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ABSTRACT 

 

Over the years, the quantity of e-waste, primarily waste mobile phone printed circuit boards 

(PCBs), has increased worldwide, as a result of technological advancements in the fields of 

electronics, telecommunications and computing. Therefore, to sustain the protection of the 

environment and human health, sustainable measures should be implemented. Electronic waste 

(e-waste) is known for its wider variety of base and precious metal content compared to naturally 

occurring ores. Waste mobile phone PCBs are the most attractive type of e-waste due to their 

higher and more structured precious metal content. Ammonium thiosulphate leaching is 

considered as one of the promising alternatives to cyanidation in hydrometallurgy. However, its 

industrial application is limited due to the high reagent consumption which has a direct impact on 

its cost-effectiveness.  

 

This research aimed to investigate the ammonium thiosulphate leaching of gold from waste mobile 

phone PCBs, with an emphasis on the thiosulphate consumption and interference of the 

extractable copper in the leaching process. The objectives were to study the effect of acid pre-

treatment and copper replacement with nickel as the metal oxidant on gold extraction and 

thiosulphate consumption. 

 

The experiments in this study were all conducted in a batch setup. The PCBs were reduced to 

less than 3 mm particle size by cutting and crushing. In the acid pre-treatment, sulphuric acid and 

hydrogen peroxide concentrations were varied between two levels, namely 2 M and 3 M, to identify 

the optimum conditions that maximised copper extraction and minimised gold extraction. In the 

ammonium thiosulphate leaching, PCB pre-treatment and metal oxidant were investigated as 

categorical factors to establish the optimum conditions that maximised gold extraction and 

minimised thiosulphate consumption. The PCB pre-treatment was varied between two levels: 

acid-pretreated PCBs and untreated PCBs. The metal oxidant factor was varied between copper 

and nickel. The other leaching conditions were fixed, as prescribed in the existing literature.  

 

The mobile phone PCBs used in this study were found to contain 524 g Au/ton-PCB and 461.8 kg 

Cu/ton-PCB, as determined by aqua regia leaching. Copper thus contributed to more than 40% of 

the total PCB mass.  
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In the acid pre-treatment, the optimum reagent combination was 2 M H2SO4 and 3 M H2O2 and 

resulted in 93.72% copper extraction and 8.83% gold loss in 150 minutes at a pulp density of 50 

g/L, 25°C and stirring speed of 350 rpm. Furthermore, it was determined, through material 

balance, that the PCB mass reduction induced by the acid pre-treatment was mostly attributed to 

the copper extraction, evidence that the other base metals such as iron and aluminium that could 

have dissolved in the acid pre-treatment stage were in small quantities in the PCBs to impact the 

overall mass reduction significantly. The acid pre-treatment was a PCB beneficiation process with 

an increase in the extractable gold content from 524 to 842 g/ton-PCB and a decrease in the 

copper content from 461.8 to 51.1 kg/ton-PCB. The variation in H2SO4 concentration had more 

statistical impact on gold extraction, whereas varying H2O2 concentration had a more statistical 

influence on copper extraction. The analysis of the goodness of fit of the shrinking-core model to 

the experimental results indicated that the acid pre-treatment was chemically controlled, with 

moderate control due to the turbulence.  

 

In ammonium thiosulphate leaching, the optimum conditions consisted in using nickel as the 

oxidant in the thiosulphate leaching of acid-pretreated PCBs at a pulp density of 50g/L, 0.1 M 

thiosulphate, 0.2 M NH3, 0.03 M Ni2+, pH 10.5, 25°C and stirring speed of 350 rpm. The gold 

extraction and thiosulphate consumption were found to be 65.41% and 61.03 kg/ton-PCB in 5 

hours of leaching time, a significant improvement from the conventional copper-thiosulphate 

leaching of untreated PCBs which resulted in gold extraction and thiosulphate consumption of 

18.61% and 90.9 kg/ton-PCB, respectively. The statistical analysis of experimental results 

indicated that the variation of the metal oxidant had a higher significance level than the PCB pre-

treatment with respect to gold extraction. The assessment of the goodness of fit of the shrinking-

core model to the experimental data indicated that the copper-thiosulphate and nickel-thiosulphate 

leaching processes were both chemically controlled.  

 

To assess the degree of comparison between the copper-thiosulphate and nickel-thiosulphate 

leaching processes for gold extraction from waste PCBs, a preliminary economics assessment 

was performed, with emphasis on production costs. Considering a basis of 1 metric ton of 

processed PCB, replacing copper with nickel as the metal oxidant reduced the raw materials costs 

from 3,768 USD to 2,868 USD, approaching previously reported cyanidation costs closely. The 

revenue and gross margin were increased from 8,969 and 5,201 USD in copper-thiosulphate 

leaching to 16,287 and 13,419 USD in nickel-thiosulphate leaching, respectively. Therefore, the 

use of ammonium thiosulphate as an environment-friendly alternative lixiviant shows potential by 

virtue of the improved process economics.  



iv 
 

RESEARCH OUTPUTS 

 

Oral Presentations 

 

▪ Mboko, Y.R. and Aziz, M. 2018. The ammonium thiosulphate leaching of gold from waste 

mobile phone printed circuit boards – emphasis on acid pre-treatment and nickel catalysis. 

15th SAIMM Annual Student Colloquium [Mintek, Johannesburg, South Africa, 24 October 

2018].  

 

▪ Mboko, Y.R. and Aziz, M. 2018. The effect of nickel catalysis on the thiosulphate leaching 

of gold from waste mobile phones. CPUT Postgraduate Research Conference (SARETEC, 

CPUT, Bellville, South Africa, 07 November 2018].  

 

 

Journal Publication 

 

▪ Mboko, Y.R. and Aziz, M. 2019. The Nickel-Oxidised Thiosulphate Leaching of Gold from 

Waste Mobile Phones. Waste Management. Submitted 19 December 2019 [Paper ID.: 

WM-19-3367] 

 

▪ Aziz, M.; Mboko, Y.R and Morkel, F.D. 2020.  The Ammonium Thiosulphate Leaching of 

Gold from waste mobile phone printed circuit boards: Effects of Particle Size Distribution 

and Pulp Density, Journal of Mining and Metallurgy. Submitted 22 January 2020 [Paper 

ID.: JMMAB-24909] 

 

 

  



v 
 

DEDICATION 

 

 

To the Almighty and All-knowing God, Creator of heaven and earth, I would like to express my 

deepest gratitude for the spiritual, moral and physical support that You granted me. For everything 

that You have done and continue to do for me, I am forever grateful. Your Name shall be glorified, 

praised and celebrated for eternity. In the Mighty Name of Jesus-Christ. Amen.  

 

To my father Maurice Mboko and my mother Marie-Jeanne Munze, you have supported and 

raised me to the man I am today. I am forever grateful for your presence in my life. 

 

  



vi 
 

ACKNOWLEDGEMENTS 

 

 

This research project was undertaken within the Chemical Engineering Department at the Cape 

Peninsula University of Technology between February 2017 and December 2019.  

 

I would like to express my gratitude to the following people for their contributions towards the 

completion of this thesis:  

 

My Supervisor, Dr Mujahid Aziz for his incomparable supervision, persistent guidance, and 

technical expertise in the field of this research. I am thankful for his sustained academic, moral 

and fatherly assistance throughout my academic journey. 

 

My Co-supervisor Prof Tunde Victor Ojumu for his assistance. 

 

The technical staff in the Chemical Engineering Department, Mrs Hannelene Small, Mrs Elizma 

Alberts and Mr Alwyn Bester, always willing to assist. 

 

Mr David Kok, for his technical assistance and providing access to the atomic absorption 

spectroscopy instrument. 

 

The Environmental Engineering Research Group (EnvERG) in the Department of Chemical 

Engineering, for all their support and assistance.  

 

My parents, for their continued moral and financial support.  

 

Last but not least, my friend and confidante Ordy Masirika, for her continued moral support and 

positive impact in my life.  

 

 

  



vii 
 

TABLE OF CONTENTS 

 

DECLARATION ................................................................................................................ i 

ABSTRACT ...................................................................................................................... ii 

RESEARCH OUTPUTS .................................................................................................. iv 

DEDICATION ................................................................................................................... v 

ACKNOWLEDGEMENTS ............................................................................................... vi 

TABLE OF CONTENTS ................................................................................................. vii 

LIST OF FIGURES .......................................................................................................... xi 

LIST OF TABLES ......................................................................................................... xiii 

LIST OF ACRONYMS ................................................................................................... xvi 

LIST OF SYMBOLS ..................................................................................................... xvii 

GLOSSARY ................................................................................................................ xviii 

 : INTRODUCTION ................................................................................. 2 

1.1 Background to Research Problem ............................................................................ 2 

1.2 Statement of Research Problem ................................................................................ 4 

1.3 Research Aim and Objectives .................................................................................... 5 

1.4 Research Hypotheses ................................................................................................ 5 

1.5 Significance of the Study ........................................................................................... 6 



viii 
 

1.6 Thesis Outline ............................................................................................................. 6 

 : LITERATURE REVIEW ....................................................................... 8 

2.1 Characterisation and Classification of Electronic Waste ........................................ 8 

2.2 Waste Mobile Phone Printed Circuit Boards ............................................................ 9 

2.3 General Reasons for E-Waste Processing .............................................................. 10 

2.3.1 Health and Environmental Aspects of E-Waste .................................................... 10 

2.3.2 Energy and Resource Conservation .................................................................... 12 

2.3.3 Economic Value of Precious Metals in E-Waste .................................................. 12 

2.4 General Waste PCBs Treatment Scheme ................................................................ 13 

2.5 Gold Extraction by Hydrometallurgy ....................................................................... 16 

2.5.1 Cyanide Leaching ................................................................................................ 16 

2.5.2 Thiourea Leaching ............................................................................................... 19 

2.5.3 Thiocyanate Leaching .......................................................................................... 20 

2.5.4 Halide Leaching ................................................................................................... 22 

2.5.5 Thiosulphate Leaching ......................................................................................... 23 

2.5.6 Bioleaching .......................................................................................................... 24 

2.5.7 Comparison between Lixiviants used in Gold Extraction from E-waste ................ 25 

2.6 Ammonium Thiosulphate Leaching of Gold from E-waste .................................... 28 

2.6.1 Thermodynamics of the Ammonium Thiosulphate Leaching of Gold .................... 28 

2.6.2 Previous Research on Thiosulphate Leaching of Gold from Waste PCBs ............ 32 

2.6.3 Thiosulphate Stabilization and Reagent Consumption ......................................... 34 

2.6.3.1 Additives ....................................................................................................... 34 

2.6.3.2 Cobalt Oxidant .............................................................................................. 34 

2.6.3.3 Nickel Oxidant .............................................................................................. 35 

2.7 Shrinking-Core Model and Mechanism of Leaching Process ................................ 37 

 : RESEARCH METHODOLOGY ......................................................... 44 

3.1 Research Design ....................................................................................................... 44 

3.1.1 PCB Size Reduction ............................................................................................ 44 

3.1.2 PCB Characterization and Aqua Regia Leaching ................................................. 44 

3.1.3 Acid Pre-treatment ............................................................................................... 46 

3.1.4 Ammonium Thiosulphate Leaching ...................................................................... 47 

3.1.5 Iodimetric Titration of Thiosulphate ...................................................................... 49 

3.2 Experimental Setup and Instrumentation ............................................................... 49 



ix 
 

3.3 Materials .................................................................................................................... 51 

 : RESULTS AND DISCUSSION .......................................................... 53 

4.1 Metal Content of Mobile Phone PCBs ..................................................................... 53 

4.2 Particle Size Distribution of Ground PCBs ............................................................. 54 

4.3 Acid Pre-treatment .................................................................................................... 55 

4.3.1 Statistical Analysis of Acid Pre-treatment Results ................................................ 58 

4.3.1.1 Assumptions and Considerations for the t-Test and ANOVA ........................ 58 

4.3.1.2 Experimental Repeatability Test ................................................................... 59 

4.3.1.3 Analysis of Variance (ANOVA) – Acid Pre-treatment .................................... 60 

4.4 Ammonium Thiosulphate Leaching ........................................................................ 61 

4.4.1 Gold Extraction .................................................................................................... 61 

4.4.2 Ammonium Thiosulphate Consumption ............................................................... 62 

4.4.3 Statistical Analysis of Ammonium Thiosulphate Leaching Results ....................... 63 

4.4.3.1 Experimental Repeatability Test ................................................................... 63 

4.4.3.2 Analysis of Variance (ANOVA) – ATS Leaching ........................................... 63 

4.5 Shrinking-Core Model Fitting of Kinetic Data and Rate-Limiting Mechanism ...... 65 

4.5.1 Assumptions and Considerations for Modelling of Leaching Processes ............... 66 

4.5.2 Acid Pre-treatment – SCM with Shrinking Particles ............................................. 67 

4.5.3 Ammonium Thiosulphate Leaching – SCM with Unshrinking Particles ................. 69 

4.6 Preliminary Economics Analysis ............................................................................. 71 

 : CONCLUSION AND RECOMMENDATION ...................................... 74 

5.1 Conclusion ................................................................................................................ 74 

5.2 Recommendations for Future Research ................................................................. 75 

BIBLIOGRAPHY ............................................................................................................ 76 

APPENDIX A : PCB Characterization & Aqua Regia Leaching ........................... A-3 

APPENDIX B : Particle Size Distribution ............................................................... B-6 

APPENDIX C : Acid Pre-treatment ......................................................................... C-8 

C.1 Copper and Gold Extractions ................................................................................. C-8 



x 
 

C.2 Statistical Analysis ................................................................................................ C-11 

C.2.1 Experimental Repeatability Test ....................................................................... C-11 

C.2.2 ANOVA ............................................................................................................. C-12 

APPENDIX D : Ammonium Thiosulphate Leaching ........................................... D-15 

D.1 Gold Extraction and ATS Consumption ............................................................... D-15 

D.2 Statistical Analysis ................................................................................................ D-18 

D.2.1 Experimental Repeatability Test ....................................................................... D-18 

D.2.2 ANOVA ............................................................................................................. D-19 

D.3 Iodimetric Titration Results................................................................................... D-21 

APPENDIX E : Shrinking-Core Model and Rate-Limiting Mechanism .............. E-25 

E.1 Acid Pre-treatment – SCM with Shrinking Particles ............................................ E-25 

E.2 Ammonium Thiosulphate Leaching – SCM with Unshrinking Particles ............ E-28 

APPENDIX F : Preliminary Economics Analysis ................................................ F-32 

APPENDIX G : Sample Calculations .................................................................... G-34 

G.1 PCB Characterization ............................................................................................G-34 

G.2 Acid Pre-treatment .................................................................................................G-35 

G.2.1 Metal Extraction – Run 1 (150 min) ...................................................................G-35 

G.2.2 Material Balance ...............................................................................................G-36 

G.3 Ammonium Thiosulphate Leaching .....................................................................G-37 

G.3.1 Gold Extraction – Ni-ATS w/o AP (Run 1) .........................................................G-37 

G.3.2 Gold Extraction – Ni-ATS with AP (Run 3) ........................................................G-38 

G.3.3 ATS Consumption – Ni-ATS with AP (Run 3)....................................................G-39 

G.4 Shrinking-Core Model and Rate-Limiting Mechanism – Ni-ATS with AP ...........G-40 

G.5 Preliminary Economics Analysis – Gross Margin of Ni-ATS Leaching ..............G-42 

G.6 Mathematical Derivation of Shrinking-Core Model – Reaction Control .............G-43 

  



xi 
 

LIST OF FIGURES 

 

Figure 2-1: General e-waste processing scheme (Hanafi et al., 2012; Syed, 2012; Lu & Xu, 2016)

 ................................................................................................................................................. 15 

Figure 2-2: Beneficiation process steps for waste PCBs (Wang & Xu, 2015) ............................ 16 

Figure 2-3: Pourbaix diagram comparing the stability regions of lixiviants used for gold extraction 

(Aylmore, 2016) ........................................................................................................................ 27 

Figure 2-4: Electrochemical-catalytic mechanism of the copper-thiosulphate leaching of gold 

(Aylmore & Muir, 2001; Camelino et al., 2015; Xu et al., 2017) ................................................. 29 

Figure 2-5: Pourbaix diagram of the copper-ammonia-thiosulphate system at low reagent 

concentrations [0.1 M thiosulphate, 0.1 M ammonia, 0.0005 M Cu] (Aylmore & Muir, 2001) ..... 31 

Figure 2-6: Pourbaix diagram of the gold-ammonia-thiosulphate system at low reagent 

concentrations [0.1 M thiosulphate, 0.1 M ammonia, 0.0005 M Au] (Aylmore & Muir, 2001) ..... 31 

Figure 2-7: Electrochemical-catalytic mechanism of the nickel-thiosulphate leaching of gold (Arima 

et al., 2004; Aylmore & Muir, 2001) ........................................................................................... 36 

Figure 2-8: Pourbaix diagram of the nickel-ammonia-thiosulphate system at low reagent 

concentrations [0.5 M thiosulphate, 0.5 M ammonia, 0.0005 M Ni] (Arima et al., 2004) ............ 37 

Figure 2-9: Illustration of unreacted core shrinking as the reaction takes place from the outer layer 

(Levenspiel, 1999) .................................................................................................................... 38 

Figure 2-10: Representation of concentration profiles of reactants and products for the reaction of 

fluid and solid with unchanging particle size (Levenspiel, 1999) ................................................ 39 

Figure 2-11: Representation of concentration profiles of reactants and products for the reaction of 

fluid and solid with changing particle size (Levenspiel, 1999) .................................................... 40 

Figure 2-12: Progression of a solid-fluid reaction in terms of fractional time for complete 

conversion: SCM for shrinking and unshrinking particles (Levenspiel, 1999) ............................ 42 

Figure 3-1: Flow diagram of the research methodology ............................................................ 45 

Figure 3-2: Schematic diagram of the leaching experimental setup .......................................... 50 

Figure 4-1: Particle size distribution of ground PCBs: (a) on frequency basis and (b) on cumulative 

basis ......................................................................................................................................... 54 



xii 
 

Figure 4-2: Metal extraction by acid pre-treatment at four treatment combinations [50g/L pulp 

density, 350 rpm stirring speed, 25°C temperature, 3h reaction time]: (a) copper extraction and (b) 

gold extraction .......................................................................................................................... 55 

Figure 4-3: Metal extraction by acid pre-treatment at best conditions: 2M H2SO4, 3M H2O2 [50g/L 

pulp density, 350 rpm stirring speed, 25°C temperature, 3h reaction time]................................ 56 

Figure 4-4: Mobile phone PCB mass reduction after acid pre-treatment at best conditions: 2M 

H2SO4, 3M H2O2 [50g/L pulp density, 350 rpm stirring speed, 25°C temperature, 3h reaction time]

 ................................................................................................................................................. 57 

Figure 4-5: Factor interaction plots for acid pre-treatment: (a) Cu extraction and (b) Au extraction

 ................................................................................................................................................. 61 

Figure 4-6: Ammonium thiosulphate leaching [0.1M ammonium thiosulphate, 0.2M ammonia, 

0.03M copper sulphate, 0.03M nickel sulphate, pH 10, temperature 25°C, 6h reaction time, 350 

rpm stirring speed]: (a) gold extraction and (b) thiosulphate consumption ................................. 62 

Figure 4-7: Factor interaction plots for ammonium thiosulphate leaching: (a) Au extraction and (b) 

ATS consumption ..................................................................................................................... 65 

Figure 4-8: SCM fitting to kinetic data for acid pre-treatment ..................................................... 68 

Figure 4-9: SCM fitting to kinetic data for ammonium thiosulphate leaching .............................. 70 

Figure 4-10: Gross margins of three gold leaching process routes with a basis of one metric ton 

of processed PCBs ................................................................................................................... 72 

Figure 4-11: Contributions of the lixiviant and metal oxidant to the overall raw materials costs in 

thiosulphate leaching ................................................................................................................ 72 

  



xiii 
 

LIST OF TABLES 

 

Table 2-1: Elemental composition (%) of waste PCBs ................................................................ 9 

Table 2-2: Energy savings of recycled metals over virgin metals (Khaliq et al., 2014) ............... 12 

Table 2-3: Current market value of various metals contained in 1 ton of PCBs (Baba et al., 2010; 

Zhang et al., 2016) .................................................................................................................... 13 

Table 2-4: Basic assessment of cyanide and non-cyanide lixiviants used in gold extraction from 

waste PCBs (Quinet et al., 2005; Zhang et al., 2012; Akcil et al., 2015; Cui & Anderson, 2016) 26 

Table 2-5: Stability constants and standard reduction potentials for various gold complexes 

(Aylmore, 2016; Birich et al., 2019) ........................................................................................... 27 

Table 2-6: Studies on thiosulphate leaching of gold from waste PCBs ...................................... 33 

Table 2-7: Shrinking-core model for shrinking and unshrinking particles (Levenspiel, 1999) ..... 41 

Table 3-1: Factorial experimental design of acid pre-treatment ................................................. 46 

Table 3-2: Fixed conditions used in acid pre-treatment (Birloaga et al., 2013; Behnamfard et al., 

2013) ........................................................................................................................................ 46 

Table 3-3: Factorial experimental design of ammonium thiosulphate leaching .......................... 47 

Table 3-4: Fixed conditions used in copper-thiosulphate leaching (Petter et al., 2015; Kasper & 

Veit, 2015; Tripathi et al., 2012; Ha et al., 2010) ....................................................................... 48 

Table 3-5: Fixed condition used in nickel-thiosulphate leaching (Petter et al., 2015; Kasper & Veit, 

2015; Tripathi et al., 2012; Ha et al., 2010) ............................................................................... 48 

Table 4-1: Metal content of mobile phone PCBs ....................................................................... 53 

Table 4-2: Factor combinations in acid pre-treatment ............................................................... 56 

Table 4-3: Metal content of PCBs before and after acid pre-treatment ...................................... 57 

 

Table A-1: Dilute copper concentration (mg/L) of pregnant aqua regia leach solutions ............ A-3 

Table A-2: Dilute gold concentration (mg/L) of pregnant aqua regia leach solutions ................ A-3 

Table A-3: Actual copper concentration (mg/L) of pregnant aqua regia leach solutions ........... A-4 

Table A-4: Actual gold concentration (mg/L) of pregnant aqua regia leach solutions ............... A-4 

Table B-1: Particle size distribution on frequency basis ........................................................... B-6 



xiv 
 

Table B-2: Particle size distribution on cumulative basis .......................................................... B-6 

Table C-1: Dilute copper concentration (mg/L) of pregnant leach solutions in acid pre-treatment

 ................................................................................................................................................ C-8 

Table C-2: Actual copper concentration (mg/L) of pregnant leach solutions in acid pre-treatment

 ................................................................................................................................................ C-8 

Table C-3: Actual gold concentration (mg/L) of pregnant leach solutions in acid pre-treatment C-9 

Table C-4: Copper extraction (%) by acid pre-treatment at four treatment combinations .......... C-9 

Table C-5: Gold extraction (%) by acid pre-treatment at four treatment combinations ............ C-10 

Table C-6: Material balance – acid pre-treatment .................................................................. C-10 

Table C-7: Run-duplicate t-test: paired two-sample for means – Cu extraction ...................... C-11 

Table C-8: Run-duplicate t-test: paired two-sample for means – Au extraction ...................... C-11 

Table C-9: Response means – Cu extraction (%) .................................................................. C-12 

Table C-10: Response means – Au extraction (%) ................................................................ C-12 

Table C-11: Anova: two-factor with replication – Acid pre-treatment ...................................... C-13 

Table C-12: Estimated marginal means – Factor interaction .................................................. C-13 

Table D-1: PCB mass recorded after acid pre-treatment (Cu-ATS and Ni-ATS with AP) ........ D-15 

Table D-2: Gold concentration (mg/L) of pregnant leach solutions in ATS leaching ............... D-15 

Table D-3: Gold extraction (%) by ATS leaching at four treatment combinations ................... D-16 

Table D-4: ATS consumption (kg/t-PCB) in ATS leaching of gold at four treatment combinations

 .............................................................................................................................................. D-17 

Table D-5: Run-duplicate t-test: paired two-sample for means – Au extraction ...................... D-18 

Table D-6: Run-duplicate t-test: paired two-sample for means – ATS consumption ............... D-18 

Table D-7: Response means – Au extraction (%) .................................................................. D-19 

Table D-8: Response means – ATS consumption (kg/t-PCB) ................................................ D-19 

Table D-9: Anova: two-factor with replication – ATS leaching ................................................ D-20 

Table D-10: Estimated marginal means – Factor interaction .................................................. D-20 

Table D-11: Iodimetric titration – Cu-ATS w/o AP (Run) ......................................................... D-21 



xv 
 

Table D-12: Iodimetric titration – Cu-ATS w/o AP (Duplicate Run) ......................................... D-21 

Table D-13: Iodimetric titration – Cu-ATS with AP (Run) ........................................................ D-21 

Table D-14: Iodimetric titration – Cu-ATS with AP (Duplicate Run) ........................................ D-22 

Table D-15: Iodimetric titration – Ni-ATS w/o AP (Run) .......................................................... D-22 

Table D-16: Iodimetric titration – Ni-ATS w/o AP (Duplicate Run) .......................................... D-22 

Table D-17: Iodimetric titration – Ni-ATS with AP (Run) ......................................................... D-23 

Table D-18: Iodimetric titration – Ni-ATS with AP (Duplicate Run) ......................................... D-23 

Table E-1: Estimated time for complete conversion τ – Acid pre-treatment ............................ E-25 

Table E-2: SCM-generated data and experimental data – Conditions A ................................ E-25 

Table E-3: SCM-generated data and experimental data – Conditions B ................................ E-25 

Table E-4: SCM-generated data and experimental data – Conditions C ................................ E-26 

Table E-5: SCM-generated data and experimental data – Conditions D ................................ E-26 

Table E-6: Goodness of model fit – t-test: paired two sample for means (acid pre-treatment) E-27 

Table E-7: Estimated time for complete conversion τ – ATS leaching .................................... E-28 

Table E-8: SCM-generated data and experimental data – Cu-ATS w/o AP ............................ E-28 

Table E-9: SCM-generated data and experimental data – Cu-ATS with AP ........................... E-28 

Table E-10: SCM-generated data and experimental data – Ni-ATS w/o AP ........................... E-29 

Table E-11: SCM-generated data and experimental data – Ni-ATS with AP .......................... E-29 

Table E-12: Goodness of model fit – t-est: two sample for means (ATS leaching) ................. E-30 

Table F-1: Preliminary information for economics analysis .................................................... F-32 

Table F-2: Chemical reagent prices ....................................................................................... F-32 

Table F-3: Gross margin comparison – Part 1........................................................................ F-32 

Table F-4: Gross margin comparison – Part 2........................................................................ F-32 

Table G-1: Average gold and copper concentrations of pregnant aqua regia solution ............G-34 

  



xvi 
 

LIST OF ACRONYMS 

 

AAS Atomic absorption spectroscopy 
  
ADC Ash diffusion control 
  
AP Acid pre-treatment 
  
ATS Ammonium thiosulphate 
  
EOL End-of-life 
  
E-waste Electronic waste 
  
FDC Fluid diffusion control 
  
FDC-SR Fluid diffusion control with Stokes regime 
  
FDC-TR Fluid diffusion control with turbulent regime 
  
PCB Printed circuit board 
  
PSD Particle size distribution  
  
RC Reaction control 
  
SCM Shrinking-core model 
  
USD United States Dollar 
  
ZAR South African Rand 

 

  



xvii 
 

LIST OF SYMBOLS 

 

Symbol Description  Unit 

CAf Concentration of A in fluid phase   mol/m3 
    
𝓓 Molecular diffusion coefficient  m2/s 
    
𝓓𝒆 Effective diffusion coefficient of fluid reactant in ash layer   m3/m-solid/s 
    
df Degrees of freedom   
    
E° Standard reduction potential  V 
    
k" First-order rate constant   s-1 
    
kf Mass transfer coefficient between liquid and particle   m3 liquid/m2 

surface/s 
    
n Sample size   
    
N Number of moles    
    
R Pearson correlation   
    
R Particle size  µm 
    
R2 Coefficient of determination   
    
rc Unreacted core size  µm 
    
t/τ Fractional time for complete conversion   

    

X  Conversion   
    
βi Stability constant   
    
ρB Molar density of component B  mol/m3 
    
τ Time for complete conversion  s 

 

  



xviii 
 

GLOSSARY 

 

Atomic Absorption 
Spectroscopy 

It is used to determine the concentration of elements. It is based on the 
absorption of electromagnetic radiation by atoms. The wavelengths of 
light absorbed by atoms are indicative of the energies required for these 
particles to increase their energy levels 

  
Electronic Waste  A waste material comprising of any destroyed or undesired electronic 

devices 
  
Gross Margin The sum of product and raw materials revenues minus raw materials cost  
  
Leaching In extractive metallurgy, leaching is an extractive process which involves 

the dissolution of a specific mineral (or minerals) from ore or a 
concentrate   

  
Lixiviant  The primary reagent used in metal dissolution  
  
PCB Pre-treatment Denotes the processing stage involving acid leaching 
  
Printed Circuit Board It is the principal constituent of any electronic device. It is a fixed flat 

insulating sheet to which integrated circuits and other electrical 
components are affixed 
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 : INTRODUCTION 

 

1.1 Background to Research Problem 

 

The rapid development and growth in the field of computing and telecommunications have resulted 

in the growing production of electronic products in the last 20 years. Furthermore, the rapid 

obsolescence of these products has caused a reduction in their lifespan. Hence the predominant 

quantities of electronic waste (e-waste) generated worldwide, requiring appropriate management 

in accordance with environmental regulations (Ghosh et al., 2015; Albertyn, 2017).  

Among the various types of e-waste, mobile phone printed circuit boards (PCBs) have gained 

interest because of their high metallic content, inclusive of base and precious metals. A typical 

mobile phone PCB can contain up to 40% metals (Cu, Al, Fe, Sn, Ni, Zn, Pb, Au, Pd, Ag), the 

remainder consisting mostly of plastics (30%) and ceramic materials (30%) (Grosse et al., 2003; 

Hanafi et al., 2012; Chehade et al., 2012; Cui & Anderson, 2016). The metallic content of PCBs 

has been reported to be higher than that of naturally occurring ores (Grosse et al., 2003; Montero 

et al., 2012; Cui & Anderson, 2016). The recovery of the metallic fraction of PCBs, especially 

precious metals, is financially and environmentally driven.  

 

According to Baldé et al. (2015), it was estimated that approximately 41.8 million tonnes of e-

waste were generated worldwide in 2014, and this figure was expected to increase up to 49.8 

million tonnes in 2018, with an estimated 5% increase per annum. An investigation conducted by 

the e-Waste Association of South Africa (eWASA) in 2008 estimated that the total quantity of e-

waste generated in South Africa amounted to 875 687 tonnes and that this quantity was expected 

to increase significantly in the future, a clear indication of the proliferation of e-waste in developed 

and developing countries is an imminent issue that needs addressing (Finlay & Liechti, 2008).  

 

Since e-waste has a high metal content, the provision for appropriate methods to extract these 

metals is not only economically attractive but, more importantly, will ensure the sustainment of the 

environment and human health. The recycling of e-waste is becoming extensively necessary as 

an alternative to landfilling or heat treatment processes (Cui & Anderson, 2016).  
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In recent years, hydrometallurgical treatment has gained preference over pyro-metallurgical 

techniques in the recycling of the metal content (more specifically precious metals such as gold 

and silver) of waste mobile phone PCBs because of its reduced capital cost, low impact on the 

environment, and relatively easy management (Cui & Anderson, 2016; Hanafi et al., 2012; Grosse 

et al., 2003). Hydrometallurgical processes mainly consist of the following steps: leaching, 

recovery and purification (Cui & Anderson, 2016; Gupta, 2003). Cyanide has been used for many 

years as a leaching agent, but due to environmental and human health concerns, alternative 

lixiviants are considered. As such, thiosulphate is among the promising non-cyanide lixiviants by 

virtue of its higher selectivity, significantly reduced toxicity and corrosiveness (Albertyn, 2017; 

Petter et al., 2014; Grosse et al., 2003; Nicol & O’Malley, 2002; O’Malley, 2001).  

 

Although thiosulphate is praised as a promising replacement to cyanidation, the use of copper as 

an oxidant incurs an increase in the thiosulphate consumption which, in turn, leads to fluctuations 

in the gold extraction when similar leaching conditions are applied to various ores and e-waste 

types. The copper-ammonia-catalysed thiosulphate leaching of gold requires high amounts of 

cupric ions which are directly linked to the gold leaching kinetics and thiosulphate consumption 

(Xu et al., 2017; Syed, 2012; Cui & Zhang, 2008; Arima et al., 2004; Zipperian et al., 1988). 

Furthermore, if cementation and resin adsorption are used as recovery methods, the presence of 

copper would lead to the contamination of the precipitate in cementation and adsorbate in resin 

adsorption (Arima et al., 2004; Arima et al., 2003). Adding to these constraints is the fact that, 

during the leaching process, reagent consumptions are reported to be higher in the treatment of 

waste mobile phone PCBs compared to that of natural ores (Arima et al., 2004; Arima et al., 2003). 

Therefore, to counteract the high reagent consumption in the thiosulphate leaching of gold and 

enhance the efficiency of any subsequent recovery technique, the use of alternative oxidants and 

pre-treatment schemes should be considered.  
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1.2 Statement of Research Problem 

 

The hydrometallurgical extraction of precious metals from e-waste has proven to be an attractive 

and economic recycling route. Hence, the increased interest in the leaching of gold from discarded 

mobile phone PCBs. The use of thiosulphate as the leaching reagent is more environmentally 

friendly than the conventional cyanidation. Ammonia and copper have been used as stabilizing 

agent and metal oxidant, respectively, for the leaching process. However, the use of copper is 

deemed to incur high reagent consumption and contamination of the leachate that could cause 

severe interference in downstream recovery processes such as resin adsorption. Therefore, for 

the industrial implementation of thiosulphate leaching to be envisaged, there is a need to address 

the high reagent consumption associated with the process. 
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1.3 Research Aim and Objectives 

 

This research aimed to investigate the ammonium thiosulphate leaching of gold from waste mobile 

phone printed circuit boards, with an emphasis on the thiosulphate consumption and interference 

of extractable copper in the leaching process.  

 

The following objectives were pursued:  

 

▪ The effect of acid-pretreatment on gold extraction and thiosulphate consumption.  

 

▪ The effect of nickel as the metal oxidant on gold extraction and thiosulphate consumption.  

 

1.4 Research Hypotheses 

 

▪ Hypothesis 1: the use of acid pre-treatment has a significant impact on gold extraction and 

thiosulphate consumption.  

 

▪ Hypothesis 2: the replacement of copper(II) ion with nickel(II) ion has a pronounced impact 

on gold extraction thiosulphate consumption.  
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1.5 Significance of the Study 

 

The accelerated increase in waste electrical and electronic equipment and the improper disposal 

of this waste is becoming a significant concern for human health and the ecosystem. With the 

rising concerns on e-waste management and disposal methods, there are attempts to delay e-

waste generation by multiple regulatory techniques worldwide. However, in the South African 

context, there are still deficits on regulatory initiatives related to the unlawful trafficking and 

handling of e-waste. The imminent task at hand is to devise techniques for the collection, 

processing and disposal of e-waste. The hydrometallurgical treatment of e-waste is a promising 

route because of its advantages including job creation in the engineering sector, the profitability 

of the operation due to the high market value of the extractable metals and the reduction in size 

and amount of hazardous materials contained in this waste. This study focused on the mitigation 

of the operability issues related to the use of ammonium thiosulphate leaching to recycle gold from 

waste PCBs. The use of nickel to reduce reagent consumption in the leaching process, with 

specific application to waste PCBs, has been reported for the first time in this research, thus 

contributing to the body of knowledge in this field. Therefore, it is believed that this research will 

contribute to the advancement of e-waste handling techniques and procedures in South Africa 

and other developing countries.  

 

1.6 Thesis Outline 

 

This thesis is organized in five chapters. Chapter 1 has discussed the background and rationale 

for undergoing this research, along with aim and objectives pursued. Chapter 2 describes the 

hydrometallurgical techniques used in the gold extraction from e-waste with emphasis on the 

ammonium thiosulphate leaching process, the chemistry, thermodynamics and factors influencing 

the process. This chapter also includes references to recent applications of the thiosulphate 

leaching to extract gold from waste printed circuit boards. Chapter 3 details the experimental setup 

and procedures used in this study. Chapter 4 discusses the results obtained with reference to the 

existing literature and statistical analysis. Finally, Chapter 5 concludes the thesis with 

recommendations for future research.  
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 : LITERATURE REVIEW 

 

2.1 Characterisation and Classification of Electronic Waste 

 

Although no standard definition can be attributed to this waste type, e-waste can be portrayed as 

a waste material comprising of any destroyed or undesired electronic devices. Electronic waste 

incorporates computers, entertainment gadgets, mobile phones and other electronics that have 

reached their end of life and have been disposed of by their users. Although they are regarded as 

waste, end-of-life (EOL) electronics can still find use through refurbishing and recycling (Ari, 2016).  

 

E-waste is a complex blend of ferrous, non-ferrous, plastic and ceramic materials. Printed circuit 

boards (PCBs) are an essential part of all electronic devices. They are commonly known to contain 

approximately 40% metals, 30 % plastics and 30 % ceramics (Ari, 2016; Khaliq et al., 2014; 

Szałatkiewicz, 2014). In general, the metals present in e-waste can be categorised as precious 

metals (PMs), base metals (BMs), platinum group metals (PGMs), metals of concern (MCs) and 

scarce elements (SEs), such as the following (Khaliq et al., 2014):  

 

PMs: Au, Ag 

PGMs: Pd, Pt, Rh, Ir and Ru 

BMs: Cu, Al, Ni, Sn, Zn and Fe 

MCs (hazardous):  Hg, Be, In, Pb, Cd, As and Sb 

SEs:  Te, Ga, Se, Ta and Ge. 

 

The recyclability of EOL devices is dependent on these constituents. A detailed classification of 

e-waste is provided by Cui & Zhang (2008). It has been shown that, out of all EOL devices, the 

most predominant sources of e-waste are computers and mobile phones. Furthermore, they 

contain the highest amount of base and precious metals (Cui & Zhang, 2008; Akcil et al., 2015). 

The elemental composition of waste PCBs is provided in Table 2-1.  
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Table 2-1: Elemental composition of waste PCBs 

Element 

Weight (%) 

(Zhang et al., 

2016) 

PC-PCB 

(Akcil et 

al., 2015) 

MP-PCB 

(Akcil et al., 

2015) 

PC-PCB 

(Szałatkiewicz, 

2014) 

MP-PCB 

(Szałatkiewicz, 

2014) 

PC-PCB 

Gold 0.00385 0.00 0.13 0.0347 0.0076 

Palladium 0.0435 - - 0.0151 <0.0027 

Silver 0.0541 0.21 0.16 0.363 0.0241 

Copper 30.8752 34.49 20.19 13 24.69 

Nickel 0.3854 2.63 0.43 1.5 0.11 

Zinc 0.3968 5.92 4.48 - - 

Aluminium - 0.26 5.7 - - 

Iron 4.0756 10.57 7.33 7 0.22 

Lead 2.0986 1.87 5.53 0.6 0.63 

Tin - 3.39 8.83 1 2.31 

 MP-PCB: mobile phone printed circuit board 

PC-PCB: computer printed circuit board 

 

2.2 Waste Mobile Phone Printed Circuit Boards 

 

Gold recovery from waste mobile phone PCBs has gotten the most consideration because of the 

extensive amount of this metal in this waste as compared to metal-bearing ores. It was reported 

that the gold content of mobile phone PCBs is about 100 times greater than that of naturally-

occurring rocks (Kim et al., 2011; Cui & Zhang, 2008). The size of cellular phones might be small, 

but when tons of these items become obsolete, the amount of extractable valuable metals in these 

items becomes much more significant (Baba et al., 2010). 

 

PCBs from mobile phones can incorporate up to 40 different elements, some of which are shown 

in Table 2-1. A typical cellular phone weighs between 112 and 192 grams, and the metallic fraction 

is about 25% of its mass. The gold content of mobile phone PCBs has been reported to be twice 

as high as that of computer PCBs. Copper and iron are known to represent approximately 55% 

and 30% of the metallic fraction, respectively (Szałatkiewicz, 2014).  

  



10 
 

2.3 General Reasons for E-Waste Processing 

 

The main reasons for treating e-waste include health and environmental concerns, energy and 

resource conservation, and economic benefits. 

 

2.3.1 Health and Environmental Aspects of E-Waste  

 

Many components of waste electrical and electronic equipment are considered intrinsically 

hazardous and significantly toxic. If not subjected to environmentally benign recycling techniques, 

this waste can harm living beings and the environment (Ari, 2016).  

 

The primary hazardous materials contained in e-waste and their health and environmental 

implications have been outlined and discussed extensively in the existing literature (Ecroignard, 

2006; Robinson, 2009; Khaliq et al., 2014). They include arsenic, barium, beryllium, brominated 

flame retardants (BFRs), cadmium, chlorofluorocarbons (CFCs), chromium, dioxins and furans, 

lead, mercury, polychlorinated biphenyls, polyvinyl chloride (PVC) and selenium.  

 

Landfilling is the most common method in handling e-waste. It is inclined to unsafe consequences 

owing to the unwanted presence of heavy metals in the leachate, even in the best landfilling 

technologies employed (Al-Anzi et al., 2017; Mehta, 2018; Singh et al., 2018). Although lead has 

not been found to leach from modern municipal solid waste landfills above regulatory levels 

(Robinson, 2009), there are numerous reports on the leaching of lead from discarded lead-

containing glasses, such as the cone glass of cathode ray tubes (CRTs) (Ari, 2016). Electronic 

devices and lead-acid batteries are significant sources of lead in municipal solid waste (USEPA, 

1989). Lead-based solder, which is a mixture of tin and lead in a ratio of 60:40, is the dominant 

type of solder used in the manufacture of PCBs (Hedemalm, 1995; FWI, 2001). FWI (2001) 

identified about 50g of tin-lead solder/m2 of PCBs, and Monchamp (2000) indicated roughly 0.7% 

lead in the total mass of PCBs. In CRTs, leaded glass finds use as a shield against X-rays 

originating from the picture projection process. The amount of lead in colour CRTs averages 1.6 

- 2.2 kg (Pedersen, 1995). 

  



11 
 

E-waste incineration would pose a problem due to the release of mixtures of toxic gaseous 

compounds such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated 

dibenzofurans (PCDFs). These compounds are produced when some of the components of e-

waste, including lead, brominated flame retardants, polyvinyl chloride and polychlorinated 

biphenyls are subjected to combustion (Ecroignard, 2006; Leung et al., 2007). Furthermore, the 

ash residue in e-waste incineration sites contains increased quantities of polluting metals such as 

cadmium and lead, along with PCDDs and PCDFs which are deposited into the soil from the 

incineration effluents released. These species could be detrimental to the surrounding terrestrial 

area (Ni et al., 2010; Luo et al., 2011). However, researchers have different views on the 

environmental viability of the incineration of electronic waste. Stewart & Lemieux (2003) stated 

that one method of handling e-waste is the incineration of its combustible fraction, either to achieve 

volume reduction before landfilling or to concentrate the valuable metallic species in the residual 

ash so that they can be extracted through additional recovery techniques. They conducted 

preliminary tests aimed at providing data on the potentially toxic emissions involved in the 

incineration of e-waste. Experiments were conducted in a pilot-scale rotary kiln incinerator over a 

range of temperatures. The flue gas was tested for metals, halogens, volatile and semi-volatile 

organics, and PCDDs and PCDFs. The results indicated significant metals emissions, mostly 

consisting of copper, lead, and antimony, with trace amounts of other toxic metals such as 

cadmium, barium, arsenic, chromium and beryllium. Volatile organic emissions consisted mainly 

of bromobenzene, with tiny quantities of other brominated hydrocarbons. Emissions of PCDDs 

and PCDFs were below regulatory levels, possibly inhibited due to the presence of bromine 

originating from the combustion of brominated flame retardants in the waste. The authors 

suggested that e-waste incineration may be a viable recycling technique, provided that an 

appropriate method is used to control the emissions.  
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2.3.2 Energy and Resource Conservation 

 

Another incentive for e-waste recycling through metal recovery is related to the potential for energy 

savings. Energy can be saved significantly by using recycled materials compared to mining new 

products because most of the metals in PCBs have high chemical energy compared to the energy 

required for PCB treatment (Khaliq et al., 2014). The chemical energy available in mobile phones 

has been reported to approximate 10.65 MJ/kg, whereas the energy required for the extractive 

treatment of this waste is about 7.43 MJ/kg (Szałatkiewicz, 2014). In addition, the treatment of e-

waste will decrease the intricacies of digging ores for primary metals. Therefore, scarce resources, 

particularly those containing precious metals, could be saved (Khaliq et al., 2014). The energy 

savings of some of the common metals used in the industry are provided in Table 2-2.  

 

Table 2-2: Energy savings of recycled metals over virgin metals (Khaliq et al., 2014) 

Metals Energy Savings (%) 

Aluminium 95 

Copper 85 

Iron and steel 74 

Lead 65 

Zinc 60 

 

2.3.3 Economic Value of Precious Metals in E-Waste 

 

The market value of the metals recovered from waste PCBs can be used to assess the financial 

aspect of metal extraction from this waste. The market values of the extractable metals of interest 

in 1 metric ton of PCB are given in Table 2-3.  
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Table 2-3: Current market value of various metals contained in 1 ton of PCBs (Baba et al., 2010; 
Zhang et al., 2016) 

Recovered 
Metal 

Weight (kg) 
Approximate Market Value 

USD* ZAR* 

Au 0.298 14,070 210,905 

Pd 0.093 5,294 79,352 

Cu 308.8 1,804 27,043 

Pb 30.84 61 907 

Ag 0.450 247 3,697 

  * USD: US Dollars; ZAR: South African Rand 

 

Table 2-3 indicates that gold, copper and palladium have a significantly high market value 

compared to other metals contained in PCBs. Furthermore, despite the high amount of extractable 

copper (309 kg/ton of PCB), the market value of this metal is significantly smaller than that of gold 

or palladium although their masses are tiny in the PCB (gold mass being 1040 times lower than 

copper, and palladium mass being 3320 times smaller than copper). In fact, gold and palladium 

alone represent approximately 80% of the total market value of the extractable metals in PCBs 

(Szałatkiewicz, 2014; Baba et al., 2010). Gu et al. (2019) supported this claim by suggesting that 

the monetary value proportion of gold in PCBs can reach as high as 60%. This consideration adds 

to the incentives for gold extraction from electronic waste, mainly waste mobile phones.  

 

2.4 General Waste PCBs Treatment Scheme 

 

Waste PCBs recycling incorporates three major stages (Cui & Forssberg, 2003; Khaliq et al., 2014; 

Lu & Xu, 2016): (i) dismantling: aimed at separating the PCB from any mounted component, (ii) 

pre-treatment/beneficiation: involves the removal of the non-metallic fraction in order to upgrade 

the waste to the desired metal content, and (iii) refining/end-treatment: whereby the metal-

concentrated waste is subjected to chemical (metallurgical) treatment for extracting the metals of 

interest and increasing their purity. The general treatment operations used for the recovery of 

precious metals from e-waste is provided in Figure 2-1.  
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The pre-treatment of waste PCBs is crucial because it allows the waste to be concentrated in 

metals before the extraction steps. Therefore, the pre-treatment process is said to entail 

beneficiation or metal enrichment steps. PCBs are known to be coated with different plastic and 

ceramic materials which make up most of the non-metallic fraction of the boards (J. Guo et al., 

2015; X. Guo et al., 2015). To increase metal exposure, the removal of all non-metals is a 

prerequisite. In this regard, mechanical-physical separation, praised for its high efficiency and 

simple operation, is employed. This technology is based on the difference in physical properties – 

such as density, magnetic properties and electric conductivities – of the materials to be segregated 

(Huang et al., 2009).  

 

The schematic diagram of a beneficiation process for waste PCBs is provided in Figure 2-2. This 

treatment route is currently employed at Shanghai Xinjinqiao Environmental Company Ltd. and 

Yangzhou Ningda Precious Metal Company Ltd., with a throughput of 5000 tons of waste PCBs 

per year (Wang & Xu, 2015). It encompasses two-step crushing and cyclone air separation-corona 

electrostatic separation (CAS-CES) (Wang & Xu, 2015).  
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Dismantling

Pretreatment
Milling, Crushing, Density Separation, Magnetic Separation

Non-Metal
Power

Metal-Enriched
Powder

E-Waste

Pyrometallurgy
Roasting, Smelting, Converting

Hydrometallurgy
Leaching (cyanide, thiosulfate, thiourea)
Recovery (precipitation, activated carbon, IX resins) 

Biohydrometallurgy
Bioleaching (microbial consortia: A. ferrooxidans, 

A. thiooxidans, P. fluorescens, C. violaceum)

Refining
Electrolytic Method

Base and Precious Metals 
Cu, Au, Ag, Pd

 

Figure 2-1: General e-waste processing scheme (Hanafi et al., 2012; Syed, 2012; Lu & Xu, 2016) 
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     Size:  < 0.6 mm

Cyclone -2
Bag-type dust

collecter
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Vibrating screen
Size: 1.2 – 2.5 mm
Size: 0.6 – 1.2 mm

6-roll electrostatic
seprator

 

Figure 2-2: Beneficiation process steps for waste PCBs (Wang & Xu, 2015) 

 

2.5 Gold Extraction by Hydrometallurgy 

 

The underlying principle of any hydrometallurgical process involves the dissolution of metals from 

ores and wastes in a solution. The solution is referred to as a leaching agent or lixiviant or leachant 

(Gupta, 2003). The most common lixiviants used in the recovery of base metals and precious 

metals from ores are cyanide, halide, thiourea and thiosulphate (Gupta, 2003). The second step 

in hydrometallurgy involves the recovery of the metal(s) of interest from the pregnant leach liquor. 

Some of the metal recovery technologies in use include cementation, solvent extraction, carbon 

adsorption and ion-exchange resin adsorption (Safarzadeh et al., 2007; Makaka et al., 2010; Syed, 

2012; Khaliq et al., 2014). At this stage, a careful choice of the recovery method is crucial to ensure 

an efficient and selective metal extraction. 

 

2.5.1 Cyanide Leaching  

 

Cyanide is amongst the oldest leaching reagents used in the gold mining industry. It has been 

used for more than 100 years for gold extraction. It is estimated that 13-20% of the global 

production of cyanide is directed towards mining operations for gold extraction (Ilyas & Lee, 2018). 

The dominant plant setups for cyanidation include tank leaching and heap leaching processes as 

the centre of operations (Cui & Zhang, 2008; Syed, 2012).  

 

Cyanide leaching is an electrochemical process involving the complexation of gold in the feed with 

cyanide resulting in a pregnant solution containing the dissolved metal. The cyanidation process 

for the extraction of gold proceeds according to the following reactions (Dorin & Woods, 1991; 

Logsdon et al., 1999):  
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 4 𝐴𝑢 + 8 𝐶𝑁−   ⟶   4 𝐴𝑢(𝐶𝑁)2
− + 4 𝑒− (1) 

 

 𝑂2 + 2 𝐻2𝑂 + 4 𝑒−   ⟶   4 𝑂𝐻− (2) 

 

Overall: 4 𝐴𝑢 + 8 𝐶𝑁− + 𝑂2 + 2 𝐻2𝑂  ⟶   4 𝐴𝑢(𝐶𝑁)2
− + 4 𝑂𝐻− (3) 

 

Most of the studies conducted in this field have been directed towards the recovery of precious 

metals (PMs) and platinum group metals (PGMs), predominantly gold (Costello et al., 1992; 

Schmitz et al., 2001; Tan et al., 2005; Chen & Huang, 2006; Parga et al., 2007; Celep et al., 2009; 

Yazici et al., 2017; Rabieh et al., 2017; Khosravi et al., 2017). Cyanidation is carried out in alkaline 

media (pH 10) to avoid the hazardous evolution of HCN gas (Birich et al., 2019). Gold extractions 

ranging from 50 to 80% in heap leaching and up to 99% in conventional leaching have been 

reported (Habashi, 1966; Jeffrey, 2001; Marsden & House, 2006; Ilyas & Lee, 2018).  

 

Cyanide leaching incurs selectivity issues when used in the extraction of gold from waste PCBs. 

This problem is driven by the variety of metals found in this waste, especially the high amount of 

copper which is known to interfere significantly with gold dissolution in cyanide solutions (Akcil et 

al., 2015). Bas et al. (2015) indicated that when the copper content of a gold-bearing ore exceeds 

0.5%, the cyanide consumption can increase from 1.6 kg/t-ore to a range of 30 to 51.5 kg/t-ore for 

every 1% of extractable copper, with a significant reduction in gold extraction. This means that for 

waste PCBs containing high amounts of copper (up to 40%), cyanidation would incur 

unreasonably high reagent consumption levels. Hence the need for pre-treatment methods 

targeting copper removal or the use of additives to impede the effect of copper on gold extraction. 

These measures could have a detrimental impact on the economic viability of the process.  

 

Although little research has been conducted on the cyanide leaching of gold from waste printed 

circuit boards, the available literature indicates gold extractions neighbouring 50% with no pre-

treatment targeting copper removal, and gold dissolutions reaching as high as 97% with acid pre-

treatment for copper removal and an associated cyanide consumption of 17.5 kg/t-PCB (Quinet 

et al., 2005; Montero et al., 2012).  
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The current use of cyanidation for the extraction of gold raises multiple environmental concerns. 

As a result, its use is highly restricted or banned in various regions. Cyanide leaching in the gold 

mining industry incurs the production of a significant quantity of cyanide-bearing wastewater, 

which is detrimental to the wellbeing of operators and the environment (Grosse et al., 2003; Zhang 

et al., 2012). There have been numerous reports on incidents related to cyanide leakages at gold 

mining sites, and the most recent occurred in 2015 at Barrick Gold/Veladero mine in Argentina 

(Hynes et al., 1998; Eisler & Wiemeyer, 2004; Noller & Saulep, 2004; MiningWatch, 2006; Guerra, 

2010; Holland, 2015; Jamasmie, 2015).  

 

Based on its reactivity, cyanide can follow various transformative paths when discharged into 

nature. In general, metal-cyanide complexes are less toxic than cyanide. However, copper and 

zinc complexes are more unstable owing to their weak acidity and thus will discharge cyanide into 

the earth. Despite the stability of iron cyanide complexes under various environmental conditions, 

iron cyanides can undergo photochemical disintegration and will, therefore, release cyanide if 

subjected to UV light. Furthermore, iron cyanide complexes react with Ni, Mg, Pb, Zn, Cd and Ag 

to form insoluble precipitates. The adsorption of cyanide and metal cyanide complexes on 

organics present in the soils is also predominant and results from the strong affinity of these 

species for organic matter. When released to the environment, free cyanide can also follow the 

volatilisation pathway by the slow evolution of gaseous hydrogen. It is noteworthy that the 

formation of HCN can be exacerbated by a decrease in pH, increased aeration of the solution and 

temperature (Eisler, 2000; International Cyanide Management Code, 2015; Jaszczak et al., 2017).  

 

The acute toxicity of cyanide is the result of its lethal nature and ability of rapid diffusion and 

attachment to the human tissue. Liquid and gaseous hydrogen cyanide access to the human body 

occurs through various routes, mainly inhalation, ingestion or assimilation through the eyes and 

skin. The assimilation rate through the skin is exacerbated when the skin is cut, abraded or moist 

(Eisler & Wiemeyer, 2004; Leung & Lu, 2016).  

 

Currently, more studies are focusing on the use of alternative non-cyanide lixiviants such as 

thiourea, thiocyanate, iodine and thiosulphate for gold extraction from e-waste.  
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2.5.2 Thiourea Leaching 

 

The use of thiourea in the leaching of precious metals – predominantly gold and silver – from 

primary and secondary sources has gained interest over the years. Thiourea leaching is carried 

out in acidic solutions in a pH range of 1 to 2 due to its instability in alkaline environments (Hilson 

& Monhemius, 2006; Cui & Zhang, 2008; Syed, 2012). In acidic solutions, the thiourea leaching of 

gold involves the formation of a cationic complex; the reaction is rapid, and gold extractions are 

expected to reach as high as 99% (Yannopoulos, 1991).  

 

Air and oxygen are inappropriate for thiourea leaching. The most suitable oxidants include Fe(III), 

H2O2 (Ranjbar et al., 2017). When the oxidant used is a ferric ion, the overall reactions of the acid-

thioureation of gold and silver are as follows (Murthy et al., 2003; Gönen et al., 2007; Jing-ying et 

al., 2012):  

 

 𝐴𝑢 + 2𝐶𝑆(𝑁𝐻2)2 + 𝐹𝑒3+   ⟶   𝐴𝑢[𝐶𝑆(𝑁𝐻2)2]2
+ + 𝐹𝑒2+ (4) 

 

 𝐴𝑔 + 3𝐶𝑆(𝑁𝐻2)2 + 𝐹𝑒3+   ⟶   𝐴𝑔[𝐶𝑆(𝑁𝐻2)2]3
+ + 𝐹𝑒2+ (5) 

 

However, the oxidation of thiourea by ferric ion in an acidic medium also produces formamidine 

disulphide:  

 2𝐶𝑆(𝑁𝐻2)2 + 2𝐹𝑒3+   ⟶   (𝑆𝐶𝑁2𝐻3)2 + 2𝐹𝑒2+ + 2𝐻+ (6) 

 

Formamidine disulphide is unstable in acidic solutions, and thus undergoes an irreversible 

disproportion reaction to form elemental sulphur and cyanamide:  

 

 (𝑆𝐶𝑁2𝐻3)2   ⟶   𝐶𝑆(𝑁𝐻2)2 + 𝑁𝐻2𝐶𝑁 + 𝑆 (7) 

 

In addition, thiourea is consumed through the formation of a stable ferric sulphate complex:  

 

 𝐹𝑒3+ + 𝑆𝑂4
2− + 𝐶𝑆(𝑁𝐻2)2   ⟶   [𝐹𝑒𝑆𝑂4 . 𝐶𝑆(𝑁𝐻2)2]+ (8) 

 

Therefore, careful control of the oxidation of thiourea is required to achieve optimum leaching 

performance.  
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Compared to cyanidation, thiourea leaching offers several advantages including lower toxicity, 

greater reagent handling, higher gold dissolution rates and recoveries (Brent Hiskey & Atluri, 1988; 

Ubaldini et al., 1998; Gönen et al., 2007; Cui & Zhang, 2008; Syed, 2012). Also, thioureation has 

been praised due to its overall higher leaching efficiency in acidic environments.  

Although in a limited amount, previous studies have successfully applied thiourea leaching for the 

extraction of gold from electronic waste. Among them, others have examined pre-treatment 

techniques including thermal processing after size reduction for the removal of the non-metallic 

fraction, and acid leaching for the removal of base metals such as copper (Birloaga et al., 2014; 

Behnamfard et al., 2013; Gurung et al., 2013). 

 

The main challenges encountered with thioureation are high reagent consumption (reaching as 

high as 140.7 kg/t-PCB) and poor stability (Quinet et al., 2005). Attempts have been made to 

tackle these issues. To overcome the instant thiourea complexation with base metals such as 

copper-nickel and iron in acidic media, Wei et al. (1999) proposed alkaline thioureation, which 

would improve the passivation of these unwanted metals. The alkaline thiourea leaching system 

was inclusive of sodium sulphite, and sodium persulphate used as the oxidant. However, it is worth 

noting that the stability of thiourea in alkaline solutions needs to be substantiated through more 

research to ascertain the process viability since most of the available literature on gold thioureation 

involves the more favoured acidic environments.  The presence of formamidine disulphide in the 

leaching environment also has a deleterious effect on reagent consumption. Sulphur production 

is incurred in fine adhesive form and has the potential of inhibiting metal dissolution by passivation 

of the feed material.  

 

2.5.3 Thiocyanate Leaching 

 

Thiocyanate was first reported as a possible alternative lixiviant to cyanide for gold leaching by 

White (1905). Subsequent research on the topic, including its thermodynamic aspect, was 

conducted by Fleming (1986), Barbosa-Filho & Monhemius (1989) and Broadhurst & Du Perez 

(1993). Thereafter, Li et al. (2012a; 2012b; 2012c; 2012d; 2012e) built upon previous knowledge 

and outlined a comprehensive approach involving all treatment steps from pre-treatment to 

purification, and concluded their study with a conceptual flowsheet for gold extraction by 

thiocyanate leaching.  

  



21 
 

The thermodynamic studies conducted on the leaching of gold using thiocyanate indicated that, 

based on the Pourbaix diagram of the gold/iron/thiocyanate/sulphate/water system, thiocyanate is 

a stable and possible leaching reagent combination for gold extraction (Broadhurst & Du Perez, 

1993; Li et al., 2012b). When the ferric ion is used as the oxidizing agent, leaching is carried out 

in a pH range of 1 to 3.5 (Li et al., 2012b; Barbosa-Filho & Monhemius, 1994b).  

 

 3𝐹𝑒(𝑆𝐶𝑁)4
− + 𝐴𝑢   ⟶    3𝐹𝑒2+ + 𝐴𝑢(𝑆𝐶𝑁)4

− + 8𝑆𝐶𝑁− (9) 

 

 𝐹𝑒(𝑆𝐶𝑁)4
− + 𝐴𝑢   ⟶    𝐹𝑒2+ + 𝐴𝑢(𝑆𝐶𝑁)4

− + 2𝑆𝐶𝑁− (10) 

 

The mechanism of the thiocyanate leaching of gold with Fe3+ as an oxidant is based on an 

electrochemical process involving the reduction of Fe3+ and oxidation of SCN−. This spontaneous 

redox process was referred to as ‘auto-reduction’ by Betts & Dainton (1953). Thiocyanate is 

oxidised by ferric ion through the formation of intermediates, predominantly trithiocyanate (SCN)3
− 

and thiocyanogen (SCN)2, which behave as oxidants and, when reduced back to SCN−, as 

complexants for gold. This formation is thus considered the most critical feature of the auto-

reduction process (Barbosa-Filho & Monhemius, 1994c). However, these intermediate species do 

not just increase the gold dissolution rate but are also subject to a rapid decomposition by 

hydrolysis which is considered as a major issue in the mechanistic analysis of the ferric-oxidised 

thiocyanate leaching of gold (Barbosa-Filho & Monhemius, 1994d). Therefore, the overall 

efficiency of the leaching process can be greatly improved by using solution concentrations such 

that the rates of auto-reduction and gold dissolution concur. This will ensure a continuous supply 

of (SCN)3
− and (SCN)2 (Barbosa-Filho & Monhemius, 1994d).  

 

Thiocyanate is mostly used in conjunction with other lixiviants such as thiourea to achieve a 

synergistic effect on the leaching process. For instance, Barbosa-Filho & Monhemius (1994a) 

studied the iodide-thiocyanate leaching and established that the synergistic effect of the dual-

lixiviant system was ascribed to the formation of relatively stable mixed iodine-thiocyanate species 

such as I2SCN- and I(SCN)2- which could partake in the mechanism of gold leaching.  
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Currently, no research has been reported on the thiocyanate leaching of gold from waste mobile 

phones. However, it is noteworthy that, based on the established process mechanism applied to 

primary sources, more research into this leaching technique with e-waste as raw material would 

provide additional insights into possible industrial upscale. Furthermore, an assessment of the 

environmental aspects of thiocyanate leaching has been described by Li et al. (2012b). Although 

thiocyanate is reported to be significantly less toxic than cyanide, more research is required to 

investigate the toxicity of thiocyanate degradation products in waste streams to comply with 

environmental discharge regulations.  

 

2.5.4 Halide Leaching 

 

Most halogens, except for fluorine and astatine, have been applied to the extraction of gold (Hilson 

& Monhemius, 2006; Calgaro et al., 2015). Halogens are praised for their high leaching kinetics 

and overall performance compared to conventional cyanidation. They are known to form stable 

complexes with gold due to their ability to produce highly polarised anions in aqueous media 

(Sahin et al., 2015). Iodine has been reported to have a higher affinity for gold compared to 

bromine and chlorine, with a dissolution rate close to that of aqua regia (Birich et al., 2019). 

Furthermore, iodine is praised for its low volatility and low hazardousness.  

 

The mechanism of gold leaching by iodine, bromine and chlorine involves the formation of an 

Au(I)-compound which is readily converted to the most stable Au(III)-halide complex.  

 

 2 𝐴𝑢 +  𝐼3
− + 𝐼−   ⟺   2 𝐴𝑢𝐼2

− (11) 

 

 𝐴𝑢 + 4 𝐵𝑟−   ⟺   𝐴𝑢𝐵𝑟4
− + 3 𝑒− (12) 

 

 𝐴𝑢 + 4 𝐶𝑙−   ⟺   𝐴𝑢𝐶𝑙4
− + 3 𝑒− (13) 

 

Iodine is praised not only for its stable complexation with gold but also because it requires the 

least oxidising conditions and can coexist with iodide in aqueous solution. The triiodide ion I3
−, 

formed from I−, is the major oxidant even at relatively high pH values. It triggers the oxidation of 

elemental gold to gold(I)-iodide complex (Qi & Hiskey, 1991; Angelidis et al., 1993; Davis et al., 

1993; Konyratbekova et al., 2015). The iodine-iodide leaching system is unaffected by pH in a 

wide range; i.e. 2 to 7 (Angelidis et al., 1993) and 2 to 10 (Qi & Hiskey, 1991).  
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Iodine leaching has been successfully used in the recovery of precious metals from electronic 

waste. Satisfactory results were obtained in the H2O2-oxidized iodine leaching of gold from waste 

PCBs, with pre-leaching procedures aimed at copper removal. Recent research has shown 

potential in the use of iodine in dual-lixiviant systems (Isaia et al., 2017).  

 

Despite their potential as lixiviants, chlorine and bromine are highly corrosive and volatile, which 

impede their industrial application to gold extraction. Furthermore, bromine leaching still suffers 

from high reagent consumption and is susceptible to high capital costs and health risks because 

bromine can form toxic compounds with other elemental species which would require unique 

construction materials (Syed, 2012). More research on chlorine leaching should target the 

feasibility of the in-situ production of bromide and address the potential hazards associated with 

the storage and transportation of bromine (Sousa et al., 2018). Iodine is a relatively expensive 

reagent which mostly explains the lack of interest in using this reagent as a lixiviant for gold 

extraction. Chloride qualifies mostly as a pre-treatment method for the removal of competing 

metals such as Cu, Ni, Fe, Ag, Pt and Pd which have shown satisfactory digestion levels in this 

lixiviant. Gold can then be dissolved more selectively using an alternative lixiviant.  

 

2.5.5 Thiosulphate Leaching 

 

An in-depth description of the thiosulphate leaching of gold from waste PCBs is provided in section 

2.6. Thiosulphate has been praised as a suitable non-cyanide leaching agent for the extraction of 

gold and other metals from primary and secondary sources. According to Birich et al. (2019), it is 

the only reagent that has seen industrial application for gold extraction from a highly carbonaceous 

preg-robbing gold ore at Barrick Gold. Thiosulphate liquors are favoured for their diversity and 

lesser environmental imprint. They are less prone to fouling of undesirable metal ions and can be 

applied in the processing of various types of ores and wastes. The types of thiosulphate salts 

commonly encountered (Na+, K+, Ca2+ and NH4
+) are known to be biodegradable, and thus are 

considered to be nonhazardous in various countries (NOHSC, 2004; Langhans et al., 1992).  

 

It is understood that gold dissolution is slow in alkaline thiosulphate, but the leaching rate is greatly 

improved in ammoniacal thiosulphate solution with a metal oxidant such as copper (II) ion and 

ammonia as the stabilising agent. It is a complex reactive system involving multiple reactions (gold 

oxidation, copper reduction, the formation of copper-amine and copper-thiosulphate complexes).  
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Furthermore, as an electrochemical process, thiosulphate leaching is strongly dependent on pH 

(Grosse et al., 2003; Cui & Zhang, 2008; Syed, 2012; Akcil et al., 2015). As such, the factors 

influencing the process include: thiosulphate consumption, ammonia concentration, copper 

concentration, pulp density, temperature, pH, stirring speed and reaction time (Ha et al., 2010; Ha 

et al., 2014; Camelino et al., 2015; Xu et al., 2017).  

 

There have been numerous reports on the application of thiosulphate leaching to extract gold from 

waste PCBs with metal dissolution levels ranging from 50 to 98% depending on the reagent 

concentrations and conditions used (Ha et al., 2010; Ficeriová et al., 2011; Tripathi et al., 2012; 

Kasper & Veit, 2015; Isildar et al., 2017; Kasper & Veit, 2018; Xiang et al., 2018; Gámez et al., 

2019). The major concern of this process is related to metal selectivity and high reagent 

consumption which has been reported to exceed 100 kg/t-PCB (Aylmore & Muir, 2001; Xu et al., 

2017), compared to the low reagent consumption (about 17.5 kg/t-PCB) reported in cyanidation 

(Quinet et al., 2005). This phenomenon is brought by the inference of other metals such as copper, 

silver and palladium present in PCBs. Even though thiosulphate has a lower market price 

compared to cyanide, its industrial implementation as a substitute for cyanidation in gold extraction 

will be financially attractive depending on the proper control and enhancement of the operating 

conditions in such a way as to minimise reagent consumption and increase gold extraction.  

 

2.5.6 Bioleaching 

 

The use of biotechnology for metal extraction is gaining interest in the field of hydrometallurgy. 

Bacteria-assisted leaching is currently targeting copper sulphides primarily and as a pre-treatment 

technique for refractory gold ores, but it is also applied to the extraction of other base metals, such 

as nickel and zinc (Rohwerder et al., 2003). Recent developments have been directed towards 

the use of acidophilic microorganisms to treat electronic waste, recover metals from oxidised ores, 

and selectively retrieve metals from process waters and waste streams (Johnson, 2014). In 

general, bioleaching is acknowledged for the following advantages: (i) moderate capital 

investment with low operating costs, (ii) metal extraction from low-grade ores and wastes and (iii) 

does not require intricate equipment or operating techniques (Watling, 2006; Gentina & Acevedo, 

2013).  
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Various microorganisms have been used for metal extraction from e-waste, namely 

chemolithotrophic, heterotrophic and thermophilic bacteria for the mobilisation of base and 

precious metals (Brandl et al., 2001; Ilyas et al., 2007; Xiang et al., 2010; Chi et al., 2011). 

However, most of the studies in the bioleaching of e-waste are targeting gold and copper as the 

primary metals of interest (Baniasadi et al., 2019).  

 

Chemolithotrophic (mesophilic) and heterotrophic cyanogenic microorganisms have found 

increased use in the extractions of copper and gold from waste PCBs. Microbial pre-treatment for 

copper removal has been successfully used to improve gold bioleaching. Various studies have 

reported the use of acidophilic bacteria as single strains or in mixed consortia to achieve Cu 

digestion (Arshadi & Mousavi, 2015; Li et al., 2015; Işıldar et al., 2016).  

 

The bioleaching of waste PCBs is subject to significant challenges, including the toxicity and 

precipitation of the metal of interest due to jarosite formation. Valix (2017) indicated that unwanted 

jarosite could be formed as a result of the saturation of metals present in the leaching system as 

well as the occurrence of precipitating agents. Toxicity is brought about by the presence of heavy 

metals in the waste which is reported to impede the growth and activity of microorganisms. Hence 

the need for gradual sub-culturing for microbial adaption to the PCBs before proceeding with the 

metal solubilisation process (Ruan et al., 2014; Baniasadi et al., 2019). Toxicity is also related to 

the non-metallic fraction of PCBs (plastics and brominated flame retardants) which cannot be 

digested by bacteria and can be detrimental to these organisms at specific concentrations (Valix, 

2017).  

 

2.5.7 Comparison between Lixiviants used in Gold Extraction from E-waste 

 

Table 2-4 compares the various lixiviants used in gold extraction from waste PCBs. This 

assessment is based on the leaching rate, reagent cost (consisting of the unit price and 

consumption), the environmental impact and level of knowledge and commercialisation in the field. 

It is worth mentioning that any treatment solution used to address the proliferation of e-waste is 

likely to lose its relevance if it incurs additional environmental risks or it is not financially appealing. 

As such, when selecting a process for e-waste treatment, environmental and financial 

considerations must be applied.  
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Table 2-4: Basic assessment of cyanide and non-cyanide lixiviants used in gold extraction from 
waste PCBs (Quinet et al., 2005; Zhang et al., 2012; Akcil et al., 2015; Cui & Anderson, 2016) 

Lixiviant 
Gold 

Extraction 

Reagent 

Cost 
Corrosive Toxicity 

Research 

Level 

Extent of 

Commercialization 

Cyanide High Low None High Extensive 
Fully established for 
ores 

Thiourea Average High Low Low Extensive Limited to Ores 

Thiocyanate Low Moderate Low Moderate Low None reported 

Chloride High Moderate High Moderate Low 
Electrolytic copper 
slimes 

Bromine High High High Moderate Low None reported 

Iodide 
Above 
average 

High Moderate Low Low None reported 

Thiosulphate 
Above 
average 

Moderate None Low Extensive Semi-commercial 

 

A detailed description of the thermodynamic aspects of the formation of various gold(I/III) 

complexes and compounds was outlined by Senanayake (2004). The stability constants (β2 or β4) 

and corresponding standard reduction potentials of the complexes are provided in Table 2-5. It is 

evident that the stability of cyanide is significantly higher than that of alternative lixiviants. 

Furthermore, many ligands, such as thiosulphate and thiourea, are known to be oxidised at a 

lower potential than the corresponding Au(I) complex, which increases the likelihood of 

interference driven by competing metals present in the feed material. This phenomenon ultimately 

leads to high reagent consumption which is the most common impeding factor of these lixiviants 

(Aylmore, 2016). 
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Table 2-5: Stability constants and standard reduction potentials for various gold complexes 
(Aylmore, 2016; Birich et al., 2019) 

Ligand Complex Log βi E° pH 

𝑆2𝑂3
2− 𝐴𝑢(𝑆2𝑂3)2

3− 28.7 0.17 8 – 10 

𝑆𝐶𝑁− 
𝐴𝑢(𝑆𝐶𝑁)2

− 17.1 0.66 
< 3 

𝐴𝑢(𝑆𝐶𝑁)4
− 43.9 0.66 

𝐼− 
𝐴𝑢𝐼2

− 18.6 0.58 
5 – 9 

𝐴𝑢𝐼4
− 47.7 0.69 

𝐵𝑟− 
𝐴𝑢𝐵𝑟2

− 12.0 0.98 
5 – 8 

𝐴𝑢𝐵𝑟4
− 32.8 0.97 

𝐶𝑙− 
𝐴𝑢𝐶𝑙2

− 9.1 1.11 
< 3 

𝐴𝑢𝐶𝑙4
− 25.3 0.99 

𝐶𝑁− 𝐴𝑢(𝐶𝑁)2
− 38.3 - 0.57 > 9 

 

Figure 2-3 shows that the gold dissolution into alternative lixiviants can be achieved in narrow 

operating regions. Again, reagent consumption is worsened by the high oxidising potentials 

involved with some leaching agents, indicating that the appropriate control of leaching conditions 

is required to sustain the use of alternative lixiviants for gold extraction.  

 

 

Figure 2-3: Pourbaix diagram comparing the stability regions of lixiviants used for gold extraction 
(Aylmore, 2016) 
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2.6 Ammonium Thiosulphate Leaching of Gold from E-waste 

 

2.6.1 Thermodynamics of the Ammonium Thiosulphate Leaching of Gold 

 

The main reaction of the thiosulphate leaching involves gold oxidation at the anode with the 

reduction of oxygen at the cathode, as per equation (14). However, this reaction alone is slow and 

incomplete without the use of appropriate catalysts. Copper and ammonia are known to improve 

the thiosulphate leaching of gold by a factor of 18 to 20 (Xu et al., 2017). The main reactions 

involved in gold extraction by the copper-ammonia-thiosulphate system occur as per equations 

(15) to (19). Reactions (15) to (17) occur on the anodic side whereas (18) and (19) occur on the 

cathodic side.  

 

 𝑁𝑒𝑡 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛:   4𝐴𝑢 + 8𝑆2𝑂3
2− + 𝑂2 + 2𝐻2𝑂 ⟶ 4[𝐴𝑢(𝑆2𝑂3)2]3− + 4𝑂𝐻− (14) 

 

 𝐴𝑢  ⟶   𝐴𝑢+ + 𝑒− (15) 

 

 𝐴𝑢+ + 2𝑁𝐻3   ⟶   𝐴𝑢(𝑁𝐻3)2
+ (16) 

 

 𝐴𝑢(𝑁𝐻3)2
+ + 2𝑆2𝑂3

2−   ⟶   𝐴𝑢(𝑆2𝑂3)2
3− + 2𝑁𝐻3 (17) 

 

 𝐶𝑢(𝑁𝐻3)4
2+ + 3𝑆2𝑂3

2− + 𝑒−   ⟶   𝐶𝑢(𝑆2𝑂3)3
5− + 4𝑁𝐻3 (18) 

 

 4𝐶𝑢(𝑆2𝑂3)3
5− + 16𝑁𝐻3 + 𝑂2 + 2𝐻2𝑂  ⟶   4𝐶𝑢(𝑁𝐻3)4

2+ + 4𝑂𝐻− + 12𝑆2𝑂3
2− (19) 

 

The above mechanism is further illustrated schematically in Figure 2-4. On the anodic side, gold 

is dissolved with subsequent complexation into two possible thiosulphate complexes [Au(S2O3)]− 

and [Au(S2O3)2]3−, of which the latter is the most stable. 

  



29 
 

Gold Surface

Anodic area

Cathodic area

e

Leaching Solution

NH3

Au(NH3)2
+

S2O3
2-

Cu(NH3)4
2+

Au(S2O3)2
3-

Cu(S2O3)3
5-

NH3

S2O3
2- OH-

O2

 

Figure 2-4: Electrochemical-catalytic mechanism of the copper-thiosulphate leaching of gold 
(Aylmore & Muir, 2001; Camelino et al., 2015; Xu et al., 2017) 

 

Ammonia is used in the leaching system to prevent gold passivation driven by the formation of 

sulphur coatings on the surface. This is done by bringing gold into solution as the amine complex 

[Au(NH3)2]+ (equation 16), which is further converted into the thiosulphate complex 

[Au(S2O3)2]3−, as per equation (17).  The most important role played by ammonia is to stabilise 

copper(II) in the thiosulphate solution (Abbruzzese et al., 1995). Copper(II) ions are included in 

the leaching system to promote the process by providing grounds for the redox reaction (20) that 

drives the dissolution of gold as the aurous thiosulphate complex.  

 

 𝐴𝑢 + 5𝑆2𝑂3
2− + [𝐶𝑢(𝑁𝐻3)4]2+   ⟶   [𝐴𝑢(𝑆2𝑂3)2]3− + 4𝑁𝐻3 + [𝐶𝑢(𝑆2𝑂3)3]5− (20) 

 

The redox equilibrium in the cuprous-cupric couple in the ammoniacal thiosulphate leaching 

system is provided by equation (19). This reaction indicates the use of oxygen to induce the “re-

oxidation” of cuprous ions back to cupric ions to ensure the continuous supply of Cu(II) ions and 

further gold leaching (Aylmore & Muir, 2001).  
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The Pourbaix diagrams of the gold-ammonia-thiosulphate and copper-ammonia thiosulphate 

systems are depicted in Figures Figure 2-5 and Figure 2-6. The stability region of the cupric amine 

complex  Cu(NH3)4
2+ has been shown to broaden with an increase in ammonia and copper ions in 

the leaching system. Hence the significance of the copper and ammonia concentrations on the 

efficiency of the thiosulphate leaching of gold. Based on the Eh-pH diagrams, the 

Cu(NH3)4
2+/ Cu(S2O3)3

5− pair can work for gold oxidation in a pH range of 8.7 to 9.8, although this 

pH range is expected to widen with a higher copper intake. Furthermore, the pH should be kept 

above 9 to maintain the stability of the aurous amine complex Au (NH3)2
+. Based on the stability 

constants investigated by Smith and Martell (1976), the most predominant thiosulphate complexes 

are for gold(I), silver(I), iron(II), mercury(II) and lead(II). The rest of the metals present are thought 

to appear mainly as amine complexes. Gold in its high oxidation state Au(III) is mostly absent in 

thiosulphate solutions because it is readily reduced to its most stable oxidation state Au(I) (Grosse 

et al., 2003). 

 

Despite its positive contribution to the gold oxidation, the cupric amine complex also increases the 

potential for thiosulphate degradation through reactions (21) and (22), thereby increasing the 

thiosulphate consumption through the conversion of thiosulphate to tetrathionate (Arima et al., 

2004). This is the main factor that prevents the industrial adoption of ammonium thiosulphate for 

gold extraction.  

 

 2 𝐶𝑢(𝑁𝐻3)4
2+ + 8𝑆2𝑂3

2−   ⟶   2𝐶𝑢(𝑆2𝑂3)3
5− + 𝑆4𝑂6

2− + 8𝑁𝐻3 (21) 

 

 2𝐶𝑢(𝑁𝐻3)4
2+ + 6𝑆2𝑂3

2−   ⟶   2𝐶𝑢(𝑆2𝑂3)2
3− + 𝑆4𝑂6

2− + 8𝑁𝐻3 (22) 
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Figure 2-5: Pourbaix diagram of the copper-ammonia-thiosulphate system at low reagent 
concentrations [0.1 M thiosulphate, 0.1 M ammonia, 0.0005 M Cu] (Aylmore & Muir, 2001) 

 

 

Figure 2-6: Pourbaix diagram of the gold-ammonia-thiosulphate system at low reagent 
concentrations [0.1 M thiosulphate, 0.1 M ammonia, 0.0005 M Au] (Aylmore & Muir, 2001) 
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2.6.2 Previous Research on Thiosulphate Leaching of Gold from Waste PCBs 

 

Extensive research has been conducted on the applicability of thiosulphate leaching to recover 

precious metals from primary and secondary sources. Table 2-6 provides a summary of some of 

the studies conducted on the thiosulphate leaching of gold from waste PCBs. The most common 

variables of concern in the leaching process are ammonia, thiosulphate and copper 

concentrations, along with temperature, pulp density, pH and Eh of the system, as discussed in 

section 2.6.1. Previous research conducted in field (Table 2-6) highlights gold extraction levels of 

50 to 98% at thiosulphate concentrations of 0.1 - 0.5 M, ammonia concentrations of 0.2 - 1 M, 

copper ion concentrations of 0.1 – 0.5 M, pH 9.5 - 10.5 and temperatures of 25 - 40°C. Numerous 

studies have reported gold extractions exceeding 70% at 0.1 M thiosulphate, 0.2 M ammonia, 0.03 

M Cu(II) ion concentrations, pH 10.5 and 25°C, showing that the thiosulphate leaching process 

can produce satisfactory results at relative low initial reagent concentrations and mild conditions. 

However, a concise assessment of the thiosulphate consumption for insights into the economic 

feasibility of the process has not been established explicitly.  

 

The kinetics of the ammoniacal thiosulphate leaching are adversely affected by the passivation of 

the gold surface due to the precipitation or adsorption of species contained in the feed. Some of 

these species include sulphur compounds such as tetrathionate, trithionate and sulphide which 

are produced inevitably through thiosulphate decomposition (Breuer & Jeffrey, 2000; Muir & 

Aylmore, 2002; Feng & Van Deventer, 2007; Aylmore et al., 2014). Furthermore, when using 

thiosulphate leaching for gold extraction from waste PCBs, the use of copper ion as the metal 

oxidant would have an adverse impact on downstream recovery processes such as resin 

adsorption due to its interference on the adsorptive process (Grosse et al., 2003; Chaparro et al., 

2015; Dong et al., 2017). Jeon et al. (2019) further emphasised that the presence of copper would 

impede the leaching process by inducing re-deposition of the extracted gold ions through 

galvanically induced cementation.  

 

Meanwhile, some studies have reported an increase in the leaching efficiency when extracting 

gold from full-size PCBs instead of PCB granules (Kasper & Veit, 2018; Ha et al., 2014; Tripathi 

et al., 2012; Kasper et al., 2011). It was suggested that since PCBs are designed with distinct 

metal layers, with the gold-nickel alloy layer on the outer side, any mechanical treatment and size 

reduction step will expectedly increase the surface area for gold leaching, but will also disrupt the 

PCB layer configuration and increase the contact area of competing metals with the liquid phase, 

thereby interfering with gold leaching.  
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However, the trade-off between the PCB size reduction and the preservation of the PCB layer 

configuration, in terms of thiosulphate consumption, was not established. 

 

Table 2-6: Studies on thiosulphate leaching of gold from waste PCBs 

Raw material Reagents and Conditions Metal Recovery  References 

MP-PCBs (0.12% Au, 

35.1% Cu) 

0.12 M S2O3
2-, 0.2 M NH3, 0.02 M 

Cu2+, 25°C, 2h, 6.67% S/L ratio 

90% Au (Ha et al., 2010) 

Waste PCBs (0.014% 

Au, 0.08% Ag, 47.5% 

Cu) 

0.5 M S2O3
2-, 1.0 M NH3, 0.2 M 

Cu2+, 40°C, 48h, 8.89% S/L ratio 

98% Au, 93% Ag (Ficeriová et al., 

2011) 

MP-PCBs (0.021% Au, 

0.1% Ag, 56.68% Cu) 

0.1 M (NH4)2S2O3, 0.040 M Cu2+, 

room temp, 8h, 10 g/L S/L ratio 

56.7% Au (ground 

PCB),  

78.8% Au (full-size 

PCBs) 

(Tripathi et al., 

2012) 

MP-PCBs 0.1 M S2O3
2-, 0.3 M NH3, 0.01 M 

Cu2+, 30°C, pH 8.5-11.5, 4h, 1/25 

S/L ratio 

Full-size PCBs used 

50% Au (Kasper & Veit, 

2015) 

PC-PCBs (21 g/t Au) 0.3 M S2O3
2-, 0.38 M NH3, 0.038 

M Cu2+, 23°C, pH 8.5-11.5, 6.73h, 

10.79% S/L ratio 

92.2% Au (Isildar et al., 2017) 

MP-PCBs (142-700 g/t 

Au) 

0.12 M (NH4)2S2O3, 0.12 M 

Na2S2O3 

0.2M NH3, 0.020 M Cu2+, 30°C, 

pH 10, 4h, 1/25 S/L ratio 

Full-size PCBs used 

70% Au with Na2S2O3 

75 Au with 

(NH4)2S2O3 

(Kasper & Veit, 

2018) 

MP-PCBs 0.5 M S2O3
2-, 1.2 M NH3, 0.04 M 

Cu2+, 25°C, pH 10, 4h, 1/4 S/L 

ratio 

0.1 M Na2SO3 

95.3% Au (Xiang et al., 2018) 

MP-PCBs (453.4 g/t Au, 

1968.9 g/t Ag, 237 kg/t 

Cu) 

0.7 M S2O3
2-, room temp, pH 

10.5, 6h, 5% S/L ratio 

No Cu2+ ions added 

81% Au 

88% Ag 

32% Cu 

(Gámez et al., 

2019) 

* MP-PCBs: waste mobile phone printed circuit boards 

* PC-PCBs: waste computer printed circuit boards 
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2.6.3 Thiosulphate Stabilization and Reagent Consumption 

 

2.6.3.1 Additives 

 

Various additives have been used to stabilise thiosulphate in the leaching system and lower its 

consumption. Multiple studies have used humic acid (HA), sodium carboxymethyl (CMC), 

ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (SHMP), sulphite, sulphate, 

carbonate and chloride (Li & Kuang, 1998; Feng & Van Deventer, 2010; Feng & Van Deventer, 

2011a; Feng & Van Deventer, 2011b; Senanayake, 2012; Aazami et al., 2014; Xu et al., 2015; 

Yang et al., 2015; Xu et al., 2017). The additives reduce the adverse effect of sulphide minerals 

on the leaching process by lowering the affinity of cupric ions for thiosulphate by complexation of 

the additive’s functional groups with thiosulphate (Aazami et al., 2014; Yang et al., 2015; Xu et al., 

2017). The effects of sulphite on the leaching process have been shown to reduce the 

consumption of thiosulphate by converting tetrathionate to thiosulphate in an alkaline environment 

(Guerra & Dreisinger, 1999; Senanayake, 2012; Xu et al., 2017). Sodium chloride was shown to 

improve gold leaching by inducing the formation of AuCl2
− which enhanced the leaching kinetics 

(Li & Kuang, 1998). Phosphate and carbonate were reported to counteract the adverse effect of 

PbS due to Pb(OH)2 precipitation (Senanayake, 2012). Satisfactory results were obtained by using 

SHMP, EDTA and CMC in low amounts in the thiosulphate leaching of gold from sulphide ores, 

as substantiated by Feng & Van Deventer (2010, 2011a, 2011b). Meanwhile, Xu et al. (2015) 

reported a reduction of thiosulphate consumption from 42.4 to 13.2% and increase in gold 

extraction from 72.7 to 81.4% when using humic acid as an additive in the gold extraction from a 

refractory calcined gold concentrate.  

 

2.6.3.2 Cobalt Oxidant 

 

The use of cobalt instead of copper in ammonium thiosulphate leaching was first reported in a 

patent by Bin et al. (2016). This technique was used to extract gold from a quartz vein-type ore 

containing 5.60 g Au/t-ore, 5.33% Fe, 0.03% S, 0.03% Cu and 0.01% Pb. The inventors used a 

lixiviant solution consisting of 0.1 - 1.0 M S2O3
2-, 0.3 - 1.0 M NH3 and 0.01 - 0.05 M CoSO4 with a 

pulp concentration of 15 - 35%, pH 9 - 11, temperature of 45°C, stirring speed of 100 - 300 rpm 

and leaching time of 4 - 12 h. They reported a thiosulphate consumption reduction from 20 - 40 

kg/t-ore to 8 kg/t-ore. However, the cost implications of replacing copper with cobalt in the leaching 

system were not established.  
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Furthermore, there is still no report of this technique applied to electronic waste. Considering that 

cobalt is more expensive than copper, proper economic evaluation of such a process on a pilot 

scale would be required to ascertain upgradability for industrial implementation.  

 

2.6.3.3 Nickel Oxidant 

 

The use of nickel ion as an alternative to copper ion for the stabilisation of thiosulphate was first 

reported by Arima et al. (2004). The researchers investigated the thiosulphate leaching of gold 

oxidised by nickel. The nickel-oxidised leaching of gold from a feed material containing 16 g/t Au 

and 0.2 mass% of Fe and C was found to achieve 95% gold extraction with 1.2 kg/t-solid of 

thiosulphate consumption in 24 hours at the optimum reagents combination of 0.0001 M NiSO4, 

0.05 M (NH4)2S2O3 and 0.5 M NH4OH at a pH of 9.5. This result was considered promising 

because of the conventional copper-thiosulphate leaching, at Cu2+ concentrations from 0.0001 M 

to 0.001 M, incurred a thiosulphate consumption ranging between 3 to 21 kg/t-solid whereas the 

nickel-thiosulphate leaching, operating at Ni2+ concentrations from 0.0001 to 0.005 M, resulted in 

thiosulphate consumptions of 1 to 5 kg/t-solid. Also, the researchers established the possibility of 

recovering gold from the nickel-thiosulphate pregnant leach solution by cementation and resin 

adsorption. Although the recovery of gold from nickel-assisted leaching incurred 30-50% nickel 

co-precipitation with gold, the overall cementation process with zinc powder, involving four stages 

of solution recycling with nickel addition, could yield 95% gold extraction with 1-3 kg/t-solid of 

thiosulphate consumption. Furthermore, the [Ni(NH3)6]2+ complex was found to be more stable 

thermodynamically than [Ni(S2O3)2]2− in solution, and would not co-adsorb alongside gold on 

anion-exchange resins, and thus did not interfere with the resin adsorption process in the nickel-

thiosulphate system compared to the copper-thiosulphate system (Arima et al., 2003). Despite its 

significance in gold extraction from gold ore, there has been no report on the use of nickel as an 

oxidant gold leaching from waste PCBs.  

 

The anodic and cathodic reactions involved in the nickel-thiosulphate leaching of gold are shown 

in equations (23) to (27). These reactions add up to the same overall reaction (14).  

Nickelous oxide Ni3O4, previously produced through the half-reactions (23) and (24), is reduced 

back to the nickel amine complex Ni(NH3)6
2+ which, in turn, triggers the oxidation of gold, as per 

equations (25) and (26) (Arima et al., 2004).  

 

 3𝑁𝑖(𝑁𝐻3)6
2+ + 𝑂𝐻−   ⟶   𝑁𝑖3𝑂4 + 18𝑁𝐻3 + 4𝐻2𝑂 + 2𝑒− (23) 
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 1/2 𝑂2 + 𝐻2𝑂 + 2𝑒−   ⟶   2𝑂𝐻− (24) 

 

 𝑁𝑖3𝑂4 + 18𝑁𝐻3 + 4𝐻2𝑂 + 2𝑒−   ⟶   3𝑁𝑖(𝑁𝐻3)6
2+ + 𝑂𝐻− (25) 

 

 2𝐴𝑢 + 4𝑁𝐻3   ⟶   2𝐴𝑢(𝑁𝐻3)2
+ + 2𝑒− (26) 

 

 𝐴𝑢(𝑁𝐻3)2
+ + 2𝑆2𝑂3

2−   ⟶   𝐴𝑢(𝑆2𝑂3)2
3− + 2𝑁𝐻3 (27) 

 

Figure 2-7 illustrates the mechanism of the nickel-thiosulphate leaching of gold. Based on the 

electrochemistry of the nickel-ammonia-thiosulphate system (Figure 2-8), the Ni3O4/Ni(NH3)6
2+ 

pair can be used to oxidise gold in a pH range of 9.5 to 10.5. 
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Figure 2-7: Electrochemical-catalytic mechanism of the nickel-thiosulphate leaching of gold (Arima 
et al., 2004; Aylmore & Muir, 2001) 
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Figure 2-8: Pourbaix diagram of the nickel-ammonia-thiosulphate system at low reagent 
concentrations [0.5 M thiosulphate, 0.5 M ammonia, 0.0005 M Ni] (Arima et al., 2004) 

 

2.7 Shrinking-Core Model and Mechanism of Leaching Process 

 

The shrinking-core model (SCM) is a simple idealised model that has been successfully used to 

describe solid-liquid reactive systems, with application in leaching processes (Gbor & Jia, 2004; 

Othusitse & Muzenda, 2015). The model assumes that the reaction occurs at the outermost 

surface of the solid particle and progresses inwards while leaving behind a fully converted inert 

solid (Figure 2-9). This inert material is referred to as the ash layer. The unreacted material in the 

centre of the particle will thus shrink in size as the reaction proceeds (Levenspiel, 1999). The 

shrinking-core model can be applied to two types of particles: (i) shrinking particles (varying size) 

and (ii) unshrinking particles (constant size). The fundamental difference between these models, 

from a mechanistic standpoint, is that, as the reaction progresses, there is no ash formation in 

shrinking particles whereas unshrinking particles will incur the formation of this inert solid. The 

determination of the rate-limiting step of a solid-liquid reaction is dependent on this consideration.  
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Figure 2-9: Illustration of unreacted core shrinking as the reaction takes place from the outer layer 
(Levenspiel, 1999) 

 

Considering the following reaction between a solid A and surrounded by a fluid B:  

 

 𝐴(𝑓) + 𝑏𝐵(𝑠)   ⟶   𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (28) 

 

The model is developed by visualizing five basic steps occurring during the reaction (Figure 2-10): 

 

Step 1: Diffusion of fluid reactant A through the film layer surrounding the particle to the surface 

of the solid. 

Step 2: Penetration and diffusion of A through the blanket of ash to the surface of the 

unreacted core. 

Step 3: Reaction of fluid A with solid at this reaction surface. 

Step 4: Diffusion of fluid products through the ash back to the exterior surface of the solid. 

Step 5: Diffusion of fluid products through the film layer back into the main body of the solution. 

 

Therefore, a solid-fluid reaction can be controlled by fluid diffusion, ash diffusion and chemical 

reaction.  
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The resistance is known to change more significantly from one step to the other, and thus the rate-

limiting step will be the one with the highest resistance. In some situations, it can be assumed that 

steps 4 and 5 involving products do not control the reaction significantly. Furthermore, considering 

particles shrinking in size while reacting with a fluid, no ash forms (Figure 2-11), and thus the solid-

fluid reaction can proceed according to steps 1, 3 and 5.  
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Figure 2-10: Representation of concentration profiles of reactants and products for the reaction of 
fluid and solid with unchanging particle size (Levenspiel, 1999) 
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Figure 2-11: Representation of concentration profiles of reactants and products for the reaction of 
fluid and solid with changing particle size (Levenspiel, 1999) 

 

The shrinking-core models outlined in Table 2-7 and plotted in Figure 2-12 are provided as 

conversion-time expressions for particles of spherical shape. X represents conversion, (1 – X) 

denotes the shrinking of the unreacted core, and t/τ is another means of expressing conversion 

in terms of reaction time t and time for complete conversion τ. t/τ is also referred to as the fractional 

time for total conversion. The shrinking-core model can thus be expressed in terms of the shrinking 

of the unreacted core and fractional time for full conversion. This is done to assist in modelling a 

solid-fluid reaction to determine the rate-limiting step. As such, experimental kinetic data 

(concentration change with time) is required along with an estimation of the time for complete 

conversion (Levenspiel, 1999). The mathematical derivations of the SCMs are provided in 

Appendix G (section G.6).  
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Table 2-7: Shrinking-core model for shrinking and unshrinking particles (Levenspiel, 1999) 
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Figure 2-12: Progression of a solid-fluid reaction in terms of fractional time for complete 
conversion: SCM for shrinking and unshrinking particles (Levenspiel, 1999) 

 

The conversion-time expressions assume that a single mechanism or rate-limiting step governs 

the solid-fluid reaction. However, in actual cases, the reaction can progress with variations in the 

significance of the individual reaction control stages, with possible combinations of the different 

driving forces (Levenspiel, 1999).  
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 : RESEARCH METHODOLOGY 

 

This chapter outlines the experimental methods and procedures used in this study. Descriptions 

of the experimental setup and instrumentation are also provided.  

 

3.1 Research Design  

 

This research involved the use of a quantitative technique to achieve its objectives. The 

experiments were grouped into three categories, as shown in Figure 3-1: PCB size reduction, 

metal characterisation and leaching experiments. The leaching experiments consisted of acid pre-

treatment for copper removal and ammonium thiosulphate leaching for gold extraction. 

 

3.1.1 PCB Size Reduction 

 

The PCBs were removed from mobile phones through dismantling. After that, they were subjected 

to a size reduction process involving cutting and crushing. The PCBs were first cut to a 10 x 10 

mm size, then crushed using a hammer mill to further reduce their size to < 3 mm. After crushing, 

the actual particle size distribution was determined with the aid of mechanical sieves of 

predetermined sizes.  

 

3.1.2 PCB Characterization and Aqua Regia Leaching 

 

The metal content of the mobile phone PCBs was determined by subjecting the crushed PCBs to 

aqua regia leaching. The metal characterisation was limited to copper and gold only. The aqua 

regia solution was prepared by mixing nitric acid and hydrochloric acid in a molar ratio of 1:3. To 

prepare 100 mL of lixiviant, 55 wt% HNO3 and 32 wt% HCl stock solutions were used. 79.4 mL of 

HCl solution was first transferred into an empty flask, followed by the dropwise addition of a total 

HNO3 solution volume of 20.6 mL. The lixiviant was then heated to the set point of 60°C before 

slowly adding 5 g of ground PCB and allowing the reaction to proceed for 24 hours. No stirring 

was required during aqua regia leaching since the reaction mixture already induced turbulence. 

The aqua regia preparation and leaching process were carried out under a fume hood with all the 

necessary safety precautions related to acid handling. The leaching process was replicated five 

times, and metal analyses were conducted with collected samples using the AAS.  
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Figure 3-1: Flow diagram of the research methodology 
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3.1.3 Acid Pre-treatment 

 

Experimental Conditions  

 

The acid pre-treatment (leaching) experiments were carried out according to a 2k factorial design 

(Table 3-1) consisting of two numerical factors (k = 2), namely sulphuric acid concentration and 

hydrogen peroxide concentration, and the factor levels were 2 M and 3 M (Birloaga et al., 2013; 

Behnamfard et al., 2013). The copper extraction and gold extraction were the responses 

investigated in the acid pre-treatment. Each experimental run was replicated twice to test for 

experimental repeatability and, more importantly, to assess factor interactions. The other 

parameters such as pulp density, reaction time, stirring speed and temperature were kept 

constant, as shown in Table 3-2.  

 

Table 3-1: Factorial experimental design of acid pre-treatment 

 Factor 1 Factor 2 Response 1 Response 2 

Run 
H2SO4 

(M) 
H2O2 
(M) 

Cu Extraction 
(%) 

Au Extraction 
(%) 

1 2 3     

2 3 2     

3 2 3     

4 3 3     

5 3 2     

6 3 3     

7 2 2     

8 2 2     

 

Table 3-2: Fixed conditions used in acid pre-treatment (Birloaga et al., 2013; Behnamfard et al., 
2013) 

Pulp density 
(g/L) 

Temp  
(°C) 

Time  
(h) 

Stirring Speed 
(rpm) 

50 25 3 350 

  



 

47 
 

Experimental Procedure 

 

The acid leaching experiments were conducted in the jacketed reactor as shown in the 

experimental rig setup in Figure 3-2. The lixiviant solution was prepared by transferring a pre-

determined volume of deionized water to the reactor, followed by the dropwise addition of the 

required amount of H2SO4.  

The selected volume of H2O2 was then added in small quantities while gently stirring the mixture. 

The temperature of the lixiviant solution was allowed to stabilise at 25°C before adding PCBs to 

the mixture in a slow manner. The reaction was carried out under the fume hood for 3 hours. 

Samples were collected every 30 minutes for metal analysis (Cu and Au) by AAS. At the end of 

the experiment, the solid residue was filtered, dried and its mass was recorded.  

 

3.1.4 Ammonium Thiosulphate Leaching 

 

Experimental Conditions  

 

The ammonium thiosulphate (ATS) leaching experiments were designed following a 2k factorial 

design (Table 3-3) consisting of two categorical factors (k = 2), namely PCB pre-treatment and 

metal oxidant. The PCB pre-treatment factor had two levels: (i) without acid pre-treatment (w/o 

AP) and (ii) with acid pre-treatment (with AP). The acid pre-treatment was carried out at the 

optimum reagent combination. The metal oxidant had two levels: (i) copper and (ii) nickel. The 

reagent concentrations (ATS, ammonia, metal oxidant) and other parameters were fixed, as 

shown in Tables Table 3-4 and Table 3-5. The gold extraction and thiosulphate consumption were 

the responses investigated in the ATS leaching.  

 

Table 3-3: Factorial experimental design of ammonium thiosulphate leaching 

 Factor 1 Factor 2 Response 1 Response 2 

Run 
PCB 

Pretreatment 
Metal 

Oxidant 
Au Extraction 

(%) 
ATS Consumption 

(kg/t-PCB) 

1 w/o AP Ni     

2 with AP Cu     

3 with AP Ni     

4 with AP Ni     

5 with AP Cu     

6 w/o AP Cu     

7 w/o AP Ni     

8 w/o AP Cu     
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Table 3-4: Fixed conditions used in copper-thiosulphate leaching (Petter et al., 2015; Kasper & 
Veit, 2015; Tripathi et al., 2012; Ha et al., 2010) 

Pulp density 
(g/L) 

ATS 
(M) 

NH3 
(M) 

CuSO4 
(M) 

Temp 
(°C) 

pH 
Time 
(h) 

Stirring Speed 
(rpm) 

50 0.1 0.2 0.03 25 10.5 6 350 

Table 3-5: Fixed condition used in nickel-thiosulphate leaching (Petter et al., 2015; Kasper & Veit, 
2015; Tripathi et al., 2012; Ha et al., 2010) 

Pulp density 
(g/L) 

ATS 
(M) 

NH3 
(M) 

NiSO4 
(M) 

Temp 
(°C) 

pH 
Time 
(h) 

Stirring Speed 
(rpm) 

50 0.1 0.2 0.03 25 10.5 6 350 

 

Experimental Procedure 

 

The ATS leaching experiments were conducted in the same jacketed reactor described in Figure 

3-2. The lixiviant solution was prepared by transferring the pre-determined volume of deionised 

water to the reactor, followed by the required reagent quantities. For the copper-thiosulphate 

leaching system, the order of reagent addition was copper(II) sulphate, ammonium hydroxide and 

ammonium thiosulphate. For the nickel-thiosulphate leaching system, the order of reagent addition 

was nickel(II) sulphate, ammonium hydroxide and ammonium thiosulphate. Atluri (1987) 

suggested that this order of reagent addition aided in preventing unwanted side reactions and the 

formation of precipitation products during the lixiviant preparation, which would ultimately impede 

the gold leaching. The PCBs were then added, and the leaching process was allowed to proceed 

for 6h, with the temperature and pH maintained at 25°C and 10.5, respectively. The pH was 

controlled throughout the experimental runs using 10% NaOH and 10% H2SO4 solutions. For ATS 

leaching experimental runs involving acid pre-treatment, the acid leaching step was first carried 

out at the optimum reagent combination (H2SO4 and H2O2) and fixed conditions shown in Table 

3-2. After that, the solid residue was filtered, dried and weighed before subjecting it to the 

ammonium thiosulphate leaching step. Samples were collected every 60 minutes for gold analysis 

by AAS and thiosulphate analysis by iodimetric titration.  
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3.1.5 Iodimetric Titration of Thiosulphate 

 

The thiosulphate consumption in the ATS leaching (with copper and nickel oxidants) was 

determined by iodimetric titration as outlined by Arima et al. (2004). A 20 mL leachate sample was 

acidified with 10% v/v H2SO4 to a pH range of 7 - 7.5 prior to titration against a solution consisting 

of 5 mL of 0.05M (0.1N) iodine to which 2 mL of 2g/L starch solution and 2 mL of 5% acetate buffer 

solution (pH 5.5) were added. Starch was used as the indicator, and the endpoint of the titration 

was observed when the colour changed from dark brown to milky-white in the copper-thiosulphate 

leaching, and from dark brown to colourless for the nickel-thiosulphate leaching. 

 

3.2 Experimental Setup and Instrumentation 

 

The experimental setup used in the leaching studies is depicted in Figure 3-2. It included a 1-Liter 

jacketed reactor connected to a thermostatic water bath for temperature control of the reaction 

mixture. Mixing was achieved with the aid of a DragonLab OS20-S overhead stirrer. The pH of the 

leaching medium was monitored with a Hanna HI 8424 pH meter linked to the reactor through its 

temperature and pH probes. This pH meter was also used to monitor the reaction temperature. A 

Perkin-Elmer 3300 AAS instrument was used for the metal analysis of the leachate samples.  
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1. Jacketed reactor 
2. Thermostatic water bath 
3. Overhead stirrer 
4. pH meter 
5. Temperature probe 
6. pH probe 
7. Cylinder for sampling 

Figure 3-2: Schematic diagram of the leaching experimental setup 
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3.3 Materials 

 

All the chemicals (analytical grade) listed in this section were supplied by Merck, B & M Scientific 

and Cleansafe Labs.  

 

- Nitric acid (55%) 

- Hydrochloric acid (32%) 

- Sulphuric acid (98%) 

- Hydrogen peroxide (30%) 

- Ammonium hydroxide (25%) 

- Sodium hydroxide 

- Sodium acetate 

- Acetic acid (glacial, > 99%) 

- Ammonium thiosulphate 

- Copper(II) sulphate pentahydrate 

- Nickel(II) sulphate hexahydrate 

- Iodine (0.1 N) 

- Soluble starch. 
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 : RESULTS AND DISCUSSION 

 

4.1 Metal Content of Mobile Phone PCBs 

 

The metallic composition of the mobile phone PCBs was determined by aqua regia leaching, as 

detailed in chapter 3. Aqua regia leaching has been reported extensively in the existing literature 

as a method to estimate the metal content of a solid with relatively low levels of uncertainty. This 

mixture of hydrochloric acid and nitric acid in a molar ratio of 3:1 is known to dissolve most base 

and precious metals (Kasper & Veit, 2015; Vats & Singh, 2015). 

 

Table 4-1: Metal content of mobile phone PCBs 

Metal Range Average units 

Cu 
43.53 - 48.07 46.18 wt% 

453.3 - 480.7 461.8 kg/ton-PCB 

Au 
0.0456 - 0.0607 0.0524 wt% 

456 - 607 524 g/ton-PCB 

 

The gold and copper content of the mobile phone PCBs used in this research are provided in 

Table 4-1. The concentration ranges were found to be in accordance with the literature (Table 

2-1). Copper was found to contribute to approximately 46.18 wt% of PCBs, or 461.8 kg/ton-PCB, 

almost half the total PCB mass. The average gold content was found to be 0.0524% or 524 g/ton-

PCB. The amounts of gold and copper found in mobile phone PCBs are significantly large 

compared to naturally occurring minerals, as previously discussed (section 1.1), thus providing an 

economic incentive for the metallurgical treatment of waste mobile phones, and e-waste in general 

(Grosse et al., 2003; Montero et al., 2012; Cui & Anderson, 2016).  

 

This research was concerned with mitigating the deleterious effect of copper, the most 

predominant base metal in mobile phone PCBs, on the thiosulphate leaching efficiency in terms 

of reagent consumption and gold extraction. Furthermore, ammonium thiosulphate is known to 

have a significant thermodynamic affinity for gold compared to other precious metals found in 

mobile phones such as silver, platinum and palladium (Grosse et al., 2003). Therefore, the metal 

characterisation of PCBs was limited to gold and copper in this research.  
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4.2 Particle Size Distribution of Ground PCBs 

 

The PCB preparation stage involved size reduction to the microns scale. The PCBs were 

subjected to crushing and milling to reduce their size to less than 3 mm (3000 μm). The particle 

size distribution (PSD) obtained in this stage is provided in Figure 4-1, on the frequency basis (a) 

and cumulative basis (b). The D50 was found to be 529 µm, as determined from the cumulative 

PSD, indicating that, after the size reduction stage, 50% of the PCB mass consisted of particles 

less than 529 µm in size. The PCB particle size distribution used in this study was in agreement 

with previous research involving the same type of feed and lixiviant (Ficeriová et al., 2011; Tripathi 

et al., 2012; Behnamfard et al., 2013; Birloaga et al., 2013; Isildar et al., 2017).  

In general, reducing the particle size has an advantageous effect of increasing the effective 

surface area for the reaction. Furthermore, it can disrupt the multi-layer configuration of PCBs 

thereby releasing the trapped gold and improving the copper removal by acid pre-treatment.  

 

 

(a) (b) 

Figure 4-1: Particle size distribution of ground PCBs: (a) on frequency basis and (b) on cumulative 
basis 
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4.3 Acid Pre-treatment 

 

Figure 4-2(a) depicts the copper extraction profiles obtained at the four leaching conditions 

investigated. The factor combinations are provided in Table 4-2. It is apparent that the variability 

in copper extraction in all four conditions was not distinguishable up to 120 min of leaching time, 

with the metal extraction ranging from 70% and 85% between 30 min and 120 min. The variability 

in copper extraction was more apparent towards the end of the leaching process. The same 

observation was made for the gold extraction in Figure 4-2(b). The optimum factor combination 

that maximised copper extraction and minimised gold extraction was found to be 2 M H2SO4 and 

3 M H2O2, yielding Cu and Au extractions of 93.72% and 8.83%, respectively in 150 min (Figure 

4-3). More insight into the effect of sulphuric acid and hydrogen peroxide concentration variations 

on the copper and gold extraction was achieved by statistical means, as detailed in section 4.3.1. 

 

 

(a) (b) 

Figure 4-2: Metal extraction by acid pre-treatment at four treatment combinations [50g/L pulp 
density, 350 rpm stirring speed, 25°C temperature, 3h reaction time]: (a) copper extraction and (b) 

gold extraction 
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Table 4-2: Factor combinations in acid pre-treatment 

Conditions  H2SO4 [M] H2O2 [M] 

A 2 3 

B 3 2 

C 3 3 

D 2 2 

 

 

Figure 4-3: Metal extraction by acid pre-treatment at best conditions: 2M H2SO4, 3M H2O2 [50g/L 
pulp density, 350 rpm stirring speed, 25°C temperature, 3h reaction time] 

 

In general, all runs achieved copper extractions exceeding 70% within the first hour of acid 

leaching, indicating the expected affinity of the acid solution for copper as a base metal. On the 

other hand, the gold extraction was capped at less than 12% irrespective of the conditions used, 

indicating a lower affinity of the acid lixiviant for gold. This property was exploited during the acid 

pre-treatment of PCBs to maximise the extraction of copper and minimise the extraction of gold, 

and to achieve a significant e-waste mass reduction.  
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Figure 4-4: Mobile phone PCB mass reduction after acid pre-treatment at best conditions: 2M 
H2SO4, 3M H2O2 [50g/L pulp density, 350 rpm stirring speed, 25°C temperature, 3h reaction time] 

 

An analysis of the material balance performed on the acid pre-treatment stage indicated that there 

was an agreement between the PCB mass reductions calculated from the total mass balance and  

component mass balance (Cu and Au extractions), as illustrated in Figure 4-4. This indicated that 

the PCB mass reduction achieved in acid leaching was mostly attributed to the copper extraction. 

This observation was further supported by the fact that any other base metals such as iron and 

aluminium that could have been dissolved in the acid pre-treatment stage did not contribute 

significantly to the overall PCB mass reduction due to their low occurrences in the mobile phone 

PCBs.  

 

Table 4-3: Metal content of PCBs before and after acid pre-treatment 

Metal Before AP* After AP units 

Cu 
46.18 5.11 wt% 

461.8 51.1 kg/ton-PCB 

Au 
0.0524 0.0842 wt% 

524 842 g/ton-PCB 

       *AP: acid pre-treatment 
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Table 4-3 shows the metal content of PCBs before and after acid pre-treatment. The copper 

content decreased from 461.8 kg/ton-PCB to 51.1 kg/ton-PCB, whereas the gold content 

increased from 524 g/ton-PCB to 842 g/ton-PCB, indicating a 60.8% gold concentration 

(beneficiation) of PCBs by acid pre-treatment. This is deemed beneficial for the subsequent gold 

extraction process by virtue of eliminating the interference on thiosulphate leaching brought about 

by an excessive initial amount of copper in the PCBs.  

 

4.3.1 Statistical Analysis of Acid Pre-treatment Results  

 

4.3.1.1 Assumptions and Considerations for the t-Test and ANOVA 

 

The experimental repeatability test was carried out by determining the closeness of the results of 

each experimental run and the corresponding duplicate. This was achieved by using a two-sample 

t-test with matched samples. The samples (run and duplicate) were matched because the data 

points were collected at equal time intervals. The null hypothesis H0 for this t-test was that the two 

samples, i.e. experimental results of the run and duplicate, were indicative of the same 

experimental conditions (Montgomery, 2017). The null hypothesis for this test can also be 

expressed as follows:  

 

- The two samples (data sets) have the same probability distribution. 

- The two samples belong to the same population.  

 

The two-factor ANOVA (analysis of variance) with replication was carried out to investigate the 

main factor effects and their interactions. The duplicates are specifically included to provide 

insights into factor interactions (DeCoursey, 2003). Finally, the estimated marginal means were 

used to add emphasis to the effect sizes of the factors investigated. The null hypothesis H0 of 

ANOVA was that the factor variations would have no significant impact on the response variables. 

The alternative or research hypothesis Ha was that varying the factors would have a statistically 

significant effect on the response variables.  
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The following assumptions and considerations were upheld for the t-test and ANOVA to provide 

simplicity and practicality to the statistical analysis:  

 

- The t-tests and ANOVAs were based on response means for each run (Montgomery, 

2017). 

- All samples were drawn from normally distributed overall populations.  

- No post hoc testing was carried out for the ANOVA because the factors investigated in 

acid pre-treatment and ammonium thiosulphate leaching had two levels only. In general, 

post hoc tests, aimed at determining the most significant factors, are carried out for factors 

with more than two levels (Weinberg & Abramowitz, 2008).  

- Performing multiple ANOVAs is known to be detrimental to the data analysis because it 

increases the experiment-wise error. However, for this research, two ANOVAs were 

carried out to accommodate two responses, i.e. Cu and Au extractions in acid pre-

treatment, and Au extraction and thiosulphate consumption in ammonium thiosulphate 

leaching. Therefore, to maintain the experiment-wise error or type I error (alpha) at 0.05, 

the Bonferroni correction 𝛼 = 1 − (1 − 𝛼1)(1 − 𝛼2) … (1 − 𝛼3) was used, whereby the 

alpha value was adjusted to 𝛼1 = 𝛼2 = 0.0253 for both Anovas (Norman & Streiner, 2008).  

 

The above assumptions and considerations were adopted for both the acid pre-treatment results 

and ammonium thiosulphate leaching results.  

 

4.3.1.2 Experimental Repeatability Test  

 

Detailed t-test results are tabulated in Appendix C (Tables Table C-7 and Table C-8). The alpha 

values for all four conditions and both responses were less than 0.05, indicating that there were 

no statistical grounds for rejecting the null hypothesis that the run and duplicate results were 

indicative of the same experimental conditions. The following two observations further supported 

this result: (i) the t-statistic was less than the t-critical in the t-distribution and (ii) the Pearson 

correlation coefficients were close to 1 for all conditions. Therefore, the experimental repeatability 

was confirmed statistically.  
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4.3.1.3 Analysis of Variance (ANOVA) – Acid Pre-treatment 

 

The ANOVA results for the acid pre-treatment experiments are fully provided in Appendix C (Table 

C-11). The factor significance and interactions can be assessed with the aid of three statistical 

variables, namely the p-value, F-statistic and partial eta squared. Furthermore, since a dual 

analysis of variance was carried out for the Cu extraction (response 1) and Au extraction 

(response 2), the alpha value was adjusted to 0.0253 to maintain the threshold of the overall 

experiment-wise error at 0.05.  

 

The effect of varying H2SO4 concentration was not statistically significant for copper extraction but 

was significant for gold extraction based on the p-value and F-statistic which were found to be 

0.208 and 2.255, respectively for copper extraction, and 0.006 and 28.115, respectively for gold 

extraction. The variation in H2O2 concentration, on the other hand, was found to be significant for 

Cu extraction and not statistically significant for Au extraction. Hydrogen peroxide was the oxidant 

involved in the acid leaching of copper and was thus expected to influence the extent of copper 

extraction. Therefore, based on these results, one can infer that varying sulphuric acid 

concentration had more statistical impact on the gold extraction, and varying hydrogen peroxide 

concentration had more effect on the copper extraction.  

 

The most critical observation on the ANOVA results was the significant interaction between the 

sulphuric acid and hydrogen peroxide concentrations which was substantiated by the extremely 

low p-values (0.004 for Cu extraction and 0.001 for Au extraction), high F-statistics (34.214 for Cu 

extraction and 73.062 for Au extraction), and visually by the crossing of the estimated marginal 

means lines of the interaction plots in Figure 4-5. Elliott & Woodward (2014) suggested that when 

a significant interaction between factors has been established statistically, it becomes difficult to 

isolate the individual effects of each factor because the factors are too intertwined to be examined 

individually. The factor interaction was supported by the results plotted in Figure 4-2 which 

indicated that the variability in copper and gold extraction were not apparent for the major part of 

the leaching process irrespective of the investigated conditions, with the difference showing 

towards the end of acid pre-treatment process (after 120 min of leaching time).  
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(a) (b) 

Figure 4-5: Factor interaction plots for acid pre-treatment: (a) Cu extraction and (b) Au extraction 

 

4.4 Ammonium Thiosulphate Leaching 

 

4.4.1 Gold Extraction 

 

Figure 4-6a depicts the gold extraction profiles obtained at the investigated conditions. The effects 

of acid pre-treatment and nickel oxidant are significantly noticeable. Firstly, replacing copper by 

nickel as the metal oxidant without any acid pre-treatment was found to improve the gold extraction 

drastically. The Au extraction reached a maximum of 18.61% with copper(II) ion as oxidant, and 

46.89% with nickel(II) ion as oxidant after 5 hours of leaching time. Secondly, subjecting the mobile 

phone PCB to acid pre-treatment also improved the gold extraction extensively in both copper-

thiosulphate (Cu-ATS) and nickel-thiosulphate (Ni-ATS) leaching systems. The acid pre-treatment 

increased gold extraction from 18.61% to 36.02% in Cu-ATS and from 46.89% to 65.41% in Ni-

ATS after 5 hours of leaching time. Therefore, it was found that the acid pre-treatment improved 

the exposure of gold to the thiosulphate lixiviant by releasing it from copper trapping, and thus 

improving the kinetics of the leaching process. Finally, the combination of acid pre-treatment and 

nickel oxidant saw a significant improvement in gold extraction which increased from 18.61% in 

copper-thiosulphate leaching without acid pre-treatment to 65.41% in nickel-thiosulphate leaching 

with acid pre-treatment.  
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(a) (b) 

Figure 4-6: Ammonium thiosulphate leaching [0.1M ammonium thiosulphate, 0.2M ammonia, 0.03M 
copper sulphate, 0.03M nickel sulphate, pH 10, temperature 25°C, 6h reaction time, 350 rpm 

stirring speed]: (a) gold extraction and (b) thiosulphate consumption 

 

Therefore, the synergistic effect of combining these two factors was that the gold exposure to the 

lixiviant was improved and the Ni-ATS leaching system was more stable and efficient 

thermodynamically, and thus improved the kinetics of the leaching process.  

 

A more detailed statistical assessment of the factor effect sizes and interaction between PCB pre-

treatment and metal oxidant is provided in section 4.4.3.2.  

 

4.4.2 Ammonium Thiosulphate Consumption 

 

The ammonium thiosulphate consumption profiles obtained in this research are provided in Figure 

4-6b. The first observation was that the copper-thiosulphate leaching system without acid pre-

treatment incurred the highest thiosulphate consumption, reaching a peak value of 140.4 kg/ton-

PCB before stabilising around 90.9 kg/t-PCB, although the resulting gold extraction reached a 

maximum of 20.82% only. The thermodynamics of Cu-ATS leaching outlined in chapter two 

(section 2.6.1) indicated that side reactions involving copper and thiosulphate, leading to the 

degradation of thiosulphate to tetrathionate, are among the main causes for this phenomenon. 
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The ATS consumption was found to improve significantly with the use of Ni(II) ion in place of Cu(II) 

ion. With untreated PCBs, the stabilised lixiviant consumption was reduced from 90.9 kg/t-PCB to 

47.07 kg/t-PCB with an equivalent increase in gold extraction from 18.61% to 46.89%. With acid 

pre-treated PCBs, the stabilized reagent consumption decreased from 72.6 kg/t-PCB to 61.03 

kg/t-PCB with a corresponding Au extraction increase from 36.02% to 65.41%. The 

thermodynamics of the process had thus shifted to the more stable Ni-ATS system which lessened 

the decomposition of thiosulphate. Another significant improvement in terms of the ATS 

consumption was observed in Cu-ATS leaching with acid-pretreated PCBs. The ATS consumption 

was reduced from a peak value of 140.4 kg/t-PCB to 87.2 kg/t-PCB, and the stabilized 

consumption was reduced from 90.9 kg/t-PCB to 72.6 kg/t-PCB. This consumption reduction was 

accompanied by an increase in gold extraction from 18.61% to 36.02% in 5 hours. The combined 

effect of PCB pre-treatment and nickel oxidant saw a decrease in thiosulphate consumption from 

a stabilised level of 90.9 kg/t-PCB to 61.03 kg/t-PCB with a resulting gold extraction increase from 

18.61% to 65.41% in 5 hours, thus confirming the research hypotheses formulated for this project 

(section 1.4).  

 

4.4.3 Statistical Analysis of Ammonium Thiosulphate Leaching Results  

 

4.4.3.1 Experimental Repeatability Test  

 

Based on the p-values, t-statistics and Pearson correlation coefficients of the t-tests tabulated in 

Appendix D (Table D-5 and Table D-6), there were no statistical grounds for rejecting the null 

hypothesis, and thus the runs and their respective duplicates were indicative of the same 

experimental conditions, which confirmed the experimental repeatability of ammonium 

thiosulphate leaching.  

 

4.4.3.2 Analysis of Variance (ANOVA) – ATS Leaching  

 

The ANOVA results for the ammonium thiosulphate leaching experiments are fully provided in 

Appendix D (Table D-9). The p-values of the effect of PCB pre-treatment variation were extremely 

small compared to the adjusted alpha value of 0.0253 for both gold extraction (0.000) and ATS 

consumption (0.002), confirming the statistical significance of PCB pre-treatment. Similarly, the 

variation of the metal oxidant used in ATS leaching was found to be statistically significant for both 

gold extraction and ATS consumption based on the low p-values obtained.  

 



 

64 
 

For gold extraction, the effect of PCB pre-treatment and metal oxidant, in terms of the partial eta 

squared, indicated equal or close significance levels for both factors. However, the F-statistic 

provided more insight into the significance level of each factor. The F-critical of the metal oxidant 

(694.8) was greater than that of the PCB pre-treatment (574.9), indicating that the metal oxidant 

had a higher significance level than PCB pre-treatment with respect to gold extraction. This 

observation was in agreement with the previous discussion in section 4.4.2 which established that 

a significant improvement in gold extraction was achieved by first replacing copper(II) ion with 

nickel(II) ion as the metal oxidant which was found to increase the gold extraction from 18.61% to 

46.89% (i.e. 152% increase) in 5 hours, whereas for each metal oxidant used, the PCB pre-

treatment improved the gold extraction by a lower amount. Acid pre-treatment increased the gold 

extraction from 18.61% to 36.02% (i.e. 93.6% increase) in Cu-ATS leaching and from 46.89% to 

65.41% (i.e. 39.5% increase) in Ni-ATS leaching. Replacing copper with nickel had a major effect 

in that it changed the chemistry and thermodynamic stability of the leaching system, as discussed 

in chapter two (section 2.6.3.3).  

 

The interaction between PCB pre-treatment and metal oxidant were not statistically significant for 

gold extraction (p-value of 0.788 > 0.0253) but significant for ATS consumption (p-value <<< 

0.0253). The interaction plots in Figure 4-7 indicate that the estimated marginal means of gold 

extraction exhibited parallel lines, indicating no interaction or correlation between the two factors 

with respect to gold extraction. On the other hand, the estimated marginal means of ATS 

consumption exhibited nonparallel lines, indicating a possible interaction or correlation between 

the two factors with respect to ATS consumption. Although no factor interaction was established 

statistically, the individual factor effects had proven significant in relation to Au extraction. For ATS 

consumption, since there was an intimate correlation between PCB pre-treatment and metal 

oxidant, the individual effects of these factors were also interrelated, expectedly in chemical and 

thermodynamic aspects.  
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(a) (b) 

Figure 4-7: Factor interaction plots for ammonium thiosulphate leaching: (a) Au extraction and (b) 
ATS consumption 

 

4.5 Shrinking-Core Model Fitting of Kinetic Data and Rate-Limiting Mechanism  

 

In this section, the mathematical analysis of the kinetic data of acid pre-treatment and ammonium 

thiosulphate leaching of gold from mobile phone PCBs is provided in terms of the shrinking-core 

model (SCM). This model has been used extensively to provide a conceptual description of fluid-

solid reactive systems (Levenspiel, 1999; Gbor & Jia, 2004; Othusitse & Muzenda, 2015). It is 

based on the premise that a fluid-solid reaction proceeds according to five steps, as outlined in 

chapter two (section 2.7). However, since the rate-controlling step has the highest resistance, the 

current study was limited to steps 1 through 3, from which the general mechanism of the leaching 

process could be established. Thus, the three mechanisms included film diffusion control, ash 

diffusion control and chemical reaction control.  
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4.5.1 Assumptions and Considerations for Modelling of Leaching Processes 

 

The following assumptions and considerations were upheld when using the shrinking-core model 

to provide simplicity and practicality in the description of the acid pre-treatment and ammonium 

thiosulphate leaching. Levenspiel (1999) emphasised that when performing a mathematical 

analysis for the progression of a chemical reaction, it is useless to choose a model that closely 

describes the process but is too complex that it cannot be used for future predictions and design 

purposes.  

 

▪ The PCB particles were spherical. Furthermore, the particles were assumed to conserve 

their spherical shape after acid pre-treatment.  

▪ The SCM used for acid pre-treatment was that of shrinking particles because a PCB mass 

reduction was incurred in the pre-treatment process. Furthermore, the particles were 

assumed to shrink uniformly, thus maintaining their spherical shape.  

▪ The SCM used for ammonium thiosulphate leaching was that of unshrinking (constant size) 

particles. This assumption was supported by the low amount of gold and other precious 

metals that could be extracted by ATS. Since gold was the target metal of the thiosulphate 

lixiviant, the PCB size reduction resulting from this metal extraction could be safely 

assumed to be negligible.  

▪ The time for complete conversion τ was estimated from the final conversion and 

corresponding leaching time.  

▪ The gold extraction was expressed as the shrinking of the unreacted solid (PCB) core. 

This meant that as the reaction progressed, an increasing metal conversion corresponded 

to a decreasing unreacted core, and that the highest gold conversion occurred at the 

smallest unreacted core size. This is supported by the fact that, under ideal conditions, a 

fluid-solid reaction with unshrinking particles progresses until all the solid reactant is used 

up and replaced with the reacted (inert) ash. At this point, the reaction is complete with a 

total conversion.  

▪ In the conversion-time plots, the metal extraction was expressed as (1 – X) representing 

the shrinking of the unreacted core, and the time was expressed as t/τ which indicated the 

fractional time for complete conversion.   
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4.5.2 Acid Pre-treatment – SCM with Shrinking Particles  

 

For shrinking particles, it has been established that no ash formation occurs. Three mechanisms 

are incorporated into the shrinking-core model, namely: (1) film diffusion control under Stokes flow 

regime (FDC-SR), (2) film diffusion control under turbulent flow regime (FDC-TR) and (3) chemical 

reaction control (RC). The statistical analysis of the SCM fitting to the acid pre-treatment kinetic 

data involved the two-sample t-test with paired (matched) samples, and the results are tabulated 

in Appendix E (Table E-6).  

 

A visual analysis of model fitting in Figure 4-8 indicated that, for all four leaching conditions 

investigated, any of the three SCMs fitted the kinetic data to an acceptable level. Furthermore, the 

examination of the kinetic results for conditions A, B and D indicated that the RC and FDC-TR 

exhibited a closer fit to the leaching data as the reaction progressed, with chemical reaction control 

having the highest impact level on the acid pre-treatment from a mechanistic viewpoint. The visual 

analysis of the model fitting was supported statistically in terms of the p-values and coefficients of 

determination (R2 values) in Table E-6. The p-values of all paired-sample t-tests were greater than 

0.05 for all conditions (A, B, C and D). However, the corresponding R2 values exhibited a high 

level of variability. For the optimum conditions A (2M H2SO4, 3M H2O2), the p-values for FDC-SR, 

FDC-TR and RC were found to be 0.083, 0.20 and 0.58, respectively with corresponding R2 values 

of 0.58, 0.65 and 0.75. This indicated that, although the p-values confirmed correlation, the 

coefficients of determination revealed that chemical reaction control (RC) was the best fit to kinetic 

data and predicted 75% of the variation in copper conversion with time. The film diffusion control 

with turbulent flow regime came second, predicting 65% of the variation in copper conversion with 

time.  

 

Thus, the statistical analysis of SCM fitting to the experimental data was found to provide insight 

into the degrees of resistance (control) of the three mechanisms which were ranked as: RC > 

FDC-TR > FDC-SR. Therefore, the acid pre-treatment was found to be chemically controlled, with 

moderate control due to the mixing-driven turbulence.  
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Figure 4-8: SCM fitting to kinetic data for acid pre-treatment 
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4.5.3 Ammonium Thiosulphate Leaching – SCM with Unshrinking Particles  

 

For unshrinking particles, the three mechanisms investigated in terms of the shrinking-core model 

included: (1) film diffusion control (FDC), (2) ash diffusion control (ADC) and (3) chemical reaction 

control (RC). The statistical analysis of the SCM fitting to the ATS leaching kinetic data involved 

the two-sample t-test with paired (matched) samples, and the results are tabulated in Appendix E 

(Table E-12).  

 

A visual analysis of model fitting in Figure 4-9 indicated that none of the three mechanisms 

described Cu-ATS leaching without acid pre-treatment. This was supported statistically by the fact 

that the p-values and R2 values were not in agreement. For instance, the p-value for RC was 0.07 

(> 0.05) with a corresponding R2 of 0.58 (low correlation). In contrast, the other three leaching 

conditions, i.e. Cu-ATS with acid pre-treatment, Ni-ATS leaching (with and w/o AP) were described 

by chemical reaction control (RC) based on the fit of this model to the experimental data. The 

statistical analysis of model fitting confirmed this observation for the copper-thiosulphate leaching 

and nickel-thiosulphate leaching with acid pre-treatment. A p-value of 0.15 (> 0.05) and R2 of 0.68 

were obtained for Cu-ATS leaching with AP, and a p-value of 0.07 (> 0.05) and R-squared of 0.68 

were obtained for Ni-ATS leaching with AP. This was an indication that chemical reaction control 

predicted 68% of the variation in gold extraction with time for the copper-thiosulphate and nickel-

thiosulphate leaching with acid pre-treatment.  
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Figure 4-9: SCM fitting to kinetic data for ammonium thiosulphate leaching 
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4.6 Preliminary Economics Analysis  

 

This section briefly compares the economics of the copper- and nickel-thiosulphate leaching and 

the conventional cyanidation for the gold extraction from acid-pretreated PCBs. Due to the limited 

data available for this analysis, the comparison was based on production costs only, with an 

emphasis on gross margin. A preliminary economic comparison of different processes based on 

their gross margins is significant since raw materials are known to contribute to more than 80% of 

the total cost of production (Towler & Sinnott, 2008).  

 

The following considerations and simplifying assumptions were adopted:  

 

- The production costs were related to the reagent (lixiviant and oxidant) consumptions 

obtained in the study. For cyanide leaching, the reference gold extraction and reagent 

consumption were obtained from the literature (Quinet et al., 2005).  

- The cost of PCBs as raw materials was assumed to be negligible. Thus, the cost of raw 

materials was attributed to the reagents used in leaching.  

- The revenue was related entirely to the amount of gold dissolved.  

- The economics analysis was based on one metric ton of processed PCBs containing 524 

g Au/t-PCB.  

 

Figure 4-10 indicates that cyanidation had the highest gross margin of 22,066 USD and lowest 

raw materials cost of 2,112 USD, as a result of the highest gold extraction with low reagent 

consumption obtained. Furthermore, it adds to the reasons for the predominance of cyanidation 

in the gold mining industry. However, the margin of thiosulphate leaching was found to improve 

significantly by replacing copper with nickel, as a result of the higher revenue driven by the 

improved gold extraction and the reduced thiosulphate consumption. The gold extraction was 

increased from 36.02% in copper-thiosulphate leaching to 65.41% in nickel-thiosulphate leaching. 

In addition, the thiosulphate consumption was reduced from 72.06 to 47.7 kg/t-PCB. The raw 

materials cost decreased from 3,768 USD to 2,868 USD, approaching the previously reported 

cyanidation costs closely. The revenue and gross margin were increased from 8,969 and 5,201 

USD in copper-thiosulphate leaching to 16,287 and 13,419 USD in nickel-thiosulphate leaching, 

respectively. Although nickel is almost triple the price of copper, its use in the leaching process as 

a substitute for copper reduced the overall raw materials cost because this cost was mostly 

attributed to the cost of thiosulphate (Figure 4-11) and using nickel caused a significant reduction 

in thiosulphate consumption.   
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Therefore, the use of thiosulphate as an environment-friendly non-cyanide lixiviant shows potential 

by virtue of the economics of the process. The calculations involved in the preliminary economics 

analysis are provided in Appendix G (section G.5).  

 

 

Figure 4-10: Gross margins of three gold leaching process routes with a basis of one metric ton of 
processed PCBs 

 

 

Figure 4-11: Contributions of the lixiviant and metal oxidant to the overall raw materials costs in 
thiosulphate leaching  
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CONCLUSION AND RECOMMENDATION 
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 : CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

The proliferation of electronic waste exacerbated by rapid technological growth is posing a 

predominant environmental challenge. Proper management of this waste is required to sustain 

the protection of our ecosystem. Recycling of e-waste is a promising route because not only does 

it allow the adequate handling of e-waste, but also it is attractive in economic aspects due to the 

high value of precious metals extractable from PCBs. Cyanide leaching has been used for many 

years as the traditional hydrometallurgical technology for the extraction of precious metals from 

refractory ores, concentrates and wastes. However, due to the adverse health and environmental 

impact of the process, alternative non-cyanide and less toxic lixiviants such as ammonium 

thiosulphate are gaining precedence over cyanide. To mitigate the operability issues of ammonium 

thiosulphate and improve the viability of the process, the effects of acid pre-treatment and nickel 

oxidant on the gold extraction and thiosulphate consumption were instigated.  

 

The acid pre-treatment stage achieved 93.72% copper extraction and 8.83% gold loss in 150 

minutes the optimum conditions of 2 M H2SO4, 3 M H2O2, 50 g/L pulp density, 25°C and 350 rpm 

mixing rate. This pre-processing stage was a beneficiation process that increased the extractable 

gold content from 524 to 842 g/ton-PCBs. The variation in H2SO4 was found to have a higher 

statistical impact on gold extraction and the variation in H2O2, the oxidant in the acid pre-treatment, 

was more statistically significant for copper extraction. The acid pre-treatment was found to be 

chemically controlled based on the shrinking-core model. The ammonium thiosulphate leaching 

stage achieved 65.41% gold extraction and 61.03 kg/ton-PCB thiosulphate consumption with the 

use of nickel as the metal oxidant in the gold extraction from acid-pretreated PCBs at 50 g/L pulp 

density, 0.1 M thiosulphate, 0.2 M NH3, 0.03 M Ni2+, pH 10.5 and stirring speed of 350 rpm. The 

variation in metal oxidant was found to have a more pronounced statistical effect on gold extraction 

compared to the PCB pre-treatment. The copper-thiosulphate and nickel-thiosulphate leaching 

processes were found to be chemically controlled based on the shrinking-core model.  
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A preliminary economic comparison between Cu-thiosulphate and Ni-thiosulphate leaching, based 

on production costs, indicated that a significant improvement in terms of gross margin was 

obtained with the use of nickel in thiosulphate leaching, and despite the higher margin of 

cyanidation, the improved process economics of the ammonium thiosulphate leaching shows 

potential for industrial implementation.  

 

5.2 Recommendations for Future Research 

 

In this research, the gold extraction and thiosulphate consumption were improved by altering the 

chemistry of the leaching process through acid pre-treatment and using nickel as the metal 

oxidant. In addition, based on the level of knowledge and experience acquired through this 

research, it is the author’s view that future developments on the ammonium thiosulphate leaching 

of gold from waste PCBs should focus on the following aspects to envisage further improvements:  

 

▪ The lixiviant recyclability through appropriate metal recovery techniques targeting copper 

removal (in acid pre-treatment) and gold (in thiosulphate leaching). The nickel oxidant used 

in thiosulphate leaching would have a positive impact on adsorptive recovery techniques 

such as resin adsorption because the positively-charged nickel amine complex formed in 

the leaching system would have no affinity for anion-exchange resins, thus decreasing the 

level of interference.  

 

▪ The presence of non-metals (resin material, glass, and other plastics) is known to be 

detrimental to the gold leaching efficiency. Multiple studies have outlined the benefits of 

non-metal removal from the PCB prior to leaching (Hocheng et al., 2017; Rossouw, 2015; 

Havlik et al., 2010) while others have reported satisfactory gold extraction levels with no 

non-metallic fraction removal step (Ha et al., 2010; Ficeriová et al., 2011; Tripathi et al., 

2012; Gámez et al., 2019). Furthermore, proper economics analysis should be carried out 

to confirm the economic viability of adding this processing stage.  

 

▪ Since nickel was found to shift the thermodynamics of ammonium thiosulphate leaching 

towards the more stable nickel amine complex, an in-depth investigation into the effects of 

thiosulphate, ammonia and nickel(II) ion concentrations along with interactions among 

these factors should be undertaken through optimization experiments to envisage the 

possibility of further minimizing the starting reagent concentrations while maintaining or 

improving gold extraction. This will have a significant impact on the process economics.   



 

76 
 

BIBLIOGRAPHY 

 

Aazami, M., Lapidus, G.T. & Azadeh, A. 2014. The effect of solution parameters on the thiosulfate 

leaching of Zarshouran refractory gold ore. International Journal of Mineral Processing, 131: 

43–50. 

Abbruzzese, C., Fornari, P., Massidda, R., Vegliò, F. & Ubaldini, S. 1995. Thiosulphate leaching 

for gold hydrometallurgy. Hydrometallurgy, 39(1–3): 265–276. 

Akcil, A., Erust, C., Gahan, C.S., Ozgun, M., Sahin, M. & Tuncuk, A. 2015. Precious metal recovery 

from waste printed circuit boards using cyanide and non-cyanide lixiviants--a review. Waste 

Management, 45: 258–271. 

Al-Anzi, B.S., Al-Burait, A.A., Thomas, A. & Ong, C.S. 2017. Assessment and modeling of E-waste 

generation based on growth rate from different telecom companies in the State of Kuwait. 

Environmental Science and Pollution Research, 24(35): 27160–27174. 

Albertyn, P.W. 2017. Ammonium thiosulphate leaching of gold from printed circuit board waste. 

Stellenbosch University. 

Angelidis, T.N., Kydros, K.A. & Matis, K.A. 1993. A fundamental rotating disk study of gold 

dissolution in iodine-iodide solutions. Hydrometallurgy, 34(1): 49–64. 

Ari, V. 2016. A review of technology of metal recovery from electronic waste. In F. C. Mihai, ed. 

E-Waste in transition - From pollution to resource. InTech: 121–158. 

Arima, H., Fujita, T. & Yen, W.-T. 2003. Gold recovery from nickel catalyzed ammonium thiosulfate 

solution by strongly basic anion exchange resin. Materials Transactions, 44(10): 2099–2107. 

Arima, H., Fujita, T. & Yen, W.-T. 2004. Using nickel as a catalyst in ammonium thiosulfate 

leaching for gold extraction. Materials Transactions, 45(2): 516–526. 

Arshadi, M. & Mousavi, S.M. 2015. Enhancement of simultaneous gold and copper extraction from 

computer printed circuit boards using Bacillus megaterium. Bioresource Technology, 175: 

315–324. 

Atluri, V.P. 1987. Recovery of gold and silver from ammoniacal thiosulfate solutions containing 

copper by resin ion exchange method. University of Arizona. 

Aylmore, M.G. 2016. Alternative lixiviants to cyanide for leaching gold ores. In Gold Ore 

Processing. Elsevier: 447–484. 

Aylmore, M.G. & Muir, D.M. 2001. Thiosulfate Leaching of Gold--a Review. Minerals Engineering, 

14(2): 135–174. 

Aylmore, M.G., Muir, D.M. & Staunton, W.P. 2014. Effect of minerals on the stability of gold in 



 

77 
 

copper ammoniacal thiosulfate solutions - The role of copper, silver and polythionates. 

Hydrometallurgy, 143: 12–22. 

Baba, A., Adekola, F. & Ayodele, D. 2010. Study of metals dissolution from a brand of mobile 

phone waste. Metalurgija, 16(4): 269–277. 

Baldé, C.P., Wang, F., Kuehr, R. & Huisman, J. 2015. The global e-waste monitor-2014. UNU-

IAS: Bonn, Germany. 

Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mousavi, S.M. & Farnaud, S. 2019. Advances in 

bioleaching as a sustainable method for metal recovery from e-waste: A review. Journal of 

Industrial and Engineering Chemistry. 

Barbosa-Filho, O. & Monhemius, A.J. 1994a. Iodide-thiocyanate leaching system for gold. In 

Hydrometallurgy’94. Dordrecht: Springer: 425–440. 

Barbosa-Filho, O. & Monhemius, A.J. 1994b. Leaching of gold in thiocyanate solutions: Part 1: 

chemistry and thermodynamics. Transactions of the Institution of Mining and Metallurgy-

Section C-Mineral Processing, 103: C105. 

Barbosa-Filho, O. & Monhemius, A.J. 1994c. Leaching of gold in thiocyanate solutions. Part 2: 

redox processes in iron (III)-thiocyanate solutions. Transactions of the Institution of Mining 

and Metallurgy-Section C-Mineral Processing, 103: C111--C111. 

Barbosa-Filho, O. & Monhemius, A.J. 1994d. Leaching of gold in thiocyanate solutions. Part 3: 

rates and mechanism of gold dissolution. Transactions of the Institution of Mining and 

Metallurgy-Section C-Mineral Processing, 103: C117--C117. 

Barbosa-Filho, O. & Monhemius, A.J. 1989. Thermochemistry of thiocyanate systems for leaching 

gold and silver ores. In M. C. Jha & S. D. Mill, eds. Precious Metals’89. 307–357. 

Bas, A.D., Koc, E., Yazici, E.Y. & Deveci, H. 2015. Treatment of copper-rich gold ore by cyanide 

leaching, ammonia pretreatment and ammoniacal cyanide leaching. Transactions of 

nonferrous metals society of China, 25(2): 597–607. 

Behnamfard, A., Salarirad, M.M. & Veglio, F. 2013. Process development for recovery of copper 

and precious metals from waste printed circuit boards with emphasize on palladium and gold 

leaching and precipitation. Waste Management, 33(11): 2354–2363. 

Betts, R.H. & Dainton, F.S. 1953. Electron transfer and other processes involved in the 

spontaneous bleaching of acidified aqueous solutions of ferric thiocyanate. Journal of the 

American Chemical Society, 75(22): 5721–5727. 

Bin, X., Qian, L., Jiang, T., Yang, Y., Xin, M., Xiaoliang, L., Guangzhui, L., Yufeng, G., Xiaohui, F., 

Yuanbo, Z., Xueling, C., Zhiwei, P., Min, G. & Lingzhi, Y. 2016. Method for leaching gold by 

thiosulfate through cobalt and ammonia catalysis. 

Birich, A., Stopic, S. & Friedrich, B. 2019. Kinetic Investigation and Dissolution Behavior of 



 

78 
 

Cyanide Alternative Gold Leaching Reagents. Scientific reports, 9(1): 7191. 

Birloaga, I., Coman, V., Kopacek, B. & Vegliò, F. 2014. An advanced study on the 

hydrometallurgical processing of waste computer printed circuit boards to extract their 

valuable content of metals. Waste Management, 34(12): 2581–2586. 

Birloaga, I., De Michelis, I., Ferella, F., Buzatu, M. & Veglio, F. 2013. Study on the influence of 

various factors in the hydrometallurgical processing of waste printed circuit boards for copper 

and gold recovery. Waste Management, 33(4): 935–941. 

Brandl, H., Bosshard, R. & Wegmann, M. 2001. Computer-munching microbes: metal leaching 

from electronic scrap by bacteria and fungi. Hydrometallurgy, 59(2–3): 319–326. 

Brent Hiskey, J. & Atluri, V.P. 1988. Dissolution chemistry of gold and silver in different lixiviants. 

Mineral Procesing and Extractive Metallurgy Review, 4(1–2): 95–134. 

Breuer, P.L. & Jeffrey, M.I. 2000. Thiosulfate leaching kinetics of gold in the presence of copper 

and ammonia. Minerals Engineering, 13(10–11): 1071–1081. 

Broadhurst, J.L. & Du Perez, J.G.H. 1993. A thermodynamic study of the dissolution of gold in an 

acidic aqueous thiocyanate medium using iron (III) sulphate as an oxidant. Hydrometallurgy, 

32(3): 317–344. 

Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Silvas, F.P.C., Espinosa, D.C.R. & Tenório, J.A.S. 

2015. Leaching processes. In H. Veit & A. Moura Bernardes, eds. Electronic waste. Topics 

in mining, metallurgy and materials engineering. Cham: Springer: 39–59. 

Camelino, S., Rao, J., Padilla, R.L. & Lucci, R. 2015. Initial studies about gold leaching from 

printed circuit boards (PCB’s) of waste cell phones. Procedia Materials Science, 9: 105–112. 

Celep, O., Alp, I., Deveci, H. & Vicil, M. 2009. Characterization of refractory behaviour of complex 

gold/silver ore by diagnostic leaching. Transactions of Nonferrous Metals Society of China, 

19(3): 707–713. 

Chaparro, M., Munive, G., Guerrero, P., Parga, J.R., Vazquez, V. & Valenzuela, J.L. 2015. Gold 

adsorption in thiosulfate solution using anionic exchange resin. Adsorption, 2(8): 2159–2163. 

Chehade, Y., Siddique, A., Alayan, H., Sadasivam, N., Nusri, S. & Ibrahim, T. 2012. Recovery of 

gold, silver, palladium, and copper from waste printed circuit boards. In International 

Conference on Chemical, Civil and Environment engineering (ICCEE’2012). 226–234. 

Chen, J. & Huang, K. 2006. A new technique for extraction of platinum group metals by pressure 

cyanidation. Hydrometallurgy, 82(3): 164–171. 

Chi, T.D., Lee, J., Pandey, B.D., Yoo, K. & Jeong, J. 2011. Bioleaching of gold and copper from 

waste mobile phone PCBs by using a cyanogenic bacterium. Minerals Engineering, 24(11): 

1219–1222. 

Costello, M.C., Ritchie, I.C. & Lunt, D.J. 1992. Use of the ammonia cyanide leach system for gold 



 

79 
 

copper ores with reference to the retreatment of the torco tailings. Minerals Engineering, 

5(10–12): 1421–1429. 

Cui, H. & Anderson, C.G. 2016. Literature review of hydrometallurgical recycling of printed circuit 

boards (PCBs). Journal of Advanced Chemical Engineering, 6(1): 142–153. 

Cui, J. & Forssberg, E. 2003. Mechanical recycling of waste electric and electronic equipment: a 

review. Journal of Hazardous Materials, 99(3): 243–263. 

Cui, J. & Zhang, L. 2008. Metallurgical recovery of metals from electronic waste: A review. Journal 

of Hazardous Materials, 158(2): 228–256. 

Davis, A., Tran, T. & Young, D.R. 1993. Solution chemistry of iodide leaching of gold. 

Hydrometallurgy, 32(2): 143–159. 

DeCoursey, W.J. 2003. Statistics and probability for engineering applications with Microsoft Excel. 

Woburn, MA: Elsevier. 

Dong, Z., Jiang, T., Xu, B., Yang, Y. & Li, Q. 2017. Recovery of gold from pregnant thiosulfate 

solutions by the resin adsorption technique. Metals, 7(12): 555. 

Dorin, R. & Woods, R. 1991. Determination of leaching rates of precious metals by electrochemical 

techniques. Journal of Applied Electrochemistry, 21(5): 419–424. 

Ecroignard, L. 2006. E-waste Legislation in South Africa. EngineerIT. www.ee.co.za/wp-

content/uploads/legacy/E-waste legislation.pdf. 

Eisler, R. 2000. Handbook of chemical risk assessment: health hazards to humans, plants, and 

animals, three volume set. CRC press. 

Eisler, R. & Wiemeyer, S.N. 2004. Cyanide hazards to plants and animals from gold mining and 

related water issues. In G. W. Ware, ed. Reviews of environmental contamination and 

toxicology. New York: Springer: 21–54. 

Elliott, A.C. & Woodward, W.A. 2014. IBM SPSS by example: a practical guide to statistical data 

analysis. Sage Publications. 

Feng, D. & Van Deventer, J.S.J. 2007. The effect of sulphur species on thiosulphate leaching of 

gold. Minerals Engineering, 20(3): 273–281. 

Feng, D. & Van Deventer, J.S.J. 2011a. Thiosulphate leaching of gold in the presence of 

carboxymethyl cellulose (CMC). Minerals Engineering, 24(2): 115–121. 

Feng, D. & Van Deventer, J.S.J. 2010. Thiosulphate leaching of gold in the presence of 

ethylenediaminetetraacetic acid (EDTA). Minerals Engineering, 23(2): 143–150. 

Feng, D. & Van Deventer, J.S.J. 2011b. Thiosulphate leaching of gold in the presence of 

orthophosphate and polyphosphate. Hydrometallurgy, 106(1–2): 38–45. 

Ficeriová, J., Baláž, P. & Gock, E. 2011. Leaching of gold, silver and accompanying metals from 

circuit boards (PCBs) waste. Acta Montanistica Slovaca, 16(2): 128–131. 



 

80 
 

Finlay, A. & Liechti, D. 2008. e-Waste Assessment South Africa. South Africa: eWASA. 

Fleming, C.A. 1986. A process for the simultaneous recovery of gold and uranium from South 

African ores. In Gold 100, Volume 2: Proceedings of the International Conference on Gold. 

Johannesburg: South African Institute of Mining and Metallurgy: 301–319. 

FWI. 2001. Toxic and hazardous materials in electronics: an environmental scan of toxic and 

hazardous materials in IT and Telecom products and waste : final report. Ottawa: Five Winds 

International. 

Gámez, S., Garcés, K., de la Torre, E. & Guevara, A. 2019. Precious metals recovery from waste 

printed circuit boards using thiosulfate leaching and ion exchange resin. Hydrometallurgy, 

186: 1–11. 

Gbor, P.K. & Jia, C.Q. 2004. Critical evaluation of coupling particle size distribution with the 

shrinking core model. Chemical Engineering Science, 59(10): 1979–1987. 

Gentina, J.C. & Acevedo, F. 2013. Application of bioleaching to copper mining in Chile. Electronic 

Journal of Biotechnology, 16(3): 16. 

Ghosh, B., Ghosh, M.K., Parhi, P., Mukherjee, P.S. & Mishra, B.K. 2015. Waste Printed Circuit 

Boards recycling : an extensive assessment of current status. Journal of Cleaner Production, 

94: 5–19. 

Gönen, N., Körpe, E., Yildirim, M.E. & Selengil, U. 2007. Leaching and CIL processes in gold 

recovery from refractory ore with thiourea solutions. Minerals Engineering, 20(6): 559–565. 

Grosse, A.C., Dicinoski, G.W., Shaw, M.J. & Haddad, P.R. 2003. Leaching and recovery of gold 

using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy, 69(1–3): 1–21. 

Gu, F., Summers, P.A. & Hall, P. 2019. Recovering materials from waste mobile phones: Recent 

technological developments. Journal of Cleaner Production: 117657. 

Guerra, E. & Dreisinger, D.B. 1999. A study of the factors affecting copper cementation of gold 

from ammoniacal thiosulphate solution. Hydrometallurgy, 51(2): 155–172. 

Guerra, I. 2010. Peru: toxic waste polluting Opamayo river may reach the Amazon. 

Livinginperu.com. https://www.livinginperu.com/news-12563-environmentnature-peru-toxic-

waste-polluting-opamayo-river-may-reach-the-amazon/ 29 March 2018. 

Guo, J., Zhang, R. & Xu, Z. 2015. PBDEs emission from waste printed wiring boards during 

thermal process. Environmental Science & Technology, 49(5): 2716–2723. 

Guo, X., Liu, J., Qin, H., Liu, Y., Tian, Q. & Li, D. 2015. Recovery of metal values from waste 

printed circuit boards using an alkali fusion-leaching-separation process. Hydrometallurgy, 

156: 199–205. 

Gupta, C.K. 2003. Chemical metallurgy: principles and practice. Weinheim: Wiley-VCH Verlag 

GmbH & Co. KGaA. 



 

81 
 

Gurung, M., Adhikari, B.B., Kawakita, H., Ohto, K., Inoue, K. & Alam, S. 2013. Recovery of gold 

and silver from spent mobile phones by means of acidothiourea leaching followed by 

adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy, 133: 84–93. 

Ha, V.H., Lee, J., Huynh, T.H., Jeong, J. & Pandey, B.D. 2014. Optimizing the thiosulfate leaching 

of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy, 149: 118–

126. 

Ha, V.H., Lee, J., Jeong, J., Hai, H.T. & Jha, M.K. 2010. Thiosulfate leaching of gold from waste 

mobile phones. Journal of Hazardous Materials, 178(1): 1115–1119. 

Habashi, F. 1966. The theory of cyanidation. Transactions of the mineralogical society of AIME, 

235: 236–239. 

Hanafi, J., Jobiliong, E., Christiani, A., Soenarta, D.C., Kurniawan, J. & Irawan, J. 2012. Material 

recovery and characterization of PCB from electronic waste. Procedia - Social and Behavioral 

Sciences, 57: 331–338. 

Havlik, T., Orac, D., Petranikova, M., Miskufova, A., Kukurugya, F. & Takacova, Z. 2010. Leaching 

of copper and tin from used printed circuit boards after thermal treatment. Journal of 

Hazardous Materials, 183(1–3): 866–873. 

Hedemalm, P. 1995. Waste from electrical and electronic products: a survey of the contents of 

materials and hazardous substances in electric and electronic products. Nordic Council of 

Ministers. 

Hilson, G. & Monhemius, A.J. 2006. Alternatives to cyanide in the gold mining industry: what 

prospects for the future? Journal of Cleaner production, 14(12): 1158–1167. 

Hocheng, H., Chakankar, M. & Jadhav, U. 2017. Biohydrometallurgical Recycling of Metals from 

Industrial Wastes. CRC Press. 

Holland, L. 2015. The dangerous path toward mining law reform in Honduras. Washington, D.C. 

http://www.coha.org/wp-content/uploads/2015/12/The-Dangerous-Path-Toward-Mining-

Law-Reform-in-Honduras. 

Huang, K., Guo, J. & Xu, Z. 2009. Recycling of waste printed circuit boards: A review of current 

technologies and treatment status in China. Journal of Hazardous Materials, 164(2–3): 399–

408. 

Hynes, T.P., Harrison, J., Bonitenko, E., Doronina, T.M., Baikowitz, H., James, M. & Zinck, J.M. 

1998. The International Scientific Commission’s Assessment of the impact of the cyanide 

spill at Barskaun, Kyrgyz Republic. Mining and Mineral Sciences Laboratories. 

https://s3.amazonaws.com/cg-

raw/cg/final_report_of_the_international_commission_on_th_1998_cyanide_spill.pdf 13 

February 2018. 



 

82 
 

Ilyas, S., Anwar, M.A., Niazi, S.B. & Ghauri, M.A. 2007. Bioleaching of metals from electronic 

scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88(1–4): 180–188. 

Ilyas, S. & Lee, J. 2018. Gold metallurgy and the environment. Boca Raton: CRC Press. 

International Cyanide Management Code. 2015. Cyanide facts: environmental & health effects. 

International Cyanide Management Institute. http://www.cyanidecode.org/cyanide-

facts/environmental-health-effects 21 March 2018. 

Isaia, F., Aragoni, M.C., Arca, M., Caltagirone, C., Castellano, C., De Filippo, G., Garau, A., 

Lippolis, V. & Pivetta, T. 2017. Gold and palladium oxidation/complexation in water by a 

thioamide--iodine leaching system. Green Chemistry, 19(19): 4591–4599. 

Isildar, A., Rene, E.R., Hullebusch, E.D. van & Lens, P.N.L. 2017. Two-step leaching of valuable 

metals from discarded printed circuit boards, and process optimization using response 

surface methodology. Advances in Recycling & Waste Management, 2(2). 

Işıldar, A., van de Vossenberg, J., Rene, E.R., van Hullebusch, E.D. & Lens, P.N.L. 2016. Two-

step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste 

Management, 57: 149–157. 

Jamasmie, C. 2015. Barrick’s Veladero gold mine in Argentina halted over cyanide leak. 

MINING.com. http://www.mining.com/barricks-veladero-gold-mine-in-argentina-halted-over-

cyanide-leak/ 29 March 2018. 

Jaszczak, E., Polkowska, Ż., Narkowicz, S. & Namieśnik, J. 2017. Cyanides in the environment-

analysis-problems and challenges. Environmental Science and Pollution Research, 24(19): 

15929–15948. 

Jeffrey, M.I. 2001. Kinetic aspects of gold and silver leaching in ammonia--thiosulfate solutions. 

Hydrometallurgy, 60(1): 7–16. 

Jeon, S., Ito, M., Tabelin, C.B., Pongsumrankul, R., Tanaka, S., Kitajima, N., Saito, A., Park, I. & 

Hiroyoshi, N. 2019. A physical separation scheme to improve ammonium thiosulfate leaching 

of gold by separation of base metals in crushed mobile phones. Minerals Engineering, 138: 

168–177. 

Jing-ying, L., Xiu-li, X. & Wen-quan, L. 2012. Thiourea leaching gold and silver from the printed 

circuit boards of waste mobile phones. Waste Management, 32(6): 1209–1212. 

Johnson, D.B. 2014. Biomining - biotechnologies for extracting and recovering metals from ores 

and waste materials. Current Opinion in Biotechnology, 30: 24–31. 

Kasper, A.C., Berselli, G.B.T., Freitas, B.D., Tenório, J.A.S., Bernardes, A.M. & Veit, H.M. 2011. 

Printed wiring boards for mobile phones: characterization and recycling of copper. Waste 

Management, 31(12): 2536–2545. 

Kasper, A.C. & Veit, H.M. 2018. Gold Recovery from Printed Circuit Boards of Mobile Phones 



 

83 
 

Scraps Using a Leaching Solution Alternative to Cyanide. Brazilian Journal of Chemical 

Engineering, 35(3): 931–942. 

Kasper, A.C. & Veit, H.M. 2015. Leaching of gold from printed circuit boards scrap of mobile 

phones. In A. Jha, ed. Energy Technology 2015. Cham: Springer: 243–249. 

Khaliq, A., Rhamdhani, M., Brooks, G. & Masood, S. 2014. Metal extraction processes for 

electronic waste and existing industrial routes: a review and australian perspective. 

Resources, 3(1): 152–179. 

Khosravi, R., Azizi, A., Ghaedrahmati, R., Gupta, V.K. & Agarwal, S. 2017. Adsorption of gold from 

cyanide leaching solution onto activated carbon originating from coconut shell - Optimization, 

kinetics and equilibrium studies. Journal of Industrial and Engineering Chemistry, 54: 464–

471. 

Kim, E., Kim, M., Lee, J. & Pandey, B.D. 2011. Selective recovery of gold from waste mobile phone 

PCBs by hydrometallurgical process. Journal of Hazardous Materialsazardous materials, 

198: 206–215. 

Konyratbekova, S.S., Baikonurova, A., Ussoltseva, G.A., Erust, C. & Akcil, A. 2015. 

Thermodynamic and kinetic of iodine--iodide leaching in gold hydrometallurgy. Transactions 

of Nonferrous Metals Society of China, 25(11): 3774–3783. 

Langhans, J.W., Lei, K.P.V. & Carnahan, T.G. 1992. Copper-catalyzed thiosulfate leaching of low-

grade gold ores. Hydrometallurgy, 29(1–3): 191–203. 

Leung, A.M.R. & Lu, J.L.D.P. 2016. Environmental health and safety hazards of indigenous small-

scale gold mining using cyanidation in the Philippines. Environmental Health Insights, 10: 

125. 

Leung, A.O.W., Luksemburg, W.J., Wong, A.S. & Wong, M.H. 2007. Spatial distribution of 

polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in 

soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. 

Environmental Science & Technology, 41(8): 2730–2737. 

Levenspiel, O. 1999. Chemical reaction engineering. 3rd ed. New York: John Wiley & Sons, Inc. 

Li, J., Liang, C. & Ma, C. 2015. Bioleaching of gold from waste printed circuit boards by 

Chromobacterium violaceum. Journal of Material Cycles and Waste Management, 17(3): 

529–539. 

Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. & Wan, R.Y. 2012a. 

Thiocyanate hydrometallurgy for the recovery of gold.: Part II: The leaching kinetics. 

Hydrometallurgy, 113: 10–18. 

Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. & Wan, R.Y. 2012b. 

Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic 



 

84 
 

considerations. Hydrometallurgy, 113: 1–9. 

Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. & Wan, R.Y. 2012c. 

Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with 

Alamine 336. Hydrometallurgy, 113: 25–30. 

Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. & Wan, R.Y. 2012d. 

Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for 

solution concentration and purification. Hydrometallurgy, 113: 31–38. 

Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. & Wan, R.Y. 2012e. 

Thiocyanate hydrometallurgy for the recovery of goldPart III: Thiocyanate stability. 

Hydrometallurgy, 113: 19–24. 

Li, R. & Kuang, S. 1998. Leaching gold with thiosulphate solution containing added sodium 

chloride and sodium dodecyl sulphonate. Huagong Yejin, 19(1): 77–82. 

Logsdon, M.J., Hagelstein, K. & Mudder, T. 1999. The management of cyanide in gold extraction. 

International Council on Metals and the Environment. 

Lu, Y. & Xu, Z. 2016. Precious metals recovery from waste printed circuit boards: a review for 

current status and perspective. Resources, Conservation and Recycling, 113: 28–39. 

Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G. & Li, X. 2011. Heavy metal contamination in 

soils and vegetables near an e-waste processing site, south China. Journal of Hazardous 

Materials, 186(1): 481–490. 

Makaka, S., Aziz, M. & Nesbitt, A. 2010. Copper recovery in a bench-scale carrier facilitated 

tubular supported liquid membrane. Journal of Mining and Metallurgy, 46(1): 67–73. 

Marsden, J. & House, I. 2006. The chemistry of gold extraction. SME. 

Mehta, P. 2018. E-Waste, chemical toxicity, and legislation in India. In K. Mehdi, ed. Encyclopedia 

of information science and technology. IGI Global: 3066–3076. 

MiningWatch. 2006. Groups Call for Action on Cyanide Spills by Multinational Gold Mine in Ghana: 

International Cyanide Management Institute urged to immediately audit Cyanide Code 

signatory Golden Star Resources’ Bogoso/Prestea mine in Ghana. MiningWatch. 

http://www.miningwatch.ca/news/2006/7/26/groups-call-action-cyanide-spills-multinational-

gold-mine-ghana-international-cyanide 29 March 2018. 

Monchamp, A. 2000. The evolution of materials used in personal computers. In Second OECD 

Workshop on Environmentally Sound Management of Wastes Destined for Recovery 

Operations. Electronic Industry Alliance: 2000. 

Montero, R., Guevara, A. & la Torre, E. 2012. Recovery of gold, silver, copper and niobium from 

printed circuit boards using leaching column technique. Journal of Earth Science and 

Engineering, 2(10): 6. 



 

85 
 

Montgomery, D.C. 2017. Design and analysis of experiments. 9th ed. Hoboken, NJ: John Wiley & 

Sons, Inc. 

Muir, D.M. & Aylmore, M.G. 2002. Thiosulfate as an alternative to cyanide for gold processing; 

issues and impediments. 

Murthy, D.S.R., Kumar, V. & Rao, K. V. 2003. Extraction of gold from an Indian low-grade 

refractory gold ore through physical beneficiation and thiourea leaching. Hydrometallurgy, 

68(1): 125–130. 

Ni, H., Zeng, H., Tao, S. & Zeng, E.Y. 2010. Environmental and human exposure to persistent 

halogenated compounds derived from e-waste in China. Environmental Toxicology and 

Chemistry, 29(6): 1237–1247. 

Nicol, M.J. & O’Malley, G. 2002. Recovering gold from thiosulfate leach pulps via ion exchange. 

JOM, 54(10): 44–46. 

NOHSC. 2004. Approved Criteria for Classifying Hazardous Substances. National Occupational 

Health and Safety Commission. 

Noller, B.N. & Saulep, B. 2004. Loss of cyanide during transport to Tolukuma gold mine. Papua 

New Guinea European Journal of Mineral Processing & Environmental Protection, 4(1): 49–

61. 

Norman, G.R. & Streiner, D.L. 2008. Biostatistics: the bare essentials. PMPH USA. 

O’Malley, G.P. 2001. Recovery of gold from thiosulfate solutions and pulps with ion-exchange 

resins. Murdoch University. 

Othusitse, N. & Muzenda, E. 2015. Predictive Models of Leaching Processes: A Critical Review. 

In 7th International Conference on Latest Trends In Engineering & Technology 

(ICLTET’2015). 136–141. 

Parga, J.R., Valenzuela, J.L. & Francisco, C.T. 2007. Pressure cyanide leaching for precious 

metals recovery. JOM, 59(10): 43–47. 

Pedersen, S.W. 1995. Electronics industry environmental roadmap. In Electronics and the 

Environment, 1995. ISEE., Proceedings of the 1995 IEEE International Symposium on. 

Microelectronics and Computer Technology Corporation: 285–289. 

Petter, P.M.H., Veit, H.M. & Bernardes, A.M. 2014. Evaluation of gold and silver leaching from 

printed circuit board of cellphones. Waste Management, 34(2): 475–482. 

Petter, P.M.H., Veit, H.M. & Bernardes, A.M. 2015. Leaching of gold and silver from printed circuit 

board of mobile phones. Rem: Revista Escola de Minas, 68(1): 61–68. 

Qi, P.H. & Hiskey, J.B. 1991. Dissolution kinetics of gold in iodide solutions. Hydrometallurgy, 

27(1): 47–62. 

Quinet, P., Proost, J. & Van Lierde, A. 2005. Recovery of precious metals from electronic scrap 



 

86 
 

by hydrometallurgical processing routes. Mining, Metallurgy & Exploration, 22(1): 17–22. 

Rabieh, A., Eksteen, J.J. & Albijanic, B. 2017. The effect of grinding chemistry on cyanide leaching 

of gold in the presence of pyrrhotite. Hydrometallurgy, 173: 115–124. 

Ranjbar, R., Naderi, M. & Ghazitabar, A. 2017. Hydrochemically separation of gold from copper 

anode slime by means of thiourea solution. Journal of Advanced Materials and Processing, 

4(1): 22–31. 

Robinson, B.H. 2009. E-waste: an assessment of global production and environmental impacts. 

Science of the Total Environment, 408(2): 183–191. 

Rohwerder, T., Gehrke, T., Kinzler, K. & Sand, W. 2003. Bioleaching review part A: Progress in 

bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied 

Microbiology and Biotechnology, 63(3): 239–248. 

Rossouw, W.A. 2015. Effect of mechanical pre-treatment on leaching of base metals from waste 

printed circuit boards. Stellenbosch: Stellenbosch University. 

Ruan, J., Zhu, X., Qian, Y. & Hu, J. 2014. A new strain for recovering precious metals from waste 

printed circuit boards. Waste management, 34(5): 901–907. 

Safarzadeh, M.S., Bafghi, M.S., Moradkhani, D. & Ilkhchi, M.O. 2007. A review on 

hydrometallurgical extraction and recovery of cadmium from various resources. Minerals 

Engineering, 20(3): 211–220. 

Sahin, M., Akcil, A., Erust, C., Altynbek, S., Gahan, C.S. & Tuncuk, A. 2015. A potential alternative 

for precious metal recovery from e-waste: iodine leaching. Separation Science and 

Technology, 50(16): 2587–2595. 

Schmitz, P.A., Duyvesteyn, S., Johnson, W.P., Enloe, L. & McMullen, J. 2001. Ammoniacal 

thiosulfate and sodium cyanide leaching of preg-robbing Goldstrike ore carbonaceous matter. 

Hydrometallurgy, 60(1): 25–40. 

Senanayake, G. 2012. Gold leaching by copper (II) in ammoniacal thiosulphate solutions in the 

presence of additives. Part I: A review of the effect of hard--soft and Lewis acid-base 

properties and interactions of ions. Hydrometallurgy, 115: 1–20. 

Senanayake, G. 2004. Gold leaching in non-cyanide lixiviant systems: critical issues on 

fundamentals and applications. Minerals Engineering, 17(6): 785–801. 

Singh, M., Thind, P.S. & John, S. 2018. Health risk assessment of the workers exposed to the 

heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. 

Chemosphere. 

Smith, R.M. & Martell, A.E. 1976. Critical stability constants: inorganic ligands. Springer US. 

Sousa, R., Futuro, A., Fiúza, A., Vila, M.C. & Dinis, M.L. 2018. Bromine leaching as an alternative 

method for gold dissolution. Minerals Engineering, 118: 16–23. 



 

87 
 

Stewart, E.S. & Lemieux, P.M. 2003. Emissions from the incineration of electronics industry waste. 

In Electronics and the Environment, 2003. IEEE International Symposium on. 271–275. 

Syed, S. 2012. Recovery of gold from secondary sources - a review. Hydrometallurgy, 115: 30–

51. 

Szałatkiewicz, J. 2014. Metals content in printed circuit board waste. Polish Journal of 

Environmental Studies, 23(6): 2365–2369. 

Tan, H., Feng, D., Lukey, G.C. & Van Deventer, J.S.J. 2005. The behaviour of carbonaceous 

matter in cyanide leaching of gold. Hydrometallurgy, 78(3): 226–235. 

Towler, G. & Sinnott, R. 2008. Chemical engineering design: principles, practice and economics 

of plant and process design. Oxford: Elsevier. 

Tripathi, A., Kumar, M., C. Sau, D., Agrawal, A., Chakravarty, S. & R. Mankhand, T. 2012. 

Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium 

thiosulphate. International Journal of Metallurgical Engineering, 1(2): 17–21. 

Ubaldini, S., Fornari, P., Massidda, R. & Abbruzzese, C. 1998. An innovative thiourea gold 

leaching process. Hydrometallurgy, 48(1): 113–124. 

USEPA. 1989. Characterization of Products Containing Lead and Cadmium in Municipal Solid 

Waste in the United States, 1970 to 2000: Final Report. United States Environmental 

Protection Agency, Office of solid Waste. 

Valix, M. 2017. Bioleaching of Electronic Waste: Milestones and Challenges. In Current 

Developments in Biotechnology and Bioengineering. Elsevier: 407–442. 

Vats, M.C. & Singh, S.K. 2015. Assessment of gold and silver in assorted mobile phone printed 

circuit boards (PCBs). Waste Management, 45: 280–288. 

Wang, J. & Xu, Z. 2015. Disposing and recycling waste printed circuit boards: Disconnecting, 

resource recovery, and pollution control. Environmental Science & Technology, 49(2): 721–

733. 

Watling, H.R. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides - a 

review. Hydrometallurgy, 84(1–2): 81–108. 

Wei, D., Chai, L., Ichino, R. & Okido, M. 1999. Gold leaching in an alkaline thiourea solution. 

Journal of the Electrochemical Society, 146(2): 559–563. 

Weinberg, S.L. & Abramowitz, S.K. 2008. Statistics using SPSS: an integrative approach. 

Cambridge University Press. 

White, H.A. 1905. The solubility of gold in thiosulphates and thiocyanates. South African Journal 

of Science, 1(1): 211–215. 

Xiang, P., Zhang, Y. & Liu, Q. 2018. Gold Leaching from Printed circuit Board Scrap with 

Thiosulfate. In IOP Conference Series: Materials Science and Engineering. 22001. 



 

88 
 

Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, W., Wu, J. & Li, P. 2010. Bioleaching of copper from 

waste printed circuit boards by bacterial consortium enriched from acid mine drainage. 

Journal of Hazardous Materials, 184(1–3): 812–818. 

Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T. & Liu, X. 2017. A review of thiosulfate leaching of gold: 

Focus on thiosulfate consumption and gold recovery from pregnant solution. Metals, 7(6): 

222. 

Xu, B., Yang, Y., Jiang, T., Li, Q., Zhang, X. & Wang, D. 2015. Improved thiosulfate leaching of a 

refractory gold concentrate calcine with additives. Hydrometallurgy, 152: 214–222. 

Xu, B., Yang, Y., Li, Q., Jiang, T., Zhang, X. & Li, G. 2017. Effect of common associated sulfide 

minerals on thiosulfate leaching of gold and the role of humic acid additive. Hydrometallurgy, 

171: 44–52. 

Yang, Y., Zhang, X., Bin, X.U., Qian, L.I., Jiang, T. & Wang, Y. 2015. Effect of arsenopyrite on 

thiosulfate leaching of gold. Transactions of Nonferrous Metals Society of China, 25(10): 

3454–3460. 

Yannopoulos, J.C. 1991. The extractive metallurgy of gold. Springer Science & Business Media. 

Yazici, E.Y., Yilmaz, E., Ahlatci, F., Celep, O. & Deveci, H. 2017. Recovery of silver from cyanide 

leach solutions by precipitation using Trimercapto-s-triazine (TMT). Hydrometallurgy, 174: 

175–183. 

Zhang, W., Ren, J., Liu, S. & Yuan, Z. 2016. Mechanism and clean procedure to extract gold from 

printed circuit board. Procedia Environmental Sciences, 31: 171–177. 

Zhang, Y., Liu, S., Xie, H., Zeng, X. & Li, J. 2012. Current status on leaching precious metals from 

waste printed circuit boards. Procedia Environmental Sciences, 16: 560–568. 

Zipperian, D., Raghavan, S. & Wilson, J. 1988. Gold and silver extraction by ammoniacal 

thiosulfate leaching from a rhyolite ore. Hydrometallurgy, 19(3): 361–375. 

 



 

A-1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

  



 

A-2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

PCB CHARACTERIZATION AND AQUA 

REGIA LEACHING 

  



 

A-3 
 

APPENDIX A : PCB Characterization & Aqua Regia Leaching 

 

Aqua regia leaching was performed to determine the metal content of PCBs, as summarised in 

Table 4-1. The results of the five replicate runs are shown below. Since the initial samples were 

diluted 50 times, the actual ppm concentrations in the pregnant were calculated by multiplying the 

dilute concentration by 50.  

 

Table A-1: Dilute copper concentration (mg/L) of pregnant aqua regia leach solutions 

 Time (min) Time (h) 

Run 0 20 40 60 80 100 120 24 

1 0 358.1 394.9 395 393.6 407.2 416.2 480.7 

2 0 393.8 399.8 394.7 417.4 425.2 444.6 460.7 

3 0 377.1 396.1 393 425.6 447.3 448.4 458.7 

4 0 410.2 406.2 420.8 433.5 430 464.3 473.8 

5 0 410 404.4 446.4 459.8 461.5 473.7 435.3 

 

Table A-2: Dilute gold concentration (mg/L) of pregnant aqua regia leach solutions 

 Time (min) Time (h) 

Run 0 20 40 60 80 100 120 24 

1 0 0.347 0.383 0.400 0.425 0.439 0.470 0.607 

2 0 0.414 0.410 0.411 0.433 0.437 0.488 0.456 

3 0 0.309 0.332 0.349 0.352 0.387 0.375 0.534 

4 0 0.325 0.364 0.375 0.401 0.397 0.439 0.472 

5 0 0.375 0.389 0.435 0.447 0.445 0.465 0.550 
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Table A-3: Actual copper concentration (mg/L) of pregnant aqua regia leach solutions 

 Time (min) Time (h) 

Run 0 20 40 60 80 100 120 24 

1 0 17905 19745 19750 19680 20360 20810 24035 

2 0 19690 19990 19735 20870 21260 22230 23035 

3 0 18855 19805 19650 21280 22365 22420 22935 

4 0 20510 20310 21040 21675 21500 23215 23690 

5 0 20500 20220 22320 22990 23075 23685 21765 

 

Table A-4: Actual gold concentration (mg/L) of pregnant aqua regia leach solutions  

 Time (min) Time (h) 

Run 0 20 40 60 80 100 120 24 

1 0.00 17.35 19.14 20.00 21.27 21.94 23.49 30.35 

2 0.00 20.71 20.48 20.54 21.64 21.87 24.38 22.82 

3 0.00 15.43 16.62 17.44 17.61 19.33 18.77 26.68 

4 0.00 16.27 18.21 18.77 20.07 19.87 21.96 23.62 

5 0.00 18.77 19.44 21.77 22.33 22.26 23.26 27.48 
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APPENDIX B : Particle Size Distribution 

 

The particle size distribution (PSD) of the ground PCBs (total mass of 828.32 g) plotted in Figure 

4-1 was obtained from Table B-1 and Table B-2.  

 

Table B-1: Particle size distribution on frequency basis 

Particle Size (μm) Mass (g) Mass Fraction 

500 405.28 0.49 

500-1000 152.18 0.18 

1000-1700 77.87 0.09 

1700-3000 192.99 0.23 

 

Table B-2: Particle size distribution on cumulative basis  

Particle Size (μm) Mass Fraction  

0 0 

500 0.49 

1000 0.67 

1700 0.77 

3000 1.00 
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APPENDIX C : Acid Pre-treatment 

 

C.1 Copper and Gold Extractions 

 

The copper and gold concentrations of the pregnant leach solutions obtained in the acid pre-

treatment runs designed in Chapter 3 (Table 3-1) are shown in Table C-2 and Table C-3. The 

corresponding gold and copper extractions are shown in Table C-4 and Table C-5.  

 

Table C-1: Dilute copper concentration (mg/L) of pregnant leach solutions in acid pre-treatment  

  Reaction Time (min) 

Run 0 30 60 90 120 150 180 

1 0 372.2 377.9 353.5 387.7 431.4 412.1 

2 0 361.1 372.1 343.9 380.2 397.5 372.2 

3 0 351 391.1 369.1 383.8 434.3 404.7 

4 0 390.5 345.3 383.2 378.7 367.9 358.6 

5 0 368.4 352.6 361.7 355.9 422.9 366.5 

6 0 390.8 374.5 378.2 369 334.9 331.9 

7 0 313.2 350.8 359.6 364.3 370 362.9 

8 0 330.8 338.2 335.7 389 389.2 394.4 

 

Table C-2: Actual copper concentration (mg/L) of pregnant leach solutions in acid pre-treatment  

  Reaction Time (min) 

Run 0 30 60 90 120 150 180 

1 0 18610 18895 17675 19385 21570 20605 

2 0 18055 18605 17195 19010 19875 18610 

3 0 17550 19555 18455 19190 21715 20235 

4 0 19525 17265 19160 18935 18395 17930 

5 0 18420 17630 18085 17795 21145 18325 

6 0 19540 18725 18910 18450 16745 16595 

7 0 15660 17540 17980 18215 18500 18145 

8 0 16540 16910 16785 19450 19460 19720 
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Table C-3: Actual gold concentration (mg/L) of pregnant leach solutions in acid pre-treatment  

  Reaction Time (min) 

Run 0 30 60 90 120 150 180 

1 0 1.829 2.281 1.911 2.084 2.276 1.828 

2 0 2.295 2.437 1.960 2.213 2.761 2.103 

3 0 1.601 1.950 2.139 2.444 2.351 1.588 

4 0 2.203 2.556 2.681 2.785 2.687 2.608 

5 0 2.164 2.265 2.334 2.420 2.873 2.310 

6 0 2.417 2.428 2.915 2.926 2.836 2.546 

7 0 1.897 2.113 2.477 2.843 2.972 2.952 

8 0 2.020 1.908 2.391 2.630 2.849 2.795 

 

Table C-4: Copper extraction (%) by acid pre-treatment at four treatment combinations  

Conditions Time (min) 0 30 60 90 120 150 180 

A (Run 1 - 

Run 3) 

Run 0.00 80.59 81.82 76.54 83.95 93.41 89.23 

Dup 0.00 76.00 84.68 79.92 83.10 94.04 87.63 

Mean 0.00 78.30 83.25 78.23 83.52 93.72 88.43 

Std Dev 0.00 3.25 2.02 2.39 0.60 0.44 1.13 

B (Run 2 - 

Run 5) 

Run 0.00 78.19 80.57 74.46 82.32 86.07 80.59 

Dup 0.00 79.77 76.35 78.32 77.06 91.57 79.36 

Mean 0.00 78.98 78.46 76.39 79.69 88.82 79.97 

Std Dev 0.00 1.12 2.99 2.73 3.72 3.89 0.87 

C (Run 4 - 

Run 6) 

Run 0.00 84.55 74.77 82.97 82.00 79.66 77.65 

Dup 0.00 84.62 81.09 81.89 79.90 72.51 71.86 

Mean 0.00 84.59 77.93 82.43 80.95 76.09 74.76 

Std Dev 0.00 0.05 4.47 0.77 1.49 5.05 4.09 

D (Run 7 - 

Run 8) 

Run 0.00 67.82 75.96 77.86 78.88 80.11 78.58 

Dup 0.00 71.63 73.23 72.69 84.23 84.27 85.40 

Mean 0.00 69.72 74.59 75.27 81.55 82.19 81.99 

Std Dev 0.00 2.69 1.93 3.66 3.78 2.94 4.82 
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Table C-5: Gold extraction (%) by acid pre-treatment at four treatment combinations  

Conditions Time (min) 0 30 60 90 120 150 180 

A (Run 1 - 

Run 3) 

Run 0.00 6.98 8.71 7.30 7.96 8.69 6.98 

Dup 0.00 6.11 7.45 8.17 9.33 8.98 6.06 

Mean 0.00 6.55 8.08 7.73 8.64 8.83 6.52 

Std Dev 0.00 0.62 0.89 0.62 0.97 0.20 0.65 

B (Run 2 - 

Run 5) 

Run 0.00 8.76 9.31 7.48 8.45 10.54 8.03 

Dup 0.00 8.26 8.65 8.91 9.24 10.97 8.82 

Mean 0.00 8.51 8.98 8.20 8.84 10.76 8.42 

Std Dev 0.00 0.35 0.46 1.01 0.56 0.30 0.56 

C (Run 4 - 

Run 6) 

Run 0.00 8.41 9.76 10.24 10.63 10.26 9.96 

Dup 0.00 9.23 9.27 11.13 11.17 10.83 9.72 

Mean 0.00 8.82 9.52 10.68 10.90 10.54 9.84 

Std Dev 0.00 0.58 0.35 0.63 0.38 0.40 0.17 

D (Run 7 - 

Run 8) 

Run 0.00 7.24 8.07 9.46 10.86 11.35 11.27 

Dup 0.00 7.71 7.29 9.13 10.04 10.88 10.67 

Mean 0.00 7.48 7.68 9.29 10.45 11.11 10.97 

Std Dev 0.00 0.33 0.55 0.23 0.58 0.33 0.42 

 

Table C-6: Material balance – acid pre-treatment 

Metal Initial 

Mass 

Final 

Mass 

Mass 

Removed 

Metal Content After 

Acid Leaching (%)  

Cu 16.164 1.015 15.150 5.1119 

Au 0.0183 0.017 0.0016 0.0842 

Total PCB 

Mass 

35   
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C.2 Statistical Analysis  

 

The statistical analysis of the acid pre-treatment and ammonium thiosulphate leaching was 

performed with the aid of Microsoft Excel and IBM SPSS Statistics software packages.  

 

C.2.1 Experimental Repeatability Test 

 

Table C-7: Run-duplicate t-test: paired two-sample for means – Cu extraction 

Experimental 
Conditions 

Mean Variance n 
Pearson 
Correlation 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

A 
Run 72.22 1045.43 7 0.9965 6 0.0241 0.4908 1.9432 0.9816 2.4469 

Dup 72.20 1046.07 7               

B 
Run 68.89 935.36 7 0.9917 6 -0.0206 0.4921 1.9432 0.9842 2.4469 

Dup 68.92 949.88 7               

C 
Run 68.80 931.40 7 0.9895 6 0.8338 0.2182 1.9432 0.4363 2.4469 

Dup 67.41 906.47 7               

D 
Run 65.60 853.56 7 0.9894 6 -1.0349 0.1703 1.9432 0.3406 2.4469 

Dup 67.35 919.05 7               

 

Table C-8: Run-duplicate t-test: paired two-sample for means – Au extraction  

Experimental 
Conditions 

Mean Variance n 
Pearson 
Correlation 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

A 
Run 6.66 9.16 7 0.9500 6 0.1987 0.4245 1.9432 0.8490 2.4469 

Dup 6.59 10.06 7               

B 
Run 7.51 11.92 7 0.9774 6 -1.1438 0.1481 1.9432 0.2963 2.4469 

Dup 7.84 12.69 7               

C 
Run 8.47 14.44 7 0.9911 6 -1.4653 0.0966 1.9432 0.1932 2.4469 

Dup 8.76 15.64 7               

D 
Run 8.32 16.01 7 0.9947 6 2.0714 0.0419 1.9432 0.0837 2.4469 

Dup 7.96 14.24 7               
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C.2.2 ANOVA 

 

The null hypothesis of the Anova for the acid pre-treatment was formulated as follows:  

- The effect of variations in H2SO4 and H2O2 concentrations were not statistically significant 

in terms of copper extraction and gold extraction.  

The research (alternative) hypothesis, attempting to disprove the null hypothesis, was formulated 

as follows:  

- The effect of variations in H2SO4 and H2O2 concentrations had a significant impact on 

copper and gold extractions.  

 

It is worth noting that the effect of varying a factor was statistically significant if and only if the 

following conditions were fulfilled:  

- The p-value of the effect of factor variation on the response (dependent) variable was less 

than 0.0253.  

- The F-statistic of the effect of factor variation on the response variable was greater than 

the F-critical.  

 

Table C-9: Response means – Cu extraction (%) 

  H2O2 Concentration 

H2SO4 Concentration 2M H2O2 3M H2O2 

2M H2SO4 

  

65.60 72.22 

67.35 72.20 

3M H2SO4 

  

68.89 68.80 

68.92 67.41 

 

Table C-10: Response means – Au extraction (%) 

  H2O2 Concentration 

H2SO4 Concentration 2M H2O2 3M H2O2 

2M H2SO4 

  

8.32 6.66 

7.96 6.59 

3M H2SO4 

  

7.51 8.47 

7.84 8.76 
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Table C-11: Anova: two-factor with replication – Acid pre-treatment 

Source of 
Variation 

Dependent 
Variable 

Sum of 
Squares 
(SS) 

df 
Mean 
Square 
(MS) 

F P-value F crit 
Partial 
Eta 
Squared 

H2SO4 
Cu Extraction 1.405 1 1.405 2.255 0.208 7.709 0.360 

Au Extraction 1.164 1 1.164 28.115 0.006 7.709 0.877 

H2O2 
Cu Extraction 12.186 1 12.186 19.557 0.011 7.709 0.830 

Au Extraction 0.166 1 0.166 4.012 0.116 7.709 0.502 

Interaction 
Cu Extraction 21.319 1 21.319 34.214 0.004 7.709 0.895 

Au Extraction 3.024 1 3.024 73.062 0.001 7.709 0.948 

Within (Error) 
Cu Extraction 2.492 4 0.623 

  
Au Extraction 0.166 4 0.041 

  

Corrected 
Total 

Cu Extraction 37.403 7 
  

Au Extraction 4.519 7 

 

Table C-12: Estimated marginal means – Factor interaction 

H2SO4 * H2O2 

  95% Confidence Interval 

Dependent 
Variable  

H2SO4 H2O2 Mean 
Std. 
Error 

Lower Bound Upper Bound 

Cu Extraction (%) 2M H2SO4 2M H2O2 66.475 0.559 64.924 68.026 

3M H2O2 72.210 0.559 70.659 73.761 

3M H2SO4 2M H2O2 68.905 0.559 67.354 70.456 

3M H2O2 68.105 0.559 66.554 69.656 

Au Extraction (%) 2M H2SO4 2M H2O2 8.140 0.143 7.743 8.537 

3M H2O2 6.625 0.143 6.228 7.022 

3M H2SO4 2M H2O2 7.675 0.143 7.278 8.072 

3M H2O2 8.615 0.143 8.218 9.012 
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APPENDIX D : Ammonium Thiosulphate Leaching 

 

D.1 Gold Extraction and ATS Consumption 

 

Table D-1: PCB mass recorded after acid pre-treatment (Cu-ATS and Ni-ATS with AP) 

  PCB Mass (g) 

Conditions  Run Before AP After AP 

Cu-ATS with AP Run 2 35 19.06 

Run 5 35 17.97 

Ni-ATS with AP Run 3 35 19.54 

Run 4 35 19.50 

 

Table D-2: Gold concentration (mg/L) of pregnant leach solutions in ATS leaching 

  Reaction Time (min) 

Run 0 60 120 180 240 300 360 

1 0 8.267 7.758 4.554 5.852 12.82 10.75 

2 0 10.06 12.10 11.70 13.62 16.10 12.87 

3 0 14.88 17.75 13.04 13.29 28.70 23.10 

4 0 16.70 14.68 13.69 15.03 26.38 22.06 

5 0 8.40 10.69 14.76 15.09 14.23 11.36 

6 0 4.321 4.367 4.223 4.291 4.956 5.274 

7 0 6.552 6.413 4.927 6.504 11.74 11.58 

8 0 4.722 4.275 4.462 4.814 4.793 5.633 
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Table D-3: Gold extraction (%) by ATS leaching at four treatment combinations  

Conditions Time (min) 0 60 120 180 240 300 360 

Cu-ATS w/o 

AP (Run 6 - 

Run 8) 

Run 0 16.50 16.67 16.12 16.38 18.92 20.14 

Dup 0 18.03 16.32 17.04 18.38 18.30 21.51 

Mean 0 17.26 16.50 16.58 17.38 18.61 20.82 

Std Dev 0 1.08 0.25 0.65 1.41 0.44 0.97 

Cu-ATS with 

AP (Run 2- 

Run 5) 

Run 0 23.90 28.74 27.79 32.35 38.25 30.58 

Dup 0 19.95 25.38 35.06 35.84 33.80 26.98 

Mean 0 21.92 27.06 31.42 34.09 36.02 28.78 

Std Dev 0 2.80 2.38 5.14 2.46 3.14 2.54 

Ni-ATS w/o 

AP (Run 1  - 

Run 7) 

Run 0 31.57 29.62 17.39 22.34 48.95 41.05 

Dup 0 25.02 24.49 18.81 24.83 44.83 44.22 

Mean 0 28.29 27.05 18.10 23.59 46.89 42.63 

Std Dev 0 4.63 3.63 1.01 1.76 2.92 2.24 

Ni-ATS with 

AP (Run 3 - 

Run 4) 

Run 0 35.33 42.16 30.98 31.57 68.16 54.87 

Dup 0 39.67 34.87 32.53 35.71 62.66 52.39 

Mean 0 37.50 38.51 31.75 33.64 65.41 53.63 

Std Dev 0 3.06 5.16 1.09 2.92 3.89 1.75 
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Table D-4: ATS consumption (kg/t-PCB) in ATS leaching of gold at four treatment combinations  

Conditions Time (min) 0 60 120 180 240 300 360 

Cu-ATS w/o 

AP (Run 6 - 

Run 8) 

Run 0 114.3 148.1 103.3 87.5 84.8 94.4 

Dup 0 120.0 132.7 112.1 99.0 92.6 87.4 

Mean 0 117.13 140.40 107.74 93.23 88.70 90.88 

Std Dev 0 4.02 10.83 6.21 8.12 5.57 4.92 

Cu-ATS with 

AP (Run 2- 

Run 5) 

Run 0 92.1 75.3 51.9 64.4 70.6 69.1 

Dup 0 82.2 81.2 25.7 67.3 73.5 76.1 

Mean 0 87.15 78.29 38.79 65.87 72.06 72.60 

Std Dev 0 7.05 4.17 18.54 2.03 2.10 4.92 

Ni-ATS w/o 

AP (Run 1  - 

Run 7) 

Run 0 38.0 54.5 37.3 48.9 39.2 46.4 

Dup 0 41.3 38.3 25.9 31.5 54.9 43.6 

Mean 0 39.66 46.42 31.59 40.22 47.07 44.97 

Std Dev 0 2.31 11.42 8.08 12.29 11.06 1.98 

Ni-ATS with 

AP (Run 3 - 

Run 4) 

Run 0 61.8 60.1 24.7 46.7 61.9 45.6 

Dup 0 55.5 50.0 37.5 66.1 60.2 53.7 

Mean 0 58.63 55.08 31.08 56.43 61.03 49.63 

Std Dev 0 4.49 7.17 9.02 13.69 1.20 5.69 
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D.2 Statistical Analysis  

 

D.2.1 Experimental Repeatability Test 

 

Table D-5: Run-duplicate t-test: paired two-sample for means – Au extraction 

Experimental 
Conditions 

Mean Variance n 
Pearson 
Correlation 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

Cu w/o AP 
Run 14.96 45.83 7 0.9903 6 -1.7971 0.0612 1.9432 0.1224 2.4469 

Dup 15.65 50.29 7               

Cu with AP 
Run 25.94 150.40 7 0.9347 6 0.3871 0.3560 1.9432 0.7120 2.4469 

Dup 25.29 158.34 7               

Ni w/o AP 
Run 27.27 258.23 7 0.9694 6 0.8347 0.2179 1.9432 0.4359 2.4469 

Dup 26.03 236.42 7               

Ni with AP 
Run 37.58 458.70 7 0.9795 6 0.4371 0.3387 1.9432 0.6774 2.4469 

Dup 36.83 382.95 7               

 

Table D-6: Run-duplicate t-test: paired two-sample for means – ATS consumption 

Experimental 
Conditions 

Mean Variance n 
Pearson 
Correlation 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

Cu w/o AP 
Run 90.33 2048.55 7 0.9768 6 -0.4498 0.3343 1.9432 0.6687 2.4469 

Dup 91.98 1897.12 7               

Cu with AP 
Run 60.50 857.80 7 0.9295 6 0.5580 0.2985 1.9432 0.5971 2.4469 

Dup 58.00 1031.31 7               

Ni w/o AP 
Run 37.76 317.75 7 0.7759 6 0.9234 0.1957 1.9432 0.3914 2.4469 

Dup 33.64 304.47 7               

Ni with AP 
Run 42.98 534.77 7 0.8906 6 -0.7811 0.2322 1.9432 0.4644 2.4469 

Dup 46.12 493.11 7               
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D.2.2 ANOVA 

 

The null hypothesis of the Anova for the ammonium thiosulphate leaching was formulated as 

follows:  

- The effect of variations in PCB pre-treatment and metal oxidant were not statistically 

significant in terms of gold extraction and ammonium thiosulphate consumption.  

The research (alternative) hypothesis, attempting to disprove the null hypothesis, was formulated 

as follows:  

- The effect of variations in PCB pre-treatment and metal oxidant had a significant impact 

on gold extraction and ammonium thiosulphate consumption.  

 

The effect of varying a factor was statistically significant if and only if the following conditions were 

fulfilled:  

- The p-value of the effect of factor variation on the response (dependent) variable was less 

than 0.0253.  

- The F-statistic of the effect of factor variation on the response variable was greater than 

the F-critical.  

 

Table D-7: Response means – Au extraction (%) 

  Metal Oxidant 

PCB Pretreatment Cu Ni 

w/o AP 

  

14.96 27.27 

15.65 26.03 

with AP 

  

25.94 37.58 

25.29 36.83 

 

Table D-8: Response means – ATS consumption (kg/t-PCB) 

  Metal Oxidant 

PCB Pretreatment Cu Ni 

w/o AP 

  

90.33 37.76 

91.98 33.64 

with AP 

  

60.50 42.98 

58.00 46.12 
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Table D-9: Anova: two-factor with replication – ATS leaching  

Source of 
Variation 

Dependent 
Variable 

Sum of 
Squares 
(SS) 

df 
Mean 
Square 
(MS) 

F P-value F crit 
Partial 
Eta 
Squared 

PCB 
Pretreatment 

Au Extraction 217.615 1 217.615 574.935 0.000 7.709 0.993 

ATS Consumption 265.696 1 265.696 59.293 0.002 7.709 0.937 

Metal Oxidant 
Au Extraction 262.983 1 262.983 694.796 0.000 7.709 0.994 

ATS Consumption 2460.727 1 2460.727 549.141 0.000 7.709 0.993 

Interaction 
Au Extraction 0.031 1 0.031 0.083 0.788 7.709 0.020 

ATS Consumption 830.497 1 830.497 185.336 0.000 7.709 0.979 

Within (Error) 
Au Extraction 1.514 4 0.379 

  ATS Consumption 17.924 4 4.481 
  

Corrected Total 
Au Extraction 482.144 7 

  ATS Consumption 3574.844 7 

 

Table D-10: Estimated marginal means – Factor interaction 

 

PCB Pretreatment * Metal Oxidant 

  95% Confidence Interval 

Dependent 
Variable  

PCB Pretreatment 
Metal 
Oxidant 

Mean 
Std. 
Error 

Lower Bound Upper Bound 

Au Extraction (%) w/o AP Cu 15.305 0.433 14.103 16.507 

Ni 26.650 0.433 25.448 27.852 

with AP Cu 25.615 0.433 24.413 26.817 

Ni 37.205 0.433 36.003 38.407 

ATS Consumption 
(kg/t-PCB) 

w/o AP Cu 91.155 1.496 87.002 95.308 

Ni 35.700 1.496 31.547 39.853 

with AP Cu 59.250 1.496 55.097 63.403 

Ni 44.550 1.496 40.397 48.703 
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D.3 Iodimetric Titration Results 

 

Table D-11: Iodimetric titration – Cu-ATS w/o AP (Run) 

Run 6 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 14 16 41.3 50.6 9.3 0.061 114.3 

120 13.5 15 43.5 54.6 11.1 0.050 148.1 

180 22.5 25.5 33.1 41.8 8.7 0.065 103.3 

240 18 20.3 38 46 8 0.070 87.5 

300 19.5 22 37.2 45.1 7.9 0.071 84.8 

360 19 21.5 38.7 47 8.3 0.068 94.4 

 

Table D-12: Iodimetric titration – Cu-ATS w/o AP (Duplicate Run) 

Run 8 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 14 15.5 41.7 51 9.3 0.060 120.0 

120 13 14.5 42.9 53 10.1 0.055 132.7 

180 21 23.5 34.7 43.7 9 0.062 112.1 

240 21 23.5 35.7 44.1 8.4 0.067 99.0 

300 20 22 37 45 8 0.069 92.6 

360 20 22 36.7 44.5 7.8 0.071 87.4 

 

Table D-13: Iodimetric titration – Cu-ATS with AP (Run) 

Run 2 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 9 9.8 46.5 54.4 7.9 0.069 92.1 

120 9 9.8 49.1 56.4 7.3 0.075 75.3 

180 9 9.8 48.9 55.5 6.6 0.082 51.9 

240 10 10.8 48.5 55.4 6.9 0.078 64.4 

300 9 9.6 49.8 56.8 7 0.076 70.6 

360 9 9.8 49.1 56.2 7.1 0.077 69.1 
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Table D-14: Iodimetric titration – Cu-ATS with AP (Duplicate Run) 

Run 5 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 9.5 10.3 49 56.5 7.5 0.072 82.2 

120 9 9.8 48.7 56.2 7.5 0.073 81.2 

180 9 9.7 49.6 55.5 5.9 0.091 25.7 

240 9 9.6 49.6 56.5 6.9 0.077 67.3 

300 9.5 10 49.4 56.4 7 0.075 73.5 

360 9 9.5 49.7 56.8 7.1 0.074 76.1 

 

Table D-15: Iodimetric titration – Ni-ATS w/o AP (Run) 

Run 1 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 19 21.2 37.8 44.2 6.4 0.087 38.0 

120 20 22.2 37.4 44.2 6.8 0.082 54.5 

180 18.5 20.7 38.6 45 6.4 0.087 37.3 

240 18.5 20.7 38.6 45.3 6.7 0.084 48.9 

300 19 21.1 38.4 44.8 6.4 0.087 39.2 

360 18.5 20.6 38.2 44.8 6.6 0.084 46.4 

 

Table D-16: Iodimetric titration – Ni-ATS w/o AP (Duplicate Run) 

Run 7 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 18.5 20.7 38.5 45 6.5 0.086 41.3 

120 9 10.5 48.6 55.3 6.7 0.087 38.3 

180 18.5 20.6 46.7 52.8 6.1 0.091 25.9 

240 18.5 20.5 38.8 45 6.2 0.089 31.5 

300 18.5 20.2 38.1 44.8 6.7 0.081 54.9 

360 18.5 20.2 44.9 51.3 6.4 0.085 43.6 
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Table D-17: Iodimetric titration – Ni-ATS with AP (Run) 

Run 3 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 18.5 20.5 40.2 47.2 7 0.079 61.8 

120 18 19.8 38.1 45 6.9 0.080 60.1 

180 18 19.8 39.3 45.3 6 0.092 24.7 

240 20 21.9 38.3 44.8 6.5 0.084 46.7 

300 18.5 20.2 41.6 48.5 6.9 0.079 61.9 

360 18 19.8 39.3 45.8 6.5 0.085 45.6 

 

Table D-18: Iodimetric titration – Ni-ATS with AP (Duplicate Run) 

Run 4 ATS 
Consumption 
(kg/t-PCB) Time (min) V1 (mL) V2 (mL) Vto (mL) Vtf (mL) L2 (mL) ATS (M) 

0 - - - - - - 0 

60 18 19.9 40.3 47.1 6.8 0.081 55.5 

120 18.5 20.3 39.9 46.5 6.6 0.083 50.0 

180 18 19.5 39.5 45.7 6.2 0.087 37.5 

240 18 19.3 40.9 47.8 6.9 0.078 66.1 

300 15.5 16.8 42.9 49.7 6.8 0.080 60.2 

360 18.5 20 40.4 47 6.6 0.082 53.7 
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APPENDIX E : Shrinking-Core Model and Rate-Limiting 
Mechanism 

 

E.1 Acid Pre-treatment – SCM with Shrinking Particles 

 

Table E-1: Estimated time for complete conversion τ – Acid pre-treatment 

Conditions τ (h) 

A 3.4 

B 3.8 

C 4.0 

D 3.7 

 

Table E-2: SCM-generated data and experimental data – Conditions A 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC-SR FDC-TR RC Cond A 

0 0 0 0 1 0.000 1.0000 1.0000 1.0000 1.0000 

30 0.5 78.30 0.7830 0.2170 0.147 0.7873 0.7270 0.6198 0.2170 

60 1 83.25 0.8325 0.1675 0.295 0.5922 0.4974 0.3508 0.1675 

90 1.5 78.23 0.7823 0.2177 0.442 0.4167 0.3112 0.1736 0.2177 

120 2 83.52 0.8352 0.1648 0.590 0.2630 0.1685 0.0692 0.1648 

150 2.5 93.72 0.9372 0.0628 0.737 0.1349 0.0692 0.0182 0.0628 

180 3 88.43 0.8843 0.1157 0.884 0.0394 0.0134 0.0015 0.1157 

 

Table E-3: SCM-generated data and experimental data – Conditions B 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC-SR FDC-TR RC Cond B 

0 0 0 0 1 0.000 1.0000 1.0000 1.0000 1.0000 

30 0.5 78.98 0.7898 0.2102 0.133 0.8069 0.7512 0.6511 0.2102 

60 1 78.46 0.7846 0.2154 0.267 0.6281 0.5379 0.3945 0.2154 

90 1.5 76.39 0.7639 0.2361 0.400 0.4649 0.3602 0.2161 0.2361 

120 2 79.69 0.7969 0.2031 0.533 0.3190 0.2179 0.1017 0.2031 

150 2.5 88.82 0.8882 0.1118 0.666 0.1926 0.1113 0.0371 0.1118 

180 3 79.97 0.7997 0.2003 0.800 0.0896 0.0401 0.0080 0.2003 
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Table E-4: SCM-generated data and experimental data – Conditions C 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC-SR FDC-TR RC Cond C 

0 0 0 0 1 0.000 1.0000 1.0000 1.0000 1.0000 

30 0.5 84.59 0.8459 0.1541 0.125 0.8191 0.7663 0.6709 0.1541 

60 1 77.93 0.7793 0.2207 0.249 0.6506 0.5637 0.4233 0.2207 

90 1.5 82.43 0.8243 0.1757 0.374 0.4956 0.3922 0.2456 0.1757 

120 2 80.95 0.8095 0.1905 0.498 0.3553 0.2516 0.1262 0.1905 

150 2.5 76.09 0.7609 0.2391 0.623 0.2315 0.1422 0.0536 0.2391 

180 3 74.76 0.7476 0.2524 0.748 0.1268 0.0637 0.0161 0.2524 

 

Table E-5: SCM-generated data and experimental data – Conditions D 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC-SR FDC-TR RC Cond D 

0 0 0 0 1 0.000 1.0000 1.0000 1.0000 1.0000 

30 0.5 69.72 0.6972 0.3028 0.137 0.8022 0.7454 0.6435 0.3028 

60 1 74.59 0.7459 0.2541 0.273 0.6195 0.5281 0.3838 0.2541 

90 1.5 75.27 0.7527 0.2473 0.410 0.4533 0.3482 0.2054 0.2473 

120 2 81.55 0.8155 0.1845 0.547 0.3053 0.2056 0.0932 0.1845 

150 2.5 82.19 0.8219 0.1781 0.683 0.1783 0.1003 0.0318 0.1781 

180 3 81.99 0.8199 0.1801 0.820 0.0764 0.0324 0.0058 0.1801 
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Table E-6: Goodness of model fit – t-test: paired two sample for means (acid pre-treatment) 

Pair Mean Variance n 
Pearson 
Correlation 
R 

Coeff. 
of Det. 
R2 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

FDC-SR - Cond A 0.4619 0.1232 7 0.7618 0.5804 6 2.0794 0.0414 1.9432 0.0828 2.4469 

FDC-TR - Cond A 0.3981 0.1328 7 0.8041 0.6466 6 1.4536 0.0981 1.9432 0.1963 2.4469 

RC - Cond A 0.3190 0.1383 7 0.8642 0.7469 6 0.5810 0.2912 1.9432 0.5824 2.4469 

Cond A 0.2779 0.1044   

FDC-SR - Cond B 0.5002 0.1096 7 0.7069 0.4997 6 2.0423 0.0436 1.9432 0.0872 2.4469 

FDC-TR - Cond B 0.4312 0.1239 7 0.7494 0.5616 6 1.3429 0.1139 1.9432 0.2279 2.4469 

RC - Cond B 0.3441 0.1349 7 0.8151 0.6643 6 0.4114 0.3476 1.9432 0.6951 2.4469 

Cond B 0.3110 0.0939   

FDC-SR - Cond C 0.5255 0.1004 7 0.5892 0.3472 6 1.9459 0.0498 1.9432 0.0996 2.4469 

FDC-TR - Cond C 0.4542 0.1170 7 0.6370 0.4058 6 1.2930 0.1218 1.9432 0.2436 2.4469 

RC - Cond C 0.3622 0.1317 7 0.7173 0.5145 6 0.4467 0.3354 1.9432 0.6708 2.4469 

Cond C 0.3190 0.0914   

FDC-SR - Cond D 0.4907 0.1130 7 0.7726 0.5969 6 1.8987 0.0532 1.9432 0.1064 2.4469 

FDC-TR - Cond D 0.4229 0.1262 7 0.8141 0.6628 6 1.1228 0.1522 1.9432 0.3044 2.4469 

RC - Cond D 0.3377 0.1359 7 0.8752 0.7660 6 0.0353 0.4865 1.9432 0.9730 2.4469 

Cond D 0.3353 0.0881   
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E.2 Ammonium Thiosulphate Leaching – SCM with Unshrinking Particles 

 

Table E-7: Estimated time for complete conversion τ – ATS leaching 

Conditions τ (h) 

Cu w/o AP 28.8 

Cu with AP 20.9 

Ni w/o AP 14.1 

Ni with AP 11.2 

 

Table E-8: SCM-generated data and experimental data – Cu-ATS w/o AP 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC ADC RC Cu w/o AP 

0 0 0 0 1 0.000 1 1 1 1.0000 

60 1 17.26 0.1726 0.8274 0.035 0.97 0.6995 0.8995 0.8274 

120 2 16.50 0.1650 0.8350 0.069 0.93 0.5917 0.8059 0.8350 

180 3 16.58 0.1658 0.8342 0.104 0.90 0.5120 0.7190 0.8342 

240 4 17.38 0.1738 0.8262 0.139 0.86 0.4489 0.6387 0.8262 

300 5 18.61 0.1861 0.8139 0.174 0.83 0.3963 0.5645 0.8139 

360 6 20.82 0.2082 0.7918 0.208 0.79 0.3525 0.4964 0.7918 

 

Table E-9: SCM-generated data and experimental data – Cu-ATS with AP 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC ADC RC Cu with AP 

0 0 0 0.0000 1.0000 0.000 1 1 1 1.0000 

60 1 21.92 0.2192 0.7808 0.048 0.95 0.6529 0.8629 0.7808 

120 2 27.06 0.2706 0.7294 0.096 0.90 0.5284 0.7390 0.7294 

180 3 31.42 0.3142 0.6858 0.144 0.86 0.4408 0.6275 0.6858 

240 4 34.09 0.3409 0.6591 0.192 0.81 0.3723 0.5278 0.6591 

300 5 36.02 0.3602 0.6398 0.240 0.76 0.3162 0.4393 0.6398 

360 6 28.78 0.2878 0.7122 0.288 0.71 0.2689 0.3613 0.7122 
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Table E-10: SCM-generated data and experimental data – Ni-ATS w/o AP 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC ADC RC Ni w/o AP 

0 0 0 0 1 0.000 1 1 1 1.0000 

60 1 28.29 0.2829 0.7171 0.071 0.93 0.5865 0.8016 0.7171 

120 2 27.05 0.2705 0.7295 0.142 0.86 0.4440 0.6314 0.7295 

180 3 18.10 0.1810 0.8190 0.213 0.79 0.3465 0.4872 0.8190 

240 4 23.59 0.2359 0.7641 0.284 0.72 0.2725 0.3667 0.7641 

300 5 46.89 0.4689 0.5311 0.355 0.64 0.2138 0.2680 0.5311 

360 6 42.63 0.4263 0.5737 0.426 0.57 0.1659 0.1888 0.5737 

 

Table E-11: SCM-generated data and experimental data – Ni-ATS with AP 

      1 - X 

      
Shrinking Core Model Data 

Time 
(min) 

Time 
(h) 

Extraction 
(%) 

Conversion 
(X) 

1-X t/τ FDC ADC RC Ni with AP 

0 0 0 0 1 0.000 1 1 1 1.0000 

60 1 37.50 0.3750 0.6250 0.089 0.91 0.5436 0.7551 0.6250 

120 2 38.51 0.3851 0.6149 0.179 0.82 0.3895 0.5539 0.6149 

180 3 31.75 0.3175 0.6825 0.268 0.73 0.2877 0.3920 0.6825 

240 4 33.64 0.3364 0.6636 0.358 0.64 0.2115 0.2652 0.6636 

300 5 65.41 0.6541 0.3459 0.447 0.55 0.1535 0.1692 0.3459 

360 6 53.63 0.5363 0.4637 0.536 0.46 0.1078 0.0997 0.4637 
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Table E-12: Goodness of model fit – t-est: two sample for means (ATS leaching) 

Pair Mean Variance n 
Pearson 
Correlation 
R 

Coeff. 
of Det. 
R2 

df t Stat 
P(T<=t) 
one-tail 

t Critical 
one-tail 

P(T<=t) 
two-tail 

t Critical 
two-tail 

FDC - Cu w/o AP 0.8959 0.0056 7 0.7370 0.5432 6 2.4661 0.0244 1.9432 0.0487 2.4469 

ADC - Cu w/o AP 0.5716 0.0496 7 0.9093 0.8268 6 -4.4853 0.0021 1.9432 0.0042 2.4469 

RC - Cu w/o AP 0.7320 0.0330 7 0.7634 0.5828 6 -2.2308 0.0336 1.9432 0.0672 2.4469 

Cu w/o AP 0.8469 0.0048   

FDC - Cu with AP 0.8561 0.0107 7 0.7675 0.5891 6 3.7629 0.0047 1.9432 0.0094 2.4469 

ADC - Cu with AP 0.5114 0.0634 7 0.9428 0.8888 6 -4.3163 0.0025 1.9432 0.0050 2.4469 

RC - Cu with AP 0.6511 0.0531 7 0.8221 0.6758 6 -1.6631 0.0737 1.9432 0.1473 2.4469 

Cu with AP 0.7439 0.0149   

FDC - Ni w/o AP 0.7868 0.0236 7 0.7992 0.6388 6 1.4390 0.1001 1.9432 0.2002 2.4469 

ADC - Ni w/o AP 0.4327 0.0830 7 0.8281 0.6858 6 -4.3883 0.0023 1.9432 0.0046 2.4469 

RC - Ni w/o AP 0.5348 0.0864 7 0.7969 0.6351 6 -2.7093 0.0176 1.9432 0.0351 2.4469 

Ni w/o AP 0.7335 0.0243   

FDC - Ni with AP 0.7319 0.0373 7 0.8017 0.6427 6 2.1921 0.0354 1.9432 0.0709 2.4469 

ADC - Ni with AP 0.3848 0.0956 7 0.8664 0.7507 6 -3.8499 0.0042 1.9432 0.0085 2.4469 

RC - Ni with AP 0.4621 0.1074 7 0.8216 0.6750 6 -2.2160 0.0343 1.9432 0.0686 2.4469 

Ni with AP 0.6279 0.0416   
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APPENDIX F : Preliminary Economics Analysis 

 

Table F-1: Preliminary information for economics analysis  

Basis 1 metric ton PCBs 

Au Content 524 g/t-PCB 

Au Price* 47.52 USD/g 

USD/ZAR Exchange Rate* 14.99 R/USD 

* date: 20-Nov-2019  

 

Table F-2: Chemical reagent prices 

Reagent  Cost (R/kg) Cost (USD/kg) Source* 

Sodium Cyanide 1,809.00  120.68  Sigma-Aldrich 

Ammonium Thiosulphate  738.00  49.23  Sigma-Aldrich 

Copper 86.64  5.78  infomine.com 

Nickel 221.40  14.77  infomine.com 

* date: 20-Nov-2019    

 

Table F-3: Gross margin comparison – Part 1 

Chemical 
Process 

Gold 
Conversion 
(%) 

Reagent Consumption 
(kg/t-PCB) 

Lixiviant 
Price 
(USD/kg) 

Metal 
Oxidant 
Price 
(USD/kg) 

Lixiviant 
Cost 
(USD) 

Metal 
Oxidant 
Cost (USD) Lixiviant 

Metal 
Oxidant 

Cyanidation 97.10 17.5 - 120.68   -  2,112   -  

Cu-ATS Leaching 36.02 72.06 38.1 49.23  5.78  3,548  220  

Ni-ATS Leaching 65.41 47.7 35.2 49.23  14.77  2,348  520  

 

Table F-4: Gross margin comparison – Part 2 

Chemical 
Process 

Raw 
Materials 
Costs (USD) 

Product 
(Au) Price 
(USD/g) 

Revenue 
(USD) 

Gross 
Margin 
(USD) 

Cyanidation 2,112  47.52  24,178  22,066  

Cu-ATS Leaching 3,768  47.52  8,969  5,201  

Ni-ATS Leaching 2,868  47.52  16,287  13,419  
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APPENDIX G : Sample Calculations 

 

G.1 PCB Characterization 

 

The gold and copper content of PCBs were determined from the aqua regia leaching results in 

Table A-3 and Table A-4 from the metal concentrations of pregnant leach solutions obtained after 

24h of leaching time in the five replicate runs. The minimum, maximum and average 

concentrations for gold and copper are shown in Table G-1.  

 

Table G-1: Average gold and copper concentrations of pregnant aqua regia solution 

 Metal Concentration (mg/L) 

Metal Min Max Average 

Cu 21765 24035 23092 

Au 22.82 30.35 26.19 

 

𝑚𝑇 = 5 𝑔 = 5000 𝑚𝑔  (𝑃𝐶𝐵 𝑚𝑎𝑠𝑠) 

𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 50 𝑔/𝐿 

𝑉𝑇 = 5𝑔 (
𝐿

50 𝑔
) (

1000 𝑚𝐿

1 𝐿
) = 100 𝑚𝐿 

 

𝐶𝐴𝑢 = 26.19 𝑚𝑔/𝐿   (from Table G-1) 

𝑚𝐴𝑢 = 26.19 
𝑚𝑔

𝐿
(

1 𝐿

1000 𝑚𝐿
) (100 𝑚𝐿) = 2.619 𝑚𝑔 𝐴𝑢 

𝑥𝐴𝑢 =
𝑚𝐴𝑢

𝑚𝑇
=

2.619 𝑚𝑔 𝐴𝑢

5000 𝑚𝑔 𝐴𝑢
= 0.000524 

 

𝑨𝒖 𝑪𝒐𝒏𝒕𝒆𝒏𝒕 =  𝟎. 𝟎𝟓𝟐𝟒 𝒘𝒕%  

 

𝐴𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 0.000524 
𝑡𝑜𝑛 𝐴𝑢

𝑡𝑜𝑛 𝑃𝐶𝐵
(

106 𝑔 𝐴𝑢

1 𝑡𝑜𝑛 𝐴𝑢
) 

 

𝑨𝒖 𝑪𝒐𝒏𝒕𝒆𝒏𝒕 = 𝟓𝟐𝟒 𝒈/𝒕𝒐𝒏 𝑷𝑪𝑩  

The same procedure was used to determine the copper content.  
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G.2 Acid Pre-treatment 

 

G.2.1 Metal Extraction – Run 1 (150 min) 

 

The metal extractions obtained in Table C-4 and Table C-5 were calculated as follows.  

 

𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 50 𝑔/𝐿 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 = 700 𝑚𝐿 = 0.700 𝐿 

𝑃𝐶𝐵 𝑚𝑎𝑠𝑠 = 𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 = (50 
𝑔

𝐿
) (0.700 𝐿) = 35 𝑔 

 

Based on the average metal content in Table 4-3 (46.18 wt% Cu and 0.0524 wt% Au), the mass 

of copper and gold in 35 g of PCB is:  

 

𝑚𝐶𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
46.18(35)

100
= 16.16 𝑔 

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
0.0524(35)

100
= 0.0183 𝑔 

 

The copper and gold concentrations of the pregnant leach solution for run 1 after 150 min (Table 

C-2 and Table C-3) were 21570 mg/L and 2.276 mg/L, respectively. Thus:  

 

𝑚𝐶𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = 21570 
𝑚𝑔

𝐿
(

1𝑔

1000 𝑚𝑔
) (0.700 𝐿) = 15.10 𝑔 

𝑚𝐶𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = 2.276 
𝑚𝑔

𝐿
(

1𝑔

1000 𝑚𝑔
) (0.700 𝐿) = 0.00159 𝑔 

 

𝐶𝑢 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑚𝐶𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑

𝑚𝐶𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 =

15.10 𝑔

16.16 𝑔
× 100 = 𝟗𝟑. 𝟒𝟏 %  

𝐴𝑢 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑚𝐴𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 =

0.00159 𝑔

0.0183 𝑔
× 100 = 𝟖. 𝟔𝟗 %  

  



 

G-36 
 

G.2.2 Material Balance 

 

The material balance in Table C-6 was based on the optimum leaching conditions (A) that gave 

the highest copper extraction (93.72 %) and lowest gold extraction (8.83 %). It was safely assumed 

that the total PCB mass removed during acid pre-treatment was entirely due to copper extraction. 

This assumption was supported by the results discussed in Chapter 4 (Figure 4-4).  

 

Considering 35 g of PCBs with 93.72 % Cu extraction and 8.83 % Au extraction,  

 

𝑚𝐶𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 16.16 𝑔 

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.0183 𝑔 

 

𝑚𝐶𝑢 𝑓𝑖𝑛𝑎𝑙 = (16.16 𝑔)(1 − 0.9372) = 1.015 𝑔 

𝑚𝐴𝑢 𝑓𝑖𝑛𝑎𝑙 = (0.0183 𝑔)(1 − 0.0883) = 0.0168 𝑔 

 

𝑚𝐶𝑢 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = 𝑚𝐶𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝐶𝑢 𝑓𝑖𝑛𝑎𝑙 = 16.16 − 1.015 = 15.15 𝑔 

𝑚𝐴𝑢 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = 𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝐴𝑢 𝑓𝑖𝑛𝑎𝑙 = 0.0183 − 0.0168 = 0.0016 𝑔 

 

The metal content of PCBs after acid pre-treatment was calculated as follows:  

 

𝑚𝑇2 = 35 − 15.15 = 19.85 𝑔   (𝑡𝑜𝑡𝑎𝑙 𝑃𝐶𝐵 𝑚𝑎𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 𝑎𝑐𝑖𝑑 𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔) 

𝑥𝐶𝑢 =
𝑚𝐶𝑢 𝑓𝑖𝑛𝑎𝑙

𝑚𝑇2
=

1.015 𝑔 𝐶𝑢

19.85 𝑔 𝑃𝐶𝐵
= 0.0511 

𝑥𝐴𝑢 =
𝑚𝐴𝑢 𝑓𝑖𝑛𝑎𝑙

𝑚𝑇2
=

0.0168 𝑔 𝐴𝑢

19.85 𝑔 𝑃𝐶𝐵
= 0.000842 

 

𝐶𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝟓. 𝟏𝟏 𝒘𝒕%  

𝐴𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝟎. 𝟎𝟖𝟒𝟐 𝒘𝒕%  

 

𝐶𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 0.0511 
𝑡𝑜𝑛 𝐶𝑢

𝑡𝑜𝑛 𝑃𝐶𝐵
(

103 𝑘𝑔 𝐶𝑢

1 𝑡𝑜𝑛 𝐶𝑢
) = 𝟓𝟏. 𝟏 𝒌𝒈/𝒕𝒐𝒏 𝑷𝑪𝑩  

𝐴𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 0.000842 
𝑡𝑜𝑛 𝐴𝑢

𝑡𝑜𝑛 𝑃𝐶𝐵
(

106 𝑔 𝐴𝑢

1 𝑡𝑜𝑛 𝐴𝑢
) = 𝟖𝟒𝟐 𝒈/𝒕𝒐𝒏 𝑷𝑪𝑩  
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G.3 Ammonium Thiosulphate Leaching 

 

G.3.1 Gold Extraction – Ni-ATS w/o AP (Run 1) 

 

The metal extractions obtained in ammonium thiosulphate leaching processes without acid pre-

treatment were calculated as follows.  

 

𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 50 𝑔/𝐿 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 = 700 𝑚𝐿 = 0.700 𝐿 

𝑃𝐶𝐵 𝑚𝑎𝑠𝑠 = 𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 = (50 
𝑔

𝐿
) (0.700 𝐿) = 35 𝑔 

 

Based on the average metal content in Table 4-3 (0.0524 wt% Au), the mass of copper and gold 

in 35 g of PCB is:  

 

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
0.0524(35)

100
= 0.0183 𝑔 

 

The gold concentration of the pregnant leach solution for run 1 after 300 min (Table D-2) was 

12.87 mg/L. Thus:  

 

𝑚𝐴𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = 12.87 
𝑚𝑔

𝐿
(

1𝑔

1000 𝑚𝑔
) (0.700 𝐿) = 0.0090 𝑔 

𝐴𝑢 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑚𝐴𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 =

0.0090 𝑔

0.0183 𝑔
× 100 = 𝟒𝟖. 𝟗𝟓 %  
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G.3.2 Gold Extraction – Ni-ATS with AP (Run 3) 

 

The metal extractions obtained in ammonium thiosulphate leaching processes with acid pre-

treatment were calculated as follows.  

 

𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 50 𝑔/𝐿 

𝑃𝐶𝐵 𝑚𝑎𝑠𝑠 = 19.54 𝑔  (Mass recorded after acid pre-treatment as shown in Table D-1) 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑃𝐶𝐵 𝑚𝑎𝑠𝑠

𝑃𝑢𝑙𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
= (19.54 𝑔) (

𝐿

50 𝑔
) = 0.391 𝐿 

 

Based on the metal content of the acid-treated (concentrated) PCBs in Table 4-3 (0.0842 wt% 

Au), the mass of gold in 19.54 g of PCB is:  

 

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
0.0842(19.54)

100
= 0.0165 𝑔 

 

The gold concentration of the pregnant leach solution for run 3 after 300 min (Table D-2) was 

28.70 mg/L. Thus:  

 

𝑚𝐴𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = 28.70 
𝑚𝑔

𝐿
(

1𝑔

1000 𝑚𝑔
) (0.391 𝐿) = 0.0112 𝑔 

𝐴𝑢 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑚𝐴𝑢 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑

𝑚𝐴𝑢 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 =

0.0112 𝑔

0.0165 𝑔
× 100 = 𝟔𝟖. 𝟏𝟔 %  
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G.3.3 ATS Consumption – Ni-ATS with AP (Run 3) 

 

The ATS concentration obtained in run 3 after 300 min of leaching time (Table D-17) was 0.079 

mol.L-1. The ATS consumption in kg/t-PCB was obtained as follows:  

 

𝐶𝐴𝑇𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 𝑚𝑜𝑙. 𝐿−1 

𝐶𝐴𝑇𝑆 = 0.079 𝑚𝑜𝑙. 𝐿−1 

𝑀𝑤 = 148.21 𝑔/𝑚𝑜𝑙 (Molar mass of ATS) 

𝑉𝑇 = 0.391 𝐿  (Reaction volume) 

𝑚𝑇 = 19.54 𝑔  (PCB mass) 

 

𝐴𝑇𝑆 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
(𝐶𝐴𝑇𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝐴𝑇𝑆)𝑉𝑇𝑀𝑇

𝑚𝑇
 

𝐴𝑇𝑆 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = (0.1 − 0.079)
𝑚𝑜𝑙

𝐿
(0.391 𝐿) (148.21

𝑔 𝐴𝑇𝑆

𝑚𝑜𝑙
) (

1

19.54 𝑔 𝑃𝐶𝐵
) 

𝐴𝑇𝑆 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 0.0619 
𝑔

𝑔 𝑃𝐶𝐵
= 0.0619 

𝑘𝑔

𝑘𝑔 𝑃𝐶𝐵
(

1000 𝑘𝑔 𝑃𝐶𝐵

1 𝑡𝑜𝑛 𝑃𝐶𝐵
) 

 

𝐴𝑇𝑆 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝟔𝟏. 𝟗 𝒌𝒈/𝒕𝒐𝒏 𝑷𝑪𝑩  
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G.4 Shrinking-Core Model and Rate-Limiting Mechanism – Ni-ATS with AP 

 

The mathematical procedure summarised in this section holds for both acid pre-treatment and 

ammonium thiosulphate leaching. The shrinking-core models used for acid pre-treatment and ATS 

leaching are discussed in Chapter 2 (section 2.7).  

 

In the analysis of the experimental data in terms of rate-limiting mechanism, it was essential to 

incorporate the time for complete conversion τ. However, a direct approach to determining τ was 

not achievable. Therefore, this variable was estimated from the total leaching time and 

corresponding gold conversion.  

 

For Ni-ATS with AP (Table E-11), the gold extraction obtained after 360 min (total reaction time) 

was 53.63%. Thus,  

 

𝑡 = 360 𝑚𝑖𝑛 = 6 ℎ 

𝑋 =
53.63

100
= 0.5363 

𝜏 =
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝐺𝑜𝑙𝑑 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
=

𝑡

𝑋
=

6 ℎ

0.5363
= 11.2 ℎ 

 

𝑡

𝜏
=

6 ℎ

11.2 ℎ
= 0.536        (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛) 

1 − 𝑋 = 1 − 0.5363 = 0.4637      (𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔 𝑜𝑓 𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑒) 

 

The SCM-generated conversion data (FDC-SR, FDR-TR, RC for acid-pre-treatment, and FDC, 

ADC, RC for ATS leaching) were determined from the respective mathematical expressions of the 

reaction mechanisms, with the reaction time expressed as t/τ, as shown in Table 2-7 in chapter 

2. It is worth noting that the model-generated data points were calculated at the same time 

intervals as the experimental data, allowing for the use of statistical means (paired two-sample t-

test) to determine the goodness of model fit to the experimental data and to estimate the 

corresponding coefficient of determination (R2).  

 

The SCM expressions (equations (33), (35) and (37) for acid leaching, and equations (29), (31) 

and (33) for ATS leaching) were rearranged in such a way to obtain (1 – X) as a function of t/τ, 

making (1 – X) as the subject of each expression. For instance, the mathematical expression for 

the RC mechanism was rearranged as:  
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𝑡

𝜏
= 1 − (1 − 𝑋)1 3⁄   ⟹   (1 − 𝑋)1 3⁄ = 1 −

𝑡

𝜏
 

(1 − 𝑋)𝑅𝐶 = (1 −
𝑡

𝜏
)

3

 

 

Thus, at 𝑡/𝜏 = 0.536 (𝑡 = 6 ℎ):  

(1 − 𝑋)𝑅𝐶 = (1 − 0.536)3 = 0.0997 
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G.5 Preliminary Economics Analysis – Gross Margin of Ni-ATS Leaching 

 

𝑩𝒂𝒔𝒊𝒔 = 𝟏 𝒕𝒐𝒏 𝑷𝑪𝑩𝒔 

 

𝐴𝑢 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 524 𝑔/𝑡 𝑃𝐶𝐵 

𝐴𝑢 𝑃𝑟𝑖𝑐𝑒 = 47.52 𝑈𝑆𝐷/𝑔 

𝑁𝑎𝐶𝑁 𝑃𝑟𝑖𝑐𝑒 = 120.68 𝑈𝑆𝐷/𝑘𝑔 

(𝑁𝐻4)2𝑆2𝑂3 𝑃𝑟𝑖𝑐𝑒 = 49.23 𝑈𝑆𝐷/𝑘𝑔 

𝐶𝑢 𝑃𝑟𝑖𝑐𝑒 = 5.78 𝑈𝑆𝐷/𝑘𝑔 

𝑁𝑖 𝑃𝑟𝑖𝑐𝑒 = 14.77 𝑈𝑆𝐷/𝑘𝑔 

 

𝐴𝑢 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 65.41 % 

𝐴𝑢 𝑀𝑎𝑠𝑠 =
65.41

100
(524 𝑔) = 342.7 𝑔 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐴𝑢 𝑀𝑎𝑠𝑠 × 𝐴𝑢 𝑃𝑟𝑖𝑐𝑒 = 342.7 𝑔 (
47.52 𝑈𝑆𝐷

𝑔
) = 𝟏𝟔 𝟐𝟖𝟕 𝑼𝑺𝑫 

 

𝐴𝑇𝑆 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 47.7 𝑘𝑔/𝑡 𝑃𝐶𝐵 

𝐴𝑇𝑆 𝐶𝑜𝑠𝑡 = 𝐴𝑇𝑆 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 × 𝐴𝑇𝑆 𝑃𝑟𝑖𝑐𝑒 = 47.7 𝑘𝑔 (
49.23 𝑈𝑆𝐷

𝑘𝑔
) = 2 348 𝑈𝑆𝐷 

 

𝑁𝑖 𝑢𝑠𝑒𝑑 = 35.2 𝑘𝑔/𝑡 𝑃𝐶𝐵 

𝑁𝑖 𝐶𝑜𝑠𝑡 = 𝑁𝑖 𝑢𝑠𝑒𝑑 × 𝑁𝑖 𝑃𝑟𝑖𝑐𝑒 = 35.2 𝑘𝑔 (
14.77 𝑈𝑆𝐷

𝑘𝑔
) = 520 𝑈𝑆𝐷 

 

𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐶𝑜𝑠𝑡 = 𝐴𝑇𝑆 𝐶𝑜𝑠𝑡 + 𝑁𝑖 𝐶𝑜𝑠𝑡 = 2 348 + 520 = 𝟐 𝟖𝟔𝟖 𝑼𝑺𝑫 

 

𝐺𝑟𝑜𝑠𝑠 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐶𝑜𝑠𝑡 = 16 287 − 2 868 

 

𝑮𝒓𝒐𝒔𝒔 𝑴𝒂𝒓𝒈𝒊𝒏 = 𝟏𝟑 𝟒𝟏𝟗 𝑼𝑺𝑫  
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G.6 Mathematical Derivation of Shrinking-Core Model – Reaction Control 

 

In this section, the derivation of the SCM in terms of reaction control is outlined. The remaining 

SCMs have been derived and discussed extensively by Levenspiel (1999).  

 

Considering the following reaction between a solid A surrounded by a fluid B:  

 

 𝐴(𝑔) + 𝑏𝐵(𝑠)   ⟶   𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (28) 

 

When a solid-fluid reaction is chemically controlled, the interaction is independent of the presence 

of any ash or film layer surrounding the unreacted particle core. The rate of reaction is therefore 

proportional to the total surface of the unreacted core. The reaction rate for the stoichiometry of 

reaction (28) is:   

 

 
−

1

4𝜋𝑟𝑐
2

𝑑𝑁𝐵

𝑑𝑡
= −

𝑏

4𝜋𝑟𝑐
2

𝑑𝑁𝐴

𝑑𝑡
= 𝑏𝑘"𝐶𝐴𝑔 

(G-1) 

 

Where k” is the first-order rate constant for the surface reaction.  

 

Writing 𝑁𝐵 as a function of the unreacted radius 𝑟𝑐 and substituting in equation (G-1) gives: 

 

 
−

1

4𝜋𝑟𝑐
2 𝜌𝐵4𝜋𝑟𝑐

2
𝑑𝑟𝑐

𝑑𝑡
= −𝜌𝐵

𝑑𝑟𝑐

𝑑𝑡
= 𝑏𝑘"𝐶𝐴𝑔 

(G-2) 

 

Integrating gives:  

 

 
−𝜌𝐵 ∫ 𝑑𝑟𝑐

𝑟𝑐

𝑅

= 𝑏𝑘"𝐶𝐴𝑔 ∫ 𝑑𝑡
𝑡

0

 
(G-3) 

 

 
𝑡 =

𝜌𝑏

𝑏𝑘"𝐶𝐴𝑔

(𝑅 − 𝑟𝑐)  
(G-4) 
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Complete conversion corresponds to the disappearance of the unreacted core. Thus, taking the 

time for total conversion as 𝜏 and corresponding unreacted core size 𝑟𝑐 = 0 gives:  

 

 
𝜏 =

𝜌𝑏𝑅

𝑏𝑘"𝐶𝐴𝑔
 

(34) 

 

The size reduction of the unreacted core or increase in the fractional conversion can be expressed 

in terms of 𝜏 by combining equations (G-4) and (34), giving:  

 

 𝑡

𝜏
= 1 −

𝑟𝑐

𝑅
= 1 − (1 − 𝑋𝐵)1/3  

(33) 
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