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ABSTRACT 

The food industry is facing many challenges to provide safe food free from microbial 

contamination and especially free from mycotoxins, which seems to bypass the pasteurisation 

treatment frequently used for microbial deactivation in industry. Mycotoxins are secondary 

metabolites produced by numerous microorganisms. Among mycotoxins, patulin is well known to 

affect apples and is therefore found in apple juice and apple cider. Patulin is in fact a mycotoxin 

produced by Penicillium expansum. It is toxic; hence, there is a need to remediate the toxin from 

juices. After the ingestion of patulin, gastrointestinal symptoms such as diarrhoea, vomiting, 

nausea and may ensue leading to death. 

In this study, different method of patulin treatment was elaborated on but the emphasis was on 

photocatalysis. The purpose of this thesis was to treat patulin in apple juice by the means of 

photocatalysis. Photocatalysis requires nanoparticles and light. The choice of nanoparticles was 

(TiO2) which were synthesized from titanium chloride (TiCl4) in different solubilising matrices 

using a wet chemical method. The quantification of patulin from apple juice was measured using 

the LC/MS instrument. As a result, the best TiO2 nanoparticles derived from TiCl4 dissolved in 

water. Photocatalysis experiment was done in 2 different conditions under different Ultraviolet 

(UV) light intensity of 15V and 30 V. The results shown that UV 30 provided the greater 

percentage degradation as compared to UV 15 demonstrating that, the efficiency of photocatalysis 

depends on the light intensity. Overall, the patulin level, were reduced to below 10 ng/L within 

180 min of treatment, with the juice adhering to the internal quality standard of patulin in apple 

juices. In conclusion, photocatalysis was determined as an efficient treatment for patulin 

degradation in apple juice. This is therefore, a cheap and easy method of patulin treatment for 

small-scale juice producers. 
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OUTLINE OF THE THESIS 

The research presented in this thesis was conducted in the BioERG laboratory based on 

experimental studies. BioERG is located at the Faculty of Applied Sciences, Cape Peninsula 

University of Technology, Cape Town, South Africa in Collaboration with the Cape Town Cold 

drink Company Ltd (Pty), South Africa. This thesis was structured in 6 chapters, as follows:  

• CHAPTER 1: Introduction and motivation 

A general background on Patulin, and an understanding of its origins and health effect in humans is 

discussed. It also provides the main objectives achieve in this thesis as well as the questions raised 

to develop the research. 

• CHAPTER 2: Literature review 

In this chapter, a literature review on patulin with the different method for its quantification and 

detection are discussed as well as its treatment methods in apple juice using photocatalysis approach 

and a synthesized TiO2as nanomaterial.  

• CHAPTER 3: Effect of solubilizing matrices for TiCl4 on the formation of TiO2 nanoparticles 

The synthesis of TiO2 was conducted through wet chemical method, which is mainly discussed in 

this chapter. The focus of  this chapter is to investigate the best solubilizing matrices between water, 

methylene chlorine and toluene for TiO2 synthesis, which was chosen for photocatalytic 

experimental. 

• CHAPTER 4: Photocatalytic application of nanoparticles TiO2 synthesised from Ticl4 in 

the degradation of Patulin in water matrices and apple juice 

This chapter investigates the effectiveness of photocatalysis in the treatment of patulin from water 

matrice and apple juice. 

• CHAPTER 5: General discussion, conclusions and recommendations 

This chapter provides a general discussion, conclusion and recommendations for future studies. 

• The references section, provides a list of bibliographical references consulted for the study.  
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BACKGROUND AND MOTIVATION 
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1. CHAPTER 1: 

INTRODUCTION 

 

1.1 Background and motivation 
Patulin is a secondary metabolite produced by moulds such as Penicillium expansum. This 

psychrophilic blue mould is responsible for fruit spoilage on apples and pears including patulin 

contamination as it is produced as a by-product. Overall, the remediation of patulin is a great 

challenge for the fruit juice industry. Several researches have conducted studies on patulin 

detection, quantification and on other properties such as its volatility. About 80% - 90% of patulin 

in juice is quantified by HPLC combined with UV detection at 276 ηm (Lin et al., 2014). 

Several methods around the treatment of patulin have been recently reported. Regal et al. (2017) 

has reported the efficiency of a photodegradation process using UV/visible light to inhibit 

microbial growth of patulin producers and to reduce the patulin toxin in the juice for a reaction, 

which was described by first order kinetics. Overall, the pasteurisation process on its own does not 

have any significant effect on patulin reduction but a combination of SO4 and heat can reduce the 

level of patulin in apple juice. In addition, the heating process does not affect neither the quality 

nor the physical properties of the juices as well as their sensory properties (Tabatabaei Yazdiet al., 

2010), with evaporation having a significant effect in the clarity of apple juice as compared to heat 

treatment (Kadakal et al., 2003).  

Currently, photocatalysis is one of the alternative, innovative and promising techniques for 

degradation of mycotoxins in food matrices. Photocatalysis is energy dependant (Mayer et al., 

2019). It is more efficient in a batch system compared to a continuous system (Rodriguez-Gonzalez 

et al., 2019); albeit, a continuous system will greatly improve the productivity of the system being 

used. Photocatalysis involves both UV/visible light and nanoparticles. Nanoparticles are generally 

used for the treatment of innocuous compounds in wastewater treatment, dye degradation, bacterial 

deactivation and in the pharmaceutical industry for production of toothpaste, cosmetic products 

including in the production of paints. Several nanoparticles (Cu2O, SnO, ZnO) have been 

intensively studied and applied in wastewater treatment research, but TiO2 has gained popularity 
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because of its stability, affordability, large band gap, recyclability and its efficiency in 

photocatalysis (Athanasekouet al. , 2018).  

 

1.2 Research questions 
The gaps identified above raised the following questions: 

• What is the appropriate method and technique for patulin quantification in apple juice? 

• What is the best solubilising material for TiO2 synthesis from TiCl4? 

• What is the impact of photocatalysis in patulin treatment in an apple juice using TiO2 from 

TiCl4? 

 

1.3 General objectives 
General aim: This study is contributing to human health protection by treating patulin from apple 

juice. 

Objective1: To screen the level of patulin in commercial apple juice produced from the Cape 

Town cold drink company. 

Activity 1: To extract patulin from apple juice using solid phase extraction (SPE) and liquid-liquid 

microextraction and to develop rapid and valid HPLC MS MS method for patulin detection and 

quantification in apple juice. The best extraction method was selected and reported herein. 

Activity 2: To compare the results obtained with the acceptable national and international level of 

patulin in juices from the association of analytical chemists (AOAC) and food and drugs 

Administration (FDA). 

Objective 2: To remove patulin from apple juice by UV photocatalysis using TiO2. This objective 

was performed in two parts. 

Part A:  To synthesize TiO2 using wet chemical method. 

Activity 1: To synthesise TiO2 from different TiCl4 solutions in different matrices such as water, 

toluene, methylene chloride in order to find the best solvent for the TiCl4 salt.  
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Activity 2: To characterise TiO2 nanoparticles and select of the best TiO2 which is going to be 

coated on the surface of a solid glass for patulin removal in apple juice. 

Part B: To apply TiO2 photocatalysis using UV light for the degradation of patulin. 

Activity 1: To design and built a single flatbed reactor for patulin degradation in apple juice. 

Activity 2: To assess the effectiveness of the flat bed reactor under the variation of the energy 

level of light at a laboratory scale.   
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2. CHAPTER 2: 

LITERATURE REVIEW 

Photocatalysis: An approach for patulin degradation in apple juice for small-scale juice 

producers 

 

 

General overview of the article 

 

This chapter provides an understanding on Patulin, it origins, toxicology effect in human, the 

regulations and quantification using different analytical instruments. This chapter also provides a 

brief discussion on TiO2 nanoparticles as good a catalyst in photocatalysis. Different methods for 

patulin treatments are also discussed with the emphasis on photocatalysis which is the main 

purpose of this study. 
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Photocatalysis: An approach for patulin degradation in apple juice for small-scale juice 
producers 

M.M. Ngandjou Douanla1, S.K.O. Ntwampe1, L.C Razanamahandry2,3, K. Fölck4 

 

1. Bioresource Engineering Research Group (BioERG), Faculty of Applied Sciences, Department 
of Biotechnology, Cape Peninsula University of Technology, Cape Town, South Africa 

2. UNESCO UNISA Africa Chair in Nanoscience’s/Nanotechnology Laboratories (U2AC2N), 
College of Graduate Studies, University of South Africa (UNISA) 

3. Nanosciences African network (NANOAFNET), Materials Research Group (MRG), iThemba 
LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P.O. Box 722, Somerset 
West, Western Cape Province, Cape Town, South Africa 

4. The juicebox Pty Ltd renamed Cape Town cold drink company Pty Ltd 

 

2.1 Abstract 
This literature review explores photocatalysis as a promising approach for patulin degradation in 

apple juice.  Mycotoxins are secondary metabolites produced by microbial growth, specifically 

soil microorganisms, during postharvest under specific and favourable environmental conditions. 

Patulin is a mycotoxin produced by fungi in a variety of perishable, and semi perishable foods. 

However, the predominant source of patulin production is found in apple juice and apple cider. 

There are side effects of patulin in humans and animals, which are related to both gastro intestinal 

clinical outcomes depending on the level of ingestion. Hence, regulations, proper farming methods 

and efficient treatments need to be developed. Therefore, this literature review present different 

methods for patulin degradation with an emphasising on photocatalysis as an efficient treatment 

method for patulin degradation in apple juice.  

 

Keywords: Apple Juice, Nanomaterials, Patulin, Photocatalysis, TiO2  
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2.1 Introduction 

Food spoilages are generally a results of microbial growth in food. In fruits, vegetable and dairy 

products, fungi are the main spoilage agents (Garnier et al. , 2017,Samuel et al.,2015, Udoh et al. 

, 2015). In fact, under appropriated conditions, several fungus species produce some metabolites 

with the evolution of the specie producing secondary metaboltes under specific ecological 

conditions (Oroian et al. , 2014). There exists a variety of useful secondary metabolites such as: 

Strobilurin (antifungal), Gibberellins (growth Hormones), Herbicides (control weeds), Insecticides 

(control insects), Enzymes (proteins), Pigments (dyes), Antibiotics (drugs), Pharmacological 

drugs, and Mycotoxins which are poisonous (Gallo et al. , 2015, Stoev, 2015). However, one of 

the most harmful mycotoxins produced by fungal species in fruit is called patulin (Li et al. , 2017, 

Diao et al. , 2019). 

Patulin is a mycotoxin produced by fungus species such as Penicillium sp., Aspergillus sp. and 

Byssachlamys sp. These fungal species are responsible for high level of patulin production and are 

responsible for the high level of losses in term of fruits spoilage (Artigot et al. , 2009). Patulin 

appears in blue molds growing either at the surface or in the middle part of apples (Oroian et al. , 

2014). It has also been identified in oranges, peaches, mangoes, plumbs and lemons, including figs 

up to  a concentration of 87,6 µg/kg (Ji et al. , 2017). After ingestion of patulin, symptoms could 

include vomiting, diarrhea and nausea. Patulin could also cause tetragenic and carcinogenic 

diseases by affecting the nucleic material of human and animal cells. These diseases caused by 

patulin in humans and animals have lead countries and regulatory bodies such as WHO (World 

Health Organisation) to agree on a 50 µg/kg concentration limit of patulin in juices for adult and 

10 µg/kg for infants (Ji et al. , 2017). Although patulin has been found in a variety of food, studies 

on patulin has been more focused on apple products such as apple juice, including apple ciders as 

the most ingested beverages in the world (Li et al. , 2017, Zhong et al. , 2018). 

Several methods can be applied to remove patulin from juice. These methods include thermal and 

non-thermal methods. Avsaroglu et al. , (2015) reported pulsed-high hydrostatic pressure (Phhp) 

as a promising method for patulin reduction in clear apple juice. Although, also effective for the 

degradation of pathogenic microorganisms including patulin producers’ and related pathogens, the 

method is only effective in apple juice containing very low patulin concentrations and the results 

from this method does not follow a regular pattern. Ozone has been found to be effective for patulin 
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degradation but the treatment is limited by the fact that it decreases the level of nutrients in the 

juices with a reduction in the malic acid, phenolic acid and ascorbic acid being observed (Diao et 

al. , 2018).  

The degradation of patulin in apple juice using UV light is feasible and requires a higher light 

intensity as compared to the light intensity required to reduce 90 % of pathogen in the humans’ 

body. However, to achieve a successful patulin degradation using UV treatment without affecting 

the nutritional value of the juice, factors such as clarity of the juice, phenolic compounds and 

accelerating agents must be known. Accelerating agents could be biological compounds such as 

fructose (Tikekar et al. , 2014) or chemical compounds acting as catalysts. Catalysts are often used 

to speed up chemical reactions and one of the processes in which catalysts have been widely used 

in the past decade, is photocatalysis. This process required the presence of light including catalysts 

known as nanoparticles. In the past decade, TiO2 is one the most used nanoparticles in the world. 

It is nontoxic, cheap and can easily be produced, which in turn gives good advantages to the 

photocatalysis method currently observable as a good, reliable, fast, easy to operate technique. 

Therefore, this literature review discusses appropriate methods to remove patulin from apple juice 

focusing on the quantification and detection methods and the concept of photocatalysis TiO2 

nanoparticles, as a promising method of patulin treatment in apple juice. 

 

2.2.Patulin: toxicity, quantification and removal methods in apple juice 
Patulin (C7H6O4) (Figure 2.1) has a low molecular weight and belongs to the family of ketones 

(Khan et al. , 2019). The chemical structure of patulin presents a lactone group and hemiacetal 

group. It is a white crystal compound soluble in polar solvents and insoluble in very low pH 

solutions (González-Osnaya et al. , 2007). The short history on patulin stipulate that patulin was 

firstly described in 1942 by Wisner as an antibiotic to inhibit bacteria growth. However, this 

pronouncement was discredited when studies proved the detrimental effect of patulin in humans 

and animals health (Mayer et al. , 1969).  
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Figure 2-1: Patulin chemical structure (Collin et al., 2008) 

 

Patulin is carcinogenic, tetragenic, mutagenic, genotoxic, with its effects generating dysfunctions 

of the human gastrointestinal track. The associated ingestion symptoms include (among many 

others): vomiting, nausea and diarrhoea (Andersen et al., 2004, McCallum et al., 2002).  

 

2.2 Toxicity of patulin 

2.2.1 Genotoxic effect of patulin 
The genotoxic effect of patulin has tremendous consequences on human’s genetic material 

precisely on the chromosomes by forming micronucleus and nucleoplasmic bridges which disturb 

DNA structure and formation (Jayashree et al. , 2017). The destruction of the genetic material 

occurs when the level of glutathione decreases within the cell. In fact, glutathione is a major 

compound used by the cell for defense. The presence of patulin in the cell reduces the level of 

glutathione; hence, increases the genotoxic consequences. Modifications in the genome may lead 

to a wrong division of chromosomes during cell division and mitosis (Glaser and Stopper, 2012; 

Fliege and Metzler, 2000). The mutagenicity of patulin was assessed on V79 cells and HepG2 cells 

and the evidence that patulin creates deletion and point to mutation in the cell was due to the 

decrease of glutathione levels (Schumacher et al., 2005). 

2.2.2 Carcinogenicity 
The carcinogenicity of patulin in human and animals was demonstrated by the increase of 

exponential growth of tumour cells (Ciegleret al., 1971) and by the process of autophagy. In this 

process, cell degrades their own amino acids and their intracellular components such as 

mitochondria. Endoplasmic reticulum autophagy induced by patulin plays a tremendous role on 
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skin carcinogenesis (Guo et al., 2013). The genotoxicity and carcinogenicity of patulin in apple 

juice is of great threat for humans and animals and need to be addressed. Hence, the need of 

pursuing studies to develop new approaches for patulin prevalence detection and eradication in 

apple juice. 

 

2.2.3 Patulin prevention and pre-elimination 
The primary stage for patulin prevention and accumulation in apple juice is to monitor the pre-

harvest condition by the means of proper farming methods and the regulation of the postharvest 

conditions such as storage, sorting of fruits and washing. For small-scale producer of apple juices, 

Nachman paster (2008) suggested that trimming away the rotten and the affected part, can have a 

great significance in reducing the level of patulin in juice. However, this proposition can pose a 

big challenge for large-scale producers where fruits are processed in batches and when all process 

stages are automated. Therefore, trimming each affected apple would be time consuming and 

costly for companies in terms of labour. The other challenge is that patulin can also develop in the 

centre of the apple (Sulyok et al. , 2010). It is also important to understand that one way by which 

patulin can be handle by small-scale juice producers, is by understanding the manufacturing 

process as highlighted in Figure 2.2. 
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Figure 2-2: Industrial process for apple juice production.

9. COOLING 
The bottles are soaked in cool water 
for a minimum time of 5 min.  

12. RELEASE FOR DISTRIBUTION 
Bottles are carried in wooden crates if delivered locally and carton 
box if deliver internationally. 

11. STORAGE 

The final product is stored at room 
temperature and away from the sunlight 

 

5. FILTRATION 
All Particles are removed 

7. PASTEURISATION 
The pasteurization process is 
started until the temperature is 
ranging between 80- 90 o C for 6 
seconds. 

 

6. SET UP THE PASTEURISER 
The pasteuriser is cleaned with 20% W/W caustic soda a 
dissoved in water for 30 mimutes 

8. BOTTLING 
The pasteurised juice is aseptically filled into sterilised glass 
bottles and closed with sterilised stainless-steel lead 

10. LABELLING 
The bottles are labelled with the labelling content including the 
expiry date and the name of the product 

4. PRESSING 
The presser setting, and the pressing 
process depend on the type of fruit 

1. RECEIVING OF FRUIT 
The fruits are inspected and chosen 
according to their level of maturity 
and ripeness 

 

2. SORTING OF FRUIT 
Rotten and damage fruits are 
removed as well as foreign particles 
 

3. WASHING 
The fruit are washed at room 
temperature using tap water  

 

4. COOKING 
The fruit are cooked using a 
steam pot at 100 0C 
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2.3 Methodology of patulin quantification in apple juice 
Chromatography is reliable, fast and cost-effective tool to separate and quantify molecules in a 

mixture. Chromatography is applying in several areas such as the food, pharmaceutical, and 

wastewater treatment industried. The principle of chromatography relies on the level of adhesion 

between the components in the mixture and the stationary phase. The stronger the adhesion 

between the components of separation and the stationary phase, the longer the retention time. The 

components are usually pushed through the column by the mobile phase. Based on the mode of 

action, chromatography exists in four main types, i.e. Liquid Chromatography, 

gas Chromatography, Thin-Layer chromatography and Paper Chromatography.  

Several methods for patulin quantification in apple juice have been developed but prior to 

quantification, patulin must be extracted from the juice. Some of the well-known technique for 

patulin extraction are; QuEchERS extraction (Kharandi et al., 2013), solid- phase extraction (SPE) 

(Bobeldijk and van Osenbruggen, 2005) and liquid-liquid extraction (LLE) with ethyl acetate 

(LLE) been adopted by the Association Of Analytical Chemists (AOAC) as an official method for 

patulin extraction. Table 2.1 illustrates different extraction methods with more details on the limit 

of quantification (LOQ) and the limit of detection (LOD). Although, LLE has been adopted by the 

AOAC as an official method for patulin extraction in apple juice, solid phase extraction presents 

some advantages such as low solvent consumption, ease to perform, feasibility, less time 

consumption and low cost involved. 
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Table 2.1: Patulin quantification methods in apple juice 

Methods LOD/LOQ Extraction and 
detection 
method 

Matrix References 

HPLC -MS/MS  LOD:0.25 
ng/mL-1 

LOQ:0.76 ng 
/mL 1 

 Liquid 
extraction 

Mass 
spectrometry 

Apple puree  (Lee et al., 
2014) 

(SPE–HPLC–
UV) 

LOD:  1.2 µg/kg 
to 42 µg/kg 

Solid phase 
extraction 

UV detection 

Apple puree  (Alvito and 
Almeida, 2010) 

(HPLC–DAD) LOQ & LOD:25 
µg/kg 

Solid phase 
extraction 

Diode array 
detection 

Apple juice  (Bobeldijk and 
van 
Osenbruggen, 
2005) 

HPLC None Reversed-phase 
isocratic 

UV detection 

Apple juice and 
apple puree 

(Leggott and 
Shephard, 2001) 

SPE prior HPLC LOD: 20 µg/l Liquid-liquid 
extraction 

UV detection 

apple juice (Permaul and 
Odhav, 2001) 

 

2.3.1 Chemical reagents used in chromatography for patulin quantification 
The chemical approaches of patulin quantification begin with sample preparation step which 

consists of extracting patulin from the juice matrix. Sample preparation in any test is of crucial 

importance as most often the quality of the result relies upon this technique. In fact, the sample 
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preparation consists of extracting the analyte from the matrices. After extraction, the analyte is 

injected in the chromatography apparatus depending on the nature of the analyte. 

2.3.1.1 Gas chromatography (GC) - mass spectrometry 
GC is often used the component to be analysed is in a gaseous form. The use of GC for patulin 

quantification has not been the way to follow in many studies because patulin has a low volatility 

and has a low molecular weight. Also GC requires an extra step that involves chemical reagents 

like acylation and trimethylsilyl ether which are chemical that increase the volatility of patulin. 

The loss of the analyte and the contamination of sample easily occur in GC. The technique also 

lacks a clean-up step and requires derivation step (Li et al., 2017). 

2.3.1.2 Liquid chromatography – mass spectrometry (LC – MS) 
LC has been proven to be effective the determination of patulin in food matrices. It works at its 

best when it is coupled with mass spectrometry. LC does not require derivative step. It has a high 

sensitivity; low selectivity. It is of good repeatability and reproductively. Although the qualities of 

this technique are to be praised, it also has some shortcoming it is affected by the presence of 

interfering agents and require high solvent usage (Li et al., 2017). 

Patulin studies in South Africa has not been the focus of many studies for the past 18 years. Studies 

are very few, albeit not well elucidated and some of the results are outdated. Leggott and Shephard 

(2001) have conducted a survey on patulin concentration in 60 commercial apple juice and puree 

produce in Cape Town. The results were satisfactory for adult’s food as they raged between 5 and 

45 µg/L but very unsatisfactory for infant as the range were between 5 and 20 µg/L which is not 

in line with laws from to the regulatory bodies which stipulate that the concentration of patulin in 

infant food should not exceed 10 µg/L. Hence the need to develop studies in this area. 

 

2.4 Patulin removal methods 
Biological and chemical methods of patulin treatment in apple juice and apple cider have been 

developed. Biological methods usually are related to fermentation processes while other methods 

relies on the use of chemical and hydrothermal processes. 
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2.4.1 Fermentation as a biological process: relationship between patulin and 
Saccharomyces cerevisiae 

Fermentation is a biological process by which yeasts uses sugar to produce alcohol. Fermentation 

is either aerobic or anaerobic and, in both cases, the success of the process depends on the quality 

of the inoculum, the fermentation conditions and operation, the nature of the fermenter and the 

growth kinetics of the cells used. There are several yeasts capable of degrading patulin such as 

Rhodosporidiumkratochvilovae, Gluconobacteroxydans, Saccharomyces cerevisiae. 

Biological degradation of patulin put emphasis on alcohol fermentation as a promising way of 

patulin degradation and the focus has been put on Saccharomyces cerevisiae as the main 

fermentation agent. There are two hypotheses by which S. cerevisiae could degrade patulin, it is 

either by enzymatic reactions under specific conditions or by the ability of patulin not to disrupt 

the yeast cell wall (Coelho et al. , 2008). Patulin was able to produce forwards mutations in 

extrachromosomal cell of S. cerevisiae by changing the genetic material of the microorganism 

from wild type to petite. The mutations were confirmed by the ability of the microorganism to 

utilise glycerol. Patulin can also inhibit microbial growth by increasing the percentage of cell death 

during exponential phase. This is due to the immature formation of mitochondria cells during 

exponential growth, thus minimising the respiration process (Mayer et al. , 1969). 

The by-products resulting from patulin degradation are more polar that patulin itself. Table 2.1 

shows that E – ascladiol (Figure 2.3) and Z – ascladiol (Figure 2.4) are the main by-products from 

the degradation of [14C] labelled patulin during alcoholic fermentation. These compounds could 

be further degraded during fermentation to more polar compounds (Moss et al. , 2002, Ricelli et 

al. , 2007). The effect of E- ascladiol was demonstrated to have no toxic effect on humans and 

animals. Besides ascladiol compound, desoxypatulinic acid was also found as a byproduct of 

patulin degradation (Tannous et al. , 2017, Maidana et al. , 2016, Ricelli et al. , 2007). Patulin is 

also heat resistant and cannot be destroyed by pasteurisation process and according to Collin et al. 

(2008), hydroxypentanal and the glyoxilic acid could be the products from the heat degradation of 

patulin at 80 oC for a period of 40 minutes (Figure 2.5). 

The chemical structure of patulin presents a lactone group and hemiacetal group. However, the by-

products listed lack the presence of lactone and hemiacetal group, and could this could be the 

reason of less toxicity of E- ascladiol as compare to patulin. A hypothesis was proposed by 
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(Tannous et al. , 2017) stating that it the blocking to the conversion of ascladiol to patulinor by 

encouraging the conversion of patulin to ascladiol can ensue, which can be a good strategy to 

eliminate patulin contamination risks. 
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Figure 2-3: E-Ascladiol                          Figure 2-4: Z-Ascladiol 

 

 

 

 

 

Figure 2-5: Hypothetically degradation by product of Patulin (Collin et al., 2008) 

Glyoxylic acid 3- keto-5-hydroxypentanal Patulin 
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Table 2-1: Microorganisms able to degrade patulin and their by-product. 

Bacteria names Degradation products References 

Ascomyceta E- escladiol (Tannous et al. , 2017) 

Basidiomycetaphila E- escladiol (Ianiri et al., 2016) 

Pucciniomycotinasporobolomyces Deoxypatulinic acid and Z- 

escladiol 

(Ianiri et al. , 2013) 

Gluconobacteroxydans E- escladiol and Z- 

escladiol 

(Ricelli et al. , 2007) 

Rhodosporidiumkratochvilavae Deoxypatulinic acid (Castoria et al. , 2011) 

Saccharomyces cerevisiae E- escladiol and Z- 

escladiol 

(Moss et al. , 2002) 

 

2.4.2 Chemical treatment of patulin 
2.4.2.1 Ozone treatment 

Ozone is a powerful chemical oxidant used for the degradation of both biological and chemical 

contaminants in food. Ozone treatment is a promising industrial technique for the degradation of 

microorganisms and their toxins. Ozone present advantageous parameters over chlorides in term 

of food decontamination because it can be effective over a broad spectrum of microorganisms and 

it has be proven to be 50% more powerful than that chlorides. Ozone can be generated by chemical 

reaction (conversion of Oxygen to ozone) or phytochemical reaction (conversion of a gas mixture 

containing oxygen and expose to a power source). However, ozone cannot be produced readily 

and therefore it is produce when needed. This method is not well developed and understood and it 

can be very costly for industries (Diao et al. , 2018, Diao et al. , 2019). 
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2.4.2.2 UV treatment 
Ultraviolet (UV) are electromagnetic radiation ranging from 10nm – 400 nm, is usually produced 

by the sun and contributes about 10% of sunlight UV. It is known to damage the eyes and skin and 

causes cancer in cells. Although UV treatments have sides’ effects, it is fast, cost effective and 

very easy to operate method. It is used industrially for bacterial deactivation, heat treatment, 

sterilisation and others. Additionally, UV have been reported effective to degrade patulin in apple 

juice without affecting the quality of the juice. In fact, patulin can be significantly decreased when 

exposed to UV radiation for a period of 15sec without changing the chemical parameters of the 

juice such as pH, brix and acid content (Dong et al. , 2010) . Another study has demonstrated the 

efficacy of UV to degrade patulin in both apple juice and apple cider, with the degradation being 

determined to follow first order kinetic reaction. Patulin was significantly degraded from both 

matrices and the kinetic reaction constants was 5.5 % greater in apple juice compare to apple cider 

(Assatarakul et al. , 2012). The factors affecting patulin degradation using UV treatment are apple 

juice constituents, suspended compounds and polyphenols. Patulin degradation using UV 

treatment is more effective in clarified apple juice than that in non-filter apple juice because the 

radiation is blocked by suspended particulate matter in the apple juice preventing the rays to reach 

the patulin (Tikekar et al. , 2014).  

Biological and chemical methods are both effective in patulin reduction and do not totally 

remediate the toxin from the apple juice. There is a need to develop and explore other methods. 

 

2.5 Patulin photocatalysis using TiO2 nanoparticles: A promising method of patulin 
treatment in apples juice 

Photocatalysis is a process in which catalysis or a semiconductor activates light, to generate a 

chemical reaction. The light emits a photon, which excite the band gap of the semiconductor to 

generate a hole and electron pair production at the surface of the semiconductor (Zhang et al., 

1998). It is important that both electrons and holes production occur apart from each other to 

prevent the process of recombination which nullifies the photocatalytic reaction (Fujishima et al., 

2000, Linsebigler et al., 1995). 

 

https://docs.google.com/document/d/1ePboQ0WdY8353LbbJwdGJ0WdZsWryDdxbF8LbAvO7ZE/edit#heading=h.4f1mdlm
https://docs.google.com/document/d/1ePboQ0WdY8353LbbJwdGJ0WdZsWryDdxbF8LbAvO7ZE/edit#heading=h.4f1mdlm
https://docs.google.com/document/d/1ePboQ0WdY8353LbbJwdGJ0WdZsWryDdxbF8LbAvO7ZE/edit#heading=h.3as4poj
https://docs.google.com/document/d/1ePboQ0WdY8353LbbJwdGJ0WdZsWryDdxbF8LbAvO7ZE/edit#heading=h.3as4poj
https://docs.google.com/document/d/1ePboQ0WdY8353LbbJwdGJ0WdZsWryDdxbF8LbAvO7ZE/edit#heading=h.ihv636
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2.5.1 Mechanism of photocatalysis 
Photocatalysis is a combination of two words: photo which means “light” and catalysis also called 

“semiconductor. The process of photocatalysis result in production of holes positively charged and 

electron negatively charged due to the absorption of an energy greater than the one of it band gap. 

After excitation of the band gap by photon, which the energy is greater than the one of the band 

gap. Electrons and holes are produced. Their behaviour can represent two scenarios; both electron 

and holes can recombine to produce thermal energy or the can move apart from each other to 

participate in redox reactions (Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Reaction mechanism of photocatalysis adapted from (Li et al., 2016) 
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However, the reaction can take place at the surface or within the catalyst and depending on the 

location in which they occur two types of reaction are distinguished; homogenous and 

heterogeneous photocatalysis. Heterogeneous photocatalysis is an exothermic process in which the 

charge transfer is continuous. The semiconductor or catalyst remains inert after the reaction. It has 

been highly used in environmental clean-up for the removal of organic molecules in contaminated 

air and wastewater. Heterogenous reactions has two types of photoreactions depending on the 

origin of the excitation, i.e. catalyzed photoreaction (interaction between the adsorbate molecule 

and the catalyst substrate), and sensitized photoreaction (Liesbigher et al, 1995; Wong et al; 2006). 

 

2.5.2 Application of photocatalysis 
Photocatalysis has it genesis in the years 1970s (kavitakabra et al, 2004). It has been widely applied 

in water and air treatment. It is well applied in other disciplines of life such as pharmaceutical, 

paint, cosmetic and less in the food industries. The first application of photocatalysis was in the 

splitting of water by Fujishima and Honda (Linsebigler et al; 1994). Thereafter, researches have 

been intensified to understand and increase the effectiveness of photocatalysis process. 

Photocatalysis is a promising technology widely used in the past decade for the treatment of 

wastewater and the remediation of hazardous compounds in the environment. Unlike other 

treatment methods that uses energy- intensive methods, photocatalysis uses solar energy to 

deteriorate life threatening compounds in aqueous samples. In addition, the by-product of 

photocatalysis are often innocuous product compared to other treatments, which transfer hazardous 

product from one area to the other. Therefore, photocatalysis can be described as an effective for 

aqueous and gaseous phase treatments. The reaction conditions are often moderate and the 

outcome waste are minimal. The application of photocatalysis has been approved for self-cleaning 

glasses (Puricha et al; 2008), dye removal in wastewater treatment (Li et al., 2003; Augustina et 

al., 2003; Mc cullagh et al., 2007), environmental purification (Liquang et al., 2003) and removal 

of organic pollutant such as cyanide (Chatterjel and Dasgupta, 2005; Kabra et al., 2004). 



Chapter2 

22 
 

2.5.2.1 Introduction to nanoparticles 
Nanoparticles also called semiconductors, are substances used to speed up chemical reactions 

without taking part in the reaction themselves. The choice of catalysis is based on the factors such 

as the ability to increases the rate of the reaction, selectivity and stability. Catalysis have three 

ways of actions: (i) they can be involved in a reaction by interrelating with other reactants or 

products, (ii) They can also change the speed of a reaction and (iii) reappear to it in an authentic 

form. The advantages associates with the use of a catalyst are, minimal activation energy to form 

the products, with no transitional form being required while requiring less suitable conditions to 

operate (Fujishima and Zhang, 2006; Zhang et al., 1998). 

 

2.5.2.2 Toxicology parameters and health effects of TiO2 
Several research fields address the issue of hazardous nanomaterials but, nanotechnology is one of 

the well understood, promising and innovative technologies which can be applied for the 

degradation of biological and chemical pathogens in environmental sciences and in food. 

Nanotechnology relies on the application of nanoparticles with most not naturally occurring in the 

environment. They are often synthesised via biological (plants, agro-waste) or chemical (chemical 

salts) techniques. Up to date, chemical methods are specifically applied for TiO2 and a large 

number of other nanoparticle have been developed using methods such as chemical precipitation 

(Collazzo et al. , 2011, Jaggessar et al. , 2018, Syuhada et al. , 2018); the sol gel method (Mutuma 

et al. , 2015, Pinjari et al. , 2015, Vetrivel et al. , 2015), hydrothermal (Cano-Casanova et al. , 

2018, Gao et al. , 2015, Li et al. , 2016, Wu et al. , 2015), solvothermal processes (Xie et al. , 

2010, Yang et al. , 2009), combustion method (Ma et al. , 2015, Umale et al. , 2018), chemical 

vapour deposition (CVD) (Chimupala et al. , 2016), electrochemical synthesis (Döşlü et al. , 2018, 

Nur et al. , 2016) and fungus-mediated synthesis (Rajakumar et al. , 2015, Santhoshkumar et al. , 

2014). Amongst this, wet chemical method is known to be effective as chemical precipitation is 

applied with low chemical consumption, in a cost efficient many with quality product outcomes. 

TiO2 appears in three forms in nature, i.e. as anatase, rutile and brookite. Anatase is predominantly 

used in solar cells and its amorphous phase ease of conductivity allows for electrons to move 

freely. Anatase can also be easily doped with certain chemicals to increase its conductivity with 

both anatase and rutile being known to have a band gap of 3.0 and 3.2 eV, respectively (Kordouli 

et al. , 2015) which is suitable for photocatalytic degradation of pollutants. TiO2 has a low 
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absorption coefficient, a high refractive index, high surface area and a great photocatalytic activity 

with a high ion – exchange capacity where holes and electrons are produced for redox reactions to 

oxidise organic pollutant to non-toxic constituents such as CO2 and water in wastewater treatment 

plants and to sanitise air. Therefore, TiO2 could be used in various applications such as: 

photocatalysis for self-cleaning glasses (Calia et al. , 2017, Naufal et al. , 2017), photocatalysis 

for the remediation of naturally occurring organic matter (Sousa, 2017), wastewater treatment 

(Bhanvase et al. , 2017, Borges et al. , 2016, Chong et al. , 2015), environmental purification 

(Liqiang et al. , 2003), interfacial charge carrier transfer, and the removal of organic pollutant such 

as cyanide (Aguado et al. , 2002). 

The wet chemical method has been intensively adopted and perform to synthesise nanoparticles 

but with the growth of hazardous compound in nature, researchers are more concern on finding a 

green and environmental benign approach to TiO2 synthesis. Wet chemical method relies on the 

use of chemical reagents and it is advantageous in terms of low solvent consumption, ease of 

performance and cost effectiveness. All the reagents involved are used in a liquid form, thus ease 

of handling. More often, ammonium hydroxide is mixed with an amorphous TiCl4 or TiOCl2 in an 

aqueous solution (Yin et al. , 2001). Many of the previous study used ammonium hydroxide and 

ethanol (Gupta et al. , 2010) as solvents for TiCl4 salt. In this study, Ticl4 was purchased in a liquid 

state dissolved in water, methylene chloride and toluene and the choice solubilising matrices were 

intentionally selected based on polarity. According to our knowledge, no study has presented the 

effect of solubilising agent for TiCl4 on TiO2 nanoparticles synthesis. Therefore, this study reports 

the influence of solubilising matrices on TiO2 synthesis. 

TiO2 has worked best when it is coupled with UV light. Most of the time, TiO2 is usually coated 

on the surface of glass, plastic, paper and cloth. It has been proven by (Maneerat et al. , 2006) that 

TiO2 coated in plastic and combined with UV light can reduce the level of fruit spoilage at the 

postharvest stage. The study reported the number of colonies observe in plates that TiO2 combined 

with UV treatment has more efficiency in Penicillium sp compared to when TiO2 was used alone 

which is in line with the finding of (Hur et al., 2005). The availability of data regarding the toxic 

effect of TiO2 is still not reported. Skocaj et al (2011) have reported some attributes for which TiO2 

is known for, i.e.:  

● TiO2 is inert and non-toxic, 
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● TiO2 is not regarded as a carcinogenic material, and 

● It is safely used in foods and pharmaceuticals industries, paints and beauty products. 

 

2.5.2.3 Doping 
Doping is a process of modifying the chemical properties of a semiconductor or catalysts. The 

utilisation of Fe3+ Mo 5+, Ru3+, Os3+, Re5+, V4+ and Rh3+ between 0.1-0.5 % was reported to increase 

the redox potential of catalysts during photocatalysis (Choi et al., 1994). The different methods 

used to dope catalysts are: sol-gel method in acidic media, homogeneous precipitation or 

hydrothermal method and through hydrolysis. 

The advantages of doping a semiconductor is as follows: 1) increase the photocatalytic activity by 

reducing the hole and electrons recombination. A comparative study conducted by Cong et al. 

(2007) on pure TiO2 and TiO2 co-doped with nitrogen and 0.5% iron (III) concluded that the 

photocatalytic reaction with co-doped particles was increased by 75% under visible and 5% under 

UV light compared to pure TiO2, 2) a shift in the photocatalytic region from UV to visible light 

occurs by narrowing the band gap of the catalyst and by increasing the degradation process of 

targeted pollutant and/or contaminants (Cong et al., 2007). The degradation of methyl orange using 

TiO2 dope Fe 3+ orange under UV and visible light showed a great efficiency under visible light 

compare to UV irradiation due to the reduction of the band gap through the process of doping 

(Wang et al., 2006). Another study conducted by Ananpattarachai et al. (2009) on TiO2 using a 

variety of dopants such as diethonolamine, trimethylamine and urea, reported that effect of doping 

increased adsorption in visible light region and also increase the rate of degradation process. 

 

2.5.2.4 Application of photocatalysis for microbial disinfection 
Researches done by Wong et al. (2006) has proven that nitrogen – doped TiO2 as a disinfectant for 

environmental and medical purposes was infact more effective. It was demonstrated that TiO2 

doped Ni is more effective and have some great bactericidal activities on a broad number of 

pathogenic microorganisms such as Shigella flexneri, and Listeria monocytogenes.
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TiO2 has a broad biocidal spectrum that prevent and act against infections. TiO2 has the same 

microbial effect as H2O2. In fact, hydroxyl group, oxygen and water molecules produced from the 

irradiation of TiO2 disrupt the phospholipid of the cell membranes and therefore attack the DNA 

at a specific point. A variety of studies demonstrated that TiO2 is effective for microbial 

disinfection under UV light and result in a more productive result under visible light when the 

particles are doped with metals (Wong et al., 2006; Mc cullagh, 2007). In fact, the optimum 

concentration of TiO2 required for antimicrobial activity was shown (Sousa, 2017). Photocatalysis 

has also been approved effective for the remediation of naturally occurring organic matter (Li et 

al., 2003; Sousa, 2017). It is beneficial to use photocatalysis facilitated by TiO2 for mycotoxin 

removal in a liquefied form to obtain a satisfactory result after the photocalytic process. 

Photocatalysis has been highly used as a green technology for various industrial processes such as 

potable water and wastewater treatment including the concentration of spoilage organisms in fresh 

juices, hydrogen generation and CO2 conversion (Zhang et al., 1998). However, the application 

and the development of photocatalytic materials for perishable agricultural produce industries 

(juicing) still pose some challenges; therefore, an effort should be done to explore this area (Robert 

et al., 2017), for the benefit of small scale juice producers. 

 

2.6 Conclusion 
In summary, patulin is a mycotoxin produce by blue mould on rotten apple. It was proven to be 

carcinogenic for both humans and animals; hence, the need to degrade the toxin from food. Patulin 

can be quantify using LC/MS with the most predominant extraction from apple juice being liquid-

liquid extraction and solid phase extraction. Biological and chemical methods of patulin removal 

in apple juice and apple cider have been discussed. The biological methods are related to 

fermentation processes while other methods rely on the use of chemical and hydrothermal 

processes. Most of these methods affect the apple juice quality and resulting in it becoming 

unsuitable for consumption. However, UV light have been reported to be effective to degrade 

patulin in apple juice without affecting the quality of the juice. Ozone treatment is another 

promising industrial technique for the degradation of patulin in food. Nevertheless, ozone cannot 

be conserved and should be produced when needed which could be costly for industry; however, 

photocatalysis have been widely used in pathogen microorganism disinfection namely Eschericia 
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coli, Basilussubtilus, Staphylococcus aureus and it is proposed that patulin can also be treated 

using this technique for juicing operations in combination with TiO2. 
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3. CHAPTER 3: 

RESULTS 
 

IMPACT OF SOLUBILISING MATRICES FOR TICL4 ON 
THE FORMATION OF TIO2 NANOPARTICLES 

 

 

General overview of the article 

 

This paper aimed to synthesised TiO2 from TiCl4. To achieve this, a wet chemical method was 

adopted. The main objective was to find the best solubilizing matrice for TiCl4. Thus, TiCl4 was 

dissolved in three solubilizing matrice such as water, methylene chloride and toluene.   

As a result, TiO2 was successfully synthesis from the three solvent and after annealing, the samples 

were subjected to SEM, TEM, FTIR. The results showed that the samples have good optical 

properties. A comparison of particles showed that, the nanoparticles produce by TiCl4 dissolve in 

water provided the best particles size and the good characteristics. 
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Impact of solubilising matrices for TiCl4 on the formation of TiO2 nanoparticles 

M.M. NgandjouDouanla1, S.K.O. Ntwampe1, L.C.Razanamahandry2,3, E. Malenga4, E.Fosso-

Kankeu4, K. Fölck5 

 
1 Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, Cape Town, South 
Africa. 

2 UNESCO UNISA Africa Chair in Nanoscience’s/Nanotechnology Laboratories (U2AC2N), College of Graduate 
Studies, University of South Africa (UNISA). 

3 Nanosciences African network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National 
Research Foundation (NRF), 1 Old Faure Road, 7129, P.O. Box 722, Somerset West, Western Cape Province, Cape 
Town, South Africa 

4 School of Chemical and Minerals Engineering, North West University, South Africa. 

5 The juicebox Pty Ltd renamed Cape Town cold drink company Pty Ltd. 

 

4.1 Abstract 
Nanoparticles are generally used for the treatment of innocuous compounds in wastewater 

treatment, dye degradation, bacterial deactivation and in the pharmaceutical industry for the 

production of toothpaste, cosmetic products including in the production of paints. Several 

nanoparticles (Cu2O, SnO, ZnO) have been intensively studied and applied in wastewater 

treatment research, but TiO2 has gained popularity because of its stability, affordability, large band 

gap, recyclability and its efficiency in photocatalysis. This study reports on the influence of 

solubilising matrices on TiO2 synthesis. A wet Chemical method was used to synthesis TiO2 

nanoparticles by solubilising TiCl4 in three types of solvent: water, toluene and methylene 

chloride. Physical, chemical and optical properties of TiO2 nanoparticles obtained from these 

various solvents were characterised by XRD, UV-Vis, FTIR and SEM. Results are compared for 

each solvent with TiO2 nanoparticles solubilised in water having the best properties.   

 

Index Terms --- Titanium Chloride, Titanium Oxide, Nanomaterials, Wet Chemical method. 

Published as: M.M. NgandjouDouanla, S.K.O. Ntwampe, L.C. Razanamahandry, E. Malenga, E. Fosso-
Kankeu and K. Fölck. 2018. Impact of Solubilising Matrices for TiCl4 on the Formation of TiO2 
Nanoparticles. 10th Int'l Conference on Advances in Science, Engineering, Technology & Healthcare 
(ASETH-18) Nov. 19-20, 2018 Cape Town (South Africa). Pp 195-199, ISBN - 978-81-938365-2-1, 
https://doi.org/10.17758/EARES4.EAP1118249
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4.2 Introduction 
Several research fields address the issue of hazardous compounds in wastewater treatment but, 

nanotechnology is one of the well understood, promising and innovative technologies which can 

be applied for the degradation of biological and chemical pathogens in environmental sciences. 

Nanotechnology relies on the application of nanoparticles with most not naturally occurring in the 

environment. They are often synthesised via biological (plants, agro-waste) or chemical (chemical 

salts) techniques. Up to date, chemical methods are specifically applied for TiO2.A large number 

of other nanoparticle have been developed using methods,  such as: chemical precipitation ( 

Syuhada and Yuliarta, 2018 ; Coleazzo et al., 2011),  the sol gel method  ( Mutuma et al., 2015 ; 

Vetrivel et al., 2015),  hydrothermal (Umale et al., 2018 ; Ma et al., 2015), solvothermal processes 

( Xie et al., 2010 ;Yang et al., 2009), combustion method (Umale et al., 2018 ; Ma et al., 2015), 

chemical vapour deposition (CVD)  (Chimupala et al., 2016), electrochemical synthesis ( Döşlü et 

al., 2018 ; Nur et al., 2016) and fungus-mediated synthesis ( Rajakumar et al., 2015 ; 

Santhoshkumar et al., 2014). Amongst, these the wet chemical method is known to be effective as 

chemical precipitation is applied with low chemical consumption, in cost efficiency and quality 

product outcomes. 

TiO2 appears in three forms in nature, anatase, rutile and brookite. Anatase is predominantly used 

in solar cells and its amorphous phase ease of conductivity allows electrons to move freely. 

Anatase can also be easily doped with certain chemicals to increase its conductivity with both 

anatase and rutile being known to have a band gap of 3.0 and 3.2 eV, respectively (Kordouli et al., 

2015) which is suitable for photocatalytic degradation of pollutants. TiO2 has a low absorption 

coefficient, a high refractive index, high surface area and a great photocatalytic activity with a high 

ion – exchange capacity where holes and electrons are produced for redox reactions to oxidise 

organic pollutant to non-toxic constituents such as CO2 and water in wastewater treatment plants 

and to sanitise air.  Therefore, TiO2 could be used in various applications such as: photocatalysis 

for self- cleaning glasses (Calia et al., 2017 ; Naufal et al., 2017), photocatalysis for the remediation 

of naturally occurring organic matter (Sousa, 2017),  wastewater treatment (Bhanvase et al., 2017; 

Chong et al., 2015), environmental purification (Liqiang et al., 2003), interfacial charge carrier 

transfer and removal of organic pollutant such as cyanide (Aguado et al., 2002). 

Wet Chemical method has been intensively adopted and perform to synthesise nanoparticles but 
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with the growth of hazardous compound in nature, researchers are more concern on finding a green 

and environmental benign approach to TiO2 synthesis. Wet chemical method relies to the used to 

chemical reagents and it is advantageous in terms of low solvent consumption ease of performance 

and cost effective. All the reagents involved are used in liquid form. More often Ammonium 

hydroxide is mixed with an amorphous, TiCl4or TiOCl2 aqueous solution (Yin et al., 2001). Many 

of the previous study used ammonium hydroxide and ethanol (Gupta et al., 2010) as solvent for 

Ticl4 salt. According to our knowledge, no study has presented the effect of solubilising agent for 

TiCl4 on TiO2 nanoparticles synthesis. Therefore, this paper reports the influence of solubilising 

matrices on TiO2 synthesis. 

The objective of this study was (I) to determine the total PTE content, i.e. Al, Cu, Fe, Mg and Mn, 

and compare their binding forms in representative soil samples, and, (II) to evaluate metal 

distribution in the sediment samples using sequential chemical extraction (BCR), including (III) 

to characterize PTEs constituents in the soil using XRF and FTIR. 

 

1.3 Materials and Methods 

4.3.1 TiO2 synthesis 
All the reagents used in the study were of analytical grade purchase from Sigma Aldrich except 

for acetone (99,5%). All the TiO2 nanoparticles derived from the use of TiCl4in different solvent 

were synthesized under the same conditions using the wet chemical method. TiCl4 solution (1M) 

in toluene, in water, in methylene were purchase from sigma Aldrich. Ammonium hydroxide 32% 

was used to precipitate the nanoparticles in the solutions.  

TiCl4 (2 mL) was added drop- wise in a 100 ml Beaker containing ammonium hydroxide solution 

under vigorously stirring for 10 min until an amorphous white precipitate was obtained. The 

synthesis was done at 60 °C in a water bath.  The samples were dried in an oven at 80°C to 

transform the amorphous phase to a solid phase. The dry particles were transferred in tubes and 

washed several time with warm distilled water to remove the excess of chloride. All the samples 

were collected by centrifugation. Acetone was used to dry the sample before they were transferred 

in crucibles for annealing at 350 oC for 6 h. The annealed powders were characterised. 
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4.3.2 TiO2 characterisations 
Different properties of the annealed powders were studied. X-Ray Diffraction (XRD) analysis and 

Scanning Electron Microscopy (SEM) were used to investigate the TiO2 physical properties, i.e. 

the TiO2 nanoparticles crystallisation and its surface topographic, respectively. The average size 

(D) of the annealed TiO2 nanoparticles was estimated by using the Debye-Schereer’s Equation:  

D = 0.9λ /(ß × cosƟ)          (1) 

Where: 

λ: is the wavelength of the copper anode radiation that used during the XRD analysis, with a 

value 1.5406 Å,  

ß: is the full width half maximum (FWHM) of the peak, in radian, and  

Ɵ: is the Bragg’s angle; in degree. 

 

Chemical properties, such as elemental composition and chemical bonding of the annealed TiO2 

nanoparticles were identified by Energy Dispersive X-ray Spectroscopy (EDS) and Fourier 

transform-infrared (FTIR) analysis, respectively. Optical properties were studied by running an 

UV-VIS-NIR within a spectra range of 200 to 800nm. 

 
4.4 Results and Discussion 
All TiCl4 solubilised in different solvents have shown their effectiveness as suitable solvents for 

the synthesis of TiO2. The UV-VIS analysed have shown the presence of TiO2 nanoparticles as 

shown in Figure 3.1. The TiO2 nanoparticles UV-VIS absorption spectra was determined to fit 

within the invisible UV range of sunlight between 100- 400 nm (Behar-Cohen et al., 2014). The 

TiO2 nanoparticles could absorb the UV of sunlight for various applications including dermal 

(Luan et al., 2016). 

TiO2 nanoparticle were adsorbed at 280nm in the UV–VIS spectroscopy. The same adsorption 

wavelength observed herein was reported by various researchers ( Dobrucka et al., 2017 ; Roopan 

et al., 2012) . However, the adsorption peak was higher for TiO2 synthesised by solubilised TiCl4 

in water than when using methylene chloride and toluene. 
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Figure 3-1: UV-VIS absorbance of TiO2 nanoparticles from various TiCl4 solubilisations 

 

Figure 3.2 shows the XRD patterns of each TiO2 nanoparticle produced from various TiCl4 

solubilisations. The Muller’s indices (hkl) have detected at 2Ɵ (degree) = 25.281; 37.801; 48.050; 

53.891; 55.062; 62.690 and 75.032 for hkl = 101; 004; 200; 105; 211, 204 and 215, respectively. 

Similar peaks were obtained for all synthesised TiO2. Based on the hkl indices, the atom position 

of each TiO2 has a body-centered tetragonal. The average size (D) has a value of 12 nm; 7nm and 

10nm for TiCl4 solubilised in water, methylene chloride and toluene, respectively. SEM images 

presented in Figure 3.5 shows that the TiO2 nanoparticles were quite polydisperse in methylene 

chloride and toluene than in water, and their size range was 124 nm, 120 nm and 100 nm size, 

respectively. The chemical elemental composition of TiO2 nanoparticles obtained by EDS 

techniques is shown in Figure 3.3. The area delimited by the rectangular polygon represents the 

sampling points in which EDS measurement were made. Three elements were detected, such as C, 

O and Ti: C and O chemical elements which particles the oxidation reactions with which the TiCl4 

salt were in derived (Qi et al., 2017). FTIR spectroscopy analyses is shown in Figure 3.4 illustrated 

chemical bands at 3327.65 cm-1, 1635.33 cm-1 and 605.53 cm-1 for TiCl4 solubilised in methylene 

chloride and toluene and 3207.61 cm-1, 2350.40 cm-1, 2030.61 cm-1, 1622.16 cm-1 and 659.63 cm-

1 for TiCl4 solubilised into water. Characteristic bands indicated at 1635.33 cm-1 and 1622.16 cm-

1 represented the saturated hydrocarbons, i.e. the C=C link. Bands 3327.65 cm-1 and 3207.61 cm-1 
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indicated the O-H, at the peaks 2350.40 cm-1, 2030.61 cm-1 correspond to the C-O stretching 

alcohols from methylene chloride and toluene. All bands were generated by the chemical and 

elemental interaction forms of water, methylene chloride and toluene. The presence of TiO2 

nanoparticles was indicated by the peak 605.53 cm-1 and 659.63 cm-1 for TiCl4 in water and for 

TiCl4 methylene chloride and toluene, respectively. 

 

 

Figure 3-2: XRD patterns of TiO2 nanoparticles from various TiCl4 solubilisations 
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Figure 3-3 :EDS graphs of TiO2 nanoparticles from various TiCl4 solubilisations 
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Figure 3-4: FT-IR Spectra of TiO2 nanoparticles from various TiCl4 solubilisations 
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Figure 3-5: SEM images of TiO2 nanoparticles from various TiCl4 solubilisations 
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4.5 Conclusion 
In summary, TiO2 was successfully synthesised by solubilising TiCl4 in various solvents, such 

as water, methylene chlorine and toluene. All TiO2 nanoparticles synthesised have a single phase 

anatase structure. However, TiCl4 solubilised in water have shown to have had the best 

crystallisation. Therefore, water as a solvent is highly recommended to solubilise the matrix TiCl4 

to synthesis TiO2 for photocalytic operation. 
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4. CHAPTER 4: 

RESULTS 

PHOTOCATALYTIC APPLICATION OF 
TIO2NANOPARTICLES SYNTHESISED FROM TICL4 

IN THE DEGRADATION OF PATULIN IN WATER 
MATRICES AND APPLE JUICE 

 

 

General overview of the article 

 

This chapter provides results from the photocatalysis of patulin in water and apple juice. Patulin 

in water and apple juice was exposed to conditions at different UV light intensity for a period of 

3 h such as UV 15 and UV 30. 

Results showed the best degradation level under UV 30 which was recommended as good 

intensity for patulin treatment in apple juice 
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4.1 Abstract 
Patulin is a mycotoxin produce by fungal species in food and especially fruits and fruit juices. 

Patulin is both chronic and toxic in humans and animal and have fatale destruction of cells, which 

could lead to death.  This paper reports the application of nanoparticles Titanium dioxide (TiO2) 

in the degradation of patulin by the means of photocatalysis. TiO2 was chemically synthesised 

from the mixture of Titanium Chloride (TiCl4) and ammonium hydroxide. The optical properties 

of the particle under UV- Vis spectrometry was analysed and the UV-vis absorption spectra fold 

within the UV visible range of sunlight. The nanoparticles also shown a Polydisperse structures 

with 120 nm size under the Scanned electron microscopy (SEM).C, O and Ti were elements 

visualised under the Energy Dispersive Spectroscopy (EDS). The particles also shown, a single-

phase anatase indicated at the peak 605.53 cm-1 with the average sized range of 100 nm. After 

exposition of patulin solution containing TiO2 under UV light, 73.03% of patulin in water was 

degraded in 160 min. Therefore, photocatalysis is an innovative approach for the degradation of 

patulin in solution. 

Keywords: Apple Juice, LC-MS/MS, Patulin, TiO2, Photocatalysis 
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4.2 INTRODUCTION 
Spoilage in food is usually caused by microbial growth. Microbial growth can produce mycotoxins 

and others chemical compound which give a spoilage smell to food (Al-Kharousietal, 2016; Pinu 

et al., 2016). There exist several mycotoxins such as fumonisin, aflatoxin, ochrotoxin, 

deoxynivalenol, Zeoralenone, and ergotamine (Karlovskyet al., 2016). However, in apple and 

apple juice, the most studied mycotoxin is patulin. Though it was also found in figs, and mangoes, 

patulin was showed to predominantly in citrus types fruits and has been determined to be a toxin 

that can affect humans when ingested from apple juice; hence, international bodies decided on 50 

µg/L as the daily intake limit for adults and 10 µg/L for infants (Ji et al. , 2017). Methods for 

mycotoxins avoidance and treatments when producing apple juice involve manual sorting, milling, 

steeping, and extrusion of the fruits, which can significantly reduce the level of the mycotoxin in 

the final product (Pinu et al, 2016). However, several methods have been reported for patulin 

treatment in apples juice. These treatments are of chemical and biological in nature. For example, 

fermentation, UV treatment, ozone treatment, hydrothermal treatment has been used for patulin 

degradation. These treatments are usually time consuming, costly and require additional 

treatments. In addition, the treatment usually reduces the mycotoxin to less toxic by-products. 

Overall, photocatalysis has showed great efficacy in wastewater treatment for the degradation of 

innocuous pollutant and dyes, while in the food industry, it has been demonstrated to be effective 

against microbial deactivation of microorganisms causing food spoilage. Photocatalysis use both 

nanoparticles and light, in particular UV light. Several nanoparticles exist such as that of Cu, Zn 

etc. However, TiO2 has been chosen for these studies because it is inert, non-toxic, cost effective, 

easy to synthesis and highly reactive. These attributes make photocatalysis using TiO2 a promising 

technique for industrial use for the treatment of mycotoxins in apple juice. The aim of this part of 

the study was to evaluate the efficacy of photocatalysis using TiO2 in the degradation of patulin in 

solutions of water and apple juice. 

 

4.3 Material and Methods 

4.3.1 Patulin removal 
A 5mg patulin standard was purchase from Sigma Aldrich, and was subsequently diluted in 1 L of 

distilled water, 100 mL of the solution was transferred in a 100 mL volumetric flask and the rest 
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of the solution was stored in the fridge for further use. A mass (0.22 g) of the TiO2 was added in 

the flask and keep in the dark and after 30 minutes, the flask was expose to 15 V UV light and 

sampling was done every 10 minutes of exposure. Patulin degradation efficiency was calculated 

as in Equation 2: 

%𝑫𝑫 = 𝑨𝑨𝒊𝒊𝒊𝒊− 𝑨𝑨𝒐𝒐𝒐𝒐𝒐𝒐
𝑨𝑨𝒊𝒊𝒊𝒊

 𝑥𝑥 100         (2) 

Where Ain is the initial concentration of patulin and Aout is the concentration of patulin at a given 

time of exposure. 

After the successful reaction of the degradation of patulin in water by the means of photocatalysis, 

the treatment was proceeded into apple juice, which was the main objective of this part of the 

study. Apple juice is a complex matrice as compared to water. Therefore, the following was done: 

• Designed a reactor suitable for photocatalysis using two (15 V/30 V) UV source, 

• Prepared a TiO2 paste to coat on glass surface to be used in the reactor, 

• Etched the glass in acid to mobilise the TiO2 nanoparticles, 

• Clarified the apple juice using bentonite followed by,  

• Photocatalysis treatment using a fed batch mode, 

• Extracted the patulin from apple juice by solid phase extraction, and prepared it for 

analysis, and 

• Performed LC/MS/MS analysis.
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4.3.2 Flatbed reactor design and conception 
At the first point, a flatbed reactor was built of polycarbonate material in which two florescent 

lights was placed across the reactor (Figure 4.1). The long florescent lamps were strategically 

placed to allow fair distribution of the light within the system. Using as a lock- key system, the 

head of the light compartment could fit on top of the reactor. Since the reactor was made of a 

transparent polycarbonate material, a reflective coat (foil paper) outside the reactor was placed to 

prevent the emission of light out of the system. Consequentially, the light emitted from the light 

source can reflect into the system to allow for maximum photocatalytic reaction. 

Titanium dioxide (TiO2) particles photocatalytically reacted with the patulin in the juice via 

photocatalysis. To coat the nanoparticles onto the glass, TiO2 paste was prepared and paste unto 

the surface of the glass and characterised by SEM. 

 

 

Figure 4-1: Flatbed reactor  
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Table 4-1: flatbed reactor individual components 

Components Names 

 

Flatbed reactor 

 

UV light 

 

Reactor cover 

 

 

Glass coated with TiO2 

 

4.3.3 TiO2 paste preparation and coating 
A mass of 14.4g of TiO2 was mixed with 12 mL of distilled water, 12 mL of ethanol and 2 mL of 

acetyl acetone in a mortar and grinded for 20 minutes, after grinding, 2 mL of acetic acid (Merck) 

and 6 ml of triton X- 100 purchased from Sigma Aldrich was added and the mixture became 

viscous. The paste was subjected to a Rheological test to measure the shear stress and the viscosity 

which are the factors affecting the fluidity of a liquid and its attachment and/or fixation to the glass 

used in the flat-bed reactor. Thus the paste was ready to be coated onto the surface of glass by the 

doctor blade technique. 
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Figure 4-2: Glass coated with TiO2 paste 

 

4.3.4 Glass etching for reactor 
The purpose of using the glasses was to immobilise the TiO2 to achieve maximum treatment of 

patulin in apple juice. The glasses were obtained from the builder’s warehouse, were smooth and 

could not bind the NP’s without preparing the paste; therefore, the paste was needed post-etching 

to immobilize the NP’s. Thus the glass was place in floric acid which was prepared by adding in 

1000 mL of water, with 250 ml of 99.9% H2SO4 and 50g of NaF. After two days, the glass was 

removed and placed in a neutralising solution prepared by dissolving 22.23g of sodium hydroxide 

pellets and 23.79 g of sodium bicarbonate in 1000mL of water. The pieces of glasses were then 

coated with a carbon paste and visualised under a SEM device. The results are shown in Figure 

4.3. 

 

 

Figure 4-3: Etched piece of glass (A) and plain piece of glass (B) 

A B 
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Figure 4-4: SEM analysis of plan piece of glass (A), etched glass (B) and coated glass with 
TiO2(C) 

 

A B 

C 
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4.3.5 Apple juice clarification 
The single strength apple juice obtained from the Cape Town cold drink company was a mixture 

of two types of apples which are branded granny and golden delicious. The cloudy apple juice 

obtained was clarified to remove all particles which could interfere with the treatment by 

occupying the active sites of the nanoparticles. Thus, 10 g of bentonite was used for every 1000 

mL of apple juice and a clear apple juice was obtained after settling for an hour. 

 

 

Figure 4-5:Apple juice clarification process: A: sample received, B: apple juice mixed with 
bentonite after 1hr settlement, C: clear apple juice 

 

4.3.6 Photocatalysis Experimental 
4.3.6.1 Chemicals and Reagents 

Patulin standard in powder was purchased from Sigma Aldrich. Methanol, ethyl acetate, acetic 

acid, acetone were also purchased from sigma Aldrich. Ethyl acetate was from Macron fine 

chemical HPLC grade and hexane was purchased from Honeywell. The study was performed at 

the Tshwane university of technology (TUT) and the reagents were generously offered by the 

department of Environmental, Water and Earth Sciences. Polypropylene (PP) membrane filters 

(0.22 µm, Cameo syringe filters) and syringes, acetonitrile, ammonium acetate, Supelco-Select 

HLB SPE cartridges (500 mg), were purchased from Sigma-Aldrich (Aston Manor, South Africa). 

 

C B A 
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4.3.6.2 Sample Collection 

The apple juice (n= 24x 330 mL) used throughout the study was provided by the juicebox renamed 

Cape Town cold drink company. The samples were, pasteurised, bottled and ready to be marketed. 

The samples were kept in room temperature away from sunlight for further usage. 

 

4.3.6.3 Solid phase extraction 
Supelco-Select HLB C18- SPE cartridges (500 mg solid phase, 12 mL tubes) (Figure 4.6 A) was 

prewashed with 10 mL of 99.9 % methanol from Sigma Aldrich and 3 mL of 10% methanol and 

10 mL Milli-Q water before utilised. The Supelco-Select HLB C18- SPE cartridges were not 

allowing to run dry and 4 mL of apple juice with 0.5 mL of acetic acid buffer solution were added 

onto the Supelco-Select HLB C18- SPE cartridges and allowed to percolate at 2-3 mL / min under 

gentle suction. The transfer was completed when the solvents was drained to the top of the packing 

and the Supelco-Select HLB C18- SPE cartridges walls was washed with 5 mL hexane. To avoid 

cross- contamination, well labelled receiver flasks were placed under the corresponding Supelco-

Select HLB C18- SPE cartridges and the Supelco-Select HLB C18- SPE cartridges were eluted 

with 3x5 mL grade elution solvents (hexane, ethyl acetate, acetone 1:5:4, 1:4:5, 1:3:6). The flow 

of each solvent was stopped for about a minute to allow the solvent sufficient contact with the 

Supelco-Select HLB C18- SPE cartridges packing. After elution, 0.5 mL of acetic acid was added 

and evaporated to dryness under stream of nitrogen (Figure 4.6 B). The residues were reconstituted 

with 1 mL of acetic acid buffer solution and vortex for 3 minute and transferred in the vials for the 

injection in the LC/MS/MS for analysis (Lucci et al, 2017; Li et al, 2007). 
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Figure 4-6: SPE extraction device (A) and blow down process (B) 

 

4.4 Results and Discussion 

4.4.1 Paste preparation 
Figure 4.7 shows that the paste prepared was not a Newtonian fluid. It shows that as the viscosity 

decreases, the shear stress increases, therefore the paste prepared was a shear thinning material 

which is good for industrial purposes. The graph shows as well that the paste is smoother and 

sticky which is suitable for spreading. The paste of TiO2 was prepared to allow for immobilization 

onto the glass. The concept of paste preparation started with the construction of the solar cell used 

for dye degradation for the sole purpose of immobilising nanoparticles onto surface for 

photocatalysis. This part of the study provided the rheology and the shear stress behaviour of the 

paste. Ideally, the flux curve for a Newtonian fluid is a straight line through the origin and it’s 

slope represents the viscosity value. 

 

B A 
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Figure 4-7: Flow curve of Viscosity versus shear rate 

 

4.4.2 LC/MS/MS analysis for patulin determination 
4.4.2.1 Sample preparation and irradiation 

After connecting all the components of the reactors together, the experiments were performed in a 

dark room the coated piece of glass was place at the bottom of the reactor as (Figure 4.2). To obtain 

apple juice with patulin concentration of 1.20 mg/L, 750mL of apple was spiked with 1.8 mL of 

patulin stock solution of concentration of 500 mg/L. The juice was poured in the reactor and kept 

in the dark. Then two florescent lights (Philips, the England) were also placed within the flat-bed 

reactor and after 30 min, the lights were switched on and about 4 ml of sample was collected at 

the corresponding time interval. The treatment duration was 3 hours, i.e. 180 minutes. The samples 

collected at different time were centrifuged to remove any NPs that could have enter the juice 

during sampling subsequent to filtration with 0.2 µm filters. Patulin was extracted using SPE from 

the juice before being analyse with LC/MS/MS. No stirring process was allowed because it 
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decrease the effectiveness of photocatalysis. Patulin is a carcinogenic compound; therefore, 20% 

hypochloric acid was used to disinfect all surface area exposed to the patulin. 

 

4.4.2.2  LC/MS-8030 configuration for patulin quantification 

Liquid chromatography (LC) was performed on a LC/ MS – 8030 Shimadzu system, USA. The 

LC was coupled with triple quadrupole linear ion trap tandem mass spectrometrer. The column 

used for separation was a Luna® Omega polar C18 column (2.1 × 100 mm, 3.0 µm, Phenomenex, 

Aschaffenburg, Germany). The column temperature was maintained at 40 o C and the autosampler 

at 4o C. The mobile phase used were 5 mM of NH4AC (LC/ MS grade from sigma Aldrich) in 

Milli-Q water and 99.9% acetonitrile (Sigma Aldrich). The flow rate was 0.3 mL/min on an 

isocratic mode. The total running time was 4 min with the retention time for patulin being 1 min 

as shown in (Figure 4.8). The injection volume was 10 µl and the sample were run on a negative 

mode on an electrospray ionization (ESI) source and the injection were duplicate. 5 mg of patulin 

powder was dissolved in methanol for a final volume of 10 mL. This gave a concentration of 

500ppm or 500 mg/L. From this volume, 10 ppm, 1 ppm and 10 ppb were respectively prepared 

for the calibration curve (Figure 4.9). 

 

4.4.2.3  Validation of Method 
The precision and accuracy of the patulin quantification using the LC/MS/MS was done by 

preparing some blanks made of pure methanol. These blanks were analysed and run at an interval 

of five samples to evaluate the level of contamination and errors. The samples were run in a 

duplicate manner and the limit of detection and quantification were calculated based on signal to 

noise ratio. In this case the LOD, the corresponding concentration of a value equal or closer to 3 

was used to calculate the LOD and the corresponding concentration closer from the signal of noise 

ratio closer to 10 was used to calculate the LOQ. The LOD in this case was determined to be 0.009 

µg/mL and LOQ is 0.017 µg/mL.  
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Figure 4-8: Patulin chromatogram and retention time 

 

 

Figure 4-9: Standard preparation and calibration curve 
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Table 4-2: % degradation of patulin under UV15 and UV 30 in apple juice 

Time 
(Min) 

Patulin 
conc. 
(ng/L) 

% 
degradation 
UV 15 

Patulin conc. 
(ng/L) 

% 
degradation 
UV 30 

0 72.576 0 72.576 0 

10 62.445 13.959 59.232 18.386 

20 53.296 26.565 28.933 60.134 

30 52.873 27.151 27.218 62.497 

40 44.127 39.191 23.684 67.366 

50 43.114 

 

40.594 

19.596 

72.999 

60 41.856 42.320 15.912 78.075 

90 14.711 

 

79.730 

11.552 

84.082 

120 13.019 82.061 10.754 85.182 

180 12.362 82.966 8.945 87.674 

 

  

Figure 4-10: A) Patulin degradation curve from UV 15 and UV 30 in apple juice and B)  in water 
(UV 30)
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Patulin and nanoparticles were kept in the dark for a period of 30 minutes to allow a great excitation 

to holes and electrons within the particles in the contact of light. The degradation of patulin was 

initiated and significant degradation was observed after 20 minutes, and maximum degradation 

was observed in 160 minutes. The percentage degradation was calculating with Equation 2. 

Photocatalysis is a promising technique for degradation of toxins even in water as demonstrated. 

The efficacy of photocatalysis depends upon the catalysts, pH and light intensity. The wavelength 

between 255 and 355 nm is absorbed by patulin. However, germs and sporulating microorganisms 

are irradiated under 255 nm (Ibarz et al, 2014). Figure 4.10 shows that percentage degradation of 

patulin has an exponential increase between 10 to 20 minutes, this could be due to a  high excitation 

of nanoparticles in  contact of light after storage in the dark for a period 30 minutes.  

Unlike water which is a simple matrice for solutes to dissolve in, apple juice presented some 

challenges such as cloudiness, to overcome these challenges the juice needed to be clarify in order 

to prevent interaction of particles with patulin onto the surface of nanoparticles. Another challenge 

is to extract patulin from the apple juice after treatment in order to quantify. SPE is the most used 

and adopted method because of the simplicity and the less steps required to perform. Figure 4.10 

shows significant decrease in UV 30 V as compared to UV 15V which means that the 30 V light 

was more effective than the UV 15 V. It was therefore recommended that UV 30 V light be used 

for the treatment of patulin in apple juice by small scale juicers in South Africa. 

 

4.5 Conclusion 
In summary, TiO2 was synthesised from TiCl4 as a precursor and the particles showed good and 

great optical properties as catalysts. UV/TiO2 was demonstrated to have a good symbiotic 

relationship for patulin degradation, in a suitably designed flat-bed reactor. Additionally, the 

immobilised TiO2 can be reused in numerous cycles due to it non-degradability which can give an 

industrial advantage to small scale juicers. It was shown that photocalysis is effective for patulin 

treatment in apple juice. This study therefore provides prospective solution for mycotoxin 

treatment from beverages and especially patulin from apple juice for large and small-scale juice 

producers. 
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The contribution of this work to scientific knowledge was:  

The development and assessment of nano semiconductors (nano-materials) TiO2 for application in 

UV and/or visible light for rapid photo-oxidation of Patulin. The performance was assessed in the 

presence of possible interference matrices, ascorbic acid, reducible sugars (glucose, sucrose 

fructose, etc.) in apple juice without dilution. 

The designing of a portable laboratory scale patulin treatment system which uses UV/visible light 

in a miniaturized mobile patulin treatment unit, which can be used at the source point of the 

agricultural produce, i.e. to attach it to a juicing process. Overall, this portable unit is able to 

function using low energy input and be up-scaled to function on-site where the juicing takes place. 

This creates a platform to stimulate local small scale farmers/juicers, agro-processors to participate 

in the Bioeconomy. Similarly, the designed system can be used in a variety of industries, especially 

those that are interested in photo oxidation operations to reduce contaminants. 
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CHAPTER 5: 

GENERAL DISCUSSION AND CONCLUSIONS 
 

5.1 General Discussion and Conclusion 
In summary, patulin is a volatile mycotoxin which is soluble in water. It is produced by fungi and 

mostly by blue molds in the surface or in the center of apples. These blue molds, produce patulin 

which is toxic to humans and animals, thus the need to be regulated and treated in apple juice. In 

this study, it was shown that patulin could be treated via photocatalysis using UV light. The 

nanoparticles TiO2 were synthesised from three solubilising matrices and water was concluded to 

be the best solvent by reason of the quality of the nanoparticles produced. Patulin quantification, 

detection and method of treatment were developed. In regards to the treatment, the reactor designed 

– i.e. a flatbed reactor, did not provide any inconvenience for the treatment of patulin with suitable 

patulin degradation efficiency; however, the apple juice provided was a single strength cloudy 

apple juice which could not be a representation of different small scale juicers. Prior to juice 

clarification, the suspended particles in the juice interfered with the treatment thus minimising or 

slowing the down the degradation process for patulin. Thus, there was a need for clarification, and 

this was performed by using bentonite to clarify the apple juice. Bentonite is mostly used in wine 

industry for wine clarification. The other challenge was to immobilize the nanoparticles onto a 

suitable surface to allow uniform distribution of nanoparticles within the flatbed system and to 

create a good recovery of nanoparticles after treatment. To troubleshoot this issue, TiO2 paste was 

prepared and coated on a surface of glasses by the doctor blade technique. To extract patulin from 

the matrices, SPE was perform and the patulin extracted was quantify using LC/MS/MS under an 

isocratic mode. As a result, a significant degradation of patulin was observed and the maximum 

degradation was observed after 3 hours of treatment. Therefore, photocatalysis is recommended as 

cheap, fast and simple method for the treatment of patulin in clarified apple juice and ciders for 

apple juice producers, wine industry and many others. 
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5.2 General Recommendations 
The authors would like to recommend that: 

• A nutritional analysis be performed on the juice prior to the photocatalysis treatment and 

after the treatment to study the variation of the juice quality prior and after treatment. 

• The detection and the quantification of by-products of patulin degradation be performed using 

LC/MS/MS. 

•  Optimisation studies be performed to determine the quantity of TiO2 needed for patulin 

treatment in the flatbed reactor designed. 

• Kinetic degradation rates of patulin be performed over time. 
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