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ABSTRACT 

Friction Stir Welding is regarded as a great welding technique compared to other welding 

processes. As a welding technique, it has good advantages as well as lesser disadvantages. 

It is categorised as a solid-joining technique with the aid of applied force and friction. A non-

deteriorating rotating tool is plunged between two materials (similar or dissimilar) to be joined 

at a specific rotational and welding speed. The tool is moved through the material rubbing 

against them, causing them to soften and fuse before they solidify. This technique is mostly 

used in the welding of aluminium alloys especially in the automotive, aerospace and marine 

industries; as it produces high-quality welds with very low porosity, lesser change in material, 

low distortion and low shrinkage. 

This research reports on the influence of rotational speeds on friction stir welded 6082-T6 

Aluminium Alloy plates of 6 mm thickness. The different rotational speeds tested were, 600, 

700, 800, 900, 1000 and 1200 rotation per minute (rpm). The microstructure and 

macrostructure were also evaluated under optical microscopes and compared. The 6082 

aluminium alloy specimens were tensile tested, using the Hounsfield machine. The fractured 

tensile specimens underwent fracture analysis taking fractographs using the Scanning 

Electron Microscope (SEM). The material's hardness was tested using the Rockwell B 

hardness (HRB). Results show that high rotational speeds with a welding speed of 80 mm/min 

have a negative effect on the welds at the start and middle of weld but positive effect at the 

end for tensile properties and grain sizes. Rotational speed of 600 rpm was found to produce 

welds with higher tensile properties with smaller grain sizes. While 1000 rpm was found to be 

suitable to get high hardness values. 
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GLOSSARY 

  

Terms/Acronyms/Abbreviations Definition/Explanation 

  

FSW: Friction Stir Welding 

 

FSP: Friction Stir Processing 

 

Al: Aluminium 

 

TWI: The Welding Institute 

 

NASA: National Aeronautics and 

Space Administration 

 

HAZ: Heat Affected Zone 

 

TMAZ: Thermo-Mechanical 

Affected Zone 

 

XRD: X-Ray Diffraction 

 

SEM: Scanning Electron 

Microscope 

 

UTS: Ultimate Tensile Strength 

 

H13 Tool: Chromium hot work 

steel tool 

 

ASTM: American Society for 

Testing and Materials 

 

E8M-04 Standard: Standard Test 

Methods for Tension Testing of 

Metallic Materials 

 

Tool Rotational speed: This is the speed at which the 

tool is rotating, measured in revolutions per minute 

(rpm) 

 

Travel speed: This is the velocity at which the two 

aluminium alloy plates are fed, against the tool 

measured in millimetre per minute (mm/min). 

 

Mechanical Properties: Are the properties used 

to classify and identify the material, like strength, 

toughness and ductility. 

 

Metallurgy: The science of working or heating metals 

so as to give them certain desired mechanical 

properties. 

 

6082-T6 Aluminium Alloy:  This is a medium strength 

aluminium alloy belonging to the 6000 series alloys. 

 

Stir-zone: Is a region of heavily deformed material that 

roughly corresponds to the location of the pin during 

welding. 

 

Grains: Are small or even microscopic crystals which 

form during the cooling of many materials. 

 

Workpiece: Two friction stir welded 6082- T6 

aluminium alloys 

 

Parent: Is the 6082-T6 aluminium alloy specimen that 

is not welded  
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

There are mainly two categories of welding, namely; fusion and solid-state welding. Friction 

stir welding (FSW) falls under the solid-state welding category. This welding technique was 

invented by The Welding Institute (TWI) in the United Kingdom in the early 1990s, 

[Unnikrishnan & Dhas, 2017]. Friction Stir Welding (FSW) is a solid-state joining technique 

used in the joining of materials such as aluminium alloys that are not easy to join using fusion 

welding, [Adamowski et al., 2007]. It is an energy efficient technique that is environmentally 

friendly and can be joined to any metal without worrying about metals compatibility, [Mishra & 

Ma, 2005]. Friction stir welding is viewed as the solution towards the evaporation problem 

faced by the fusion as it has low joining temperatures, [Bozorgzadeh & Idris, 2015]. 

 

Friction stir welding comprises of two types; conventional welding and self-reacting welding as 

shown in Figure 1.1. Conventional FSW is the standard FSW and is more widely used. It uses 

a non-consumable rotating tool with a shoulder consisting of a specially designed pin. This 

rotating tool is plunged in between the joined materials. It moves from the beginning of the joint 

to the end producing welds of good quality, [Kallee et al., 2001]. As it moves, the heat is 

generated by the pin and plasticizes the material causing it to bond. The shoulder helps to 

keep the plasticized material from escaping, [Sakthivel et al., 2009]. Friction stir welding is 

considered to have reached a stationary state when the quality of the weld is the same through 

a long distance, [Tongne et al., 2016]. 

 

Self-reacting FSW on the other hand uses a double-sided tool, with one side of the tool 

consisting of a pin and a shoulder and the other side having only a shoulder. In this type of 

FSW, the pin is plunged at the top of the material while the second shoulder is plunged under 

the material to connect right under the pin with both sides moving together and welding both 

sides, [Wan et al., 2014]. There is a tool invented and patented by NASA for self-reacting FSW, 

which can be used for conventional FSW too by removing the modified bobbin pin and 

replacing it with the conventional FSW pin, [Venable & Bucher, 2004].   
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Figure 1.1 Shows two different types of friction stir welding, (a) Conventional and (b) Bobbin, 

[Esmaily et al., 2016] 

 

1.2 Problem statement  

Rotational speed in friction stir welding is one of the most important parameters which needs 

to be optimized in order to attain hot weld conditions and quality, [Rodrigues et al., 2010]. In 

order to perform Friction Stir Welding (FSW) on 6082-T6 aluminium alloy plates, the rotational 

speed of the tool should correlate with the material to achieve good results; taking into 

consideration that different aluminium alloys react differently to varying welding speeds. It 

remains a challenge to find optimum parameters for welding similar 6082-T6 aluminium alloy. 

Literature shows that there is a lot of work that has been done with the purpose of improving 

the quality of the welds. Most of the works vary the rotational speed together with the welding 

speed. This type of analysis does not really give a concrete conclusion around these 

parameters. This study investigates the impact of varying rotational speeds while keeping the 

welding speed constant during FSW of 6082-T6 aluminium alloy bought at Non-Ferous Metal 

Works Cape Town.  

 

1.3 Background  

The rotation of the tool in friction stir welding completely breaks down the stir zones 

microstructure to form finer and more equally spaced microstructure, [Moshwan et al., 2015]. 

Due to the high temperature during the friction stir welding in the stir zone, the grains change 

in geometry and size from those in the parent material, [Ahmadi et al., 2012]. As the grain sizes 

decrease, the hardness and tensile properties of the metal improves,  [Ramnath et al., 2018]. 

These grains are said to be facing approximately in the same direction and have almost the 

same size, [Sharma & Dwivedi, 2017]. Singarapu et al. (2015) identified rotational speed and 

tool geometry as the cause of such change as they affect the stirring of a material at the stir 

zone. Onion rings become less visible as the rotational speed is increased, [Sharma et al., 

2012].  
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Mao et al. (2015) investigated the effects of welding parameters that affect the friction stir 

welding of 2060 aluminium alloys focusing on welding and rotational speeds. The rotational 

speed of 1180 rpm at a welding speed of 118 mm/min was found to be the best suitable 

parameters (see figure 1.2). The rotational speed gave the highest mechanical properties and 

produced the smallest grain sizes.  

 

Ugender et al. (2014) investigated the influence of process parameters on the friction stir 

welding of 6061 aluminium alloy joints by using different rotational and welding speeds. It was 

found that joints welded at a rotational speed of 1120 rpm and a welding speed of 40 mm/min 

had higher ultimate tensile strength, impact strength, yield strength and percentage of 

elongation. 

 

 

Figure 1.2: Shows microstructure and mechanical properties of friction stir welded 2060 

aluminium alloy at different rotational speeds, [Mao et al., 2015] 

 

Gemme et al. (2011) investigated the effects of welding parameters such as the rotational 

speed and welding speed in the friction stir welding of 2.3 mm thick AA7075-T6 aluminium 

a 

c 
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alloy joints. Higher rotational speed was found to increase the concavity of the nugget creating 

insufficient recrystallization but had the highest tensile property values.  

 

Dawood et al. (2013) investigated the effect of rotational speed on flow behaviour and weld 

properties in friction stir welding of 2 mm thick pure aluminium by using three different rotational 

speed (1000, 1500 and 2000 rpm) with all other parameters kept constant, i.e. welding speed 

60 mm/min. The rotational speed of 1500 rpm appeared to have the highest tensile strength 

higher than that of the base metal and had a defect-free and smoother surface. Higher 

rotational speeds cause more material to escape during the stirring process having a negative 

impact on the recrystallization of the weld to have insufficient material, [Elangovan & 

Balasubramanian, 2007]. 

 

Figure 1.3 shows the forces involved in generating material flow during friction stir welding. 

During welding, the tool is tilted by a specific angle creating an obliquely downward force that 

results from the downward force and a forward force. As the tool rotates, moving downward 

and forward ring vortex flow is created causing material to move from the retreating side to the 

advancing side, [Huang et al., 2016]. 

 

 

Figure 1.3: Shows the vertical section of forces found in material flow in the weld beneath the 

shoulder, [Huang et al., 2016] 

 

The axial force on the weld will be weaker at the start and stronger as it progresses towards 

the end, [Ahmadi et al., 2012]. This is caused by the tool shoulder area not contacting the 

welded material 100% at the beginning and therefore not creating enough heat to bond the 

material. These axial forces are normally in the range between 20 KN to 60 KN depending on 

the process parameters, [Kumar & Noor, 2012]. This heat is caused by the friction pressure 

between the tool and material and the time taken to weld, [Torun, 2016]. As the welding force 

increases, the void defects decrease, [Tongne et al., 2016]. Hasan et al. (2015) discovered 
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that in order to have better-welded joints, the forces that control the joining of workpiece need 

to be increased.  

 

This research seek to investigate the influence of varying rotational speed in FSW of 6082-T6 

aluminium alloy. The mechanical properties of low speed welded joints are compared with the 

high speed welded joints.  

 

1.4 Research Objectives  

The main aim of this study is to analyse the impact of the welding speed variation on the 

mechanical properties of the 6082-T6 welded joint. This aim will be accomplished through the 

following objectives: 

 To compare the tensile and bending properties of the welds obtained from low 

rotational speeds with those obtained from high rotational speeds 

 To analyse hardness properties of the welds obtained at low speed against the 

welds obtained at higher speeds.  

 To analyse the speed influence on the microstructure of the welds.  

 

1.5. Organization of the dissertation 

This dissertation is organized as follows:  

 Chapter one introduces the entire study. It encompasses the introduction to FSW 

technique, the background of the study, problem statement and study objectives.  

 Chapter two gives a detailed literature review related to this research.  

 Chapter Three deals with the experimental setup and performance. This includes the 

list of equipment used and their description.  

 Chapter four contains an analysis of research results and discussions. 

 Chapter Five has the drawn conclusions of the research and further possible work. 
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CHAPTER 2: LITERATURE REVIEW 

 

Numerous research on the study of Friction Stir Welding (FSW) has been conducted. This 

chapter reviews some of the reported studies on Friction Stir Welding with the focus on the 

effects of rotational speeds on similar and dissimilar materials.  

 

2.1 Variation of welding parameters 

Rotational speed and welding speed need to complement each other during FSW. This then 

suggests that a good combination between the two parameters is required for the attainment 

of a good weld. These two fundamental parameters conjointly work with numerous other 

parameters. This includes penetration depth, the joint type, tool geometry, dwell time and 

clamping of material. It is rather a requirement to understand how all these parameters 

conjointly operate. This sub-section reviews works that have been published with varying 

welding parameters. 

Singarapu et al. (2015) investigated the influence of friction stir welding parameters on the 

mechanical properties of 6061- T6 aluminium alloy by using three different rotational speeds 

and three different welding speeds. The rotational speed of 1120 rpm with a welding speed of 

40 mm/min produced welds which had the best mechanical properties compared to other 

speeds combinations.  

 

Widener et al. (2006) investigated and compared the effect of higher rotational speeds towards 

the quality of the joint. The rotational speeds used for the welding were higher than 3000 rpm. 

The welding was performed through the use of two tools i.e. fixed shoulder tool and normal 

tool. It was discovered that the normal tool produced welds with higher hardness in the stir 

zone compared to the welds produces by fixed shoulder tool which have the weld higher 

strength.  

 

Hema et al. (2017) investigated the effects of process parameters in the friction stir welding of 

dissimilar AA 2014 and 6061 aluminium alloys. The different process parameters used were 

three different rotational speeds, three different welding speeds and three different axial forces. 

The lowest rotational speed used for this analysis was 760 rpm, 1380 rpm was used as the 

middle rotational speed while the highest rotational speed used was 2000 rpm. The lowest 

rotational speed was used in combination with the welding speed of 11 mm/min under the axial 

force of 0.5 kN. The axial force of 0.75 kN was used for the 1380 rpm and 24 mm/min speeds 

combination. The maximum axial force of 1 kN was used for 2000 rpm and 37 mm/min speed 

combination. The welds with the highest tensile strength were produced by the speeds 

combination of 2000 rpm and 37 mm/min under the axial load of 1kN.  



7 
 

 

Feng et al. (2017) studied the correlation between the rotational speed and the heat input on 

6061 Al alloys. The increase in rotational speed increased input temperature up to a stable 

point that produced finer welds. Exceeding the stable point burns the material. The effect of 

welding speed on friction stir welding goes hand in hand with the fixtures clamping area. At 

lower welding speeds, fixtures with larger clamping areas should be used in order to have low 

tensile residual stress, [Farajkhah & Liu, 2017]. 

 

Sedmak et al. (2016) have developed a mathematical relationship between the speeds and 

temperature for FSW. The equation shows that rotational speed is directly proportional to the 

FSW temperature and inversely proportional to the melting temperature. Therefore, as the 

rotational speed increases the FSW temperature increases and the melting temperature 

decreases; whereas increasing the welding speed causes a decrease in FSW temperature 

and an increase in the melting temperature. This relationship was also reported by Sakthivel 

et al. (2009) when investigating the effect of welding speed on microstructural and mechanical 

properties of friction stir welded commercial aluminium alloys by using different welding speeds 

(50, 75, 100, 175 mm/min) with a constant rotational speed. It was found that the lower welding 

speed creates enough heat for the material to be stirred together in the weld zone producing 

finer grains. 

 

Rose et al. (2012) investigated the influence of welding speed towards tensile properties of 

friction stir welded AZ61A Magnesium alloys. The rotational speed was kept constant at 1200 

rpm while the welding speed was varyied from 30 to 150 mm/min with increments of 30 

mm/min. Welding speed of 90 mm/min with a rotational speed of 1200 rpm produced defect-

free welds with high yield and ultimate tensile strength of 178 and 224 MPa, respectively. 

Producing the highest hardness value of 83 Hv.  

 

2.2 Impact of rotational speed in dissimilar materials  

In friction stir welding, rotational speeds and welding speeds are among parameters that affect 

the materials’ mechanical properties and strength performance, [Paik, 2009]. This subchapter 

reports about the impact of rotational speeds on tensile properties, hardness and 

microstructure of dissimilar materials during friction stir welding. 

 

2.2.1 Impact of rotational speed on tensile properties of the weld 

Hao et al. (2013) investigated the effect of friction stir welding parameters on microstructure 

and mechanical properties of Al-Mg-Er alloy. Five samples were produced with a different pair 

of rotational and welding speeds. They had the following pair; 400 rpm and 100 mm/min, 800 

rpm and 100 mm/min, 800 rpm and 200 mm/min, 800 rpm and 400 mm/min and 1200 rpm and 
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100 mm/min. The rotational speed of 400 rpm with a welding speed of 100 mm/min was found 

to have a finer microstructure with the highest mechanical properties of 346 MPa UTS, 218 

MPa YS and a joint efficiency of 73%. A decrease of mechanical properties with an increase 

of rotational speed was also noticed.  

 

Sinha et al. (2016) compared the effects of variable rotational speeds of dissimilar friction stir 

welding Al-Cu alloys to similar friction stir welded Cu-Cu and Al-Al alloys. Rotational speeds 

with increments of 150 rpm were used from 150 rpm to 900 rpm with each a welding speed of 

60 mm/min. For dissimilar welds, the strength of welds increased with the increase of rotational 

speed until an optimum rotational speed of 600 rpm was reached and decreased for rotational 

speeds above 600 rpm. The properties at 600 rpm were found to be 189 MPa for ultimate 

tensile strength which happened to be higher than Al-Al welds, 167 MPa for yield strength and 

6.92% elongation.  

 

Jenarthanan et al. (2018) investigated the effects of friction stir welding parameters (rotational 

speed, welding speed and pin diameter) on the tensile strength of two friction stir welded  

dissimilar alloys AA2014 and  AA6061. The following parameters were used, between 355 and 

710 rpm rotational speeds, 28 and 56 mm/min welding speed and 5 and 7 mm pin diameters. 

The optimum tensile strength was found at a rotational speed of 710 rpm and a welding speed 

of 56 mm/min.  

 

Kumbhar & Bhanumurthy (2012) did a study on the friction stir welding of dissimilar AA5052 

and AA6061 aluminium alloys using different rotation speeds and welding speeds. Two 

rotational speeds were used 1120 rpm and 1400 rpm with three welding speeds 60, 80 and 

100 mm/min. It was found that, as the rotational speed increased from 1120 rpm to 1400 rpm, 

the tensile properties of the welds improved as it provided sufficient heat input.  

 

2.2.2 Effect of rotational speed variation on hardness  

The hardness of a material is a characteristic and it is measured by the materials ability to 

resist the penetration of an indenter, [Yovanovich, 2006]. It is necessary to review the studies 

that have been performed around this property. This is done so as to establish the correlation 

between the welding speeds and the material’s resistance to deformation (hardness). 

 

Wang et al. (2015) investigated the effects of rotational speed on microstructure and 

mechanical properties on friction stir welded Al–Li alloy using a bobbin pin. Rotational speed 

400, 600, 800 and 1000 rpm were used with a welding speed of 42 mm/min. It was found that 

the hardness in the stir zone increased with the increase in rotational speed to an optimum 
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value above 104 Hv but decreases in the thermo-mechanically affected zone and heat affected 

zone. 

 

Ghaffarpour et al. (2013) compared a numerical analysis to experimental results performed by 

friction stir welding. The main purpose of this comparative analysis was to optimize the process 

parameters for welds of dissimilar 5083-H12 and 6061-T6 aluminium alloys. Rotational speeds 

used for the welding varied between 630 and 3000 rpm. The welding speed also was varied 

between 15 and 500 mm/min. There was not much difference between the test results of the 

two methods. It was found that, as the rotational speed increased, the hardness of the welds 

in the nugget decreased.  The minimum hardness was found on the HAZ side of the 6061-T6 

aluminium alloy.  

 

2.2.3 Effect of rotational speed variation on microstructure 

Heat, in Friction Stir Welding, can be caused by different parameters including rotational 

speed. The amount of heat the welded material goes through affects its mechanical properties 

and its grain size as well as orientation. This effect brings the necessity to review the works 

reported around this area so as to establish the trend. 

 

Sharma & Dwivedi (2017) investigated the microstructure and mechanical properties of friction 

stir welded dissimilar alloys (structural steel and ferritic stainless steel). A welding speed of 20 

mm/min and a rotational speed of 508 rpm were used. It was found that the weld at the stir 

zone is stronger compared to the thermo-mechanically affected zone and the heat affected 

zone because of the grain alignment found at the stir zone which has approximately the same 

geometry and equal sizes. 

 

Singh & Sharma (2013) investigated the influence of rotational speed on mechanical properties 

of friction stir welded dissimilar alloys AA2014 and AA5083. Four different rotational speeds 

(1900, 2000, 2100 and 2200 rpm) were used with one welding speed of 42 mm/min. It was 

found that, as rotational speed was increased, large microstructural grains were formed in the 

process which had an adverse impact on tensile strength and hardness.  

 

Bisadi et al. (2013), investigated the influence of rotational speeds and welding speeds of 

dissimilar joints in friction stir welding. Four different rotational speeds (600, 825, 1115 and 

1550 rpm) with two welding speeds (15 and 32 mm/min) were used. The conclusion drawn 

from this work was that, joints produced at 600 and 1550 rpm rotational speeds had more 

defects. The joint with lesser defects were achieved at the rotational speed of 825 rpm in 

combination with 32 mm/min.  
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Ko et al. (2017) investigated the effect of rotational speed on mechanical properties and 

microstructure of friction stir welded Ti-6Al-4V alloy sheets. Five different rotational speeds 

were used against constant welding speed. The rotational speed was varied between 300 and 

500 rpm with intervals of 50 rpm. The scanning electron microscopy results reveal that the 

increase in rotational speed yielded two alpha phases in the weld nugget. The alpha prime 

was found to be dominating the nugget at higher speeds and this had resulted in the increase 

in hardness.  

 

Nourouzi et al. (2012) investigated the effect of rotational speed and welding speed on the 

friction stir welding of dissimilar material (1100 aluminium alloy and 1045 carbon steel) by using 

two different rotational speeds (710 and 1000 rpm) and three different welding speeds ( 20, 

28, 40 mm/min). A weld with smaller grains of approximately the same size with no voids visible 

in the stir zone was achieved when the rotational and welding speeds were 710 rpm and 28 

mm/mm respectively. 

 

2.3 Impact of rotational speed in similar materials   

This sub-chapter reports on found studies about the impact of rotational speeds on tensile 

properties, hardness and microstructure of dissimilar materials during friction stir welding. 

 

2.3.1 Impact of rotational speed on tensile properties of the weld 

Input temperature in FSW can be controlled by adjusting the welding and rotational speeds, 

i.e. it can be reduced by reducing the welding speed but increasing the rotational speed which 

in turn increases tensile properties, [Rajamanickam & Balusamy, 2008]. 

 

He et al. (2016) investigated the effects of rotational speed on the tensile properties, residual 

stress and microstructure of 6061-T6 aluminium alloy 16 mm thick plates. The investigated 

rotational speeds were, 500, 700 and 900 rpm with a constant welding speed of 120 mm/min. 

Both longitudinal and transverse residual stresses, were found to be increasing with the 

increase in rotational speed. The highest residual stress achieved was from rotational speed 

of 900 rpm with a value of 153 MPa. The highest ultimate tensile strength achieved was from 

rotational speed of 700 rpm and it had a value of 236 MPa. 

 

Kumar et al. (2018) compared similar and dissimilar welds of 5083 and 6082 aluminium alloys. 

The combination of these alloys included 5083-5083, 6082-6082 and 5083-6082 aluminium 

alloys. The rotational speed of 1200 rpm and 63 mm/min welding speed were used constantly 

throughout welding. It was found that similar FSW welds had less hardness values and joint 

efficiency than those of dissimilar FSW welds. While on the other hand they had higher tensile 

strength and yield strength values. 
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Rao et al. (2017) investigated the effects of welding parameters, rotational speed, welding 

speed and pin profile on tensile properties of friction stir welded 65032 aluminium alloys. Three 

rotational speeds (1000, 1300 and 1600 rpm), three welding speed (60, 80 and 100 mm/min) 

and three pin profiles (taper cylindrical, taper triangular and taper square) were used. 

Regardless of other welding parameters, rotational speed of 1300 rpm gave higher tensile 

properties (tensile strength, yield strength, elongation and joint efficiency) while rotational 

speed of 1000 rpm gave lesser tensile properties. It was also noted that tensile properties 

increased with the increase in the rotational speed from 1000 to 1300 rpm and decreased from 

1300 to 1600 rpm. 

 

2.3.2 Effect of rotational speed variation on hardness 

Higher hardness in the stir zone than in the base metal is achieved with higher grain refinement 

in the stir zone, [Zhang et al., 2008].  

 

Raja et al. (2016) investigated effects of friction stir welding on the hardness of 6061-T6 

aluminium alloy. Two different rotational speeds 1030 and 1500 rpm were compared using a 

welding speed of 20 mm/min. It was found that the stir zone for all rotational speeds had higher 

hardness than that of the base metal but rotational speed of 1030 rpm had the highest 

hardness values.  

 

Saini et al. (2013) investigated the effect of a straight cylindrical pin on the hardness of 6061-

T6 aluminium strips through friction stir welding. Three rotational speeds (1950, 3080, 4600 

rpm) were used with three different welding speeds (20, 25, 30 mm/min). Two hardness 

evaluation methods, Brinell and Rockwell were used to evaluate the hardness values. The 

hardness values were found to increase and decrease with no pattern aligning to the welding 

and rotational speeds. The highest hardness values recorded for both Brinell and Rockwell 

methods were of rotational speed of 3080 rpm and welding speed of 30 mm/min. 

 

Raja et al. (2018) investigated the effects of rotational speed and welding speed on friction stir 

welded AA1100 aluminium alloy. The rotational speeds of 1500, 2500 and 3500 rpm and 

welding speeds of 10, 30 and 50 mm/min were used in this investigation. Fracture morphology 

analysis under Scanning Electron Microscope was done for the fractured specimens. It was 

found that high rotational speeds (3500 rpm) produced brittle fractures and lower rotational 

speeds (1500 rpm) produced ductile fracture. The hardness in the stir zone was found to be 

higher than in the thermo-mechanically affected zone but lower at the heat affected zone and 

on the parent metal zone. 
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2.3.3 Effect of rotational speed variation on microstructure 

Rotational speed is known to be one of the most important parameters in welding. Its 

importance plays a certain role in microstructural arrangement of the joint. This then brings a 

necessity to review the related literature. 

 

Ugender (2018) investigated the influence of rotational speed and tool profile on formation of 

zones in the friction stir welding of AZ31 magnesium alloy. Three pin profiles (straight 

cylindrical, taper cylindrical and taper threaded), three rotational speeds (900, 1120 and 1400 

rpm) and three welding speeds (24, 40 and 75 mm/min) were used for the investigation. It was 

found that both rotational speed and welding speed have most influence on the formation of 

the zones in the friction stir welding of AZ31 magnesium alloys. The optimum parameters with 

best microstructure and mechanical properties was found to be a rotational speed of 1120 rpm 

and a welding speed of 40 mm/min with a pin profile that is taper threaded.  

 

Raja et al. (2016) investigated the creation of the advancing side, the retreating side and 

welding zones in the friction stir welding of 1XXX series aluminium alloy. During welding, the 

high temperature made the zones more thermally balanced and the retreating side had better 

grain refinement than the stir zone. 

 

Liu et al. (2017) investigated the effects of rotational speed on the microstructure and 

mechanical properties of  friction stir welded 2060-T8 aluminium alloys. The two 2mm thick 

2060-T8 aluminium alloys were welded at rotational speeds of 600, 800 and 1000 rpm with a 

constant welding speed of 300 mm/min. All welds at different rotational speeds contained no 

defects. The increase in rotational speed led to the increase in the Thermo-Mechanically 

Affected  Zone (TMAZ) of the retreating side. There was also a match increase in grain size 

with the rotational speed increase in the nugget zone.  

 

Klobčar et al. (2012) investigated the effects of friction stir welding parameters on 

microstructure and mechanical properties of friction stir welded 5083 aluminium alloy. The 

following combinations of rotational speed and welding speed were used and compared; 1250 

rpm with 450 mm/min, 1250 rpm with 71 mm/min, 800 rpm with 280 mm/min, 800 rpm with 450 

mm/min, 200 rpm with 280 mm/min, 200 rpm with 450 mm/min, 800 rpm with 280 mm/min and 

200 rpm with 71 mm/min. It was concluded that higher rotational speeds tend to create higher 

frictional heat which increases the grain sizes and lower rotational speeds create lesser 

frictional heat input which produces smaller grain sizes making the welds harder. 

 

Prabha et al. (2018) investigated the effects of rotational speed on mechanical properties by 

looking at the microstructure of friction stir welded 5083 aluminium alloys. The rotational speed 
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used was varyied while the welding speed was kept constant. The lowest speed used was 900 

rpm while the highest was 1800 rpm. The grain sizes for welds produced at these varying 

speeds were studied comparatively. It was discovered that the grain size for the welds 

produced at 1120 rpm was smaller compared to those produced from other speeds. The 

speeds higher than 1120 rpm produced coarser grain structure which contributed to the 

ultimate tensile strength (UTS) drop of the welds.  

 

2.4 Summary  

A wide range of literature on friction stir welding and the effect of rotational speed in the attempt 

to define, develop and support this research was reviewed. This chapter has explored the 

effects of different welding parameters on dissimilar and similar FSW welds. It also looked at 

how rotational speed affects similar and dissimilar materials tensile properties, hardness and 

microstructure. There is not much literature on similar friction stir welded material, specially of 

6082-T6 aluminium alloys. This study will cover the gap of lesser similar friction stir welded 

materials and come up with the optimum welding parameter (rotational speed).  
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CHAPTER 3: EXPERIMENTAL SETUP AND 

PERFORMANCE 

 

This chapter contains all the experimental setup and experimental performance for the entire 

study. It starts of by explaining equipment used for the welding. The equipment used for 

preparing welded plates for analysis is thoroughly explained. The preparation processes of 

specimens for all tests performed are also explained. 

 

3.1 Equipment used for producing welds  

The equipment used for producing the welds is listed below:   

 TA Shear Master guillotine 

 Semi-automated milling machine (LAGUN FA. 1-LA)/ FSW Machine  

 

3.1.1 TA Shear Master guillotine  

Guillotine is a sheet metal working machine from the TA Shear Master brand. It has a maximum 

cutting thickness of 10 mm and has the moving blade driven by a rotary motor. It consists of a 

drive system, shear table and a fixed lower and moving upper blades (see figure 3.1). When 

cutting, a sheet metal/ plate is placed on the bed aligning the line to be cut under and on top 

of the shear blades. The drive mechanism is powering all parts, moving the upper blade to 

come down to the fixed blade cutting the plate when the controls have been activated.  

 

Figure 3.1: Shows the picture of a Guillotine Machine 

 

 

 



15 
 

3.1.2 Semi-automated milling machine (LAGUN FA. 1-LA)/ FSW Machine 

The friction stir welding machine for this study is a converted semi-automated milling machine 

with an X, Y and Z movements. The milling head has been modified especially on the spindle 

where the tool (see figure 3.2) is installed to turn it to a FSW machine. It consists of a machine 

bed which has a steel backing plate, clamp mechanism and power controlling system. Instead 

of cutting the material, the rotating tool feeds on the material heating it enough to soften and 

mixing it while moving through the material. 

  

 

Figure 3.2: Shows the friction Stir Welding Machine used for welding 

 

3.2 Welding performance  

Twelve 6mm thick plates of 6082-T6 aluminium alloy were cut into the same size 400 mm 

length x 60 mm width. The TA Shear Master guillotine machine with the help of measuring 

tools such as a tape measure and Vernier calliper were used. A scriber was used to mark the 

areas to be cut and Q20 lubricant was applied to the guillotine machine. The desired plates 

were cut from a 1250 x 1500 x 6 mm 6082-T6 standard plate size. When the cutting was done, 

the plates were wiped to remove the residual from the lubricant to reduce the possibility of 
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smoke and burning smell when welded. Two plates were laid down together, supported on the 

fixture’s backing plate on the FSW machine (see figure 3.4). The fixture comprised of a backing 

plate to cool down the work piece and steel screw clamps to hold the work piece down rigidly 

while welding. The machine had an H13 tool (see figure 3.3) with a shoulder diameter of 20 

mm and a threaded and tapered pin with outside diameter of 6 mm and length of 5.8 mm fixed 

and tightened at its spindle.  

 

 

 Figure 3.3: Shows the H13 Tool  

 

3.2.1 Friction Stir Welding  

The clamps were tightened enough to keep the plates down using a ratchet. The machine was 

set such that the tool was tilted at an angle of 3° and centrally positioned with the plates to be 

welded. The first set of welding parameters (shown in Table 3.1) were set to the machine prior 

welding. The rotating tool was plunged into the pieces to be welded and the plunged depth 

was 5.8mm. The plunged rotating tool was kept in the same position for twenty seconds for 

heat input stabilization. The traverse speed was then activated to start welding (see figure 3.4). 

When the rotating tool reached the end of the plates it was slowly drawn out. The machine was 

switched off. 

 

The work piece in figure 3.5 was gently unclamped and excess material from welding was 

removed. The same procedure was repeated for all rotational speeds after every hour (cooling 

period for machine).  
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Figure 3.4: FSW setup of two 6082-T6 Al alloy plates 

 

 

Figure 3.5: Shows two welded plates 

 

Table 3.1: Tool process parameters 

Rotational speed  

(rpm) 

Welding speed 

(mm/min) 

600 

80 

700 

800 

900 

1000 

1200 
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3.3 Weld preparation for analysis 

This section list all the equipment used in preparing welds for different analysis. The listed 

equipment is later explained. Equipment used for the preparation of weld analysis are listed 

below: 

 

 Accutex AU-500iA EDM wire cutter 

 Metallurgy Specimen Mounting equipment 

 Grinding and Polishing equipment for Metallurgical specimens 

 

3.3.1 Accutex AU-500iA EDM wire cutter 

A Computer Numerical Control (CNC) machine known as the Accutex AU-500iA EDM wire 

cutter in figure 3.6 is used for precision cutting. It’s an automatic machine that uses an efficient 

high speed threading system. It contains a T-base moving column with direct transmission and 

3D laser measuring technique moving on the x, z and y-axis.  

 

 

Figure 3.6: The Accutex AU-500iA EDM Wire Cutter 

 

3.3.2 Mounting equipment 

The mounting equipment include a Bakelite black hot mounting powder epoxy resin and the 

Struers LaboPress-3 mounting machine in figure 3.7. It has a housing that heats and cools 

which ever specimen that’s on the ram inside it. This mounting material has resistance to 

physical distortion and it is chemically inactive to etchants.  
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Figure 3.7: The Struers LaboPress-3 mounting machine with specimen after mounting 

 

3.3.3 Grinding and polishing equipment for metallurgical specimens 

Grinding and polishing equipment is shown in figure 3.8. It contains a polishing and grinding 

machine with a rotation round flat face plate where disks are placed, named the Struers 

LaboPol5 machine. The disks and lubricants used on the machine can be for grinding or 

polishing. Rhaco Grit P320 grade disk is used for grinding with distilled water as a lubricant. 

The Largan 9 grade disk is used for polishing with the DiaMaxx Poly 6 m solvent. The Moran-

U grade disk is used for fine polishing with a DiaMaxx Poly 3 m solvent. The Chemal grade 

disk is used for finer polishing with a fumed Silica 0.2 m lubricant. The Struers DP- Lubricant 

Blue can also be used on the chemal grade disk. 
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Figure 3.8: Shows grinding and polishing tools 

 

3.4 Performance of specimen preparation  

This sub-section contains procedures for preparation of specimens for all tests conducted that 

needed specimens to be prepared.  

 

3.4.1 Tensile tests specimens 

The ASTM E8M-04 standards indicate that for tensile testing, plates with a maximum thickness 

of 6 mm should use specimen dimensions with a nominal width of 6 mm. Figure 3.9 shows the 

tensile test specimen designed through ASTM E8M-04 standard. 

 

 

Figure 3.9: Dimensioned Tensile testing specimen according to the ASTM E8M-04 standards 

without weld 
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3.4.1.1 Cutting of specimens 

The workpieces were marked out using a steel ruler and a scriber (see figure 3.11). It was then 

cut using the wire cutter machine (see figure 3.10) and this cutting technique was chosen since 

it does not induce temperature to the workpiece during cutting. The specimens for each welded 

plate were cut from different location of the plate i.e. beginning of the weld, middle and the end 

of the weld. The cut out specimens are shown in figure 3.12. The following shows the naming 

of the specimens per location as shown in figure 3.11:  

 600 rpm: S1 (start of weld), M1 (middle of weld) and E1 (end of weld) 

 700 rpm: S2, M2 and E2 

 800 rpm: S3, M3 and E3 

 900 rpm: S4, M4 and E4 

 1000 rpm: S5, M5 and E5 

 1200 rpm: S6, M6 and E6 

 Parent material: PM 

 

 

Figure 3.10: Shows two welded plates placed and clamped in the wire cutter. 
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Figure 3.11: Shows marked and cut 1000 rpm work piece 

 

 

 

Figure 3.12: Cut out tensile specimens of 600 rpm from start and middle 

 

3.4.2 Microstructure and macro-structure specimens 

The microstructure and macro-structure specimens were also designed using SolidWorks. 

They were made out to have the dimensions, 8 mm width, 6 mm thickness and a length of 26 

mm as shown in figure 3.13. 

 

 

Figure 3.13: Dimensioned microstructure and micro-hardness testing specimen without weld 
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For the microstructure specimens, two lines were drawn perpendicular to the weld edge and 

at the beginning of the weld. These two lines were 15 mm away from the tensile specimen 

drawn lines and they were 10 mm away from each other. These microstructure specimens and 

the welded plated were done the same way at the middle and at the end of the weld. 

 

Figure 3.6 shows the wire cutter machine that was used to cut out the microstructure 

specimens diplited in figure 3.14. 

 

 

Figure 3.14: Shows cut-out microstructure specimen welded at 1200 rpm. 

 

3.4.2.1 Mounting of specimens 

Figure 3.7 shows the Struers Labo Press-3 mounting machine that was used together with the 

Bakelite black hot mounting powder epoxy resin to mount the microstructure specimens. The 

mounting machine was turned on and the upper ram was elevated to the top. The specimens 

were placed on the upper ram and it was lowered to a distance of 30 mm in the housing with 

heating and cooling. The mounting resin was poured on top of the ram and specimens until 

the 30 mm space was totally covered. The lid was closed and 180 ºC temperature was applied 

at a pressure of 120 KN. The heating process took 6 minutes and the process started curing 

which took 9 minutes. When done, the ram is moved up and the specimens were hot and 

mounted as seen in figure 3.15. 
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Figure 3.15: Shows three mounted specimens extracted from the start, middle and end of 1200 

rpm workpiece. 

 

3.4.2.2 Grinding and polishing of specimens 

The microstructure specimens had to be grinded, polished and etched in order to identify 

phases of the weld and the general grain structure. The machine used for grinding and 

polishing was the Struers LaboPol-5 metallurgical grinder/polisher in figure 3.8 with its 

accessories. Table 3.2 presents the four-step procedure followed, which was adapted from 

AKASEL’s polishing procedure for aluminium alloys.  

 

The specimens were grinded until they were plane using the Rhaco grit and distilled water. 

Their direction was changed from previous position by 90º and grinded using the Largan 9 disk 

with a 6 μm lubricant. At a different direction, changing it by 90º they were polished using the 

Moran-U disk and the 3 μm lubricant. For a finer and clean finish, they were polished with the 

Chemil disk and a 0.2 μm alkaline lubricant. Between each grinding and polishing steps, 

Struers DP- Lubricant Blue was used to flush off any debris and grit left from the Bakelite, 

and weld joint specimens. 

 

Table 3.2: The AKASEL four polishing steps for preparing aluminium specimens 

 1st Step 2nd Step 3rd Step 4th Step 

Disk grade 
Rhaco Grit 

P320 
Largan 9 Moran- U Chemal 

Lubricant 
Distilled 

water 

DiaMaxx 

Poly       

6μm 

DiaMaxx 

Poly         

3μm 

Fumed 

Silica     

0.2 μm 

Alkaline 

Speed 300 rpm 150 rpm 150 rpm 150rpm 

Duration Until plane 5 min 4 min 2 min 
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3.4.2.3  Etching of specimens  

The specimens in figure 3.16(b) were first etched using the Keller’s reagents that was made 

out of (see table 3.4) 190 ml distilled water, 5 ml hydrochloric acid, 3 ml hydrofluoric acid and 

2 ml of nitric acid. The ASTM E 407-99 standards for micro-etching metals and alloys was 

followed in the etching of 6082-T6 friction stir welded specimens. After etching ethanol was 

poured over the specimens and they were dried with warm air. The etchants effectiveness was 

checked under a light microscope; of which it wasn’t effective enough. 

 

As the Keller’s reagent did not bring out the grains on the specimens, making it harder to view 

them and the different stages under a light microscope. It was then that the decision was taken 

to use the Weck’s reagent and applying pre-etch before applying the Weck’s reagent. The 

specimens were prepared again to remove the Keller’s etchant by grinding and polishing using 

the Akasel steps in table 3.2. They were rinsed thoroughly with distilled water to completely 

remove any residue that might have been left from the polishing and they were dried again 

with hot air. Ethanol was poured on the the dried specimens surface and dried with hot air to 

clean them. The pre-etch was applied followed by the Weck’s etchant. Specimens etched with 

the Weck’s reagent are found in figure 3.16(a) having colour tinted surface. All specimens were 

etched immediately after the last stage of polishing and gloves were worn at all times. 

 

Table 3.3: NaOH Pre-Etch and Weck’s Etchant concentration 

Etchant Pre-Etch Weck's Reagent 

Solution NaHO Distilled water NaHO Distilled Water KMnO4 

Quantity 2 g 100 ml 1 g 100 ml 4 g 

 

 

Table 3.4: Keller’s reagent concentration 

Solution Distilled water Hydrochloric 

acid 

Hydrofluoric acid Nitric acid 

Quantity 190 ml 5 ml 3 ml 2 ml 
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Figure 3.16: Mounted and etched specimens with (a) Weck’s reagent and (b) Keller’s reagent 

 

 

3.5 List of Tests performed  

This subsection entails the analysis for the friction stir welding joints of 6082-T6 aluminium 

alloys. The tests that were done are listed below: 

 

 Tensile Tests 

 Rockwell Hardness tests 

 Fractography Analysis (SEM) 

 Microstructure Analysis 

 Macrostructure Analysis 
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3.6 Mechanical Tests 

There are two mechanical tests conducted in this study i.e. tensile test and hardness test. The 

performance of these test is explained in the following sections. 

 

3.6.1 Tensile tests  

This test was done to compare the effects of different rotational speeds on tensile properties 

of 6082-T6 friction stir welded aluminium alloys to those of parent material. 

The bench top Hounsfield testing machine in figure 3.17 with upper and lower jaws for holding 

test specimens was used for tensile tests with a QMAT software. This machine has vertical 

movement, with the upper jaw moving up during testing and a desktop connected to it, 

collecting the data. 

 

Figure 3.17: Bench top Hounsfield tensile tester 

 

One specimen at a time was clamped on the machine and the clamps were zeroed. The 

following parameters found in table 3.5 were used, then auto return was set off. The test 

specimen button was pressed and the machine pulled the specimen until fracture/ failure. The 

data was recorded as raw data and the broken specimen was unclamped and its extension 

was measured using a Vernier Calliper just to see if it corresponds with that of the recorded 

data. This procedure was repeated for all remaining 18 specimens with the same test settings. 

 

Table 3.5: Parameters applied to tensile test machine 

Load range (N) Extension range (mm) Speed (mm/min) Preload (N) 

1500 20 3 0 

 

The data in appendices on Microsoft Excel spreadsheet was divided into the following manner 

with each speed having three specimens based on the lay of the weld on the work piece. 600 

rpm specimens are in appendix A, 700 rpm in appendix B, 800 rpm in appendix C, 900 rpm in 
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D, 1000 rpm in E, 1200 rpm data in appendix F and the parent material data in G. For each 

specimen the tensile strength was calculated. The strain which is the change in length over 

the original length was then calculated. 

 

Stress-Strain graphs were then drawn for each specimen. The ultimate tensile strength for 

each specimen was computed as the maximum value reached stress. To make the data in the 

graph less ambiguous, the unit for stress was converted to Mega Pascal’s (MPa). Three bar 

graphs were drawn for ultimate tensile strength in the y-axis and rotational speed in the x-axis. 

The first graph was for the start of the weld, the second graph was for the middle of the weld 

and the third and last was for the end of lay. Percentage Elongation was calculated and plotted 

on the UTS graph. The strain that was at high tensile strength was the one taken to calculate 

the percentage elongation because that is the fracture point. 

 

3.6.2 Rockwell Hardness tests 

The Future-Tech Rockwell tester in figure 3.18 was used for the hardness test. The machine 

was manually operated with a ball indenter having a diameter of 1/16” and loading of 100 

kilograms. The Rockwell hardness HRB which was used applies a preload 98.07 N to the 

tested specimen. It is operated manually by turning the rotary wheel to raise the test anvil to 

apply the minor load to the specimen. It also contains a notification sound for when a minor 

load has been reached.  

 

 

Figure 3.18: The Future-Tech Rockwell hardness tester 
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The test was carried out by inserting the 1/16 inch round ball indenter into the machine in figure 

3.18 and the fastening screw was fastened so the indenter would not fall. A loading of 100 

kilograms was set using the load changing wheel and the testing specimen was placed on the 

test anvil. The anvil was lifted using the rotary wheel up until there was a millimetre between 

the specimen and the edge of the indenter. The specimen was adjusted in order to position 

the point where the indenter was going to be inserted under it. The machine was set to auto 

and zeroed. The rotary wheel was turned around to gradually raise the anvil for the indenter to 

touch the specimen and apply the preload of approximately 98.07N, once it got to the preload 

the start button was pressed and the tester applied an additional load. The indents on all of the 

specimens are shown is figure 3.19 having approximately 3 mm distance apart from each 

centres.  

 

 

Figure 3.19: Indented macro hardness specimens 

 

The machine calculated and gave the hardness value after the beep sound. This procedure 

was repeated for all indents in all specimens.  

 

3.7 Microstructure and Macrostructure Tests 

Materials contains unique and different microstructure. The microstructure of a non-welded 

material is different from the welded one. In this sub chapter, the microstructure of base 

specimens, friction stir welded specimens and fractured specimens are compared using 

fractography analysis, microscopic analysis and macroscopic analysis. 

 

3.7.1 Fractography Analysis 

A similar desktop Phantom Pro SEM machine shown in figure 3.20 was used to take images 

of fractured specimens at higher magnifications. It contains the main instrument with a vacuum 

600 rpm 

700 rpm 

800 rpm 

900 rpm 

1000 rpm 

1200 rpm 
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chamber which has a door and inside that door is where the standard specimen holder goes 

in. To ensure that the sample was fixed on the sample holder, a stub was used with a 

conductive graphite attaching the specimens. The two monitors were used for viewing. 

 

 

 

Figure 3.20: Desktop Phanom Pro SEM (Kaplonek & Nadolny, 2013)  

 

Fractured specimens that went through tensile testing were taken to be cut to small specimens 

to fit in a SEM tester. Out of the two fractured halves for all specimens, the half with less 

damage should be the one taken for fracture morphology, [Zipp et al., 1987]. The specimens 

in figure 4.1 were cut on the half containing the weld zone using a hack saw and grinding 

abrasives to create a parallel platform to that of the fracture (see figure 3.21). The Phenom Pro 

tester in figure 3.20 was used to capture photographs of the fracture at bigger magnifications.  

 

 

Figure 3.21: Cut off fractured tensile specimens 

 

3.7.2 Microstructure analysis 

The Nikon Eclipse L150 microscope with a camera attached at the camera port connected to 

a computer with the Carl Zeiss AxioVision se64 software was used (see figure 3.22). One 

specimen a time was placed on the mechanical stage. Most settings were already set. The 

correct objective was adjusted and placed correctly. The mechanical stage was moved around 

using the X-Y translation mechanism until the best requisition picture of microstructure was 

found. The picture was captured and opened to be measured. For measuring of grain sizes, 
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the following was done. On the Axiovision, measure was opened on the tool bar, Interactive 

Measurement was selected followed by start measurement. The required measurements were 

taken and saved in a table form for all microstructure specimens taken.    

 

 

Figure 3.22: The Nikon Eclipse L150 microscope with working desktop 

 

3.7.3 Macro-structure analysis 

The Olympus stereo zoom 7x to 70x microscope with a ring light illuminator in figure 3.23 was 

used to take the specimens’ macro-structure.  

 

 

Figure 3.23: The Olympus microscope for macrostructure 

 

A specimen was placed under the microscope and positioned correctly. The microscope was 

focused and a picture of the macrostructure was taken for each specimen. The captured 

pictures are presented and discussed in chapter 4. 

 

Mechanical 

stage 

specimen 

Objective 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

In this chapter, tests and analysis results are analysed and discussed. It was mentioned from 

the previous chapter that each plate produced three specimens that were cut from different 

locations of the plate. The presentation of the results in this chapter follows that fashion. 

 

4.1 Tensile Tests  

The tensile tests analysis are presented in Figure  4.1 shows all tensile specimens failed during 

tensile testing, with the Advancing Side (AS) and the Retreating Side (RS) marked. Specimen 

S1 and S2 fractured at the centre of the weld, this could mean that the weld wasn’t strong 

enough or there were defects (wormholes/ voids), with the fracture point shown by the blue 

circle. Specimen M1, M4, E4, M5 and S6 fractured outside the weld line on the heat affected 

zone (HAZ) of the advancing side. This means that the material on the advancing side was not 

strong enough, but the weld was strong. Specimen E1, M2, E2, S3, M3, E3, S5, E5, M6 and 

E6 fractured outside the weld line on the HAZ of the retreating side, meaning the material 

reached a maximum solid state on the advancing side and it plasticized well. 

 

All specimens tested were compared to that of the parents’ material which had a UTS value of 

323 MPa and a percentage elongation of 24%. The ultimate tensile strength of all welded 

specimens are all falling within 60% of the parent materials UTS. Specimens of different 

rotational speeds with same weld location were compared to find which had values closest to 

those of the parent material.  

 

For specimens extracted from the beginning of the weld, it can be seen from table 4.1 that the 

specimen with the closest properties to that of the parent material is from 600 rpm rotational 

speed with a UTS value of 187 MPa and percentage elongation value of 18%. The lowest 

values were seen in 700 rpm with 149 MPa and 8% UTS and percentage elongation 

respectively.  
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Figure 4.1: Shows fractured tensile specimens for all rotational speeds and parent material 

 

 

Table 4.1: FSW tensile property results for 6082-T6 Al alloys at the beginning of weld 

Specimen 
Rotational 

Speed (rpm) 
UTS (MPa) % Elongation 

Parent - 323 24 

S1 600 187 18 

S2 700 149 8 

S3 800 178 16 

S4 900 183 18 

S5 1000 176 16 

S6 1200 175 15 

 

 

For specimens taken from the middle of the weld (see table 4.2), the specimen with property 

values closest to that of the parent specimen is from the rotational speed of 600 rpm specimen 
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with the highest value of 189 MPa and 18% for both UTS and percentage elongation, 

respectively. The lowest properties are observed at 700 rpm specimen for UTS with a value of 

161 MPa and from the 900 rpm specimen for percentage elongation value of 14%. 

 

Table 4.2: FSW tensile property results for 6082-T6 Al alloys at the middle of the weld 

Specimen 
Rotational 

Speed (rpm) 
UTS (MPa) % Elongation 

Parent - 323 24 

M1 600 189 18 

M2 700 161 15 

M3 800 173 15 

M4 900 172 14 

M5 1000 171 15 

M6 1200 171 15 

 

Tensile property results for specimens extracted at the end of the weld are presented in table 

4.3. The closest UTS value to that of parent specimen obtained has a value of 186 MPa from 

1200 rpm specimen and the highest percentage elongation obtained was 19% from 600 rpm 

specimen. The lowest percentage elongation and UTS are found on the 800 rpm specimen 

with the values 16% and 174 MPa respectively.  

 

Table 4.3: FSW tensile property results for 6082-T6 Al alloys at the end of the weld 

Specimen 
Rotational Speed 

(rpm) 
UTS (MPa) % Elongation 

Parent - 323 24 

E1 600 185 19 

E2 700 183 16 

E3 800 174 16 

E4 900 182 17 

E5 1000 177 16 

E6 1200 186 16 

 

Specimens from rotational speed 600 rpm show high tensile properties from start to middle 

and end. While the tensile properties of 1200 rpm has shown an increase from start to end. 

  

The tensile properties results suggest that 600 rpm at a welding speed of 80 mm/min is a good 

rotational speed for welding similar 6082-T6 aluminium alloys as it has an ultimate tensile 

strength and a percentage elongation closest to that of the parent material 323 MPa and 24% 
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respectively.  

 

4.1.1 Micro-fractography analysis  

Fractured tensile specimens were tested under a SEM for failure analysis and provided low 

magnification images (fractographs) of the fractured part. Fractographs for different rotational 

speeds were compared by the position of where their specimens were extracted from the weld, 

start, middle and end. Wen et al. (2016) found that fractures with dimples are that of a ductile 

fracture, those with shallow and smaller dimples have lower elongation and those with larger 

and deeper dimples have higher elongation. The parent fractograph in figure 4.2 revealed 

failure features similar to that of a ductile fracture as it contains large and deep sheared 

dimpled structures with risen cavities. 

 

 

Figure 4.2: SEM fractograph for parent material 
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Figure 4.3: Fractured SEM photographs at the start of the weld for specimens  (a) S1, (b) S2 

and (C) S3 

 

Figure 4.3 shows the fractographs for specimens at the start of the weld, for rotational speeds 

600, 700 and 800 rpm. In figure 4.3 (a) is a fractured surface for specimen S1 having wide and 

deeper sheared dimples with risen cavities which suggest the ductile fracture with ceramic 

bond bridges and inter-granular free spaces, [Kaplonek & Nadolny, 2013]. In figure 4.3 (b) is 

a fractured surface for specimen S2 which is categorised as a brittle fracture because it has 

insufficient plastic deformation and has river like ridges with facet formation, [Sun et al., 2017]. 

Whereas in figure 4.3 (c) is a fractured surface for specimen S3 showing inter-granular brittle 

fracture features like peeling-off grain boundary shells.  
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Figure 4.4: SEM fractographs at the start of the weld for specimens (a) S4, (b) S5 and (c) S6 

  

Figure 4.4 contains SEM fractured surfaces which were extracted at the start of the weld for 

rotational speeds, 900, 1000 and 1200 rpm. They all show ductile fracture features such as 

sheared dimpled structures with risen cavities. Specimen S4 has smaller and shallow dimples. 

S5 has large but shallow dimples and S6 has deep and large dimples. 

 

Dimpled 

structures 

(a) 

(b) 
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Figure 4.5: Presents SEM fractographs at the middle of the weld for specimens (a) M1, (b) M2 
and (c) M3 

 

Figure 4.5 presents SEM fractured surfaces of specimens extracted from the middle of the 

weld for rotational speeds, 600, 700 and 800 rpm. Figures 4.8 (a), (b) and (c) show ductile 

fracture features such as necked and sheared dimpled structures with risen cavities. These 

specimens have large and shallow dimples. 

 

(a) 
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(c) 
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Figure 4.6: SEM fractographs at the middle of the weld for specimens (a) M4, (b) M5 and (c) M6 

 

Figure 4.6 shows SEM fractured surfaces for specimens extracted from the middle of the weld 

for rotational speeds, 900, 1000 and 1200 rpm. They all show ductile fracture features such as 

necked /sheared dimpled structures with risen cavities. All specimens contain large but shallow 

dimples. 

 

(b) 

(c) 

(a) 
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Figure 4.7: SEM fractographs at the end of the weld for specimens (a) E1, (b) E2 and (c) E3 

 

Figure 4.7 contains SEM fractured surfaces for specimens extracted from the end of the weld 

welded at rotational speeds, 600, 700 and 800 rpm. They all show ductile fracture features 

such as necked and sheared shallow dimples. With specimen E1 and E3 showing extra coarse 

slip bands. 

 

(b) 

(c) 

(a) 
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Figure 4.8: SEM fractographs at the end of the weld for specimens (a) E4, (b) E5 and (c) E6 

 

Figure 4.11 shows the SEM fractured surfaces for specimens extracted from the end of the 

weld for rotational speeds 900, 1000, and 1200 rpm. Figures 4.11 (a) show ductile fracture 

features such as necked larger and shallow dimpled structures, whereas figure 4.11 (b) and 

(c) show ductile fracture features such as sheared deep and larger dimple structures.  

 

In order for structures to withheld forces of failure, they should be strong and ductile, (Möser, 

1987). In this study, fractured tensile specimens under SEM evaluation, were found to be brittle 

for specimen S2, intergranular brittle fracture for specimen S3 while all other specimens shown 

ductile fracture just like the parent material specimen. These results are showing that all other 

specimens were strong to withhold forces of failure during tensile testing except specimen S2 

(b) 

(c) 

(a) 
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and S3 which should shown lower tensile properties. Specimen S1, S5, S6, M5, M6, E5 and 

E6, should have higher elongation. 

 

4.2 Microstructure  

Each specimen comprises of the stir zone, the advancing side (AS) and retreating sides (RS) 

have both the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ). 

The specimens average grain sizes are compared with the assistance of microscope images 

taken at a magnification of 100 mm for each zone to evaluate the strongest. The smaller the 

grain sizes, the stronger is the material, [Ahmadi et al., 2012]. Fractogrphic images are also 

presented for all specimens at different rotational speed, at all zones and positions, as seen 

from figure 4.12 to figure 4.29. These figures show the grains found and voids (circled in white) 

that were present.  

 

The grain sizes for all rotational speeds in the stir zone are presented in figure 4.9, figure 4.10 

for thermo-mechanically affected zones and figure 4.11 for heat affected zones. The average 

grain sizes in the stir zone had the same trend as tensile properties in tensile tests, see figure 

4.9. At the start and middle of the weld, 600 rpm had the smallest grain sizes, 3.41 and 6.16 

m respectively. While at the end, 1200 rpm had the smallest average grain size of 6.43 m. 

Therefore, looking at the average grain sizes in the stir zone, 600 rpm specimens are the 

strongest at the beginning and middle of the weld while 1200 rpm specimen is the strongest at 

the end of the weld.  

 

The thermo-mechanically affected zone average grain sizes are found in figure 4.10. It 

comprises of three positions, start, middle and end. Each position was divided into two, the 

retreating side and the advancing side. At the start of the weld in the retreating side and the 

advancing side, 600 rpm had the lowest average grain sizes of 6.08 and 6.49 m respectively. 

In the middle of the weld on the retreating side, rotational speed of 600 rpm had the smallest 

average value of 8.46 rpm. In the advancing side rotational speed of 900 rpm had the lowest 

average value of 7.76 m. At the end of the weld, in the retreating side rotational speed of 700 

rpm had the lowest average value of 8.81 m and in the advancing side, rotational speed of 

1200 rpm had the lowest average value of 9.75 m. 
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Figure 4.9: Comparison of grain sizes in the stir zone  

 

 

Figure 4.10: Comparison of grain sizes in the thermo-mechanically affected zone  
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Figure 4.11: Comparison of grain sizes in the heat affected zone  

 

The heat affected zones average grain sizes are shown in figure 4.11. At the beginning of the 

weld, the rotational speed of 900 rpm has the lowest average grain size values in the retreating 

side and the advancing sides of 20.94 and 16.07 m respectively. In the middle of the weld, 

the retreating side has a lowest average value of 8.99 m from 800 rpm rotational speed. In 

the advancing side rotational speed of 700 rpm has the lowest average grain size value of 9.64 

m. At the end of the weld in the retreating side, rotational speed of 700 rpm has the lowest 

average grain size value of 18.1 m. While at the advancing side, rotational speed of 800 rpm 

has the lowest average grain size of 20.08 m.  

  

4.2.1 Grains at rotational speed of 600 rpm 

Microstructural grains for the 600 rpm specimens were captured in the stir zone (see figure 

4.12) and the advancing and retreating sides of the thermo-mechanically affected zone (see 

figure 4.13) and heat affected zone (see figure 4.14). 
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4.2.1.1 Stir Zone (SZ) 

 

Figure 4.12: Microstructural grains in the centre of the Stir Zone, from the start (S1), middle 

(M1) and end (E1) of weld at 600 rpm 

 

In the stir zone of the 600 rpm specimens (see figure 4.12) it can be noticed that specimen S1 

has the smallest grains visible with an average size of 3.41 µm  followed by specimen M1 with 

6.16 µm. Even though specimen S1 has the smallest grain sizes, it also has the most voids 

(circled white) visible, this cooled be caused by rapid cooling from air, (Tamadon et al., 2018).  

 

4.2.1.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

 

Figure 4.13:  Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S1), middle (M1) and end (E1) of weld at 600 

rpm 
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Grains at the TMAZ for rotational speed 600 rpm are shown in figure 4.13 for the advancing 

side and the retreating side. In the advancing side, it can be noticed that the grains are all 

flowing in the same direction. This is caused by plastic deformation taking place at high 

temperatures which increases grain boundary creating such flow, [Zhang & Wang, 2018] 

Specimen S1 for both the advancing and retreating sides has more visible small and big voids 

than specimens M1 and E1.  

 

4.2.1.3 Heat Affected Zone (HAZ) 

 

Figure 4.14: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S1), middle (M1) and end (E1) of weld at 600 rpm 

 

In the HAZ of 600 rpm specimens, the grain sizes are bigger than those in the SZ and TMAZ. 

Observing in figure 4.14 it can be seen that specimens S1 and E1 on both the advancing and 

retreating sides have a number of visible voids small and big whereas in specimens M1 there 

is hardly any.  

 

4.2.2 Grains at rotational speed of 700 rpm   

For specimens welded at a rotational speed of 700 rpm, captured images of their 

microstructural grains are found from figure 4.15 to 4.17.  These figures contain grains at the 

stir zone, the advancing and retreating sides of the thermo-mechanically affected zone and the 

heat affected zone. 
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4.2.2.1 Stir Zone (SZ) 

 

Figure 4.15: Microstructural grains in the centre of the Stir Zone, from the start (S2), middle 

(M2) and end (E2) of weld at 700rpm 

 

As seen in figure 4.15, the grain sizes of specimen M2 appear to be smaller in size than those 

of specimens S2 and E2. Specimens S2 and E2 have no voids visible whereas specimen M2 

has a few of these voids visible which could cause the materials strength to weaken. 

 

4.2.2.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

Figure 4.16: Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S2), middle (M2) and end (E2) of weld at 700 

rpm 

 

Grain images for both the retreating and advancing sides of the thermo-mechanically affected 

zone for specimens welded at a rotational speed of 700 rpm are found in figure 4.16. There 
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are voids visible in both the advancing and retreating side of S2 and on the advancing side of 

specimens M2 and E2. 

 

4.2.2.3 Heat Affected Zone (HAZ) 

 

Figure 4.17: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S2), middle (M2) and end (E2) of weld at 700 rpm 

 

The HAZ of specimens welded at 700 rpm has the biggest grain sizes and appears (see figure 

4.17) to have small and big voids on both the advancing and retreating sides with S2 on the 

retreating side appearing to have lesser voids followed by E2 on the retreating side. 

4.2.3 Grains at rotational speed of 800 rpm  

The microstructural grains for specimens welded at a rotational speed of 800 rpm are found in 

figure 4.18 to 4.20. These figures comprise grains at the stir zone and on both the retreating 

and advancing sides of the thermo-mechanically affected zone and heat affected zone.   
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4.2.3.1 Stir Zone (SZ) 

 

Figure 4.18: Microstructural grains in the centre of the Stir Zone, from the start (S3), middle 

(M3) and end (E3) of weld at 800 rpm 

 

At the stir zone of the 800 rpm welded workpiece, the S3 specimen shows smaller grain sizes 

followed by specimen E3 then M3 (see figure 4.18). Not only does specimen S3 showing 

smaller grain sizes, but it also has a number of big voids visible. There are no voids visible in 

specimen E3 but specimen M3 has a few smaller voids visible.  

 

4.2.3.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

Figure 4.19: Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S3), middle (M3) and end (E3) of weld at 

800rpm 
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Figure 4.19 has photographs of microstructural grains on the retreating and advancing sides 

for the thermo-mechanically affected zones of the 800 rpm welded workpiece at start, middle 

and end. Looking at the advancing side, grains can be seen. A number of voids is observed in 

specimens S3 and M3. 

4.2.3.3 Heat Affected Zone (HAZ) 

 

Figure 4.20: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S3), middle (M3) and end (E3) of weld at 800rpm 

 

The microstructural grains at the heat affected zone for rotational speed of 800 rpm are found 

in figure 4.20. This zone has bigger grain sizes than other zones. All specimens have small 

voids visible in both the retreating and advancing sides. 

 

4.2.4 Grains at rotational speed of 900 rpm  

Grain photographs at the stir zone, thermo-mechanically affected zone and heat affected zone 

for specimens welded at a rotational speed of 900 rpm are found in figures 4.21, 2.22 and 2.23 

respectively. 
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4.2.4.1 Stir Zone (SZ) 

 

Figure 4.21: Microstructural grains in the centre of the Stir Zone, from the start (S4), middle 

(M4) and end (E4) of weld at 900rpm 

 

At the stir zone of the 900 rpm specimens it can be seen in figure 4.21 that all grains in each 

specimen have approximately the same grain sizes. They all appear to have small voids 

visible. 

 

4.2.4.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

Figure 4.22: Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S4), middle (M4) and end (E4) of weld at 900 

rpm 

 

In the thermo-mechanically affected zones in figure 4.22 it can be seen that specimen E4 in 

the retreating side has a very big void/ wormhole while other specimens have smaller voids.  
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4.2.4.3 Heat Affected Zone (HAZ) 

 

Figure 4.23: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S4), middle (M4) and end (E4) of weld at 900 rpm 

 

At the heat affected zone of the welded specimen at a rotational speed of 900 rpm, the 

microstructure appears to have voids on both sides (advancing and retreating) at the start, 

middle and end (see figure 2.23). The advancing side for all specimens has more voids 

available. 

 

4.2.5 Grains at rotational speed of 1000 rpm  

Grain photographs at the stir zone, thermo-mechanically affected zone and heat affected zone 

for specimens welded at a rotational speed of 1000 rpm are found in figures 4.24, 2.25 and 

2.26 respectively. 

 

4.2.5.1 Stir Zone (SZ) 

 

Figure 4.24: Microstructural grains in the centre of the Stir Zone, from the start (S5), middle 

(M5) and end (E5) of weld at 1000rpm 
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At the stir zone (see figure 4.24) specimen M5 appears to have voids visible than specimen 

S5 and E5. Specimen M5 has the smallest grain sizes. 

4.2.5.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

Figure 4.25: Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S5), middle (M5) and end (E5) of weld at 1000 

rpm 

 

The microstructural grains at the thermo-mechanically affected zone of specimens welded at 

a rotational speed of 1000 rpm are not observable without zooming into the photographs (see 

figure 4.25). Specimen M5 appears to be having more number of voids followed by specimen 

S5 then E5. 
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4.2.5.3 Heat Affected Zone (HAZ) 

 

Figure 4.26: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S5), middle (M5) and end (E5) of weld at 1000rpm 

 

The microstructure photographs of the heat affected zone for specimens welded at a rotational 

speed of 1000 rpm in figure 4.26 shows lots of voids in all positions, at the start, middle and 

end. 

 

4.2.6 Grains at rotational speed of 1200 rpm  

Grain photographs at the stir zone, thermo-mechanically affected zone and heat affected zone 

for specimens welded at a rotational speed of 1200 rpm are shown in figures 4.27, 2.28 and 

2.29 respectively. 

 

4.2.6.1 Stir Zone (SZ) 

Figure 4.27 has photographs for microstructural grains at the stir zone for specimens welded 

at a rotational speed of 1200 rpm. It shows specimen E6 with smaller grain sizes. All specimens 

(S6, M6 and E6) have few little voids visible. 
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Figure 4.27: Microstructural grains in the centre of the Stir Zone, from the start (S6), middle 

(M6) and end (E6) of weld at 1200rpm 

 

4.2.6.2 Thermo-Mechanically Affected Zone (TMAZ) 

 

Figure 4.28: Microstructural grains at the retreating and advancing sides of the Thermo-

Mechanically Affected Zone, taken from the start (S6), middle (M6) and end (E6) of weld at 1200 

rpm 

 

From figure 4.28 the microstructural grains in the thermo-mechanically affected zones of 

specimens welded at a rotational speed of 1200 rpm are shown. It can be seen that the grains 

on the advancing side are smaller than these in the retreating side for all specimens and minor 

voids are visible for all specimens. 
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4.2.6.3 Heat Affected Zone (HAZ) 

 

Figure 4.29: Microstructural grains at the retreating and advancing sides of the Heat Affected 

Zone, taken from the start (S6), middle (M6) and end (E6) of weld at 1200 rpm 

 

Figure 4.29 shows the heat affected zone of specimens welded at a rotational speed of 1200 

rpm. Big grain sizes are observed with a number of voids in all specimens (S6, M6 and E6). 

 

4.3 Macrostructure  

In order to get better understanding of the influence of high rotational speeds using a constant 

welding speed, the macrostructure of the specimens needed to be assessed under a polarized 

light microscope. Results obtained from all specimens of different rotational speeds are 

presented. Figure 4.31 has macrostructures of welds at start, for all rotational speeds. Figure 

4.32 has macrostructures at the middle of the weld for all rotational speeds. Figure 4.33 has 

macrostructures for all rotational speeds at the end of the weld. The three zones can be seen; 

stir zone, thermo-mechanically affected zone and the heat affected zone with the defects that 

were observed.  

 

The macrostructure for welds at start for all rotational speeds is found in figure 4.32. For all of 

the rotational speeds, it can be observed that the nugget doesn’t only have one set of onion 

rings but a number of them except for specimen S1. These onion rings are caused by the 

stirring of the FSW tool and their duplication means there was sufficient mixing in the stir zone, 

[Leitão et al., 2008]. The specimens S1 and S3 shows wormholes and voids which are 

indication of poor material mixing mostly caused by either insufficient heat input or excess heat 
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input at the beginning of weld, [Taheri et al., 2019]. Material can be observed flowing to the 

advancing side; on specimen S3 having the material flow from the retreating side to the stir 

zone and to the advancing side.  

 

Specimens S2, E1, M2, M4, E4, S5, M5, E5, S6, E6 and M6 have a material called flash 

coming out at the surface/ outside of the weld. This is caused by having too much-plasticised 

material escaping from under the pin shoulder during welding because of excess heat and also 

caused by the bending of material at the stir zone as it is welded, Soni et al., 2017].  

 

Figure 4.30 shows surface grooves at the beginning of 600 and 800 rpm welds and at the end 

of 1200 rpm weld. This type of defect is caused by the lack of fill during welding because of 

heat input, [Safeen & Spena, 2019]. Some plasticised material sticking out at the weld surface 

was also observed at the beginning of weld at 600 rpm. 

 

 

 

Figure 4.30: Shows the lack of fill on 600, 800 and 1200 rpm welds 
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Figure 4.31: Shows the macrostructure of FSW specimens taken from the start of the weld, 

welded at six different rotational speeds 
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Figure 4.32: Shows the macrostructure of FSW specimens taken from the middle of the weld, 

welded at six different rotational speeds 
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Figure 4.33: Shows the macrostructure of FSW specimens taken from the end of the weld, 

welded at six different rotational speeds 

 

The specimens M1 and E1 have no visible defects even though they were produced at a low 

speed. The visible defects are noticed on the specimens produced from higher speeds except 

specimens produced at 900 rpm.  
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4.4 Rockwell Hardness  

The hardness test was measured from the centre of the weld to either left or right of the weld 

with an increment of 3mm. The welds specimens were studied comparatively with the parent 

material of a hardness average value of 70.9HRB. Figure 4.34 shows the graphs for all the 

samples extracted in the start of the plate for all the speeds used in this study against the 

hardness of the parent material. All the hardness values were found to be lower than the parent 

material.  

 

The specimen produced from 1000 rpm rotational speed has the hardness higher than all the 

specimens in the stir zone even though it has the second biggest average grain size and lower 

tensile properties. At this point, there seems to be no correlations between hardness, grain 

size and tensile properties.  

 

 

  

Figure 4.34: Shows Rockwell hardness at the start of the weld for all rotational speeds  

 

The hardness chart for specimens taken from the middle of the weld for all rotational speeds 

including parent material are presented in figure 4.35. Specimens from 1000 rpm followed by 

1200 rpm had the highest average hardness values, with specimen from 600 rpm having the 

lowest values. At the middle of the weld, rotational speed of 1000 rpm and 1200 rpm had lower 

tensile properties and bigger grain sizes in the stir zone while rotational speed of 600 rpm had 

higher tensile properties and smaller grain sizes in the stir zone. 
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Figure 4.35: Shows Rockwell hardness results at the middle of the weld for all rotational 

speeds  

 

The hardness value for specimens taken at the end of the weld for all rotational speeds 

including parent material are presented in figure 4.36. The specimen with highest hardness 

values is from the rotational speed of 1000 rpm. The rotational speed of 600 rpm has the lowest 

values in the retreating side, while the rotational speed of 700 rpm has the lowest hardness 

value in the advancing side of the stir zone. At the end of the weld 1200 rpm had specimens 

with higher UTS and the smallest average grain sizes and 600 rpm had higher percentage 

elongation. 

 

  

Figure 4.36: Shows Rockwell hardness at the end of the weld for all rotational speeds  
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The purpose of performing the Rockwell hardness test, was to evaluate which of the FSW 

rotational speeds has specimens with the highest resistance to plastic deformation or 

indentation. At the start, middle and end of friction stir welded specimens, specimens S5, M5 

and E5 welded with a rotational speed of 1000 rpm shows the highest values in the SZ, TMAZ 

and HAZ throughout. While specimens from rotational speed 600 rpm which has the lowest 

grain sizes and higher tensile properties show lower hardness values in the three zones. With 

rotational speed 1200 rpm having the second highest hardness values throughout the SZ, 

TMAZ and HAZ.  

 

4.5 Summary 

It was observed that grain sizes had a correlation with tensile properties and fractography 

analysis. The rotational speed (600 rpm) which had the highest tensile properties (ultimate 

tensile strength and percentage elongation) had the smallest grain sizes even though it 

comprised of surface grooves, voids and wormholes at the beginning of the weld. 

 

The hardness test results shown no correlation with the tensile properties nor the grain sizes. 

The specimens with higher average hardness values, had lower tensile properties and bigger 

grain sizes. 
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CHAPTER 5: CONCLUSION AND FUTURE 

WORK 

5.1 Conclusion 

The objective of this study was to investigate the influence of rotational speeds on the friction 

stir welding of 6082-T6 aluminium alloy joints using a constant welding speed of 80 mm/min. 

All of the welded specimens had weaker mechanical properties than that of the parent metal 

specimen. None-the-less, an optimum rotational speed was found.  

 

In the microstructure of all specimens welded at different rotation speeds and also looking at 

the grain average sizes in the stir zone. The rotational speed of 600 rpm had smaller grain 

sizes at the start and middle of the weld. While 1200 rpm had smaller grain sizes at the end of 

the weld. Rotational speed 600 rpm specimens were also found without defects except 

specimen S1. 

 

Tensile properties, ultimate tensile strength and percentage elongation were tested and 

compared at different rotational speeds. For both tensile properties, it was found that rotational 

speed of 600 rpm had the highest values throughout the weld than other rotational speeds. At 

the start, middle and end of the weld the UTS values were found to be 187, 189 and 185 MPa 

respectively. While rotational speed 1200 rpm had the highest UTS value at the end of weld 

with value 186 MPa. The highest percentage elongation values from start, middle and end 

were found at rotational speed of 600 rpm with values of 18, 18 and 19 % respectively. When 

all fractured tensile specimens were put under a Scanning Electron Microscope to evaluate 

their type of failure by means of fractograghy. It was found that all specimens from rotational 

speed of 600 rpm had ductile fractures. 

 

Hardness was tested using the Rockwell hardness testing method. The rotational speed that 

had the closest hardness values to the parent materials was of 1000 rpm. Hardness has shown 

no correlation to tensile properties and grain sizes, as the rotational speed that had finer 

microstructure and greater tensile properties had weaker hardness. It was observed that as 

the rotational speed increases the hardness increased until an optimum rotational speed of 

1000rpm was reached and it decreased at 1200 rpm. 

 

Looking at the macrostructure of all specimens it was observed that rotational speed 600 rpm 

had welds with lesser defects, with specimens M1 and E1 having no defects visible even while 

specimen S1 had a huge wormhole visible in the stir zone. This speed is the lowest speed 

tested. As the rotational speeds were increased, they seem to be causing defects to the 
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specimens; 900 rpm seems to be the only high rotational speed to have fewer defects visible 

on the macrostructure. 

 

Rotational speed of 600rpm specimen had a huge wormhole at the start but had the highest 

tensile properties, smaller grain size and a ductile fracture. Specimens at the middle and end 

had no macrostructural defects. The higher tensile properties on the smallest rotational speed, 

might be caused by rapid cooling of the specimen as it had lower heat input during welding 

than higher rotational speeds. Rotaional speed of 600 rpm was selected as the optimum 

rotational speed when friction stir welding 6 mm thick 6082-T6 aluminium alloy plates with a 

welding speed of 80mm/min. 

 

5.2 Future work 

For future purposes, it will be best to know the force exerted on each workpiece during the 

plunging period and it should be a constant one throughout. The tensile testing machine should 

be of newer technology and be able to show the Young’s Modulus of each specimen tested.  

 

In order to get higher hardness and tensile values, the specimens could be hardened or made 

stronger by heat treatment (annealing or quenching), which in the case of 6082 aluminium 

alloy will be tempering (T6) at high temperatures. Investigating cooling temperatures could be 

of beneficiary to understanding the effects of rotational speed in friction stir welding of 6082-

T6 aluminium alloys. 

 

For fractography and microstructure having a lot of unknown structures a SEM with EDX 

available in order to identify different chemical composition formed during friction stir welding 

of 6082-T6 at different rotational speeds and identifying all the unknown structures that should 

not be used. To also see which rotational speed gives the highest percentage of chemical 

compounds that are good or not good for the strength and microstructure of 6082-T6 aluminium 

alloys. 
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APPENDIX A 

FSW Stress-Strain test results at different speeds 

 

 

 

Figure A 1: Stress-strain graphs for start, middle and end of FSW welds at 700 rpm 
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Figure A 2: Stress-strain graphs for start, middle and end of FSW welds at 700 rpm 
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Figure A 3: Stress-strain graphs for start, middle and end of a FSW weld at 800 rpm 
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Figure A 4 :Stress-strain graphs for start, middle and end of a FSW weld at 900 rpm 
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Figure A 5: Stress-strain graphs for start, middle and end of a FSW weld at 1000 rpm 
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Figure A 6: Stress-strain graphs for start, middle and end of a FSW weld at 1200 rpm 
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Appendix B 

Hardness Scale Conversion Table 

 

 

HARDNESS SCALE CONVERSION TABLE 

Approximate Equivalents of 

Hardness Scales for Soft Metals 

            

VICKERS 
ROCKWELL 

BRINELL 

DPH BHN 

HV/10 B E F G H K 
15-

T 

30-

T 

45-

T 
500kg 3000kg 

254 100     83     93 82 72 201 240 

248 99     81     93 82 71 195 234 

243 98     79     93 81 70 189 228 

238 97     78     92 81 69 184 222 

234 97     77     92 80 69 181 218 

230 96     76     92 80 68 179 214 

226 96     75     92 80 68 177 210 

222 95     74     92 79 67 175 208 

217 95     73     92 79 67 171 205 

213 94     73     91 79 66 169 203 

208 93     71     91 78 66 167 200 

204 92     70   100 91 78 65 163 195 

200 92     69   100 91 77 64 162 193 

196 91     68   100 90 77 64 160 190 

192 90     66   99 90 76 63 157 185 

188 89     64   98 90 76 62 154 180 

184 88     63   97 90 75 61 151 176 

180 87     61   97 89 75 60 148 172 

176 86     59   96 89 74 59 145 169 

172 85     58   95 89 74 58 142 165 

168 84     56   94 88 73 57 140 162 
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164 83     54   93 88 72 56 137 159 

160 82     53   92 88 72 55 135 156 

156 81     51   91 87 71 54 133 153 

152 80     49   91 87 70 53 130 150 

148 79     48   90 87 70 52 128 147 

144 78     46   89 86 69 51 126 144 

141 77     44   88 86 68 50 124 141 

139 76     43   87 86 68 49 122 139 

137 75   100 41   86 85 67 49 120 137 

135 74   99 39   85 85 66 48 118 135 

132 73   99 38   85 85 66 47 116 132 

130 72   98 36   84 84 65 46 114 130 

127 71 100 98 35   83 84 64 45 112 127 

125 70 100 97 33   82 84 64 44 110 125 

123 69 99 96 31   81 83 63 43 109 123 

120 68 98 96 30   80 83 62 42 107 121 

118 67 98 95 28   79 83 62 41 106 119 

116 66 97 95 27   78 82 61 40 104 117 

115 65 96 94 25   78 82 60 39 102 116 

114 64 96 94 24   77 82 60 38 101 114 

113 63 95 93 22   76 81 59 37 99 112 

112 62 95 92 21   75 81 58 36 98 110 

111 61 94 92 19   74 81 57 35 96 108 

110 60 93 91 18   73 81 57 34 95 107 

108 59 93 91 16   72 80 56 32 94 106 

107 58 92 90 15   71 80 55 31 92 104 

106 57 91 90 13   71 80 55 30 91 102 

105 56 91 89 12   70 79 54 29 90 101 

104 55 90 88 10   69 79 53 28 89 99 

103 54 90 88 9   68 79 53 27 87   

102 53 89 87 7   67 78 52 26 86   

101 52 88 87 6   66 78 51 25 85   

100 51 88 86 4   65 78 51 24 84   

100 50 87 86 3   65 77 50 23 83   

99 49 87 85     64 77 49 22 82   

98 48 86 85     63 77 49 21 81   

97 47 85 84     62 76 48 20 80   
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96 46 85 83     61 76 47 19 79   

95 45 84 83     60 76 46 18 79   

95 44 84 82     59 75 46 17 78   

94 43 83 82     58 75 45 16 77   

93 42 82 81     58 75 44 15 76   

92 41 82 81     57 74 44 14 75   

91 40 81 80     56 74 43 13 74   

90 39 80 79     55 74 42 11 74   

90 38 80 79     54 73 42 10 73   

89 37 79 78     53 73 41 9 72   

88 36 79 78   100 52 73 40 8 71   

88 35 78 77   100 52 72 40 7 71   

87 34 77 77   99 51 72 39 6 70   

87 33 77 76   99 50 72 38 5 69   

86 32 76 75   99 49 71 38 4 68   

86 31 76 75   98 48 71 37 3 68   

85 30 75 74   98 47 71 36 2 67   

85 29 74 74   98 46 70 36 1 66   

84 28 74 73   97 45 70 35   66   

84 27 73 73   97 45 70 34   65   

83 26 73 72   97 44 69 33   65   

83 25 72 71   96 42 69 33   64   

82 24 71 71   96 42 69 32   64   

82 23 71 70   96 41 68 31   63   

81 22 70 70   95 40 68 31   63   

81 21 70 69   95 39 68 30   62   

80 20 69 69   95 38 68 29   62   

80 19 68 68   94 38 67 29   61   

79 18 68 67   94 37 67 28   61   

79 17 67 67   93 36 67 27   60   

78 16 67 66   93 35 66 26   60   

78 15 66 66   93 34 66 26   59   

77 14 65 65   92 33 66 25   59   

77 13 65 65   92 32 65 24   58   

76 12 64 64   92 32 65 24   58   

76 11 64 64   91 31 65 23   57   

75 10 63 63   91 30 64 22   57   
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75 9 62 62   91 29 64 22   56   

74 8 62 62   90 28 64 21   56   

74 7 61 61   90 27 63 20   56   

73 6 61 61   90 26 63 20   55   

73 5 60 60   89 26 63 19   55   

72 4 59 60   89 25 62 18   55   

72 3 59 59   88 24 62 17   54   

71 2 58 58   88 23 62 17   54   

71 1 58 58   88 22 61 16   53   

70 0 57 57   87 21 61 15   53   

HV/10 B E F G H K 
15-

T 

30-

T 

45-

T 
500kg 3000kg 

VICKERS 
ROCKWELL 

BRINELL 

DPH BHN 
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