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ABSTRACT 

 

Urbanisation is associated with the loss and fragmentation of natural land, the disruption of 

ecosystem functioning and services, and the loss of biodiversity. Small remnants of natural 

land within cities not only serve as recreational green spaces that contribute to human 

wellbeing, but also as refugia for a variety of indigenous flora and fauna. While large 

mammal species, in particular those that pose a threat to humans and are rarely tolerated in 

urban reserves, small and medium mammals may persist and even thrive in human modified 

landscapes. Understanding which species survive best in urban protected areas and how 

reserve attributes such as size, shape and connectedness influence mammal assemblages 

and species richness is important for the conservation of urban ecosystems globally. 

 

Cape Town is situated in the Cape Floristic Region (CFR) - a renowned biodiversity hotspot, 

with high rates of endemism. Cape Town is however one of the fastest growing cities in 

South Africa and both agricultural and housing demands are increasing pressure on 

remaining patches of natural land. Currently most of this land is conserved within 17 nature 

reserves that together comprise roughly 9% of the total surface area of the City of Cape 

Town (CCT) municipal area. Existing mammal species lists suggest that 22 mammal species 

still survive in these reserves but no formal, standardised surveys of the existing reserves 

have been conducted with a method that allows for comparisons between reserves and 

within reserves over time. The primary aim of this study was therefore to develop a 

standardised monitoring protocol for medium and large mammal species within the CCT 

reserves (range 30 - 8 400 ha). The secondary goal was to understand how reserve size, 

area to perimeter ratio, connectivity, vegetation heterogeneity and presence of permanent 

freshwater aquatic habitat might influence mammal community composition. 

 

A standardised camera trap protocol was developed for the 12 CCT reserves larger than 30 

ha and conducted from June 2017 to Feb 2019 with cameras positioned within every square 

kilometre of a reserve, with a minimum of five cameras per reserve irrespective of reserve 

size. Additional cameras were placed in unique habitat types not included or 

underrepresented in the standardised grid and a minimum of 1000 camera days of data were 

collected for each reserve. A total of 13 360 independent trigger events by medium and large 

mammals revealed 19 native species (11 carnivores, 7 herbivores, 1 omnivore), which was 

86% of the 22 species listed in the databases (based on records of 2012 to 2017), and 49% 

of the 39 species believed to have been present historically. Species richness varied from 1 

– 12 species (mean ± SD = 7±3.6) and Cape porcupine (Hystrix africaeaustralis), Cape 

grysbok (Raphicerus melanotis) and small grey mongoose (Galerella pulverulenta) were 

present in most reserves. The minimum survey effort required to effectively sample the 
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reserves varied from 210 to more than 1840 camera days and was affected by both reserve 

size and levels of connectivity. The use of camera traps with a placement protocol as used in 

this study together with the minimum camera day effort estimates presented for each reserve 

should allow for regular monitoring and provide comparable results. 

 

Species richness was best explained by reserve area-perimeter ratio with richness lower in 

reserves with large perimeters relative to their total area. Large, better connected reserves 

also had higher species richness and included wide ranging large carnivores such as leopard 

(Panthera pardus), while species with specialist habitat requirements such as otter (Aonyx 

capensis) were notably absent from reserves without the appropriate habitats. This study 

suggests that reductions in the size of existing CCT reserves and/or an increase in hard 

edges that reduce the core area may lower species richness and potentially drive more 

medium and large mammals to local extinctions. Extending existing reserves through the 

addition of core natural habitat and improved connectivity to tracts of natural land are both 

management interventions likely to maintain and improve the ability of urban reserves to 

sustain diverse, ecologically functional mammal assemblages.  
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CHAPTER ONE: 

GENERAL INTRODUCTION 

 

1.1 Urbanisation and ecosystem functioning 

 

Urban development is increasing as the human population and rural-urban migration 

increase globally (Van der Ree & McCarthy 2005, McDonald et al. 2008). Urban areas are 

expected to account for more than 1 000 000 km2 globally by 2025 (McDonald et al. 2008) 

and more than 60% of the projected 8.1 billion humans are expected to be living within urban 

settlements by the year 2030 (McDonald et al. 2008, Pickett et al. 2011). Shochat et al. 

(2006) defines urban areas as those consisting of built structures at a density of more than 

10 buildings per hectare, and indices of urbanisation (or the extent of urban development) 

are often characterised by human population density, building density, hard surfaces, road 

density or time since development (Pickett et al. 2011). 

 

Urbanisation brings with it the transformation of natural land (Pickett et al. 2011) which may 

otherwise provide a multitude of ecosystem services for human populations (Anderson & 

O’Farrell 2012). More particularly, urbanisation results in highly fragmented landscapes, 

leaving isolated remnants of natural land in a matrix of human land uses (McKinney 2002, De 

Stefano & De Graaf 2003, Rebelo et al. 2011, Pickett et al. 2011, Ramesh et al. 2016). 

These natural land remnants not only serve as urban green spaces and contribute to human 

wellbeing (Anderson & O’Farrell 2012, O’Farrell et al. 2012, Cheesbrough et al. 2019), but 

may also serve as refugia for remaining wildlife (De Stefano & De Graaf 2003, Hobbs & 

Mooney 2008, Šálek et al. 2015). The biodiversity remaining in the urban matrix requires 

active and effective conservation efforts for some semblance of ecosystem function and 

services to remain and be sustainable, especially as an increase in urban development also 

has indirect impacts such as increases in pollution, natural resource use, human-wildlife 

contact and disease exposure (Ceballos & Ehrlich 2006, McDonald et al. 2008, Ordeñana et 

al. 2010, Visconti et al. 2011). 

 

Because of the rate of urban development, it is important to understand the impact 

urbanisation has on remaining local biodiversity and the challenges it poses for conservation 

efforts (McDonald et al. 2008, Pickett et al. 2011, Anderson & O’Farrell 2012). It is of 

particular importance as human settlements tend to exist in areas with high biodiversity and 

endemism (Garden et al. 2006, McDonald et al. 2008). Research on the effects of 

urbanisation on species richness and ecosystem functioning and how to conserve these 

attributes is not relatively comprehensive (Van der Ree 2004, Garden et al. 2006, Anderson 

& O’Farrell 2012, Torres-Romero & Olalla-Tárraga 2015). The majority of existing urban 
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ecology studies comprise of either species-specific investigations or focus on a particular 

management questions. The results tend to be descriptive rather than explorative of 

ecological or urban processes (Van der Ree 2004, Shochat et al. 2006, Pickett et al. 2011, 

Saito & Koike 2013). Despite these shortcomings, clear trends are already evident. 

 

Pickett et al. (2011) found evidence for emerging ecological “urban syndromes” in which the 

effects of urbanisation on soil, water and wildlife dynamics are producing homogenised 

ecosystems. Disturbance, pollution and habitat transformation affect the soil, vegetation and 

water condition in fragments and alter ecological processes that may be supported within 

them. For indigenous fauna specifically, habitat fragmentation, disturbance and isolation 

because of urbanisation have been shown to have significant direct impacts on species 

richness and persistence (Ceballos et al. 2005, Van der Ree & McCarthy 2005, Ceballos & 

Ehrlich 2006, Garden et al. 2006, Visconti et al. 2011, Pickett et al. 2011, Pekin & Pijanowski 

2012). Most faunal taxa show a negative relationship with increased urban densities (Garden 

et al. 2006, Pickett et al. 2011), with local extinction most prevalent in highly urbanised areas 

(Van der Ree & McCarthy 2005, Torres-Romero & Olalla-Tárraga 2015).  

 

The fauna which seem to be most affected by urbanisation are most often endemic, habitat 

specialists and rare species (McDonald et al. 2008, Clavel et al. 2011, Pickett et al. 2011), or 

species reliant on successful dispersal (Pickett et al. 2011, Correa Ayram et al. 2016). 

Conversely species that are adaptable, generalists, have high reproductive rates, or are not 

reliant on large home ranges or natural habitat for movement, tend to thrive (McKinney 2002, 

De Stefano & De Graaf 2003, Garden et al. 2006, Baker & Harris 2007, Ordeñana et al. 

2010, Pickett et al. 2011, Lowry et al. 2013, Šálek et al. 2015). For this reason, exotic, 

domestic and invasive species often become prevalent in urban land use zones (Pickett et al. 

2011, Saito & Koike 2013). Either way, species richness generally tends to be reduced as 

homogenisation of community composition occurs (Clavel et al. 2011, Pickett et al. 2011, 

Torres-Romero & Olalla-Tárraga 2015). 

 

Urbanisation also tends to affect trophic level dynamics within the urban environment (Pickett 

et al. 2011, Saito & Koike 2013). Human activity often enhances plant productivity and either 

deliberately (e.g. bird feeders) or indirectly (e.g. waste) supplements food sources (Pickett et 

al. 2011, Saito & Koike 2013). This may increase the abundance of certain species of 

arthropods, birds and small mammals, while at the same time other activities including 

persecution, pollution and poisons may firstly eliminate naturally occurring apex predators 

and subsequently replace them with human induced mortality (De Stefano & De Graaf 2003, 

Picket et al. 2011). Even detritivore composition can be different in urban environments, as 

leaf litter and detritus are often actively managed in gardens and public open spaces (Pickett 
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et al. 2011). Fischer et al. (2012) describes a commonly found human-altered trophic 

structure resulting in what has been termed a “predation paradox”, where predator numbers 

increase with urbanisation but predation rates themselves decline. It is suggested that this is 

due to availability of anthropogenic food sources, which leads to less pressure from apex 

predators on prey species (Shochat et al. 2006, Faeth et al. 2005, Fischer et al. 2012, Saito 

& Koike 2013).  

 

 

1.2 Urban mammal ecology 

 

Traditional conservation efforts for mammal species have focused largely on establishing 

protected areas in which species are ostensibly protected from anthropogenic influences 

(McDonald et al. 2008). However, in urban areas, natural environments tend to be reduced to 

small, fragmented and often isolated pockets which, owing to edge effects, cannot remain 

unaffected by anthropogenic activity. Research shows how mammal species are becoming 

increasingly exposed to anthropogenic impacts due to urbanisation, often with detrimental 

consequences (De Stefano & De Graaf 2003, Ceballos et al. 2005, Van der Ree & McCarthy 

2005, Pekin & Pijanowski 2012, Ceballos & Ehrlich 2006, Visconti et al. 2011).  

 

Mammal species richness in urban fragments is known to be influenced by a number of 

physical characteristics, namely fragment size (Diamond 1975, De Stefano & De Graaf 2003, 

Kerley et al. 2003, Ceballos et al. 2005, Visconti et al. 2011, Matthies et al. 2017, Gonçalves 

et al. 2018), fragment shape (Diamond 1975), habitat heterogeneity (Ramesh et al. 2016, 

Matthies et al. 2017), connectivity to additional suitable habitat (Diamond 1975, Stevens et 

al. 2006, Correa Ayram et al. 2016), and surrounding land use and/or proximity to human 

activity (De Stefano & De Graaf 2003, Ceballos et al. 2005, McDonald et al. 2008, Visconti et 

al. 2011, Pekin & Pijanowski 2012, Mann et al. 2015, Torres-Romero & Olalla-Tárraga 2015, 

Gonçalves et al. 2018). In general the probability of a mammal species becoming 

endangered generally increases as the proportion of urban area within its distribution range 

grows, but as is the trend in other taxa, this exposure affects some species more negatively 

than others (Pickett et al. 2011, Pekin & Pijanowski 2012, Saito & Koike 2013). 

 

The loss of specialist species in urban environments results in a change of community 

composition which has knock-on effects on trophic level interactions and ecosystem 

functioning (Saito & Koike 2013). Mammal species are important role players in ecosystem 

functioning and biodiversity maintenance (Kerley et al. 2003, De Stefano & De Graaf 2003, 

Ceballos et al. 2005, Visconti et al. 2011). For example, carnivorous mammals, particularly 

apex predators, control lower trophic level dynamics (Kerley et al. 2003, Ordeñana et al. 
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2010, Bateman & Fleming 2012), while herbivores influence a number of ecosystem 

functions through actions such as herbivory, trampling and seed dispersal (Kerley et al. 

2003). Actions such as these affect plant and animal community dynamics and, ultimately, 

biodiversity (Augustine & McNaughton 1998, Kerley et al. 2003). Similarly, mammal species 

richness can be an indicator of overall ecosystem health and monitoring the effects 

urbanisation has on mammal species is thus important for the conservation and 

management of the mammal species as well as the ecosystems supporting them (Van der 

Ree 2004, Anderson & O’Farrell 2012, Fischer et al. 2012, Saito & Koike 2013). 

 

 

1.3 Mammal conservation in the City of Cape Town 

 

Within the Cape Floristic Region (CFR) in South Africa, conservation is met with a unique 

challenge. The CFR is a renowned biodiversity hotspot, hosting the Fynbos Biome and with it 

a wide variety of vegetation types and high rates of endemism (Kerley et al. 2003, Rebelo et 

al. 2011, Pressey et al. 2003). While scientific literature largely focuses on the CFR’s floral 

diversity, the area also contains a significant diversity of fauna species (Boshoff et al. 2001, 

Kerley et al. 2003, Pressey et al. 2003). The CFR has been subject to variety of 

anthropogenic land use practices, with nearly 26 % of the CFR having been transformed for 

cultivated land alone (Rouget et al. 2003). According to Underwood et al. (2009), the CFR 

experiences the second highest population growth rate within the global Mediterranean 

biome (areas with cool, wet winters and dry, warm summers). 

 

The City of Cape Town (CCT) municipal area covers 2 461 km2 of the CFR (Rebelo et al. 

2011) and currently has over 4 000 000 residents (Small 2017). The area’s Mediterranean 

climate, natural fire regimes and high soil diversity support a high diversity of plant species, 

and in turn high faunal diversity, although sandy, nutrient-poor soils prevent high productivity 

(Rebelo et al. 2006). The extraordinary wealth of biodiversity in the CCT area was 

highlighted in April 2019 when citizen science aided in the recording of 4 157 individual 

fauna, flora and fungal species over four days to win the iNaturalist City Nature Challenge 

(iNaturalist Network 2019). However, as a coastal city with limited space for expansion to 

meet housing demands, development pressure is increasing on natural and agricultural land 

(Anderson & O’Farrell 2012, Holmes et al. 2012). Mountains to the west and east of the CCT 

area confine the urban settlement to the coasts and central lowlands (Anderson & O’Farrell 

2012), which has resulted in a highly fragmented urban matrix (Figure 1.1). These factors 

accentuate the threat that increased urbanisation may have on the fragmentation and loss of 

natural land and with that the potential loss of mammal species. 
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Figure 1.1:  Land use zones and undeveloped areas within the City of Cape Town municipal area. 
“Protect areas” refers to formally protected conservation areas. Areas “not proclaimed” refer to open 
spaces, some of which may be managed as conservation areas but which are not protected by any 

formal legislation, and may include private property. (Adapted from City of Cape Town 2019a & 2019b) 
 

 

Historically, 25 different vegetation types occurred within the boundaries of the CCT 

municipal area (Rebelo et al. 2006). Of these, 10 vegetation types are classified as Critically 

Endangered, four Endangered and four Vulnerable (Rebelo et al. 2011). All 25 vegetation 

types still occur within the CCT area, but in extremely fragmented and diminished ranges 

(Rebelo et al. 2011). Although a large area of land was initially transformed due to agriculture 

(Anderson & O’Farrell 2012), a rapid increase in urban development in the second half of 

20th century left just under 40% of Cape Town’s municipal area untransformed of which only 

17.7 % is managed for conservation (Rebelo et al. 2011). Covering most of the peninsula, 

Table Mountain National Park makes up just over half of the protected land, and another 

quarter comprises of land within in the Kogelberg mountain range on the municipality’s 

eastern boundary (Rebelo et al. 2011). However, very little of the remaining lowland area 

which comprises a number of highly vulnerable vegetation types (Rebelo et al. 2006) is 
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conserved. Ensuring the integrity and persistence of the remaining vegetation types and their 

associated ecosystem processes will rely not only on conservation of flora but associated 

fauna as well (Rebelo et al. 2011). Many endemic plant species are reliant on very specific 

insect, bird and small mammals for pollination and seed dispersal (Rebelo et al. 2006, 

Biccard & Midgley 2009, Pauw & Hawkins 2011, Pauw & Louw 2012). Herbivores control 

bush encroachment and allow for nutrient cycling and seed dispersal, while predators control 

herbivore populations to prevent overgrazing and loss of vulnerable plant species (Rebelo et 

al. 2011).  

 

Since the settlement of the Dutch in 1652, mammal species in what is now the Cape Town 

area have been directly impacted by human activity (Rebelo et al. 2011, Anderson & 

O’Farrell 2012). A total of 41 medium (> 0.5 kg) and large mammal species are thought to 

have occurred historically within the larger Cape Town area (Boshoff & Kerley 2001, Kerley 

et al. 2003), but many of the large carnivore and herbivore species such as lion (Panthera 

leo), black rhinoceros (Diceros bicornis bicornis) and eland (Tragelaphus oryx) were hunted 

to local extinction by the beginning of the 18th century (Rebelo 1992, Anderson & O’Farrell 

2012). Wild animals and dangerous game in particular were seen as a threat to settler safety, 

and by 1656 large carnivores were actively exterminated in the area (Anderson & O’Farrell 

2012). Hunting of large herbivores was also considered a pleasurable pastime and not only 

for sustenance (Rebelo et al. 2011, Anderson & O’Farrell 2012).  

 

Urbanisation and fragmentation have further threatened mammal species with extinction 

(Rebelo 1992). In an effort to conserve the remaining biodiversity the City of Cape Town 

manages 17 protected areas within its boundaries. However, the majority of these 

conservation areas cannot support large mammals such as African elephant (Loxodonta 

africanus), black rhino and lion (Rebelo et al. 2011). Some existing conservation areas have 

attempted to reintroduce medium and large mammal species such as hippopotamus 

(Hippopotamus amphibius) that were reintroduced to the Rondevlei section of False Bay 

Nature Reserve in 1981 and still survive as a managed population in the reserve (Rebelo et 

al. 2011). Grey rhebuck (Pelea capreolus) were reintroduced to Tygerberg and Helderberg 

Nature Reserves, but there is uncertainty as to whether any of the released individuals 

remain. Eland and red hartebeest (Alcelaphus buselaphus caama) were successfully 

released into Blaauwberg Nature Reserve in 2016, while Cape grysbok (Raphicerus 

melanotis) was reintroduced to Kenilworth Racecourse Conservation Area where a viable 

population now thrives. 

 

Direct impacts of urbanisation on the remaining fragments of natural land within the CCT 

metropole include fire regime changes (through absence of natural fires or increase in 
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human-ignited fires), pollution, alien invasive vegetation and fauna, poaching (flora and 

fauna) and increased human presence within fragments (Rebelo et al. 2011). Additional 

factors such as degree of isolation/connectivity to other natural areas, area size and degrees 

of disturbance by invasive alien plants and human activity can also contribute to mammal 

species persistence risk within the reserves (Diamond 1975, De Stefano & De Graaf 2003, 

Garden et al. 2006, Stevens et al. 2006, Turgeon & Kramer 2012, Correa Ayram et al. 2016, 

Matthies et al. 2017). A Biodiversity Network of conservation land has been formed through 

the aggregation of protected areas, conservation management areas and undeveloped land 

earmarked for conservation (Holmes et al. 2012, City of Cape Town 2019b), with the 

intention of improving habitat availability and connectivity and thus biodiversity, ecosystem 

services and human wellbeing (Holmes et al. 2012, O’Farrell et al. 2012). Although this has 

allowed for flora conservation (Rebelo et al. 2011), the progressive efficacy of this in terms of 

mammal species conservation has not been determined, nor have the impacts of potential 

urban drivers been studied. As a result, it is not certain as to whether mammal species 

richness is being maintained by protected areas, whether any local extinctions are imminent, 

or even which species may actually be present across the area.  

 

Garden et al. (2006) indicated that knowledge on urban fauna, that is necessary to inform 

conservation management, can be limited by a lack of multispecies studies across multiple 

ecological levels over time, and this is evidently applicable to the CCT area. Studies have 

been done on particular mammal species within the municipality, but have not been repeated 

regularly, if at all, and multispecies impact studies are generally lacking (De Stefano & De 

Graaf 2003, Kerley et al. 2003, Garden et al. 2006, Cilliers & Siebert 2012). Historical data 

on the general occurrence of species across the Cape Town area exist, but current species 

lists tend to be inconsistent or based largely on opportunistic sightings (Boshoff & Kerley 

2001, Garden et al. 2006, O’Brien 2008). Species lists used by reserve management are 

based on the City of Cape Town Biodiversity Database, and are supplemented by iNaturalist 

(https://www.inaturalist.org) and iSpot (https://www.ispotnature.org) citizen science 

databases, as well as anecdotal records from reserve managers and staff, and so cannot be 

viewed as standardised sampling effort across reserves.  

 

To effectively conserve the remaining wildlife and associated ecosystem processes in the 

conservation areas of the CCT, up-to-date species lists are needed and standardised 

monitoring protocols employed to allow for comparisons between reserves and within 

reserves over time. The need for an appraisal of all remaining wildlife species is great, but as 

discussed, even larger mammal species have not been accurately recorded. This study will 

focus on identifying the medium and large mammal species in CCT nature reserves with the 

use of camera traps. 
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1.4 Camera traps in mammal research 

 

A number of medium and large mammal species surveying techniques are available to 

researchers and reserve managers. These include line transects, drive counts, night counts, 

sign surveys and live trapping (Munari et al. 2011). The use and efficacy of each of these 

techniques largely depends on the target species, survey aims and financial and/or time 

constraints (Munari et al. 2011). Methods can be biased and/or largely inaccurate if used 

inappropriately (Van der Ree & McCarthy 2005, Giman et al. 2007). Techniques that rely on 

observer skill such as line transects and night counts can be perceived as cost effective, but 

often lead to inaccurate estimates of species occurrence, in that density of vegetation, poor 

visibility, human presence and/or observer bias may skew results (Munari et al. 2011). 

 

Remote-sensing camera traps are becoming increasingly popular as a survey tool, and have 

the potential to accurately record medium and large mammal species richness, diversity, 

abundance and behaviour (Kelly 2008, Rowcliffe et al. 2008, Tobler et al. 2008, Ordeñana et 

al. 2010, Rovero et al. 2010, Colyn et al. 2017). Being largely undetectable, camera traps 

allow for non-invasive surveying which increases the likelihood of recording evasive, 

nocturnal and/or rare species (Rowcliffe et al. 2008, Tobler et al. 2008, Ordeñana et al. 2010, 

Rovero et al. 2010, Si et al. 2014). 

 

There is increasing evidence showing that when studying species richness in an area, the 

number of camera days sampled (number of cameras multiplied by survey period) are more 

important for accurate results than camera spacing or density (Kelly 2008, Tobler et al. 2008, 

O’Brien 2008, Si et al. 2014, Colyn et al. 2017). This means that surveys can be conducted 

over short periods of time, rather than the years required for accurate species list compilation 

through human observation only (Kelly 2008, O’Brien 2008). It seems that the majority of 

studies record 80-90% of estimated number of species occupying an area within 900 to 1 

500 camera days (Giman et al. 2007, Tobler et al. 2008, Si et al. 2014), although this seems 

to vary with habitat type and number of rare/elusive species. For example, Tobler et al. 

(2008) found that they required 2 340 camera days to record 86% of species in Peruvian 

forest areas, but Trolle and Kery (2005) found that a section of the Pantanal wetland area in 

Brazil had been sufficiently surveyed within only 504 camera days. 

 

A recent study conducted in the Fynbos shrubland of the Cape Peninsula indicated that more 

than 90% of species can be detected after approximately 1 000 days (Colyn et al. 2017). Si 

et al. (2014) suggests that for smaller areas, a higher number of cameras can be used over a 

shorter period of time, as they found that the optimal sampling period for an individual 

camera to detect an accurate diversity of species was approximately 40 days. This 



 9 

significantly lowers survey effort, which is important when studies need to be repeated 

regularly and cost-effectively (MacKenzie 2005), as would be the case in areas of rapid 

urbanisation.  

 

Stratified grids of cameras tend to produce the most reliable data which then can also be 

used to inform distribution and/or occupancy models (O’Brien 2008). Cameras can be placed 

to target specific species, but biased estimates may be produced (Tobler et al. 2008). It is 

advised that for areas which cover more than one major habitat type, all habitat types should 

be included in the survey to account for habitat specialists (Tobler et al. 2008, O’Brien 2008). 

When surveying for medium to large mammals, Kelly (2008) suggests fixing cameras at a 

height of 20 – 30 cm from ground level in order to maximise detectability for the range in 

sizes. 

 

Mammal species lists compiled from camera trap data can be assessed in conjunction with 

spatial data such as fragment size, connectivity, land use practices, disturbance and 

vegetation to identify associations between mammal species presence, abundance and 

diversity on an urban landscape scale (Ordeñana et al. 2010, Rovero et al. 2010). This 

information can then be used to better streamline conservation efforts on a site-specific and 

landscape-scale. For example, Cowling et al. (2003) suggest that the best way forward for 

the conservation of populations within the CFR at a landscape level is a network of 

connected protected areas, restorable habitat and habitat remnants. To do this one would be 

required to motivate for land acquisition and rezoning at an administrative level, which would 

require an understanding of the effects urbanisation has on mammal community 

assemblages and the best ways to mitigate these effects. 

 

 

1.5 Research problem statement 

 

The current status of medium and large mammal species within CCT reserves is unknown 

due to a lack of a reliable, standardised monitoring protocol. As discussed, the rapid growth 

of the human population and associated expansion of urban areas within the CCT area is a 

threat to the persistence of the remaining medium and large mammal species. To effectively 

conserve the mammal species and the ecosystems processes they associate with in the 

reserves, their current status needs to be determined and the drivers of species richness 

patterns understood. 
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1.6 Study objectives 

 

The aim of this study was to determine the medium and large mammal species assemblages 

within the respective CCT reserves and to identify the potential drivers responsible for the 

expected differences in mammal community composition. The specific objectives were: 

 

1. To determine which medium and large mammal species communities are still present 

in the City of Cape Town nature reserves that are larger than 30 ha and compare the 

results to historic and current species lists 

 

2. To establish a camera trapping protocol that can effectively record and monitor 

medium and large mammal community composition in the CCT nature reserves with 

the minimum effort possible.  

 

3. To identify potential drivers of species composition in the CCT nature reserves 

 

 

1.7 Structure of the thesis 

 

This thesis consists of five chapters. Chapters 3 and 4 are data chapters compiled as stand-

alone manuscripts to facilitate publication in peer-reviewed journals.  

 

Chapter 2 provides descriptions on the location, climate, topography and vegetation of the 

general City of Cape Town (CCT) municipal area and is followed by site descriptions of all 

the CCT nature reserves surveyed for this study. 

 

In Chapter 3, historical and presumed current medium and large mammal species lists are 

compiled and compared with data obtained from the camera trap surveys conducted as part 

of this study in twelve CCT nature reserves larger than 30 ha. Minimum camera trap survey 

effort for the placement protocol used is determined with the help of species accumulation 

and species richness estimation curves. 

 

Chapter 4 compares the species richness estimates of the respective reserves with the 

reserves’ size, area-perimeter ratio, vegetation heterogeneity, presence of permanent 

freshwater aquatic habitat and connectivity to identify potential species richness drivers. 

Linear models are used to determine which covariates best describe species richness 

patterns. 
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Chapter 5 aims to consolidate the implications of the previous chapters for management 

action. A standardized monitoring protocol for medium and large mammals in the CCT 

reserves is discussed and suggestions made on how to best conserve the remaining medium 

and large mammal species. Aspects in need of further research are also identified.  

 

 

1.8 Permits and ethical considerations 

 

This study was conducted with the written permission of the City of Cape Town Biodiversity 

Management Branch and authorised under CapeNature permit number 0052-AAA041-

00019. Data were collected using camera traps only, which were set up in consultation with 

reserve managers and staff and not placed in sensitive areas. The Bushnell infrared camera 

traps used emit only infrared light and are considered a minimally invasive survey technique 

and less detectable by animals than camera traps with white flash (Rovero et al. 2013, 

Caravaggi et al. 2017). No physical contact was made with fauna and plants were only 

trimmed, not removed, where necessary for camera placement.  
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CHAPTER TWO: 
STUDY SITE DESCRIPTIONS 

 
2.1 Study Area 

 

The City of Cape Town (CCT) municipality oversees 17 nature reserves within its boundaries 

(Fig 2.1). Thirteen of these reserves are larger than 30 ha and considered large enough to 

support viable populations of medium and large mammal species (Figure 2.1). Twelve of 

these were included in this study with Edith Stephens Nature Reserve (39 ha) being 

excluded because of repeated fires during the survey period.  

 

  

 

Figure 2.1:  CCT nature reserve study sites (adapted from CCT 2019a & 2019c) 

 

 

Climate 

The CCT area (approximately 2 461 km2) is situated within a Mediterranean climate region 

characterised by cool, wet winters and warm, dry and windy summers (Cowling et al. 1996, 

Rebelo et al. 2006). Mean annual rainfall varies with terrain and latitude from a low of 400 
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mm in the southern peninsula to 500-600 mm on the Cape Flats and 1300-2000 mm for the 

upper slopes of the northern peninsula (Cowling et al. 1996, Harris et al. 2010). Mean annual 

temperature for the general area varies between 16 and 22 °C (Cowling et al. 1996), with site 

specific variation from -0.2°C to 30.3°C (Rebelo et al. 2006). Prevailing winds average 

between 20 and 40 km/h and vary seasonally from north-westerlies in winter to south-

easterlies in summer (Cowling et al. 1996, Rebelo et al. 2006). 

 

Geology and topography 

The study area is situated within the Cape Fold Belt formation (Rebelo et al. 2006), and 

incorporates the mountainous of the Cape Peninsula along the western boundary, extensive 

sand flats in the central and northern regions, and the Hottentots-Holland mountains on 

along the eastern boundary. Together these land formations are part of the Cape 

Supergroup (Rebelo et al. 2006) with mountainous areas comprised predominantly of 

weather-resistant sandstone and quartzite, with some exposed granite intrusions and narrow 

shale bands. The lower slopes are predominantly older Malmesbury shales (Cowling et al. 

1996) with limestone cliffs forming part of the southern coastal boundary of the CCT area. 

 

The diverse topography, parent rock material and rainfall have given rise to a wide variety of 

soils (Rebelo et al. 2006). The Cape flats are formed mainly of sandstone and quartzite 

deposits. The relatively high quartz content of the sandstone produces well-drained, nutrient-

poor soil, as does that of the granite parent material. Soils on higher-lying sandstone flats are 

shallow and acidic (Cowling et al. 1996). Shale-derived soils on the lower mountain slopes 

are deeper and have a relatively higher nutrient content.  

 

Vegetation 

This soil diversity in the region contributes to diverse vegetation types within the CCT 

municipal area. These can be largely grouped into three major complexes, namely fynbos, 

renosterveld and strandveld (Rebelo et al. 2006). Typical fynbos is characterised by 

shrubland consisting of at least 5% Restionaceae species, with the presence of Ericaceae 

and Proteaceae shrubs in varying proportions and a low grass component (Rebelo et al. 

2006). Fynbos systems are fire-prone and occur mainly in sandy, nutrient-poor soil. 

Renosterveld structure can vary between shrubland and grassland, consisting of small-

leaved, evergreen Asteraceae shrubs, grasses and a large proportion of geophytes. 

Renosterveld typically excludes Erica and Protea species, and occurs on shale- and granite-

derived clay soils. It is also fire-prone. Strandveld vegetation occurs along coastal areas but 

out of direct ocean spray (Rebelo et al. 2006). This vegetation has a medium to dense 

structure formed by sclerophyllous shrubs, and while restio species may be present, no 
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Protea and little to no Erica species occur. Strandveld relies on calcium-rich soils, and has a 

low fire frequency (Rebelo et al. 2006). 

 

The three broad vegetation complexes are further subdivided into bioregions and within the 

confines of the CCT: the Southwest Fynbos, West Coast Renosterveld and West Strandveld 

are present (Figure 2.2). There are also some azonal areas, which include water-associated 

vegetation (e.g. wetland, riverine), and a total of twenty five distinct vegetation types. 

Approximately 60% of the CCT municipal area is has been transformed by urban rural and 

industrial developments (Figure 2.3), and only small remnants of natural vegetation persist 

(Rebelo et al. 2011). 

 

 

Figure 2.2:  Historically-occurring bioregions within the CCT area (adapted from SANBI 2016 and 
CCT 2019a) 
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Figure 2.3:  Transformed land (urban development, agriculture) and the remaining historically-
occurring bioregion areas within the CCT area (adapted from SANBI 2016 and CCT 2019a) 

 

 

2.2 Study sites 

 

For the purposes of this study only the broader bioregion vegetation classifications were 

used. Thus southwest Fynbos, West Coast Renosterveld and West Strandveld bioregions 

are classified broadly as fynbos, renosterveld and strandveld. Wetland, coastal and riverine 

vegetation are together classified as ‘water-associated vegetation’ with lawns, plantation and 

developed areas classified as transformed vegetation. The twelve nature reserves can also 

be broadly grouped into three categories based on their geographic location, namely 

northern, central, southern and eastern reserves. 

 

2.2.1 Northern reserves 

 

Table Bay Nature Reserve 

This reserve (Figure 2.4) is 880 ha in extent and largely comprised of wetland areas that 

terminate in the Diep River lagoon which enters the Atlantic Ocean in Table Bay. Ninety-two 
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percent of the reserve is made up of either seasonal pans or permanent wetland and water 

bodies (including man-made Rietvlei), and the remaining vegetation consists of water-

associated (617 ha) and some fynbos communities (16.5 ha). The water edges are 

dominated by dense reed beds with large areas of grass (101 ha) on the reserve edges. Mid- 

to high-income housing, a sewerage treatment plant, an industrial area and disturbed land 

surround the reserve. 

 

 

 Figure 2.4:  Table Bay Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 

 

 

 

Blaauwberg Nature Reserve 

The 1 445 ha area of Blaauwberg Nature Reserve (Figure 2.5) is dominated by Strandveld 

vegetation (790 ha) in the western coastal strip, and renosterveld (115.5 ha) and fynbos 

(534.5 ha) on Blaauwberg Hill and the extended area to the east. The reserve is under 

ongoing clearing of the invasive alien plant species Acacia saligna (Port Jackson willow), but 

large stands of this invasive species still exists. The western coastal section is unfenced but 

separated from the main body of the reserve in the east by the R27, a major arterial road, 
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and game fencing. Surrounding land use includes agriculture, disturbed and Port Jackson-

invaded undeveloped land and a small section of high-income residential area. 

 

 

 Figure 2.5:  Blaauwberg Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 

 

 

Witzands Aquifer Nature Reserve 

This is the northern-most CCT reserve (1 700 ha), the core of which is a dune field with 

seasonal wetlands (Figure 2.6) surrounded by strandveld (1652 ha). Cattle fencing surrounds 

most of the reserve, and a section to the south is separated from the main reserve area by 

an arterial road and should contain ecotonal fynbos but is largely seasonal wetland area (48 

ha). The surrounding land is largely used for subsistence farming and informal housing, and 

includes an industrial area and natural vegetation. The reserve is frequented by recreational 

off-road vehicles in the dune area and by wood cutters harvesting invasive alien plant 

species Acacia cyclops (rooikrans). 
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Figure 2.6:  Witzands Aquifer Nature Reserve vegetation (adapted from SANBI 2016 and CCT 
2019a,b). The reserve boundary is indicated in light blue. 

 

 

2.2.2 Central reserves 

 

Uitkamp Wetland Nature Reserve 

Uitkamp is the smallest of the reserves (32 ha) and primarily comprised of a wetland corridor 

(24.5 ha) located within a residential area (Figure 2.7) and includes a small patch of ecotonal 

renosterveld. It shares a tenth of its border with agricultural land. Overhead powerlines run 

through much of the reserve and borders include the walls and fences of residential and rural 

properties with some road-side sections having chain-link fencing.  
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Figure 2.7:  Uitkamp Wetland Nature Reserve vegetation (adapted from SANBI 2016 and CCT 
2019a,b). The reserve boundary is indicated in light blue. 

 

 

Bracken Nature Reserve 

This reserve is only marginally larger (36 ha) than Uitkamp Nature Reserve (Figure 2.8) and, 

having previously served as a landfill for municipal waste, features an artificial hill. The 

reserve vegetation falls broadly within renosterveld, although a large proportion (9 ha) is 

dominated by invasive grasses. Fynbos is predicted to occur in the reserve but the ecotone 

only begins at the reserve boundary. The reserve is fenced, and the northern and eastern 

boundaries border industrial and agricultural land uses, with the western and southern 

boundaries along residential area.  
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Figure 2.8:  Bracken Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). The 
reserve boundary is indicated in light blue. 

 

 

Tygerberg Nature Reserve 

Situated on Tygerberg Hill this reserve (Figure 2.9) covers 388 ha and consists mainly of 

renosterveld (296.5 ha), of which portions were once ploughed fields, and a very small 

portion of Cape Flats Sand Fynbos which has been transformed into a pine plantation (82 ha 

of transformed vegetation collectively). Small streams and rivers run off the slopes and feed 

several reservoirs and dams within its boundaries which allows for the presence of 9.5 ha of 

water-associated vegetation. The full boundary of the reserve is fenced and surrounded by 

suburban housing and unmaintained plantation. 
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Figure 2.9:  Tygerberg Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 

 

 

2.2.3 Southern reserves 

 

Kenilworth Racecourse Conservation Area 

This reserve is 52 ha in extent (Figure 2.10) and includes a core area of fynbos vegetation 

(36 ha) with a seasonal wetland (10.5 ha) encircled by a grassed horseracing track (5.5 ha). 

The surrounding land use is primarily residential and commercial separated from the reserve 

by a 2.2m concrete wall.  
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Figure 2.10: Kenilworth Racecourse Conservation Area vegetation (adapted from SANBI 2016 and 
CCT 2019a,b). The reserve boundary is indicated in light blue. 

 

 

Zandvlei Estuary Nature Reserve 

The 200 ha Zandvlei Estuary Nature Reserve (Figure 2.11) is dominated by a large vlei that 

includes man-made canals excavated for a marina housing development. A 16 ha man-made 

island within the vlei is covered with fynbos, and connected to the housing development by a 

concrete bridge and the main body of the reserve when estuary water levels are low. The 

low-lying terrestrial section of the reserve consists of seasonal pans and wetland areas (54.5 

ha) and includes mostly strandveld surrounded (35.5 ha) by low to middle-income housing, 

railway lines and a disturbed undeveloped area. The northern section of the reserve is 

fenced and a 7.5 ha section of the reserve has been transformed into a grass lawn for 

recreational activities. 
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Figure 2.11:  Zandvlei Estuary Nature Reserve vegetation (adapted from SANBI 2016 and CCT 
2019a,b). The reserve boundary is indicated in light blue. 

 

 

False Bay Nature Reserve 

This reserve (Figure 2.12) consists of the Rondevlei and Zeekoevlei waterbodies which flow 

into False Bay. The 632 ha reserve includes the Strandfontein sewerage works whose open 

water bodies and pans (48.7 ha) provide important bird habitat. The dominant vegetation 

type is strandvleld (139.5 ha), with wetland vegetation (46 ha) adjacent to open water and 

fynbos (96 ha) comprising the remaining habitat types. The borders of the reserve are fenced 

as they abut dense mid- to low-income housing, industrial and disturbed undeveloped areas. 

Some internal fencing exists between major reserve sections and surrounding the sewerage 

treatment plant. 
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 Figure 2.12:  False Bay Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 

 

 

2.2.4 Eastern reserves 

 

Wolfgat Nature Reserve 

This 262 ha reserve (Figure 2.13) includes coastal dunes and strandveld along the False Bay 

coast. The northern boundary includes informal and low-cost housing while the east and 

western ends are bordered by natural vegetation. The reserve is unfenced, which also 

means that human access is unregulated and some illegal poaching of fauna has been 

recorded. 
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 Figure 2.13:  Wolfgat Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). The 
reserve boundary is indicated in light blue. 

 

 

Helderberg Nature Reserve 

Situated on the southern slope of the Helderberg mountain, this 402 ha reserve (Figure 2.14) 

contains both fynbos (370 ha) and a small portion of renosterveld vegetation (8 ha). 

Permanent river systems, ponds and a municipal reservoir together comprise permanent 

freshwater aquatic habitat (7 ha), with 8 ha of the reserve comprised of water-associated 

vegetation and 9 ha of transformed grass lawns. The reserve shares a fenced boundary with 

up-market housing estate, a golf course and agricultural/forestry land along the eastern and 

southern borders. The northern border is unfenced and characterised by natural mountain 

fynbos. 
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 Figure 2.14:  Helderberg Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 

 

 

Steenbras Nature Reserve 

This is the largest of the CCT reserves at 8 400 ha (Figure 2.15), and makes up part of the 

Kogelberg Biosphere Reserve. The reserve covers the coast and Steenbras basin at Kogel 

Bay, as well as the mountainous section hosting the Steenbras dam and river system. The 

majority of the vegetation is fynbos (6752.5 ha), with water-associated vegetation covering 

91 hectares. A large section of the reserve (1108.5 ha) has been transformed by pine 

plantations. The reserve borders are mostly natural vegetation, with some agriculture, 

forestry, coastline and a very small section of high-income residential (Gordon’s Bay). There 

are thus very few fences along the reserve boundaries. 
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 Figure 2.15:  Steenbras Nature Reserve vegetation (adapted from SANBI 2016 and CCT 2019a,b). 
The reserve boundary is indicated in light blue. 
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CHAPTER THREE: 

ASSESSING AND MONITORING MEDIUM AND LARGE MAMMAL COMMUNITY 

COMPOSITION ACROSS CITY OF CAPE TOWN RESERVES USING CAMERA 

TRAPS 

 

3.1 Introduction 
 
Mammal species play an important role in the functioning of ecosystems and maintenance of 

biodiversity (De Stefano & De Graaf 2003, Kerley et al. 2003, Ceballos et al. 2005, Visconti 

et al. 2011). With an increase in anthropogenic activity worldwide, many mammal species 

are being adversely affected contributing to global declines in biodiversity (Ceballos et al. 

2005, Ceballos & Ehrlich 2006, Visconti et al. 2011, Pekin & Pijanowski 2012). Traditional 

conservation efforts for mammal species have focused largely on establishing protected 

areas in which species are intended to be protected from anthropogenic influences 

(McDonald et al. 2008), but in urban areas, natural environments tend to be reduced to 

small, fragmented and often isolated pockets which are broadly impacted by anthropogenic 

activity. Urbanisation in particular is impacting on natural habitats, population dynamics and 

ultimately ecosystem functioning of most fauna and flora (De Stefano & De Graaf 2003, 

Kerley et al. 2003, McDonald et al. 2008, Ceballos et al. 2005, Visconti et al. 2011, Pekin & 

Pijanowski 2012, Ramesh et al. 2016) by direct impacts such as habitat loss and 

fragmentation, as well as indirect impacts such as increases in pollution, resource use, 

human-wildlife contact (and subsequent behavioural changes) and disease exposure 

(Ceballos & Ehrlich 2006, McDonald et al. 2008, Ordeñana et al. 2010, Visconti et al. 2011). 

 

The Cape Floristic Region (CFR) is a global biodiversity hotspot, hosting a wide variety of 

vegetation types and high rates of endemism (Kerley et al. 2003, Pressey et al. 2003, Rebelo 

et al. 2011). While the literature focuses on the CFR’s floral diversity, the area also contains 

a significant diversity of fauna species (Boshoff et al. 2001, Kerley et al. 2003, Pressey et al. 

2003). A total of 41 medium and large mammal species are thought to have occurred 

historically within the CFR (Kerley et al. 2003), but many of the large carnivore and herbivore 

species such as lion (Panthera leo), black rhinoceros (Diceros bicornis bicornis) and 

common eland (Tragelephus oryx) were hunted to local extinction within the first 50 years of 

colonization (Rebelo 1992). While smaller mammal species have been able to persist in the 

area, rapid urbanisation has become an increasing threat. The CFR experiences the second 

highest population growth rate within the Mediterranean biome globally (Underwood et al. 

2009), thus the threats associated with urbanisation, including the loss and fragmentation of 

natural habitat are likely to increase and threaten the remaining mammal diversity. 
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The City of Cape Town is the largest urban area within the CFR and seeks to maintain 

biodiversity through a network of 17 nature reserves. The small size and isolation of many of 

these reserves limits their potential to accommodate viable populations of the remaining 

mammal species. Currently there is also a lack of reliable species lists for these reserves or 

a standardized monitoring protocol to allow for comparisons of species richness and 

abundance between reserves and within reserves over time (Olwell et al. 2004). There are 

data on the historical distribution of medium and large mammals for the greater Cape Town 

region in addition to opportunistic citizen and reserve staff sightings. However neither of 

these data sources are regarded as being sufficiently robust for generating species richness 

estimates in both time and space (Garden et al. 2006, O’Brien 2008).  

 

A number of methods could be used to assess remaining mammalian species within the 

nature reserves of the CCT, including distance sampling from roads and sign surveys. 

However most of these methods tend to be biased towards species that are willing to travel 

on open paths and roads (Giman et al. 2007). Remote-sensing camera traps (cameras) are 

becoming increasingly popular as a tool for medium to large mammal surveys, and have in 

many cases greatly improved our ability to detect a diverse array of medium and large 

mammals which can then be used to generate species richness, diversity, abundance and 

behavioural parameters (Kelly 2008, Rowcliffe et al. 2008, Tobler et al. 2008, Ordeñana et al. 

2010, Rovero et al. 2010). Camera traps are particularly useful for detecting evasive, 

nocturnal and/or rare species (Rowcliffe et al. 2008, Tobler et al. 2008, Ordeñana et al. 2010, 

Rovero et al. 2010, Si et al. 2014). Camera trap surveys also tend to be more efficient 

compared to other methods and hence are more likely to be approved under circumstances 

where both budgets and labour are limited (Silveira et al. 2003, O’Connell et al. 2010). 

Surveys can also be conducted over a relatively short time periods, rather than the years 

required for accurate species list compilation through direct observation only (Kelly 2008, 

O’Brien 2008).  

 

There is an increasing amount of evidence showing that when studying species richness in 

an area, the number of camera days (number of cameras multiplied by survey period) are 

more important than camera spacing or density for obtaining reliable estimates (Kelly 2008, 

Tobler et al. 2008, O’Brien 2008, Si et al. 2014, Colyn et al. 2017). The majority of studies 

have recorded 80-90% of the estimated number of species occupying an area within 900 to 

1500 camera days (Giman et al. 2007, Tobler et al. 2008, Si et al. 2014). The time required 

for reliable species estimates has been shown to vary with habitat type and the number of 

rare/elusive species. Tobler et al. (2008) required 2340 camera days to record 86% of 

species in Peruvian forest areas, while Trolle and Kery (2005) found 504 camera days 

sufficient for a section of the Pantanal wetland area in Brazil. Approximately 1000 camera 
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days were sufficient to detect more than 90% of species in the Fynbos shrubland of Cape 

Peninsula (Colyn et al. 2017). For smaller areas, a higher number of camera traps can be 

used over a shorter period of time (Si et al. 2014). Together these studies suggest that a 

compromise between the number of camera traps and the duration of deployment can 

ensure adequate sampling within time and budgetary constraints. 

 

Camera placement is another important variable to consider when sampling mammals using 

camera traps. At a broad scale random placement ensures that all habitat types and species 

have an equal chance of being sampled and the resultant data can then be used to inform 

distribution and/or occupancy models (O’Brien 2008). Alternatively cameras can be placed to 

target specific species, but caution has to be exercised when using such data for species 

richness estimates (Tobler et al. 2008). In areas which include more than one major habitat 

type, all habitat types should be included in the survey using a random stratified sampling 

protocol to account for habitat specialists (Tobler et al. 2008, O’Brien 2008).  

 

In this chapter, the primary goal was to assess medium and large mammal species in CCT 

nature reserves that are larger than 30 ha (n = 12) using camera trap surveys. The specific 

objectives were to a) determine which medium and large mammal species are still present in 

CCT nature reserves larger than 30 ha, compared with historic accounts and current 

presumptions, and b) determine the minimum survey effort required to sufficiently record and 

monitor medium and large mammal species presence in each CCT reserve. 

 

 

3.2 Methodology 
 
3.2.1 Study sites 

 

This study was conducted within the City of Cape Town (CCT) municipal area, which is 

situated within the Cape Floristic Region and experiences a Mediterranean climate of warm, 

dry summers and cool, wet winters. The study focused on the thirteen CCT nature reserves 

that are larger than 30 ha and may thus support viable, naturally-occurring populations of 

medium and large mammals. Edith Stephens Nature Reserve was subjected to repeated 

unnatural fires during the study period and could not be adequately sampled. This resulted in 

twelve reserves of different size and vegetation type composition (Table 3.1) being 

thoroughly surveyed once for this study. Study sites are discussed in more detail in Chapter 

2. 
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Table 3.1: Reserve size and proportional cover (%) of each of the five habitat types identified within 
each of the surveyed City of Cape Town nature reserves (City of Cape Town 2019). Some proportions 
do not add up to 100% due to the presence of permanent open water. 

Nature Reserve Size (ha) Fynbos 
Renoster-

veld 
Strand-

veld 
Water-

associated 
Trans-
formed 

Uitkamp Wetland 32 23.38 - - 76.62 - 

Bracken 36 - 73.88 - - 26.12 

Kenilworth Racecourse 52 66.21 - - 20.48 11.08 

Zandvlei Estuary 200 - - 17.76 27.20 3.74 

Wolfgat 262 - - 100 - - 

Tygerberg 388 - 76.54 - 2.43 21.03 

Helderberg 402 92.35 1.79 - 1.91 2.16 

False Bay 632 15.19 - 22.01 7.23 7.71 

Table Bay 880 1.86 - - 70.13 11.54 

Blaauwberg 1445 36.50 8.00 55.50 - - 

Witzands Aquifer 1700 - - 97.19 2.8 - 

Steenbras 8400 80.38 - - 1.08 13.20 

  

 

3.2.2 Camera trap survey  

 

Ninety un-baited Bushnell® Trophy Cam infrared remote sensing cameras were used to 

record the presence of medium to large mammal species in each reserve. Sampling took 

place over 21 months from June 2017 to Feb 2019, and multiple reserves were sampled 

simultaneously when possible. Infrared cameras were chosen due to high human activity and 

risk of theft in most of the reserves. Seasonal variation was not expected to influence species 

richness estimates as there are no known migratory patterns for species in the area. 

Seasonal movement will also be hindered in the especially fragmented, hard-edged 

reserves. 

 

Camera placement 

Decisions on camera trap placement were made based on the reserve size, habitat 

heterogeneity, camera theft risk, limited accessibility (e.g. dense reed beds, cliff faces) and 

obstructions by infrastructure (e.g. parking lots, building clusters). Maps for each reserve 

were created in QGIS v2.18.23 (QGIS Development Team 2019) to indicate four major 

habitat types, namely “fynbos”, “renosterveld”, “strandveld” and “water-associated” (wetland, 

riparian, coastal, etc.) areas. The fynbos, renosterveld and strandveld classifications were 

based on the bioregion and water-associated vegetation on the azonal classifications 

demarcated by Rebelo et al. (2006), as well as satellite imagery (CCT 2019) and ground-

truthing when walking the reserve on foot. A one x one km grid layer was projected onto each 

reserve area within QGIS and adjusted to ensure best fit (i.e. grid alignment was adjusted to 

ensure each reserve area was covered with the fewest grid squares possible). If this protocol 

under-represented a major habitat type (i.e. fynbos, strandveld, renosterveld, water-
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associated and transformed vegetation) from the survey then an additional camera was 

placed in that habitat type to ensure that habitat specialists were sampled (O’Brien 2008). 

The number of cameras per reserve was limited to at least five, ensuring that a minimum of 1 

000 camera days could be achieved within a maximum period of 200 survey days. In 

Steenbras Nature Reserve (8 400 ha), the number of cameras available was insufficient to 

cover the whole reserve at once, so a sub-sample of the total area (which included 

representation of all habitats) was surveyed at the same camera density. 

 

Camera placement was optimised to detect mammals following the methods of Colyn et al. 

(2017). This involved searching for sign of mammal presence (e.g. scat, spoor, and foraging 

signs) within a 120 m radius of the grid point. If no signs were found within 120 m of the grid 

centre then cameras were placed as close to the grid point as possible without compromising 

camera safety. Each camera was fixed to a wooden pole with the camera lens at 30 cm 

above ground level (Tobler et al. 2008) and made to face either north or south so as to 

prevent false triggers and/or over-exposure from direct sunlight (Figure 3.1). Cameras were 

set to take a burst of three photographs when triggered, with a delay of 30 seconds between 

trigger events (Colyn et al. 2017). Due to prevailing wind activity and the need to adequately 

hide each camera to prevent theft, sensitivity was set to medium and vegetation within a one 

metre arc of the camera lens was cut to reduce vegetation movement triggering the camera. 

Cameras were serviced every 20 – 30 days, where secure digital high capacity (SDHC) 

cards were changed and any potential problems with cameras addressed. 

 

Each reserve was surveyed for a minimum 1000 camera days before cameras were 

removed/moved to another reserve. This was to enable capture of most species (Si et al. 

2014, Colyn et al. 2017). If a species accumulation curve for a specific reserve did not reach 

an asymptote after a 1000 days, the survey period for that reserve was extended to attempt 

to reach the number of days required for adequate detection of all species, as time and 

resources allowed. 
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Figure 3.1: Remote sensing camera trap setup example - camera trap is secured on a wooden pole at 
30 cm above ground level. 

 
 
 
3.2.3 Data analysis 

 
3.2.3.1  Survey effort 

EstimateS 9.1.0 software (Colwell 2013) was used to generate sample-based species 

accumulation curves for the recorded native species of each reserve and to determine 

whether the survey effort in each reserve was sufficient. It was also used to deduce what will 

be approriate sampling effort for future monitoring (Si et al. 2014, Colyn et al. 2017). The 

curves show the cumulative number of species recorded over sampling effort and were 

generated using 1000 randomized runs, with number of samples represented by the number 

of survey days (Olwell et al. 2004, Mann et al. 2015). Non-parametric species richness 

estimators (incidence coverage estimator (ICE), Chao 2, Jack 1 and Jack 2) were used to 

estimate how many species may have been missed during sampling. Accumulation and 

estimator curves for each reserve were compared to determine whether sampling effort for 

this study was sufficient and to estimate what can be considered as sufficient survey effort 

for the future monitoring of each area (Chao & Chiu 2016).  

 

A robust estimate of sampling effort required to adequately survey a reserve was considered 

to be the point where all four estimators reach an asymptote and where the variance 

between these four estimators was at its lowest. In this way no particular estimator was 

favoured over another and it reduced any particular estimator’s chance of biasing 

interpretation.  
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3.2.3.2   Species richness and community composition 

Camera trap data were managed using Camera Base 1.7 software (Tobler 2015). Only 

photographs of non-burrowing mammals exceeding 0.5 kg in weight were used for analysis. 

Large mole-rat species (i.e. Cape dune mole-rat Bathyergus suillus and Cape mole-rat 

Georychus capensis) were thus excluded. Non-native and reintroduced medium and large 

mammal species were noted but excluded from richness analyses. The recorded native 

species were compared to two species lists. The first list comprised of species believed to 

have been present in the general area at the time of European settlement in 1652 based on 

historic accounts (Boshoff & Kerley 2001). The second list comprised of species presumed to 

still be present in the respective reserves based on recorded sightings dating back as far as 

2012 (five years before the start of the study) that were either logged on the CCT Biodiversity 

Database or iNaturalist (https://www.inaturalist.org) and iSpot (https://www.ispotnature.org) 

citizen science databases. 

 

 

3.3 Results 

 

The sampling protocol resulted in 151 camera placements (Appendix A) over 1 364 survey 

days across the 12 reserves totalling an area of 14 429 ha. This resulted in a total of 14 876 

camera days (Table 3.2). Five cameras were stolen from five different reserves within the 

sampling period, and in these cases either a new camera was placed in another location 

within the reserve for the required survey days or the remaining cameras were left in situ for 

longer to make up for the lost camera days. Throughout the study, a total of 13 360 trigger 

events by medium and large mammals were recorded. 

 

Table 3.2: Number of cameras placed, number of survey days completed and number of viable 
camera days achieved for each study site  

Nature Reserve Reserve size (ha) Cameras (n) Survey days (n) 
Viable camera 

days (n) 

Uitkamp Wetland 32 5 200 1000 

Bracken 36 5 200 1000 

Kenilworth Racecourse 52 5 200 1000 

Zandvlei Estuary 200 10 100 1000 

Wolfgat 262 10 100 1000 

Tygerberg 388 9 112 1008 

Helderberg 402 15 133 2000 

False Bay 632 15 67 1005 

Table Bay 880 12 84 1008 

Blaauwberg 1445 15 67 1005 

Witzands Aquifer 1700 20 100 1840 

Steenbras 8400 30 67 2010 
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3.3.1 Survey effort 

 

Native species accumulation and richness estimator curves were calculated for each reserve 

(Figure 3.2). For Kenilworth Racecourse Conservation Area, only one native species (Cape 

grysbok - Raphicerus melanotis) was recorded in 1000 camera days so no curve could be 

generated. For nine of the remaining 11 reserves, species richness estimator curves 

converged during the survey period, suggesting sufficient survey effort was achieved. 

Generally, species richness estimators (namely ICE, Chao 2, Jack 1 and Jack 2) 

overestimated the observed species richness within the first 300 camera days before falling 

within one species difference of each other by 1000 camera days, with the exception of 

Helderberg, Steenbras and Witzands Aquifer nature reserves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Sample-based species accumulation curves [S(est)] and non-parametric species richness 
estimations for each study site. The orange dotted lines indicate the number of camera days at which 

variance between all curves is at its lowest. 
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Curves for Steenbras Nature Reserve converged at 1 980 camera days, although Jack 2 

suggested that the number of species present was underestimated by two. For Helderberg 

Nature Reserve convergence of estimators only started to occur after 1 800 days and for 

Witzands Aquifer Nature Reserve there was no sign of convergence even at 1 840 days. 

Helderberg’s observed curve fell within one (0.99) species of the estimators, but the Jack 2 

mean again underestimated the number of species by two. Witzands Aquifer Nature 

Reserve’s curves indicate sampling was largely insufficient, with the observed accumulation 

falling short of the lowest estimator by one species and the highest estimator (Jack 2) by five 

species, which equates to only 70% of the estimated species richness. Overall the Chao 2 

mean estimate provided the closest resemblance to the observed species richness, followed 

by the Jack 2 mean. If the species accumulation curve for Witzands Aquifer is projected at 

the same trajectory, it suggests that up to 3 000 camera days would be required in order to 

record the estimated 17 species, but essentially a survey effort of more than 1840 camera 

days is required. 

 

The number of camera days per reserve required to achieve the minimum variance between 

species richness estimators at the point where curves asymptote (Table 3.3) ranged from 

210 camera days to more than 1840 camera days. When these required camera days are 

plotted against reserve size (Figure 3.3), a log trendline provides a weak positive correlation 

(R2 = 0.3691, p = 0.16) showing that in smaller reserves, namely Uitkamp Wetland, Bracken 

and Wolfgat, adequate sampling is reached before 1000 camera days, and larger or more 

connected reserves such as Steenbras require closer to 2000 camera days in order for 

sufficient sampling. There are some anomalies, namely the smaller Helderberg Nature 

Reserve (402 ha) which requires 1710 camera days and larger Blaauwberg Nature Reserve 

(1440 ha), which requires 660 camera days.  

 

Table 3.3: Lowest variance values between species accumulation and estimator curves and 
corresponding survey effort (n camera days) per study site, excluding Kenilworth Racecourse and 
Witzands Aquifer Nature Reserves 

Nature Reserve Reserve size (ha) Lowest variance value 
No. of camera days at 

lowest variance 

Uitkamp Wetland 32 0 210 

Bracken 36 0 775 

Zandvlei Estuary 200 0.0068 999 

Wolfgat 262 <0.0001 891 

Tygerberg 388 0.0311 918 

Helderberg 402 0.4178 1710 

False Bay 632 0.0226 795 

Table Bay 880 0 948 

Blaauwberg 1445 0 660 

Steenbras 8400 0.0915 1530 
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Figure 3.3: Number of camera days with reserve size (in hectares) at which species accumulation 
curves achieve the lowest variance (excluding Kenilworth Racecourse and Witzands Aquifer Nature 
Reserves). 

 

 

3.3.2 Species richness and community composition 

 

Historic/Presumed species 

According to historic species lists, 40 medium and large mammal species used to occur 

within the boundaries of the CCT. Cape hare (Lepus capensis) and scrub hare (Lepus 

saxatilis) characteristics were not conspicuous enough to allow differentiation between the 

species in infrared photographs, so for the purposes of this study, Cape hare and scrub hare 

will be grouped as “Lepus spp.”. This left 39 medium and large mammal species with which 

to compare presumed and recorded results (Appendix B). The total number of native medium 

and large mammal species still presumed to be present across all reserves and recorded 

within the past five years before this study commenced (i.e. excluding reintroduced and non-

native/domestic species) was calculated at 22 species. 

 

Recorded species 

Over the study period, a total of 27 medium and large mammals were recorded across the 12 

reserves. Of these, five were non-native species (domestic cat - Felis sylvestris catus), 

domestic dog - Canus lupus familiaris, domestic rabbit - Oryctolagus cuniculus, domestic 

horse - Equus ferus caballus, and eastern grey squirrel - Sciurus carolinensis), four were 

reintroduced species (common eland - Tragelephus oryx, red hartebeest - Alcelaphus 

buselaphus caama and hippopotamus - Hippopotamus amphibious) and 19 were native 

species. Hewitt’s red rock hare (Pronolagus saundersiae) was not a species that was 

predicted to occur in the study area based on database records but was nevertheless 

recorded in Steenbras Nature Reserve. A total of four species (i.e. grey rhebuck - Pelea 

capreolus, black-backed jackal - Canis mesomelas, bat-eared fox - Otocyon megalotis, and 
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striped weasel - Poecilogale albinucha) were predicted but not recorded in any of the 

reserves. These results suggest that 49% of the historically occurring species were still 

present within the surveyed reserve and 86% of the presumed native species richness. 

When survey results are compared to species expected/recorded on current (2012-2017) 

databases for each reserve, the survey produced higher species richness totals for seven 

reserves and lower for the remaining five (Table 3.4). No reserve produced a 100% match 

between expected and recorded, with “new” species recorded in the majority of the reserves 

(n = 7). Only Kenilworth Racecourse, Zandvlei Estuary, Wolfgat, False Bay and Blaauwberg 

nature reserves had fewer observed species than expected. Of the 19 species recorded, 11 

were carnivores, seven herbivores and one an ominvore. Small grey mongoose (Galerella 

pulverulenta) occurred in nine of the 12 reserves, large-spotted genet (Genetta tigrina) and 

caracal (Caracal caracal) in six of the 12 and the remaining carnivores in five or fewer 

reserves (Figure 3.4). 

 

Table 3.4: Presumed species richness, recorded species richness and shared species between 
presumed and recorded lists per study site (see Appendix B for species details) 

Nature Reserve 
Presumed species 

richness (n) 

Recorded species 

richness (n) 
Shared species (n) 

Uitkamp Wetland 2 3 1 

Bracken 4 5 4 

Kenilworth Racecourse 2 1 1 

Zandvlei Estuary 8 5 5 

Wolfgat 7 5 5 

Tygerberg 6 11 5 

Helderberg 11 12 9 

False Bay 10 8 8 

Table Bay 3 6 2 

Blaauwberg 15 9 9 

Witzands Aquifer 7 12 7 

Steenbras 9 12 8 
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Figure 3.4: Number of reserves in which native carnivore species were recorded 

 

 

Cape grysbok and Cape porcupine (Hystrix africaeaustralis) were the most widely distributed 

herbivores and were recorded in 11 of the 12 reserves. This was then followed by a marked 

drop in herbivore common occurance with Lepus spp. and common duiker (Sylvicapra 

grimmia) recorded in five reserves and steenbok in four. The rocky habitat associated 

klipspringer (Oreotragus oreotragus) and Hewitt’s red rock hare were recorded in only one 

reserve. The ominvorous chacma baboon (Papio ursinus) occurred in two reserves.  

 

 

3.4 Discussion 

 

With the exception of Witzands Nature Reserve, species accumulation curves and richness 

estimates indicate that sampling effort was sufficient. Of the 39 medium and large mammal 

species thought to have historically occurred in the area, a total of 19 (49%) were recorded 

within the study areas. Larger species such as African elephant (Loxodonta africana), black 

rhinoceros (Diceros bicornis bicornis), Cape mountain and plains zebras (Equus zebra zebra 

and E. quagga), lion (Panthera leo), brown hyena (Parahyaena brunnea), spotted hyena 

(Crocuta crocuta) and wild dog (Lycaon pictus) were not expected to be recorded, as it is 

known that they were hunted to local extinction in the 1700s (Rebelo 1992). The absence of 

large mammals is also to be expected as mammals with large body sizes tend to require 

large home ranges and are thus more sensitive to habitat loss and fragmentation linked to 

urban and rural development (McCleery 2010). This trend is particularly true for apex 

carnivores which generally require extensive connected ranges to complete their life history 
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(Hansen et al. 2011). Hippopotamus, common eland and red hartebeest, while reintroduced 

to two reserves (hippopotamus and eland into False Bay Nature Reserve, eland and red 

hartebeest into Blaauwberg Nature Reserve) were also not expected to be present in local 

reserves given their large space requirements.  

 

Species potentially present but not recorded over the full study area included grey rhebuck, 

black-backed jackal, bat-eared fox, yellow mongoose (Cynictis penicillata), striped weasel, 

aardwolf (Proteles cristata), aardvark (Orycteropus afer) and African wild cat (Felis sylvestris 

cafra). African wild cat was not expected to be recorded in this study, as it is assumed that 

any surviving cats within the CCT area would have interbred with domestic cats and 

potentially be locally extinct. Yellow mongoose has been anecdotally sighted at both 

Tygerberg and Uitkamp Wetland Nature Reserves, but has not been included in any 

database since 2011 and was not recorded in the study. Aardwolf and aardvark may be 

disrupted by large-scale development in urban areas with reduced substrate for termite 

colonies. 

 

Grey rhebuck had previously been reintroduced to both the Tygerberg and Helderberg 

Nature Reserves to bolster existing population numbers. Despite this the species was not 

recorded in this study. The last unrecorded sighting in either reserve was in 2017 at 

Tygerberg Nature Reserve but a local extinction event was thought to have occurred shortly 

afterward as a carcass was found by reserve staff and no further observations of the species 

have been made since. This left bat-eared fox, black-backed jackal and striped weasel as 

presumed to still exist within the CCT area, but not recorded in the study. The last confirmed 

observation of black-backed jackal within the study sites had been at Blaauwberg Nature 

Reserve in 2013 which was recorded in the CCT’s Biodiversity Database. The current 

presumed presence of bat-eared fox is largely uncertain as no official records have been 

logged in any reserve since 2012. Striped weasel was last recorded on the Biodiversity 

Database at Helderberg Nature Reserve in 2013 and has been recorded elsewhere in the 

CCT area previously (Child et al. 2016), but it is thought that the study sites may have been 

at the edge of its range as the majority of sightings tend to occur toward the eastern 

boundary of the CCT municipal area.  

 

Small grey mongoose, Cape porcupine and Cape grysbok were recorded in the majority of 

reserves. Globally, species which are able to generalize in terms of food sources and habitat 

preference such as house mice, squirrels, rabbits, baboons, raccoons, deer and coyotes (De 

Stefano & De Graaf 2003, Garden et al. 2006, Hoffman & O’Riain 2012, Baker & Harris 

2007, Ordeñana et al. 2010, Šálek et al. 2015) seem to thrive in urban areas due to varied 

combinations of increased food availability and absence of competition and predation 
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pressure from species which are more sensitive to reduced home ranges and disturbance 

(Newsome et al. 2010, Šálek et al. 2015). This may be likely in the case of porcupine, which 

readily raid domestic gardens, and small grey mongoose, which are able to predate on a 

variety of food sources, including small mammals and insects which are readily available in 

transformed habitats (Cavallini & Nel 1990). Cape grysbok is endemic to the fynbos biome 

and is a highly selective browser (Kigozi et al. 2008) that may be present mainly due to the 

availability of fynbos-specific habitat requirements rather than them being adaptable 

generalists. However, their common occurrence across reserves suggests that they can 

survive and even thrive within small areas with some protection against anthropogenic 

pressure. 

 

There was also a higher recorded species richness of carnivores (n = 11) than herbivores (n 

= 7) at a ratio of 1.6 carnivores to one herbivore species, but that was not very different from 

historical ratios (1.5:1). Meso-carnivores have been found to be relatively abundant in urban 

habitat patches, particularly in the absence of large predators which are generally more 

sensitive to urbanisation. This is due to the larger predators, when present, often restricting 

meso-carnivore movement, competing with them for resources, or even predating on them 

(McCleery 2010, Hansen et al. 2011). Despite reduced home ranges and increased 

population densities, it seems medium-sized omnivores and carnivores are able to adapt 

feeding and social behaviour to allow for their persistence in human modified landscapes 

(McCleery 2010, Newsome et al. 2010, Šálek et al. 2015). Herbivores may be less able to 

adapt their foraging and social behaviour and so may be much more reliant on larger 

reserves where a greater area of suitable natural habitat may be conserved. 

 

Species richness estimates derived from the Biodiversity Database in conjunction with the 

iSpot and iNaturalist data are lower at the majority of reserves (n = 7) than recorded using 

camera trap surveys. This may be because database records are based more on irregular, 

sporadic and opportunistic sightings than standardised monitoring across sites, as well as 

the potential for over- or under-recording by individual observers at individual sites. Species 

which are people-shy may also be under-recorded. By using a standardised sampling 

method across all study sites, survey effort and results are more comparable than database 

recordings. Of the 22 species presumed to persist within the reserves, only three were 

missed (when excluding grey rhebuck due to a possible local extinction event), and each of 

these were last recorded no later than 2013. This indicates that these species could well be 

extinct from the study area.  

 

With the exception of Witzands Aquifer, Helderberg and Steenbras Nature Reserves, all 

species accumulation curves and richness estimators suggested that a survey effort of a 
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1000 camera days or less is sufficient for the compilation of a medium and large mammal 

species inventory for the CCT reserves specifically. For the three reserves smaller than 100 

ha, it is apparent that survey effort is sufficient well before 1000 camera days. Uitkamp 

Wetland Nature Reserve’s curves reach an asymptote for species richness at 210 camera 

days, whereas Bracken Nature Reserve (at only 4 more hectares) required 775 camera 

days. This variation may be related to reserve shape: Uitkamp Wetland has a larger edge in 

proportion to the total area than Bracken, which provides very little core area for larger 

mammals (Helzer & Jelinski 1999) and increases detrimental edge effects. Knowing what the 

minimum survey effort is for these smaller reserves is useful in ensuring surveys can be 

rolled out effectively without cameras staying in situ for longer than necessary, especially in 

areas where there is a significant risk of theft. 

 

Survey effort in Witzands Aquifer Nature Reserve was insufficient, as indicated by the lack of 

an asymptote in the species accumulation curve. This is most likely due to single detections 

of Cape fox (Vulpes chama), Cape grysbok and honey badger (Mellivora capensis). These 

results suggest that either survey effort was inadequate, or these species are rare in the 

study area, possibly moving between reserves and surrounding areas, thus reducing 

detection probability. Another possible reason for the Witzands Aquifer anomaly is that 44% 

of the perimeter is bordered by natural habitat (see Chapter 2, Table 2.2), effectively 

increasing the area of suitable habitat available to wildlife. Together with Helderberg and 

Steenbras Nature Reserves, it would appear that larger reserves that are well connected to 

natural areas may increase the effective size of suitable habitat available to wildlife allowing 

for more transients and lower detection probability of individuals using both the reserve and 

the neighbouring natural land. While Wolfgat Nature Reserve also has a large proportion of 

natural boundary, the size and elongated shape of the reserve effectively renders it more of a 

corridor with reduced core habitat and so required fewer camera days. 

 

 

3.5 Conclusions 
 
 
Half of the large- and medium-sized mammal species that historically occurred in the Cape 

Town area seem to have disappeared since the time Dutch settlers started construction of 

the first permanent structures 367 years ago. Similar results have been reported in Australia 

where less than 50% of native species are present within urban areas (McCleery 2010). 

There are some obvious early casualties associated with urbanisation including mega 

herbivores (e.g. elephant and black rhino) and large carnivores (e.g. lions, hyena) which all 

require large areas. 
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The apparent efficacy of a short, standardised camera trap survey method is an important 

consideration when routine monitoring is required to measure the impacts of rapid 

urbanisation on species richness and community composition. To confirm that species not 

recorded in this study are genuinely absent regular, robust surveys such as those in this 

study should be repeated regularly. Results from the survey effort trial indicate that up to 

1000 camera days is sufficient for most of the studied reserves, but larger more connected 

reserves require closer to 2000 camera days. The minimum survey effort required as shown 

by species richness estimators can be used to replicate species presence/absence data and 

will significantly reduce survey period, especially in smaller reserves. The probability of 

imperfect detection must be noted (MacKenzie 2005), as reduced survey time lowers the 

probability of recording rare species, and increased survey effort and more subjective 

camera placement in specialized habitat would result in a more accurate, albeit biased, 

species list for reserves. That being said, urban mammal monitoring is time and resource 

sensitive, and if time, funding, equipment and/or staff availability are limited, using the same 

camera placements and the minimum survey effort at regular intervals should at least be 

useful in monitoring species richness trends over time, as long as it is understood that 

confidence is lost with each “minimum effort” repeat. This could potentially be improved to a 

certain extent when conducted in conjunction with species richness estimators, verified 

observations, citizen science and other survey methods, and/or longer surveys (Gotelli & 

Colwell 2001, MacKenzie 2005). 

 

Not only is accurate and effective recording of species presence imperative for effective 

conservation efforts, the drivers of distribution patterns must also be understood. It is known 

that large mammals are the first to be lost with urbanisation and fragmentation, and that 

omnivores, generalists and meso-carnivores seem better able to adapt to urban spaces 

(McCleery 2010, Ordeñana et al. 2010, Rovero et al. 2010), but because so many different 

variables may play varied roles in the persistence of different species, this needs to be 

further investigated. Fragment size, connectivity, land use practices, disturbance and 

vegetation also need to be considered to identify associations between mammal species 

presence, abundance and diversity on an urban landscape scale (Garden et al. 2006, 

Ordeñana et al. 2010, Rovero et al. 2010). This information can then be used to better 

streamline conservation efforts on a site-specific and landscape-scale, which forms the basis 

for the next chapter. 
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CHAPTER FOUR: 
VARIATION IN MEDIUM AND LARGE MAMMAL COMMUNITIES IN CITY OF 

CAPE TOWN NATURE RESERVES 
 

 

4.1 Introduction 

 

Medium and large mammal species richness is an important indicator of ecosystem 

functioning and health (Augustine & McNaughton 1998, Kerley et al. 2003, Ordeñana et al. 

2010). To ensure healthy mammal species richness in protected areas it is important to 

understand what factors negatively influence species richness patterns (Ramesh et al. 2016, 

Gonçalves et al. 2018). This in turn demands effective monitoring of mammals, an 

understanding of their ecological role and the subsequent prioritization of management and 

conservation actions that seek to improve or maintain richness and community composition 

(Ramesh et al. 2016).  

 

At a global scale climatic variables such as temperature and evapotranspiration are the most 

important correlates of mammal species richness (Torres-Romero & Olalla-Tárraga 2015, 

Ramesh et al. 2016). Limits of temperature tolerance constrain the geographic range of most 

mammal species (Ramesh et al. 2016), while evapotranspiration influences primary 

productivity and bottom up processes (Torres-Romero & Olalla-Tárraga 2015). At both a 

regional and a landscape scale, climate and geological features are the most important 

drivers of species richness patterns (Torres-Romero & Olalla-Tárraga 2015, Ramesh et al. 

2016). On smaller scales, anthropogenic activity has influenced species richness patterns at 

all scales due to habitat loss and fragmentation, pollution, alien species introduction, 

resource depletion and human-wildlife conflict (Ceballos & Ehrlich 2006, McDonald et al. 

2008, Ordeñana et al. 2010, Visconti et al. 2011). Most large cities globally are located in 

areas of high biodiversity and endemism, and consequently urban land use has had a 

disproportionate impact on mammal species richness (McDonald et al. 2008, Visconti et al. 

2011, Pekin & Pijanowski 2012). Despite this many species persist in small urban and peri-

urban reserves with select species thriving in human modified habitats (De Stefano & De 

Graaf 2003, Garden et al. 2006, Baker & Harris 2007, Ordeñana et al. 2010, Hoffman & 

O’Riain 2012, Šálek et al. 2015). Urbanisation also tends to affect trophic level dynamics 

within the urban environment and human activity often supplements food sources (Pickett et 

al. 2011, Saito & Koike 2013). This increases the abundance of certain species and can 

eliminate others, changing trophic level structure and community composition (De Stefano & 

De Graaf 2003, Picket et al. 2011).  
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Understanding which species survive in such reserves and how they are impacted by varying 

levels of fragmentation, isolation and neighbouring land use is important to ensure the 

persistence of the last remaining species and ecosystem functioning in the remaining natural 

spaces (Fischer and Lindenmayer 2007, Ramesh et al. 2016). In general the species 

richness of small, fragmented and isolated reserves is affected by fragment size (Diamond 

1975, De Stefano & De Graaf 2003, Kerley et al. 2003, Ceballos et al. 2005, Visconti et al. 

2011, Matthies et al. 2017, Gonçalves et al. 2018), fragment shape (Diamond 1975), habitat 

heterogeneity (Ramesh et al. 2016, Matthies et al. 2017), connectivity to additional suitable 

habitat (Diamond 1975, Stevens et al. 2006, Correa Ayram et al. 2016) and surrounding land 

use (De Stefano & De Graaf 2003, Ceballos et al. 2005, McDonald et al. 2008, Visconti et al. 

2011, Pekin & Pijanowski 2012, Mann et al. 2015, Torres-Romero & Olalla-Tárraga 2015, 

Gonçalves et al. 2018). 

 

Garden et al. (2006) reviewed demographic data on urban mammal species, and found that 

population size at a landscape level was significantly affected by patch size, vegetation and 

habitat type, and fragmentation. Patch size affects the number of individuals and species it 

can support (Diamond 1975, Turgeon & Kramer 2012) and the smaller the patch becomes, 

the more likely local extinction events will occur as risk of extinction is usually related to 

population size (Diamond 1975). For this reason, one large patch is generally preferable to 

many small patches over the landscape (Diamond 1975).  

 

Patch shape also plays an important role in species presence and therefore richness 

(Diamond 1975, Ramesh et al. 2016, Matthies et al. 2017). The shape of an area determines 

the amount of core habitat available and the amount of exposed edge, with a longer edge in 

relation to core area allowing for more exposure to anthropogenic effects in an urban context 

(Herse et al. 2018). Some species respond positively to increased edge and the resulting 

variation in habitat (Diamond 1975), but many species are sensitive to edge effects and so 

require a larger core area (Hardt and Forman 1989, Ramesh et al. 2016). 

 

Connectivity refers either to the spatial relationship between patches in a landscape 

(structural connectivity) or the ability of the landscape to facilitate the movement of species 

between patches (functional connectivity), and is considered important for species population 

persistence within fragmented landscapes (Diamond 1975, Correa Ayram et al. 2016). When 

patch size is small, a species’ persistence may rely solely on its ability to disperse, which 

depends largely on the type of habitat adjacent to and between patches (Diamond 1975, 

Brooker et al. 1999, Söndgerath & Schröder 2002, Turgeon & Kramer 2012). Diamond et al. 

(1975) and Turgeon and Kramer (2012) suggest that the number of species a patch can hold 

is a balance between rates of extinction and immigration, i.e. if animals are able to move into 
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and between areas, local extinction may be reduced. Connectivity is also affected by 

permeability of patch boundaries (Stevens et al. 2006). Physical barriers (e.g., walls, fences) 

are important for reducing collisions with vehicles and unregulated access by domestic 

animals and people. However such barriers also prevent movement between patches 

(Garden et al. 2006, Ordeñana et al. 2010).  

Mammal community composition should also be considered as certain species may be more 

vulnerable to, or alternatively more adaptable to the effects of urbanisation (Bateman & 

Fleming 2012). This means that naturally-occurring species community composition might be 

disrupted, influencing how species interact with each other and the environment (Lowry et al. 

2013). Large predatory mammals tend to have large home ranges which are invariably 

reduced and fragmented by urban development (Kerley et al. 2003, Ordeñana et al. 2010). 

The removal of large predators reduces both competition and predation for smaller predators 

and prey species, which may then persist at higher numbers (Bateman & Fleming 2012, 

Lowry et al. 2013). Species which typically thrive in human transformed areas, such as 

house mice, foxes, rabbits, raccoons, deer and coyotes (De Stefano & De Graaf 2003, 

Garden et al. 2006, Ordeñana et al. 2010, Šálek et al. 2015), tend to be those which are able 

to generalize in terms of food sources and habitat preference, and further benefit from the 

absence of competition and predation (Hoffmann & O’Riain 2012, Šálek et al. 2015). Certain 

non-native species (mostly domestic species) also respond positively (Kerley et al. 2003, 

Ordeñana et al. 2010), indicating that another implication of urbanisation is an increase in 

alien invasive fauna with subsequent effects on local mammal populations (Bernardo & Melo 

2013). 

 

Mammal conservation in the City of Cape Town area, internationally recognised for its 

exceptional floral species richness (Rebelo et al. 2011), is particularly challenging. Flat, fertile 

soils in proximity to freshwater were rapidly developed firstly for farming and subsequently for 

housing (Anderson & O’Farrell 2012). Most wildlife populations are thus restricted to marginal 

habitats including wetlands and mountain habitat where development costs were high or 

prohibited (Anderson & O’Farrell 2012). Consequently only small, fragmented and irregularly-

shaped patches were set aside as nature reserves within the Cape Flats region of Cape 

Town (Rebelo et al. 2011). Despite this fragmentation and low proportion of protected habitat 

(approximately 9% excluding Table Mountain National Park), the CCT area still maintains an 

extraordinary wealth of biodiversity as highlighted in April 2019 when citizen science aided in 

the recording of 4 157 individual fauna, flora and fungal species to win the iNaturalist City 

Nature Challenge (iNaturalist Network 2019). 

 

To best conserve the medium and large mammal species still remaining within the CCT 

boundary and more specifically the reserves of the CCT, a clear understanding of current 
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species richness patterns and the potential drivers thereof is necessary. In this chapter the 

species composition results obtained for the camera trap study conducted across 12 of the 

CCT nature reserves (Chapter 3) are used to explore species richness patterns and the 

drivers thereof. 

 

 

4.2 Methodology 

 

4.2.1 Study sites 

 

Eleven of the 12 City of Cape Town nature reserves surveyed using camera traps in 

Chapters 2 and 3 were used in this study. Kenilworth Race course was excluded as it only 

had one species – Raphicerus melanotis (Cape grysbok) – present which was reintroduced 

in the late 2000s.  

 

4.2.2 Species richness 

 

The total number of medium and large mammal species estimated to be present in each of 

the 11 nature reserves was established using camera trap surveys at each site (see Chapter 

3 for detail). Only native medium and large mammal species believed to have persisted 

naturally without the aid of reintroduction are included in this study. Each nature reserve was 

sampled for a minimum of 1 000 camera days and if species richness estimators (ICE, Chao 

2, Jack 1, Jack 2) generated from downloaded data did not indicate that all potential species 

had been recorded, effort was increased to a maximum of 2 010 days. 

 

Species richness estimates were considered robust when all four estimators had reached an 

asymptote and were the same or lower than the observed richness values. Where the 

observed species richness value was lower than species richness estimators after maximum 

survey effort, the mean species richness estimate at that maximum survey effort was used 

for further analysis.  

 

4.2.3 Species richness predictor variables 

 

Satellite imagery (City of Cape Town 2019a), vegetation shapefiles (SANBI 2016) and official 

CCT mapped boundaries (City of Cape Town 2019b) together with ground-truthing and 

reserve manager liaison were used to extract variables hypothesised to influence species 

richness patterns in small urban reserves. Variables included reserve size (Diamond 1975, 

Matthies et al. 2017), area-perimeter ratio (Diamond et al. 1975, Lagro 1991, Helzer & 
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Jelinski 1999, Ewers & Didham 2007, Herse et al. 2018), vegetation heterogeneity (Ramesh 

et al. 2016, Matthies et al. 2017), connectivity (Diamond 1975, Stevens et al. 2006, Turgeon 

& Kramer 2012, Correa Ayram et al. 2016), and permanent freshwater aquatic habitat. 

Larger, more connected reserves with a greater area-perimeter ratio and habitat 

heterogeneity and the presence of permanent water were predicted to individually and 

collectively have a positive effect on species richness. 

 

Reserve size and area-perimeter ratio 

The perimeter (km) and area (km2) of each reserve were calculated using QGIS v2.18.23 

software (QGIS Development Team 2019). An area-perimeter ratio was then determined for 

each reserve by dividing the area of the reserve by the perimeter length. This proportion is 

considered to be indicative of the ratio of core habitat relative to edge habitat (Helzer & 

Jelinski 1999) with high ratio values indicating a greater proportion of interior habitat relative 

to edge habitat.  

 

Vegetation heterogeneity 

Vegetation across all of the CCT reserves, excluding human infrastructure, was divided into 

five broad vegetation categories. The bioregion descriptions of Rebelo et al. (2006), namely 

Southwest Fynbos, West Coast Renosterveld and West Strandveld, were condensed into 

“fynbos”, “renosterveld” and “strandveld” categories respectively. Wetland or coastal (azonal) 

vegetation was classed as “water-associated” vegetation (Rebelo et al. 2006) and 

transformed vegetated areas (i.e. mowed grassland areas or plantation) was included as the 

fifth category labelled “transformed” vegetation.  

 

The area (ha) of each of the five habitat types within each reserve was calculated using GIS 

vegetation shapefiles (SANBI 2016) and satellite photography for transformed areas (see 

Chapter 3). These absolute values were then used to calculate a Shannon-Wiener diversity 

index for each reserve to appraise large-scale vegetation heterogeneity (Matthies et al. 2017) 

using the formula: 

𝑯′ =  − ∑ 𝒑𝒊 𝐥𝐧 𝒑𝒊

𝒔

𝒊=𝟏

 

where H = habitat diversity index, s = number of habitat types present, and pi = proportion of 

the total area (ha) of the reserve (Shannon 1948). The higher the index value, the more 

diverse or heterogeneous the reserve is believed to be from vegetation type perspective. 

 

Connectivity 

There are a number of methods available to quantify both structural and functional 

connectivity between two potentially habitable areas (Stevens et al. 2006). These methods 
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can be complex and depend largely on the arrangement of patches in relation to the size, 

shape and quality of corridors within a larger landscape matrix, as well as the size and 

dispersal behavioural of the species within reserves (Brooker et al. 1999, Tischendorf & 

Fahrig 2000, Kindlmann & Burel 2008, Crooks et al. 2011, Bateman & Fleming 2012, Correa 

Ayram et al. 2016). Because Cape Town is already densely developed, most of the few 

existing corridors connect reserves to patches which are often smaller than the reserves 

themselves, making traditional connectivity measures difficult. For the purposes of this 

study, connectivity is simply quantified as the length (km) of reserve boundary directly 

adjacent to natural or ecologically functional habitat that can facilitate the movement of 

medium to large mammals to or from the reserve. Disturbed or transformed non-native 

vegetation was also considered as functional habitat if perceived to mimic the structure of 

native vegetation and hence provide some form of cover as a refuge and to facilitate 

movement (e.g. stands of invasive alien plants).  

 

Permanent freshwater aquatic habitat 

If a reserve possessed at least one permanent wetland such as a perennial river/stream 

and/or large waterbody (dam, wetland, etc.) it was considered as having suitable habitat for a 

water-associated medium to large mammal species (e.g. Cape Clawless otter – Aonyx 

capensis). Results were classified as binary indicator variables, with presence of permanent 

waterbodies indicated by a score of 1 and absence by a score of 0. The consideration of 

perennial water sources rather than non-perennial prevented the under-representation of 

water-associated species such as otter. 

 

4.2.4 Analyses 

 

Non-metric dimensional scaling (NMDS) ordination was conducted using the vegan package 

in R v3.5.3 (R Core Team 2019) to provide a visual representation of similarities between 

reserves based on medium and large mammal community structure (using Jaccard index for 

species presence/absence) and the species richness predictor variables. Pairwise plots and 

correlation coefficients were used to determine which covariates may be correlated with 

species richness, as well as to identify potential covariate collinearity. Collinearity between 

covariates was tested for in the car package (Fox & Weisberg 2019) using variance inflation 

factors (VIF) with species richness as the response variable. Any covariates with VIF scores 

of >5 and correlation coefficients of >7 were considered to have collinearity and were 

modelled separately (Dormann et al. 2013). 

 

Because covariates contained no random effects and only one value per site, simple linear 

regression models were used to assess drivers of species richness. Linear regression 
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models were run using various combinations of covariates and due to small sample size (n = 

11) only two covariates were included in each model. Models were ranked according to 

second-order Akaike information criterion (AICc) calculated using the AICcmodavg package 

(Mazerolle 2019). The models with the lowest ∆AICc scores (difference between the model 

and lowest AICc score) were considered likely to predict species richness (Burnham et al. 

2004). P-values and F-statistics were also compared to verify which model was most 

parsimonious in predicting species richness. 

 

 

4.3 Results 

 

4.3.1  Species richness  

 

Nineteen native, medium to large mammal species were recorded across the 11 nature 

reserves (Table 4.1). Species richness estimators reached asymptotes and matched 

observed species richness at all reserves except at Helderberg and Witzands nature 

reserves (Chapter 3, Figure 3.2), so mean species richness estimates for these were 

calculated at 13 and 15 respectively.  

 

Estimated medium and large mammal species richness across the 11 study sites ranged 

from three (Uitkamp Wetland Nature Reserve) to 15 species (Witzands Aquifer Nature 

Reserve). There was also a higher recorded species richness of carnivores (n = 11) than 

herbivores (n = 7), and only one omnivore (chacma baboon). Mean and median estimated 

species richness across the reserves was eight species, with the mode at five species. Cape 

porcupine was present in all 11 reserves, with Cape grysbok and small grey mongoose also 

being quite common with records in 10 and nine of the reserves respectively. Klipspringer 

and Hewitt’s red rock hare were only recorded in Steenbras Nature Reserve and Cape fox 

only in Witzands Nature Reserve. 

  



 61 

Table 4.1: Species presence (marked “X”), observed species richness and estimated species richness 
(based on estimators ICE, Chao 2, Jack 1, Jack 2 - see text) for each of the 11 City of Cape Town 
Nature Reserves included in this study. Species are listed in order of most common occurrence and 
diet is indicated by “H” (herbivore), “C” (carnivore) and “O” (omnivore). Cape and scrub hare are 
grouped for the purposes of this study. Reserves are listed in order of species richness. 
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Hystrix africaeaustralis Cape porcupine H X X X X X X X X X X X 

Raphicerus melanotis Cape grysbok H  X X X X X X X X X X 

Galerella pulverulenta 
Small grey 
mongoose 

C  X X X  X X X X X X 

Genetta tigrina Large spotted genet C   X X  X  X X X  

Caracal caracal Caracal C     X X X X  X X 

Sylvicapra grimmia Common duiker H       X X X X X 

Lepus capensis/saxatilis Cape/scrub hare H    X  X   X X X 

Herpestes ichneumon 
Large grey 
mongoose 

C X    X   X  X X 

Mellivora capensis Honey badger C       X X X X X 

Atilax paludinosus Water mongoose C X  X  X X  X    

Aonyx capensis Cape clawless otter C     X X  X X   

Ictonyx striatus Striped polecat C  X     X   X X 

Raphicerus campestris Steenbok H  X     X    X 

Genetta genetta Small spotted genet C       X X   X 

Panthera pardus Leopard C         X X  

Papio ursinus Chacma baboon O         X X  

Oreotragus oreotragus Klipspringer H         X   

Pronolagus saundersiae 
Hewitt's red rock 
hare 

H         X   

Vulpes chama Cape fox C           X 

Observed species richness  3 5 5 5 6 8 9 11 12 12 12 

Estimated species richness  3 5 5 5 6 8 9 11 12 13 15 

 

 

4.3.2  Species richness predictor variables 

 

Reserve sizes ranged from 0.32 to 84 km2 (mean = 13.07 ± 23.03) (Table 4.2). Area to 

perimeter proportions varied from 0.05 for Uitkamp to 1.69 for Steenbras (mean = 0.46 ± 

0.48), with values for the largest reserves (Witzands and Steenbras) showing the largest 

area in proportion to reserve edge (>1). Blaauwberg, Witzands and Steenbras are the only 

three reserves with an area to perimeter proportion of more than 0.6. Uitkamp Wetland 

Nature Reserve had the lowest connectivity with only 0.79 km (11%) of its boundary 

bordering functional habitat suitable for dispersal. In comparison, Witzands shares 22.6 km 

(81%) of its border with suitable habitat. 

 

 



 62 

Table 4.2: Species richness predictor variable values for the respective reserves. Area to perimeter 
ratio was calculated using reserve size (km

2
) relative to boundary length (km), connectivity refers to 

the distance of boundary line shared with functional dispersal habitat, habitat heterogeneity of the 
respective reserves was calculated from the proportional representation of five different habitat types 
present in each reserve and expressed as a Shannon-Wiener diversity index value, the presence-1 or 
absence-0 of permanent freshwater aquatic habitat for aquatic or semi-aquatic mammals are indicated 
under aquatic habitat (see text for more detail). 

Nature Reserve Size (km
2
) 

Area : Perimeter 
ratio 

Connectivity 
(km) 

Heterogeneity 
(SWDI) 

Aquatic 
habitat 

Uitkamp  0.32 0.05 0.79 0.54 1 

Bracken 0.36 0.14 1.13 0.57 0 

Zandvlei  2.00 0.11 2.33 0.89 1 

Wolfgat 2.62 0.29 1.72 0.00 0 

Tygerberg 3.88 0.22 2.29 0.62 1 

Helderberg 4.02 0.36 5.66 0.29 1 

False Bay  6.32 0.28 8.84 1.28 1 

Table Bay  8.80 0.24 4.93 0.51 1 

Blaauwberg 14.45 0.61 14.18 0.90 0 

Witzands  17.00 1.09 22.60 0.13 0 

Steenbras 84.00 1.69 47.69 0.47 1 

Mean 13.07 0.46 10.20 0.56 - 

SD 23.03 0.48 13.46 0.35 - 

 

 
Vegetation heterogeneity scores varied from 1.28 in Table Bay to 0 for Wolfgat which had 

only one habitat type present (strandveld). The mean vegetation heterogeneity score was 

0.56 ± 0.35. Permanent freshwater aquatic habitat was present at seven of the 11 reserves.  

 

4.3.3  Non-metric multidimensional scaling of predictor variables 

 

The NMDS ordinance revealed a strong association between reserve size, connectivity and 

area-perimeter ratio as explanatory variables (Figure 4.1), all of which are highest in 

Steenbras and Helderberg. These two reserves had nine species in common, five of which 

(klipspringer, Hewitt’s red rock hare, leopard – Panthera pardus, chacma baboon and honey 

badger) had a strong relationship with the variables area-perimeter ratio, connectivity and 

reserve size. 
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Figure 4.1: Non-metric dimensional scaling (NMDS) plot of reserve similarity using species presence 
and species richness predictor covariates. Reserves are indicated by capital letters (red): UK (Uitkamp 
Wetland), TB (Table Bay), FB (False Bay), TY (Tygerberg), ZV (Zandvlei Estuary), WG (Wolfgat), ST 
(Steenbras), HB (Helderberg), BR (Bracken), WZ (Witzands Aquifer) and BB (Blaauberg). Blue lines 

indicate the strength of predictor variables: Heterogeneity (vegetation heterogeneity), Freshwater 
(presence of permanent freshwater aquatic habitat), Size (reserve size), Connectivity (boundary 

connectivity) and A:P (area-perimeter ratio). Species are indicated in green text with abbreviations: 
WMg (water mongoose), LMg (large grey mongoose), SMg (small grey mongoose), LSG (large-
spotted genet), SSG (small-spotted genet), otter (Cape clawless otter), porc (porcupine), grysbok 

(Cape grysbok), fox (Cape fox), polecat (striped polecat), hare (Cape/scrub hare), HRR (Hewitt’s red 
rock hare), baboon (chacma baboon), badger (honey badger) and duiker (common duiker). A “+” 

indicates that species overlap, i.e. have the same centre point. 
 

 

Uitkamp Wetland Nature Reserve, with the smallest area, the lowest area-perimeter ratio and 

very low connectivity, does not associate closely with any other reserves. However both 

freshwater habitat and the presence of large grey mongoose make it most similar to Table 

Bay and Tygerberg Nature Reserves. False Bay, Zandvlei and Wolfgat cluster at the bottom 

of the plot and all three reserves comprise of large proportions of strandveld vegetation and 

have four mammal species (porcupine, grysbok, small grey mongoose, large-spotted genet) 

in common. Witzands and Blaauwberg group together with high area-perimeter ratio and 

connectivity values. Together with Bracken, Witzands and Blaauwberg reserves have no 

permanent freshwater aquatic habitat and share the rarer steenbok and striped polecat. 

Unsurprisingly the NMDS plot shows a strong association between Cape clawless otter and 

reserves with permanent fresh water aquatic habitat. Large grey mongoose clusters close to 

otters but is not known to associate closely with aquatic habitat (Palomares & Delibes 1990).  
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Strong correlations are evident between area-perimeter ratio, connectivity and reserve size 

(correlation coefficients of >0.9, Table 4.3) and support the NMDS plot that places these 

three covariates together. This is confirmed by the VIF scores for reserve size, area-

perimeter ratio and connectivity which produce values >5, indicative of strong collinearity. 

These covariates were thus modelled separately from each other (Table 4.3). The correlation 

matrix also indicates a significant positive correlation between area-perimeter ratio and 

species richness (0.675). 

 

Table 4.3: Correlation coefficients between the response variable (species richness) and predictor 
variable data ranges, namely reserve size, heterogeneity, permanent freshwater aquatic habitat 
(“water”), area-perimeter ratio and boundary connectivity (see Table 4.2 for values). Variance inflation 
factors (VIF) for each predictor variable indicate covariate collinearity if greater than 5. 

 
Species 
richness 

Reserve 
size (Ha) 

Hetero-
geneity 

Freshwater A-P ratio Connectivity 

Species 
Richness 

1 - - - - - 

Reserve Size 0.437 1 - - - - 

Heterogeneity -0.237 -0.097 1 - - - 

Water -0.028 0.146 0.355 1 - - 

A-P Ratio 0.675 0.911 -0.254 -0.114 1 - 

Connectivity 0.591 0.961 -0.137 0.004 0.983 1 

VIF score N/A 36.137 2.741 1.777 167.945 295.770 

 

 

Eight different linear regression models were run using individual variables first in order to 

rank model fit and thus discard the least significant collinear models. Additional models were 

then run using combinations of the remaining covariates (Table 4.4). Due to small sample 

size (n = 11), no more than two covariates were combined in models. 

 

Table 4.4: Models ranked according to AICc scores and other selection criteria (p-value, F-statistic 
and residual standard error), with species richness as the response variable and area-perimeter ratio, 
connectivity, reserve size, presence of permanent freshwater aquatic habitat and heterogeneity as 
covariates (see Table 4.2 for values).  

Model formula AICc ∆AICc P-value F-Stat SE 

SR = β0 + β1A-P Ratio 63.015 0 0.023 7.547 3.056 

SR = β0 + β1Connectivity 64.981 1.966 0.055 4.839 3.342 

SR = β0 + β1Reserve Size 67.385 4.37 0.179 2.122 3.728 

SR = β0 + β1A-P Ratio + β2Heterogeneity 68.160 5.145 0.085 3.417 3.228 

SR = β0 + β1A-P Ratio + β2Freshwater 68.202 5.187 0.086 3.388 3.234 

SR = β0 + β1Heterogeneity 69.079 6.064 0.483 0.534 4.026 

SR = β0 + β1Freshwater 69.705 6.691 0.936 0.007 4.142 

SR = β0 + β1Heterogeneity + β2Freshwater 74.275 11.26 0.254 0.782 4.262 
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The most parsimonious model explaining species richness was area-perimeter ratio (p = 

0.023). It also yielded the highest F-statistic (7.547) and lowest standard error (3.056). It was 

a stronger fit than the collinear covariates of connectivity (∆AICc = 1.966) and reserve size 

(∆AICc = 4.370). The next best fitting model was the combination of area-perimeter ratio and 

heterogeneity (∆AICc = 5.145), but was similar in predictive power to a combination of area-

perimeter ratio and permanent freshwater aquatic habitat (∆AICc = 5.187). Both of these 

models are different from the minimum AIC score by >4, thus there was not much support for 

either model (Burnham et al. 2004). Water and heterogeneity considered separately were not 

found to be significant predictors of species richness (∆AICc > 6), and even less so when 

combined (∆AICc = 11.260). 

 

When richness was plotted as a function of area-perimeter ratio (Figure 4.2), relatively few 

observed values fell within the 95% confidence intervals of the model, but an R2 value of 

0.4561 (p = 0.023) indicated a significantly positive linear relationship between species 

richness and area-perimeter ratio. 

 

 

Figure 4.2: Linear model (solid line) fit where estimated species richness is a function of area-
perimeter ratio (R

2
 = 0.4561, p = 0.023). Shaded area indicates 95% confidence intervals and points 

indicate estimated species richness values. 

 

 

4.4 Discussion 

 

Carnivore species richness was higher than herbivores across all reserves. All but one of the 

carnivore species (viz. leopard) were classified as either small or medium carnivores. 
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Mesopredators persist and even thrive in human modified environments (Prugh et al. 2009, 

McCleery 2010, Bateman & Fleming 2012). The global rise of mesopredators is largely due 

to the absence of large predators which usually restrict the movement and/or predate on 

mesopredators but also because of abundant prey species in human dominated landscapes 

which in turn benefit from abundant food resources (Prugh et al. 2009, McCleery 2010, 

Hansen et al. 2011, Bateman & Fleming 2012, Bernardo & Melo 2013, Ramesh et al. 2016). 

Urban populations of commensal wildlife often exhibit reduced home ranges, which drives 

higher population densities in response to access to abundant anthropogenic feed sources 

(McCleery 2010, Newsome et al. 2010, Bateman & Fleming 2012, Šálek et al. 2015).  

 

Small grey mongoose, Cape porcupine and Cape grysbok were the most common species in 

the study areas (>80 % of reserves). Both small grey mongoose and porcupine are classified 

as adaptable generalists which are predicted to survive better in fragmented, transformed 

landscapes (De Stefano & De Graaf 2003, Garden et al. 2006, Baker & Harris 2007, 

Ordeñana et al. 2010, Lowry et al. 2013, Šálek et al. 2015). These species seem to thrive in 

peri-urban areas due to varied combinations of increased food availability and absence of 

competition and predation pressure from species which are more sensitive to reduced home 

ranges and disturbance (Newsome et al. 2010, Bateman & Fleming 2012, Šálek et al. 2015). 

Thus porcupine and small grey mongoose can forage in peri-urban landscapes including 

residential gardens and public open spaces while taking refuge in small protected areas 

(Cavallini & Nel 1990). Cape grysbok by contrast is a fynbos endemic and a highly selective 

browser (Kigozi et al. 2008) that is unlikely to be able to exploit food in anthropogenic 

landscapes. They may be present mainly due to the availability of fynbos-specific habitat 

requirements rather than then being adaptable generalists, but may also benefit from 

reduced predation pressure in small urban reserves although caracal which are also present 

in many reserves are known to predate on them (Leighton et al. in press). 

 

Hewitt’s red rock hare and klipspringer were only recorded at Steenbras Nature Reserve, 

which is one of only two reserves that have their preferred habitat of bare rocky outcrops 

(Druce et al. 2009, Matthee et al. 2016). Chacma baboon and leopard were only recorded at 

Helderberg and Steenbras nature reserves, which both have rugged rocky terrain and high 

connectivity with large (>200 000 ha) protected areas. Leopards in particular have large 

home ranges (up to 900 km2) within the Western Cape mountain habitat (Martins & Harris 

2013), and could not persist in small isolated reserves but may pass through them provided 

they are connected to larger areas with suitable habitat. The honey badger is another 

species with large home range requirements (Begg et al. 2005) and was recorded at two 

large reserves (Tygerberg and Blaauwberg) with high area-perimeter ratios and connectivity 

to non-urban land uses. 
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Strong positive correlations were found between species richness and variables such as 

reserve size, connectivity and area to perimeter ratio. However, collinearity was also found 

between the predictors of species richness viz. reserve size, connectivity and area to 

perimeter ratio. The best predictor of high species richness proved to be reserve area to 

perimeter ratio (Table 4.3 and Figure 4.2), suggesting that reserves with the largest amount 

of core area relative to edge will be able to accommodate the highest number of species. 

This relationship is well supported by theory and substantiated by empirical proof for a 

number of taxa (Diamond 1975, Helzer & Jelinski 1999, Orrock et al. 2003, Ewers & Didham 

2007, Nams 2011, Herse et al. 2018). Area-perimeter ratio was largest at Witzands and 

Steenbras and both of these reserves showed relatively high species richness. However, two 

outliers were evident, namely Tygerberg and Helderberg, both of which have relatively small 

area-perimeter ratios but still yielded high species richness scores (n = 11 and n = 13 

respectively). This may be attributed to their high levels of connectivity with other natural 

habitat, noting that if a large proportion of a reserve boundary is connected to suitable habitat 

and the boundary is permeable, then the core area is effectively increased (Stevens et al. 

2006).  

 

Herbivore species richness also increased with increasing core area size, and consequently 

the largest reserves had the highest herbivore species richness (Blaauwberg = 4, Witzands 

Aquifer = 5, Steenbras = 5). Helderberg, which despite not being as large as the above 

reserves is connected to a larger conservation area, also had four herbivore species. 

Conversely, carnivore species richness does not seem to follow the same pattern. Only five 

carnivore species were recorded at Steenbras Nature Reserve although it has the largest 

area-perimeter ratio. Smaller reserves had higher carnivore species richness in comparison, 

perhaps due to the availability of anthropogenic food sources (Newsome et al. 2010, 

Bateman & Fleming 2012, Šálek et al. 2015). Although leopard was also recorded at 

Helderberg Nature Reserve which has a healthy carnivore community (n = 7 spp.), it was a 

single event, suggesting that leopard are transient rather than permanent residents. 

Tygerberg, with a low perimeter-area ratio (0.22) but good boundary connectivity, had the 

most carnivore species (n = 8), suggesting that some mesopredator species are either 

unaffected by, or respond positively to large edges which allow for movement (Diamond 

1975, Nams 2011). 

 

Vegetation heterogeneity showed a weak negative correlation (-0.237) with species richness 

(Table 4.3). This contradicts a body of literature suggesting that increased habitat 

heterogeneity positively influences species richness in an area (Ramesh et al. 2016, 

Matthies et al. 2017). While the fynbos, strandveld and renosterveld vegetation 

classifications used here differ in floral species composition, they may provide similar 
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structural cover (low shrubland) for species (Rebelo et al. 2006). Separating vegetation types 

as fynbos, strandveld and renosterveld in this context might thus only be relevant to 

specialist herbivores and rather meaningless for mesopredators or generalist herbivores in 

terms of functional habitat. Inclusion of additional parameters such as vegetation structure or 

prey availability may therefore be more relevant when exploring species richness patterns 

and is something that future studies should consider including. It is also possible that reserve 

size and the area-perimeter ratio are such important drivers of species richness in small 

reserves that the effects of vegetation type are largely negated. Presence of permanent 

freshwater aquatic habitat explains the presence of select species such as otter and water 

mongoose. 

 

 

4.5 Conclusions 

 

Mammal species richness varied widely within the 11 City of Cape Town nature reserves 

surveyed in this study but collectively they currently provide refugia for 19 mammal species. 

A large core area of good habitat (irrespective of bioregion type) was the best predictor of 

high species richness across the reserves and large reserves that are well connected had 

the highest overall species richness. As predicted, generalists (e.g. porcupine and grey 

mongoose) were the most common species and carnivores were better represented (n = 11) 

than herbivores (n = 7). Species with large home ranges such as leopard seem to be most 

associated with reserves with high area to perimeter ratios and connectivity. Habitat 

specialists including klipspringer and Hewitt’s red rock hare, and Cape clawless otter and 

water mongoose were only present in those reserves that provided rocky outcrops or 

permanent freshwater aquatic habitat respectively.  

 

Overall the results presented here provide few surprises and suggest that small, fragmented 

natural landscapes within urban areas provide important refugia for a number of mammalian 

wildlife species. Consequently, and as predicted by theory small, isolated reserves such as 

Uitkamp had the lowest overall richness while large well, connected reserves had the 

highest. As has been demonstrated through the Durban Metropolitan Open Space System 

(Roberts 1994), maintaining species richness in urban areas is best done by establishing 

large reserves and stewardship sites with good connectivity to natural land. Urban 

conservationists can therefore improve species richness of urban protected areas by seeking 

to maximise the area to perimeter ratio, ensuring connectivity of reserves to other natural 

land and being cognisant of the needs of species that are habitat specialists. Further 

reduction of reserve or patch size might greatly reduce core area size with grave 

consequences for species richness and an increased risk of local extinctions, particularly for 

herbivores and edge-sensitive species. Existing small and fragmented reserves may be able 
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to prevent further species loss if existing connectivity is maintained, but the only option for 

increasing species richness may be to increase core area, which can only be achieved by 

expanding to include surrounding area containing suitable habitat. While the CCT 

Biodiversity Network aims to increase patch size and connectivity (Holmes et al. 2012), the 

CCT area is already developed to the extent that relatively little viable municipal land 

remains. Because of this, the acquisition of new land for expansion of conservation areas 

may be difficult in the context of the CCT area, but the development of stewardship 

agreements with neighbouring land owners may assist in securing existing corridors and 

suitable habitat to maintain species richness. To do this effectively, adjacent areas chosen 

should ideally contribute to enlarging the reserve core area rather than lengthening of edge 

habitat by inclusion of small perpendicular strips of land or narrow corridors. 
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CHAPTER FIVE: 
RESEARCH FINDINGS AND MANAGEMENT IMPLICATIONS 

 

 

5.1 Introduction 

 

Transformation of land through urbanisation has a negative impact on biodiversity, 

ecosystem functioning and ultimately ecosystem services essential for human recreation and 

wellbeing (Anderson & O’Farrell 2012, O’Farrell et al. 2012, Pickett et al. 2011, Cheesbrough 

et al. 2019). Despite this many animals persist in the urban matrix and may even thrive in 

small protected areas within or on the edge of urban areas (McKinney 2002, De Stefano & 

De Graaf 2003, Garden et al. 2006, Baker & Harris 2007, Ordeñana et al. 2010, Pickett et al. 

2011, Lowry et al. 2013, Šálek et al. 2015). Conservation of remnant populations of medium 

and large mammal species in the urban environment is important, not only for the sake of the 

species themselves, but also for the persistence of ecosystem processes directly and 

indirectly linked to their presence and behaviour (Kerley et al. 2003, De Stefano & De Graaf 

2003, Ceballos et al. 2005, Visconti et al. 2011). A first step in preserving wildlife in protected 

areas is deriving methods for monitoring species presence and population trends that will 

enable evaluation of conservation efforts and associated management actions (Van der Ree 

2004, Anderson & O’Farrell 2012, Fischer et al. 2012, Saito & Koike 2013). 

 

The City of Cape Town (CCT) Biodiversity Management Branch manages 17 urban and peri-

urban nature reserves. Historical accounts suggest that 39 medium and large mammal 

species were once present in the area, but it is unclear how many of these native species 

persist within the CCT’s current network of nature reserves. Variables influencing the 

presence of mammal species in the different reserves are also unknown, limiting the ability of 

management to achieve their goal of conserving the largest number of species possible in 

existing protected areas and possibly motivating for new reserves. While the primary aim of 

this study was thus to develop and use a standardised monitoring protocol to determine the 

medium and large mammal species community composition within the respective CCT 

reserves, the secondary aim was to understand how reserve-level variables that might 

positively or negatively influence species community composition. The latter is essential to 

improving conservation and management strategies of small protected areas that typically 

suffer the combined challenges of fragmentation, isolation and small size and thus need 

ongoing human intervention to sustain healthy mammal populations. 
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5.2 Survey protocol 

 

The hardening of the boundaries of urban nature reserves and ongoing development of the 

surrounding land increases deleterious edge effects and reduces connectivity with other 

parcels of natural land. Understanding which species are most affected by these 

anthropogenic changes requires repeated, cost effective and reliable surveys (Kerley et al. 

2003, Garden et al. 2006, Cilliers & Siebert 2012). Camera traps are an excellent tool for 

conducting faunal surveys in protected areas (Kelly 2008, Rowcliffe et al. 2008, Tobler et al. 

2008, Ordeñana et al. 2010, Rovero et al. 2010, Colyn et al. 2017) and were used in this 

study to sample medium and large mammal species presence in the twelve CCT nature 

reserves larger than 30 ha (Chapter 3).  

 

Results support a growing body of literature that reveals smaller reserves as the most 

susceptible to anthropogenic effects and consequent local extinctions (Diamond 1975, 

Turgeon & Kramer 2012). Monitoring mammals in small reserves requires a low survey effort 

which means it is feasible to conduct annual monitoring of species to assess whether 

interventions (e.g. reintroductions) are viable in such reserves. While larger reserves require 

a much higher survey effort they also have higher species richness and appear less prone to 

local extinctions. The sampling protocol developed in this study (see Chapter 3 for protocol 

and Appendix A for camera placement details) and survey effort (summarised in Table 5.1) 

are considered to serve as realistic and achievable long term monitoring tool for reserve 

managers. 

 

Table 5.1: Lowest recommended camera trapping survey effort to be used for effective species 
richness estimates across 11 CCT nature reserves. Cameras should be placed at the same locations 
to reduce detection bias (see Appendix A for details) and should be in situ for the number of camera 
days (number of cameras multiplied by number of actual survey days) shown to provide a reliable 
estimate of species richness in each reserve. 

Nature Reserve No. Cameras Survey period (days) No. Camera days 

Uitkamp Wetland 5 50 250 

Bracken 5 160 800 

Zandvlei Estuary 10 100 1000 

Wolfgat 10 90 900 

Tygerberg 9 106 950 

Helderberg 15 117 1750 

False Bay 15 54 800 

Table Bay 12 80 950 

Blaauwberg 15 47 700 

Witzands Aquifer 20 >93 >1850 

Steenbras 30 52 1550 
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5.3 Species richness patterns 

 

Historical accounts suggest that 39 medium and large mammal species (when Cape and 

scrub hare are grouped as Lepus spp.) were present in the general area of the CCT at the 

time of Dutch settlement in the 17th century (Boshoff & Kerley 2001). More recently the CCT 

Biodiversity Database, and citizen science portals iNaturalist and iSpot suggested a total of 

22 medium and large mammal species in the 12 surveyed CCT reserves over a five year 

period preceding this study (2012 to 2017). A recent study by Okes and O’Riain (2019) 

highlighted the value of opportunistic citizen sightings in recording rare and elusive species 

over longer time intervals relative to a single formal survey. However it is important to stress 

that citizen sighting data bases are confounded by detection bias, misidentification and 

unequal sampling effort and can thus provide a distorted perspective of how well select 

species are surviving within protected areas. This study, using camera traps, recorded 19 

native and non-reintroduced species present in the 12 CCT reserves, which is 86% of the 

species in the existing databases and 49% of the historically-occurring species.  

 

Species in the existing databases that were not recorded in this study included: bat-eared fox 

(Otocyon megalotis), striped weasel (Poecilogale albinucha), black-backed jackal (Canis 

mesomelas) and grey rhebuck (Pelea capreolus). Only one species that is currently not in 

the existing data bases was recorded in this study, viz. Hewitt’s red rock hare (Pronolagus 

saundersiae). The most recent records for bat-eared fox, striped weasel and black-backed 

jackal were in 2013, suggesting they may have disappeared from the area rather than being 

present but not detected in this study. The status of grey rhebuck is uncertain as a local 

extinction event is thought to have occurred at Tygerberg Nature Reserve, where the species 

was recorded in the databases, shortly before the camera trap survey was conducted. A 

better grasp of the loss of these species is needed and their disappearance accentuates the 

importance of understanding what drives current species persistence and richness patterns 

to avoid further loss. 

 

Recorded species richness across reserves ranged from three to 12 species and generally 

met the expectation that larger reserves will have higher species richness (Chapter 4). A 

higher richness of carnivores (n = 11) than herbivores (n = 7) was also recorded, although 

this ratio (1.6:1) was not dissimilar to that of historical records (1.5:1). Two generalist 

species, the Cape porcupine (Hystrix africaeaustralis) and small grey mongoose (Galerella 

pulverulenta), were found in most reserves, but surprisingly a habitat specialist, the Cape 

grysbok (Raphicerus melanotis), was as widely distributed, and seems capable of persisting 

in even small fragments of natural habitat.  
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5.4 Drivers of species richness patterns 

 

Species richness patterns were further explored by comparing camera trap survey results 

with the size, connectivity, area-perimeter ratio, vegetation heterogeneity and presence of 

permanent freshwater aquatic habitat of all reserves (Chapter 4). While reserve size and 

connectivity were positively correlated to species richness, linear models showed that area-

perimeter ratio had the strongest association with species richness, suggesting that reserves 

with a larger core area compared to edge length are able to support higher species richness, 

irrespective of vegetation type. It is thus not simply a matter of increasing the size of reserves 

to improve species richness and species persistence probabilities, as the shape of any 

potential acquisitions must also be considered (Diamond 1975, Helzer & Jelinski 1999, Herse 

et al. 2018). Narrow or irregularly shaped land pieces with high edge proportions might add 

little value without significant core area (Helzer & Jelinski 1999, Herse et al. 2018).  

 

Results suggest that it is also important to consider area – perimeter ratio when any potential 

reserve size reductions, boundary alterations or land-use change on a boundary are 

considered. Any change or loss that will significantly affect the core area of the reserve might 

have disproportional effects on sensitive species persistence and overall species richness 

(Hardt and Forman 1989, Helzer & Jelinski 1999, Orrock et al. 2003, Ewers & Didham 2007, 

Nams 2011, Herse et al. 2018). If the edge is increased, reserves are more susceptible to 

anthropogenic effects and edge-sensitive species may no longer be able to persist (Diamond 

1975, Nams 2011, Ramesh et al. 2016). Connectivity, as calculated here by length of reserve 

boundary adjacent to suitable dispersal habitat, proved to be important for species richness 

with reserves described as having a low area-perimeter ratio having more species than 

expected. This trend is apparent because natural land or suitable habitat adjacent to a 

reserve effectively increases the size of the core habitat area (Stevens et al. 2006) which has 

a positive effect on species richness.  

 

Non-metric multidimensional scaling of species richness with reserve level variables and all 

19 mammal species provided a useful visual summary of how these variables influence the 

presence of different species and how different species may share a preference for select 

variables. Thus Cape clawless otter (Aonyx capensis) and water mongoose (Atilax 

paludinosus) are noticeably absent from reserves without permanent freshwater aquatic 

habitat and klipspringer (Oreotragus oreotragus), baboon (Papio ursinus) and rock rabbits 

were only found in reserves with access to steep, rocky habitat. Another widely supported 

trend evident in this study was the absence of large predators, e.g. the leopard (Panthera 

pardus), from all small reserves and medium sized reserves with poor connectedness. 
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Together these findings suggest that while increasing the size of already isolated reserves 

may not be an option, where connectivity to suitable habitat exists it should be maintained or 

even improved by securing the land and converting it to protected status, via means such as 

stewardship agreements with neighbouring landowners. Steenbras and Helderberg are 

currently connected to large expanses of protected and conserved land, and similar 

connectivity should be prioritised in the form of stewardship agreements with landowners 

bordering Witzands, Blaauwberg and Tygerberg to ensure the persistence of honey badger 

(Mellivora capensis) and improve chances of leopard, black backed jackal and striped 

polecat (Ictonyx striatus) returning to the area. Caracal (Caracal caracal) and Cape/scrub 

hare (Lepus capensis/saxatilis) also associate (but to a lesser degree) with larger reserve 

size, better connectivity and higher area-perimeter ratio. Klipspringer (Oreotragus 

oreotragus) and Hewitt’s red rock hare were strongly associated with area-perimeter ratio, 

but as they are only found in Steenbras Nature Reserve this is most likely due to preferred 

rocky habitat which is not found elsewhere in the city. Striped polecat do not associate 

strongly with any of the measured reserve attributes, but all the reserves where they are 

present are situated on the edges of the CCT municipal boundary. 

 

Neither small- nor large-spotted genet were found in the two smallest reserves and only 

appeared in reserves ≥ 200 ha (i.e. Zandvlei), suggesting that they are vulnerable to 

extinction in small fragments. Neither species was found in Table Bay, although this may be 

due to the large proportion of water-associated vegetation that reduces the cover provided by 

fynbos, strandveld or renosterveld habitat (see Chapter 2 for Table Bay site description). 

Without more information on why they are absent from the smaller reserves, it is unclear as 

to whether reintroduction of genet into small reserves is feasible or desirable. Interestingly, 

large- and small-spotted genet seldom overlapped, with the former detected in the southern 

and eastern reserves, the latter only in the northern reserves, and some overlap in the 

centrally-located Tygerberg Nature Reserve. 

 

None of the reserve attributes used to interrogate drivers of species richness patterns 

seemed to explain the occurrence of steenbok (Raphicerus campestris), common duiker 

(Sylvicapra grimmia) or Cape fox (Vulpes chama) and this leaves avenues for further 

exploration. Duiker occurs in five reserves and steenbok in only three, and they overlap in 

two of the reserves. In all the reserves they co-occur with Cape grysbok. How these three 

small browsing antelope species (≤18 kg) use the CCT landscape might be particularly 

interesting to explore.  
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5.5 Conclusions 

 

The study shows that while a number of historically-occurring medium and large mammal 

species have already been lost in the CCT area, nearly half of these species have been able 

to persist despite urbanisation. CCT nature reserves with high area to perimeter ratios and, 

where this is low, high connectivity to suitable habitat are better able to support medium and 

large mammal species richness and species persistence. Further reduction of core habitat 

within existing CCT reserves may greatly reduce species richness and potentially encourage 

local extinctions, particularly for herbivores and edge-sensitive species. Reserve expansions 

and/or stewardship agreements that will significantly increase core area should be prioritised 

and current connectivity retained, or improved, to increase and sustain species richness. 

Regular monitoring of medium and large mammals species presence using a standardised 

sampling protocol should be put in place to guard against further species loss. Camera traps 

with a placement protocol as used in this study together with the minimum camera day effort 

estimates presented here for each reserve should provide comparable results. 
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APPENDICES 
 
APPENDIX A: Camera trap placements in each of the 12 surveyed City of Cape Town 
nature reserves. For each study site (listed as 1-12 in order of reserve size), a map of 
camera placements is provided including 1 x 1 km2 grids (white lines), followed by a table of 
the exact latitude and longitude of each camera as placed in the study. Grids were not used 
for Uitkamp Wetland, Bracken and Kenilworth Racecourse reserves as they are all smaller 
than 1 km2 
 

 
1. Uitkamp Wetland Nature Reserve (32 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

UK C01 -33.82122 18.64076 
UK C02 -33.81861 18.63913 
UK C03 -33.81705 18.64329 
UK C04 -33.81444 18.64008 
UK C05 -33.81207 18.64011 
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2. Bracken Nature Reserve (36 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

BR C01 -33.87907 18.70995 
BR C02 -33.87790 18.71215 
BR C03 -33.87935 18.71337 
BR C04 -33.87943 18.71592 
BR C05 -33.88136 18.71163 
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3. Kenilworth Racecourse Conservation Area (52 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

KR C01 -33.99850 18.48188 
KR C02 -33.99387 18.48317 
KR C03 -33.99574 18.48610 
KR C04 -33.99882 18.48772 
KR C05 -33.99991 18.48414 
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4. Zandvlei Estuary Nature Reserve (200 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

ZV C01 -34.08996 18.47316 
ZV C02 -34.09039 18.47092 
ZV C03 -34.08742 18.47120 
ZV C04 -34.08334 18.46684 
ZV C05 -34.08379 18.46787 
ZV C06 -34.08184 18.47021 
ZV C07 -34.08183 18.46482 
ZV C08 -34.08114 18.46666 
ZV C09 -34.08194 18.46769 
ZV C10 -34.07979 18.46940 
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5. Wolfgat Nature Reserve (262 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

WG C01 -34.07073 18.63343 
WG C02 -34.06953 18.63621 
WG C03 -34.07122 18.63590 
WG C04 -34.07114 18.65088 
WG C05 -34.06981 18.65072 
WG C06 -34.06928 18.65807 
WG C07 -34.06928 18.65821 
WG C08 -34.06917 18.66001 
WG C09 -34.06800 18.65167 
WG C10 -34.06866 18.65021 
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6. Tygerberg Nature Reserve (388 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

TY C01 33.86177 18.58849 
TY C02 33.86509 18.58929 
TY C03 33.86174 18.59620 
TY C04 33.86989 18.59612 
TY C05 33.87924 18.59390 
TY C06 33.87702 18.59863 
TY C07 33.87487 18.60315 
TY C08 33.88292 18.59922 
TY C09 33.88008 18.60157 
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7. Helderberg Nature Reserve (402 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

HB C01 -34.06976 18.87024 
HB C02 -34.06554 18.86960 
HB C03 -34.06606 18.87738 
HB C04 -34.05659 18.86815 
HB C05 -34.05130 18.87530 
HB C06 -34.04622 18.86800 
HB C07 -34.04194 18.87525 
HB C08 -34.04891 18.87987 
HB C09 -34.05850 18.87529 
HB C10 -34.04859 18.88195 
HB C11 -34.04356 18.865569 
HB C12 -34.06298 18.867469 
HB C13 -34.06932 18.872635 
HB C14 -34.05418 18.870553 
HB C15 -34.06057 18.877481 
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8. False Bay Nature Reserve (634 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

FB C01 -34.09049 18.52161 
FB C02 -34.08859 18.51102 
FB C03 -34.08212 18.51132 
FB C04 -34.07914 18.53176 
FB C05 -34.07445 18.52827 
FB C06 -34.07365 18.51155 
FB C07 -34.07136 18.50485 
FB C08 -34.07545 18.53889 
FB C09 -34.05790 18.50309 
FB C10 -34.06015 18.49500 
FB C11 -34.06542 18.50239 
FB C12 -34.06536 18.50499 
FB C13 -34.06716 18.50295 
FB C14 -34.07303 18.51607 
FB C15 -34.07395 18.51665 
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9. Table Bay Nature Reserve (880 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

TB C01 -33.83199 18.48927 
TB C02 -33.83440 18.48896 
TB C03 -33.83738 18.49509 
TB C04 -33.83912 18.49810 
TB C05 -33.84228 18.49469 
TB C06 -33.84497 18.49664 
TB C07 -33.84721 18.49821 
TB C08 -33.85267 18.49969 
TB C09 -33.84842 18.50481 
TB C10 -33.84457 18.50262 
TB C11 -33.84674 18.50994 
TB C12 -33.84435 18.50960 
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10. Blaauwberg Nature Reserve (1 445 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

BB C01 -33.77142 18.46114 
BB C02 -33.76661 18.44958 
BB C03 -33.75867 18.44604 
BB C04 -33.75161 18.44403 
BB C05 -33.75910 18.46081 
BB C06 -33.75830 18.47954 
BB C07 -33.75720 18.49079 
BB C08 -33.76670 18.48973 
BB C09 -33.76690 18.48023 
BB C10 -33.76543 18.47062 
BB C11 -33.77072 18.47645 
BB C12 -33.77183 18.49454 
BB C13 -33.75671 18.47012 
BB C14 -33.77324 18.48110 
BB C15 -33.77178 18.47402 
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11. Witzands Aquifer Nature Reserve (1 700 ha) 
 

 
 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

WZ C01 -33.57995 18.45857 
WZ C02 -33.58158 18.44874 
WZ C03 -33.59342 18.44813 
WZ C04 -33.60236 18.44891 
WZ C05 -33.61189 18.44969 
WZ C06 -33.61855 18.43627 
WZ C07 -33.63029 18.44764 
WZ C08 -33.64529 18.45255 
WZ C09 -33.62001 18.45685 
WZ C10 -33.59175 18.41887 
WZ C11 -33.61053 18.45470 
WZ C12 -33.59620 18.42182 
WZ C13 -33.61695 18.42943 
WZ C14 -33.57135 18.43726 
WZ C15 -33.59812 18.41226 
WZ C16 -33.60841 18.42027 
WZ C17 -33.57249 18.43028 
WZ C18 -33.56396 18.43467 
WZ C19 -33.58314 18.42268 
WZ C20 -33.60052 18.42006 
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12. Steenbras Nature Reserve (8 400) 

 
Camera coordinates: 

Camera Placement Latitude (decimal degrees) Longitude (decimal degrees) 

ST C01 -34.20676 18.89976 
ST C02 -34.22072 18.88125 
ST C03 -34.21814 18.85736 
ST C04 -34.21061 18.84731 
ST C05 -34.16192 18.96496 
ST C06 -34.15753 18.94921 
ST C07 -34.15506 18.92394 
ST C08 -34.16378 18.90792 
ST C09 -34.18066 18.83058 
ST C10 -34.25734 18.85505 
ST C11 -34.24409 18.85378 
ST C12 -34.24774 18.87164 
ST C13 -34.23533 18, 85484 
ST C14 -34.22132 18.83632 
ST C15 -34.24542 18.86767 
ST C16 -34.17147 18.95312 
ST C17 -34.17451 18.94321 
ST C18 -34.17367 18.93265 
ST C19 -34.17364 18.92294 
ST C20 -34.17412 18.91483 
ST C21 -34.18483 18.89272 
ST C22 -34.19100 18.89147 
ST C23 -34.19380 18.88325 
ST C24 -34.19466 18.87418 
ST C25 -34.20329 18.86146 
ST C26 -34.19374 18.86115 
ST C27 -34.16531 18.88740 
ST C28 -34.17125 18.87264 
ST C29 -34.17325 18.86475 
ST C30 -34.17281 18.85784 
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APPENDIX B – Historically-occurring medium and large mammal species list for the CCT nature reserves. Species presumed (P) to persist within 
each reserve based on Biodiversity database, iNaturalist and iSpot observations are indicated in light grey, and species recorded (R) in this study are 
indicated in dark grey. Species are listed alphabetic order by common name. 
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P R P R P R P R P R P R P R P R P R P R P R P R P R 

Orycteropus afer Aardvark                         0 0 

Proteles cristata Aardwolf                         0 0 

Loxodonta africanus African elephant                         0 0 

Felis sylvestris cafra African wild cat                         0 0 

Otocyon megalotis Bat-eared fox                         1 0 

Diceros b. bicornis Black rhinoceros                         0 0 

Canis mesomelas Black-backed jackal                         1 0 

Parahyaena brunnea Brown hyena                         0 0 

Aonyx capensis Cape clawless otter                         4 4 

Vulpes chama Cape fox                         3 1 

Raphicerus melanotis Cape grysbok                         11 11 

Equus z. zebra Cape mountain zebra                         0 0 

Hystrix africaeaustralis Cape porcupine                         9 11 

Lepus capensis/saxatilis Cape/scrub hare                         4 5 

Caracal caracal Caracal                         5 6 

Papio ursinus Chacma baboon                         1 2 

Sylvicapra grimmia Common duiker                         6 5 

Pelea capreolus Grey rhebuck                         1 0 

Pronolagus saundersiae Hewitt's red rock hare                         0 1 

Mellivora capensis Honey badger                         3 5 

Oreotragus oreotragus Klipspringer                         1 1 

Herpestes ichneumon Large grey mongoose                         2 5 

Genetta tigrina Large spotted genet                         4 6 

Panthera pardus Leopard                         2 2 

Panthera leo Lion                         0 0 
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Species Common Name 
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Equus quagga Plains zebra                         0 0 

Leptailurus serval Serval                         0 0 

Galerella pulverulenta Small grey mongoose                         9 9 

Genetta genetta Small spotted genet                         3 3 

Crocuta crocuta Spotted hyena                         0 0 

Raphicerus campestris Steenbok                         5 3 

Ictonyx striatus Striped polecat                         4 4 

Poecilogale albinucha Striped weasel                         1 0 

Atilax paludinosus Water mongoose                         3 5 

Lycaon pictus Wild dog                         0 0 

Cynictis penicillata Yellow mongoose                         0 0 

Total Native 2 3 4 5 2 1 8 5 7 5 6 11 11 12 10 8 3 6 15 9 7 12 9 12   

Reintroduced Species 

Taurotragus oryx Common eland                         2 2 

Hippopotamus amphibius Hippopotamus                         1 1 

Alcelaphus b. caama Red hartebeest                         1 1 

Total Reintroduced 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 0 0  

Non-native Species 

Damaliscus p. pygargus Bontebok                         1 0 

Felis sylvestris catus Domestic cat                         2 9 

Canus lupus familiaris Domestic dog                         4 2 

Equus ferus caballus Domestic horse                         0 1 

Oryctolagus cuniculus Domestic rabbit                         1 1 

Sciurus carolinensis Eastern grey squirrel                         2 1 

Total Non-Native 2 1 0 2 0 2 2 1 1 0 2 3 1 1 1 1 1 1 1 1 1 0 0 1  

 
 

 


