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ABSTRACT 

 

This study investigated the concentration of selected heavy metals in soil, water and vegetable 

crops from selected allotment gardens in Cape Town. Heavy metals occur naturally in the earth’s 

crust, but due to human activities, their biochemical balance and geochemical cycles have been 

altered. Heavy metals are abundant in air, soil and water due to environmental pollution. It was 

therefore of interest to conduct this study to determine the levels of heavy metals (Pb, Cd, Mn, Zn, 

Cr, Cu, Ni, Fe and Co) in soil, water and vegetables such as spinach, cabbages, green peppers, 

brinjals and leek onions. Soil, water and vegetables were sampled during winter and summer from 

the allotment gardens of Cape Town environment and were analyzed using Inductively Coupled 

Plasma (ICP).  

The physicochemical parameters of soil and water were determined during both seasons. The 

average pH of water in winter was 6.53 ± 0.6, while the summer pH was 6.71 ± 0.7. The average soil 

pH was 6.58 ± 0.2 in winter, while in summer the soil pH was 6.60 ± 0.2. The soil organic matter 

ranged from 1.7 % to 13.5 % in both seasons.  

The heavy metals in water and soil showed seasonal fluctuation (p < 0.05). In summer the 

concentrations in water ranged from 0.062 mg/L to 0.947 mg/L, while in winter it ranged from 

0.002 mg/L to 2.347 mg/L. The soil heavy metal concentrations in summer ranged from 0.52 mg/kg 

to 1127.41 mg/kg, while in winter it ranged from 0.59 mg/kg to 1209.95 mg/kg, Fe having the 

highest concentrations for both seasons.  

The heavy metal concentration in vegetables was generally higher in summer than in winter, 

although Fe was still the highest in both winter and summer. Fe was particularly high in spinach 

with a concentration of 144.28 mg/kg in summer, while in winter the concentration was 116.56 

mg/kg, followed by leek onion and cabbage.  

 The results for water and soil showed a decrease and weak correlation with a decreasing order Fe > 

Cu > Cr > Ni > Pb > Co > Zn > Mn > Cd > and Fe > Zn > Mn > Cu > Pb > Cr > Ni > Co > Cd, 

respectively. The distribution sequence of the heavy metals in vegetables during winter is in the 

order; spinach (Fe > Zn > Cr > Mn > Cu > Co> Cd ≥ Pb ≥ Ni); cabbage (Fe > Mn > Cr > Zn > Cu > 
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Co > Cd ≥ Pb ≥ Ni) and leek onion (Fe > Zn > Mn > Cr ≥ Co > Cu > Cd ≥ Pb ≥ Ni). The 

corresponding sequence during summer was; spinach (Fe > Zn > Mn > Co > Cr > Cu > Cd ≥ Pb ≥ 

Ni); cabbage (Fe > Mn > Cr > Zn > Pb > Co > Cu > Cd ≥ Ni) and leek onion (Zn > Fe > Pb ≥ Mn > 

Cr > Co > Cu > Cd ≥ Ni); brinjal ( Fe > Mn > Zn > Cr > Cu > Co > Cd ≥ Pb ≥ Ni) and green 

peppers ( Fe > Zn > Mn > Co > Cu > Cr > Cd ≥ Pb ≥ Ni).  

 

Results showed that concentration levels of all the selected heavy metals were below the 

permissible limits in soil, water and vegetables set by WHO.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

 

Heavy metals are those elements with relatively high atomic numbers, atomic weights and 

densities > 4.0 g.dm-3. They are naturally present at very low concentrations in the environment, 

while their levels are exacerbated by release from many different sources. Airborne metal 

particulates do not remain for long in the atmosphere, hence they are superficially deposited on 

the plants and soil surfaces, from where they are sorbed, or horizontally/vertically leached, or 

taken up in soil solution by plants and distributed into different plant tissues. 

Heavy metal pollution is a universal issue, although severity and levels of pollution differ from 

place to place. Heavy metals are not degradable; hence, they have tendency to persist and 

accumulate in different environmental compartments. Many heavy metals are toxic, and about 20 

of them are emitted into the environment at concentrations that may pose great risks to humans 

and the environment. Elements such as Hg, Cd, Pb, and As have no known benefits and their 

accumulation over time can cause harmful consequences such as serious illness and early death 

(Okem et al., 2012), while some referred to as essential minerals are needed for proper 

metabolism and enzyme function (Schwalfenberg and Genius, 2015). Exposure to certain 

concentration levels of elements such as Cu, Zn, and Fe have been reported to be dangerous and 

harmful (Martin and Griswold, 2009; Khaled and Muhammad, 2016). For example, high 

concentration of toxic metals in plant tissues can have damaging effects on the plants, and where 

they are stored in food plants, they pose a health hazard to man and animals (Muchie and Akpor, 

2010). Alloway (1995) reported that anthropogenic activities, such as agriculture and industry, 

tend to release heavy metals that cause soil degradation, water contamination and exposure to 

synthetic products. Industries are a major anthropogenic source of heavy metals. Emissions from 

stack towers in industries release particulate heavy metals into the atmosphere and this becomes 

potential sources of water and soil pollution via dry or wet deposition.  

Industrial wastewater containing heavy metals and other organic contaminants is also discharged 

into municipal drains, fresh water, surface water and other drainage systems. Other sources of 
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heavy metals into the environment include use of manure and fertilizers on soil, exhaust fumes 

from automobile and internal combustion engines (burning of fossil fuel and wood), corrosion 

products (tyres and metal components), etc. (Okem et al., 2012). 

Heavy metals may be present in agricultural soil at a level of abundance due to the use of 

different phosphate fertilizers, organic matter, pesticides and animal residue for soil amendment. 

The use of wastewater and sewage sludge for irrigation can also increase the amount of heavy 

metals in agricultural soil (Muchie and Akpor, 2010). Soil therefore acts as a natural receiving 

sink for heavy metals especially because of its ability to bind various chemicals. These chemical 

substances are present in distinct forms in soils and kept bonded to soil particles by different 

forces. An understanding of these correlations is very important because uptake and toxicities of 

metals depend on the form in which they subsist in the environment. Soil equilibrium may 

change due to environmental factors caused by climate change, and soil variability. These 

changes can result in leaching of toxic heavy metals that are loosely or tightly bound to soil 

particles (Dube et al., 2001; Rajib et al., 2016).   

 

1.2 Problem statement 

 

Plants take up heavy metals either by absorbing air-borne particulates deposited on surface parts 

of plants exposed to metal-contaminated air or from soil of a polluted environment.  The 

presence of heavy metals in soils can also result in plants growing on such contaminated soils to 

take up these heavy metals, with the possibility of magnifying to higher concentrations. This 

bio-magnification may be detrimental to the plants and humans or animals through heterotrophic 

transfer. These elements can also be trans-located from soil to other environmental matrices 

where they may cause harm.  

Although the maximum concentrations of heavy metals that may occur in plants may not be 

directly related to the sources of contamination, it is generally assumed that direct uptake of 

metals from soils around plant roots or aerial deposition of metal particles on leaves and other 

external plant tissues contribute to heavy metals load in plants. Heavy metals such as Pb, Cd, Ni, 

and Zn amongst others may accumulate in vegetables through contaminated resources such as 
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soil, water and crops. The consumption of such foods by living organisms can result in 

detrimental consequences on the health of living organisms. 

Previous studies also revealed the detection of heavy metals in the tissues of plants growing on 

soil adjacent to roads suggesting that plants could be contaminated by heavy metals as a result of 

traffic and during long-term road service. Findings from heavy metal studies conducted around 

industrial sites and agricultural lands in urban metropolis or cities revealed contamination due to 

well-known sources such as the burning of fossil fuels, traffic and use of fertilizers in agricultural 

lands. 

Less attention has been paid to the accumulation of heavy metals in home gardens, schools, rural 

areas and small gardens, where many people sustain their lives for both economic benefits and 

family subsistence. In some of the gardens, fertilizers may pose the risk of containing heavy 

metals. Meerkotter reported the detection of heavy metals, Cd, Cu, Pb, Mn, Ni, Cr, Fe, Co and 

Zn at elevated concentrations in soil, water and vegetables in the formal Philippi Horticultural 

area and Kraaifontein agricultural areas of Cape Town in excess of the limits set by South 

African regulations and guidelines. 

Due to the scarcity of information, this study was intended therefore to investigate the 

occurrence levels and distribution patterns of heavy metals in allotment gardens within the 

vicinities of selected schools and communities around informal settlements in the Cape Town 

environment. This is in order to collect information about general forms of practices in informal 

agriculture and to raise awareness amongst the farmers of these farming areas, with regard to 

heavy metal pollution and the cycling of heavy metals in backyard soils used for informal 

agricultural purposes. 

 

1.3 Objectives of study 

 To determine the physicochemical parameters of water and soil in the sampling area. 

 To determine the concentration of selected heavy metals in the soil, water and vegetables 

from the allotment gardens of Cape Town. 



4 

 

 To investigate the spatial distribution of heavy metals in surface soils of the allotment 

gardens. 

 To identify crops that are posing a health risk by means of comparing the determined 

results to the allowed limits and the possible effect of heavy metals on the environment. 

 

1.4     Research questions 

 

 Is there any significant difference between summer and winter concentration levels and 

accumulation of heavy metals on soil, water and vegetable crops? 

 Is there any evidence that the physicochemical parameters have an influence on metal 

concentration in the soil and vegetable crops? 

 What is the spatial distribution of heavy metals between the various sites? 

 How do the heavy metal concentrations in soils, water and vegetable crops relate to the 

permissible limits? 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1  Sources and distribution of heavy metals in the environment 

 

Heavy metals occur naturally in the earth’s crust, but due to human activities, their chemical 

balance and geochemical cycles have been altered. The abundant existence of heavy metals in 

different environmental matrices and compartments such as air, soil and water is a result of 

anthropogenic release, leading to contamination or pollution of the media (Suruchi and Khanna, 

2011). Natural sources of heavy metals include earthquakes, magma degassing, volcanic 

activities etc., while typical anthropogenic sources include; traffic (gas exhaust), intensive 

agriculture, manure, mining, corrosion products (tyres and metal components), leaching of metal 

ions from the soil into lakes and rivers by acid rain, fertilizers (inorganic), combustion of fossil 

fuels, municipal wastewater, treatment plants, and manufacturing industries (Koldabadi et al., 

2012; Khaled and Muhammad, 2016).  

Mining presents two pathways of input i.e. solid waste containing impurities of toxic elements 

such as arsenic, copper, lead, cadmium, cobalt, chromium, nickel, or titanium from metal ores, 

and mine tailings and slag (Prabhakaran et al., 2016). Due to the utilization of solid waste and 

slag for landfill and construction, farming and forestry and roads, the contamination of soil with 

these materials cannot be avoided. Once in soils, metals are primarily accumulated by a different 

mechanism of binding including (i) binding to organic matter and sulfides (ii) binding to 

reducible phases (iii) binding to carbonate phases and (iv) detrital or lattice metals. Heavy metals 

present in these categories have different remobilization behaviour under changing 

environmental conditions (Zhi-gang et al., 2014). 
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Figure 2.1: Sources and translocation of heavy metals  

 

 

The bioavailability and remobilization behaviour of the heavy metals in the environment is 

directly influenced by the geochemical forms of the heavy metals in soil which affects their 

solubility (Zhi-gang et al., 2014; Prabhakaran et al., 2016). Hence, metals can be transported 

either as an integral part of fluvial suspended sediments or dissolved species in soil water. They 

may also be stored in soils or volatilized to the atmosphere. Organisms take up toxic heavy 

metals; with the metals dissolved in water having the greatest potential of causing the most 

deleterious effects. 

 

The main concerns about the occurrence of elevated concentrations of heavy metals in soil are 

the contamination of agricultural soil and that of water resources (Suruchi and Khanna, 2011). 

This is because soils are the primary sources of nutrients and minerals to plants, especially 

vegetables and other food crops. Heavy metals, unlike organic pollutants, are not biodegradable; 

Plants do not have the ability to discriminate metals, although they have been reported to show 

different tolerance for different metals. Hence, there is a tendency for these metals to accumulate 

in soil or bio-accumulate in plants in excessive amounts (Ayeni et al., 2010; Wuana and 

Okieimen, 2011). The consumption of vegetables or food crops with elevated concentrations of 

accumulated heavy metals could result in detrimental effects on the health of consumers in the 

long run (Sheldon, 2005; Street, 2012). 
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Figure 2.2:  Exposure of human to chemical substances   

 

 

The route of exposure of human to chemical substances occurs in three main ways (WHO, 1995; 

Jaishankar et al., 2015) namely: inhalation; ingestion and through contact with the skin. Food 

and drinking water intake are the major sources of exposure of biota and the general population 

to most chemical substances. These substances accumulate or contaminate vegetables by many 

routes, with some contaminating it directly while others are during preparation or processing. 

Others pass via heterotrophic routes from soil to plants and from herbivorous animals to milk or 

meat (Kienzler et al., 2016).  

 

2.2 Accumulation of heavy metals 

 

The presence and accumulation of heavy metals in soils are dependent on a variety of factors, 

including soil pH, soil conductivity, heavy metal solubility, etc. Chemical substances enter 

humans and the environment through complex and inter-related pathways. For example, 

fertilizers and pesticides enter the environment as a result of direct application (Jung, 2008; 

Khaled and Muhammad, 2016), while substances such as trace metals and polycyclic aromatic 

hydrocarbons may result from combustion processes (Saeedi et al., 2012). Waste water/effluent 

flow is another source of chemical substances released from industries and manufacturing 

processes that generate unwanted by-products, with air and water-borne wastes that are 

sometimes more toxic than the raw materials (Abdel-Raouf et al., 2012; Staszewski et al., 2015). 

Pollutants 

Organisms Environment 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jung%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=27879826
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Heavy metals are not degradable; hence, they tend to persist long in soil especially where they 

are tightly bonded to soil.  Soil rich in clay content has been reported to have very high retention 

capacities for heavy metals, while crystalline sandy soils have the least retention capacity 

(Silveira et al., 2003; Chibuike and Obiora, 2014). As a consequence, they tend to accumulate 

with continuous reception and low climatic influence. The presence and or accumulation of 

heavy metals are generally affected by soil pH, soil type or class, and soil organic matter.  

 

2.2.1 Soil pH 

Soil pH is important in assessing the potential availability of valuable nutrients to plants as well 

as the toxicity of excess levels of essential metals and heavy metals in plants. pH controls nearly 

all chemical processes in the soil, including hydrolysis, reduction/oxidation, dissolution/ 

precipitation and adsorption. Generally, metals can occur in various forms in soil, with different 

interstitial forces keeping them in binding to the soil particles. These interactions are very 

important because the toxicity of metals and other chemical substances depend on the form in 

which they exist in the environment (Dube et al., 2001; Caporale and Violante, 2016).  

Heavy metals under acidic conditions become extremely mobile, resulting in it being available 

for uptake. Mobility of metals generally decreases with an increase in pH towards alkalinity. 

Metal ions can be retained in soil by sorption, precipitation and complexation reactions, 

depending on pH and can be removed from soil through uptake and leaching. According to 

Cherameti (2010) and Magdi (2015), the concentration of metals in a soil solution is influenced 

by the nature of both organic (citrate, oxalate, fulvic, dissolved organic carbon) and inorganic 

(HPO4
2-, NO3

-, Cl- and SO4
2-) ligand ions and soil pH through metal sorption processes.  

Soil microbial population is negatively affected by increased heavy metal content and this may 

affect soil fertility negatively. However, soil characteristics such as pH, clay content and soil 

organic matter can modify the negative or positive impacts of heavy metals on soil enzymes by 

improving soil fertility, quality and nutrient causing resistance on mobility of heavy metals in 

soil (Kelly et al., 2003; Ayansina and Olubukola, 2017).  

 

https://www.hindawi.com/79396726/
https://www.hindawi.com/73730821/
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2.2.2  Soil type 

 Particle size distribution, soil mineralogy, endogenous metal concentration, and soil processes 

(mineral weathering, microbial activity) are some of the factors prompting solubility and 

accessibility of metal species in soil. The kinetics and metal sorption reactions are strongly 

influenced by particle size distribution of soil, thereby playing a determining role on the forms of 

metals either as soluble and insoluble chemical species and their resultant concentration in soils 

(Cataldo and Wildung, 2000). The grain size distribution of gravel, sand, silt and clay provides a 

basis for classifying soil by texture. Texture and surface area are closely related so that, as 

particle size decreases, the surface area per unit mass increases, resulting in an increase of 

adsorption capacity (Sheldon, 2005; Adam et al., 2011). 

Different soil classes, for example, sandy, loam, silt or clay possess a heterogeneous collection of 

adsorption sites when the surface charge is negative. Therefore, there is a greater tendency of 

adsorption of cationic species such as the heavy metals on clay, compared to other grain types 

due to their larger surface areas.  

 

2.2.3  Soil organic matter 

Organic matter content is essential in soil for appropriate uptake of certain elements that are vital 

for health and crop development, e.g. Cu and Zn. The retention/mobility of heavy metals is 

inadvertently affected by the adsorption of heavy metals on soil particles, which is not only 

partial to the formation of surface complexes but also residency of metals in the interior of soil 

minerals and organic sequestration (Bruemmer et al., 1986). The relative amount of available soil 

organic matter thus determines the metal mobility and availability in soil. 

However, a decrease in the level of soil organic matter can beneficially influence organic inputs, 

which can be reduced or lessened by the potential enhancement of the bioavailability of the 

elements with unknown metabolic function. For instance, cadmium which is a powerful enzyme 

inhibitor and considered an enormously substantial pollutant may be readily available in soil 

with low organic carbon content, due to its great solubility in water (Hernandez et al., 2012). 

The relative content of organic matter in soil predictates the concentration and speciation of 

metals in the soil solution or in similar aqueous equilibrium solutions of soil samples and the 
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removal of metals from solid pools to the liquid phase and vice versa (Adam et al., 2011). 

Agricultural practices requiring the application of organic amendments or irrigation with 

wastewater introduce organic compounds in soil, and this affects the reactivity, solubility and 

bioavailability of metals, although it may also compromise environmental health and crop 

nutrition. 

2.3 Contamination of the environment by heavy metals 

Environmental contamination is mostly the result of activities such as mining and smelting 

operations, industrial production and use, domestic and agricultural use of metals and metal-

containing compounds (EEA. 2000; Wuana and Okieimen, 2011). Metal corrosion, atmospheric 

deposition, soil erosion of metal ions and leaching of heavy metals, sediment re-suspension and 

metal evaporation from water resources to soil and groundwater also contributes to heavy metals 

in the environment (Simeonov eds., 2011; Tchounwou et al., 2012). Industrial sources include 

metal processing in refineries, coal burning in power plants, petroleum combustion, nuclear 

power stations and high tension lines, plastics, textiles, microelectronics, wood preservation and 

paper processing plants (Joshia et al., 2016).  

 

2.3.1 Water contamination by heavy metals  

Water is a crucial necessity that supports all forms of plants and animals. Two main sources of 

natural water is obtained from, are surface waters such as freshwater lakes, rivers, streams etc. 

and groundwater such as borehole and hand-dug well water (Momodu and Anyakora, 2010). 

Unfortunately, water pollution is a critical problem because various human activities have 

resulted in the deterioration of water quality. This makes water unhealthy for drinking and other 

domestic uses. Numerous toxic heavy metals have been discharged in domestic and industrial 

waste into the environment triggering severe water and soil pollution (Bvenura and Afolayan, 

2012; Matthew et al., 2016).  

Central to the sources of water pollution are chemical fertilizers and pesticides from untreated 

sewage, dumping of waste and industrial effluents into rivers and streams traversing through or 

by urban metropolis and lowlands. Also, rainfall accompanied by flocculation or coagulation 

may lead to problems such as the formation of large amounts of sediments containing heavy 
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metal ions, discharge of large magnitude of toxic metals into receiving water systems, and their 

subsequent transmission into human food chain (Hussein and Sheriff, 2013; Staszewski et al., 

2015). 

 

2.3.2 Soil contamination by heavy metals 

Soil is a vital component of natural environments extending throughout rural and urban areas. 

Hence, the retention of soil quality is important; and this can be achieved by sustainable land use 

and proper land management procedures. Contamination of soils may occur at old landfill sites, 

predominantly those that accept industrial waste, old orchards that used insecticides containing 

arsenic as an active ingredient, fields that had past applications of wastewater or municipal 

sludge, areas in or around mining waste piles and tailings, industrial areas where chemicals may 

have been dumped on the ground or in areas down from industrial sites (Wuana and Okieimen, 

2011). Heavy metal contamination of urban and agricultural soils may be due to mining, 

manufacturing and the use of synthetic products e.g. pesticides, paints, batteries, industrial waste 

and land application of industrial or domestic sludge (Donahue and Auburn, 2000).  

 

 

2.3.3 Atmospheric contamination by heavy metals   

Air pollution arises from several biotic and abiotic processes such as plants and animals, gaseous 

exchange cycles, radiological decomposition, forest fires and emissions from land and water, 

causes natural background concentrations. Although this differs according to local sources or 

specific weather conditions, the spread of poisonous substances released into the atmospheric 

environment from industries, industrial plants and heavy traffic may be due to the existence of 

elevated concentration of heavy metals in the atmosphere. Changes in lifestyle may also increase 

the levels at which trace metals are added to soil, water, plants and air from anthropogenic 

sources (Chibuike and Obiora, 2014).  
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2.4 Fate and Toxicity of Heavy metals 

 

Increasing soil heavy metal burden may be due to the continuous contamination from either 

natural or anthropogenic source input, and this could induce soil enzyme activities, with different 

metals infracting different fate, depending on the type of metal/metal salt (Zhang et al., 2009).  

Chemical substances may also undergo physical and chemical changes in the environment 

including combination with other chemicals, and this can affect their toxicity (Khaled and 

Muhammad, 2016). When a relatively harmless chemical has been chemically transformed, it may 

transform into a toxic by-product in the environment and may further enter the food chain and 

accumulate in living organisms (Wuana and Okieimen, 2011; Ayeni et al., 2010). 

Chemical products such as agrochemicals and petrochemicals have been recognized to have 

brought valuable effects to man and his environment, while others such as alkylated lead and 

some other pesticides have brought unprecedented harm (Abdel-Raouf et al., 2012). Significant 

scientific information is available on the short term effect of some well-known chemicals 

hazardous to human health or animal species especially domestic animals, where the effect may 

appear for a long time after exposure, to a high dose over a short period or a low dose over an 

extended period can be acute i.e. immediate and obvious response to exposure beyond threshold 

limit or chronic. The effect of human exposure to chemical substances at low concentrations over 

a lengthy period is not fully known.  

The biodiversity of microorganism may be reduced by environmental pressure caused by 

contamination and may also disturb the ecosystem. Ahmad et al. (2005) and Lenart and Wolny-

koladka (2012) reported that even in soils contaminated with toxic heavy metals and other 

xenobiotics, soil microorganisms might adapt to growth, by developing various mechanisms to 

resist heavy metal contamination.  

Generally, the significance of exposures can be measured in terms of mortality, morbidity and of 

physiological changes, which are precursors of morbidity (Jaishankar et al., 2015). Chemical 

mutagenesis induces gene mutations in the protoplasm and they can be permanent. Long-term 

exposure results to health hazards from toxic substances include the possibilities of 

carcinogenicity, mutagenicity and teratogenicity (Abdel-Raouf et al., 2012). 
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2.5 Heavy metal exposure and effect 

 

Although heavy metals in the earth’s crust occur naturally, anthropogenic activities such as 

mining and smelting operations, industrial production and agricultural use of metals and metal-

containing compounds result in human and environmental exposure. Environmental 

contamination can also occur through metal corrosion, atmospheric changes, soil erosion of 

metal ions and leaching of heavy metals and metal evaporation from water resources to soil and 

ground-water (Tchounwou et al., 2012; Kamunda, 2017). In spite of the natural occurrence of 

heavy metals in the soil environment, they do not occur at levels that induce toxicity, except 

when accumulated.  

Hazardous chemicals in food and water comprise a wide range of both inorganic and organic 

substances. These substances are derived from a variety of sources of which air pollutants (Wei 

et al., 2017) deposited directly on aerial parts of the food plants, are the most important. This is 

because they may not partake in plant metabolic activity and or degradation thus accumulating 

several-fold. They also include pollutants taken up from the soil or irrigation water via the root 

of food plants (Jung, 2008).  

However, the human body has effective mechanisms, both on systemic and cellular levels, to 

retain homeostasis over a broad exposure range, and beyond given thresholds for different 

substances, there could be negative responses to toxicity. 

 

2.5.1  Cadmium 

Cadmium is bio-persistent and once captured by an organism, it remains inhabitant for a long 

time (subsisting in humans and animals) (Nordberg, 2010). A major source of Cd in the 

environment is from the use of fertilizers, and the indiscriminate dumping of wastes containing 

Cd (Godt et al., 2006). Phosphate fertilizers contain excessive amounts of cadmium as impurities 

are occasioned by its close characteristics with zinc. However, it is eventually expelled from the 

body over time. Cadmium enters the human body through leafy vegetables, grains and cereals. 

High exposure can cause disease associated with lung cancer, renal dysfunction, bone defects in 

humans and animals. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jung%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=27879826
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2.5.2  Chromium  

Chromium (Cr 3+ and Cr 6+) is an essential nutrient required in trace levels by plants and animals 

for proper metabolism. However, when in high concentration, it can be harmful. Chromium is a 

component useful for cement, paints, paper and other materials. Chromium often accumulates in 

aquatic life, adding to the danger of eating fish that may have been exposed to high levels of 

chromium (Sneddon, 2012; Smith et al., 2010). It can cause skin irritation and ulcers on 

exposure. Long-term exposure can cause damage to the kidney, liver, circulatory tissue and 

nerve tissue. 

 

2.5.3  Copper  

Copper is an important nutrient needed in the human and animal body. Copper usually occurs in 

drinking water running through copper pipes due to leaching or corrosion of pipes, as well as 

from additives designed to control algal growth during water treatment (Desai and Kaler, 2008). 

High concentrations of Cu in humans and animals can cause liver damage, anemia, intestinal 

irritation and kidney damage. Copper was reported to be the cause of a disease known as 

Wilson’s disease (Wilson, 2011). Copper is also known to be very toxic to sheep hence must not 

be present in many animal seed. 

  

2.5.4  Lead  

Lead (Pb 2+ and Pb 4+) is relatively immobile in soil and occurs naturally in the earth’s crust. It is 

one of the known extremely poisonous elements. Lead from water and airborne sources have 

been shown to accumulate in agricultural areas and this might lead to increase concentrations in 

agricultural produce and farm animals (Xintaras, 1992; Tukker et al., 2006). 

Children are more vulnerable to the absorption of Pb as it is absorbed more efficiently than in 

adults. Thus they may exhibit symptoms of the harmful consequences of lead toxicity. Lead 

affects mental growth of children and their neuropsychological function (Rollin et al., 2008).  

 

2.5.5  Nickel  

Nickel may be released into the environment from furnaces used for making alloys or from 

power plants and trash incinerators. Nickel released via stack emissions from power plants is 



15 

 

associated with particulate substances, which are deposited on soil under gravity, or seeded out 

of the air during rain or snow. It usually takes many days for nickel to be removed from air due 

to size dynamics, hence Ni has a longer half-life in air. Significant amounts of nickel released 

into the environment end up in soil or sediments where it is strongly attached to particles 

containing iron or manganese. Nickel travels freely in soil under acidic conditions and might 

seep into groundwater. Studies showed that some plants could absorb and accumulate nickel. 

Short-term overexposure to nickel is not known to cause any health problems, but long term 

exposure can cause decreased body weight, heart and liver damage and skin irritation (Das et al., 

2008; Sheldon, 2005). 

 

2.5.6  Iron  

Iron is an essential component of haemoglobin (the red colouring agent of the blood) which is 

responsible for oxygen transport in human and animals. Iron can be found in meat, whole meal 

products, potatoes and vegetables. Exposure to high concentrations of Fe may cause 

pneumoconiosis, choroiditis, conjunctivitis and retinitis (Wilson, 2011). Iron in soil exists in Fe2+ 

and Fe3+ forms and not readily available for plant uptake, but due to poor soil aeration or reduced 

oxygen level that are caused by flooding or rainfall the Fe minerals become contaminated and 

are taken up by plants (Chibuike and Obiora, 2014). 

  

2.5.7  Cobalt  

Cobalt is useful to humans because it provides an important route in the synthesis of vitamin 

B12, which is essential for good health in humans and animals. Cobalt stimulates the production 

of red blood cells; therefore, it is used to treat anaemia in pregnant women. Humans may be 

exposed by breathing air, drinking water and eating food that contains cobalt. However, high 

concentrations of cobalt may cause damage to organisms. Health effects of Co may include hair 

loss, vomiting, bleeding and death (Campbell, 2012). Cobalt occurs naturally in soils through the 

breakdown of organic matter and the weathering of the minerals into soil particles. Adsorption of 

cobalt to soil is rapid resulting in easy uptake by plants (Chibuike and Obiora, 2014). 

 



16 

 

2.5.8  Manganese  

Manganese is an essential metal vital for metabolism in the human body. When high 

concentrations are present in the human body it can be toxic. The uptake of manganese by 

humans is mainly through food, such as spinach, tea and herbs. Foodstuffs containing a high 

concentration of Mn include grains and green beans. High concentrations of Mn in humans may 

result in deleterious toxic effects such as neurological damage, anxiety and insomnia 

(McAllister, 2011; Rollin et al., 2005). Mn2+ ions are released into the soil solution during 

weathering of silicates which are easily accumulated by plants (Chibuike and Obiora, 2014).   

 

2.5.9  Zinc  

Zinc is an essential trace element in human and animal nutrition. Zinc impacts human organs on 

the cellular level and may be a crucial regulator of apoptosis as well as neuronal death following 

brain injury (Plum et al., 2010). Consequently, zinc has rather low toxicity; hence a severe 

impact on human and animal health by intoxication with zinc is a relatively unusual event.  Zinc 

occurs with excess of the sulphate and phosphate content in the soil solution. Zinc can also be 

found adsorbed onto iron, manganese and aluminum oxides which can be taken up by plants 

easily (Chibuike and Obiora, 2014). 

 

2.6 Accumulation of heavy metals in vegetables 

Plants and vegetables contain vital diet constituents; thus, they are a source of vitamins, proteins, 

carbohydrates, lipids, essential minerals such as iron, calcium, nickel, and many others, which 

are required in trace or small amounts. These nutrients act as buffering agents for acidic 

substances, alkaline substances and free radicals produced during the digestion process. Over an 

extensive range of concentrations, plants may harbor crucial metals and toxic elements.  

Metal buildup in vegetables may pose a direct threat to human health. This is because vegetables 

absorb heavy metals from metal contaminated soils and from deposits on different aerial parts of 

the vegetables exposed to air in polluted environments. Islam et al. (2007) reported that almost 

half of the mean ingestion of lead, cadmium and mercury is through food of plant origin (fruit, 

vegetables and cereals). Furthermore, some population groups are likely to be at risk of higher 
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exposure, especially vegetarians, since they absorb more frequently ‘tolerable daily doses’ (Islam 

et al., 2007).  

The contamination of food by heavy metals depends on their movement in the soil and their 

bioavailability, although determination of the food risk contamination is tricky (Gergen et al., 

2011). 

 

2.7 Effect of heavy metals on exposed living organisms 

Toxic levels of heavy metals affect human beings, animals and plants. These metals may be 

present either as a deposit on the surface of vegetables or taken up by the crop through the roots 

and enter into the edible part of plant tissues. Heavy metals deposited on plant (vegetable) 

surface can be eliminated by washing prior to consumption; whereas bio-accumulated metals are 

difficult to remove and are of major concern (Lente et al., 2012).  

Metals such as cobalt, copper, chromium, iron, magnesium, manganese, molybdenum, nickel, 

selenium and zinc have been reported to form part of the essential nutrients that are required for 

various biochemical and physiological functions (Tchounwou et al., 2012; Kamunda, 2017). 

Thus, inadequate supply of these essential micronutrients may results in a variety of deficiency 

diseases or syndromes, while excess beyond require dose may elicit toxic responses. 

Dietary exposure to heavy metals such as Cd, Pb, Zn and Cu has been identified as a risk to 

human health through the consumption of vegetable crops. Some heavy metals have toxic and 

mutagenic effects even at very low concentrations. Several cases of human disease, disorders, 

malfunction and malformation of organs caused by exposure to metals are listed in Table 2.1 

(Koldabadi et al., 2012). 
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Table 2.1: Selected heavy metals and their effect on human health with their permissible limits 

 Major sources Effects on 

human health 

Allowed 

level for soil 

(mg/kg) 

Allowed levels 

for plants 

(mg/kg) 

Allowed levels for 

water  

(mg/L) 

Pb Paint, smoking, 

mining and coal 

Mental 

retardation and 

liver damage 

0.1 2 5.0 

Cd Welding, fertilizer 

and pesticide 

Renal dysfunction 

and lung cancer 

0.06 0.02 0.01 

Mn Fuel addition and 

welding 

Nervous damage 

and inhalation 

0.26 10 0.5 

Zn Refineries and 

plumbing 

Zinc fumes and 

nervous damage 

15 2 0.5 

Cr Mines and 

mineral sources 

Nervous system 

damage 

0.05 1.30 0.1 

Cu Mining, pesticide 

and metal piping 

Anemia, liver and 

kidney damage 

0.1 10 0.2 

Ni Soil and 

underground 

water 

Weight loss, skin 

irritation and liver 

damage 

0.015 10 0.2 

Fe Metal tonnage, 

food and rust 

Retinitis and 

pneumoconiosis 

20 5 0.01 

Co Air pollution, 

food and water 

Hair loss, 

vomiting, and 

death 

0.05 0.02 0.01 

Source: (Singh et al., 2011) 
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2.8 Regulations and guidelines concerning heavy metals in the environment 

 

There are several guidelines stipulated for the sustenance and health of the environment, 

especially where it may have a direct impact and implication on humans and animals. The 

suggested guideline levels are not the same for all media since metals behave differently in 

different media. 

 

2.8.1 Soil guidelines 

Guideline concentration ranges for the safe limit of heavy metals in soils are important in order 

to avoid potential health risks to plants, humans and animals. Countries such as United States of 

America (USA), United Kingdom (UK), the European Union (EU), Poland and many more have 

suggested variable but close concentration levels that would ensure the protection of the 

environment (Table 2.2). 

 

Table 2.2: Soil concentration ranges and regulatory guidelines for some heavy metals 

 

Metal Soil concentration range 

(mg/kg) 

Regulatory limits (mg/kg) 

Pb 1.00 – 69 000 600 

Cd 0.10 – 345 100 

Cr 0.05 – 3 950 100 

Hg <0.01 – 1 800 270 

Zn 150 –5000 1500 

 

Where the metal concentration in the soil environment exceeds the recommended threshold, 

deleterious consequences might be triggered. In order to avoid these deleterious 

consequences, target concentration levels and intervention are required and have been 

suggested in Table 2.3.  
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Table 2.3: Target and intervention values for some metals for a standard soil  

Metal Target value (mg/kg) Intervention value (mg/kg) 

Ni 140.00 720.00 

Cu 0.30 10.00 

Zn — — 

Cd 100.00 380.00 

Pb 35.00 210.00 

As 200 625 

Cr 20 240 

Hg 85 530 

 

 

 

The maximum allowed concentration levels of heavy metals proposed for soil in various 

countries is suggested in Table 2.4 in order to ensure the protection of the agricultural soils. 

 

Table 2.4: Maximum allowable concentration (mg/kg) (MAC) of trace metals element in agricultural        

soils proposed or given in the directives in various countries during different years 

Element USA 

1993 

Germany 

1993 

UK 

1987 

Poland 

1993 

Sweden 

1993 

Denmark 

1993 

EU 

1993 

        

Cd 20 1.5 3 – 15 1 – 3 1 0.5 1 – 3 

Cr 1500 100 - 50 – 80 30 30 100 – 150 

Cu 750 60 50 30 – 70 40 40 50 - 140 

Mo 8 1 - 10    

Ni 210 50 20 30 – 75 1.5 15 30 - 75 

Pb 150 100 500 – 

2000 

70 – 150 40 40 50 - 300 

Zn 1400 200 130 100 – 300 100 100 150 - 300 

Source: Adapted from Alloway (1995); Kabata Pendias & Pendias (2000) 
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The European Union directive on concentrations of heavy metals in soil was based on the 

general averages of heavy metals in soils of some European countries and widely applicable in 

many European countries. Table 2.5 shows the maximum allowed concentration (MAC in 

mg/kg) recommended by the European Union for soil and sludge, and assumed safe for plant 

growth as well as reduce the risk of human (Kabata-Pendias and Pendias, 2000).  

 

Table 2.5: Environmental quality criteria in the European Union: soil and sludge quality criteria, 

(maximum admissible concentration mg/kg). 

Element European Union 

Soil  Limit value 

(mg/kg) 

European Union: Sludge 

for agricultural use 

Limit value (mg/kg) 

Soil concentration for 

loamy and silty soil 

(ppm) 

    

Cd 1 – 3 20 – 40 0.08 – 1.61 

Co 50 – 140 1000 – 1750 4.0 – 100 

Pb 50 – 300 750 – 1200 1.5 – 70 

Hg 1 – 1.5 16 – 25 - 

Ni 30 – 75 300 – 400 3.0 – 110 

Zn 150 – 300 2500 – 4000 9.0 – 362 

Cr - - 4.0 – 1100 

Mn - - 45 – 9200 

Mo - - 0.1 – 7.2 

Source: Adapted from Visser (1993); ECE DG XI (1992); Redojevic and Bashkin, 1998; Kabata-Pendias & Pendias 

(2000) 

 

 2.8.2 Guidelines of heavy metals in aqueous matrices 

Heavy metals occur largely as dissolved metal in aqueous matrices. Their solubility and resident 

time differs from one aqueous system to another. Fresh water, surface water, wastewater, water 

for irrigation, water for recreation, coastal and marine water all have different recommended 

guideline concentrations. Fresh water maximum contaminant guideline levels and potential 

consequences at exposure beyond these concentrations are presented in Table 2.6.  
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Table 2.6: Maximum contaminants levels of selected heavy metals in water, health effect and 

sources 

Conta

minant 

MCLG 

(mg/L) 

MCL or 

TT 

(mg/L) 

Potential Health Effects from 

Long-Term Exposure at > 

MCL  

Sources of Contaminant in 

Drinking Water 

Ni 0.2 0.2 Decrease body weight, heart 

And liver damage 

Released into the environment by 

power plants, metal factories and 

waste incinerators, used in 

fertilizers. 

Mn 

 

0.5 0.5 Neurological damage, anxiety 

and insomnia 

Occurs naturally on surface water 

and ground water and in soils that 

may erode into water, also human 

activities are responsible for 

contamination in water. 

Fe 0.01 0.01 Pneumoconiosis, choroiditis,  

Conjunctivitis and retinitis 

Mineral water contains high 

amounts of iron ions and present in 

all waste waters. 

Co 0.01 0.01 
Vomiting, bleeding and hair 

loss 

Exposure through air, drinking 

water and industrial areas. 

Cr  0.1 0.1 Allergic dermatitis 
Discharge from steel and pulp mills; 

erosion of natural deposits. 

Cu 1.3 TT; 

Action 

Level=1.3 

 

Short term exposure: 

Gastrointestinal distress 

Long term exposure: Liver or 

kidney damage 

Corrosion of household plumbing 

systems; erosion of natural deposits. 

Pb 

 

0.0 TT; 

Action 

Level=0.0

15 

Infants and children:  slight 

deficits in attention span and 

learning abilities 

Adults: Kidney problems; high 

blood pressure 

Corrosion of household plumbing 

systems; erosion of natural deposits. 

Cd 0.01 0.01 
Lung cancer, renal dysfunction 

and bone defects in humans and 

animals 

Occurs naturally in Zn, Pb, Cu and 

other ores which can serve as 

sources of ground water and surface 

water. 

Zn 0.5 0.5 Brain injury  
Used in fertilizers that may leach 

into groundwater. 

TT- Treatment Technique; MCLG-Maximum contamination level goal; MCL- Maximum contamination level 

https://safewater.zendesk.com/hc/en-us/sections/202366568
https://www.epa.gov/dwreginfo/chemical-contaminant-rules
https://safewater.zendesk.com/hc/en-us/sections/202346507
https://safewater.zendesk.com/hc/en-us/sections/202366528
https://safewater.zendesk.com/hc/en-us/sections/202366458
https://safewater.zendesk.com/hc/en-us/sections/202346427
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water
https://safewater.zendesk.com/hc/en-us/sections/202346227
https://safewater.zendesk.com/hc/en-us/sections/202346197
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2.8.3 Food and beverages 

The need to regulate the levels of heavy metal in food and beverages is very contingent. This is 

because they are major routes in nature for heterotrophic transfer process. Therefore imposing 

regulation on metal levels in food and beverages is necessary. The deleterious effects of heavy 

metals on biota have led to exigent need for stating reference concentration for safe exposure 

thus, the importance of acceptable threshold limits and environmental standards set for the 

protection of the components of the biosphere and the ecosystem against heavy metals exposure 

(Olatunji et al., 2016). Many developed countries have defined guidelines for many heavy metals 

and organic pollutants in media including drinking water, arable agricultural soils, food, plant, 

sediments etc. These limits are set to protect species of organisms within an ecosystem from 

adverse negative consequences of heavy metals. 

The World Health Organization (WHO), Joint Experts Committee on Food Additives (JCFA) 

and Food and Agriculture Organization (FAO) also recommended a guideline threshold 

concentration for heavy metals in plants consumed as food. The guideline concentration of heavy 

metals for normal plants growth as well as the heavy metals phytotoxic levels recommended by 

Kabata Pendias and Pendias (2000) are presented in Table 2.9.   

 

Table 2.7: Guideline concentration (mg/kg) values for heavy metals in plants  

Status Metal concentration (mg/kg) 

      Pb       Cd      Cr      Ni     Zn 

      
Deficient       -        -       -         -     <10 

      

Normal 0.5 – 10 0.05 – 2.0 0.1 – 0.5 0.1 – 5.0  10 – 150 

      

Phytoxic  30 – 300      5 – 700     1 – 10  10 – 100     >100 

Source: Adapted from Kabata-Pendias and Pendias (2000)  

 

The ability of plants to concentrate heavy metals in their tissues is largely a function of their 

metabolic processes. Uptake and translocation of heavy metals in solution phase are controlled 
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by either active or passive mechanisms. Ravi et al. (2003) reported that regulatory criteria have 

been established with limits on environmental and human health.  

Kabata-Pendias and Pendias (2000) noted that some plants might appear healthy, growing on 

contaminated soils whereas they contain unsafe levels of heavy metals. It is, therefore, possible 

that depending on specific conditions and soil type, significant metal concentrations can be 

tolerated in some cases without appreciable risk of detriment to plant. 

Lower plants such as lichen and moss have been reported to take up heavy metal from soil, hence 

can be used as an indication of heavy metal contamination (bio-indicator) status of soil 

environments, while atmospheric contamination status can be assessed using tree barks of plants 

as indicator (Singh et al., 2007). 

 

2.9 Determination of heavy metals in vegetables and soil: review of analysis methods 

and procedures for environmental samples  

2.9.1 Sample digestion 

The decomposition of materials sampled in preparation for analysis is crucial to the accuracy of 

results. This can be achieved by digestion, which is the breaking down of chemical substances 

into free ions, atoms or molecules, such that they can be selectively determined by a sensitive 

and specific analytical technique. Method of digestion varies for different samples and this is 

clearly a function of the element or elements to be determined; the matrix in which they exist, 

and the purpose for which the results are needed (Markert, 1995). There exist two procedures 

(dry and wet) for digestion of samples needed for metal analysis.  

 

2.9.1.1  Dry digestion 

Dry digestion is the destruction of (biological) samples from their dry state to ash i.e. total 

destruction of the organic component of a sample, usually carried out in a furnace at elevated 

temperatures (450 – 600 ℃) set by the volatility point of the element required for assaying. Dry 

samples are charred first at temperatures of between 120  ℃ – 160 ℃, before subjecting them to 
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severe temperatures in highly cleaned porcelain or platinum crucible in a furnace (Hamilton and 

Mehrle, 1986). 

 

Dry digestion is however linked with some demerits (Hamilton and Mehrle 1986):  

i. Samples are susceptible to contamination by furnace lining materials, which are 

usually suspended in thermal current (Hamilton and Mehrle 1986). 

ii. Excess of heat i.e. high temperatures of ashing is associated with volatility losses, 

which negatively affects the results obtained.  

iii. Charge losses during material transfer and dissolution must also be considered when 

preparing for dry ashing. 

In the ashing of biological materials, localized sites where exothermic reactions occur, usually 

give rise to localized spikes where temperatures in excess of those recorded by the furnace 

thermocouple reading were exceeded (Hamilton and Mehrle 1986). This phenomenon results in 

volatility losses; thus, the development and use of low-temperature ashing equipment came up as 

a correction to the problems associated with high-temperature ashing. Sealed quartz containers 

under vacuum are now available, which greatly reduces sample contaminations and volatility 

losses from volatile phases. Ashing aid such as sodium pyrosulphate or sodium carbonate may 

also be employed in order to facilitate dry digestion procedures and to avoid sample 

contamination. 

Adebayo et al. (2005) applied dry digestion technique in the decomposition of fish samples by 

subjecting homogenized sample of scaled filleted fish to digestion by ashing at 550 ℃ in a 

muffle furnace. The resulting residue was dissolved in deionised water and made up to standard 

volume for analysis. 

 

2.9.1.2   Wet digestion 

Wet digestion techniques employ the use of reagents to enhance the extraction of metallic 

elements from their matrices into solution of the digesting reagent under carefully regulated and 

suitable temperatures. The use of this method is suitable for both biological and environmental 
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samples and is widely adapted because volatility losses are greatly reduced, and localized spikes 

are eliminated. However, several modifications and developments to the wet digestion procedure 

are ongoing (Voegborlo and Adimado, 2010). 

Potts (1969), for instance, used digestion bombs made of a screw cap metal lined inside with 

Teflon (polytetrafluorinated ethylene PTFE material) to decompose biological materials under 

pressure. This resulted in faster digestion and infinitesimal losses under carefully controlled 

temperatures. High-temperature digestion in Teflon-lined digestion bombs is also possible 

because PTFE (polytetrafluorinated ethylene) is heat resistant and can endure high temperatures, 

where the screw cap enhances the build of pressure and also prevents volatile losses by trapping. 

However, today the use of microwave-assisted digestion is widely employed for biological 

materials in acid decomposition in sealed containers.  

The wet technique is suitable for many sample types; Bunzl et al. (2001) adopted the method of 

Schramel et al. (1996) by digesting plant sample grown on slag contaminated soils and soil – 

slags in supragrade and ultragrade quality concentrated HNO3/HCl acids in microwave-assisted 

high-pressure digestion (EPA method 3050). Singh et al. (2000) also applied wet method in the 

digestion of soil and plant tissue in the plant Larrea tridentata using 1:1 nitric acid (HNO3), and 

reported very efficient oxidation with minimal volatility losses associated with dry ashing 

procedures (Singh et al., 2000).   

 

2.9.2 Reagents for wet digestion of samples 

The choice of reagents for wet digestion is determined by the ease and effectiveness in extracting 

the analyte of interest from the matrix of the sample type under consideration. The use of nitric 

acid is sufficient for most metals; however, the use of many other oxidizing agents such as 

hydrogen peroxide, sodium peroxide, sulphuric acid, perchloric acid, hydrogen fluoride, etc. for 

samples that are not easily oxidizable have been reported in various research works (Bunzl, et al., 

2001). 

The use of divergent reagents for wet digestion such as sodium or ammonium acetate (for 

carbonate bounded metals) at regulated pH (Tessier, et al., 1979; Markert, 1995); MgCl2 or 

CaCl2 for exchangeables (Kuo, 1996); Hydroxyl amine hydrochloride for Fe–Mn bounded 
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metals (Tessier, et al., 1979), and even deionised water for water-soluble metals has been 

considered effective (Tessier, et al., 1979). Most reports indicate the use of oxidizing acids 

because a significant proportion of heavy metals exist either as organic bounded or as residues in 

many biological and geochemical samples (Tessier, et al., 1979; Bunzl, et al., 2001).  

Modification of reagents was also considered in evaluating the effectiveness of extraction and 

oxidation efficiency. Markert (1995) studied the efficiency of extraction using various mixtures 

of reagents with respect to time and at specific pH, for which some mixtures demonstrated a high 

extent of extraction of some amount of heavy metals.  

The use of combined reagents was also reported to be clearly efficient, for example, aqua regia 

i.e. a combination of nitric acid and hydrochloric acid in ratio three to one (3:1). This extracts 

with ease organic bounded and residual heavy metals, which form the bulk in geochemical and 

biological samples under regulated conditions (Santoro, et al. 2017). The use of a combination of 

hydrochloric acid and perchloric acid (HCl/HClO4) was also reported by many researchers 

(White et al., 1977) and HCl/HNO3/HF.  

In evaluating total metal in a given matrix and the form in which the metals exist, the use of 

sequential extraction has been recommended to be particularly effective. Tessier et al., 1979, 

employed sequential extraction procedures in examining metal distribution in sediment samples, 

resulting in separation of six fractional extracts including water solubles, exchangeables, 

carbonates, Fe-Mn bounds, organic bound and residuals.  

 

2.9.3 Determination of heavy metals in environmental samples 

The earliest technique for heavy metal determination is the classical methods involving titrimetry 

and gravimetry. These methods are known to be time-consuming, cumbersome and require 

skills. However, their merit lies in the method’s precision and accuracy. Classical methods are 

subject to modifications of procedure that aims at improving the quality of analysis results, such 

as the use of changes in electrical potentials for endpoint determination.  

Advancing on the classical methods are voltammetric (anodic stripping voltammetry or analysis 

and cyclic voltammetry) and polarographic (differential pulse polarography and square-wave 

polarography) methods, which explores the relationship between current and voltage in 
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electrochemical processes. Voltammetric and polarographic techniques are very sensitive 

analytical methods used for trace metal analysis (Rajagopalan and Rajagopalan, 1974). 

The development of the use of electromagnetic radiation (EMR) to measure the concentration of 

metals refers to spectrophotometry.  

Strong (1952) reported that Colorimetry was the earliest spectrometric method developed after 

Beer-Bouguer-Lambert (1729-1760), which selectively utilizes monochromatic wavelength of 

energy. In this method, sample solutions absorb electromagnetic radiations (EMR) from an 

appropriate light source, and the quantity absorbed is related to the concentration of the analyte 

in the solution. Atomic absorption spectrometry developed by Allan Walshin 1948 is one of the 

rapid methods of metal determination in use today. The method involves the absorption of light 

by elemental aerosol of atomic species under the influence of thermal energy.  

Atomic spectroscopy, therefore, involves sample vaporization at high temperatures and 

concentrations of the selected atoms are determined by measuring absorption or emission of their 

characteristics wavelength (Viets and O’ Leary, 1992; Harris, 2010). Atomic spectroscopy is 

however not as accurate as wet classical methods with precision hardly better than 1-2 %.  

Atomic spectroscopy can be classified into three; designated as absorption spectroscopy, 

fluorescence spectroscopy and emission spectroscopy. Atomic absorption spectroscopy can, 

however, be achieved either by the use of flame or non-flame technique.  

Inductively coupled plasma (ICP) technique differs from atomic flame emission spectroscopy in 

that the operating temperature is much higher than that of normal flame atomic emission 

spectroscopy making it a useful tool in emission spectroscopy. The plasma at this temperature is 

very stable, and thus eliminates interferences and other sources of error encountered in 

convectional flame emission spectroscopy. This feature makes it desirable for analytical work, 

but it is still relatively more expensive. 

X-Ray fluorescence (XRF) spectroscopy is one of the fast analytical techniques, whose 

development is still undergoing modifications and rapid improvements. The method is rapid and 

non-destructive of the sample because XRF spectroscopy does not require sample digestion 
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2.10 Cape Town weather and climate 

 

Cape Town has a Mediterranean climate located between the Indian and Atlantic oceans, 

sheltering the land. Cape Town has moderate rainfall throughout the year; winter weather 

conditions are mild and summer conditions are pleasant. Cape Town has moderate temperatures 

and distinctive seasons. Cape Town rainfall ranges between 550 and 1200 mm per annum, where 

most rainfall occurs in the winter season. The summer season starts from the month of December 

and lasts until February and has temperatures ranging from around 15 to 27  °C. It has dry, warm 

and hot conditions and strong south-easterly winds are experienced in summer. The winter 

season starts from the month of June to August with average temperatures between 7 to 20 ℃ . 

Dry, windy and dusty conditions and cold nights are sometimes experienced. The temperature 

may fluctuate causing dramatic changes in weather conditions. The average seasonal temperature 

and rainfall of Cape Town are shown in Figure 2.3 and Figure 2.4, respectively. 

 

 

Figure 2.3: Average seasonal temperature for Cape Town, South Africa (van de Velden, 2013) 
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Figure 2.4: Average rainfall for Cape Town, South Africa (van de Velden, 2013) 

 

 

2.11   Cape Town agricultural production  

 

Cape Town is one of the cities in the Western Cape where urban farming is practiced.  Due to 

population growth, rapid urbanization, scarce food resources and environmental concerns, cities 

around the world have been forced to think of new ways for better living. Cape Town has a 

rapidly growing urban farming practice. Many community farms and non-profit projects, such as 

Phillipi Horticultural farmers and Abalimi centre produce 50 % of the freshly produced crops 

that are consumed in Cape Town. The farmers provide products such as carrots, tomatoes, 

lettuce, potatoes and much more (James, 2013; Averbeke, 2007; Megan, 2016). 

The Abalimi centre has over 25 years of operation, it is a non-profit project which was 

established in 1982. Since then, Abalimi centre has developed and provides training, supplies 

and supports to enable the poor to obtain employment and become self-employed as gardeners 

and small urban farmers (Spiro, 2018). The Abalimi centre has also partnered with Harvest of 

Hope which was established as a community support agriculture (CSA) system which connected 

the Abalimi centre with potential consumers within the Cape flats environment and helps in 
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maintaining stability income security for these urban farmers. Abalimi centre gardens are based 

in local communities such as Khayelitsha, Nyanga, Phillipi and Gugulethu within schools and 

home gardens (Spiro, 2018; Wachholz, 2017). 

Abalimi community garden centre provides low cost, subsidized resources such as seedlings, 

manure, tools and pest control. Various special projects such as 3-day urban organic food garden 

training workshop are implemented by field workers such as the Young Farmers Training Centre 

situated at the Siyazama Community Allotments Garden Association (SCAGA) and about 300 

people attend these workshops annually. Abalimi centre has helped the communities to start and 

retain the growing of many thousands of organic vegetable gardens (Wachholz, 2017; Small, 

2007). Figure 2.5 shows the provincial number of farming units and average farm size, in South 

Africa. 

 

Figure 2.5: Number of farming units and average farm size (Small, 2007) 
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A provincial land area and field crop for South Africa is shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Land area and field crops (Small, 2007) 

 

Agriculture is one of the main pillars of the Western Cape economy. It produces about 23 % of 

the total value of the agricultural sector in South Africa which was R25 billion in 2001. The 

province contributes about 14 % to the country’s gross domestic product. Agriculture accounted 

for 5.2 % of the Western Cape's gross regional product in 2001 (Vink and Tregurtha, 2005). 

Figure 2.7 shows the diverse agricultural production in the Western Cape, South Africa. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Agricultural production in the Western Cape, South Africa (Vink and Tregurtha, 2005) 
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Agricultural production in the Western Cape is an essential component especially vegetable 

production, representing about 12 % of total production. Most trade-produced vegetables are 

through urban fresh produce market; where in 1999 an estimation of 61 260 million tons of fresh 

vegetables were distributed from Cape Town, although about 50 % of the fresh vegetable 

production is provided by the informal sector produced under contract for major supermarket 

chains (Vink and Tregurtha, 2005). 

 

2.12 Informal settlement: pollution, heavy metal status and agricultural practices 

 

Informal settlements are a common reality in cities and urban metropolitan centers in Africa. It is 

a common view even in clean and eco-cities such as Cape Town and South Africa’s urban 

landscape. The living conditions are the framework for lack of services, like appropriate 

sanitation and refuse removal, clean water, public health initiatives, adequate safety and access to 

economic opportunity. A result of backyarders is that they unconsciously contribute towards 

pollution through the influence on storm-water. These are often the poorest of people who reside 

on the property of their landlord and construct a dwelling on the property. In most circumstances 

the backyarders have no direct access to water, electricity and sanitation services as a result of 

the lack of access to services. A common practice is to deposit waste and contaminated water 

into rivers and water drainage, thereby posing a threat of contamination to the receiving water 

resource (Arif et al., 2015). This problem seems to be a fairly common one in most informal 

settlements across the Western Cape (Bredell and Smith, 2005). These inadequate circumstances 

are the major sources of soil pollution and vegetable crops due to the usage of contaminated 

water and soil. As a result accumulation of heavy metals in soil, water and vegetables may be 

high resulting in high risks of affecting human health (Dixon and Ramutsindela, 2006). 

Vegetable crops in home gardens of Alice, a small town in Eastern Cape, were analysed for 

possible contamination by heavy metals. Elements of interest that were analysed were Pb, Cu, 

Cd, Mn and Zn. The vegetables analyzed were onions, carrots, cabbage, spinach and tomatoes 

and were reported to accumulate the heavy metals at high concentrations ranging from 0.01 

mg/kg – 1.12 mg/kg. The absolute concentrations of each heavy metal in the vegetables and soils 

were compared to the concentration of each heavy metal known by FAO (Food and Agriculture 
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Organization) to ensure their potential health hazard to human health (Bvenura and Afolayan, 

2012). Table 2.9 and Table 2.10 shows heavy metal content of soil and vegetables respectively in 

the Alice environment, Eastern Cape. 

 

Table 2.8: Heavy metal content (mg/kg) of soil in the Alice environment, Eastern Cape 

Heavy metal Maximum 

permissible limit 

Happy Rest Golf course Ntselamanzi 

Cd 6 0.80 ± 0.01 0.30 ± 0.08 0.10 ± 0.01 

Pb 500 10.00 ± 0.02 14.01 ± 0.16 5.15 ± 0.13 

Cu 270 5.14 ± 0.03 7.66 ± 0.01 4.95 ± 0.04 

Zn 600 53.01 ± 0.01 34.28 ± 0.01 17.58 ± 0.01 

Mn - 377.61 ± 0.09 442.72 ± 0.04 499.68 ± 0.09 

Source: (Bvenura and Afolayan, 2012). 

 

Table 2.9: Heavy metal content (mg/kg) in vegetable types grown in the Alice environment, 

Eastern Cape 

                                                       Maximum permissible limits (mg/kg) 

Heavy 

metals 

WHO Site Cabbage Carrot Onion Spinach Tomato 

Cd 0.3 Happy rest 

Golf course 

Ntselamanzi 

0.26 ± 0.31 

0.26 ± 0.38 

0.20± 0.16 

0.94 ± 0.82 

1.03 ± 0.23 

0.92 ± 0.61 

0.21 ± 0.19 

0.19 ± 0.02 

0.21 ± 0.18 

0.21 ± 0.22 

0.25  ± 0.22 

1.12  ± 1.32 

0.50 ± 0.34 

0.38  ± 0.45 

0.04  ± 0.06 

Cu 40 Happy rest 

Golf course 

Ntselamanzi 

nd 

0.69 ± 0.99 

1.18 ± 1.07 

7.06 ± 0.07 

nd 

2.19 ± 3.79 

9.29 ± 1.02 

7.56  ± 5.31 

9.24  ± 0.45 

5.54 ± 3.62 

4.40  ± 4.00 

10.68 ± 9.53 

9.60 ± 9.09 

4.48  ± 3.88 

8.31  ± 1.14 

Mn - Happy rest 

Golf course 

Ntselamanzi 

42.59 ± 17.60 

20.41 ± 7.57 

23.56 ± 1.85  

13.80±4.85  

8.25 ± 0.05 

14.91±11.35 

28.44 ± 0.14 

23.93 ± 3.51 

28.90 ± 0.92 

112.38±27.7 

7165 ± 0.82 

nd 

28.73±11.96 

7.79 ± 3.15 

11.53 ± 0.21 

Zn 60 Happy rest 

Golf course 

Ntselamanzi 

38.10 ± 22.39 

14.42± 12.49 

29.62± 3.24 

10.02± 13.71 

4.27± 1.38 

15.52± 26.16 

49.68± 5.90 

46.34±40.28 

89.88± 2.85 

33.75±11.51 

25.28±24.71 

81.56±71.18 

61.96±26.81 

8.95± 6.69 

15.54± 0.98 

Source: (Bvenura and Afolayan, 2012). nd = not detected  
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A study at a school vegetable garden in Johannesburg was conducted due to the proximity of the 

school garden to nearby gold-mine tailing dams. Based on the Canadian Council of Ministers of 

the Environment, the results showed that arsenic exceeded the reference levels for soil by 37.5 % 

with an average concentration of 30.5 ppm. The vegetable sample percentage that exceeded the 

recommended limits for lead, zinc and mercury were 91 %, 83 % and 75 %, respectively. The 

concentration of lead in fruiting vegetables was the highest across all the three sites under 

investigation and decreased in order: tomatoes (1.91 mg/kg) > peppers (1.85 mg/kg) > butternut 

(1.09 mg/kg) > pumpkin (0.47 mg/kg). The concentration of rooting and leafy vegetables was 

particularly high in zinc, the highest concentration of (143 mg/kg) was found in carrots from the 

private organic garden. The concentration of mercury in fruiting vegetables mainly in the school 

garden was found highest and decreased in the order: peppers (0.99 mg/kg) > tomatoes (0.76 

mg/kg) > butternut (0.21) > pumpkin (0.12 mg/kg) (Kootbodien et al., 2012). 

Several researchers (Olade, 1987; Fatoki, 1996; Majer et al., 2002; Muhammad et al., 2011; 

Casimir et al., 2015) have reported high concentrations of trace metals as far as 250 m from the 

roadside. Vehicle exhausts, lubricating oils, tyres and plating materials have been found to be the 

sources of these metals (Fatoki, 1996). The studies showed that roadside vegetation by air-borne 

zinc have high contamination due to motor vehicle emission. These motor vehicles uses 

lubricating oils that contains zinc additives which gets emitted to the air and sit on the top 

surface of soil and vegetables resulting contamination. The contamination of copper on roadside 

soil and vegetation was reported even though results showed small amounts of copper compared 

with that of zinc (Odiyo et al., 2005). 

The contamination of Cu, Zn, Pb, Cr, Pt, Fe and Pd in roadside soils, vegetation, sewage and 

river waters in Thohoyandou in Limpopo was investigated. Further studies investigated the 

correlation between these trace metals in roadside soil and vegetables in order to identify the 

potential influence of roadside trace metals contamination on vegetables. The collected surface 

soil and vegetable samples were analyzed using AAS for Pb, Cu, Cr, Zn and Cd, while water 

samples were analyzed by ICP-OES for Pt, Zn, Fe, Cu and Pd (Odiyo et al., 2005). A linear 

correlation was observed between soil and vegetable metal concentration, which suggests the 

same source of metals in the samples except for Cu. The findings also exposed a general 

decrease in soil and vegetable samples and the mean concentrations were found to follow the 
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decreasing order Pb > Zn > Cr > Cu > Cd > and Pb > Zn > Cd > Cr > Cu, respectively. The main 

source of trace metal pollution was found to be the sewage system leaking directly into the 

rivers. The mean concentrations of trace metals in the water were found to be in the order: Fe > 

Zn > Pt > Cu > Pb. Synthetic contaminants contained a significant amount of Zn while the 

majority of Cu and Pb were mostly from soil parent material. Another study reported that motor 

vehicles emit Pb, cow manure contains Cu and the irrigation with sewage and urban surface 

water contains Zn (Shi-Bo et al., 2011). 

China has experienced rapid urban growth in recent years. The acceleration of urban growth has 

created opportunity and wealth as well as strengthened environmental and ecological problems, 

especially soil pollution. The results showed the levels of heavy metals in soil used for vegetable 

production declined gradually from urban to rural areas. The mean levels of heavy metals, 

calculated by subtracting the sub-layer 15-30 cm from top layer 0-15 cm were above zero and 

large in absolute value in urban areas, while the mean levels were above or below zero in 

suburban and rural areas and small in absolute value as shown in Table 2.13 (Shi-Bo et al., 

2011). 

 

 

Table 2.10: Top-layer soil heavy metal contents 

Heavy metals Location No. of samples Conc. Mean (mg/kg) 

Pb Urban 

Suburban 

Rural 

5 

5 

4 

65.23 

36.61 

32.10 

Zn Urban 

Suburban 

Rural 

5 

5 

4 

224.75 

122.11 

144.69 

Cr Urban 

Suburban 

Rural 

5 

5 

4 

67.49 

60.09 

53.98 

Cu Urban 

Suburban 

Rural 

5 

5 

4 

50.17 

29.27 

24.93 

Hg Urban 

Suburban 

Rural 

5 

5 

4 

0.494 

0.176 

0.136 
Source: (Shi-Bo: 2011) 
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Further analyses showed that (urban) heavy metal accumulation depends on how long the 

vegetable-growing soil was cultivated with vegetables (Rahlao et al., 2007). The top layer heavy 

metals were accumulating with increasing cultivation time, signifying that long-time vegetable 

cultivation and corresponding operation could be the cause of urban heavy metals in vegetable-

growing soil. The primary pollution sources of heavy metal contaminants in soil are manure, 

irrigation water and intensified use of fertilizers (Muthuvel et al., 2002). 

Investigation of water, soil and vegetable pollution by wastewater showed that at least 20 million 

hectares of land in North and South Africa, South America, Middle East, Southern Europe, South 

West America, Mexico and major parts of central and East Asia which are irrigated with raw 

sewage, mostly used for cultivation of vegetables. This leads to soil contamination and heavy 

metal accumulation both in soil and plants.  The investigation also showed that more than 6 m 3s-

1 water and surface water discharged by the urban conglomerate Tehran through drains and 

canals which accumulate different urban and industrial wastes are used for the purpose of 

irrigating fields and farmland located in the South of Tehran (Bigdeli and Seilsepour, 2008). 

Accumulation of heavy metals in the soil has been due to long-term use of waste-water for 

cultivation of leafy and other vegetables and their transfer to the various crops under cultivation 

with levels of contamination that surpassed permissible limits. All the vegetable samples 

exceeded the maximum allowed concentration for lead, while spinach, raddish and cress were 

high in cadmium. The concentration of zinc in green pepper and spinach exceeded the allowed 

Zn level (Awufolu et al., 2005). At present the consumption of most of the metals constitutes less 

than the theoretical maximum daily intake and hence the minimal health risk; however, if the 

community increase in vegetable intake the situation could be worsening in the future (Hussain 

et al., 2001). 
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CHAPTER THREE 

METHODOLOGY 

 

3.1 Introduction 

 

This research project was based on the investigation of heavy metals in soil, water and vegetable 

crops from selected allotment gardens in the Cape Town environment. The focus was on heavy 

metals such as Cr, Zn, Mn, Fe, Co, Ni, Cd, Pb and Cu. The study was conducted in 7 areas and 9 

communal gardens which included Nyanga, Khayelitsha, Phillipi, Mfuleni, Gugulethu, Bellville 

and Delft. Water, soil, and vegetable crops were sampled at each site. These sites were located at 

schools and in small communal gardens in various communities. Figure 3.1 shows the location of 

the study areas in the Cape Town region.  

 

 

Figure 3.1: Location of the study areas in the Cape Town region 
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Sampling of the soil, water and vegetable crops was done during winter and summer seasons.  

 

3.2    Site location  

 

Figure 3.2 shows the sites in which the soil, water and vegetables were sampled in each location. 

In Nyanga sampling was done at the Abalimi centre. Khayelitsha had 3 sampling sites in 

Kwamfundi, Scaga and Sakhe. Gugulethu, Mfuleni, Delft, Phillipi and Bellville each had 1 

sampling site at Fezeka, Mfuleni, Blikkiesdorp, Esam-sakho and Ravensmead, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.2:  Location of sampling sites  

 

The location coordinates for each of the sampling sites of the selected school and small 

communal gardens were recorded and are shown in Table 3.1. 

 

 

 

SITE LOCATIONS 

Nyanga 

Fezeka 

 

Blikkiesdorp 

Khayelitsha Gugulethu Mfuleni Delft Phillipi Bellville 

Abalimi- 

centre 
Esam-

Esakho 

Kwamfundi 

Scaga 

Sakhe 

Ravens- 

mead 

Mfuleni 
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Table 3.1: Location coordinates of selected allotment gardens in Cape Town environment 

Site location Latitude Longitude Site location Latitude Longitude 

Abalimicentre 33° 59′ S 18° 35′ E Mfuleni 34° 00′ S 18° 40′ E 

Blikkiesdorp 33° 58′ S 18° 37′ E Ravensmead 33° 58′ S 18° 35′ E 

Esam-esakho 34° 02′ S 18° 42′ E Sakhe 34° 03′ S 18° 41′ E 

Fezeka 34° 00' S 18° 33′ E Scaga 34° 00′ S 18° 35′ E 

Kwamfundo 34° 02′ S 18° 39′ E    

 

 

3.3 Reagent preparation 

3.3.1 Ultra-pure water 

Reverse Osmosis technique was used for water purification using a Millipore apparatus.  

 

3.3.2 Standard Stock Solutions 

1000 ppm standard stock solutions were used during the preparation of calibration standards. 

These stock solution solutions were obtained from Saarchem and were all analytical reagent 

grade. 

 

3.3.3 Mixed Calibration Standards 

Mixed calibration standards were prepared by combining appropriate volumes of stock standard 

solutions in 100 mL volumetric flasks. The standards were grouped into 2 categories (Cd, Zn, Pb 

and Mn, then Co, Fe and Ni, Cu and Cr) according to the EPA method (EPA Method 2007). 5 % 

of supra-pure nitric acid was added to the volumetric flasks. The freshly prepared standards were 

then transferred to the acid cleaned polyethylene bottles for storage. 
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3.4 Blanks 

Three types of blank solutions were prepared and used during analysis. 

1. A calibration blank was used in order to establish the analytical calibration curve. 

2. A laboratory reagent blank was used to assess possible contamination from the sample 

preparation procedure. 

3. A rinse blank was used to flush out the instrument uptake system and nebulizer between 

standards and samples in order to reduce memory effects. 

 

3.4.1  Calibration blank 

The calibration blank was prepared in a 1000 mL volumetric flask. About 50 mL of 65 % supra-

pure nitric acid was diluted with 950 mL of ultra-pure water, making the solution a 5 % solution 

of supra-pure nitric acid. All calibration blanks were prepared in this manner and were used 

during sample analysis. 

3.4.2  Laboratory reagent blank 

The laboratory reagent blank contained all the reagents in the same volumes used in processing 

the samples. The laboratory reagent blank was carried through the entire preparation procedure 

and analysis scheme. The final solution contained the same acid concentrations as sample 

solutions for analysis. 

3.4.3     Rinse blank 

A rinse blank was prepared as an acid was solution in the same manner as the calibration blank. 

A 5 % solution of supra-pure nitric acid was used as a rinsing agent. 

 

3.5  Sample Blank 

3.5.1 Water blank 

Water blank was prepared by adding 10 mL of supra-pure nitric acid into a 50 mL of water in a 

150 mL Phillips beaker and digested at 55 C on a hotplate. After digestion, the solution was 
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cooled and transferred to a 100 mL volumetric flask and made up to the mark with ultra-pure 

water.   

 

 

3.5.2 Soil blank 

A soil blank was prepared by transferring 2 mL of hydrochloric acid and 6 mL of supra-pure 

nitric acid in a 150 mL Phillips beaker. The beaker was covered with a watch glass and the 

content digested on a hotplate at 55 C. The solution after digestion was cooled and transferred 

into a 50 mL volumetric flask and made up to the mark with 5 % nitric acid solution. 

 

3.5.3  Vegetable blank 

A vegetable blank was prepared by transferring 2 mL of supra-pure hydrogen peroxide and 5 mL 

of supra-pure nitric acid into a reaction vessel. The vessel was then placed in the carousel of 

microwave digester and digested (Stewart, 1989). After digestion, the blank was transferred into 

a 25 mL volumetric flask and made up to the mark with 5 % nitric acid solution. 

 

3.6 Calibration 

Calibration standards were prepared by combining appropriate volumes of the 1000 ppm stock 

standard solutions in 100 mL volumetric flasks. 

 

3.7 Quality control 

Certified reference standard of heavy metal were used in order to determine the accuracy and 

precision of the total digestion procedure. The reference standards for soil and water were 

prepared in the same way as the samples. 
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3.8 Sampling 

3.8.1 Water sampling 

Water samples were collected in 250 mL polypropylene bottles which were pre-treated by 

soaking in dilute in 10 % nitric acid and rinsed with ultra-pure water prior to use, to eliminate 

any possible contamination. 

Polypropylene bottles were initially rinsed with borehole water before collection. The pH was 

measured in the laboratory on the same day of the sampling, by means of a handheld 

multisystem meter. For calibration, buffers of pH 4.0 and 7.0 were used. The water samples were 

preserved by acidification with 5 % supra-pure nitric acid (pH < 2) and stored in the refrigerator 

until analysis (EPA Method 2007). 

3.8.2 Soil sampling 

Composite samples were collected at each site by combining small portions of soil from various 

locations within the plot. Soil was sampled at a depth of 15 cm (EPA Method 2007). 

Polyethylene sampling bags were used for the storage of the soil samples. 

 

 

3.8.3    Vegetable sampling 

Composite samples of vegetables were collected in appropriately labeled brown paper bags at the 

same locations as soil samples. Vegetables were collected based on availability at the selected 

sites. The collected vegetables were rinsed thoroughly with ultra-pure water in order to remove 

all adhered soil and dust particles to ensure that there was no contamination. This was followed 

by oven drying at a temperature of 75 C for 3 days. 

 

3.8.4  Compost sampling 

 Compost samples were collected based on their availability at the selected sampling sites. These 

samples were collected in appropriately labeled brown paper bags. The samples were then dried 

in the oven at a temperature of 75 C for 3 days. 
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3.9 Sample preparation 

3.9.1  Liquid samples 

A stock solution for water quality control was prepared by spiking ultra-pure water with 10 ppm 

standards from the 1000 ppm certified reference standard of heavy metal. The water sample was 

digested with concentrated supra-pure nitric acid. Approximately 10 mL of supra-pure nitric acid 

was added to 50 mL of water in a 150 mL Phillips beaker. The mixture was evaporated to half 

the actual volume on a hot plate, cooled and filtered into a volumetric flask (EPA Method 2007). 

 

3.9.2  Soil samples 

Soil samples were sieved with a 2 mm sieve. The soil was carefully mixed to achieve uniformity 

and then dried in the oven at 75 C ± 5 C until moisture was removed. Once the soil had been 

cooled, 1.0 g of the dried soil was accurately weighed using an analytical balance capable of 

weighing to the nearest 0.0001 g. The soil was transferred to a 150 mL Phillips beaker. To this, 

6.0 mL of concentrated supra-pure nitric acid and 2 mL of concentrated hydrochloric acid were 

added. A watch glass was used to cover the beakers containing the samples. The samples were 

heated to approximately 55 C and gently refluxed for approximately 30 minutes. Once again, 

only slight boiling was allowed. After 30 minutes, the sample was cooled, transferred to a 50 mL 

volumetric flask and diluted to the mark with 5 % supra-pure nitric acid solution. The sample 

was ready for analysis (EPA Method 2007).   

 

3.9.3 Vegetable and compost samples 

The collected vegetables and compost were dried in the oven at 75 C for 3 days, until all the 

moisture was completely removed. After grinding the dried vegetables using a mortar and pestle, 

0.1 g of each sample was accurately weighed and transferred into a microwave digestion vessel. 

2 ml of 30 % of supra-pure hydrogen peroxide and 5 mL of supra-pure nitric acid were added to 

the contents of the microwave digestion vessel. The samples were placed in the carousel of 

microwave digester and digestion was preceded using the microwave programme schedule 

shown in Table 2.2. The digestion was carried out in a Milestone-MLS 1200 Mega microwave 
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oven with carousel of 6 digestion vessels. After digestion, the samples were cooled, transferred 

to a volumetric flask and then made up to the mark with ultra-pure water.  

 

Table 3.2: Programme used for the microwave digestion of vegetable samples 

STEP POWER DURATION 

1 250 W 1 min 

2 0 W 2 min 

3 250 W 5 min 

4 400 W 5 min 

5 600 W 5 min 

 

3.9.4 Soil organic matter 

The soil samples were dried in the oven at 75 C, after which about 1 g of each of the soil sample 

was weighed out accurately into different crucible. A muffle furnace was heated to 

approximately 500 C and the crucibles containing the soil samples were placed in the furnace 

for 2 hours. The samples were allowed to cool in a desiccator for 1 hour and weighed (Storer, 

1984). The percentage organic matter was determined by mass difference. 

 

3.9.5 pH of soil and water 

The pH of the soil was determined using sieved soil samples. About 10 g of soil samples was 

weighed into clean 150 mL Phillips beaker. Ultra-pure water of about 100 mL was added to form 

a slurry solution and pH measurements were made using a pH meter (Kalra, 1995). The pH 

meter was calibrated with standard buffers of pH solutions of pH 4 and 7 prior to use. 

 The pH of the water samples were measured immediately after sample collection in the 

laboratory by immersing a pre- calibrated pH meter probes into the samples until the readings 

stabilized. The pH of the soil was potentiometrically measured in the supernatant suspension of a 

1:5 soil/liquid mixture. This liquid was 0.01 M CaCl2 solution. 20 g of soil was weighed and to 

this 100 mL of ultra-pure was added (Kalra, 1995). 
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3.10 Instrumentation 

An ICP-OES was used for the determination of the heavy metals in the soil, water and the 

vegetable samples. The ICP-OES was chosen for this study because of its multi-element 

capabilities and effective interference removal. It has the highest matrix tolerance because of its 

scanning mono-chromator and has the widest usable dynamic range; More also, it has good 

detection limits and background corrections can readily be made. The wavelengths tabulated in 

Table 3.3 provided the sensitivity needed to carry out analysis and was corrected for spectral 

interferences. Suitable wavelengths were used for the selected heavy metals to give accurate 

concentration levels using ICP-OES as shown in Table 3.3. 

 

Table 3.3: Wavelength selection for metal analytes 

 

 

ICP-OES generator parameters were set to ensure the instrument provides sensitivity and the 

ability to perform the analysis. Each parameter is uniquely designed and set to function properly 

for better analysis of ICP-OE. Table 3.4 shows the suitable parameters used to give accurate 

concentration levels using ICP-OES. 

 

 

 

Elements Line selection (nm) 

Zn 213.856 

Cd 228.802 

Pb 220.353 

Mn 257.611 

Ni 231.604 

Cr 267.716 

Co 228.616 

Fe 256.941 

Cu 324.754 
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Table 3.4: ICP-OES generator parameters  

Parameters Units 

Plasma power 1400 W 

Pump speed 30 rpm 

Coolant flow 12.00 L/min 

Auxiliary flow 1.00 L/min 

Nebulizer flow 1.00 L/min 

Add. Flow None 

Oxygen flow None 

 

The instrumental parameters for element line detection during analysis and the correlation 

coefficient between the elements analysed are shown in Table 3.5. The distance factor was 

defined in concentration/concentration. 

Table 3.5: ICP-OES instrumental parameters 

Parameters Cr Cu Fe Ni Cd Mn Pb Zn Co 

Detection 

Limit, 

(mg/L) 
0.259 0.057 0.014 0.026 0.019 0.023 0.031 0.029 0.068 

Correlation 

Coefficient, 

(r2) 
0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 

Standard 

error 0.729 0.956 0.822 2.370 1.130 0.824 0.830 0.029 0.815 

 

3.11 Statistical Analysis 

 

Descriptive and multivariate statistical analyses were carried out on the data obtained using SAS 

statistical software (James et.al, 1976). A number of descriptive and inferential statistical 

techniques were used to summarise the data and provide information on relationships that exists 

between variables. A generalized linear model (GML) procedure was performed to eliminate any 

variables that did not correspond to the even or normalized distribution of data. After performing 
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the GLM procedure, the 9 sites corresponded to the procedure and were used to perform the 

statistical analysis. The statistical analysis was performed based on 2 seasons, 2 matrices and 9 

sites to determine the inter-relationship between those three factors. After performing the GLM 

procedure, ad-hoc factorial 3 ANOVA procedure was applied to the data for all the heavy metals 

as dependent variables.  

Another procedure was performed called Duncan’s multiple range tests, which was derived from 

post-hoc ANOVA to compare the mean values between the three factors, the relationship that 

exists between the matrix, season and sites and to determine if there were any significant 

differences between the 3 factors. These comparisons were determined by comparing the effect 

of matrix means and standard deviation, comparing the effect of seasonal means, the effect of 

site means, effects of seasonal mean versus mean matrix, effect of site means versus matrix 

means and effect of site means verses seasonal means and matrix means. All these comparisons 

were performed under post-hoc ANOVA to determine the inter-relationship between the 3 

factors. A correlation procedure was also applied to establish significant relationship between the 

variables at 95 % confidence. 

Principal component analysis (PCA) was applied to study/determine variable patterns, sample 

grouping and trends. PCA is a popular multivariate technique used to reduce the dimensionality 

of p multi-attributes two or three dimensions. It mainly extracts data that correlate from the 

uncorrelated components which are estimated from the eigenvectors of the correlation matrix of 

the variables. Multivariate scree plots and component plots were applied to determine the 

number of important factors in multivariate settings, such as PCA and factor analysis which 

assess which factors explain most of the variability in the data. PCA explains the total variance 

in a variable as possible, while factor analysis explains the correlation of the factors. 

The principal component analysis was used to decrease the number of variables comprising a 

data set while retaining the variability in the data, identifying hidden patterns in the data and 

classifying them according to how much of the data accounted for. Gabriel introduced PCA in 

1971 as a graphical technique for displaying both the samples and variables of multivariate data. 

In 1966 Cattel introduced scree plots, which are visual tools used to help determine the number 

of important components in multivariate settings. During the application of PCA, eigenvalue 

which measures the amount of variation in the components are obtained. These Eigenvalues are 



49 

 

then used to plot a graph producing a scree plot. The scree plots are used to illustrate the rate of 

change in the magnitude of the eigenvalue for the PCA.  

  



50 

 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter focuses on the results of the concentrations of the measured heavy metals in water, 

soil and vegetables collected from the selected allotment gardens, the relationship that exists 

between soil, water used for irrigation and the vegetables. Physicochemical parameters of soil 

and water were determined and descriptive statistics were applied to interpret the data. ANOVA 

and Principal Component Analysis were used to study variable patterns as well as sample 

grouping and trends. 

 

4.2 pH and OC in soil and water samples 

Physicochemical parameters of soil and water can have a pronounced effect on heavy metal 

mobility and accumulation, and this, in turn, could induce an effect on their availability for plant 

uptake. Descriptive statistics were applied to the data set to illustrate the range of pH, organic 

matter and mean measurements of soil and water. Comparisons between soil and water, in 

summer and winter were made. Table 4.1 shows the physicochemical parameters of soil and 

water samples. 

 

Table 4.1: Physicochemical measurements of soil and water samples 

Matrix Season pH Organic carbon, % 

Water Winter 6.53 ± 0.6 - 

 Summer 6.71 ± 0.7 - 

Soil Winter 6.58 ± 0.2 6.8 ± 3.5 

 Summer 6.60 ± 0.2 5.6 ± 2.5 
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The pH of water in winter ranged between 5.80 – 7.24 (6.53 ± 0.6), while in summer it ranged 

between 5.20 – 7.60 (6.71 ± 0.7). The pH showed no significant seasonal variation (p > 0.05). 

The pH indicates the circum-neutral nature of the water and meets the target range of South 

African irrigation water (pH 6.5 – 8.4) (Younger, 2007). 

The soil pH in winter ranged between 6.29 - 6.84 (6.58 ± 0.2), with corresponding summer 

values of 6.28 - 6.90 (6.60 ± 0.2). This implies that soils within the study are slightly acidic. The 

soil pH for both seasons was comparable (p > 0.05) and met the targeted pH range of 6.5 to 8.5 

for agricultural soils in South Africa (WRC, 1997). The soil pH has a significant influence on 

metals solubility and soil anion exchange capacity and therefore the availability of heavy metals 

in soil (Malan et al., 2014). The mean soil organic matter (OM) percentage for the winter and 

summer sampling periods were 6.8 ± 3.5 % and 5.6 ± 2.5 %, respectively. The organic carbon 

content for soils in winter was higher than in summer (p < 0.05). This could be due to increased 

use of fertilizers during winter. The sorption of heavy metals to the soil as a result of organic 

carbon content is probably one of the factors that determine heavy metals concentrations in the 

soil environment and this depends on soil pH (Kelly et al., 2003; Ayansina and Olubukola, 

2017). Sorption to soil affects not only the contaminant level in an ecosystem, but the movement 

and fate of the contaminant as well.  

 

4.3 Heavy metal in soil and water 

 

The concentration of the selected heavy metals observed in water and soil samples was variable. 

These concentrations were compared with the allowed limits set by the World Health 

Organization (WHO, 1995).  

 

4.3.1 Heavy metals in water samples 

The mean concentration, with standard deviation of the heavy metals in water during summer 

and winter, are presented in Table 4.2. 
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Table 4.2: Mean heavy metal concentrations (mg/L) in water samples obtained from allotment 

gardens 

 Pb Zn Cd Mn Ni Cr Co Fe Cu 

Summer 0.062±  

0.095 

0.056± 

0.076 

0.002± 

0.001 

0.009± 

0.017 

0.035± 

0.022 

0.039± 

0.020 

0.048± 

0.111 

0.947± 

0.622 

0.054± 

0.035 

Winter 0.041± 

0.031 

0.002± 

0.005 

0.005± 

0.013 

0.007± 

0.007 

0.106± 

0.071 

0.088± 

0.034 

0.024± 

0.015 

2.347± 

4.894 

0.096± 

0.034 

Matrix 0.052± 

0.069 

0.029± 

0.059 

0.003± 

0.009 

0.008± 

0.012 

0.070± 

0.063 

0.064± 

0.037 

0.036± 

0.078 

1.647± 

3.460 

0.075± 

0.040 

Allowed 

limits 

(WHO) 

2 5 0.03 0.5 0.2 0.1 0.1 3 0.2 

 

The results indicate concentration fluctuation for water during winter and summer, with no 

definite trend. The concentration of some of the investigated heavy metals appeared to be low 

during summer with values; Cd, 0.002 ± 0.001 mg/L; Ni, 0.035± 0.020 mg/L; Cr, 0.039 ± 0.020 

mg/L; Fe, 0.947 ± 0.622 mg/L; and Cu, 0.054 ± 0.035 mg/L, compared with winter 

concentrations which were, Cd, 0.005 ± 0.013 mg/L; Ni, 0.106 ± 0.071 mg/L; Cr, 0.088 ± 0.034 

mg/L; Fe, 2.347 ± 4.894 mg/L  and Cu, 0.096 ± 0.034 mg/L. On the other hand, the 

concentrations of Pb, 0.062 ± 0.095 mg/L; Zn, 0.056 ± 0.076 mg/L; Mn, 0.009 ± 0.017 mg/L; 

and Co, 0.048 ± 0.111 mg/L appeared to be high during summer compared with winter 

concentrations of Pb, 0.041 mg/L; Zn, 0.002 mg/L; Mn, 0.007 mg/L and Co, 0.024 mg/L.  

These results indicate that there was no significant difference in heavy metal concentration 

between the two seasons (p > 0.05). Fe exhibited the highest concentration variation with 

respects to season compared to the other heavy metals, with a concentration of 0.947 mg/L 

during summer and 2.347 mg/L during winter. Cd had the lowest concentration during summer 

compared to levels of all the other heavy metals, while Zn appeared to be low during summer 

compared to the rest of the metals. The concentration of the heavy metals in water follow the 

order Fe > Cu > Cr > Ni > Pb > Co > Zn > Mn > Cd.   

All the heavy metals were within the allowed concentration set by WHO (1995). 
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4.3.2 Heavy metals in soil samples 

The mean soil heavy metal concentration with standard deviations collected from different 

allotment gardens during summer and winter are presented in Table 4.3. 

 

Table 4.3: Mean heavy metal concentrations (mg/kg) in soil samples obtained from allotment 

gardens 

 Cd Zn Pb  Mn Co Fe Cr Cu Ni 

Mean 

summer 

0.52 ± 

0.2 

30.52 ± 

21.2 

12.01± 

2.1 

28.44± 

22.3 

0.95 ± 

0.4 

1127.41± 

505.3 

5.69 ± 

5.5 

11.42 ± 

7.5 

3.90 ± 

2.9 

Mean 

winter 

0.59 ± 

0.1 

47.41 ± 

27.1 

16.01± 

4.9 

43.85 ± 

31.4 

0.98± 

0.4 

1292.50± 

610.8 

7.92± 

3.4 

18.11± 

10.2 

7.40 ± 

9.0 

Mean 

matrix 

0.56 ± 

0.2 

38.96± 

25.1 

14.01 ± 

4.2 

36.14 ± 

27.6 

0.97 ± 

0.4 

1209.95± 

550.4 

6.80 ± 

4.6 

14.76 ± 

9.3 

5.65 ± 

6.8 

Allowed 

limits 

(WHO) 

10 56 20 - 10 - 10 37 75 

 

The soil heavy metal concentration during summer were: Cd, 0.52 ± 0.2 mg/kg; Zn, 30.52 ± 21.2 

mg/kg; Pb, 12.01 ± 2.1 mg/kg and Mn, 28.44 ± 22.3 mg/kg, while levels observed during winter 

indicated slight elevation, Cd, 0.59 ± 0.1 mg/kg, Zn, 47.41± 27.1 mg/kg, Pb, 16.01 ± 4.9 mg/kg 

and Mn, 43.85 ± 31.4 mg/kg. However, no significant seasonal variation was observed for the 

soil heavy metal concentration (p > 0.05) of Pb, Zn, Cd and Mn.  

The concentrations of Ni, Fe, Co, Cr and Cu in contrast did show a significant seasonal 

difference at (p < 0.05), which were 3.90 ± 2.9 mg/kg; 1127.41 ± 505.3 mg/kg; 0.95 ± 0.4 

mg/kg; 5.69 ± 5.5 mg/kg and 11.42 ± 7.47 mg/kg, respectively, during summer, while during 

winter, levels increased to 7.40 ± 9.0 mg/kg; 1292.50 ± 610.8 mg/kg; 0.98 ± 0.4 mg/kg; 7.92 ± 

3.4 mg/kg and 18.11 ± 10.2 mg/kg, respectively.  

The soil concentration of Fe appeared to be significantly higher than that for other heavy metals 

during both seasons. The soil heavy metal concentration decreases in the order Fe > Zn > Mn > 

Cu > Pb > Cr > Ni > Co > Cd.  



54 

 

The results between water and soil appeared to show a decrease and weak correlation as they 

were found to follow the decreasing order Fe > Cu > Cr > Ni > Pb > Co > Zn > Mn > Cd and Fe 

> Zn > Mn > Cu > Pb > Cr > Ni > Co > Cd, respectively. A similar trend was observed in a 

study conducted by Shi-Bo et al. (2011). The heavy metals in soil were significantly higher (p < 

0.05) than in water. Co and Cd appeared to have the lowest concentration for both seasons. 

Although Cd has no known health benefits to humans, their accumulation at high concentrations 

can cause deleterious consequences (Page et al., 1987).  On the other hand, Fe and Cu are 

important nutrients needed at low concentrations, when they exceed the allowed concentrations 

they become toxic and may cause chronic illnesses (Wilson, 2011). 

 The availability of Fe in the soil is largely determined by the interaction of soil acidity and 

aeration. Soil pH < 7 and poorly aerated soil result in high Fe availability (Schulte, 2004). The 

use of fertilizers also affects the availability of Fe because excess use of fertilizers contributes to 

the formation of Fe complexes that improve Fe availability. Also, when soil oxygen levels are 

low, which is caused by flooding Fe can reach high toxic levels in the soil solution (Schulte, 

2004; Singh et al., 2011).  

 

4.4 Heavy metals in compost 

The concentrations of heavy metal in compost collected from different allotment gardens during 

summer and winter are presented in Table 4.4. 

 

Table 4.4: Average concentrations (mg/kg) of heavy metals in compost used at sites  

Sites Cd Zn Pb Mn Ni Cr Co Fe Cu 

Abalimi 

Centre 

nd 39.96 ±    

0.05 
7.48 ± 

0.07 
107.69 ± 

0.04 
nd 15.81 ± 

0.20 
0.43 ± 

0.20 

981.09 ± 

0.40 
nd 

Fezeka nd 137.97± 

0.06     

6.97 ± 

0.04 

100.57 ± 

0.60 

nd 26.37 ± 

0.02 

0.87 ± 

0.30 

805.47 ± 

0.60 

nd 

Sakhe nd 89.30 ± 

0.02     

2.91± 

0.40 

148.83 ± 

0.02      

nd 35.59 ± 

0.50 

1.04 ± 

0.40 

946.29 ± 

0.20      

nd 

nd = not detected 
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The Abalimi centre had the highest Fe concentration of 981.09 ± 0.4 mg/kg, followed by Sakhe 

with a concentration of 946.29 ± 0.2 mg/kg. Compost at Sakhe was high in Mn followed Abalimi 

centre with concentrations of 148.83 ± 0.02 mg/kg and 107.69 ± 0.04 mg/kg, respectively.  

Fezeka showed a high concentration of Zn, followed by Sakhe with a concentration of 137.97 ± 

0.06 mg/kg and 89.3 ± 0.02 mg/kg, respectively. Cu, Ni and Cd were not detected in compost. 

The concentration levels of Cd, Ni and Cu observed in soil could be natural or from other 

sources such as the use of fertilizers. Although the use of compost improves soil physical, 

chemical and biological properties it can cause significant contamination of the soil by 

introducing toxic traces of heavy metals (Dumontent et al., 2001; Singh and Kalamdhad, 2013).   

 

4.5  Seasonal effect on heavy metals concentration levels in soil and water 

Graphical representations of the mean heavy metals concentration in soil and water samples 

during summer and winter seasons were used to present trends, and draw comparisons between 

the two seasonal levels. The charts represented in Figure 4.1 (a) and (b) illustrate the heavy 

metals concentration in soil and water during summer and winter. 

 

(a)                                                                                           (b) 

 

Figure 4.1: Heavy metal concentrations in water (a) and in soil (b) during summer and winter  
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During winter Ni had the highest concentration at 0.106 ± 0.071 mg/L in water when compared 

with other heavy metals, followed by Cr in winter with a concentration of 0.088 ± 0.034 mg/L. 

When comparing the concentration of the heavy metals in soil (Figure 4.1b), the figure shows 

that Cr followed the trend of having high concentration and then Ni at 7.92 ± 3.4 mg/kg and 7.40 

± 9.0 mg/kg, respectively. This suggests that heavy metals accumulate more in soil than in water, 

with higher concentrations of Ni and Cr compared with the other heavy metals tested. These low 

concentrations in water may be due to the fact that the borehole water is stored in irrigation 

tanks, thus allowing for the possibility of contaminants precipitating and settling out in the tank 

(Sawere and Ojeba, 2016).  

 

 

 

 

 

 

 

(a)                                                                                       (b) 

Figure 4.2 Heavy metal concentrations in water (a) and in soil (b) during summer and winter 

 

Figure 4.2a shows that Cu has the highest concentration in water during winter, with 

concentration of 0.096 ± 0.034 mg/L. Zn and Pb had high concentration in summer when 

compared to winter, with a concentration of 0.056 ± 0.076 and 0.062 ± 0.095 mg/L, respectively. 

When the water results were compared with the soil results in Figure 4.2b, a change was 

observed in heavy metal accumulation. Cu and Pb had the lowest concentrations, while Zn and 

Mn had the highest concentrations in soil. During winter, Zn and Mn had concentrations of 47.41 
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± 27.1 mg/kg and 43.85 ± 31.4 mg/kg in soil, respectively. The results showed no significant 

difference (p > 0.05) in the concentration of the measured heavy metals. 

 

  

 

 

 

                                                            

                             (a)                                                                                             (b)                                  

Figure 4.3: Concentrations of Fe in water (a) and in soil (b) during summer and winter 

 

Figure 4.3a illustrates the concentration of Fe in water. The figure shows that Fe had the highest 

concentration of 2.35 ± 4.89 mg/L in water during winter as compared with a concentration of 0.95 ± 0.62 

mg/L in summer, showing a significant seasonal difference at (p < 0.05). The results of Fe in soil (Figure 

4.3b) were of 1292.50 ± 610.8 mg/kg and 1127.41 ± 505.3 mg/kg in soil for winter and summer, 

respectively. 

There appears to be an increase in the heavy metals concentration of soil during winter, while the 

results for water fluctuated during both seasons. In a similar study, Saeed et al. (2014) stated that 

a physicochemical characteristic of water such as pH affects the precipitation of heavy metals. 

 

4.6   Heavy metals at the different sampling sites 

 

The results of the measured heavy metals concentrations in water and soil at the different 

sampling sites are presented in Figures 4.4a and 4.4b. The mean heavy metal concentration in 

soil and water at each of the sites was used comparatively to evaluate trends in matrix variations 

as well as location differences in order to draw inferences between the various sampling sites. 
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(a)                                                                                                                                                                                                                             

                                                                                           

 

 

 

Figure 4.4: Variation in concentration of Pb, Ni, Cr and Cu in water (a) and soil (b) from sampling sites 

 

                             (a)                                                                                             (b)                                  
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When results of soil were compared with the results of water shown in Figures 4.4a and 4.4b, the 

data suggest that Ni, Cr and Cu had relatively high concentrations at most of the sampling sites. 

Scaga and Esam-esakho showed relatively high concentrations of Pb and Ni in water. In soils, 

Cu and Pb had the highest concentrations at most of the sampling sites, compared to Ni and Cr 

content. Sampling sites at Esam-esakho appear to have high levels of Pb, Ni, Cr and Co in soil, 

compared to the rest of the sampling sites followed by Abalimi Centre. 

The 9 sampling sites indicate varying concentrations for the heavy metals. Figure 4.5a and 4.5b 

represent the mean concentration of Fe in soil at the various sampling sites. 

 

 

 

 

 

 

 

(a)                                                                                          (b) 

Figure 4.5: Variation in concentration of Fe in water (a) and soil (b) from sampling sites  

 

 

Figure 4.5a showed low concentration of Fe in water with Esam-esakho being the only site with 

a concentration of 7.906 mg/L. Figure 4.5b showed high concentrations of Fe in soil at different 

sampling sites, with most of the sites having Fe concentrations above 1000 mg/kg except for 

Mfuleni and Ravensmead. Fe in soil has been extremely high when compared to the rest of the 

heavy metals in soil. High Fe concentration could be due to the fact that soil pH was slightly acid 

and high in organic content, which probably resulted in retaining heavy metals or enhancement 

of fertilizers which had a high Fe content (Murray et al., 2014; Chang et al., 2014). Also, Cape 

Town soils are known to be sandy and known for its relatively high content of Fe (Silveira et al., 
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2003; Chibuike and Obiora, 2014).  The results clearly indicate that heavy metals in soil and 

water differ in concentration with sampling site. The rest of the heavy metals such as Co, Mn, Cd 

and Zn showed higher concentrations in soil than in water, meaning that soil accumulates these 

heavy metals more rapidly than water.  The concentrations of all the heavy metals in the soil and 

water samples were within the allowed limits set by WHO (1995). 

 

4.7    Multiple linear correlation analysis of heavy metals concentration in soil and water 

 

A Pearson correlation matrix for all parameters was performed on the data. Table 4.5 represents 

the significant simple linear correlation coefficients between soil heavy metals and soil 

physicochemical characteristics. The correlation coefficients considered significant were those 

with a probability level smaller than 1 (p < 0.05). 

 

Table 4.5: Pearson correlation matrix for soil heavy metals, organic matter and soil pH 

 

 Cd Zn Pb Mn Co Fe Cr Cu Ni pH OM 

Cd 1 

  

Zn 0.07 1 

   

Pb 0.10 0.70 1 

  

Mn 0.08 0.89 0.54 1 

  

Co 0.44 0.70 0.39 0.73 1 

  

Fe 0.01 0.62 0.24 0.68 0.66 1 

  

Cr 0.31 0.43 0.57 0.44 0.62 0.27 1 

  

Cu -0.02 0.81 0.54 0.66 0.48 0.53 0.25 1 

  

Ni 0.20 0.49 0.78 0.38 0.50 0.23 0.69 0.40 1 

  

pH -0.19 0.04 0.31 -0.03 -0.14 -0.14 0.30 -0.09 0.29 1 

  

OM 0.15 0.69 0.41 0.71 0.65 0.46 0.41 0.39 0.32 0.26 1 
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Soil pH showed no significant correlation with soil heavy metals. Soil organic matter showed 

moderate correlation with the micronutrients, Zn, Mn and Co, with a slightly weaker correlation 

with Fe. The lack of correlation between most of the heavy metals implies that organic matter 

cannot regulate the availability of heavy metals via complexation of free ions of the heavy 

metals, with organic material unavailable to plants (Ramachandran and D’Souza, 1998).   

 

It was observed that the correlation among some of the heavy metals was significant (p < 0.05). 

These strong correlations could be due to the fact that cultivated soil was simultaneously 

contaminated by heavy metals through fertilizers, manures, aerial depositions or borehole water 

used for irrigation. 

Organic matter also has a moderate role in affecting the correlation variation of heavy metals 

concentration in the soil, as it is affected by factors such as temperature, rainfall and land use 

which changes the organic matter content as well as the heavy metal concentration in soil (Daka 

and Sarma, 2012).  

The correlation between (Cu and Zn) and (Mn and Zn) in soil was observed to be significant. 

 

These strong correlations serve as a reliable prediction of crop uptake. Studies done in 1992 by 

Kabata-Pendias showed that the root tissue has a strong capability to hold Cu or Zn against the 

transport to shoot under conditions of both Cu or Zn deficiency and Cu or Zn excess. This clearly 

shows that the addition of Zn to soil will result in an increase in Cu uptake by crops. 

 

4.8  Inter-relationships between soil heavy metals, soil pH and Organic matter 

4.8.1    Inter-relationship between the heavy metal concentrations in soil 

The scree test provides the eigen-value associated with each significant variable. The results 

showed that the first 3 variables (soil heavy metals, soil pH and Organic matter) explain 77.12 % 

of the total variability of the data as shown in Table 4.6.  Any variable with an eigen-value > 1 is 

assumed to be meaningful and is retained for rotation; those < 1 are assumed to be unimportant 

and are not retained. 
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Table 4.6: Eigen-values for first three variables of PCA  

Variable Eigenvalue Variance % Cumulative % 

1 5.415 49.23 49.23 

2 1.718 15.62 64.85 

3 1.350 12.28 77.12 

 

 

 

 

Figure 4.6: Eigen-values for the first three variables 

 

Referring to Table 4.6, principal component 1 comprised 49.23 % of the variance. Component 2 

comprised 15.62 % of the variability, while component 3 accounted for the remaining 12.28 %. 

The 3 components thus describing 77.12 % of the data. 

Principal component analysis has been used to assess any trends that might exist among the 

variables in the data set. Figure 4.7 gives the principal component plot of the soil heavy metals, 

soil pH and soil organic matter.  
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Figure 4.7: Principal component analysis (PCA) for heavy metals in soil 

 

It is clear from the PCA plot that two main groupings exist for the heavy metals, i.e. the clustering of the 

metals considered as micronutrients (Zn, Mn, Cu, Co and Fe) and that of the non-essential metals (Ni, Pb, 

Cd and Cr). It is of interest to note that Cr is clustered with the non-essential heavy metals. This could be 

attributed to the fact that Cr could exist as both Cr3+ and Cr6+. The component plot shows that the metals, 

Zn, Mn, Co, Cu and Fe (to a lesser degree) are influenced to a greater extend by the soil OM compared to 

Ni, Pb, Cd and Cr.  The results also suggest that the concentration of the heavy metals such as Cu, Mn, 

Co and Fe in soil could be lowered with increasing soil pH which is in agreement with reports by Prescott 

and Stitt (1976) 
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4.9 Heavy metals in vegetable samples 

Vegetables are an important part of a healthy diet, providing essential nutrients and vitamins for 

the maintenance of human and animal health. Urban farming has become popular for social, 

recreational and economic benefits. Among the common vegetable crops grown in home and 

school gardens are cabbage, spinach, leek onion and green pepper. However, these vegetables 

may be contaminated either by the use of borehole water for irrigation, or the uptake of 

bioavailable metals if planted on soils polluted with heavy metals (Saeid, 2012). This can lead to 

health risks. Furthermore, vegetables can be contaminated with heavy metals due to atmospheric 

contamination, which might also pose a threat to vegetable quality, animals and human health 

(Livia et al., 2015; Hang et al., 2016).  

The average concentration of heavy metals detected in different vegetables collected from the 

different sampling sites during summer and winter is presented in Tables 4.7 and 4.8, 

respectively.  

 

Table 4.7:  Average concentrations (mg/kg) of metals in vegetables during summer  

 Cd Zn Pb Mn Ni Cr Co Fe Cu 

Brinjal nd 5.85 ± 

0.6 

nd 9.70 ± 

4.6 

nd 2.16 ± 

0.9 

1.57 ± 

0.8 

27.73 ± 

22.6 

2.10 ± 

0.3 

Cabbage nd 1.38 ± 

0.9 

1.19 ± 

0.8 

11.01 ± 

5.9 

nd 1.84 ± 

0.3 

2.09 ± 

0.8 

35.63 ± 

30.1 

1.05 ± 

0.7 

Spinach nd 71.17 ± 

79.5 

nd 9.21 ± 

2.4 

nd 1.23 ± 

0.7 

1.24 ± 

0.7 

126.86 ± 

99.6 

1.19 ± 

0.9 

Green 

pepper 

nd 9.73 ± 

0.4 

nd 8.51 ± 

3.3 

nd 0.35 ± 

0.1 

1.39 ± 

0.1 

63.42 ± 

27.3 

0.69 ± 

0.3 

Leek 

onion 

nd 30.77 ± 

14.3 

10.63 ± 

7.4 

10.63 ± 

4.5 

nd 

 

3.85 ± 

0.8 

1.58 ± 

0.2 

28.05 ± 

22.8 

0.9 ± 

0.1 

 nd = not detected 
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The results show that the average concentration of heavy metals differs for the different types of 

vegetables sampled during summer. The concentration of Fe was the highest observed in all of the 

vegetables. Fe levels in spinach were particularly high, with an average concentration of 126.86 ± 

99.6 mg/kg. This may be due to easy accumulation of Fe in spinach causing Fe to be rich in 

spinach (Street, 2012; Jessie, 2015). This was followed by Zn with an average concentration of 

71.17 ± 79.5 mg/kg.  Cr, Co and Cu, though not significantly different, were 0.35 ± 0.1 mg/kg – 

3.85 ± 08 mg/kg; 1.25 ± 0.7 mg/kg – 2.09 ± 0.8 mg/kg; 0.69 ± 0.3 mg/kg – 2.10 ± 0.3 mg/kg, 

respectively. Cd and Ni did not occur at detectable concentration in all of the vegetables, while Pb 

was detected in cabbage at 1.19 ± 0.8 mg/kg and leek onion at 10.63 ± 7.4 mg/kg. 

When the summer results are compared with that of winter shown in Table 4.8, they showed that 

spinach was high in Fe, followed by leek onion and cabbage. These vegetables are leafy 

vegetables that are known to be good accumulators of heavy metals (Thilini and Anil, 2014; 

Anjula and Sangeeta, 2011). The concentration of heavy metals in vegetables were all within the 

allowed limits set by (WHO, 1995). 

 

Table 4.8:  Average concentrations of metals in vegetables during winter in mg/kg 

 Cd Zn Pb Mn Ni Cr Co Fe Cu 

Cabbage nd 
7.19 ± 

5.1 
nd 

9.19 ± 

2.6 
nd 

7.84 ± 

6.9 

0.96 ± 

1.3 

67.14 ± 

58.4 

1.85 ± 

0.6 

Spinach nd 
10.69 ± 

6.9 
nd 

6.71 ± 

2.2 
nd 

6.82 ± 

4.7 

0.38 ± 

0.2 

92.39 ± 

29.9 

2.30 ± 

0.8 

Leek 

onion 
nd 

7.17 ± 

2.3 
nd 

4.71 ± 

0.8 

nd 

 

0.41 ± 

0.2 

0.41 ± 

0.2 

62.76 ± 

24.9 

2.14 ± 

0.5 

nd = not detected 

 

Similar to the observation for Fe levels in spinach during summer, the concentration of Fe was 

still highest in most of the vegetables for winter, reaching 92.39 ± 29.9 mg/kg in spinach. This 

was followed by cabbage and leek onion with concentrations of 67.14 ± 58.4 mg/kg and 62.76 ± 

24.9 mg/kg, respectively. The concentration of Cr was 0.41 ± 0.2 mg/kg in leek onion to 7.84 ± 

6.9 mg/kg in cabbage; Co, 0.38 ± 0.2 mg/kg in spinach to 0.96 ± 1.3 mg/kg in cabbage and Cu, 
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1.85 ±0.6 mg/kg in cabbage to 2.30 ± 0.8 mg/kg in spinach. Cd, Pb and Ni were not detected in 

all vegetables.  The average concentration of Mn ranged from 4.71 ± 0.8 - 9.19 ± 2.6 mg/kg, and 

Zn 7.17 ± 2.32 – 10.69 ± 6.9 mg/kg.  

   

Reports on heavy metal levels in soil in towns in the Eastern Cape Province of South Africa 

revealed that the concentration of heavy metals in vegetables could occur in the range of 0.01 -

1.12 mg/kg (Fatoki, 1996). Another study conducted showed high levels of Mn in spinach and 

cabbage, which were beyond toxic levels (Bvenura and Afolayan, 2012).  

It has been shown that the uptake of heavy metals by plants is affected by factors such as soil pH, 

organic matter and soil texture, and this may result in lack of correlation between vegetable and 

soil concentration of heavy metals in different vegetables (Murray et al., 2014; Chang et al., 

2014). 

 

4.10 Comparison of heavy metal in vegetables during summer and winter 

A graphical representation of the average heavy metal concentration in the various vegetables 

was used to illustrate trends and draw comparisons between the various vegetables. Figures 4.8 

and 4.9 illustrate average heavy metal concentration levels in vegetables during summer.  

 

The vegetable heavy metal concentration during summer followed the order: spinach (Fe > Zn > 

Mn > Co > Cr > Cu > Cd ≥ Pb ≥ Ni); cabbage (Fe > Mn > Cr > Zn > Pb > Co > Cu > Cd ≥ Ni) 

and leek onion (Zn > Fe > Pb ≥ Mn > Cr > Co > Cu > Cd ≥ Ni). 
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Figure 4.8:Variation in concentration of Cd, Ni, Pb, Cr, Co and Cu in vegetables during summer 

 

 

 

Figure 4.9: Variation in concentration of Zn, Fe and Mn in vegetables during summer 

 

Spinach showed relatively high accumulation tendency for Fe, Zn and Mn, at 126.86 ± 99.6 

mg/kg, 71.17 ± 79.5 mg/kg and 9.21 ± 2.4 mg/kg, respectively. A similar trend was observed in a 

study done by Latit et al 2018, where Fe, Zn and Mn were found to be high in spinach and 

suggested that the soil type and fertilizers could be responsible factors for the high contents of 
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these heavy metals in spinach.  Zn and Mn are also one of the basic micro-nutrients required for 

normal plant development (Latit et al., 2018). The levels of Fe, Zn and Mn are low in brinjal and 

leek onion compared to spinach and cabbage. The level of Cr in leek onion was 3.85 ± 0.8 

mg/kg, while Cu in brinjal vegetable was 2.10 ± 0.3 mg/kg. Ni, Pb and Cd were the least 

accumulated heavy metals by all the vegetables. Figures 4.10 and 4.11 illustrate trends and 

comparisons of the heavy metals detected in the different vegetable samples during winter. 

 

The vegetable heavy metal concentration during the winter season follows the order: spinach (Fe 

> Zn > Cr > Mn > Cu > Co > Cd ≥ Pb ≥ Ni); cabbage (Fe > Mn > Cr > Zn > Cu> Co > Cd ≥ Pb 

≥ Ni) and leek onion (Fe > Zn > Mn > Cr ≥ Co > Cu > Cd ≥ Pb ≥ Ni). 

Spinach accumulates Zn at a concentration of 10.69 ± 6.9 mg/kg, followed by leek onion at a 

concentration of 7.17 ± 2.3 mg/kg. The Mn concentration in cabbage reached 9.19 ± 2.6 mg/kg, 

followed by spinach at concentration, 6.71 ± 2.2 mg/kg. Cd, Ni and Pb were not at detectable 

concentrations.  

 

 

Figure 4.10: Variation in concentration of heavy metals in vegetables during winter 
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     The levels of Fe in Figure 4.11 appear to be the highest in all the vegetables, compared with the 

other heavy metals. 

 

 

 

Figure 4.11: Variation in concentration of Fe in vegetables during winter 

 

Spinach had the lowest concentration of Fe in winter than in summer with a concentration of 

92.39 ± 29.9 mg/kg, which shows a decrease in Fe concentration, whereas cabbage and leek 

onion concentration levels of Fe increased in winter by 67.14 ± 58.4 mg/kg and 62.76 ± 24.9 

mg/kg, respectively when compared with the summer data.  

 

4.11 Comparison of spatial variation in soil heavy metals between sites location  

A non-parametric Mann-Whitney test was performed to assess whether there is any evidence of 

spatial variation in soil heavy metals level across all sampling sites. A non-parametric test is used 

to interpret population data that does not have a normal distribution. Non-parametric tests can 

perform well with non-normal continuous data if the data is sufficiently of large sample size. The 

statistical parameter P is compared with the critical value. In all cases below the statistical 

parameter, P exceeds the critical value, implying that no significant difference exists.  
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Zn:  Zn was high in Blikkiesdorp with an average concentration of 38.00 mg/kg, followed by 

Abalimi with a concentration of 31.00 mg /kg. The sites had no significant difference between 

Zn concentrations (P > 0.77). 

 

Pb:  Pb was high in Blikkiesdorp with an average concentration of 41.00 mg.kg, followed by a 

concentration of 32.00 mg/kg in Scaga. There was no significant difference between the sites (P 

> 0.14). 

 

Mn: Mn was high in Mfuleni, when compared to the rest of the sites with an average 

concentration of 38.00 mg/kg. Fezeka had the lowest concentration of 12.00 mg/kg of Mn, 

whereas the observed concentration of Mn for the rest of the sites had no significant difference 

(P > 0.05). 

 

Cr: Ravensmead and Fezeka had the lowest concentration of 7.00 mg/kg and 8.50 mg/kg, 

respectively when compared with the rest of the sites. Sakhe had the highest average 

concentration of 34.00 mg/ kg, followed by Esam-esakho site with a concentration of 32.13 

mg/kg. This shows that there was no significant difference (P > 0.15). 

 

Co: There was no significant difference in the observed concentration levels of Co in all the 

sites. The lowest concentration of Co was found at Ravensmead and Fezeka (15 mg/kg) with  

P > 0.97. 

 

Fe: Blikkiesdorp had the lowest average concentration of 3.00 mg/kg. The sites had no 

significant difference in concentration levels with (P > 0.70). 

 

Cu: Sakhe had the highest concentration of 36.00 mg/kg, followed by Scaga with a 

concentration of 34.66 mg/kg when compared with the rest of the sites. Both sites are of the 

same area, Khayelitsha, which shows no significant difference with the rest of the sites with P > 

0.08.  
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The above data showed that, the spatial variation in the concentration distribution of the heavy 

metals observed or detected in the various sampling sites are not significant. 

 

4.12  Multiple linear correlation analysis for heavy metal concentrations in the vegetables 

The Pearson correlation matrix for all parameters was performed to interpret the data. The 

correlation analysis is a method that is applied to describe the relation between two different 

parameters. The high correlation coefficient (near + 1 or – 1) means a good relationship between 

two variables and its correlation around zero means no relationship between them at significant 

levels of 0.05 % levels. Table 4.9 represents the significant simple linear correlation coefficients 

between heavy metals and vegetable characteristics. The correlation coefficients considered 

significant were those with a probability level smaller than 1 (p < 0.05). Table 4.9 shows the 

correlation matrix between heavy metals in vegetables and physicochemical parameters at 

different sites. 

 

 

Table 4.9: Pearson correlation matrix of heavy metals in vegetables and physicochemical 

parameters 

 Cd Zn Pb Mn Co Fe Cr Cu Ni OM pH 

Cd 1           

Zn 0.10 1          

Pb 0.13 0.61 1         

Mn 0.17 0.84 0.43 1        

Co 0.49 0.66 0.37 0.69 1       

Fe 0.06 0.55 0.20 0.63 0.68 1      

Cr 0.25 0.39 0.54 0.38 0.53 0.23 1     

Cu 0.02 0.80 0.48 0.69 0.47 0.51 0.26 1    

Ni 0.21 0.43 0.79 0.32 0.50 0.23 0.68 0.39 1   

OM 0.21 0.61 0.28 0.55 0.63 0.45 0.23 0.33 0.20 1  

pH -0.14 0.02 0.29 0.45 -0.14 -0.13 0.28 0.06 0.29 -0.15 1 
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Table 4.9 shows the correlation of heavy metals in vegetables at the different sites and soil 

characteristics. It was observed that the correlation between some of the heavy metals was 

significant (p < 0.05). A strong correlation was observed between (Mn and Zn), (Cu and Zn) and 

(Ni and Pb). These strong correlations could be due to soil, fertilizers and borehole water 

impacting plant material in the same way. The accumulation of heavy metals by vegetables 

depended on the type of vegetables as this kind of trend was observed in this study (South 

African Bureau Standard, 1984; Ying et al., 2014). In a study reported by Awufolu (2005), it was 

found that Cd was high in spinach, while Zn concentration was high in spinach and green pepper.  

 

4.13 Bioaccumulation indices of vegetables for the uptake of selected heavy metals 

Bioaccumulation factors (BAF) were used to assess the accumulation of heavy metals in 

vegetables. Bioaccumulation is a process in which certain substances such as heavy metals 

accumulate in living organisms, posing a threat to health, life and to the environment.  If the BAF 

> 1 then the vegetables can be accumulators; BAF = 1 is no influence and if the BAF < 1 then 

the vegetables can be an excluder. The bioaccumulation factors of Cd, Zn, Pb, Mn, Co, Fe, Cr, 

Cu and Ni for vegetables, calculated using Equation 4.1, are given in Table 4.10. The table 

shows that all the heavy metals have BAF < 1. 

                                                  BAF = CV / CS   

  Where: CV is the mean metal concentration in vegetable samples (mg/kg) and CS is the mean 

metal concentration in soil samples (mg/kg). 

The ability to accumulate heavy metals varied for the different vegetables. All the vegetables had 

low uptake for Cd, Ni and Pb, except for spinach and cabbage which showed poor accumulation 

of 0.11 and 0.06, respectively, during summer (Table 4.10). Cabbage showed greater ability to 

concentrate Co reaching a maximum accumulation factor of 0.88, followed by Cr with a 

maximum accumulation factor of 0.82. Of all the vegetables, spinach had the most accumulation 

of Zn during summer with accumulation factor of 0. 98.  



73 

 

 

Table 4.10: Bioaccumulation factors for the uptake of heavy metal by the selected vegetables 

Vegetables 

Bioaccumulation Indices 

Cd  Zn Pb Mn Co Fe Cr Cu Ni 

Summer          

Brinjal nd 0.46 nd 0.24 0.74 0.03 0.59 0.15 nd 

Cabbage nd 0.07 0.06 0.29 0.88 0.10 0.82 0.02 nd 

Spinach nd 0.98 0.11 0.58 0.53 0.18 0.79 0.66 nd 

Winter          

Spinach nd 0.25 nd 0.16 0.64 0.46 0.87 0.09 nd 

Cabbage nd 0.21 nd 0.68 0.31 0.03 nd 0.10 nd 

Leek onion nd 0.16 nd 0.22 0.39 0.05 0.52 0.09 nd 

nd – not detected 

 

The accumulation factor for brinjal, spinach, and cabbage to hold Zn ranged between nd – 0.46; 

0.06 – 0.98; and nd - 0.07, respectively, during summer; while it ranged between 0.03 – 0.25 for 

spinach, nd - 0.21 for cabbage, and nd - 0.16 for leek onion during winter.  The accumulation of 

Mn in brinjal, cabbage and spinach were; nd – 0.24; 0.23 – 0.29 and 0.22 – 0.58 during summer, 

while during winter they were; nd – 0.68 for cabbage, 0.07 – 0.16 for spinach and nd – 0.22 for 

leek onion. The vegetables showed relatively better uptake of Co, with accumulation indices; nd 

– 0.74 for brinjal, 0.04 – 0.88 for cabbage and nd – 0.53 for spinach during summer.  

This trend is similar during winter, although with lower uptake compared with summer (nd – 

0.31 for cabbage, 0.13 – 0.64 for spinach and nd – 0.39 for leek onion).  Cr was also observed to 

be fairly bioavailable during summer with brinjal holding between nd – 0.59, spinach, 0.29 – 

0.79 and cabbage 0.13 – 0.87. The vegetables showed no particular trend on the uptake of heavy 

metals with respect to season, as the concentrations varied. 

Similar studies recorded that Cr in spinach and cabbage had high bioaccumulation of heavy 

metals above 1.0 compared to other heavy metals, while Cd was below the detected limit 

(Lugwisha and Othman; 2016). This trend was also observed in the present study.  

The overall vegetables bioaccumulation factors observed for heavy metals were generally below 

1.0, indicating a higher proportionate heavy metals concentration in soil in relation to vegetables, 
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and therefore low vegetable uptake of heavy metals. Significant differences (p < 0.05) were 

found in the bioaccumulation factors of Mn, Zn, Fe, Cu and Cr in the vegetables during both 

seasons. A similar trend was observed in a study by Zhou et al. (2016). These results also 

indicate that the ability for heavy metal accumulation in the leafy vegetables was higher than that 

of the other vegetables. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1  Conclusion 

The soil pH was generally found to be slightly acidic, while that of water ranged from acidic to 

neutral. The slight acidity of the soil will imply moderate mobility of the heavy metals. The soil 

and water pH in winter and summer did not differ significantly (p > 0.05).  

The soil organic matter ranged from 1.7 % to 13.5 %. Organic matter influences the physical 

conditions of soil such as increasing the water-holding capacity of soil and regulates heavy metal 

concentration through complexation. The results indicated that organic matter for soil in winter is 

higher than in summer (p < 0.05).  

The water results for all the heavy metals during winter and summer showed variability with no 

definite trend. Cd, Ni, Cr, Fe and Cu had low concentrations as compared with winter, while in 

summer Pb, Zn, Co and Mn had higher concentrations as compared with winter. There is no 

significant difference in heavy metal concentrations between the two seasons (p > 0.05). Fe 

exhibited the greatest concentration increase in comparison to the rest of the heavy metals, 

showing a significant difference between both seasons. All the heavy metals in water were 

within the allowed concentration limits set by WHO.  

The soil heavy metal concentrations showed a significant difference between both seasons (p < 

0.05). The soil heavy metal concentrations in winter were higher when compared to summer, 

indicating that seasonal changes have an effect on the availability of heavy metals in soil and the 

slight acidity of the soil allowing availability of heavy metals for uptake by plant (vegetables). Fe 

concentrations were significantly higher when compared to the rest of the heavy metals in soil 

during both seasons with winter obtaining a greater value of 1292.50 mg/kg. The high Fe 

concentration in soil during winter could be due to the fact that most seasonal rainfall occurs in 

winter, resulting in an increase of heavy metals in the soil due to anthropogenic activities.  

The data showed a strong correlation between heavy metals in soils (p < 0.05), with a moderate 

correlation of some heavy metals with soil organic matter. There appears to be no significant 
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correlation between heavy metals and soil pH. These findings suggest that organic matter can 

regulate the availability of heavy metals via complexation of free ions of the heavy metals, with 

organic material unavailable to plants. Also, the results suggest that the concentration of some of 

the heavy metals in soil could be lowered with increasing soil the pH. 

There is evidence to suggest that vegetable species vary in their uptake of heavy metals and are 

independent of site location and seasonality, soil pH and soil organic matter. The results indicate 

that Fe was of the highest concentration present in all the vegetables during both winter and 

summer. Fe was particularly high in spinach followed by leek onion and cabbage in summer 

when compared to that of winter. Zn was also high in spinach in winter than in summer. 

In general, leafy vegetables such as cabbage and spinach have better heavy metal uptake than 

less-leafy vegetables. The Fe level in spinach was higher when compared to all the other 

vegetables. The heavy metal concentration in vegetables had no correlation between both 

seasons and the sampling site.  

There was a significant difference (p < 0.05) found in the bioaccumulation of Mn, Zn, Fe, Cu 

and Cr during both seasons in the vegetables. The results of this study indicate that the 

concentration of the heavy metals in soil, water and vegetables were within the allowed limits set 

by WHO.  
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5.2  Recommendations 

Testing of soil and regular monitoring of toxic heavy metals in soil and vegetables should be 

practiced to establish the sources of heavy metal contamination to minimize and prevent excess 

build-up in water and the food chain. 

The environmental health officials should put procedures in place for monitoring of heavy metals 

in vegetables on a more regular basis, which will ensure that no contaminated vegetables reach 

the public. 

Inform the farmers about the results obtained from the study for better farming practices.  
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