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ABSTRACT 

 

 Polyfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and 

perfluorooctanoate (PFOA) are anthropogenic chemicals. For more than half a century, these 

long-chain compounds have been used in a wide range of industrial applications, such as the 

manufacturing of consumer products, ranging from grease-proof food packing to aqueous 

fire-fighting foams and to stain repellents such as Teflon®. Subsequently, these ubiquitous 

contaminants which are environmentally persistent, toxic, and bioaccumulative, have been a 

focus of public concern worldwide. Hence, due to public health apprehensions and 

environmental risks posed by PFASs, their manufacturers and various environmental 

agencies decided on restricting their use, and whereby the use of these chemicals could not be 

stopped, their replacement by other alternative chemicals was suggested. Therefore, 

alternatives to long-chain PFASs was suggested, i.e. to replace the compounds with shorter 

per- or polyfluorinated carbon chains, e.g. perfluorobutane sulfonate (PFBS), which has been 

regarded as one of the most important short-chain PFASs and less harmful to the environment 

at large. However, a systematic review from the current work reveals that physicochemical 

properties of short-chain PFASs are not different from their predecessors thus suggesting that 

short-chain PFASs are as harmful as their homologues. Similarly, the literature reviewed 

demonstrated how novel technologies have also been proven to be incapable of removing 

these substances, including to short-chain PFASs, from various environmental matrices.  

 Moreover, plant species have extensively been susceptible to PFASs, and various other 

POPs accumulation. However, the mechanisms that led to their uptake and storage by plants 

stayed unknown until proteins belonging to the family of major intrinsic proteins (MIPs) and 

later named as Aquaporins (AQPs) were discovered. Hence, the present work has reported 

that there are diverse AQPs in plants than in mammals, with specific functions, even though 

first reports on these proteins suggested that their significant impact was water for 

transportation only. To date, it is well known that plant AQPs possess subclasses or isoforms. 

Some of these include SoPIP2;1 and AtTIP2;1, prevalent in Spinacia oleracea and Arabidopsis 

thaliana, respectively. We report that these two isoforms have individual pore diameters or 

sizes: SoPIP2;1 (2.1 Å) and AtTIP2;1 (3 Å), which might play a role in the selectivity process of 

molecules which pass through the water transportation channels of the concerned plants. This 

ultimately suggested SoPIP2;1 pore diameter serving as a pathway of smaller molecules, while 

AtTIP2;1 pore diameter would serve as a conduit for both smaller and larger compounds. As 
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such, the pore diameters of these two isoforms made them potential conduits of PFASs whose 

carbon–fluorine bond typical size is 1.35 Å, much smaller than that of AtTIP2;1_2.1 Å and 

PIP2s, i.e. SoPIP2;1_3 Å, thus substantiating the uptake and ultimate storage of PFASs by plant 

species. Subsequently, the uptake and storage of PFASs and other POPs by plants have been 

proven to lead to unprecedented environmental and human risks. As plants with the potential 

to heal or manage certain ailments, such as Diabetes mellitus (DM), when exposed to PFASs, 

it was necessary to substantiate such a phenomenon.  

 This current study further determined the propensity of PFASs, such as PFOA, PFOS 

and PFBS, to accumulate in a plant commonly used in the management of DM, namely the 

African marigold (Tagetes erecta L.). The study was important as this plant is used in diabetes 

management in the Western Cape, South Africa, thus implying the plant being a pathway 

through which humans might be exposed to PFASs and its precursors. Accordingly, the target 

analytes of the study, PFOA, PFOS and PFBS, were identified and quantified in samples 

collected from the said plant, i.e. Tagetes erecta L., in contaminated river water used to irrigate 

the studied plant, as well as diabetic serum samples from patients likely to use the plant. The 

analysis was done using a liquid chromatography coupled with tandem mass spectrometry 

(Shimadzu LCMS-8030, Canby, OR, USA). The MS operational conditions were sourced with 

an MS interface electrospray ionisation in negative ion mode. A multiple reaction monitoring 

(MRM) mode of analysis was used to quantify the targeted PFASs in samples. Hence MRM 

transition for PFOA, PFOS and PFBS being of 413.00 > 368.95 (acquisition time: 8.6 min), 499.00 

> 80.15 (8.9 min) and 299.00 > 80.10 (6.8 min), respectively. A Luna® Omega Polar C18 column 

(2.1 × 100 mm, 3.0 µm, Phenomenex, Aschaffenburg, Germany), with 40 °C in temperature, 

assisted in the separation of the analytes. The mobile phase at a flow rate of 0.3 L/min was 

made of 20 mM ammonium acetate and MeOH (100%). The process followed (for solid 

samples, i.e. plants) (n = 8) was: 1) sample drying, 2) milling, 3) screening, 4) digestion, 5) 

sonication, 6) filtration, 7) Solid phase extraction (SPE), 8) analyte elution and 9) analysis; for 

water samples (n = 20) the process was: 1) filtration, 2) SPE, 3) analyte elution and 4) analysis; 

while for serum samples (n = 179) the process was: 1) sample uptake, 2) buffers, 3) Mix, 4) 

centrifuge, 5) Dissolve, 6) filtration, 7) SPE, 8) conditioning, 9) elution, 10) reconstitute, 11) 

analysis. 

 PFOA, PFOS and PFBS were observed in all the plant samples and were found in 

concentrations of up to 94.83 ng/g, 5.03 ng/g, and 1.44 ng/g, for PFOA, PFOS and PFBS, 

respectively. Similarly, PFOA, PFOS and PFBS were identified in all the river water samples 

and were found in concentrations ranging between 1.15 to 107.82, 1.24 to 20.75 and ND to 0.06 
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ng/L for PFOA, PFBS and PFOS, respectively, for regime A (winter/wet season) and <LOQ 

to 4.35, 1.89 to 5.29, and <LOQ to 0.06 ng/L for PFOA, PFBS and PFOS, respectively, for regime 

B (summer/dry season). As the river water analysed in the current study showed 

concentration levels of PFOA, PFOS and PFBS in comparison to the studied plant (i.e.Tagetes 

erecta L.), the prevalence of these substances in river water samples which was used to irrigate 

the studied plant suggests that contaminated water sourced for plant irrigation purposes such 

as in impoverished communities in South Africa, will ultimately result in the irrigated plant’s 

contamination. Hence, the bioconcentration factor (BCF) in the present study has indicated 

the African marigold’s affinity to PFAS accumulation. The BCF for PFOA, PFOS and PFBS 

was in the range 0.48 to 2.52, 4.00 to 167.67 and 0.05 to 0.31, respectively. Thus, the studied 

plant, i.e. Tagetes erecta L., demonstrated a high bioaccumulation potential for PFOS.  

 Furthermore, PFOA, PFOS and PFBS were detected in all the serum samples (n = 179) 

of individuals suffering from DM, who are likely to use Tagetes erecta L. in order to determine 

whether there is a direct correlation between PFOA, PFOS, PFBS with known cases of DM. 

The patients are from a Bellville South population, in Cape Town, South Africa, who are of 

mixed-ancestry origin with the second highest prevalence of diabetes in South Africa. PFOA, 

PFOS and PFBS concentrations of up to 4.74, 0.77 and 1.27 ng/L were detected in males, 

respectively; and 10.73, 1.06 and 1.77 ng/L in females, respectively; with PFBS being the 

second most abundant PFAS in the sera, after PFOA; albeit, no significant association was 

found between the investigated PFASs and DM, but a significant correlation trend was 

detected between PFOA and individual anthropometric and biochemical measurements. 
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PREFACE TO THE THESIS 

 

 The research work presented in this dissertation was conducted at the Department of 

Environmental and Occupational Studies (DEOS); with the support and instrumentation from 

the laboratories of the Bioresource Engineering Research Group, the Department of 

Biotechnology, and the Department of Bio-Medical Sciences (all on the District six and 

Bellville campuses, respectively) of the Cape Peninsula University of Technology, as well as 

the Department of Environmental, Water and Earth Sciences, Faculty of Science, of the 

Tshwane University of Technology (TUT). These institutions are both located in South Africa, 

specifically in Cape Town and Pretoria, respectively.  

 This dissertation is presented in a format of fives (5) articles. Overall four (4) have been 

published in peer-reviewed journals (Mudumbi et al., 2017a, b; Mudumbi et al., 2018; 

Mudumbi et al., 2019). 

 Chapter 1 gives a brief introduction of this research, the research questions, the 

objectives of the study, the significance and delineation of the research, as well as the 

dissertation framework. 

 Chapter 2 is the first section of the literature review published in 2017, thus 

overviewing the recent developments in per-and polyfluoroalkyl compounds (PFCs) research 

and their substitutes, including PFOA, PFOS and PFBS, and highlights the shortcomings and 

challenges in removing f these substances, as well as the environmental impacts of short-chain 

PFCs, previously regarded as harmless, in substitution of long-chain PFCs (Mudumbi et al., 

2017a).  

 Chapter 3 covers the second section of the literature review published in 2017, which 

investigated the potential role that proteins such as AQPs play in facilitating the translocation 

and storage of POPs and other pollutants, such as PFCs, into plants (Mudumbi et al., 2017b) 

Chapter 4 relates the third part of the literature review published in 2018, and 

surveyed the possible threat that these emerging POPs (e.g. PFCs) and heavy metals represent 

to the success of medicinal plants usage in the treatment of human ailments such as diabetes 

mellitus (Mudumbi et al., 2018). 
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 Chapter 5 is the original research article published in 2019 and dedicated to the 

susceptibility of medicinal plants to PFCs, and suggests the potential of medicinal plants (e.g. 

Tagetes erecta L) as the pathway of PFCs into humans (Mudumbi et al., 2019). 

 Chapter 6 is the final version of a manuscript submitted for peer-review and dedicated 

to the susceptibility determination of diabetic patients to PFASs. Thus, known DM cases were 

analysed in this chapter to determine their PFASs concentration levels. 

 Chapter 7 provides conclusions of this study and further suggests recommendations 

for supplementary research to be conducted. 
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CHAPTER 1 

 

 

Introduction 

 

 

 

 

1.1 Introduction  

 Since the publication of the book titled “Silent Spring”, in 1962, by Rachel Carson, a 

book that pedantically described how DDT (Dichlorodiphenyltrichloroethane) enters the food 

chain through bioaccumulation processes in soil, plants, and subsequent storage in the fatty 

tissue of animals, including human beings, numerous other persistent organic pollutants 

(POPs) remained undocumented. Thus, newly identified POPs have emerged during the 

current century, which have resulted in human health and environmental concerns, similar to 

those reported for DDT and polychlorinated biphenyls (PCBs). 

 Polyfluoroalkyl compounds (PFCs) have topped the list of these emerging POPs, and 

have been listed as such, ever since the Stockholm Convention (Wang et al., 2009; 2014). It has 

been indicated that, there are several hundred PFCs (and Ellis et al., 2004; Martin et al., 2006; 

Ahrens et al., 2009b). However, the most studied and documented had been 

perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) (Stahl et al., 2009; Ahrens et 

al., 2009b; Lechner and Knapp, 2011). Meanwhile, other studies have indicated the 

predominance of perfluorobutane sulfonate (PFBS) in various matrices (Ahrens et al., 2009a, 

2009b; Möller et al., 2010), as it has similar human and environmental health consequences as 

those associated with PFOA and PFOS.  

 Polyfluoroalkyl compounds were anthropogenically manufactured since the 1950s 

(Renner, 2001; Ahrens, 2009), suggesting they do not occur naturally in the environment.  

 These compounds have hydrophilic (Lee, 2005), oleophobic (Han and Steckl, 2009) and 

hydrophobic (Chandler, 2005) properties, and are also moderately soluble in water (Möller et 

al., 2009). These properties have led to these compounds being used in various industrial 
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applications to manufacture products that humans heavily rely on (Kissa, 2001; Möller et al., 

2009), including packaging products, paper, as well as leather, textile coatings, fire-fighting 

foam and cooking utensils. The prevalence of these compounds in soil (Stahl et al., 2009), 

sediment (Higgins and Luthy, 2006; Mudumbi et al., 2014c), bottled water (Heo et al., 2014), 

river water used for agricultural purposes (Mudumbi et al., 2014b), and plants (Stahl et al., 

2009; Mudumbi et al., 2014a), have been the reason why PFCs (that is PFOA and PFOS) 

accumulate in the food chain, ending up in human body tissues (Fromme et al., 2009; Hanssen 

et al., 2010).  

 Thus, humans get exposed to PFCs via food and water consumption (Emmett et al., 

2006a; Zhang et al., 2010; Heo et al., 2014), as well as the inhaled air (Harada et al., 2006; Kim et 

al., 2012; Hong et al., 2013; Dreyer et al., 2015). Additionally, various studies have indicated the 

distribution of PFCs in different plant compartments. For example, PFOA was found to be 

higher in vegetative compartments of potatoes, cucumbers and carrots than in other parts of 

the same crops (Lechner and Knapp, 2011), while in a similar study on wheat, the 

concentrations of PFOS and PFOA in roots were higher (Zhao et al., 2013). Correspondingly, 

PFCs distribution was indicated to be high in tomato root, leaf and stem, respectively, in a 

study by Felizeter et al. (2014). This suggests varying transportation mechanisms for different 

plants. According to recent studies, PFCs have been detected in various foodstuffs (Ericson et 

al., 2008; Schecter et al., 2010; Zhang et al., 2010; Noorlander et al., 2011) and vegetables (Clarke 

et al., 2010; Ji et al., 2012; Herzke et al., 2013; Lü et al., 2014; Zabaleta et al., 2014). 

 Moreover, there have been studies conducted on the uptake of PFCs by plants 

(Lechner and Knapp, 2011; Mudumbi et al., 2014a), most of which had positively detected 

these compounds in plants, including agricultural produce, suggesting that, PFCs can 

bioaccumulate in plants and plant-based products, and subsequently be ingested by humans. 

However, to our knowledge, there is very little scientific evidence to suggest plants (including 

agricultural produce) are a source of ingested PFCs in developing countries such as South 

Africa. This is also the case for medicinal plants and/or products, particularly for developing 

countries, such as South Africa, where these plants are commonly used (Davids et al., 2016). 

For instance, in the sub-Saharan African region, in particular, medicinal plants have played a 

major role in combating several diseases, including diabetes mellitus (DM) (Davids et al., 2016), 

due to prohibitive cost of orthodox medicine and the low income of the populations 

(Mounanga et al., 2015). This suggests phytomedicines to be more accessible and affordable 

by local communities in this African region (Mahomoodally, 2013). 
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 Furthermore, little is also known on how living plants uptake PFCs, from 

contaminated soil and/or water. In other words, the mechanism used by plants to translocate 

and store PFCs in plant tissue and/or to the different plant compartments remains unclear, 

although preponderant studies reporting on the uptake of these pollutants by plants. 

 Additionally, Renner (2001) and Ostertag et al. (2009) have since indicated that, PFCs, 

particularly PFOA and PFOS, have caused environmental degradation and human health 

problems over the past decades. Thus, although, PFOA and PFOS have been the focus of most 

studies related to PFCs, it has been recently indicated that there are various types of PFCs, 

suggesting that the threat of these undocumented PFCs to the environment and humans at 

large still remains unknown. 

 Moreover, phytomedicines have gained tremendous attention recently due to their 

reputable medicinal benefits (Kim et al., 1999; Youn et al., 2004; Eshun and He, 2004; Shibano 

et al., 2008; Bing et al., 2009). Irrespective of medicinal plants approval from overseers and 

users in particular, it has been debated that environmental contamination of these plants is a 

major concern (Street et al., 2008); for this reason, a recent study has suggested that, medicinal 

plants from which phytomedicine products are manufactured should be harvested from areas 

free of any contamination sources (Gjorgieva et al., 2010). In fact, a study by Fennell et al. (2004) 

has indicated that, although phytomedicinal products are widely assumed to be safe, many 

are potentially toxic. For example, a study in Macedonia investigated Barium (Ba), Chromium 

(Cr), Cadmium (Cd), Iron (Fe), Strontium (Sr), Lead (Pb), and Zinc (Zn) content in commonly 

used medicinal herbs -Urtica dioica L., Taraxacum officinale, and Matricaria recutita in two areas 

(that is a polluted and an unpolluted area). From the results, it was concluded that, quality 

assurance and monitoring of toxic metals should be conducted for plants intended for human 

use and consumption (Gjorgieva et al., 2010).  

 From a South African perspective, Street et al. (2008) mentioned that, herbal medicines 

are commonly harvested from the wild and consumed as such, with consumers ignoring 

and/or not being aware of the safety of these products, as industrial development has led to 

the contamination of water sources, such rivers (Mudumbi et al., 2014b), from which some of 

the medicinal plants are grown. In addition, various studies have reported on the prevalence 

of heavy metals, including PFCs, in the South African environment (Okonkwo and Mothiba, 

2005; Mudumbi et al., 2014a, 2014b, 2014c). Similarly, it has been indicated that, poor farming 

methods, coupled with unregulated application of pesticides and fertilizers may lead to 
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phytomedicines being contaminated by recalcitrant contaminants, heavy metals, toxic 

substances and adulterants including PFCs (Chan, 2003; Street et al., 2008).  

 Furthermore, another study has suggested that, POPs have the potential to interact 

and induce several stress responses in the plants (Gjorgieva et al., 2013), producing metabolites 

that are deemed to have health benefits, such as antioxidants. Thus, a study was conducted to 

investigate POP stress on total antioxidants level in Urtica dioica, (also known as the Common 

Nettle) leaves and stems, a well-known medicinal plant. It was found that POP contents in 

stems changed synchronously with those in leaves of the plant, which led to imbalance of 

mineral nutrient elements and increased antioxidants in the plant (Gjorgieva et al., 2013). 

Consequently, the abovementioned study indicated that POP concentrations damaged the 

deoxyribonucleic acid (DNA) stability of the studied plant, which is Urtica dioica (Gjorgieva et 

al., 2013). Therefore, the mechanism allowing the transportation and subsequent storage of 

POPs, such as PFCs in medicinal plants must be investigated. 

 Additionally, plant proteins (that is Aquaporins-AQPs) play an important role in plant 

growth. For examples, AQPs and vacuoles are known for facilitating the transport nutrients 

and proteins in plants (Kaldenhoff and Fischer, 2006 and Chrispeels, 1991). Vacuoles are 

further known of storing organelles for sugars (Rausch, 1991), polysaccharides (Wagner et al., 

1983), organic acids (Ting, 1985), and act as micro-kidneys inside each plant cell; suggesting 

they sequester potential toxic pollutants (Taiz, 1992). Thus, it has been indicated that, most of 

the flavours we get from fruits and vegetables are due to the compounds stored in the 

vacuoles (Taiz, 1992). This ultimately suggests that consumer intake of compounds stored in 

plant vacuoles, is a major exposure pathway of these compounds for humans – particularly if 

POPs are stored in these plants. As such, a study in Mali has further indicated high levels of 

toxic metals in commonly used plants for medicine and food purposes. In this study, metals 

such as Zn, Cr, Nickel (Ni), Pd, and Cooper (Cu) were found in seven medicinal and edible 

plants from the aforementioned country (Maiga et al., 2005). In addition, maximum 

concentration of Cd occurred in Pea (Pisum sativum L. cv. Azad) compartments, including 

roots, stems and leaves (Dixit et al., 2001). Most of these compounds have many common 

characteristics with new emerging POPs such as PFCs. 

 Subsequently, plant studies have been conducted, revealing plants predisposition to 

PFCs uptake (Stahl et al., 2009; Mudumbi et al., 2014a). However, to our knowledge, the 

mechanism employed by plants and which facilitates the uptake of PFCs by plants haven’t 

been scientifically reported and documented. Additionally, the redundancy of phyto-
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degradation of POPs as reported by Barac et al. (2004), suggests that non-biodegradable 

pollutants can easily be stored in medicinal plants and products, in particular POPs such as 

PFCs, suggesting a feasible intake route for humans, thus increase the risk of diseases such as 

diabetes mellitus (DM). At this stage, there are no information including the link between 

consumption of PFC contaminated medicinal plants - PFCs in overweight human sera – and 

DM, from a South African perspective, where it has recently been demonstrated diabetic 

patients have used medical plants as a therapy (Davids et al., 2016). This includes the link 

between AQPs in medicinal plants/products and concentration of POPs such as PFCs.  

1.2 Research questions 

 It is hypothesised that the concentration of PFCs (that is PFOA, PFOS and PFBS) is 

high in medicinal plants and products, and this suggests these plants might be a potential 

PFCs human exposure pathway, consequently linking PFCs to diseases such as diabetes. 

Furthermore, it is hypothesised that there is a direct link between PFC levels in overweight 

humans, their propensity to consume medicinal plants/products including their PFC 

transportation/storage mechanisms and DM. Therefore, this study will subsequently answer 

the following questions: 

a) What are the current developments surrounding emerging POPs, including PFASs? 

b) Is there a correlation between studied medicinal plant’s consumption and the 

prevalence of PFOA, PFOS and PFBS in these plants? 

c) Which PFAS is more predominant in the selected studied medicinal plant? 

d) Does the plant’s root system, on its own, sufficiently explain its uptake of chemical 

substances? 

e) Do AQPs facilitate the dissemination of chemical compounds in plants? 

f) Are there any variations in the concentrations of the identified PFCs contaminants in 

the selected and studied medicinal plant? 

g) What are the possible health threats or risks of medicinal plants being contaminated 

by PFCs? 

h) Is there a correlation between PFCs concentrations and blood samples of individuals 

diagnosed with diabetes?  

i) What are the concentration variation levels of PFCs in the sera of non-diabetic and 

diabetic individuals? 

j) What is the relationship between age, gender, body weights and PFCs prevalence in 

blood samples? 
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1.3 General objectives 

The following were the objectives of the proposed study: 

 To quantify PFOA, PFOS and PFBS in a common medicinal plant used for Diabetic 

mellitus (DM) management in South Africa, and  

 To determine the plant’s vulnerability to accumulate PFOA, PFOS and PFBS when 

irrigated with PFC-contaminated river water, 

 To elucidate the role of AQPs in PFCs uptake by medicinal plants, and  

 To determine whether there is a direct link between sera PFCs (that is PFOA, PFOS 

and PFBS) concentration in DM sufferers and their anthropometric and 

biochemical measurements. 

1.4 Significance of the research  

 Most studies on medicinal plants have focused typically on their healing properties. 

Currently the focus has been orientated on the market values of products made from these 

plants. No studies have been conducted, in South Africa in particular, and internationally, in 

general, on the prevalence of emerging pollutants, such as PFCs, in medicinal plants/products 

and the impact that this might cause on individuals who rely on products made from these 

crops. Furthermore, there is limited information on the prevalence of PFCs in diabetic 

patients, which is one of the primary focuses of this study. 

1.5 Delineation of the research  

 The focus of the proposed study will be the analysis and quantification of PFOA, PFOS 

and PFBS in selected South African traditional medicinal plants, and how AQPs influence the 

uptake of these compounds by these plants. Furthermore, the study will look into the 

association between PFCs (that is PFOA, PFOS and PFBS) and body weight diseases, such as 

DM, and the environmental impacts in relation to phytomedicinal product use. This study 

will not cover the healing ability of the selected medicinal plant, the sources of PFCs present 

in the selected medicinal plant, the causes of diabetes, or the quantification and functions of 

AQPs present in the selected medicinal plant. 
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2.1 Abstract 

 Between the late 1940s and early 1950s, humans manufactured polyfluoroalkyl 

compounds (PFCs) using electrochemical fluorination and telomerisation technologies, 

whereby hydrogen atoms are substituted by fluorine atoms, thus conferring unnatural and 

unique physicochemical properties to these compounds. Presently, there is a wide range of 

PFCs, and owing to their bioaccumulative properties, they have been detected in various 

environmental matrices and in human serum, but also in other types of human samples. It has 

thus been suggested that they are hazardous. Hence, this review aims at highlighting the 

recent developments in PFC research, with a particular focus on perfluorooctanoate (PFOA) 

and perfluorooctane sulfonate (PFOS), the most studied and predominantly found PFCs in 

various environmental matrices. We also included perfluorobutane sulfonate (PFBS), which 

was previously regarded as innocuously harmless, when compared to its counterparts, PFOA 

and PFOS. As such, proper investigations are thus required for a better understanding of 

short-chain PFC substitutes, which have been suggested as suitable replacements to long-

chained PFCs, although these substitutes have also been suggested to pose various health 

risks comparable to those associated with long-chain PFCs. Similarly, several novel 
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technologies, such as PFC reduction using zero-valent iron, including removal at point of use, 

adsorption and coagulation, have been proposed. However, regardless of how efficient 

removers some of these techniques have proven to be, short-chain PFCs remain a challenge 

for scientists to overcome. 

Keywords: Polyfluoroalkyl compounds, PFOA, PFOS, PFBS, Substitutes. 

2.2 Introduction 

 Polyfluoroalkyl compounds (PFCs) are a wide assortment of anthropogenic chemicals, 

manufactured between the late 1940s and early 1950s (Niu et al., 2016) using electrochemical 

fluorination and telomerisation (Benskin et al., 2012; Banks et al., 2013). Thus, F(CF2)xR is 

regarded as the general molecular formula for these chemicals, with two distinctive subsets 

characterising them; namely, PFCs, in which the head group contains no C-H bonds and 

fluorotelomers (FT) in which the R-group contains an even-numbered alkyl-chains, resulting 

in the general formula of F(CF2)x(CH2-CH2)yR and F(CF2)x(CH=CH)yR) (Møskeland, 2010). 

Table 2.1 provides a general illustration of PFCs that have been of interest for the global 

scientific community. 
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Table 2.1: PFCs of interest, including their chemical structures and general formula (Butt et al., 2014; Kwon et al., 2016; Zhou et al., 2016) 

Class Compound Abbreviation General formula 

Polyfluorinated sulfonamides (FSAs) N-methyl perfluorobutane sulfonamidoethanol NMeFBSE F(CF2)4SO2N(CH3) CH2CH2OH 

N-ethyl perfluorobutane sulfonamidoethanol NEtFBSE F(CF2)4SO2N(CH2CH3) 

CH2CH2OH 

Perfluorooctane sulfonamide PFOSA F(CF2)8SO2NH2 

N-methyl perfluorooctane sulfonamide NMeFOSA F(CF2)8SO2N(CH3)H 

N-ethyl perfluorooctane sulfonamide NEtFOSA F(CF2)8SO2N(CH2CH3)H 

N-methyl perfluorooctane sulfonamidoethanol NMeFOSE F(CF2)8SO2N(CH3) CH2CH2OH 

N-ethyl perfluorooctane sulfonamidoethanol NEtFOSE F(CF2)8SO2N(CH2CH3) 

CH2CH2OH 

Fluorotelomer Alcohols (FTOHs) 4:2 fluorotelomer alcohol 4:2 FTOH F(CF2)4CH2CH2OH 

6:2 fluorotelomer alcohol 6:2 FTOH F(CF2)6CH2CH2OH 

8:2 fluorotelomer alcohol 8:2 FTOH F(CF2)8CH2CH2OH 

10:2 fluorotelomer alcohol 10:2 FTOH F(CF2)10CH2CH2OH 

12 :2 fluorotelomer alcohol 12 :2 FTOH F(CF2)12CH2CH2OH 
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Table 2.1: Continues 

Perfluorosulfonates (PFSAs) Perfluorobutane sulfonate PFBS F(CF2)4SO3- 

Perfluorohexane sulfonate PFHxS F(CF2)6SO3- 

Perfluorooctane sulfonate PFOS F(CF2)8SO3- 

Perfluorodecane sulfonate PFDS F(CF2)10SO3- 

Perfluorocarboxylates (PFCAs) Perfluorohexanoate  PFHxA F(CF2)5CO2- 

Perfluoroheptanoate  PFHpA F(CF2)6CO2- 

Perfluorooctanoate  PFOA F(CF2)7CO2- 

Perfluorononanoate  PFNA F(CF2)8CO2- 

Perfluorodecanoate  PFDA F(CF2)9CO2- 

Perfluoroundeconate  PFUA F(CF2)10CO2- 

Perfluorododecanoate  PFDoA F(CF2)11CO2- 

Perfluorotridecanoate  PFTriA F(CF2)12CO2- 

Perfluorotetradecanoate  PFTetA F(CF2)13CO2- 

Perfluoropentadecanoate  PFPA F(CF2)14CO2- 

Perfluorohexadecanoate  PFHxDA F(CF2)15CO2- 
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Table 2.1: Continues 

Fluorotelomer carboxylates (FTCAs, 

FTUCAs) 

6:2 fluorotelomer carboxylate  6:2 FTCA F(CF2)6CH2CO2- 

6:2 fluorotelomer unsaturated carboxylate  6:2 FTUCA F(CF2)6CHCO2- 

8:2 fluorotelomer carboxylate  8:2 FTCA F(CF2)8CH2CO2- 

8:2 fluorotelomer unsaturated carboxylate  8:2 FTUCA F(CF2)8CHCO2- 

10:2 fluorotelomer carboxylate  10:2 FTCA F(CF2)10CH2CO2- 

10:2 fluorotelomer unsaturated carboxylate  10:2 FTUCA F(CF2)10CHCO2- 

Fluorotelomer sulfonates (FTSs) 6:2 fluorotelomer sulfonate  6:2 FTS THPFOS F(CF2)6CH2CH2SO3- 

 8:2 fluorotelomer sulfonate  8:2 FTS F(CF2)8CH2CH2SO3- 

 10:2 fluorotelomer sulfonate  10:2 FTS F(CF2)10CH2CH2SO3- 
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 Moreover, there are various PFCs, of which two types have been widely utilised by a 

variety of industries. These are perfluorocarboxylic acids (PFCAs), identifiable by their 

structures, F(CF2)xCOOH, and perfluorosulfonic acids (PFSAs), F(CF2)xS(O3)H. These PFCAs 

and PFSAs are acids which are readily ionised and thus can be negatively charged due to the 

loss of a proton, leading to their being referred to as perfluorocarboxylates and 

perfluorosulfonates, respectively (Schröter-Kermani et al., 2013). The most researched and 

reported of these compounds, particularly in ecotoxicology studies, are perfluorooctanoic acid 

(PFOA, F(CF2)7COOH) and perfluorooctosulfonic acids (PFOS, F(CF2)8S(O3)H) (Mudumbi et 

al., 2014a,b,c; Zhao et al., 2015; Shoeib et al., 2016; Yang et al., 2016). Recently, perfluorobutane 

sulfonate (PFBS, C4HF9O3S) has also been suggested to be a persistent organic pollutant (POP) 

once it enters the environment (Zhao et al., 2015; Shoeib et al., 2016; van den Dungen et al., 

2016). In production techniques for these fluorocarbons, the substitution of hydrogen atoms 

by fluorine atoms from suitable precursors allows for the conferring of particular 

physicochemical properties to these compounds (Hidalgo and Mora-Diez, 2016), such as 

chemical stability, non-wetting, fire, including weather resistance, and hydrophobicity and 

oleophobicity. They can lower the surface tension of viscous matrices, are irradiation-resistant 

and biologically non-biodegradable (Ludwicki et al., 2015; Bennett et al., 2015; Niu et al., 2016), 

thus, persist in the environment. 

2.3 Molecular structure of polyfluoroalkyl compounds 

 Polyfluoroalkyl compounds are characterised by a perfluorinated carbon chain 

coupled with one special functional group at the end of the molecular chain, which can be 

either a carboxylic (-COOH) or a sulfonic group. The fluorinated carbon chain of PFCs directly 

influences their hydrophobicity, while the functional group permits the molecules to be 

hydrophilic. Different functional groups have shown diversified behaviour once introduced 

into different environments (Senevirathna, 2010). Thus, some PFCs, that is, predominantly 

PFOA and PFOS, have been detected in various environmental matrices; although current 

research has abundantly indicated that other PFCs, such as PFBS, should not be ignored. 

2.4 Diversified application of polyfluoroalkyl compounds 

 Since PFCs have been manufactured for various applications due to their unique 

physical properties (Hagenaars et al., 2011), to date, numerous industries have used these 

molecules as building blocks to form fluorinated polymers such as perfluoralkylpolymers. 
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These polymers should not be confused with fluoropolymers, such as 

polytetrafluoroethylene, that is, TeflonTM, which are aliphatic compounds (Møskeland, 2010; 

Ebnesajjad, 2013). In certain cases, PFCs are used in the manufacturing process of 

fluoropolymers and later appear as residues in the final product (Herzke et al., 2007; 

Møskeland, 2010). This, in our opinion, has diversified their utilisation, which exacerbates 

their prevalence, even in areas presumed free of such contaminants, for example the Canadian 

Arctic region (Butt et al., 2008). 

 PFC-generated fluoropolymers are used as additives in hydraulic fluids, photographic 

emulsifiers and paints, to lower their surface tension, and/or as coating in carpets, and textiles 

to allow stain and water repellency (Herzke et al., 2007; Møskeland, 2010; Martens, 2013). 

Furthermore, an exceptional and important application of PFCs has been in specialised 

aqueous film-forming foams (AFFFs) due to their ability to form films even at high 

temperatures, a requirement when extinguishing fires (Place and Field, 2012; Sha et al., 2015). 

Due to their versatility, various other industrial applications and processes have since been 

developed, thus giving rise to new products such as lubricants and motor oil additives, sports 

clothing, medical equipment, extreme weather military uniforms, and waterproof breathable 

fabrics (Bao et al., 2014; Wang et al., 2014a,b; Niu et al., 2016). PFCs have also been used as 

polymerisation aids in the production of components for electronic products (Senevirathna, 

2010). Therefore, such diversified applications of these materials can result in far-reaching 

consequences, including consistent and prolific release, as well as transportation into living 

organisms. Table S1 and S2 highlight various polymers and non-polymers which have been 

extensively used in several industry applications worldwide (provided as supplementary 

material, together with Table S3-S6). 

2.5 Polyfluoroalkyl compounds in the environment: discharge, 

 transportation, occurrence and persistence 

2.5.1 Discharge of PFCs directly into the environment 

 As a result of excessive use, PFCs have found ways into the environment. As such, it 

has been reported that PFCs are discharged into the natural environment both directly and 

indirectly (Wang et al., 2014a, b, 2015a, b). Thus, direct discharge has been regarded as the 

primary mechanism by which PFCs enter the environment from their life cycle (that is, 

manufacture, usage and disposal) when assessing their products, derivatives, residues or as 
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unintentional by-products, that is, impurities in consumer products (Li et al., 2015; Kotthoff et 

al., 2015). Their indirect discharge is suggested to be through transformation and/or 

degradation resulting in their presence in wildlife, and humans (Guzmàn at al., 2016; Gomis 

et al., 2016); as well as from fluorotelomer-made products through abiotic or biotic processes 

(Butt et al., 2014). 

 It has further been indicated that PFCs and their by-products, including precursors, 

may enter the environment via various other routes, such as (a) spilled discharge or through 

solid waste, for example exhaust/fuel gases from combustion, domestic wastewater, sludge, 

and from manufacturing premises (Li et al., 2015; Kwon et al., 2016; Bečanová et al., 2016); (b) 

either by volatilisation along the supply chain from manufacturers to downstream industrial 

or end-consumers (OECD, 2013; Oliaei et al., 2013); (c) or through fugitive release by end-

users, especially where PFCs containing products (for example, fluoropolymer manufacturing 

sites, paper and textile factories) including their precursors have been processed into final 

products (Kotthoff et al., 2015). Furthermore, their incorporation into raw materials/consumer 

products can result in their wash-off directly into the environment (Kotthoff et al., 2015; 

Bečanová et al., 2016). In most cases, unsuitable treatments methods are applied. For instance, 

the use of sewage sludge as a fertiliser, untreated outgassing from landfills or insufficient 

wastewater treatment, can further exacerbate contamination of PFC-free environments or the 

food chain (Gallen et al., 2016; Kwon et al., 2016). 

2.5.2 Occurrence, transportation and persistence of polyfluoroalkyl compounds 

 Polyfluoroalkyl compounds, especially PFOA and PFOS, have been known to display 

both persistence and long-range transportation (LRT) once they have entered the 

environment. This has been confirmed by their ubiquitous presence in various environmental 

matrices far away from anthropogenic activities (Stock et al., 2010). However, the fact that 

PFCs have different properties than their counter parts, that is BFRs and PCBs for which 

models of environmental persistence and LRT have been developed, result in the complexity 

of developing suitable models for their persistence and LRT, which can conclusively explain 

the mechanisms of how PFCs are transported in the environment (Møskeland, 2010). This is 

because PFCs (that is PFOA and PFOS) are strong ionic acids and surface wetting agents, as 

opposed to being hydrophobic apolar compounds, characteristics associated with BFRs and 

PCBs (Fliedner et al., 2012). The pKa (or acid-dissociation constant) of these substances has 

been estimated to be near 0 for PFCAs, for example, PFOA, and around -3 for PFSAs, for 
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example PFOS (Campbell et al., 2009; Møskeland, 2010), making them some of the most 

effective surfactants. 

 Additionally, it has been indicated that the perfluoroalkyl tail of these substances is 

one of the most hydrophobic molecular fragments and anionic/acidic functional groups (CO2-

, SO3-). Consequently, it has been suggested that PFCAs and PFSAs have a strong affinity to 

water with a hydrophilic head, whereas the rest of the molecule is hydrophilic (Xiao et al., 

2013). Thus, these molecules are likely to have a high LRT in the environment through water 

transportation (for example, by dispersion in lakes and rivers, including sorption to 

atmospheric moisture) as previously indicated by some studies (Schindler et al., 2013; Shan et 

al., 2015; Kirchgeorg et al., 2016).  

 According to Yao et al. (2015) and Guo et al. (2015), the uniqueness of PFCs and the 

mechanism of their transportation into the environment has remained an active area of 

research; and for this reason, part of the recommendations proposed include scientists being 

able to deal with the unique environmental transportation and partitioning processes of PFCs; 

that is, that researchers need an additional set of model parameters to account for the ionic 

and surfactant nature of these compounds, their pKa (the acid-dissociation constant), surface-

water sorption coefficients, including their critical micelle and aggregate-formation 

concentrations (Zhou et al., 2010a; Zareitalabad et al., 2013). 

 Recent research has since reported the distribution of PFCs globally (Rankin et al., 2015; 

Washington and Jenkins, 2015a; Routti et al., 2015). Overall, PFCs have been found in surface 

river waters, or alternatively, in wastewater treatment plants in South Africa (Mudumbi et al., 

2014b; Adeleye, 2016; Chen et al., 2016; Pitarch et al., 2016; Shiwaku et al., 2016; Lopez et al., 

2015; Lescord et al., 2015; Lu et al., 2016; Hu et al., 2016; Zhang X et al., 2016). It has also been 

indicated that water currents and evaporation/precipitation have facilitated the 

transportation of these substances into remote areas, such as the arctic, remote islands and 

other remote inland environments, for example alpine lakes, etc. (Lescord et al., 2015 ; Wang 

Z et al., 2015 ; Yamazaki et al., 2016). Additionally, evidence suggests that among all 

environmental media, the ocean is likely to be the largest global reservoir of PFCs such as 

PFOA (Cousins et al., 2011), thus, inland deposition through the water cycle is inevitable. 

 PFOA and PFOS have dominated most reports, with PFOS being found in higher 

concentration levels, that is, 271.10 g/L (Llobregat river water), in a recent study from Spain 

(Campo et al., 2015). Moreover, PFBS has recently received attention among the list of PFCs 
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with researchers believing that it should not be overlooked, with Zhou et al. (2013) indicating 

that although PFBS has a lower adsorption potential than PFOA and PFOS, which suggests 

its lower potential to bioaccumulate in aquatic biota, its aquatic and ecological risk must be 

assessed, because of the substance’s increasing usage, release and transportation.  

 Over the past two decades, research projects have demonstrated the susceptibility of 

living organisms to PFCs. They have thus been detected in human sera (Ludwicki et al., 2015; 

Shrestha et al., 2015), in animals (Filipovic et al., 2015; Koponen et al., 2015), and plants 

(Mudumbi et al., 2014c; Blaine et al., 2014a b; D’Hollander et al., 2015; Yang et al., 2015). 

Additionally, some reports have indicated that, although fluorotelomer alcohols (FTOHs), 

fluorotelomer sulfonamindes (FSAs) and fluorotelomer sulphonic acids (FTS) have been 

regarded as the most substantial PFC precursors, several  hundred other PFCs are  considered 

capable of conversion into PFCAs and PFSAs (Gomis et al., 2015; Sun et al., 2016). Additionally, 

precursors to PFCs, such as FTOHs, are volatile and can be released from products under 

ambient conditions and later be transformed into PFCs (EPA, 2014). As a result, it has been 

argued that the occurrence of PFCs and its salts is not only due to direct release of these 

compounds into the environment, but is also due to the indirect conversion of many other 

PFCs (Kim et al., 2015). It has also been indicated that both direct and indirect sources of these 

compounds were considered in multimedia models that account for the occurrence of these 

substances (Kim et al., 2015; Gomis et al., 2015), with the modelling of PFOA distribution and 

its higher homologues being reported in a review (Cousins et al., 2011). The models were 

generally found to support the conclusion that direct use of PFOA and PFOS-based products 

was the dominant global environmental contributor for these two PFCAs (OECD, 2013). 

2.5.3 Polyfluoroalkyl compounds’ precursors of concern 

 Various reports have suggested that PFCs enter the environment by either direct or 

indirect sources. Direct sources are regarded as the discharge of PFCs into the environment as 

such, regardless of whether it is intentional release or otherwise (Buck et al., 2011; Liu, 2015); 

while indirect sources imply the formation of PFCs by means of biotic or abiotic degradation 

from other perfluoroalkyl and polyfluoroalkyl substances (PFASs), regarded, in this case, as 

precursors to PFC (pre-PFCs), as they enter various environmental mediums (Buck et al., 2011; 

Liu, 2015). Thus, researchers believe the indirect sources play a significant role in the 

prevalence of PFCs in humans and the environment (Benskin et al., 2013; Lee et al., 2014; Liu, 

2015; Avendaño and Liu, 2015). The OECD released a list of 615 pre-PFCs that have the 
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potential to degrade into PFCA (OECD, 2007). Table S3 depicts examples of these types of 

substances, and most of which there is limited data available on their pathways into the 

environment. 

 Furthermore, examples of pre-PFCs have included mono-and di-esters such as Sodium 

2-(N-ethylperfluorooctane-1-sulfonamide) ethyl phosphate (SAmPAP), Sodium bis-[2-(N-

ethylperfluorooctane-1-sulfonamido) ethyl] phosphate (diSAmPAP), N-ethyl perfluorooctane 

sulfonamide (EtFOSA), etc. According to Wellington (2014), not only are SAmPAP esters 

persistent in the ecosystem, but they are precursors of PFOS, and very little evidence is 

available on their lifetime and transformation. Hence, it has been indicated that most PFAS-

containing products that humans rely on daily contain pre-PFCs (Herzke et al., 2012; Gebbink 

et al., 2013; Liu, 2015), which, according to available data, have not been investigated 

(Wellington 2014; Liu, 2015), suggesting a potential threat to consumers. For instance, the 

PFOS-precursor EtFOSA is used in the manufacturing of sulfluramid, a pesticide for 

controlling leaf-cutting ants (Löfstedt Gilljam et al., 2015). Ultimately, this explains why PFOS 

has largely been detected in the environment, with its plant concentration levels higher in 

certain countries, like in South Africa (Mudumbi et al., 2014b), where agriculture is an integral 

part of the economy. Similarly, a lengthy biodegradation half-life of N-ethyl perfluorooctane 

sulfonamido ethanol (EtFOSE), another pre-PFOS, and recalcitrant nature of SAmPAP were 

recently reported by Benskin et al. (2013), and which, according to the authors, explains the 

elevated concentrations of PFOS-precursors in the environment. However, it is argued that 

clarity is needed on whether SAmPAP can be a potential significant source of PFOS in benthic 

and higher trophic level organisms (Benskin et al., 2013). It has been further suggested that the 

development of enhanced (i.e., residual-free) SAmPAP standards would be of great assistance 

to scientists who assess the stability and environmental behaviour of these substances 

(Benskin et al., 2013). 

 On the other hand, recent data has revealed the potential of fluorotelomer-based 

polymers to degrade and to form PFOA and related compounds (Washington et al., 2015b). 

Hence, researchers have suggested that elevated concentrations of pre-PFCs observed in 

studied samples explain the large distribution of PFCs in the natural environment and 

beyond, i.e. to areas far from their production (Benskin et al., 2013; Washington et al., 2015b), 

and these precursors thus might constitute the major sources of PFOA, PFOS, etc. 

(Washington and Jenkins, 2015a) but have also called for more investigations to be conducted 

(Washington et al., 2015b). 
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2.5.4 Bioaccumulation of PFCs in biota and humans 

 Bioaccumulation potentials are estimated using what is known as the partition 

coefficient (Kow) between octane-water phases (OECD, 2013). However, because PFCs are 

surfactants, an emulsion can be formed during measurements. It has been reported that Kow is 

unknown for most PFCs (OECD, 2013). Therefore, to determine the bioaccumulation potential 

of PFCs in environmental media, either a bioaccumulation factor (BAF) or a bioconcentration 

factor (BCF), which is the extent to which pollutants concentrate from water into other 

matrices (Chiou, 2003), can be estimated by dividing the average concentrations in matrices 

by the concentrations of PFCs in a water environment (Senevirathna, 2010). BAF or BCF 

should not be confused with biomagnification factor (BMF) used to refer to the ratio of 

contaminant concentration in biota to that in the surrounding water when the biota was 

exposed via contaminated food (Nowell et al., 1999). It is determined by dividing the average 

concentrations in predators to those in prey (Senevirathna, 2010).  

 As a result, BMF has been quantified globally in various species, particularly in fish 

(Lescord et al., 2015; Ahrens et al., 2015; Hong et al., 2015; Bossi et al., 2015; Svihlikova et al., 

2015, Ahrens et al., 2016), polar bears (Letcher et al., 2014; Jenssen et al., 2015), including 

albatross (Chu et al., 2015), and seals (Routti et al., 2015), to name a few, with results indicating 

that, long chained PFCs are bioaccumulative (Kakuschke and Griesel, 2016; Zhai et al., 2016), 

and can ultimately biomagnify in the food chain (Zhang et al., 2015; Franklin, 2015) and in 

humans (Fujii et al., 2015; Goudarzi et al., 2016). Table S4 reports on the bioaccumulation 

potential (BMF) of selected PFCs in certain aquatic organisms. 

 As such, various PFSAs and PFCAs have been detected in human sera in the general 

population (Bennett et al., 2015; Gomis et al., 2016) of which PFOA, PFOS and PFBS are the 

most frequently detected substances (Li et al., 2011; Arbuckle et al., 2013; Bao et al., 2014; Zeng 

et al., 2015, Lorber et al., 2015), with both PFOA and PFOS having an estimated 1000 days 

residence time in human blood (OECD, 2013). Nevertheless, uncertainties remain among 

scientists as to what the possible health effects on humans, exposed to PFCs could be, since, 

of the PFCs that have been found to accumulate in the human body, the levels of accumulation 

have been seen decreasing slowly over time (ATSDR, 2015, 2016). Conversely, available data 

have indicated that the ability of PFCs to bioaccumulate in the human body, also referred to 

as body burden, has increased concerns about the possibility of these compounds to cause 

detrimental health effects in humans (ATSDR, 2015, 2016). Hence, a number of human studies 
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have reported that certain PFCs may affect foetus and child development, including child 

growth, learning and behaviour (Ek et al., 2012; ATSDR, 2015, 2016); while others have found 

inconsistent associations between PFOA or PFOS serum levels and changes in reproductive 

hormone levels (Raymer et al., 2012; Specht et al., 2012; Joensen et al., 2013). On the other hand, 

conflicting results were found in studies investigating the association of sperm parameters 

(Toft et al., 2012; Raymer et al., 2012; Joensen et al., 2013) and impaired fertility (Fei et al., 2012; 

Vestergaard et al., 2012; Whitworth et al., 2012). Similarly, evidence has further indicated that 

exposure to PFCs, such as PFOA, increases cholesterol (Frisbee et al., 2010; Eriksen et al., 2013), 

and affects the immune system (ATSDR, 2015, 2016). In addition, increases in the incidence of 

prostate, kidney, and testicular cancers have been reported in workers and communities living 

near PFCs manufacturing facilities (ATSDR, 2015). Nonetheless, there are limited data on 

whether PFCs exposure can cause cancer in humans, suggesting that more research is needed 

in this regard. Additionally, reproductive toxicity studies have also revealed a possible 

associations between serum PFC levels and changes in reproductive hormone levels in men. 

Nevertheless, there has been inconsistencies in the reported results. For instance, Raymer et 

al. (2012) found significant positive correlations between PFOA levels and free testosterone 

and LH levels, but not with other reproductive hormones; while, in a similar study by Joensen 

et al. (2013) no significant associations between reproductive hormone levels and serum 

PFOA, and other PFCs, such as PFHxS, or PFHpS were found. In contrast, no associations 

between serum PFOS levels and reproductive hormones were found by Raymer et al. (2012); 

while, a significant negative correlation between PFOS and testosterone, free testosterone, and 

free androgen levels was found by Joensen et al. (2013) in young men. Table S5 provides a 

brief toxicological summary of available epidemiological data present in the reviewed 

literature on reproductive effects in humans exposed to PFCs. 

 Furthermore, even though PFCs have been studied in a number of human 

epidemiological studies and their prevalence reported in human tissues, including blood 

samples (Genuis et al., 2013), there are still no reports of human deaths from accidental or 

intentional acute exposure to high concentrations of PFOA or PFOS (ATSDR, 2015). However, 

most studies have indicated the potential associations between mortality and long-term 

exposure to these substances. For example, a study by Alexander et al. (2003) found no death 

increases from all causes led by being exposed to PFOS, and Leonard et al. (2008) indicated 

the same for all illnesses related to PFOA’s exposure. 
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2.5.5 Polyfluoroalkyl compounds pathways into humans 

 The presence of chemical compounds in the environment does not automatically 

translate into human exposure. Typical exposure depends on a number of parameters, 

including, but not limited to, the degree of exposure. Thus, a growing body of evidence 

suggests that, human exposure to PFCs and their potential precursors can be divided into 

three major categories, namely, occupational exposure, general human exposure, and 

exposure from mother to foetus or infants. 

2.5.5.1 Occupational exposure 

 This form of exposure occurs during the performance of normal and legally delegated 

job requirements/responsibilities. Thus, workers in facilities that manufacture PFCs or in the 

formulation and production amenities that use products containing PFCs, direct exposure is 

through the handling of these preparations, having contact with processing liquids, 

wastewater or treated products, or when carrying out maintenance, sampling, testing, or other 

procedures. For example, high level of PFOS and PFOA were found in workers at PFCs 

production sites (Freberg et al., 2010; OECD, 2013). 

2.5.5.2 General human exposure 

 A growing body of scientific evidence has also revealed that, general human exposure 

to PFCs and its precursors occurs by way of (i) indoor and outdoor air and aerosols, (ii) 

contaminated drinking water, (iii) food, and (iv) dust (D’Hollander et al., 2014, 2015; Pérez et 

al., 2014; Duong et al., 2015; Brambilla et al., 2015; Filipovic et al., 2015; Koponen et al., 2015; Liu 

et al., 2015; Schlummer et al., 2015). Accordingly, PFCs and their precursors can be found in 

various food items (Post et al., 2012; Yeung et al., 2013; OECD, 2013). In addition, it has been 

argued that, exposure via dust particles might be a minor exposure pathway for adults in 

comparison to dietary intake (Xu et al., 2013; OECD, 2013), although, it may be a significant 

pathway for infants and toddlers (Fromme et al., 2009; D’Hollander et al., 2010; OECD, 2013). 

Overall, tap water and agricultural produce, irrigated with contaminated river water, have 

been found to be a significant source of exposure for humans (Tabtong et al., 2015; Chen S et 

al., 2016; Hurley et al., 2016). Recent research has indicated that paper and packaging for food, 

as well as different materials used for food contact, play a contributory role in the 
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contamination of food from PFCs (Surma et al., 2015; Shoeib et al., 2016). Table 2.2 depicts 

evidence of PFCs in wrappers from different food contact paper, food brands and beverages. 

Table 2.2: Evidence of PFC content in fast food wrapper (Schaider et al., 2017) 

 Brands tested (n) Samples tested (n) PFC content (%) 

Food contact wrapper (by type)    

Sandwich/burger 20 138 38 

Dessert/bread 9 69 56 

Tex-Mex 3 42 57 

Food contact wrapper (all) 27 248 46 

Food contact paperboard 15 80 20 

Noncontact paper 9 15 0 

Paper cups 9 30 0 

Other beverage containers 10 25 16 

Miscellaneous 7 9 0 

2.5.5.3 Foetal and/or infant exposure to PFCs 

 The exposure of foetuses and/or infants to PFCs has been of particular concern and is 

not well understood. Foetuses and infants have a higher risk of PFC exposure (Fromme et al., 

2009; OECD, 2013). However, from mammalian studies, it is known that PFCs are able to 

transcend the placenta and enter the foetus (Gützkow et al., 2012). From a human perspective, 

it is suggested that this exposure occurs in two ways, namely, (i) through the placenta to the 

foetus (Cariou et al., 2015), and (ii) from lactating mothers to their infants through breast-

feeding (Mogensen et al., 2015; Kang et al., 2016). 

 However, Fromme et al. (2009) have argued that the mechanism by which PFCs are 

transferred from the mother’s blood to breast milk remains unclear, although further evidence 

has suggested that PFCs are strongly bound to the protein fraction in the blood (Han et al., 



Chapter 2: Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, 
suggested substitutes and removal strategies 

29 

 

2003; Li J et al., 2013). In addition, it was previously reported that, PFCs, that is, PFOA, levels 

in maternal blood decreased from 54 to 7% after six months and 12 months, of breast-feeding, 

respectively, compared to their levels in the child’s blood (Thomsen et al., 2010), while, PFOA 

levels in the serum of six-month-old infants were 4.6 times higher than maternal blood levels 

at birth (Fromme et al., 2010), suggesting that other exposure pathways had contributed to the 

sudden increase. Similarly, breast-fed infants of around six months of age take up 4.1 ng kg-

1bw d-1 of PFOA, which is 15 times higher than the uptake in adults (Haug et al., 2011). The 

question is: “did age-related exposure play a role in this instance?” It is unclear at this point, 

simply because the majority of studies that have studied the correlation between age and PFC 

concentrations in blood have not observed any significant effects (Calafat et al., 2007; Fromme 

et al., 2009); although, PFCs such as PFOA and PFOS do not biodegrade. It might be expected 

that the BMF would rise with age, just as it was reported with other POPs in Duarte-Davidson 

and Jones (1994) and Knower et al., (2014). 

2.6 Toxicity and health risks associated with perfluoroalkyl 

 compounds 

 The toxicity of PFCs differ from other POPs, and their toxicokinetic mechanisms are 

still unknown (Senevirathna, 2010). Nevertheless, medium and long-chained PFCs are 

believed to be more toxic than short-chained PFCs (Renner, 2006; Senevirathna, 2010). 

Accordingly, both PFOA and PFOS seem to be readily absorbed through oral intake (that is 

ingestion or gaseous), but are poorly eliminated from the human body (Lau et al., 2007; 

Møskeland, 2010). Both PFOA and PFOS do not biodegrade substantially, due to their 

stability, and thus, tend to accumulate into the kidney, liver or possibly other organs, as a 

result of attaching to certain proteins, such as β-lipoproteins, albumin and fatty acid binding 

proteins in the liver, as it has been demonstrated to be the primary organ targeted by PFCs 

(Fang et al., 2015; Midgett et al., 2015; Li et al., 2016). To elaborate on this, PFCs have previously 

been regarded as peroxisome proliferators (PPs), suggesting that they can lead to a variety of 

toxicological effects on the liver, including carcinomas (Vaughn et al., 2013; Krafft and Riess, 

2015). PPs include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial 

solvents, herbicides, food flavourings, leukotriene D4 antagonists and hormones (Reddy, 

2004). Furthermore, PFOS and PFOA have half-lives in humans ranging from two to nine 

years, but it has been argued that, this half-life coupled with continued exposure can increase 

the humans’ body burden and ultimately lead to levels that would result in long-term adverse 
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health outcomes (EPA, 2014; ATSDR, 2015). Chronic toxicity reports have associated PFOA 

exposure with tumours (Rosen et al., 2009; Wan et al., 2013) while severe and intermediary 

duration oral studies on rodents have indicated risks associated with potential stunted 

development, reproductive and other systemic growth defects (EPA, 2014). It was also been 

suggested that, PFOA and PFOS are able to compete with thyroxin, which is linked with the 

human thyroid hormone transport protein transthyretin (Weiss et al., 2009; Møskeland, 2010). 

In general, this appears to be the effect of longer-chained PFCs than shorter-chained PFCs (for 

example, PFBS). This finding has prompted a shift in industry practice to favour shorter-chain 

PFCs (Renner, 2006), which is detrimental to the efforts to eradicate PFC usage worldwide 

(Jensen et al., 2015). Table 2.3 depicts a brief summary of the results from various studies on 

PFCs’ toxicities in biota. 

 Moreover, recent studies have demonstrated that PFCs may induce reactive oxygen 

species (ROS) generation and induce deoxyribonucleic acid (DNA) damage in the cells of 

humans and livers of wildlife animal (Reistad et al., 2013; Mashayekhi et al., 2015). 

Additionally, in a retrospective cohort mortality study in which more than 6000 PFOA-

exposed employees were involved, results reported elevated standardised mortality ratios for 

kidney cancer, as well as a significant increase in diabetes mortality for male workers, 

although the study indicated that further investigations were required to substantiate the 

findings (Lau et al., 2007; EPA, 2014). Evidence from Melzer et al. (2010) and White et al. (2011) 

also reported that higher concentrations of PFOA and PFOS in human sera were associated 

with thyroid disease in elderly persons. However, the study suggested that further analysis 

was required to identify the mechanisms allowing this association (Melzer et al., 2010). 

 In addition, PFOS exposure was also associated with bladder cancer (Chang et al., 2014; 

Grandjean and Clapp, 2015). In vitro and in vivo epidemiologic and immunotoxicologic studies 

reported that high levels of PFCs in adults and children correlated with decreases in IgE levels, 

coupled with increases in antinuclear antibodies, asthma, influenza, and gastroenteritis (Keil, 

2015). To mitigate the health effects associated with long-chain PFCs, it was suggested that 

commercially available alternative short-chain chemicals should replace these long-chain 

PFCs (Poulsen et al., 2005). 
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Table 2.3: Brief summary data on PFOA and PFOS toxicities (Stahl et al., 2011) 

Compound Exposure time Spices type Organ tested Effect  Dosage NOAEL Reference  

PFOA 7 days Japanese guppies n.i. Activity of peroxisomal 

acyl-CoA-oxidase ↑  

2 to 20 mg/kg 

feed 

n.r. Yang, 2010 

14 days  Minnows n.i. Changes in the expression of 

Apo lipoproteins and 

upstream genes 

n.r. n.r. Fang et al., 2010 

90 days Rats (male) Liver  Liver mass ↑ and 

hepatocellular necrosis 

1.7 0.6 Cui et al., 2009 

PFOS 28 days Rats  Liver & other Body weight ↓ , liver mass ↑, 

and altered gene expression 

and fatty acid metabolism in 

the liver, T3 and T4 ↓ 

2 to 20 mg/kg 

feed 

n.r. Curran et al., 2008 

14 weeks Rats (male) Liver Hypertrophy and 

vacuolization of the liver 

n.r. 0.37 Seacat et al., 2003 
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Table 2.3: Continues 

PFOS 26 weeks Cynomolgus 

monkey 

Liver & other Centrilobular vacuolization, 

hypertrophy of the liver, T 3 

↓, TSH ↑, HDL ↓, and 

bilirubin, cholesterol 

concentrations ↓ 

n.r. 0.03 Seacat et al., 2002 

1 and 4 

months 

Fresh water larvae  n.i. Deterioration of behavioural 

and activity parameters 

(larvae were less active, less 

able to avoid attackers, or 

less efficient in foraging) 

> 10 μg/L 10 μg/L Van Gossum et al., 

2009 

T3: tri-iodo thyronine; T4: thyroxin; Upward arrow: increased; downward arrow: decreased; n.r.: not reported; n.i.: not indicated 

 



Chapter 2: Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, 
suggested substitutes and removal strategies 

33 

 

2.7 Commercially available alternatives to long-chain perfluoroalkyl 

 compounds 

 For decades, long-chain PFCs, including PFOA and PFOS, were used in various 

industrial applications (Wang et al., 2014a, b; Taniyasu et al., 2015; Niu et al., 2016). However, 

concerns over the effect of these compounds in humans and the environment led to an interest 

in exploring suitable alternatives (Jenssen et al., 2015). Thus, there are three types of available 

alternatives to long-chain PFCs, namely, (i) substances with shorter per- or polyfluorinated 

carbon chains; (ii) non-fluorine-containing substances; and (iii) non-chemical techniques 

(OECD, 2013). 

2.7.1 Substances with shorter per- or polyfluorinated carbon chains 

 The discontinuity of “C8-chain”-fluorinated compounds manufacturing was agreed 

upon between the manufacturers of these chemicals and regulatory agencies (for example, the 

Stockholm Convention on POPs) decades ago. Hence, equivalent “short-chain” fluorinated 

substances were suggested as alternative replacements, with indications suggesting that they 

were less hazardous and can be manufactured as substitutes for applications in which long-

chain PFCs were used (Holt, 2011; OECD, 2013; Jenssen et al., 2015). Thus, examples of 

suggested replacement compounds included (i) 6:2 fluorotelomer-based chemicals; (ii) 

perfluorobutane sulfonyl fluoride (PBSF)-based derivatives; (iii) mono- and polyfluorinated-

ether-functionality compounds; (iv) fluorinated oxetanes; and (v) other fluorinated polymers 

(Buck et al., 2011; OECD, 2013). 

 Furthermore, it has been indicated that the most important short-chain PFCs were 

perfluorobutane sulfonate (C4, PFBS) and perfluorohexane sulfonic acid (C6, PFHxS) (Jenssen 

et al., 2015). Table 2.4 depicts some of the commonly known commercially available short-

chain alternatives. 
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Table 2.4: Some of the commonly known commercial alternatives to long-chain PFCs’ (Jenssen 

et al., 2015) 

Compound and Acronyms Chemical structure 

Perfluorobutane sulfonic acid (PFBS) 

 

Perfluorohexane sulfonic acid (PFHxS) 

 

N-Methyl perfluorobutane 

sulfonamidoethanol (MeFBSE) 

 

N-Methyl perfluorohexane 

sulfonamidoethyl acrylate 

 

Perfluorobutanoic acid (PFBA) 

 

Perfluorohexanoic acid (PFHxA) 
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Table 2.4: Continues 

Perfluorobutyl (PFBPA) 

 

Perfluorohexyl phosphonate (PFHxPA) 

 

4:2 Fluorotelomer alcohol (4:2 FTOH) 

 

6:2 Fluorotelomer phosphate/mono[2-  

(perfluorohexyl)ethyl] phosphate 
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2.7.2 Non-fluorine-containing substitutes 

 Non-fluorine containing compounds with similar properties to those seen in PFCs are 

available commercially and some have been used in various industrial applications (OECD, 

2013), namely (i) naphthalenes or biphenyls used as water repelling agents for rust protection 

systems, marine paints and coatings, amongst others; (ii) fatty alcohol polyglycol ether 

sulphate used as a levelling and wetting agent; (iii) sulfosuccinates used for surface coating, 

paints and varnish; (iv) hydrocarbon surfactants used in the photographic industry; (v) 

siloxanes and silicone polymers used for impregnation of textiles, leather and carpets; (vi) 

stearamidomethyl pyridine chloride which is also used for the impregnation of textiles, 

leather and carpets; and (vii) polypropylene glycol ether, amines, and sulphates. However, it 

has been noted that these alternatives may have limited usability when compared to their 

long-chain predecessors (Holt, 2011; OECD, 2013). Conversely, some of these alternatives 

have been determined to be hazardous to humans (Dong et al., 2013; Gorrochategui et al., 

2014), although conclusive results are still required. In addition, critics suggest the health and 

environmental profiles of these substitutes to be fully tested before their large scale 

commercialisation. 

2.7.3 Potential health impact associated with short-chain perfluoroalkyl 

 compound alternatives 

 Firstly, a recent study has indicated that various known short-chain PFCAs and PFSAs 

have similar physicochemical properties as those seen in long-chain PFCs, such as high water 

solubility, persistency, amongst others (Gomis et al., 2015). Two decades ago, a trend driven 

by concerns over long-chain PFCs and their undesired impact on humans and environmental 

health, resulted in the development of alternative compounds worldwide among PFC 

producers, in order to replace C8-fluorocarbons (Wang et al., 2013).  

 However, information on their impact, including their bioaccumulative potential in 

the environment, has generally remained limited and is not readily available (Wang. et al., 

2013). The OECD (2013) has indicated that this lack of information has been due to 

confidentiality and trade secret concerns, while Wang. et al. (2013) have argued that these 

alternatives to long-chain PFCs, applied similar production techniques such as polymerisation 

which suggested that they may enter the environment, including surrounding production 
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sites where they were produced and used, which, in the long term, will mimic similar 

distributary mechanisms observed for long-chain PFCs.  

 Accordingly, various studies have reported short-chain alternatives to PFCs in several 

matrices using similar research techniques to those applied for long-chain PFCs. For instance, 

elevated levels of PFBS and other precursors have been detected in water samples from 

Germany (Möller et al., 2010), Japan (Ahrens et al., 2010) and the Northwest Pacific Ocean (Cai 

et al., 2011). 

 Nevertheless, published research has argued that due to concerns over intellectual 

property rights, required data to assess the safety of these substitutes has not yet been 

established (OECD, 2013; Wang. et al., 2013). The lack of such information has made it possible 

for critics to question whether these alternatives have been fully scrutinised prior to their 

commercialisation (Wang. et al., 2013). There has been no focus on the environmental health 

impact of PFC substitutes in countries with lower or non-existent regulatory requirements, 

therefore, regulatory monitoring and reporting mechanisms are non-existent even for long-

chain PFCs; for example, in South Africa. This reality has further inhibited researchers, 

regulators and other civil society stakeholders, from assessing and developing strategies that 

can minimise the risks associated with these substitutes; without monitoring activities and 

studies into the environmental fate and potential adverse effects of PFC substitutes. It is 

therefore difficult to mitigate their impact in the long term (Goldstein et al., 2013; Wang. et al., 

2013). 

 There are suggestions which indicate that short-chain PFCs alternatives are less 

bioaccumulative (Wang. et al., 2013) and toxic (Borg and Hakansson, 2012), although recent 

scientific evidence has suggested that short-chain PFCs have shown a higher uptake into the 

leaves, stems and fruits of plants (Krippner et al., 2014, 2015). This ultimately suggests that 

these contaminated florae will constitute a major exposure pathway for humans. Among the 

PFC alternatives, that is, PFBS, PFBA, PFHxS and PFHxA (Krippner et al., 2015), PFBS has 

been shown to be persistent in the environment, a characteristic observed for C8-homologues 

(Wang. et al., 2013). Although, PFBA, PFHxS and PFHxA, including PFBS, have shorter half-

lives in both humans and biota than their longer-chain homologues (Iwai 2011; Borg and 

Hakansson, 2012), current studies have reported that some PFHxAs can even have longer 

serum half-lives than long-chain PFCs, such as PFOS, suggesting the unsuitability of using 

these compounds as alternatives (Wang. et al., 2013). 
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 Additionally, the Asahi Glass Company (2006), described PFHxA as being acutely 

toxic, three to five more than PFOA, with PFBS being reported to cause disruptive effects on 

cell membranes (Oldham et al., 2012; Jensen et al., 2015), and having the potential to act as an 

aromatase inhibitor in placental cells (Gorrochategui et al., 2014). PFBS and PFHxS have been 

suggested to have an effect on how lipids are metabolised (Bijland et al., 2011; Jensen et al., 

2015). Thus, PFHxS lead to liver weight increases. Relevant data on the content of short-chain 

PFCs in human organ tissues and PFOA/PFOS are shown in Table 2.5. Hence, in order to 

reduce the potential impact of both long-chain and their suggested substitutes, some novel 

technologies have been developed for either the decomposition and/or treatment of these 

compounds, particularly at the point of use. Currently, these technologies are still at 

laboratory level, and have yet to be implemented on a larger scale. 

Table 2.5: Concentration of short-chain PFCs in five human organ tissues (Pérez et al., 2013; 

Jensen et al., 2015) 

 

PFC substance 

Mean concentrations ng/g w. w. 

Liver  Bone  Brain   Lung   Kidney 

PFBS 0.9 3.2 <LOD 17.8 8 

PFBA 12.9 <LOD 13.5 304 464 

PFPeA 1.4 0.8 <LOD 44.5 <LOD 

PFHxA 11.5 35.6 18.0 50.1 5.6 

PFHxS 4.6 1.8 3.2 8.1 20.8 

FHEA (metabolite of 6:2 FTOH) 92.6 42.5 18.6 2.4 23.7 

PFOA 13.6 60.2 <LOD 29.2 2.0 

PFOS 102 <LOD 4.9 29.1 75.6 

LOD: Limit of detection, w.w.: wet weight  
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2.8 Some of the novel technologies used for the treatment and/or 

 removal of polyfluoroalkyl compounds in water 

 Concerns over the prevalence of PFCs in the environment have increased during 

recent decades. However, the treatment and removal of these compounds from contaminated 

water have remained a challenge. The unique physicochemical properties, including strong 

fluorine-carbon bonds in PFCs, have contributed to these compounds being resistant to most 

conventional treatment technologies (Arvaniti and Stasinakis, 2015).  

 Currently, advanced treatment technologies have emerged with regard to reduction 

processes and advanced oxidation (Arvaniti and Stasinakis, 2015), including electrochemical 

treatment (Schaefer et al., 2015), processes which have been proven to be suitable for the 

treatment of PFCs in environmental matrices. Furthermore, treatment at the point of use can 

be harnessed to reduce PFCs. Some well-established PFC treatment/removal processes 

include the use of adsorption and advanced membrane filtration systems. Overall, all these 

processes are designed for the treatment of potable water and wastewater. 

2.8.1 Granular Activated Carbon adsorption 

 For well-established processes, adsorption has been the most common remediation 

technology used for PFCs, which is based on PFCs adsorption into GAC (Shih and Wang, 

2013; Arias-Espana et al., 2015). Thus, four steps, namely (i) diffusion from the liquid phase, 

(ii) mass transfer on to the solid phase, (iii) internal diffusion (pore and surface diffusion) 

inside an adsorbent, and (iv) electrostatic and/or hydrophobic interaction with the exchange 

site, were identified by Yong (2007) as being critical in the adsorption mechanism using 

activated carbon. Thus, Vecitis et al. (2009) reported that GAC is utilised to remove PFCs, in 

this case PFOA and PFOS, and has been proven effective in removing both substances at more 

than 90% mass of PFC removal/mass of GAC used (mg/g GAC) subsequent to the thermal 

treatment of GAC, with results indicating minimal residual PFC post-thermal treatment 

(Watanabe et al., 2015). However, controversial views have been raised in the literature on the 

ability of GAC to remove PFOS and PFOA. For instance, although GAC has been 

demonstrated to remove PFOS at µg/L levels, this is not the case for PFOA (Senevirathna et 

al., 2010; Appleman et al., 2013). Several other studies have indicated that factors such as 

carbon-fouling and pre-washing, as well as the presence of organic matter and high salinity, 

can decrease PFC removal which affects adsorption and the modification of surface properties 
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of the GAC (Yu and Hu, 2011; Appleman et al., 2013). Additionally, Hansen et al. (2010) have 

indicated that commercial GAC has been mainly used to investigate PFOS and PFOA removal, 

with the removal of other PFCs, including proposed short-chain substitutes remaining 

unknown. 

 Recently, GACs/PFC removal has also been achieved using natural sources such as 

Bambusoideae (bamboo) and Agave sisalana (Deng et al., 2015a; Mudumbi et al., 2015). 

Furthermore, various other adsorbents have been utilised in the treatment and removal of 

PFCs, and have included powdered, activated carbon (PAC), carbon nanotubes, mesoporous 

carbon nitride commercial resins, polymers, maize straw-derived ash, alumina, chitosan, 

goethite, silica, montmorillonite, organo-clay, hexadecyltrimethylammonium bromide 

(HDTMAB)- immobilised hollow mesoporous silica spheres, cetyltrimethyl ammonium 

bromide-modified sorbent, permanently-confined micelle arrays (PCMAs) sorbents and 

electrospun fibre membranes (Senevirathna et al., 2010; Hansen et al., 2010; Zhou et al., 2010b; 

Tang et al., 2010; Deng et al., 2010; Yu and Hu, 2011; Chen et al., 2011; Wang and Shih, 2011; 

Zhang et al., 2011; Deng et al., 2012; Das et al., 2013; Zhou et al., 2013; Dai et al. 2013; Xu et al. 

2013; Yan et al. 2013; Bei et al. 2014; Chularueangaksorn et al. 2014a; Yao et al., 2014; Li and 

Zhang, 2014; Wang et al., 2014; Deng et al., 2015b). However, when comparing PAC and GAC, 

evidence has reported higher and faster removal of PFOS and PFOA using PAC rather than 

GAC (Arvaniti and Stasinakis, 2015); whereby the adsorption equilibrium was reached in 6 h 

during PAC treatment, which escalated to 168 h during GAC treatment (Senevirathna et al., 

2010; Arvaniti and Stasinakis, 2015). A similar trend was also reported by Arias-Espana et al. 

(2015). This suggests that exchange sites in PAC are more suited to PFC removal than those in 

GAC. Therefore, ion/site exchange effectiveness can effectively determine the success of a 

treatment strategy and thus the development of resin based treatment methods. 

2.8.2 Anion resin ion exchange adsorption 

 Numerous studies have indicated the suitability of ion-exchange for the removal of 

pollutants (Alesi and Kitchin, 2012; Shkolnikov et al., 2012). According to Helfferich (1962), 

ion-exchange resins are the most important class of ion exchangers, thus, can be used to adsorb 

POPs.  

 It has been reported how ion-exchange resins can be utilised to exchange unwanted 

ions with hydrogen or hydroxyl group to remove contaminants, including PFCs (Deng et al., 

2010; Senevirathna et al., 2010; Alesi and Kitchin, 2012; Shkolnikov et al., 2012; 
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Chularueangaksorn et al., 2014b). It was reported that an anion-exchanger was better than 

GAC in the removal of PFOA (Chularueangaksorn et al., 2014b), while Appleman et al. (2014) 

demonstrated the effectiveness of an anion exchange in removing PFOS (>92%), PFOA (74%) 

and PFNA (>67%).  

 Nevertheless, regardless of the success of ion-exchange resins, Chularueangaksorn et 

al. (2014b) have indicated that resins are expensive. Thus, the report suggests that they should 

be periodically regenerated for re-use in the removal of PFCs. This suggestion, however, did 

not consider the effect of cross and cumulative contamination as some resin beads may contain 

residual PFCs even after regeneration. Additionally, it has been reported that the rate of 

removal using an anion exchange treatment is largely dependent on the concentration level 

of the contaminant, the concentration of competing ions and the treatment system design (that 

is, flow rate and the size of the resin bed) and the nature of the exchange ions within the resin 

(ITRC, 2008; Cummings et al., 2015). Additionally, Appleman et al. (2014) and Rahman et al. 

(2014) have recommended that further research is needed to effectively comprehend and 

identify the most suitable resins for removal of various pollutants in general, and PFCs in 

particular. These studies also noted that it is necessary to frequently change the resins to 

completely eradicate residual PFCs in the beads. The ITRC (2008) has further suggested that, 

both the management of the resin and that of the brine should also be taken in consideration 

when anion resin is used. 

2.8.3 Removal of PFCs by combination of adsorption and coagulation 

 Coagulation has been reported as another technique that can be utilised for the 

removal of PFCs. However, its efficacy has been questioned in most cases. For instance no 

removal occurred even after coagulation processes were coupled with sedimentation and 

sand filtration in a study by Takagi et al. (2011). This was consistent with the results that were 

observed by Thompson et al. (2011), Eschauzier et al. (2012) and Xiao et al. (2013). Similarly, 

Appleman et al. (2014) further indicated that coagulation followed by sedimentation did not 

remove PFCs, but when sedimentation was replaced by dissolved air flotation (DAF), a 49% 

removal of PFOS was achieved, although, shorter-chain PFCs, such as PFCAs and PFSAs, 

were not well removed (Appleman et al., 2014). This suggests that coagulation on its own is 

likely not to yield positive results. Thus, a study by Deng et al. (2011) found that coagulation 

can remove most PFOA from water, but high residual PFOA concentrations remained in the 

water. In this regard, the study combined adsorption and coagulation and the removal was 
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enhanced. Similarly, recent evidence has reported that the combination of adsorption by 

powdered activated carbon (PAC) and coagulation increased the removal ratios up to >90% 

for PFCs, such as PFOX with an initial concentration of 1 mg/L (Bao et al., 2014). Hence, this 

further implies how adsorption enhances coagulation. Nevertheless, it has further been 

indicated that, in a PFC-adsorption technique where fulvic acid (FA) is used, its concentration 

(i.e. FA) increase decreases the removal ratio of PFOS and PFOA, simply due to the steric 

hindrance effect of this acid’s molecules and the competitive adsorption of these PFCs (Bao et 

al., 2014), suggesting that, the selection of coagulants, as well as that of adsorbents to be used 

during the coagulation/adsorption technique, etc., is also paramount. Du et al. (2014) 

reviewed PFC removal using various adsorbents, and reported that adsorption not only 

removed PFCs effectively, but also affected PFC distribution in different environments. 

However, Du et al. (2014) have argued that, on the basis of C–F chain substances having 

hydrophobic and oleophobic properties, this implies that PFCs are likely display different 

adsorption behavior as compared to their counterparts, e.g. the hydrocarbon substances. 

Thus, the authors have suggested that this aspect, coupled with the competitive adsorption of 

PFCs with other traditional POPs present in various environments, warrants further 

investigation (Du et al., 2014; Bao et al., 2014). 

 Nevertheless, the stubbornness of shorter-chain PFCs in resisting removal, as 

indicated by Appleman et al. (2014), remains a cause for concern, particularly, since there is 

not enough data available reporting on these new emerging POPs, even though their use as 

substitutes to long-chain PFCs is increasing (Rahman et al., 2014). This suggests that improved 

removal techniques for shorter-chains PFCs are required. On the other hand, Yang et al. 

(2016a, b) have suggested that, to improve scaling-up PFC removal techniques, more 

understanding of the mechanisms that have been proven effective is required, as well as 

testing these mechanisms on various PFCs. 

2.8.4 Advanced filtration: membrane-based treatment processes 

 Filtration has been broadly defined as a technique that separates suspended particles 

from a liquid phase by causing the latter to pass through a porous filter, with the purpose of 

either removing the impurities and/or collecting them from the solution where they are 

concentrated (Crittenden et al., 2012). In the case of PFCs, sand filtration cannot be used for 

the removal of PFCs (Takagi et al., 2011; Eschauzier et al., 2012; Arvaniti and Stasinakis, 2015). 

However, most potable water treatment works in developing countries, such as South Africa, 
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still use sand filters. Conversely, it was reported that the usage of advanced filtration 

techniques such as nanofiltration (NF) and reverse osmosis (RO) achieved a significant 

reduction of PFCs (Schröder et al., 2010; Appleman et al., 2013; Stasinakis et al., 2013). 

2.8.4.1 Nanofiltration  

 Introduced during the late 1980s (Mohammad et al. 2015), NF is another form of 

membrane technology process used with the purpose of softening and removing synthetic 

POPs (Rahimpour et al., 2010). Thus, Izadpanah and Javidnia (2012) have indicated that this 

method of filtration provides high water flux at low operating pressure. It has been shown 

that NF can be effective in the removal of PFCs. Similarly, Tang et al. (2007) and Schröder et 

al. (2010) reported 90% and 99% removal of PFCs using NF. However, lower removal rates 

(that is, 44% to 86%) were reported by Rattanaoudom (2011), suggesting that the technique is 

inefficient. As such, Arias-Espana et al. (2015) indicated that pH is an important factor that 

affects nano-membrane retention rates for POPs. Similarly, at a pH ≤ 3, Steinle-Darling and 

Reinhard (2008) and Wang et al. (2015a, b) observed a decline in the rejection of PFC (35%) 

and Wang et al. (2015a, b) also observed that PFOS rejections improved from 91.17% to 97.49% 

with an increase in pH from 3.2 to 9.5 at 4 × 105 Pa. However, a similar study reported that 

PFOS removal using NF was higher than for PFOA (Rattanaoudom, 2011), a result that was 

also observed by Yu et al. (2014) with a removal efficiency of 77.4% for PFOS and 67.7% for 

PFOA. Additionally, Appleman et al. (2013) observed a 93% removal for all target PFCs 

through the usage of NF. 

 Moreover, recent research has focused on ways of improving NF effectiveness by 

modifying membrane materials used, with the purpose of increasing the strength, heat 

resistance, functionality and other factors (Luo et al., 2016). As such, several inorganic fillers, 

for example, zeolites (Gevers et al., 2005), ceramic oxides (Pages et al., 2013; Schmidt et al. 2014; 

Zhang et al., 2014), and inorganic compounds (Fang and Duranceau, 2013; Namvar-Mahboub 

and Pakizeh, 2013; Gholami et al., 2014 and Chen et al., 2014), and layered silicates have been 

used. The reason being that their dispersion is possible in polymeric matrices at the nanoscale 

(Luo et al., 2016), which can further enhance membrane electro-chemical properties that are 

essential in filtration systems, particularly for the removal of compounds with unique 

properties, such as PFCs, compounds containing a hydrophobic backbone and hydrophilic 

functional groups. 
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2.8.4.2 Reverse osmosis 

 Reverse osmosis (RO), as a POP treatment process, uses high pressure to force water 

through a semi-permeable membrane (Lee et al., 2010). Hence, Letterman (1999) indicated the 

removal of salts from brackish water and seawater, as the primary usage of RO; although, the 

same technique can also be used for high rejection of synthetic organic compounds (SOCs), 

such as PFCs. Thus, Vecitis et al. (2009) reported that RO has shown its effectiveness in PFCs 

removal. Another study showed ≥99% removal of PFOS and PFOA (Flores et al., 2013). 

Similarly, it was revealed in a study by Tang et al. (2007) that, RO had a higher efficacy in PFCs 

removal than NF. This was attributed to the smaller pores and thicker rejection layers of the 

RO membranes used. In a hybrid membrane experiment where the reduction of turbidity 

from fire-fighting foam wastewaters was used, a 71% to 77% removal of fluorinated 

surfactants was reported. However, from a pilot fire-fighting foam wastewater treatment 

plant where RO was used, rejection rates >99% were achieved (Baudequin et al., 2011; Arias-

Espana et al., 2015). 

 Nevertheless, regardless of the high efficiency of the RO, criticism about its use is 

based on the relatively high operational costs associated with the technology due to energy-

intensified requirements of the system (Joo and Tansel, 2015). Additionally, it also has been 

indicated that the RO is susceptible to biofouling, for which an improvement is required to 

enhance its usability in communities with minimal investment capital (Henthorne and 

Boysen, 2015). 

 Furthermore, recent evidence indicates the versatility of RO systems and their 

effectiveness in new applications with proponents suggesting that RO can outperform other 

desalination technologies (McGovern and Lienhard, 2014). As such, Forward Osmosis (FO) 

has been investigated in the past decade, not to replace RO, but to be utilised to process feed 

waters that cannot be treated by RO (Shaffer et al., 2015). This further suggests that, to date, 

there is no generally accepted technique that is readily available for the removal of PFCs, and 

other perfluoroalkyl pollutants. Ultimately, the degradation and/or decomposition of PFCs 

might be the only viable option, with advanced oxidation processes having been reported to 

be suitable.
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2.8.5 Advanced oxidation processes 

 According to Arias-Espana et al. (2015) the chemical structure of PFCs, mostly PFOA 

and PFOS, allows them to resist oxidation owing to the complete substitution of hydrogen (C–

H bond) for fluorine (C–F bond). Fluorine atoms resist oxidation because it is the most 

electronegative element. This has been explained by Wardman (1989), who argues that 

fluorine with a reduction potential of 3.6V is thermodynamically unsuitable to be substituted 

with any other oxidant (Arias-Espana et al., 2015).  

 Furthermore, Advanced Oxidation Processes (AOPs), coupled with hydroxyl radicals 

in combination with ozone (or O-atom), were determined to be suitable for the reduction of 

recalcitrant POPs (Arias-Espana et al., 2015). However, for POPs such as PFOA and PFOS, the 

AOPs/OH/O3 was determined to be ineffective, as PFOA and PFOS do not contain hydrogen 

atoms, which can be reduced at pH commonly prevalent in the ecosystem (Arias-Espana et 

al., 2015). Hence, Schröder and Meesters (2005) argued that compounds such as PFOA and 

PFOS become inert to advanced oxidation mechanisms due to the substituted hydrogen by 

fluorine atoms in these POPs. Moreover, in-situ advanced oxidation has been explored as a 

possible mechanism to treat PFCs in the environment (Liu et al., 2012a, b). As such, oxidation 

processes have on several occasions, been tested against recalcitrant contaminants (Arvaniti 

and Stasinakis, 2015), during which the in-situ formation of highly oxidizing species, mainly 

free radicals, was involved.  

 Therefore, it was suggested that a variety of reagents have to be supplemented in 

AOPs in an attempt to enhance these oxidation processes. These supplementary compounds 

include activated persulfate, Fenton’s agent, subcritical water, zero-valent metal, and/or a 

combination of these agents (Arias-Espana et al., 2015). Supplementation with hydrogen 

peroxide (H2O2) has been commonly used, due to its capability to generate hydroxyl radicals 

(HO*), as well as persulfate (S2O82−), Fenton's reagent (Fe2+ + H2O2) (Rayne and Forest, 2009) 

and peroxymonosulfate (HSO5−) (Antoniou and Andersen, 2015; Arvaniti and Stasinakis, 

2015).  

  Hydrogen abstraction allows hydroxyl radicals to attack the organic substances by 

forming carbon centre radicals during the oxidation processes (Antoniou and Andersen, 

2015). Thus, because of the nonexistence of hydrogen atoms in PFCs that can be abstracted, 

this limits hydroxyl radicals’ ability to react with these POPs, reducing the direct electron 

transfer (Vecitis et al., 2009; Arvaniti and Stasinakis, 2015). 
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 Additionally, a significant number of photolytic methods have been reported to 

effectively degrade PFCs into fluoride ions, carbon dioxide and shorter chain PFCAs in 

aquatic samples (Arvaniti and Stasinakis, 2015). Photolytic methods such as H2O2 photolysis 

and photocatalysis (Hori et al. 2004), direct photolysis (Chen and Zhang, 2006; Yamamoto et 

al., 2007), persulfate photolysis (Hori et al., 2005; Chen and Zhang, 2006), alkaline isopropanol 

photolysis (Yamamoto et al., 2007) and photo-Fenton (Hori et al., 2007; Wang et al., 2008; Tang 

et al., 2012), are examples which can be used for PFC reduction. New methods have emerged 

such as thermal- or microwave-activated persulfate oxidation (Liu et al., 2012a), heat-

persulfate oxidation (Hori et al., 2008; Rayne and Forest, 2009; Lee et al., 2012), and ultrasonic 

treatment (Cheng et al., 2008; Lin et al., 2015). These methods have been applied and proven 

to be effective in degrading PFCs. Thus, Hori et al. (2005) and Wang et al. (2010) revealed that 

the usage of persulfate produced highly oxidative sulphate radical anions (SO∗4) which 

significantly degraded PFOA to F− and CO2 as major by-products. However, it was reported 

that shorter chain perfluorocarboxylic acids (PFCAs) were formed, that is, compounds which 

were proposed as replacements for long-chain PFCs, suggesting the inadequacy of the 

method. This inadequacy suggested a secondary treatment stage is required. Similarly, PFOA 

degradation was achieved using a photocatalytic AOP persulfate at 50 mM [S2O8]2- and a 4 h 

irradiation with PFOA at a concentration being 1.35 mM (Arias-Espana et al., 2015). 

 Moreover, others have demonstrated that a sulphite/UV process was efficient in 

reductive degradation of PFOA (Song et al., 2013). Accordingly, 100% removal of PFOA and 

an 88.5% defluorination was completed after 1 h and a reaction time of 24 h respectively, under 

a nitrogen atmosphere. Similarly, the use of a UV–Fenton process achieved a 95% PFOA 

removal (Tang et al., 2012). Due to the success of these processes, other reductive processes 

such as Zero-valent ion processes have been developed. 

2.8.6 Reduction processes using zero-valent iron  

 Although the removal and/or treatment of PFCs by means of reduction processes 

using zero-valent ion (ZVI) has remained limited (Arvaniti and Stasinakis, 2015), a study by 

Hori et al. (2006) has reported that a partial degradation of PFOS by microsized ZVI coupled 

with high temperature (>250 °C) and pressures of up to 20 MPa can be achieved. Similarly, 

Lee et al. (2010) demonstrated that PFOA was susceptible to degradation up to 68 and 73% 

after 2 and 8 h, respectively, using persulfate activated by ZVI. In addition, a recent study by 

Arvaniti et al. (2015) investigated the removal and/or treatment of various PFCs in water 
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using nanoscale ZVI (nZVI), using the nZVI uncoated and coated with Mg-aminoclay 

(MgAC). This method reportedly has PFC removal ability ranging from 30 to 96% (from 10 

mg/L) under acidic conditions (pH = 3), low temperature (20 °C) and high doses of 

synthesised nanomaterials (1000 mg nZVI/L). According to Arvaniti and Stasinakis (2015), 

both sorption and degradation mechanisms are responsible for PFCs’ removal when coated 

nZVI was used, a process used to achieve higher removal rates. In order to improve the 

effectiveness of processes using specialised materials such as ZVI, electrochemical cells can 

also be used. 

2.8.7 Electrochemical treatment of polyfluoroalkyl compounds 

 Recently, the use of an electrochemical cell and a Ti/RuO2 anode in laboratory 

experiments was assessed, demonstrating an increase in both PFOA and PFOS decomposition 

with increased current density (Schaefer et al., 2015). Thus, at a current density of 10 mA/cm2, 

the electrochemical treatment rate of both PFOA and PFOS was 46 × 10−5 and 70 × 10−5 [(min−1) 

(mA/cm2)−1 (L)], respectively (Schaefer et al., 2015), with a defluorination ratio of 58% and 98% 

recovery for both PFOA and PFOS, respectively. Similarly, a study by Lin et al. (2012) 

investigated the electrochemical degradation of PFOA in aqueous solution over anodes, such 

as Ti/SnO2—Sb, Ti/SnO2—Sb/PbO2, and Ti/SnO2—Sb/MnO2. The results revealed a 98.8% 

degradation ratio of the substance (i.e. PFOA), with a 73.9% defluorination ratio, which is 

inconsistent with that of Schaefer et al. (2015). Nevertheless, both studies (i.e. Lin et al., 2012; 

Schaefer et al., 2015) have reported that short-chain PFCs remained recalcitrant to 

electrochemical degradation mechanism, suggesting a poor performance of the 

electrochemical treatment of PFCs as previously reported by Zhuo et al. (2011), and the need 

for an enhanced technology in this regard. In addition, previous studies that used this 

treatment method have indicated that the electrochemical treatment of PFCs can be efficient 

and yield significant results, in divided electrochemical cells rather than in undivided cells 

(Agladze et al., 2007; Schaefer et al., 2015). However, minimal research data are available in 

this regard; that is, the evaluation of divided cells (Schaefer et al., 2015). The application of an 

inert environment, high temperature and pressure can further enhance electrochemical 

treatment.  

 On the other hand, electrocoagulation using a stainless steel rod as cathode has 

recently emerged as an efficient PFC removal technique, achieving a removal ratio of 

99.7%/98.1% and 98.9%/97.3%, using stainless steel and aluminium rods as cathodes in the 
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presence of different anions (e.g. Cl−/NO−3), respectively (Wang et al., 2016). Previously, Lin 

et al. (2015) demonstrated that the hydrophobic interaction was a prime role player in PFCs 

sorption and removal, a condition under which zinc anode proved to be more efficient than 

the other three anode materials, with 96.7% removal capacity. Hence, both these studies, i.e. 

Lin et al. (2015) and Wang et al. (2016) are evidence that electrocoagulation technique under 

various driving forces is an effective and alternative method to remove PFOA from aqueous 

solution. Nevertheless, it remains unclear what would be the removal effectiveness of this 

technique on short-chain PFCs. Similarly, different influencing factors, including pH, etc., can 

also be contributing factors in the removal of PFCs in various environments. Hence, Table S6 

provides an overview comparison summary of results for PFCs removal using different 

techniques. 

 Although technologically advanced, these methods require specialised knowledge, 

which limits practical application compared to cheaper options that rely on removal at the 

Point-of-Use (POU). 

2.8.8 Removal of PFCs at the point-of-use  

 This technique uses PoU treatment devices, which are applied and/or installed at an 

individual or single tap, faucet or outlet for the purpose of reducing contaminants at that 

point-of-use (Lee, 2005; MDH, 2008). As such, a study by MDH reported that when applied, 

installed, operated and maintained according to the manufacturer’s specifications, PoU 

treatment devices effectively remove PFCs (MDH, 2008). In the report, it is suggested that 

devices were evaluated for their PFC removal capabilities, using an assessment classified into 

two categories; that is, (i) those using GAC and (ii) those using a combination of multiple 

methods for the removal. From the results, it was revealed that some devices (n = 11) were 

found to remove PFCs in field tests to below the employed detection limits (50 ng/L) (MDH, 

2008). Additionally, in the late 90s, a Point-of-use Plasma Abatement (PPA) method was 

reported as one way to effectively eliminate PFCs at PoU (Fiala et al., 1999). 

2.9 Conclusion 

 Perfluoroalkyl compounds (PFCs) are a group of chemical substances that fall under 

recalcitrant POPs. They consist of a fully fluorinated hydrophobic alkyl chain attached to a 

hydrophilic-end group. The unique physicochemical properties of these substances led to 

their extensive industrial and household applications, particularly in surfactants, fire-fighting 
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foams and food-packing paper, as well as in textile, carpet and leather treatment. There are 

many types of PFCs, but the most widely used have included PFOA and PFOS. Recently, there 

have been studies reporting on PFBS as a potential replacement, as it has PFC characteristics 

and similar health risks as those associated with PFOA and PFOS. Thus, notwithstanding the 

role they have played in industrial and household applications, PFCs have been regarded as 

bioaccumulative, persistent and potentially precarious to humans and wildlife. For this 

reason, the development of alternatives to these compounds is underway. Ultimately, this has 

led various manufacturers to utilise short-chain PFCs in substitution of long-chain PFCs. 

However, like their homologues, short-chain PFCs have also been associated with various 

health risks. This finding suggests that further investigations are needed in this regard, since 

most studies have mostly focused on health-related risks of long-chain PFCs. To mitigate 

associated health risks to humans and animals, numerous treatment methods have been 

suggested, although treatment at point-of-use is currently the only viable option available to 

the general population. In our opinion, it is worth indicating that short-chain PFCs are 

recalcitrant, even to highly efficient removal techniques; this is a challenge that requires the 

attention of researchers. 
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Are aquaporins (AQPs) the Gateway that Conduits Nutrients, 

Persistent Organic Pollutants and Perfluoroalkyl Substances 

(PFASs) into plants?  

Mudumbi et al., Springer Science Reviews, 5: 31-48; https://doi.org/10.1007/s40362-017-0045-6 

 

 

3.1 Abstract 

 Besides water and sunlight, plants and/or crops also require an assortment of dissimilar 

nutrients/elements to grow. Thus, some of these nutrients have been classified as essential or 

macronutrients [e.g. calcium (Ca), magnesium (Mg) and sulfur (S)], for they facilitate plant 

growth; while others, such as copper (Cu), iron (Fe), zinc (Zn), etc., are considered as 

micronutrients. However, it is apparent now that plants are exposed to a variety of other chemical 

compounds, including a range of persistent organic pollutants (POPs) and perfluoroalkyl 

substances (PFASs), which have been found in several plants. Hence, it has been common 

knowledge that mechanisms such as mass flow, diffusion, etc., facilitated by plant root systems, 

have allowed the translocation of these nutrients and pollutants into plants; although, other 

researchers have argued that roots on their own cannot elucidate the dissemination of these 

chemical constituents into plants. This dissension remained until the discovery of Aquaporins 

(AQPs), which ultimately led to numerous AQPs being identified in plants. Thus, the aim of this 

review is to present an overview on the progress made thus far in attempting to understand the 

possibility of these proteins (i.e. AQPs) being the gateway that conduits nutrients, POPs and 

PFASs into plants; although, the gathered evidence currently, remains rudimentary and limited, 
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suggesting that further research is required to elucidate plant AQPs involvement at this stage in 

POP transportation and storage in plants. 

Keywords: Aquaporins, Plants, POPs, PFASs, Nutrients. 

3.2 Introduction 

 Persistent organic pollutants (POPs) are synthetic man-made organic chemical 

substances, produced intentionally and unintentionally, through various anthropogenic 

activities, with their release into the environment being through direct or indirect sources [178]. 

Since the industrial revolution, after World War II, a large quantity of these chemical compounds 

have been commercially produced and used, as they have proven to be beneficial in various 

economic sectors, including in agriculture whereby they are used in pesticides and fertilisers to 

increase crop yield. Plants and/or crops do not only need sunlight and water, but also require an 

assortment of metals, to grow. Some of which are heavy metals, including chromium (Cr), 

manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se) [17, 82, 177]. 

Similarly, it has been indicated that when these substances become insufficient in the soil, farmers 

manually apply them onto the land to mitigate against arable soil nutritional deficiencies [31]. 

The demand in agricultural produce to meet the food need of the rapidly growing global 

population [95] has resulted in the excessive application of synthetic products, leading to an 

upsurge in the prevalence of POPs in fresh produce. Thus, there is compelling evidence that 

plants accumulate and partially metabolize some environmental contaminants, which suggests 

that plants act as reservoirs for numerous persistent pollutants [65, 136, 191, 193].  

 Research reports have indicated that POPs persist for extended periods in the 

environment, and thus bioaccumulate and biomagnify through the food chain [49, 95, 128]. 

Hence, various researchers have recounted the prevalence of POPs and/or heavy metals in edible 

crops [7, 8, 15, 38, 51, 71, 72, 154, 163], as well as in arable soil and plants [8, 56, 168, 173]. Table 

3.1 depicts 12 POPs or the “Dirty Dozen”, of which nine are pesticides [141].  
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Table 3.1: The “Dirty Dozen” and their sources 

Source POP Main use References 

Pesticides Aldrin & Dieldrin Insecticides: on crops such as corn and cotton; 

also to control termites. 

[49, 141, 144, 169, 183] 

Chlordane Insecticide: on crops, including vegetables, 

small grains, potatoes, sugarcane, sugar beets, 

fruits, nuts, citrus, and cotton. Also used on 

garden pests, and extensively on termites. 

[46, 49, 141, 144, 169, 183] 

Dichlorodiphenyltrichloroethane 

DDT 

Insecticide: on agricultural crops, such as 

cotton, and anopheles mosquitoes that carry 

diseases such as malaria and typhus. 

[46, 49, 141, 144, 169] 

Endrin Insecticide: on field crops, such as cotton and 

grains; can also be used to control rodents. 

[49, 141, 144, 169, 178] 
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Table 3.1: Continues 

Pesticides Mirex Insecticide: used to combat fire ants, termites, 

and mealybugs. Also utilised as a fire retardant 

in plastics, rubber, and electrical products. 

[46, 49, 141, 144, 169, 178] 

Heptachlor Insecticide: used primarily against soil insects 

and termites. Also used against some crop pests 

and to combat malaria 

[49, 141, 144, 169, 183] 

Industrial 

Chemicals 

Hexachlorobenzene (HCB) Fungicide: used for seed treatment. Used in 

industrial chemical to make fireworks, 

ammunition, synthetic rubber, and other 

substance. 

[46, 49, 141, 144, 169, 178] 

 Polychlorinated biphenyls 

(PCBs)  

Utilised in a variety of industrial uses, 

including as dielectrics in transformers and 

large capacitors, as heat exchange fluids, as 

paint additives, in carbonless copy paper and in 

plastics. 

[49, 144, 169] 
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Table 3.1: Continues 

Unintended 

products 

Toxaphene Insecticide: used primarily to control pests on 

crops, such as cotton, cereal grains, fruits, nuts 

and vegetables, and on livestock. Also used to 

kill  unwanted fish in lakes 

[49, 141, 144, 169, 178] 

Dibenzodioxins & 

Dibenzofurans 

Unknown. However,  both are related to a 

variety of incineration reactions and use of a 

variety of chemical products 

[35, 49, 144, 169, 178] 
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Therefore, humans are exposed to these substances on a daily basis, through various pathways, 

including consumption of contaminated food and water [150, 179, 185, 187, 188]. 

 Recently, new POPs have emerged, namely the per-and polyfluoroalkyl substances 

(PFASs) (see relevant section in this review), which have been added to the list of POPs by the 

Stockholm Convention [67, 174]  

 Plants are known for up-taking and storing these nutrients and pollutants using various 

complex mechanisms, which have been largely reported in the literature reviewed. For example, 

Collins et al. [41]  suggested that a number of processes facilitate the uptake of nutrients by plants, 

including transfer from soil and water to the roots; roots to the shoots; as well as sorption from 

the atmosphere through vapour. These mechanisms are herein suggested to be similar to those 

involved in POP uptake by plants [160]. To maintain the aim of this review, details on these 

mechanisms have been separately and briefly reported on in a supplementary file (SM1), with 

Table S1 depicting the primary uptake mechanisms for nutrient transport to root systems. 

However, researchers remain uncertain about the role of these mechanisms, with some even 

suggesting that roots on their own, were insufficient to effectively substantiate the translocation 

and storage of nutrients and/or pollutants by plants [130]. Decades ago, this uncertainty became 

clear with the discovery of aquaporins (AQPs) by Peter Agre [2, 9, 33, 90]. Thus, the discovery of 

AQPs shed some insight into the mechanism of water-transmembrane transportation [190].  

 Therefore, the main purpose of this review is to present an overview on the progress made 

thus far in attempting to understand the possibility of these proteins (i.e. AQPs) being the 

gateway that conduits nutrients, POPs and PFASs into plants. 

3.3 Aquaporins: what are they? 

 The name ‘aquaporin’ (AQP) of Latin words: aqua which means water, and porus meaning 

passage, and was proposed by Agre and his team of researchers in 1993 resulting in the 

substitution of the traditional name, i.e. Water Channel Proteins (WCPs) [1, 3, 21]. AQPs belong 

to the class of major intrinsic proteins (MIPs) [14, 90, 113, 180], and have been defined as a family 

of minute, integral membrane proteins that are expressed generally in all living cells [113], 

including animals [90, 180, 184], plants [79, 80, 184], archaea, eubacteria and fungi [61, 90, 171]. 
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3.3.1 Mammalian AQPs classes 

 Compelling evidence has suggested that there are 13 types of AQPs in mammals [156, 

172], commonly divided into four subgroups: (a) orthodox or classical AQPs (AQP0, 1, 2, 4, 5, 6) 

which are selectively known to be water permeable [47, 132, 153]; and (b) aquaglyceroporins 

(AQP3, 7, 9, 10), which are believed to be permeable not only to water, but also to glycerol, urea 

and/or other small solutes [47, 64, 107, 132]; (c) water and ammonium AQPs (AQP8) [52, 156], 

and (d) super AQPs (AQP11, 12) which are dissimilar to other AQPs as they have been reported 

to have exceptional intracellular localization [47, 52, 64, 132, 156], with recent reports suggesting 

the permeation of water and glycerol through AQP11  [47, 106, 181], although their transport 

properties and/or functional selectivity are still not clearly elucidated  [47, 64, 153]). 

3.3.2 Plant AQPs classes 

 Plant AQPs on the other hand, have been classified by various sequencing techniques, 

into seven subfamilies, namely (i) nodulin 26-like intrinsic proteins (NIPs), (ii) plasma membrane 

intrinsic proteins (PIPs), (iii) tonoplast intrinsic proteins (TIPs), (iv) small basic intrinsic proteins 

(SIPs) [14, 75, 79, 90, 184], b; [22, 69, 81, 96, 112, 114, 116, 180], (v) the uncategorized (X) intrinsic 

proteins (XIP) [13, 43, 69, 84, 96, 100, 116, 120], (vi) the GlpF-like intrinsic proteins (GIPs) and (vii) 

the hybrid intrinsic proteins (HIPs) [13, 43, 69, 96, 184]. According to Li et al. [96], these 

subfamilies correspond to distinct and multiple subcellular compartments, a characteristic that 

explains the diversity of plant AQPs isoforms [190]. Table 3.2 depicts the classification of AQPs 

in cell membranes from selected edible plants, as they are presumed to be largely responsible for 

human POP exposure, thus suggesting research is required focusing on the relationship of these 

identified AQPs and the susceptibility of these crops to pollutants. 

 Furthermore, reports have suggested that AQPs are abundant and diversified in plants 

than in any other form of life [22, 43, 79–81, 90, 117, 147], with, AQPs of higher plants exhibiting 

a high diversity. For example, Sade et al. [145]  suggested that 37 aquaporins are available in 

Solanum lycopersicum (i.e. 18 PIP, 9 TIP, 6 NIP, 3 SIP, and 1 XIP), while Park et al. [131] reported 

71 in Gossypium hirsutum (i.e. 28 PIP, 23 TIP, 12 NIP, 7 SIP and 1 XIP), Zhang et al. [185, 187, 

188] recounted 66 in Glycine max (i.e. 22 PIP, 23 TIP, 13 NIP, 6 SIP, 2XIP). As a typical example 

of this diversity, Figure 3.1 shows a phylogenetic tree of flax AQPs in comparison with those from 
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A. thaliana, O. sativa, P. trichocarpa with five distinct clusters representing a different class of AQPs 

[152]. The figure clearly indicates that in the plant kingdom, a single plant can have multiple 

AQPs, implying their various functions. 
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Table 3.2: Classification of AQP sequences from selected edible plants   

Plant family Plant species Common name Expressed AQP types References 

Poaceae Oryza sativa Rice NIPs, PIPs, TIPs, SIPs [105, 147] 

   PIPs, TIPs [99, 146] 

   PIPs, TIPs, NIPs, SIPs [57, 126, 147] 

Poaceae Zea mays Maize PIPs [59, 111] 

Fabaceae Phaseolus vulgaris Green bean PIPs [11] 

Amaranthaceae Spinacia oleracea Spinach PIPs, TIPs [39, 108] 

Solanaceae Nicotiana tabacum Tobacco PIPs [94, 110] 

Poaceae Triticum aestivum Wheat PIPs [12] 

Asteraceae Lactuca sativa Lettuce PIPs [45, 138] 

Solanaceae Solanum lycopersicum L. Tomato PIPs, TIPs, NIPs, SIPs, XIPs [143] 

Vitaceae Vitis vinifera Grapevine PIPs, TIPs [139, 151, 165] 
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Figure 3.1: Phylogenetic tree analysis of plant AQPs. Different AQPs encoded in flax (Lu) are shown in 

comparison with the genes from rice, Arabidopsis, Solanum, Lotus, and Populus indicated with the prefixes Os, At, Sl, 

Lj, and Pt, respectively. The first and the last digit in the protein name, identify the group and the individual gene 

product, respectively [76].  Hence, in flax genome 16 PIPs, 17 TIPs, 13 NIPs, 2 SIPs and 3 XIPs were identified, and all 

the 51 AQPs are grouped into five different classes (i.e. PIPs, TIPs, NIPs, SIPs, and XIPs). Adapted from Shivaraj et al. 

[152].

 

 In addition, from these statistics, it is evident that PIPs and TIPs are representative of 

AQPs in plants. According to Li et al. [96], PIPs are frequently shared among plants, which 

suggests characteristics that are inherited from their ancestors during the evolution of terrestrial 

plants; while Pérez Di Giorgio et al. [135] have further suggested that PIPs have functional 

constraints than their homologues, TIPs. Table 3.3 summarizes the diversity of AQPs in selected 

plant species. 
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Table 3.3: Diversity of aquaporin gene family in selected plant species 

 Plant Aquaporin Subfamilies  

Plant family Plant Species  Common 

name 

POP 

uptake 

potential 

PIPs TIPs NIPs SIPs XIPs HIPs GIPs Total References 

Selaginellaceae Selaginella 

moellendorffii 

Spike 

moss 

- 3 2 8 1 3 2 n/r 19 [10, 114] 

Funariaceae Physcomitrella 

patens 

Moss + 8 4 5 2 2 1 1 23 [43, 114, 148] 

Poaceae Oryza sativa Rice + 11 10 10 2 n/r n/r n/r 33 [68, 114, 147] 

Brassicaceae Arabidopsis 

thaliana 

Mouse 

ear cress 

+ 13 10 9 3 n/r n/r n/r 35 [76, 114, 140, 

189] 

Solanaceae Solanum 

lycopersicum 

Garden 

tomato 

+ 14 11 12 4 6 n/r n/r 47 [98, 114, 143] 

Salicaceae Populus 

trichocarpa 

Black 

cottonwo

od 

+ 15 17 11 6 6 n/r n/r 55 [16, 58, 114] 

https://en.wikipedia.org/wiki/Selaginellaceae
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Table 3.3 : Continues 

Fabaceae Glycine max Soybean + 22 23 13 6 2 n/r n/r 66 [44, 114, 185, 

187, 188] 

Malvaceae Gossypium 

hirsutum 

Upland cotton + 28 23 12 7 1 n/r n/r 71 [19, 114, 131] 

n/r not reported, + detected,  ─ undetected 
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3.4 Structure and Transport Mechanism of AQPs 

3.4.1 Aquaporins Common Structure 

 To date, there are several reports that have provided and discussed the structure and 

functional selectivity of AQPs [61, 87, 114, 152, 161]. Commonly, AQPs are 23–31 kDa proteins 

[117] sharing a common structural feature [37, 61, 117]. They consist of six transmembrane 

spanning helices [61, 85, 86] linked by five loops (A to E) located on the intra- (B, D) or 

extracytoplasmic (A, C, E) side of the membrane [114, 117]. As demonstrated in Figure 3.2a, 

adopted from Gomes et al. [55]. The amino (N-) and carboxyl (C-) termini extremities of the 

polypeptide are located on the cytoplasmic side of the membrane  [61, 85, 86, 117], and the two 

halves of the polypeptide present a significant similarity to each other [192], and each half has 

hydrophobic loops (i.e. loop B and E), both containing the highly conserved signature motif 

asparagine, proline, alanine (NPA) signature motif [61, 117, 192]  characteristic of most AQPs 

[192]. Structurally, loop B and E overlap in the centre of the lipid bilayer to form two hemipores, 

culminating in a narrow water-filled channel, which are crucial for water selectivity [192], thus 

rep-resenting a key feature for water permeation [61, 192]. In addition, AQPs contain an outer 

aromatic/arginine (ar/R) constriction with a width of ~ 2.8 ångström (Å) [see Figure 3.2b (iii)], 

which creates the narrowest section of the channel and constitutes a major restriction point for 

either solute and/or pollutant permeability [61]. This channel functions as a main selectivity filter 

[114] and is thought to have substrate specificity [87]. Thus, structural and simulation studies 

have indicated that the seventh transmembrane domain is intimately involved in facilitating an 

aqueous pathway for solutes through the AQP [42, 78, 124, 157]. Three-dimensional structure 

analyses in various organisms, including plants, i.e. spinach [55, 161, 92] have shown that AQPs 

share typical but conserved structural properties [42]; and are able to form tetramers in the 

membrane, with each subunit defining its own pore. The four subunits are arranged in parallel, 

forming a fifth pore in the centre of the tetramer [42, 55], as shown in Figure 3.2b (i), adopted 

from Gomes et al. [55]. Each monomer functions independently as a single pore channel [55]. 

 Therefore, it is worth indicating that the structure of the channels (i.e. AQPs) is important, 

because it determines: (1) which molecules permeate and/or are excluded from the channels, and 

(2) at which rate molecules are translocated through the pores [61]. This suggests that both the 
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size and/or volume of the compound and that of the AQP pore are interdependent to facilitate 

the uptake process of nutrients and other compounds, even pollutants. In this regard, Da Ines 

[42] reported that the pore can narrow to approximately 3 Å in diameter, which can limit the 

transportation of large uncharged molecules through the AQPs, which suggests that such a pore 

is just large enough to accommodate a single water molecule [42]. This is in agreement with a 

study by Ye et al. [182] whose findings formerly suggested that AQPs of either a bigger and 

smaller diameter (volume) will present different translocation selectivity between osmolytes, 

leading to small solutes being permeable across bigger AQPs, but not across the small pores, with 

large solutes being completely excluded from all pores; a trend which concured with observations 

by Hub and de Groot [66]. The study further suggested large osmolytes splitting, which 

ultimately allowed the researchers to evaluate the size of large and small AQP channels (i.e. 

AQPs). 
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Figure 3.2: (a) AQP structure topology. The primary structure of AQPs comprises 6 transmembrane domains 

(1–6) connected by five loops (a–e), with cytoplasmic N- and C-termini, is shown. Highly conserved NPA (Asn-Pro-

Ala) motifs are located at the loops B and E and form short hydrophobic helices that fold back into the membrane from 

opposite sides. (b) Three-dimensional structure of spinach SoPIP2;1 (adopted from [55]). AQPs are grouped as 

tetramers in biological membranes (i). Each monomer (ii) functions as a single channel pore. The intracellular loop B 

(blue) and the extracellular loop E (red) fold into the membrane and interact with each other through the NPA motifs, 

forming a central constriction and participating to the pore selectivity (iii). IC intracellular; EC extracellular. In addition 

to water, several small molecules, such as glycerol and urea, and small neutral solutes and ions, are reported to 

permeate some AQPs. Adapted from [55].

3.5 Plant AQP Isoforms: Their Different Structure and Selectivity 

 Recent events in genetic techniques have demonstrated and elucidated species-specific 

differentiation for each of the abovementioned AQPs subclasses [112, 114]. Hence, two isoforms, 

i.e. SoPIP2;1 and AtTIP2;1, prevalent in Spinacia oleracea and Arabidopsis thaliana, respectively, 

have been widely studied as they represent two plant AQPs structures with very different 

(i) 

(ii) 

(iii) 
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substrate specificity and pore profile, attributes which have either facilitated or restricted 

different molecules. 

3.5.1 PIP Isoforms 

 Expressed mainly in the plasma membrane [55], PIPs represent the largest subfamily of 

plant AQPs as previously indicated, consisting of numerous members, with 13 members being 

identified in Arabidopsis, 14 in maize, 11 in Oryza sativa, and 14 in Populus trichocarpa [4, 36, 76]. 

They are phylogenetically divided into two subgroups, i.e. PIP1 and PIP2 [27, 114] and [156], with 

PIP1s having a longer N-terminal section, a shorter C-terminal section and a shorter extracellular 

loop A than PIP2s [27, 76]. Unlike in the PIP1 subgroup, higher water channel activity has been 

reported in PIP2 members [27], although, when PIP1s are co-expressed with PIP2s, a synergistic 

effect on water channel activity is observed [20, 27]. In the case of Arabidopsis thaliana, PIP1 and 

PIP2 have five and eight isoforms [76], respectively, as depicted in Figure 3.1, with SoPIP2;1 being 

a typical example isoform in Spinacia oleracea (spinach). For example, an in vivo analysis 

demonstrated two phosphorylated serine residues in response to an increase in the apoplastic 

water potential [91], with phosphorylation being suggested to be responsible in regulating the 

water channel activity of SoPIP2;1, and thus regulating the water channel activity in this protein 

[77]. In this regard, a study by Törnroth-Horse-field et al. [161] presented evidence of an X-ray 

structure of SoPIP2;1 depicting both a closed conformation at a resolution of 2.1 Å (Figures 3.3 

and 3.4) and an open conformation at 3.9 Å. Thus, SoPIP2;1 is the only plant AQP for which an 

atomic resolution at 2.1 Å based on X-ray crystallography is available [161]. Generally, SoPIP2;1 

is a water-specific protein [87], but Gomes et al. [55] have suggested that, its 2.1 Å pore diameter 

makes it susceptible to serve as a pathway for molecules smaller than water. 
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Figure 3.3: Structures of the closed and open conformations of SoPIP2;1 [161]. (a) Stereo models of 

SoPIP2;1 in its open (blue) and closed (green) con-formations overlaid on that of AQP0 (light grey; Protein Data Bank 

(PDB) entry 1YMG) and AQP1 (grey; PDB entry 1J4 N). (b), (c) Electron density for loop D in the closed (b, green) and 

open (c, blue) conformations. Residual electron density in c indicates that the closed conformation is also present in 

partial occupancy.

(a) 

(b) (c) 
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Figure 3.4: Characterizing the SoPIP2;1 isoform. (a) The pore diameter of the closed conformation of SoPIP2;1 

(green), and the open conformation of SoPIP2;1 (blue), represented as a function of the distance from the NPA signature 

sequence calculated with HOLE32. (b) The same information for the closed conformation of SoPIP2;1 as in a but 

represented as a funnel illustrating the pore boundaries. The inset shows the pore near the gating region of loop D 

characterized by Leu 197, Pro 195 and Val 194. (c) The same representation as in b but corresponding to the open 

conformation of SoPIP2;1. Adapted from [161].

(a) (b) (c) 
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3.5.2 TIP Isoforms 

 TIPs are expressed primarily in the tonoplast membrane, although other subcellular 

locations cannot be ruled out [55]. AQPs are the most abundant proteins of the tonoplast, which 

explains why the water permeability of the tonoplast is higher than that of the plasma membrane 

[55, 109]. Based on their sequence homology [142], TIPs are divided into five subfamilies  [114, 

142, 156]: TIP1, TIP2, TIP3, TIP4 and TIP5  [83, 147], and are believed to have several isoforms, i.e. 

TIP1 (TIP1;1, TIP1;2, and TIP1;3), TIP2 (TIP2;1, TIP2;2, and TIP2;3), TIP 3 (TIP3;1 and TIP3;2), TIP4 

(TIP4;1), and TIP5 (TIP5;1) [76, 142], with their diversity as a guarantee for their survival [83]. In 

addition to their role as water channel proteins, TIPs also transport hydrogen peroxide (H2O2), 

besides glycerol [109, 142] and exhibit functional characteristics associated with water flow 

regulation in response to drought and salinity stresses, as evidenced in Arabidopsis thaliana [6, 32, 

79]. Furthermore, they have been reported to enhance nitrogen-uptake efficiency and 

detoxification by acid entrapment of ammonium ions in vacuoles [87, 102]. A study by Kirscht 

et al. [87] became the first in establishing an understanding of the structural features that confer 

ammonia selectivity for the AtTIP2;1 isoform, and for Arabidopsis thaliana. In this regard, the 

current study has presented a crystal structure of AtTIP2;1 (see Figure 3.5) determined at an 

atomic resolution of 1.18 Å using X-ray diffraction coupled with molecular dynamics (MD) 

simulations in order to study functional properties of mutants, thus providing new insights into 

the molecular basis of substrate selectivity in the AQP superfamily [87]. Hence, this became 

indicative of (a) an extended selectivity filter (SF), a section out of which a narrowest region of 

the channel lumen is formed due to the conserved ar/R, with the former providing the AQP its 

selectivity towards water molecules, and ultimately, its ability to distinguish the molecule from 

protons (Figure 3.6a); (b) the presence of a water-filled side pore [83, 87], which extends from the 

loop C near the extracellular side of the protein directly into the main pore into the SF (see 

Figure  3.5). This provides a rare second means of entry into the permeation conduit. Hence, such 

an insight has shown that the SF region is the narrowest part of the channel, while the pore 

diameter of AtTIP2;1 (3 Å) was determined to be uniform throughout the channel (see 

Figure 3.6a); ultimately, this is in contrast with previously reported structures of other AQPs, as 

proposed by Kirscht et al. [87]. This recent revelation further suggested that the AtTIP2;1 isoform 

has the ability to serve as a mode of translocation for compounds larger than water [83, 87]. 
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Figure 3.5:  Structure of AtTIP2;1 [87]. (a) Membrane spanning helices (H1-H6) and two half helices (HB and 

HE), connected via conserved NPA-motifs, form a pore through the vacuolar membrane. Homologous helices in the 

internal repeat are indicated in colour. (b) AtTIP2;1 tetramer viewed from the vacuolar side. (c) Side view of the 

monomer with the same orientation as in a. Eight water molecules form a single file in the main pore, and five water 

molecules are seen in a side pore underneath loop C. 

 

 In this regard, Figure 3.6b depicts pore and SF differential comparisons between water-

specific proteins, e.g. SoPIP2;1 and AtTIP2;1, but only those which have been proven to be 

different at the level of their individual pore diameters. Hence, the former has a smaller pore 

diameter, which is wide enough to facilitate the permeation of smaller but not larger molecules 

into the cell membrane of the plant; while the latter, has a wider pore capable of facilitating the 

translocation of both smaller and larger compounds. 

(a) 

(b) 

(c) 
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Figure 3.6: Comparison of pore diameter and the extended selectivity filter of different AQPs. 

Individual isoforms of AtTIP2;1 (green), water-specific SoPIP2;1 in closed conformation (purple), as well as average 

diameter of other open water-specific AQP structures are shown. AtTIP2;1 (green) provides a more or less 

constant/uniform pore diameter at 3 Å (blue), thus suggesting its ability to serve as a conduit for molecules and/or 

compounds larger than water (a). AtTIP2;1 presents the narrowest NPA, but a much wider SF region; only glycerol-

containing structures such as PfAQP and EcGlpF have a larger diameter at the SF (b). AtTIP2;1 (green) is compared to 

the water-specific SoPIP2;1 (purple) and two other AQPs (e.g. glycerol-permeable EcGlpF) (b). Adapted from [83] and 

[87]. 
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3.6 Plant AQPs Translocate Nutrients and Facilitate Uptake 

 When AQPs were first discovered, it was reported that their significant impact was 

unique for water transportation in living cells [3], for example, of plants [79, 184] and animals [90, 

180, 184]. To date, compelling evidence has indicated that some plant AQPs facilitate the transport 

of small solutes or gases and nutrients [156]. For example, most PIPs are characterized to facilitate 

water diffusion; while TIPs are primarily for the diffusion of water, urea, ammonia, and H2O2, 

with NIPs being associated the diffusion of metalloids (boric acid and arsenite) in addition to 

glycerol and water [53]. In addition, boron is an essential nutrient for plants, which in its boric 

acid form, is also structurally related to water [112]. It has since been reported that AtNIP5;1 (a 

NIP isoform in the case of Arabidopsis thaliana plant type) transports boric acid in Xenopus oocytes 

and significantly contributes to the root uptake of boron [117]. Similarly, AtNIP6;1 and AtNIP7;1, 

which are selectively expressed in leaf nodes and floral anthers, respectively  [96, 97, 158], were 

also reported as boric acid translocation facilitators [96]. It is worth mentioning that, despite 

boron being an essential metalloid for plants, its excessive presence into the environment is 

undesirable, particularly in the agricultural sector [34, 158]. 

 Moreover, abundant evidence has identified OsNIP2;1 (a NIP isoform identified in Oryza 

sativa, rice) as the first silicon transportation protein in plants [96, 104]. Like its homologue boron, 

silicon is another essential mineral component for certain plants [96]. Hence, OsNIP2;1 functions 

as an influx channel for silicic acid, allowing in the process, the uptake of silicon from the soil into 

the root stele and vascular tissues [96, 103, 104, 119]. A study by Mitani-Ueno et al. [118] also 

reported on the role played by the residue at the H5 position of the ar/R filters of both OsLsi1 

and AtNIP5;1 in the permeability and uptake of arsenic by rice, a staple food for several 

communities worldwide, implying arsenic accumulation in rice grain as a serious threat to human 

health  [118, 191, 193]. 

 Furthermore, recent evidence has suggested that other plant AQPs expressed in plant 

tissues, where water flow dynamics appear to be low and/or less needed, have been responsible 

for solutes and other chemical compounds’ acquisition by the plants evaluated  [26, 86, 133, 134, 

156]. This was explained in the case whereby the AQP in question is found to be hydrophobic 

[152]. For instance, the ar/R selectivity filter in XIPs from different plants is more hydrophobic in 
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nature, so is NIP1s. The hydrophobic nature of these AQPs has recently been reported to facilitate 

the transportation of bulky and hydrophobic molecules such as glycerol, urea and boric acid, in 

crops [24, 152]. Similarly, ammonium/ammonia (NH4+/NH3) is an important nitrogen fertilizer 

for crops [96]. Carriers of NH4+ have been documented in several studies, with diffusion being 

suggested to be the primary transporter of NH3 into cell membranes [73, 96]. New evidence has 

indicated that various TIP2 isoforms of Arabidopsis and wheat, were suitable for the permeability 

of this compound (i.e. NH3), with some AQP isoforms having an ability to distribute NH3 in 

various crop compartments [73, 96, 102]. The aforementioned could not be confirmed in a study 

by Loqué et al. [102], as evidence could not be found to suggest that NH4+/NH3 uptake is 

facilitated by AtTIP2;1 and AtTIP2;3 although these AQPs were over-expressed in Arabidopsis. 

This was clarified by Kirscht et al. [87] who revealed new features that were not predicted by 

homologue modelling [53], such as the one used by Loqué et al. [102]. These features, include an 

extended selective filter, due to a fifth residue of the ar/R and a wider pore diameter, i.e. 3 Å [53, 

87], highlighting for the first time that NH4+ might be deprotonated by the interaction with this 

His, while NH3 then moves through both the main pore and protons through a side pore to the 

vacuolar surface [53, 87]. This suggested the furtherance of the AQPs research field, since we are 

still far from a fully integrated view of the function profile of AQPs [96]. In addition, excessive 

levels of NH4+ in the environment can lead to NH4+ toxicity, which can lead to crop-growth 

suppression [60] and yield reduction [164]. 

3.7 Plant AQPs and Their PFASs and POPs Potential Acquisition 

3.7.1 PFASs Structural Manufacturing Process 

 Per- and polyfluoroalkyl substances (PFASs) are a class of man-made chemical 

compounds, implying they are not naturally found in the environment [50]. Available evidence 

has indicated that, various types of PFASs have been manufactured, with PFOA (C7F15COO−) and 

PFOS (PFOS; C8F17SO3−) being predominantly used [5, 93, 155]. Their production processes have 

involved the use of electrochemical fluorination technologies, which have conferred unique 

physicochemical properties to these compounds (see Figure 3.7), not observable in many other 

synthetic compounds. Their structural integrity is associated with hydrogen atoms substitution 

by fluorine atoms [122]. Due to these properties, PFASs are stable, heat resistant, water- and fat 

repelling; and for this reason, PFASs have become popular in numerous industries and the 
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manufacturing of consumer products [62, 88]. The excessive application of these compounds by 

several economic sectors has led to their widespread distribution within the ecosystem. Thus, to 

date, compelling evidence as documented by scientists, clearly indicates the accumulation of 

PFASs in several environmental matrices, including several plants, some of which are edible 

crops [28, 29, 40, 125, 137, 155, 175, 186]. The consumption of crops, contaminated by these 

substances has been suggested, as the main cause of PFASs exposure to humans [28–30, 63]. In 

addition, some plants have proven to be more susceptible to PFASs than others [121]; this trend 

has not yet been explained. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Chemical structure of PFASs [123]. (a) PFASs physicochemical properties are shown. They have 

a fluorinated tail and a hydrophilic head, thus making chain that can vary in chain length (n, represents the number of 

carbons in the perfluorocarbon chain). (b) Schematic diagram for hydrophobic interaction in different environments. 
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3.7.2 Why are AQPs the Potential Reason for Plant PFASs and POPs Uptake? 

 To our knowledge, not much has been said in the literature about the possibility of AQPs 

being the gateway that facilitates PFASs and other POPs into plants. Recently, a study by Wen 

et al. [176] reported, for the first time, that protein and lipid presence within plants, plays a role 

in the accumulation and distribution of PFOS and PFOA in plants. However, the authors 

suggested that an exact explanation for the observed effect remains to be proven. Similarly, 

Mudumbi et al. [121] suggested that different plants variably accumulate PFASs, but this study 

had not justified the observed trend. 

 In addition, available evidence has indicated that PFASs have carbon–fluorine bonds (C–

F) with a typical size of about 1.35 Å [89, 149]. This size (i.e. 1.35 Å) is smaller in comparison to 

pore diameter associated with numerous isoforms, TIP2s, i.e. AtTIP2;1_2.1 Å and PIP2s, i.e. 

SoPIP2;1_3 Å. Recently, it was suggested that the AQP pore-length determines which molecules 

permeate and/or are excluded from the channels, while regulating the rate at which molecules 

can move through the pores [61]. Hence, this, in our view, suggests that PFASs are likely to be 

absorbed, translocated and distributed by AQPs whose pore diameter matches the C-F bond size 

in conjunction with other smaller compounds. 

 Furthermore, distribution and accumulation of PFASs (i.e. PFOA and PFOS) in plants 

have been suggested to be species-dependent [176]; so is the expression of AQPs in plant species. 

Available evidence has indicated that, AQP proteins are expressed in multiple isoforms [4], 

including 35 in Arabidopsis and 33 homologues in rice [76], of which some might have different 

functional aspects as elucidated in this review (see Table 3.4). A complete understanding of AQP 

functions requires a precise knowledge of their expression, structural properties in specific 

tissues, cell types and compartments [42]. Moreover, to our knowledge, these characteristics have 

not been reported, particularly in the case of PFASs, and various other POPs, suggesting that, this 

field of research still requires more attention from researchers. 
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Table 3.4: Summary of functional expression and substrates uptake specificity of typical plant aquaporins 

Subclass Isoform  Substrate Expression System  Transport Assay  References 

PIP AtPIP2;1 Water  Proteoliposome  Shrinkage  [114, 170] 

AtPIP2;1 H2O2  Yeast  Toxicity growth assay  [48, 114] 

AtPIP2;2 Water  Xenopus oocyte  Swelling  [114, 162] 

NtAQP1  Glycerol  Xenopus oocyte  Radiolabeling  [23, 114] 

NtAQP1  CO2  Xenopus oocyte  Intracellular pH  [114, 166] 

NtAQP1  CO2  Yeast  Intracellular pH  [114, 129] 

NtAQP1  CO2  Planar lipid bilayer  Local pH  [114, 167] 

TIP AtTIP1;1  Water  Xenopus oocyte  Swelling  [114, 115] 

NtTIPa  Urea  Xenopus oocyte  Radiolabeling  [54, 114] 

NtTIPa  Glycerol  Xenopus oocyte  Radiolabeling  

AtTIP1;2  H2O2  Yeast  Intracellular fluorescence  [25, 114] 
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Table 3.4 : Continues 

TIP TaTIP2  NH3  Yeast  Extracellular pH  [73, 114] 

ZmTIP1;1  H2O2  Yeast  Toxicity growth assay  [18, 114] 

AtTIP2.3  NH3  Xenopus oocyte  Radiolabeling  [102, 114] 

NIP AtNIP5;1  B(OH)3  Xenopus oocyte  Intracellular dosage  [114, 159] 

OsNIP2;1  Si(OH)4  Xenopus oocyte  68Ge-radiolabeling  [104, 114] 

ZmNIP2;1  GeO2  Yeast  Toxicity growth assay  [114, 118] 

NIP AtNIP5;1  As(OH)3  Xenopus oocyte  Intracellular dosage  [74, 114] 

BjNOD26  Water  Proteoliposome  Shrinkage  [74, 114] 

BjNOD26  NH3  Proteoliposome  Internal pH  

SIP VvSIP1  Water  Yeast  Shrinkage  [70, 114] 

VvSIP1  Water  Proteoliposome  Shrinkage  

XIP NtXIP1;1  H2O2  Yeast  Toxicity growth assay  [24, 114] 

PtXIP2;1  Water  Xenopus oocyte  Swelling  [101, 114] 
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3.7 Conclusion 

 Plants play a major role in the environment and need not only sunlight and water to grow, 

but also nutrients. Thus, nitrogen, potassium and phosphorus are some of the nutrients referred 

to, and are reported to be essential for plant growth; while Cr, Mn, Fe, Co, Cu, Zn, and Se are 

examples of heavy metals and/or toxicants, identified in various plants. It is also now well known 

that plants also come into contact with an amalgam of other toxic chemical elements, such as 

POPs and PFASs, present in the environment, some of which have been extensively detected in 

plants. In addition, although the plant root systems being previously regarded as the major 

contributors to these chemical compounds translocation and storage in plants, recent evidence 

has reported that plants make use of a variety of mechanisms (see SM1 and Table S1) to uptake 

and store these nutrients and other toxicants in plant cell membranes. Hence, the mechanism that 

facilitates the uptake of water, nutrients and other essential minerals, as well as toxicants such as 

POPs and PFASs, was thought to be limited to the physical and diffusive mechanisms until the 

discovery of AQPs—proteins that expedite water permeability in living cells, including those in 

plants, in which these proteins (i.e. AQPs) have been said to be more diversified than in animals. 

Some structural studies have revealed that AQPs share a common fold and a narrow substrate-

conducting channel. Hence, to date, there are numerous AQPs that have been identified in an 

assortment of plants’ living cell membranes. Thus, plants’ AQPs were previously classified into 

four groups or subfamilies, i.e. NIPs, PIPs, TIPs and SIPs, to which three additional subfamilies 

(i.e. XIP, GIPs and HIPs) have recently been added. Research studies have revealed that plants’ 

AQPs are not only contributors to water and mineral nutrients’ translocation in plant cell 

membranes, but also act as pathways facilitating the transport of toxic trace metals such as arsenic 

(As), antimony (Sb) metalloids, etc. Thus, various plants with specific AQPs have recently tested 

positive for the uptake and storage of some POPs, some of which include emerging POPs, such 

as PFASs. For instance, positive translocation correlations were found in membrane proteins 

present in maize (Zea mays) and PFOA and PFOS. However, despite the alleged evidence that has 

emerged demonstrating the role that plant proteins and/or AQPs might play in the uptake, 

translocation and tissue dissemination of nutrients, POPs, and thus PFASs by plants, researchers 

have indicated that it is too soon to consider this recent observation as an explanation. This further 

suggests that the question remains unresolved as to whether AQPs are the gateway which 
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conduits these chemical compounds into plants. Furthermore, to answer this question, more 

studies in this field are required. 
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4.1 Abstract 

 Type 2 Diabetes Mellitus (T2DM) is the most common form of diabetes and it is 

characterised by high blood sugar and abnormal serum lipid levels. Although the specific reasons 

for the development of these abnormalities are still not well understood, traditionally, genetic 

and lifestyle behaviour have been reported as the leading causes of the disease. In the last three 

decades, the number of diabetic patients has drastically increased worldwide, with current 

statistics suggesting the number is to double in the next two decades. To combat this incurable 

ailment, orthodox medicines, to which economically disadvantaged patients have minimal 

access, have been used. Thus, a considerable amalgamation of medicinal plants have recently 

been proven to possess therapeutic capabilities to manage T2DM; and this has prompted studies 

primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. 

Hence, this review aims to highlight the potential threat of pollutants, i.e. polyfluoroalkyl 

compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal 

plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is 

further suggested that auxiliary research be undertaken to better comprehend the factors that 

influence the uptake of these compounds by these plants. This should include a comprehensive 

risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that 

control the use of PFC-precursors in certain developing countries are also long overdue. 
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4.2 Introduction 

 The 21st century has seen an increase in chronic and lifestyle related diseases worldwide, 

some of these being associated with high mortality rates, including diabetes mellitus (DM). In fact, 

it has been indicated that chronic diseases are the leading cause of death in the world (Yach et al. 

2004), with these diseases becoming the dominant burden on health systems in many developing 

countries (Nugent 2008). From a South African perspective, chronic diseases were reported to be 

the main cause of death in 2000, and these included cardiovascular diseases and diabetes (Reddy 

2003). Similarly, CVD were reported as the second leading cause of death in South Africa after 

HIV/AIDs (Matsha et al. 2012); and recently, diabetes has been added as a major risk factor for 

people infected by the virus (Dimala et al. 2016; Isa et al. 2016; Moreira et al. 2016). Hence, DM 

has been described as a chronic (Zimmet et al. 2001) and metabolic disorder (ADA 2014) with 

compound aetiology and characterized by a raised blood sugar, medically referred to as 

hyperglycemia (Rehman et al. 2011). Accordingly, hyperglycemia is said to be accompanied, in 

most cases, by changing degrees of disrupted carbohydrate and fat metabolism (Waugh and 

Grant 2014), and should not be confused with normoglycemia, which is the normal blood sugar 

concentration (ADA 2014). The World Health Organization (WHO), had previously indicated 

that DM is a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia 

with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin 

secretion, insulin action, or both (WHO 1999). Moreover, in the human body, blood glucose levels 

are controlled by two hormones, namely insulin and glucagon (Waugh and Grant 2014). Both 

these hormones are secreted by the pancreas, and are believed to perform opposing actions (Bell 

et al. 1983; Ahrén et al. 2004). Thus, insulin primary function is to lower raised blood nutrient 

levels, including glucose, amino acids, and fatty acids (Waugh and Grant 2014), while the 

glucagon, on the other hand, unlike its counterpart, the insulin, increases blood glucose levels by 

means of glycogenolysis, i.e., the conversion of glycogen to glucose (Bell et al. 1983; Ahrén et al. 

2004; Waugh and Grant 2014). Additionally, glucose is seen as a source of energy for the cells that 

make up muscles and other body tissues, and comes from one major source, namely food 

(including plants). According to Rodriguez (2004), carbohydrates that are consumed become 

blood glucose and are used by the body. It is thus understood that, if we do not use this glucose, 
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the body stores it, and ultimately becomes fat (Rodriguez 2004), leading to obesity and a risk of 

developing diabetes (Russell-Jones and Khan, 2007; Daniele et al. 2014). Similarly, when the body 

becomes incapable of making sufficient quantities of insulin, or, is unable to use insulin 

effectively, or the combination of both, this can potentially culminate into diabetes. Additionally, 

DM has been recently referred to as an endocrine-related disease and disorder (Bergman et al. 

2013; Birnbaum 2013), suggesting it is related to the functioning of the endocrine system. For 

example, Alberti and Zimmet (1998) indicated that various pathogenic processes are involved in 

the development of diabetes, among which some processes related to the destruction of beta cells 

in organs such as the pancreas, are included (Bloom 2012; Petzold et al. 2015). 

 Furthermore, it has been indicated that there are different cases of DM, of which fall into 

two wide etiopathogenetic categories, namely type 1 diabetes (T1D) and type 2 diabetes (T2D) 

(ADA 2014). Accordingly, available data has suggested that a deficiency in insulin secretion leads 

to T1D, while a combination of resistance to insulin action and an insufficient compensatory 

insulin secretory response are allegedly responsible for T2D (WHO 1999; ADA 2014). Similarly, 

there is a strong link between type 2 diabetes mellitus (T2DM) with overweight and obesity, age 

increase, ethnicity, and family history (IDF 2017). On the other hand, recent evidence on dietary 

factors has further reported an association between excessive consumption of sugar-sweetened 

beverages and risk of T2DM (Malik et al. 2010; Imamura et al. 2015; IDF 2017). Hence, Table SM1 

and Figure SM1 depict disorders of glycemia: etiological types and clinical stages and etiological 

classification of disorders of DM (provided as supplementary material). 

4.3 Type 2 diabetes mellitus and the role of pollutants 

4.3.1 Polyfluoroalkyl compounds and diabetes 

 Polyfluoroalkyl compounds (PFCs) have been described as new emerging persistent 

organic pollutants (POPs) (Corsini et al. 2014), and they cover a wide assortment of anthropogenic 

chemicals that were manufactured between the late 1940s and to date (Jiang et al. 2015; Niu et al. 

2016) using electrochemical fluorination and telomerization (Banks et al. 2013; Jiang et al. 2015). 

These compounds have unique physicochemical properties, such as chemical stability, 

hydrophobicity, oleophobicity, etc. (Gao et al. 2015; Zhang et al. 2015; Hidalgo and Mora-Diez 

2016). Hence, owing to these properties, PFCs have been widely used in many consumer 
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products, including carpets, textiles, packaging products, leather, home furnishings, paper 

products, non-stick cookware, and numerous cleaning products (Kotthoff et al. 2015; Bečanová et 

al. 2016). Additionally, there are several hundred types of PFCs (Martin et al. 2006; Ahrens 2009), 

of which perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are the most studied 

and documented (Stahl et al. 2009; Lechner and Knapp 2011). Consequently, various PFCs have 

been found to bioaccumulate and persist in numerous environmental matrices (Naile et al. 2013) 

including plants and freshwater sources (Naile et al. 2013; Mudumbi et al. 2014a, b) and fish 

species (Shi et al. 2012; Naile et al. 2013). Subsequently, as a result of excessive use and the 

persistence of PFCs, the compounds have now been detected in human serum (Whitworth et al. 

2012a; Guerranti et al. 2013; Bao et al. 2014; Predieri et al. 2015; Manzano-Salgado et al. 2016), 

which has led to worldwide concerns, particularly since the compounds ’ probability of causing 

disease has emerged. Hence, new evidence has indicated a strong relationship between POPs, 

obesity, and the development and/or leading to T2DM and other life-threatening diseases 

(Airaksinen et al. 2011; Bourez et al. 2012, 2013; La Merrill et al. 2013; Taylor et al. 2013; Ljunggren 

et al. 2014; Magliano et al. 2014; Myre and Imbeault 2014; Pereira-Fernandes et al. 2014; Reaves et 

al. 2015). Recent evidence has shown a global increment in obesity/overweight cases by 27.5% in 

adults and 47.1% in children between 1980 and 2013 (Whitworth et al. 2012a, b; Ng et al. 2014). 

As such, the rising rate of obesity is regarded as an unequivocal contributor to the global diabetes 

epidemic and its sequel. The fact that the increase in obesity and diabetes worldwide is occurring 

over a period of a few decades underscores the interplay between the various factors that relate 

to the development of diabetes. Lately, there has been increased evidence suggesting 

polyfluoroalkyl compounds, i.e., PFOA and PFOS, as possible contributors to diabetes 

development (Chen et al. 2012a, b, c; Whitworth et al. 2012a, b; Eriksen et al. 2013; Karnes et al. 

2014), in particular T2DM. For example, studies by Chen et al. (2012a, b, c) reported an association 

between the levels of PFCs and infant birth weight in relation to childhood DM development. 

Previously, it has been argued that low birth weight may be linked to adult diseases, including 

diabetes (Barker and Osmond 1986; Chen et al. 2012a, b, c). Additionally, a positive association 

was observed between PFCs (i.e., PFOA and PFOS) and a high total cholesterol in humans by 

Eriksen et al. (2013), as well as in a similar study by Fletcher et al. (2013); with cholesterol levels 

being significantly associated to diabetes development (Patel et al. 2010; Costacou et al. 2011; 

Seneff et al. 2012), in particular T2DM (Booe 2016), although a recent study examining the 

relationship between exposure to PFOA and T2DM concluded that there is minimal direct 
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association between PFCs and T2DM (Karnes et al. 2014). However, it should be indicated that 

PFOA concentrations used in this study were estimated, which, in our view, suggests inaccuracy, 

while the compound’s half-life in humans was not indicated, and the investigation did not state 

whether the participants were on medication, and what were the implications of this aspect on 

the outcomes being reported. Thus, all of the aforementioned limitations have suggested 

inconclusive relatedness between PFCs and diabetes. Similarly, this research niche requires 

further investigations. In fact, it was argued that PFCs have capabilities to interfere with fatty 

acid metabolism, which suggest possible risk factors for metabolic disorders (Costa et al. 2009; 

Steenland et al. 2010; Corsini et al. 2014). 

 Additionally, Eriksen et al. (2013) revealed that DM which may trigger cholesterol 

synthesis was associated with PFOA and PFOS, but the study warned that, for an accurate 

interpretation, similar studies were required. Moreover, an association was found between the in 

vivo expression of genes involved in cholesterol metabolism and exposure to PFOA including 

PFOS; an indication of feasible links between exposure to these chemicals and chronic diseases 

such as T2DM (Fletcher et al. 2013). Furthermore, it was previously reported that PFCs were 

significantly correlated with DNA hypomethylation (Guerrero-Preston et al. 2010), which is 

regarded as the loss of the methyl group in the 5-methylcytosine nucleotide (Peinado 2012). 

Consequently, DNA hypomethylation has been previously associated with chronic diseases, 

including diabetes (Pogribny and Beland 2009; Guerrero-Preston et al. 2010). 

 In another study, it was revealed that there is an association between high concentration 

levels of PFOS and PFOA in blood serum and body mass index (BMI) (Ji et al. 2012). Although, 

the analysis of diabetes risk was not reported in this study, it is however important to indicate 

that the correlation between BMI and diabetes had previously been investigated in other studies, 

including a study by the World Health Organization (Barba et al. 2004), Berrington de Gonzalez 

et al. (2010), Taylor et al. (2010), Zheng et al. (2011), Ogden et al. (2014), and Ng et al. (2014). 

Recently, it was also revealed that higher serum levels of PFOS may be a contributing factor for 

individuals being susceptible to developing T1DM (Predieri et al. 2015). These results were 

consistent with those reported the following year by Su et al. (2016) as far as exposure to PFOS in 

workers was concerned. However, the study further indicated that those exposed to PFOA, 

PFNA, and PFUA showed a lower risk of developing T2DM, although, a cross-sectional study 

found that higher PFC levels were associated with higher insulin levels, higher beta cell activity, 



Chapter 4: The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment 
strategies 

128 

 

higher insulin resistance (HIR), and higher triglycerides, in overweight children, than in those 

with normal weights (Timmermann et al. 2014). Indicatively, HIR is a sign that T2DM patients 

are insulin resistant, which makes their body tissues to respond sluggishly to the insulin (Booe 

2016). Similar studies have reported that perfluorononanoic acid (PFNA) was significantly related 

to T2DM in a non-linear manner, with PFOA being related to insulin secretion, while none of 

these compounds were associated to insulin resistance (Lind et al. 2014). From this study, it is 

believed that the significant non-linear relationship between PFNA and diabetes supports the 

view that this substance, i.e., PFNA, has the potential to influence glucose metabolism in humans 

(Lind et al. 2014). 

 Generally, it has been indicated that environmental PFC exposure has the potential to 

influence the risk of metabolic syndrome (Wang et al. 2017), which has previously been identified 

as a multiplex risk factor for CVD by the Treatment Panel III report (ATP III) (Grundy et al. 2004) 

and characterized by six components, namely obesity, atherogenic dyslipidemia, raised blood 

pressure, insulin resistance and/or glucose intolerance, and proinflammatory and prothrombotic 

states (Grundy et al. 2004). Based on these components, Wang et al. (2017) further suggested that 

PFCs could increase the metabolism syndrome risks including T2DM. Additionally, a study from 

Korea has indicated that intense vitamin C supplementation to patients reversed the effects of 

PFC levels which are associated with insulin resistance (Kim et al. 2016). Thus, these authors 

suggested that enriched diets with vitamin C are to be part of the patients’ diet, as it has a 

potential to reduce the adverse effect of PFCs. However, the risks of such an intensive treatment 

are real, and can ultimately lead to hypoglycemia, also called low blood glucose (NIH, 2008), 

further suggesting that precautionary measures are required when managing DM. 

 As for endocrine disrupting chemicals (EDCs), Su (2016) has positively linked PFCs as one 

of the contributory synthetic chemicals which significantly influence the risk of T2DM and 

subclinical CVD, a suggestion echoed by Lee (2016). Previously, Casals-Casas and Desvergne 

(2011) reported on the possibility of PFCs acting as EDCs, a report which was consistent with that 

of Du et al. (2013) who argued that PFOS had the capability to act as an endocrine disruptor both 

in vitro and in vivo by disrupting the function of nuclear hormone receptors. This argument was 

elucidated by Bergman et al. (2012) suggesting that, indeed, PFCs must be categorized EDCs. 

Hence, Lind and Lind (2016) suggested that environmental contaminants with endocrine 

disrupting properties could be potential classical risk factors for CVD (Kirkley and Sargis 2014), 
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such as diabetes, hypertension, obesity, etc. This can be attributed to new evidence from current 

reports that have indicated the prevalence of EDCs and PFCs in products used daily by humans, 

including plastic bottles, cans, cosmetics and pesticides, and processed foods manufactured using 

processes in which EDCs and PFCs have been used in one form or another (Lind and Lind 2012; 

Nohynek et al. 2013; Rousselle et al. 2013; Chevalier and Fénichel 2015; Rosenmai et al. 2016; 

Bečanová et al. 2016). As such, some studies, including that of Chevalier and Fénichel (2015), have 

suggested prolonged exposure to EDCs as a new DM emerging contributing factor; although 

previously, Polyzos et al. (2012) established the link between EDCs and insulin resistance. 

Similarly, it was recently argued that a wide range of environmental contaminants with 

endocrine disrupting properties has the potential of leading to the development of several 

classical risk factors of CVD, including diabetes, hypertension, obesity, hyperlipidemia, and the 

metabolic syndrome (Lind and Lind 2016). Hence, a higher intake of nitrates, nitrites, and N-

nitroso compounds, as well as higher serum levels of PCBs, and 2,3,7,8-tetrachlorodibenzo-p-

dioxin have all been associated with diabetes (Vasiliu et al. 2006; Navas-Acien et al. 2006, 2008). 

 Additionally, recent cross-sectional and prospective studies have reported that serum 

concentrations of dioxins, PCBs, and chlorinated pesticides were significantly associated with 

T2DM risk (Song et al. 2016), with other studies associating chlorinated dibenzo-p-dioxins, 

chlorinated dibenzofurans, and PCBs to diabetes. Evidence has emerged from Thompson (2014) 

and Mori et al. (2014) demonstrating that all three POPs were found to be associated with diabetic 

nephropathy. Additionally, a study by Lignell et al. (2013) indicated a significant association 

between POPs, i.e., PCBs and polybrominated diphenyl ethers (PBDEs) and birth weight, while 

high dioxin levels have been linked to increased risk of diabetes (Palioura and Diamanti-

Kandarakis 2015). Also, bisphenol A and phthalate metabolites were associated with diabetes in 

a study conducted by Sun et al. (2014). There is an indication that mankind ’ s daily life is 

subjected to the exposure of a wide range of EDCs, some being present in the air, water, and soil 

on which our food is cultivated, prepared, and served (Kabir et al. 2015). Similarly, various 

studies have detected PFCs in these abovementioned environments (Miralles-Marco and 

Harrad 2015). Thus, Table 4.1 depicts the use of some common EDCs and PFCs, while Figure 4.1 

illustrates the EDC pathways into humans, conduits which can also be associated with PFCs as 

well. 
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Table 4.1: Examples of some common EDCs and their uses 

Human commonly used EDCs  Uses References 

DDT, chlorpyrifos, atrazine, 2,4-

dichlorophenoxyacetic acid, glyphosate 

Pesticides Kabir et al. 2015 ; de Arcaute et al. 2016 

Lead, cadmium Children’s products Exley et al. 2016; Giudice 2016 

BPA, phenol Food contact materials Kabir et al. 2015; Yurdakök 2015 

Brominate flame retardants, PCBs Electronics and building materials Peverly et al. 2015; Al-Omran and Harrad 

2016 

Triclosan Antibacterials Renko et al. 2016; Ginsberg and Balk 2016 

Perfluorochemicals Textiles, clothing, food packaging, 

firefighting foams, photography, etc. 

Rosenmai et al. 2016; Bečanová et al. 2016 

Parabens, glycol ethers, fragrances,  cyclosiloxanes Cosmetics, personal care products, cleaners Nicolopoulou-Stamati et al. 2015 ; Gabb and 

Blake 2016 

Tributylin Antifoulants used to paint the bottom of the 

ship 

Daszykowski et al. 2015; Noring et al. 2016  

Phthalates Personal care products, medical tubing, 

Cosmetics, personal care products, cleaners, 

Children’s products, Food contact materials 

Kabir et al. 2015 ; Schantz et al. 2015 ; Exley 

et al. 2016;  Arbuckle et al. 2014 

Nonylphenol (alkylphenols) Surfactants-certain kinds of detergents used 

for removing oil and their metabolites 

Niu et al. 2015; Xu et al. 2016 

Ethinyl estradiol (Synthetic steroid) Contraceptive Mennenga et al. 2015; Suvarna et al. 2016 
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Figure 4.1: Different exposure pathways of EDCs and PFCs into humans (Kabir et al. 2015; Birks et al. 2016) 
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4.3.2 Type 2 diabetes mellitus and heavy metals 

 Heavy metals are naturally and anthropogenic occurring chemical elements (Tchounwou 

et al. 2012), known to be persistent in the human body, due to their excretion half-lives that can 

last for decades (Qu et al. 2012), a statement which has been in contradiction with that of Bergman 

et al. (2012). Nevertheless, Mattina et al. (2003) have demonstrated that plants can concurrently 

uptake both heavy metals and POPs present in soil. Heavy metals include compounds such as 

arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), etc. Like their counterparts, 

i.e., PFCs, heavy metals have also been classified as of persistent substances (Casals-Casas and 

Desvergne 2011; Kim et al. 2014). Humans get exposed to heavy metals through inhalation of 

dust, direct ingestion of soil and water, dermal contact of polluted soil and water, and 

consumption of vegetables grown on contaminated lands (Qu et al. 2012). Once they have entered 

the human body, these chemicals can lead to a wide range of toxic effects, including 

carcinogenicity, mutagenicity, and teratogenicity (Thomas et al. 2009; Putila and Guo2011; 

Tchounwou et al. 2012; Qu et al. 2012). 

 Thus, various epidemiological studies have reported a high correlation between levels of 

toxic metals exposure and increased risks of diabetes. For example, a study found that levels of 

all these metals, i.e., As, Cd, and Pb, were significantly higher in women with diabetes and their 

infants than in the women without diabetes and their new-borns (Kolachi et al. 2011). Similarly, 

recent evidence found that aluminium (Al), titanium (Ti), cobalt (Co), nickel (Ni), copper (Cu), 

zinc (Zn), selenium (Se), rubidium (Rb), strontium (Sr), molybdenum (Mo), cadmium (Cd), 

antimony (Sb), barium (Ba), tungsten (W) and lead (Pb) were all associated with diabetes (Feng et 

al., 2015), as well as chromium (Cr), iron (Fe), manganese (Mn), and mercury (Hg) (Forte et al. 

2013). Liu et al. (2014a, b) have associated Ni with T2DM, higher fasting glucose, higher average 

glucose (HbA1c), higher insulin levels, and increased insulin resistance, a metabolic abnormality 

that characterizes individuals suffering from T2DM; although Kuo and Navas-Acien (2015) have 

suggested that the link of Ni to diabetes still needs further evaluation. Similarly, type 2 diabetic 

samples were found to have 0.89 ng/ml of Ni in the blood relative to 0.77 ng/ml in the control 

samples (Forte et al. 2013; Khan and Awan 2014). Additionally, Zn, a key role player in the storage 

and secretion of insulin was linked to T2DM; hence, it was found that Zn transporter (ZnT8) (Feng 

et al. 2015), a key protein that regulates insulin secretion from the pancreatic β–cells, was 

associated with T2DM (Wijesekara et al. 2010; Khan and Awan 2014; Feng et al. 2015). Table 4.2 
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depicts comparison concentration levels of heavy metals in populations with T1 and T2DM. 

Recently, data from an epidemiological study found that the levels of urinary Cu, Zn, As, Se, Mo, 

and Cd were significantly higher in T2DM cases and those that have been identified as having a 

high risk of hyperglycemia (Liu et al. 2016a, b). These findings are consistent with those of Li et 

al. (2017). It was, however, suggested, in both studies, that further investigations that encompass 

a larger sample size were required to validate the results reported. Hence, an increased obesity 

due to Ba has been recently demonstrated in children, while Cd, Pb and Co led to weight loss in 

the same study (Shao et al. 2017). Thus, although heavy metals have been proven to be potential 

risk factors in the development T2DM, the inconsistency observed in various studies has 

suggested that more research in the era of diabetes and prevention needs to be conducted. 

4.3.3 Air pollution and type 2 diabetes mellitus 

 Humans get exposed to pollutants in various ways, such as in- and out-door exposure 

(Tsakas et al. 2011). Hence, Braniš (2010) has argued that once a pollutant has been discharged 

and/or formed in the air, ultimately leading to air pollution, it becomes unlikely not to get 

exposed to this pollutant, for the simple reason that people breathe polluted air continuously. 

Thus, according to Teichert and Herder (2016), air pollution represents an uncontested 

environmental risk factor for several health conditions, including CVDs (Miller et al. 2007; 

Teichert and Herder 2016). 

 Furthermore, a variety of evidence has suggested that long-term exposure to air pollution 

and/or pollutants, facilitates the development and progression of T2DM (Chen et al. 2012a, b, c; 

Liu et al. 2013; Balti et al. 2014; Park and Wang 2014; Eze et al. 2015; Meo et al. 2015; Dzhambov 

and Dimitrova 2016; Liu et al. 2016a, b; Teichert and Herder 2016; Park 2017). For instance, Liu et 

al. (2016a, b) reported an increment in PM2.5 that was significantly associated with increased 

T2DM prevalence. From this study, it was suggested that long-term exposure to particulate 

matter or PM2.5 had a potential to increase the risk of T2DM development. Similarly, a strong 

association between T2DM and PM2.5, PM10, nitrogen dioxide (NO2) and other pollution related 

gases was made (Meo et al. 2015). The findings Liu et al. (2016a, b) and Meo et al. (2015) were 

consistent with those recently reported by He et al. (2017) Esposito et al. (2016), and previously 

by Liu et al. (2014a, b); Wang et al. (2014); Janghorbani et al. (2014); Pope et al. (2014); Thiering et 

al. (2013); Coogan et al. (2012) and Xu et al. (2011). 
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Table 4.2: Heavy metals concentration comparison in both types of diabetes (Forte et al. 2013) 

 Heavy Metals (ng/ml) 

Cr Cu Fe (μ g/ml) Hg Mn Ni Pb Se Zn 

S
a
m

p
le

 a
n

d
 G

e
n

d
e

r C
o

n
tr

o
l F 0.75 1,046 519 3.63 15.4 0.82 22.1 141 6,627 

M 0.85 977 591 3.12 12.5 1.03 31.7 142 7,317 

T
1

D
M

 F 0.65↓ 1,080 496 2.78 9.30↓ 0.72↓ 15.9↓ 136 5,965 

M 0.71↓ 967 571 3.00 8.59↓ 0.80↓ 22.4↓ 143 6,600 

T
2
D

M
 F 0.76 1,099 498 4.16 12.9 0.80 22.3 136 6,595 

F 0.66 997 522 3.26 9.93 0.75 31.6 145 6,506 

F: female; M: male; ↓: significantly lower than in controls (<0.03) 

 Additionally, evidence demonstrating the prevalence of PFCs in the atmosphere (De Silva 

et al. 2012; Wang et al. 2013; Dreyer et al. 2015; Kwok et al. 2015; Yao et al. 2016) has further 

elucidated risks associated with polluted air. For instance, perfluorohexanoic acid (PFHxA), 

perfluoroheptanoic acid (PFHpA), perfluorobutane sulfonic acid (PFBS), including 

polyfluoroalkyl phosphate diesters (DiPAPs) and perfluoroalkyl acids (PFAAs) were higher in 

urban outdoor dust (78−98%), compared to PFHxA, PFHpA and PFBs which were less than 60% 

(Yao et al. 2016). Nevertheless, despite this amalgamation of evidence linking air pollution 

and/or pollutants and the risk of T2DM, a recent report has suggested there is insufficient 

evidence attributing a proportion of the risk of T2DM to air pollution-related immune activation, 

nor to the extent which the risk of T2DM can be reduced by reducing air pollution levels (Teichert 

and Herder 2016). This argument was in agreement with what was previously regarded as high 

risk of bias (Eze et al. 2015). This, has further suggested that more research is required, to assess 

the impact of air pollution to the prevalence of T2DM cases in certain countries (Liu et al. 2016a, 

b), in particular, those in which outdoor and indoor air pollution have been reported to be high; 

for instance, in developing countries (Eze et al. 2015). 
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4.4 Medicinal plants in the treatment of diabetes and their risk of 

 contamination by pollutants 

 To date, there has been no generally accepted cure for diabetes. This has led to the disease 

being regarded as a lifetime ailment, particularly T2DM (Saudek 2009; Blasi 2016). Nevertheless, 

pancreas or islet transplants have been portrayed as a feasible cure (Buse et al. 2009; Saudek 2009; 

Blasi 2016). However, the costs associated with such treatment methods for diabetes have been 

said to be unaffordable, particularly by lower income patients in developing countries; albeit, the 

procedure that still requires detailed investigation (Tahrani et al. 2011). This has further suggested 

that an alternative treatment is needed for patients who cannot afford the costs associated with 

DM management. 

 Nonetheless, there has been enough evidence suggesting a healthy lifestyle (Meltzer 2014; 

Coppola et al. 2015; Raidl and Safaii 2015) - including diet and regular physical exercises (Evert 

et al. 2013; Safaii and Raid 2013) - and insulin intake (Swinnen et al. 2010; Heller et al. 2012) as per 

clinical recommendations - can make a difference in a diabetic patient’s life. Hence, a study by 

Garber et al. (2012) has argued that, the pharmacokinetic properties of prescribed insulins by 

physicians should be well understood to avoid risk of hypoglycaemia and its consequences, 

particularly in T2DM cases. On the other hand, a study by Bartley et al. (2008) has indicated the 

possibility of weight gain by a patient on insulin therapy, which may complicate the patient’s 

clinical outcomes; while Ali et al. (2006) has suggested that, due to the unbearable side effects 

associated with the use of insulin, new types of diabetes therapeutics are required. Additionally, 

oral antihyperglycemic agents, including canagliflozin (Schernthaner et al. 2013; Inagaki et al. 

2015), empagliflozin (Zinman et al. 2015), sitagliptin (Green et al. 2015), liraglutide (Marso et al. 

2016a), and semaglutide (Marso et al. 2016b), have all been proven to be effective in the 

management of T2DM. For instance, in T2DM patients who have a high cardiovascular risk, death 

rates were significantly lowered among those who were on semaglutide treatment than in the 

placebo group (Marso et al. 2016b). A similar trend was observed in those on liraglutide (Marso 

et al. 2016a), results which were in agreement with those previously reported by Zinman et al. 

(2015) on patients receiving empagliflozin for T2DM therapy. It is worth indicating that, although 

it was suggested that, canagliflozin and sitagliptin were also effective drugs (Schernthaner et al. 

2013 and Green et al. 2015), and previous evidence reported that, canagliflozin was associated 
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with increased genital infections in T2DM patients (Schernthaner et al. 2013). Donath (2014) 

further indicated that, several antidiabetic drugs are associated with adverse effects, with 

gastrointestinal symptoms in patients treated with metformin being the most problematic; 

hypoglycaemia and weight gain in patients treated with sulphonylureas. Currently, it has been 

indicated that insulin remains the preferred treatment for glycemic control in hospitalized 

patients (ADA 2016). 

 Moreover, the use of medicinal plants and/or products has, in the last decade, been 

suggested to be a potential new breakthrough in the battle against various diseases (Vlietinck et 

al. 2015), including T2DM (Davids et al. 2016). Thus, numerous studies have highlighted the anti-

diabetic potential of several hundred plants (Afolayan and Sunmonu 2010; Chen et al. 2012a, b, 

c; Keter and Mutiso 2012; Semenya et al. 2012; Street and Prinsloo 2012; Tag et al. 2012; 

Mahomoodally 2013; Zapata et al. 2013; Arise et al. 2014; Cock 2015). Additionally, it has been 

further indicated that plants’ constituents such as glycosides, alkaloids, tocoherols, flavonoids, 

carotenoids, polyphenols, steroids, etc., possess anti-diabetic activity (Malviya et al. 2010; Ayeleso 

et al. 2014; Ayepola et al. 2014a; Oyenihi et al. 2015). The benefits of medicinal plants and/or 

products and their hypoglycaemic effects in the management of T2DM, have been 

overwhelmingly confirmed by an assortment of studies (Semenya et al. 2012; Street and Prinsloo 

2012; Ayepola et al. 2014a, b).  

 In the sub-Saharan African region, in particular, medicinal plants have played a major 

role in combating the disease due to the prohibitive cost of orthodox medicine and the low income 

of its population (Mounanga et al. 2015), thus suggesting these medicines to be more accessible 

and affordable by local communities in this African region (Mahomoodally 2013). However, 

although very promising, sub-Saharan medicinal plants have been subjected to numerous 

challenges (Moyo et al. 2015). For instance, the conservation of natural resources such as plants 

remains a worldwide challenge (Moyo et al. 2015), which has been exacerbated in sub-Saharan 

Africa, where pollution, and other factors, e.g. the overexploitation of these resources for diverse 

purposes, including medicinal uses (Iwu 2014; Moyo et al. 2015; Davids et al. 2016) have rendered 

conservation efforts difficult. Table 4.3, , illustrates selected medicinal plants that are believed to 

be at risk of being contaminated by pollutants in South Africa, for example, where a recent study 

reported a wide use of medicinal plants by diabetic patients (Davids et al. 2016), although the 

sufferers were being prescribed allopathic therapy by physicians. This, ultimately, suggests the 
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trust vested in medicinal plants as compared to orthodox medication. In addition, recent studies 

have reported that DM, in particular cases of T2DM, which previously were rare in developing 

countries, have risen recently in these countries, with 80% of new cases of DM worldwide now 

being reported in developing states, thus including the sub-Saharan region (Chan et al. 2009, 

Shaw et al. 2010; Chen et al. 2012a, b, c). Therefore, to adequately address this increment in DM 

cases, Mahomoodally (2013) has suggested that potential risk factors, such as contamination with 

heavy metals, be addressed, coupled with the development and enforcement of regulatory 

guidelines, of which one of its aims should be to eradicate and/or keep to a minimum these 

factors. Additionally, unlike in the developed world, where efforts to control and regulate the use 

of PFCs and its precursors have been strongly established, in the sub-Saharan region this still is 

not the case. In South Africa, for instance, PFCs are simply referred to as pollutants of concern in 

the National Environmental Management Air Quality Act of 2004, but no specificities are 

provided in terms of their usage in the country. In our opinion, this should urgently be addressed, 

particularly in a country such as South Africa where agriculture, a major source of PFCs intake 

(Löfstedt Gilljam et al. 2015), plays an important economic role. Subsequently, the lack of 

adequate regulations on the use of PFCs, in sub-Saharan Africa, also represents challenges to the 

observed increase in the use of traditional medicinal plants, to treat T2DM, as a substitute for an 

expensive orthodox therapy. 

 On the other hand, although in recent years there has been a witnessed increase in the use 

of medicinal plants and/or products (Eldeen et al. 2016), the abandonment of orthodox 

medicines, of which some have been reported to be contaminated with excessive or banned 

pesticides, microbial contaminants, heavy metals, and chemical toxins (Chan 2003), should be a 

primary concern at this stage. Concerns have been reported over the possibility of medicinal 

plants and/or products being contaminated with POPs and other new emerging pollutants, if 

they are grown under a contaminated environment or during collection of these plant materials, 

as well as if they are treated and stored under unsuitable conditions (Chan 2003). Recent studies 

have addressed the uptake of PFCs and/or EDCs by plants, some of which have been edible crops 

(Blaine et al. 2014; Lee et al. 2014; Yang et al. 2015; Bizkarguenaga et al. 2016; Kurwadkar et al. 

2017; Zhao and Zhu 2017). Furthermore, results from Lee et al. (2013) provided evidence of soil 

biodegradation of DiPAPs and their subsequent uptake including their intermediate by-products 

uptake into plants; while Bizkarguenaga et al. (2016) determined the highest bioconcentration 
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factors (BCFs) for PFOA and PFOS in carrot (Daucus carota); with PFCs being found in all plants 

grown in biosolids-amended soil (Wen et al. 2016).  
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Table 4.3: Selected medicinal plants used to treat T2DM and potentially threatened by pollutants in South Africa 

Plant species (Family) Common or vernacular names Compartments used  References 

Sutherlandia frutescens 

(Fabaceae) 

Cancer bush (Eng.) Leaves, and often whole 

plant 

Drewes et al. 2006; van Wyk and 

Albrecht 2008; Street and Prinsloo 2012 

Moringa oleifera (Moringaceae) Makgonatˇsohle (Sipedi), 

drumstick tree (Eng.) 

Seeds and leaves Semenya et al. 2012 

Artemisia afra (Asteraceae) African Wormwood (Eng.) Leaves and roots Erasto et al. 2005; Thring and Weitz 

2006; Van Wyk 2008; Afolayan and 

Sunmonu 2010 

Cannabis sativa L. (Cannabaceae) Dagga (Afr.) Leaves van de Venter et al. 2008 

Aloe ferox Mill. (Asphodelaceae) Cape Aloe or bitter Aloe (Eng.) Leaves  Deutschländer et al. 2009 ; Loots et al. 

2011; Street and Prinsloo 2012; Balogun 

et al. 2016 

Pelargonium sidoides 

(Geraniaceae) 

Umckaloabo (Zulu) Tubers and roots Street and Prinsloo 2012 
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Table 4.3: Continues 

Hypoxis hemerocallidea 

(Hypoxidaceae) 

Star flower, yellow star, African 

potato (Eng.); Inkomfe (Zulu); 

Sterblom and Gifbol  (Afr.) 

Roots Musabayane et al. 2005; Ojewole 2006; 

Street and Prinsloo 2012; Balogun et al. 

2016  

Sclerocarya birrea 

(Anacardiaceae) 

Hochst. subsp. caffra, marula, 

tree of life 

Stem Gondwe et al. 2008; Street and Prinsloo 

2012 

Herichrysum nudifolium L. 

(Asteraceae) 

Hottentot’s tea (Eng.); 

Hottentotstee (Afr.); icholocholo 

(Xhosa, Zulu) 

Leaves and roots Erasto et al. 2005; Afolayan and 

Sunmonu 2010 

Herichrysum petiolare H & B.L 

(Asteraceae) 

Everlasting (Eng.); Kooigoed 

(Afr.); Imphepho (Xhosa) 

Whole plant Erasto et al. 2005; Afolayan and 

Sunmonu 2010 

Leonotis leonurus L. (Lamiaceae) Wild dagga or Lion’s ear (Eng.); 

Wildedagga (Afr.); Imvovo 

(Xhosa) 

Leaves, flowers  Thring and Weitz 2006; Afolayan and 

Sunmonu 2010 

Momordica balsamina L. 

(Cucurbitaceae) 

Balsam pear (Eng.); Laloentjie 

(Afr.); Nkaka (Thonga) 

Intshungu (Zulu) 

Stem, flowers  van de Venter et al. 2008 ; Afolayan 

and Sunmonu 2010 
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Table 4.3: Continues 

Momordica foetida Schumach 

(Cucurbitaceae) 

Wild cucumber (Eng.)  Leaves, and often whole 

plant  

Oishi et al. 2007 ; van de Venter et al. 

2008 ; Afolayan and Sunmonu 2010 ; 

Acquaviva et al. 2013 

Psidium guajava L. (Myrtaceae) Common guava, yellow guava, 

lemon guava (Eng.) 

Leaves, roots, whole 

plant  

van de Venter et al. 2008 ; Afolayan 

and Sunmonu 2010 ; Sanda et al. 2011 

Sclerocarya birrea Hochst 

(Anacardiaceae) 

Marula (Eng.) ; Mufula (Venda) Stem, bark, roots  van de Venter et al. 2008 ; Afolayan 

and Sunmonu 2010 

Vinca major L. (Apocynaceae) Bigleaf periwinkle (Eng.) Leaves, roots, stem  van de Venter et al. 2008 ; Afolayan 

and Sunmonu 2010 

Vernonia oligocephala Sch. Bip. 

(Asteraceae) 

Bicoloured-leaved Vernonia 

(Eng.); Groenamarabossie (Afr.); 

Ihlambihloshane (Zulu) 

Leaves, twigs, roots  Erasto et al. 2005; Afolayan and 

Sunmonu 2010 

Catha edulis Forrsk. Ex Endl. 

(Celastraceae) 

Arabian tea, Abyssinian tea, 

Bushman's tea (Eng.) 

Leaves, stems, roots  van de Venter et al. 2008 ; Afolayan 

and Sunmonu 2010 
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Table 4.3: Continues 

Brachylaena discolor DC. 

(Asteraceae) 

Coast silver oak (Eng.) ; 

Kusvaalbos (Afr.) ; Phahla (Zulu 

and Xhosa) 

Leaves, roots, stem  Erasto et al. 2005 ; van de Venter et al. 

2008 ; Afolayan and Sunmonu 2010 

Eriocephalus punctulatus 

(Asteraceae) 

Roosmaryn or Kapokbos (Afr.) ; 

wild rosemary (Eng.) 

Leaves Mierendorff et al. 2003 ; Njenga and 

Viljoen 2006; Sandasi et al. 2011 ; 

Balogun et al. 2016 

Afr.= Afrikaans; Eng.= English 
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Similarly, the uptake of PFOA led to root growth impairment in wheat seedling process (Zhou et 

al. 2016a, b); with Zhao et al. (2017) reporting a high root uptake of four perfluorinated carboxylic 

acids (PFCAs) by wheat. 

 Moreover, it has been argued that, due to the widespread prevalence of heavy metals in 

the environment, their residues have reached the entire ecosystem, leading to their assimilation 

into medicinal plants (Sarma et al. 2012). Thus, Ba, Cr, Cd, Fe, Sr, Pb, and Zn were found in 

medicinal plants (Gjorgieva et al. 2010), which prompted the authors to suggest that, these plants 

should be collected in areas free of any contaminants. A similar study determined Fe, Ti, Mn, Cr, 

Cu, Ni, Zn, Sr and Ba in Hemerocallis minor Miller, a plant used in folk medicine, using the non-

destructive X-ray fluorescence spectrometry (XRF), which suggested that prior to using plants for 

medicinal purpose, it is vital to assess, the plants heavy metal content (Chuparina and Aisueva 

2011). Street (2012) further concluded that exposure to heavy metals in medicinal plant products 

has the potential to cause countless health implications including liver and kidney failure. 

Previously, a link between liver and kidney failure and T2DM has been established (Inzucchi et 

al. 2012; Mudaliar et al. 2013; Kohan et al. 2014). Similarly, another research study indicated that, 

heavy metal stress has the potential to decrease the total antioxidants level in medicinal plants 

(Gjorgieva et al. 2013).  

 In South Africa, various research studies have reported on the contamination of the 

natural environment – water, soils and sediments, plants - by heavy metals (Olujimi et al., 2015), 

including emerging pollutants, such as PFCs (Mudumbi et al. 2014a, b, c), thus suggesting that 

the medicinal plants and/or products (see Table 4.3) are at risk of being contaminated by PFCs. 

This further suggests that these products might constitute a pathway to humans being exposed 

to these compounds. In addition, recently, a study by Hanssen et al. (2010) reported higher 

concentrations of PFCs (i.e. PFOA and PFOS) in human serum; of which the exposure pathways 

in South Africa remain unknown. Thus, the evidence on the contamination of the natural 

environment in general, and that of medicinal plants and/or products, in particular, by POPs and 

allegedly by new emerging pollutants, such as PFCs, has brought quality, efficacy and safety 

concerns with regard to the use of these commodities (Chan 2003; Adewunmi and Ojewole 2004). 

However, to our knowledge, there is limited information on the threats of emerging POPs, for 

instance PFCs, to medicinal plants and/or products, and ultimately, to diabetic patients who rely 

on these plants and/or their products for the management of the disease.  
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 Therefore, it is important that, while many plants are being explored for their anti-diabetic 

potential, it is also necessary that research studies diversify their investigations on the 

susceptibility of these plants to emerging pollutants, i.e. PFCs, since, arithmetical projections have 

demonstrated that the number of diabetes cases will rise in decades to come, suggesting that 

successful anti-diabetic drugs can be synthesized from extract of medicinal plants and/or by-

products; i.e. the development processes for phytomedicinal products must take in too 

consideration the threat of emerging pollutants (contamination) to these products. Nevertheless, 

Kuo et al. (2013) have called for cautiousness in the interpretation of results associating diabetes 

to new chemicals. For this reason, we are of the view that emerging compounds such as PFOA 

and PFOS and their association to diabetes still requires prolong investigations. This same view 

applies to the potential contamination of antidiabetic medicinal plants by PFCs. 

4.4.1 Synergy in phytomedicinal therapy: challenges and limitations 

 Recent reviews have reported on the synergy and interactions that exist among and 

between medicinal plants (Rasoanaivo et al. 2011; Yarnell 2014, 2015; Zhou et al. 2016). Hence, 

medicinal plants synergy is regarded as the amalgamation of two or more medicinal plants to 

produce a combined effects greater than the sum of individual plant effects (Chou 2010; van 

Vuuren and Viljoen 2011; Breitinger 2012; Zhou et al. 2016a, b), in substitution of the “one drug, 

one target, one disease” approach, which remained the conventional pharmaceutical approach in 

the development of most medicines and treatment strategies (Zhou et al. 2016a, b). Accordingly, 

recent evidence has demonstrated the potentiality of combined therapy and/or drugs in the 

treatment of various diseases, example diabetes (Zhou et al. 2016a, b), pancreatic cancer (Yue et 

al. 2014), etc. Thus, significant progress has been achieved in medicinal plants synergistic effects. 

 Nevertheless, despite the prospects of this field looking promising, Zhou et al. (2016a, b) 

have argued that various challenges have emerged from phytomedicinal synergy techniques, 

which have led to various limitations in this field, and ultimately making it difficult for herbal 

synergistic studies to develop suitable phytomedicinal synergistic methods (Zhou et al. 2016a, b). 

Additionally, evidence supporting synergistic effects of combined medicinal plants and the 

interactions of their therapeutic components remain controversial (Zhou et al. 2016a, b). For 

instance, it has been argued that the low/extremely low levels of active components content in 

certain medicinal plants suggest insignificant synergistic and therapeutic effects of their herbal 



Chapter 4: The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment 
strategies 

145 

 

formulations (Williamson 2001; Danz et al. 2002; Zhou et al. 2016a, b). Thus, according to Tausk 

(1998) and Zhou et al. (2016a, b), this kind of scepticism has led to these plants being considered 

as simple placebos. However, numerous other studies have highlighted the significance of 

synergistic action present in medicinal plant therapies, by demonstrating that plant extracts of 

multiple plants in complex formulations have been proven effective than when used alone 

(Leonard et al. 2002; Scholey and Kennedy 2002; Zhang et al. 2014, Zhou et al. 2016a, b). 

 Furthermore, it is also not clear, at this stage, whether the combined final product, with 

potential medicinal plant synergistic interaction between their active components is able to 

inhibit, reduce and/or keep the contaminants/pollutants at a possible harmless minimum level 

once they have been uptaken by the identified plants. This aspect needs to be further investigated, 

although studies by Cantelli-Forti et al. (1994), Zhao et al. (1995) and Chen et al. (2009) suggested 

plants’ synergistic effects led to the reduction of toxicity of one medicinal plant by another. 

Besides, certain medicinal plants species are naturally known as toxic (Bussmann et al., 2011; 

Nasri and Shirzad 2013; Tamilselvan et al. 2014; Monseny et al. 2015), while others are likely to 

become toxic as a result of uptaking toxicants and/or contaminants (Plewa 1991), a primary 

reason why it is advised to collect, use and/or store medicinal plants from uncontaminated 

environments (Gjorgieva et al. 2010). 

4.5 Past, present, and future global DM trends and burden 

 It is without any doubt that DM can now be found in every population group globally. 

Documented evidence has suggested that, lack of efficient prevention and control programmes 

would result in an increase in cases of DM worldwide (WHO, 1994; Amos et al. 1997), with the 

disease being estimated the 7th leading cause of death in 2030 (Mathers and Loncar 2006). 

Additionally, Zimmet (2000) and Zimmet et al. (2001), indicated that DM was considered as a 

disease of minor world health significance, but by the 21st century, the disease has become one of 

the main threats to human health globally (Zimmet et al. 2001), and thus classified as a lifestyle 

disease. 

 The WHO Ad Hoc Diabetes Reporting Group published, using data from 75 communities 

in 32 countries, the first global estimates and comparable information on the prevalence of DM 

in 1993 (King and Rewers, 1993; King et al. 1998). However, the data lacked satisfactory research 

interests, particularly in the area of future trends in the burden of DM. Therefore, a study 
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combining global database from the WHO with demographic estimates and projections from the 

United Nations (UN) was undertaken between 1995 and 2025, to estimate the proportion of 

people with diabetes globally for the above period (King et al. 1998). Accordingly, in 1994, the 

number of people suffering from DM was estimated to be over 100 million worldwide (IDF 1994; 

Amos et al. 1997). The data suggested that DM was likely to double to 239 million in 2010 (Amos 

et al. 1997). From this study, it was revealed that 85 to 90% of all diabetes under the T2DM 

category was in developed countries. In addition, it has been recently reported that, as many as 

one-third to one-half of T2DM cases in the population may be undiagnosed because they may 

remain asymptomatic for many years (IDF 2017). 

 Furthermore, in 1998, a study by King et al. (1998) indicated that the number of adults 

with diabetes in the world was 135 million, and was projected to an increase of up to 300 million 

by the year 2025. These estimates concurred with those reported by Hussain et al. (2007) and 

Beulens et al. (2010). A proportion of DM increases was projected to be dominantly in developing 

countries, with 84 to 228 million individual cases, suggesting that, 75% of people with diabetes 

will reside in developing countries, as compared with 62% in 1995 (King et al. 1998). In 2010, a 

study indicated that there was 285 million people suffering from diabetes, with the same study 

estimating that this estimate will likely increase to 439 million by 2030 (Shaw et al. 2010). 

Moreover, in 2011 there were 366 million people living with diabetes and the probability was 

that, this number is likely to reach 552 million by 2030 (Whiting et al. 2011). It is important to note 

that, these estimations were done using different methods. To substantiate this, it has been 

indicated that, estimates in DM studies vary widely depending on the population groups 

involved in the study, as well as the methods used to analyze the data (Susan et al. 2010).  

 There is an indication that, DM, and in particular T2DM, was relatively rare in developing 

countries some decades ago (Chan et al. 2009; Chen et al. 2012a, b, c). Nevertheless, the burden of 

DM has now taken place in developing countries rather than in industrialized countries, with 

80% of new cases of DM worldwide now being reported in developing countries (Shaw et al. 

2010; Chen et al. 2012a, b, c). For the African continent, i.e. one of the contributing factors for new 

DM cases (Abubakari et al. 2009; Mbanya et al. 2010; Hall et al. 2011; Chen et al. 2012a, b, c) is 

lifestyle choices and physical inactivity. From projected data, it was indicated that an increment 

in the number of people with diabetes will be observed, with nearly double the number in the 

Sub-Saharan Africa region, followed by the Middle-East and North African regions, by the year 
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2030 (Chen et al. 2012a, b, c). In previous DM hotspot areas, such as in Europe and America, it is 

suggested that the disease has stabilized. However, little is being said as to what is behind this 

abrupt control of DM prevalence in these areas. 

 Also, recent statistics have indicated that, in 2013, 382 million people had diabetes, with 

these figures expected to rise to 592 million (Guariguata et al, 2014) in 2030. Thus, in this study, it 

has, once again been suggested that, the proportion of people with DM varied by region and 

income, and/or both, with the highest proportion being low-income earners (Whiting et al. 2011; 

Guariguata et al. 2014). 

 Furthermore, DM has been listed by the IDF as the largest global health emergencies of 

the 21st century. The organization has indicated that, of the 415 million people who were 

estimated to be living with diabetes in 2015 (425 million in 2017), 318 million were suffering from 

impaired glucose tolerance, which, according to the IDF, exposed them at high risk of developing 

the disease in the future (IDF 2015; 2017). Additionally, the trend and burden of the disease, i.e. 

diabetes, has been exacerbated by the fact that many countries have remained unaware of the 

social and economic impact of DM, suggesting that this lack of understanding is becoming the 

largest barrier factor to effective prevention strategies in halting the inexorable rise of T2DM (IDF 

2015).  

 Besides, enough evidence is available and which has reported on better awareness and 

new developments in treatment of T1DM and T2DM and, particularly, the prevention of T2DM 

(ADA 2011; Inzucchi et al. 2012; ADA 2013; Copeland et al. 2013). However, in each edition of the 

IDF Diabetes Atlas, an unrelenting increase in the number of people living with the disease has 

been clearly shown. Thus, its seventh edition has indicated that in 2015, there were 415 million 

diabetic people worldwide, of which more than 14 million were found on the African continent. 

The institution has projected that by 2040, 642 million would be suffering from DM, should the 

current growth continue. The number of diabetic patients in Africa is projected to be more than 

34 million by 2040 (IDF 2015) and 41 million by 2045 (IDF 2017). Recent data has further indicated 

that, 2 out of 3 people with diabetes are undiagnosed on the African continent; while 3 out of 4 

diabetes related deaths, on the continent, were from people under the age of 60 (IDF 2017). 

 Moreover, it has been indicated that the use of medicinal plants and/or products has 

become fundamental worldwide, and particularly in developing countries, including the sub-
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Saharan Africa region, where these products are accessible and affordable (Mahomoodally, 2013), 

unlike the orthodox products. For instance, a recent report suggested that 80% of South Africans 

use phytomedicinal products (Street and Prinsloo 2012) for various ailments, including DM. 

Similarly, a study in Morocco reported that 80% of interviewed patients used medicinal plants 

for the management of DM (Eddouks et al. 2002), while Ocvirk et al. (2013) indicated the use of 

traditional medicinal plants for the treatment of DM being a common practice in Bangladesh. As 

such, the WHO has recently recommended the use medicinal plants and/or products (Chikezie 

et al. 2015) for the management of DM, although their safety being questionable (Haq 2004; 

Abdel-Azim et al. 2011), currently, due to emerging organic contaminants, such as PFCs. 

4.6 Conclusion 

 During the last century, humanity has witnessed increases in chronic diseases, of which 

some have deplorably been lethal. In certain countries, such as South Africa, these diseases have 

been the leading causes of death. Regrettably, diabetes is on the increase, and developing 

countries are alleged to be more affected in years to come, as their lifestyle improves. 

Traditionally, it is consistently been reported that unhealthy diets, physical inactivity and family 

history are the main leading contributing factors to diabetes. However, during the past decades, 

pollutants, of which some are of anthropogenic sources, affect humans, resulting in exposure 

through various pathways, including food, water, soil, air and plants. Consequently, research 

studies have demonstrated that pollutants are also causing diabetes. Currently, there is no cure 

for diabetes; and although therapy have included antihyperglycemic agents and insulin intake, 

several studies have indicated that this therapy have limitations, including patients complaining 

about side effects of agents being used, as well as reports suggesting weight gain by patients who 

are on insulin treatment. Thus, recently the focus in the attempt to manage diabetes has shifted 

from orthodox anti-diabetic drugs to medicinal plants and/or products of which anti-diabetic 

potential have been investigated, reported and extensively documented. However, current 

research evidence has indicated the susceptibility of these plants to pollutants, including EDCs, 

and heavy metals such as Ba, Cr, Cd, Fe, Sr, Pb, and Zn. Moreover, new pollutants have emerged, 

namely PFCs, such as PFOA, PFOS and PFBS. Unlike their predecessors, PFCs are entirely 

anthropogenic, and they are widely distributed in the environment. Their prevalence has been 

reported in various environmental matrices, including water, soil, sediments, plants, etc. 

Nevertheless, there is little information on the vulnerability of medicinal plants and/or products 
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to PFCs, and so is the human exposure to these compounds through medicinal plants and/or 

products intake and subsequent implications, either on short or long-term basis. The lack of 

appropriate regulations controlling the use of PFCs in regions such the sub-Saharan region is 

likely to exacerbate the contamination of medicinal plants, unless something is done by respective 

authorities. Additionally, large scale and promising research studies on medicinal plants anti-

diabetic and their activities are still needed; and it is further suggested studies to consider 

cultivating, harvesting or collecting and storing medicinal plants and/or products in areas free 

of any contamination. This will enhance the quality, efficacy and safety of medicinal plants 

and/or products, and ultimately the health of those who rely on these plants. 
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5.1 Abstract 

 It has been extensively demonstrated that plants accumulate organic substances 

emanating from various sources, including soil and water. This fact suggests the potentiality of 

contamination of certain vital bioresources, such as medicinal plants, by persistent contaminants, 

such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutane 

sulfonate (PFBS). Hence, in this study, the propensity of Tagetes erecta L. (a commonly used 

medicinal plant) to accumulate PFOA, PFOS, and PFBS was determined using liquid 

chromatography/tandem mass spectrometry (LC–MS/MS-8030). From the results, PFOA, PFOS, 

and PFBS were detected in all the plant samples and concentration levels were found to be 94.83 

ng/g, 5.03 ng/g, and 1.44 ng/g, respectively, with bioconcentration factor (BCF) ranges of 1.30 to 

2.57, 13.67 to 72.33, and 0.16 to 0.31, respectively. Little evidence exists on the bioaccumulative 

susceptibility of medicinal plants to these persistent organic pollutants (POPs). These results 

suggest that these medicinal plants (in particular, Tagetes erecta L., used for the management of 

diabetes) are also potential conduits of PFOA, PFOS, and PFBS into humans. 
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5.2 Introduction 

 Evidence exists which indicates that plants were used for medical purposes long before 

the industrial epoch. Ancient Egyptian papyrus manuscripts have also reported and suggested 

the extensive use of medicinal plants. Currently, the World Health Organization (WHO) has 

estimated that 80% of the global population relies on medicinal plants for aspects of their first-

hand health care requirements [1]. African marigold (Tagetes erecta L.) is a member of the 

Asteraceae plant family. Evidence has indicated that Tagetes erecta L. is well-known as an 

important commercial plant utilized mostly for decorative purposes [2–4]. Recently, the plant has 

been renowned for its industrial and medicinal usage [5–7]; a number of studies have suggested 

that Tagetes erecta L. has the potential to treat ailments such as diabetes mellitus (DM) [8–12]. In 

South Africa, use of the leaves of Tagetes erecta L. in the treatment of DM has been reported [13]. 

 Nevertheless, these phyto-bioresources are believed to be susceptible to environmental 

effects, including negative externalities such as contamination by toxic substances, especially 

persistent organic pollutants (POPs). This assertion is based largely on evidence indicating that 

plants are capable of taking up and accumulating nutrients and a variety of other chemicals to 

which they are, either directly or indirectly, exposed. Thus, compelling evidence has 

demonstrated that plants accumulate and metabolize environmental contaminants, ultimately 

suggesting that plants are reservoirs for chemical substances [14,15]. Some scientists have 

reported the prevalence of toxic substances and/or heavy metals in plants [16–24]. Moreover, 

various medicinal plants have previously been reported to be exposed to chemical substances, 

including heavy metals. For instance, research results have recently suggested that medicinal 

plants’ exposure to chemical substance results in chemo-stress, which influences the antioxidant 

status of the plant and culminates in damage to its DNA [25]. 

 Previously, heavy metals, including barium (Ba), chromium (Cr), cadmium (Cd), iron (Fe), 

strontium (Sr), lead (Pb), and zinc (Zn) have been reported in medicinal plants [15,26]. 

Furthermore, a study by Tian et al. [27] determined that plant leaves are effective in taking up 

PFASs from the atmosphere, with previous studies by Blaine et al. [28] reporting the 
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bioaccumulation of various perfluoroalkyl acids (PFAAs) in edible crops, including lettuce 

(Lactuca sativa) and strawberry (Fragaria ananassa), suggesting these crops are a potential route of 

exposure for humans. In most instances, it is contaminated river water and fertilizer, as well as 

aero-deposition, that results in the contamination of these plants [29,30]. Nevertheless, due to 

limited available evidence on the contamination of medicinal plants by PFASs [15], the possibility 

that these plants are a pathway through which humans are likely to be exposed to PFASs is still 

to be established. It is worth noting that available evidence has reported wide concerns about 

these substances, and their health safety remains unclear [31–34]. Nevertheless, health advisory 

standards have been proven [34], and can be used as a benchmark for the establishment of a better 

safety level for toxicity of these substances for humans. Therefore, the aim of this study was to 

determine the propensity of Tagetes erecta L., a common medicinal plant used by diabetic patients 

in sub-Saharan Africa, to accumulate PFOA, PFOS, and PFBS. 

5.3 Materials and Methods 

5.3.1 Chemicals and Reagents 

 A specific perfluorocarboxylic acid (PFCA) standard (i.e., perfluorooctanoic acid (PFOA)), 

and singular linear perfluoroalkyl sulfonic acids (PFSAs) such as perfluorobutane sulfonate 

(PFBS) and perfluorooctane sulfonate (PFOS), were obtained from the laboratory facility of the 

Department of Environmental, Water and Earth Sciences, Tshwane University of Technology 

(TUT), South Africa; these were purchased in methanol at 50 µg/mL from Wellington 

Laboratories (Ontario, Canada). A solution of surrogate mixture of stable isotopically-labelled 

PFAS standard containing perfluoro-n-[1,2,3,4-13C4] octanoic acid (MPFOA), perfluoro-n-[1,2,3,4, 

5-13C5] nonanoic acid (MPFNA), and perfluoro-n-[1,2-13C2] undecanoic acid (MPFUnDA) was also 

obtained from TUT, and purchased in methanol at 50 µg/mL from Wellington Laboratories 

(Ontario, Canada). Acetic acid, polypropylene (PP) membrane filters (0.22 µm, Cameo syringe 

filters) and syringes (Becton Dickinson), LC–MS grade water, acetonitrile, methanol, and 

ammonium acetate, as well as Supelco-Select HLB SPE cartridges (500 mg), were purchased from 

Sigma-Aldrich (Aston Manor, South Africa). T Milli-Q water was used throughout the study. 

 

 

 



Chapter 5: Propensity of Tagetes erecta L., a Medicinal Plant Commonly Used in Diabetes Management, to Accumulate 
Perfluoroalkyl Substances 

179 

 

5.3.2 Sample Collection: Tagetes erecta L. and River Water 

 Samples of plant leaves (n = 8) were harvested from main plants (i.e., Tagetes erecta L.) 

separated in cultivation pots. River water samples (n = 20) from the Salt River, Western Cape, 

South Africa, were used to irrigate the plants. The river water samples were randomly taken 

during summer months (i.e., dry season—March) and winter months (i.e., wet season—August), 

with the bulk of the river water being used to irrigate the plants without pre-treatment at a 

frequency of 120 mL every two to three days for pots containing 0.5 L of loamy soil. 

5.3.3 Sample Pre-Treatment and Solid Phase Extraction 

5.3.3.1 Plant Samples 

 Samples were pre-treated using protocols previously used by Tian et al. [27] and 

Mudumbi et al. [28], with minor changes. Thus, plant leaf samples (n = 8) were harvested using 

a laboratory scalpel and oven-dried for 24 h at approximately 60 °C, and subsequently milled into 

a powder form. Thereafter, 2 g from each of the samples was transferred to a clean 15 mL PP 

centrifuge tube. The tubes were subsequently spiked with a 50 µL surrogate mixture of stable 

isotopically-labelled PFASs standard (i.e., MPFOA, MPFNA, and MPFUnDA), and the mixture 

was allowed to equilibrate for about 1 h at ambient temperature (21–26 °C). Subsequently, 15 mL 

of 0.01 M NaOH/MeOH was added and the mixture was then homogenized by vigorous 

vortexing (2 min), at ambient temperature. Subsequently, the PP tubes were centrifuged at 3000 

rpm for 4 min and the supernatants were emptied into new PP tubes (15 mL) pre-rinsed with 

analytical LC–MS grade methanol. The cycle was repeated twice, and the supernatants from both 

cycles were filtered using polypropylene 0.22 µm Cameo syringe filters (Sigma-Aldrich, 

Darmstadt, Germany). Thereafter, a total volume of 15 mL was recorded, which was used for 

solid phase extraction (SPE). 

5.3.3.2 River Water Samples 

 River water was randomly collected in PP containers of 25 L capacity, from a local Western 

Cape river (i.e., Salt River) previously known to be contaminated with PFASs [29], and the PFASs 

analyses were carried out based on the same source protocols, with negligible changes. Hence, 

from this water, a total of twenty samples (n = 20) were randomly taken from the river water to 
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irrigate the plants. The samples contained suspended particulate matter (SPM), which was 

removed by means of filtration; PP membrane filters (0.22 µm, Cameo syringe filters, Sigma 

Aldrich, Darmstadt, Germany) were used. Subsequently, the filtered river water samples were 

spiked with 50 µL of a surrogate mixture of stable isotopically-labelled PFASs standard (i.e., 

MPFOA, MPFNA, and MPFUnDA), and vortexed (2 min) prior to SPE, without pH adjustment 

or dilution. 

5.3.3.3 Solid Phase Extraction 

 Supelco-Select HLB SPE cartridges (500 mg solid phase, 12 mL tubes) were used for SPE 

using procedures as suggested in previous studies, including Mudumbi et al. [28–30], with minor 

modifications. Hence, the cartridges were preconditioned with 5 mL of analytical LC–MS grade 

methanol and then 5 mL of Milli-Q water at a flow rate of 1 drop per two seconds. After loading 

the samples (i.e., a volume of 15 and 20 mL of plant and water extracts, respectively) at a flow 

rate of one drop per two seconds, Supelco-Select HLB SPE cartridges were washed with 5 mL of 

40% (v/v) analytical LC–MS grade methanol in Milli-Q water, as reported by Mudumbi et al. 

[28,29]. Successively, PP collection tubes were added to the SPE apparatus, and PFASs were 

eluted from Supelco-Select HLB SPE cartridges into the PP collection tubes, using 10 mL of 

analytical LC–MS grade methanol. It was extremely pertinent to use PP collection tubes in order 

to minimize background cross-contamination of the eluents. The tubes were thereafter dried 

under nitrogen gas, and reconstituted with 0.5 mL of 50 ng/mL M2PFOA internal standards 

(ISTD) prepared in 10% acetonitrile. Figure 5.1 outlines the scheme of the overall process used. 

The final aliquots (500 µL) of the supernatants were transferred into PP autosampler vials before 

analysis using LC–MS/MS. 
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 Figure 5.1: Schema for solid phase extraction (SPE) of water and plant samples 
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5.3.4 LCMS-8030 Analysis 

5.3.4.1 LCMS-8030 Configuration for PFOA, PFOS and PFBS Quantification 

 The analysis of PFASs (i.e., PFOA, PFOS, and PFBS) in plant and river water samples was 

conducted using a liquid chromatograph (LC) coupled with triple quadrupole linear ion trap 

tandem mass spectrometer (Shimadzu LCMS-8030, Canby, OR, USA) equipped with an 

electrospray ionization (ESI) source, which was in a negative ion mode. The targeted PFASs were 

quantified using multiple reaction monitoring (MRM) mode of analysis. The chromatographic 

separation of analytes was achieved with a Luna® Omega Polar C18 column (2.1 × 100 mm, 3.0 

µm, Phenomenex, Aschaffenburg, Germany). The column temperature was set at 40 °C. A 

gradient elution program was applied and was made of 20 mM ammonium acetate (solvent A) 

and 100% MeOH (solvent B), at a flow rate of 0.3 mL/min and an injection volume of 10 µL used 

for individual samples. The linear gradient elution program started at 20% B and increased to 

80% B after 5 min, then increased to 95% B for 15 min; it was kept to 100% B for 17–27 min, before 

being 20% B for 30–40 min. The total run time for each injection was 40 min. Argon gas was used 

as the collision gas. The LC system was a LCMS-8030 Shimadzu system with a DGU-20A3R 

degassing unit, coupled with an LC-20AD liquid chromatograph, a CTO-20AC column oven, a 

SIL-20AC autosampler and a NM32LA nitrogen gas generator. 

5.3.4.2 Validation of Method 

 To ensure method precision, procedural blanks were prepared during the analysis and 

were analyzed at an interval of ten samples. This was to assess whether contamination occurred 

during sample extraction. Hence, solvent blanks comprising MeOH (195 µL) and ISTD (5 µL) 

were prepared for analyses after every twenty processed samples to monitor for background 

contamination. To assure the accuracy and precision of each run, duplicate injections and 

recalibration using appropriate standards were conducted for each run after processing twenty 

samples. In cases whereby the target analytes were detected in the procedural blanks, their peak 

areas’ average values were subtracted from the peak areas of the target analyte of the actual 

sample before the final concentrations were calculated. The level of detection (LOD) was defined 

as the peak signal of a target analyte that needed to yield a signal-to-noise (S/N) ratio of 3:1 and 

ranged from 0.003 to 0.03 ng/L for all the three investigated PFASs. The limit of quantification 
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(LOQ), was defined as the standard deviation (SD) of the blanks and was determined to be 0.03 

ng/L for PFOA and PFOS, and 0.07 ng/L for PFBS. Additionally, 50 µL of native surrogates were 

used for matrix spike recovery testing. Hence, recoveries of native standard surrogates spiked in 

the plant and water matrix were 98, 96, and 93% for PFOA, PFOS, and PFBS, respectively. 

Furthermore, Equations (5.1) and (5.2) were used to obtain the relative response factors and final 

concentrations of the targeted PFASs, respectively. 

𝑅𝑅𝐹 =
𝐴NAT
𝐴IS

×
𝐶IS
𝐶NAT

 (5.1) 

where: 

RRF is the relative response factor; 

ANAT is peak the area of the native compound; 

AIS is the peak area of the internal standard in the standard; 

CNAT is the concentration of the native standard; 

CIS is the internal standard concentration. 

𝐹𝐶 =
𝐴NAT
𝐴IS

×
1

𝑅𝑅𝐹
×
𝑉IS
𝑉S

 (5.2) 

where: 

FC is the final concentration; 

ANAT is the peak area of the target analyte; 

AIS represents the peak area of the internal standard used for that particular analyte; 

RRF is the calculated relative response factor of the specific analyte; 

VIS is the volume of the internal standard added in the sample prior to extraction (mL); 

VS is the volume of the sample (mL). 

5.5 Results 

5.5.1 LCMS Calibration Curves for the Detection and Quantification of PFOA, PFOS 

 and PFBS 

 A procedural blank matrix free of the 3 PFASs was prepared and used in preparation for 

post-spiked calibrants, and thus the calibration curves were constructed based on a 10-point 
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curve at concentrations of 1, 2, 5, 10, 20, 25, 50, 75, 100, and 125 ng/L. The regression coefficients 

(R2) of calibration curves for all the target analytes have revealed good linearity (R2 > 0.99), as can 

be seen in Figure 5.2 which displays the calibration curves of PFOA, PFOS, and PFBS. 

 

 

Figure 5.2: Calibration curves (ng/L) of perfluorooctanoic acid (PFOA), perfluorooctane 

sulfonate (PFOS), and perfluorobutane sulfonate (PFBS) in procedural blank matrix. 

5.5.2 LCMS Chromatographs for PFOA, PFOS, and PFBS 

 The MRM optimization of three PFASs (i.e., PFOA, PFOS, and PFBS) and one ISTD (i.e., 

M-PFOA) was carried out, with two MRM transitions being utilized for each PFAS. Thus, one 

was used as an ion quantifier and the other for confirmation. Table 5.1, as well as Figure S1, shows 
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the mass transitions used for the identification and quantification of each targeted compound, as 

well as the ISTD, and their retention times (RT). 

Table 5.1: Names and multiple reaction monitoring (MRM) transitions of three 

perfluoroalkyl substances (PFASs) and one internal standard (ISTD). 

Compound Acronym 
Transition 
Qualifier 

(m/z) 

Transition 
Quantifier (m/z) 

Retention 
Time (min) 

Targets  

Perfluorooctanoic acid PFOA 413.00 > 169.05 413.00 > 368.95 8.6 

Perfluorooctane sulfonate PFOS 499.00 > 98.90 499.00 > 80.15 8.9 

Perfluorobutane sulfonate PFBS 299.00 > 99.10 299.00 > 80.10 6.8 

ISTD  

Perfluoro-n-[1,2,3,4-13C4] 

octanoic acid 
M2PFOA 414.80 > 169.00 414.80 > 369.90 8.7 

5.5.3 Results of Previously Known Contaminated River Water 

 Although evidence of PFASs in the South African environment remains limited, a 

previous study has reported concentrations of PFOA and PFOS in a Western Cape river (i.e., Salt 

River) of 0.7 to 390 ng/L and <LOD to 50 ng/L, respectively [29]. Of the three rivers that were 

studied for their PFASs predisposition, the Salt River recorded the highest PFOA concentration. 

The Salt River also had the second-highest PFOS concentration, although PFBS was not 

investigated. In this current study, the water that was collected from the Salt River was for the 

purpose of irrigation of the plants that were studied. Therefore, it was pertinent to first assess the 

concentration levels of PFASs in the collected water, prior to using the water for irrigation 

purposes, and to ensure the accuracy of the results. Therefore, three PFASs (i.e., PFOA, PFOS, 

and PFBS) were quantified in twenty samples (n = 20). Two sampling regimes were implemented 

with river water: Regime A (n = 10) samples were taken after heavy rain, and constituted 

winter/wet season conditions, while Regime B (n = 10) samples were taken during the 

summer/dry season, for which rainfall was absent for the previous five months. The results 

obtained in this regard are summarized in Table 5.2, and it can clearly be seen from these that the 

investigated substances have been detected in some samples. From the investigated plant 
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samples, the concentration of the substances varied markedly between individual samples, as 

well as the river water regimes. The PFAS concentrations in samples were in the following 

decreasing order: PFOA > PFBS > PFOS. From the investigated samples, Regime A registered all 

the highest concentrations in terms of the analyzed substances, while Regime B recorded the 

lowest. On the other hand, Figure 5.3 demonstrates how each river water sample has contributed 

to the overall concentrations of each investigated substance. 

Table 5.2: Concentration of PFOA, PFOS and PFBS in river water (ng/L). 

Compounds 
Regimes 

Sample ID PFOA PFBS PFOS 

RW1 76.79 8.59 0.08 

Regime A 

RW2 86.69 20.75 ND 

RW3 66.44 6.78 0.12 

RW4 98.21 3.82 ND 

RW5 107.82 3.88 <LOD 

RW6 97.82 2.59 ND 

RW7 105.12 4.26 0.06 

RW8 95.81 1.72 ND 

RW9 1.15 1.24 <LOQ 

RW10 3.65 2.41 0.06 

RW11 1.56 1.89 0.10 

Regime B 

RW12 <LOQ 2.99 <LOQ 

RW13 <LOQ 3.49 0.06 

RW14 <LOQ 2.12 <LOQ 

RW15 <LOQ 3.44 0.06 

RW16 3.76 5.29 0.06 

RW17 1.20 4.83 <LOQ 

RW18 <LOQ 5.16 <LOQ 

RW19 0.71 4.61 <LOQ 

RW20 4.35 3.77 <LOQ 

RW: river water; ND: not detected; <LOD: below the limit of detection; <LOQ: below the limit of quantification. 
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Figure 5.3: Individual PFAS concentration level variations for each sampling regime 

5.5.4 PFOA, PFOS and PFBS Accumulation in a Commonly-Used Medicinal Plant 

 There are various reports that have indicated the prevalence of PFASs (i.e., PFOA, PFOS, 

and PFBS) in several environmental matrices, including plants. For instance, Mudumbi et al. [28] 

reported the susceptibility of riparian plants to PFOA accumulation in South Africa, Western 

Cape Province (WCP), while Krippner et al. [35,36] indicated higher uptake of PFASs, including 

PFBS, into plant leaves. Recently, Kurwadkar et al. [37], as well as Zhao and Zhu [38], addressed 

the uptake of PFASs in plants. Similarly, studies by Sznajder-Katarzyńska et al. [39] and Zhao et 

al. [40] have reported on the vulnerability of edible plants to accumulation of PFASs. 

Nevertheless, there is little evidence on the vulnerability of medicinal plants to PFASs 

accumulation [15], as most studies have focused on the therapeutic side of these plants and not 

on their susceptibility to emerging POPs, such as PFASs, which are a potential risk to human 

health. For this reason, PFASs (i.e., PFOA, PFOS, and PFBS) were investigated in Tagetes erecta L., 

and traces of the three PFASs were detected in all the plant samples. The concentrations of these 
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POPs among all the investigated plant samples were in the following decreasing order: PFOA > 

PFOS > PFBS. Contaminated samples recorded the highest amount of PFOA and PFOS. The 

summary of these results is depicted in Table 5.3, and Figure 5.4 shows the contribution of each 

sample to the concentration levels of PFASs that were quantified in the plant under investigation. 

Table 5.3: Summary of studied plant samples (Tagetes erecta L.), with their PFAS 

concentrations (ng/g) and bioconcentration factor (BCF). 

Average PFAS Conc./n = 20/Water 

(ng/L) 

Plant 

Samples 
PFOA/BCF PFBS/BCF PFOS/BCF 

PFOA (37.6) 

CS1 48.70 1.30 0.75 0.16 0.41 13.67 

CS2 58.96 1.57 1.44 0.31 1.29 43.00 

CS3 94.83 2.52 1.15 0.24 2.17 72.33 

PFBS (4.7) 
S4 32.36 0.86 1.44 0.31 0.12 4.00 

S5 34.55 0.92 0.25 0.05 3.57 119.00 

PFBS (4.7) 

S6 37.34 0.99 0.74 0.16 5.03 167.67 

S7 28.49 0.76 0.45 0.10 4.24 141.33 

S8 18.05 0.48 0.51 0.11 1.39 46.33 

   

 Figure 5.4: Contribution of each sample to the PFASs concentration levels in Tagetes erecta L.
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5.6 Discussion 

5.6.1 New Evidence on the Contamination of Salt River by PFASs 

 Concentrations of PFOA, PFOS, and PFBS were observed in all the samples, with PFBS 

being the most dominant PFAS, followed by PFOA. However, concentration levels for PFOS were 

mostly not detected (ND) for individual samples. The results are summarized in Table 5.2. From 

the results, it can be seen that the concentrations of PFOA, PFBS, and PFOS were <LOD to 107.82 

ng/L; 1.24 to 20.75 ng/L; and ND to 0.12 ng/L, respectively. Overall, Regime A samples had the 

highest concentrations of PFASs with sample RW5 having 107.82 ng/mL for PFOA, RW2 20.75 

ng/L for PFBS, and RW3 0.12 ng/L for PFOS. However, the second sample (i.e., RW11) had the 

highest PFOS concentration (0.10 ng/L) observed among the Regime B samples. Figure 5.3 shows 

PFAS concentration variations in samples from the two regimes, A and B, (i.e., for samples taken 

in two different seasons). 

 Furthermore, from Table 5.2, it can be seen that two of the three assessed PFASs (PFOA 

and PFBS) showed a significant increase during Regime A, which was putatively regarded as a 

result of the rain which might have contributed to run-off of PFAs into the river. This trend 

substantiates the fact that runoff has been suggested as being a contributing factor to higher 

concentrations of PFASs in water streams [29,41]. Overall, PFBS was prevalent in most samples, 

although PFOA was observed to have had the highest concentrations in a few samples, with the 

PFOA concentrations of most samples being below the LOQ (that is, 0.03 ng/L). Similarly, PFOS 

concentration levels remained below the LOQ in some samples (n = 7), with only one sample 

(RW5) being below the LOD (that is, 003 to 0.03 ng/L). Additionally, PFOS was the only PFAS 

that was not detected in certain individual samples, including sample RW2. PFBS was found to 

be prevalent in both sampling regimes (A and B), while LOQ for PFOA and PFOS were evenly 

distributed, in particular for Regime B. As both PFOA and PFOS are classified as long-chained 

PFASs, while PFBS is identified as a short-chain compound [42], it was previously suggested that 

PFOA and PFOS prevalence in the Western Cape rivers might be attributed to a highly active 

agricultural sector [29]. These two PFASs have been the most studied and have predominantly 

been found in various environmental matrices, both worldwide and in South Africa [14]. Recent 

reports have now indicated that PFBS, previously thought to be harmless, fits the category of 
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POPs [14]. In addition, recent reports have now indicated that PFBS, previously known as a 

harmless PFAS, fits the category of POPs [14,43–45], and it has been found to be the most 

dominant PFAS in this study—a pattern previously reported by Heydebreck et al. [46] and Pan 

et al. [47]. This ultimately suggests the use of PFBS in the Western Cape, South Africa, and thus, 

there is cause for concern with regard to the prevalence of this short-chain PFAS in the South 

African environmental ecosystem, especially in river water. Accordingly, further studies are 

required to determine other short-chain PFASs prevalent in the South African environment, and 

their possible source(s). Nevertheless, Cai et al. [41] and Zhu et al. [48] have reported that the 

abundance of short-chain PFASs signifies the predominance of the use of perfluorocarboxyl 

compounds in a study area. Evidence of the prevalence of short-chain PFASs in humans is also 

limited (if not non-existent) in the Western Cape, and particularly in South Africa. 

 Furthermore, we compared the concentration levels of the three PFASs investigated in the 

Salt River with those found in other rivers worldwide (see Table 5.4). As far as the Salt River is 

concerned, it was found that concentrations of PFOA and PFOS were much lower than they were 

in previous studies conducted in 2014, and remained the lowest among comparative PFASs 

studied [29]. This decrease can be attributed to the fact that during the sampling year for this 

study (2017), the Western Cape Province experienced a severe drought, which led to minimal 

and/or limited runoffs into the river under investigation. It was further suggested that there has 

been a decrease in the use of the said substances and/or products containing them in the region. 

This argument still has to be confirmed by further investigations. Nevertheless, the concentration 

levels of both PFOA and PFBS, in the current study, were found to be much higher than in other 

rivers globally, but PFOS concentration remained generally much lower, or undetected. These 

results are similar to those of the Rhine River (see Table 5.4), and the PFBS concentration 

determined in this study was also similar to that of the Rhine river [46]. 
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   Table 5.4: Comparison of PFOA, PFOS and PFBS levels (ng/L) in rivers from previous studies. 

River Country Sampling Year Level PFOA PBFS PFOS Reference 

Salt South Africa 2017 mean 107.82 20.75 0.12 This study 

Salt South Africa 2014 mean 390.0 n/a 46.8 [29] 

Diep South Africa 2014 mean 314.4 n/a 181.8 [29] 

Eerste South Africa 2014 mean 145.5 n/a 22.5 [29] 

Yangtze China 2016 mean 13.5 1.84 1.83 [47] 

Yellow China 2016 mean 2.05 0.99 1.84 [47] 

Pearl China 2016 mean 7.45 4.49 11.09 [47] 

Kakum Ghana NI mean 167.4 n/a 113 [49] 

Tai China 2012 mean 24.7 3.18 9.78 [50] 

Liao China 2016 mean 8.95 0.94 3.46 [47] 

Ganges India 2014 mean 1.2 n/a 1.7 [50] 

Guadalquivir Spain NI mean 11.6 10.1 1.8 [51] 

Orge France 2011 mean 9.4 4.4 17.4 [52] 

Rhine Europe NI mean 4.72 21.28 ND [46] 

Swedish Sweden 2013 mean 4.2 n/a 6.9 [53] 

Pearl China 2013 mean 3.13 ND 2.2 [54] 

n/a = not analysed; NI: not indicated; ND = not detected.
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5.6.2 Traces of PFASs in the Investigated Medicinal Plant 

 In this study, the propensity of the African marigold (Tagetes erecta L.) to accumulate 

PFOA, PFOS, and PFBS was investigated. Tagetes erecta L. is a medicinal plant commonly used 

for DM therapy [8–13]. Since the study was conducted using a set of plants, we used contaminant-

free plant sets as a reference. The soil in which the plants were grown was not assessed for PFASs 

as they were grown in pristine soil, with the source of the PFAS being the river water. 

 Subsequently, PFOA, PFOS, and PFBS, as found in the river water, were observed in all 

the plant samples (n= 8) with PFOA being the most highly accumulated PFAS by Tagetes erecta 

L., followed by PFOS, and then PFBS, with concentrations of up to 94.83 ng/g, 5.03 ng/g, and 

1.44 ng/g, respectively. Table 3 displays the overview of these concentrations. In addition, these 

concentrations were attributed to the highest concentration of both PFOA and PFBS in the river 

water, hence their prevalence in higher concentration in the plant samples. The accumulation was 

hypothesised to be facilitated by mass flow translocation, a process through which chemical 

constituents in water are taken up by the plants [55–57] via the root system of the plant [14,56,57]. 

Hence, it can be suggested that the higher the concentration of PFASs in the water, the higher the 

likelihood of these pollutants to accumulate in plant compartments, including leaves. These 

results are an indication that medicinal plants are at risk of being contaminated by pollutants, 

including PFASs, and ultimately, constitute a potential pathway through which these substances 

might be ingested by humans who rely on them for therapeutic purposes. Hence, Table S1 depicts 

a list of select medicinal plants that are used to treat T2DM in South Africa, which are at risk of 

being exposed to the prevalence of PFASs, as river water is predominantly used in 

underprivileged communities which rely heavily on phytomedicines for the management of 

diseases. 

 Furthermore, the results obtained in the current study partially concur with the results 

previously found by Mudumbi et al. [28], Yoo et al. [58], Marchand et al. [59], and Stahl et al. [60], 

which reported that various plants had the potential to accumulate PFASs, PFOA in particular. 

However, a slight decrease in the uptake of PFOA was observed in the present study compared 

to that by Mudumbi et al. [28]. As previously suggested, the contribution of the root system of 

the studied plant, that is Tagetes erecta L., to the uptake of PFASs was not analysed, a factor which 
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Mudumbi et al. [28] suggested to play a pivotal role in the manner in which a given plant uptakes 

pollutants, including PFASs. 

5.6.3 Tagetes erecta L. Sorption Aptitude by Means of Bioconcentration Factor (BCF) 

 Bioconcentration factor (BCF), according to available evidence, is seen as the capability of 

a plant to uptake a specific chemical substance with relation to its concentration in the soil [61,62]. 

Hence, the BCF, in this regard, was calculated as the ratio of the concentrations of the PFASs in 

the plant samples to those in the river water samples to assess the sorption capacity of Tagetes 

erecta L.: 

BCF = Cplant samples/Cwater (5.3) 

 Consequently, the BCFs of PFASs for the investigated plant species (i.e., Tagetes erecta L.) 

are shown in Table 3. Hence, for PFOA, the BCF for the different plant samples was 1.30 (CS1), 

1.57 (CS2), 2.52 (CS3), 0.86 (S4), 0.92 (S5), 0.99 (S6), 0.76 (S7), and 0.48 (S8); for PFBS it was 0.16 

(CS1), 0.31 (CS2), 0.24 (CS3), 0.31 (S4), 0.05 (S5), 0.16 (S6), 0.10 (S7), and 0.11 (S8), while for PFOS, 

it was 13.67 (CS1), 43 (CS2), 72.33 (CS3), 4 (S4), 119 (S5), 167.67 (S6), 141.33 (S7), and 46.33 (S8). 

Overall the BCF values for PFOS were higher than those of PFOA and PFBS, a trend which 

suggests that there was a bioaccumulation potential of this particular PFAS in Tagetes erecta L., 

when compared to the other two PFASs. In this regard, individual plant samples demonstrated 

an accumulation potential of PFOS. Not only plants were determined to accumulate PFASs in 

South Africa, another previous study indicated the predominance of PFASs in South African 

drinking water sources [63], suggesting that even when tap water is used for irrigation, there 

would be a potential of PFAS accumulation in the plants. 

 Furthermore, PFBS, which is a short-chain PFAS, tends to demonstrate much lower 

adsorption potential than PFOS and PFOA, which are long-chained PFASs, ultimately suggesting 

that their bioaccumulation potential in plants might be dependent on their molecular size, as 

previously suggested by Zhou et al. [64] and Conder et al. [65]. Additionally, it has been indicated 

that PFBS tend to translocate horizontally and vertically with water diffusion and permeation, 

making it a much more mobile PFAS than PFOA and PFOS [64]. In addition, the BCF of two (i.e., 

PFOA and PFBS) of the three investigated PFASs has remained slightly high in the contaminated 
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plant samples. It has been previously suggested that the distribution and accumulation of PFAS 

in plants are species-dependent [29,66]. 

5.6.4 Environmental Implications 

 Subsequently, the benefits of medicinal plants and their hypoglycemic effects in the 

management of T2DM have overwhelmingly been confirmed by an assortment of studies [15,67–

70]. Nevertheless, evidence on the vulnerability of medicinal plants to pollutant accumulation, 

including the emerging ones, such as PFASs, remains limited. This constitutes a cause for concern; 

according to Mudumbi et al. [15], medicinal plants have played a tremendous role in battle 

against several diseases, particularly in the sub-Saharan African region, due to the prohibitive 

cost of orthodox medicine and the low incomes of many communities in the region [71]. This 

suggests that medicinal plants and/or their derived products are accessible and affordable to 

these communities [1–15]. Hence, Mudumbi et al. [15] suggested that the cultivation, harvest or 

collection, and storing of medicinal plants and/or their products should be conducted in areas 

free of any form of contamination, including that of PFASs. The authors further argued that this 

precautionary measure would ensure enhanced quality, efficacy, and safety of medicinal plants 

and/or products, and eventually enhanced health for those who rely on these plants as a means 

of treatment for the ailments they are suffering from, such as T2DM. Moreover, although the 

future of medicinal plants is promising in the Sub-Saharan region, there is a need for education 

around conservation, and awareness as to the dangers of using contaminated river water for 

irrigation purposes [72].  

5.7 Conclusions 

 South Africa is a water-stressed country with uncontrolled contamination of river water, 

particularly in certain provinces such as the Western Cape, which recently experienced a severe 

drought. Subsequently, it has been reported that surface and tap water, as well as riparian plants, 

in the Western Cape region are contaminated with emerging pollutants, such as PFASs. In the 

present study, river water was used to irrigate a medicinal plant used to manage DM, Tagetes 

erecta L., as is commonly done in local communities. The PFASs levels in this water were also 

analysed, as well as the tendency of this plant (i.e., Tagetes erecta L.) to uptake these compounds. 

Consequently, PFOA, PFOS, and PFBS were found in the river water, as well as in the plant under 
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investigation. Individual plant samples demonstrated abundant PFOA concentrations, thus 

bioaccumulation, and PFBS was observed to be the most predominant in all the river water 

samples. The BCF suggested that PFBS, a short-chain PFAS, has lower translocation potential into 

the plant, a trend which allowed this PFAS to remain in the water. In addition, the relatively low 

accumulation of PFOS in the plant was hypothesized to be dependent on plant species, but future 

studies still have to be conducted in this regard. Moreover, the prevalence of PFASs in river water 

used for irrigation, and their subsequent bioaccumulation in medicinal plants, can be considered 

as a potential pathway through which humans can be exposed to PFASs in communities relying 

on alternative and unorthodox management of DM. The results from the present study can 

contribute to the establishment of a database for monitoring the accumulation of PFASs, 

including PFOA, PFOS, and PFBS, in medicinal plants. There is currently limited information on 

their susceptibility to PFASs, such as PFOA, PFOS, and PFBS, and there is more that still needs to 

be established. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table 

S1: Selected medicinal plants under possible threats by PFASs in South Africa. 
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CHAPTER 6 

 

Connotation of perfluoroalkyl substances and Diabetes 

ailments: A case study of a Bellville South population, in Cape 

Town, South Africa 

 

 

6.1 Abstract 

 Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals used in 

several industrial applications and consumer products worldwide. They are anthropogenic and 

only regulated voluntarily by a few countries, regardless of their environmental persistence and 

health effects. The aim of this study was to examine serum PFAS levels and their association with 

diabetes mellitus (DM) in a Bellville South, Western Cape population, in South Africa. Therefore, 

a liquid chromatography/tandem mass spectrometry (LC–MS-8030) was used to measure the 

PFASs, coupled with Statistica software package, for statistical analysis. PFASs, perfluorooctanoic 

acid (PFOA), perfluorooctanesulfonate (PFOS), perfluorobutane sulfonate (PFBS), were detected 

in all the tested serum samples (n = 179); albeit, there was no direct and significant association 

between PFOA, PFOS, PFBS and any of the predictors, i.e. overweight and obesity, even in known 

DM cases for the studied population (p-values < 0.05). In summary, the inconsistency in our 

findings warrants further investigation. 

Keywords: Diabetes mellitus, perfluoroalkyl substances (PFASs); perfluorooctanoic acid (PFOA); 

perfluorooctane sulfonate (PFOS); perfluorobutane sulfonate (PFBS), Serum. 
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6.2 Introduction 

 Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a wide collection of synthetic 

chemicals [1,2]. They have exceptional properties, such as thermal stability and resistance to 

degradation, including resistance to staining and repellency against oil and water [3,4]. Several 

industries have extensively used them for decades, both as surfactants and surface protectors, in 

various industrial processes to manufacture household goods, as well as industrial products [3-

5]. These goods and/or products include consumer goods, electronics, textile coatings, surface 

treatments agents, adhesives and building materials [6]; as well as non-stick coatings, food 

wrappers, upholstery, firefighting foams, clothing and furnishings [7-11].  

 Apart from these compounds’ prevalent usage, PFASs are highly resilient and persistent 

once they have entered the natural environment. The latter is due to a strong bond that exists 

between the carbon and fluorine atoms in the structure of these substances [4], leading to the 

substances being extremely resistant to environmental and biological degradation [5]. 

Subsequently, these pervasive characteristics have led to humans being exposed to PFASs [7]. In 

this regard, the general population is prevalently exposed to PFASs through various routes, 

including dietary intake, drinking water, indoor air and household dust and food packaging 

including cookware [10,12,13]. 

 Additionally, Annex B of the Stockholm Convention on Persistent Organic Pollutants 

(POPs), lists, since 2009, some PFASs including perfluorooctane sulfonate (PFOS) and 

perfluorooctanoic (PFOA) [14]. These chemicals were added on the list of substances that 

authorities globally should consider to regulate as they pose human health risks [5,15]. Overall, 

there are thousand types of PFASs that have been reported and documented in numerous studies 

[11].  

 Furthermore, exposure to PFASs has been associated with various ailments, including 

type 2 diabetes (T2D) and other metabolic diseases in various epidemiological studies [16-19]. For 

instance, higher serum PFOA concentrations were recently associated with a greater adiposity 

and an increased body mass index (BMI) in children between 2-8 years of age; albeit, this 

association was not observed with PFOS, perfluorononanoic (PFNA) and perfluorohexane 

sulfonic (PFHxS) [19]. Similarly, another study found an association between serum PFOA 

concentrations with increased adiposity, and the risk of weight gain or obesity in adult women 



Chapter 6: Connotation of perfluoroalkyl substances and Diabetes ailments: A case study of a Bellville South population in Cape 
Town, South Africa 

206 

 

during their pregnancy [20,21]. Similarly, a hasty weight gain was observed in baby girls born to 

women who were diagnosed with high levels of PFOS while pregnant [21,22]. On the other hand, 

a recent study has revealed an association between PFNA and an increased risk of metabolic 

syndromes [7], which are regarded as a cluster of disorders, some of which are exacerbated by 

obesity, which is one of the leading causes of T2D [23,24], including cardiovascular diseases 

(CVDs) [7,25,26]. Accordingly, a study by Huang et al. [10] has suggested an association between 

exposure to PFASs and a risk of CVDs. Consequently, it has been reported that CVDs are some 

of the leading causes of death worldwide [10,27].  

 From a South African perspective, PFASs have been detected in potable (drinking) and 

surface water [28,29], as well as in a number of other environmental matrices [30-33]. Similarly, 

a recent publication on South Africa (Western Cape) has reported on the prevalence of PFASs, 

including perfluoroundecanoic acid (PFUnDA), perfluorodecanoic acid (PFDA), 

perfluorononanoic acid (PFNA), PFOA, and perfluoroheptanoic acid (PFHpA), in the fillets of fish 

(Thyrsites atun) which is consumed in large quantities by the populace forming part of this study 

[34]. In addition, CVDs were reported as the second major cause of death, after AIDS [35]; and 

recently, Pheiffer et al. [36] indicated that T2D was a major source of morbidity and mortality in 

South Africa, due to increased urbanisation and unhealthy lifestyle habits. Similarly, diabetes has 

been reported as a leading risk factor for people living with HIV [11,37-39], a virus which has 

claimed many lives in South Africa. Nevertheless, it is worth indicating that, there has been 

inconsistency in the evidence reporting on the association of PFASs and DM, suggesting more 

studies are required. 

 To our knowledge, there has been evidence on the prevalence of PFASs in the South 

African population and the environment [40-45]. However, as a country where cases of T1D and 

T2D have increased due to the country’s socio-economic development, there is a need to assess 

the link between the increasing DM cases and the levels of PFASs in human serum. Currently, no 

study in South Africa, has investigated the potential relationship between PFASs exposure and 

DM. Therefore, this study’s primary aim was to investigate the concentration levels of three 

commonly studied PFASs consisting of two long-chained PFCs (i.e. with seven or more 

perfluorinated carbons, e.g. PFOA and PFOS), and one short-chain PFC (i.e. five or fewer 

perfluorinated carbons, e.g. PFBS), in the serum of diabetic patients from a Bellville South 

population, in Cape Town, South Africa. To determine whether there is a direct correlation 
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between PFOA, PFOS, PFBS with known cases of DM, particularly in this population group, 

which is of mixed-ancestry origin, and has the second highest prevalence of diabetes in South 

Africa [35]. Firstly, this study included both long and short-chain PFASs because, firstly, PFBS 

(short-chain) was recently found to be the most dominant PFAS in water samples collected in the 

region, compared to long-chain such as PFOA and PFOS [33]. Secondly, PBFS, which was 

previously regarded as less harmful, is proven as unsafe as its analogues or long-chain PFASs 

[46-48]. Thirdly, most studies have only focused on long-chain PFASs, such as PFOA and PFOS 

[18,49-54]. The differences between serum PFAS levels reported and other studies were also 

determined. 

6.3 Materials and methods 

6.3.1 Chemicals, reagents and standards 

 The PFASs standards of perfluorooctanoic acid (PFOA), perfluorobutane sulfonate 

(PFBS), and perfluorooctane sulfonate (PFOS), were obtained from the laboratory of the 

Department of Environmental, Water and Earth Sciences, Tshwane University of Technology 

(TUT), South Africa. All standards were purchased in methanol at 50 µgmL-1 from Wellington 

Laboratories (Ontario, Canada). A surrogate mixture of stable isotopically labelled PFASs 

standard containing perfluoro-n-[1,2,3,4-13C4] octanoic acid (MPFOA), perfluoro-n-[1,2,3,4, 5-

13C5] nonanoic acid (MPFNA), and perfluoro-n-[1,2-13C2] undecanoic acid (MPFUnDA), was also 

obtained from TUT, and purchased in methanol at 2 µgmL-1 from Wellington Laboratories 

(Ontario, Canada). Sodium carbonate, anhydrous extra pure sodium carbonate (Na2CO3, 99.5 %) 

were purchased from Sigma-Aldrich (Aston Manor, South Africa). 

 Organic solvents, such as Ammonium acetate (NH4Ac, LC-MS grade, ≥99%), Ammonium 

hydroxide solution (NH4OH, LC-MS grade, ≥25 %), Methanol (MeOH, LC-MS grade, ≥99.9) and 

Acetonitrile (ACN, LC–MS grade; ≥99.9%), Formic acid (CH2O2, LC-MS grade, >98), 

Tetrabutylammonium hydrogensulfate (TBAHS) and Methyl-tert-butyl ether (MTBE) of HPLC 

grade were purchased from Sigma-Aldrich (Aston Manor, South Africa). Only polypropylene 

(PP) tubes, syringes, filters, and cartridges were used throughout the experiment to avoid any 

possible cross-contamination to the samples. 
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6.3.2. Sample preparation and extraction 

 The procedure used to prepare and extract the serum samples was based on the methods 

previously used by Bao et al. [5] and Mudumbi et al. [33], with minor modifications. Human sera 

(n = 179 samples) were pipetted (0.5 mL each) into a sterile and pre-rinsed 15 mL PP tubes, with 

an isotopically labelled internal standard (50 µL) being added to each sample in the tube. To the 

mixture, a 1 mL of 0.5 M TBAHS solution (pH was adjusted to 10 with KOH) was added; and 

prior to mixing each tube gently, a 2 mL of 0.2 M bicarbonate buffer solution (pH 9.2) was added, 

followed by gentle mixing, prior to adding 5 mL of MTBE. The mixture in PP tubes was then 

agitated in a shaker (Amerex SK-703, Lafayette, USA) for 25 min at 250 rpm. The separation of 

the organic and aqueous phases from the matrix was performed by centrifugation at 3500 rpm 

for 5 min. For each sample, a volume (4 mL) of the aqueous phase was transferred into a new 

sterile pre-rinsed 15 mL PP tube. The extraction was repeated as described above, and the extracts 

were combined in a second pre-rinsed 15 mL PP tube. The solvent (i.e. MTBE) was allowed to 

evaporate using analytical grade nitrogen evaporator at 30°C. The residues were reconstituted 

using 1 mL of 20% acetonitrile, whereby the PP tubes were centrifuged for 10 min at 10000 rpm. 

The final extracts were filtered using 0.2 µm PP filters obtained from Sigma-Aldrich (Aston 

Manor, South Africa) prior to solid phase extraction (SPE). 

 For SPE, Supelco-Select HLB SPE cartridges (500 mg solid phase, 12 mL tubes) were used. 

Therefore, cartridges were conditioned with 2 mL of 2% NH4OH in MeOH/MTBE (1:9, v/v), and 

left to equilibrate for 10 min. Subsequently, 2 mL of 2% CH2O2 in sterile distilled water was used 

to wash the cartridges. The samples were loaded into the cartridges, and washed with 2 mL of 

2% CH2O2 in H2O, coupled with 2 mL of MeOH. Pre-rinsed PP collection tubes were put in place 

in the SPE cartridge older, prior to a further 2 mL of 2% NH4OH in MeOH/MTBE (1:9, v/v) being 

added to the cartridges to elute the PFASs from the anion-exchange sorbents of each SPE 

cartridge, at a flow rate of, approximately, 1 drop/5sec. the SPE extract was dried under nitrogen 

gas and reconstituted with 0.5 mL of 10% ACN, prior to the analytes being decanted in PP LC-

MS/MS vials, which were thereafter stored in a refrigerator prior to the LC-MS/MS-8030 

analysis. Figure 5.1, depicts the overall samples’ preparation and extraction schema. 
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6.3.3. Instrumental analysis 

 To analyze the concentrations of the targeted PFASs in sera samples, a liquid 

chromatography (LC) system was used, combined with tripartite quadrupole linear ion trap 

tandem mass spectrometer (MS/MS-8030), with an electrospray ionization (ESI) source operating 

in a negative ion mode, with multiple reaction monitoring (MRM). A column used was a Luna 

Omega 3.0 um Polar C18 100 A LC Column 100 x 2.1 mm (Phenomenex, Aschaffenburg, 

Germany) set at 40 °C. A mobile phase with a combination of 20 mM ammonium acetate and 20% 

isopropanol (solvent A) and 100% MeOH (B) was used at a flow rate of 0.3 mL/min, with 10 µL 

as the appropriate injection volume for distinct samples. The linear gradient elution program 

started at 20%B and amplified to 80%B after 7 min, then increased to 95%B for 15 min; thereafter, 

maintaining 100%B for 17-27 min, before being 20%B for 30-40 min (total running time for each 

injection). Nitrogen was used as the collision gas. The LC system was a Shimadzu (LCMS-8030) 

system with a degassing unit (DGU-20A3R), coupled with a liquid chromatograph (LC-20AD), a 

column oven (CTO-20AC), an autosampler (SIL-20AC) and a nitrogen gas generator (NM32LA). 

It was used to attain the chromatographic separation of the targeted analytes. 

6.3.4. Quality control and assurance 

 To ensure the accuracy of the method, preparation of procedural blanks were made which 

facilitated the analysis of the samples at a range interval of ten (10) for each run. This was done 

to evaluate whether there was any contamination that occurred during the extraction of the 

samples. Consequently, solvent blanks made of MeOH (195 μL) and internal standard (ISTD) (5 

μL) were prepared for analysis after every twenty (20) samples to control background 

contamination. To ensure precision and accuracy of each executed analysis, duplicate injections 

and recalibrations were performed using the appropriate standards for each analysis after 

processing twenty samples, respectively. In cases whereby the target analytes were detected in 

the procedural blanks, their average peak areas were deducted from those of the actual samples, 

prior to the computation of the final analyte concentrations. The LOD were outlined as the peak 

signal of a target analyte that required yielding a signal/noise (S/N) ratio of 3:1, which ranged 

from 0.003 to 0.03 ng/mL for all the investigated PFASs, i.e. PFOA, PFOS, PFBS. The limit of 

quantification (LOQ) was outlined as the variance (SD) of the blanks, selected as 0.03 ng/mL for 

PFOA and PFOS, and 0.07 ng/mL for PFBS. A 50 µL of native surrogates was used for matrix 
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spike recovery testing. The recoveries of native customary surrogates spiked within the serum 

matrix averaged 98, 96 and 93% for PFOA, PFOS and PFBS. Equation 1(S1) was adapted to acquire 

the standardization curves (Figure S1), respectively. 

 

Figure 6.1: Serum samples’ preparation and extraction schema. Adapted from Mudumbi et al. 

[33] 

6.3.5. Study population and sample collection 

 Participants from this study were from a cross-sectional Cape Town Vascular and 

Metabolic Health (VMH) on-going study, and an extension of the Cape Town Bellville South 

study previously described in other studies, including Matsha et al. [35], Erasmus et al. [55], 

Davison et al. [56]; Davids et al. [57] and Zemlin et al. [58]. The present study population 

comprised of 179 mixed ancestry adults (22% males and 78% females) residing in Bellville South, 

Cape Town, South Africa. A detailed protocol describing data-collection procedures 

(questionnaires and physical examination) and interviews were developed as previously 

described [35, 56]. A team of professional nurses collected clinical, biochemical and 

anthropometric measurements, i.e. weight, height, and hip and waist circumferences, using 

standardized techniques as prescribed by WHO [59]. The samples were processed within an 
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appropriate time and aliquots were stored at -80°C. A Sunbeam EB710 digital bathroom scale, 

calibrated and standardized at a weight of known mass, was used to determine participants’ 

weights. The measured weights were recorded to the nearest 0.1 kg, after ensuring that each 

subject wore light clothes, and no shoes or socks. A stadiometer was used to record the height of 

each subject to one decimal place. Body mass index (BMI) was calculated as weight per square 

meter (kg/m2). To measure the waist circumference, a non-elastic tape was utilized for non-obese 

individuals, but for obese participants this measurement was done between the ribs and the iliac 

crest. Turbidimetric inhibition immunoassay (Cobas 6000, Roche Diagnostics) was used to assess 

Glycated haemoglobin (HbA1c). The subjects’ present tobacco use was defined as a cotinine level 

>10 ng/mL [56, 59]. As such, all anthropometric measurements were performed three times and 

the average measurements were used for analysis. 

6.3.6. Statistical analysis 

 Data were analysed with a statistical analysis system package, STATISTICA software 

(Statsoft, http://www.statsoft.com). One-way ANOVA was used to determine descriptive 

statistics and results are presented as mean ± standard deviation (SD), for all variables, including 

the investigated PFASs (i.e. PFOA, PFOS and PFBS), age, body mass index (BMI), etc. categorized 

according to glycaemic status and gender. The Spearman rank correlation test was used to 

determine correlations between PFAS levels and other variables investigated, including age, BMI 

etc. The statistical significance of both the correlations and differences were set at p < 0.05. 

Additionally, further statistical analyses used in the present study were performed as per 

previous studies [35,55-58]. 

6.3.7. Ethics endorsement and consent participation 

 The Health and Wellness Sciences-REC (Research Ethics Committees) of the Cape 

Peninsula University of Technology approved ethics endorsement for study (ref. no. 

CPUT/HWS-REC 2015/H04). The study observed the Code of Ethics of the World Medical 

Association as incorporated in the Declaration of Helsinki. All the participants were provided 

with full explanations regarding the study and voluntarily signed written informed agreements.

http://www.statsoft.com/
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6.4. Results 

6.4.1. Baseline participants' characteristics 

 A total of 179 samples were analysed and comprised of 140 females and 39 males. Table 

6.1 provides the general characteristics and mean concentration levels of sera PFASs according to 

gender. The mean age (standard deviation) of participants was 55.8 (±2.5) years and was not 

significantly different between the genders. PFASs levels did not significantly differ between 

males and females, except for PFOA which was significantly higher in females, p=0.0116, with 

the BMI, hip circumference and waist to hip ratio being significantly higher in females, p≤0.0009 

(Table 6.1). There was an insignificant difference in PFASs concentrations between normotolerant 

(n=67), screen-detected diabetes (n=58) and individuals with diabetes (n=54), p=0.5475 (Figure 

6.2A,B,C). Similarly, there was an insignificant difference in PFASs between normal weight 

(n=38), overweight (n=49) and obese individual (n=82), p=0.3749 (Figure 6.3A,B,C). 

6.4.2. Correlations of PFASs sera levels with anthropometric and biochemical 

 measurements 

 Table 6.2 shows the correlations between the PFASs and the general characteristics 

categorised according to gender. There was an insignificant correlation between the PFASs and 

any of the other measurements in the male group. PFOA (ng/mL) was found to be positively 

correlated with prevalence of PFBS (ng/mL) (r = 0.21, p=0.01) and PFOS (ng/mL) (r = 0.27, 

p=<0.01) in females. PFOS (ng/mL) showed a significant positive correlation with 

anthropometric measurement WHR (r = 0.27, p<0.01), with glycaemic measurements FBG 

(mmol/L) (r = 0.17, p=0.04) as well as HbA1c (%) (r = 0.19, p=0.02), while PFOS (ng/mL) also 

showed a significant negative correlation with cotinine (ng/mL) (r = -0.17, p=0.04). Similarly, 

PFOA (ng/mL) showed a significant negative correlation with PostBG (mmol/L) (r = -0.24, 

p=0.02), while PFBS (ng/mL) showed an insignificant correlation with any of the anthropometric 

or biochemical measurements.
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Table 6.1. Anthropometric and biochemical measurements and distribution of serum PFASs by 

gender 

Characteristics Total group 

(n=179) 

Males (n=39) Females (n=140) p 

Mean±SD 

PFOA (ng/mL) 9.43±13.16 4.74±9.23 10.73±13.80 0.0116 

PFOS (ng/mL) 1.00±1.51 0.77±1.24 1.06±1.57 0.2923 

PFBS (ng/mL) 1.66±2.39 1.27±1.39 1.77±2.59 0.2483 

Age (years) 55.8±12.5 57.4±11.5 55.4±12.8 0.3639 

BMI (kg/m2) 30.5±6.9 27.1±6.4 31.4±6.7 0.0009 

WaistC (cm) 98.0±13.8 96.7±16.3 98.3±13.1 0.5282 

HipC (cm) 109.9±13.9 101.6±10.2 112.1±13.9 <0.0001 

WHR 0.89±0.08 0.94±0.08 0.88±0.07 <0.0001 

FBG (mmol/L) 7.50±3.54 7.49±3.24 7.50±3.63 0.9899 

PostBG (mmo/L) 9.15±4.95 8.75±4.80 9.25±5.01 0.6615 

HbA1c (%) 6.96±1.82 7.04±2.11 6.93±1.74 0.7522 

Cotinine (ng/mL) 122.7±177.2 154.6±192.0 113.9±172.6 0.2109 

SD: standard deviation; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; PFBS: perfluorobutane 

sulfonate BMI: body mass index; p: p-value; WaistC: waist circumference; HipC: hip circumference; WHR: waist to hip 

ratio; FBG: fasting blood sugar; PostBG: post blood sugar, HbA1c: Glycated haemoglobin. 
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Table 6.2: Correlation between PFASs and anthropometric and biochemical measurements 

 PFOA (ng/mL) PFOS (ng/mL) PFBS (ng/mL) 

 Male Female Male Female Male Female 

Characteristics r p r p r p r p r p r p 

PFOA (ng/mL) - - - - -0.12 0.47 0.07 0.44 0.05 0.77 0.21 0.01 

PFBS (ng/mL) 0.05 0.77 0.21 0.01 0.28 0.08 0.27 <0.01 - - - - 

PFOS (ng/mL) 0.28 0.08 0.27 <0.01 - - - - -0.12 0.47 0.07 0.44 

Age (years) -0.01 0.94 0.04 0.67 -0.22 0.17 0.06 0.51 0.01 0.94 0.05 0.55 

BMI (kg/m2) 0.10 0.55 0.01 0.89 0.22 0.21 -0.01 0.94 -0.15 0.40 0.01 0.88 

WaistC (cm) 0.17 0.30 0.05 0.59 0.27 0.10 0.11 0.19 -0.11 0.52 0.00 0.99 

HipC (cm) 0.15 0.37 0.05 0.53 0.19 0.27 -0.05 0.55 -0.19 0.28 0.06 0.48 

WHR 0.14 0.41 0.00 0.96 0.16 0.37 0.27 <0.01 0.04 0.83 -0.06 0.50 

FBG (mmol/L) -0.00 1.00 -0.16 0.05 -0.10 0.54 0.17 0.04 -0.03 0.83 -0.07 0.38 

PostBG (mmo/L) -0.08 0.69 -0.24 0.02 -0.08 0.73 0.10 0.32 0.15 0.49 -0.07 0.47 

HbA1c (%) -0.10 0.54 -0.09 0.31 -0.04 0.82 0.19 0.02 -0.30 0.07 -0.06 0.51 

Cotinine (ng/mL) 0.01 0.95 -0.10 0.25 0.15 0.36 -0.17 0.04 0.12 0.48 -0.00 0.97 

PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; PFBS: perfluorobutane sulfonate; p: p-value; BMI: body mass index; WaistC: waist circumference; HipC: 

hip circumference; WHR: waist to hip ratio; FBG: fasting blood glucose; PostBG: post blood glucose, HbA1c: Glycated haemoglobin.
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Figure 6.2A. Serum concentration of PFOA (normoglycaemic group compared with screen-
detected and known DM groups). There was no significant difference in PFOA (ng/mL) values when 

categorized by glycaemic status: mean±SD: 10.1±11.0 ng/mL in normoglycaemic subjects (n=67), 7.9±10.0 ng/mL in 

screen-detected DM subjects (n=58) and 10.3±17.9 ng/mL in known DM subjects (n=54); p=0.5475 
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Figure 6.2B. Serum concentration of PFOS (normoglycaemic group compared with screen-
detected and known DM groups). There was no significant difference in PFOS (ng/mL) values when 

categorized by glycaemic status: mean±SD: 0.89±1.51ng/mL in normoglycaemic subjects (n=67), 1.06±1.61 ng/mL in 

screen-detected DM subjects (n=58) and 1.06±1.41 ng/mL in known DM subjects (n=54); p=0.7644. 
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Figure 6.2C. Serum concentration of PFBS (normoglycaemic group compared with screen-
detected and known DM groups). There was no significant difference in PFBS (ng/mL) values when 

categorized by glycaemic status: mean±SD: 2.13±3.36 ng/mL in normoglycaemic subjects (n=67), 1.55±1.51 ng/mL in 

screen-detected DM subjects (n=58) and 1.18±1.43 ng/mL in known DM subjects (n=54); p=0.0851. 
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Figure 6.3A. Serum concentration of PFOA (normal group compared with overweight and obese 
groups). There was no significant difference in PFOA (ng/mL) values when categorized by obesity status: mean±SD: 

7.2±9.1 ng/mL in normal weight subjects (n=38), 10.2±16.8 ng/mL in overweight subjects (n=49) and 10.8±12.7 ng/mL 

in obese subjects (n=82); p=0.3749. 
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Figure 6.3B. Serum concentration of PFOS (normal group compared with overweight and obese 
groups). There was no significant difference in PFOS (ng/mL) values when categorized by obesity status: mean±SD: 

0.98±1.62 ng/mL in normal weight subjects (n=38), 1.01±1.58 ng/mL in overweight subjects (n=49) and 1.03±1.49 

ng/mL in obese subjects (n=82); p=0.9901. 
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Figure 6.3C. Serum concentration of PFBS (normal group compared with overweight and obese 
groups). There was no significant difference in PFBS (ng/mL) values when categorized by obesity status: mean±SD: 

1.35±1.38 ng/mL in normal weight subjects (n=38), 2.15±3.79 ng/mL in overweight subjects (n=49) and 1.55±1.61 

ng/mL in obese subjects (n=82); p=0.2553. 

6.5. Discussion 

 To the best of our knowledge, no study has yet investigated the prospective correlation 

between PFASs exposure and autoimmune diseases, such as DM, in a South Africa population, 

in particular, and Africa in general. Hence, this is the first study about the prevalence of serum 

PFASs in DM patients, and the association of these substances to the ailment. All three 

investigated PFASs, i.e. PFOA, PFOS and PFBS, were measured in the serum samples analysed, 

with PFOA being the most abundant PFAS in both females (10.73 ng/mL) and males (4.74 

ng/mL), followed by PFBS (1.77 and 1.27 ng/mL), for males and females, respectively. However, 

the three PFASs were generally higher in females than males, a trend that was previously 

observed by Li et al. [61]. This suggested that women in this region are the most likely to be 

exposed to these substances. Table 6.3 depicts the differences between serum PFAS levels 



Chapter 6: Connotation of perfluoroalkyl substances and Diabetes ailments: A case study of a Bellville South population in Cape 
Town, South Africa 

221 

 

reported in previous studies. It can be observed that the PFAS levels from the current study are 

relatively lower compared to other studies. 

 We measured cotinine, a chemical that the body makes after you are exposed to nicotine, 

the reason being that available evidence has reported smoking prevalence among the population 

group under investigation in this study [62,63]. Cotinine concentrations were higher in males 

than in females (154.6 and 113.9 ng/mL, respectively). The correlation between PFASs and cotinine 

was not significant (p= 0.2). This is inconsistent with results from Mamsen et al. [63], who 

previously found a significant positive correlation between investigated PFASs and cotinine. 

Table 6.3. Summary of other studies on the association between PFASs exposure and diabetes 

 PFASs levels (ng/mL)  

Studies of 

reference 
PFOA 

PFOS 
PFBS Outcomes 

Present study 9.43 
1.00 

1.66 
No evident association between analysed PFASs 

and risk of developing diabetes 

[18] 0.49 
0.95 

n/a 
High serum levels of PFOS may lead to being 

susceptible to develop diabetes. 

[49] 3.94 
13.10 n/a Higher concentrations of PFOA were significantly 

associated with an increased risk of diabetes 

[51] 1.8 
3.4 n/a No consistent evidence for any positive associations 

between the PFASs and diabetes 

[50] 82.3 
23.1 n/a PFAS levels were negatively associated with 

diabetes 

[52] 5.4 
5.2 n/a Negative association of PFOA with diabetes. 

Positive association between FPOS and diabetes 

[53] 4.96 
35.7 n/a Higher concentrations of PFOS and PFOA were 

associated with an elevated risk of T2D 

[54] 1.30 
2.81 n/a No evident association between PFASs and risk of 

diabetes 

n/a = not analysed 
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Recent reports have indicated that there has been an increase in PFBS prevalence [7], which 

might substantiate the reason why PFBS is the second most abundant substance in the current 

study. Similarly, Mudumbi et al. [33] recently reported a high prevalence of PFBS in both river 

water and a commonly used South African medicinal plant (Tagetes erecta L.), suggesting a link 

between water, medicinal plants and the susceptibility of humans to not only long-chain PFASs, 

such as PFOA and PFOS, but also short-chain PFASs, such as PFBS. Ultimately, this further 

suggests the use of PFBS in industrial applications in the Western Cape Province, South Africa, 

where the participants reside, as well as the possibility of DM sufferers’ being exposed to other 

short-chain PFASs, such as PFBS. To confirm the latter statement, further studies are required in 

this regard. Mudumbi et al. [29] has previous indicated that river water is used, countrywide, to 

irrigate crop lands, including plants used in the management of DM. 

Unlike in males, a significant positive correlation between PFOA and PFOS (r = 0.27; p = 

<0.01), as well as PFOA and PFBS (r = 0.21; p = 0.01) (Table 6.2) was found in females, a trend 

previously reported by Li et al. [61]. This suggests there is a common exposure pathway of these 

substances, which allows the exposure of females. It is worth indicating that, in the South African 

context, women are involved in jobs that are likely to expose them to PFASs, such as cooking. For 

example, Stats-SA reported in its 2018 report that women dominated the domestic worker market 

[64]. Subsequently, scientific evidence has reported the prevalence of PFASs in households [65-

67]. 

Common sources of long-chain PFASs, including PFOA and PFOS, have mainly included 

diet and water [68, 69]. And although not enough evidence of PFOA, PFOS and PFBS is available 

in South Africa as far as food and/or diet is concerned, recent reports have indicated the 

prevalence of these three PFASs in both tap and surface water in the country, as well as in a 

popular plant (i.e. Tagetes erecta L.) [28,29,33]. This plant is commonly ingested by locals for the 

management of diabetes [29,33]. 

 In the present study, serum PFOS and PFBS levels were positively correlated with PFOA; 

albeit, independent of PFOS levels, which were positively associated with HbA1c, in women. 

HbA1c develops when haemoglobin, a protein within red blood cells that carries oxygen 

throughout the human body, joins with glucose in the blood, and thus becoming ‘glycated’ [70] . 

The same source indicates that, for people with DM, measuring HbA1c is important, as the higher 
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it is, the greater the risk of developing diabetes-related complications. Our results showed higher 

levels HbA1c for both males and females (7.04 and 6.93%, respectively), in comparison to the 

<5.7% considered as normal by Shah et al. [71]. This ultimately suggests that higher 

concentrations of PFOS, or any other PFAS, in diabetic sufferers are likely to lead to further 

complications due to the relationship that might occur between these substances and HbA1c. 

Previously, Liu et al. [72] observed a negative association between PFOA and HbA1c. 

Nevertheless, it has been suggested that the reasons behind such conflicting results between 

studies remain largely unknown, but putatively, variations can be caused by various perplexing 

factors, including early or late stage exposure to PFASs, and perhaps the status of insulin 

resistance [65]. We also strongly believe that the time frame until samples are analysed might 

have an effect on the final result outcomes; this is so because a study by Blake et al. [4] suggested 

that, PFAS half-lives may play a role in their temporal stability in biological samples. More 

research is thus required in this regard. 

It was found that there was no difference between PFOA and PFOS concentrations, 

respectively, in normal subjects and the known DM cases (Figure 6.2A and B). This is inconsistent 

with previous results from Predieri et al. [18], which reported a similar scenario for PFOS. Thus, 

this trend suggests, in our view, and as far as this pilot study is concerned, that the levels of PFASs 

observed in the current study cannot be considered as a leading cause of DM in the studied 

population of the Western Cape. Nevertheless, we suggest further research to be undertaken to 

substantiate the observed trend, as this study is a preliminary one in as far as South Africa is 

concerned. One positive attribute of this study is the high sensitivity equipment used, for it was 

capable to detect PFAS concentrations in all our samples, even at extremely low concentrations. 

Nonparametric correlation coefficient was used to compare PFOA, PFOS, PFBS and obesity 

status. Each entry in Figure 6.2A, B, and C gives the correlation coefficient estimate, the p-value 

for its significance test, and the number of observations used. The p-values are larger than 0.05 in 

every case. We found that, there was no significant association between PFOA, PFOS, PFBS and 

any of the three primary predictors (p=0.3749, 0.9901 and 0.2553, respectively), including for 

known DM cases regardless of the higher concentration levels of these substances; albeit observed 

to be slightly higher in normal weight and overweight subjects (see Figure 6.3A, B and C). 

Additionally, our results showed higher PFAS levels in obese and known DM subjects who, to 

our knowledge, were on oral DM treatment, including insulin. This is in contradiction with report 
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results from Genuis et al. [73], which suggested that insulin, including cholestyramine (CSM) 

treatment, had the potential in facilitating the elimination of some PFASs. Hence, this 

inconsistency requires further investigations to be conducted in this field. 

Generally, although no evident association between the analysed PFASs and risk of 

developing DM was found, of PFASs observed in the current study should be considered as a 

warning, particularly from a South African context, taking in account the recent findings by 

Mudumbi et al. [33], a study which reported the susceptibility of Tagetes erecta L., a medicinal 

plant used in South Africa for the management of DM, to PFOA, PFOS, PFBS bioaccumulation. 

Ultimately, such plants, including those reported by Davids et al. [74] and Mudumbi et al. [75]  

are important in the management of DM; however they are still a viable pathway through which 

humans, including DM sufferers, would be exposed to PFASs [33], and which in return can lead 

to cases of various ailments, including vulnerability to DM development and complications. 

 Our study had some limitations, including the small sample size used, which might 

reduce the efficacy of the reported results, as well as the ability to compare the results with 

previously published results from other studies. The samples were also stored for elongated 

periods prior to preparation and analysis; which might have compromised the stability of the 

investigated PFASs; albeit, suitable sample preservation strategies were implemented. The 

samples had fewer males than females, suggesting that it was not a 50/50 representation in terms 

of gender. 

6.6. Conclusions 

 In summary, the results from this study indicated that there is human exposure to PFASs 

in a Bellville South population in Cape Town, South Africa. Of the three PFASs, PFOA and PFBS 

were the most abundant substances detected in the sera samples in the general population living 

in the Bellville south zone. Regardless, the study found minimal evident association between 

analysed substances and the susceptibility to develop DM. Nevertheless, we suggest further 

investigation be conducted to validate our findings due to limitations associated with the 

availability of the test subjects. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, S1: 

Equation. Figure S1: Procedural blank matrix calibration curves for PFOA, PFOS and PFBS (ng/L) 
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CHAPTER 7 

 

Overall Discussion and Concluding remarks 

 

 

7.1 Overall discussion  

In this study, the African marigold (Tagetes erecta L.), a South African well known 

medicinal plant that belongs to the Asteraceae plant family was found to accumulate 

perfluoroalkyl substances (PFASs), that is, PFOA, PFBS and PFOS. In certain cases, concentration 

levels of PFOA and PFBS were found to be higher compared to previous studies in other 

countries. It is worth indicating that, of the three investigated PFASs, two (i.e. PFOA and PFOS) 

are known as long-chains or “C8-chain” PFASs, while PFBS is a short-chain PFAS. Long-chain 

PFASs have dominated most investigations due to unprecedented reports on their impacts on 

human health and their bioaccumulative nature in the environment at large. Subsequently, 

substitutes and/or alternatives to long-chain PFASs were needed, a need which prompted the 

manufacturing of “harmless” PFASs, the short-chain ones (according to available evidence), 

including perfluorobutane sulfonate (C4, PFBS) and perfluorohexane sulfonic acid (C6, PFHxS), 

which are regarded as some of the most important short-chain PFASs in existence. Nonetheless, 

recently, short-chain PFASs that were previously regarded as less harmful have now been proven 

to be as unsafe as their analogues or long-chain PFASs, by countless scientific literature. 

Moreover, these compounds, that is, PFOA, PFBS and PFOS, were investigated in known 

contaminated river water and in Tagetes erecta L. (irrigated with polluted water and grown under 

laboratory conditions), as well as in serum samples from diabetes sufferers. In river water, PFOA, 

PFBS and PFOS were found in concentrations of up to 107, 20.75 and 0.12 ng/L, respectively. In 

plant (Tagetes erecta L.) samples, concentrations of PFOA, PFBS and PFOS were, 94, 1.44 and 5.03 

ng/g, respectively. In serum samples, PFOA, PFBS and PFOS were observed in all the samples 

and were found in concentrations up to 9.43, 1.66 and 1 ng/L, respectively; thus making PFBS the 

second most abundant PFAS in this current study, as far as river water and serum samples are 
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concerned. For plant samples, PFOS had the highest BCF (167) in this study. These results indicate 

that there is a potential link between contaminated water to serve as carrier to harmful substances 

into crops and/or plants, including medicinal plants. The latter will ultimately lead to the uptake 

of these substances by humans through direct ingestion of these plants for therapeutic purposes, 

for instance, as it has been the case for Tagetes erecta L., used in South Africa for diabetes 

management, and as presented in the current study. This further suggests that humans who are 

subjected to any medicinal plant not adequately monitored for its PFASs content or accumulation, 

are at risk of increased PFASs accumulation as a result of consuming contaminated plants. 

In the present study, the correlation between the analysed PFASs and diabetes mellitus 

(DM) was studied. However, a link between the investigated PFASs and DM failed to be 

substantiated as no significant correlations were found between these PFASs and the possibility 

of developing DM. However, these findings remain inconclusive due to certain inconsistencies, 

coupled with a number of limitations which were observed, and which might have reduced the 

effectiveness of the analysis of the present results, thus implying that more research is required.  

Furthermore, evidence of long-chain PFASs, such as PFOA and PFOS, prevalence in the 

general environment, as well as their potential lead to the development of DM is available. 

However, this has not been the case as far as the substitutes of these long-chain PFASs, are 

concerned. Subsequently, to our knowledge, the uptake of these substitutes, including PFHxS, 

perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA) and perfluorobutyl (PFBPA) by 

crops, such as medicinal plants, and ultimately, their association to primary predictors (e.g. 

overweight and obesity) of DM are generally limited worldwide, and particularly in a South 

African context. However, in light of the inconsistencies and contradictions that the present study 

has highlighted, it is thus clear that studies investigating the prevalence of short-chain PFASs in 

the general environment (e.g. surface water), as well as the susceptibility of medicinal plants to 

these particular substances, that is short-chain PFASs, are long overdue. 

7.2 Overall concluding remarks  

Water and plants share an undoubted bond driven by how the ecosystem functions. But 

most importantly, water is a necessity which all living organisms, including humans and plants, 

require for their survival. However, for decades, it has been proven that contaminated water, 

either surface water or groundwater, will ultimately contaminate the land and thus the plants 
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which have been exposed to this contaminated water. This is because plants have the capacity to 

uptake contaminants through various mechanisms, such as root interception, diffusion, and mass 

flow, although other reports suggesting that these mechanisms were not conclusive in that 

regard. This inconclusiveness led to the discovery of plant proteins, the aquaporins (AQPs). These 

proteins have been reported to be more abundant in plant kingdoms than in mammalian species, 

and possess unique structural features which determine which pollutant size passes through 

which protein pore sizes. Hence, AQPs with smaller pore diameters translocate smaller 

molecules, while those with wide pores move larger molecules through the plant membrane cells.  

Accordingly, today, it has abundantly been demonstrated that plants accumulate 

substances, including POPs such as PFASs (e.g. PFOA, PFOS and PFBS), as well as heavy metals 

(e.g. copper, manganese, iron, zinc, etc.) through these AQPs.  

In the South African context, surface water and plants, in particular, have been proven to 

be susceptible to PFASs. Consequently, Tagetes erecta L., a South African medicinal plant is a 

typical used plant with a predisposition to accumulate both long and short-chain PFASs, such as 

PFOA, PFOS and PFBS. There is a cause for concern because there are more than 3000 of these 

substances that have been reported and documented globally, in the environment in general. 

According to the literature reviewed, medicinal plants have played a significant role in 

the lives of several African households, especially those with low incomes and which, ultimately, 

are unable to afford themselves orthodox medicines in cases where treatments of certain ailments 

are required. However, scientific reports have indicated that the role played by these plants is at 

high risk of being comprised due to several contaminants that have polluted the natural 

environment. Similarly, there is available evidence that some diseases are the results of sufferers 

being exposed to these substances, including PFASs, through various pathways, such as direct or 

indirect ingestion.  

Diabetes mellitus (DM) has been one of the diseases associated to the exposure of PFASs, 

including PFOA, PFOS and PFBS. This exposure has been reported to be through either water or 

food, an example being consuming contaminated crops and/or plants. Thus, like in various other 

populations in the world, the current study have found these three PFASs in diabetic serum 

samples taken from a Bellville south population, in the Western Cape, in South Africa, regardless 

of the absence of a significant correlation between these substances and DM, in the studied 

population. The results remain worrisome though, because DM has killed millions worldwide, 
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with no cure available to date. And similarly, DM has been one of the leading causes of death in 

South Africa, in general.  

Consequently, the present research results represent the first study on PFOA, PFOS and 

PFBS contamination in the South African context. Further scientific scrutiny is warranted to 

quantify risk contamination of the South African environment in general, and its population in 

particular, by not only long-chain PFASs, but also their counterparts, short-chain PFASs; and 

investigate further whether or not these substances, in particular short-chain PFASs, are an 

independent risk factor for the contamination of any other medicinal plant, and for Diabetes 

mellitus (DM) development.  

7.3 Recommendations 

The present research study reported on a medicinal plant as a potential source of 

Polyfluoroalkyl substances intake in South Africa. Nevertheless, there are aspects that still require 

to be addressed in order for this research topic to be adequately covered, and they include the 

following: 

 The types of Aquaporins (AQPs) present in the studied plant, that is Tagetes erecta L., 

should be identified. 

 The profiling of other short-chain PFASs or long-chain PFASs substitutes is required. 

 Further research is needed to elucidate the concentration of substitutes to long-chain 

PFASs in people suffering from Diabetes mellitus (DM). 

 Potential short-chain PFAS sources in South Africa should be appraised. 

 The prevalence of short-chain PFASs in other regions of South Africa should be profiled. 

 The concentration levels of other PFASs in additional South African medicinal plants 

should be profiled. 

 The prevalence of PFASs in agricultural products, such as honey, should also be assessed. 
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APPENDICES 

Supplementary Materials: Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental 

health impact, suggested substitutes and removal strategies 

Table S1: Overview of major uses of polymeric polyfluoroalkyl compounds 

Industry sector Polymers Reference 

Automotive Raw materials for components 

such as low-friction bearings & 

seals 

 Lubricants Smarts et al. 1994; 

Kutz 2011 

Aviation, aerospace & 

defence 

Insulators; “solder sleeves”   OECD 2013 

Cable & wiring Coating for weathering, flame 

and soil resistance 

 Surface-treatment 

agent for 

conserving 

landmarks 

Smarts et al. 1994; 

Kutz 2011 

Construction Coating of architectural materials 

(fabrics, metals, stone, tiles, etc.); 

additives in paints 

  Smarts et al. 1994 
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Table S1. (Continued) 

Electronics Insulators; “solder sleeves”;  vapour-phase 

soldering media 

Kleine and Jho 2009; 

Kutz 2011; Carlson 

and Schmiegel 2000 

Energy Film to cover solar collectors due 

to weather ability 

  Smarts et al. 1994 

Fire-fighting Raw materials for fire-fighting 

equipment, including protective 

clothing 

fuel repellents for FP & 

foam stabilizers in AR-

AFFF and FFFP;7coating for 

fire-fighting equipment 

 Kleine and Jho 2009 

Food processing fabrication materials   Kutz 2011 

Household products non-stick coating   Kutz 2011 

Medical articles surgical patches cardiovascular 

grafts; raw materials for implants 

in the human body 

stain- and water-repellents 

for surgical drapes and 

gowns 

 Kutz 2011; OECD 

2013 
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Table S1. (Continued) 

Paper and packaging  Oil and grease repellent Oil and grease 

repellent 

OECD 2013 

Semiconductors Raw materials for equipment  Working fluids in 

mechanical vacuum 

pumps 

Smarts et al. 1994; 

OECD 2013 

Textiles, leather and 

Apparel 

Raw materials for highly porous 

fabrics 

Oil and water repellent and 

stain release 

Oil and water 

repellents 

OECD 2013 
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Table S2: Overview of major uses of non-polymeric polyfluoroalkyl compounds 

Industry sector Non-polymers Reference 

Aviation, aerospace & 

defence 

Additives in aviation 

hydraulic fluids 

  SCPOP 2012 

Biocides  Active ingredient in 

plant growth regulators 

or ant baits; enhancers in 

pesticide formulations 

 

 SCPOP 2011, 2012 

Construction products  Additives in paints and 

coatings 

Additives in paints and 

coatings 

OECD 2013 

Electronics Flame retardants   Miteni 2016 

Fire-fighting  Film formers in AFFF Film formers in AFFF 

and FFFP 

Kleiner and Jho 2009 
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Table S2. (Continued) 

Household products Wetting agent in floor 

polishes 

Wetting agent or 

surfactant in products 

such as floor polishes 

and cleaning agents 

Wetting agent or 

surfactant in products 

such as floor polishes 

and cleaning agents 

OECD 2013 

Metal plating Wetting agent, mist 

suppressing agent 

Wetting agent, mist 

suppressing agent 

Wetting agent, mist 

suppressing agent 

SCPOP 2012; OECD 2013 

Oil and mining 

production 

Surfactants in oil well 

stimulation 

Surfactants in oil well 

stimulation 

Surfactants in oil well 

stimulation 

SCPOP 2012; OECD 2013 

Polymerization (emulsion) 

polymerization 

processing aids 

(co)monomer of side-

chain fluorinated 

polymers 

(co)monomer of 

fluoropolymers & side-

chain fluorinated 

polymers 

Smarts et al. 1994; Kutz 

2011; OECD 2013 
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Table S3: Examples of fluorinated compounds that can potentially degrade into PFCAs (OECD 2007) 

Compound Functional group CAS No. Chemical Name n 

Perfluoro alcohol compounds 2378-02-1 Perfluoro-tert-butyl alcohol   4 

6189-00-0 3-Pentanol, 1,1,1,2,2,4,4,5,5,5-decafluoro-3-(pentafluoroethyl) 7 

Perfluoro amine compounds 311-89-7 1-Butanamine, 1,1,2,2,3,3,4,4,4-nonafluoro-N,N-bis(nonafluorobutyl) 5 

90622-99-4 Amides, C7-19, α-ω-perfluoro-N, N-bis (hydroxyethyl)  7-9 

Perfluoro carboxylic compounds 307-55-1 Undecafluorohexanoic acid 5 

307-55-1 Tricosafluorododecanoic acid  11 

72623-77-9 Fatty acids, C 6-18 , perfluoro, ammonium salts  5-17 

Perfluoro ester compounds 85681-64-7 2-Propenoic acid, perfluoro-C8-16-alkyl esters 8-16 

125328-29-2 2-Propenoic acid, 2-methyl-, C10-16-alkyl esters, polymers with 2-

hydroxyethyl methacrylate, Me methacrylate and perfluoro-C8-14-alkyl 

acrylate 

8-14 
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Table S3. (Continued) 

Perfluoro ether compounds 335-36-4 Furan, 2,2,3,3,4,4,5-heptafluorotetrahydro-5-(nonafluorobutyl) 8 

68155-54-4 2H-Pyran, 2,2,3,3,4,4,5,5,6-nonafluorotetrahydro-6-

(nonadecafluorononyl) 

14 

297730-93-9 Hexane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-(trifluoromethyl) 7 

Perfluoro iodide compounds 307-50-6 Undecane, 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-tricosafluoro-11-

iodo 

11 

307-63-1 Tetradecane, 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,  

14,14-nonacosafluoro-14-iodo 

14 

Perfluoro phosphonic/phosphinic 

compounds 

68412-68-0   Phosphonic acid, perfluoro-C6-12-alkyl derives.  

Phosphonic acid, perfluoro-C6-12-alkyl derivatives (AICS) 

6-12 

68412-69-1 Phosphinic acid, bis(perfluoro-C6-12-alkyl) derivatives  6-12 
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Table S3. (Continued) 

Partial perfluoro and miscellaneous 

perfluoro compounds 

76-21-1 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononan-1-oic acid  8 

307-43-7 1-bromohenicosafluorodecane  10 

Fluoro alcohol compounds 307-30-2 1-Octanol, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-  

2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctan-1-ol  

7 

865-86-1 1-Dodecanol, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-

heneicosafluoro-  

10 

65104-65-6 1-Eicosanol, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,  

16,16,17,17,18,18,19,19,20,20,20-heptatriacontafluoro-  

18 

Fluoro ammonium compounds 31841-41-5 1-Decanaminium, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-N,N-

bis(2-hydroxyethyl)-N-methyl-, iodide  

8 

115535-36-9 Quaternary ammonium compounds, trimethyl(δ-ω-perfluoro-C8-14-β-

alkenyl), chlorides  

5-11 
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Table S3. (Continued) 

Fluoro amine compounds 70969-47-0 Thiols, C8-20, γ-ω-perfluoro, telomers with acrylamide  6-18 

97660-44-1 Ethanol, 2-(methylamino)-, N-(γ-ω-perfluoro-C8-14-β-alkenyl) derives. 6-12 

Fluoro carboxylic compounds 376-50-1 Hexanedioic acid, octafluoro-, diethyl ester 4 

37881-62-2 Octafluoroadipoyl difluoride 4 

238420-80-9 Propanedioic acid, mono(γ-ω-perfluoro-C8-12-alkyl)erives., bis[4-

(ethenyloxy) butyl] esters 

6-10 

Fluoro ester compounds 307-98-2   2-Propenoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl ester 7 

1799-84-4 2-Propenoic acid, 2-methyl-, 3,3,4,4,5,5,6,6,6-nonafluorohexyl ester 4 

1996-88-9 2-Propenoic acid, 2-methyl-, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- 

heptadecafluorodecyl ester 

8 
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Table S3. (Continued) 

Fluoro ether compounds 38565-52-5 Oxirane, (2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl)- 6 

52584-45-9 Benzenesulfonic acid, 4-[[4,4,5,5,5-pentafluoro-3-(pentafluoroethyl)-1,2,3-

tris(trifluoromethyl)-1-pentenyl]oxy]-, sodium salt 

10 

68877-51-0 Poly(oxy-1,2-ethanediyl), α-[1,4,4,5,5,5-hexafluoro-1,2,3-

tris(trifluoromethyl)-2-pentenyl]- ω-methoxy- 

8 

Fluoro iodide compounds 375-50-8 1,1,2,2,3,3,4,4-octafluoro-1,4-diiodobutane 4 

2043-54-1 Dodecane, 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heneicosafluoro-12-

iodo- 

10 

30046-31-2 Tetradecane, 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12-

pentacosafluoro-14-iodo- 

12 

65104-63-4 icosane, 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14, 

15,15,16,16,17,17,18,18-heptatriacontafluoro-20-iodo- 

18 
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Table S3. (Continued) 

Fluoro phosphate compounds 1895-26-7 bis[3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12 henicosafluorododecyl] 

hydrogen phosphate 

10 

54009-73-3 ,4,5,5,6,6,7,7,8,8,9,9,10,11,11,11-hexadecafluoro-2-hydroxy-10-

(trifluoromethyl) undecyl dihydrogen phosphate 

9 

57677-98-2 bis[3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluorododecyl] 

hydrogen phosphate, compound with 2,2'-iminodiethanol 

10 

Fluoro sulfate compounds 68516-17-6 Sulfuric acid, mono(γ-ω-perfluoro-C6-12 -alkyl) esters, ammonium salts 4-10 

84238-62-0 Sulfuric acid, mono(γ-ω-perfluoro-C8-12 -alkyl) esters, ammonium salts 6-12 

85995-90-0 Sulfuric acid, mono(γ-ω-perfluoro-C8-14-alkyl) esters 6-12 

Fluoroalkyl silicate compounds 170424-64-3 Siloxanes and Silicones, hydroxy Me, Me octyl, Me (γ-ω-perfluoro C8-14-

alkyl) oxy, ethers with polyethylene glycol mono-Me ether 

6-12 

182700-77-2 Siloxanes and silicones, di-Me, hydroxy-terminated, polymers with 

tetradecanedioic acid,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13, 13-

tricosafluoro-1-tridecanol-terminated 

11 
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Table S3. (Continued) 

Fluoro sulfonate /sulfonamide 

/sulfonyl compounds 

27607-61-0 1-Nonanesulfonyl chloride, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-pentadecafluoro-  7 

27619-89-2 1-Octanesulfonyl chloride, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro- 6 

27619-91-6 1-Dodecanesulfonyl chloride, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11, 

12,12,12-heneicosafluoro- ( 

10 

297175-71-4 Sulfonic acids, C8-20-alkane, γ-ω-perfluoro, compds. With triethylamine 6-18 

91770-74-0 Sulfonyl fluorides, C1-5-alkane, ω-(ethenyloxy), perfluoro 1-5 

Fluoro siloxanes /silicone/silane 

compounds 

78560-44-8 Silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)- 8 

78560-45-9 Trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane 6 

160965-19-5 Poly [2-perfluoroalkyl (C 4-8) ethylsiloxane] 4-8 

Fluoro thiols compounds 68140-18-1 Thiols, C4-10, γ-ω-perfluoro 2-8 

68140-19-2 Thiols, C4-20, γ-ω-perfluoro 2-18 

68140-21-6 Thiols, C10-20, γ-ω-perfluoro 8-18 
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Table S3. (Continued) 

Fluoro thioether compounds 53122-42-2 Carbamic acid, [4-methyl-3-[[(2-methyl-1-

aziridinyl)carbonyl]amino]phenyl]-, 2-[ [3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 

10,10,10- hexadecafluoro-9-(trifluoromethyl) decyl]thio]-1-

[[[3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,10-hexadecafluoro-9-

(trifluoromethyl)decyl] thio]methyl]ethyl ester 

9 

68187-24-6 1,4-Butanediol, 2,3-bis[(γ-ω-perfluoro-C6-20-alkyl)thio] derives 4-18 

Fluoro thioester compounds 28506-33-4 2-Propenethioic acid, 2-methyl-, S-[3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,10-

hexadecafluoro-9-(trifluoromethyl)decyl] ester 

9 

30769-88-1 2-Propenethioic acid, 2-methyl-, S-[3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,12,12, 

12-eicosafluoro-11-(trifluoromethyl)dodecyl] ester 

11 

30769-91-6 2-Propenethioic acid, 2-methyl-, S-[3,3,4,4,5,5,6,6,7,8,8,8-dodecafluoro-7-

(trifluoromethyl)octyl] ester 

7 

113089-67-1 Thiols, C4-20, γ-ω-perfluoro, reaction products with methylated 

formaldehyde-1,3,5-triazine-2,4,6-triamine polymer 

2-18 
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n: Length of the perfluorinated carbon chain

Table S3. (Continued) 

Fluoro urethane compounds 68990-40-9 Fatty acids, C18-unsatd., dimers, diisocyanates, polymers with 2,3-bis(γ-

ω-perfluoro-C4-18-alkyl)-1,4-butanediol, 1,6-diisocyanato-2,2,4(or 2,4,4)-

trimethylhexane and 2,2'-(methylimino)bis[ethanol] 

2-16 

95370-51-7 Carbamic acid, [2-(sulfothio)ethyl]-, C-(γ-ω-perfluoro-C6-9-alkyl) esters, 

monosodium salts 

4-7 

Partial fluoro & miscellaneous 

fluoro compounds 

307-70-0 1-Undecanol, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-eicosafluoro- 10 

47795-34-6 [2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,11,11,11-icosafluoro-10-(trifluoromethyl) 

undecyl] oxirane 

11 

54009-77-7 [2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,15,15,15-

octacosafluoro-14-(trifluoromethyl)pentadecyl]oxirane 

15 

54009-78-8 [2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,13,13,13-tetracosafluoro-12-

(trifluoromethyl)tridecyl]oxirane 

13 

54009-79-9 [2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,17,17,17-

dotriacontafluoro-16-(trifluoromethyl)heptadecyl]oxirane 

17 
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Table S4: Examples of biomagnification factor (BMF) values of PFCs in selected aquatic organisms (Ding and Peijnenburg 2013) 

Organism 

Substance/ BMF 

Reference 

PFOA PFOS PFOSA PFNA PFDA PFHxS PFUnA PFDoA 

Seatroutwhole/Pinfishwhole 7.2 4.6 24 1.5 3.7 nc 0.9 0.1 Houde et al. 2006 

Dolphinwhole/Striped mulletwhole 13 2.6 8.3 5 2.9 4 1.9 0.2 Houde et al. 2006 

Dolphinwhole/Spotfishwhole 6.4 0.8 4.4 4.6 2.8 6 3.9 0.6 Houde et al. 2006 

Dolphinwhole/Red drumwhole 2.7 1.2 3.4 1.4 2.4 14 3.2 0.4 Houde et al. 2006 

Glaucous gull/Polar cod — 38.7 — 11.6 — 7.20 — — Haukås et al. 2007 

Striped mulletwhole 

/Zooplanktonwhole 

— 23 2.5 — — nc — 89 Houde et al. 2006; 

Haukås et al. 2007 

Dolphin whole /Atlantic 

croakerwhole 

2.3 2.2 1.5 24 2.5 nc 2.1 1.8 Houde et al. 2006 

Common mergansers/fish — 8.9 — — — — — — Sinclair et al. 2006 
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Table S4. (Continued) 

Glaucous gull/Black guillemot — 27.0 — 9.34 — 8.49 — — Haukås et al. 2007 

Dolphinwhole/Sheepheadwhole — 16 — — — — — — Houde et al. 2006 

Black guillemot/Mixed diet — 5.66 — — — — — — Haukås et al. 2007 

Black guillemot/Ice amphipod  1.54 12 — — — — — Haukås et al. 2007 

Dolphinwhole/seatroutwhole 1.8 0.9 1.3 2.1 2.4 3.3 2.5 0.6 Houde et al. 2006 

Pigfishwhole/Zooplanktonwhole — 12 nc — — 9.1 — 2.5 Houde et al. 2006 

nc: not calculated
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Table S5: Toxicological results of reproductive effects in Humans Exposed to Perfluorinated substances (Stahl et al. 2011; ATSDR 2015) 

Significant effects Population group Origin End point Reference 
B

ir
th

 w
ei

g
h

t 
(b

.w
.)

 

Exposed women USA No correlation between extent of PFOS exposure and b.w Grice et al. 2007 

General population Japan No correlation between PFOS concentration in cord blood and b.w. Inoue et al. 2004 

General population Danish Correlation between the PFOA concentration in mother’s plasma 

and b.w; not detectable for PFOS 

Fei et al. 2007 

General population USA Weak inverse correlation between concentrations of PFOS and 

PFOA in cord blood and b.w. 

Apelberg et al. 

2007 

General population Canada No correlation of PFC serum concentrations and b.w. Monroy et al. 2008 

General population Japan, Negative correlation of in utero exposure to PFOS b.w.; not 

detectable for PFOA 

Washino et al. 2009 

General population USA No indication of a connection between low b.w. and PFOA-

contaminated drinking water 

Nolan et al. 2009 

General population USA Correlation between PFOS contamination and the risk of reduced 

b.w. 

Stein et al. 2009 

General population Canada No correlation between PFOA, PFHxS, PFOS serum concentrations 

and b.w. 

Hamm et al. 2009 
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Table S5. (Continued) 

G
es

ta
ti

o
n

 t
im

e 
General population Danish No correlation of PFOA and PFOS concentrations in mother’s 

plasma with time of gestation 

Fei et al. 2007 

General population USA No indication of premature birth as a result of PFOA 

contamination via drinking water 

Nolan et al. 2009 

General population USA No connection of PFOS or PFOA serum concentration with 

miscarriage or premature birth 

Stein et al. 2009 

General population Canada No correlation between PFOA, PFHxS, PFOS serum concentrations 

and gestation time 

Hamm et al. 2009 

D
ev

el
o

p
m

en
t 

General population Danish No difference in the development of new-borns from mothers 

with high PFOA and PFOS concentrations and children of mothers 

with low PFOA and PFOS concentrations; sitting without support 

possibly delayed in children of mothers with high PFOS 

concentrations 

Fei et al. 2008 

F
er

ti
li

ty
 General population Danish Fertility disorders related to elevated PFOA and PFOS plasma 

concentrations 

Fei et al. 2009 
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Table S5. (Continued) 
O

th
er

 a
sp

ec
ts

 

 
General population USA Weak inverse correlation between concentrations of PFOS and 

PFOA in cord blood and the ponderable index or head 

circumference 

Apelberg et al. 2007 

General population Japan  No correlation between PFOS concentration in cord blood and 

concentration of thyroid hormones 

Inoue et al. 2004 

General population USA Weak correlation of PFOA concentrations and occurrence of 

miscarriages 

Stein et al. 2009 

General population USA Weak association of PFOA and PFOS serum concentrations with 

the occurrence of preeclampsia 

Stein et al. 2009 

General population  Increased risk of ADHD for children with elevated PFOS, PFOA, 

PFHxA, and PFNA serum concentrations 

Hoffman et al. 2010 

Women USA PFOS negatively associated with estradiol concentration in 

perimenopausal and menopausal groups; no significant association 

for PFOA 

Knox et al. 2011 

Odds of endometriosis diagnosis positively associated with serum 

PFOA  and PFNA, but only with unadjusted model for PFOS 

No significant association with PFHxS 

Louis et al. 2012 
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Table S5. (Continued) 

O
th

er
 a

sp
ec

ts
 

Men 

Denmark 

 

Negative association between PFOS and testosterone, free 

testosterone, free androgen index, testosterone/luteinizing 

hormone ratio, free androgen/luteinizing hormone ratio 

Negative association between PFHpS and the % of progressively 

motile sperm 

No other significant associations between PFCs and reproductive 

hormones or sperm parameters observed 

Joensen et al. 2013 

USA Serum PFOA correlated with free testosterone and luteinizing 

hormone levels 

No significant associations between sperm parameters and PFOS or 

PFOA levels or between PFOS and reproductive hormone levels 

Raymer et al. 2012 
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Table S6: Summary comparison of different techniques used in certain studies for PFCs removal  

Study Used technique Substance Removal ratio (%) Further brief discussions 

Bao et al. 2014 Coagulation  PFOA ~47.6% Ratio were ▲ under acidic conditions as by Arvaniti 

et al. (2015) recently in ZVI, but ▼ (i.e. ~12% and 32%) 

when FeCl3.6H2O was added as the coagulant 
PFOS 94.7% 

Xiao et al. 2013 Adsorption and 

Coagulation  

PFOA ≤ 20% At Alum dosage of 10—60 mg/L and final pH of 6.5—

8.0, removal was ▼. Removal was enhanced by 

increasing the alum dosage (> 60 mg/L), and thus a 

10% ↑ was achieved 

PFOS 

Du et al. 2016 Adsorption and 

degradation 

PFOS 93.3% This study is regarded as the highest efficient 

adsorption and degradation of PFOS and F53B in 

wastewater treatment 
F53B 97.6% 

Huang et al.2016 Photoinduced hydrode 

fluorination 

PFOA 58.5% Various SiC/graphene dosages were determined. 

Decomposition efficiencies of PFOA with 0.1 g L−1, 

0.25 g L−1, 0.5 g L−1, 0.75 g L−1, and 1.0 g L−1 

SiC/graphene were 40.5%, 45.3%, 58.5%, 51.4%, and 

44.4%, respectively. 
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Table S6. (Continued) 

 The technique was regarded as another insight in the 

decomposition of PFCs. 

Lin et al. 2012 Electrochemical 

degradation 

PFOA 98.8% Different conditions played significant roles.  For 

instance, A low PFOA degradation efficiency was 

observed at high pH value, while PFOA significantly 

↑ with ↑ current density. Plate distance also had an 

effect on the substance. Hence, the degradation ratios 

of PFOA were 95.9%, 90.3%, 78.0% and 68.9% for the 

plate distances of 0.5, 1.0, 1.5 and 2.0 cm, respectively. 

Niu et al. 2012 Electrodeposition 

technology 

PFBA 31.8%  The results from this study demonstrated that PFCs 

chain length appeared to have a significant effect on 

the observed degradation, on the basis that the 

treatment capacity of some these substances (e.g. 6.5 

mg h−1 for PFHpA) was much higher than others (e.g. 

2.1 mg h−1 for  PFBA) 

PFPeA 41.4% 

PFHxA 78.2% 

PFHpA 97.9% 

PFOA 96.7% 
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Table S6. (Continued) 

Niu et al. 2013 Electrochemical 

mineralization 

mechanism 

PFOA >98% The results obtained in this study constitute a 

breakthrough information which the authors believe 

can be used as an instrument for a comprehensive 

understanding of the mineralization of PFOA in the 

electrolysis system. TOC removal ratio was slightly 

lower (i.e. 94.3%) than the PFOA degradation, thus 

implying that only a portion of the intermediates has 

accumulated in bulk solution (Niu et al. 2013). 

Additionally, short-chain PFC was not be detected. 

Dai et al. 2013 Adsorption PFOS >75% Multi-walled carbon nanotube (MWCNT) and 

electrospun nanofibrous membranes (ENFMs) were 

prepared by means of electrospinning. The sorption 

isotherms showed that the maximum adsorption 

capacities of PFOS onto the pure ENFMs was ▼ (i.e. 

0.92 ± 0.06 μmol g-1), but ▲ (16.29 ± 0.26 μmol g-1) with 

MWCNT-ENFMs.  
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Table S6. (Continued) 

    The results thus suggest that the combination of 

MWCNT-ENFMs are promising sorbents for PFOS 

removal, even though it was clear that pH led to a 

significant effect on PFOS sorption, which efficiencies 

↓ with the ↑ solution pH.  

Lin et al. 2013 Electrochemical 

mineralization 

PFNA 98.7% The results were achieved in aqueous solutions (0.25 

mmol L-1) over anodes, including SnO2, PbO2, and 

BDD. However, it has been indicated that SnO2 

electrode yielded ▼ PFCA removals, and secondary 

pollution due to Sb ions was noticed, suggesting a risk 

assessment of used anodes during the treatment 

process is paramount. 

  PFDA 96.0% 

Lin et al. 2015 Electrocoagulation (EC) PFOA  98.7% It is reported in this study that coagulation processes 

led to aluminium hydroxide flocs or polyaluminum 

chloride, which ultimately was ineffective in 

removing the substances, i.e. PFOA/PFOS.  
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Table S6. (Continued) 

 Hence, the removal was attributed to suspended 

solids, in consistency with what was previously 

suggested by Deng et al. (2011). 

Yang et al. 2016 EC PFOA 99% In this study various parameters, such as current 

density, initial aqueous pH, etc. were probed to 

improve the EC. Fe anode demonstrated the highest 

PFOA removal efficiency. This removal achievement 

is relatively closer to that previously reported by Lin 

et al. (2015). 

▲: high/higher; ▼: low/lower; ↑: increases/increased; ↓: decreases/decreased
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Supplementary Materials: Are aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and 

Perfluoroalkyl Substances (PFASs) into plants? 

Table S1: Primary uptake mechanisms in nutrient/element transport to roots (Walters 2011; Pagani et al. 2013) 

Nutrient/element Root interception Mass flow Diffusion Ionic forms  Mobile (+) / Immobile (-) 

Nitrogen (N)  ■ 
 NO3-(nitrate), NH4+(ammonium) + 

Phosphorus (P) ■ 
 ■ 

K+ + 

Potassium (K)   ■ 
H2PO4-, HPO42-(phosphate) + 

Calcium (Ca)  ■ 
n/s Ca+2 - 

Chlorine (Cl) n/s n/s n/s Cl-(chloride) + 

Magnesium (Mg)  ■ 
 Mg+2 + 

Sulfur (S)  ■ 
 SO42-(sulfate) - 

Manganese (Mn)   ■ 
Mn+2 - 

Zinc (Zn)   ■ 
Zn+2 - 

Molybdenum (Mo) n/s n/s n/s MoO42-(molybdate) + 

Nickel (Ni) n/s n/s n/s Ni+2 - 
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Table S1 continued 

Iron (Fe) ■  ■ Fe+2 (ferrous), Fe+3 (ferric) - 

Copper (Cu) ■ 
  Cu+2 - 

Boron (B)  ■ 
 H3BO3 (boric acid), H2BO3-(borate) - 

n/s: not specified 
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Comments 

Persistent organic pollutants: soil to root movement 

 The movement and uptake of POPs and heavy metals throughout the soil profile to the 

root system consist of several stages: i) the balance between the compound concentration in the 

plant and the external environment; ii) the pollutant sorption on to lipophilic root solids (Briggs 

et al. 1983; Collins et al. 2013). Briggs et al. (1983) have also suggested that lipids present in plants’ 

membranes and cell walls are a typical example of lipophilic solids in plants.  In addition, studies 

by Duarte-Davidson and Jones (1996) and Wild et al. (1992) found higher levels of organic 

chemicals, including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls 

(PCBs), in plant roots, with lipophilic organic compounds demonstrating greater tendency to 

partition into the root’s lipids than hydrophilic pollutants. Briggs et al. (1983) further reported a 

linear correlation between the octanol-water partition coefficient (Kow) of non-ionised compounds 

and the observed root concentration factor (RCF). On the other hand, Bromilow and Chamberlain 

(1995) indicated that the differences in POP uptake potential can further be explained by the 

varying types and quantity of lipids present in the root cells. However, there are limited research 

studies available to demonstrate this, suggesting that further studies are required.  

Organic pollutants movement from roots to plant compartments 

 The mechanism involved in organic pollutant movement resulted in the concept of a 

transpiration stream concentration factor (TSCF), which is the ratio of chemical concentration in 

the transpiration stream to the concentration found in an external solution (Shone and Wood, 

1977; Collins et al. 2013). Hence, it is believed that, after the transport into the stem, water and 

solutes diffuse laterally into adjacent tissues and thus become concentrated in plant shoots, tubers 

and fruits (McFarlane 1995); although, Tangahu et al. (2011) suggested that data reporting on this 

aspect is very limited.  

 Furthermore, Collins et al. (2013) suggested that, this is a two-phase process which begins 

with the balance partitioning between water present in the plant vascular system and the aqueous 

solution in cell tissues, followed by sorption into the cell walls. Thus, a proportional linear 

partitioning for non-ionised organic compounds to plant stems was previously demonstrated by 

Briggs et al. (1983) and Barak et al. (1983). Hence, Collins et al. (2013) concluded that, the lipid 

composition in plant tissues is likely to be an important contributing factor in pollutant uptake 

and accumulation. On the other hand, Tangahu et al. (2011) have indicated that, 
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evapotranspiration, the process that influences water to evaporate from plant leaves, serves as a 

pump to absorb nutrients, pollutants and other soil substances into plant roots; and is thus 

responsible for moving contaminants into the plant shoots as well. 

Nutrients and POPs uptake mechanisms by plants  

 Tangahu et al. (2011) have argued that crops have evolved highly specific mechanisms to 

translocate and store nutrients. Hence, these same mechanisms are suggested to also be involved 

in the uptake, translocation and storage of POPs in plants, depending on individual POP chemical 

properties, in comparison to those of essential nutrients that crops require to grow. Thus, 

numerous reports have indicated that nutrients as well as POPs movement in different types of 

soil can be known and correlated with the structure of the soil, nutrient absorption and mobility, 

uptake and mass flow in a form of diffusion, mechanisms which are largely responsible for the 

root uptake of individual nutrients (Walters 2011; Pagani et al. 2013; Schwartz 2015). For example, 

Su and Zhu (2007) reported the partition of PAHs in rice is dominated by sorption to the crop cell 

walls. 

 Overall, plant root systems play a pivotal role in the whole process of plant uptake of 

nutrients and POPs. Thus, roots absorb nutrients and toxicants depending on root affinity and 

the bioavailability of these pollutants; as they are the primary transportation systems for 

constituents in soil and anchor the plant thus furnish physical support to the stem, while serving 

as storage organs for the plant. They can also act as nutrient transformers, as most plants cannot 

form or transport some nutrients in their elementary form (Pagani et al. 2013). Thus, before a 

nutrient and/or POP ion can be absorbed by the plant, it must be in an appropriate form (Walters 

2011; Pagani et al. 2013; Haun 2015). As such, three mechanisms have been mentioned as being 

facilitators of plants nutrients uptake from the soil; namely (i) root interception, (ii) diffusion, and 

(iii) mass flow (Walters 2011; Pagani et al. 2013; Haun 2015; Schwartz 2015). Table S1 summarizes 

the primary uptake mechanisms in nutrient transport to root systems. These mechanisms are 

herein suggested to be similar to those involved in POP uptake (Tangahu et al. 2011). 

Structure of soil 

 Soil structure determines how nutrients and contaminants (e.g. POPs) get to the roots of 

plants. According to Schwartz (2015), soil compaction can decrease the capability of roots to move 

toward nutrient or pollutant sources, reducing the ability of water or pollutants to move through 

the soil to allow nutrients to reach the root system. Soil compaction has been defined as the 

physical consolidation of soil particles by an applied force that degrades structure, reducing its 
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porosity, and thus, limiting infiltration, as well as increasing resistance to root penetration, which 

ultimately results in the reduction of crop yield (Wolkowski and Lowery 2008; DeJong-Hughes 

2009).  

Nutrients and POPs absorption 

 The general concentration of nutrients and POPs within the soil has been argued to 

significantly influence their movement to the root system (Schwartz 2015). Unavoidably, the 

concentration of nutrients throughout the soil profile was indicated to be directly proportional to 

the opportunity of chemical constituent movement either as nutrient or POPS to the plant roots 

(Pagani et al. 2013; Schwartz 2015; Barker and Pilbeam 2015). Thus, Schwartz (2015) and Barker 

& Pilbeam (2015) have suggested that by monitoring the levels of the constituent and determining 

their prevalence throughout the season is essential for the estimation of bioaccumulation 

potential and for uptake. For instance, macronutrients such as phosphorus can be present in the 

soil as an orthophosphate ion (e.g. dihydrogen phosphate-H2PO4- or H2PO42-) but at very low 

concentrations; resulting in the intensity of its adsorption by the soil particles (Walters 2011). On 

the other hand, nitrogen sources are commonly found in much higher concentration levels in the 

soil (usually as nitrate-NO3-) and are very poorly adsorbed by soil particles, making this 

macronutrient available for uptake by plant roots. This will suggest that fertilizers some of which 

contain trace quantities of POPs, and are rich in phosphorus are suitable and must be placed very 

close to the seed to ensure effective availability; whereas, nitrogen can be applied over the surface 

of the soil where it can easily be washed down to plant roots (Walters 2011). A similar 

phenomenon can also be attributed to POPs, as different forms can occur in the soil resulting in 

differentiated uptakes. 

Nutrients and POP mobility 

 Available research has indicated that chemical elements (i.e. nutrients and toxic elements) 

move relatively easily from the root to different plant compartments, in particular when plant 

growth is unrestricted (Pagani et al. 2013). Pagani et al. (2013) has reported that some absorbed 

soil constituents can also move from older tissue to newer tissue if there is a substantial 

differentiation in concentration of nutrients within the plants. Schwartz (2015) has also specified 

that the mobility varies or differs with different chemical constituents, with some being very 

mobile, thus suggesting, they can quickly move through the profile of the soil and reach plant 
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roots easily; while others are immobile, resulting in reduced diffusivity from older to newer plant 

tissue (Pagani et al. 2013). 

Root interception or contact exchange 

 Nutrients as well as pollutants uptake and exchange by roots is directly proportional to 

the activity of the root, its ability to absorb both, and their concentration at the surface of the root 

(Walters 2011; Pagani et al. 2013; Haun 2015; Schwartz 2015). Thus, during root interception 

(contact exchange) root hairs and small roots growing throughout the soil profile come into direct 

contact with the soil, including organic matter particles containing either essential plant nutrients 

or pollutants (Walters 2011). 

 Furthermore, it has been argued that as the plant root system develops throughout the 

soil, it comes into direct contact with some available nutrients and POPs (Walters 2011; Pagani et 

al. 2013; Schwartz 2015). Accordingly, the role of the root interception process in plant nutrient 

and POP uptake mechanisms has been regarded as insignificant in Walters (2011) and Pagani et 

al. (2013), suggesting there could be other mechanisms that influence the movement of nutrients 

and POPs into the plant, (Pagani et al. 2013), with the profile of the soil structure influencing such 

mechanism (Schwartz 2015). 

Mass flow translocation of nutrients and POPs 

 During the process of mass flow, it is understood that chemical constituents move or 

migrate to the roots via water (Pagani et al. 2013; Schwartz 2015), which facilitates the uptake of 

the nutrient (in ionic form) by the plant (Walters 2011; Pagani et al. 2013; Schwartz 2015). Mass 

flow accounts for a substantial quantity of nutrient and contaminant movement towards the plant 

root and will largely contribute to the mobility of chemical compounds (Pagani et al. 2013). 

Additionally, mass flow has been found to account for a large transfer of mobile constituents in 

soil (e.g. 80% of nitrogen-N) into the root system of plants when compared to immobile 

constituents (e.g. 5% of phosphorous-P). Thus, diffusion accounts for the remainder of the 

migration, thus constituting a mass flow limiting step (Pagani et al. 2013). 

Translocation of nutrients and POPs by diffusion  

 Diffusion has been defined as the process where chemical constituents translocate or 

migrate from an area of high concentration to an area of low concentration (Walters 2011; Pagani 

et al. 2013). As the plant root system develops throughout the soil, coming into contact with 



 

 

277 

 

chemical elements/compounds, results in the direct contact around the root system, –with 

diffusion being influenced by the concentration of the constituents around the root. It has been 

reported that relatively immobile constituents are highly dependent on diffusion to facilitate their 

movement or migration into plant root systems (Pagani et al. 2013), which further suggested that 

if they are not exceedingly mobile, facilitation of their translocation will be dependent solely on 

the high concentration of nutrients and/or toxicants throughout the soil (Pagani et al. 2013; 

Schwartz 2015).  
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Supplementary Materials: The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on 

phytomedicinal treatment strategies 

                   

                       Stages 
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Normoglycemia 

 

Hyperglycemia 

Normal Glucose Regulation Impaired Glucose Tolerance 

or 

Impaired Fasting Glucose 

(Prediabetes) 

 

Diabetes Mellitus 

Not insulin 

requiring 

Insulin requiring 

for control 

Insulin requiring 

for survival 

 

Type 1 

 

Type 2 

 

Other Specific Types 

 

   

 

Gestational Diabetes 

 

   

Figure S1: Disorders of glycaemia: etiological types and clinical stages (Alberti and Zimmet, 1998; WHO, 1999; ADA, 2014) 
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Table S1: Etiological classification of DM (WHO, 1999; ADA, 2014) 

Types Descriptions 

I. Type 1 diabetes (β -cell destruction, usually leading to absolute insulin deficiency) 

A. Immune mediated 

B. Idiopathic 

II. Type 2 diabetes (may range from predominantly insulin resistance with relative 

insulin deficiency to a predominantly secretory defect with insulin 

resistance) 

III. Other specific types A. Genetic defects of β -cell function 

 1. MODY 3 (Chromosome 12, HNF-1α) 

 2. MODY 1 (Chromosome 20, HNF-4α) 

 3. MODY 2 (Chromosome 7, glucokinase) 

 4. Other very rare forms of MODY (e.g., MODY 4: 

Chromosome 13, insulin promoter factor-1; MODY 

6: Chromosome 2, NeuroD1; MODY 7: 

Chromosome 9, carboxyl ester lipase) 

 5. Transient neonatal diabetes (most commonly 

ZAC/HYAMI imprinting defect on 6q24) 

 6. Permanent neonatal diabetes (most commonly 

KCNJ11 gene encoding Kir6.2 subunit of β-cell KATP 

channel) 

 7. Mitochondrial DNA 

 8. Others  

 B. Genetic defects in insulin action 

1. Type A insulin resistance 

2. Leprechaunism 

3. Rabson-Mendenhall syndrome 

4. Lipoatrophic diabetes 

5. Others 
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Table S1 (Continued) 

 C. Diseases of the exocrine pancreas 

1. Pancreatitis 

2. Trauma/pancreatectomy 

3. Neoplasia 

4. Cystic fibrosis 

5. Hemochromatosis 

6. Fibrocalculous pancreatopathy 

7. Others 

 D. Endocrinopathies 

1. Acromegaly 

2. Cushing ’ s syndrome 

3. Glucagonoma 

4. Pheochromocytoma 

5. Hyperthyroidism 

6. Somatostatinoma 

7. Aldosteronoma 

8. Others 

 E. Drug or chemical induced 

 1. Vacor 

2. Pentamidine 

3. Nicotinic acid 

4. Glucocorticoids 

5. Thyroid hormone 

6. Diazoxide 

7. β -Adrenergic agonists 

8. Thiazides 

9. Dilantin 

10. γ-Interferon 

11. Others 
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Table S1 (Continued) 

 F. Infections 

1. Congenital rubella 

2. Cytomegalovirus 

3. Others 

 G. Infections 

1. Congenital rubella 

2. Cytomegalovirus 

3. Others 

 H. Infections 

1. Congenital rubella 

2. Cytomegalovirus 

3. Others 

 I. Uncommon forms of immune-mediated diabetes 

1. Stiff-man syndrome 

2. Anti-insulin receptor antibodies 

3. Others 

 J. Other genetic syndromes sometimes associated with 

diabetes 

1. Down syndrome 

2. Klinefelter syndrome 

3. Turner syndrome 

4. Wolfram syndrome 

5. Friedreich ataxia 

6. Huntington chorea 

7. Laurence-Moon-Biedl syndrome 

8. Myotonic dystrophy 

9. Porphyria 

10. Prader-Willi syndrome 

11. Others 
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Table S1 (Continued) 

IV. Gestational diabetes 

mellitus 

Patients with any form of diabetes may require insulin treatment 

at some stage of their disease. Such use of insulin does not, of 

itself, classify the patient. 
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Supplementary Materials: Propensity of Tagetes erecta L., a Medicinal Plant Commonly Used in Diabetes Management, to 

Accumulate Perfluoroalkyl Substances 

Table S1: Selected medicinal plants under possible threats by PFASs in South Africa [1]. 

Plant Species (Family) Common or Vernacular Names Compartments Used  References 

Tagetes erecta (Asteraceae) African marigold (Eng.) Leaves and roots This study, [2–7] 

Sutherlandia frutescens 

(Fabaceae) 
Cancer bush (Eng.) 

Leaves, and often 

 whole plant 
[8–10] 

Moringa oleifera (Moringaceae) Makgonatˇsohle (Sipedi), drumstick tree (Eng.) Seeds and leaves [11] 

Artemisia afra (Asteraceae) African Wormwood (Eng.) Leaves and roots [8,12–14] 

Cannabis sativa L. (Cannabaceae) Dagga (Afr.) Leaves [15] 

Aloe ferox Mill. (Asphodelaceae) Cape Aloe or bitter Aloe (Eng.) Leaves  [10,16–18] 

Pelargonium sidoides 

(Geraniaceae) 
Umckaloabo (Zulu) Tubers and roots [10] 

Hypoxis hemerocallidea 

(Hypoxidaceae) 

Star flower, yellow star, African potato (Eng.); Inkomfe 

(Zulu);  

Sterblom and Gifbol (Afr.) 

Roots [10,18–20]  

Sclerocarya birrea 

(Anacardiaceae) 
Hochst. subsp. caffra, marula, tree of life Stem [10,21] 

Herichrysum nudifolium L. 

(Asteraceae) 

Hottentot’s tea (Eng.); Hottentotstee (Afr.); icholocholo 

(Xhosa, Zulu) 
Leaves and roots [12,14] 

Herichrysum petiolare H & B.L 

(Asteraceae) 
Everlasting (Eng.); Kooigoed (Afr.); Imphepho (Xhosa) Whole plant [12,14] 
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Leonotis leonurus L. (Lamiaceae) 
Wild dagga or Lion’s ear (Eng.); Wildedagga (Afr.); 

Imvovo (Xhosa) 
Leaves, flowers  [13,14] 

Momordica balsamina L. 

(Cucurbitaceae) 

Balsam pear (Eng.); Laloentjie (Afr.); Nkaka (Thonga) 

Intshungu (Zulu) 
Stem, flowers  [14,15] 

Momordica foetida Schumach 

(Cucurbitaceae) 
Wild cucumber (Eng.) 

Leaves, and often 

whole plant  
[14,15,22,23] 

Psidium guajava L. (Myrtaceae) Common guava, yellow guava, lemon guava (Eng.) 
Leaves, roots, whole 

plant  
[14,15,24] 

Sclerocarya birrea Hochst 

(Anacardiaceae) 
Marula (Eng.); Mufula (Venda) Stem, bark, roots  [14,15] 

Vinca major L. (Apocynaceae) Bigleaf periwinkle (Eng.) Leaves, roots, stem  [14,15] 

Vernonia oligocephala Sch. Bip. 

(Asteraceae) 

Bicoloured-leaved Vernonia (Eng.); Groenamarabossie 

(Afr.);  

Ihlambihloshane (Zulu) 

Leaves, twigs, roots  [12,14] 

Catha edulis Forrsk. Ex Endl. 

(Celastraceae) 
Arabian tea, Abyssinian tea, Bushman’s tea (Eng.) Leaves, stems, roots  [14,15] 

Brachylaena discolor DC. 

(Asteraceae) 

Coast silver oak (Eng.) ; Kusvaalbos (Afr.); Phahla (Zulu 

and Xhosa) 
Leaves, roots, stem  [12,14,15] 

Eriocephalus punctulatus 

(Asteraceae) 
Roosmaryn or Kapokbos (Afr.); wild rosemary (Eng.) Leaves [18,25–27] 

Afr. = Afrikaans; Eng. = English. 
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Figure S1: MRM chromatograms of PFBS, PFOS and PFOA. 
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