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ABSTRACT 

Wind has become one of the renewable energy technologies with the fastest rate of growth. 

Consequently, global wind power generating capacity is also experiencing a tremendous 

increase. This tendency is expected to carry on as time goes by, with the continuously 

growing energy demand, the rise of fossil fuels costs combined to their scarcity, and most 

importantly pollution and climate change concerns. However, as the penetration level 

increases, instabilities in the power system are also more likely to occur, especially in the 

event of grid faults. It is therefore necessary that wind farms comply with grid code 

requirements in order to prevent power system from collapsing. One of these requirements is 

that wind generators should have fault ride-through (FRT) capability, that is the ability to not 

disconnect from the grid during a voltage dip. In other words, wind turbines must withstand 

grid faults up to certain levels and durations without completely cutting off their production. 

Moreover, a controlled amount of reactive power should be supplied to the grid in order to 

support voltage recovery at the connection point.  

Variable speed wind turbines are more prone to achieve the FRT requirement because of the 

type of generators they use and their advanced power electronics controllers. In this 

category, the permanent magnet synchronous generator (PMSG) concept seems to be 

standing out because of its numerous advantages amongst which its capability to meet FRT 

requirements compared to other topologies. In this thesis, a 9 MW grid connected wind farm 

model is developed with the aim to achieve FRT according to the South African grid code 

specifications. The wind farm consists of six 1.5 MW direct-driven multi-pole PMSGs wind 

turbines connected to the grid through a fully rated, two-level back-to-back voltage source 

converter. The model is developed using the Simpowersystem component of 

MATLAB/Simulink. To reach the FRT objectives, the grid side controller is designed in such a 

way that the system can inject reactive current to the grid to support voltage recovery in the 

event of a grid low voltage. Additionally, a braking resistor circuit is designed as a protection 

measure for the power converter, ensuring by the way a safe continuous operation during 

grid disturbance.    
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CHAPTER ONE 

1 INTRODUCTION 

1.1 Background to the research problem 

There is no secret about the importance of electricity in the modern industrialized world. 

Electricity is needed for lighting, telecommunications, IT, cooking, transportation, or even for 

medical purposes, just to name but a few. In fact, contemporary society tends to depend 

completely upon electricity at such an extent that it will be difficult to even imagine life without 

electricity (Breeze, 2005). 

One of the largest industries in the world is certainly the industry of power generation. Its 

environmental impact is just as much important, with pollution and climate change associated 

to the burning of fossil fuels, which constitute without any doubt the most used energy 

sources for electricity generation in the world (Breeze, 2005). 

The use of nuclear energy for electricity generation could eventually help contain and even 

reduce at long term the global carbon emission. However, there are concerns about not only 

the disposal of radioactive waste, but also the safety of nuclear reactors. A very fresh and 

concrete example is the Fukushima nuclear disaster which took place on March 11, 2011 

(Basrur & Koh, 2012). 

On the other hand, with demographic growth and social and economic development, the 

global energy supply will continue to rise in order to satisfy global energy demand. The 

International Energy Agency (IEA, 2012) predicts a 1.7 billion increase in world’s population 

between 2010 and 2035, and consequently about 37% increase in global energy demand 

over the same period. 

Taking all these issues into consideration, it is clear that the power generation industry can 

no longer simply rely on traditional means of electricity generation to achieve clean, reliable 

and sustainable energy supply. Therefore, the need to consider alternative energy supply 

technologies is imperious. 

Renewable energy sources, due to their abundance and cleanliness, seem to be able to 

provide both the environmental and energy security that fossil fuels cannot guaranty (Tong, 

2010). However, cost issues still make many governments reluctant to engage towards 

renewables, although majority of people, including researchers, find them very attractive and 

full of benefits (Craddock, 2008). 
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Over the past decade, the research industry has paid a particular attention to wind energy 

among all other renewable energy sources. This interest has resulted in the fast emergence 

of various wind generators and power electronics converters technologies, leading to a major 

boost in terms of the global wind power production capacity. 

However, transient stability and power quality issues are important challenges that come with 

this increasing penetration level of wind power in the power system (Ali, 2012). As such, wind 

turbines are nowadays expected to behave like conventional power plants and should 

therefore meet certain connection requirements for safe and reliable grid connection. Some 

of these requirements include frequency and voltage control, as well as fault ride-through 

(FRT) capability (Patel, 2006). 

1.2 Wind energy worldwide 

Wind energy has shown a considerable increase in terms of installed capacity in the past two 

to three decades as shown in Figure 1.1 and Figure 1.2. This is particularly true for Asia 

which by end of 2014 took over the first place with 142 GW cumulative installed capacity at 

the expense of Europe and its 134 GW. China, among any other country has experienced 

the most significant increase especially in the past five years where the capacity has 

basically doubled. The country has a huge share in the Asian region with a total 114.6 GW 

capacity. China is followed from a distance by India and its 22.4GW. In Europe, the 

cumulative installed capacity is about 134 GW, although the 2014 contribution was almost 

insignificant in certain leading countries such as Spain (28MW). However, the country is still 

ranked second (23 GW), behind Germany (39 GW). America is still led by the US and its 

overall 65.8 GW. Canada has an impressive 2014 year with its highest installed capacity in a 

year of about 1.87 GW. Africa is still at an early stage, North African Morocco (787 MW) and 

Egypt (610 MW) having the larger share of the total installed capacity for the continent. South 

Africa however has taken the third position with its 570 MW (Ren21, 2015). 

 

Figure 1.1: Global annual installed wind capacity (GWEC, 2015) 
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Figure 1.2: Global cumulative installed wind capacity (GWEC, 2015) 

1.3 Wind energy in South Africa 

In 2014, South Africa had finally taken a serious option into the wind industry with its 560 MW 

capacity installed over the year. This obviously represents a tremendous step forward 

considering that it took about a decade for the country to see its first 10 MW installed. 

For many years, South Africa has completely relied on fossil fuels for electricity generation, 

88% of the power produced coming from coal. This is completely understandable provided 

the country hosts one of the largests coal deposits in the world. However, the price of 

electricity keeps increasing as illustrated in Figure 1.3, and the population is still suffering 

from the consequences of multiple power blackouts (GWEC, 2015). 

As part of a solution to the country’s energy crisis, the South African government has 

decided to shift towards renewable energies, essentially through its REIPPPP (Renewable 

Energy Independent Power Producer Procurement Program). This program was established 

in 2011 with the aim of promoting the rapid expansion of renewable energy in the South 

African electricity market, without risks of excessive losses due to overpricing in case of a 

single power producer. This would be done by allocating different projects to different 

independent power producers over five round bids. Since then, over 5 GW have already 

been allocated in four rounds, of which about 1.5 MW is already supplying to the national grid 

(Greencape, 2015). 

As far as wind energy is concerned, 2660 MW have already been allocated with 660 MW 

remaining for the last round. Wind energy has the highest allocation so far, followed by solar 

energy. The year 2014 saw the first results from the REIPPPP with some of the first bid wind 

farms coming into operation (Greencape, 2015). Currently operating large wind farms in 

South Africa include Sere (100 MW), Cookhouse (138.6 MW), Jeffreys Bay (138 MW) 

Nobelsfontein (73.8 MW) and more (Writer, 2015).  

The integration of wind energy through the REIPPPP has so far been successful and shows 

promising future. For this reason, the Integrated Resource Plan (IRP) has planned for an  
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Figure 1.3: Historic Eskom electricity price increases (Writer, 2015) 

additional 8.4 GW installed wind power capacity by the year 2030 and calls for more bid 

rounds (Greencape, 2015). This plan clearly shows that the wind industry in South Africa is 

entering a different phase. 

1.4 Statement of the research problem 

In the past, a grid fault such as short circuit or any other serious disturbance would require 

wind generation interruption. By simply tripping off the faulty line, the wind turbine was easily 

isolated from the rest of the network to prevent it from damages (Patel, 2006; Sourkounis & 

Tourou, 2013). Today, with the high installed wind turbine capacity, disconnection is no 

longer an option, especially for short duration grid faults. In fact, suddenly disconnecting wind 

power plants from the power system could lead to severe voltage dips and even power 

system breakdown, especially with a massive wind penetration levels (Chen, et al., 2009; 

Sourkounis & Tourou, 2013). 

Reducing the output power of the turbines during grid faults could minimize the risks of 

power system breakdown. This method however proves to be economically costly for wind 

farm operators. Moreover, constant backup is required from conventional power plants 

whenever a grid fault occurs. This high dependence of wind farms on other conventional 

generation power plants during grid faults represents a clear obstacle to wind integration in 

the power system (Marrone, 2014). 

This situation has constrained many countries, especially those having high installed wind 

power capacity such as USA, Germany or Denmark to review their grid code requirements. 

As such, recent grid codes require that WPPs have the ability to maintain their connection to 

the network under certain levels and durations of grid voltage drops (Chen, et al., 2009; 

Sourkounis & Tourou, 2013; Mittal, et al., 2009). Otherwise, WPPs should have fault ride-

through (FRT) capability. 
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It is therefore important to investigate, through computer simulations and/or hardware 

experiments, how FRT can be achieved in accordance to grid code specifications, especially 

with evolving wind generator technologies such as PMSG. 

1.5 Rationale and motivations of the research 

South Africa is aware of its tremendous wind resource. Even though the country’s wind 

generation is still at a growing phase, SA intends to become one of the countries with most 

activities in the sector of wind development in the near future. This rapid growth should 

obviously accommodate with the latest and also most efficient technologies in order to 

ensure safe and reliable energy supply.  

Wind industry is experiencing many changes, especially regarding drive-train technologies 

(Wenske, 2011). As such, direct driven wind turbines equipped with PMSGs are becoming 

more attracting and their market share is also increasing, due to their multiple advantages 

over other drive-train topologies (Wenske, 2011; Sanchez, et al., 2012; Gupta, et al., 2012). 

With the increasing penetration of PMSG in the world’s wind market, a massive investigation 

into the compliance of this type of generator with different grid codes requirements is 

necessary. South Africa is an emerging wind power country and therefore such study needs 

to be carried through in order to facilitate wind integration. According to Sourkounis & Tourou 

(2013), FRT and more specifically low voltage ride through (LVRT), is the most important grid 

code requirement for wind farms. This explains the choice of this topic for the research. 

1.6 Research aim and methodology 

The aim of this research is to achieve FRT capability with a multiple-pole PMSG grid 

connected WECS according to South African grid code requirements. In order to achieve this 

goal, the following tasks must be completed: 

• Modelling and Analysis of the PMSG based wind turbine system  

• Implementation of the electric power system benchmark  

• Design of the control system to achieve FRT of multi-pole PMSG  

• Implementation of LVRT control on wind turbine system for different grid faults  

• Analysis and interpretation of simulated and experimental results 

 

1.7 Delineations of the research 

In this research, the LVRT capability of a multi-pole PMSG is investigated according to South 

African grid code requirements. Simulation studies are carried through with emphasis on the 

case of symmetrical faults which are the most severe types. 
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1.8 Thesis organisation 

This thesis is organised in seven chapters. Chapter one, the introduction gives an overview 

of the evolution of wind energy at global and national levels. The importance of this research 

as well as its aim and contributions are well defined. Research methods and thesis 

organisation are discussed. The second chapter is a review of different wind turbine 

configurations. The chapter firstly describes different components available in typical wind 

turbine systems. Then, different rotor, generator, drive-train, and power converter topologies 

are discussed and compared. Aerodynamic and electrical control strategies are also 

discussed. In the third chapter, grid code requirements and LVRT solutions are discussed. 

The E-on, Danish and South African grid codes are elaborated. The LVRT requirement is 

well explained and common LVRT enhancement methods are discussed and compared. The 

fourth chapter presents a detailed modelling of the wind turbine system as well as power 

system benchmark used. Chapter five shows the implementation of the LVRT strategies 

used in this thesis Simulation results are presented, analysed and interpreted in chapter six. 

Conclusions are drawn in the chapter seven. Recommendation for further improvement of 

the research or inspection of other aspects are also given at the end of this chapter. 
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CHAPTER TWO 

2 WIND TURBINE CONFIGURATIONS  

Introduction 

This chapter is an overview of the different wind turbine concepts available and currently 

used in the market. In fact, with recent advances in science and technology, many turbine 

topologies have evolved over the years, each one trying to overcome the previous shortfalls. 

This has led to significant improvements in terms of wind energy harvesting, structural 

strength, energy efficiency (mechanical and electrical), and overall reliability of wind turbines, 

to guarantee safe and reliable supply at lower cost. 

The wind turbine topology used in this thesis was chosen based on certain criteria after 

comparing the other topologies. In this chapter, a review of some of the most common wind 

turbine concepts is presented. Firstly, the basic components of a wind turbine are presented 

with their functions explained. Then follows are explanation of the aerodynamic operating 

principles, and finally a comparison of the different wind turbine concepts according to their 

rotor, generator, and power electronics concepts. 

2.1 Components of wind turbines 

 

 

Figure 2.1: Components of a wind turbine system  
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The major components that constitute a wind turbine are represented in Figure 2.1. They can 

be grouped into five main sections namely the rotor, the drive train, the frame, the yaw 

system and the tower. Some of the components are discussed below (Manwell, et al., 2009; 

Wu, et al., 2011; Hansen, 2008). 

The rotor 

The rotor is the part responsible for the extraction of wind power to be converted into 

rotational movement in order for the turbine to generate electrical power. The turbine blades, 

the hub, and the aerodynamic control surfaces essentially constitute the rotor of a wind 

turbine. 

The blades 

The blades create the torque needed for the wind turbine to produce useful electrical power 

from the wind blow. The blades must be designed in such a way that their shape and 

material facilitate not only maximum extraction of wind energy, but also sufficiently withstand 

physical stress caused by strong winds and excessive loads. 

The hub 

The hub is the part that links the turbine’s shaft to the blades and transmits the torque 

produced to the drive train.  

The drive-train 

The drive-train includes all rotating components, the main shaft, gearbox, brakes, and 

generator.  

The brakes 

Brakes are used to block the rotor from rotating, to allow maintenance on the wind turbine or 

in case of emergency whenever there is a fault on the turbine itself or even in the power 

system. 

The main shaft 

Also called low speed shaft, the main shaft transfers the rotational force from the blades to 

the remainder of the drive train.  

The gearbox 

This component multiplies the low speed from the main shaft to match the generator’s high 

speed shaft (mostly 1500rpm and 1800rpm). Due to its weight, price, and need for constant 

maintenance the gearbox is becoming less desirable in modern wind turbines. 

The generator 

The generator is the electrical machine that converts the mechanical rotational power from 

the main shaft into electrical power to be supplied to load.  

The yaw system 

The yaw system has the mission to ensure that the turbine faces the wind, allowing 

maximum energy to be extracted. 
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The nacelle  

The nacelle is the frame that contains the shaft, the gearbox, the generator, and many other 

parts. 

The tower 

The tower is the structure that supports all the nacelle components in altitude, allowing the 

blades to freely sweep the wind over their diameter without risks of crashing on the ground. 

Anemometers (wind sensors) 

Wind sensors measure the speed as well as the direction of the wind necessary for blade 

orientation at different. 

2.2 Wind turbine aerodynamics and characteristics 

2.2.1 Power in the wind 

The energy available in the wind can be expressed as (Wagner & Mathur, 2009) 

 
2

2

1
mVEwind =  

Equation 2.1 

where m represents a certain mass of air flowing at wind speed V. this mass of air is 

proportional to the air density ρ, the area swept by the blades A, and the wind speed V over a 

specific period of time t, and can further be expressed as: 

 AVtm =  
Equation 2.2 

Equation 2.2 can be substituted in into Equation 2.1 and the following expression for the 

energy in the wind is obtained: 

 tAVEwind

3

2

1
=  

Equation 2.3 

Since 

 
t

E
P wind

wind =  
Equation 2.4 

The power available in the wind can thus be given as: 

 
3

2

1
AVPwind =  

Equation 2.5 

2.2.2 Turbine power 

As it can be seen in Equation 2.5 above, the wind power is proportional to the air density, the 

wind speed, and the area of the wind turbine rotor. However, not all the power in wind is 

used by the wind turbine. According to the Betz limit, only a fraction (approximately 59.3%) of 



 

10 

the wind power can be extracted by the wind turbine and is known as Power Coefficient (Cp). 

Therefore, the maximum power extracted from the wind is given as (Ackermann, 2005): 

 pturbine CAVP 3

2

1
=  

Equation 2.6 

2.2.3 Power coefficient and tip speed ratio  

Equation 2.6 above can be rewritten as:  

 pwindturbine CPP =  
Equation 2.7 

Making Cp the subject of the formula, the power coefficient can be expressed as: 

 
wind

turbine
p

P

P
C =  

Equation 2.8 

From the previous expression, the power coefficient can be defined as the ratio of the power 

extracted by the turbine blades to the available power in the wind. The power coefficient can 

also be seen as the efficiency of the rotor blades (Wagner & Mathur, 2009). 

The tip speed ratio is the ratio of the rotor’s speed at the tip of the blade and the wind speed 

and is expressed as: 

 
V

r
 =  

Equation 2.9 

where r is the radius of the turbine’s rotor blade, and ω the rotating speed of the blade. 

The power coefficient being a function of λ and β, the turbine power can also be written as: 

 ( ) ,
2

1 3

pturbine CAVP =  
Equation 2.10 

2.2.4 Power curve 

The power curve is an important characteristic of wind turbines. The power curve shows the 

expected output power produced by a turbine at different wind speeds. Figure 2.2 below 

represents a typical power curve for a wind turbine. As illustrated, there are three wind speed 

limits that determine the shape of the power curve: the cut-in speed, the cut-out speed, and 

the rated speed. The cut-in speed is the minimum wind speed at which the turbine starts 

producing power and usually ranges between 2 to 5 m/s. At wind speeds below this value, 

not sufficient torque is produced to cause effective rotation of the turbine; no output power is 

thus produced. The rated speed represents the wind speed at which rated power will be 

produced by the wind turbine and ranges between 12 and 15 m/s. At wind speeds above 

rated value, the output power is usually maintained constant using aerodynamic control 

mechanisms. The cut-out speed on the other hand is the value above which the turbine may 
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start experiencing turbulences which could lead to damage. This value usually revolves 

around 25 m/s. As shown figure 2.2, passed the cut-out speed, the wind turbine will 

automatically stop its operation and enter a park mode (Wagner & Mathur, 2009; Wu, et al., 

2011).  
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Figure 2.2: Power curve for a wind turbine  
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Figure 2.3: Power curve for a passive stall-controlled wind turbine 
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Figure 2.4: Power curve for an active stall and pitch-controlled wind turbine 

2.3 Wind turbine aerodynamic controls 

The aerodynamic control of wind turbines is important in order to maximize the amount of 

power to be extracted from the wind, without exposing the turbine to extreme wind conditions 

that could affect its operation and eventually cause damage or destruction. There are three 

common methods namely passive stall, active stall, and pitch control. 

2.3.1 Passive stall 

Passive stall is the simplest and easiest wind turbine aerodynamic control. The amount of 

energy extracted during high wind speeds conditions is reduced by stalling of the blades, 

without change of their geometry. The turbine blades are fixed on the hub such that they can 

only slightly twist around their longitudinal axis. The main difficulty in passive stall control 

remains the blade design which requires very precise aerodynamic properties of the blades 

to ensure more effective stall effect (Wagner & Mathur, 2009; Earnest, 2015; Munteanu, et 

al., 2008).  

2.3.2 Active stall 

In Active stall control, the blades are turned into the direction of the wind to stall. As opposed 

to passive stall, the blades can completely rotate around their longitudinal axis. The principal 

advantage over pitch control is that active stall only requires small pitch rate changes to 

maintain rated power output. Another advantage is the reduced strain on the generator 

during high wind conditions (Wagner & Mathur, 2009; Earnest, 2015; Munteanu, et al., 2008). 
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2.3.3 Pitch control 

In pitch control the blades are deviated out of the direction of the wind to reduce the power 

captured, eventually slowing down the turbine whenever the wind speed goes beyond its 

rated value. Pitch control is similar to active stall only that the blades are turned into the wind 

direction in active stall. Moreover, the pitch system has to act quickly, in order to limit power 

excursions, due to their large range of pitch angles for rated power output control. However, 

the pitch control presents numerous advantages over stall control such as increased energy 

capture, ease in aerodynamic braking, and overload reduction when the turbine is shut down 

(Wagner & Mathur, 2009; Earnest, 2015; Munteanu, et al., 2008). 

2.4 Wind turbine topologies 

Generally, WTs classifications are made according to the rotor configurations, the generator 

technologies, and the turbine’s rotational speed (Ackermann, 2005; Hau, 2013).  

2.4.1 Wind turbines’ rotor configurations 

Modern wind turbines have rotors with a horizontal axis of rotation, or with a vertical axis 

rotation as presented in Figure 2.5. Both configurations present advantages and 

disadvantages depending on their location, the wind speed, the range of power, the 

positioning of the components, and also blade design.  

VAWTs have their rotor shafts oriented vertically, that way energy from the wind is easily 

extracted regardless of its direction. Components such as the gearbox and the generator can 

be easily accessed for maintenance due to their relatively low positioning. However, since 

stronger winds are found in altitude, these types of turbines do not necessarily extract high 

amounts of energy. Moreover, VAWTs are not easily pitch controlled during high wind 

speeds. 

HAWTs have their rotational axis oriented horizontally. They are usually made of three 

blades, but they can be equipped with one, two, and even more than three blades. Also, 

depending on the direction of the wind they can be upwind or downwind. The fact that the 

turbine blades can sweep a much wider area, and that they are positioned relatively high, 

eases the extraction of more wind energy compared to VAWTs. HAWTs are the most 

popular and are mostly used in medium to high power applications. Hence, only these types 

of wind turbines will be discussed throughout. 
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Figure 2.5: Wind turbine rotor configurations  

2.4.2 Wind turbines’ generators 

The generator is one of the most important components in a wind turbine and can play a 

major role in its overall operation, as well as reliability and efficiency. Generators for wind 

turbines can be of DC, synchronous or asynchronous AC type (Cao, et al., 2012). DC 

generator technologies are not commonly used for wind turbines except in applications such 

as battery charging whereby the load and the turbine are at a very short distance from each 

other. AC generators on the other hand are being used in most wind turbines  

Induction generators are widely used in wind power generation especially in large modern 

wind farms. They are cheap and mechanically robust and simple. The two common types are 

the wound rotor induction generator (WRIG) and the squirrel cage induction generator 

(SCIG). The limiting factors however of these types of generators are among others their low 

efficiency, reliability, and their ability to draw reactive power from the grid (Cao, et al., 2012). 

Synchronous generators on the other hand have the advantage that they do not consume 

reactive power, but they are more expensive and mechanically complex than induction 

generators. For wind turbine application, the WRSG and the PMSG are mostly used. Yet, the 

PMSG is progressively improving its share in the market due to numerous advantages (Cao, 

et al., 2012). 
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Figure 2.6: Classification of different wind turbine generators 

2.4.3 Wind turbines rotational speed configurations 

As far as the rotational speed is concerned WTs can operate at fixed speed, limited variable 

speed, and variable speed, with respect to the type of power converter employed. A 

classification of different concepts is given in Figure 2.7 and a summary of their comparison 

is given in Table 2.1. 

Variable speed concepts are more attracting due to their ability to deliver maximum power 

over a wide range of wind speeds, as opposed to the fixed speed and limited variable speed 

concepts in which maximum efficiency is achieved only at a particular wind speed. The PECs 

in variable speed concepts also allow smooth grid connection as well as reactive power 

compensation (Blaabjerg, et al., 2009) 

The doubly-fed induction generator (DFIG) is still the most widely used technology at this 

time, but recent reports show that type 4 will soon overcome the type 3 provided the 

advantages such as the possibility for a direct-drive, and easiness to achieve grid connection 

requirements compared to the DFIG (Blaabjerg, et al., 2009).  
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Figure 2.7: Classification of different wind turbine concepts 

2.4.3.1 Fixed speed concept (type 1) 

Type 1 emerged in the 1980’s, and was developed by the Danish, hence the other 

appellation “Danish concept”. This concept is made of a SCIG directly attached through a 

transformer to the power grid. Capacitor banks are used for reactive power compensation. A 

soft-starter is also used to limit the excessive generator current at start-up. The main 

advantage of this configuration is its simplicity and robustness. However, since the rotational 

speed is constant, a major drawback is that under turbulent wind conditions, the rotor can be 

easily exposed to heavy mechanical stresses (Camm, et al., 2009; Li & Chen, 2008; 

Blaabjerg, et al., 2009; Polinder, et al., 2007; Bisoyi, et al., 2013). 

2.4.3.2 Limited variable speed concept (type 2) 

In this concept, the generator type is a WRIG having its stator windings directly linked to the 

grid, while its rotor windings are connected in series with a variable resistor. With this 

arrangement, the WT’s speed can vary over a certain range (usually up to 10% more than 

the synchronous speed) determined by the rating of the external resistor. However, there is 

still the need to incorporate the soft-starter as well as the capacitor bank, as for type 1 

(Camm, et al., 2009; Li & Chen, 2008; Blaabjerg, et al., 2009; Polinder, et al., 2007; Bisoyi, et 

al., 2013).   
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Figure 2.8: Fixed speed concept 
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Figure 2.9: Limited variable speed concept 
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Figure 2.10: Variable speed concept with partial scale converter 
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Figure 2.11: Variable speed with full scale converter 
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Figure 2.12: Variable speed with direct grid connection 

2.4.3.3 Variable speed with partial scale converter concept (type 3) 

For the type 3 concept, the speed can vary over a more expanded range compared to the 

previous type (around 30% of the rated speed in this case). The stator windings are once 

again connected to the grid with the help of a power transformer. However, this time around, 

the generator’s speed is controlled by a partially rated frequency converter. The converter 

also manages the generator in-rush current as well as grid reactive power control issues, and 

thus the soft starter and additional capacitor bank are no longer in need. Meanwhile, there 

are still some disadvantages associated to the DFIG concept such as its limited wind power 

harnessing range, and the use of a gearbox (Camm, et al., 2009; Li & Chen, 2008; Blaabjerg, 

et al., 2009; Polinder, et al., 2007; Bisoyi, et al., 2013). 

2.4.3.4 Variable speed with full scale power converter concept (type 4) 

In the type 4 concept, the stator windings are connected to the grid through a full-scale 

power electronics converter. Maximum power can be achieved over the complete operating 

wind speed range. Additionally, connection to the grid is smoother, and reactive power 

requirements are more easily achievable compared to the DFIG However, the principal 

advantage of the type 4 concept resides on the possibility for a direct connection between 

the turbine and the generator shafts, without the need for a gearbox. This possibility requires 

that the generator operate at low speed to match the turbine rotational speed. Therefore, 

direct-driven wind generators are designed with a relatively large number of poles. Since 

most mechanical problems are associated with the gearbox, its elimination from the drive 
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train will considerably reduce chances of mechanical breakdown, and consequently reduce 

the need for constant maintenance. Moreover, mechanical losses occurring in the gear 

transmission are eliminated, and the overall efficiency of the WECS can be very much 

improved. The principal disadvantage of this topology is the cost of the converter as well as 

its switching losses (Camm, et al., 2009; Li & Chen, 2008; Blaabjerg, et al., 2009; Polinder, et 

al., 2007). 

2.4.3.5 Direct grid connected variable speed (Type 5) 

The type 5 is a rather old concept in which the turbine rotor is connected to the generator 

through a mechanical speed converter which converts the variable turbine speed into a fixed 

generator speed. The WRSG is directly connected to the grid in the absence of PEC. The 

advantage of this configuration is cheaper and efficient since power electronics switching 

losses are inexistent. Although the type 5 presents numerous advantages, this technology is 

not popular in the wind turbine manufacturing industry due to the lack of experience and 

expertise, as well as other issues regarding mechanical converters (Nasiri, et al., 2015). 

2.5 PMSG in variable speed wind turbines 

For many years, PMSGs have been more used in small-scale WPPs and very little in large 

plants since there would be a need to use massive permanent magnets (PM). Although 

PMSGs present enormous advantages, factors such as scarcity of the permanent magnet 

material and their high cost, the problem of demagnetization at high temperatures, and 

challenges faced during the manufacturing of PM machines have also contributed in slowing 

the integration of these types of generators in the wind industry (Mittal, et al., 2010; Kilk, 

2007). However, recent advances in power electronics technologies and the development of 

PM material have promoted their expansion into the market of large-scale power plants (de 

Freitas, et al., 2011).  

PMSGs are the state-of-the-art of direct-driven wind turbines for many reasons. They have a 

smaller diameter, hence reduced weight and THM (Top Head Mass). They can be easily 

designed with a large number of poles, eliminating the need for a transmission gearbox. 

Moreover, PMSGs do not have slip rings, brushes or field windings, since their field 

excitation is produced from PMs, unlike with the SCIG or the EESG in which field excitation 

is produced from an external DC source. Henceforth, the number of mechanical items, the 

overall weight, as well as mechanical and electrical losses are considerably reduced, leading 

to an overall improvement of the efficiency and the reliability of the system (Earnest & 

Wizelius, 2011). There are different PMSG configurations available for wind turbines, each 

one of them presenting a number of advantages and disadvantages, depending on their 
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applications. As such, PMSGs are usually classified according to their flux orientation, 

magnet mounting, and rotor position (Madani, 2011). 

2.5.1 Classification of PMSGs according to their flux orientation 

PMSGs can be designed such that the flux path is radial or axial as illustrated in Figure 2.13. 

In a radial flux permanent magnet (RFPM) machine, permanent magnets are positioned 

radially, allowing a radial flux orientation, as opposed to the axial flux permanent magnet 

(AFPM) machine where the flux direction is towards the rotational axis. RFPM machines are 

simple to design and their manufacturing technology is well established in the industry which 

makes them less costly compared to AFPM machines. RFPM machines also present design 

flexibility in stator diameter and length to achieve high power ratings. AFPM machines on the 

other hand present advantages such as simple winding, reduced cogging torque, shorter 

stator length. However, they have large number of magnets due to their larger diameter and 

their air gap cannot be easily maintained (Bang, et al., 2008; Madani, 2011).  

Flux orientation can also be longitudinal or transversal. TFPM (Transversal flux permanent 

magnet) machines are more popular and discussed in literature. In those machines, the flux 

is perpendicular to the direction of rotation. Their principal disadvantage is their high flux 

leakages which is usually compensated by reducing the number of poles of the machine, 

hence reducing the machine’s torque density. TFPM are also mechanically less robust due to 

their increased number of mechanical parts (Bang, et al., 2008; Madani, 2011). 

2.5.2 Classification of PMSGs according to the magnet mounting 

Permanent magnets are usually mounted on the surface of the rotor. This arrangement is 

also called surface mounted permanent magnet (SMPM) machines and is illustrated in  

Figure 2.14. Flux orientation is usually radial. SMPM machines are mostly utilised in large 

scale direct-drive wind turbine applications. They are easy to manufacture due to their fairly 

simple geometry (Madani, 2011). 

Permanent magnets can also be mounted on the inner of the rotor allowing the presence of 

rotor core material in between poles also known as iron interpoles, as opposed to the surface 

mounted configuration in which poles are simply separated by an airgap. These machines 

present a higher torque density and flux leakage compared to SMPM and are mostly used in 

geared wind turbines applications (Madani, 2011). 
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Table 2.1: Comparison of different wind turbine concepts 

Turbine type Type 1 Type 2 Type 3 Type 4 Type 5 

Generator SCIG WRIG DFIG SCIG PMSG/WRSG WRSG 

Power converter None Diode+chopper 
AC/DC+DC/AC or 

AC/AC 
AC/DC+DC/AC or 

AC/AC 

AC/DC+DC/AC or 
AC/AC or 

AC/DC+DC/DC+DC/AC 
None 

Converter 
capacity 

0 % 10 % 30 % 100 % 100 % 100 % 

Speed range +- 1 % +- 10 % +- 30% 0 – 100% 0 – 100% 0 – 100% 

Soft starter Required Required Not required Not required Not required Not required 

Gear box 3-stage 3-stage 3-stage 3-stage 3/2/1/0-stage 2-stage 

Aerodynamic 
power control 

Pitch, stall, active 
stall 

Pitch Pitch Pitch Pitch Pitch 

MPPT operation Not possible Limited Achievable Achievable Achievable Achievable 

External reactive 
compensation 

Needed Needed Not needed Not needed Not needed Not needed 

FRT compliance 
External 
hardware 

External hardware Power converter Power converter Power converter Power converter 

Technology status Outdated Outdated Highly mature Emerging Mature Old concept 

Current market 
penetration 

Few/No 
installations 

Few/No 
installations 

Greater than 50 % 
share 

Few installations 2nd highest share Few installations 

Example 
commercial WT 

Vestas V82, 1.65 
MW 

Suzlon S88-2.1 
MW 

Repower 6M, 6.0 
MW 

Siemens SWT-
3.6, 3.6 MW 

Enercon E126, 7.5 
MW 

DeWind D82, 2.2 
MW 
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Figure 2.13: Cross sectional view in axial direction of axial flux (left) and radial flux (right) 
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Figure 2.14: Surface mounted (left) and inset (right) magnet rotors for PMSG 
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Figure 2.15: Inner (left) and outer (right) rotor PMSG 

Finally, PM can be mounted inside the rotor and this configuration is known as buried 

magnets or interior permanent magnets (IPM). Since the magnets are inside the rotor, 

magnetization is easier, therefore not so strong PM material may also be used. This topology 

is not suitable for low speed direct-drive applications. The manufacturing process of burying 

PM inside the rotor is quite complex and also the shaft material needs to be non-

ferromagnetic to avoid large flux penetration into the shaft (Madani, 2011). 
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2.5.3 Classification of PMSGs according to the rotor position 

The rotor can surround the stator in outer rotor machines or be surrounded by the stator in 

the case of inner rotor machines, as shown in  

Figure 2.14. Inner rotor machines are more present in the market, while outer rotor machines 

are mostly used with small HAWTs. 

2.5.4 Maximum power point tracking  

Variable speed wind turbines can adjust the generator speed to extract maximum power from 

the wind at different wind speeds. As shown in Figure 2.16, for each wind speed, there is a 

corresponding turbine speed at which the turbine power is at its maximum. The MPPT 

technique therefore consists on achieving maximum power extraction for each wind speed 

within a certain wind speed range in order to improve turbine efficiency. Several MPPT 

methods for PMSG based WECSs are discussed and compared by literature (Rekioua, 

2014; Abdullah, et al., 2012; Heydari & Smedley, 2015; Wu, et al., 2011). Some of the most 

common are discussed below. 

 

 

Figure 2.16: Typical MPPT curve for a power versus rotational speed turbine characteristics 
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Figure 2.17: PSF method applied to a PMSG based WECS 
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Figure 2.18: Optimal TSR method applied to a PMSG based WECS 

 

2.5.4.1 Power signal feedback 

This method uses a power versus wind speed curve to generate the reference turbine power 

which is compared to the actual power at measured wind speed. The error signal is 

compensated, and the actual power value will eventually equal the reference power at steady 

state. The power signal feedback method is illustrated in Figure 2.17. To express the 

maximum power-wind speed relationship, the following equation is used (Rekioua, 2014): 
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max 842.0125.008.13.0 VVVPm +−+−=−  Equation 2.11 
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Figure 2.19: OTC method applied to a PMSG based WECS 
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Figure 2.20: P & O method applied to a PMSG based WECS 

2.5.4.2 Optimal tip speed ratio 

From equation 2.10, it can be seen that the turbine power is a function of the tip speed ratio 

(TSR) λ, and the pitch angle β. Equation 2.9 also shows that the value of λ depends on the 

turbine speed ω and the wind speed V. Therefore, MPPT can be achieved by keeping the 

TSR at its optimal value such that the turbine speed and power are maximum at different 

wind speeds. This task can be completed in two different ways: 

• Reference turbine speed is computed using measured wind speed and the optimal TSR. 

This reference speed is then compared to the actual speed which is then corrected, and 

the turbine operates at its MPP. 

• The reference TSR is compared with its actual value, and the error signal is used to 

generate the reference turbine power. 
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The optimal tip speed ratio is illustrated in Figure 2.18. 

2.5.4.3 Optimal torque control 

In OTC reference torque is generated using the torque-speed quadratic relationship from the 

turbine power curve. OTC is illustrated in Figure 2.19. The maximum power coefficient Cpmax 

and the optimal TSR λopt must be known. The relationship between the torque and the speed 

can be expressed as (Heydari & Smedley, 2015): 

 
2

optoptrefe kT =−  
Equation 2.12 

where 
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Equation 2.13 

2.5.4.4 Perturbation and observation (P & O) or Hill-climb searching (HCS)  

As opposed to the other MPPT techniques mentioned above, The P & O is one method that 

does not require any information about the turbine power curve or the wind speed. Instead, 

an algorithm based on the principle of Hill-climb is used to determine and the track the 

maximum operating point of the turbine’s power curve as shown in Figure 2.20. A change in 

output power is first detected after a speed perturbation, then depending on the variation on 

the output power, the next speed perturbation is programmed. The P & O method is further 

elaborated in literature (Heydari & Smedley, 2015). 

2.6 Power converters topologies for PMSG wind turbines 

PECs play an important role in the performance of modern WTSs (Blaabjerg, et al., 2009). 

The PECs can be grid connected or standalone as used in most remote areas without grid 

interconnection (Prerna & Jagdeesh Kumar, 2013), unidirectional or bidirectional depending 

on the power flow (Khater & Omar, 2013), two-level or multilevel (Blaabjerg, et al., 2009). 

Power converters for WECS are widely discussed by many references (Yamarasu, et al., 

2015; Wu, et al., 2011). 

2.6.1 Thyristor grid-side inverter 

The grid-side inverter uses thyristors to control the inverter’s firing angle. This way the 

turbine speed is regulated through the DC link voltage, allowing maximum energy to be 

captured. The main advantage of this configuration is that it has a low cost for a high-power 

rating. However, there is a need for reactive power compensation, as well as total harmonic 

distortion reduction. Therefore, an active compensator filter is used, with a voltage source 

converter (VSC) as shown in Figure 2.21a. The Pulse width modulated (PWM) control is 
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driven by the error signal from the actual and the reference compensator current (Bisoyi, et 

al., 2013; Baroudi, et al., 2005). 

2.6.2 Hard-switched grid-side inverter 

2.6.2.1 The back-to-back PWM VSI 

The back-to-back PWM VSI is the most common converter type using PMSG. This 

configuration consists of two VSI (one on the generator side, the other on the grid side) 

facing each other with an intermediate DC link (Khater & Omar, 2013). Each VSI is 

connected to a DC side and a 3 phase AC side as shown in Figure 2.21b and is composed of 

six semiconductor switches. The VSI also allows for bidirectional flow of power from machine 

side to grid side and vice versa. The machine-side converter generally controls the active 

power flow, while the grid-side converter controls the reactive power. A major advantage is 

that power factor is increased on the generator side with the aid of PWM modulation 

techniques, improving also the efficiency (de Freitas, et al., 2011). The main drawbacks of 

this configuration are the increased switching losses and harmonics (Prerna & Jagdeesh 

Kumar, 2013). 

2.6.2.2 Generator Side Uncontrolled Rectifier with Boost Converter  

This topology comes as a substitute to the widely used diode rectifier with DC link capacitor 

and is shown in Figure 2.21c, which produces a lot of ripples at the output of the inverter. 

The main difference is that the short duration bulky DC link is replaced by a boost converter 

which is responsible for MPPT, thereby eliminating the need for an anemometer (Jamil, et 

al., 2012). The other advantage of this topology is that the controller adapts to changes in 

generator parameters (Jamil, et al., 2012; Prerna & Jagdeesh Kumar, 2013). However, the 

use of an additional switching stage implies an increase in cost as well as switching losses, 

and consequently an efficiency drop.  

2.6.3 Multilevel converters 

Multilevel converters are suitable for the integration of high-power wind generators, generally 

in the MW range (Debnath & Saeedifard, 2013). The converters have more than two voltage 

levels, reducing THD at the output compared to traditional back-to-back PWM converter. 

Switching losses are also reduced by approximately 25% (Kim & Lu, 2010). These 

converters are designed to handle high power/voltage levels using low rating devices 

(Debnath & Saeedifard, 2013). However, major drawbacks include the voltage imbalance 

caused by the DC link capacitor, uneven current distribution through the switches, increased 

cost due to the increased number of switches, and the complexity of the control (Kim & Lu, 

2010). 
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c) Typical PEC using diode rectifier and intermediate boost converter 

Figure 2.21: Examples of PECs used with PMSG based WECS 

There are many multilevel converter topologies at this day (Kim & Lu, 2010), the most 

common being the neutral point clamped (NPC), the cascaded half-bridge (CHB), and the 

flying capacitors (FC). Of them all, the NPC is still the most appreciated and widely used 

(Kim & Lu, 2010).  

2.6.4 Matrix converters 

The matrix converter (MC) is a particular design that eliminates the DC stage from the 

traditional AC-DC-AC conversion process, to the profit of a direct AC-AC conversion. This 

arrangement has the advantage that the bulky DC link capacitors and/or inductors are 

inexistent, and so are the associated lifetime, size, and cost issues. The output voltage 
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magnitude, frequency, phase angle, as well as the input power factor are controlled 

independently, due to the large number of control levels that the MC provides. However, the 

main disadvantages of the MC are its complex control due to commutation problems, the 

scarcity of monolithic bi-directional switches, the lack of decoupling between the two AC 

sides of the converter, and the low voltage gain (Pandu Ranga & Vijaya, 2013; Yang & Li, 

2009). 

2.6.5 Z-source converters 

Also called impedance source converters, z-source converters have been designed to 

overcome operating range limitations of both voltage source converters and current source 

converters. They use an X shaped impedance network to connect machine and grid side 

converters. They are widely discussed in literature(Peng, 2002; Vilathgamuwa, et al., 2008; 

Florescu, et al., 2010). 

2.7 Power converter control 

The control system, just as much as the hardware, plays an important role in the overall 

performance of a wind turbine system. The controller is designed for the wind turbine to 

reach specific objectives that can be summarized as follows (Soriano, et al., 2013): 

· Extract maximum power from the wind 

· Ensure maximum output power for different wind speeds 

· Deliver quality power according to network provider standards 

· Comply with grid interconnection requirements 

· Reduce stress on mechanical components during turbulences 

According to many references (Busca, et al., 2010; Quang & Dittrich, 2008; Allagui, et al., 

2014; Jash, et al., 2013), vector control is the most popular and most widely used method for 

the control of PEC in a WTS. Comparisons of different vector control techniques were done 

by different authors with emphasis on the FOC (Field Oriented Control) and DTC (Direct 

Torque Control) on the generator side (Busca, et al., 2010; Allagui, et al., 2014; Huang, 

2013), and VOC (Voltage Oriented Control) and DPC (Direct Power Control) on the grid side 

(Huang, 2013; Allagui, et al., 2014). 

The FOC technique seems to be more attracting than the DTC for direct-drive applications 

since it presents a good performance at relatively low speeds, offers quick speed and torque 

responses, as well as reduced torque ripples and minimal power-tracking error. On the other 

hand, DTC is easier to implement than FOC and offers fast transient response, but presents 

drawbacks such as difficulties in torque control, increased ripples and noise level, which are 

even more pronounced at very low speeds. On the grid side, both strategies present similar 
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results and they both meet grid code requirements. However, VOC presents lower THD and 

higher efficiency while DPC provides a better dynamic response. 

As far as modulation techniques are concerned, space vector modulation (SVM) techniques 

are mostly employed (Freire, 2013). Other techniques use a carrier signal that is compared 

to a reference modulation signal, or hysteresis current control (Wu, et al., 2011; Zeng & 

Chang, 2005). Comparisons of some of these techniques shows that SVM applied with pulse 

width modulation present a better steady state performance under normal operations or 

during grid faults, while HCC presents better results for faults on the generator side (Freire, 

2013). When SVM is used with DTC, the results are similar to the FOC technique (Busca, et 

al., 2010). 

2.8 Summary of the chapter: 

In this section, an overview of already available and most common wind turbine technologies 

was presented. The fundamentals of a wind energy conversion system were first discussed, 

including the different components of a wind turbine, as well as its aerodynamics principles 

and the different maximum power extraction methods. The different generator, power 

electronics converters, and drive train topologies of the main wind turbine concepts from 

fixed speed to variable speed were also discussed and compared. The direct driven PMSG 

full scale variable speed topology was proven to be a better option compared to other 

concepts due to many reasons such as an increased generator efficiency, the absence of 

gearbox, and more flexible controllability due to the bidirectional nature of the converters. 

Finally, the different PECs and control techniques were also discussed and compared. 
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CHAPTER THREE 

3 GRID CODE REQUIREMENTS AND LVRT SOLUTIONS 

Introduction 

Grid codes are important to ensure a safe and reliable transmission of electric power within 

the interconnected network. They represent a guideline defined by each transmission system 

operator (TSO) to which each power producer must adhere in order to be connected to the 

grid. In South Africa, electric power is generated from various sources including coal, gas, 

water, and renewables. In this chapter, a review the grid code requirements for wind power 

plants connected to the electric power network is presented and the case of South Africa is 

analysed in more details. Low voltage ride-through being the core of this research, a review 

of the different LVRT solutions for a PMSG based wind energy conversion system is also 

presented. 

3.1 Grid code requirements for wind farms 

Grid power quality and network stability are major challenges issued from the massive 

integration of large-scale high-power wind turbines into the grid. As such, wind turbine 

operators have developed new grid code requirements that WTSs  and WPPs need to satisfy 

when connected to the network. These important requirements are usually classified into four 

categories namely active power control, reactive power and voltage control, frequency and 

voltage operating range, and fault ride-through capability with following objectives: 

(Sourkounis & Tourou, 2013)  

• Control the active power supplied to the grid during frequency and voltage disturbances 

• Define appropriate ranges of frequency and voltage and ensure WPPs operation within 

the specified limits 

• Contribute to the grid power balance by injecting or absorbing reactive power. 

• Support voltage recovery at connection point after fault occurrence 

• Maintain smooth connection to the network in the event of small duration voltage dips  

Because transmission systems differ due to different standards, most grid code requirements 

also present different tolerance, limitation and operating values. Grid code requirements of 

many countries are reviewed and compared in literature (Tsili, et al., 2009; Mohseni & Islam, 

2011).  
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Figure 3.1: Voltage and frequency operating ranges as defined by German power system 

operator (Mohseni & Islam, 2012) 

 

 

Figure 3.2: Frequency operating limits in some of the European countries 
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(a)  Absolute power constraint 

 
(b) Delta production constraint 

 
(c) Balanced regulation 

 
(d) Power gradient constraint 

Figure 3.3: Active power regulation strategies (de Alegria, et al., 2007) 

3.1.1 Frequency and voltage operating range 

Many grid codes have voltage and frequency variation ranges or limits within which wind 

farms are expected to carry on a smooth and continuous operation even during small 

disturbances (Sourkounis & Tourou, 2013; Tsili, et al., 2009). Past these limits specified by 

system operators, system stability is no longer guaranteed, and wind farms and the rest of 
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the power system may be endangered. In this case, disconnection of WPPs seems to be the 

most appropriate option.  

A graphical representation of voltage and frequency operating ranges as defined by general 

grid codes is illustrated in Figure 3.1. Generally, WPPs operate continuously at frequencies 

equal to or very close to the nominal value and do only operate for minor time durations 

when frequencies exceed certain values as illustrated in Figure 3.2.  

3.1.2 Active power control 

Large positive or negative differences between actual and nominal frequency values usually 

indicate a power system imbalance. Frequency changes could be caused either by a fault on 

the network, or by acute wind speed variations. In response to these instabilities and to 

reinstate close to nominal frequency, grid codes require that WPPs have the capability to 

provide network frequency supports through the control of their generated active power.  

WPPs should be capable of reducing or regulating their output power to a predefined 

magnitude, whenever requested from the system operator. This may be achieved by 

minimizing the extracted wind power using a pitch angle control on the turbine blades in as 

explained earlier in section 2.3.3 (Sourkounis & Tourou, 2013; Tsili, et al., 2009). Figure 3.1 

shows a typical curve of output power variation in response to frequency changes. The curve 

shows that the output power will gradually decrease as the frequency increases above 

nominal value. It is important to note that the output power delivered is slightly lower than the 

maximum achievable level. This is to allow the output power to increase up to its maximum 

value, such that the frequency can be sustained when its value falls below nominal value (de 

Alegria, et al., 2007). 

It is also important that active power be reduced or restored at a satisfactory rate when a 

voltage dip occurs or is cleared, to avoid generator over-speeding or power surges which 

could result in damage of wind generator and power system disturbances. Active power 

production is managed using different strategies in order to fulfil all of the above-mentioned 

frequency and voltage requirements. Some of the most common are listed below and 

presented in Figure 3.1 (Mohseni & Islam, 2012): 

• The active power can be controlled so that its value can never exceed a pre-set 

maximum value regardless of whether more wind power is available or not. This 

regulation mode is known as active power constraint. Generally, when wind power 

production is greater than the demand, wind turbine operators usually lose money since 

they are required to pay for excess production.  
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• The power output is maintained at a slightly lower level to allow frequency control as 

explained above and achieve delta production constraint.  

• The active power supplied to the grid is controlled such that it can be quickly reduced on 

fault occurrence or increased at fault clearance to ensure balanced power production 

and consumption. This control is therefore named balanced regulation. 

• The power gradient constraint is used to regulate the rate at which WPP power is 

supplied to the grid to the level of conventional power plants by setting a maximum 

gradient that cannot be exceeded. 

3.1.3 Reactive power and voltage control 

The purpose of the reactive power and voltage control requirement is to ensure that system 

operation under required limits is properly achieved, reducing risks of network instabilities. 

Wind farms should have reactive power control capability for the purpose of supporting the 

voltage at the PCC (point of common coupling), as well as the reactive power demand from 

the grid (Sourkounis & Tourou, 2013). This means that WPPs should be able to supply 

lagging or leading reactive power depending on whether power is supplied to or absorbed 

from the PCC, while keeping the power factor within an acceptable range as illustrated in 

Figure 3.6. In some grid codes, the network operator should set a particular reference value 

for the reactive power at the wind farm connection point (Tsili, et al., 2009). Figure 3.6 shows 

the graphs of the requirement of reactive power variation with respect to changes in voltage 

for the case of Germany (Mohseni & Islam, 2012; de Alegria, et al., 2007). 

3.1.4 Low Voltage Ride Through capability 

New grid codes specifications require that wind farms be able to survive voltage faults up to 

a certain percentage of the nominal voltage, and for a precise time interval, while remaining 

coupled to the power system. In addition, active and reactive power should quickly ramp 

back to nominal value after fault clearance. This requirement is essential for a smooth and 

continuous supply from the power system by avoiding possible disconnection which could 

lead to further losses of generation capacity, and eventual collapse of the network 

(Sourkounis & Tourou, 2013; Tsili, et al., 2009).  

The LVRT requirement is expressed using a voltage vs time characteristic curve which 

delineates the region under which the wind turbine should safely operate in the event of a 

grid fault (Leao, et al., 2010). An example of such curve is shown in Figure 3.6. Wind 

turbines should remain connected as long as the voltage at point of common coupling (PCC) 

is above delineated region, otherwise disconnection is allowed. 
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Figure 3.4: Power-frequency response curve by Danish grid code (Mohseni & Islam, 2012) 

 

 

 

Figure 3.5: Reactive power and power factor requirement as enforced by Danish grid code 

(Mohseni & Islam, 2012) 
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Figure 3.6: Reactive power support requirement as defined by German grid code (Mohseni & 

Islam, 2012) 

 

 

Figure 3.7: German LVRT requirement (Mohseni & Islam, 2012) 
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Figure 3.8: South African LVRT curve (Mchunu & Khoza, 2013) 

 

Figure 3.9: Requirement for reactive power support during grid fault according to the South 

African grid code (Mchunu & Khoza, 2013) 
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Table 3.1: Classification of RPPs according their rated power (Mchunu & Khoza, 2013) 

Sub-categories Rated power range (kVA) 

A1 0 < A1 ≤ 13.8 kVA 

A2 13.8 kVA < A2 < 100 kVA 

A3 100 kVA ≤ A3 <1MVA 

B 1 MVA ≤ B < 20 MVA 

C ≥ 20 MVA 

For a wind turbine to successfully achieve the FRT, grid code requirements as well as wind 

turbine requirements should be met whenever a fault occurs in the grid. Therefore, on the 

grid side, wind turbines should be able to remain connected according to the FRT curve, 

supply reactive power to the grid, and recover active power. On the generator side, excess 

current and voltage on the stator or rotor, torque ripples, changes in turbine’s speed, 

overvoltage on the dc-link should be avoided (Hu, et al., 2010). 

3.1.5 South African grid code requirements for Renewable Power Plants 

The South African grid code for renewable power plants (RPPs) was established by the 

National Energy Regulator of South Africa (NERSA) aiming for reliability, safety and security 

of the interconnected power system. This code ensures that RPPs connected or still to be 

connected to the power network meet specific technical and design requirements (Mchunu & 

Khoza, 2013). These requirements are defined according to different categories from A to C, 

depending on the power rating of the RPP as specified in Table 3.1. 

With the South African grid code for RPPs, the same requirements listed earlier are also 

applicable. RPPs should be capable of operating within a certain limit of frequencies and 

voltages as well as contributing to network stability under faulty circumstances. The South 

African grid code requirements are presented by Mchunu & Khoza (2013). However, only the 

LVRT requirement is covered. 

During voltage sags arising from symmetrical or unsymmetrical faults, RPPs should remain 

connected to the grid as shown in Figure 3.8. The FRT curve is divided into 4 sections each 

representing different operating regions for the RPPs. 

• Area A: continuous operating region where the RPP should maintain normal production. 

This region is comprised between 0.9 and 1.1 pu, approximately ±10% of the rated 

voltage at the POC. 

• Area B: faulty region for which the RPP is required to remain stable and connected to 

the network. In this operating mode, active power must be maintained for voltage drops 

up to 85% of rated value, otherwise reduction is required proportionally to the voltage 
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drop. The reduced active power is expected to recover within 1 second to at least 90% 

of pre-fault value. Voltage drops up to zero should be tolerated for maximum fault 

clearance duration of 150 millisecond. Moreover, the RPP should contribute to voltage 

stabilization by injecting reactive power as illustrated in Figure 3.9. 

• Area C: the RPP may be disconnected from the network. 

• Area D: the nominal voltage at POC can reach peaks of up to 120% without 

disconnection of the RPP for duration not exceeding 2 seconds. This area is only 

applicable to RPPs of category C. 

3.2 LVRT methods for PMSG WTs 

In a full-scale variable speed WT, the generator side and the grid side are decoupled by the 

PEC. During a fault at the PCC, the terminal voltage is considerably reduced, which implies 

that the active power supplied to the grid is also reduced. On the other side, the generator 

keeps on supplying power since not directly connected to the grid. This excess power is 

stored in the dc-link and will later lead to dc-link over-voltage and voltage oscillation which 

could affect steady state operation of the generator and cause damages to the converter and 

the WTS (Dong, et al., 2012). In order to avoid this situation, a number of techniques have 

been proposed by different references.  

Nasiri et al (2015) present a review and comparison of some of the most popular LVRT 

techniques used with PMSG WECSs. The paper classifies these techniques into two 

categories depending on whether additional devices are used or not in order to achieve 

LVRT as presented in figure 3.10. In the second case, the LVRT is achieved by simply 

modifying control strategy, without the need for external action. These techniques are 

referred to as “modified control-based methods”. Some of the most used LVRT techniques 

are discussed below. 

3.2.1 Modified control-based techniques 

3.2.1.1 Change of control strategy 

The control of the DC-link voltage is achieved by the MSC, while the active and reactive 

power control task is done by the GSC, as opposed to the traditional control in which the 

GSC is responsible for DC-link voltage control and active power is controlled on the machine 

side. In this method, the DC-link voltage regulation is accomplished by decreasing the 

generator stator current and thus the power flow to the DC-link. The excess energy is 

converted to rotational energy, increasing the turbine’s rotational speed which is directly pitch 

controlled if the speed exceeds the rated value. An external damping controller is also used 

in this system (Hansen & Michalke, 2009). 
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Figure 3.10: LVRT enhancement techniques 
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Figure 3.11: Block diagram of a typical BPA controller 

3.2.1.2 Blade pitch angle (BPA) control 

Apart from being used for maximum wind energy extraction at low wind speeds or for 

minimum extraction at more than rated wind speeds, BPA control is also used for LVRT 

(Conroy & Watson, 2007; Yang, et al., 2009). In this case, the aim of the pitch controller is to 

reduce the energy captured by the turbine blades during a grid fault, by pitching out of the 

direction of the wind. This technique is simple and cheap but offers a slow response due to 

its mechanical nature. Therefore, the BPA control is usually used in addition to other fast 

LVRT techniques to improve the system’s response. 

BPA control techniques are usually closed loop systems where the actual measured pitch 

angle is compared to a reference value which can be controlled either from wind speed, 

generator speed or torque, and power measurements (Ben Smida & Sakly, 2015) as 

illustrated in figure 1. In Conroy & Watson (2007), during a grid fault condition, the controller 

switches from the normal operating mode to an emergency mode and the reference pitch 

angle is specified by its emergency value. For Nasiri, et al., (2015), the control in figure 3.11 

above is used when wind speeds exceed nominal value, while grid voltage differences are 

used to generate the reference pitch angle in the event of a fault (Nasiri, et al., 2015). 
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3.2.2 Additional devices-based techniques 

3.2.2.1 Capacitor sizing 

Storing the excess energy from the generator into another capacitor of larger size is an 

alternative way of decreasing the energy to be absorbed by the dc-link capacitor during a 

voltage dip. Since the required capacitor power increases with the duration of the voltage dip, 

longer voltage dips will imply larger capacitor sizes. Capacitor sizing is therefore an 

inappropriate method and is usually not used (Conroy & Watson, 2007). 

3.2.2.2 Braking resistor (DC chopper) 

A DC chopper circuit which consists of a braking resistor controlled by a switch is connected 

in parallel with the DC-link capacitor as shown in Figure 3.12. Whenever the dc-link voltage 

exceeds a predefined value, the switch is activated and the excess energy is dissipated 

through the resistor (Rosyadi, et al., 2011). This method can also be combined to the pitch 

control technique for a more effective result especially for longer voltage dips, reducing the 

rating of the protective resistor and thus the overall cost (Ibrahim, et al., 2012). 

Qiu, et al., (2011) and Kesraoui, et al., (2010) used a bypass chopper with the diode rectifier 

configuration to dissipate the excess power. The error signal from the DC-link voltage 

reference and measured values is sent through a PI regulator to control the duty cycle of the 

switch. For Shuju, et al., (2008) the generated power, the grid power and the DC-link voltage 

measurements are used to determine the state of the switch and to calculate its duty cycle. 

For Yan, et al., (2011), a signal is sent to the controller at the occurrence of a grid fault, and 

the IGBT switch is directly triggered and remains on until fault clearance. Heng, et al., (2008) 

used a D flip-flop to generate the switching command to the switch. A predefined threshold 

value is compared to the actual DC-link value using a comparator circuit. The input to the flip-

flop is the output from the comparator.  

3.2.2.3 Energy storage system 

An Energy storage system (ESS) is also used to store the excess energy from the generator 

or to supply power to the grid if necessary (Nguyen & Lee, 2010). This method also improves 

power quality on the grid by charging or discharging the fluctuating power component that 

derives from changes in wind speed. Lead acid batteries (LAB), sodium sulphur batteries 

(SSB), and vanadium redox flow batteries are mostly used due to their lifespan, their storage 

capacity, low cost and quick dynamic response. However, an additional dc-dc converter is 

required in order to regulate the excess voltage to the battery rating (Ibrahim, et al., 2012; 

Nasiri, et al., 2015). A typical WECS equipped with an ESS is shown in Figure 3.12. 
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Figure 3.12: Braking chopper configuration 
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Figure 3.13: Energy storage system connected to the DC-link 
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Figure 3.14: Typical structure of a STATCOM 
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Figure 3.15: Typical configuration of a dynamic voltage restorer 
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Figure 3.16: Typical configuration of a unified power flow controller 

3.2.2.4 The use of FACTS devices 

Facts (Flexible AC transmission systems) devices have the advantage that they can supply 

reactive power to the grid. They can be connected in parallel (shunt connection), series 

(series connection), or in a combination of series and parallel (Hybrid connection) with the 

common coupling point. In shunt connection, the amount of reactive power injected on the 

grid depends on the reactive power demand from the grid during a grid fault, as well as the 

reactive power transfer capability from the wind farm. The two main shunt compensation 

devices are the Static Synchronous Compensator (STATCOM) and the Static VAR 

compensator (SVC). Although these techniques are mostly used with DFIGs, they can also 

be used with PMSG based wind turbines (Chowdhury, et al., 2012; Nguyen & Lee, 2013). 

The basic configurations of STATCOM is shown in Figure 3.12. 

Series connection devices inject capacitive voltage at the PCC to increase the reactive 

power supply from the grid. These devices include the thyristor-controlled series capacitor 
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(TCSC), Static Synchronous Series Compensator (SSSC), the Dynamic Voltage Restorer 

(DVR), the Magnetic Energy Recovery Switch (MERS), and more (Wenming, et al., 2011; 

Ibrahim, et al., 2012). The configuration of a DVR is shown in Figure 3.12. 

As for the hybrid connection, the Unified power flow controller (UPFC) is the state-of-the-art 

of this technology. UPFCs have the advantage that they can inject capacitive voltage for 

voltage recovery from the series connection, as well as reactive power for grid support from 

the shunt connection (Raphael & Massoud, 2011). The UPFC is typically a back-to-back 

connection of STATCOM and SSSC as illustrated in Figure 3.12.  

Summary of the chapter 

This chapter presented an overview of the existing grid code requirements to be met for 

WPPs to be connected to transmission and distribution networks in some developed 

countries. Frequency and voltage range, active power control, reactive power and voltage 

control, and FRT capability were depicted as the most commonly used by many grid 

operators. These requirements were detailed and explained thoroughly. The case of FRT 

and particularly the LVRT of the South African grid code was more deeply examined.  

An overview of LVRT enhancement solutions was also presented in this chapter. These 

solutions were categorised into two depending on whether additional components were 

needed or not. The advantages and disadvantages were presented, and the solutions were 

compared. 
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CHAPTER FOUR 

4 WIND TURBINE SYSTEM MODELING 

Introduction 

Before carrying out any simulation studies on the WECS, a detailed model of the different 

components that constitute the system needs to be implemented. This chapter discusses the 

mathematical modeling of the full scale variable speed WECS including all controllers. The 

WECS consists of a direct-driven PMSG wind turbine connected to the grid through a back-

to-back converter. The advantages and drawbacks of this configuration are already 

presented in section 2.4. A WECS equipped with PMSG and full scale power converter is 

represented in  

Figure 1.1. As illustrated, the WTS is composed of a mechanical part which converts the 

energy from the wind into mechanical rotational energy through the turbine blades and the 

drive train, as well as an electrical part (PMSG, PEC, filters, transformers) which converts the 

mechanical energy from the drive train to quality electrical power to be fed into the grid 

(Kasem Alaboudy, et al., 2013).  

To accurately emulate the dynamic behaviour of the wind turbine and its impacts when 

connected to a power system, different key components such as the turbine and mechanical 

shaft dynamics, generator electrical and mechanical characteristics, power converter 

controls, protection settings and measurements of critical variables, need to be taken into 

consideration in the mathematical model for time domain simulations (Vittal & Ayyanar, 

2013).  

4.1 Wind turbine model 

The power extracted by the turbine was expressed in Equation 2.10 of chapter 2. The power 

coefficient Cp (λ, β) was modelled using the following equation (Heir, 2014): 

 

 
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with 

 
 

Equation 4.2 

Figure 4.2 represents typical Cp (λ, β) characteristics for different pitch angles and tip speed 

ratios. It can be observed that maximum power coefficient occurs at pitch angle β=0 degrees. 

This value also corresponds to the nominal tip speed ratio. 
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Figure 4.1: PMSG based wind turbine system 

 

 

Figure 4.2: Power coefficient as a function of tip speed ratio (Perelmuter, 2013) 

4.2 Drive train model 

Different mechanical parts constitute the drive train of a wind turbine. These parts include the 

rotor, the shaft, the gearbox, and generator. The complexity of the drive train usually 

depends on the objectives and requirements of the study. Therefore, a one-mass, two-mass, 

or three-mass model may be used as the number of parameters to be considered increases.  
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Figure 4.3: Drive train schematic modelling 

Hence, a one-mass model might be enough when interactions between the wind farms and 

the grid are analysed (Rolan, et al., 2009; Melicio, et al., 2010).  

Yet, even though generator speed dynamics have little influence on the grid side since the 

converters are totally decoupled and controlled independently, it is still advisable to consider 

a two-mass model representation for a variable speed wind turbine connected to the grid. In 

this approach, the drive-train connecting the generator and the turbine are represented by 

two mass spring system as illustrated in Figure 4.3. The system can further be lumped into 

one mass as expressed in Equation 4.3 below. 

 DTT
dt

d
J gTgeq −−=  Equation 4.3 

where Jeq is the combined inertia of the turbine and the generator in kg.m2, ωg is the turbine 

rotational speed in rad/s, TT and Tg are the turbine and generator torque respectively in Nm, 

and D is the friction coefficient in Nm/rad.  

4.3 Modelling of the PMSG 

In Figure 4.4a, the cross-sectional area of a three-phase, two-pole PMSG is illustrated. The 

stator windings as, bs, and cs are distributed, sinusoidally identical, star connected with a 120-

degree displacement between the three phases. Damper windings are neglected in this 

representation, due to the very little amount of current flowing through the permanent magnet 

rotor. 

The PMSG stator equivalent circuit is shown in Figure 4.4b. Ns and Rs represent respectively 

the equivalent number of turns and resistance on each stator winding, while va, vb and vc are 
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the stator phase terminal voltages. Figure 4.4c shows the per phase equivalent circuit of the 

PMSG. 
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(a) Cross sectional view of a two-pole PMSG 
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(c) Per phase equivalent circuit of a PMSG 

Figure 4.4: Representation of a 2-pole, 3-phase, star connected PMSG 
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Figure 4.5: Phasor diagram of a PMSG 

From Figure 4.4c, the phasor diagram of the PMSG is derived as illustrated in Figure 4.5 

above, with the assumption that the current lags the voltage by a certain angle φs. This angle 

serves to determine the generator active and reactive powers Ps and Qs expressed as: 
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=
 Equation 4.4 

The following relation can be derived from Figure 4.5: 
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s

f

sssssf
Z
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where δ, known as power angle, is the angle between Ef and Vs. Therefore, the generator 

active power can be rewritten as: 
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s
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s
Z

EV
P =  Equation 4.6 

Also, from Figure 4.5, the following relation can be obtained: 
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In the same manner as the active power, the reactive power can be rewritten as: 
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Since Rs<<Xs, Equation 4.6 and Equation 4.8 can be rewritten neglecting Rs as: 
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 Equation 4.9 

When developing the model of a PMSG, it is assumed that (Kundur, 1994):  

· The induced emf is sinusoidal 

· The field current remains constant 

· Magnetic hysteresis and eddy currents are negligible  

· Magnetic saturation effects are negligible 

· Permanent magnets have no conductivity 

4.3.1 Reference frame theory 

In order to simplify the analysis of synchronous and induction machines, as well as the 

implementation of different WECS based control techniques, reference frame 

transformations from natural three-phase abc to two-phase stationary αβ and rotating dq 

synchronous frames and vice-versa, are often utilised. The abc to αβ transformation also 

known as Clark’s transformation is given as (Wu, et al., 2011): 

 

 

Equation 4.10 

Similarly, the inverse Clark’s from αβ to abc is given by: 
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Equation 4.11 

Park’s transformation is used to switch from the natural abc frame to the dq frame. The 

Park’s transformation and inverse Park are given by Equation 4.12 and Equation 4.13 

respectively:  
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 Equation 4.13 

4.3.2 Dynamic model 

The voltage equations of the PMSG in the d-q axis rotor field synchronous reference frame 

can be expressed using the following equations (Wu, et al., 2011; Bunjongjit & Kumsuwan, 

2013): 
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 Equation 4.14 

where vds, vqs, ids, iqs, Ld, Lq, represent the d and q axis stator voltages, currents, and self-

inductances respectively. The d and q-axis stator flux linkages are given as: 
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 Equation 4.15 

The rotor flux λr and the d and q-axis self-inductances Ld and Lq are in turn defined by: 
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 Equation 4.16 

where Ldm and Lqm represent the d and q axis magnetising inductances respectively, Lls 

represents the stator leakage inductance, and If is the field current. 

Substituting Equation 4.15 into Equation 4.14, the voltage equations can be rewritten as: 
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 Equation 4.17 

The electromagnetic torque is given by the formula: 

 ( )qsdsdsqse ii
P

T  −=
2

3
 Equation 4.18 

where P represents the number of pole pairs. 
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Substituting Equation 4.15 into Equation 4.18, the expression for electromagnetic torque can 

be rewritten as: 

 ( ) qsdsqdqsre iiLLi
P

T -
2

3
−=   Equation 4.19 

Finally, the rotor speed is expressed as: 

 )( mer TT
JS

P
−=  Equation 4.20 

with Tm representing the mechanical, J the rotor inertia, and S the Laplace operator.
 

4.3.3 Steady state model 

In the steady-state model, stator currents ids and iqs are considered DC values, making their 

derivatives equal to zero. Equation 4.17 above becomes (Wu, et al., 2011): 
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 Equation 4.21 

4.3.4 Equivalent circuit of the PMSG 

The simplified equivalent circuits of the PMSG are shown in Figure 4.6a and 4.6b for the 

dynamic and steady state models respectively. Note that the direction of the currents is out of 

the stator. This representation is according to the generator mode convention  
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(b) Steady state model 

Figure 4.6: Simplified equivalent circuits of PMSG 
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4.4 Modelling of the back-to-back voltage source converter 

The machine side rectifier and the grid side inverter are shown in Figure 4.7 and 4.8 

respectively. Both converters use PWM signals to convert the three-phase electrical power 

from the generator to a stable DC value on the generator side, and DC power to three-phase 

AC from the DC-link to the electrical grid on the grid side inverter. The converters are two-

level full bridge composed of three legs, each of them carrying one IGBT on the upper and 

lower levels. Rs and Ls are the stator phase resistance and inductance repectively, and van, 

vbn, vcn are the respective phase voltages. The DC link ensures proper power transfer from 

the generator to the grid. The power flow is illustrated in Figure 4.9 and can be expressed as 

(Anaya-Lara, et al., 2009): 
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Figure 4.7: Machine side rectifier 
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Figure 4.8: Grid side inverter 
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Figure 4.9: Power flow in the WTS 

 

 GRIDGENDC PPP −=  Equation 4.22 

PGEN is the electrical output power of the generator, PGRID the power transmitted to the grid, 

and PDC the power absorbed by the DC link capacitor which can be given as: 

 
dt

dV
CVP DC

DCDC .=  Equation 4.23 

where VDC is the voltage across the capacitor, C is the capacitance in Farads, and the term 

dt

dV
C DC  represents the current flowing through the DC link capacitor iDC. 

Equation 4.23 above can be rewritten as: 

 
dt

dVC
P DC

DC

2

2
=  Equation 4.24 

Making VDC the subject of the formula gives: 

 = dtP
C

V DCDC

2
 Equation 4.25 

Equation 4.22 into Equation 4.25 gives: 

  −= dtPP
C

V GRIDGENDC )(
2

 Equation 4.26 

As mentionned earlier in chapter 2, the back-to-back configuration allows bidirectionnal 

power flow. This means that both converters can act as rectifiers and inverters, depending on 

which direction the power is supplied. To investigate the power flow on the converters, the 

grid side inverter circuit is used as a reference as shown in Figure 4.10 (Wu, et al., 2011). 

The grid power is calculated as:  
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 gggGRID ivP cos3=  Equation 4.27 

where vg and ig are the grid phase voltage and current respectively, and δg is the grid power 

angle which is anglular difference between vg and ig. This angle can be positive (leading 

power factor), negative (lagging power factor), or equal to zero (unity power factor). The 

power angle can be used to determine the direction of power flowing through the converter 

as shown in Figure 4.10. İf Pgrid < 0, the power flow is towards the grid, if Pgrid > 0, the power 

flows towards the converter, and if Pgrid = 0 there is no power flow (Wu, et al., 2011). 
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Figure 4.10: Direction of power flowing through the inverter 
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Figure 4.11: Phasor diagram of the field-oriented control 
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4.4.1 Generator side converter control 

The generator side converter control is achieved using field-oriented control. Field oriented 

control of three-phase AC machines allows separate control of the torque and the rotor flux, 

emulating the principle of operation of DC machines. Figure 4.11 represents the phasor 

diagram of the field-oriented control, where αr is the torque angle and θr the rotor angle. If the 

d-axis stator current ids is made zero, the stator current is equal to its q-axis component and 

is kept at 90 degrees with respect to the rotor flux, for maximum torque production (Wu, et 

al., 2011; Bunjongjit & Kumsuwan, 2013). Equation 4.19 can therefore be simplified to: 

  qsre i
P

T 
2

3
=  Equation 4.28 

From the above equation, it is clear that the electromagnetic torque can be easily controlled 

through the stator q-axis current component iqs, since the flux is constant. Figure 4.12 shows 

the block diagram of the generator side controller used in this work. As illustrated, the three-

phase stator currents ia, ib, and ic are first acquired and combined into a space vector. The 

rotor flux angle is then obtained by finding the rotor angle of the PMSG, since the rotor and 

the flux rotate synchronously. In practice, this is achieved by placing an encoder on the rotor 

shaft. The three-phase currents are transformed and the equivalent d and q-axis currents ids 

and iqs are obtained, such that they sit at zero degree and 90 degrees respectively with 

respect to the rotor flux angle. The d-axis current reference value ids* is set to zero and the 

reference q-axis current component iqs* is derived from the reference torque using Equation 

4.28 above. Torque reference is calculated using OTC as explained in chapter 2. Error d and 

q-axis stator currents are passed through proportional-integral (PI) regulators, then a 

decoupling controller derived from Equation 4.21 above is used. The resulting d and q-axis 

rectifier voltages vdr* and vqr* are acquired then transformed back from rotating dq to natural 

abc frame, and the three phase stator reference voltages var*, vbr*, vcr* are obtained. The 

three voltages serve as input to the pulse width modulator (PWM) to generate the switching 

pattern of the rectifier controlling active power. θr is the measured rotor angle, and ias, ibs, ics 

are the measured three-phase stator currents (Wu, et al., 2011; Bunjongjit & Kumsuwan, 

2013). The decoupling principle is explained in the next section. 

4.4.2 Grid side converter control 

Similarly to the FOC on the generator side, voltage oriented control (VOC) is employed on 

the grid side. In this case, the q-axis voltage component of the rotating frame is set to zero 

while the d-axis is aligned with the grid voltage vector. This way, the control of generated 
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active power is ensured by the d-axis, while the reactive power control depends on and q-

axis current components respectively as expressed in Equation 4.29 (Wu, et al., 2011). 
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Figure 4.12: Generator side converter control 
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Figure 4.13: Grid side converter control 

Since vqg is set to zero, the grid active and reactive powers can be simplified as: 
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If the converter losses are neglected, it can be assumed that the active power is the same on 

both DC and AC sides of the inverter. Therefore, Pg in Equation 4.29 above can be rewritten 

as: 

 
dcdcg ivP

2

3
=

 Equation 4.31 

Equation 4.31 shows that the reference grid d-axis current can be used for the control of the 

DC-link voltage vdc. On the other side, the q-axis current component can be derived from Qg 

in Equation 4.32 as: 
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−=  Equation 4.32 

The block diagram of the grid side control is presented in Figure 4.13. As illustrated, the 

control uses two main external feedback loops, one for the control of the DC link voltage and 

the other for the control of reactive power. Two internal current control loops are also 

available for the control of d and q current components generated from the DC link voltage 

and the reactive power respectively (Wu, et al., 2011). 

The three-phase grid voltages and currents, as well as the DC-link voltage measurements 

are first acquired. In order to realise reference frame transformations from abc to dq and vice 

versa, the grid voltage vector angle θg is needed. The phase locked loop (PLL) technique is 

therefore applied to track the grid voltage vector and extract its angle (Wu, et al., 2011). The 

dq equations of the grid voltages are expressed as: 
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 Equation 4.33 

where vdi and vqi represent the d and q-axis inverter voltages respectively, ωg the grid 

angular velocity, Rg and Lg the grid resistance and inductance respectively. The above 

equation shows the cross-coupling nature of the system control, since both d and q terms are 

present in each one of the expressions vgd and vgq. Consequently, a decoupling controller is 

used to ease calculations and improve the dynamic response of the controller (Wu, et al., 

2011).  

Rearranging the terms in Equation 4.33, Equation 4.34 is obtained as: 
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 Equation 4.34 

Considering the PI nature of the controllers, Equation 4.34 can be rewritten as: 
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where idg* and iqg* are the d and q-axis reference currents, kipd and kiid are the d-axis 

proportional and integral gains, kipq and kiiq are the q-axis proportional and integral gains 

respectively. Rearranging Equation 4.34 andEquation 4.35, and substituting the first one into 

the second, the following expressions are obtained (Wu, et al., 2011): 
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 Equation 4.36 

From the above equation, it can be noted that the d-axis and q-axis components are clearly 

separated from each other, showing the decoupled nature of the control system. In Figure 

4.13, vai*, vbi*, vci* are the reference inverter three phase voltages, vag, vbg, and vcg are the 

measured grid three-phase voltages, iag, ibg, and icg, the measured grid three-phase currents 

respectively (Wu, et al., 2011). 
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Figure 4.14: Two-level voltage source converter topology 
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Figure 4.15: Space vector diagram of the two-level inverter 

4.4.3 Space vector modulation (SVM) 

4.4.3.1 Switching states 

Figure 4.14 above represents the typical configuration of a two level VSC. The converter 

consists of three upper and lower switches of which each switch can be ON or OFF. It is also 

important to note that the upper switch and the lower switch on one leg of the converter can 

never be at the same state for the correct operation of this converter (Wu, et al., 2011). For 

simplification, only the states of the upper switches will be considered in this analysis.  

Let’s represent the ON state by 1 and the OFF state by 0. When one of the upper switches is 

ON (lower switch is OFF), the phase voltage is equal to the capacitor voltage Vdc. On the  

contrary, if the upper switch is OFF (lower switch is ON), then the phase voltage is 0. For 

instance, if S1 is ON, then van is equal to Vdc, otherwise, Van is equal to 0. This gives the 

possibility for eight different switching combinations (23) instead of 64 (26) if all the switches 

were to be considered (Wu, et al., 2011). Table 4.1 can therefore be derived. 

4.4.3.2 Relationship between space vectors and switching states 

Assuming a balanced three phase load, the following equation can be written: 

 ( ) ( ) ( ) 0=++ tvtvtv
cnbnan

 Equation 4.37 
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Table 4.1: Switching states and output voltages of the inverter 

Switching States Line to neutral voltages 

a b c  

Van 

 

Vbn 

 

Vcn S1 S3 S5 

0 0 0 0 0 0 

1 0 0 Vdc 0 0 

1 1 0 Vdc Vdc 0 

0 1 0 0 Vdc 0 

0 1 1 0 Vdc Vdc 

0 0 1 0 0 Vdc 

1 0 1 Vdc 0 Vdc 

1 1 1 Vdc Vdc Vdc 

 

where van, vbn, and vcn represent the load three-phase voltages at an instant t. The three-

phase variables can be transformed into two-phase by applying the abc to αβ transformation 

discussed in section 4.3.1, to obtain a space vector v(t) as expressed in Equation 4.39 (Wu, 

et al., 2011): 
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  Equation 4.39 

Further developing expression Equation 4.38 and substitution into Equation 4.39 leads to:  
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   Equation 4.40 

The above equation can also be written in exponential form as: 
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Table 4.2: Space vectors, switching states, and vectors definition 

Vectors Switching states Vectors definition 

V0 000 0 

V1 100 dc
V

3

2
 

V2 110 3

3

2 π
j

dc
eV  

V3 010 3

2

3

2 π
j

dc
eV  

V4 011 
πj

dc
eV

3

2
 

V5 001 3

4

3

2 π
j

dc
eV  

V6 101 3

5

3

2 π
j

dc
eV  

V7 111 0 

 

Considering the first active switching state in Table 4.1, van=Vdc, and vbn=vcn=0. Replacing 

those values into Equation 4.41, the corresponding space vector V1 is obtained as: 

 
dc

VV
3

2
1
=


 Equation 4.42 

Following the switching arrangement given in Table 4.1 above, the other space vector 

expressions can be obtained as shown in Table 4.2 above. From this table, the space vector 

diagram shown in Figure 4.16 can be generated. It is important to note the 60 degrees (π/3) 

phase difference between the stationary active space vectors. Figure 4.16 also shows that a 

reference vector vref can be produced from the two active space vectors and the zero space 

vectors that constitute a section. For instance, vref in section I of the space vector diagram is 

made of the active space vectors V1 and V2, and the zero space vector V0. The reference 

vector vref  is expressed as (Wu, et al., 2011): 

 
j

refref evv .=  Equation 4.43 
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Figure 4.16: Space vector diagram of the grid side inverter 

where │vref │is the magnitude of the reference vector refv , and θ is the phase angle. These 

two quantities can be defined as: 
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 Equation 4.44 

4.4.3.3 Dwell time 

In order to generate the reference space vector vref, selected switches need to be at a 

particular state (ON or OFF) and for a certain duration. The duration for which the selected 

switches are ON or OFF for a given sampling period Ts is called dwell time and can be 

calculated according to the volt-second balancing principle (Wu, et al., 2011). Assuming that 

vref is located in section I, then the volt-balancing equation can be written as: 

 002211 TVTVTVTv sref ++=  Equation 4.45 

where T1, T2, and T0 are the dwell times of V1, V2, and V0 respectively and Ts =T1+ T2 +T0. 

Taking Equation 4.45 and making vref the subject of the formula, Equation 4.46 is obtained 

as: 
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1 ++=  Equation 4.46 



 

66 

The above equation is illustrated in figure 4.16, where vref lies in sector I. 

Substituting Equation 4.43 and the vectors definitions of vectors V1, V2, and V0 from Table 4.2 

into Equation 4.45, Equation 4.47 is obtained as (Wu, et al., 2011): 

 3

21
3

2

3

2
.

π
j

dcdcs

θj

ref
eTVTVTev +=  Equation 4.47 

The real and imaginary components of the above equation can be derived as: 
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The dwell times can therefore be calculated using from Equation 4.49 below: 
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It is shown in Figure 4.16 that there is a relationship between vref and the magnitudes of the 

dwell times. As such, the relationship between the location of vref and the dwell times can be 

summarised as shown in  

Table 4.4. 

Table 4.3: Relationship between reference vector location and dwell times 

vref  location θ =0 0 < θ< π/6 θ = π/6 π/6 <θ <  π/3 θ =π/3 

Dwell times Ta >0; Tb =0 Ta >Tb Ta = Tb Ta <Tb Tb >0; Ta =0 

Equation 4.49 above can be rewritten in terms of the modulation index ma as: 
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where 

 
dc

ref

a
V

v
m
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3
 Equation 4.51 
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Figure 4.17: Seven-segment switching sequence for reference vector located in sector I 

Table 4.4: Seven segment switching sequence 

Sector 

Switching sequence 

1 2 3 4 5 6 7 

I 

V0 

 

000 

V1 

 

100 

V2 

 

110 

V0 

 

111 

V2 

 

110 

V1 

 

100 

V0 

 

000 

II 

V0 

 

000 

V3 

 

010 

V2 

 

110 

V0 

 

111 

V2 

 

110 

V3 

 

010 

V0 

 

000 

III 

V0 

 

000 

V3 

 

010 

V4 

 

011 

V0 

 

111 

V4 

 

011 

V3 

 

010 

V0 

 

000 

IV 

V0 

 

000 

V5 

 

001 

V4 

 

011 

V0 

 

111 

V4 

 

011 

V5 

 

001 

V0 

 

000 

V 

V0 

 

000 

V5 

 

001 

V6 

 

101 

V0 

 

111 

V6 

 

101 

V5 

 

001 

V0 

 

000 

VI 

V0 

 

000 

V1 

 

100 

V6 

 

101 

V0 

 

111 

V6 

 

101 

V1 

 

100 

V0 

 

000 



 

68 

4.4.3.4 Switching sequence 

With the space vectors selected and the dwell times calculated, the switching sequence of 

the inverter can be obtained. Assuming that vref is located in sector I, the seven-segment 

switching sequence in Figure 4.17 is derived.  

Table 4.4 summarises the switching sequence for all the seven sectors (Wu, et al., 2011). 

Summary of the chapter 

This chapter presented the mathematical modelling of the PMSG based WECS used in this 

work. Each section of the WECS was modelled separately from the mechanical turbine rotor 

and drive train, to the electrical generator and power converters. On the mechanical side, the 

turbine model equations were presented. The two-mass model implemented on the drive 

train was also discussed. On the electrical side both steady-state and dynamic models of the 

PMSG were discussed. Modelling equations and phasor diagram were derived and used for 

FOC of the generator side rectifier. The grid side inverter was also modelled using VOC and 

modelling equations were discussed. Finally, the space vector modulation used for the 

control of converters was presented and explained. 
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CHAPTER FIVE 

5 SIMULATION RESULTS AND DISCUSSIONS 

Introduction 

In this chapter, simulation results for the proposed fault ride-through methods employed are 

presented and discussed. Different scenarios are implemented to gauge the capacity of the 

system in achieving LVRT or not. A description of the complete power system is first given. 

The system modelling presented in the previous chapter is then validated through 

simulations under normal operating conditions (without grid disturbance), before simulations 

during grid faults are carried through. Finally, the results are analysed and compared, and 

small conclusions are drawn. 

5.1 Power system configuration 

The simulation model was developed using Simpowersystem, the power systems simulation 

tool of Matlab/Simulink. The complete power system and wind turbine models are presented 

in appendix B. Figure 5.1 is the single line diagram of the complete power system used for 

the simulation studies The system consists of 6 x 1.5 MW wind turbines each connected to a 

25 kV feeder through a 2 MVA transformer and 10 km transmission line. The 25 kV feeder 

supplies power to the 120kV grid using a 20 km transmission line and a 47 MVA step-up 

transformer. The grid is represented by a three-phase voltage source. The system 

parameters are presented in appendix A. 

 

9 MW wind 

farm

10 km line20 km line
T1T2

Bus 1Bus 2Bus 3

PCC

Grid

690 V25 kV120 kV
6 x 1.5 MW 

PMSG WTs

25 kV/690 V
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120 kV/25 kV

47 MVA

120 kV

2500 MVA

 

Figure 5.1: Single line diagram of the electric power system under study 
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5.2 Wind farm model aggregation 

The wind farm model used in this work is an aggregated model consisting of a representation 

of many individual wind turbines lumped into one unit, as opposed to a detailed model in 

which every single turbine is represented and modelled separately. In fact, with the detailed 

model, simulations become more complex due the increased overall system’s complexity 

and simulation time, while the model aggregated technique is simpler and faster, still without 

compromising the accuracy of the results (Qiao, et al., 2007; Sanchez, et al., 2012).  

As explained in literature (Koc, 2010), only electrical components are affected during model 

aggregation. Mechanical and aerodynamic parameters are not considered for aggregation. 

As a result, generator parameters such as rotor inertia, friction coefficient, pole pairs, turbine 

mechanical parameters and the pitch control system remain unchanged.  

To achieve proper model aggregation, generator and converter power ratings are multiplied 

by the number of turbines in the wind farm, while resistive parameters are divided by this 

number to supply new rated current. It is also assumed, for more simplicity that the wind the 

direction of the wind and the rotational speed are the same for all the individual wind turbines 

(Koc, 2010). 

5.3 Simulation results under normal operating conditions 

At first, the wind turbine system is tested under normal operating conditions to validate the 

effectiveness of the generator and grid side converter controllers in achieving MPPT and DC-

link and reactive power control respectively. As such, the varying step wind speed profile 

shown in Figure 5.2 is used as input to the turbine model. The wind speed increases from 9 

to 11 m/s with a 1 m/s increment rate then decreases back from 11 m/s to 9 m/s at the same 

rate, every 2 seconds. The pitch angle is maintained at maximum value (zero degree). 

The results displayed show that MPPT is successfully achieved by the generator side 

converter. As shown in Figure 5.3, the generator mechanical speed varies according to the 

change in wind speed. At 11 m/s, the generator speed is equal to 1 p.u, then 0.91 p.u and 

0.82 p,u respectively at 10 m/s and 9 m/s. These values correspond to the maximum per unit 

generator speed values for each wind speed. The mechanical torque is also displayed in 

Figure 5.4. Since torque control is used for MPPT, the torque variation also follows the wind 

speed input. The negative values indicate that the PMSM operates in the generator mode. In 

figures 5.5 and 5.6, the responses of the power coefficient and tip speed ratio are shown. As 

expected, the power coefficient remains constant at its rated value of 0.48 despite changes 

in wind speed, ensuring maximum power production from the turbine at lower and rated wind 

speeds. The tip speed ratio also remains constant at 8.1. 
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Figure 5.2: Wind speed profile 

 

 

Figure 5.3: Generator speed 

 

 

Figure 5.4: Turbine mechanical torque 
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Figure 5.5: Wind turbine's power coefficient 

 

 

Figure 5.6: Wind turbie's tip speed ratio 

 

 

Figure 5.7: Three phase stator voltages 
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Figure 5.8: Three phase stator currents 

 

As far as the electrical parameters are concerned, the three-phase stator voltages and 

currents are displayed on Figure 5.7 and 5.8 respectively. These results show that the 

voltages are proportional to the generator speed, while the currents are proportional to the 

mechanical torque, both in magnitude. The stator power is also shown in Figure 5.9. The d-

axis and q-axis stator currents are shown with their references in Figure 5.10. The d-axis 

current is constant at 0 p.u, to achieve zero d-axis current control and magnitude of the q-

axis current is equal to the stator current as expected.  

 

 

Figure 5.9: Stator active power 
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Figure 5.10: d and q-axis stator currents with references 

 

Figure 5.11: Three-phase grid voltages 

 

 

Figure 5.12: Three phase grid currents 
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Figure 5.13: DC-link voltage  

 

 

Figure 5.14: Current through DC-link 

 

 

Figure 5.15: DC-link power 
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Figure 5.16: d and q-axis grid currents with references 

 

 

Figure 5.17: Grid active power 

 

 

Figure 5.18: Reactive power to the grid 
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Figure 5.19: Grid frequency 

On the grid side, magnitudes of the three-phase voltages are equal to 1 pu regardless of 

changes in wind speed, while the three-phase currents closely follow the grid active power 

depicted in Figure 5.17, as shown in Figures 5.11 and 5.12 respectively. This way, the DC-

link voltage is directly proportional to the d-axis current as explained in section 4.4.2. Figure 

5.13 shows the DC-link voltage response to the changes in wind speed.  

Because the generator and the grid side converters are decoupled, and the DC-link is 

controlled from the grid side, the DC-link voltage is not expected to vary irrespective of 

changes in wind speed. Again, the controller does a great work in maintaining the DC-link 

value constant at its rated value. Figures 5.14 and 5.15 show that there is almost zero power 

flow into the DC-link capacitor, since the voltage is maintained nominal. The d and q-axis 

currents with their references are shown in Figure 5.16. As expected, these values closely 

follow their references. The q-axis is equal to zero, such that unity power factor is achieved. 

As a result, reactive power supplied to the grid is zero. The absolute values of the d-axis 

current are very close to the grid active power values as shown in Figure 5.18. Once more, 

this can be explained by Equation 4.31 in section 4.2.2. Finally, the grid frequency is also 

maintained constant as illustrated in Figure 5.19. 

5.4 Simulation results under faulty conditions 

5.4.1 Fault compensation 

5.4.1.1 Pitch angle control 

The aim of the pitch angle control is to minimize the extracted wind power when wind speeds 

are above rated value, but also to ensure maximum energy capture from the wind at lower 

and rated values. Normally, the pitch angle value is maintained at 0 degrees to satisfy the 

maximum energy capture but will increase as the rotational speed surpasses the nominal 

value. 
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Figure 5.20: Block diagram of the pitch angle controller 

 

Figure 5.20 represents a block diagram of the operation of the pitch angle control system. 

The reference rotor speed ωmref is compared to the actual measured speed ωm, and the error 

signal is sent to a PI controller to produce the reference pitch angle βref. This reference is in 

turn compared to the actual pitch angle value, and the error signal is used to correct the pitch 

angle to the desired value. 

However, practically, the blade pitch angle rotation is limited in range and speed. The design 

therefore takes into consideration the actuators servo mechanism time constant, the pitch 

angle limits (0 to 30 deg) and rate of change (±10 deg/s). 

5.4.1.2 DC-link protection 

During a grid fault, since the converters are decoupled, the DC-link capacitor will overcharge 

due to the continuous power supply from the generator. The braking resistor is used to 

dissipate this excess energy and thus keeping the DC-link and the converters safe. Normally, 

the DC-link voltage must be kept within the limits of the converters and the capacitor, which 

is around ±25% of its rated value, to avoid damage of the converters. 

Assuming the converter operates at 100% of generator rated power, the braking resistor 

should be designed to dissipate rated power of the turbine and in this case its value would be 

equal to 0.96Ω. For the braking resistor’s controller, in order to obtain worst case scenario 

results, the maximum allowable DC-link voltage is fixed to 1500V (1.25 pu) which 

corresponds to 25% of the rated DC-link voltage. 
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Figure 5.21: DC-link protection scheme 
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Figure 5.22: Grid reactive power support scheme 
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To control the switching of the resistor, the DC-link voltage value is measured and compared 

to a predefined value set not exceeding 1.2 pu. As long as the Vdc remains within the normal 

range, the controller sends a “0” signal and the braking resistor stays inactivated. Otherwise, 

a trip signal “1” is immediately sent to the resistor’s switch and the excess stator current 

starts flowing through the braking resistor instead of overcharging the capacitor. This control 

is illustrated in Figure 5.21 above. 

5.4.1.3 Reactive power compensation 

The reactive current support requirement during grid fault is presented in Figure 3.9 of 

section 3.1.5. As illustrated, when the grid voltage is comprised between 0.9 p.u and 1.1 p.u, 

no reactive power compensation is necessary. That portion corresponds to area A. For grid 

voltages below 0.9 p.u down to 0.5 p.u, reactive current injection is required to increase as a 

function of the dip level, constituting area B. Finally in area C (for grid voltages below 0.5 p.u) 

100 percent reactive current contribution expected. Figure 5.22 above shows the flow 

diagram of how LVRT compensation is achieved. 

5.4.2 Case studies for simulations under grid faults 

To assess the effectivenes and robustness of the wind farm system to comply with the LVRT 

requirements presented earlier in section 3.1, different case scenarios are considered. These 

different scenarios are classified according to the location, the type, the dip level and 

duration, and eventually the wind speed conditions. The results are also compared 

depending on whether reactive current is injected according to Figure 3.9 to support grid 

recovery or not, for the different LVRT methods tested. 

 

Figure 5.23: Voltage profile during fault at bus 3 for case 1 
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5.4.2.1 Case 1: Full power, 100% three-phase voltage dip at bus 3, fault duration 150 

ms. 

 

Figure 5.24: Voltage profile at PCC during grid fault for case 1 

 

 

Figure 5.25: Grid active power output during grid fault for case 1 

The results for the first case scenario are displayed in Figure 5.23, Figure 5.24, Figure 5.25 

and Figure 5.26. A three-phase fault at bus 3 is introduced at time t = 2 s, for a duration of 

150 ms. Figure 5.23 shows the voltage drop at bus 2 (PCC). With the conventional control, 

the voltage drops to about 0.16 p.u. This value is improved to 0.21 p.u when the LVRT 

control is activated. The grid active power also experiences an improvement from 0.08 p.u 

with the conventional control, up to 0.13 p.u with the LVRT control, as depicted in figure 5.24. 
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Figure 5.26: DC-link voltage during grid fault for case 1 

 

 

Figure 5.27: Grid reactive power output during grid fault for case 1 

Moreover, after fault clearance and under conventional control, the active power to the grid 

reaches about 1.25 p.u and is maintained at that value until time t = 2.8 s, before dropping 

back to nominal value. This situation can be explained from the DC-link behaviour as 

illustrated in Figure 5.26. During the fault duration, the generator’s speed is not affected by 

the low voltage condition on the grid side due to the decoupled nature of the controllers, 

causing the DC-link to rise uncontrollably when no additional action is applied as explained in 

section 3.2. As a result, the DC-link voltage rises up to a value of about 3.81 p.u. After fault 

clearance, the DC-link voltage decreases progressively until it reaches back its nominal 

value of 1 p.u at time t = 2.8 s. During this recovery time, the surplus power stored in the DC-

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Grid active power

Time (s)

P
g
ri

d
 (

p
u

)

 

 

LVRT control Conventional control

1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

Time (s)

V
d
c
 (

p
u

)

DC-link voltage 

 

 

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Grid active power

Time (s)

P
g
ri

d
 (

p
u

)

 

 

LVRT control Conventional control

1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6
Grid reactive power

Time (s)

Q
g
ri

d
 (

p
u

)



 

84 

link is injected to the grid in addition to the generated active power. Using the LVRT control 

during fault, the DC-link voltage oscillates between 1.1 p.u and 1.25 p.u which correspond to 

about 1320 and 1500 Volts respectively. Within these limits, the DC-link capacitor is safe 

from overcurrent and thus from eventual damage. The reactive power injected to the grid is 

illustrated in figure 5.27. To support the PCC voltage recovery, reactive power reaches 0.54 

p.u when the LVRT control is applied, whereas this value only reaches 0.3 p.u under 

conventional control.  

 

 

Figure 5.28: Voltage profile during fault at bus 3 for case 2 

 

 

 

Figure 5.29: Voltage profile at PCC during grid fault for case 2 
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Figure 5.30: Grid active power output during grid fault for case 2 

5.4.2.2 Case 2: Full power, 65 % three-phase voltage dip at bus 3, fault duration 500 

ms. 

In this case, a 500 ms three-phase fault, with an amplitude of 0.65 p.u is applied at bus 3 as 

illustrated in figure 5.28, at rated wind speed. Figure 5.29 depicts the behaviour of the 

voltage at bus 2 during grid fault under the conditions specified in case 2. With the 

conventional control, the PCC voltage drops directly to 0.4 p.u then continues to further 

decrease to 0.28 p.u until the fault is cleared. However, with the LVRT control, the PCC 

voltage curve shows a considerable improvement with values between 0.45 p.u and 0.5 p.u 

during the voltage drop. In Figure 5.30, the active power responses of both controls are 

presented. The active power to the grid shows a similar response to the PCC voltage. Under 

conventional control, this power suddenly drops to 0.5 p.u directly at fault occurrence, 

followed by a continuous decrease up to 0.28 p.u at fault clearance. Again, there is a 

limitation to about 1.25 p.u during the whole DC-link recovery time. However, the active 

power drop during the fault is improved to about 0.68 p.u when the LVRT control is activated, 

and recovery to rated value is almost instantaneous after the fault is removed.In Figure 5.31, 

the DC-link voltage is presented. Without LVRT compensation, the DC-link voltage rises 

even more than in case 1 (5.4 p.u against 3.81p.u), while the capacitor’s discharge time at 

fault clearance is also increased from 650 ms in case 1 to 1200 ms in the current case, which 

is understandable because of the increased fault duration. On the other hand, DC-link 

protection is satisfactorily achieved under LVRT control and the values are maintained within 

acceptable limits as in the previous case. The reactive power shown in Figure 5.32 peaks to 

0.2 p.u immediately when the fault occurs then ramps down to 0 pu with the conventional 

controller, due to the lower grid voltage dip. With the LVRT control, this value peaks at 0.76  
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Figure 5.31: DC-link voltage during grid fault for case 2 

 

 

Figure 5.32: Grid reactive power output during grid fault for case 2 

pu showing that more reactive power is injected for grid support in this case compared to the 

previous one, as expected from the reactive power requirement. 
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Figure 5.33: Voltage profile during fault at bus 3 for case 3 

 

 

Figure 5.34: Voltage profile at PCC during grid fault for case 3 

As shown in Figure 5.35, the grid active power only drops to 0.92 p.u during fault, but still 

overshoots at fault clearance to 1.25 p.u as in the previous cases, although in this case the 

power remains to that value for about 350 ms only. With the LVRT control, the active power 

does not deviate from the nominal value during fault, and the overshoot is also eliminated at 

fault clearance. The DC-link voltage rises up to 3 p.u during the fault, then takes about 350 

ms dropping back to nominal value as shown in Figure 3.36. This recovery time is 

considerably short compared to the previous two cases certainly because of the much lower 

voltage dip and also the longer fault duration in this case. However under LVRT control, the 

DC-link voltage is maintained constant at 1 p.u during the grid voltage dip. As a result, the 

1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.5

0

0.5

1

Time (s)

V
b
u

s
3
 (

p
u

)

Three-phase voltages at bus 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Grid active power

Time (s)

P
g
ri

d
 (

p
u

)

 

 

LVRT control Conventional control

1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Time (s)

V
b
u

s
2
 (

p
u

)

Voltage at bus 2

 

 



 

88 

protection switch is not triggered and no excess power is dissipated by the braking resistor. 

In Figure 5.37, the grid reactive power contribution during fault is presented. With no reactive 

current injection, the reactive power support to the grid is minimal (0 p.u) for the essential of 

the fault duration. When reactive current is injected, the reactive power contributes to about 

0.33 p.u, resulting in an improvement in PCC voltage recovery. 

 

 

Figure 5.35: Grid active power output during grid fault for case 3 

 

 

Figure 5.36: DC-link voltage during grid fault for case 3 
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Figure 5.37: Grid reactive power output during grid fault for case 3 

 

 

Figure 5.38: Voltage profile during fault at bus 3 for case 4 
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0.21 p.u as in case 1. The undershoot is cleared, and the voltage profile falls back into the 

LVRT curve limits. The grid active power in case 4 is shown in Figure 5.40. As in case 1, the 

active power to the grid drops to 0.08 p.u under normal control. However at fault clearance, 

its value quickly drops to 0 p.u, then ramps up to 1.25 p.u where it remains for 2 s before 

reaching back nominal power. When LVRT control is employed, the drop is improved to 0.13 

p.u and recovery after fault clearance is fast but not immediate, since there is a short 

transient before ramping back to the normal operating state. 

 

 

Figure 5.39: Voltage profile at PCC during grid fault for case 4 

 

 

Figure 5.40: Grid active power output during grid fault for case 4 
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Figure 5.41: DC-link voltage during grid fault for case 4 

 

 

Figure 5.42: Grid reactive power output during grid fault for case 4 
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Figure 5.43: Voltage profile during fault at bus 3 for case 5 

 

 

Figure 5.44: Voltage profile at PCC during grid fault for case 5 
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Figure 5.45: Grid active power output during grid fault for case 5 

 

 

Figure 5.46: DC-link voltage during grid fault for case 5 
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other previous cases. In fact, since the other two phases are still operating, the grid side 

converter is still capable of exporting most of the turbine’s power to the grid during the fault. 

As a result, DC-link overcharge is reduced. Meanwhile, when reactive current is injected 

during fault, it can be observed that the DC-link voltage rise is below 1.25 p.u, and therefore 

there is no need to activate the braking resistor under LVRT control. The reactive power 

support is displayed in Figure 5.47, for both the conventional and LVRT controls. 

 

 

Figure 5.47: Grid reactive power output during grid fault for case 5 

 

 

Figure 5.48: Voltage profile during fault at bus 3 for case 6 
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Figure 5.49: Voltage profile at PCC during grid fault for case 6 

 

 

Figure 5.50: Grid active power output during grid fault for case 6 
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power, keeping the active power at rated value after the fault is cleared. The DC-link voltage 

is shown in Figure 5.51. When no protection measure is taken, the DC-link rises up to 4.2 p.u 

and the discharge time is about 2 s. However, the charge of the DC-link capacitor could be 

limited with the help of the pitch controller. With the use of the braking chopper, the DC-link is 

controlled to remain within the operating limits although there is a little struggle to return to 

rated value after fault clearance, compared to the previous cases. Reactive power 

contribution during fault has also improved compared to case 1, with 0.38 p.u in this case 

against 0.3 p.u in case 1 under conventional control mode, and 0.6 p.u against 0.54 p.u 

when the LVRT control is used. Figure 5.52 shows the reactive power to the grid for case 6. 

 

Figure 5.51: DC-link voltage during grid fault for case 6 

 

 

Figure 5.52: Grid reactive power output during grid fault for case 6 
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Figure 5.53: Voltage profile during fault at bus 3 for case 7 

 

 

Figure 5.54: Voltage profile at PCC during grid fault for case 7 
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p.u and 0.22 p.u using the conventional control and the LVRT control respectively, as in case 

6. However, the overshoots after fault dismissal reach 1 p.u and last 50 ms on normal mode 

against 0.84 p.u and 25 ms on LVRT control. For the DC-link voltage, its value reaches 

around 1.76 p.u during fault under conventional control, then drops back to nominal value 

almost immediately after the fault is cleared. The discharge time is almost inexistent in this 

case since only 0.25 p.u active power is transferred to the grid at 7 m/s. Reactive power 

contribution is the same as for case 6, however the negative peaks after fault removal are 

reduced due to the short DC-link recovery time. 

 

 

Figure 5.55: Grid active power output during grid fault for case 7 

 

 

Figure 5.56: DC-link voltage during grid fault for case 7 
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Figure 5.57: Grid reactive power output during grid fault for case 7 

 

 

Figure 5.58: Voltage profile during fault at bus 1 for case 8 
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compensation, the DC-link voltage peaks at 3.7 p.u with a discharge time of about 0.6 s, 

while the voltage is satisfactorily regulated with LVRT control. The active power and the DC-

link voltage are presented in Figure 5.60 and Figure 5.61 respectively. Finally, in Figure 5.62, 

the reactive power is negative during the fault meaning that in this case, reactive power is 

rather absorbed from the grid. 

 

Figure 5.59: Voltage profile at PCC during grid fault for case 8 

 

 

Figure 5.60: Grid active power output during grid fault for case 8 

 

1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (s)

V
b
u

s
2
 (

p
u

)

Voltage at bus 2

 

 

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Grid active power

Time (s)

P
g
ri

d
 (

p
u

)

LVRT control Conventional control

1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (s)

V
b
u

s
2
 (

p
u

)

Voltage at bus 2

 

 

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Grid active power

Time (s)

P
g
ri

d
 (

p
u

)

LVRT control Conventional control



 

101 

 

Figure 5.61: DC-link voltage during grid fault for case 8 

 

 

Figure 5.62: Grid reactive power output during grid fault for case 8 
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to the fault type, the fault depth, the fault duration and the fault position. The results were 

compared on the basis that faults compensation methods were employed in addition to the 

conventional controller or not during grid different faults.   
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CHAPTER SIX 

6 CONCLUSIONS AND RECOMMENDATIONS 

This thesis investigated the capability of a wind energy conversion system in remaining 

connected to the electrical network during grid disturbances, in this case voltage drop, as per 

specified by the grid code FRT requirement presented in section 3.8 of this document. The 

installation of large capacity wind power plants as an attempt to reduce the global carbon 

emissions has emphasized the urge for system operators to ensure that wind farms 

connected to the transmission and distribution networks comply with certain requirements, 

for smooth, safe and reliable grid operation. In fact, a loss in generation capacity due to a 

large scale WPP disconnection as a result of a grid voltage sag may lead to a succession of 

production losses which could further cause a partial or sometimes complete power system 

shutdown. This situation is clearly undesirable and therefore should be absolutely avoided. 

In this study, a grid connected PMSG WECS was tested with regards to its ability to ride 

through a low voltage inception at grid level. Different case scenarios were investigated. 

From the simulation results it can be concluded that: 

• The system shows great stability under varying wind speed conditions. MPPT is 

successfully achieved through OTC on the generator side, while DC-link regulation and 

unity power factor operation objectives are met on the grid side. 

• The braking chopper circuit manages to keep the DC-link voltage at an acceptable level 

during different grid sag conditions, ensuring the safety of the power converters.  

• The braking chopper only regulates the DC-link voltage and does not improve the PCC 

voltage drop during the fault. However, there is a faster and smoother recovery to pre-

fault value after fault dismissal. 

• Reactive current injection can considerably reduce the power through the DC-link by 

increasing the voltage at the connection point during a grid fault. In most cases, this is 

not sufficient in keeping the DC-link voltage below the maximum allowable limit. The 

braking chopper therefore overtakes the protection duty. 

• The grid side converter successfully supplies reactive current to support the grid voltage 

during fault, according to the reactive power support requirement described in figure 3.9 

of section 3.1.5. 

• When the fault occurs at the wind farm’s terminals, reactive power is rather absorbed 

from the grid and the PCC voltage is not supported. 
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The following suggestions are proposed for future investigations: 

• The study could also be conducted on a larger scale using an IEEE 14-bus test sytem or 

even a portion of the South African network as test benchmark and other grid code 

requirements could be investigated. 

• An experimental approach of the study could be implemented through real time 

simulations and laboratory scale work. 

• Interaction between individual wind turbines in a WPP using a detailed wind farm model 

in the case of internal abnormalities. 

• Reactive power supervisory control of grid connected renewable energy systems during 

grid faults. 
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APPENDICES 

 

6.1 Appendix A: System parameters 

Table A.1: Individual wind turbine parameters (Nasiri, et al., 2015) 

Parameters Values 

Rated power 1.5 MW 

Air density 1.225 kg/m3 

Blade radius 35.25 m 

Maximum power coefficient 0.48 

Optimal tip speed ratio 8.1 

Rated wind speed 11 m/s 

Total moment of inertia 4872000 kg/m2 

Damping coefficient 200 Nms/rad 

 

Table A.2: Generator parameters (Nasiri, et al., 2015) 

Parameter Value 

Rated power 1.5 MW 

Rated voltage 690 V 

Rated flux 7.0172 Wb 

Stator resistance 3.17 mΩ 

Stator inductance 3.07 mH 

Number of pole pairs 40 

 

Table A.3: DC-link parameters (Nasiri, et al., 2015) 

Parameter Value 

DC-link voltage 1500 V 

DC-link capacitance 0.023 F 

Switching frequency 5000 Hz 
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6.2 Appendix B: System simulation model 
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Figure B.6.1: Electric power system model 
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Figure B.6.2: Complete model of the PMSG wind energy conversion system 
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Figure B.6.3: Simulation model of the generator side converter 

 

 

  



 

116 

 

 

 

 

 

Figure B.6.4: Simulation model of the grid side converter 


