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ABSTRACT 
  

Road safety is one of the major concerns in today’s world. Driving an overloaded vehicle 
causes various ill-effects to road safety. Various kinds of Weigh-in-motion (WIM) systems 
are used to control and reduce the impacts of overloaded driving. Existing WIM systems 
are either expensive or slower and influenced by various factors. Advancement in 
network connectivity and sensor devices led to the development of the Internet of 
Vehicles (IoV), a subfield of the growing Internet of Things (IoT). IoV is powered by 
Vehicular Telematics (VT), also known as flying car data. VT data is used by the transport 
industries for many reasons such as fleet management, insurance (pay as you drive), 
driving behaviour detection, and road anomaly detection. Intelligent Transportation 
System (ITS) uses both IoV and Machine Learning (ML) techniques to build an 
automated Artificially Intelligent (AI) transportation system.  
 
According to the Newtonians’ physics and literature, under certain conditions, the driving 
force needed by a vehicle to obtain a particular acceleration is influenced by the total 
weight of the vehicle. That implies that if driving force and other influencing parameters 
are known, we could infer the weight of a vehicle. VT data can be used to obtain many 
features, including the driving force. This dissertation discusses the effort taken to 
validate the idea of inferring the weight of a vehicle using VT and ML. This research 
involved designing and testing the prototype artefact. The Design Science Research 
(DSR) methodology was used in this research. The C-K design theory was used in this 
DSR. The application of C-K theory in DSR has shown the different dimension for 
approaching applied research. A pragmatist approach was used in the design and 
development of this research.  
 
According to the C-K design theory, with all the knowledge, K0, from literature and the 
laws of physics, we formed an initial concept C0: “A new WIM solution using VT and ML”, 
with the propositions p1: “faster”, p2: “economical/cheaper”, p3: “Ubiquitous”.  The 
concept was tested by designing and developing the prototype (artefact). A backend to 
process VT data using ML was developed as a by-product of this research. We have 
tested several ML algorithms during the development stage, and an Artificial neural 
network (ANN) architecture of three hidden layers with 30 nodes in each layer has shown 
astounding performance with Accuracy = 0.945, R-Squared = 0.97, Adjusted R-Squared 
= 0.97, Mean Squared Error = 34.68, Residual Standard Error = 6.03. The ANN 
outperformed all other tested ML algorithms on the collected VT dataset. We can infer 
the weight using the smaller dataset obtained from the context of a small car. Results 
from small cars show the supports for the concept theory. 

.    
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CLARIFICATION OF TERMS 
 

Mass: The mass of an object is a fundamental property of the object; a numerical 
measure of its inertia; a fundamental measure of the amount of matter in the object. The 
usual symbol for mass is m, and its SI unit is the kilogram. While the mass is typically 
considered to be an unchanging property of an object, at speeds approaching the speed 
of light, one must consider the increase in the relativistic mass. 

 
Weight: The weight of an object is the force of gravity on the object and may be defined 
as the mass times the acceleration of gravity, w = mg. Since the weight is a force, its SI 
unit is the Newton (N). The SI measure kg for mass is used in general (assuming the 
gravitational acceleration is constant at any point on the earth’s surface). 

 
Acceleration: Acceleration is the rate of change in velocity (dv/dt). Acceleration is 
defined as the rate of change of velocity. Acceleration is inherently a vector quantity, and 
an object will have non-zero acceleration if its speed and/or direction is changing. The 
units for acceleration can be implied from the definition to be meters/second divided by 
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In this research, we assume the gravitational acceleration g is constant (9.8ms-2) in all 
the places where the data was collected such that the weight of a mass is constant. 
Thus, finding Mass or Weight refers to the same objective. 
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CHAPTER 1 

1 INTRODUCTION 

 

This dissertation discusses the development of a new WIM solution using VT and ML. 

This research was initiated after performing a Systematic Literature Review (SLR) on VT 

and Road Safety. This problem was identified as one of the findings of that SLR. The 

detailed description of the SLR is discussed in Chapter 2. This chapter discusses the 

introduction to the research by briefly discussing the following:  

Section 1.1. How concerning is road safety in the global dimension and in South 

Africa? 

Section 1.2. What is overloading and how does it affect road safety? 

Section 1.3. What are the available solutions for WIMs and their Pros and Cons? 

Section 1.4. What is VT, and its current usage? 

Section 1.5. Problem Statement of this research. 

Section 1.6. Aim and Objectives 

Section 1.7. Methodology 

Section 1.8. Dissertation Structure 

 

1.1 Driving and Road Safety 

Driving and road safety are current and growing problems with global dimensions 

(Meiring and Myburgh, 2015). According to the comprehensive status report on road 

safety conducted by the World Health Organisation (WHO), 1.24 million traffic-related 

fatalities occur annually worldwide (WHO, 2015). Notably, in 2011, South Africa had the 

highest number of fatalities, according to the International Road Traffic and Accident 

Database (IRTAD) annual road safety report 2013 (Meiring and Myburgh, 2015). Due to 

the amplified necessity for mobility in developed and developing countries, the growth in 

vehicle manufacturing is inevitable. Driver assistance and safety awareness 

programmes have been some areas of focus to minimise road safety incidents, and since 

the WHO launched their “Decade of Action for Road Safety (2011–2020)” programme, a 

remarkable improvement in road safety has been noticeable. According to the  U.S. 

Department of Transportation, it was observed that two factors, namely vehicle condition 

and road/environment conditions, were collectively responsible for 5.2% of the road 

accidents in the U.S  (Magaña and Muñoz-Organero, 2017). 

 

The contribution of human behaviour towards traffic accidents is an essential area of 

interest in the remedial attempts to address the global road safety problem (Meiring and 

Myburgh, 2015). Risk-taking driving behaviour plays a significant role in most of the 
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accidents. It is discussed that over speeding, sudden acceleration/deceleration hard 

cornering, and not wearing seatbelts are some of the risk-taking driving behaviours 

(Wahlström, Skog and Händel, 2015). 

 

1.2 Overloading  

Kerb Weight is the total weight of a vehicle with a full tank of fuel and excluding 

accessories, luggage, and passengers. Gross Vehicle Weight (GVW) is the maximum 

allowed weight of a vehicle when fully loaded. GVW is the sum of Kerb Weight and 

Payload. The payload is the maximum load a vehicle can carry as specified by the 

manufacturer. Vehicles loaded with  more than the payload or that weigh more than GVM 

are  considered as overloaded (Oastler, 2015).  

 

Driving an overloaded vehicle is an illegal and punishable offence in most of the countries 

as it leads to accidents and infrastructural damages (Haugen et al., 2016; Lydon et al., 

2016). South African National Road Traffic Regulations state the overloading scenarios 

which lead to prosecution for an offence under regulations in the National Road Traffic 

Act, 1996 (Act No. 93 of 1996). 

 

Overloaded vehicles pose severe threats to road transport operations. Increased risks 

for road users, severe impacts on the durability of infrastructure, especially for bridges 

and pavements, and on fair competition between operators are some of the major threats 

by overloaded vehicles (Jacob and Véronique, 2010). 

 

1.2.1 Effects of Overloading 

Jacob & Feypell-de La Beaumelle (2010a) listed the following as the negative impacts of 

overloading: 

• Accident risk and accident severity: 

The likelihood of an overloaded vehicle involved in an accident is higher than the non-

overloaded or legally loaded vehicle. The consequences of such accidents are more 

severe (Tolouei, Maher and Titheridge, 2013).  Momentum is defined by the velocity into 

the mass. Impact of collision is proportional to the mass for a given velocity. In other 

words, the higher the mass of a vehicle at a certain speed in a direction (velocity), the 

higher its impact due to its higher kinetic energy. Vehicles which are specially designed 

to carry heavy loads have a certain operational speed limit; for example, according to 

the Motor Traffic Department of Sri Lanka, all heavy vehicles must drive at the maximum 

speed of 40 km per hour regardless of the road and time. This is to prevent the severity 

of impact by reducing the velocity of a greater mass.  
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• Vehicle instability:  

The stability of an overloaded vehicle is questionable due to the increased centre of 

gravity (mass). Objects with a higher centre of gravity are more prone to topple or 

rollover. The increased inertia with the higher centre of gravity may lead to lane departure 

or knife-jacking. 

 

• Braking default:  

The design of the braking system of vehicles allows a maximum weight specified by the 

manufacturer. The braking system of any vehicle is meant for the most allowable weight 

specified by the manufacturer. The breaking capability depends on the brakes 

themselves, however conjointly on the tire and suspension performances designed for 

the most allowable weight of the vehicle. Any weight in excess reduces the braking 

capability of a truck and will even damage the braking system. 

 

• Loss of motivity and manoeuvrability:  

An overloaded vehicle becomes under-powered; this results in lower speeds on up-hill 

slopes as well as the risk of congestion, inefficient engine braking and over-speeding on 

down-hill slopes. Overtaking also takes longer, and thus incurs additional risks for the 

other road users. 

 

• Tire blow-outs: 

Tire blowouts can occur due to the induced overheating of tires due to overloads. The 

severity of such an event is higher when flammable and toxic goods are transported. 

 

• Damage to the infrastructure: 

Apart from the threats to road safety, the overloaded vehicles also increase pavement 

wear. It also causes bridge damage, especially on older bridges. There were reports on 

bridge collapse due to overloaded vehicles. 

 

• Economic impact: 

Overloading prompts substantial mutilations in cargo transport rivalry, between transport 

modes (for example rail, waterborne and street), and between street transport 

organizations and administrators. In France, it was assessed that a 5-pivot enunciated 

truck, worked at 20% over-burden lasting through the year, created an extra 25 000 € 

advantage for each year (Jacob and Véronique, 2010). Overloading likewise implies an 

infringement of the tax collection rules, for example, vehicle enlistment charges, axle 

duties, and toll framework expenses. It is accordingly essential to authorize vehicle 
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weight and measurement guidelines to limit the quantity of overloading on larger than 

average trucks. The improvement of cutting-edge truckload checking frameworks, either 

ready or out and about, as a feature of Intelligent Transportation Systems (ITS), offers 

significant potential and elective answers for conventional roadside implementation by 

consistence officers. 

 

In summary, overloaded vehicle cause various ill effects such as a vehicle’s mechanical 

component degradation (Anthony, 2013),  air pollution by increased greenhouse gas 

emissions (Wahyudi, Ganis and Taufik Mulyono, 2014), increased fuel consumption 

(CWCSA, 2017), and road infrastructural damages (Huang, Zhang and Yi, 2009; Pais, 

Amorim and Minhoto, 2013). Furthermore, an overloaded vehicle becomes less stable 

as the centre of mass changes. This leads to less traction control and difficulty in 

steering. In addition to that, since it needs extra braking distance, an overloaded vehicle 

is more prone to road hazards(CSIR (Roads and Transport Technology), 1997). 

Additionally, an overloaded vehicle becomes a cause of traffic congestion and causes 

risks when overtaking as it goes underpowered (Shah et al., 2016).  

 

Reducing the number of overloaded vehicles is likely to reduce the number of crashes 

(Jacob and Véronique, 2010). However, it is the responsibility of governments, vehicle 

manufacturers, researchers and road users to reduce the number of fatalities. “The 

Department of Transport, in conjunction with provincial traffic authorities, the South 

African National Roads Agency Limited (SANRAL) and the Council for Scientific and 

Industrial Research (CSIR) has drafted the National Overload Strategy to address the 

problem of overloaded vehicles. The strategy covers the issues of self-regulation by the 

freight industry, funding, training and operational issues and a review of the 5% tolerance 

on the mass limit that is allowed for in the Road Traffic Act.”(Jonck, 2017). 

 

1.3 Weigh-in-motion 

Determining the weight of a vehicle, also known as WIM, has been done in various ways. 

WIM is a useful tool to contribute to more compliance with mass regulation. It has been 

used most successfully for nearly two decades. WIM has helped to reduce the number 

of overloaded vehicles and contributed to the more efficient and effective use of police 

officers’ time. A reduction in overloaded trucks is also conducive to a reduction in crashes 

(Jacob and Véronique, 2010). 
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1.3.1 Impact of WIM Systems 

In their paper, Haugen et al. (2016)  listed seven significant impacts of WIM systems, 

which are: 

• Carrier behaviour change 

WIM technologies allow the control of vehicle weights without disrupting the traffic and 

freight operations. In some countries like France and the Netherlands, the B-WIM system 

comes with video surveillance. The system enters the weight violated vehicle information 

to the centralised remote database.  This has proved to have a positive impact on the 

loading behaviour by the carrier (Stanczyk et al., 2012 and Jacob et al., 2010).  

 

• Protection of road pavement infrastructure  

Highly loaded vehicles cause damages to road constructions and pavements. They 

affect the basic infrastructure. The WIM systems can be used to reduce the cost of the 

resurfacing and repair works of these structures caused by severely overweight vehicles.  

Several studies done in the United States of America (USA), revealed experiences in 

tracking large pavement damages caused by heavy loaded vehicles, from the reports 

provided on weekly, monthly and yearly basis. This methodology was applied by carrying 

out an evaluation process and comparing the damage prior to the installation of the WIM 

system and the damage after the installation of weight enforcement. The estimation of 

the damage is done through equivalent single axle loads (ESAL) factors; a concept which 

was developed at the American Association of State Highway Officials (AASHO) monthly 

calculations were performed to get an estimate of the pavement damage attributed to 

the excess weight of vehicles at each site. This system contributed to a large extent in 

reducing the cost of damages in road pavement and infrastructure; especially in Norway, 

where the government took high interest in this, particularly in the places where there 

are no other means to control weight in main motorways. 

 

• Traffic Safety 

A vehicle even loaded with safety precautions, will be dangerous and risky for the stability 

and durability of the vehicle. This will result in brake system faults, handling and difficulty 

in control. The risk of an accident is higher in vehicles that are overloaded compared to 

the vehicles which are fairly loaded. Furthermore, as the number of vehicles involved in 

the routine traffic increases, it increases the severity of the accidental consequences. 

The research done by Jacob et al. (2010) revealed that there is a lack of statistical data 

related to accidents caused by overloaded vehicles and data were not being collected 

by police. Several studies have found that highly loaded vehicle drivers are suspected of 

using other routes to get rid of weigh-in scales. This causes a rise in accidents on these 
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secondary roads. This is the reason why secondary roads are not   open to overloaded 

vehicles in Norway. Due to the implementation of the WIM system in Norway on all the 

infrastructures, a number of accidents and incidents have been lessened. 

 

• Traffic management 

The WIM system may help in providing an outline of overloaded vehicles and their 

geographical location in regional and national views to traffic management centres. In 

Norway, the data from this WIM system could be relevant for 5 main regions. In 

management of overloaded vehicles, accurate, reliable and updated information of 

routine traffic, vehicle weight and its category are useful to manage traffic volume, lane 

usage and speed. In future WIM data analysis may be used in newly introduced 

applications that are developed for traffic control centres that deal with real online traffic 

management, dangerous goods transportation, heavy vehicle flow, and safety 

measurements in tunnel traffic. 

 

• Freight Planning 

The WIM system data can be used in the management and planning of large freight 

transportation. In Norway, a short message is delivered to each overweight vehicle 

owner and freight service proprietor.  A yearly report would give them an outline of their 

company’s efficacy and performance in terms of loading vehicles which are overweight. 

This will provide the facility to arrange their goods to load in order over their vehicles. 

Furthermore, this will definitely affect the freight operations by reducing the time spent 

on weight controls and increase efficiency. Hence reducing vehicle overloading will 

produce safer transportation, which is safer to all. This could be assessed by using 

questionnaires and collection of data and analysis conducted among the drivers and 

other employees. 

 

• Environmental impacts 

Assessing the effects on the environment due to overloading with noise, vehicle 

vibrations and air pollution is complicated. Measurement of these impacts should be 

implemented as soon as possible. Specially designed equipment should be used to 

measure only the vehicle-borne impacts as there are other means of vibrations such as 

ground-borne vibrations. At the same time, other than overloading, there are other 

parameters that influence gas emissions, such as driving pattern and road gradient. They 

are normally measured by factors that are related to vehicle category, emission from the 

engine, the total weight of the vehicle and speed (Poulikakos, 2010). 
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• Economic benefits 

Overloaded vehicles produce benefits in a negative manner for carriers by violating the 

regulations for taxes and other payments (Jacob and Véronique, 2010). The authorities 

of the WIM system will benefit only in a few ways such as penalties, taxes and fees. But 

the efficiency of weight control system reduces the overall costs born to repair the 

infrastructural damages, resurfacing works and road/tunnel closures. It will  definitely be 

useful to calculate the total cost reduction compared to previous years that are caused 

by overweight vehicles at  regional and national level, through a benefit-cost study in 

Norway. 

 

1.3.2 Summary of WIM Systems  

Traditional WIM uses stationary scales such as static-weighbridges which are commonly 

used to measure industrial and commercial vehicles such as trucks and lorries (Nichols 

and Bullock, 2004). They, however, take quite a long time to weigh each vehicle. 

Moreover, their costs of system installation and maintenance are expensive 

(Barsanescu, Carlescu and Stefanescu, 2007). Static-weighbridges are more accurate 

than non-static weighbridges, only when the vehicle is stationary. Non-static WIMs (low-

speed/high-speed WIMs) are deployed inroads to detect load violations. Non-static 

WIMs use various parameters to detect a vehicle’s weight (Kim et al., 2009). Some of 

the parameters of non-static WIMs are pavement vibration (Bajwa et al., 2013), and 

magnetic signal based on single micro-electro-mechanical system (MEMS) magnetic 

sensor (Lan et al., 2011). 

 

Figure 1.1: Fluctuation in the WIM reading due to internal and external factors (Bushman 
& Pratt, 1998) 

 

Figure 1.1 by Bushman & Pratt (1998) shows the variations in reading the weight of a 

vehicle over time using Static and Dynamic WIM systems. 
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Counting the number of goods and passengers by visual inspections is so common that 

an automatic onboard passenger count detection system was developed and tested 

successfully (Xu and Zhao, 2011). However, since each passenger has a different weight 

and goods weigh differently, the visual inspections do not provide correct results all the 

time (CWCSA, 2017). 

 

Emerging technologies such as smart tyres (Pirelli, 2017) with the aid of a tyre pressure 

monitoring system (TPMS) are used in WIM (Matsuzaki and Todoroki, 2008). However, 

such systems are more expensive as they require the pressure sensors to be installed 

on every tire. For infrastructural enforcement, several practices of the WIM system are 

being used all around the world. High-speed WIM systems are used in countries like 

Taiwan with large tolerance levels of up to 30%. This tolerance level of up to 30% is 

acceptable since there are vehicles in high frequency. In some countries use portable 

WIM systems which are used to detect overloads in a very short period of time. But the 

accuracy of portable WIM systems is low compared to the conventional one and the 

efficiency or pre-selection is low (Jacob and Véronique, 2010). Table 1.1 shows the pros 

and cons of the existing WIM systems. 

 
Table 1.1: Pros and Cons of Existing WIM Systems 

WIM Systems Pros Cons 

Conventional (Static-
Weighbridge ) 

More Accurate  
Time-consuming, vehicles need to 
be stationary 

Non-static weighbridges 
(using ML) 

Faster than traditional, 
Deployed on the roads 

Less accurate than conventional 
needs more calculations, 
influenced by external factors 

Goods and Passenger count Easy and fast in an ideal condition Inaccurate in most cases 

Tyre Pressure (Smart 
Tyres/using ML) 

Faster  Expensive  

 

The latest applications of WIM systems are to be introduced in traffic regulation and 

overload vehicle control. In the near future, these WIM systems have the probability of 

using onboard WIM systems. Thus, each and every vehicle could be monitored in terms 

of their weight and impact infrastructure.  Another study suggests that real-time overload 

monitoring could reduce the damage cost in large scale according to their data 

transmission system and GPS which are necessary to eliminate overload vehicles 

(Jacob and Véronique, 2010).  

1.4 Vehicular Telematics 

VT has been widely used in vehicle tracking, fleet management and insurance industries 

for more than a decade (Tong et al., 2016; Wahlstrom, Skog and Handel, 2017). 

According to Fleming (2010: 6) “Telematics is an unstoppable trend in cars”. ML 
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approaches are widely used in identifying driving behaviour and road anomaly detection 

(Wahlstrom, Skog and Handel, 2017). Currently, ML approaches are only used in WIM 

systems using weighbridges and TPMS based systems. So far, the advent of VT has 

made it possible to obtain information on the attributes of a vehicle even while it is in 

motion, since ML is known to support inference making from both static and dynamic 

data.  

 

Developing a WIM system using VT and ML would benefit the transportation industry by 

reducing time, cost, and errors compared to other WIM systems. The proposed WIM 

system was expected to be fast, easy, accurate, and less expensive. Transportation and 

enforcement industries would be able to monitor the overloaded vehicles with the 

proposed solution remotely. This dissertation explains the effort taken to integrate the 

application of VT and ML for WIM in a way that will improve on existing approaches 

concerning cost, accuracy, and speed. 

 

1.5 Background to the research problem  

Driving overloaded vehicles is one of the significant causes of road hazards (Karim et 

al., 2014). Vehicle overloading causes road accidents due to loss of control, brake and 

tyre failure, and uneven wear and tear. Vehicle overloading also causes road 

infrastructural damages and excessive fuel consumption, which leads to environmental 

pollution (Wahyudi, Ganis and Taufik Mulyono, 2014). Overloading is a common problem 

in transportation.  

 

Finding the overloaded vehicle on any road segment is a challenging task. Counting the 

number of goods and heads is commonly found in many places. Non-static weighbridges 

on roads and static weighbridges are used in WIM. Seat and chassis mounted weight 

scales, using tyre pressure, and smart tyres are the new solutions available in WIM (Xu 

and Zhao, 2011; Anthony, 2013; Jonck, 2017; Pirelli, 2017). Visual inspection and 

counting do not always give an accurate result, and it is impossible for a vehicle in 

motion. Using mass scales in weighbridges are costly and time-consuming solutions. 

Chassis and seat-mounted scales use mechanical devices which need frequent 

calibration; further, the reading varies during the drive. Smart tyres and measuring weight 

using tyre pressure is expensive since it needs to be installed on every wheel.  

 

1.6 Problem Statement  

Driving overloaded vehicle causes road infrastructural damages, accidents, air pollution 

by excessive fuel consumption, and unexpected expenses. Measuring the gross weight 
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of a vehicle on a road segment without interrupting the traffic flow is a problem worth 

researching, and its solutions have several economic benefits.  

 

Currently, vehicles must drive through time-consuming weighbridges to measure weight. 

Dynamic weighbridges are only available on specific road segments. Additionally, the 

tyre pressure monitoring system (TPMS) solutions, which give parameters to measure 

weight, are more expensive to install (Matsuzaki and Todoroki, 2008). Other 

conventional weighing apparatus used are less accurate while on the move and need 

frequent calibration (Anthony, 2013). 

 

“There are still issues and challenges for WIM technology and application which require 

more research and development work. It is also essential to better disseminate 

knowledge and best practices, to exchange experiences, and carry out large scale 

common tests of WIM sensors and systems” (Jacob and Véronique, 2010). It is 

imperative to research and develop a system that infers the weight of a vehicle in a fast, 

reliable and non-intrusive way using VT and ML.  

 

1.7 Aim and Objectives  

This research aims to apply ML and VT in WIM to aid the transportation industry.  

Objectives of this research are to:  

1. Identify the relevant development platforms, parameters (features), and 

algorithms to infer the weight of a vehicle in motion.  

2. Design a conceptual framework that integrates VT and ML for WIM.  

3. Develop a prototype system that leverages VT and ML to determine the weight 

of a vehicle in motion.  

4. Evaluate the prototype system in terms of performance (accuracy, speed), 

usability and cost.  
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1.8 Research Area 

 

 

 
 

Figure 1.2 shows the research area of this project. This research falls within   two major 

areas, namely Artificial Intelligence (AI) and the Internet of Things (IoT). AI is powered 

with ML. IoV is a subfield of IoT. IoV is powered with VT. ML and VT power intelligent 

Transportation Systems.  Vehicle condition monitoring is one of the research fields in 

ITS. This research focused on the Weight inference part of the Vehicle condition 

monitoring in ITS. 

  

Vehicular Telematics 

Internet of Things 

Internet of Vehicles 

Artificial 

Intelligence 
Machine Learning 

Intelligent Transportation 

Systems 

Vehicle 

Condition  

Weight 

Inference  

 

Figure 1.2: Research Area 
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1.9 Methodology 

1.9.1 Philosophy 

This research comfortably fits under the assumptions of pragmatism. According to 

Camarinha (2012:40) “assumption of pragmatism is not committed to any one system of 

philosophy or reality. Truth is what works at the time. We need to stop asking questions 

about reality and the laws of nature and start solving problems”. We can also look at this 

philosophy in between assumption of the post (Positivism) and assumption of 

Interpretivism. Positivism is a way of making claims first and then testing, refining, or 

abandoning some of them for other claims more strongly justified. In assumptions of 

Interpretivism, researchers seek to understand the context and then make an 

interpretation of what they find, which is shaped by their own experiences and 

backgrounds (Camarinha-matos, 2012). Herbert E. Simon is the founding father of 

design science research (DSR). Well known for his research on AI, economics and 

decision making (Hevner et al., 2010), his works reveal that researchers in AI fit under 

the DSR category. Henver (2007) classified DSR under the pragmatic category of 

research. “Pragmatism is a school of thought that considers practical consequences or 

real effects to be vital components of both meaning and truth. Along these lines, I contend 

that design science research is essentially pragmatic in nature due to its emphasis on 

relevance; making a clear contribution into the application environment.” (Hevner, 2007). 

DSRs have different metaphysical assumptions. Shift on ontological and epistemological 

viewpoints take place in circumscription cycles depicted in Figure 3.3 (Vaishnavi and 

Kuechler, 2004).  

 

DSR follows the pragmatist approach. Artefacts were developed and evaluated; the 

evaluation used quantitative results from practical experiments to obtain a single truth, 

which is the weight of a vehicle is always singular. Since this is a pragmatic type of 

research, this research study followed a combination of inductive and deductive 

approaches. 
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Figure 1.3: Idea to Practice  (Wieringa, 2014) 

 

This research was carried out with Wieringa's (2014)  scaling up from lab to practice 

research strategy where the developed prototype WIM system was evaluated for its 

performance on a small scale within a context of a car, but with the potential to test with 

a large dataset in future.  

 

1.10 Vehicle weight inference system 

Figure 1.4 shows an overview of the proposed vehicle inference system. At the beginning 

of the research, it was planned to present a solution as a black-box system connected 

to the cloud. The black-box has to collect sufficient data from ECU and GNSS. The 

geolocation, along with the time stamp has to be sent to the GIS database (weather 

source). The GIS database may return the weather and road condition information to the 

weight inference system. The weight inference system should collect all the inputs from 

the black-box and weather sources and infer the weight using a trained ML model. 

 

 

 

 

 

 

 

 

 

 



 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed system was developed as a prototype system consisting of a smartphone 

and an OBD-II Bluetooth Scanner as the “Black-box”. The weight inference system 

named “WIM application” was developed.  The development of the prototype design is 

explained in Chapter 4. 
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Figure 1.4: Overview of the Proposed Vehicle Weight Inference System approach 
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1.11 Conceptual Framework 

 

1. Vehicle Information 

a. Body type 

b. Engine type 

c. Fuel 

d. Tyre 

e. ECU data 

f. Location and 

direction  

2. Road condition 

a. Surface type 

b. Elevation   

3. Weather condition 

a. Temperature 

b. Wind speed and 

direction 
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(ML) 
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Figure 1.5: Conceptual Framework of the research 

C-K Theory 
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Figure 1.5 describes the conceptual framework of the research. This research can be 

viewed in four phases. Phase 1 includes the collection of enough telematics data and 

other information. This focuses on choosing appropriate sources and methods of data 

collection, storing, and transmission. Phase 2 involves the use of appropriate ML 

algorithms, building the model, training, cross-validating, and testing the model. Phase 

3 involves validating the prototype by testing on controlled and uncontrolled 

environments. Phase 4 is evaluating the system with existing WIM solutions. Phase 1 & 

2 can be viewed under the development stage of DSR, and Phase 3 & 4 fits under the 

Evaluation phase of DSR. A unified design theory, Concept-Knowledge (C-K) theory 

(Hatchuel and Weil, 2002), was used during phases 1, 2 & 3. 

 

1.12 Data Collection 

Three different datasets were collected in this research. One is in the Development 

(Phase 1 &2) and two are in the Evaluation stages (in Phases 3 and 4) in this DSR. 

 

1.12.1 Data for Development Stage (Phase 1&2) 

Vehicle information such as vehicle model, kerb weight, GWM, fuel type, engine 

capacity, transmission type, and wheel information (such as radius, width) was collected 

from the vehicle records. ECU information was collected from the OBD-II device. 

Location information was obtained using GNSS on mobile phones. Weather information 

of a specific geo-location was collected from reliable and freely available 

OpenWeatherMap API. Known payload weights were used during the training and 

testing phase. These data were used to build and test ML models. 

 

1.12.2 Data for Evaluation Stage 

Phase 3 

The output from the Development stage is an ML model; this ML model was tested on-

site using known weights. The correctness and the accuracy of the inference system 

were evaluated at this stage. 

 

Phase 4 

The system (prototype) was compared against some parameters such as correctness, 

cost, and speed with other WIM systems. The parameters were collected from the 

literature. 
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1.13 Evaluation 

A designed artefact must be evaluated on the utility, quality, and efficacy of it. This 

evaluation must be demonstrated via well-executed evaluation methods (Hevner and 

Chatterjee, 2010). The ML models are the most critical artefact in this research. ML 

models return abstract values for further computation. The inference model performance 

was compared with R-squared, adjusted R-squared, and accuracy. 

 

1.14 Delineation of the research 

This research focused on ground vehicles, mainly cars and multipurpose vehicles, which 

are manufactured after the year 2000 (with OBD-II interface). The OBD device was only 

used for data collection from ECU, not to write into the ECU. 

 

1.15 The significance of the research 

This research may enable the production of a system to remotely view the weight of a 

vehicle in motion in a fast and non-intrusive way. The system would be beneficial for the 

transport industries and traffic enforcement departments.  

 

1.16 Expected outcomes, results and contributions of the research 

It was expected to provide a non-intrusive solution to existing problems in WIM systems. 

The solution is a black-box and a cloud-based ML system (back-end). As mentioned in 

C-K design theory, the final knowledge CK is from unsuccessful and successful 

experiences of implementation of the design and associated tools. Findings were 

communicated by publishing in accredited journals and conferences. The practical 

contribution of this research is made by introducing a new approach in WIM system 

technology, new variables (features), and comparing ML models. The theoretical 

contribution of this research was that we theorised that the VT data could be used to 

infer the weight of a vehicle. The methodological contribution of this research was the 

application of C-K design theory in this design science research. The practical 

contribution of this research was the implementation of the proposed WIM approach by 

developing a prototype. 

 

1.17 Ethical consideration 

This research collected data from the vehicle, including the geographical position and 

speed by installing a probing device on the vehicle. The data collected was stored as 

blind data (without vehicle identity and driver information). 
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1.18 Dissertation Structure 

This dissertation comprises six chapters. Chapter 1 provides an overview of the 

research.  

 

Chapter 2 discusses the background to the research and discusses the research 

Objective 1, which is identifying the relevant development platforms, parameters 

(features), and algorithms to infer the weight of a vehicle in motion.  

 

Chapter 3 discusses the philosophical stance and research methodology. 

 

Chapter 4 explains the research Objective 2 & 3, which is the design and development 

of a conceptual framework and a prototype system that leverages VT and ML to 

determine the weight of a vehicle in motion. Selection of features and different ML 

algorithms are discussed in this chapter. 

 

Chapter 5 discusses the results obtained using the different ML algorithms used in 

Chapter 4 and research Objective 4, which is the evaluation of the prototype system in 

terms of performance (accuracy, speed), usability and cost.  

 

Chapter 6 concludes the dissertation by briefly discussing the research objectives and 

future directions. 
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CHAPTER 2 

2 BACKGROUND 

 

This chapter discusses some important factors which are essential to this research. 

This chapter is organised as follows: 

Section 2.1. Systematic Literature Review on VT and Road Safety 

Section 2.2. Detailed History of WIM Systems 

Section 2.3. Introduction to Onboard Diagnostics Module 

Section 2.4. Theoretical Background to this Research 

 

2.1 Systematic Literature Review on VT and Road Safety 

This section presents the paper ‘Telematics and Road Safety’ (Kirushanth and Kabaso, 

2018) a Systematic Literature Review (SLR) compiled  to find the use of VT in Road 

safety. This SLR has shed more light on finding the research gap in order to commence 

this research. 

 

2.1.1 Introduction  

  Road safety is one of the major concerns all around the world. Notably, in 2011, South 

Africa had the highest number of fatalities, according to the International Road Traffic and 

Accident Database (IRTAD) annual road safety report 2013 (Meiring and Myburgh, 2015). 

Governments, vehicle manufacturers, and other stakeholders are involved continuously 

in ensuring road safety through several means. VT also known as flying car data (FCD), 

is one of the technological solutions available to ensure road safety. Telematics data 

comprising the geolocation of the vehicle, speed, acceleration, engine control unit 

information, and some other data are used by some vehicle insurance and fleet 

management companies. Use of telematic devices is becoming mandatory in some 

countries. It is believed that every car in the EU will be equipped with telematics sensors 

after the year 2018 (Braun, Reiter and Siddharthan, 2015). Research on the use of 

telematics data to detect driving behaviour and road anomalies show more significant 

success in vehicle fleet and road infrastructure industries (Meiring and Myburgh, 2015). 

Governmental and non-governmental organisations are collecting telematics data for 

various reasons, such as monitoring road usage and driving behaviour.  

 

  The intrusion of Usage-based Insurance (UBI) is a milestone in the use of telematics data, 

which introduced the Pay as You Drive (PAYD) scheme to attract customers. Risk-taking 

driving behaviour plays a significant role in most accidents. According to Wahlström, Skog 
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and Händel (2015),  over speeding, sudden acceleration/braking, hard cornering, and not 

wearing seatbelts are some of the risk-taking driving behaviours. Specially designed data 

collection devices (Black-Box) or smartphones were used to collect telematics vehicle 

data. The gathered telematics data includes information about vehicle movements and 

control inputs, from which it is possible to gather information about driving styles and 

behaviours. UBI using telematics devices often offer incentives and feedback on driving 

behaviour (Wahlström, Skog and Händel, 2015; Moosavi, Ramnath and Nandi, 2016; 

Tong et al., 2016). Feedback is  provided to the drivers or those who are responsible via 

in-vehicle data recorders (IVDR) (Toledo, Musicant and Lotan, 2008) or smartphones and 

other means of electronic communication such as text messages, emails and web sites. 

Several advanced driver assistant systems (ADAS) are available to assist drivers in 

preventing and reducing accidents, but it is only available on high-end model vehicles 

(Chaovalit, Saiprasert and Pholprasit, 2013). According to Lee (2007), there is an urgent 

need for researchers, designers, and policymakers to consider how to evict the causes of 

distraction and capitalise on the potential benefits of emerging technology.  There is a 

need to research more cost-effective solutions available to assist drivers in reducing 

accident risks.    

 

2.1.2 Background 

   In their review on UBI using telematics, Tselentis, Yannis and Vlahogianni (2017) 

discussed that most of the UBI applications use IVDRs such as On-Board-Diagnostics 

(OBD) modules to collect data, and smartphones to gather and transmit driving data to 

the central databases. Further, they firmly believed that smartphones would be mainly 

used for data acquisition in the future due to its high penetration rates in households as 

well as the high hardware cost of IVDRs. They also believed that drivers receiving 

feedback and monitoring driving behaviour would result in reducing crash risk.  

 

  Wahlstrom, Skog and Handel (2017) reviewed some notable academic and industrial 

studies with system aspects such as embedded and complementary sensors, energy- 

efficiency, and cloud computing. They discussed the methods to estimate smartphones’ 

orientation and position with respect to some given vehicle frame. They also categorised 

smartphone-based driver classification based on sensors used, considered driving 

events, and applied classification techniques. Furthermore, they also reviewed road 

condition monitoring. They stated that while smartphones potentially can function as an 

enabler for low-cost implementations, there are often technical difficulties that must be 

overcome due to the non-dedicated character of the device. They concluded that future 

improvements in sensor technology would be beneficial for the road condition and driving 
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detection, and that studies on communication standards and roadmaps need to be done 

in detail.  

 

  Meiring and Myburgh (2015) investigated various driving style analysis solutions. Their 

review focused more on the relevant ML and artificial intelligence (AI) algorithms utilised 

in driver behaviour analysis systems. They found that Fuzzy Logic inference systems, 

Hidden Markov Models (HMM) and Support Vector Machines (SVM) would provide 

promising results when on reduced model complexity. Tong et al. (2016) conducted a 

review of existing evidence of how vehicle telematics can affect accident rates, and how 

countries across the world have introduced policies regarding the use of telematics. Their 

main objective was to find evidence of the impact of telematics on accident risk, 

particularly in young and novice drivers. They found that no direct evidence shows 

telematics affects accident rates, but they found that parental involvement can indirectly 

influence young novice driver risk.  

 

2.1.3 Aim and Objectives 

  The aim of this review is to find the use of telematics data in detecting driving behaviour, 

road anomalies, and finding the effect of feedback on driving behaviour. 

  The specific objectives of this research are to:  

▪ Review existing evidence of the impact of telematics-based approaches for 

identifying driver behaviour. 

▪ Review existing driver feedback techniques used to encourage safer driving. 

▪ Identify how best telematics data can be accessed, compiled and used to produce 

the best driver feedback techniques to motivate good driving. 

 

2.1.4 Methodology 

2.1.4.1 Review Protocol 

2.1.4.1.1 Research Questions 

RQ1. What are the sources of vehicle telematics data? 

RQ2. What are the sensors and features used to detect driving behaviour? 

RQ3. What are the techniques used to detect or identify driving behaviour?  

RQ4. What are the available driver feedback techniques? 

RQ5. How does feedback affect driving behaviour? 
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2.1.4.2 Search Strategy 

2.1.4.2.1 Search Terms 

  Telematic* AND Driving AND (On-Board OR In-Vehicle Data Recorder OR Smartphone) 

AND (Behaviour OR Pattern OR Style) AND Feedback AND (Safe OR Encourage) AND 

(Classification AND Machine Learning OR ML Algorithms) 

 

2.1.4.2.2 Databases used 

  IEEE Xplore, ACM Digital Library, and Google Scholar.  

 

2.1.4.3 Study Selection 

2.1.4.3.1 Inclusion criteria: 

• Empirical studies on driver behaviour detection using telematics data from onboard 
sensors and smartphones. 

• Empirical studies on the driver feedback techniques and their effects. 

 
2.1.4.3.2 Exclusion criteria: 

• Studies before 1999 or not in English.  

• Studies Using Driving Simulators. 

• Review studies. 
 

2.1.4.4 Quality Assessment  Criteria 

  Table 2.1 shows the ten quality assessment (QA) questions used in this review process, 

adopted from Malhotra (2015). Scores are given by assigning 1 for strongly agree, 0.5 for 

partly, and 0 for disagree. Studies with scores less than 7.0 out of 10 for quality 

assessment question were rejected. 

 

Table 2.1: Ten QA questions used in this SLR 

Quality Assurance Questions 
Are the aims of the research clearly stated? 

Are the independent variables clearly defined? 

Is the data set size appropriate? 

Is the data-collection procedure clearly defined? 

Is attributes sub-selection technique used? 

 Are the techniques clearly defined? 

Are the results and findings clearly stated? 

Are the limitations of the study specified? 

Is the research methodology repeatable? 

Does the study contribute/add to the literature? 
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2.1.4.5 Data Extraction Form 

  Table 2.2 shows the structure of the data extraction form. Data extraction form entries 

were populated by extracting the data from the studies filtered from QA criteria.  

Table 2.2: Format of the Data extraction form 

Variables 

Authors: 

Title: 

Publication Type: 

Year: 

Field of Study: 

Total Quality Assessment Score (out of 10): 

Data collection devices (IVDR/Smartphone):  

Sensors used (Accelerometer/Gyro/Speed/Geo Position/etc):  

Features used (Acceleration/Speed/Cornering/etc):  

Algorithms used (SVM/ANN/BN/etc) :  

Feedback types used (Light/Audible/Haptic/Textural/etc): 

Experiment Size: 

Performance descriptor (Accuracy/F1 Score/ROC/AUC/etc):  

Performance score (Accuracy /ROC value):  

Strengths: 

Weaknesses: 

 

2.1.4.6 Data Synthesis 

  No statistical analysis has been made on the collected data. This paper contains some 

essential facts extracted from the selected studies, which are presented in textual and 

tabular forms. This report is furnished by summarising some selected literature which is 

selected based on the QA criteria. 

 

2.1.5 Results and Discussion 

  Table 2.3 shows the number of studies at  each stage of the review process. 

Table 2.3: Review process results 

Stage No. of Studies  Remarks 

Initial Search using search terms 4831 Using metadata 

Filer by title 1258  

Filter by abstract 325  

Full texts gathered 274 No secondary studies 

Included in Extraction form 90 High QA scores 

   

  Studies are summarised in a way to answer the research questions. Table 2.4 contains a 

list of studies used in this research. 
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Table 2.4: List of studies used in this SLR 

Research Questions Studies  

RQ1 What are the 
sources of vehicle 
telematics data? 

(Toledo, Musicant and Lotan, 2008; Dai et al., 2010; Johnson and 
Trivedi, 2011; Castignani, Frank and Engel, 2013; RoSPA, 2013; 
Stoichkov, 2013; Meseguer et al., 2013; Kalra, Chugh and Bansal, 
2014; Pargaonkar et al., 2014; Amarasinghe et al., 2015; D. Chen et 
al., 2015; Jarret Engelbrecht et al., 2015; Khedkar and Ravi, 2015; 
Vlahogianni and Barmpounakis, 2017; Wahlstrom, Skog and 
Handel, 2017; Zabihi et al., 2017)  

RQ2 What are the 
sensors and features 
used to detect 
driving behaviour? 

(Takeda et al., 2012; Meseguer et al., 2013; Wahlström, Skog and 
Händel, 2015; Vaiana et al., 2014; Wahlstrom, Skog and Handel, 
2014; Wahlström, Skog and Händel, 2014; Amarasinghe et al., 
2015; Castignani et al., 2015b; D. Chen et al., 2015; Ferreira et al., 
2017; Vlahogianni and Barmpounakis, 2017) 

RQ3 What are the 
techniques used to 
detect  
or identify driving 
behaviour?  

(Fazeen, M and Gozick, B and Dantu, R and Bhukhiya et al., 2012; 
Meseguer et al., 2013; Hong, Margines and Dey, 2014; D. Chen et 
al., 2015; Z. Chen et al., 2015; J. Engelbrecht et al., 2015; 
Hosseinioun, Al-Osman and Saddik, 2016; Liu et al., 2016; Ouyang 
et al., 2016; Wu, Zhang and Dong, 2016; Saiprasert, Pholprasit and 
Thajchayapong, 2017) 

RQ4 What are the 
available driver 
feedback  
techniques? 

(Belz, Robinson and Casali, 1999; Tijerina et al., 2000; Cummings et 
al., 2007; Donmez, Boyle and Lee, 2007; Adell et al., 2008; Toledo, 
Musicant and Lotan, 2008; Asif et al., 2009; Farmer, Kirley and 
McCartt, 2010; Takeda et al., 2012, 2011; Kruger, Hefer and 
Matthew, 2013; Simons-Morton et al., 2013; Braun, Reiter and 
Siddharthan, 2015; Yan, Wang and Wu, 2016) 

RQ5 How does feedback 
affect driving  
behaviour? 

(Huang et al., 2005; Lee, 2007; Dogan et al., 2011; Simons-Morton 
et al., 2013; Braun, Reiter and Siddharthan, 2015; Shimshoni et al., 
2015; Zabihi et al., 2017) 

 

2.1.5.1 What are the sources of vehicle telematics data? 

  There are two primary data collection methods used in most literature, namely: IVDRs 

and smartphones. Most of the UBI and fleet management application used IVDRs, and 

only a few of them used smartphones. There is much research done on the application of 

smartphones in telematics.  

 

 

Figure 2.1: Process diagram illustrating the information flow of smartphone-based 
vehicle telematics (Wahlstrom, Skog and Handel, 2017) 

   

  Here we summarise some of the studies on the use of smartphones and IVDRs. 

Smartphones are widely used to collect data in the form of video, audio and IMU 
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(acceleration, gyro, magnetometer, location). These data were used to detect driving 

behaviour and different road conditions as well. Smartphones are used in the majority of 

the studies in this review. According to Vlahogianni et al. (2017) and Walhstrom et al. 

(2017), smartphones offer a cheap, scalable, and easily implementable alternative to 

current road monitoring methods, although several methodological challenges remain. 

Engelbrecht et al. (2015) stated that the vehicle and navigation industry had gained new 

ways to collect data using the ever-growing worldwide penetration of smartphones. 

Several smartphone applications have  been developed to detect driving behaviour and 

road anomalies (Dai et al., 2010; Johnson and Trivedi, 2011; Castignani, Frank and 

Engel, 2013; Meseguer et al., 2013; Stoichkov, 2013; Kalra, Chugh and Bansal, 2014; 

Pargaonkar et al., 2014; D. Chen et al., 2015; Khedkar and Ravi, 2015; Zabihi et al., 

2017). Smartphones are used as data collection, connectivity, and presentation devices 

(Meseguer et al., 2013; Amarasinghe et al., 2015).In contrast, Wahlstrom et al. (2014) 

discussed the difficulties faced in previous studies using smartphones to profile drivers 

and providing scores. Furthermore, they emphasised those studies using a smartphone 

as one of the sensory devices, data connection device and a feedback interface. They 

found that the limited data sampling rate affects the detection of some critical activities 

which happen suddenly. 

 

  IVDRs were used to detect various driving risk indices and provide feedback and Toledo, 

Musicant and Lotan (2008) found a significant difference in the rate of involvement in car 

crashes after installing the device. Even though IVDRs are more accurate than 

smartphones, it is still unaffordable due to its cost (RoSPA, 2013). 

 

2.1.5.2 What are the sensors and features used to detect the behaviour? 

  The various sensors are used in driving behaviour and road anomaly detection. 

Accelerometer, Global Navigation Satellite Systems (GNSS), Gyroscope, Engine Control 

Unit (ECU) information from OBD II module (such as revolution per minute (RPM), 

Throttle position, Camera, and Microphone are some among those. References (Vaiana 

et al., 2014), (Wahlström, Skog and Händel, 2014) used only GNSS location data to 

calculate the speed and acceleration using the backward difference method. Further, they 

stated that this method provides more accuracy in finding speed and acceleration. A 

framework was proposed to detect dangerous cornering events based on GNSS and IMU 

data in (Wahlström, Skog and Händel, 2015). The study conducted by Amarasinghe et 

al. (2015) only used OBD-II sensor data to detect reckless driving behaviour and vehicle 

anomalies. The speed, acceleration, and engine RPM were used as parameters by 

Meseguer et al. (2013). The total accuracy of 99.5% and 99.3% were achieved for the 
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smartphone and OBD-II devices respectively under controlled experiments (Vlahogianni 

and Barmpounakis, 2017). D. Chen et al. (2015) developed a turning and cornering 

detection system on smartphones, where they used the gyroscope, accelerometer, 

GNSS, and Microphone sensor data. The microphone is used to detect the signal relay 

sound. Takeda et al. (2012) used numerous sensors  to collect rich multimodal data  which 

included 12-channel audio, four-channel video, GNSS information, gas and brake pedal 

pressure, steering angle, following distance, vehicle velocity, driver’s heart rate, skin 

conductance, and emotion-based sweating on the palms and soles, etc. A recent study 

by Ferreira et al. (2017) on an investigation with different smartphone sensors and ML 

found that the accelerometer and gyroscope are the best sensors to detect driving 

behaviour.  Sensor fusion is found to be more promising in driver behaviour and road 

anomaly detection (Wahlström, Skog and Händel, 2014; Castignani et al., 2015b; Ferreira 

et al., 2017). 

 

2.1.5.3 What are the techniques used to detect or identify driving behaviour? 

  Table 2.5 presents the number of studies considered in their review. The studies were 

classified according to the sensors, features, and algorithms used to find the driving 

behaviour and/or road anomalies. This study gives us the variables we can use to detect 

driving behaviour and road anomalies. 

 

Table 2.5: Summary of Variables and Algorithms used in a review on driving behaviour 
and/or road condition analysis using ML techniques (Wahlstrom, Skog and Handel, 2017) 

  
  

Number of 
Experiments 

 % in total 
reviews 

Sensors 
 
 
 

GNSS 26 50 

Accelerometer 41 79 

Gyroscope 21 40 

Magnetic  16 31 

OBD 7 13 

Integral Measurement Unit 5 9.6 

Feature 

High Acceleration 45 87 

High Cornering 43 83 

Low Cornering 21 40 

Detection 
/Classification 
Algorithm 

Threshold 35 67 

Support Vector Machine (SVM) 4 7.7 

Dynamic Time Wrapping (DTW) 7 13 

Hidden Markov Model (HMM) 1 1.9 

K-nearest neighbour 1 1.9 

K-means 2 3.8 

Naive Bayes classifier 3 5.8 

Symbolic Aggregation 1 1.9 

Pattern Matching 2 3.8 
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  The majority of the research used a fixed or variable threshold-based driving detection, 

for example Lui et al. (2016). In Fazeen et al. (2012) threshold-based multiple-axis 

classification proved a better accuracy (85.6%) in detecting the road condition. Fuzzy 

logic based (Castignani et al., 2015a) and SVM ( Chen et al., 2015; Hosseinioun, Al-

Osman and Saddik, 2016; Wu, Zhang and Dong, 2016) proved some positive results 

among different ML Algorithms (MLAs).  

 

  A study (Saiprasert, Pholprasit and Thajchayapong, 2017) in 2017 found that pattern 

matching algorithm outperforms rule-based algorithms in detecting aggressive driving. A 

trail on comparing Dynamic Time Wrapping (DTW) and Maximum likelihood algorithms 

using a smartphone’s accelerometer and gyroscope sensors revealed that Maximum-

likelihood algorithm outperformed with 89.1% accuracy in determining aggressive driving 

where DTW performed with 84.5% accuracy (Engelbrecht et al., 2015).  

 

   Chen et al. (2015) discussed and developed a real-time abnormal driving behaviour It 

was mentioned that 100% accuracy was obtained on Left/Right turn detection. Lane 

Change and Curvy road detection accuracy was 93% and 97% respectively when the 

phone was placed on the dashboard using the SVM classification algorithm. Ouyang et 

al. (2016) proposed a novel approach called MultiWave to detect cornering events on 

smartphones. It was mentioned that HMM-based or DTW-based systems are CPU and 

memory full solutions on the mobile platform. Bayesian network (BN) outperformed five 

other different MLAs such as k-nearest neighbour (k-NN), radial basis function network 

(RBFN), logistic model trees (LMT), multilayer perceptron (MP), and support vector 

machine (SVM). With Mesegeur et al. (2013), Neural Networks classified road conditions 

and driving styles with 98% and 77% accuracy respectively.  

 

  According to Hong, Margines and Dey (2014), a naïve Bayes classifier with 5-bin 

discretisation ML technique proved its aggressive driving style classification with an 

accuracy between 81% to 90.5%. With Ferreira et al. (2017), a quantitative evaluation of 

the performance of four different ML algorithms showed that Random Forest (RF) is by 

far the best performing MLA, followed by Multi-Layer Perceptron  (MLP) than Support 

Vector Machine (SVM) and Bayesian network (BN); varying from 0.980 to 0.999 mean 

Area Under Curve (AUC) values. 

 

2.1.5.4 What are the available driver feedback techniques? 

  Feedback is  given in the form of Textural (In-dash messages, SMS, e-mails, web-based 

results) (Toledo, Musicant and Lotan, 2008; Farmer, Kirley and McCartt, 2010; Takeda et 
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al., 2011, 2012; Braun, Reiter and Siddharthan, 2015), Visual (Heads Up Display (HUD), 

warning lights and signs) (Tijerina et al., 2000; Donmez, Boyle and Lee, 2007; Adell et 

al., 2008; Simons-Morton et al., 2013), Auditory (In-vehicle warning sounds (non-speech 

tones), and voice messages) (Cummings et al., 2007; Kruger, Hefer and Matthew, 2013; 

Yan, Wang and Wu, 2016), and Haptic (Seat-mounted, steering wheel, pulsating pedals) 

(Tijerina et al., 2000; Adell et al., 2008; Asif et al., 2009) forms.  

 

  The voice messages were rated significantly better than all the non-speech tones (Adell 

et al., 2008). According to Belz, Robinson and Casali (1999), a multimodal solution, a 

combination of visual, auditory or haptic modes would probably be most efficient.  

 

2.1.5.5 How does feedback affect driving behaviour? 

  In literature, the feedback on driving behaviour has shown a significant effect on driving. 

For example, Dogon et al. (2011) concluded that providing drivers with detailed 

information on what caused their failure or success and what they should do in order to 

improve their performance is needed for feedback to be effective in reducing self-

enhancement biases. Feedback with positive content will encourage good driving 

behaviour (Braun, Reiter and Siddharthan, 2015),(Huang et al., 2005). 

 

  It was stated that “Objective feedback about an elevated risk may encourage the driver 

to correct his or her driving”(Hong, Margines and Dey, 2014, p. 4054). In general, driving 

behaviour change in novice drivers was higher than veteran drivers using feedback from 

the technology. The technology affects driving safety both positively and negatively due 

to the distraction by the feedback systems (Lee, 2007) and sharing the driver’s behaviour 

and performance with supporters positively affected driving behaviour (Zabihi et al., 

2017). Providing feedback to young drivers and their parents may reduce  risky driving 

behaviour, but the success rate depends on the involvement of parents (Shimshoni et al., 

2015). “Simply installing the device in a teen's vehicle may not be sufficient to improve 

driving safety. However, providing video clips of safety-relevant driving behaviours to the 

teens and parents/guardian for review could create an opportunity for teens to learn from 

their mistakes” (Mcgehee et al., 2007: 216). It was found  that providing feedback to the 

parents with possible consequences reduced risky driving in teens, whereas no significant 

changes in driving behaviour were observed by providing immediate feedback only to 

teenagers (Simons-Morton et al., 2013). Rewards are mostly considered in studies based 

on UBIs. It is evident that the insurance companies cannot afford to deduce the premium 

below a specific value, though it is impossible to restrict the drivers to stick to the rigid 

rules all the time as it will reduce the involvement in participating in the UBI programme. 
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  Moreover, not all people like UBI because of their privacy concerns. Personalised 

feedback and more realistic positive feedbacks were preferred in (Huang et al., 2005). 

Zabihi et al. (2017) found that not only social reinforcement affects drivers, but also their 

social face contributes in keeping good driving behaviour as drivers keep looking good to 

their closest person. 

 

2.1.6 Discussion 

  There are few studies concerned with implementing algorithms to run on smartphones to 

detect activities in real-time. Such applications used threshold-based classification to 

detect aggressive and regular driving activity. Some studies proposed the adoptive 

profiling algorithms to set the threshold value to depend on various parameters. More 

studies on the Haptic feedback system was done using simulation-based trails, though 

only some of such studies are discussed here since most of those were simulation-based.  

 

  Only a few researchers like Zhao et al. (2013) have used ISO 2631-1-1997 standard to 

measure driving comfort in harsh driving conditions, while the majority of the researchers 

used their measurement standards using the feedback from the passengers. Position of 

the phone and its orientation was found to influence the accuracy of the detection. 

Coordinate transformation of the smartphone was done as a pre-processing before 

applying driving detection/classification algorithms. Only some researchers, notably  

Zheng, Member and Hansen (2016)  emphasised that the effectiveness of coordinate 

transformation still needs to be studied further. Wide ranges of in-vehicle driver assistance 

system are available in the present automobile market, which is available as a retrofit or 

OEM products, but smartphones are still competing IVDRs due to its cost and 

convenience. 

 

  Wahlstrom, Skog and Handel (2017:16) stated that “Currently, the literature on these 

topics is very scattered, with many articles detailing ideas that have already been 

published elsewhere”. 

 

2.1.7 Threats to Validity 

  Most of the studies employed a very few numbers of drivers, and a limited number of 

vehicles, which could lead to a biased result. Further, it was mentioned that experimenting 

aggressive driving in real road driving situation is dangerous (Wu, Zhang and Dong, 2016) 

and illegal, so most of the aggressive driving experiments were conducted in a controlled 
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environment. Naturalistic driving data was used in some studies to check the correctness 

of the detections made; it was time-consuming due to human intervention.  

 

  Detection accuracy using smartphones varies due to the noise coming from the use of 

mobile phones for texting and talking during driving, which is not considered in most of 

the experiments. Only a few studies, for example ‘Driver behavior profiling using 

smartphones: A low-cost platform for driver monitoring’ (Castignani et al., 2015a) clearly 

show that the calibration phase is more important to be focused on projects using mobile 

phones. 

 

2.1.8 Conclusion of the SLR 

More studies on presenting effective feedback techniques are needed. An efficient way 

of detecting who is using the phone while driving is a challenging task to be further 

studied. Only a few studies on total road safety monitoring which covered driver, vehicle 

and road anomaly have been done so far. Since there are different types of features 

used among each study, performing a meta-analysis is a challenging task.   

 

2.1.9 Future Directions 

Telematic data are becoming richer and more accurate due to the technological 

improvements in sensors and connectivity. IoV is becoming popular as a result of this. 

Use of machine learning and telematics data could be used to explore more about the 

road, vehicle, and driver. Inferring the payload or weight of a vehicle or finding an 

overloaded vehicle using telematics and ML is an exciting area to focus on. 

 

2.2 WIM Systems 

In general, WIM systems are used to measure the gross vehicle weight (GMW) and other 

parameters of vehicles (Gajda, Burnos and Sroka, 2018).  
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Figure 2.2: Classification of WIM (Labarrere, 2017) 

 

Two main classifications of WIM solution methods are Static WIM and Dynamic WIM. 

There are two sub-categories of dynamic WIM methods, which are a) Low-speed WIM 

(LS-WIM) and b) HS-WIM (see Figure 2.2). In LS-WIM the vehicle is weighed while it 

moves across the scale at low speed, typically less than 15kmph, but  HS-WIMs are 

capable of weighing the vehicle weight at full highway speeds (Richardson et al., 2014). 

 

2.2.1 Static WIM 

In static WIM method, the vehicle is weighed while it is stationary on the scale. Static 

WIM methods are most accurate but cumbersome. Fixed Systems, Semi-Portable 

Systems, and Portable Systems are the three types of static WIMs in general 

(Richardson et al., 2014). Fixed Systems are permanently mounted to the pavement, 

usually in a reinforced concrete frame or platform. Semi-Portable Systems use 

permanent grooves, and road installations with portable scales which are only installed 

while weighing operations are being carried out. Portable Systems use either wheel or 

axle scales, which are placed on the pavement surface (Richardson et al., 2014). 

 

2.2.2 Low-Speed WIM 

According to Gajda, Burnos and Sroka (2018), Static scales and LS-WIM devices are 

very accurate and are used for enforcement in many US states and several European 

countries. LS-WIM devices were introduced because of the drawbacks of Static WIMs. 

LS-WIM devices are typically wheel or axle scales equipped with load cells and are 

usually installed into reinforced concrete or asphalt platforms which are at least 30-40m 

in length. The vehicle may be guided by curbs to minimise variation in the transverse 
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position of the wheels. The data processing system analyses the signal from the load 

cells and takes the vehicle speed into account in order to accurately calculate wheel or 

axle loads.  

 

LS-WIMs significantly reduced the time required to weigh vehicles, but it is not a feasible 

solution for highway deployments due to its cost for installation, maintenance and the 

significant delay in measuring the weight as the vehicles need to drive at slow speed. 

Static and LS-WIM systems require vehicles to exit the highway and wait in a queue. It 

is reported that this would delay between 10 and 30 minutes (Gajda, Burnos and Sroka, 

2018).  

 

2.2.3 High-Speed WIM 

High-speed WIM systems are built to measure the weight of vehicles driving on 

highways. HS-WIMs calculate axle weights at full highway speed. Most of the HS-WIMs 

are unmanned. Therefore, it can collect data 24/7. These devices are either installed in 

the pavement or on the underside of a highway bridge. Several types of pavement-based 

HS-WIM devices exist, including bending plates, strip sensors, and multiple strip 

sensors. Alternatively, HS-WIM can be accomplished using bridge-weigh-in-motion (B-

WIM) devices. Several factors influence the accuracy of B-WIM systems, thus the HS-

WIM as well (Richardson et al., 2014).  

 

The Multi-Sensor WIM (MS-WIM) was introduced by  Gajda, Burnos and Sroka (2018), 

because of the low accuracy or correctness of HS-WIMs. Gajda, Burnos and Sokra 

(2018) conclude that the measurement accuracy could be increased by incorporating 

MS-WIM in HS-WIM. They also pointed out that the cost of installing MS-WIM is a 

significant concern. 

 

In a report by Al-Qadi et al. (2016), researchers have identified three significant factors 

that affect the accuracy of the WIM system, namely site condition, weather condition and 

vehicle characteristics. They reported that temperature and humidity could affect the 

accuracy of the sensors, which will impact the overall efficiency of the system. Among 

the other factors, site conditions, and pavement roughness have the most significant 

effect on the efficiency of the WIM system (Al-Qadi et al., 2016). They also reported that 

vehicle characteristics, such as speed, tire type, inflation pressure, suspension system, 

and axle configurations, affect the dynamic tire force, thus affecting WIM sensor 

accuracy. According to Gajda et al. (2018), the HS-WIMs are still not as accurate as 

Static WIMs. Currently, the HS-WIMs are used to filter the overloaded vehicles from the 
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traffic with limited certainty. The filtered vehicles are then sent to the Static WIMs for 

further legislative actions as it needs more accurate results (Gajda, Burnos and Sroka, 

2018). 

 

There are different practices in utilising WIM for enforcement over the world. Especially 

in Taiwan, HS-WIM solutions are utilised for direct enforcement, with tolerance up to 

30% due to the errors in the framework. In some countries, portable HS-WIM systems 

are utilised over brief timeframes to recognise overloading, and afterwards, filtered 

vehicles were sent to perform weighing on static weighbridges. This is because  the 

precision of portable WIM frameworks isn't generally excellent, and along these lines, 

the effectiveness or pre-determination is low (Jacob and Véronique, 2010). 

 

2.2.4 Other Approaches 

Several other approaches such as using the Tyre Pressure Monitoring Systems (TPMS), 

ride-height (suspension displacement), and chassis mounted scales have been 

proposed in addition to pavement based Static and Dynamic WIMs. Shah et al. (2016) 

developed a WIM system by observing the length of shock absorber in two-wheeler 

vehicles. A paper by  Mckay et al. (2012) discusses an experiment to explore the various 

possibilities for passive WIM system. McKay et al. (2012) investigated multiple vehicle 

indicators including brake temperature, tire temperature, engine temperature, 

acceleration and deceleration rates, engine acoustics, suspension response, tire 

deformation and vibrational response. Their sensing system included; infrared video 

cameras, tri-axial accelerometers, microphones, video cameras and thermocouples. 

They found that the weight of a vehicle shows a strong correlation to tyre deflection, 

suspension response and some other features. The patent (Ihiguro et al., 2006) 

discusses a vehicle weight estimation device. The invention is generally for estimating a 

vehicle’s weight used for determining a shift range of an automatic transmission vehicle. 

It is based on the acceleration integration and driving force integration. The torque value 

calculates the driving force, and the speed value is used to calculate the acceleration. 

Present vehicles use ECUs to compute the engine load and other values and adjust the 

parameters such as air intake, fuel injection, and ignition timing to increase the 

performance and efficiency (Paul Hilgeman and Vicente, 2000). 

 

In summary, using mass scales in weighbridges is a costly and time-consuming solution. 

Chassis and seat-mounted scales use mechanical devices which need frequent 

calibration. Smart tyres and measuring weight using tyre pressure is expensive since it 

needs to be installed on every wheel. New WIM applications as a part of ITS solutions 
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for traffic and vehicle load enforcement are expected. It would be easier to stop 

overloaded driving conditions by monitoring tucks using a reliable on-board WIM system. 

This can be achieved with efficient means of communications. Having such a system 

could save the installation and maintenance cost for traditional WIM systems  

(Kirushnath and Kabaso, 2018). 

 

2.3 VT data collection module 

This section discusses the background to the VT module by introducing some of the 

existing modules, and by describing the essential components of it. Several VT data 

collection modules are available in the market. Tselentis et al. ( 2017) summarised some 

of the VT data collection devices. Table 2.6 shows some of such devices available in 

2017; adopted from Tselentis, Yannis and Vlahogianni (2017).  

 

Table 2.6: Some of the Telematic devices and their cost (Tselentis et al., 2017) 
Manufacturer Data recorded Method of 

transmission 
Installation cost Monthly 

/yearly fee 

CarChipFleetPro Distance, time, 
acceleration, speed, 
GPS location, fuel, 
Engine speed 

USB cable/port 
(customer loaded) 

$149 (plus a $395 
charge for software, one 
per fleet) Can also be 
used wirelessly with a 
$200 base unit 

None 

Sky-meter Time, distance, 
place, speed, 
acceleration of all 
driving, and the 
location and time of 
all parking 

GPRS/CDMA (other 
protocols available at 
extra charge) 

$50–$250 activation fee $18.95 per 
month 
after one 
year 

OnStar Distance, speed, 
time, (incl. other 
features) 

Automatic through GPS  First-year free for new 
GM cars (only available 
for GM) 

$18.95 per 
month 
after one 
year 

Freematics Speed, distance, 
time, location, 
acceleration, engine 
RPM 

Built-in Bluetooth Low 
Energy and SPP 
module for wireless data 
communication or via 
microSD card (32GB) 

99$ (Plus $30 for GPS 
module, plus $10 for 
MEMS MPU-9150 (9-
axis) module, plus $10 
for DUO BLE-BT 2.1 and 
plus 5$ for 32GB 
microSD) 

None 

Progressive 
(MyRate Device) 

Distance, speed, 
time, location, 
acceleration, trip 
frequency 

Wirelessly None but $75 fee if not 
timely returned at the 
end of the policy 

Varies 

 

2.3.1 Vehicle Electronic/Engine Control Unit (ECU) 

Modern vehicles are equipped with several sensors and ECUs.  The main reasons for 

these sensors and ECUs are to obtain performance with fuel efficiency and increased 

safety. 
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Figure 2.3: Schematic diagram of ECU with Sensors  

 

The ECU receives the values from the array of sensors and interprets the values with a 

multi-dimensional performance map and controls the actuators accordingly (Massaro et 

al., 2016). Adjusting the air-fuel mixture and ignition timing for better combustion is one 

of the primary functions of the ECU. Controlling the Antilock Brake Sensor (ABS), and 

Air Bag are some of the safety functions with regards to safety. Numerous sensors are 

being used in autonomous vehicles. Figure 2.3 shows the schematic diagram of sensors 

and actuators connected to the ECU. 

 

Table 2.7 contains some of the Control Systems, sensors and actuators in automobile 

vehicles. 

 

Table 2.7: Example of some automotive control systems (Massaro et al., 2016) 
Control 
System 

Indirectly 
Controlled 

Variable 

Directly 
Controlled 

Variable 

Manipulated 
Variable 

Sensor Actuator 

Fuel 
Injection 
System 

Air-fuel ratio Exhaust 
Oxygen 
Content 

Quality of 
injection fuel 

Zirconia and 
Titania based-
electro chemical 

Fuel Injector 

Knock 
control 

Knock Knock sensor 
output 

Ignition timing Piezo-electric 
accelerometer 

Ignition coil 
switch 
transistor 

Anti-lock 
braking 
system 

Wheel Slip 
limit 

Wheel speed Brake time 
pressure 

Magnetic 
reluctance 

ABS solenoid 
valve 

 

2.3.2 Controller Area Network (CAN) Bus Data 

The sensor data transmission happens via CAN bus to the ECU. With a large number of 

components that exchange data through a technology invented in 1986 by Robert Bosch 
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(Kiencke, Dais and Litschel, 1986), a serial broadcast bus that allows near-real-time 

management of most sensors and electronic devices embedded in the car (Massaro et 

al., 2016). The CAN bus transmits ECU data outside for troubleshooting and 

performance logging using several standards, for example J1939.  

 

2.3.3 Onboard Diagnostics (OBD) module  

Almost all of the newly produced automobiles are required, by law, to provide an interface 

for the connection of diagnostic test equipment (Elmelectronics, 2011). Cars 

manufactured after 1996 have OBD interface which enables users to read and write into 

cars ECU. The communication protocol and the data transfer rate may differ from 

manufactures. ELM 327 is the widely used microcontroller (chip) for the communication 

with the ECU. The ELM 327 acts a bridge between OBD ports and a standard RS232 

serial interface. ELM microchip has its interface to send and receive data from external 

applications and the ECUs designed by various manufacturers.   

 

 

Figure 2.4: Block diagram showing ECU data collection modules 

 

Figure 2.4 shows the block diagram of the modules involved in OBD data 

communication. The data from sensors to the ECU are transferred via CAN bus; vehicle 
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manufacturers follow some standards on establishing communication to the external 

world through OBDII interface. They allow some generic parameters to be accessed by 

the OBD interface.  

 

Once the OBD adaptor has been inserted to the vehicle’s OBD interface, the ELM 327 

tries to establish a connection with the vehicle’s ECU. It tries with several communication 

protocols and baud rates to establish the connection. According to the ELM electronics 

report (Elmelectronics, 2011), there are 12 different protocols supported by ELM, 

including two user-defined protocols. After establishing the connection, the ELM 327 

reads the data from the ECU and allows its connected applications to access the values 

by translating the ECU data.  The communication can be made with several different 

modes (services). Table 2.8 describes the ten diagnostic services described in the latest 

OBD-II standard SAE J1979. Before 2002, J1979 referred to these services as "modes".  

 

Table 2.8: The 10 diagnostic services/modes according to SAE J1979 standard 

Service/Modes Description 

01 Show current data 

02 Show freeze frame data 

03 Show stored Diagnostic Trouble Codes 

04 Clear Diagnostic Trouble Codes and stored values 

05 Test results, oxygen sensor monitoring  

06 Test results, other components/system monitoring  

07 Show pending Diagnostic Trouble Codes  

08 Control operation of on-board component/system 

09 Request vehicle information 

10 Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs) 

 

The parameters are accessed using their Parameter Identifiers (PIDs), for example, 

Engine Revolutions Per Minute (RPM) has the PID number 12 under service number 01. 

OBD-II was made mandatory for cars and lightweight trucks across the USA in 1996. 

OBD-II was required in the EU for all gasoline cars after 2001 followed by diesel in 2003. 

In 2005 it was required in the USA for medium trucks. In 2008 the ISO 15765-4 CAN bus 

standard was required in the USA. In 2010 OBD was required in the USA for all the 

Heavy-duty vehicles (CSS, 2018). In their article, Alessandrini et al. (2012) reported that 

OBD sensors have been validated and have good accuracies to be used to calculate 

instantaneous power and fuel consumption. This encouraged us to use the OBD 2 data 

in this project. 

 

2.4 Theoretical Background 

According to the Newtonians physics where space and time are absolute, we believe 

that Newton’s theories of mechanics are still valid in this physical world. According to 
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Newton’s second law of motion, “The acceleration produced when a force acts is directly 

proportional to the force and takes place in the direction in which the force acts”, which 

is 𝐹 = 𝑚𝑎 , in formula; where, 𝐹  is the force applied on a mass, 𝑚 , and a is the 

acceleration of the mass. This can also be interpreted that the applied force, 𝐹,  is 

proportional to the mass, 𝑚, for a specific acceleration.  

 

Figure 2.5: Forces on a moving vehicle 

 

In vehicles powered with the internal combustion engines, the driving force, F, produced 

is proportional to the Torque (Engine Load) of the engine. Whereas, Torque is a function 

of Engine RPM and intake airflow. According to  Mckay et al. (2012), the weight of a 

vehicle can be measured using several internal and external features. In Ihiguro et al. 

(2006), the estimating means of vehicle weight is based on the motion of the equation 

(see Figure 2.5).  

𝑚. 𝑑𝑣 = 𝐹 − 𝑚 × 𝑔 × 𝑠𝑖𝑛(𝛩) − 𝑅 

Equation 2.1 

 

Where, v = acceleration, m = vehicle mass, F = driving force, Θ = slope of the driving 

surface, g = gravitational acceleration, R = running resistance. 

 

From Equation 2.1, the mass is: 

𝑚 =      
𝐹 − 𝑅

𝑑𝑣 × 𝑔 × 𝑠𝑖𝑛(𝛩)
  

Equation 2.2 

 

 Lin and Li (2016) listed the following as some of the conditions which affect a load of 

electric vehicles motor: 1) travelling surface, 2) road gradient, 3) weight of the vehicle, 4) 

rolling resistance, 5) type of tire, 6) air pressure of one or more tires, 7) air resistance, 8) 

size and shape of the vehicle, 9) alignment of wheels, 10) transmission system. Driving 

force of a vehicle affects the acceleration of a vehicle. The load is the amount of driving 

force needed to move a vehicle. In electric motors, the load is calculated using the 
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ampere. According to SAE International SAE J1979 / ISO 15031-5, in internal 

combustion engines, the Calculated Engine load (EL) is a function of current airflow, 

ambient air temperature, RPM, peak airflow, and barometric pressure. According to SAE, 

EL is calculated using Equation 2.3, which is typically an indication of the current airflow 

divided by peak airflow at the wide-open throttle as a function of RPM, where airflow is 

corrected for altitude and ambient temperature (International Organization for 

Standardization, 2015). 

 

𝐸𝐿 =  
𝐶𝐴𝐹𝑅

𝑃𝐴𝐹𝑅 ×       (
𝐵𝐴𝑅𝑂

29.92
)  × √

298

𝐴𝐴𝑇+273

           

Equation 2.3 

 

Where, CAFR = Current Air Flow Rate, PAFR = Peak Air Flow Rate at fully open throttle 

at standard temperature (25 °C) and pressure (29.92 in Hg BARO), AAT = Ambient Air 

Temperature (in °C). 

 

In summary, Force, F, applied on an object with mass, M, produces an acceleration 

(Newtons’ Second Law of Motion). This can also be viewed as the force needed to obtain 

a specific acceleration is proportional to the weight (mass) of an object. Internal 

combustion engine vehicles use the torque produced by engines to move the vehicle. 

The torque produced by the engine is proportional to the Calculated Engine Load, EL, 

given by Equation 2.3. Form these two factors; we could say that a vehicle’s EL is 

proportional to the weight of it at a certain acceleration. But, EL is influenced by several 

internal (Equation 2.3) and external factors (Equation 2.2) (Ihiguro et al., 2006; McKay 

et al., 2012; Lin and Li, 2016). We assume that the relation is multiple linear regression. 

It can be viewed as: 

W = b + ∑ ai × xi

n

i=0

 

Equation 2.4 

 

Where, the weight of a vehicle W is the sum of a bias value b, and the accumulated sum 

of the products of coefficient ai and feature xi of all the n number of features. 
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2.5 Machine Learning 

ML is a form of AI that enables a system to learn from data rather than through explicit 

programming. However, ML is not a simple process. ML uses a variety of algorithms that 

iteratively learn from data to improve, describe data, and predict outcomes. As the 

algorithms ingest training data, it is then possible to produce more precise models based 

on that data.  

 

In general, the prediction is the primary goal of ML. Suppose 𝑇 is a training set of 𝑁 data: 

 

𝑇 = (𝑦𝑛, 𝑥𝑛 ), 𝑛 = {1, . . , 𝑁} 

Equation 2.5 

 

Where, 𝑦𝑛  are the response (dependent) vectors and the 𝑥𝑛  are vectors of predictor 

(independent) variables.  

 

The goal is finding a function, 𝑓, operating on the space of prediction vectors with values 

in the response space, such that: 

 

If the (𝑦𝑛, 𝑥𝑛 )  are independent and identically distributed variable vectors from the 

distribution (𝑌, 𝑋) and given a loss function 𝐿(𝑦, ŷ) that measures the loss between y and 

the prediction ŷ. The prediction error of using function 𝑓  on training data 𝑇:  

𝑃𝐸(𝑓, 𝑇) = 𝐸𝑌,𝑋 𝐿(𝑌, 𝑓(𝑋, 𝑇)) 

 

In the training process, we always try to choose 𝑓 yielding small 𝑃𝐸(𝑓, 𝑇) for a given data 

set 𝑇. 

 

Typically, 𝑦 is one dimensional. If 𝑦 is numerical, the problem is referred to as regression 

(discussed below). If 𝑦 is unordered labels or categorical values, the problem is called 

classification. The loss function in regression is usually squared error (discussed below). 

In classification, the loss is determined in binary values. The loss is one if the predicted 

category or label is not equal to the true (given) label, zero otherwise. 
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2.5.1 ML Model 

An ML model is the output generated when the ML algorithm has trained with data. After 

training, when a model has provided with an input, an output will be given (Hurwitz and 

Kirsch, 2018). 

2.5.2 ML algorithms  

ML algorithms are organised into taxonomy, based on the desired outcome of the 

algorithm. Two primary classifications of ML algorithm types were Supervised Learning 

and Unsupervised Learning. 

• Supervised learning  

Supervised learning is where the algorithm generates a function that maps inputs to 

desired outputs. One standard formulation of the supervised learning task is the 

classification problem: the learner is required to learn (to approximate the behaviour of) 

a function which maps a vector into one of several classes by looking at several input-

output examples of the function. 

• Unsupervised learning  

Unsupervised learning models a set of inputs: labelled examples are not available. These 

kinds of algorithms were commonly used in classification, clustering, and anomaly 

detection problems. The algorithm will learn the trends and variations in the input dataset 

and predicts the output automatically. 

2.5.3 Supervised learning 

Supervised ML comprises two main processes: classification and regression.    

Classification is the process where incoming data is labelled based on past data samples 

and manually trains the algorithm to recognise certain types of objects and categorise 

them accordingly. The system must know how to differentiate types of information, 

perform an optical character, image, or binary recognition. Regression is the process of 

identifying patterns and calculating the predictions of continuous outcomes. The system 

must understand the numbers, their values, and grouping (for example, heights and 

widths). 

2.5.4 Linear Regression 

Linear Regression is a simple model which makes it easily interpretable. A linear 

regression model assumes that the response or dependent variable (𝑦 ) is a linear 

combination of weights (𝛽’s) multiplied by a set of predictor or independent variables (𝑥). 

The complete formula contains an error term to account for random sampling noise 𝜀.  
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𝑦 = 𝛽0 + ∑(𝛽𝑛𝑥𝑛)

𝑁

n=1

+ 𝜀 

Equation 2.6 

 

Where, 𝛽0 is the intercept term, 𝛽𝑛 is the coefficient of each predictor variable 𝑥𝑛 from 

the 𝑁 number of variables. The goal of learning a linear model from training data is to 

find the coefficients, β, that best explain the data. In linear regression, the best 

explanation is taken to mean the coefficients, 𝛽 , that minimize the residual sum of 

squares (RSS), also known as Sum of Squared Error (SSE). RSS/SSE is the total of the 

squared differences between the known values, 𝑦𝑛, and the predicted model outputs ŷ𝑛 . 

The residual sum of squares is a function of the model parameters. 

𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑛 − ŷ𝑛)2

𝑁

𝑛=1

 

Equation 2.7 

 

The coefficients 𝛽 , which make the smallest RSS/SSE value, is obtained from the 

maximum likelihood estimate of 𝛽. This way of fitting the model by minimizing the RSS 

is called Ordinary Least Squares (OLS) (Pohlmann and Leitner, 2003).  

Let 𝑌 =  (𝑦1, . . . , 𝑦𝑁) 𝑇  be the response vector and 𝑋  be the 𝑁 × (𝑝 + 1)  matrix of 

covariates. Then the mean of 𝑌 is 𝑋𝛽, and the OLS solution is: 

 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Equation 2.8 

 

OLS fit methods work well for single independent variable and single dependent variable 

regressions. If the response variable is in a non-linear relation with more than one 

predictor variables, the relation is called multiple non-linear regression or in some cases, 

multiple polynomial regression. It is simply achieved by introducing new variables by 

applying non-linear functions such as log, sin, square root, to the existing predictor 

variables. Gradient Descent method is commonly used to find the best coefficients (β) in 

multiple regressions. Standard regression methods are not very robust to outliers and 

nonlinearities and are prone to overfitting when the feature space is high-dimensional or 

when there are little training data (Chan and Vasconcelos, 2012). 
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2.5.5 Bayes’ Theorem 

If  𝑋 and 𝑌 are two mutually exclusive events, given  𝑃(𝑋), 𝑃(𝑌) are the probabilities of 

𝑋, 𝑌 respectively, then the conditional probability of 𝑌 given 𝑋 is true , 𝑃(𝑌|𝑋) is : 

 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌) 𝑃(𝑌)

∑ 𝑃(𝑋|𝑌𝑛)𝑁
𝑛=1 𝑃(𝑌𝑛)

 

Equation 2.9 

 

 Where, 𝑃(𝑌𝑛 ∩ 𝑋) for each 𝑌𝑛 or 𝑃(𝑋|𝑌𝑛) for each 𝑌𝑛 is known. 

 

2.5.6 Bayesian Regression  

Naïve Bayes for regression was discussed in the technical Note by Frank et al. (2000). 

Predicting the numeric target value 𝑌, given an Example 𝐸. Where 𝐸 consists 𝑁 number 

of numeric attributes 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁.  If the probability density function P(Y|E) of the 

target value Y was known for all examples E, the prediction error could be minimised by 

choosing Y. But, P(Y|E) is generally unknown, and it must be estimated from the data. 

Naïve Bayes uses Bayes theorem/rule by assuming that the attributes in E are 

independent given the target value Y. 

 

In the Bayesian viewpoint, the formulation of linear regression uses probability 

distributions rather than point estimates. The response/target, Y, is not estimated as a 

single value but is assumed to be drawn from a probability distribution. The model for 

Bayesian Linear Regression with the response sampled from a normal distribution is: 

 

𝑌~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑇𝑋, 𝜎2𝐼) 

Equation 2.10 

 

The output, Y, is generated from a normal (Gaussian) Distribution characterised by a 

mean and variance. The mean for linear regression is the transpose of the weight matrix, 

𝛽, multiplied by the predictor matrix, 𝑋. The variance is the square of the standard 

deviation σ (multiplied by the Identity matrix because this is a multi-dimensional 

formulation of the model). 

 

The aim of Bayesian Linear Regression is not to find the single “best” value of the model 

parameters, but rather to determine the posterior distribution for the model parameters. 
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Not only is the response generated from a probability distribution, but the model 

parameters are assumed to come from distribution as well. The posterior probability of 

the model parameters is conditional upon the training inputs and outputs: 

 

𝑃(𝛽|𝑌, 𝑋) =
𝑃(𝑌|𝛽, 𝑋) × 𝑃(𝛽|𝑋)

𝑃(𝑌|𝑋)
 

Equation 2.11 

 

Here, P(β|y, X) is the posterior probability distribution of the model parameters given the 

inputs and outputs. This is equal to the likelihood of the data, P(y|β, X), multiplied by the 

prior probability of the parameters and divided by a normalisation constant.  

 

In contrast to OLS, we have a posterior distribution for the model parameters that is 

proportional to the likelihood of the data multiplied by the prior probability of the 

parameters. Here we can observe the two primary benefits of Bayesian Linear 

Regression. 

 

    Priors: If we have domain knowledge or a guess for what the model parameters 

should be, we can include them in our model, unlike in the frequentist approach which 

assumes everything there is to know about the parameters comes from the data. If we 

do not have any estimates ahead of time, we can use non-informative priors for the 

parameters such as a normal distribution. 

 

    Posterior: The result of performing Bayesian Linear Regression is a distribution of 

possible model parameters based on the data and the prior. This allows us to quantify 

our uncertainty about the model: if we have fewer data points, the posterior distribution 

will be more spread out. 

2.5.7 Decision Trees 

A decision tree builds regression or classification models in the form of a tree structure. 

It breaks down a dataset into smaller and smaller subsets while at the same time an 

associated decision tree is incrementally developed. The final result is a tree with 

decision nodes and leaf nodes. A decision node has two or more branches, each 

representing values for the attribute tested. Leaf node represents a decision on the 

numerical target. The first decision node in a tree which corresponds to the best predictor 

is called a root node. Decision trees can handle both categorical and numerical data. 

 



 

 

61 

 

The core algorithm for building decision trees is called ID3 by J. R. Quinlan which 

employs a top-down, greedy search through the space of possible branches with no 

backtracking. ID3 algorithm with Standard Deviation Reduction is used for regression 

problems (i.e. for continuous target variables). This algorithm uses the standard formula 

of variance to choose the best split. The split with lower variance is selected as the 

criteria to split the population. 

2.5.8 Artificial Neural Network 

An Artificial Neural Network (ANN) is a network of a large set of massively connected 

simple processing nodes (neurons) (Specht, 1991). ANN contains a connected (directed 

graph) architecture of nodes. The nodes are arranged into several layers. Generally, an 

ANN is a combination of three different layers namely, input, output, and hidden (see 

Figure 2.6). The nodes in the input layer hold the input variables. The output layer 

contains the nodes which represent the output value. The number of elements in the 

output layer depends on the problem (regression, binary/ multi-class classification). The 

hidden layer(s) contains nodes which are referred as neurons (YAO, 1999). Each neuron 

in the hidden/output layer learns the weight (Wi,j) of the arcs from the neurons in previous 

layer. The weight of each arc is based on the non-linear transfer function (i.e. activation 

function) 𝑓𝑖, where  𝑓𝑖 𝜖 {𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, 𝑅𝐸𝐿𝑈} (Bircanoglu and 

Arica, 2018). The weights are learned by finding the best propagation of nodes neuron 

values from input to the output layer. The value of a neuron is calculated by the following 

equation. 

𝑎𝑘
𝑖 = 𝑓𝑖(bi + ∑ 𝑎𝑘

𝑖−1 ∙ 𝑊i−1,k 

𝑚

𝑘=1

) 

Equation 2.12 
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Figure 2.6: An ANN with two hidden layers 

 

The ANNs with more than one hidden layer are called Deep Neural Networks (Akshay 

Kumar H and Suresh, 2016). There are two kinds of ANNs in use namely, Feedforward, 

and Recurrent. The Feedforward is the simplest form of neural networks which are also 

known as multilayer perceptron networks (MLP) (Razavi and Tolson, 2011). The goal of 

the MLPs is to approximate some function fi. An MLP defines a mapping y = fi(X;𝜃) and 

learns the value of 𝜃   (the matrix of weights Wi,j.) that results in the best function 

approximation. In Feedforward neural networks, the information flows through the 

function being evaluated from X, through the computations used to define fi, and finally 

to the output y. There is no feedback connection from the output to feedback in 

Feedforward neural networks. Recurrent neural networks are the extension of 

Feedforward neural networks with the feedback connection. In this research, we use 

Feedforward neural networks. 

 

2.6 Motivation 

From the Systematic Literature Review discussed earlier in this chapter, it was evident 

that VT and ML are extensively used in road safety, mainly in identifying driving 

behaviour and road anomalies. And the use of VT data in vehicle condition monitoring 

still needs to be researched further. Meanwhile, several WIM systems are used to 

reduce/prevent overloading effects in many countries. Each WIM system has its own 

advantages and disadvantages. According to Newtonian’s physics and literature, the 

gross weight of a motor vehicle is one of the factors affecting the required driving force 
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(Torque) of the vehicle. So, we could infer the gross weight of a vehicle if we know the 

torque and other factors. OBD interfaces are widely used to read engine data of vehicles. 

Smartphones and OBD devices have been used in many projects. ML algorithms offer 

us to infer value by training models. This dissertation discusses the effort taken to test 

the feasibility of using VT data and ML to infer the weight of a vehicle. 

 

2.7 Summary 

In this chapter, we have discussed the SLR on telematics and road safety. The SLR was 

done to find the current application of VT in road safety. After identifying the research 

area, we have discussed the VT data collection devices. Then we introduced the 

background knowledge related to the idea and motivation. The following chapter 

discusses the research philosophy and methodology. 
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CHAPTER 3 

3 METHODOLOGY 

 

This chapter discusses the philosophical viewpoint and the research methodology of this 

research.  Answers to the following questions are discussed in this chapter. 

Section 3.1. What is the type of research? 

Section 3.2. What is the philosophical view of this research? 

Section 3.3. How does this research fit into Design Science Research? 

Section 3.4. What design theory is used in this research, and how is it applied? 

Section 3.5. What were the reasoning techniques used in this research? 

Section 3.6. How are the results of this research interpreted? 

 

3.1 The Linear Model of Research 

This research is applied research among the two research models: applied and basic. 

Where the basic research is more towards deriving a generalised solution than finding a 

solution for a real-world problem, the quest for fundamental understanding is high, but 

the consideration of use is low in basic research. The applied research tries solving 

problems in context by providing innovative solutions which are better than the existing 

solutions. The quest for understanding the fundamentals is low, and the consideration of 

use is high in applied research (Donald E. Stokes, 1997). Use-inspired basic research 

uses pure research findings and theories in practices to find an appropriate solution.  

Donald E. Stokes (1997) used Louis Pasteur's research as an example of the use-

inspired basic research as in Figure 3.1. 

 

 

Figure 3.1: Pasteur's Quadrant and Liner model of research 
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In this research, we focused more on the application of technologies than on necessary 

background knowledge from pure research. Since this is research focused on the 

application in context than generalisation, we categorise this research under applied 

research than use-inspired basic research. 

 

This research fits under the computer science domain. The application of computer 

science to solve some real-world problem was highlighted by Brooks who stated that., 

Computer Science is “not a science, but a synthetic, an engineering discipline. Computer 

Science is a type of engineering” (Camarinha-matos, 2012). In this research, we chose 

the tools and technologies to fit the requirements; for example, by keeping the current 

trend in mind, we used containerised application development. The selection of 

significant elements in this research was justified.  

 

Schickore & Jutta (2014) argue that philosophy of science is exclusively concerned with 

the context of justification: “But like the AI-based theories of scientific discovery, 

methodologies of scientific discovery interpret the concept ‘discovery’ as a label for an 

extended process of generating and articulating new ideas and often describe the means 

concerning problem-solving. In these approaches, the distinction between the contexts 

of discovery and the context of justification is challenged because the methodology of 

discovery is understood to play a justificatory role”(Schickore and Jutta, 2014, chap. 8). 

Since the background of the research is enough for the context of discovery and as a 

science and engineering-based approach, this dissertation mainly focuses on the context 

of justification. 

 

3.2 Philosophy 

The primary objective of this research was to find the feasibility of using a new WIM 

solution through ML and VT. The truth we looked at is the gross weight of the vehicle 

(GWM) always remains the same regardless of the number of measurements we take at 

any place and time. As the definition of ontology is examining the nature of reality, in 

addressing the question of “what reality is?”, the correctness of the ML models was 

determined based on one single reality of truth from an ontological stance.  

 

This research cascades under the pragmatist research philosophy, which deals with the 

facts and the choice of research philosophy, which is mostly determined by the research 

problem. In this research philosophy, practical results are considered important. In 

addition, pragmatism does not belong to any philosophical system and reality. 
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Researchers have the freedom to choose the methods, techniques, and procedures that 

best meet their needs and scientific research aims (Alghamdi, 2013). Pragmatists do not 

see the world as an absolute unity. The truth is what is currently in action. We used the 

tools which worked to fit the requirements.   

 

3.2.1 The type of research from different viewpoints 

Figure 3.2 illustrates the types of research from different perspectives, as specified by 

Ranjit (2011).  

 

Figure 3.2: Types of research (Ranjit, 2011) 

 

3.2.1.1 Viewpoint of application 

This research falls under the view of Applied research type. Applied research is designed 

to solve practical problems of the real world, and often involves the use of some 

technology in the development of a new process or system (Camarinha-matos, 2012). 

 

3.2.1.2 Viewpoint of Objectives 

This research fits into the correlational research type. Correlational research discovers 

or establishes the existence of the relationship/association between two or more aspects 

of a situation (Camarinha-matos, 2012). The success of the expected system could 

assure the relationship between the weight of a vehicle with other internal and external 

parameters. 

 

3.2.1.3 Viewpoint of Inquiry 

This research is experimental research to determine the influence of different factors to 

infer the weight of a vehicle. Thus, this uses a quantitative strategy (or structured 

approach). 
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3.3 Research Methodology 

The literature on research methodologies shows that research involved in solving a real-

world problem with the design of an artefact is design research, also known as design 

science research. The Accreditation Board for Engineering and Technology’s (ABET) 

definition states that engineering design is the process of devising a system, component, 

or process to meet desired needs. It is a decision-making process (often iterative), in 

which the basic sciences, mathematics, and engineering sciences are applied to 

optimally convert resources to meet a stated objective (Haik and Shahin, 2014). In this 

research, we designed and developed a new concept artefact and tested it under test 

conditions in a smaller laboratory scale. 

 

3.4 Design Science Research  

DSR is the design and investigation of artefact in context (Wieringa, 2014). The DSR 

changes the state-of-the-world through the finding of new artefacts. In this design 

science research, we design/develop an artefact with the aim to test the concept of a 

new WIM solution and to advance our knowledge about the characteristics of these 

artefacts and the processes to design and develop them. 

 

During the DSR process, the problem statement is subject to change (Vaishnavi and 

Kuechler, 2004). However, "the multiple world-states of the design science researcher 

are not the same as the multiple realities of the interpretive researcher: many if not most 

design science researchers believe in a single, stable underlying physical reality that 

constrains the multiplicity of world-states” (Vaishnavi and Kuechler, 2004).  

 

According to Wieringa (2016), there are two kinds of DSR projects, Problem-oriented, 

and Solution-oriented.  Problem-oriented research, also known as evaluation research, 

learns about artefacts and how stakeholders use them by investigating the real world. 

Moreover, solution-oriented research is technical research which focuses on designing 

an artefact and validating it usually by simulations. This research is a solution-oriented 

design science research. The problem of this research is to design and validate the 

artefact. The implementation of the solution is the construction of a prototype in a test 

environment. 
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Figure 3.3: DSR Process Model (Vaishnavi and Kuechler, 2004) 

 

Figure 3.3 shows the self-descriptive diagram explaining the process steps in DSR and 

the outputs of each step and the flow of knowledge by Vaishnavi and Kuechler (2004). 

They discussed five main DSR process steps. The awareness of the problem starts with 

the existing knowledge from the experience and the literature. New ideas and new 

concepts will become suggestions to solve the problems identified. The ideas will then 

be developed to produce an artefact. This development phase is an iterative process 

since the initial concept would be mostly abstract, and the specification may change 

during the design development process. The final artefact will then be tested in context. 

The conclusion would be the acceptability of the design suggestion based on its test 

performance. The DSR was used in various research. Mwilu et al. (2016), in their paper, 

presented a detailed topology of DSR artefact in Information Systems based on March 

& Smith (1995) and Hevner et al. (2004). Table 3.1 summarises the listed subcategories 

of the four main categories of DSR artefact namely, concepts of a construct, model, 

method, and instantiation.  

 

Table 3.1: Categories of DSR artefact by Mwilu et al. (2016) 
Constructs Concepts The concept is a new construct added to an extant language or meta- 

model Language 

Meta-model 

Models Ontologies When constructs are used to build more structured objects, we 
obtain models. Taxonomies 

Frameworks 

Architecture 

Requirements 

Methods Guidelines The method category puts together dynamic artefacts 

Algorithms 

Method Fragment 

Metric 

Instantiations Implementations 
(Prototypes) 

Instantiations are specific artefacts often proposed to assess the 
feasibility of other constructs 

Examples 
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The artefact in this research is the Instantiation, i.e. a prototype of the proposed concept 

WIM system. A design research process is the application of scientific methods to the 

complex task of discovering solutions to the problems (Nunamaker, Chen and Purdin, 

1990). Khandani (2005) listed five steps for solving design problems,1) Define the 

problem, 2) Gather pertinent information, 3) Generate multiple solutions, 4) Analyse and 

select a solution, 5) Test and implement the solution. Several other steps were also 

proposed in the literature. Offermann et al. (2009) subdivided design science design 

processes into three main phases namely, Problem Identification, Solution Design, and 

Evaluation. Table 3.2 discusses the several DSR processes discussed by different 

researchers and our research processes in each class. 

 

Table 3.2: DSR Processes (Offermann et al., 2009) 

 

(Takeda, 
Veerkamp and 

Yoshikawa, 
1990) 

(Nunamaker, 
Chen and 

Purdin, 1990) 

(March 
and Smith, 

1995) 

(Vaishnavi and 
Kuechler, 

2004) 

(Peffers et al., 
2008) 

(Offermann et 
al., 2009) 

Our 
Approach 

P
ro

b
le

m
 

Id
e

n
ti

fi
c
a
ti

o
n

 

• Enumeration 
of problems 

• Construct a 
Conceptual 
Framework 
(3) 

 • Awareness 
of Problem 

• Problem 
identification 
and motivation 

• Define the 
objectives for 
a solution 

• Identify the 
problem (2) 

• Literature 
research (1) 

• Expert 
interviews 

• Pre-evaluate 
relevance 

• 1,2,3 

S
o

lu
ti

o
n

 d
e

s
ig

n
 • Suggestion 

Development  
• Develop a 

System 
Architecture  

• Analyse & 
Design the 
System 

• Build the 
System 

• Build (2) • Suggestion 

• Development 

• Design and 
development 

• Design 
artefact (1) 

• Literature 
research 

• 1,2 

E
v
a
lu

a
ti

o
n

 

• Evaluation to 
confirm the 
solution 

• The decision 
on a solution 
to be 
adopted 

• Observe & 
Evaluate the 
System 

• Evaluate  
 

• Evaluation 

• Conclusion 

• Demonstration 
(1) 

• Evaluation 

• Refine 
hypothesis  

• Expert survey 

• Laboratory 
experiment(2) 

• Case study / 
action 
research 

• Summarise 
result 

• 1,2 in 
the 
context 

  

Our DSR is a combination of processes specified by Nunamaker et al. (1990), March & 

Smith (1995), Peffers et al. (2008), and Offermann et al. (2009). Which is as follows: 

A. Problem Identification  
1. Literature Research  
2. Identify Problem   
3. Construct a Conceptual Framework  

B. Solution Design  
1. Design Artefact  
2. Build 

C. Evaluation  
1. Evaluate 
2. Laboratory Experiment 
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In the problem identification phase, we have compiled a literature review (SLR) to identify 

the gaps in the use of ITS and identified the problem in transportation, and thereafter a 

conceptual framework was proposed. In the solution design phase, we designed the 

solution artefact as a prototype, and built it.  Finally, in the evaluation phase, we 

evaluated and demonstrated the artefact in a context-specific context. The Problem 

identification phase is discussed in Chapters 1 and 2. The following Chapter (Chapter 4) 

discusses the solution design phase.  The evaluation phase is discussed in Chapter 5. 

 

3.4.1 Formation of design from knowledge  

Unlike other research, design-oriented research such as DSR often begins with an 

abstract, vague idea (concept) from the researchers’ mind. Structuring an analysis is 

reported to be much easier than formulating a well-structured definition of a design 

problem which may evolve through a series of steps or processes (phases) as we 

develop a complete understanding of the design problem (Khandani, 2005). 

 

Takeda et al. (1990) used three factors which are prerequisites to describe a design 

process namely, 1) required specification (Ds), 2) design solutions (S), and 3) knowledge 

(K). They described the deductive design process logically as:   

  

S ∪ K ├  Ds  

Where, the design solutions, Ds, are derived from the specification, S, and the 

knowledge K. In the same paper, Takeda et al. (1990) discussed the abductive design 

process as:  

Ds ∪ K ├ S  

Where the design solutions and the knowledge about the design objects can be used to 

derive the design specifications, Abductive design process is considered an incremental 

process, in which the refinement of the design object takes place at each step of the 

abductive design process.  

 

The deduction is used in obtaining the properties of the current solution with respect to 

the existing knowledge. Given the current design solution, Ds, design knowledge, Ko, 

and the required properties, P, as the specification are by: 

Ds ∪ Ko ├ P  
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At each step of the design process, the deduction is applied to obtain all the properties 

of the current solution with respect to the currently available knowledge. This is to know 

the properties the current solution has and check whether the current solution satisfies 

the given specification and knowledge (Takeda, 1994).  

 

The design research is incremental and flexible where the requirements and the views 

may change over time. Here at each step, the solution (concept) may change based on 

our experience (knowledge) on specifications within a context. This changing nature of  

the design process adds more knowledge. There must be a way of capturing these 

knowledge expansions in design science research. Several engineering research report 

in literature carried to convey the knowledge expansion process. There must be a way 

of capturing these knowledge expansions in design science research. A lot of  research 

in literature carried to convey the knowledge expansion process. Notably, a unified 

design theory called Concept-Knowledge (C-K) theory was introduced by Hatchuel and 

Weli in 2003, which is then adopted in many engineering and science-based design 

research. 

 

3.5 C-K Design Theory 

In 1996 Hatchuel drafted, and in the early 2000s with Weli introduced, a unified design 

theory called Concept-Knowledge (C-K) theory. “The name ‘C-K theory’ mirrors the 

assumption that design can be modelled as the interplay between two interdependent 

spaces having different structures and logics: the space of concepts (C) and the space 

of knowledge (K). The structures of these two spaces determine the core propositions of 

C-K theory” (Hatchuel and Weil, 2007).  

 

The Knowledge space (K) includes all established propositions which are true. The K 

space holds available knowledge such as scientific and engineering models and facts, 

physical laws. Concept space contains the vague concepts (ideas) which are un-

decidable (neither true nor false) about some partially unknown set of objects x called C-

set. Concept space C corresponds to the incomplete description of objects. The partial 

description of objects in C space captures the notion of design briefs or broad 

specifications. In essence, Concept space C holds two sets, pragmatic notion of brief or 

broad specifications we find in innovative design, unusual sets of objects x. Concepts 

are propositions of the form : “There exists some object x, for which a group of properties 

p1, p2, pk hold in K” (i.e. P(x) : Properties of x ϵ K,  ∃x P(x)). All elements building the 

propositions in C come from K but do not belong to K (Hatchuel and Weil, 2007). 
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The design process can be described then by the interaction and co-evolution of these 

two spaces C and K through the application of four types of operators; 𝐶 → 𝐾, 𝐾 → 𝐶, 𝐾 →

𝐾  and 𝐶 → 𝐶  (described below). Design partitions the sub-concepts of C space by 

adding or deleting properties that arose from K space. There are two kinds of partitioning 

namely, Restrictive and Expansive.  Restrictive partitioning adds usual properties of the 

object. Expansive partitioning adds new properties (sub-concepts). The partitioning of a 

concept may result in an expansion of K space. This could happen due to the learning 

of new knowledge to pursue creative expansion of C space, or the experience from one 

concept design phase (Hatchuel and Weil, 2002). The feasibility of the available objects 

in C space cannot be determined with the available knowledge. The design process 

tends to expand the C and K spaces simultaneously. On one side of the expansion, there 

are new creative concepts, whereas on the other side, there’s new learning knowledge 

allowing the realisation of concepts. Design ends when the properties introduced into the 

concept can be validated in K space; that is it can be confirmed in K that such an object 

may exist (Hatchuel and Weil, 2007; Kazakci, Hatchuel and Weil, 2008). It is shown that 

C-K theory is sufficient to describe the generation of new objects and new knowledge 

which are distinctive features of design (Hatchuel and Weil, 2009).  

 

 

Figure 3.4: C-K Diagram adopted from Hatchuel and Weil (2007) 

 

Figure 3.4 illustrates the C-K diagram presented in Hatchuel and Weil (2007).The 

concept C0 from existing knowledge K1 is used to test the new concept C1. A new 

knowledge K2 is added after C1, C2 will be formed and tested using K2. The design 

phase continues until the end of the building and testing the artefact. 
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3.5.1 The C-K Design Square 

The design process always tries to find a better solution for the given specification in 

context. This helps the two spaces, C, and K, to expand during the course of the design. 

As mentioned earlier, in design, each space helps the other to expand. According to 

Hatchuel et al. (2004), the design process is nothing more than the operators that allow 

these two spaces to expand. And there are necessarily four different kinds of operators: 

the external ones: 𝐶 → 𝐾, 𝐾 → 𝐶; the internal ones: 𝐶 → 𝐶, 𝐾 → 𝐾. 

 

 

Figure 3.5: The C-K Design Square (Hatchuel, Masson and Weil, 2004) 

 

Figure 3.5 shows the C-K design square of four operators (Hatchuel, Masson and Weil, 

2004). In the design process, a concept may generate another concept, or it may 

transform into knowledge. The design process always seeks to expand the concept 

space (∆C), with existing knowledge (Ko) through disjunctive (𝐾→𝐶) operators. Also 

expands Knowledge space (∆K) with existing concepts (C) using conjunctive operators 

(𝐶→𝐾) (Hatchuel et al., 2017) 

  

External operators: 

𝐾 → 𝐶 : Here, the properties will be added or subtracted from K to concepts in C. This 

operator creates disjunctions when it transforms a proposition into a concept. Which 

usually generate new alternatives; these alternatives are not concepts but potential 

seeds for alternatives. This operator expands space C with elements from space K 

(Armand Hatchuel and B Weil, 2003). This was performed at every stage where we came 

up with a possible set of solutions. For example, in this research, there were two 

possibilities to use for collecting data namely, custom-building the black-box device, and 

using a smartphone with OBD-II adaptor. Those possible alternative sub-solutions 

(Cn*(x)) were derived from the knowledge from the literature search. 
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𝐶 → 𝐾 : this operator seeks for properties in K that could be added or subtracted to reach 

propositions with a logical status. The validity of the alternative during 𝐾 → 𝐶 operation 

contributes to knowledge. It creates conjunctions which could be accepted as finished 

designs. The validation of a design concept by doing a test, prototype, a mock-up are 

examples of 𝐶 → 𝐾  operators. This operator expands knowledge with the help of 

concepts (Hatchuel and Weil, 2003). For example, in this research, we had several ML 

algorithms as alternatives to infer the vehicle weight. Neural Network, Bayesian, Decision 

Trees, and Linear Regression were some of the alternative algorithms used for the 

inference. Testing of each algorithm within our context leads us to select one best 

algorithm (ANN), which performed better than the rest of the possible set. This updated 

our understanding of the behaviour of several candidates’ algorithms in context. 

 

Internal operators: 

 𝐶 → 𝐶: This operator is at least the classical rules in set theory that controls partition or 

inclusion ( Hatchuel and Weil, 2003). As shown in Figure 3.4, a new partition or branch 

of concept (sub-concept, Cn*) will be added when we test a concept and accept it (Cn). 

The new branch will be possibly partitioned if necessary. In general, a design solution is 

an artefact. The artefact is a combination of several sub-modules. If we consider given 

examples for external operators above, the overall artefact is an eco-system of data 

collection devices and the ML backend. After choosing the smartphone with OBD-II 

adaptor as the data collection device (in 𝐾 →  𝐶), we tested it to verify by collecting some 

sample data. This confirmed the selection of the data collection device (𝐶 → 𝐾). Next, 

we moved to a new branch (partition, 𝐶 → 𝐶)  focusing on the selection of ML algorithms 

for the backend.  

 

𝐾 → 𝐾: this operator is at least the classical rules of logic and propositional calculus that 

allow a knowledge space to have a self- expansion. Proving new theorems, generalising 

and formulating new hypothesis are some of the activities from this operator. This would 

be based on the expansion of existing knowledge to new knowledge (experience) from 

the development of the design artefact. 

 

Hatchuel & Weil (2007b) documented two major benefits of C-K theory in real research 

and development, better control of the design rationale, an increase of the innovative 

power of the design work. The second benefit usually implies the first one. Shifting the 

research direction during the research and development process is common in design 

research. For example, in our DSR project, the research approaches and directions were 

shifted at different stages during development. Hatchuel & Weil (2007) stated that such 
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shifts appeared easily understandable with C-K theory because they were the joint 

consequence of both concept and knowledge expansions. 

 

Hatchuel et al. in their recent paper in 2017 concluded that “C-K theory appears today 

as a solid scientific ground for a transdisciplinary shift. Creative processes are better 

understood and modelled within Design theory and science. Then, such new science 

can contribute to research on human activities that were already seen as creative; it can 

also help to study creative forms in domains where they are less visible or hidden. Finally, 

creative thinking is no more reduced to psychological and natural phenomena, and it 

reveals a forgotten class of scientific thinking, the generic design of unknown objects and 

its co-expansion with the transformation of knowledge. Through the formalization of C-K 

theory, such a paradigmatic shift has already opened new ways of research and provided 

unexpected findings. Yet, all this could be only the early steps of a much wider scientific 

impact.” (Hatchuel et al., 2017, p. 11). 

 

 

Figure 3.6: DSR for Social Context using Knowledge Context adopted from (Wieringa, 
2016) 

 

Figure 3.6 shows the relationship between the design science, knowledge and social 

context. According to Wieringa (2016), the DSR tries to solve a problem in society, by 
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designing and deploying an artefact in the context. The design phase uses existing 

background knowledge, and knowledge gets updated over time. The C-K theory was 

adopted in this research as a framework to track and record the concept of design 

development. We also proposed and used a slightly different method for recording the 

design process. 

 

Application of C-K theory in Science-based research was illustrated using the design and 

development of a new combustion system for Martian spacecraft. The paper (Hatchuel, 

Masson and Weil, 2004), explained the use of C-K theory in the prototype design of the 

mars rocket project by European Space Agency (ESA). The same example was 

discussed in other papers (Hatchuel et al., 2004; Hatchuel, Masson and Weil, 2006; 

Hatchuel and Weil, 2009). An industrial application of C-K theory was discussed by 

Hatchuel, Masson and Weil (2006).  The authors discussed the design of new bio-climate 

in cars. In that paper, they discussed three main factors, how C-K modelling accounts 

the explorations in a specific industrial situation, how C-K theory helps to understand the 

main design spaces, and how it enables to monitor the exploration process. Use of C-K 

theory in IT-based DSR is not visible in literature.  

 

We can view the final C-K tree as a Depth First Spanning Tree, where the levels are of 

the design spaces, and the nodes are the concepts in each design space. The C-K theory 

was used as a skeleton in the design portion of our research. During the design, the 

concepts were designed with existing knowledge and the knowledge was updated 

incrementally. 

 

3.6 Recording concept design  

Here, we introduce a new method to represent design process, called Concept Tree. The 

notions we used are based on original C-K theory. We predominantly focus on the C 

space (concepts/ideas) in our C-K design recording method. 
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Figure 3.7: Recording design concepts (Concept Tree building)  

 

The exemplary graph of the proposed design recording is given in Figure 3.7. 

This method contains the following rules: 

• All sibling nodes were the possible design solutions at that level (design 

space): 

Each new design space (level) starts from its predecessor. Thus, the design 

concepts are restricted to its predecessor. 

• The concepts must be tested from left to right:  

Adaptation (tried/tested/implemented) concepts must be reported from left to 

right. This would allow designers to share their ideas which they tried first. They 

can move to the next possible idea if the previous one failed and choose the next 

best working concept. 

• Three types of arcs (arrows): 

Depending on the implementation/testing, the concept, the possible alternative 

concepts may become unusable, useable. A concept is said unimplemented 

when we do not try to test or implement the concept. There are possibilities where 

we generate new ideas but only pick one (try) to implement (a common 

pragmatist approach) and forward to the next design space. The untested 

concept opens space for future research. The three different node types are 

addressed by different type of arrows in the graph (see Figure 3.7). 

 

Two classes of Nodes:  

The circles in the C-K graph represent concepts in general. But the initial concept, C0, 

is the root node of the tree which has propositions which are just vague statements. 

These propositions add the boundary to the thinking of the designer. This restricts the 

size of the possible design solutions at the next level. Each level is a new design space. 
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The nodes (not C0) in each design space is an alternative candidate solution idea based 

on its predecessor. This method was used to demonstrate the use of C-K theory in this 

research and was described in Chapter 5.  

 

3.7 Reasoning   

The phenomena studied in IT research are artefacts that are designed and built by a 

human to achieve the purposes of a human (March and Gerald, 1995). Implications for 

IT research are threefold. First, there may not be an underlying deep structure to support 

a theory of IT. Our theories may need, instead, to be based on theories of the natural 

phenomena (i.e., human) that are impacted by the technology. Second, our artefacts are 

perishable. Hence our research results are perishable. As needs change, the artefacts 

produced to meet those needs also change, which brings a theory of how programmers 

use a now-defunct language. Third, the IT artefacts are produced at an ever-increasing 

rate, resulting in numerous phenomena to study. Explicating and evaluating IT artefacts 

(constructs, models, methods, and instantiations) will facilitate their categorization so 

that research efforts will not be wasted building and studying artefacts that have already 

been built and studied "in kind." (March and Gerald, 1995). 

 

The artefact was developed with the aim of testing our idea. The developed artefact was 

then used to draw our case-based conclusion. The development phase of the artefact 

comes under the design and engineering cycles of the design science research. This 

phase was carried out by the sequence of design cycles to refine the global design. Each 

design phase has its own reasoning type.  

 

According to Lu and Liu (2012), a design process consists of three reasonings, inductive, 

deductive, and abductive. In the inductive type of reasoning, we come to a general 

conclusion from a specific observation. Similarly, in deductive reasoning, we make our 

conclusion from applicable rules. But, in abductive reasoning, we hypothesise based on 

some incomplete or smaller set of observations. Additionally, to minimise the logical 

extension and to avoid dealing with exceptions, the Circumscription (McCarthy, 1980) is 

used. “Circumscription is a type of commonsense reasoning and has been developed to 

deal with exceptions. In circumscription, exceptions for a given context can be 

determined by minimizing logical extensions of the predicates which represent 

abnormality with keeping the whole context consistent. Here abnormality is the implicit 

description of each piece of knowledge” (Takeda, 1994, p. 5). 
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Figure 3.8: Reasoning in Design adapted from (Lu and Liu, 2012) 

 

Figure 3.8 shows the diagram of the design research processes, and the inferencing 

used at each step with the C-K operation on each step.  

 

The application was developed to infer the weight of different vehicles, but the research 

carried out in the context of a single vehicle to investigate a single case scenario, that is 

to see how the developed artefact performs on a single case scenario. The training and 

test data were gathered from one vehicle. The artefact was tested in the context of a 

vehicle. This phase of the research was carried out as deductive research, which also 

carried as a proof of concept. In general, inductive and deductive reasoning was used in 

this research.  Moreover, the solution this research discusses is not a definite solution 

but a feasible one.  
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3.8 Facts to Generalization vs Facts to Explanation 

 

Figure 3.9: Position of research in the Realism vs Generalisation  plane (Wieringa and 
Daneva, 2015)  

 

Figure 3.9 shows a list of different kinds of research. As we discussed earlier in this 

chapter, the basic research is done in more idealised conditions, and they form general 

theories. In contrast, the case research is more domain-specific and more towards 

solving a specific problem. This research, a design science research, was done in 

realistic conditions. The prototype was developed by accepting the working concepts 

and moved forward as all other pragmatists do. The system was tested in the context of 

small, gasoline (petrol) cars. The findings of the model testing cannot be generalised to 

all motor vehicles. However, it can be said that if it works on a motor vehicle, and all 

motor vehicles share the common properties we looked at, then it would also work on 

other motor vehicles. It may not be true in some cases; further empirical evidence is 

required in the larger context.  
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Figure 3.10: Two way to go beyond facts (Wieringa, 2016) 

 

 Figure 3.10 adapted from Wieringa (2016) shows the two pathways from facts. The 

developed artefact was tested on a small scale using a single motor vehicle’s data. Thus, 

it cannot be generalised. This research tries to explain the design and development of 

the artefact and the performance of the artefact in terms of prediction accuracy. This 

research can then be repeated with many vehicles and be generalised in future. 

 

3.9  Summary 

In this chapter, we have discussed the common practices in DSR research. Considering 

the fact that majority of the articles produced from DSR were not focused on reporting 

the design of the prototype as a DSR artefact, the use and appropriateness of C-K design 

theory, in the context of a DSR producing prototype, was discussed. We propose a new 

DSR recording strategy named Concept Tree based on C-K theory. The example used 

in this research is the prototype design of a new WIM approach using VT and ML. 

Concept Tree built for the prototype WIM system design is discussed in Chapter 5. The 

following chapter introduces the design and development of the prototype system.  
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CHAPTER 4 

4 SYSTEM DESIGN 

 

This chapter discusses the overall system design starting from the illustration of the 

design of the conceptual framework to the selection of the ML models, and the evaluation 

criteria. 

 

Section 4.1. The Conceptual Design Framework 

Section 4.2. Design Considerations 

Section 4.3. Prototype System 

Section 4.4. Data Collection 

Section 4.5. Correctness of Data 

Section 4.6. Data Pre-processing  

Section 4.7. Data Transmission  

Section 4.8. ML Model Selection 

Section 4.9. Evaluation  

 

4.1 The Conceptual Design Framework of the WIM Application 

According to the C-K design theory, our initial concept (C0) of this research is a new WIM 

system that is much easier (p1), faster (p2), and omnipresent (p3). Our knowledge (K0) 

to make a new idea from C0 was obtained from the fundamental laws of physics and 

some research discussed in Chapter 2. The new design idea using VT an ML is reported 

in this chapter. In this section of the design framework, we discuss the design 

requirements and consideration of the designed artefact, the WIM application. 

 

An application (WIM Application) was developed as a by-product of this research. The 

primary purpose of the application was to read VT data from several sources (VT 

modules), and train and test the inference model from the data received.  

 

Figure 4.1: Dependency graph of the main design modules of the artefact 

 

Backend Module Data collection module 

ML Module 
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The conceptual design framework of the WIM application was proposed considering 

three modules namely, the back-end module, data collection module, and ML module. 

The first two modules were independent, and the third module was dependent on the 

other two modules. Figure 4.1 shows the order of the design and development performed, 

considering their dependencies. 

 

 

Figure 4.2: Overview of the proposed WIM system components 

 

The backend was designed to receive weather data, simple and bulk (collection of) VT 

data from the data collection module and store it into a database. The database was also 

designed to log the inferred weight data from various driving events; this includes the 

year, month, time, vehicle identifier, start location, end location, and the inferred payload 

of each registered vehicle. 

 

The data collection module was designed to receive VT data from OBDII devices, 

geolocation data from GNSS modules, IMU data, and weather data. It is also used to 

send the received data to the backend. New sub-concepts (or branches) from initial 

concept C0 arose in every stage of development, starting from choosing the deployment 

platform, better programming language, and others. It was decided to build a cloud-

compatible (cloud-native) application; it became our new subset concept C0x in design 

space x. 
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4.2 Design Consideration  

The artefact is divided into three major modules namely, data collection module, backend 

module, and ML module.  The following sections of this chapter discuss the following: 

 

Backend 
• How to build a backend to read and store for the inference system? 
• What architectures support our requirements? 

 
Data collection Module 

• What features to collect? 
• How to collect all the features? 
• How to store and transfer data? 

 
Building and Training Model 

• What feature engineering is to be performed? 
• What are the candidate models for the problem? 
• What are the performances of the chosen models? 

 

4.2.1 Big Data from IoT devices 

The VT data collection devices can be categorised under IoV devices, where the IoV 

devices are IoT devices which transmit vehicular data. The data collection module 

collects the GNSS and OBD data every second. There will be tons of such devices in a 

real-world scenario. Each IoV device will send the VT data either as a stream or batch 

to the cloud-native backend. Steam is a transmission of continuous data in real-time - 

this makes big data fast data. An enormous amount of data will be reaching the backend 

at the same time. This brings some design considerations in the means of 

communication, security and load handling.  

 

Communication 

Each VT data collection devices (IoV) produce telematics data at a rate of 1 Hz. If we 

assume that it sends the data to the backend as it receives, then this would become a 

stream data. Unlike batch data, stream data does not have a predetermined end time. 

Once the communication channel is established, the data source (IoV) will start sending 

messages one after another, while keeping the connection alive. “Will it be a feasible 

solution to communicate with less cost?” is one of the main questions that need to be 

discussed in the function establishment and task specification stage of prototype design.  

 

New networking architectures such as Long Range Wide Area Networks (LoRaWAN ®) 

are becoming popular among the IoT community due to low cost, low power consumption, 

high data rate, robustness, network capacity, security, and coverage range (Mishra, 2018; 

Santa et al., 2019). LoRaWAN provides a star-of-star network topology. The sensors are 
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connected to the gateway hosts, which relay messages to the central network server 

(LoRa Alliance, 2015). 

 

LoRaWAN specification is developed and maintained by the LoRa Alliance, which is an 

open association of collaborating members. The LoRaWAN protocol specification is 

open to the industry, so innovation and usage are free.  

 

Table 4.1 shows the comparison of some of the features of Low-Power Wide Area 

Networks (LPWAN). According to LoRa Alliance (2015), the LoRaWAN is designed to 

support the IoT devices. LoRa Alliance claims that LoRaWAN gives better and extended 

battery life of sensor devices as it consumes less power, a greater capacity for future 

devices, a wide range of coverage due to the frequency, and reduced cost. This supports 

the answer to the aforementioned question, and it is feasible to implement this system in 

the real world with a low setting and running cost.  

 

Table 4.1: LoRaWAN vs other LPWANs (LoRa Alliance, 2015) 

Feature LoRaWAN Narrow-Band 
LTE Cat-

1 
LET Cat-M NB-LTE 

Modulation SS Chirp UNB/GFSK/BPSK OFDMA OFDMA OFDMA 

Rx Bandwidth 500-125KHz 100Hz 20MHz 20-1.4MHz 20KHz 

Data rate 
290bps-
50Kbps 

100bps 10Mbps 
200kbps- 

1Mbps 
~20Kbps 

Max. # 
Messages/day 

Unlimited 140 Unlimited Unlimited Unlimited 

Max Output Power 20dBm 20dBm 
23-

46dBm 
23-30dBm 20dBm 

Link Budget 154dB 151dB 130dB 146dB 150dB 

Battery Lifetime – 
2000mAh 

105 months 90 months - 18 months - 

Power Efficiency Very High Very High Low Medium Medium-High 

Interference 
immunity 

Very High Low Medium Medium Low 

Coexistence Yes No Yes Yes No 

Security Yes No Yes Yes Yes 

Mobility/localisation Yes 
Limited mobility, 
No Localisation 

Mobility Mobility 
Limited mobility, 
No Localisation 

 

 

Security  

The system must make sure that the message (VT data) received is from the correct 

vehicles and not been taped or tampered. The token-based authentication is used to 

reduce the security issues from the application point of view. In addition to that, 

LoRaWAN provides added security. 
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Figure 4.3: LoRaWAN Architecture (LoRa Alliance, 2019) 

 

Figure 4.3 shows the LoRaWAN Architecture specification from the LoRa Alliance. The 

two-layer (Network level and Application level) end-to-end security is specified for IoT 

deployment. In layer one, a unique 128-bit Network Session Key is shared between the 

end-to-end device and the network server. A unique 128-bit Application Session Key is 

shared end-to-end at the application level. This enables a possible IoV application 

development concerning security issues. 

 

Load Handling 

In addition to connectivity and security concerns, the cloud-native system needs to be 

able to handle huge data from IoV devices in the real world. As discussed in this section, 

the backend must be able to handle stream and batch data from numerous VT devices 

at a time.  

 

Figure 4.4: IoV and the system interaction 
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Figure 4.4 shows the interaction between the IoV data collection modules and the system 

comprising three main internal components, which in general, suffer from overloading or 

becomes unresponsive. A database handler process might process slower than the 

incoming request, or an internal process performing intense calculations may be slower 

than the incoming request, or the improper configuration may slow the process of the 

request handler. The system must be able to cater to each incoming request in real-time. 

A request may be a batch input or a data stream. Loss of this data may occur due to 

various reasons.  

 

There are two common categories of server processes namely, stateful, and stateless. 

In stateful server process, the state of each service request is maintained. This is good 

for clients as it eliminates unnecessary resends. However, this adds more overload to 

the server, leading to delays in processing. As opposed to the stateful processes, 

stateless processes do not maintain any state histories of service requests, thus 

processes faster with less overload to the server, but has no recovery mechanisms. 

 

Using stateful processes for a huge number of concurrent requests is not a good choice. 

However, even though the stateless processes are slim and work faster, it has its own 

problems. Loss of service request due to overflow or interruption may lead to the 

complete loss of data (request).  

 

Backpressure is one of the closed-loop congestion control mechanisms in computer 

networks in which a congested node stops receiving data from the immediate upstream 

node or nodes. Backpressure is a node-to-node congestion control that starts with a 

node and propagates, in the opposite direction of data flow, to the source. The same 

technique can be practised between IoV devices (source) and the system (sink). When 

the system suffers from overload, it may reduce the rate of acceptance of the request 

from the source. However, here, when the source starts streaming, it would be a bit 

harder for the source to detect the backpressure and resend the packets again. This was 

one of the major concerns while designing the system architecture. 

 

“Today applications are deployed on everything from mobile devices to cloud-based 

clusters running thousands of multi-core processors. Users expect millisecond response 

times and 100% uptime. Data is measured in petabytes. Today's demands are simply 

not met by yesterday’s software architectures” Jonas Bonér et al. (2014). 
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Jonas Bonér et al. (2014) believe a comprehensible approach to systems architecture is 

needed, and all necessary aspects are already recognised individually: they wanted 

systems that are Responsive, Resilient, Elastic and Message-Driven. They called such 

systems as Reactive Systems. 

 

 

Figure 4.5: The Reactive Manifesto (Jonas Bonér et al., 2014) 

 

Figure 4.5 shows the reactive manifesto by Jonas Bonér et al. (2014). In their manifesto, 

they declare that reactive systems are: 

• Responsive: The high availability of the system which can respond to the user 

in a timely fashion is essential. The responsive systems focus on providing rapid 

and consistent response times to deliver the quality of service. This consistent 

activity, in turn, simplifies error handling, builds trust, and encourages further user 

interaction. The WIM application was built to ensure maximum uptime and 

minimal latency. The main priority was given to stream handling on the incoming 

VT data. 

 

• Resilient: The unresponsiveness is mainly caused by a system failure; any 

system that is not resilient will be unresponsive after a failure. Resilience can be 

achieved by replication, containment, isolation and delegation. Isolating 

individual modules (components) is one of the strategies to keep the system up 

even in case of any component failure. The recovery could be made easily by 

recovering the faulty component. The reactive manifesto states that the client 

must not be burdened (resend the request) for any system failures. The VT data 

collection module must not be asked to resend the stream or batch in case of 

failure or any delay. 

 

Responsive 

Elastic Resilient 

Message Driven 
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• Elastic: The reactive system must not have any single point of failure or central 

bottleneck. The system must be able to cope up and cater to the increasing 

number of requests, hypothetically handle infinite requests. The elasticity must 

be achieved by scaling system hardware and software. This was achieved by 

containerising the application and deploying it in Kubernetes cluster with 

replicating GlusterFS (Selvaganesan and Liazudeen, 2016) file system. In 

addition to that, the Cassandra DBMS was used with replication factor three for 

resilient data. 

 

• Message Driven: Asynchronous message-passing enables Reactive Systems 

to form a barrier between components. This ensures loose coupling, isolation and 

location transparency. The component failures are communicated as messages. 

The message passing mechanism enables load management, elasticity, and flow 

control. Message passing also enables the application of backpressure when 

needed. Non-blocking communication allows recipients to only consume 

resources while active, leading to less system overhead (Jonas Bonér et al., 

2014).  

 

 

Apache™ Kafka® is one of the widely used open-source stream processing platforms 

(Hiraman, Viresh and Abhijeet, 2018). Kafka uses Huge Persistent buffer for the bursts, 

does load distribution to a very large number of nodes, and enables horizontal scalability. 

Wampler (2018) suggests that standalone services like Apache Spark and Flink are 

better for batch processing, while the two libraries, Kafka Streams, and Akka Streams 

are good for streaming applications. Wampler also mentioned that both streaming 

libraries Kafka Streams, and Akka Streams, provide single-event processing with very 

low latency and high throughput. Kafka guarantees the message delivery by providing 

three message delivery semantics, at most once, at least once, and exactly once. Where 

in at most once, the messages may be lost but are never redelivered. In at least once, 

messages are never lost but may be redelivered. And in exactly once, each message is 

delivered once and only once. 

 

Akka Streams also implements the Reactive Streams specification, which is built on top 

of Akka actor framework. Akka Streams is a simple, and powerful standard for defining 

composable streams. It, by default, uses the backpressure flow control mechanism. This 

keeps the internal stream “segments” robust against data loss and allows strategic 

decisions to be made at the entry points for the assembly, where it is more likely that a 
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good strategy can be defined and implemented (Wampler, 2018). In here the reactive 

manifesto could be adhered in this system by using Asynchronous HTTP client, which is 

non-blocking and consumes no threads in waiting. By integrating with Akka streams for 

high parallelism, low resource solution, we could eliminate the complexities of dealing 

with multiple VT data streams, by using Akka stream in between the WIM application 

processes and Kafka Cluster for incoming data from the VT devices. 

 

 

Figure 4.6: Kafka Fast data (streaming) architecture used in this research 

 

Figure 4.6 shows the architecture of the prototype to handle fast data handling from 

multiple IoV devices. The prototype system is deployed on a Kubernetes cluster of five 

physical nodes (discussed in Section 4.2.2). The system receives tons of VT data from 

each IoV devices. The incoming VT data will be handled by a Kubernetes service. The 

Kubernetes service will then send the VT data to the available node, pod running the 

prototype WIM application. Prototype WIM application can handle fast streaming data by 

using Kafka Cluster and Akka Stream. The Kafka Cluster consumes and holds VT data 

to be ingested by Goroutines. Akka stream is used to stream each VT data (Kafka topics) 

for further processing. “Exactly once” delivery semantics was used in streaming. The 

Goroutines will process the VT data routed from its internal API endpoints. Persistence 

storage is used to store processed data (models, logs, events, results). This persistence 

storage is scalable horizontally to serve more data. The data overflow is handled 

internally without limiting (or requesting) the IoV devices to reduce the transmission rate 

(or resend). The generation of backpressure starts from the goroutines in case of any 

delay in processing. The backpressure is then propagated through the Akka streams to 
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the Kafka Cluster. This will trigger the streaming to be flexible with the backpressure by 

reducing the data rate. But this leads the Kafka Cluster overflowed by the fast-incoming 

VT data accumulation. In such cases, the Kafka Cluster with the help of Zookeeper could 

scale-up horizontally. 

 

4.2.2 Deployed Environment  

Containerised applications are becoming a trend in this cloud era. A container is an 

application bundled with all its necessary components to run. It allows developers to 

package and isolate applications with their runtime environment, that is with all the files 

required to run. Kubernetes is a container orchestration engine which runs and manages 

Linux containers. Kubernetes is an opensource platform for automating deployment, 

scaling, and operations of application containers across clusters of hosts, providing 

container-centric infrastructure  (Oh, 2018). The application was containerised and 

deployed in Kubernetes cluster with five physical nodes, as shown in Figure 4.7. 

 

Figure 4.7: Arrangement of Kubernetes and Gluster nodes 

 

Figure 4.7 shows the arrangement of seven nodes (PC’s) used to set up the deployment 

platform. The five Kubernetes nodes were used. Persistence storage was provided by 

the three Gluster nodes, including one Kubernetes node. Kubernetes container 

orchestration engine runs several stateful applications, where the state of such 

applications is saved frequently. If a node dies or stops due to an unexpected event, then 

the Kubernetes will spin it off from the saved states. There are several persistent storage 

volumes that can be used in Kubernetes cluster to respawn and resume any stateful 
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process. In this research, GlusterFs is used to maintain the persistence volumes for the 

Kubernetes Cluster. 

 

GlusterFS is a distributed, software-defined filesystem where storage devices, called 

“bricks”, are selected on one or more nodes to form logical storage volumes across a 

Gluster cluster (Selvaganesan and Liazudeen, 2016; Gluster, 2019). It is easy to 

increase storage by simply adding more nodes, provides features like cross-node and 

cross-site replication, usage balancing, and iSCSI storage access (Gluster, 2019). 

Replicated GlusterFS volume architecture was used in this Gluster Cluster. This was 

done to overcome the data loss problem faced in the distributed volume. Exact copies of 

the data are maintained on all bricks. The number of replicas in the volume can be 

decided by the client while creating the volume. Three bricks were used to create a 

volume of 3 replicas. One significant advantage of such a volume is that even if one brick 

fails, the data can still be accessed from its replicated bricks. This volume is used for 

better reliability and data redundancy. 

 
Figure 4.8: Replicated Volume Gluster Cluster Architecture 

 

Figure 4.8 shows the implemented GlusterFS replicated volume architecture with three 

nodes. This replicated volume cluster was used to serve the containerised applications 

deployed on the Kubernetes by provisioning persistence storage. 

 

4.2.3 Languages 

The application was developed in Golang, also known as Go, which is a relatively new 

programming language developed by Google to construct its backend software services. 

Go programmes are compiled into native machine code. The compiler builds the binary 

for the native platform to run, which makes Go a cross-compiling to produce native 
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binaries. Golang is perfect for microservice architecture, where the responsibilities of the 

application will be shared between similar services. Go was developed in the cloud 

computing era. Thus, it was built with modern software technologies in mind, especially 

containers. Go is one of the pioneers in container technologies. The famous container 

“Docker” was written in Golang (Mina Andrawos and Martin Helmich, 2017). One of the 

main advantages of Golang over the other high-level languages is that Golang can 

handle and make use of all the CPU cores, much like C++. This makes concurrent 

applications run much faster than other applications. Golang was chosen as the 

programming language due to reasons as mentioned above. In addition to Go, Scala 

was used to build the Akka Streaming endpoints consumed by the ML module developed 

in Go. R language was used to select the models; those models were then implemented 

in the application using Golang. R is one of the most popular and widely used for statistics, 

data mining and ML. R has rich ML packages and the support to Cluster integration.  

 

4.2.4 Database management system 

The Apache Cassandra is a Linear Scalable, fault-tolerant database management 

system to run on a commodity of hardware or cloud infrastructure.  The Apache 

Cassandra NoSQL Database Management system was also deployed in the same 

Kubernetes cluster. The database is being used to store the weather information from a 

scheduled (corn job), retrieve stored VT data and weather data to train and test ML 

models, and to store the inferred output.  

 

 

Figure 4.9: High-level system architecture of the prototype WIM application 
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Figure 4.9 portrays the high-level application architecture of the developed conceptual 

framework focusing on VT data ingestion. The WIM application has two main jobs 

namely, a scheduled weather data recorder and an ML application. The scheduled (cron) 

job (i.e. weather data recorder) reads the current weather information of the selected 

places from the OpenWeatherMap. The read weather data was then written into the 

Cassandra database for future use. This was done due to two reasons. The first reason 

was that the VT data might not be streamed real-time due to the unavailability of 

connectivity and other reasons, so fetching the current weather data at the time of 

receiving the VT data may not yield correct weather data. The second reason was that 

the limitation on API calls since we have used a free account for OpenWeatherMap API 

requests, the maximum API calls per minute was 60, and the total threshold was 7200. 

The OpenWeatherMap provides weather information for some specific fixed locations; 

for example, weather data were given for overall cities, not for fine locations. Keeping 

that in mind, the data was collected for known places where the vehicle was driven to 

collect VT data. The scheduled job (corn job) automatically collects current weather data 

of the prior set locations from the OpenWeatherMap and stores it into the Cassandra 

database.  

 

The ML module was designed to infer the weight of a vehicle carrying (payload). ML 

models were chosen by training and testing with the data present in the backend. The 

WIM application was designed to use APIs to receive from a wide range of sources using 

JSON format. The WIM application can be accessed using the API endpoints on the 

ports exposed by the Kubernetes service. When a JSON post request hits the 

Kubernetes cluster, the service will map it to the specific node based on its availability. 

If the request is for training, then the merger application will store the incoming data into 

the database and triggers a Goroutine to merge the existing weather data with the VT 

data based on time value (timestamp). Similarly, the inference is performed when the VT 

data arrives at the correct API endpoint for inferencing. The inferred data is saved into 

the Casandra database. The saved results (inferred values with location) could be served 

to any frontend using a separate API developed in Golang. 
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4.3 Prototype System 

 

Figure 4.10: Representation of the developed system prototype with its components 

 

A prototype of the system was developed to validate the idea of the new WIM system. 

The system comprises three components, which are:  

• an OBD-II Bluetooth/WiFi module,  

• an android mobile device,  

• a WIM inference engine application is running on a Kubernetes cluster (discussed 
above). 

 

The OBD-II module was used to collect the CAN bus data (i.e., Engine Control Unit (ECU) 

Data). The Android mobile device was used to fetch CAN bus data from the OBD-II 

module via Bluetooth or WiFi. Android mobile device collected ECU data for each second 

and stored it along with the data from the built-in GNNS position data. The 

collected/stored data was then sent to WIM API server using the REST clients through 

the service API endpoints. Figure 4.10 shows the schematic diagram of the developed 

prototype.  An Android phone collected the data from the OBD-II module (1) via Bluetooth, 

its internal IMU, and GNSS (2). The collected data was then transferred from the phone 

to the back-end server WIM application (3). As mentioned in Section 4.1, the system was 

built to collect weather data from OpenWeatherMap API. The system collected weather 

data, including wind speed, wind direction, atmosphere temperature, atmosphere 

pressure, and humidity. 

 

 



 

 

96 

 

4.4 Data Collection 

According to Wieringa (2016), the implementation of an artefact from idea to practice 

must start from small laboratory conditions, i.e. start development and test on the context 

of a specific group then move to the road credibility to test on many groups. The major 

goal of this research was to verify the idea of using VT and ML for WIM. The verification 

of this idea was done considering the context of a small car. The validation of these 

systems is yet to be done. The fully internal combustion engine, hybrid (electric + internal 

combustion engine), and fully electric motor are the available three different driving 

sources of the present-day vehicles. Internal combustion engine vehicles on the current 

market have the combination of features given in Table 4.2. Table 4.2 lists some of the 

features in internal combustion engine vehicles. A car having a combination of the 

features was used to verify the concept. 

 

Table 4.2: Some features of internal combustion engine-powered vehicles 
Feature Values 

Body Type Car (Sedan/Coupe, Hatchback, Wagon) 

Utility Type SUV, ATV, MPV 

Engine  

Capacity 600 cc – 5,000+ cc  

Number of 
cylinders 

2,3,4,6,8,12,14,16,18  

Valves per 
cylinder 

2 - 8 

Alignment Inline, V, Boxer, Rotary 

Fuel Type Gasoline, Diesel, LPG 

Air intake Turbocharged (exhaust/electric driven), or no turbocharger 

Transmission 

Auto 
Hydraulic Auto Transmission, Continuous Variable Transmission, Dual Clutch 
Transmission, Automated Manual Transmission. 

Manual Forward Gears - 4,5,6,7  

Drive  2 Wheel (Front/Rear), 4 Wheel  

 

The data collection was done on a Ford Fiesta manufactured in the year 2015, which is 

a 1.4l four-cylinder gasoline engine with the front-wheel-drive with five manual 

transmissions and the curb weight of 1110Kg. Torque Lite Application on an Android 

Mobile phone running Android OS 8 was used to collect the data from the ELM 237 OBD 

Bluetooth Scanning device. The car was driven in controlled and uncontrolled 

environments. The controlled data collection was done at Cape Peninsula University of 

Technology (CPUT) premises shown in Figure 4.11. Volunteers weighing different 

weights participated as passengers during data collection. The car was driven only on 

first and second gears. 
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Figure 4.11: Controlled data collection road track on google map 

 

The Landscape of CPUT contains inclines (up to 40-degrees) and low (0-degree 

elevation) roads. The controlled data collection was done on sunny days with wind no 

more than 5km/h. The uncontrolled data was collected from the daily commuting of car 

for four different days with a similar weather condition. 

 

VT data was labelled with the total carrying weight, also known as payload (i.e., the sum 

of the masses of the passengers and the diver with the mass of any bags carried). Since 

the density of the fuel is 0.7kg/l, and the fuel tank capacity is 43 litres, it makes a 

significant 30kg difference in total weight. The weight of the fuel was also considered in 

four-quarter blocks by observing the fuel gauge reading. 
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4.4.1 Data 

Various data sets were collected from the OBD-II dongle, smartphone, and the 

OpenWeatherMap’s Weather API. The data collection application logged the data for 

every 1-second interval (sample rate = 1Hz).  

 

Table 4.3: Details of the variables collected during the data collection 
Variable  Description Source Units 

ACC Acceleration =(∆VS*0.27)/ ∆t ms-2 

ALT Altitude (Meters Above Sea Level) GNSS m 

LAT Latitude GNSS - 

LON Longitude GNSS - 

ELE Elevation =arctan(∆LAT/∆DD) degrees 

VS Vehicle Speed OBD/GNSS kmph 

DD Drive Distance OBD km 

EL Calculated Engine Load OBD % 

RPM Revolutions per Minute OBD r/min 

TP Throttle Position OBD % 

HUM Humidity OpenWeatherMap % 

TEM Temperature OpenWeatherMap K 

PRE Atmospheric pressure OpenWeatherMap hPa 

WS Wind speed OpenWeatherMap kmph 

WD Wind direction OpenWeatherMap degrees 

Weight Payload  User input kg 

 

Table 4.3 shows the details of the data collected from different sources during the initial 

data collection. ECU data such as Vehicle Speed (VS), Throttle Position (TP), Engine 

RPM (RPM), Calculated Engine Load (EL), and Drive Distance (DD) were collected from 

the OBDII device. The global position data such as Latitude (LAT), Longitude (LON), 

Altitude (ALT) were collected from the smartphone’s GNSS unit. The combined data with 

the timestamp and the geolocation was then used to extract the weather information form 

the stored weather database.  Since EL depends on airflow, standard temperature and 

pressure, those readings were not recorded nor included in the feature set to reduce 

multicollinearity. 
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4.5 Correctness of Data 

4.5.1 Weather data 

Wind direction data from OpenWeatherMap API consists of the wind speed and the wind 

direction in meteorological degrees. The wind speed and direction directly influence the 

driving force of a vehicle. Thus, it is an essential data for the inference system. 

 

 

Figure 4.12: Sample wind flow direction map from Natural Environment Research Council 
(NERC) 

 

Unfortunately, our current ability to monitor the weather and environmental conditions is 

still severely limited in both time and space. The weather data available now are with 

spatial granularity in the order of several square kilometres, and time resolution in the 

order of 1 h (Massaro et al., 2016). Figure 4.12 shows us that the flow of wind (wind 

direction) will not be the same at all places in an area. The direction of the wind and the 

speed may vary due to the landscape and the objects. The resolution of the weather data 

obtained was two-hour. Most of the data recorded have remained unchanged, or data 

with minimal variance, and the wind direction and wind speed data need to be 

instantaneous at each location where we collect VT data. The model errors were higher 

with the weather data incorporated. Thus, weather data was excluded while selecting 

models in this research. 
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4.5.2 Speed from ODB vs GNSS  

The vehicle speed collected from the OBD vs GNSS is shown in Figure 4.13. Pearson's 

product-moment correlation coefficient (PPMCC) (Swinscow, 1997) was used to check 

the correlation between the two different readings.  

 

 

a 

 

b 

 Figure 4.13: Difference in speed reading from OBD and GPS 
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PPMCC between two vectors 𝑋 = {𝑥1, . . , 𝑥𝑁},  and 𝑌 = {𝑦1, . . , 𝑦𝑁} is, 

𝑃𝑃𝑀𝐶𝐶 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦

 

Equation 4.1 

 

where, 

𝑆𝑥𝑥 = ∑ (�̅� − 𝑥𝑛)2𝑁
𝑛=1 , 𝑆𝑥𝑦 = ∑ (�̅� − 𝑥𝑛)(�̅� − 𝑦𝑛)𝑁

𝑛=1   

PPMCC of the speed readings from OBD and GNSS is 0.842. The zero readings for 

nonzero values of Speed OBD readings are due to the time taken to fix GNNS satellites 

for positioning. Due to this reason, the speed in this research was chosen from OBD 

reading. 
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4.5.3 Altitude form GNSS vs Google Map API 

 

 

Altitudes from Google Map API for a list of latitude and longitude position brings a 

different value from GNSS sensor altitude, as shown in Figure 4.14. The PPMCC 

between these two altitude measurements is 0.976. 

 

4.5.4 Road Gradient (Elevation angle) 

The phone’s rotation sensor was tested to be used to find the elevation angle of the road. 

In order to obtain the elevation angle, the phone was rigidly placed parallel to the chassis 

of the vehicle assuming the vehicle chassis will always be parallel to the road surface. 

Due to the suspension system of the vehicle, the nose lift and nose down happened 

during the acceleration and braking. Similarly, the linear acceleration calculated from 

Figure 4.14: Difference in altitude from GPS and google map for un-controlled 
driving data. (a) Altitude readings, (b) Correlation graph 

 
a 

 

b 
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IMU was not enough to capture the lateral acceleration/deceleration (ACC) of the vehicle 

due to throttling and braking. Following equations, Equation 4.2 and Equation 4.3 were 

used to calculate ACC and ELE, respectively . 

 

𝐴𝐶𝐶 =
∆𝑉𝑆 × 1000

∆𝑡 × 60 × 60
  𝑚𝑠−2     

Equation 4.2 

   

Where ∆VS is the change of vehicle speed in kmph, ∆t = change of time in seconds. 

Road Gradient/Elevation Angle in degrees: 

 

𝐸𝐿𝐸 = tan−1 (
∆𝐴𝐿𝑇

∆𝐷𝐷 × 1000
)  °       

Equation 4.3 

 

Where, ∆ALT is a change of altitude in m, ∆DD=drive distance in km. 

 

4.5.5 Rate of Data collection 

Systematic measurement errors such as lag time and hysteresis may be present while 

reading the values from CAN bus data and GNSS; these errors are very hard to detect 

and eliminate.  

 

Figure 4.15: Throttle response time (Throttle position and RPM) 
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In Figure 4.15, the graph shows the response of the engine RPM (denoted in red line) to 

the throttle input (denoted in black line). When there is a change in the throttle position 

that change reflects in the engine RPM. The parts of the graph in rounded rectangles 

show the delay in engine response during the throttle change in normal conditions, which 

is when either the clutch is engaged (pedal released) and accelerating, or the clutch is 

disengaged. The delay in engine response in those regions is clearly visible. It was found 

that there is a 0.6second delay in average between peaks on input and its response. The 

area denoted by the oval shows the reverse response (negative or irregular response) 

of the engine. This was due to the engine braking, that is when we deaccelerate by 

reducing throttle while the clutch is engaged. Such data was considered inappropriate 

and explained in the next section. 

 

The frequency of parameters ranged from 1Hz to 100Hz but was collected at the rate of 

1Hz. The reduced rate of data collection might have missed some crucial facts from that 

data.    

 

4.6 Data Pre-processing  

The correctness of the data influences the model accuracy. The model needs to be 

trained with carefully chosen data for better and robust accuracy. The data from the start 

of a journey to the end was plotted to observe the behaviour of independent variables. 

The graph in Figure 4.16 shows the values of RPM, VS, EL, and ACC of a journey for 

Point A to Point B within the 20s.  
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Figure 4.16: RPM, Elevation, Speed, Acceleration for a drive from point A to point B 

 

The first spike on the EL shows the gear change from first gear to second gear. During 

this period the clutch will be released to separate the engine and transmission, and 

throttle position will be decreased. Thus the RPM will also be reduced.  This speed 

difference (i.e. ∆VS) is very lean; therefore, the acceleration reaches zero, then shoots 

up when the gear is changed. The graph segment between time greater than 15 depicts 

the braking (deacceleration) event to bring the vehicle to a stationary state.  

 

Acceleration may occur due to two different reasons; 1) vehicle is on an inclined or flat 

surface (i.e., ELE>=0) when TP is high, RPM is high, and EL is high. 2) Vehicle is on a 

declined surface (i.e., ELE<0) and the TP, RPM, and EL are low, where the vehicle starts 

moving due to the gravitational pulling force.  

 

Similarly, the deacceleration without applying brake can occur due to two different 

conditions; 1) on an inclined surface (i.e., ELE >0), low TP, low RPM, and low EL . 2) on 

a flat or declined surface (i.e., ELE<=0) high RPM, low TP, and low EL (usually on low 

gears) as explained by the oval shape in Figure 4.15.  

 

Training ML models with this complex and noise data did not yield a good model 

accuracy. Consequently, the model is trained with data points where (ACC>=0 & ELE>=0 

& RPM > Minimum RPM & TP > Minimum TP). 
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Figure 4.17: RPM vs Speed 

 

Figure 4.17 shows the RPM vs Speed graph for the uncontrolled data collected on 

different payloads (95, 110, 112, 180, 240, and 320kg). This graph clearly shows the 

correlation between Speed and RPM for different gears. It is easy to distinguish the five 

gears which are represented by five slope lines in the graph. Decreased TP and RPM 

cause (region A in this graph) during gear changes and braking. Region B denotes our 

interesting area in this graph, where 0<VS<20. Region B contains the data obtained 

when the vehicle changed its state from stationary to moving. The speed gain during the 

first gear was captured for different payload settings. The left corner of this region B is 

denser than other regions in this graph. This makes us focus on this region as other gear 

settings do not show any significant patterns for different payloads. 

 

4.7 Data Transmission  

The collected VT data must be sent to the WIM system either in batch or stream fashion.  

Streams with short bursts would be preferable than long burst streams. Assume a vehicle 

data collection device (sender) collects the VT data at a rate of 1 Hz. And it starts sending 

or queuing its’ VT data to the system from the start of the journey. In such situations, the 

volume of data throughout the journey depends on the duration of the journey. The 

amount of data for the VT devices to store should be minimised for a better reactive 

system. Further, we have noticed that not all VT data is useful for inferring the weight.  

The following steps explain the data collection process deployed in the prototype system. 

In here, Speed is the current speed of the vehicle. Vehicle identifier (VID) is a unique 

B  

 

A 
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identifier assigned to each vehicle. The route identifier (route ID) is a combination of VID 

and start time. 

 

On the Sender side: 
if (0<speed) 
 routeID ← VID + StartTime 
 if (speed<20) 

if (connected to network) 
Stream VT data  

  else  
   Queue VT data 
 else 

Log Locatiodata, routeID 
else 

Connect and Send VT data queue, Log 
End 

 

The VT data device has two main functions namely, Streaming and Logging. The size of 

the VT data stream is reduced by limiting the VT stream data by only streaming during 0 

- 20kmph speeds. By doing this, we reduce the streaming time as well as the 

accumulation of unnecessary data. If the VT device is connected to the backend, then, 

the data is streamed. Otherwise, the VT data is queued for streaming. At the backend, 

inferencing is done by the steamed data (during the drive form 0 – 20kmph) for each 

routeID. If the vehicle speed is greater than 20kmph, then the VT data collection device 

logs the geolocation (GNSS data) with the generated routeID for every second. The 

backend merges the inferred weight of a routeID with the logged data to track the payload 

throughout the journey of a vehicle. When the vehicle stops and starts again, then the 

new VT data is sent to infer the weight again. Each stop and go triggers the inferencing. 

This allows tracking any vehicles which overload at any point of their journey.  
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4.7.1 Data Extraction  

Once the VT data is available on the system, we have to train each new vehicle to obtain 

the inference model. The following algorithm shows how the training data extraction 

works for each vehicle. 

 

Input: Table IT contains values of ACC, VS, RPM, EL, ELE, TP for each 1s timestamp. 

Output: Table OT contains values specific for training a model. 

Procedure: 

for each row i in IT, 
if ((0<VS<20) AND (ACC>=0) AND (ELE>=0) AND (RPM > Min (RPM))  
AND (TP > Min (TP)) ) 

Add row i into OT  
else  

go to next row i+1. 
 
 

 

Figure 4.18: Scatter plot and Correlation matrix of the primary features from the dataset 

 

Figure 4.18 describes the sample extracted data using the data extraction process. This 

extracted data was then used to choose the ML model. In this data, the correlation 

between VS and RPM is 0.76, significantly higher than other correlation values. 
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4.8 ML Model Selection  

This research focused on regression models rather than classification models. No 

attempt has been made to test a classification model classifying overloaded and legally 

loaded vehicles. This was so as to not violate the laws and not damage the testing 

vehicles. On the other hand, an attempt has been made to test the weight inference 

system using regression models. A set of ML algorithms such as multiple linear 

regression, ANN, Decision Trees, and Bayesian regression were chosen to test. ANN 

performed better than other ML algorithms. Selection of features for each ML algorithm 

was based on their performance. 

 

Figure 4.19: Flowchart of the ML model selection process 

 

Figure 4.19 shows the ML model selection process carried out in this research where Eo 

= 5% - 35% with 95% confidence level was obtained from the literature (Gajda, Burnos 

and Sroka, 2018).  

4.8.1 Feature Creation 

Feature engineering is the most difficult and time-consuming part of ML projects 

(Domingos, 2012).  The raw data we gathered was not in a form amenable to learning. 

This part of the research has consumed a considerable amount of time. After performing 

data pre-processing, the pre-processed data was then filtered using the data extraction 

process. The chosen data was then used to build Learning Models. The correlation 

matrix was then used to check the correlation between variables. 

 



 

 

110 

 

Table 4.4: Correlation Matrix of Base Features and dependent variable (weight) 

 RPM ELE TP VS ACC EL Weight 

RPM 1.00       

ELE -0.03 1.00      

TP 0.30 0.04 1.00     

VS 0.76 -0.03 0.17 1.00    

ACC 0.18 -0.01 0.54 -0.04 1.00   

EL 0.11 0.08 0.65 -0.02 0.64 1.00  

Weight 0.05 0.09 -0.07 0.12 0.09 -0.03 1.00 

Table 4.4 shows the correlation matrix between the collected features. The correlation 

matrix does not reveal any direct correlation between the base features and the 

dependent variable. 

Correlation between the independent variables is known as multicollinearity. In here the 

VS and RPM are highly correlated with the value 0.76. RPM was removed in some 

settings to check the effect of removing multicollinearity. The reason for choosing RPM 

instead of VS because RPM is less correlated to weight (0.05) than VS (0.12). Some 

new features were added by multiplying existing features and finding the powers of 

selected features. ACC, VS, RPM, EL, ELE, TP are used to create new features using 

non-linear functions such as Log(x), Sqrt (x), and Power (x, -1), Power(x,2). Where 

Power (a, b) = ab. Feature crossing is also done to obtain new features by multiplying 

and dividing existing features.  

4.8.2 Feature Selection 

Selecting the best set of features is essential for the better performance of the ML model. 

Keeping a higher number of features may lead to many hazardous situations. The higher 

number of feature space makes the model harder to interpret. Space and time complexity 

will also be affected by the number of features. It could also lead to model overfitting in 

some cases. Handling higher dimensional data will also be an issue with higher feature 

space.  

 

There are several methods available for feature selection. Stepwise regression, 

penalised regressions (i.e. Ridge, Lasso, and Elastic) and principal component based 

regression (Kassambara, 2018). According to Kassambara (2018), stepwise regression 

is ideal for high-dimensional data with multiple features. Stepwise regression was done 

to find the best number of features. The feature selection of stepwise regression uses 

Root Mean Squared Errors (RMSE) (Hocking, 1976). It showed that using the four-

variable model results in the best RMSE value. A stepwise feature selection based on 

Akaike Information Criterion (AIC) (Hocking, 1976) was also performed. The results 
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obtained using the stepwise regression is discussed detailed under Results and 

Discussion. Nine different settings were made, and the performance was measured 

based on their Residual Standard Error, Degree of Freedom, a p-value of the model, R-

squared, and Adjusted R-squared. 

 

The Following settings were done to choose the model. 

1. Simple regression with all base features 

2. Simple regression with all base features excluding RPM (due to multicollinearity) 

3. Setting 1 with Single feature crossing (i.e. each base feature is multiplied with 

another) 

4. Setting 2 with single feature crossing 

5. Introducing new features by adding non-linear functions such as Sqrt (xi), Power 

(xi, -1), Power (xi, 2), and Log (xi) to setting 1 

6. Introducing new features by adding non-linear functions such as Sqrt (xi), Power 

(xi, -1), Power (xi, 2), and Log (xi) to setting 3 

7. Setting 6 with two feature crossing 

8. Selecting the best features picked from 7 based on significance value 

9. Feature Selection on Setting 6 using Stepwise AIC with 3 feature crossing  

 

4.9 Evaluation 

The ML models were selected by the evaluation based on several matrices, which are 

discussed separately. 

4.9.1 Linear Regression 

The linear regression models were evaluated based on the following conditions: 

a) Linearity:  

The relationship between the independent (explanatory) and the dependent (response) 

variable should be linear. This was tested using the residual plot. 

 

b) Nearly normal residuals:  

Residuals should be nearly normally distributed and centred at zero, presence of noise 

data (unusual observations) may not satisfy this condition. This was verified using normal 

Q-Q plot. 

 

c) Constant variability (homoscedasticity): 

Variability of points around the least-squares lines should be roughly constant. This was 

checked using the residuals plot. 
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d) Significance (p-value): 

The p-value determines the overall significance of the model. If the p-value is smaller 

than 0.05, then the model may be considered significant. 

 

e) R-squared Error: 

The R-Squared error, 𝑅2 of a regression model is: 

𝑅2 = 1 −
∑ (𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1

∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

Equation 4.4 

 

Where, �̂�𝑛 is the nth predicted value, �̅� is the mean of the response values. The closer 

the value to 1, the more the points tends to fall along the regression line, thus, the 

stronger the linear relation the two sequences have. 𝑅2 = 1 means the two sequences 

have perfect linear relation, while 𝑅2 = 0  means they have no linear relation at all. 

Fitness of the model is measured with the 𝑅2, Greater the 𝑅2, better the model, i.e. model 

is very good if 𝑅2 = 1 , very poor if 𝑅2 = 0  (Hansheng Lei and Govindaraju, 2004). 

Negative R-Squared values could result if the model fits very worst. But, 𝑅2 alone cannot 

be used to evaluate the model performance, since overfitting models may also produce 

greater 𝑅2 values. 

 

f) Adjusted R-squared  

Due to the limitation in 𝑅2 , adjusted R-squared, 𝑅𝑎𝑑𝑗
2 , is used in addition. Several 

formulas were proposed and are in use, among those we used McNemar’s formula: 

𝑅𝑎𝑑𝑗
2 = 1 − [(

𝑁 − 1

𝑁 − 𝑘 − 1
) (1 − 𝑅2)] 

Equation 4.5 

 

Where 𝑁  is the number of Observations,  𝑘  is the number of independent variables 

(features). 

 

g) Degrees of Freedom 

Degreed of Freedom (DF) is the number of observations subtracted by the number of 

independent variables (Features). 

𝐷𝐹 = 𝑁 − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑛) 

Equation 4.6 
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DF makes sure that the data size is greater than the size of the feature set. 

 

h) Residual Standard Error (�̂�) 

This is calculated from the Sum of Squared Error (Equation 2.7) and the Degrees of 

Freedom. 

�̂� = √
𝑆𝑆𝐸

𝐷𝐹
 

Equation 4.7 

 

We can say the model would produce ±�̂� error on average. Suppose the residuals are 

approximately normally distributed, then �̂� can be used to say that  
2

3
  or 65% of the result 

is in the range of ±�̂�, and 95% of the prediction is in the range of ±2�̂�. 

 

4.9.2 Artificial Neural Network 

ANN architectures with the different numbers of hidden layers were tested. The 

performance of the architecture was seen based on accuracy, R-Squared (Equation 4.4), 

and Adjusted R-squared (Equation 4.5). The accuracy was calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑚𝑒𝑎𝑛(
|𝑦 − �̂�|

𝑦
) 

Equation 4.8 

 

4.9.3 Bayesian Regression and Decision Trees 

In addition to the multiple linear regression, Bayesian regression was also conducted to 

determine the posterior distribution of the independent variables. All the basic features 

were used in Bayesian regression and Decision Tree Algorithm.  R-Squared, Adjusted 

R-Squared, Mean Squared Error, and Standard residuals were used to evaluate those 

models. 
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CHAPTER 5 

5 DISCUSSION 

 

In this chapter, we discuss the following: 

Section 5.1. Evaluation of Model performance Regression model 

Section 5.2. Evaluation of Bayesian Regression 

Section 5.3. Evaluation of Decision Trees 

Section 5.4. Evaluation of ANN Model performance  

Section 5.5. Model performance 

Section 5.6. WIM System Performance 

Section 5.7. C-K theory in action 

5.1 Regression Model performance  

Table 5.1 summarises the model performance results obtained from the previously 

mentioned nine settings. 

 

Table 5.1: Results of the 9 settings 

 

Setting 1 shows that the model is significant, but the R-squared and adjusted R-squared 

values are significantly low. The degree of freedom is high due to the lesser number of 

features.  

Setting Residual Std. 
Error 

Degrees of 
Freedom 

p-value R-squared Adjusted R-
Squared 

1 34.46 298 0.0232 0.047 0.0284 

2 34.44 299 0.0161 0.045 0.0293 

3 34.88 283 0.3899 0.073 0.0042 

4 34.76 289 0.2503 0.059 0.0110 

5 33.53 281 0.0021 0.149 0.0800 

6 32.07 54 0.1839 0.850 0.1582 

7 41.24 2 0.7507 0.990 -0.391 

8 28.37 54 0.0165 0.883 0.3412 

9 23.1 88 6.322e-08 0.8736 0.5633 
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Figure 5.1: Residuals plot for Settings 2 

 

Setting 2 shows a better result than Setting 1 with smaller p-value and adjusted R-

squared; this is due to the removal of one feature from the previous setting. However, 

the residuals plots show the non-linear relationship between the independent variables 

and dependent variables. Figure 5.1 and Figure 5.2 show that the residuals reveal that 

the three conditions for linear regression, as stated in the previous chapter were not met. 

The new features were introduced by applying non-linear functions to the base features. 

This was tested with Settings 5 and above. 
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Figure 5.2: Settings 2 residuals plots 

 

Settings 3 & 4 did not yield any better performance values than Settings 1 & 2. However, 

Setting 5 showed a significant improvement in performance with lesser p-value and 

higher R-squared and adjusted R-squared values; this again confirms that the features 

(independent variables) are non-linearly correlated to the dependent variable. Even 

though Setting 6 showed higher costs than previous settings, it is still weak due to the 

higher p-value.  

 

Setting 7 yields a greater R-squared (mostly overfitted) with more significant p-value and 

a small degree of freedom. The negative value of adjusted R-squared reveals that the 

model is suffering from too many surplus features. It seems the number of features is 

higher than the number of observations in Setting 7.   

 

Setting 8 is made by only choosing the significant features from Setting 7. This resulted 

in a decent result with significance, better R-squared and adjusted R-squared. The model 
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is complex to interpret but performs better than the simpler models. Above all, the other 

Setting 9 with the triple feature crossing and using Stepwise AIC resulted in better results. 

 

Figure 5.3: Stepwise regression feature selection using (a) 10-fold Cross-validation and (b) 
Leave-one-out Cross-validation 

 

Stepwise linear regression feature selection based on setting 6 resulted in graphs, as 

shown in Figure 5.3. The graph (a) shows 10-fold cross-validation results and the graph 

(b) shows leave-one-out (i.e. k=n) cross-validation. Both graphs show the best tune 

based on RMSE is when using 4 variables. Since the result is purely based on RMSE, it 

was not considered as the best model. 
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Regression Model on Setting 8 is more prominent than the other seven models with 

smaller p-value and decent R-squared.  

 

Figure 5.4: Setting 8 model plots 

 

 The model from Setting 9 can be considered as a proof of concept even though the 

model is complex to interpret and has the adjusted R-squared below 0.8. Model on 

Setting 9 showed a better result with very small p-value, elevated adjusted R-squared 

value, and smaller standard residual error. 
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Figure 5.5: Model plots for Settings 9 

 

Figure 5.4 and Figure 5.5 shows the four plots of the model obtained from Setting 8 and 

Setting 9, respectively.  Since there is no parabolic pattern visible in Residual vs Fitted 

plots, we can assure that the model has captured the non-linear relationships between 

independent variables. The Normal Q-Q plot shows that the residuals are normally 

distributed. The scale-location plot shows that the residuals usually appear even though 

it is not horizontal to the x-axis; this is due to the limited number of observed values. The 

Residual vs Leverage graph shows that there are few rows in the dataset, which are 

influential observations.  
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Figure 5.6: Distribution of errors for regression using settings 9 

 

Figure 5.6 shows the error distribution of the inference testing using regression on 

settings 9, and it is safe to say that the regression inference predicts with of ±21 kg for 

65% of the data, which is of ±19% accuracy on  average for 65% cases, of ±38% 

accurate with 95% confidence. 

 

5.2 Evaluation of Bayesian Regression 

Bayesian Regression was tested using all the basic features and the features in Setting 

8. Unfortunately, the models did not give promising results. The best model produced a 

negative R-squared value (-82.43626), with a relatively large Mean Squared Error 

(1194.18). Figure 5.7 shows the deviation plot for the Bayesian regression prediction.  

 

Figure 5.7: Deviation graph for bayesian regression 
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5.3 Evaluation of Decision Trees 

Five different Regression Tree algorithms were tested using the dataset. Table 5.2 

summarises the performance of the five algorithms. Random forest (Breiman, 2001) 

performed better than the other four algorithms. Secondly, Recursive Partitioning (Strobl, 

Malley and Gerhard Tutz, 2009) performed relatively better than the other three 

algorithms on the dataset.  

 

Table 5.2: Summary of Regression Trees 

Algorithm R-
Squared 

Adjusted 
R-

Squared 

Mean 
Squared 

Error 

Residual 
Standard 

Error 

Recursive 
Partitioning  0.54 0.514719 387.21 20.15 

M5P -5.42 -5.70988 1031.69 32.88 

M5Rules -4.75 -5.00505 1028.91 32.84 

Random Forest  0.67 0.656273 246.49 16.07 

Cubist -0.66 -0.73826 1021.91 32.73 

 

The performance of Random Forest increased after having around 200 Decision Trees. 

Figure 5.8 shows the performance of Random Forest changes with the number of trees. 

 

Figure 5.8: Number of trees vs error of Random Forest 
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5.4 Evaluation of ANN Model performance  

Twenty different ANN architectures were tested with the dataset. All architectures were 

fed with the normalised feature values. All the 6 basic features with their inverse were 

used in all twenty architectures. Figure 5.9 shows two sample ANN architectures (a) with 

one hidden layer of one node, (b) with two hidden layers with 5 and 3 nodes in each 

layer, respectively. 

Figure 5.9: Architecture of ANN model (a) One hidden layer with one node, (b) Two 
hidden layers with five, three nodes in each layer 

 

 

 

a 

 

b 
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Table 5.3 lists the twenty ANN architectures (from model 1 to model 20) and their 

performance. It is evident that the model performance increases with the number of 

nodes in hidden layers. In this research, we have stopped testing after reaching a 

reasonable performance, which is found in model 20.   

 

Table 5.3: Performance of the ANN model 
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1 1 1 0.912 -18.67 -19.56 1158.72 34.85 

2 1 5 0.945 -0.44 -0.51 720.57 27.48 

3 1 10 0.963 0.33 0.30 485.15 22.55 

4 1 20 0.984 0.80 0.79 199.48 14.46 

5 1 30 0.978 0.70 0.69 276.58 17.03 

6 1 40 0.986 0.84 0.83 168.64 13.30 

7 1 50 0.988 0.86 0.85 149.25 12.51 

8 2 5,5 0.951 -0.14 -0.19 649.19 26.08 

9 2 10,5 0.970 0.53 0.51 390.99 20.24 

10 2 10,10 0.980 0.72 0.71 262.78 16.60 

11 2 20,10 0.992 0.91 0.90 102.27 10.35 

12 2 20,20 0.992 0.91 0.90 102.27 10.35 

13 2 30,20 0.995 0.95 0.95 57.29 7.75 

14 2 30,30 0.996 0.96 0.96 45.39 6.90 

15 3 5,5,5 0.971 0.54 0.52 386.02 20.11 

16 3 10,10,10 0.990 0.88 0.87 133.02 11.81 

17 3 20,20,10 0.994 0.94 0.93 72.86 8.74 

18 3 30,20,10 0.996 0.96 0.96 46.81 7.00 

19 3 30,30,20 0.912 0.96 0.95 50.35 7.27 

20 3 30,30,30 0.945 0.97 0.97 34.68 6.03 

 

Figure 5.10 contains nine selected graphs of frequency distribution of deviation for 

architecture 1,2,7,8,11,12,14,16, and 20. It shows the progression of ANNs performance 

with the number of layers and nodes. Figure 5.10 (a) – (c) have shown that the increase 

in the number of nodes/neurons in a layer reduces the deviation. The biggest 

improvement of the model performance is observed when we increase the number of 

clusters. The ANN architecture of Model 20 (3 hidden layers with 30 nodes in each) has 

shown a better performance with increased R-Squared and Adjusted R-Squared, and 

decreased residual standard error. 
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Plots in Figure 5.10 (a) – (i) shows how the deviation error shrinks from higher to lower 

(i.e. residual standard error form 34.85 for Model 1 to 6.03 for model 20). 

 

5.5 ML Model performance 

Table 5.4 compares the performance of each ML model on this test set. The values 

shown in each model are from the best runs. 

 

Table 5.4: ML models and their performances 

Model R-
Squared 

Adjusted R-
Squared 

Residual 
Std. Error 

Regression 0.8736 0.5633 23.1 

Recursive Partitioning  0.54 0.514719 20.15 

M5P -5.42 -5.70988 32.88 

M5Rules -4.75 -5.00505 32.84 

Random Forest  0.67 0.656273 16.07 

ANN 0.97 0.97 6.03 

 

 

a            b                  c 

 

d            e                  f 

 

g            h                  i 

 

Figure 5.10: Frequency distribution of deviations showing improvement when 
increasing number of nodes and layers for ANN model (a) 1,  (b) 2, (c) 7, (d) 8, 

(e) 11 , (f) 12, (g) 14, (h) 16, (i) 20 
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These models were trained with two distinct observed dependent values with 305 

observations. The model performance could be increased with more training data. 

However, in the real world, it would be impossible to train each vehicle with a vast dataset. 

Finding the optimal data points is still a researchable question. We chose two random 

weight data, each with a nearly equal number of observations. Multiple Linear 

Regression, ANN, Bayesian Regression, and Decision Tree algorithms were tested. The 

ANN outperformed other ML algorithms. It was observed that the model performance 

increased with the number of nodes in each layer. In this dissertation, we have discussed 

the multiple linear regression and ANN models, which have shown a better performance 

than other ML algorithms for the dataset. 

 

The result of this research shows evidence of the ability to infer the vehicle weight using 

VT data. Results reveal that a significant level of prediction could be made using the 

selected features. The selected NN model has performed well (with 94.5% accuracy, R-

Squared = 0.97, Adjusted R-Squared = 0.97, and residual standard error = 6.03), even 

on a small dataset. This is encouraging because in real-world, we cannot ask the vehicle 

owners to drive the vehicle several times with several different weights (i.e. size of the 

training data is limited in reality).

 

5.6 WIM System Performance 

Performance of a WIM system is discussed by looking at many different factors. In here, 

we have compared the prototype WIM system with other WIM systems using categorical 

values. Table 5.5 discusses the performance comparison of the proposed WIM system 

approach with the existing WIN systems based on findings by Jacob and Veronique 

(2010), Karim et al. (2014), Lydon et al. (2016), Gajda et al. (2018), Timerson (2018) and 

the U.S. State Department (2018).  

 

Table 5.5: Other WIM Systems Vs the Proposed System 

WIM 
System 

Type Cost Accuracy 
Calibration 
Frequency 

Availability 
Chances 

of 
Failures 

Measuring 
Speed 

Static 
WIM 

Stress 
Sensors/ 

Coils 

High 
($ 1M) 

High 
(Restricted) 

Medium Low Low 
Stationary/ 
Low (10-
30min)  

LS-WIM 
Stress 

Sensors 
High 

 
Moderate 

(Restricted) 
Moderate 
(Annual) 

Low Moderate Moderate 

HS-WIM 

Piezoelectric 
cable 

High 
($105K) 

Low 
(Restricted) 

High Moderate High High 

Line quarts High 
Low 

(Restricted) 
High Moderate High High 

Proposed 
WIM 

Telematics Low 
Low 

(Unrestricted) 
Moderate High Low High 
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5.6.1 Cost 

Cost of a WIM solution is based on installation and maintenance expenses, and labour 

cost. In comparison with other WIM solution, the proposed WIM system approach does 

not have any maintenance cost or labour cost. Additionally, the installation cost could be 

negligible if the existing Telematics devices are used. The main cost in this system will 

be maintaining the cloud server. This is way cheaper than the existing WIM systems, 

thus labelled low. 

5.6.2 Accuracy 

The accuracy of a WIM system is not homogenous throughout the entire range. WIM 

scale measuring the weight in several thousand kilograms (larger scale interval) may not 

accurately measure the smaller weights in tens of kilograms (small scale interval). The 

current WIMs focus on bigger vehicles such as trucks and hauling vehicles, weighing 

several tons. Such systems’ weighting accuracy is limited to specific weight range. The 

range of the current WIMs excludes smaller vehicles such as cars (Haugen et al., 2016). 

But the proposed WIM system approach could be simply deployed on any compatible 

vehicles with OBDII port. The weight inference from this new proposed WIM system 

approach does not have any specific weighing limit (unrestricted). The static 

weighbridges are the most accurate in the list. But the readability (scale interval) of such 

Static WIMs are usually ~100kg. This is the common case for most of the WIM systems 

since they are used to measure the loads (weights) of heavy vehicles. This limitation in 

the WIM systems made us label them with restricted accuracy. The maximum reading 

capacity of these WIMs is up to several metric tons. But, due to the power produced by 

the engine is one of the features used to infer the weight, VT data from vehicles with a 

big engine might have poor readability, i.e. greater scale interval. This needs to be 

researched further.   

5.6.3 Time to measure  

Static WIMs are very slow in measuring, usually 10-30 minute or greater (Jacob and 

Véronique, 2010). Jacob and Véronique (2010) reported that the meantime between two 

Static WIM checks of a given truck operated every day was almost 30 years. The 

calibration frequency is reported higher in HS-WIMs than in Static and LS-WIMs. In the 

proposed system, once a vehicle is trained with VT data, the re-training can be done 

anytime. This re-training process can be considered as calibration in other WIMs. This 

can be done in case of repeated false inference.  
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5.6.4 Availability 

Availability is the presence of WIM systems. Static WIM systems are usually located in 

a separate place away from the road. The LS-WIMs and HS-WIMs are placed in several 

road segments. But they are deployed in specific locations. The proposed WIM could be 

virtually available everywhere on any road segment. 

5.6.5 Chance of Failure 

According to literature, the sensor material used in HS-WIM is more fragile and prone to 

failure. Since the prototype WIM system does not use any such sensors and rely on 

robust ECU data, it has a lesser chance of failure. 

 

Once the data is available on the backend server, the inference speed is nearly 

instantaneous. This makes the prototype system perform much faster in measuring 

speed. One of the most important advantages of the system is that it is scalable. The 

proposed WIM system approach is scalable and cost-effective, as compared to other 

WIM solutions. We can use the existing data collection devices used in insurance (UBI 

or PAYD) schemes. This would reduce the cost of implementation on a large scale. 

Communication technologies such as LoRaWAN offers to build fast, reliable, cheaper 

communication systems.  

 

5.7 C-K theory in action 

The use of C-K design theory in the design and development phase is briefly discussed here. 

 

Experience

K3: Techniqies in other ML applications

K2: Requirements, Literature

K 1: Background, Literature
C0

Faster, Ubiquitous, Less cost, WIM System

C01

Smartphone + OBD-II Reader

C011

Cloud based centralised 
Backend

Feature 
Generation

Feature 
Selection

RegressionDecision TreeBayesianANN

C010

Standalone backend 
application 

C00

Black-box
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Figure 5.11: Representation of this research using typical C-K design diagram 

 

Figure 5.11 is the simplest representation of this research using the C-K theory. The tree 

is built starting from the initial concept C0, by keeping the constraints (propositions) at 

the top level. The tree grows by listing the possible candidate solutions for the next level 

of implementation of the current selection.  

 

The concept tree cannot be created at the early stage of the research. But the Tree will 

start growing at each stage of design and development where we make important design 

decisions. These stages form new levels, i.e. design spaces. In this research, we have 

recorded the following main stages and their substages: 

Level 1. Data collection technique 
1.1. Using a smartphone and OBD adaptor 
1.2. Using an existing black-box device 

Level 2. Backend design 
2.1. Using a cloud-based backend application 

2.1.1. Platform  
2.1.1.1. Kubernetes 

2.1.2. Language 
2.1.2.1. Golang 

2.1.3. DBMS 
2.1.3.1. Cassandra 

2.1.4. Stream processing  
2.1.4.1. Akka actor framework  

2.2. Using a simple backend application 
 

Level 3. Feature Generation 
3.1. Using the existing features as it is 
3.2. Feature crossing  
3.3. Applying various non-linear functions 
3.4. Combining 3.2 and 3.3 

Level 4. Feature selection  
4.1. Choose all features 
4.2. Use feature selection techniques 

Level 5. ML algorithm 
5.1. Neural Network 
5.2. Bayesian Regression 
5.3. Decision Tree 
5.4. Multiple Linear Regression 
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Figure 5.12: Concept Tree of new WIM system development 

 

Figure 5.12 shows the simple Concept Tree of this research.  Unlike other nodes, 

selection of node in Level 3 is transitively depended on level 5. The creation of new 

features is depended on the performance of the ML algorithm. The ML model in Level 5 

is determined by the selected features in Level 4. In the meantime, Level 4 is determined 

by the node in Level 3. The flow from level 3 to 5 was iterative until we selected a better 

ML algorithm (5.4) in Level 5. Different feature engineering (Levels 3 and 4) techniques 

were used iteratively. Finally, we stopped iterating after reaching a decent inference 

accuracy (which is discussed here). Here we have used the proposed Concept Tree to 

discuss the decisions made during the main concept spaces. By looking at this concept 

tree, a researcher could understand the decisions made in each sub-concept space. This 

would enable a future researcher to choose a different design decision at any stage and 

continue the research. The adaptability of the Concept Tree in IT-based DSR, producing 

instantiation type of artefact still needs to be researched.  There must be more DSR to 

be tried to report their design phase of an artefact using Concept Tree. The main 

drawback of this Concept tree is that this could grow bigger, and thus becomes 

unreadable. If there are many sub-concepts (nodes) there should be a mechanism to 

shrink the Concept Tree by grouping sub-concepts. It would not be able to report each 

sub design spaces in detail. It can only be drawn after the completion of the design. 

Unlike C-K theory, Concept Tree only captures the concept and sub-concepts in the 

design, excluding the Knowledge part of it. The next chapter concludes this dissertation 

by highlighting the important facts in this research.  

C0 

1.1 1.2 

2.1 
2.2 

3.1 3.2 3.3 3.4 

4.1 4.2 

5.3 5.4 5.1 5.2 
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CHAPTER 6 

6 CONCLUSION 

 

This dissertation concludes in the chapter by summarising the research outcomes by 

discussing each objective of this research, as mentioned in Chapter 1. Section 6.1 to 6.4 

discuss each of the research objectives and Section 6.5 discusses the future directions. 

Section 6.1. Introduction  

Section 6.2. Objective1: Identify the relevant development platforms, parameters 

(features), and algorithms to infer the weight of a vehicle in motion.  

Section 6.3. Objective 2: Design a Conceptual framework that integrates VT and ML 

for WIM  

Section 6.4. Objective 3: Develop a prototype system that leverages VT and ML to 

determine the weight of a vehicle in motion.  

Section 6.5. Objective 4: Evaluate the prototype system in terms of performance 

(accuracy, speed), usability and cost.  

Section 6.6. Conclusion 

Section 6.7. Future Directions 

 

6.1 Introduction 

This research was started with a systematic literature review to find a research problem.  

An omnipresent WIM system to monitor the payload of the vehicles 24x7 in any road 

segment could help the transport industry. A new WIM system approach was proposed 

to use VT data and ML to infer the payload of a vehicle. The concept idea was tested by 

developing a prototype system and evaluating in the context of small cars. The design 

and development of the artefact were carried out and recorded using the unified design 

theory called C-K theory. Concept Tree, a DSR reporting method based on C-K theory, 

was proposed. Adopting C-K theory in DSR was exhibited by the development of 

Concept Tree for the prototype design. The contribution of this research is threefold, 

practical, theoretical, and methodological. Artefact design and development contribute 

to the practical aspect of the research. The theoretical aspects of this research were 

covered by introducing a new concept that, under certain engines and environment 

conditions, the weight of a vehicle influences the values of the engine parameters. The 

use of C-K application of C-K design theory contributed to the methodological 

contribution of this research. 
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6.2 Identify the relevant development platforms, parameters (features), and 

algorithms to infer the weight of a vehicle in motion. 

A systematic literature review was compiled to find the use of VT in road safety, and it is 

discussed in Chapter 2. While doing the review, it was found that there was some 

potential use of VT data to be used, one of which is the use of VT data for WIM.  

 

The VT data collection devices and the available features collected from such VT data 

collection devices have been identified and reported in Chapter 2. The specially designed 

“black-boxes” containing embedded GNSS unit, IMU (Accelerometer/Gyroscope), and 

OBD adaptor were found more commonly used by some transport industries such as 

fleet tracking, and vehicle insurance companies. Smartphones and OBD adapters were 

also used in the literature of research finding driving behaviour and road anomaly 

detection. The quality of data from specially designed Black-boxes was reported better 

than using smartphone sensors. In order to save time and money, the combination of 

smartphones and OBD adaptors was used in this research. Features were selected from 

smartphone sensors and generic Standard ELM 327 OBDII data module.  

 

6.3 Design a Conceptual framework that integrates VT and ML for WIM 

Design of a Conceptual framework to consume the VT data, store the data, train and test 

ML model was presented in Chapter 4. The design was then developed as a simple 

prototype system.  

 

6.4 Develop a prototype system that leverages VT and ML to determine the weight of 

a vehicle in motion  

The implementation of the prototype system was discussed in Chapter 4. The Prototype 

used Android Smartphone and OBD-II Bluetooth adaptor as the “Black-box”. As a by-

product of this research, ML backend (WIM application) was implemented and deployed 

as a containerised application to read and infer the weight of a vehicle. Prototype WIM 

application was developed using Golang. Apache Cassandra was used as the DBMS. 

The application was deployed on a Kubernetes cluster. The different ML algorithms were 

tested using the data collected. The developed system could be used to consume more 

VT data from different vehicles. It is possible to train and test other models with more 

significant data. It could also be used to build a generalized inference model. Currently, 

the prototype was tested using the data form a single gasoline vehicle.  

The application of C-K design theory in this DSR was showcased by introducing a simple 

Concept Tree diagram. 
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6.5 Evaluate the prototype system in terms of performance (accuracy, speed), 

usability and cost. 

Chapter 5 discussed the performance of algorithms which yielded better results. 

Significantly multiple polynomial regression has performed relatively better with the data 

collected during the research. The comparison of the prototype system with the existing 

system was discussed with the help of a table in Chapter 5.   

 

6.5.1 Assumptions and Limitations 

This research was based on the following assumptions and limitations: 

Tyre  

According to Mckay et al. (2012), tyre pressure influences the detection accuracy. The 

recommended tyre pressure was maintained, and the pressure fluctuation due to the 

atmospheric temperature change was neglected. Influence of the size and the shape of 

tyres (tyre profile) was not considered in this research. 

 

Influence of Weather  

This research was done ignoring external weather factors such as extreme wind, snow, 

and rain. The datasets used in this research only contains data collected during calm 

sunny days.  

Road conditions  

Friction quotient is a significant factor for moving a vehicle without slipping. Road 

conditions and types of roads play the primary role in friction. This factor was not 

considered in this research as all the data were collected from urban carpet roads.  

 

Shifting Pattern 

The gear shifting pattern and clutch releasing pattern may differ from person to person. 

This could influence the transmission function on manual transmission vehicles. This 

model was built using a single driver driving data.  

 

Boosted and Hybrid power 

Turbocharged and hybrid vehicles may produce different results as the EL formula does 

not apply to those vehicles. This research did not focus on such types of vehicles. 
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6.6 Conclusion 

This research has three contributions, theoretical, practical, and methodological. 

Theorising that “the engine control unit data, speed, and the road condition of a vehicle 

are related to the gross weight of the vehicle” contributes to the theoretical aspect of this 

research. The implementation of the prototype WIM system contributes to the practical 

aspect of this research. Application of C-K design theory in this research, and the 

introduction of Concept Tree for recording DSR prototype development using C-K theory 

contribute to the methodological contribution of this research. A prototype WIM system, 

as proposed, was developed and tested. The pragmatic validity of a generic design refers 

to the question of whether it will work after contextualisation and implementation (Aken, 

Chandrasekaran and Halman, 2016). This research could be reproduced in different 

contexts (types of vehicles) to generalise the results inductively. Several possible feature 

variables and ML algorithms were tested to build a better ML model. It is found that the 

multiple non-linear regression model from Settings 9 performs better than linear and non-

linear Regression models, with the smaller Residuals Standard Error = 23.1, degrees of 

freedom = 88, higher significance p-value = 6.322e-08, better R-squared = 0.87, and a 

decent adjusted R-squared = 0.56.  

In the meantime, an ANN architecture of three hidden layers with 30 nodes in each layer 

has shown astounding performance with Accuracy = 0.945, R-Squared = 0.97, Adjusted 

R-Squared = 0.97, Mean Squared Error = 34.68, Residual Standard Error = 6.03. The 

ANN outperformed all other tested ML algorithms on the collected VT dataset.  The size 

of the training dataset is crucial in this research as it will not be feasible to obtain a large 

dataset for vehicles in real-world scenarios. In this research, we have obtained an ML 

model with decent inference accuracy using a smaller dataset. We found that the VT 

data from 0 to 20kmph, particularly during the first gear produces more prominent result 

than the entire VT data.   

 

Model performance result shows that, in context of a small car, it is possible to infer the 

payload using the instantaneous VT data such as RPM, Road Gradient (elevation), 

Vehicle Speed, Acceleration, and Calculated Engine load. The inference accuracy of the 

prototype WIM system was ±7kg in average for 65% of the data, which is ± 6% accuracy 

in average for 65% cases, and of ±12% accurate with a 95% confidence level. Even 

though the accuracy is not up to the level of existing Static WIM systems, the 

performance of the prototype on the collected data shows better accuracy compared to 

the standard HS-WIMs. This preliminary result opens future research space. 

Longitudinal research considering weather factors, tyre profile, road conditions, and 

other engine types may produce a significant result in this research area. This research 

has shown the possibility of using VT data to infer the vehicle weight. This could be 
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adopted by the transport industry to perform shallow screening to filter possible 

overloaded vehicles, in any road segment at any time. The comparison of the prototype 

of the proposed WIM system approach with the existing systems shows that the 

proposed WIM system is a cheaper, scalable, omnipresent, and online (24/7) solution. 

     

6.7 Future Directions 

The optimal training size of the dataset for a better model performance still needs to be 

researched. Further empirical research is needed, considering tyre pressure, weather, 

and different shifting patterns. In addition to that, the following are some of the future 

research directions: 

• Detecting the accuracy of different engine sizes: 

Here we used a small capacity engine vehicle to test our assumptions. The smallest 

unit of 30kg was able to infer by using the vehicular test data. It is due to the torque or 

the engine capacity of the vehicle. Finding the minimum unit of mass, which can be 

inferred from other types of vehicles needs to be researched. This would help us to find 

how the capacity of the machine is influenced in determining the mass of the vehicle.  

• Building a generalised inference model based on several vehicle types:  

Using VT data from several other vehicles could help us to build a generalised 

weight inference model for most of the vehicles.  
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