40.87 µg/L (Table 4.13). The levels detected exceeded 0.015 to 5.800 µg/L range, the threshold 

of water quality guideline, recommended for the protection of aquatic life (Canadian Council of 

Ministers of the Environment (CCME), 1999; US EPA, 2006) (Table 4.14). Hence, water samples 

of the Diep and Plankenburg Rivers were highly polluted with PAHs and capable of impacting 

aquatic lives adversely. 

  

 

Figure 4.8: Seasonal variations and annual average levels of 16 US EPA priority PAHs in water 
samples of the Diep and Plankenburg Rivers 
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Figure 4.9: Fractions of PAHs in water samples of the Diep and Plankenburg Rivers 
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Table 4.13: Annual average concentrations of PAHs in water samples of the Diep and Plankenburg Rivers 

Sites PAHs concentrations (µg/L)  

Nap Acy Can Flu Phe Ant Flt Pyr BaA Chy BbF BkF BaP IcP DBA BgP ∑16 PAHs ∑CPAHs 

DA 3.31 2.10 1.01 2.82 4.28 2.88 2.94 1.75 14.09 18.37 nd 1.08 1.37 7.35 7.30 3.26 73.91 49.56 

DB 5.34 5.83 5.09 6.01 19.66 11.37 6.91 2.86 27.16 34.26 4.15 2.22 2.02 17.39 11.53 7.64 169.47 98.73 

DC 4.64 3.59 1.21 1.05 5.11 3.65 10.23 3.69 17.45 17.76 0.45 1.54 0.96 6.26 12.86 9.37 99.81 57.29 

PA 1.87 3.24 1.37 4.24 7.50 3.98 3.00 2.90 24.25 29.66 5.87 0.71 2.50 16.05 6.80 5.13 119.06 85.84 

PB 2.97 3.81 2.39 7.34 17.01 11.84 8.29 4.59 21.75 21.23 8.34 1.79 0.56 20.54 12.57 4.50 149.51 86.77 

PC 2.70 3.41 1.94 6.34 11.20 6.72 4.01 1.97 37.36 40.87 11.21 11.17 2.36 21.87 9.10 14.86 187.11 133.95 

PD 2.83 1.27 0.70 5.64 12.20 7.21 4.35 2.08 23.76 28.57 3.28 3.75 1.56 9.21 9.28 3.88 119.57 79.41 

Nap: Naphthalene. Acy: Acenaphthylene. Can: Acenaphthene. Flu: Fluorene. Phe: Phenanthrene. Ant: Anthracene. Flt: Fluoranthene. Pyr: Pyrene. BaA: 
Benzo[a]anthracene. Chy: Chrysene. BbF: Benzo[b]fluoranthene. BkF: Benzo[k]fluoranthene. Bap: Benzo[a]pyrene. BgP: Benzo[g, h, i]perylene. IcP: Indeno[1, 2, 3-

cd]pyrene. DBA: Dibenzo[a, h]anthracene. BgP: Benzo[g, h, i]perylene. 
CPAHs: Carcinogenic PAHs (BaA, Chy, BbF, BkF, BaP IcP and DBA) 
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Table 4.14: Regulatory threshold limits of PAHs in sediment and water for the protection of aquatic 
life  

PAHs Carcinogenicity Sediment µg/g Water µg/L 

ISQG PEL FSSB WQG 

Naphthalene NC 0.03460 0.39100 0.1760 1.10000 

Acenaphthylene NC 0.00587 0.12800 0.0059 - 

Acenaphthene NC 0.00671 0.08890 0.0067 5.80000 

Fluorene NC 0.02120 0.14400 0.0774 3.00000 

Phenanthrene NC 0.04190 0.51500 0.2040 0.40000 

Anthracene NC 0.04690 0.24500 0.0572 0.01200 

Fluoranthene WC 0.11100 2.35500 0.4230 0.04000 

Pyrene NC 0.05300 0.87500 0.1950 0.02500 

Benzo [a] anthracene C 0.03170 0.38500 0.1080 0.01800 

Chrysene C 0.05710 0.86200 0.1660 - 

Benzo [b] fluoranthene C - - 0.0272 - 

Benzo [k] fluoranthene C - - 0.2400 - 

Benzo [a] pyrene SC 0.03190 0.78200 0.1500 0.01500 

Benzo [g, h, i] perylene NC - - 0.1700 - 

Indeno [1,2,3-cd] pyrene C - - 0.0170 - 

Dibenzo [a, h] anthracene C 0.00622 0.13500 0.0330 - 

Adapted from CCME 1999; US EPA 2006 
NC: Non-Carcinogenic. C: Carcinogenic. WC: Weakly Carcinogenic. SC: Strongly Carcinogenic. ISQG: Interim 
Sediment Quality Guideline. PEL: Probable Effect Level. FSSB: Freshwater Sediment Screening Benchmarks. WQG: 
Water Quality Guideline.  
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4.3.2 Levels of PAHs in sediment samples 

4.3.2.1 Levels of PAHs in sediment samples of the Diep River 

Data obtained on the seasonal (temporal) levels of 16 priority US EPA PAHs in sediment samples 

of the Diep River is presented in Appendices G1 and G2. The seasonal detected levels of each 

PAH in the sediment samples ranged between 0.002 µg/g and 16.652 µg/g, the seasonal 

∑16PAHs ranged between 2.867 µg/g and 70.706 µg/g, and proportion of carcinogenic PAHs 

obtained ranged between 25.16% and 77.44%. The PAH levels in sediment samples were higher 

than those measured in corresponding water samples. Higher levels of PAHs in sediment samples 

had been previously reported (Qiao et al., 2008; Ma et al., 2013; Hong et al., 2016); sediment 

serves as sink for PAHs and therefore accumulates PAHs. Detected levels in autumn were 

generally high and as observed with water samples, site DB, associated with industrial activity (oil 

refinery) was the most contaminated site with the 16 US EPA priority PAHs (annual average of 

38.21 µg/g) and site DA a nature reserve, the least contaminated (annual average of 6.05 µg/g) 

(Figure 4.10). 

The overall distribution of PAHs in sediments of the Diep River over a one-year sampling period 

is; phenanthrene (14.88%) > benzo[b]fluoranthene (14.62%) > benzo[k]fluoranthene (14.37%) > 

benzo[a]pyrene (9.77%) > fluoranthene (9.04%) > chrysene (5.96%) > naphthalene (5.19%) > 

benzo[a]anthracene (4.83%) > dibenzo[a, h]anthracene (4.59%) > indeno[1, 2, 3-cd]pyrene 

(4.52%) > benzo[g, h, i]perylene (3.20%) > pyrene (2.49%) > acenaphthene (2.05%) > anthracene 

(1.94%) > fluorene (1.61%) > acenaphthylene (0.94%) (Figure 4.11). The compositional pattern 

of PAHs in sediment samples, differed from that observed in corresponding water samples. The 

HMW PAHs (5- and 6- ring) had the highest proportion (51.07%), in contrast to the 4-ringed PAHs 

in water samples. The prevalence of HMW PAHs in sediment samples had been previously 

reported (Guo et al., 2007; Chen & Chen, 2011). This was attributed to pollution sources and the 

more recalcitrant nature of the compounds unlike the LMW PAHs. The HMW PAHs are less 

susceptible to biodegradation and photo-oxidation in water (Abdel-Shafy & Mansour, 2016).  
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Figure 4.10: Seasonal variations and annual average levels of 16 US EPA PAHs in sediment 

samples of the Diep River
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Figure 4.11: Annual distribution of 16 US EPA PAHs in sediment samples of the Diep River 

 

The PAH distribution obtained in sediment samples from studied sites showed that the 5-ringed 

PAHs were the most abundant, followed by the 4-ringed PAHs (except at DB with higher 3-ringed 

PAHs) as shown in Figure 4.12 and Table 4.15. The site DB is associated with oil refining and the 

higher 3-ringed PAHs observed could be attributed to petroleum contamination from industrial 

effluent (Santos et al., 2018b). The predominance of HMW PAHs relative to LMW PAHs in 

sediment samples had been reported previously and attributed to pyrogenic PAHs from 

combustion of fossil fuels and vehicle exhausts (Nekhavhambe et al., 2014).
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Figure 4.12: Fractions of PAHs in sediment samples of the Diep River 

 

Table 4.15: Fractions of PAHs congeners in sediment samples of the Diep River 
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% 3-ringed 11.16 25.14 11.16 
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% 5-ringed 35.31 43.93 46.36 

% 6-ringed 12.93 6.95 7.95 
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4.3.2.2 Levels of PAHs in sediment samples of the Plankenburg River  

All 16 priority US EPA PAHs were detected in sediment samples from studied sites on the 

Plankenburg River (Appendices H1 and H2). The seasonal levels of each PAH across the studied 

sites ranged between 0.006 µg/g and 27.869 µg/g (Figure 4.13). The annual average 

concentrations of the 16 US EPA priority PAHs measured, ranged between 21.783 µg/g and 

39.656 µg/g. Higher prevalence of carcinogenic PAHs fractions (ranged between 48.81 and 

91.84%) was observed in sediment samples compared to corresponding water samples (with 

values between 39.36 and 87.17%). This may be due to the fact that carcinogenic PAHs 

(consisting of 4- to 6-ringed PAHs) have low water solubility and become associated readily with 

sediment (Ma et al., 2013). Motor vehicles are regarded as a major source of carcinogenic PAHs 

especially in urban areas (Stogiannidis & Laane, 2015). The site PC, associated with industrial 

activities had the highest annual PAHs levels (39.66 µg/g). Unlike in water samples, the site prone 

to impact by agricultural activities (Site PA) had higher annual PAHs average (31.29 µg/g) relative 

to the point close to the informal settlement (Site PB) with an annual average of 21.79 µg/g. 

Anthropogenic PAHs contribution from agricultural activities could have preceded the contribution 

by activities at the informal settlement. The sediment compartment reveals the history of 

contamination in an aquatic environment, while contamination in water is more as a result of local 

pollution (Ma et al., 2013). Higher total PAHs concentrations (∑6PAHs) of up to 61.764 µg/g in 

sediment samples in Limpopo Province (South Africa) had been reported previously 

(Nekhavhambe et al., 2014). They attributed PAH levels measured to automobile exhausts, 

lubricating oil, atmospheric disposition, domestic heating and refuse burning. Edokpayi et al. 

(2016) reported total PAHs concentrations (∑10PAHs) range of 27.10 to 55.93 µg/g in sediment 

samples of Vhembe District Rivers (South Africa), which is comparable to the range measured in 

this study (Figure 4.13). They identified biomass combustion as the major possible source of 

PAHs. 

The temporal variation showed higher PAHs concentrations during the dry season (summer and 

autumn) in general and the lowest PAHs levels in winter (Figure 4.13). This may be attributed to 

winter rain, causing a dilution effect due to the higher flow rate of the river. A high river flow rate 

can wash off surface sediment, leading to a reduction in total concentration of PAHs (Chen et al., 

2007). However, the site PB associated with the informal settlement had its highest PAHs level in 

winter (35.33 µg/g); this could be as a result of uncontrolled residential heating in winter (Hong et 

al., 2016). The indiscriminate dumping of refuse into the river channel at site PB, could also have 

resulted in the accumulation of sediment washed down from upstream in winter, which led to the 

increase in PAHs levels. The overall maximum PAHs concentrations observed in the dry season 
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are consistent with the observations of Doong & Lin (2004) and Gdara et al. (2017) in sediment 

samples of the Gao-ping River (Taiwan) and Wadi El Bay Watershed (Tunisia) respectively.

 

 

Figure 4.13: Seasonal variations and annual average levels of 16 US EPA priority PAHs in 
sediment samples of the Plankenburg River
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The PAH distribution in sediment samples of the Plankenburg River was in the order 

benzo[b]fluoranthene > benzo[k]fluoranthene > phenanthrene > benzo[a]pyrene > naphthalene > 

fluoranthene > dibenzo[a, h]anthracene > chrysene > benzo[a]anthracene ≥ anthracene > 

indeno[1,2,3-cd]pyrene > benzo[g, h, i]perylene > pyrene > fluorene > acenaphthylene 

>acenaphthene (Figure 4.14). Occurrences of the different compounds was similar to those 

observed in sediment samples of the Diep River. The HMW PAHs (5- and 6-ring) occurred most 

in contrast to the abundance of 4-ringed PAHs in corresponding water samples. 

 

 
Figure 4.14: Annual distribution of 16 US EPA priority PAHs in sediment samples of the 

Plankenburg River 
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The 5-ringed PAHs were the dominant PAHs observed in sediment samples, contributing between 

51.09% and 78.92% of the total 16 US EPA priority PAHs (Table 4.16). Figure 4.15 shows the 

annual distribution of PAHs in sediment samples of the Plankenburg River. Benzo[b]fluoranthene 

(19.46 to 77.39%), benzo[k]fluoranthene (12.89 to 40.52%) and phenanthrene (10.13 to 17.40%) 

were the major contributors to the PAH-burden in sediment of the studied sites. This indicates 

that, PAHs contributions were from both petrogenic (3-ring) and pyrolytic (above 4-ring) sources 

(Santos et al., 2018b). The abundance of benzo[b]fluoranthene relative to other PAHs in sediment 

samples of South Africa was previously reported by Edokpayi et al. (2016), which they attributed 

to biomass combustion.  

 

Table 4.16: Fractions of PAHs congeners in sediment samples of the Plankenburg River 

PAHs Site 

PA PB PC PD 

% 2-ringed 3.35 7.03 2.87 3.48 

% 3-ringed 12.67 22.60 12.42 21.20 

% 4-ringed 13.80 14.06 4.32 7.06 

% 5-ringed 58.71 51.09 78.92 66.40 

% 6-ringed 11.47 5.22 1.46 1.86 

 
 

 
Figure 4.15: Fractions of PAHs in sediment samples of the Plankenburg River 
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The high portion of HMW PAHs in sediment samples of the Diep and Plankenburg Rivers, 

suggested that pyrogenic processes were the primary source of PAHs in these aquatic systems. 

The levels of PAHs detected varied with seasons, with the highest levels obtained in autumn for 

most sites and lowest in winter (Figure 4.16). The trend of values obtained were similar to those 

of water samples. The points associated with industrial activities were the most contaminated 

sites. Data from both the Diep and Plankenburg Rivers were subjected to two-way ANOVA 

multivariate analysis. The results obtained, showed that sampling sites (P<0.05, F= 8.484) rather 

than seasonal regimes (P>0.05, F= 2.600) had significant effects on measured levels of PAHs 

(Appendices I and J).  

The annual average values of PAHs for sites PC and DB were 39.66 µg/g and 38.21 µg/g 

respectively. Carcinogenic PAHs’ annual average in sediment samples ranged from 3.56 to 32.67 

µg/g (Table 4.17); the results were similar to those observed in water samples with site PC having 

the highest level of carcinogenic PAHs. The lowest annual total and carcinogenic PAHs average 

(6.05 µg/g and 3.56 µg/g respectively) were recorded for the site DA at the nature reserve (Table 

4.17).  

Data obtained indicated that PAHs’ levels in both rivers were largely influenced by localised 

anthropogenic activities. The nature of sediment samples (Appendix K) might have influenced the 

levels of PAHs detected in sediment samples. Total organic carbon, organic matter and particle 

size of sediment have been reported to influence sorption of PAHs (Ahangar, 2010; Olu-owolabi 

et al., 2014; Gu et al., 2016).  

Comparison of the interim sediment quality guideline (ISQG) and the probable effect level (PEL) 

threshold limits of PAHs (Table 4.14) to the annual average measured in analysed sediment 

samples (Table 4.17) showed carcinogenic PAH pollution. The monitored aquatic systems were 

highly polluted with strongly carcinogenic PAH [benzo[a]pyrene (BaP)]. The annual average of 

BaP obtained ranged from 0.49 to 3.24 µg/ g (Table 4.17), which exceeded the ISQG (0.03190 

µg/g) and the PEL (0.782 µg/g) for BaP (Table 4.14). The observed levels of BaP are therefore, 

detrimental to aquatic lives and capable of impacting human health adversely. 
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Figure 4.16: Seasonal variations and annual average levels of 16 US EPA priority PAHs in sediment samples of the Diep and Plankenburg 

Rivers
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Table 4.17: Annual average concentrations of PAHs in sediment samples of the Diep and Plankenburg Rivers 

Sites PAHs levels (µg/g)  

Nap Acy Can Flu Phe Ant Flt Pyr BaA Chy BbF BkF BaP IcP DBA BgP ∑16 PAHs ∑C PAHs 

DA 0.859 0.093 0.101 0.082 0.299 0.101 0.469 0.100 0.387 0.641 0.378 0.807 0.491 0.459 0.394 0.389 6.049 3.557 

DB 0.987 0.285 0.769 0.675 7.067 0.810 3.361 1.142 1.631 2.042 6.355 5.516 3.244 1.668 1.698 0.958 38.210 22.155 

DC 0.859 0.112 0.198 0.077 0.386 0.101 0.876 0.051 0.495 0.424 0.883 1.159 1.359 0.231 0.303 0.321 7.833 4.853 

PA 1.048 0.356 0.445 0.330 2.533 0.301 1.935 0.442 0.922 1.019 10.625 4.125 2.485 1.136 2.640 0.950 31.292 22.953 

PB 1.532 0.106 0.047 0.282 4.349 0.138 1.068 0.196 0.846 0.952 4.867 3.220 2.474 0.569 0.684 0.453 21.783 13.612 

PC 1.140 0.151 0.063 0.099 3.764 0.850 0.631 0.172 0.370 0.541 19.344 10.131 1.469 0.352 0.461 0.117 39.656 32.669 

PD 1.070 0.170 0.179 0.091 4.645 1.437 0.664 0.412 0.592 0.504 12.157 6.305 1.574 0.393 0.378 0.195 30.763 21.902 
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4.3.3 Levels of PAHs in plant samples of the Diep and Plankenburg Rivers 

The bioaccumulation potential of PAHs in plants was investigated in this study. Concentrations of 

PAHs in plant samples of the Diep and Plankenburg Rivers were quantified. 

4.3.4.1 Levels of PAHs in plant samples (E. crassipes and P. australis) of the Diep River 

Eichhornia crassipes (water hyacinth) samples were collected at sites DA and DC; Phragmites 

australis (common reed) was collected from site DB. The water hyacinth was analysed whole, 

while the common reed was divided into leaves, stems and roots. The total PAHs concentrations 

measured in E. crassipes samples of the Diep River were 169.26 µg/g and 72.08 µg/g for sites 

DA and DC respectively; the corresponding percentages of carcinogenic PAHs were 70.60 and 

66.98 (Table 4.18a). The total PAHs average concentration of 226.72 µg/g and 61.91% 

carcinogenic PAHs were measured in P. australis of site DB (Table 4.18b). The levels of PAHs in 

plants were higher than those recorded for sediment samples. The observation was consistent 

with previous studies reported in the literature (O’Connor, 1996; Howsam et al., 2001; Huang et 

al., 2004; Sojinu et al., 2010). Sojinu et al. (2010) reported the sum of 28 target PAHs of 80 ng/g, 

168 ng/g and 1430 µg/kg on average, in soil, sediment and plant samples respectively. The plant 

sample from site DB (proximal to oil refinery) had the highest PAH levels (∑PAHs plant average 

of 226.72 µg/g), and the distribution of PAHs in their tissues follows the order of leaves (∑PAHs 

of 411.64 µg/g) > stems (173.29 µg/g) > roots (∑PAHs of 95.24 µg/g) [Figure 4.17]. Higher PAHs 

concentrations in aerial part of plants relative to roots had been reported previously (Tao et al., 

2004; Wang et al., 2012b). Tao et al. (2004) reported ∑16PAHs of up to 0.984 µg/g in the aerial 

part of vegetables relative to 0.201 µg/g in the roots. This was attributed to atmospheric uptake of 

PAHs by leaves (through cuticular waxes or by stomatal uptake) as the major pathway relative to 

absorbed PAHs from sediments.  
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Table 4.18a: Levels of PAHs (mean (n = 3) ± SD) in E. crassipes samples of the Diep River 

PAHs (µg/ g) Site DA Site DC 

Nap nd 0.20 ± 0.14 

Acy 2.59 ± 0.71 nd 

Can 1.20 ± 0.94 0.70 ± 0.32 

Flu nd 3.83 ± 2.71 

Phe na na 

Ant na na 

Flt 5.35 ± 0.48 1.87 ± 1.11 

Pyr 7.78 ± 2.87 0.65 ± 0.11 

BaA 23.22 ± 0.91 1.51 ± 1.23 

Chy 47.84 ± 1.84 4.64 ± 5.25 

BbF nd 0.77 ± 0.05 

BkF 23.30 ± 1.01 25.44 ± 2.54 

BaP 12.06 ± 5.15 4.64 ± 2.60 

IcP 3.84 ± 0.11 4.67 ± 1.84 

DBA 9.23 ± 0.48 6.61 ± 2.32 

BgP 32.83 ± 0.68 16.56 ± 14.50 

∑ PAHs 169.26 72.08 

∑C PAHs 119.49 48.28 

% C PAHs 70.60 66.98 

Site DA: Nature reserve (upstream). Site DC: Woodbridge (downstream). nd: not detected. na: not available. C 
PAHs: Carcinogenic PAHs 
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Table 4.18b: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Diep River 

PAHs (µg/g) Site DB 

leaves stems roots 

Nap 8.81 ± 8.84 7.33 ± 9.41 10.43 ± 0.47 

Acy 0.62 ± 0.44 0.82 ± 0.58 0.73 ± 0.09 

Can 0.83 ± 0.59 1.40 ± 0.99 nd 

Flu 6.94 ± 3.31 nd nd 

Phe na na na 

Ant na na na 

Flt 4.05 ± 0.27 4.25 ± 4.98 6.11 ± 5.03 

Pyr 39.79 ± 12.85 44.14 ± 3.37 9.77 ± 3.19 

BaA 41.25 ± 53.30 27.88 ± 11.90 6.15 ± 4.35 

Chy 46.53 ± 40.98 6.51 ± 0.01 nd 

BbF 15.66 ± 10.77 nd nd 

BkF 54.07 ± 65.82 5.89 ± 0.90 11.95 ± 0.24 

BaP 29.77 ± 39.63 7.97 ± 0.23 16.05 ± 0.21 

IcP 39.05 ± 1.12 9.57 ± 0.66 8.81 ± 2.62 

DBA 55.34 ± 1.65 28.43 ± 1.58 10.18 ± 7.19 

BgP 68.92 ± 23.13 29.08 ± 13.07 15.05 ± 18.79 

∑PAHs 411.64 173.29 95.24 

Plant ∑PAHs 226.72 

Plant ∑C PAHs 140.36 

%C PAHs 61.91 

Site DB: Theo Marais Sports Club – industrial and residential area. nd: not detected. na: not available. C PAHs: 
Carcinogenic PAHs 
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Figure 4.17: Occurrence of PAHs in P. australis tissues of the Diep River (site DB) 
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4.3.4.2 Levels of PAHs in P. australis of the Plankenburg River 

Phragmites australis (common reed) were collected from all four selected sites (PA, PB, PC and 

PD) on the Plankenburg River. Levels of PAHs were determined in roots, stems and leaves of the 

plant. PAHs levels in plant samples were higher than levels of PAHs detected in sediment 

samples. The ∑PAHs in plant tissues ranged between 42.77 µg/g and 117.89 µg/g (Tables 4.19a 

and 4.19b). The distribution order of PAHs in plant tissues is ∑PAHs levels in root > leaves > stem, 

except for site PD with distribution order of stem > leaves > root (Figure 4.18). The exception in 

site PD could be attributed to atmospheric PAHs from heavy vehicular movement around the site, 

whereas adsorption from water and sediment could be the primary PAHs uptake for the other 

sites. Though, the mechanism of PAHs uptake by plant is not yet fully understood, some have 

argued that the potential of PAHs uptake and translocation by root is low (Duarte-Davidson & 

Jones, 1996), while Fismes et al. (2002) reported high soil to root PAHs transfer and translocation. 

The concentrations of each PAH measured in the P. australis tissues (leaves, stem and root) of 

site PA ranged between 0.26 and 38.67 µg/g. Chrysene level was the highest in leaves (12.04 

µg/g), while Benzo[a]pyrene (BaP) was the highest in both stem (20.78 µg/g) and root (38.67 

µg/g). Chrysene level was also the highest in leaves (21.15 µg/g) of P. australis collected from site 

PB, while BaP was the highest in stem (24.36 µg/g), benzo[g, h, i]perylene (48.82 µg/g) followed 

by BaP (29.60 µg/g) in root. Concentration range of 0.09 to 48.82 µg/g PAH was measured in 

plant tissues of site PB. The level of BaP was the highest in leaves (11.70 µg/g), stem (19.68 µg/g) 

and root (40.44 µg/g) of P. australis collected from site PC and the measured PAH concentrations 

ranged from 0.14 to 40.44 µg/g. The measured concentration of BaP in leaves (13.59 µg/g) was 

the second highest after that of Indeno[1,2,3-cd]pyrene (17.92 µg/g), while BaP was the highest 

is both stem (46.39 µg/g) and root (18.34 µg/g) of P. australis collected at site PD, the PAH 

concentrations measured ranged between 0.31 and 46.39 µg/g. This shows the prevalence of 

strongly carcinogenic BaP and other HMW PAHs in P. australis samples analysed. Howsam et al. 

(2000) had previously reported high proportion of HMW PAHs (4-, 5- and 6-ring) in hazel leaves. 

This was attributed to the adaxial (upper) and abaxial (lower) dense hair cover of the leaves, which 

made the trapping of HMW atmospheric PAHs effective and less susceptible to wash-off by 

aqueous solution. The P. australis is a densely hairy plant, this might have resulted in the trapping 

of HMW PAHs from the air, sediment and water of the aquatic environment. 
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Table 4.19a: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Plankenburg River (sites PA and PB) 

PAHs (µg/g) Site PA Site PB 

leaves stems roots leaves stems roots 

 Nap nd nd nd nd 0.09 ± 0.06 nd 

Acy nd 0.29 ± 0.03 0.26 ± 0.18 0.32 ± 0.13 0.69 ± 0.10 nd 

Can 1.46 ± 0.10 0.43 ± 0.13 nd 1.38 ± 0.12 1.10 ± 0.17 0.50 ± 0.05 

Flu 5.86 ± 0.16 2.62 ± 1.86 nd 5.94 ± 0.06 3.46 ± 0.75 nd 

Phe na na na na na na 

Ant 2.93 ± 2.55 0.51 ± 0.36 9.94 ± 7.03 3.78 ± 0.13 0.44 ± 0.03 3.91 ± 2.76 

Flt 2.10 ± 1.76 1.12 ± 0.57 4.92 ± 3.48 1.53 ± 0.76 0.95 ± 0.06 6.52 ± 0.77 

Pyr 2.55 ± 0.05 0.97 ± 0.02 0.52 ± 0.37 4.01 ± 0.07 1.92 ± 0.09 8.76 ± 11.94 

BaA 3.63 ± 1.51 1.52 ± 0.32 1.43 ± 1.01 8.39 ± 3.05 4.01 ± 2.63 0.80 ± 0.01 

Chy 12.04 ± 3.15 1.27 ± 0.13 nd 21.15 ± 0.63 4.34 ± 2.05 0.59 ± 0.42 

BbF 2.32 ± 0.43 2.01 ± 0.59 1.34 ± 0.95 6.99 ± 0.66 3.70 ± 2.37 2.21 ± 0.01 

BkF 4.28 ± 0.09 1.40 ± 0.07 3.70 ± 2.62 9.09 ± 1.27 5.68 ± 2.01 5.79 ± 2.53 

BaP 8.78 ± 0.10 20.78 ± 0.22 38.67 ± 27.34 16.14 ± 0.06 24.36 ± 0.47 29.60 ± 0.60 

IcP 8.86 ± 0.17 2.88 ± 0.57 5.09 ± 3.60 14.08 ± 2.66 6.68 ± 1.54 5.09 ± 0.01 

DBA 4.20 ± 0.75 1.58 ± 0.13 4.02 ± 2.84 14.15 ± 2.85 2.54 ± 0.07 5.30 ± 0.15 

BgP 3.00 ± 1.74 5.39 ± 0.48 11.67 ± 8.25 6.31 ± 2.03 6.51 ± 0.66 48.82 ± 0.98 

∑PAHs 62.01 42.77  81.56  113.26  66.47  117.89  

Plant ∑PAHs 62.11 99.21 

Plant ∑C PAHs 43.27 63.56 

% C PAHs 69.66 64.07 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. nd: Not detected. na: not available. C PAHs: Carcinogenic PAHs. 
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Table 4.19b: Levels of PAHs (mean (n = 3) ± SD) in P. australis tissues of the Plankenburg River (sites PC and PD) 

PAHs (µg/g) Site PC Site PD 

leaves stems roots leaves stems roots 

 Nap nd 0.14 ± 0.10 nd nd 0.55 ± 0.13 nd 

Acy 0.47 ± 0.08 nd 0.41 ± 0.29 0.38 ± 0.27 0.28 ± 0.11 0.37 ± 0.15 

Can 0.83 ± 0.25 0.48 ± 0.24 0.64 0.81 ± 0.14 0.31 ± 0.20 0.35 ± 0.14 

Flu 3.72 ± 2.63 4.52 ± 2.14 0.51 ± 0.36 3.28 ± 2.32 2.27 ± 0.09 nd 

Phe na na na na na na 

Ant 3.43 ± 0.20 0.66 3.30 ± 4.10 1.78 ± 0.81 na 3.96 ± 2.25 

Flt 3.59 ± 0.22 10.35 ± 3.04 0.83 ± 0.03 1.08 ± 0.01 1.13 ± 0.32 3.10 ± 0.22 

Pyr 3.71 ± 0.46 2.34 ± 0.03 1.05 ± 0.13 9.59 ± 0.08 3.86 ± 0.09 3.60 ± 3.83 

BaA 8.45 ± 2.23 0.86 ± 0.04 0.99 ± 0.02 3.35 ± 0.24 6.55 ± 0.02 0.87 ± 0.37 

Chy 9.75 ± 6.25 2.15 ± 0.20 1.52 ± 0.24 9.77 ± 1.84 8.47 ± 1.84 1.01 ± 0.71 

BbF 2.82 ± 1.26 2.88 ± 1.13 2.81 ± 1.97 7.36 ± 0.96 5.61 ± 2.77 1.75 ± 0.04 

BkF 4.71 ± 0.83 3.24 ± 0.15 6.05 ± 0.32 6.31 ± 5.58 8.44 ± 3.66 3.64 ± 1.37 

BaP 11.70 ± 0.19 19.68 ± 0.74 40.44 ± 1.28 13.59 ± 0.09 46.39 ± 1.90 18.34 ± 0.12 

IcP 6.70 ± 1.62 3.32 ± 0.06 1.80 ± 0.13 17.92 ± 5.73 6.64 ± 5.42 3.79 ± 1.62 

DBA 2.82 ± 0.04 4.21 ± 0.87 2.54 ± 0.25 4.68 ± 0.19 4.43 ± 5.19 2.02 ± 1.80 

BgP 4.27 ± 1.52 2.96 ± 0.09 17.52 ± 0.38 3.62 ± 1.29 2.22 ± 0.15 5.08 ± 0.10 

∑PAHs 66.95  57.79  80.41  83.48  97.17  47.88 

Plant ∑PAHs 68.39 76.18 

Plant ∑C PAHs 46.48 60.31 

% C PAHs 67.97 79.17 

Site PC: Substation in industrial area. Site PD: Industrial area at Adam Tas Bridge. nd: Not detected. na: not available. C PAHs: Carcinogenic PAHs. 

. 
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Figure 4.18: Occurrence of PAHs in P. australis tissues of the Plankenburg River 

A: Site PA (Agricultural and residential areas). B: Site PB (Informal settlement of Kayamandi). C: Site PC 
(Substation in industrial area). D: Site PD (Industrial area at Adam Tas bridge). 

leaves
33%

stems
23%

roots
44%

leaves
38%

stems 
22%

roots
40%

leaves
33%

stems
28%

roots
39%

leaves
37%

stems
42%

roots
21%

A B

C D



154 
 

The distribution of PAHs in plant samples had similar pattern along the two rivers that were 

studied. Generally, there was abundance of HMW PAHs (4-,5- and 6-ring) in plant samples from 

all the sites. The proportion of PAHs congeners’ distribution in plants is given in Figure 4.19. 

However, elevated levels of benzo[a]pyrene (a strong carcinogen) were observed along the 

Plankenburg River relative to the Diep River.  

 
Figure 4.19: Fractions of PAHs in plant samples of the Diep and Plankenburg Rivers 
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4.3.4 Probabilistic risk assessment of PAHs in water and sediment samples 

The levels of PAHs in water and sediment samples at the studied sites from the Diep and 

Plankenburg Rivers were evaluated through probabilistic methodologies to predict the 

exceedence of detected levels to available quality guidelines. The mean levels of PAHs detected 

over a one-year period were ranked, utilising Weibull probabilistic approach and percentile ranking 

(Berninger & Brooks, 2010; Corrales et al., 2015). The Weibull plots are presented in Appendices 

L and M. 

4.3.4.1 Water sample probabilistic risk assessment 

The environmental percentile distribution and percentage exceedence of the 16 US EPA priority 

PAHs in water samples from the Diep and Plankenburg Rivers are presented in Tables 4.20a and 

4.20b respectively. The distribution of PAHs in surface water at 80th centiles for the Diep River 

was estimated to range between 0.845 and 32.959 µg/L and between 2.264 and 45.556 µg/L for 

the Plankenburg River. This is an indication that the Plankenburg River had higher overall levels 

of PAHs contamination in surface water relative to the Diep River. 

Over 40% exceedence was estimated for strongly carcinogenic benzo[a]pyrene (BaP), 100% 

exceedence for carcinogenic benzo[A]anthracene and over 95% exceedence for anthracene for 

both the Diep and Plankenburg Rivers, based on US EPA water quality guidelines (WQG) for 

PAHs. The average percentages exceedent for PAHs with available US EPA (WQG) were 63.26% 

and 42.81% for the Diep and Plankenburg Rivers respectively. 
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Table 4.20a: Summary of statistics of the tests of the Weibull distribution of the annual concentrations (µg/L) of PAHs in water samples of the 
Diep River 

PAHs Weibull plots Centile values (%) Exceedence values 

n R 2 a b 20 40 60 80 US EPA (WQG) CCME (WQG) Average 

Nap 36 0.5733 0.8002 -1.2880 0.000 1.020 2.500 10.660 19/36 (52.70%) 19/36 (52.70%) 63.26 % 

Acy 36 0.7627 0.9277 -1.3980 0.590 2.030 3.650 5.960 - - 

Can 36 0.5019 0.8888 -0.9050 0.480 0.790 1.156 2.765 5/36 (13.88%) 5/36 (13.88) 

Flu 36 0.6367 1.0350 -1.3780 0.000 1.099 2.823 5.131 13/36 (36.10%) 13/36 (36.10%) 

Phe 36 0.8396 0.8711 -1.8620 1.018 2.710 6.405 14.130 35/36 (97.22%) 35/36 (97.22%) 

Ant 36 0.8729 1.0211 -1.6890 1.287 1.966 3.145 6.718 36/36 (100.00%) 36/36 (100.00%) 

Flt 36 0.8829 1.2000 -2.3520 1.707 4.215 6.422 9.143 30/36 (83.33%) 30/36 (83.33%) 

Pyr 36 0.2148 0.3979 -0.6674 0.000 0.079 0.610 5.768 15/36 (41.66%) 15/36 (41.66%) 

BaA 36 0.9465 1.2338 -3.6958 7.260 8.507 16.494 32.468 36/36 (100.00%) 36/36 (100.00%) 

Chy 36 0.9562 1.1890 -3.7719 7.270 14.218 18.237 32.959 - - 

BbF 36 0.2088 0.7777 -0.7492 0.000 0.000 0.000 0.888 - - 

BkF 36 0.5912 1.4420 -1.3014 0.000 0.000 1.432 3.852 - - 

BaP 36 0.3987 1.1690 -1.0205 0.000 0.000 0.473 0.845 16/36 (44.44%) 16/36 (44.44%) 

IcP 36 0.9260 1.2000 -2.7790 2.904 4.237 8.156 14.462 - - 

DBA 36 0.9540 1.3250 -3.1802 3.789 5.907 9.256 14.434 - - 

BgP 36 0.7910 1.0755 -1.9592 1.431 2.312 3.602 9.482 - - 

n: no of compounds. a: slope. b: intercept. US EPA: United States Environmental Protection Agency. CCEM: Canadian Council of Ministers of the Environment. WQG: 
Water Quality Guideline. 
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Table 4.20b: Summary of statistics of the tests of the Weibull distribution of the annual concentrations (µg/L) of PAHs in water samples of the 
Plankenburg River 

PAHs Weibull plots Centile values (%) Exceedence values 

n R 2 a b 20 40 60 80 US EPA (WQG) CCME (WQG) Average 

Nap 48 0.6219 1.1756 -1.4155 0.000 1.383 2.501 5.429 20/48 (41.66%) 20/48 (41.66) 42.81% 

Acy 48 0.5736 0.9315 -1.1377 0.000 1.169 2.399 5.212 - - 

Can 48 0.5139 1.3510 -1.0473 0.000 0.948 1.664 2.264 2/48 (4.10%) 2/48 (4.10%) 

Flu 48 0.7582 0.9937 -1.9055 0.595 3.209 7.141 10.360 20/48 (41.66%) 20/48 (41.66) 

Phe 48 0.8695 0.9191 -2.3322 1.614 6.962 14.447 18.139 4/48 (8.33%) 4/48 (8.33%) 

Ant 48 0.8581 1.1150 -2.1998 1.604 2.839 6.656 10.811 47/48 (97.91%) 47/48 (97.91%) 

Flt 48 0.8702 1.3430 -2.2751 0.970 3.212 4.367 8.044 8/48 (16.67%) 8/48 (16.67%) 

Pyr 48 0.6452 1.1590 -1.4331 0.000 1.228 2.133 4.649 16/48 (33.33%) 16/48 (33.33%) 

BaA 48 0.9436 1.6499 -5.5707 10.693 18.790 24.567 38.962 48/48 (100.00%) 48/48 (100.00%) 

Chy 48 0.9899 1.3556 -4.7590 10.079 23.018 33.031 46.556 - - 

BbF 48 0.7050 0.8543 -1.5820 0.000 1.645 3.866 12.097 - - 

BkF 48 0.6962 1.0376 -1.5757 0.000 1.614 3.498 6.629 - - 

BaP 48 0.5361 1.3147 -1.2048 0.000 0.583 1.804 3.008 20/48 (41.66%) 20/48 (41.66%) 

IcP 48 0.9689 1.2051 -3.4686 4.385 11.069 16.660 31.431 - - 

DBA 48 0.9512 1.4329 -3.2776 2.955 5.470 8.125 13.666 - - 

BgP 48 0.8867 1.2120 -2.3088 1.830 3.461 4.811 8.461 - - 

n: no of compounds. a: slope. b: intercept. US EPA: United States Environmental Protection Agency. CCEM: Canadian Council of Ministers of the Environment. WQG: 
Water Quality Guideline. 
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4.3.4.2 Sediment sample probabilistic risk assessment 

The environmental percentile distribution and percentage exceedence of the 16 US EPA 

priority PAHs in sediment samples of the Diep and Plankenburg Rivers are presented in Tables 

4.21a and 4.21b respectively. 

The distribution of PAHs in sediments at 80th centiles for the Diep River was estimated to range 

between 0.1613 and 2.5498 µg/g; corresponding values were 0.2325 and 21.307 µg/g for the 

Plankenburg River. These values were higher than those estimated for the corresponding 

water samples.  

The percentage exceedence recorded for the strongly carcinogenic benzo [a] pyrene (BaP) in 

sediment were 80.55% and 87.20% for the Diep and Plankenburg Rivers respectively, based 

on US EPA freshwater sediment screening benchmarks (FSSB) for PAHs. These percentage 

exceedences were two-fold greater (44.44% and 41.66%) for BaP in the corresponding surface 

water of the Diep and Plankenburg Rivers respectively. This reaffirms the need for a holistic 

environmental assessment to estimate the health of the environment. A singular environmental 

medium assessment will not be sufficient in estimating the risk contaminants pose to humans. 

The estimated average US EPA FSSB exceedent percentages for the 16 priority PAHs in 

sediment samples were 63.71% and 77.20% for the Diep and Plankenburg Rivers respectively. 

This study showed that sediment samples had higher US EPA (FSSB) exceedent percentages 

for strongly carcinogenic benzo[a]pyrene compared to surface water and that the Plankenburg 

River was more contaminated than the Diep River with the 16 priority US EPA PAHs. 
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Table 4.21a: Summary of statistics of the tests of the Weibull distribution of the annual concentrations (µg/g) of PAHs in sediment samples of 
the Diep River 

 
  

PAHs Weibull plots Centile values (%) Exceedence values 

n R 2 a b 20 40 60 80 US EPA (FSSB) CCME (ISQG) FSSB Average 

Nap 36 0.8457 0.5560 -2.4532 0.0000 0.3672 1.0817 1.7719 8/36 (22.22%) 28/36 (77.77%) 63.71% 

Acy 36 0.7502 0.6745 -1.7304 0.0000 0.0019 0.1006 0.2727 18/36 (50.00%) 18/36 (50.00%) 

Can 36 0.8949 0.7655 -2.4646 0.0353 0.0085 0.1511 0.6045 31/36 (86.11%) 31/36 (86.11%) 

Flu 36 0.7553 0.6151 -1.7357 0.0000 0.0289 0.1345 0.3347 20/36 (55.55%) 23/36 (63.88%) 

Phe 36 0.7559 0.4427 -1.8346 0.0251 0.0529 0.2004 2.5123 14/36 (38.88%) 25/36 (69.44%) 

Ant 36 0.7936 0.7293 -2.1123 0.0000 0.0766 0.1182 0.1613 24/36 (66.67%) 27/36 (75%) 

Flt 36 0.9625 0.7359 -3.4089 0.1348 0.4069 0.7300 2.0210 21/36 (58.33%) 30/36 (83.33%) 

Pyr 36 0.8290 0.6333 -2.0129 0.0146 0.0484 0.1361 0.4075 12/36 (33.33%) 21/36 (58.33%) 

BaA 36 0.9091 1.1550 -5.0445 0.2124 0.3398 0.5592 1.1697 34/36 (94.44%) 36/36 (100.00%) 

Chy 36 0.9492 0.7209 -3.1997 0.1010 0.2498 0.8118 2.1866 10/36 (27.77%) 32/36 (88.88%) 

BbF 36 0.9449 0.6310 -3.1278 0.1395 0.4322 0.9956 2.3319 33/36 (91.66%) - 

BkF 36 0.8899 0.8221 -4.3132 0.2341 0.7637 1.5682 2.5498 28/36 (77.77%) - 

BaP 36 0.9646 0.7058 -3.4844 0.1815 0.5997 1.0718 2.0597 29/36 (80.55%) 33/36 (91.66%) 

IcP 36 0.9189 0.6631 -2.7083 0.0858 0.1972 0.4835 1.1012 30/36 (83.33%) - 

DBA 36 0.9447 0.7414 -3.0826 0.1253 0.2118 0.4825 1.1632 32/36 (88.88%) 32/36 (88.88%) 

BgP 36 0.9154 0.7103 -2.7016 0.0817 0.2367 0.2982 0.8435 23/36 (63.88%) - 

n = number of compounds. a = slope. b = intercept. US EPA = United States Environmental Protection Agency. FSSB = Freshwater Sediment Screening Benchmarks. 
CCEM = Canadian Council of Ministers of the Environment. ISQG = Interim Sediment Quality Guideline 
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. 

Table 4.21b: Summary of statistics of the tests of the Weibull distribution of the annual concentrations (µg/g) of PAHs in sediment samples of 
the Plankenburg River 

PAHs Weibull plots Centile values (%) Exceedence values 

n R 2 a b 20 40 60 80 US EPA (FSSB) CCME (ISQG) FSSB Average 

Nap 48 0.9080 0.7315 -3.5443 0.2848 0.5684 1.3433 2.1509 43/48 (89.58%) 43/48 (89.58%) 77.20% 

Acy 48 0.8932 0.8434 -2.3953 0.0187 0.0680 0.1320 0.3168 40/48 (83.33%) 40/48 (83.33%) 

Can 48 0.7325 0.6690 -1.6743 0.0000 0.0248 0.0854 0.2325 30/48 (62.5%) 30/48 (62.5%) 

Flu 48 0.8747 0.8185 -2.2771 0.0450 0.0976 0.1393 0.3540 32/48 (66.67%) 38/48 (79.16%) 

Phe 48 0.7729 0.4506 -2.1850 0.0476 0.0674 0.3279 9.7475 22/48 (45.88%) 41/48 (85.41%) 

Ant 48 0.8729 0.7017 -2.6184 0.0963 0.1526 0.2700 0.5851 40/48 (83.33%) 40/48 (83.33%) 

Flt 48 0.9242 0.9878 -4.4746 0.2027 0.3720 0.7141 1.9084 27/48 (56.25%) 43/48 (89.58%) 

Pyr 48 0.7289 0.5547 -1.7394 0.0000 0.0310 0.2404 0.6203 20/48 (41.66%) 26/48 (54.16%) 

BaA 48 0.8847 1.3433 -5.7280 0.1869 0.3369 0.5762 0.9676 48/48 (100.00%) 48/48 (100.00%) 

Chy 48 0.9405 1.1965 -5.1596 0.1639 0.3442 0.5801 1.2636 38/48 (79.16%) 48/48 (100.00%) 

BbF 48 0.9796 1.0026 -7.1503 2.4547 7.1473 12.3900 21.3070 48/48 (100.00%) - 

BkF 48 0.9832 1.1929 -7.6994 1.7206 4.2531 5.8422 8.3673 47/48 (97.91%) - 

BaP 48 0.9821 0.8526 -4.4114 0.2475 0.7129 1.4994 2.6598 42/48 (87.20%) 47/48 (97.91%) 

IcP 48 0.9870 1.0976 -4.5286 0.1335 0.2917 0.6198 0.9806 47/48 (97.91%) - 

DBA 48 0.9246 0.8257 -3.5784 0.1062 0.2305 0.6766 1.0627 48/48 (97.91%) 47/48 (97.91%) 

BgP 48 0.9005 0.7729 -2.6230 0.0475 0.0835 0.1830 0.5195 22/48 (45.83%) - 

n = number of compounds. a = slope. b = intercept. US EPA = United States Environmental Protection Agency. FSSB = Freshwater Sediment Screening Benchmarks. 
CCEM = Canadian Council of Ministers of the Environment. ISQG = Interim Sediment Quality Guideline 
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4.4  Remediation of PAHS from aqueous solution 

4.4.1 Characterisation of adsorbents produced from V. vinifera leaf litter 

4.4.1.1  The ash, moisture, crude fibre and elemental composition of raw leaf litter 

The ash, moisture, crude fibre and elemental composition of grape leaf litter are presented in 

Table 4.22. The ash, moisture and crude fibre content obtained were 7.22%, 8.19% and 13% 

respectively. The energy dispersion spectroscopic (EDS) analysis showed that the grape leaf litter 

contained 52.82% carbon, 46.05% oxygen, 0.41% calcium, 0.07% sulphur and 0.64% copper. 

These results make grape leaf litter a promising precursor for activated carbon. Precursors with 

high carbon content but with low ash and sulphur content results in high yield activated carbon 

with high adsorption capabilities and low/no emission of culprit sulphur oxides during the 

carbonisation process (Adebowale & Bayer, 2002; Rashidi et al., 2012). The results obtained from 

the analysis of the raw grape leaf litter, suggest that the material can be utilised as a cheap 

biomass in the production of activated carbons with great adsorption capabilities. 

  
Table 4.22: Ash, moisture, crude fibre and atomic elements of raw grape leaf litter 

Ash, moisture and crude fibre 
(Wt. %) 

Ash content  7.22 

Moisture content 8.19 

Crude fibre content 13.00 

Elemental Composition (Wt. %)  Carbon 52.82 

Oxygen 46.05 

Calcium 0.41 

Sulphur 0.07 

Copper 0.64 
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4.4.1.2 Physical properties and atomic elements of produced activated carbons 

The yield, burn-off, attrition and elemental composition of charred products using two different 

activated agents are presented in Table 4.23. The yield obtained for chars were high (41.63% to 

58.40%) with the exception of inactivated char (Nac) with 32.84% yield. Improved yield was 

obtained for biomass activated with H3PO4 and ZnCl2. Yield was directly proportional to the 

concentration of the activating agent for the range studied. The more the activating agent the less 

the burn-off obtained (41.98% to 67.17%). The highest burn-off was obtained for inactivated char 

(Nac). Chemical agents have been reported to improve the yield and lower burn-off of conversion 

products at low concentrations. They act as catalysts to promote depolymerisation of cellulose, 

bond cleavage, hydrolysis, dehydration, condensation and cross-linkage with biopolymers 

(Molina-Sabio & Rodríguez-Reinoso, 2004; Sugumaran et al., 2012). At optimum level of 

activating agents, activated carbon with maximum uniform microporosity are formed (Molina-

Sabio & Rodríguez-Reinoso, 2004; Sugumaran et al., 2012). The observed improved yields were 

higher than those reported by Adebowale & Bayer (2002). Attrition ranged from 9.24% to 42.86%, 

with Nac char having the lowest attrition and that activated with the highest proportion of ZnCl2 

(ZAac) had the highest attrition (Table 4.23). The percentage fixed carbon ranged from 51.37% to 

67.38% and followed similar trend observed for percentage yield for each activating agent. 

Activation with ZnCl2 gave higher fixed carbon in most instances relative to H3PO4 activation (Table 

4.23).  

The carbon matrix is not solely made-up of carbon atoms but consists of other atoms too. Oxygen, 

phosphorous, silicon, calcium, chlorine, sulphur, copper and zinc were atoms detected in 

produced activated carbons. These atoms are bonded to the edges of carbon layers and governs 

the surface chemistry of activated carbons (Prahas et al., 2008). Oxygen was detected in all 

produced chars and ranged from 30.87% to 45.17%. Phosphorous was detected in H3PO4 treated 

and untreated products and ranged from 0.01% to 1.64%. However, Zn was only detected in 

products treated with ZnCl2 and ranged from 0.86% to 1.74% (Table 4.23). 
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Table 4.23: Yield, burn-off, attrition and elemental composition of the chars 

ratio 
(biomass: 
chemical)/ 
chemical 
agent 

Name % 
yield 

% 
burn-
off 

% 
Attrition 

elemental composition (Wt. %)  

C O P Si Ca Cl S Cu Zn 

5:2/ H3PO4 PAac 58.40 41.98 36.75 60.04 37.64 1.04 0.14 0.51 0.04 0.03 0.56 - 

5:1/ H3PO4 PBac 47.04 52.96 19.67 57.60 41.13 0.87 - 0.04 - - - - 

10:1/ H3PO4 PCac 41.63 58.37 16.21 57.58 40.23 0.01 0.37 0.53 0.69 - 0.58 - 

5:2/ ZnCl2  ZAac 47.08 52.92 42.86 67.21 30.87 - 0.00 - 0.43 0.00 1.48 - 

5:1/ ZnCl2  ZBac 45.54 54.46 22.67 62.38 32.16 - 0.13 0.77 2.66 0.16 - 1.74 

10:1/ ZnCl2 ZCac 44.65 55.36 16.00 52.21 42.86 - 0.72 0.72 1.82 0.14 0.47 0.88 

No 
activation 

Nac 32.84 67.16 9.24 51.37 45.17 1.64 0.72 0.93 0.18 - - - 

 

The textural properties of produced activated carbons are presented in Table 4.24. The BET 

surface area of produced activated carbon ranged from 24.5399 m2/g to 616.6038 m2/g. Increase 

in concentration of activating agent led to increased surface area. The micropore area also 

increased with increasing concentration of activating agent with values between 17.5864 m2/g and 

462.5162 m2/g. The micropore volume ranged between 0.0069 cm3/g and 0.1843 cm3/g while the 

single point adsorption total pore volume ranged between 0.021259 cm3/g and 0.289066 cm3/g. 

Similar trend was observed in all adsorbent properties, with the exception of pore size. The 

observed pore size ranged between 1.87521 nm and 4.05688 nm. 

The surface area of 617 m2/g and a pore volume of 0.3 cm3/g showed the potential of grape leaf 

litter for activated carbon production. Commercially available activated carbons has surface area 

of about 1000 m2/g and pore volume between 0.2 cm3/g and 0.5 cm3/g (Adebowale & Bayer, 

2002). The results obtained from this study is comparable with that of Bagheri & Abedi (2009). 

They produced activated carbons with surface area ranging from 105 to 1320 m2/g from corn cob 

activated with 1:2 corn/chemical ratio. They reported that biomass/chemical ratio and method of 

mixing i.e. mixing-filtration, solid-solid and impregnation were the most important parameters for 

obtaining optimal experimental conditions. The activated carbon with the highest BET surface area 

(1320 m2/g) produced at the optimal experiment conditions was subsequently tested in a natural 

gas adsorption system. A 120 v/v natural gas adsorption capacity was reported. The importance 

of biomass/chemical ratio in improving the BET surface area of activated carbons can be seen 

clearly with the data obtained in this study (Table 4.24), increased from 10:1 to 5:2 

biomass/chemical ratio led to increase in BET surface area of 24.54 to 616.60 m2/g with ZnCl2 

activating agent. 
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The BET isotherms for nitrogen adsorption obtained with the produced activated carbons from this 

study, are presented in Figure 4.20. The activated carbon ZAac with the highest BET surface area 

(616.60 m2/g) gave the highest nitrogen adsorption capacity of 8.37 mmol/g, while the activated 

carbon ZCac with the lowest BET surface area (24.54 m2/g) gave the lowest nitrogen adsorption 

capacity of 0.64 mmol/g. Thus, BET surface area of activated carbons plays a crucial role in their 

adsorption capabilities.  

 

Table 4.24: Textural properties of produced activated carbons 

Activated 
Carbon 

 Surface Area 
(m2/g) 

Micropore 
area 
(m2/g) 

Micropore 
volume 
(cm3/g) 

Total pore 
volume 
(cm3/g) 

Pore size 
(nm) 

PAac 295.4881 174.1876 0.0720 0.185445 2.51036 

PBac 171.8277 104.7176 0.0423 0.141699 3.29863 

PCac 109.9583 82.1013 0.0323 0.060340 2.19501 

ZAac 616.6038 462.5162 0.1843 0.289066 1.87521 

ZBac 120.8772 68.9333 0.0280 0.122596 4.05688 

ZCac 24.5399 17.5864 0.0069 0.021259 3.46522 

PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with H3PO4 at 5:1 biomass to 
H3PO4 ratio. PCac: activated with H3PO4 at 10:1 biomass to H3PO4 ratio. ZAac: activated with ZnCl2 at 5:2 
biomass to ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to ZnCl2 ratio. ZCac: activated with ZnCl2 

at 10:1 biomass to ZnCl2 ratio. 
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Figure 4.20: BET isotherm plots for nitrogen adsorption capacity of produced activated carbons 

PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with H3PO4 at 5:1 biomass to H3PO4 ratio. PCac: activated with H3PO4 at 10:1 

biomass to H3PO4 ratio. ZAac: activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to ZnCl2 ratio. ZCac: activated 

with ZnCl2 at 10:1 biomass to ZnCl2 ratio.  
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Chemical structure information of the biomass and charred products was obtained by infrared 

spectroscopy (Figure 4.21). Charred products were largely similar but differed from the precursor 

structurally. The asymmetrical stretching vibration of C – H bond at 2918 cm-1 and the symmetrical 

stretching vibration at 2851 cm-1 present in the precursor were obviously absent in charred 

products. The C – H bonds were probably broken during the thermal conversion process to form 

a more stable C = C bonds, that was observed at 1580 cm-1 for all the charred products. Also, the 

C = O stretching observed at 1734 cm-1 in the raw biomass was absent in charred products, as 

surface oxygenated groups were converted to CO and CO2 during thermal conversion (Sun et al., 

2016; Correa et al., 2017; Lawal et al., 2017; Dodevski et al., 2017). The bands at around 1580 

cm-1 and 1070 cm-1 observed in all charred products are indicative of C = C bond stretching 

ascribed to aromatic compounds. 

The scanning electron microscopy (SEM), a good tool for surface morphology characterisation of 

adsorbents (Aljeboree et al., 2017) was also utilised for characterising produced adsorbents. 

Figure 4.22 shows the SEM images of charred products and raw biomass. The SEM image of raw 

biomass is smooth with no evidence of porosity, while rough surfaces and evidence of porosity 

could be observed on the SEM images of charred products. The porosity of charred products was 

due to the decomposition of lignin, cellulose and hemicellulose during carbonisation, resulting in 

the formation of micropores and mesopores (Deng et al., 2016). There are tendencies of PAHs 

being trapped and adsorbed in the developed pores. 
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Figure 4.21: FTIR spectra of produced chars vs raw biomass 

A: H3PO4 acid activated and inactivated chars versus raw biomass. B: ZnCl2 activated and inactivated 

versus raw biomass. PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with 

H3PO4 at 5:1 biomass to H3PO4 ratio. PCac: activated with H3PO4 at 10:1 biomass to H3PO4 ratio. Nac: 

charred with no activating agent. Raw: raw grape leaf litter. ZAac: activated with ZnCl2 at 5:2 biomass to 

ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to ZnCl2 ratio. ZCac: activated with ZnCl2 at 10:1 

biomass to ZnCl2 ratio.  
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Figure 4.22: Scanning electron micrographs of produced activated carbons, charred and raw biomass (magnification: x1000 vs x5000) 

PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with H3PO4 at 5:1 biomass to H3PO4 ratio. PCac: activated with H3PO4 at 10:1 

biomass to H3PO4 ratio. Raw: raw grape leaf litter. ZAac: activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to 

ZnCl2 ratio. ZCac: activated with ZnCl2 at 10:1 biomass to ZnCl2 ratio. Nac: charred with no activating agent.  
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4.4.2  Adsorption of phenanthrene on obtained activated carbons 

The adsorption of phenanthrene on produced activated carbons was studied to determine the 

potential of obtained charred products for remediation of PAHs contaminated water. 

Phenanthrene was selected being a suitable representative of semi-volatile organic compounds 

(Zhao et al., 2016). 

4.4.2.1  Optimisation of experimental parameters for the adsorption processes  

Effect of pH 

The effect of pH on phenanthrene adsorption using produced activated carbons was investigated. 

A pH range of 3 to 12 was studied. The result obtained showed that adsorption of PAH was 

favourable in the acidic medium relative to alkaline conditions (Figure 4.23). This observation is 

consistent with that reported by Gupta (2015), who stated that the adsorption of phenanthrene on 

activated carbon derived from orange peel, was maximum at low pH values and least at high pH 

value. The increase in positive charge on the adsorbent surface at low pH led to higher interaction 

between the adsorbent surface and the PAH molecule (having π-electron cloud). At low pH, there 

will be availability of more protons to enhance electrostatic attraction between the adsorbent and 

adsorbate (Özcan et al., 2004). The higher adsorption observed at pH 3 relative to pH 12 was 

attributed to this. At high pH, the OH- ions also competes with adsorbate molecules for adsorption 

active sites on the activated carbons (Gupta, 2015). Hence, the reduction of phenanthrene 

adsorption at high pH. The adsorption of dye onto modified biosorbent surface had also been 

reported to reduce as pH increased from 2 to 9 by Akar et al. (2010). They reported that the 

adsorbent was negatively charged above pH 3 and that the high positive charge on the biosorbent 

surface at pH 2 led to larger attraction forces between the anionic dye molecules and the 

biosorbent surface. 

However, Huang et al. (2016b) reported increased simultaneous adsorption of acenaphthene and 

cadmium onto magnetic nanoparticle adsorbents at high pH, with significant increase in cadmium 

removal. Increased removal of Cd2+ was attributed to nanoparticle surface becoming more 

negatively charged at higher pH. Increased acenaphthene removal at higher pH was however 

attributed to hydrophobic interactions between acenaphthene and confined surfactant micelles in 

the nanoparticles and not the surface charge of adsorbents. 
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Adsorbent ZAac, performed most efficiently in the removal of phenanthrene from aqueous media 

comparatively to other adsorbents (Table 4.25). This could be attributed to the surface 

characteristics of the adsorbent and ionic activities on the sorbent during the adsorption process. 

Activated carbons with highly microporous structure and improved adsorption capacity were 

reported to be produced when optimum ratio of ZnCl2 was utilised as activating agent of raw 

biomass carbonised in an inert atmosphere (Kim et al., 2001). This is because, ZnCl2 is a strong 

dehydrator effective in the removal of hydrogen and oxygen from raw biomass (Kim et al., 2001). 

 

  

Figure 4.23: Effect of solution pH on phenanthrene adsorption using activated carbons
 

 
 
Table 4.25: Effect of aqueous solution pH on phenanthrene removal using activated carbons 

Other conditions observed: solution concentrations =1mg/L, solution volume = 25 mL, adsorbent dosage = 
0.1g, temperature = 298 K, contact time =180 min and stirring agitation = 100 revolutions per minute (rpm)

Adsorbent Amount adsorbed mg/L 

pH 3 pH 6 pH 9 pH 12 

PAac 0.8487 0.8109 0.7482 0.6839 

PBac 0.8103 0.7898 0.7198 0.6808 

PCac 0.7956 0.7394 0.6956 0.6517 

ZAac 0.9384 0.8441 0.7411 0.6729 

ZBac 0.9167 0.8389 0.7205 0.6491 

ZCac 0.7592 0.7311 0.7033 0.6391 
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Effect of Adsorbent Dosage 

The effect of adsorbent dosage on the adsorption of phenanthrene onto produced activated 

carbons was determined using adsorbent weight range of 0.01 - 0.10 g (Figure 4.24). Results 

showed that phenanthrene adsorption increased rapidly with increased adsorbent dose from 0.01 

to 0.05 g, with a gradual increase in adsorption when dose was increased to 0.075g, while a further 

increase to 0.1 g of adsorbent dose did not result in a significant increase in adsorption. This 

observation is consistent with that of Rad et al. (2014). They reported that phenanthrene 

adsorption increased with the dose of activated carbons until an optimum amount of 0.3 g/100 mL. 

Up to 8.34 mg/g phenanthrene removal on the activated carbons was achieved. The availability 

of more sorption active sites with increased adsorbent dose led to the increase in adsorbate 

removal efficiency at higher adsorbent dosage (Garg et al., 2003). The percentage adsorption 

increased from 59.6% to 99.8% with increased adsorbent dose of 0.2 to 1.0 g/100 mL. In this 

study, phenanthrene removal of > 90% was obtained with adsorbents PAac, ZAac and ZBac at 

increased adsorbent dosage. 

The adsorption of dyes onto coconut shell activated carbon have also been reported to be a 

function of adsorbent dosage (Aljeboree et al., 2017). In the study, the amount of adsorbed dye 

increased apparently with increase in adsorbent dosage, but the amount adsorbed per unit mass 

decreased (adsorption density). The reduction in adsorption density with an increase adsorbent 

dosage was attributed to increased number of available sites that remained unsaturated during 

the adsorption process. Increased adsorbent dosage beyond the optimal level may also result in 

overcrowding of the adsorbent, causing adsorption sites to overlap, leading to reduction in the 

number of active sites available for adsorbate uptake (Padmavathy et al., 2016; Qiao et al., 2018). 

The reduction in adsorption density was also observed in this study, as shown in Table 4.26. 

Suggesting that lots of available active sites on the adsorbents were not utilised.
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Figure 4.24: Effect of adsorbent dosage on phenanthrene removal using activated carbons 
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Table 4.26: Effect of adsorbent dosage on phenanthrene removal from solution using activated carbons 

 Other conditions observed: solution concentrations =1 mg/L, solution volume = 25 mL, pH = 3, temperature = 298 K, contact time = 180 min and stirring 

agitation =100 rpm. 
PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with H3PO4 at 5:1 biomass to H3PO4 ratio. PCac: activated with H3PO4 at 10:1 
biomass to H3PO4 ratio. ZAac: activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to ZnCl2 ratio. ZCac: activated 
with ZnCl2 at 10:1 biomass to ZnCl2 ratio 
 

Adsorbent  0.010 g 0.025 g 0.050 g 0.075 g 0.100 g 

 quantity adsorbed 
(mg/g) 

quantity adsorbed 
(mg/g) 

quantity adsorbed 
(mg/g) 

quantity adsorbed 
(mg/g) 

quantity adsorbed 
(mg/g) 

PAac  0.88 0.79 0.45 0.30 0.23 

PBac  0.65 0.70 0.41 0.28 0.21 

PCac  0.38 0.57 0.37 0.26 0.20 

ZAac  1.03 0.86 0.47 0.32 0.24 

ZBac  0.95 0.82 0.46 0.31 0.23 

ZCac  0.45 0.56 0.35 0.25 0.19 
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Effect of Initial concentration 

Sorption of phenanthrene onto produced activated carbons at varying initial concentrations of 

phenanthrene (1 to 5 mg/L) in aqueous solution was studied. Initial phenanthrene concentration 

of 1 mg/L gave the highest removal efficiency of 92.13 % with ZAac (Figure 4.25). The percentage 

of phenanthrene adsorbed decreased with increase in initial adsorbate concentration, although, 

the actual amount of phenanthrene adsorbed increased with increase in initial concentration of 

phenanthrene (Table 4.27). This was due to the availability of more phenanthrene molecules to 

interact with the active sites of adsorbents. This however did not translate to increased percentage 

phenanthrene adsorbed, because there was also an increase in the amount of phenanthrene left 

in solution after the adsorption process. Saturation of adsorption sites on activated carbons 

surfaces maybe responsible for large percentage of unadsorbed adsorbate molecules (Qiao et al., 

2018). The result obtained is consistent with other studies (Garg et al., 2003; Lamichhane et al., 

2016). Garg et al. (2003) reported a reduction of 98.8 to 43.1% in percentage dye removal from 

aqueous solution onto formaldehyde treated sawdust when the initial concentration of adsorbate 

was increased from 50 to 250 mg/L in test carried out for 120 min. They also reported a slight 

decrease of 99.5 to 95.1% in dye removal, when sulphuric acid treated sawdust carbon was 

utilised under the same experimental conditions. The observation of Gupta (2015), who carried 

out batch experiments on the adsorption of phenanthrene in the initial concentration range of 10 

to 50 mg/L using 10 mg of activated carbon, is also consistent with the result obtained in this study. 

Percentage phenanthrene removal from aqueous solution decreased with increase in initial 

adsorbate concentrations. Sartape et al. (2017) also reported that the percentage adsorption of 

dye onto low-cost adsorbent prepared, decreased with increased initial dye concentrations from 

100 to 700 mg/L. Increased adsorption capacity of 12.35 to 80.65 mg/g was however reported, 

which was attributed to enhanced driving force to overcome resistance to mass transfer at higher 

dye initial concentrations coupled with enhanced interaction between dye and adsorbent. Initial 

concentration of adsorbate thus influences adsorption efficiency and capacity of adsorbents.   
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Figure 4.25: Effect of initial concentration of phenanthrene on activated carbons’ efficiency
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Table 4.27: Effect of initial concentration on phenanthrene removal from solution using activated carbons 

Other conditions observed: Adsorbent dosage = 0.1 g, solution volume = 25 mL, pH = 3, temperature = 298 K, contact time = 180 min and stirring agitation 
= 100 rpm. 
PAac: activated with H3PO4 at 5:2 biomass to H3PO4 ratio. PBac: activated with H3PO4 at 5:1 biomass to H3PO4 ratio. PCac: activated with H3PO4 at 10:1 
biomass to H3PO4 ratio. ZAac: activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio. ZBac: activated with ZnCl2 at 5:1 biomass to ZnCl2 ratio. ZCac: activated 
with ZnCl2 at 10:1 biomass to ZnCl2 ratio 
  

 

Adsorbent 1 mg/L 2 mg/L 3 mg/L 4 mg/L 5 mg/L 

Amount adsorbed 
(mg/L) 

Amount adsorbed 
(mg/L) 

Amount adsorbed 
(mg/L) 

Amount adsorbed 
(mg/L) 

Amount adsorbed 
(mg/L) 

PAac  0.89 1.53 2.15 2.72 2.89 

PBac  0.86 1.47 2.07 2.61 2.70 

PCac  0.82 1.51 1.92 2.48 2.45 

ZAac  0.92 1.75 2.52 2.79 2.92 

ZBac  0.90 1.73 2.51 2.44 2.53 

ZCac  0.75 1.37 1.81 2.39 2.21 
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Adsorbents ZAac, ZBac and PAac were used for further studies, based on their efficiencies (> 90 

%) for phenanthrene removal (Figure 4.25). The SEM images of these adsorbents before and 

after they were utilised for phenanthrene adsorption showed significant changes in surface texture 

(Figure 4.26). The SEM images of activated carbons after phenanthrene adsorption had 

significantly smoother surface morphology, which could be attributed to accumulation of 

phenanthrene onto the adsorbent’s surfaces. The observed changes in morphology after the 

adsorption process is in agreement with that reported by Sartape et al. (2017). They utilised wood 

apple shell for the removal of malachite green dye from aqueous solution and observed changes 

in the SEM micrographs obtained for the adsorbent before and after adsorption. A rough surface 

morphology was reported before adsorption and a smoother surface morphology after adsorption. 

Aljeboree et al. (2017) also reported notable difference in surface morphologies of SEM 

characterised coconut shell before and after it was utilised as alternative adsorbent for the removal 

of hazardous dyes. After adsorption, the dyes were reported to have formed a void-free film, 

masking the porosity on the adsorbent and resulted in a smoother surface morphology.   
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Figure 4.26: SEM images of activated carbons before and after adsorption of phenanthrene from 
aqueous solution 

(A) ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). (B) ZBac (activated with ZnCl2 at 5:1 
biomass to ZnCl2 ratio). (C) PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio). 
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4.4.2.2  Phenanthrene adsorption isotherms 

Adsorption isotherms describe the partitioning of adsorbate molecules between the liquid phase 

and the solid phase at a given temperature and equilibrium state, during an adsorption process 

(Aljeboree et al., 2017). Experimental equilibrium data obtained from this study were subjected to 

four adsorption equilibrium isotherm models (Langmuir, Freundlich, Temkin and Dubinin-

Radushkevich) 

The Langmuir maximum monolayer coverage capacity (𝑞𝑚) obtained for phenanthrene adsorption 

onto adsorbents ZAac, ZBac and PAac were 94.12 mg/g, 60.07 mg/g and 89.13 mg/g respectively 

and the corresponding Langmuir isotherm constants (KL) of 0.48 L/mg, 0.19 L/mg and 0.39 L/mg 

were obtained respectively (Table 4.28). The separation factor RL values obtained ranged from 

0.83 to 0.98. A RL value of less than one is an indication of favourable equilibrium sorption (El 

Qada et al., 2006). Hence, favourable equilibrium sorption of phenanthrene onto the activated 

carbons were achieved. Coefficient of determination value (R2) ranged from 0.95 to 0.99 (Figure 

4.27a), an indication that adsorption data fitted well into Langmuir isotherm model. The data 

obtained based on Langmuir adsorption isotherm is consistent with that reported by Gupta (2015). 

A 70.92 mg/g adsorption capacity (𝑞𝑚) and R2 value of 0.99 were reported for the adsorption of 

phenanthrene onto activated carbons produced from orange skin.
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Figure 4.27a: Langmuir adsorption isotherm plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac)  
ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio 

 

Data obtained from the Freundlich isotherm modelling i.e the plot of ln qe against ln Ce (Figure 

4.27b), showed that experimental data fitted into this isotherm model. The range of 0.97 to 0.99 

for R2 values and Kf range of 1.16 to 1.27 mg/g obtained (Table 4.28), indicated multilayer loading 

of phenanthrene on adsorbents. Also, the 1.33 to 1.52 values of n obtained suggested that the 

adsorption of phenanthrene onto the activated carbons were favourable, this because the values 

of n obtained were greater than one but less than ten i.e. 1 < n < 10 (Sarada et al., 2014). The 

data obtained by Rad et al. (2014) from the adsorption of phenanthrene with varied initial 

concentrations (5 to 40 mg/L) using activated carbons (0.3 g to 100 mL) gave R2 of 0.99, Kf of 2.71 

and n of 1.73 based on Freundlich isotherm model. The results they reported were consistent with 

those obtained from this study. The R2 values of experimental data obtained from the adsorption 

process with Freundlich isotherm signified adsorption onto heterogenous surfaces. 
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Figure 4.27b: Freudlich adsorption isotherm plots for phenanthrene removal using activated 
carbons (ZAac, ZBac and PAac)  

ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio 
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The R2 value range (0.92 - 0.95) obtained from the Temkin isotherm modelling (Figure 4.27c), 

showed that experimental data fitted considerably well into the Temkin isotherm model, which is 

an expression of adsorbent-adsorbate interaction, ignoring extremely low and high analytes 

concentrations (Qu et al., 2009). The corresponding 0.26 to 0.38 L/mg and 3.34 to 4.40 kJ/mol 

ranges were obtained for Temkin isotherm constants KT, which represents equilibrium binding 

constant and bT , which is related to heat of sorption respectively (Table 4.28)  

 

 

Figure 4.27c: Temkin adsorption isotherm plots for phenanthrene removal using activated carbons 
(ZAac, ZBac and PAac)  

ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio. 
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Table 4.28: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm constants for the 

adsorption of phenanthrene onto activated carbons obtained from V. vinifera 

Isotherm Models Parameters ZAac ZBac PAac 

Langmuir R 2 0.99 0.95 0.98 

qm (mg/g) 94.12 60.07 89.13 

KL (L/mg) 0.48 0.19 0.39 

RL 0.94 0.98 0.83 

Freundlich R 2 0.99 0.97 0.99 

Kf  1.27 1.18 1.16 

1/n 0.75 0.66 0.68 

n 1.33 1.52 1.47 

Temkin R 2 0.94 0.95 0.92 

KT (L/mg) 0.28 0.26 0.38 

bT (kJ/mol) 4.03 4.40 3.34 

Dubinin-Radushkevich R 2 0.94 0.92 0.98 

qDRB 2.80 1.13 1.06 

Kad (mol2/kJ2) 3.00 X10-8 9.00X10-9 4.0 X10-9 

 E (kJ/mol) 4.08 7.45 11.18 
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The Dubinin-Radushkevich modelling gave R2 value range of 0.92 to 0.98 9 (Figure 4.27d). The 

model was previously utilised to differentiate the physical and chemical adsorption of metal ions 

(Foo & Hameed, 2010). An adsorption mean free energy (E) of below 8 kJ/mol suggests 

occurrence of physical adsorption and E values between 8 and 16 kJ/mol suggests the dominance 

of chemical ion exchange (Akar et al., 2010). Hence, the adsorption of phenanthrene onto the 

ZnCl2 activated carbons ZAac and ZBac with E values of 4.08 and 7.45 kJ/mol respectively may 

be considered as physical adsorption. However, the phenanthrene adsorption on the H3PO4 

activated carbons PAac with E value of 11.18 kJ/mol may be considered to have followed a 

chemical ion exchange pathway.

 

Figure 4.27d: Dubinin-Radushkevich adsorption isotherm plots for phenanthrene removal using 
activated carbons (ZAac, ZBac and PAac)  

ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio 
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The results obtained from isotherm models showed that the adsorption of phenanthrene from 

aqueous solution onto activated carbons (ZAac, ZBac and PAac), produced from grape leaf litter 

was favourable. The experimental data fitted best into the Freundlich isotherm model (R2 of up to 

0.999) of the four models employed, as shown in the adsorption isotherm plots (Figure 4.27a -

Figure 4.27d). This is an indication that heterogenous and multilayer adsorption pathways are 

dominant in the adsorption of phenanthrene onto the produced activated carbons. Physical and 

chemical adsorption processes were responsible for phenanthrene removal. It can be concluded 

that the activated carbons from grape leaf litter have the potential to serve as biosorbents for the 

remediation of aqueous solutions and wastewaters contaminated with PAHs. 
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4.4.4.3  Adsorption kinetics  

Adsorption kinetics study, is crucial in evaluating the efficiency of adsorbents and also in the 

determination of adsorption mechanism (Aljeboree et al., 2017). The effect of contact time on the 

adsorption of phenanthrene onto activated carbons was studied over time range of 0 to 180 min 

(Figure 4.28). The percentage phenanthrene adsorbed increased with contact time rapidly from 

10 min to 80 min. After the 80 min contact time, no significant increase in phenanthrene adsorption 

was recorded, due to dynamic equilibrium being reached. This observation is consistent with that 

of Gupta (2015), who investigated the effect of contact time on phenanthrene adsorption in the 

time interval of 0 to 150 min. The study revealed that the amount of phenanthrene adsorbed from 

aqueous solution onto activated carbons, increased with contact time till 75 min and equilibrium 

was attained till 150 min. Aljeboree et al. (2017), reported a much faster adsorption rate for the 

uptake of dyes by coconut shell activated carbon compared to the rate observed in this study. 

They reported that most of the dye uptake took place within 10 min of the adsorption process. 

The uptake of phenanthrene onto activated carbons as a function of time, was further analysed 

with pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion kinetic models, 

in order to study the mechanism(s) of adsorption.  

 

  

Figure 4.28: Effect of contact time on phenanthrene adsorption using activated carbons
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Pseudo-first order kinetic model  

The pseudo-first order kinetic model, also known as Lagergren kinetic, had its adsorption rate 

equation (for a liquid-solid system) derived, based on the adsorbent adsorption capacity. This 

adsorption rate equation is commonly used for solute adsorption from liquid matrix (Sarada et al., 

2014)  

The simplified pseudo first order kinetic equation can be expressed as: 

𝐈𝐧(𝒒𝒆 − 𝒒𝒕) = 𝐈𝐧 𝒒𝒆 − 𝒌𝟏 𝒕       Equation 4.1 

Where 𝑞𝑒 and 𝑞𝑡 are the amount of solute adsorbed per unit mass of adsorbent (mg/g) at 

equilibrium and at time t respectively and 𝑘1 is the rate constant.  

The value of 𝒌𝟏 was obtained from the slope of the linear plot of 𝐈𝐧(𝒒𝒆 − 𝒒𝒕) against ‘t’. The 

correlation coefficient (R2) was also obtained from the linear plot (Figure 4.29a). The value of 𝑘1 

obtained for utilising adsorbents ZAac, ZBac and PAac for phenanthrene adsorption were 3.59 

min-1, 2.87 min-1, and 2.34 min-1 respectively (Table 4.29). The 𝑞𝑒 values obtained ranged from 

0.46 to 0.73 mg/g and the R2 value ranged from 0.533 to 0.829. The data therefore did not fit well 

into pseudo-first order model, since the R2 values obtained were less than <0.9. The poor fitting of 

experimental data obtained from the adsorption of phenanthrene onto activated carbons, into 

pseudo first order kinetic model had been reported previously (Rad et al., 2014). They reported 

that phenanthrene adsorption showed a better fitting with the pseudo-second order kinetic model 

relative to the pseudo-first order kinetic model. They concluded that the adsorption mechanism of 

phenanthrene onto activated carbons was predominantly controlled by chemisorption. 
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Figure 4.29a: Pseudo-first order adsorption kinetic plots for phenanthrene removal using activated 

carbons (ZAac, ZBac and PAac) 
ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio. 
 

Pseudo-second order kinetic model 

The pseudo-second order model is based on the sorption capacity of the solid phase which is 

associated with the number of available active sites. The linearised form of the kinetic model is 

expressed as Equation 4.2 (Ho & McKay, 1998).  
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=
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(𝒕)           Equation 4.2 

This model is advantageous as it eliminates the problem of assigning qe. The kinetics is presumed 

to proceed via chemisorption, being the rate determining step (Ho & McKay, 1998).  

The plot of t/qt against t gave a linear relationship (Figure 4.29b), from where qe and k2 were 

determined from the slope and intercept respectively. The value of 𝑘2 [g (mg/min)] obtained for 

utilising ZAac, ZBac and PAac were 0.761, 0.692 and 0.637 respectively. The values 𝑞𝑒 ranged 

from 38.78 to 62.58 mg/g with respective R2 values of 0.696 to 0.8532 (Table 4.29). The data fitted 
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better into pseudo-second order model relative to pseudo-first order model (Table 4.29). This is 

consistent with the observation of Shi et al. (2013), who carried out kinetic studies on the 

adsorption of naphthalene onto activated carbons. They reported R2 values of 0.9279 to 0.9514 

for the pseudo-first order kinetic model and 0.9983 to 0.9991 for the pseudo-second order kinetic 

model. Rad et al. (2014), also reported that the adsorption of phenanthrene onto activated carbons 

fitted better with pseudo-second order model relative to pseudo-first order model, utilising 

phenanthrene initial concentration range of 5 to 40 ppm. They concluded that the adsorption 

mechanism of phenanthrene onto activated carbons was controlled predominantly by chemical 

bonding or chemisorption. The adsorption kinetics of various adsorbates onto activated carbons 

have also been reported to have followed the pseudo second-order rate equation better than that 

of the pseudo first-order; sorption of Chromium (IV) onto activated carbons produced from 

cornelian cherry, apricot stone and almond shell (Demirbas et al., 2004), sorption of ciprofloxacin 

onto activated carbons derived from Arundo donax Linn. and pomelo peel (Sun et al., 2016) and 

sorption of dyes onto activated carbons obtained from coconut shell (Aljeboree et al., 2017). 

Hence, chemisorption plays an important role in the adsorption of adsorbates onto activated 

carbons. 
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Figure 4.29b: Pseudo-second order adsorption kinetic plots for phenanthrene removal using 

activated carbons (ZAac, ZBac and PAac) 
ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio. 
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Elovich Kinetic model 

The Elovich model has been widely utilised to describe chemical adsorption processes and it is 

applicable for systems with heterogenous adsorbing surfaces (Wu et al., 2009). Experimental data 

were subjected to Elovich model (Equation 4.3).  

𝒒
𝒕 = (

𝟏

𝜷
) 𝒍𝒏  (𝜶 .𝜷) + (

𝟏

𝜷
) 𝒍𝒏  (𝒕) 

         Equation 4.3 

𝑞𝑡  = sorption capacity at time t (mg/g) 

α = initial sorption rate (mg/g min) 

β = desorption constant (g/mg) during any one experiment (Ho & McKay, 1998)  

A plot of qt versus ln(t) gives a straight-line graph with a slope of (1/β) and intercept of (1/β) ln (αβ). 

The Elovich kinetic model plots from this study are presented in Figure 4.29c. The α values 

obtained ranged from 0.04 to 0.06 mg/g min, while the β values ranged from 3.16 to 3.24 g/mg 

and the respective R2 range of 0.88 to 0.94 was obtained (Table 4.29). A similar range of α values 

(0.04 to 0.18 mg/g min) was reported by Ramachandran et al. (2011). They studied the kinetics of 

reactive orange 16 dye removal from aqueous solution, utilising activated carbons produced from 

Ananas comosus leaves under varying adsorbate concentrations and temperatures. The range of 

β (g/mg) values (4.95 to 31.28) reported was however higher than that obtained in this study. 

Hence, phenanthrene adsorbed onto activated carbons in this study, appeared to be less 

susceptible to desorption relative to adsorbed dye onto activated carbons reported by 

Ramachandran et al. (2011) with higher desorption rates (β). However, a much lower β range 

(0.04 – 0.33 g/mg) was reported by Bedin et al. (2018) for the adsorption of methylene blue onto 

activated carbon. They reported that the adsorption of methylene blue onto the activated carbon 

appears to be irreversible, based on the low values of β obtained, that decreased as initial 

adsorbate concentration increases. Therefore, the range of β obtained in this study is an indication 

that the adsorbed phenanthrene molecules onto activated carbons were sufficiently held and may 

not be easily desorbed.  
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Figure 4.29c: Elovich adsorption kinetic plots for phenanthrene removal using activated carbons 
(ZAac, ZBac and PAac) 

ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). ZBac (activated with ZnCl2 at 5:1 biomass to 
ZnCl2 ratio). PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio. 
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Table 4.29: Adsorption kinetics parameters for the removal of phenanthrene from aqueous 

solution using activated carbons obtained from V. vinifera 

Models Parameters ZAac ZBac PAac 

Pseudo first order 
kinetics  

𝑞𝑒 0.46 0.73 0.70 

𝐾1 (min-1) X 10-2 3.59 2.87 2.34 

R2 0.82 0.63 0.53 

Pseudo second order 
kinetics  

𝑞𝑒 (mg/g) 38.78 50.37 62.58 

𝐾2 (g (mg min-1)) 0.76 0.69 0.64 

R2 0.85 0.75 0.69 

Elovich 
rate equation  

α (mg/g min) 0.06 0.05 0.04 

β (g/mg) 3.24 3.16 3.16 

R2 0.88 0.90 0.94 

Intraparticle diffusion  𝐾𝑖𝑑 0.09 0.03 0.03 

C 0.08 0.08 0.08 

R2 0.73 0.75 0.82 
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Weber Morris intraparticle diffusion kinetic model 

To describe the adsorption of phenanthrene onto produced activated carbons from a mechanistic 

point of view, the Weber Morris intraparticle diffusion model was used. This model is based on the 

hypothesis that the overall adsorption process maybe controlled either by one or combinations of 

more than one factors. These include film or external diffusion, pore diffusion, surface diffusion 

and adsorption onto the adsorbent pore surface (Fierro et al., 2008; Asuquo & Martin, 2016). The 

expression for the model is expressed as:  

𝒒𝒕  = 𝑲𝒊ⅆ . 𝒕
𝟏

𝟐⁄   + 𝑪                   Equation 4.4 

Where 𝒒𝒕 is the amount of adsorbate adsorbed at time t (mg/g), 𝑲𝒊ⅆ is the intraparticle diffusion 

rate constant (mg/g min1/2) and C (mg/g) is the constant related to the thickness of the boundary 

layer (the higher the value of C, the greater the boundary layer effect) (Fierro et al., 2008). 

The Weber Morris intraparticle diffusion kinetic model plots, from this study are presented in Figure 

4.29d. 

 

 

Figure 4.29d: Weber Morris intraparticle diffusion adsorption kinetic plots for phenanthrene 
removal using activated carbons (ZAac, ZBac and PAac) 
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A straight-line graph would be obtained from the plot of 𝒒𝒕 vs 𝒕𝟏 𝟐⁄  when the sorption process is 

controlled by intraparticle diffusion only. However, if multi-linear plots were obtained, then it 

suggests that two or more steps (such as film diffusion and equilibrium adsorption) affected the 

sorption process (Fierro et al., 2008). The plots of 𝒒𝒕 vs 𝒕𝟏 𝟐⁄  obtained from this study could be 

divided into two parts (a sharp rise and flat portion) as shown in Figure 4.30. Similar observations 

were reported by Liu et al. (2010), who studied the adsorption kinetics of phenols onto activated 

carbon fibres. Intraparticle film diffusion process was proposed as the dominant process at initial 

sharp rise portion and final equilibrium adsorption process for the flat portion (Liu et al., 2010). 

Hence, the sorption processes of phenanthrene onto activated carbons (ZAac, ZBac and PAac) 

were affected by two or more steps. The values of 𝑲𝒊ⅆ, C, and R2 Weber Morris intraparticle 

diffusion model parameters are presented in Table 4.29. 

 

Based on the R2 values obtained from the kinetic study, experimental data fitted best into the 

Elovich kinetic model relative to other kinetic models (Table 4.29). Hence, chemisorption was 

deduced as a major phenanthrene removal pathway from aqueous solution. 

 

 

 
Figure 4.30: Intra particle diffusion kinetics for phenanthrene removal using activated carbons 
(A) ZAac (activated with ZnCl2 at 5:2 biomass to ZnCl2 ratio). (B) ZBac (activated with ZnCl2 at 5:1 
biomass to ZnCl2 ratio). (C) PAac (activated with H3PO4 at 5:2 biomass to H3PO4 ratio). 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The US EPA PAHs were detected in water, sediment and plant samples collected from the Diep 

and Plankenburg Rivers. Industrial, domestic and agricultural activities were major sources of 

PAHs contamination of both rivers. The Diep River flows through different land-use areas; the 

upstream of the river is dominated by agricultural activities and formal and informal settlements 

as well as industrial establishments (oil refinery, chemical and clothing factories, as well as 

wastewater treatment plant) are the anthropogenic sources of PAHs downstream. The 

Plankenburg River also flows through similar land use areas; industrial area (clothing factory, dairy 

factory, spray painting and mechanical workshop), Kayamandi (an informal settlement) and 

through farmlands. 

The spatial and temporal levels of PAHs in water and sediment samples from the Diep and 

Plankenburg Rivers showed seasonal variations. The annual average detected levels of Chrysene 

(Chy) and Benzo[a]anthracene (BaA) in water samples from all sampling sites were higher 

compared to other PAHs. Water samples from the Plankenburg River were more polluted with 

PAHs relative to those from the Diep River. In sediment samples however, Benzo[b]fluoranthene 

(BbF) was the compound with highest levels relative to other PAHs. The surface water and 

sediment samples of the Diep and Plankenburg Rivers were heavily contaminated with 

carcinogenic PAHs. The probabilistic risk assessment revealed that potential risks are associated 

with the compounds at the levels they occurred in both rivers. 

The levels of PAHs detected in plant samples were of several magnitudes (up to x 103) higher 

than the detected levels in water samples and higher than levels detected in sediment samples 

(up to x 101). This suggests PAHs accumulation in plants. The leaf of P. australis had the highest 

levels of PAHs in all study sites. Results indicate the potential of the P. australis plant to translocate 

PAHs from water and/or sediment into its root and shoot. The plant may be further investigated 

for its phytoremediation potentials, especially for PAHs and other organic contaminants. 

This study affirms the ubiquitous nature of PAHs in the environment. Vitis vinifera leaf litter served 

as a good precursor biomaterial for activated carbons. It may be substituted for the more 

expensive commercial activated carbons. The biomass is renewable and gave good yield of 

activated carbons with enormous potential for removal of organic contaminants from water and 

wastewater. Phenanthrene removal efficiency by produced activated carbons was enhanced at 

low pH values, high adsorbent dosage and low PAH initial concentration. 
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The study gave informative data on the levels of 16 US EPA priority PAHs in water, sediment and 

plant samples of fresh aquatic systems and demonstrated the potential of locally sourced 

agrowaste for the remediation of PAHs. Nevertheless, the levels of PAHs in air should be 

assessed, to further ascertain the contribution of atmospheric deposition from industrial and 

vehicular emissions on detected PAHs levels. 

.
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5.2 Recommendations 

• There is need for continuous monitoring and identification of anthropogenic sources of 

PAHs into aquatic systems in South Africa for effective control and abatement of these 

toxic compounds. 

• Further studies should asses the levels of PAHs in air to investigate atmospheric 

deposition pathway of PAHs into the aquatic systems. 

• There is need to assess the levels of PAHs in vegetables and aquatic organisms to ensure 

food security. 

•  Industrial activities must be closely monitored to ensure adherence to global best 

practices; there is also need for more effective enforcement of environmental quality 

guidelines for emissions. Policy documents for PAHs threshold limits in emissions should 

also be formulated. 

• The potential of P. australis for phytoremediation of PAHs and other organic contaminants 

may be further explored.  

• Finally, there is need for the South Africa government to fund holistic environmental 

assessment that will ensure sustainable water and food security in the Republic. Water 

and food systems are impossible to separate, and Provinces in the Republic are facing 

acute water shortages. The security of these two essential systems are further threatened 

by contamination of the freshwater systems by PAHs and other carcinogenic chemicals. 
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APPENDICES 

Appendix A: Calibration plots for the 16 US EPA priority PAHs 
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Appendix B: Pictures from sampling sites 

 
A: Sampling site PA, with sign of eutrophication 
B: Dumping site close to sampling point PB 
C: Industrial drain into sampling point PC 
D: Site PD 
E: Pile of used plastics at site PD 
F: Site DA showing sign of eutrophication 
G: Refinery close to site DB 
H: Drain into site DB 
I: Recreation activity around site DC 
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Appendix C1: Seasonal occurrence (average ±SD) of PAHs in the Diep River water samples (sites DA and DB)

PAHs 
(µg/L) 

Site DA Site DB 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 10.14 ± 3.65 nd nd 3.11 ± 1.49 14.28 ± 2.51 nd 0.91 ± 1.08 6.17 ± 4.80 

Acy 0.82 ± 0.74 2.22 ± 1.35 2.91 ± 0.68 2.45 ± 1.48 8.97 ± 3.95 11.44 ± 2.11 0.43 ± 0.16 2.49 ± 2.05 

Can 0.95 ± 0.21 0.86 ± 0.30 1.58 ± 0.91 0.64 ± 0.60 4.22 ± 3.82 6.88 ± 2.02 8.68 ± 7.36 0.60 ± 0.14 

Flu 2.07 ± 1.97 4.34 ± 0.72 1.28 ± 1.35 3.57 ± 1.71 10.43 ± 6.75 10.34 ±3.58 1.72 ± 2.30 1.57 ± 0.88 

Phe 3.16 ± 2.87 5.46 ± 1.02 2.07 ± 1.19 6.45 ± 0.88 31.04 ± 13.89 37.93 ± 1.99 8.31 ± 11.33 1.38 ± 0.73 

Ant 2.90 ± 1.51 3.54 ± 0.46 1.44 ± 0.12 3.63 ± 2.86 23.00 ± 10.26 19.79 ± 15.82 1.25 ± 0.40 1.44 ± 1.38 

Flt 6.61 ± 0.18 nd 1.30 ± 1.61 3.83 ± 1.22 6.95 ± 2.16 7.30 ± 2.73 10.28 ± 3.00 3.13 ± 1.59 

Pyr 0.52 ± 0.48 0.23 ± 0.20 5.76 ± 9.97 0.49 ± 0.85 5.44 ± 4.44 nd 0.12 ± 0.20 5.89 ± 7.73 

BaA 6.57 ± 1.89 8.62 ± 1.92 16.60 ± 5.65 24.57 ± 14.06 46.73 ± 19.02 34.99 ± 21.57 18.03 ± 16.85 8.88 ± 8.56 

Chy 19.58 ± 3.56 11.16 ± 1.73 17.19 ± 2.44 25.54 ± 17.92 72.38 ± 9.58 42.58 ± 27.06 18.54 ± 6.14 3.55 ± 1.75 

BbF Nd nd nd nd nd nd 15.47 ± 17.17 1.14 ± 1.23 

BkF 1.55 ± 0.27 nd nd 2.78 ± 1.20 6.16 ± 2.00 nd Nd 2.73 ± 2.38 

BaP 1.29 ± 0.21 1.06 ± 0.92 1.14 ± 1.09 1.98 ± 0.37 5.34 ± 3.77 nd Nd 2.74 ± 1.14 

IcP 4.69 ± 1.26 4.17 ± 3.71 4.87 ± 3.56 15.67 ± 19.02 37.98 ± 12.81 17.30 ± 9.05 11.24 ± 2.90 3.04 ± 3.33 

DBA 6.75 ± 1.40 4.45 ± 1.27 10.47 ± 3.52 7.55 ± 2.36 19.71 ± 12.27 17.58 ± 3.52 6.48 ± 3.16 2.35 ± 1.26 

BgP 1.65 ± 0.30 1.87 ± 0.44 3.87 ± 0.81 5.66 ± 4.58 17.91 ± 16.29 8.80 ± 3.78 2.59 ± 0.55 1.27 ± 0.19 

∑16 PAHs 69.25 ± 4.98  47.97 ± 3.30 70.48 ± 5.56 107.92 ± 8.05  310.52 ± 19.31 214.94 ± 14.15 104.05 ± 6.64 48.35 ± 2.21  

% C PAHs 58.38 61.41 71.32 72.36 60.64 52.32 67.05 50.52 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. nd: not detected. C PAHs: Carcinogenic PAHs (BaA, Chy, BbF, BkF, BaP IcP and 
DBA).  
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Appendix C2: Seasonal occurrence (average ±SD) of PAHs in the Diep River water samples (site 
DC) 

PAHs 
(µg/L) 

Site DC 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 4.95 ± 4.96 11.12 ± 8.78 nd 2.49 ± 1.11 

Acy 0.89 ± 1.30 7.86 ± 2.24 2.65 ± 2.05 2.95 ± 1.50 

Can 0.79 ± 1.37 0.57 ± 0.42 2.58 ± 2.87 0.88 ± 0.29 

Flu 0.65 ± 0.67 3.38 ± 3.00 nd 0.16 ± 0.27 

Phe 8.97 ± 1.82 9.52 ± 4.31 0.71 ± 0.27 1.25 ± 1.37 

Ant 7.36 ± 2.27 1.78 ± 0.59 3.94 ± 1.14 1.52 ± 0.77 

Flt 6.93 ± 1.85 24.36 ± 11.66 0.90 ± 0.86 8.73 ± 7.47 

Pyr nd 5.39 ± 2.08 9.00 ± 3.58 0.37 ± 0.20 

BaA 30.56 ± 48.89 7.86 ± 3.18 19.01 ± 12.55 12.36 ± 9.50 

Chy 41.96 ± 39.96 5.36 ± 3.12 15.87 ± 6.38 7.87 ± 9.08 

BbF 1.82 ± 1.13 nd nd nd 

BkF 2.85 ± 1.91 nd 1.85 ± 3.20 1.48 ± 1.31 

BaP nd nd 1.93 ± 0.55 1.92 ± 1.58 

IcP 11.21 ± 8.45 4.11 ± 2.09 6.29 ± 2.49 3.40 ± 1.85 

DBA 23.65 ± 12.71 19.28 ± 20.65 4.67 ± 2.78 3.83 ± 4.77 

BgP 29.16 ± 11.78 1.44 ± 1.91 4.61 ± 2.85 2.26 ± 0.69 

∑16 PAHs 171.75 ± 13.18 102.03 ± 7.04 73.99 ± 5.61 51.47 ± 3.49 

% C PAHs 65.24 35.88 67.06 59.96 

Site DC: Woodbridge (downstream). nd: not detected. C PAHs: Carcinogenic PAHs. 
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Appendix D: ANOVA statistical analysis (multivariate tests) of data from the Diep River water 
samples 

Multivariate Testsb 

Effect Value F Hypothesis df Error df Sig. 

Sites Pillai's Trace .679 14.787a 2.000 14.000 .000 

Wilks' Lambda .321 14.787a 2.000 14.000 .000 

Hotelling's Trace 2.112 14.787a 2.000 14.000 .000 

Roy's Largest Root 2.112 14.787a 2.000 14.000 .000 

Seasons Pillai's Trace .496 4.268a 3.000 13.000 .026 

Wilks' Lambda .504 4.268a 3.000 13.000 .026 

Hotelling's Trace .985 4.268a 3.000 13.000 .026 

Roy's Largest Root .985 4.268a 3.000 13.000 .026 

Sites * Seasons Pillai's Trace .591 2.413a 6.000 10.000 .105 

Wilks' Lambda .409 2.413a 6.000 10.000 .105 

Hotelling's Trace 1.448 2.413a 6.000 10.000 .105 

Roy's Largest Root 1.448 2.413a 6.000 10.000 .105 

a. Exact statistic 

b. Design: Intercept  
 Within Subjects Design: Sites + Seasons + Sites * Seasons 
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Appendix E1: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River water samples (sites PA and PB) 

 

  

PAHs 
(µg/L) 

Site PA Site PB 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 4.07 ± 2.99 nd 0.58 ± 0.52 2.83 ± 2.52 4.12 ± 2.58 0.79 ± 1.14 3.42 ± 2.38 3.55 ± 2.14 

Acy 5.97 ± 4.37 5.57 ± 5.07 0.39 ± 0.67 1.04 ± 1.52 10.97 ± 5.45 0.91 ± 1.14 0.89 ± 1.54 2.48 ± 1.49 

Can 0.98 ± 0.97 2.92 ± 2.66 0.63 ± 1.08 0.96 ± 1.04 2.43 ± 3.17 4.26 ± 2.75 1.46 ± 0.55 1.42 ± 0.67 

Flu 8.10 ± 1.99 8.86 ± 5.07 nd nd 9.16 ± 5.69 11.98 ± 5.52 1.20 ± 0.53 7.00 ± 3.73 

Phe 16.79 ± 1.99 9.51 ± 6.40 2.11 ± 2.96 1.58 ± 1.48 26.05 ± 10.97 26.05 ± 10.96 1.73 ± 1.32 14.22 ± 9.17 

Ant 7.36 ± 5.78 5.57 ± 6.88 1.60 ± 0.55 1.41 ± 0.82 19.75 ± 24.18 20.00 ± 23.88 3.31 ± 1.55 4.31 ± 5.38 

Flt 5.34 ± 4.35 2.09 ± 6.88 1.01 ± 1.11 3.55 ± 0.44 12.95 ± 9.42 12.95 ± 4.54 3.10 ± 3.76 4.17 ± 3.06 

Pyr nd 5.66 ± 4.24 5.93 ± 3.64 nd 4.15 ± 2.16 4.15 ± 2.90 10.05 ± 8.43 nd 

BaA 36.47 ± 25.89 14.75 ± 9.66 25.43 ± 24.44 20.33 ± 23.96 20.66 ± 13.28 18.50 ± 10.03 18.85 ± 4.43 28.98 ± 5.02 

Chy 57.90 ± 19.33 25.35 ± 14.70 19.74 ± 23.54 15.65 ± 18.31 13.21 ± 14.51 11.80 ± 8.90 23.60 ± 11.66 36.30 ± 31.84 

BbF nd nd 21.78 ± 5.67 1.70 ± 2.15 nd nd 31.93 ± 29.50 1.43 ± 0.59 

BkF nd nd nd 2.84 ± 2.34 0.54 ± 0.93 1.75 ± 3.02 1.87 ± 1.47 2.99 ± 2.86 

BaP 6.37 ± 2.92 nd 1.76 ± 0.35 1.89 ± 1.79 nd nd 2.23 ± 0.40 nd 

IcP 26.65 ± 6.79 6.47 ± 5.24 15.75 ± 4.25 15.34 ± 2.89 23.61 ± 23.44 6.15 ± 5.55 10.97 ± 5.35 41.43 ± 8.91 

DBA 11.94 ± 5.60 11.14 ± 6.67 1.74 ± 0.68 2.35 ± 1.57 26.14 ± 31.39 16.42 ± 10.00 3.24 ± 1.94 4.49 ± 2.44 

BgP 9.90 ± 9.34 3.10 ± 2.31 2.96 ± 1.93 4.57 ± 4.16 2.98 ± 1.93 3.022 ± 1.87 3.52 ± 1.85 8.4 ± 2.17 

∑16 PAHs 197.83 ± 15.73 100.97± 22.38 101.42 ± 8.85 76.04 ± 6.33 176.71 ± 9.59 138.73 ± 8.27 121.37 ± 9.32 161.21 ± 13.32 

% C PAHs 70.43 57.16 85.00 79.04 47.63 39.36 76.37 71.72 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. nd: not detected. C PAHs: Carcinogenic PAHs. 
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Appendix E2: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River water samples (sites PC and PD) 

PAHs 
(µg/L) 

Site PC Site PD 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 5.64 ± 0.32 nd 0.86 ± 0.52 4.29 ± 1.72 6.02± 2.99 nd 2.37 ± 2.09 2.95 ± 1.78 

Acy 4.18 ± 4.59 4.44 ± 4.55 3.95 ± 2.21 1.08 ± 1.21 0.59 ± 0.18 1.55 ± 0.78 1.33 ± 2.09  1.61 ± 1.39 

Can 1.51 ± 0.81 2.85 ± 1.99 1.88 ± 1.39 1.52 ± 0.46 0.52 ± 0.13 nd  1.21 ± 1.07 1.07 ± 1.26 

Flu 8.02 ± 2.30 6.27 ± 0.69 4.07 ± 4.18 7.00 ± 2.46 10.43 ± 2.32 10.43 ± 3.31 0.78 ± 1.08 0.93 ± 0.50 

Phe 10.26 ± 3.19 14.44 ± 2.61 5.89 ± 2.80 14.22 ± 3.52 27.02 ± 7.88 19.42 ± 7.92 1.68 ± 1.44 0.68 ± 0.84 

Ant 7.26 ± 5.09 8.25 ± 2.19 5.87 ± 3.20 5.50 ± 2.51 14.62 ± 4.84 9.61 ± 4.24 2.68 ± 0.93 1.94 ± 1.78 

Flt 4.15 ± 2.72 4.13 ± 1.93 3.60 ± 0.41 4.17 ± 1.20 7.96± 1.53 7.96 ± 1.60 nd 1.50 ± 1.30 

Pyr 2.13 ± 2.22 1.69 ± 0.73 4.07 ± 4.16 nd 2.03 ± 1.17 1.45 ± 1.48 3.91 ± 1.16 0.91 ± 0.81 

BaA 49.24 ± 29.30 13.33 ± 7.68 19.39 ± 4.71 67.50 ± 18.05 20.68 ± 5.40 16.15 ± 4.73 9.98 ± 2.75 48.25 ± 12.57 

Chy 52.57 ± 19.25 20.51 ± 13.71 30.87 ± 5.12 59.55 ± 12.20 45.70 ± 9.95 23.51 ± 5.72 12.65 ± 5.22 32.40 ± 8.50 

BbF 5.00 ± 3.85 5.85 ± 2.97 15.94 ± 3.07 18.05 ± 13.26 4.01 ± 1.85 2.47 ± 0.78 2.37 ± 0.85 4.26 ± 2.97 

BkF 5.32 ± 3.51 5.30 ± 3.25 11.14 ± 1.64 22.92 ± 18.16 3.93 ± 1.00 2.49 ± 1.34 1.97 ± 1.07 6.63 ± 2.76 

BaP 4.13 ± 2.04 nd 1.45 ± 1.33 3.87 ± 2.85 1.68 ± 0.56 nd  1.04 ± 0.72 3.52 ± 2.46 

IcP 34.03 ± 10.59 4.25 ± 2.17 12.28 ± 6.45 36.91 ± 9.23 4.19 ± 3.43 6.11 ± 2.00 3.03 ± 1.77 23.51 ± 5.48 

DBA 8.65 ± 5.17 12.45 ± 6.11 9.97 ± 1.20 5.33 ± 0.97 16.76 ± 6.06 7.64 ± 2.48 8.44 ± 4.60 4.28 ± 1.57 

BgP 12.18 ± 11.48 2.67 ± 1.23 6.75 ± 6.43 37.86 ± 9.68 3.65 ± 2.41 2.63 ± 1.23 2.73 ± 0.90 6.51 ± 0.97  

∑16 PAHs 214.27 ± 16.46 106.45 ± 5.75 137.96 ± 7.96 289.77 ± 21.39 169.77 ± 12.16 111.43 ± 7.30 56.15 ± 3.61 140.94 ± 13.77 

% C PAHs 74.18 57.96 73.24 73.90 57.11 52.39 70.30 87.17 

Site PC: Substation in industrial area. Site PD: Industrial area at Adam Tas bridge. nd: Not detected. C PAHs: Carcinogenic PAHs. 
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Appendix F: ANOVA statistical analysis (multivariate tests) of data from the Plankenburg River 
water samples 

Multivariate Testsb 

Effect Value F Hypothesis df Error df Sig. 

Sites Pillai's Trace .680 9.223a 3.000 13.000 .002 

Wilks' Lambda .320 9.223a 3.000 13.000 .002 

Hotelling's Trace 2.128 9.223a 3.000 13.000 .002 

Roy's Largest Root 2.128 9.223a 3.000 13.000 .002 

Seasons Pillai's Trace .387 2.733a 3.000 13.000 .086 

Wilks' Lambda .613 2.733a 3.000 13.000 .086 

Hotelling's Trace .631 2.733a 3.000 13.000 .086 

Roy's Largest Root .631 2.733a 3.000 13.000 .086 

Sites * Seasons Pillai's Trace .690 1.727a 9.000 7.000 .242 

Wilks' Lambda .310 1.727a 9.000 7.000 .242 

Hotelling's Trace 2.221 1.727a 9.000 7.000 .242 

Roy's Largest Root 2.221 1.727a 9.000 7.000 .242 

a. Exact statistic 

b. Design: Intercept  
 Within Subjects Design: Sites + Seasons + Sites * Seasons 
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Appendix G1: Seasonal occurrence (average ±SD) of PAHs in the Diep River sediment samples (sites DA and DB) 

PAHs 
(µg/g) 

Site DA Site DB 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 1.809 ± 0.171 0.631 ± 0.367 0.034 ± 0.031 0.960 ± 0.816 2.148 ± 0.150 nd nd 1.802 ± 1.057 

Acy 0.047 ± 0.022 nd 0.040 ± 0.032 0.284 ± 0.333 0.338 ± 0.265 0.364 ± 0.200 nd 0.439 ± 0.548 

Can 0.056 ± 0.034 0.080 ± 0.075 0.079 ± 0.008 0.187 ± 0.030 0.044 ± 0.044 1.915 ± 1.237 0.483 ± 0.422 0.635 ± 0.369 

Flu nd 0.243 ± 0.138 0.027 ± 0.023 0.058 ± 0.067 0.009 ± 0.016 0.632 ± 0.257 1.839 ± 1.374 0.220 ± 0.164 

Phe 0.033 ± 0.007 nd 0.061 ± 0.012 1.103 ± 1.407 0.036 ± 0.031 15.005±3.223 13.029±2.749 0.197 ± 0.253 

Ant 0.084 ± 0.022 nd 0.115 ± 0.061 0.204 ± 0.090 0.078 ± 0.068 3.013 ± 1.036 0.051 ± 0.045 0.097 ± 0.050 

Flt 0.059 ± 0.015 0.666 ± 0.629 0.527 ± 0.234 0.624 ± 0.380 6.445 ±10.658 3.831 ± 2.015 0.221 ± 0.205 2.948 ± 2.089 

Pyr 0.006 ± 0.010 0.197 ± 0.111 0.041 ± 0.016 0.157 ± 0.102 0.555 ± 0.907 1.364 ± 0.340 2.356 ± 1.641 0.294 ± 0.127 

BaA 0.267 ± 0.033 0.687 ± 0.294 0.305 ± 0.174 0.289 ± 0.225 0.878 ± 1.049 2.555 ± 1.923 2.302 ± 2.298 0.788 ± 0.262 

Chy 0.080 ± 0.072 1.528 ± 1.522 0.243 ± 0.168 0.714 ± 1.024 1.924 ± 1.049 2.100 ± 0.778 2.938 ± 0.544 1.207 ± 1.035 

BbF nd 1.188 ± 0.192 0.176 ± 0.138 0.148 ± 0.089 2.897 ± 4.400 16.652±2.626 5.065 ± 2.573 0.809 ± 0.678 

BkF 0.144 ± 0.069 2.256 ± 1.387 0.334 ± 0.107 0.495 ± 0.664 3.461 ± 5.071 12.276±6.287 5.092 ± 4.045 1.237 ± 1.026 

BaP 0.124 ± 0.017 1.299 ± 0.448 0.238 ± 0.032 0.304 ± 0.257 0.133 ± 0.230 5.789 ± 2.239 6.541 ± 2.876 0.515 ± 0.537 

IcP 0.070 ± 0.065 0.895 ± 0.357 0.205 ± 0.032 0.665 ± 0.992 2.331 ± 2.299 2.393 ± 1.864 1.654 ± 1.348 0.295 ± 0.204 

DBA 0.065 ± 0.071 0.959 ± 0.596 0.180 ± 0.052 0.371 ± 0.402 1.898 ± 1.394 1.217 ± 0.596 3.322 ± 2.715 0.354 ± 0.302 

BgP 0.136 ± 0.151 0.750 ± 0.537 0.263 ± 0.041 0.407 ± 0.333 nd 1.601 ± 1.431 2.020 ± 0.989 0.209 ± 0.090 

∑16 PAHs 2.980 ± 0.438 11.379 ± 0.639 2.867 ± 0.138 6.968 ± 0.303 23.175 ±1.768 70.706±5.321 46.914±3.342 12.046±0.750 

% C PAHs 25.16 77.44 58.62 42.84 58.35 60.79 57.37 43.20 

Site DA: Nature reserve (upstream). Site DB: Theo Marais Sports Club – industrial and residential area. nd: not detected. C PAHs: Carcinogenic PAHs. 
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Appendix G2: Seasonal occurrence (average ±SD) of PAHs in the Diep River sediment samples 
(site DC) 

PAHs 
(µg/g) 

Site DC 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 1.633 ± 0.547 0.276 ± 0.827 0.674 ± 0.629 0.853 ± 0.456 

Acy 0.098 ± 0.169 0.230 ± 0.128 0.121 ± 0.096 nd 

Can 0.342 ± 0.521 0.244 ± 0.305 0.046 ± 0.079 0.161 ± 0.081 

Flu 0.128 ± 0.116 0.015 ± 0.074 0.050 ± 0.087 0.115 ± 0.067 

Phe 1.285 ± 1.128 0.080 ± 0.742 0.119 ± 0.106 0.060 ± 0.015 

Ant 0.089 ± 0.077 0.122 ± 0.052 0.056 ± 0.025 0.136 ± 0.033 

Flt 0.200 ± 0.204 1.169 ± 0.989 0.547 ± 0.491 1.586 ± 1.955 

Pyr 0.002 ± 0.004 0.085 ± 0.068 0.063 ± 0.055 0.052 ± 0.057 

BaA 0.507 ± 0.613 0.538 ± 0.515 0.308 ± 0.073 0.627 ± 0.600 

Chy 0.213 ± 0.219 0.483 ± 0.308 0.221 ± 0.127 0.778 ± 1.149 

BbF 1.560 ± 1.698 1.023 ± 0.248 0.646 ± 0.303 0.304 ± 0.156 

BkF 1.439 ± 1.181 1.632 ± 0.539 0.859 ± 1.020 0.708 ± 0.300 

BaP 1.991 ± 1.101 1.598 ± 0.198 1.221 ± 0.480 0.624 ± 0.110 

IcP 0.080 ± 0.139 0.502 ± 0.534 0.240 ± 0.210 0.101 ± 0.175 

DBA 0.059 ± 0.101 0.785 ± 0.555 0.223 ± 0.221 0.145 ± 0.066 

BgP 0.189 ± 0.328 0.793 ± 0.630 0.144 ± 0.103 0.156 ± 0.106 

∑16 PAHs 9.814 ± 0.698 9.575 ± 0.525 5.535 ± 0.346 6.404 ± 0.430 

% C PAHs 59.59 68.52 67.13 51.31 

Site DC: Woodbridge (downstream). nd: not detected. C PAHs: Carcinogenic PAHs.  
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Appendix H1: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River sediment samples (sites PA and PB) 

PAHs 
(µg/g) 

Site PA Site PB 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 1.788 ± 1.273 0.470 ± 0.160 0.099 ± 0.171 1.837 ± 0.819 1.803 ± 1.021 0.652 ± 0.479 1.506 ± 0.938 2.169 ± 1.331 

Acy 0.307 ± 0.379 0.666 ± 0.178 0.020 ± 0.004 0.431 ± 0.254 0.045 ± 0.040 0.219 ± 0.192 nd 0.160 ± 0.138 

Can 0.442 ± 0.394 1.262 ± 0.421 nd 0.075 ± 0.068 0.070 ± 0.120 0.053 ± 0.053 nd 0.065 ± 0.082 

Flu 0.351 ± 0.222 0.839 ± 0.433 nd 0.129 ± 0.086 0.046 ± 0.080 0.238 ± 0.206 0.757 ± 0.788 0.086 ± 0.126 

Phe 0.311 ± 0.461 9.697 ± 7.761 0.051 ± 0.028 0.074 ± 0.045 0.040 ± 0.035 13.416 ± 5.869 3.788 ± 2.750 0.151 ± 0.076 

Ant 0.593 ± 0.156 nd 0.102 ± 0.005 0.509 ± 0.227 0.217 ± 0.188 0.177 ± 0.175 nd 0.159 ± 0.025 

Flt 2.437 ± 1.672 4.717 ± 4.083 0.080 ± 0.042 0.507 ± 0.450 0.929 ± 1.107 1.093 ± 0.953 1.916 ± 1.445 0.335 ± 0.141 

Pyr 0.332 ± 0.476 0.913 ± 0.183 nd 0.523 ± 0.458 0.006 ± 0.010 0.389 ± 0.339 0.367 ± 0.324 0.021 ± 0.036 

BaA 0.944 ± 0.605 1.365 ± 0.698 0.577 ± 0.065 0.804 ± 0.960 0.472 ± 0.370 0.573 ± 0.359 1.954 ± 1.343 0.387 ± 0.161 

Chy 1.035 ± 1.261 1.753 ± 1.189 0.160 ± 0.160 1.129 ± 0.811 0.519 ± 0.385 0.937 ± 0.553 1.888 ± 1.131 0.465 ± 0.322 

BbF 27.869 ± 9.637 6.479 ± 2.704 0.790 ± 0.042 7.362 ± 4.969 2.750 ± 1.962 7.453 ± 4.299 8.154 ± 2.252 1.111 ± 1.494 

BkF 6.774 ± 3.896 5.638 ± 2.310 0.876 ± 0.028 3.215 ± 1.163 3.967 ± 2.035 3.77 ± 2.032 4.385 ± 3.484 0.757 ± 0.836 

BaP 3.284 ± 4.347 5.369 ± 2.626 0.116 ± 0.012 1.172 ± 0.966 0.639 ± 0.653 1.685 ± 0.909 7.316 ± 4.323 0.256 ± 0.302 

IcP 0.612 ± 0.776 2.252 ± 0.983 0.680 ± 0.034 0.999 ± 0.833 0.494 ± 0.445 0.576 ± 0.113 0.583 ± 0.398 0.621 ± 0.654 

DBA 2.320 ± 3.294 6.744 ± 1.208 1.046 ± 0.015 0.448 ± 0.624 0.331 ± 0.321 0.762 ± 0.253 1.505 ± 0.899 0.138 ± 0.056 

BgP 0.864 ± 1.289 2.472 ± 1.410 0.088 ± 0.039 0.376 ± 0.298 0.269 ± 0.465 0.291 ± 0.261 1.193 ± 0.952 0.060 ± 0.034 

∑16 PAHs 50.262 ± 6.802 50.635 ± 2.886 4.683 ± 0.364 19.588 ±1.818  12.596 ± 1.122  32.285 ± 3.574 35.312 ± 2.499 6.940 ± 0.550  

% C PAHs 85.23 58.46 90.61 77.23 72.82 48.81 73.02 53.82 

Site PA: Agricultural and residential areas. Site PB: Informal settlement of Kayamandi. nd: not detected. C PAHs: Carcinogenic PAHs.  
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Appendix H2: Seasonal occurrence (average ±SD) of PAHs in the Plankenburg River sediment samples (sites PC and PD) 

PAHs 
(µg/g) 

Site PC Site PD 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Summer 
(Dec to Feb) 

Autumn 
(Mar to May) 

Winter 
(June to Aug) 

Spring 
(Sept to Nov) 

Nap 1.773 ± 0.301 0.471 ± 0.162 nd 2.316 ± 2.133 2.001 ± 0.533 0.240 ± 0.054 0.348 ± 0.150 1.692 ± 0.874 

Acy 0.095 ± 0.164 0.207 ± 0.069 0.026 ± 0.025 0.275 ± 0.238 0.084 ± 0.043 0.120 ± 0.080 0.054 ± 0.026 0.422 ± 0.497 

Can 0.025 ± 0.043 nd 0.086 ± 0.040 0.140 ± 0.143 0.451 ± 0.374 0.067 ± 0.084 0.017 ± 0.029 0.180 ± 0.162 

Flu 0.058 ±0.016 0.155 ± 0.093 0.054 ± 0.040 0.128 ± 0.120 0.139 ± 0.027 0.034 ± 0.014 0.024 ± 0.009 0.167 ± 0.151 

Phe 0.068 ± 0.033 8.460 ± 3.866 0.033 ± 0.028 6.494 ± 11.109 0.471 ± 0.273 17.886 ± 5.274 0.036 ± 0.020 0.186 ± 0.139 

Ant 0.282 ± 0.048 2.779 ± 3.216 0.112 ± 0.012 0.229 ± 0.080 0.573 ± 0.039 4.856 ± 2.367 0.110 ± 0.030 0.208 ± 0.061 

Flt 0.220 ± 0.098 0.738 ± 0.377 0.205 ± 0.239 1.362 ± 1.681 0.608 ± 0.332 0.737 ± 0.446 0.379 ± 0.250 0.930 ± 1.034 

Pyr 0.011 ± 0.003 0.313 ± 0.147 0.014 ± 0.016 0.350 ± 0.293 0.612 ± 0.505 0.767 ± 0.458 0.044 ± 0.038 0.225 ± 0.240 

BaA 0.140 ± 0.029 0.370 ± 0.235 0.303 ± 0.165 0.668 ± 0.451 0.797 ± 0.903 0.718 ± 0.459 0.304 ± 0.184 0.547 ± 0.618 

Chy 0.248 ± 0.178 0.683 ± 0.103 0.418 ± 0.144 0.816 ± 0.803 0.494 ± 0.668 0.685 ± 0.251 0.149 ± 0.016 0.688 ± 0.620 

BbF 19.047 ± 4.671 20.388 ± 6.131 15.497± 7.593 22.446 ± 10.820 10.466 ± 6.402 16.300 ± 8.264 3.631 ± 2.673 18.230 ± 7.417 

BkF 8.992 ± 4.240 6.997 ± 5.064 6.562 ± 2.618 17.972 ± 9.591 8.544 ± 6.640 5.842 ± 0.843 2.331 ± 2.406 8.502 ± 3.187 

BaP 0.881 ± 0.467 1.668 ± 1.013 1.052 ± 1.396 2.277 ± 1.959 1.670 ± 0.973 2.882 ± 2.296 0.370 ± 0.314 1.374 ± 1.152 

IcP 0.184 ± 0.144 0.269 ± 0.098 0.234 ± 0.189 0.721 ± 0.268 0.456 ± 0.507 0.420 ± 0.326 0.375 ± 0.396 0.323 ± 0.358 

DBA 0.130 ± 0.104 0.814 ± 0.194 0.095 ± 0.025 0.804 ± 1.002 0.434 ± 0.575 0.503 ± 0.301 0.102 ± 0.039 0.471 ± 0.343 

BgP 0.100 ± 0.048 nd 0.114 ± 0.083 0.256 ± 0.076 0.253 ± 0.239 0.348 ± 0.179 0.063 ± 0.033 0.114 ± 0.066 

∑16 PAHs 32.253 ± 5.052 44.311 ± 5.331 24.805 ± 4.052 57.254 ± 6.729 28.053 ± 3.088 52.405 ± 5.673  8.336 ± 0.999 34.257 ± 4.749  

% C PAHs 91.84 70.39 97.41 79.83 81.49 52.19 87.11 87.96 

Site PC: Substation in industrial area. Site PD: Industrial area at Adam Tas bridge. nd: Not detected. C PAHs: Carcinogenic PAHs. 
 



245 
 

 

Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Sites Pillai's Trace .895 8.484a 6.000 6.000 .010 

Wilks' Lambda .105 8.484a 6.000 6.000 .010 

Hotelling's Trace 8.484 8.484a 6.000 6.000 .010 

Roy's Largest Root 8.484 8.484a 6.000 6.000 .010 

Compounds Pillai's Trace .b . . . . 

Wilks' Lambda .b . . . . 

Hotelling's Trace .b . . . . 

Roy's Largest Root .b . . . . 

Sites * Compounds Pillai's Trace .b . . . . 

Wilks' Lambda .b . . . . 

Hotelling's Trace .b . . . . 

Roy's Largest Root .b . . . . 

a. Exact statistic 

b. Cannot produce multivariate test statistics because of insufficient residual degrees of freedom. 

c. Design: Intercept  
 Within Subjects Design: Sites + Compounds + Sites * Compounds 
 

Appendix I: ANOVA statistical analysis (multivariate tests) of data from the Diep and Plankenburg 
River sediment samples (compound Vs sites) 
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Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Compounds Pillai's Trace .a . . . . 

Wilks' Lambda .a . . . . 

Hotelling's Trace .a . . . . 

Roy's Largest Root .a . . . . 

Seasons Pillai's Trace .661 2.600b 3.000 4.000 .189 

Wilks' Lambda .339 2.600b 3.000 4.000 .189 

Hotelling's Trace 1.950 2.600b 3.000 4.000 .189 

Roy's Largest Root 1.950 2.600b 3.000 4.000 .189 

Compounds * Seasons Pillai's Trace .a . . . . 

Wilks' Lambda .a . . . . 

Hotelling's Trace .a . . . . 

Roy's Largest Root .a . . . . 

a. Cannot produce multivariate test statistics because of insufficient residual degrees of freedom. 

b. Exact statistic 

c. Design: Intercept  

 Within Subjects Design: Compounds + Seasons + Compounds * Seasons 

Appendix J: ANOVA statistical analysis (multivariate tests) of data from the Diep and Plankenburg 

River sediment samples (compound Vs seasons) 
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Appendix K: Sediment physicochemical properties 

Sediment Fractional 
Organic 
Carbon (%) 

Organic matter 
(%) 

Percentage of 
sand particle 
size 

Percentage of 
silt particle size 

Percentage 
of clay 
particle size 

PA 0.5357 15.23 29.29 9.06 2.03 
PB 2.3096 13.42 24.68 1.58 4.41 
PC 0.9013 3.89 61.58 1.31 0.80 
PD 0.8650 2.69 79.52 1.09 0.10 
DA 2.0402 15.23 62.68 5.99 2.95 
DB 1.1172 11.86 67.00 3.01 1.70 
DC 0.6706 2.02 0.47 51.59 6.61 
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Appendix L: Weibull plots of PAHs levels in water samples from the Diep and Plankenburg Rivers 
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a = naphthalene. b= acenaphthylene. c = acenaphthene. d = fluorene. 
e = phenanthrene. f = anthracene. g = fluoranthene. h = pyrene. 
i = benzo[a]anthracene. j = chrysene. k = benzo[b]fluoranthene. l = benzo[k]fluoranthene. 

m = benzo[a]pyrene. n = indeno[1,2,3-cd]pyrene o = dibenzo[a, h]anthracene. p = benzo[g, h, i]perylene. 
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Appendix M: Weibull plots of PAHs levels in sediments from the Diep and Plankenburg Rivers 
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a = naphthalene. b= acenaphthylene. c = acenaphthene. d = fluorene.  
e = phenanthrene. f = anthracene. g = fluoranthene. h = pyrene.  
i = benzo[a]anthracene. j = chrysene. k = benzo[b]fluoranthene. l = benzo[k]fluoranthene. 
m = benzo[a]pyrene. n = indeno[1,2,3-cd]pyrene o = dibenzo[a, h]anthracene. p = benzo[g, h, i]perylene. 
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