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ABSTRACT 

 

Roughly 85%-90% of the 14 000 tons of pecan nuts produced in South Africa is exported to 

the international market. This makes South Africa one of the four biggest exporters of pecan 

nuts in the world. Market survey reports indicate that the demand for pecan nuts globally is 

on the rise, and for that reason, South African farmers should invest in better technology to 

stay competitive while keeping up with the demand. The application of convolutional neural 

networks (CNN) has successfully applied in various domains, and recently entered also the 

domain of agriculture. Although not new, recent improvements and access to better tools for 

image processing and data analysis problem are delivering promising results.  

In this research, an overview is presented of current commercial sorting technology and 

applications where machine learning is already being researched. The application to pecan 

nuts is novel in the sense that there are to the author's knowledge no other studies which 

applied a convolutional neural network to classify pecan nut cultivars. 

This study laid a foundation for future research into this field by generating a dataset of over 

3000 pecan nut images of three cultivars and by determined that by making use of low-cost 

cameras and hardware an excellent classification accuracy of 98% could be achieved. The 

research implemented a transfer learning process on a VGG16 and MobileNetV2 model and 

compared the results of both models. Other key visual parameters, such as size and colour, 

are also extracted and presented for future research in the field.  

Keywords: Convolutional Neural Network, Support vector machine, Pecan nut, Agriculture, 

Food safety machine vision inspection, Pattern recognition, Machine learning 
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Chapter 1: Introduction 

1.1. Background to the research problem 

South Africa is one of the four biggest pecan nut producing countries in the world. The other 

3 are the US, Mexico and Australia. In 2017 85% to 90% of the roughly 14 000t of good quality 

pecan nuts were exported to China(Farmer’s Weekly, 2018, p. 34). In the Asia market, the 

demand for pecan nuts is increasing in line with the population growth, whereby the 

consumers are becoming more health-conscious and favouring a healthier snack.  Pecan nuts 

are a rich source of phytochemicals with antioxidant, antiproliferative, anti-inflammatory, 

antiviral properties. The nuts contain mono- and polyunsaturated fatty acids, and regular 

pecan consumption has been credited to decrease total cholesterol and LDL cholesterol 

levels, lower the risk of heart disease (A. A. Gardea and M. A. Martínez-Téllez, Development, 

Mexico and E. M. Yahia and Queretaro, 2011, p. 162). 

According to the ABSA Agricultural Outlook Spring edition 2017/2018, South Africa can expect 

to see growth in line with the increased global demand as seen in Figure 1-1. Figure 1-2 shows 

the expected price increase with demand until 2021 (Farmer’s Weekly, 2018, p. 35).  

 

 

Figure 1-1 World pecan nut production and price trends (Farmer’s 
Weekly, 2018, p. 35) 

. 

 

Figure 1-2 SA pecan nut production (In Shell) & price trends 
(Farmer’s Weekly, 2018, p. 35). 
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Figure 1-1 shows the world biggest pecan nut producers and the average price trend. 

Although with a relatively small market percentage, The production of pecan nuts in South 

Africa is expected to significantly increase in the next few years as more orchards are coming 

into production, however certain inflation factors like the current depreciating exchange rate 

are putting more pressure on the agricultural sector as a whole, as certain vital inputs as fuel 

and fertiliser are expected to increase over the next ten years(BFAB, 2018, p. 10). 

Figure 1-2 shows the local production vs export market. As seen above the majority of what 

is produced are exported, and the local market consumes only a small percentage. As the 

export demand increased the price per kilogram increased from 2017-2020, but are slowly 

slowing down, which correspond well to the research on the internal market. 

There are various reason why a grower would have different cultivars in an orchard, one of 

the main reasons is the pecan nut tree produced best if pollinated by another pecan variety 

versus self-pollination which leads to poor nut growth and seldom produce large crops. Other 

reasons would be to mitigate the risk of funguses which is a severe challenge in humid 

climates. Different cultivars also bear fruit at different stages is beneficial if a specific 

geographic region or market such as Thanksgiving or Christmas holiday season is targeted    

(Lenny Wells and Patrick Conner, 2015). 

The harvest needs to be cleaned and sorted according to size before export. Different cultivars 

contain a different volume of the kernel which in turns yields a different price. A Shosoni nut 

typically has 53% kernel ratio, A Mahan has 58%, and the Wichita has 62% (L. J. Grauke and 

T. E. Thompson, no date). 

There is then a benefit to sort the pecan nuts by cultivar as the kernel percentage contributes 

significantly to the weight of the nut which determines the price per KG. Different pecan nut 

cultivars also yield different harvests each year, for that reason, a farmer wants to diverse the 

cultivars in the orchard to achieve a constant harvest every year (L. J. Grauke and T. E. 

Thompson, no date).  
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Automatic sorting machines are available and been adopted worldwide, but regions with low 

labour cost manual sorting of food products with the human eye and hand is still widely 

practised(Guggisberg and Bosset, 2003, p. 115).   

Toyofuku et al. state the two main challenges with manual sorting are: defects too small or 

subtle for the human eye to detect and the required volume and speed at which the product 

needs to be inspected. Automatic systems can reliably and consistently inspect items as small 

as individual grains of wheat and remove the undesired product in real-time. With advances 

in technology devices such as sensors and imaging capture devices, the implementation cost 

has been lowered and enabled automatic sorting of a wide range of nuts (Toyofuku, Haff and 

Pearson, 2013, p. 231). 

Cooperative associations are formed by individual growers to make a more efficient 

investment into facilities and equipment when they individually do not have the resources or 

volume of produce for a favourable cost-benefit ratio to own their equipment. Otherwise, the 

individual grower will sell the crop to processors at a reduced cost without the need for 

further capital investment(A. A. Gardea and M. A. Martínez-Téllez, Development, Mexico and 

E. M. Yahia and Queretaro, 2011, p. 154). 

By providing an innovative integrated low-cost solution to the market, world-class technology 

can be accessible by the individual growers and according to the BFAB Agricultural Outlook 

2017-2028 growers need to be productive and invest in the best technology to be sustainable 

in a fast-growing sector to achieve success in this competitive market. (BFAB, 2018, p. 16) 

  



4 
 

1.2. Statement of the research problem  

Post-harvest classification of pecan nuts is a timeous, expensive and error-prone process. A 

Commercial sorting machine drastically reduces the time and errors made during a post-

harvest sorting process. However, this equipment is typically used only by processors as the 

cost is prohibitively expensive for the small individual grower of pecan nuts. 

 

1.3. Research questions  

What accuracy can be achieved by using commercial off the shelve low-cost hardware and 

opensource software to classify pecan nut cultivars? 

 

1.4. Investigative questions  

The following investigation questions will be used to guide the research: 

1. What accuracy can be achieved by using a low accuracy camera and lens? 

2. Can transfer learning be used to retrain a CNN successfully on pecan nuts? 

3. What type of pre-processing would improve accuracy? 

4. What are other features available in the images? 

1.5. Project objective  

The objectives of this research project are to: 

• To establish a suitable camera set up to capture the pecan nut dataset by conducting 

experiments. 

• To capture a dataset of pecan nut images of three cultivars, which will be used to train 

a convolution neural network. 

• To implement a convolution neural network based on two different architectures 

(MobilenetV2 and VGG16).  

• Determine what accuracy can be achieved by utilising machine learning methods in 

classifying between different pecan nut cultivars. 

• Determine if by using machine learning methods, a low-cost hardware solution could 

be developed. 
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1.6. Delineation of the research 

The following delimitations have been set for this project: 

• 3 Pecan nut cultivars will be used in the research. 

• The research will focus on implementing a CNN classifier. 

• Commercial Off the Shelf (COTS) hardware will be used.  

 

1.7. The significance of the research  

To help and improve the South African pecan nut industry to be more cost-effective and 

productive by improving the following: 

• To lower the cost of the automated classification process after harvest. 

• To empower the producer/grower to inspect the harvest to international standards 

and export directly from the farm instead of a processor. 

• To increase the yield of harvest by improving the sorting process to yield a better price 

for the harvest. 

• The distributor/processor can automate the sizing and shelling of the pecan nut. 

• To contribute to the agriculture and machine learning community by generating a 

database of pecan nut images. 
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1.8. Thesis outline 

The remainder of the thesis is arranged as follows: 

Chapter 2: Related work: This chapter reviews existing literature in order to build an 

understanding of how machine learning has been applied in the field of agriculture. It 

demonstrates what the typical accuracy achieved with Support Vector Machines (SVM), K-

Nearest Neighbours (KNN) and artificial neural networks (ANN). The chapter also gives an 

overview of what type of applications has been considered.  

Chapter 3:Research methodology: Describes the methodology approach which was followed. 

The work done in the different work packages are presented with the software application, 

which was used. 

Chapter 4: A brief introduction to neural networks: This chapter gives an overview of what 

the differences are between Artificial Intelligence (AI), Machine Learning (ML) and Deep 

Learning(DL). The chapter also gives the required background and explain the mathematics 

behind the backpropagation algorithm, which enables a neural network to learn new weights. 

The chapter serves to as introduction into the next chapter. 

Chapter 5: Convolutional Neural network: This chapter extends on the previous chapter but 

focus on building the understanding of the typical architecture of a convolution neural 

network (CNN) and how the building blocks like layers, Loss functions and optimisation 

algorithms work in a modern neural network. The chapter also explains how to use methods 

like data augmentation to expand a dataset. 

Chapter 6: Implementation of a Convolutional Neural Network.: This chapter details the 

implementation of convolution neural network to classify pecan nut cultivars. The chapter 

details the hardware and software implementation necessary to complete the research study. 

It further explains the process of training two different models VGG16 and the MobileNetV2. 

The chapter concludes with an analysis of the results to answer the main research question 

and the investigative questions of the research study. 

Chapter 7: Conclusions and recommendations: A summary of the findings of this research. A 

discussion of recommendations for future work is also provided. 
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Chapter 2: Related work 

In this chapter, a brief background is presented on commercial sorting machines to 

understand the different parts of such a system. An overview of related work is presented, 

including the different process in a typical automatic sorting algorithm. 

2.1. Overview of commercial optical sorting machines 

The following section will give some background into the working of a commercial sorting 

machine.  

 

Figure 2-1 Components and layout of a typical sorting machine(Guggisberg and Bosset, 2003, p. 116) 

The components and layout of such a system are depicted in Figure 2-1 and grouped below : 

• Feed Systems (Hopper, Vibrator Tray, Vibrator and Chute) 

• Optics (Camera, PCB Camera, Foreground and background lights) 

• Ejection Process (Ejector, Reject receptacle) 

• Image Processing algorithms (Not shown) 

The following sections will briefly explain how each of these components works and interface 

with each other. 
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2.1.1. Feed systems 

Dry product (rice, coffee, nuts) are fed into a flat or channelled gravity chute using a vibration 

hopper. An accelerating belt is used to prevent excessive clumping. Both methods separate 

the product into a uniform curtain, and this ensures the product is presented at a constant 

velocity to the optical system(Guggisberg and Bosset, 2003). 

2.1.2. Optics 

The lenses, lamps and detectors are housed within an optical box to prevent contamination 

of the optical system. The objects under inspection travel either through or past the optical 

box. Early optical-sorting machines viewed the product from one side only, which prevented 

them from detecting defects from the one side(Guggisberg and Bosset, 2003). Modern 

systems make use of two or three cameras from different angles as the product leaves the 

chute. This addition increases the accuracy at which the system can identify defects.  

2.1.3. Ejection process 

To physically remove the unwanted product from the main acceptance stream, short burst of 

compressed air is emitted through air nozzles aimed directly at the rejects, and they are 

deflected while in free fall to a reject container(Guggisberg and Bosset, 2003). 

2.1.4. Image processing algorithms 

In traditional image processing systems, the product either classify as accepted or rejected 

based on a criterion for colour, or both colour and shape. 

The size, cost and complexity of such a system varies depending on the range of particles to 

be handled, throughput or volume. Typical sorting speeds for something like seeds can be 

60kg/hour for a single chute and up to 600kg/hour for a double-chute machine(Guggisberg 

and Bosset, 2003, p. 118). 

The term colour sorting comes from the effect on how the overall product appears. However, 

the term is misleading. The actual method used is to measure the spectral reflectivity at a 

particular wavelength, rather than the colour as a whole. The wavelengths cover the visible 

spectrum (400 to 700nm) and extend into the near infra-red (700 to 1100nm)(Guggisberg and 

Bosset, 2003). The relative reflectance signal varies from black (zero or no reflectance) to 

white (100% reflectance). 
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There are many applications in food sorting, where the defects are similar in colour to a good 

product. Therefore, more features are required in order to be able to solve different types of 

applications; one needs to distinguish between size, roundness, area, length. 

  

2.2. Current work in the field 

With the improvements in machine learning some manufacturers have started making use of 

this technology to help the system calibrates itself to account for any irregularities in the 

environment such as the change product colour over time, calibration drift errors, light source 

degradation, ambient light or dust accumulation and other real-world processing 

issues(Toyofuku, Haff and Pearson, 2013, p. 237). 

The typical application where optical sorting machines are deployed is to replace human 

inspectors. For this reason, algorithms used in automated systems are often evaluated based 

on the system performance as compared to human inspectors. Toyofuka, Haff and Pearson 

compared the algorithm performance to human sorting for a discriminant analysis-based 

routine with automatic feature selection(Toyofuku, Haff and Pearson, 2013, p. p237). 

Table 2-1 Comparison between automatic sorting and human inspection(Toyofuku, Haff and 

Pearson, 2013, p. 237) 

 False 

Negatives 

False 

Positives 

Overall Error 

rate 

Automatic 

sorting 

19.8% 5.6% 14.4% 

Human 

Inspection 

28.3% ±5.7% 2.9% ±2.34% 15.6% ± 2.3% 

 

Table 2-1 are showcasing the variability in performance that is common to human inspectors. 

The above results indicate comparable or better results and lower variability with automatic 

sorting than human inspection. As seen in the research and Table 2-1 , human inspectors have 

a higher chance of not correctly classifying a product with a higher false-negative result where 

the automatic sorting algorithm tends to be over-optimistic with a higher false-positive result. 
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The average accuracy achieved by using automatic sorting techniques is 85.6% where humans 

are slightly lower at 84.4%. 

Bhargave, Bansal and Pandey, Naik and Marfatia has conducted thorough reviews of different 

machine learning methods applied to the fruit and vegetable sector. The reviews looked at 

each segment of the image processing algorithm and listed the most popular methods with 

the accuracy achieved for each step(Bhargava and Bansal, 2018), (Pandey, Naik and Marfatia, 

2013). The process which was used are shown in Figure 2-2. 

Figure 2-2 Process of fruit and vegetable classification 

2.2.1. Data acquisition 

The first step in this process is to capture the required data. In food applications, various 

technologies are used such as camera (CCD and CMOS), ultrasound, magnetic resonance 

imaging (MRI), electrical tomography and computed tomography (CT) (Bhargava and Bansal, 

2018, p. 2). 

2.2.2. Data pre-processing 

After data has been captured, the acquired images first need to be corrected for distortions 

and colour. Various filters to reduce noise and median filter, which removes peaks are used. 

The next step is to segment the images into distinct areas. The primary function is to separate 

the background from the area of interest. One of the popular segmentation techniques is 

thresholding and clustering. The performance of fruit images was evaluated by four 

segmentation methods, as seen in Figure 2-3(Bhargava and Bansal, 2018). 
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Figure 2-3 Fruit images segmentation techniques (Bhargava and Bansal, 2018, p. 5) 

2.2.3. Feature extraction 

Certain features are the basics of a computer vision system, as they consist of useful data for 

image perception, interpretation and object classification. In the food industry colour, 

textural and morphological (size and shape) are frequently used to analyse the defect and 

maturity of the fruit and vegetables(Bhargava and Bansal, 2018). 

 

 

Figure 2-4 Efficiency for quality analysis of fruits and vegetables based on colour features. 

(Bhargava and Bansal, 2018, p. 6) 
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From Figure 2-4, the observation could be made that particular colour space is more efficient 

for a specific fruit or vegetable. As seen, RGB images are used to determine the quality of 

Strawberries, Mango and Banana, but with varying results. Part of the classification algorithm 

is to determine what type of colour space should be used for the problem at hand. 

2.2.4. Classification 

The final step in the process is to classify a product as accepted or rejected based on the set 

of features. In computer vision, a wide variety of methods: KNN, SVM, Artificial neural 

networks (ANN) or Convolutional Neural Network (CNN) have been developed for 

classification in food quality evaluation(Bhargava and Bansal, 2018). 

 

Figure 2-5 Efficiency for quality analysis of fruits and vegetables based on classification 

techniques (Bhargava and Bansal, 2018, p. 11) 

2.3. Work-related to pecan nuts 

Mathanker et al. Investigate the use of machine learning classifiers (Adaboost and support 

vector machine (SVM)) to detect defects in-shell pecan nuts. X-ray images of good and 

defective pecans, 100 each were segmented, and features were extracted. The linear SVM 
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AdaBoost classifier with 92.2%(Mathanker et al., 2011). 
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Both these classifiers could be suitable for real-time applications as the SVM algorithm 

needed 10−5𝑠 and Adaboost only 10−6𝑠 to classify a defect. Although Mathanker et al. 

improved the defect detection using X-ray images, their study only focussed on defect and 

not pecan nut cultivars(Mathanker et al., 2011). Kotwaliwale, Weckler and Brisewitz 

investigated if x-ray images used as a suitable method for nondestructive quality evaluation 

of whole pecans(Kotwaliwale, Weckler and Brusewitz, 2006).  

To the author's knowledge, no other research could be found relating to using machine vision 

to distinguish between different pecan cultivars. There are also currently no work using deep 

learning methods such as Convolutional neural networks to classifies pecan nut cultivars. 

2.1. Summary 

In this section, an overview was given how a typical commercial sorting machine works and 

what it consists out. An overview was given of what research is currently being done in the 

field of agriculture and machine learning. According to the author, there are no other studies 

which use machine learning to classify pecan nut cultivars, which makes this research project 

a novel study.  
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Chapter 3:Research methodology 

The following section presents the methodology followed to complete the research 

objectives. Figure 3-1  shows an overview of all the work packages completed in the project. 

 

 

Figure 3-1 Work package breakdown 

 

3.1.1. WP101,WP201 Capturing images 

The basis of every machine learning project is useful data, and the bigger the dataset, the 

better.  

A typical machine learning problem can be classified in the following categories : 

o binary classification: Output contains only two exclusive classes. 

o Multiclass classification: Output can contain more than two classes.  

o Scalar regression: output is a prediction of future value in one dimension. E.g  

o Vector regression:  output is a prediction of future value in more than one 

dimension.  

o Multilabel classification: output can contain more than one class. 

As the research project aim is to classify three different pecan nut cultivars, the problem 

definition falls into the Multiclass classification category.  
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Before data can be captured and a model trained, one needs to understand the different 

types of machine learning algorithms, as shown in Figure 3-2:  

 

Figure 3-2 Types of ML algorithms 

The following types of machine learning algorithms differ in the way the data is labelled, how 

the neural network will be trained, and what the model be used for. 

• Supervised Learning: 

Current the most practised and evolved machine learning domain currently. The input is 

mapped to known outputs by supplying the network with annotated examples, and humans 

often do the annotation. Applications like image classification and speech recognition are 

great examples of supervised learning in action. With supervised learning, all training, 

validation and testing images should be correctly labelled with the specific classes definition, 

binary, multiclass, scalar for example. 

• Unsupervised Learning: 

With unsupervised learning, the data is not annotated; hence the network tries and makes 

sense of the input data without human assistance.  

• Self-supervised Learning: 

A combination of Super and Unsupervised learning whereby the data is still annotated, but 

not by human intervention but from the network itself using a heuristic algorithm. 
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• Reinforcement Learning: 

With this algorithm, an “agent receives information about its environment and learns to 

choose actions that will maximise some reward” (Collet, 2018). The less well-developed field 

of all the algorithms, however, recent attention from the Google Deepmind project where a 

model successfully taught itself to play the famous Atari video game, which makes the 

research into this field exploratory but exciting.  

As the research project aims to use visual images of pecan nuts which are of a known cultivar, 

the type of algorithm used is Supervised learning. 

As this is a novel study into pecan nut cultivar classification, there is no database for pecan 

nuts and a dataset need to be generated. A camera setup was developed consisting of COTS 

hardware and raspberry PI and a PI-CAM. To better determine what type of features are 

necessary to capture and at what angles, a small set of images were captured to understand 

the requirements better. 

From experimentation, it was determined that the angle between the horizontal axis of the 

pecan nut and the camera should not be too shallow, as the visible surface area is increased 

when the angle is higher. For classification purposes, the more prominent the surface area is 

the more features such as unique markings there are. The background of the enclosure was 

chosen as black to minimise the shadow of the pecan nut caused by the light. The LED strip 

light was also placed uniform around the centre of the enclosure to create an even light from 

all angles and minimise shadows. 

Once a procedure has been established a total of ±990 images, each of 3 different pecan 

cultivars were taken and labelled.  

The images were split into the following batches to maximise the available data available: 

• Training set (60%) 

• Cross-Validation set (30%) 

• Test set (10%) 

Whereby the training set is used to complete the first order training, the trained parameters 

are verified against a cross-validation set where one can start to improve the feature selection 

of the algorithm without contaminating the training data. The cross-validation set is also used 
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to prevent overfitting of the training data. Once a suitable accuracy has been achieved, the 

test set is used to determine the final accuracy of the neural net.  

3.1.2. WP103 and WP104 Implement and test model 

A significant amount of time was spent acquiring the background knowledge to create and 

implement a CNN to classify the images. 

The following courses were completed to gain the necessary knowledge: 

• Machine Learning from Standford University 

• Intro into Tensorflow from Google Cloud 

• Improving Deep Neural Networks from DeepLearning.AI 

• Convolutional Neural Networks in Tensorflow from DeepLearning.AI 

• Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep 

Learning from DeepLearning.AI 

The following books were studied. 

• Neural Networks and Deep Learning from Michael Nielsen 

• Deep learning with Python from Francois Chollet 

• Deep Learning for Computer vision with Python 2/3 part series from Adrian Rosebrock 

The research was concluded by identifying what nut features will be suitable for this 

application. Criteria were also needed to be specified how to classify the cultivar and size 

pecan nuts. 

According to the Pecan Breeding & Genetics, Agricultural Service, U.S. Dept of Agriculture, the 

criteria to determine a pecan nut cultivar with the dimension is a below.: 

Descriptors for the pecan nut shape based on nut length to height ratios. 

• Orbicular 1 to 1.39 

• Ovate 1.40 to 1.59, widest at base 

• Obovate 1.40 to 1.59, widest at the apex 

• Oval elliptic 1.40 to 1.59, widest in middle 

• Elliptic 1.60 to 1.79 

• Oblong elliptic1.80 to 1.99 
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• Oblong greater than 2.00 

Descriptors of apex and base shape are very rudimentary; 

• "acute" for angles sharper than 90 degrees 

• "acuminate" for acute angles having concave surfaces; and 

• "obtuse" for angles greater than 90 degrees. 

Cross-section form is described as: 

• "round" if nut height to width ratios are between .95 and 1.10, 

• "laterally compressed" if nut height to width ratios exceed 1.10, and as 

• "flattened" if they are .95 or less. 

The definition for each of the cultivars in the research study is: 

• Mahan: oblong, with acute apex and base; nut often asymmetric, appearing 'pinched' 

in the middle due to flattening of abaxial and adaxial surfaces; flattened in cross-

section 

• Shoshoni: oval elliptic with obtuse apex and rounded base; laterally compressed in 

cross-section 

• Wichita: oblong, with acute to acuminate, asymmetric apex and rounded apiculate 

base; round in cross-section 

The implementation of the Convolution neural network made use of the following software 

libraries in the Python programming language. 

• OpenCV : 

“OpenCV (Open Source Computer Vision Library) is an open source computer vision and 

machine learning software library. OpenCV was built to provide a common infrastructure for 

computer vision applications and to accelerate the use of machine perception in the 

commercial products.” (https://opencv.org/about/). 

• Numpy : 

“NumPy is the fundamental package for scientific computing in Python. It is a Python library 

that provides a multidimensional array object, various derived objects (such as masked arrays 
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and matrices), and an assortment of routines for fast operations on arrays, including 

mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier 

transforms, basic linear algebra, basic statistical operations, random simulation and much 

more.” (https://numpy.org/devdocs/user/whatisnumpy.html, accessed 2020-04-12) 

• Tensorflow: 

Tensorflow is an open-source, high-performance library for numerical computation. These 

qualities make the library highly applicable to machine learning problems. 

Figure 3-3 shows the software stack used for this research project. This project made use of 

a model-level library called Keras. Keras provides high-level building blocks for developing 

deep-learning models. The library can interface to various lower-level numerical computation 

libraries like TensorFlow from Google, Theano from the MILA lab at Universiè de Montreal or 

the Cognitive Toolkit(CNTK) developed by Microsoft. The models developed in Keras are able 

to run via TensorFlow (or Theano, or CNTK) on GPUs or CPUs. On GPUs Tensorflow interface 

to a well-optimised deep-learning library developed by NVIDIA called CUDA Deep Neural 

Network Library (cuDNN). 

 

 

Figure 3-3 Software and hardware stack (Collet, 2018, p62) 

For the research project, Tensorflow was used with an extension to Keras, and the computer 

used the CUDA and cuDNN libraries which utilised the Nvidia Geforce GTX1050ti GPU. 

The neural network is tested with the cross-validation data set, and improvements to the pre-

processing and hyperparameter selection are made to improve the performance. As can be 

seen in Figure 3-1, the training of a neural net is an iterative process of testing, updating and 

validating. 

      

                       

                                

     



20 
 

3.1.3. WP202 and WP203 Improve model 

After all, the pecan nuts were recorded, and a dataset was created, the next focus was to 

improve the model. This in itself is an iterative process of testing, updating parameter 

selection and validating. 

3.1.4. WP204 Validate model on hardware 

Once a suitable accuracy was achieved, the model was validated on the actual hardware in 

real-time. 

3.1.5. WP401 and WP402 

Up to this stage, all training, validating and testing had been performed on a personal 

computer. The next step is to move to the hardware solution and verify the neural net 

performance in a real-time scenario. 

 

3.2. Summary 

In this section, A methodological approach was presented to how the research were 

completed and what each step entailed. 

The next section will give the necessary background to understand how neural networks are 

able to learn new features during the training process.  
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Chapter 4: A brief introduction to neural networks 

To understand what solution were implement in the project, one needs to understand what 

the difference is between Artificial intelligence, machine learning and deep learning. 

 

Figure 4-1 Overview AI, Machine and Deep Learning inspired by (Collet, 2018, p4) 

 

Deep learning is a small section of a larger field called machine learning which belongs to a 

more significant field called artificial intelligence, the Venn diagram in Figure 4-1 shows the 

relationship between these fields. 

A concise definition of the artificial intelligence field would be “ the effort to automate 

intellectual tasks normally performed by humans” (Collet, 2018).  Although the field 

encompass machine learning the scope includes approaches which do not involve any 

learning. Early chess programs which made use of explicit rules were not classified as machine 

learning but contained intelligence which mimics human actions. From 1950 to 1980, experts 

such as Newell and Simon believed that human-level artificial intelligence could be created 

by defining a sufficiently large enough set of explicit rules for manipulating knowledge(Newell 

and Simon, 2007). The approached were known as symbolic AI. Although symbolic AI worked 

well for well-defined problems as playing chess, this approach deemed not suitable for solving 

more complex problems like image classification. 

Francois Chollet gives a great explanation of the difference between symbolic AI and machine 

learning as seen in Figure 4-2. With symbolic AI human’s input the rules and data and the 
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output are the answers. However, with machine learning the humans input the data and 

answers and outcome the rules(Collet, 2018,p5). 

 

Figure 4-2 Machine Learning a new paradigm (Collet, 2018, p5) 

One of the classes of machine algorithm is Artificial Neural Networks (ANNs) which learns 

from data and specialises in pattern recognition. The structure and function of the neural 

network were inspired by the working of the human brain Figure 4-3. The figure illustrates 

the similarities between a Neuron in an ANN and the human brain.  

The neuron in the human brain is called the soma, and each soma has inputs (dendrites) and 

outputs called axons. The inputs and outputs connect the soma to other somas in the brain. 

If the neuron receives electrical input from a dendrite which is sufficiently powerful enough 

to activate the neuron, the neuron will pass the signal on to other neurons via an axon. These 

binary activations inspired the working of a neuron in a neural network. 

It is important to note that as useful as this illustration is, the human brain is far more 

complicated as this similarity portrays. 

 

Figure 4-3 Biological Neuron with the inspired mathematical model 
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McCulloch and Pits presented in 1943, what is considered the first neural network model. The 

model was capable of classifying or recognising two different categories from some input. 

Although groundbreaking at that stage, the model required a human to adjust the 

parameters(weights) to classify a specific input category correctly (Warren S. McCulloch and 

Walter Pitts, 1943). 

Rosenblatt solved the problem with his Perceptron neuron in 1958, where his model would 

correctly classify an input by automatically learning the parameters(weights) without any 

human intervention (F. Rosenblatt, 1958).  

An example of the architecture is shown in Figure 4-4. 

 

Figure 4-4 A Perceptron neuron. 

 

The Perceptron consists out of the following elements see Figure 4-4, Input Nodes {X1,…, Xn}. 

Weights {W1,.., Wn}, Weighted Sum and an activation function as seen in Figure 4-4. The input 

nodes are multiplied with their respective parameters called weights and then added 

together in the summation block. The activation function in Rosenblatt case was a step 

function  which produced a binary output as seen in eq 1 and 2 (Nielsen, 2015). 

𝑆 = ∑ 𝑥𝑖

𝑛

𝑖=1

𝑤𝑖 (1) 
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𝜎(𝑠) =  {
1 𝑖𝑓 𝑆 ≥ 0
0 𝑖𝑓 𝑆 < 0

(2) 

 

The principle that the activation function either activates, based on a set of inputs and weights 

or not is where the resemblance of a biological neuron was made. The Perceptron, as seen in 

Figure 4-4, is called a neuron. This neuron could be assembled in different patterns; one of 

these patterns is to connect multiple neurons in different layers together, hence an artificial 

network.  

In 1969 Minsky and Paper published a paper which identified a crucial problem with the 

Perceptron algorithm. Although the algorithm can learn new parameters(weights), it is unable 

to solve non-linear problems. This drawback makes the Perceptron algorithm unsuitable for 

image classification, as the image classification is inherently a non-linear problem (Marvin 

Minsky and Seymour Papert, 1970). 

Individual research from Werbos (P. J. Werbos, 1974), Rumelhart (Rumelhart, Hinton and 

Williams, 1986), and LeCun (Yann LeCun et al., 1996) were able to solve this issue with their 

research in the backpropagation algorithm enabled multi-layer-feedforward neural network 

and by making use of non-linear activation functions. An example of such a network is shown 

in Figure 4-5. 

 

Figure 4-5 Multilayer feedforward Network 



25 
 

The multilayer feedforward network or artificial neural network (ANN) consists of multiple 

perceptron neurons; in this configuration, they are called nodes. These nodes are stacked 

sequentially in layers, and connections are made between the nodes. 

The backpropagation algorithm is the basis of modern-day neural networks, which allows us 

to train the parameters(weights) required for accurate image classification efficiently. The 

complete working of the algorithm is explained in section 4.2. 

LeCun (Yann LeCun et al., 1996) laid the foundation with his research in Convolution Neural 

Network, where he successfully applied It to recognise handwritten characters. His network 

was able to automatically learn discriminating patterns called “filters” from images by 

stacking layers on top of each other. Filters in the lower layers would extract edges while 

higher-level layers used the edges to learn more abstract features. 

Two building blocks in any neural network is the activation functions and the backpropagation 

algorithm; the rest of this chapter is devoted to describing these functions in details. The 

other building blocks, such as layers and optimisers, are described in chapter 5 with the inner 

working of a convolution neural network (CNN). 

 

4.1. Activation functions : 

One of the main reasons why ANNs can achieve such high accuracy is work done on 

developing different activation functions. In modern-day neural networks, there are a few 

activations functions in use. The choice of activation function depends on what type of 

classification problem one is trying to solve. The following are two examples of activation 

functions commonly found in image classification problems : 
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Figure 4-6 Sigmoid activation function 

 

Figure 4-7 ReLU activation function 

• The sigmoid activation function Figure 4-6 and eq 3 has two advantages for 

learning above the step function. The function is continuous, differentiable and 

asymptotically approaches its saturation values. The sigmoid function also has two 

significant disadvantages such the outputs are not zero centred, which slows down 

optimisation as the gradient goes either positive or negative. Furthermore, if the 

output neuron saturates the gradient becomes virtually zero. This phenomenon is 

called diminishing of gradients which causes the learning process to stall. 

 

𝜎(𝑠) =  
1

1 +  𝑒−𝑆
(3) 

 

• The ReLU (eq 4) also known as “ramp functions” as can be seen in Figure 4-7. The 

output of the function is zero for negative inputs and linearly increases for positive 

values. Because of this behaviour, the function removes all negative information 

which makes it unsuitable for all types of datasets. The function non-saturating 

form prevents the gradient not to vanish or explode when used in 

backpropagation.  

 

𝜎(𝑠) =  max (0, 𝑠) (4) 
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4.2. Backprogration algorithm 

The backpropagation algorithm enables the neural network to learn by propagating the error 

between the predicted output and actual output back throughout the network.  

The process consists of two steps a forward pass (section 4.2.1) where the input is propagated 

through the network to predict an output, and a backward pass(section 4.2.2) where the error 

between the predicted output and actual output is used to update the weights and biases of 

each node. 

Both these steps are described in the next section for better understanding. 

 

Figure 4-8 Forward Pass 

Figure 4-8 shows a neural network with one input, two hidden layers with two nodes each 

and an output layer with a single node. Note the symbol 𝑥𝑖
(𝐿)

 and  𝑦𝑖
(𝐿)

, in the figure represents 

the 𝑖-th node in the 𝐿-th layer. The connections between the layers are called weights, shown 

as 𝑊𝑖,𝑗 , the connections are made from a 𝑖-th node in the 𝐿-th layer to 𝑗-th node in the (𝐿 +

1)-th layer. Because  of the forward connections between the layers the network is also called 

a feedforward network. Each node (perceptron neuron) has multiple input values of 𝑥, an 

activation function 𝑓(𝑥) and an output 𝑦 = 𝑓(𝑥). To enable the neural network to learn 

sophisticated features as needed in image classification the activation function 𝑓(𝑥) should 

be an non-linear function as mention before in section 4.1, as the sigmoid function eq 3. 
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The objective is to learn the weights of the network automatically by minimising error (E) 

between the predicted output 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 and the 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 for all inputs 𝑥𝑖𝑛𝑝𝑢𝑡. 

4.2.1. Forward pass: 

The process begins with the forward propagation step where the 𝑥𝑖𝑛𝑝𝑢𝑡 is taken as an input 

to the neural network. The input node is like any other node, but without an activation 

function, the output is then equal to the input, i.e  𝑦1
(1)

=  𝑥𝑖𝑛𝑝𝑢𝑡. The first node in the hidden 

layer is updated by taken the output of the previous layer and the weights to compute the 

input 𝑥 of the node with eq 5.  

𝑥𝑖
(𝐿)

= ∑ 𝑥𝑗
(𝐿−1)

𝑊𝑗,𝑖
(𝐿−1)

+ 𝑏𝑗
(𝐿)

 

𝐶

𝑗=1

(5) 

Where 𝐶 is the total number of nodes in a layer (𝐿 − 1) connected to node 𝑥𝑖
(𝐿)

 .The output 

of the hidden layer node is updated by: 

𝑦 = 𝑓(𝑥) (6) 

Eq 5 multiplies each output and weight of the previous layer adds a bias value, which for the 

example is set to 1. Then iterates through all the input connections to that node and adds the 

outputs together, into a single value 𝑥𝑖
(𝐿)

. 

By making use of EQs 5,6, the output of each node is propagated through the rest of the 

network until the final predicted output of the network is calculated.  

4.2.2. Backward pass: 

The backward pass calculates the error between the Predicated output and actual output. 

The difference is used to update the weights and biases of each node. This process is shown 

in Figure 4-9. 
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Figure 4-9 Backward Pass 

 

The first step is to calculate the error between the predicted and the actual output with eq 7: 

𝐸(𝑦𝑜𝑢𝑡𝑝𝑢𝑡, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡) =  
1

2
(𝑦𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)2 (7) 

 

The next step is to find out how the error change with the predicted output with eq 8: 

𝜕𝐸

𝜕𝑦𝑜𝑢𝑡𝑝𝑢𝑡
=  𝑦𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (8) 

The backpropagation algorithm is used to calculate how much each weight contributed to the 

overall error by taking the partial derivative of the error with respect to each weight. The 

derivatives for each node is calculated from the output layer back to the input layer, hence 

backward pass.  

To help compute 
𝜕𝐸

𝜕𝑊
𝑖,𝑗
(𝐿)  for each node, two additional values are stored as seen in Figure 4-9. 

The two values are for how much the error changes with : 

• the total input of the node 
𝜕𝐸

𝜕𝑥
𝑖
(𝐿) 

• the output of the node 
𝜕𝐸

𝜕𝑦
𝑖
(𝐿) 
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The next step is to use the chain rule to calculate how the output of each node change with 

the input of the node with as shown in eq 9 : 

𝜕𝐸

𝜕𝑥𝑖
(𝐿)

=  
𝜕𝑦𝑖

(𝐿)

𝜕𝑥𝑖
(𝐿)

𝜕𝐸

𝜕𝑦𝑖
(𝐿)

=
𝜕

𝜕𝑥𝑖
(𝐿)

𝑓(𝑥)
𝜕𝐸

𝜕𝑦𝑖
(𝐿)

(9) 

Where the function 𝑓(𝑥) in 
𝜕

𝜕𝑥
𝑖
(𝐿) 𝑓(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) is a sigmoid activation function. 

The error derivative with respect to the total input of a node eq 9 is used to calculate the error 

derivative with respect to the weights coming into that node with eq 10: 

𝜕𝐸

𝜕𝑊𝑖,𝑗
(𝐿)

=
𝜕𝑥𝑖

(𝐿)

𝜕𝑊𝑖,𝑗
(𝐿)

 
𝜕𝐸

𝜕𝑥𝑖
(𝐿)

=  𝑦𝑖
(𝐿) 𝜕𝐸

𝜕𝑥𝑖
(𝐿)

(10) 

By using the chain rule again, the error derivative with respect to the input of the previous 

layer can be calculated with eq 11 : 

𝜕𝐸

𝜕𝑦𝑖
(𝐿)

= ∑  

𝐶

𝑗=1

𝜕𝑥𝑗
(𝐿)

𝜕𝑦𝑖
(𝐿)

𝜕𝐸

𝜕𝑥𝑗
(𝐿)

= ∑  𝑊𝑖,𝑗
(𝐿)

𝐶

𝑗=1

𝜕𝐸

𝜕𝑥𝑗
(𝐿)

(11) 

 

Once all the derivatives are calculated, the weights and biases are updated by making use of 

the gradient descent function shown in eq 12: 

𝑊𝑖,𝑗
(𝐿)

= 𝑊𝑖,𝑗
(𝐿)

− 𝛼
𝜕𝐸

𝜕𝑊𝑖,𝑗
(𝐿)

(12) 

Where 𝛼 is a positive constant called the learning rate, the value is fined tuned empirically.  

Gradient descent is an iterative optimisation algorithm for finding the global minimum of a 

function. The error gets minimised by taking steps proportional to the negative of the gradient 

of the function at a certain point. Simply put: if the error (E) goes down when the weight 

increases (
𝜕𝐸

𝜕𝑊
𝑖,𝑗
(𝐿) < 0), then increase the weights, otherwise decrease the weight. The gradient 

algorithm is discussed in more detail in section 5.5. 
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4.3. Summary 

In this section, a brief overview of the history of neural networks was discussed, and where 

machine learning and deep learning fit into the larger artificial intelligence field. The first 

neural network called a Perceptron were discussed and explained. Although important from 

a historical perspective, the algorithm had one major disadvantage, the inability to classify 

non-linear separable points.  

For a machine-learning algorithm to handle more complex datasets, two elements are 

required : 

• non-linear activation functions and a  

• multi-layer network. 

For a neural network to be able to learn the weights automatically, a backpropagation 

algorithm needs to be implemented, which consists of two phases : 

1. The forward pass where the input image is propagated through the network to obtain 

a predicted output class. 

2. A backward pass where the gradient of the error is computed and the weights in 

individual nodes are updated by using the chain rule and the gradient descent 

algorithm. 

In the next section, a unique kind feed-forward network is discussed called a Convolutional 

Neural Network (CNN). CNN’s are the industry standard for optical classification problems in 

the field of deep learning. 
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Chapter 5: Convolutional Neural network 

In the previous section, the traditional feed-forward network was discussed, and a brief 

background was given. In such a network, all the neurons from the input layer are connected 

to all output neurons in the next layer, the technical name for this is a fully connected (FC) 

layer. This type of connection does not work well for images as each pixel would need to be 

connected to a neuron and, If the input image size is 224 x 224 x 3 (224 pixels wide, 224 pixels 

with three colour channels), it would mean if the input layer were an FC layer, it would have  

224 x 224 x 3 + 1 = 150,529 parameters which need to be trained. To limit the number of 

connections, i.e. weights a certain kind of layer is used called a convolutional layer to help 

reduce the number of parameters for each layer. 

A convolutional layer can be thought of as a filter, which isolated or enhances certain aspects 

of the input image and during training, a CNN can automatically learn the specific values for 

these filters. 

A convolutional neural network (CNN) is thus defined as a neural network where at least one 

of the FC layers are swapped with a convolutional layer. A nonlinear activation function is 

applied to the output of the convolutions, this process is repeated by stacking a convolution 

layer + activation function until the end of the network where there are one or more fully 

connected layers from which the final output classification can be made. Below is an example 

of an AlexNet-like CNN architecture : 

INPUT => [CONV => RELU => POOL] *2 => [CONV => RELU] *3 => POOL =>  

[FC => RELU => DO] *2 => SOFTMAX 

 

The exact working of each of these layers is described later in this chapter. 

In deep learning, a CNN can learn to detect edges in the lower layers, and from the edges to 

detect high-level features such as eyes, ears, facial elements, for example. 

CNN’s has a few inherent benefits above traditional machine vision approaches such as local 

invariance and compositionality. Local invariance is the ability to detect edges or features 

irrespective where they are in the image. This reason for this is because all the activations of 

the pixels in the convolutional layer are pooled together in a pooling layer which is discussed 
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later. Compositionality does not affect a CNN. The reason is that the convolution operation 

slide from left to right and top to bottom, where the filter will respond when coming across 

the edges and corners irrespective where they are in the image. 

5.1. Common architectures 

The following section will give a quick background and overview of the architectures used in 

the research study. Two architectures were used called VGG16 and MobilenetV2. Both these 

architectures are world-class classifiers trained on thousand to millions of images and are able 

to classify up a thousand different classes (VGG16). However, not one of these architectures 

has been taught to classify different pecan nut cultivars which are the aim of this research 

study. Later in the chapter (see section 5.9) the method of transfer learning is described which 

were used to retrain these classifiers to distinguish between different pecan nut cultivars. 

5.1.1. Visual Geometry Group Network (VGGNet) 

Karen Simonyan, and Andrew Zisserman from the Visual Geometry Group (VGG) at the 

University of Oxford published the VGGNet in 2015 after winning the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) in 2014 (Simonyan and Zisserman, 2015). The ImageNet 

challenge is an extensive database used for research computer vision. Figure 5-1 shows the 

VGG16 architecture starting from the left-hand side the input image and progressing to the 

right where a 1x1000 vector holds the probability of the specific class in the input image.  

  

 

Figure 5-1 VGG16 Architecture (Loukadakis, Cano and O ’boyle, 2018) 

The VGGNet was the first network that showed that it is still possible to achieve a high 

accuracy classification with smaller 3x3 kernels, up to this point all the previous networks like 
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AlexNet (Krizhevsky, Sutskever and Hinton, 2017) the 2012 winner used 11x11 and 5x5 

kernels in the first two layers. Moreover, ZFNet(Zeiler and Fergus, 2013) the 2013 winner of 

ILSVRC used 7x7 kernels. The smaller size kernels reduced the number of parameters and 

therefore, the size of the network significantly. 

5.1.2. MobilenetV2 

A. Howard et al. from Google research. Published in 2017, a lightweight network called 

MobileNet (Howard et al., 2017). The purpose of the research was to develop a CNN for 

mobile and embedded vision applications. Mobilenet is a lightweight deep neural network 

based on a streamlined architecture that used depth-wise separable convolutions. Figure 5-2 

shows the architecture of the MobileNetV1 neural network. 

 

Figure 5-2 MobilenetV1 Architecture (Howard et al., 2017) 

The difference between a standard convolution and depth-wise separable convolution is 

shown below in Figure 5-3. 
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Figure 5-3 Depth-wise Separable Convolution (https://towardsdatascience.com/deep-dive-into-the-computer-vision-world-
f35cd7349e16) 

With Depth-wise separable convolution operation, the three channels of the input are split. 

Each channel is then separately convolved with a corresponding filter and then concatenated 

together. The last step of the process to complete a pointwise convolution. The improvement 

of this process is computational cost, according to A. Howard et al. the MobileNet architecture 

require 8-9 times less computation than a network with standard convolutional layers,  with 

a negligible impact on accuracy.  

In 2018 M. Sandler et al. published an improved version of the Mobilenet architecture called 

MobileNetV2 (Sandler et al., 2018). Figure 5-4 shows the MobileNetV2 architecture, where t 

is the expansion factor, C the number of output channels, n the repeating number and s the 

stride. 

 The original network was extended with two new ideas, Inverted Residuals and Linear 

Bottlenecks layers. 

Both those two concepts are advanced and require a significant background to comprehend 

fully, and the full details are described in the MobilenetV2 paper (Sandler et al., 2018), the 

background details are considered outside the scope of this research. 

 

https://towardsdatascience.com/deep-dive-into-the-computer-vision-world-f35cd7349e16
https://towardsdatascience.com/deep-dive-into-the-computer-vision-world-f35cd7349e16
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Figure 5-4 MobileNetV2 architecture (Sandler et al., 2018) 

 

The next section will explain the building blocks of CNN’s namely : 

• Layer types 

• Loss functions 

• Optimisation algorithms  

The chapter will conclude to look at how to improve the performance of the neural net given 

a small dataset with different regularisation approaches. A more in-depth explanation would 

be given why a CNN is invariant to rotation, scale and translation in the dataset, and what the 

difference is between machine learning and deep learning regarding the required features in 

an image. Finally, an overview of different training methods is presented to give the necessary 

background in the methodology followed for the research project. 

However, before the layers are explained, it is necessary to understand what convolutions 

operations are precise.  
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5.2. Understanding convolutions: 

In the machine vision and image processing field, convolutions are used to filter an image to 

enhance a specific aspect of the image, e.g. To blur or smooth an image or to detect edges. 

This effect is realised by completing an element-wise multiplication operation with a kernel 

(n x n matrix) and a section of an image (m x m matrix) and summing the elements together 

as shown below. 

[
0 1 2
0 1 2
0 1 2

] ∗  [
107 16 71
231 47 215
60 148 2

] =  ∑ [
0 16 142
0 47 430
0 148 4

] = 787 

The image is processed by sliding the kernel over the image from top left to the bottom right 

a pixel at a time, and then repeating the convolution process as shown below. 

 

 

Figure 5-5 Convolve operation no padding LEFT: Kernel, Middle: Original matrix, Right: Output matrix 

 

Sliding the kernel across the image decreases the spatial dimension of the image where the 

5x5 input matrix as decreased to a 3x3 output matrix, as seen in Figure 5-5. This effect is 

helpful to decrease the size of the images in a CNN layer as the number of parameters which 

need to be trained also decreases. However, the side effect is that it becomes impossible to 

build and train deep neural networks, as the size of the image becomes too small to learn 

suitable features. For the layers where the output dimension needs to stay the same as the 

input image, the concept of padding is introduced.  
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Figure 5-6 Convolve operation zero-padding LEFT: Kernel, Middle:  
Original matrix with zero padding, Right: Output matrix 

 

There are different types of padding methods like replicate padding, where the outside pixels 

are replicated on the border of the image. Zero-padding, as seen above, is where a zero value 

border is applied to the outside of the image, or wrap-around padding where the border pixels 

are the same as the opposite side pixels. Figure 5-6 shows when the original 5x5 matrix is 

padded with zeroes increasing the size to a 7x7 matrix, the output matrix size is 5x5 which is 

the same size as the original matrix before the convolutional operation. 
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Orginal Grayscale  

  

 

Gaussian 3x3 kernel Gaussian 5x5 kernel Gaussian 7x7 kernel 

   

Sobel X Sobel Y Sobel combined 

   

Figure 5-7 Blur and Edge detection with convolution 

Figure 5-7 illustrates the effect a convolutional operation has on an image. As seen above, the 

convolution operation with different kernels creates different outputs. Starting from the top 

left with the original image of a Western Schley pecan nut. The image is converted to grayscale 

to aid the edge detection process. The middle row shows when a Gaussian kernel is applied 

to the grayscale input image. When the size of the kernel matrix is increased from 3x3 to 7x7 

the image is blurred more aggressively, as seen above the image becomes more blurred with 

the increase in kernel size.  

The bottom row of the image illustrates how to detect edges in the input image. The Sobel X 

kernel detects vertical edges while Sobel Y kernel highlights the horizontal edges, both these 

outputs can be combined to as seen in Sobel combined (bottom right). 

In this section, a brief explanation was given how a convolution operation works and how 

specific kernels can transform an image. The next section will look at different layer types in 

a convolution neural network. 
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5.3. Layer types : 

The next section will look at the most used layers in a convolutional neural network, an 

overview is given, and an explanation of how they work are presented.  

The three different Layer types are: 

• Convolutional Layer (CONV) 

• Activation (ACT) 

• Pooling (POOL) 

• Fully-connected (FC) 

 

5.3.1. Convolutional layer (CONV) 

The CONV layer is considered as the basic building block of a CNN. This layer consists of a set 

of K learnable filters, i.e. kernels. Each kernel, as described in the previous section, has a 

width, height and depth. The depth of the CNN layer or network is also known as the number 

of channels. As in the case of an image, the input layer is equal to the number of colour 

channels in the image, for an RGB image, the channels are three ( Reg, Green, Blue). 

After applying K filters to the input image, Each kernel produces a 2D output called an 

activation map. These activation maps are stacked on top of each other K deep. 

 

Figure 5-8 Activation Map (ROSEBROCK, 2017,p182) 

There are three parameters which determine the output volume of a convolution layer, the 

depth (K), the stride (S) amount used and padding (P) used. 

Depth (K) and Padding (P) has been discussed in the previous section. However, a new 

parameter stride (S) needs to be defined. 
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Stride is the number of steps the convolution process takes across and the input image. For a 

stride value of one, the kernel will move one pixel at a time, for a value of two the kernel will 

move two pixels. 

By increasing the stride length, the spatial dimensions of an image are reduced. The output 

of an image is calculated by using eq 13: 

(
𝑊 − 𝐹 + 2𝑃

𝑆
) + 1 (13) 

Where : 

 W: Width of the square image 

 F: The receptive field, i.e. the kernel size 

 P: Amount of padding 

 S: Stride length 

 

For example, For an input image of 224x224 pixels, Convoluted with a 3x3 Kernel, Zero 

Padding applied, and a stride of one, the output will be : 

  

(
224 − 3 + 2(1)

1
) + 1 = 224 

 

The CONV output will be 224 x 224 x K filters.  

 

5.3.2. Activation (ACT) 

A non-linear activation function, as described in section 4.1, is applied after every CONV layer. 

As the activation function performs an element-wise operation on the input volume, the 

output volume will be the size as the input dimension, Winput = Woutput , Hinput = Houtput , Dinput = 

Doutput   
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5.3.3. Pooling (POOL) 

As mentioned if the stride parameter is increased, the output will be reduced. However, there 

is another way to achieve this effect. A pooling layer is inserted after a CONV layer to reduce 

the spatial size of the input volume. By doing this, the number of parameters is also reduced. 

There is two POOL function used in neural networks which are max or average pooling. 

Max pooling uses a pool size of 2x2. The block is slid across the input volume where the most 

significant value is kept before stepping with a stride length to the next pixels, as seen in 

Figure 5-9. 

 

Figure 5-9 Max Pooling operation with different stride length 
(http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf) 

 

With a stride length of two, the spatial dimension decreases drastically as seen above.  

Average pooling works the same as max pool, where instead of the maximum the average is 

taken of the block and kept as an output. 

 

5.3.4. Fully-connected (FC) 

The last layers in a neural network are the Fully Connected (FC) layers, as the name state they 

are fully connected to all the activations in the previous layer. The output of the FC layer is 

the input to the softmax classifier, which will compute the probabilities of each class in the 

dataset. 

  

       

        

      

   

      

   

     

   

         

         

         

      

      

                      

           

                      

           

http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf
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5.4. Loss functions : 

The function that is used in the backpropagation algorithm to determine what the difference 

is between the actual output and the predicted output is called a loss function. The two 

commonly used loss functions in a backpropagation implementation are : 

5.4.1. Mean Square Error (MSE) :  

𝐿𝑜𝑠𝑠(𝑥, 𝑦) =  
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

2

𝑛

𝑖=1

(14) 

The MSE function is a multiclass loss function that is used to determine the margin between 

the categories. Where 𝑥 is a vector of 𝑛 predictions, and 𝑦 a zero initialised categorical binary 

vector where the element in the corresponding class is a 1. 

 

5.4.2. Cross-Entropy : 

Another multiclass loss function is called the Cross-Entropy loss, where the MSE loss gives the 

margin between the categories (classes) the Cross-Entropy gives you the probability of each 

class. 

𝐿𝑜𝑠𝑠(𝑥, 𝑦) = − ∑ [𝑦𝑖log (
exp (𝑥𝑖)

1 + exp (𝑥𝑖)
) + (1 − 𝑦𝑖) × log (

1

1 + exp (𝑥𝑖)
)]  

𝑛

𝑖=1

(15) 

The cross-entropy loss is favoured in convolutional neural networks. The reason is the loss 

function behaves more as one would expect to show the probability vs margin. Furthermore, 

the loss function speeds up the training because the error is more pronounced, i.e. the 

network converges more rapidly to a smaller loss where the MSE error tends to slow down 

the training because when the error is significant, it causes the derivative of the error to be 

small. 
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5.5. Optimisation algorithms  

Optimisation algorithms are one of if not these most import element in machine learning. 

They are the engine that drives the learning process to learn the optimal weights and biases 

in a convolution neural network which will minimise the error in the prediction. The next 

section will look at how these algorithms work by taking the gradient descent algorithm as an 

example to illustrate how to minimise the error of a neural network. 

5.5.1. Gradient descent 

Gradient descent is an interactive algorithm that operates over an optimisation surface. The 

surface is depicted in Figure 5-10  

 

Figure 5-10 Gradient Descent ( https://www.coursera.org/learn/machine-learning) 

The red areas in the figure above indicate the global maximum errors from the cost function 

and the dark blue the global minimum errors. The gradient descent algorithm works like a ball 

rolling down a hill. The ball, in this case, the derivative of the error starts from a point on this 

error landscape. The idea is to find 𝜃0 and 𝜃1 which minimises the cost function to get to the 

global minimum. The next step in this process is to calculate the derivate of the error, by 

making use of eq 12 (section 4.2.2) to determine if the weights and biases need to be 

increased or decreased to minimise the error. Each of these steps theoretically brings the 

error to the global minimum, however on the way the function could get stuck in a local 
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minimum. The learning rate parameter defines the size each of these steps. If the learning 

rate is too small the algorithm could get stuck in a local minimum and other the other hand if 

the learning parameter is too large the algorithm will fail to converge to a global minimum 

point.  

5.5.2. Stochastic Gradient Descent (SGD) 

The Gradient descent, as described in the previous section, calculates the gradient on each 

point in the dataset, in a large dataset, this is prohibitively slow. One solution to this problem 

is to take small random samples from the dataset and bunch them together in a batch (Mini-

Batch) and then update the weights and biases on the output of the batch called an Epoch. 

This method causes more noisy updates but has been proven to converge faster with no 

adverse side effects such as loss of Accuracy. 

 

5.6. Regularisation approaches 

To help prevent the neural network converge to only the training data in what is called 

overfitting, regularisation parameters are used. There are a few methods which could be used 

which will be briefly described below : 

5.6.1. L2 Regularisation 

With L2 regularisation, the cost function is penalised by adding a term. This prevents the 

network from modelling the training data precisely and help to generalise to new examples. 

5.6.2. Data augmentation 

Data augmentation is the process of rotating or scaling each example in the dataset to create 

more training examples artificially. This method causes that the network is unable to 

memorise all the examples and helps to show the network images which were not present in 

the original dataset, thus if the network encounters them in testing it can classify the input 

correctly. 

5.6.3. Dropout 

To prevent only specific nodes/neurons to become overactive in the learning process, a 

randomly selected set of nodes in the network are disconnect before each epoch. Srivastava 

et al. demonstrated how dropout could aid in addressing overfitting(Srivastava et al., 2014). 
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5.6.4. Early stopping 

A more straightforward method but still crucial to note is the act of merely stopping earlier in 

the training process.  

5.7. Invariance 

Convolutional Neural Networks can learn the needed invariance from the dataset. However, 

if the number of images is not significant enough, the model capability to generalise to 

unknown images are limited. In this section, three types of invariances are explained and 

suggestions made to limited the effect. 

5.7.1. Rotation invariance 

The CNN as a whole can be relatively tolerant to rotational invariance, but the individual filter 

layers need to learn how a specific object looks like when rotated. If the training dataset is 

scares of rotated images, and an unknown rotated image (test image) is presented, the 

network may fail to correctly classify the image or have a low probability in the specific class. 

With the aid of data augmentation, it is possible to generate the necessary rotated images for 

the filter layers to activate when an unknown image is presented. 

5.7.2. Scale invariance 

As with rotational invariance, the filter layers need to learn how an object looks when scaled. 

Data augmentation could be used to generate the necessary images to have enough data of 

the same object but scaled. Other methods are to train individual CNNs for each scale and 

combine their predictions.  

5.7.3. Translation invariance 

Translation invariance does not affect a CNN. The reason is that the convolution operation 

slide from left to right and top to bottom, where the filter will respond when coming across 

the edges, corners for example, irrespective where they are in the image. During the pooling 

operations, these responses dominate the neighbouring pixels by having more substantial 

activation. The network could be seen not to care where the activation is present but instead 

that it is present. With smaller dataset data augmentation could assist in making the network 

less sensitive for translation invariance by generating images which are moved to relative to 

the frame, i.e. not just centred in the frame. 
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5.8. Hierarchical feature learning 

Before deep learning, the process of solving a machine learning problem was to handcraft 

features and only used the network to classify the images based on the features. With deep 

learning, the network has enough capacity to learn the features as part of the training process. 

However, this requires a significant amount of data. A.Rosebrock explains the difference in 

process with the following figure: 

 

Figure 5-11 Traditional Feature Creation vs Deep Learning(ROSEBROCK, 2017) 

 

In Figure 5-11 above the difference between the two methods, traditional feature extraction 

on the left and deep learning on the right is shown. 
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With the Traditional machine learning method, the human was responsible for defining 

specific features such as texture, shape, colour and train the network with these features. 

Where in Deep learning, the network learns the weights and biases of all the layers in the 

network, including the Convolution layers which were mentioned acts as features filters. A 

significant amount of data is required to propagate the errors back to the first layer in a deep 

neural network.  

Because the network is able to learn the required features, the interpretation of these filters 

becomes difficult, as the network depth is increased the features becomes more abstract to 

represent and to make sense of visually. 

5.9. Training methods  

Convolution networks take a considerable time to train from an initialised state, also called 

from scratch. The network has to learn the weights and biases of all the layers could be in the 

order of a few million parameters. This process requires a significant dataset which consists 

of thousands of images, which is not always available. Recent research has shown that it is 

possible to transfer the features the network has learned to new unseen problems(Kaya et 

al., 2019). The results are promising and opened up a new method for practitioners without 

the required data and hardware to build world-class accuracy classifiers. The two methods 

are briefly described next : 

5.9.1. From Scratch: 

When creating a new CNN, all the weights and biases in the network is randomly initialised. 

From these initialised state, the parameters need to be updated (learned) by making use of 

the backpropagation algorithm (section 4.2) and loss function (section 5.4) to predict and 

classify the dataset correctly. This process will yield the best results as this is a custom solution 

to the specific dataset. However, this approach has a few drawbacks. To train and update a 

few thousand and more likely millions of parameters, for example, in the case of the VGG-16 

model, which has 140 Million parameters, takes signification amount of time with 

prohibitively expensive hardware. If the dataset is simple enough, which the typical image 

classification problem is not, then this approach could lead to excellent results with low-cost 

hardware.  
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Recent research has shown that machine learning problems can leverage the work that was 

done by the research community to solve new visual classification problems practically. This 

approach uses models such as VGG-16, which achieve a top 10% result in competitions like 

imagenet for new problems, without the need to train them from scratch. This method is 

called transfer learning which is discussed next. 

5.9.2. Transfer learning: 

Transfer learning is the process of using a pre-trained network such as MobileNetV2, VGG-16 

or many others and removing the fully connected layers at the output of the network. A new 

fully connected (Dense) layers are added to the network which has the correct amount of 

classes required. The network is then trained on the training dataset where only the weights 

for the last layer is updated, and the rest of the network is kept the same. This procedure 

forces the pre-trained network to uses the pre-existing features learned to classify the new 

classes.  Transfer learning is a two-step process; the first step is called : 

5.9.2.1. Feature extracting 

A pre-trained CNN consists of a convolutional base and a few fully connected layers to classify 

the input into the different classes. The feature extraction process is to replace the fully 

connected layers with new layers which will classify the new classes. The weights and biases 

in the convolutional base are kept intact( frozen) and used to extract features from the new 

dataset. These features are used to learn the new parameters of the fully connected layers. 

This process has the ability to train a model with typically 90% plus accuracy quickly. However, 

if higher accuracy is required, then the network needs to generalise better to the new dataset. 

To achieve this, a next step is performed call Fine-tuning. 
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5.9.2.2. Fine-tuning 

The process of fine-tuning is when the top layers in the convolutional base are unfrozen and 

trained with the fully connected layers to further generalise better to the new dataset. With 

this approach, it is possible to achieve typically 95% plus accuracy, however one need to make 

use of regularisation approaches as discussed in section 5.6 to prevent overfitting to the new 

dataset. 

5.10. Summary  

In this section, the difference between a neural network and a CNN was explained. The 

convolutional layer, which consists of different filters to detect advanced features, were 

presented. The different effects the kernel matrix in convolutional operations has on an image 

were shown to illustrate how the filter is able to detect edges in an input image. Common 

architectures which are predominantly used in deep learning were explained. Then the 

working of a loss function and optimisation algorithms were presented to show their 

involvement in the learning process.  

With the increase in depth of modern neural networks, their ability to generalise to any data 

has become a practical concern. To aid the network from overfitting to the training data 

regularisation methods need to be implemented, such as data augmentation and 

regularisations terms.  

The ability of a CNN to be intolerant to different invariances were presented with methods to 

make the network more robust against variances in unseen data. 

A CNN makes an excellent feature extractor which replaces the traditional handcrafted 

feature engineering process. Where in traditional machine learning implementations, the 

features need to be developed, which were a tedious process, and required specific domain 

knowledge to do correctly. Where in modern deep learning, the network is able to learn the 

required features directly from the data, with the caveat if there is enough data. 

Different training methods were presented based on if a new model is developed and when 

a model will be reused and fine-tuned to the new dataset. 

In the next chapter, an implementation process to complete a machine learning problem and 

the actual implementation of a CNN to classify different pecan nut cultivars will be discussed. 
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Chapter 6: Implementation of a Convolutional Neural Network. 

The following chapter will describe the process followed to implement a CNN. They are:   

• Hardware Implementation 

• Capture and preparation of data 

• Software Implementation 

Figure 6-1 shows an overview of the Classification process. The pecan nut is captured by two 

CMOS cameras and transferred to the laptop for processing as depicted below. The detailed 

implementation is explained in the following sections. 

 

Figure 6-1 Classification Process flow 

6.1. Hardware implementation 

Figure 6-2 depicts the different elements of the hardware setup and Figure 6-3 show the 

actual hardware as used.  
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Figure 6-2 Hardware implementation overview 

 

The different elements in the hardware setup are : 

• A black box, which minimised shadows and attenuates the reflected light. 

• LED light strip to provide even lighting. 

• 2 x 5MP CMOS Cameras  

• 2 x Raspberry Pi  

• Ethernet Hub. 

• Laptop computer. 
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Figure 6-3 Actual Hardware 

The two cameras capture the pecan nut image at a resolution of 800x600pixels. The images 

are then transferred in realtime to the laptop over an ethernet network, where the rest of 

the classification process happens. A custom application was developed for the raspberry pi 

to enable this image transfer. 

The setup was inspired by what is typically used in commercial sorting machines. Figure 2-1 

shows an example of such a setup, where the item falls through a gap surrounded by lights to 

minimise shadows and two cameras which takes an image from different angles on the same 

subject to increase the classification accuracy. In the setup, there are also Ejectors to reject 

the item into a reject receptacle. However, the mechanical removal of the pecan nut was 

considered outside of the scope of the research project, as the mechanical implementation is 

well known. 

The next section will explain the data capturing process, which is vital to understand before 

the software processing are explained in the section after. 
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6.2. Data capturing and data pre-processing 

There are no freely available datasets on pecan nuts which could be used for this research 

study, and thus a significant amount of effort and time was invested in capturing the required 

data for the project.  

For the project, three different cultivars were chosen based on the amount of available pecan 

nut samples. The three cultivars are : 

• Mahan 

• Shoshoni  

• Wichita.  

These pecan nuts were produced in the northern cape province in South Africa, which is 

mostly a semi-arid region. 
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According to the Pecan Breeding & Genetics, Agricultural Service, U.S. Dept of Agriculture, the 

two different pecan nut cultivars are described as the following : 

Table 6-1 Mahan, Shoshoni and Wichita pecan nuts 

 

 

“Nut: oblong, with acute apex and base; nut 

often asymmetric, appearing 'pinched' in 

the middle due to flattening of abaxial and 

adaxial surfaces; flattened in cross-section; 

32 nuts/lb, 58% kernel; kernels with deep 

secondary dorsal grooves and basal cleft, 

often poorly filled to base, woody in 

texture.” 

“Nut: oval elliptic with obtuse apex and 

rounded base; laterally compressed in cross-

section; 41 nuts/lb, 53% kernel; kernels 

wrinkled with very wide dorsal grooves and 

deep basal cleft.” 

 

 

“Nut: oblong, with acute to acuminate, 

asymmetric apex and rounded apiculate 

base; round in cross-section; 43 nuts/lb, 

62% kernel; kernels golden to light brown 

in colour with narrow dorsal grooves and a 

wide, shallow basal cleft.” 
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The captured dataset consisted out 495 individual pecan nuts of each cultivar, for each pecan 

nut are captured from two sides to make up a total of 990 images for each cultivar. 

Each pecan nut was placed in the middle area of the black box as shown in Figure 6-2. The 

cameras captured the image and streamed the image to the laptop computer when the image 

appeared on the laptop screen a command was used to capture the images to the hard drive 

of the computer. To help with regularisation and to prevent the network from only seeing 

images from the same angle, which will cause poor testing accuracies. The pecan nut position 

was rotated clockwise every time a new nut was placed in the box, as seen below in Table 

6-2. 

Table 6-2 Rotation of pecan nut 

Pecan Nut 1 Pecan Nut 2 Pecan Nut 3 

 

  

Pecan Nut 4 Pecan Nut 5 Pecan Nut 6 

  

 

 

6.2.1. Data pre-processing 

Some experimentation has shown that it is necessary to remove the background from the 

images, this prevents the network from including the background in the training process, and 

thus affecting the accuracy of the network. 

Table 6-3 shows the steps required to remove the background from the image. From the top 

left, the process is shown in 6 steps.  

• Step 1: Shows the original image. 
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• Step 2: The image is converted to grayscale and blurred to create a clear boundary 

between subject and background 

• Step 3: A canny edge detection algorithm is used to detect the edges.  

• Step 4: The outside of the edges are detected by selecting the contour and fill.  

• Step 5: From this image, a mask is built to remove the background from the original 

image.  

The following section explains the program section, which does the removal. Snippets of the 

code are extracted and explained, and the key outputs will be shown, which will make it clear 

how the background removal process works. For the detailed source code see Appendix A. 

Table 6-3 Remove background process 

1.Original 2.Grayscale 3.Detect Edges 

   

4.Find contours 5.Build Mask 6.Apply Mask 

   

1. import imutils 
2. from imutils import perspective 

3. from imutils import contours 
4. from imutils import resize 

5. import cv2 
6. import os 

7. import numpy as np 
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LINE 1-7: imports the required libraries which were used. LINE 1: Imutils is a collection of 

image processing functions, and LINE 5: CV2 is the OpenCV library used to perform the 

necessary conversion and edge detection on the images. 

8. image = frameDict['picam-01'] 

9. gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) 
10. gray = cv2.medianBlur(gray, 3, 0)   

LINE 8-10: retrieves the image from the camera, converts the image to a grayscale image and 

blur the image with a median size 3x3 kernel. As seen in Table 6-3, step 1 and 2. 

11. edged = cv2.Canny(gray, 40, 80) 

12. edged = cv2.dilate(edged, None, iterations=1) 
13. edged = cv2.erode(edged, None, iterations=1) 

LINE 11-13: Detects all edges within a threshold range by using the canny edge detection 

algorithm. The dilate and erode function fills in neighbouring edges to form a continuous 

contour; this is useful to find complete the outside edge of pecan nut in the image. As seen in 

Table 6-3, step 3. 

14. cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIM

PLE) 

15. cnts = imutils.grab_contours(cnts) 
16.  (cnts, _) = contours.sort_contours(cnts) 
17. index = np.argmax([np.shape(x)[0] for x in cnts]) 

LINE 14-17: Find all the edges that are linked to each other and define them as a contour. 

LINE 17: find the contour with the maximum size, which is the outside of the pecan nut. As 

seen in Table 6-3, step 4. 

18. mask = cv2.drawContours(image.copy(), cnts, index, (0, 0, 0), -1) 

19. mask[mask > 0] = 255 
20. mask = cv2.bitwise_not(mask) 

21. masked = cv2.bitwise_and(mask, image) 

LINE 18-21: Makes a copy of the original image, draw the contour on the image by setting the 

inside of the contour area to zero (Black). LINE19-20: sets all the other areas which fall outside 
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the contour to 255 (White), and then inverts the mask to set the background to black and the 

pecan nut area to white. The next step is too logical-and the mask and the original image to 

mask out the background. As seen in Table 6-3, step 5 and 6. 

This process is repeated for all the training, validation and test images before the model is 

trained. In the hardware use case, this pre-processing step is performed before the image is 

sent to the model for inference. 

The last section described the hardware implementation, where the physical setup was 

shown and explained. The images are captured by using two cameras connected to raspberry 

pi’s which streams the images to the laptop for pre-processing and classification. This same 

process was used to capture all the images for the training, validation and testing dataset, 

which is used in the next section, to train and evaluate the neural network. 

This section will describe how the program work to train and evaluate a deep neural network 

on the laptop computer. 

6.3. Software implementation 

The next section will look at how the actual model was developed in TensorFlow. As described 

before convolution neural networks excel in image classification (Rawat and Wang, 2017); 

however, they require a significant amount of data (images) to achieve a decent accuracy. A 

different approach can be used to leverage the features a CNN has already learned and 

applied them to an unseen problem as described in section 5.9.2. The transfer learning 

process has achieved state-of-the-art results in image classification problems. Pan and Yang 

have provided the industry with a comprehensive review of transfer learning (Pan and Yang, 

2010). 

The following section describes how the transfer learning process was followed to 

successfully classify pecan nut cultivars on two different CNN’s which has not been trained to 

identify pecan nuts. These two models are called : 

• VGG16 from the Visual Geometry Group (VGG) at the University of Oxford. 

• MobileNetV2 from Google. 
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Snippets of the code are extracted and explained, and the key outputs will be shown, which 

will make it clear how the implementation process was followed. For the detailed source code 

see Appendix A. 

 

6.3.1. Training VGG16 

1. import numpy as np   

2. import tensorflow as tf   

3. MAX_IMAGE_SIZE = 224   

4. MAX_IMAGE_CHAN = 3   

5. from tensorflow.keras.applications import VGG16   

6. baseModel = VGG16(weights='imagenet',include_top=False,input_shape=(MAX_IMAGE_

SIZE,MAX_IMAGE_SIZE,MAX_IMAGE_CHAN))   

7. baseModel.summary()  

LINE 1-2: imports the required libraries which were used in this research study. 

LINE 3-4: set the maximum input image size and depth to 224x224x3 for and RGB image. 

LINE 5: imports the VGG16 Model without the last classification layers attached, with transfer 

learning the last output layers need to be replaced with the categories relevant to the dataset, 

in this case, the three cultivars of pecan nuts. Figure 6-4 below shows the structure of the 

VGG16 neural network, which will form the base of the convolutional neural network. 
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Figure 6-4 VGG16 Convolutional base 

The input image enters the network from the top at the layer named input_1, which is the 

Input layer without an activation function. 

The next two layers are convolutional layers (CONV), each with the following variables : 

𝑂 = 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

𝑊 = 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

S = Stride length 

𝐹 = The receptive field, i. e. the kernel size 

P = Amount of padding  

 

 According to eq 13, the output of the layer will be  
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𝑂 = (
𝑊 − 𝐹 + 2𝑃

𝑆
) + 1 

 

𝑂 = (
224 − 3 + 2(1)

1
) + 1 = 224 

The number of parameters which need to be trained in each convolution layer is calculated 

with  

𝑊𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝐵𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝑃𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝐾 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ) 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 

𝐶 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

 

𝑊𝑐 = 𝐾2  × 𝐶 × 𝑁 

𝐵𝑐 = 𝑁 

𝑃𝑐 = 𝑊𝑐 + 𝐵𝑐  

 

Number of Parameters for block1_conv1 Layer: 

𝑊𝑐 = 32  × 3 × 64 = 1728 

𝐵𝑐 = 64 

𝑃𝑐 = 1728 + 64 = 1792 

Number of Parameters for block1_conv2 Layer: 

𝑊𝑐 = 32  × 64 × 64 = 63,864 

𝐵𝑐 = 64 

𝑃𝑐 = 63864 + 64 = 36,928 
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As the max-pooling operation does not introduce more neurons, there are no extra 

parameters to train. The output size of the layer is calculated with the same equation used 

for the convolutional operation but with zero paddings and stride length of 2: 

𝑂 = (
224 − 3 + 2(0)

2
) + 1 = 111.5 = 112 

 

In image processing, it is not possible to have half pixels. Hence the width needs to be rounded 

up to the nearest integer. 

The next step is to set up the Image generators: 

Image generators are iterators which reads the images from the hard drive in batches. These 

methods limit the amount of memory required for training or to put it differently, it enables 

the model to learn from large datasets as not all the images are kept in memory 

simultaneously. 

LINE 8: Imports the OS library to build path string to directories. 

LINE 9: Imports a custom library written by the author to automate repeating procedures. 

8. import os   

9. from ImageGenerators_Util import *   

10. base_dir =...'\PiCamImages\Masked'   

11. train_dir = os.path.join(base_dir,'train')   

12. validation_dir = os.path.join(base_dir,'validation')   

13. test_dir = os.path.join(base_dir,'test')   

 

14. Train_gen,Val_gen,Test_gen = setup_ImageGenerators(train_dir,validation_dir,test_dir,

ClassificationMode='categorical')    

LINE 10-14: creates a path string to the correct images, used during the Training, Validation 

and testing phases. 
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LINE 15-45: shows the setup_ImageGenerators function. This function set up each of the 

image generators for the training, validation and testing sets. The dataset is split in the 

following ratio : 

Table 6-4 Dataset 

 Mahan Shoshoni Wichita Total 

Training 594 594 594 1782 60% 

Validation 296 296 296 888 30% 

Test 100 100 100 300 10% 

    2970 100% 

 

 

Besides reading the images from the hard drive, the function also does data augmentation 

(see section 5.6) where random images in a batch are either rotated with 40º, shifted 

horizontal and vertically with 20% or flipped horizontally as can be seen in Table 6-5. What 

this does it artificially increases the training dataset where one image is seen multiple times 

by the network but slightly adjusted in position, rotation or orientation. This effect as 

described in the previous section, also acts as regularisation to prevent overfitting to the 

training data. 
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Table 6-5 Data augmentation 

Original Image Horizontal flipped 

  

Pan with 20% horizontal 

and vertical 

Pan with -20% horizontal 

and vertical 

  

Rotate with +40º Rotate with -40º 

  

Zoom In Zoom out 

  

Before the images are passed into the input layer of the network, it needs to be normalised 

as can be seen in LINE 17,27,43. 

To further prevent overfitting to the data the images are shuffled in each batch, as the 

network repeatedly see the same images the order of the images can impact the update of 

the weights and cause the learning process to get stuck in a local minimum.  
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Each data generator classification mode is set to a categorical binary vector which will 

generate a label with each image as seen below : 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 =  [
 1 
0
0

]  𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 =  [
 0 
1
0

]   𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 3 =  [
 0 
0
1

] 

and in the research problem case : 

𝑀𝑎ℎ𝑎𝑛 =  [
 1 
0
0

]  𝑆ℎ𝑜𝑠ℎ𝑜𝑛𝑖 =  [
 0 
1
0

]  𝑊𝑖𝑐ℎ𝑖𝑡𝑎 =  [
 0 
0
1

] 

 

15. def setup_ImageGenerators(Train_Dir,Validation_Dir,Test_Dir, 

16.     ClassificationMode='categorical',MAX_IMAGE_SIZE = 224,MAX_IMAGE_CHAN=3):   

17.     train_datagen = ImageDataGenerator( rescale=1./255,   

18.                                         rotation_range=40,   

19.                                         width_shift_range=0.1,   

20.                                         height_shift_range=0.1,   

21.                                         shear_range=0.2,   

22.                                         zoom_range=0.2,   

23.                                         horizontal_flip=True,   

24.    

25.                                         fill_mode='nearest')   

26.        

27.     validation_datagen = ImageDataGenerator(rescale=1./255)   

28.        

29.     train_generator = train_datagen.flow_from_directory(Train_Dir,   

30.                      target_size=(MAX_IMAGE_SIZE, MAX_IMAGE_SIZE),   

31.                                                      batch_size=5,   

32.                                                      shuffle=True,   

33.                                                          

34.                                     class_mode=ClassificationMode)   

35.        

36.     validation_generator = validation_datagen.flow_from_directory(Validation_Dir,   
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37.                                     target_size=(MAX_IMAGE_SIZE, MAX_IMAGE_SIZE),   

38.                                                                     batch_size=5,   

39.                                                                     shuffle=True,   

40.                                                            

41.                                                    class_mode=ClassificationMode)   

42.        

43.     test_datagen = ImageDataGenerator(rescale=1./255)   

44.     test_generator = test_datagen.flow_from_directory(Test_Dir,   

45.                   target_size=(MAX_IMAGE_SIZE, MAX_IMAGE_SIZE),   

46.                                                   batch_size=1,   

47.                                                  shuffle=False,   

48.                                  class_mode=ClassificationMode)   

49.       

50.     return train_generator,validation_generator,test_generator   

The next step in the transfer learning method is to add a custom classification output layer/s 

to the output of the feature extractor network.  

LINE 44-45: imports the layers and regularisation modules from the TensorFlow Keras library.  

LINE 46-50: Adds two fully connected layers and dropout layer to the end of the convolutional 

base (baseModel), the flatten layer converts the (None,7,7,512) tensor to a (None,25088) 

vector. The None element will be replaced with the size of each batch during training and 

testing. The dropout layer is included to help with overfitting, and the output of the network 

is set to a softmax function. The softmax function will output the prediction of the network 

as a probability of each of the three classes. 

51. from tensorflow.keras.layers import Dropout   

52. from tensorflow.keras.layers import Flatten   

53. from tensorflow.keras.layers import Dense   

54.    

55. # initialize the head model that will be placed on top of   

56. # the base, then add a FC layer   

57. headModel = baseModel.output   
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58. headModel = Flatten(name="flatten")(headModel)   

59. headModel = Dense(D, activation="relu")(headModel)   

60. headModel = Dropout(0.5)(headModel)   

61.    

62. # add a softmax layer   

63. headModel = Dense(classes, activation="softmax")(headModel)   

64.    

65. model = Model(inputs=baseModel.input, outputs=headModel)     
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Figure 6-5 VGG16 Model architecture 

Figure 6-5 shows the two networks stacked on top of each other. The Flatten layer is where 

the 7x7x512 tensor is transformed into a 1x25,088 vector. 

The parameters for the fully connected layer (dense) between the final layer and the last 

convolutional layer is calculated by using the following formula: 
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𝑊𝑐𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑎 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑎 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝐵𝑐𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠𝑒𝑠 𝑜𝑓 𝑎 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑎 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝑂 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ) 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 

𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

 

𝑊𝑐𝑓 = 𝑂2  × 𝑁 × 𝐹 

𝐵𝑐𝑓 = 𝐹 

𝑃𝑐𝑓 = 𝑊𝑐𝑓 + 𝐵𝑐𝑓 

 

Number of Parameters for dense Layer: 

𝑊𝑐𝑓 = 72  × 512 × 256 = 6,422,528 

𝐵𝑐𝑓 = 256 

𝑃𝑐 = 6,422,528 + 256 = 6,422,784 

 

The parameters for the fully connected layer (dense_1) is calculated by using the following 

formula: 

𝑊𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑎 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑛 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

𝐵𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠𝑒𝑠 𝑜𝑓 𝑎 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑎𝑛 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

𝑃𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑎 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑎𝑛 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

𝐹−1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐹𝐶 𝐿𝑎𝑦𝑒𝑟 

 

𝑊𝑓𝑓 = 𝐹−1  × F 

𝐵𝑓𝑓 = 𝐹 

𝑃𝑓𝑓 = 𝑊𝑓𝑓 + 𝐵𝑓𝑓 

 

Number of Parameters for dense_1 Layer: 
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𝑊𝑓𝑓 = 256 × 2 = 512 

𝐵𝑓𝑓 = 2 

𝑃𝑓𝑓 = 512 + 2 = 514 

The total trainable parameters increased from 14.714 million to 21.138 million parameters, 

after the classification network was added. The next step in the transfer learning method is 

to fix convolutional base parameters that they are not updated during the training process, 

as seen in LINE 66.  

66. baseModel.trainable = False   

67. model.summary()   

 

 

Figure 6-6 VGG16 Classification layer 

This step decreases the trainable parameters from 21,138,243 to 6,423,555, which is 

significantly less to update, as seen in Figure 6-6. The second reason why this step is necessary 

is that the classification network has default initialised parameters, and the convolution base 

has already trained parameters. The magnitude of these parameters might differ significantly, 

and when the network is trained without setting the convolutional base trainable parameter 

to false, these new weights will destroy the VGG16 filter weights and biases in the update 

process. 

The next step LINE 68-74 is to set up the batch sizes and the number of epochs to train. As 

seen in LINE 70, the learning rate is fixed to 1e-3 for the initial training. The model is compiled 

in LINE 76 with a categorical cross-entropy loss function and an RMS prop optimiser function. 
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The ‘Accuracy’ metric will be output from the training function as an indicator of how the 

model is progressing. LINE 80-91 set up the callback functions required to save the training 

metrics into a file, which can be displayed later. 

LINE 93 starts the training process, for the number epochs, the training batch sizes and the 

required validation step size. 

68. num_train = len(Train_gen.filenames)   

69. num_val = len(Val_gen.filenames)      

70. learning_rate = 0.001   

71. BATCH_SIZE = 32   

72. num_epochs = 25   

73. steps_per_epoch = round(num_train)//BATCH_SIZE   

74.    

75.    

76. model.compile(loss='categorical_crossentropy',   

77.               optimizer=tf.keras.optimizers.RMSprop(lr=learning_rate),   

78.               metrics=['accuracy'])   

79.    

 

80. callbacks_list = [   

81.             tf.keras.callbacks.TensorBoard(   

82.                                             log_dir=mylog_dir,   

83.                                             write_graph = False,   

84.                                             write_images = False,   

85.                                             update_freq = 'epoch',   

86.                                             profile_batch = 0,   

87.                                             embeddings_freq = 0,   

88.                                             embeddings_metadata = 0,   

89.                                             histogram_freq=1,   

90.                                             ),                                           

91.             ]     
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92.    

93. history = model.fit_generator(Train_gen,   

94.                           steps_per_epoch=steps_per_epoch,   

95.                           epochs=num_epochs,   

96.                           callbacks=callbacks_list,   

97.                           validation_data=Val_gen  

98.                           ) 

 

After training for the required 25 epochs which took 18 minutes (average of 44 seconds per 

epoch), the validation accuracy went from 40% and started to converges to under 91%, as 

seen in Figure 6-7: 

 

Figure 6-7 VGG16 Training and Validation 

The next step is to fine-tune the model.  

Fine-tuning is where some of the last convolutional layers in the base model are enabled for 

training, as shown in LINE 99-100. 

99. for layer in baseModel.layers[15:]:   

100.     layer.trainable = True   
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Figure 6-8 shows the number of parameters with the convolution layer BLOCK5 added to the 

trainable parameters. 

 

Figure 6-8 VGG16 Fine-tuning training parameters 

This step increases the trainable parameters from 6,423,555 to 13,502,979.  The model is 

recompiled and the training function is called, but this time the optimiser are changed to SGD. 

96. learning_rate = 0.001   

97. model.compile(loss='categorical_crossentropy',   

98.               optimizer=tf.keras.optimizers.SGD(lr=learning_rate),   

99.               metrics=['accuracy'])   

100.    

101. num_epochs = 25   

102. fine_tune_epochs = 50   

103. total_epochs =  num_epochs + fine_tune_epochs   

104.    

105. history_fine = model.fit_generator(Train_gen,   

106.                           steps_per_epoch=steps_per_epoch,   

107.                           epochs=total_epochs,   

108.                           initial_epoch=num_epochs,   

109.                           callbacks=callbacks_list,   

110.                           validation_data=Val_gen,   

111.                           ) 
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Within 50 additional epochs which took a further 36 minutes, the training and validation 

accuracy increased to 96%. A further convolutional block was added to the training 

parameters, and the learning rate decreased to 1e-4. The model was trained for another ten 

epochs where the accuracy stalled at 97% and the training was stopped to prevent overfitting. 

The accompanying loss graph (see Figure 6-7) also show the validation loss to be lower than 

the training loss, which means this model as successfully learned the required features to 

classify new unseen pecan nut images correctly. 
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6.3.2. Training MobileNetV2 

The previous section described the transfer learning process, followed by using the VGG16 

model. This section describes the transfer learning process, followed by using the 

MobileNetV2 model. The commands common to the two processes would be omitted to keep 

the section brief. 

LINE 1-3 imports the required libraries to use in the model. LINE 6 initialises the base model, 

which will with the weights set to the ImageNet values.  

1. from tensorflow.keras.applications import MobileNetV2   

2. from tensorflow.keras.layers import Dense   

3. from tensorflow.keras.layers import GlobalAveragePooling2D   

4.    

5.    

6. baseModel = MobileNetV2(weights="imagenet", include_top=False,   

7.                   input_tensor=Input(shape=(224, 224, 3)))   

The output of the convolution base is shown in Figure 6-9, and the total number of 

parameters are shown in Figure 6-10. 

 

Figure 6-9 MobileNetV2 Convolutional base 
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Figure 6-10 MobileNetV2 Convolutional base parameters 

As seen in Figure 6-10, the number of trainable parameters in the convolutional base alone is 

2,223,872.  

A classification network is attached to the base of the MobileNetV2 model. To convert the 

7x7x1280 tensor into a 1x1280 vector, a global average pool and a dense layer were added. 

A softmax activation function is used for the last dense layer, which will give the probability 

of each of the three classes. 

8. headModel = baseModel.output   

9. headModel = GlobalAveragePooling2D()(headModel)   

10. headModel = Dense(256, activation="relu")(headModel)   

11.    

12. headModel = Dense(len(Train_gen.class_indices), activation="softmax")(headModel)

   

13.    

14. model = Model(inputs=baseModel.input, outputs=headModel)   
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Figure 6-11 MobileNetV2 Classifier added 

As seen in Figure 6-11, the total number of trainable parameters are 2,552,579 for the 

complete model.  

The transfer process is followed where the convolution base training variable is set to false, 

to freeze the weights and biases during the training process. This reduces the number of 

trainable parameters to 328,707 (see Figure 6-12), which is significantly less than the 2.5 

million parameters for the complete model. 

 

Figure 6-12 MobileNetV2 Convolutional base freeze 

The model is compiled with an RMS prop optimiser function with the learning rate set to 1e-3 

for the initial training. Because the output of the model is softmax activation function and the 

loss function is a categorical cross-entropy loss function which will give the probability of each 

class. The training function is executed to run for 25 epochs. 
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Figure 6-13 MobileNetV2 Training and Validation 

As seen in Figure 6-13, the training accuracy increased from 63% to 88% in the first 25 epochs 

which took 14 minutes. However, the validation accuracy did not increase above 50%, which 

makes the accuracy of the model as good as a random guess. The observation could be made 

that the model is accurate on the training data but does not perform well on unseen data, 

such as the validation set. The model has what is called a high variance. High variance is when 

a model achieves a high training accuracy but low validation or testing accuracy. The learning 

rate was decreased to 1e-4 to see if the training process is overshooting the global minimum 

of the function. The model was trained for another 25 epochs were the accuracy increased to 

65% and stalled again. The difference between the validation loss and training loss indicates 

that the model still has a high variance as one expects the loss validation loss to be better 

than the training loss. The model currently does not have enough depth to learn the new 

features required to classifies the pecan nut cultivars correctly. The next step in the transfer 

learning process was implemented, called fine-tuning. This is where some of the lower 

convolutional layers are unfrozen, and the model is able to update the weights of those layers 

to adjust the filters to adapt to the new images. The Block16 convolution block and the 

Conv_1, Conv_bn were added to the training parameters as seen below in Figure 6-14. The 

total number of trainable parameters increased from 328,707 to 1,214,787. 
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Figure 6-14 MobileNetV2 Fine-tuning training parameters 

The model was recompiled but this time with a learning rate of 1e-5 and the optimiser set to 

an SGD function. As seen in Figure 6-13, the model was trained for another 50 epochs which 

took 28 minutes, where the accuracy increased from 65% to 98%. The accompanying loss 

graph also shows the validation loss to be lower than the training loss, which means this 

model successfully learned the required features to classify new unseen pecan nut images 

correctly. 

6.3.3. Results 

The previous section has explained in detailed how a VGG16 and MobileNetV2 model were 

implemented trained on a train and validation dataset and what accuracy has been achieved. 

The next step is to verify how well these models do with new unseen data. The snippets of 

source code used are extracted and explained, for the detailed source code see Appendix A. 

6.3.3.1. Classification 

As with the training of the model, the TensorFlow library has a test generator function which 

is used to read the images from the test dataset. The generator function also resize and 

normalise the images before running inference on them. LINE 1-6 creates a list of predictions 

for each image in the test set and converts the label into a categorical vector. LINE4 determine 
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if the prediction value is more than 50% for the category and if so, then set the value to a 

Boolean True value.  

1. pred = model.predict_generator(Test_gen)   

2. y_true = tf.keras.utils.to_categorical(Test_gen.classes, num_classes=3,  

3.                                        dtype='bool')   

4. y_pred = pred > 0.5   

5. confusion_matrix = confusion_matrix(y_true.argmax(axis=1),  

6.                                     y_pred.argmax(axis=1))   

 

The test set consisted out of 100 images of each cultivar, representing 10% of the total 

dataset.  

The confusion matrix plots the actual category against the predicted value, to show how 

accurate the model was to predict a specific cultivar.  

 
 

Figure 6-15 Confusion Matrix 

 

As seen in Figure 6-15, both models did well to identify and classify the unseen images 

correctly. Both models had a 99% accuracy for the Mahan cultivar, a 98% accuracy for the 

Shoshoni. The Wichita had the most significant difference between the two models, where 

the VGG16 outperformed the MobileNetV2 with 2%. This difference is contributed to the fact 

that the VGG16 model is a wider model with more parameters (13.5M vs 1.2M parameters). 
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This is a factor of 11 times more trainable parameters and eight times more memory required 

to achieve a 2% increase in accuracy In one category. The memory use and parameters 

differences between the two models are shown in Table 6-6: 

Table 6-6 Number of parameters and memory requirements 

 VGG16 MobileNetV2 

Number of parameters 13,502,979 1,214,787 

Disk space and memory 

requirement 

82,648 KB 10,565 KB 

Both these models are suitable for an embedded environment; however, the MobileNetV2 

with excellent accuracy is ideal for embedded devices like a raspberry PI, or mobile phones. 

As in Figure 2-1  the practical implementation where the pecan nut freefall Infront of a camera 

system. The embedded device has less than a 100ms window available to make a prediction.  

The camera used has a framerate of 30fps which converts to a 33ms period per frame. 

With modern convolutional neural such as the two models, the interpretability of how the 

model determines what type of pecan nut the input image is difficult, as the features maps 

are small (7x7 pixels in the last layer) it makes the presentation of how the model is activated 

during a prediction nearly impossible. Figure 6-16 shows such an image, as seen the lower 

layers are impossible to recognise visually. The darker areas in the images are where there 

were zero activations, i.e. dead filters. 
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Figure 6-16 VGG16 Layer activation 
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However, it is possible to build a mask which shows which area contributed most to the 

prediction.  

To understand better what area of an image is used the determine what the predicted output 

should be, an algorithm called Gradient-weighted Class Activation Mapping (Grad-CAM) is 

used to determine which features activated the model the most (Selvaraju et al., 2020). Table 

6-7 and Table 6-8 shows the difference between the three cultivars for each of the two 

models.  

Table 6-7 VGG16 Grad-CAM 

   

Table 6-8 MobileNetV2 Grad-CAM 
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6.3.3.2. Size measurements 

With machine learning, one needs to define specific features to use in the model, with deep 

learning, the training process implements those features. One of such features could be the 

size. This section shows if the size of the pecan nuts in the images is determined what results 

would be obtained. 

In Figure 6-17, starting from the left top, the major axis measurements in mm are given for 

the Mahan cultivar, in the top right, the semi-major axis measurements in mm are given. The 

middle row shows the measurements for the Shoshoni cultivar and the bottom row the 

measurements for the Wichita cultivar. With feature engineering one need to derive specific 

criteria which might be useful, for that reason, both camera’s measurement is plotted and 

also the difference between the two measurements. In this case, the difference could be used 

to determine if a size measurement sample is valid. As the pecan nut is captured from to 

different angles, it is possible to have an incorrect measurement as there is no depth 

information capture with the images. As can be seen in Figure 6-17, the difference between 

the two cameras in the major axis is less than 5mm, where the difference in the semi-major 

axis is slightly higher. 

 

Figure 6-17 Size measurements 
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From the figure above it possible to see that if the two axes are used as criteria to determine 

the cultivar that one would be relatively successful in classifying the Mahan cultivar as the 

dimensions are suitable different from the other two cultivars, however, the classification 

accuracy would be lower on the other two cultivars as their dimension are almost similar.  

6.3.3.3. Ratio measurements 

Another feature which could be used would have been the ration between the major and 

semi-major axes, or the length and width or height of a pecan nut. As a pecan nut has three 

unique dimensions, length, width and height, it is not possible to determine in a particular 

image if the semi-major axis shows the height or width, so height is assumed. According to 

the Pecan Breeding & Genetics, Agricultural Service, U.S. Dept of Agriculture, the criteria to 

correctly determine a pecan nut cultivar according to dimension is a below.: 

Descriptors for pecan nut shape based on nut length to height ratios are (repeated from 

section 3.1.2): . 

• Orbicular 1 to 1.39 

• Ovate 1.40 to 1.59, widest at base 

• Obovate 1.40 to 1.59, widest at the apex 

• Oval elliptic 1.40 to 1.59, widest in middle 

• Elliptic 1.60 to 1.79 

• Oblong elliptic1.80 to 1.99 

• Oblong greater than 2.00 

Descriptors of apex and base shape are very rudimentary; 

• "acute" for angles sharper than 90 degrees 

• "acuminate" for acute angles having concave surfaces; and 

• "obtuse" for angles greater than 90 degrees. 

Cross-section form is described as 

• "round" if nut height to width ratios are between .95 and 1.10, 

• "laterally compressed" if nut height to width ratios exceed 1.10, and as 

• "flattened" if they are .95 or less. 

  



87 
 

And the definition for each of the cultivars in the research study is  

• Mahan: oblong, with acute apex and base; nut often asymmetric, appearing 'pinched' 

in the middle due to flattening of abaxial and adaxial surfaces; flattened in cross-

section 

• Shoshoni: oval elliptic with obtuse apex and rounded base; laterally compressed in 

cross-section 

• Wichita: oblong, with acute to an acuminate, asymmetric apex and rounded apiculate 

base; round in cross-section 

Figure 6-18 shows the length to height ratios distribution of all the images in the dataset. 

According to the criteria supplied the Mahan cultivar ratio on both cameras matches with the 

specification. The Shoshoni cultivar is slightly lower than the specification on both cameras, 

and the Wichita cultivar considerably lower. The results could show if size measurements are 

essential, then more work should be put into characterising the camera setup and possible 

adding a method to measure the distance to the object to compensate for the field of depth. 

 

Figure 6-18 Length to Height ratios of samples 

 

What is interesting to note is that the distribution mean value between the two camera’s for 

each cultivar is quite similar. There is a slight overlap between the distributions of each 
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cultivar; however, one could use the ratio of a pecan nut in an image to make a decent 

prediction of the cultivar. 
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6.3.3.4. Colour measurements 

The following section shows each cultivar colour spectrum and the combined spectrum of all 

the cultivars. The colour of a pecan nut could also be used as a feature to determine the 

cultivar of a pecan nut. Figure 6-19 to Figure 6-21 shows the colour RGB colour spectrum of 

each pecan nut cultivar. The Top row shows how the spectrum change over the images in the 

dataset and the bottom row shows the average and maximum values for each component of 

the RGB colour spectrum. 

 

Figure 6-19 Mahan colour spectrum 

 

Figure 6-20 Shoshoni colour spectrum 
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Figure 6-21 Wichita colour spectrum 

Figure 6-22 shows all the different components for each cultivar overlaid to understand better 

how these values differ between the cultivars. It is interesting to note that there is quite a 

significant difference between the three cultivars regarding colour, which might make colour 

an excellent feature in a machine learning model. 

 

Figure 6-22 Combined Average and Maximum colour spectrum 
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6.4. Summary 

The last section explained how two different convolution neural networks were implemented. 

The implementation was divided into a hardware and software section where the former 

showed how the physical hardware was built to capture the dataset of images and test the 

final model to confirm the accuracy. The software implementation section gave a detailed 

overview of the program developed and what each line of code does. The program made use 

of the TensorFlow library in python to create a neural network which consists of a 

convolutional base and classification network. The transfer learning process was followed to 

reuse the feature learned in the convolutional base to enable the classification network to 

identify and predict pecan nut cultivars previously not seen. 

The complete training process was shown and how each network required a different strategy 

to achieve the required accuracy. The results were shown and discussed, and by making use 

of the Grad-Cam method to create an activation map examples of the areas which contributed 

the most to the prediction were shown. 

The images in the dataset were analysed to verify what other features or parameters such as 

Size, ratio and colour are available which also could be used to make a prediction what type 

of cultivar is present in the image. 

The next section will conclude the research study and present recommendations for future 

work. 
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Chapter 7: 

7.1. Conclusions 

Chapter 2 gave an overview of how a typical commercial sorting machine works and what it 

consists out of, and what research is currently being done in the field of agriculture and 

machine learning. According to the author, there are no other studies which use machine 

learning to classify pecan nut cultivars, which makes this research project a novel study. The 

chapter also showed the methodological approach to how the research will be completed and 

what each step entailed. 

Chapter 3 gave the research methodology approach which were followed. The work done in 

the different work packages are presented with the software application which was used. A 

brief background were given regarding the software tools which were used such as 

TensorFlow, Numpy and OpenCV. 

Chapter 4 gave a brief overview of the history of neural networks was discussed, and where 

machine learning and deep learning fit into the larger artificial intelligence field. The first 

neural network called a Perceptron were discussed and explained. Although important from 

a historical perspective, the algorithm had one major disadvantage, the inability to classify 

non-linear separable points.  

For a machine-learning algorithm to handle more complex datasets, two elements are 

required : 

• non-linear activation functions and a  

• multi-layer network. 

For a neural network to be able to learn the weights automatically, a backpropagation 

algorithm needs to be implemented, which consists of two phases : 

1. The forward pass where an input propagates through the network to obtain the 

predicted output. 

2. A backward pass where the gradient of the error is computed and the weights in 

individual nodes are updated by using the chain rule and the gradient descent 

algorithm. 
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Chapter 5 shown the difference between a neural network and a CNN. The convolutional 

layer, which consists of different filters to detect advanced features, were presented. The 

different effects the kernel matrix in convolutional operations has on an image were shown 

to illustrate how the filter is able to detect edges in an input image. Common architectures 

which are predominantly used in deep learning were explained. Then the working of a loss 

function and optimisation algorithms were presented to show their involvement in the 

learning process.  

With the increase in depth of modern neural networks, their ability to generalise to any data 

has become a practical concern. To aid the network from overfitting to the training data 

regularisation methods need to be implemented, such as data augmentation and 

regularisations terms.  

The ability of a CNN to be intolerant to different invariances were presented with methods to 

make the network more robust against variances in unseen data. 

A CNN makes an excellent feature extractor which replaces the traditional handcrafted 

feature engineering process. Where in traditional machine learning implementations, the 

features need to be developed, which were a tedious process, and required specific domain 

knowledge to do correctly. Where in modern deep learning, the network is able to learn the 

required features directly from the data, with the caveat if there is enough data. 

Different training methods were presented based on if a new model is developed and when 

a model will be reused and fine-tuned to the new dataset. 

Chapter 6 explained how two different convolution neural networks were implemented. The 

implementation was divided into a hardware and software section where the former showed 

how the physical hardware was built to capture the dataset of images and test the final model 

to confirm the accuracy. The software implementation section gave a detailed overview of 

the program developed and what each line of code does. The program made use of the 

TensorFlow library in python to create a neural network which consists of a convolutional 

base and classification network. The transfer learning process was followed to reuse the 

feature learned in the convolutional base to enable the classification network to identify and 

predict pecan nut cultivars previously not seen. 
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The complete training process was shown and how each network required a different strategy 

to achieve the required accuracy. The results were shown and discussed and by making use 

of the Grad-Cam method to create an activation map examples of the areas which contributed 

the most to the prediction were shown. 

The images in the dataset were analysed to verify what other features or parameters such as 

Size, ratio and colour are available which also could be used to make a prediction what type 

of cultivar is present in the image. 

In response to the first investigative question posed as “What accuracy can be achieved by 

using a low accuracy camera and lens?”, it was concluded that by making use either a VGG16 

or MobileNetV2 model and transfer learning that an accuracy of 98% can be achieved. As the 

solution is aimed to automate the sorting process which is currently a manual process for 

many farmers, this accuracy should be compared against what a human typically can achieve, 

which is typically 85% (Toyofuku, Haff and Pearson, 2013, p. p237). The machine learning 

algorithm out preforms the manual process and is deemed a success. 

In response to the second investigative question posed which asked “Can transfer learning be 

used to retrain a CNN successfully on pecan nuts?”, it was concluded that transfer learning is 

not only successful but ideal for this solution. Transfer learning is a process where previously 

trained features are used as a base to build from to classify previous unseen categories, with 

a small dataset of new images. 

In response to the third investigative question posed as” What type of pre-processing would 

improve accuracy?”, it was concluded that by normalising the images and removing the 

background before training and running inference on an image the best results are achieved.  

In response to the fourth and final investigative question posed as “What are other features 

available in the images?”, it was concluded that both the ratio between length and height and 

the colour properties of each pecan nut are excellent features which could be used to 

determine the cultivar of a pecan nut. 

This research has also significantly contributed to the machine learning research community 

by capturing a dataset of over 3000 images of pecan nuts for future research. More 

importantly, it produced a methodology to implement a working pecan nut classifier which 
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could be used on other projects for future research. The research is a first of a kind where 

pecan nut cultivars are classified with a low-cost optical system.  

7.2. Recommendations 

For future work, this method was developed as the start of a longer-term project to develop 

technology for the local agriculture industry. Industry 4.0 is disrupting the manufacturing 

industry, and this technology could be used to address the skill shortage currently facing in 

the agriculture industry. Future development can take this application to practical 

implementation on low-cost hardware, and test in a real-world environment.  

An alternative algorithm could also be considered, such as SVM and Random forest, and 

evaluate them against the accuracy determined by using a CNN.  
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Appendix A 

1. #================================= import required libaries =======================
=================   

2. import tensorflow as tf   
3.    
4.    
5. #==================================================================================

=================   
6.    
7.    
8. #================================= Set global parameters    =======================

=================   
9. MAX_IMAGE_SIZE = 224   
10. MAX_IMAGE_CHAN = 3   
11.    
12.    
13. #==================================================================================

=================   
14.    
15. #================================= Setup Image Generators    ======================

==================   
16. import os   
17. from ImageGenerators_Util import *   
18.    
19. #base_dir = 'D:\Johann\Workspace\Python\images_Pecan\images\Original_set'   
20. base_dir = 'D:\Johann\Workspace\Python\images_Pecan\PiCamImages\Masked'   
21. train_dir = os.path.join(base_dir,'train')   
22. validation_dir = os.path.join(base_dir,'validation')   
23. test_dir = os.path.join(base_dir,'test')   
24.    
25. Train_gen,Val_gen,Test_gen = setup_ImageGenerators(train_dir,validation_dir,test_di

r,ClassificationMode='categorical')   
26.    
27. #==================================================================================

=================   
28.    
29.    
30.    
31. #================================= Load Models    =================================

=======   
32. model = load_model('test_pecan_VGG16_3NUT_p98_Block4.h5') #==> VGG16 3 NUT 98%   
33. model = load_model('test_pecan_MOBILENETV2_3NUT_p98b.h5') #==> MobilenetV2 3 NUT 98

%   
34.    
35.    
36.    
37. #================================= Test and Plot confusion Matrix    ==============

==========================   
38. from sklearn.metrics import confusion_matrix   
39.    
40. #test_loss, test_acc, test_mae = model.evaluate_generator(test_generator, steps=1) 

  
41. test_loss, test_acc = model.evaluate_generator(Test_gen)   
42. print('test acc:', test_acc)   
43.    
44. pred = model.predict_generator(Test_gen)   
45. y_true = tf.keras.utils.to_categorical(Test_gen.classes, num_classes=3, dtype='bool

')   
46. y_pred = pred > 0.5   
47.    
48. confusion_matrix_out = confusion_matrix(y_true.argmax(axis=1), y_pred.argmax(axis=1

))   
49.    



100 
 

50. import seaborn as sn   
51. import pandas as pd   
52.    
53. df_cm = pd.DataFrame(confusion_matrix_out,    
54.   index = ["Mahan","Shoshoni","Wichita"],   
55.   columns = ["Mahan","Shoshoni","Wichita"])   
56.    
57. fig = plt.figure()   
58. plt.style.use('seaborn-whitegrid')   
59.    
60. plt.clf()   
61. ax = fig.add_subplot(111)   
62. ax.set_aspect(1)   
63. cmap = sn.cubehelix_palette(light=1, as_cmap=True)   
64. res = sn.heatmap(df_cm, annot=True, vmin=0.0, vmax=100.0, fmt='.2f', cmap=cmap)   
65. res.invert_yaxis()   
66. plt.yticks([0.5,1.5,2.5], ["Mahan","Shoshoni","Wichita"],va='center')   
67. plt.title('Confusion Matrix : MobileNetV2')   
68. plt.ylabel('Actual')   
69. plt.xlabel('Predicted')   
70. plt.savefig('confusion_matrix_mobileNetV2.png', dpi=300, bbox_inches='tight' )   
71. plt.close()   
72.    
73. #==================================================================================

=================   
74.    
75. #===================================  heatmaps  ===================================

============   
76. from pyimagesearch.gradcam import GradCAM   
77. import imutils   
78.    
79.    
80. # initialize our gradient class activation map and build the heatmap   
81. Pecan_nut_type = ["Mahan","Shoshoni","Wichita"]   
82.    
83. def output_heatmap(model_in,image_in,class_type_in):   
84.     image = img_to_array(image_in)   
85.     image = np.expand_dims(image, axis=0)   
86.     image = image.astype("float") / 255.0   
87.    
88.     # the class label index with the largest corresponding probability   
89.     preds = model_in.predict(image)   
90.     i = np.argmax(preds[0])   
91.     print(str(preds) + " - " + str(i))   
92.     # initialize our gradient class activation map and build the heatmap   
93.     cam = GradCAM(model, i)   
94.     heatmap = cam.compute_heatmap(image)   
95.    
96.     # resize the resulting heatmap to the original input image dimensions   
97.     # and then overlay heatmap on top of the image   
98.     heatmap = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))   
99.     (heatmap, output) = cam.overlay_heatmap(heatmap, orig, alpha=0.5)   
100.    
101.     return heatmap,output    
102.    
103. for Pecan_index in range(0,3):   
104.     base_dir = os.path.join('D:\Johann\Workspace\Python\images_Pecan\PiCamIm

ages\Masked\Test')   
105.     base_dir = os.path.join(base_dir,Pecan_nut_type[Pecan_index])   
106.    
107.     images_names = os.listdir(base_dir)   
108.     test_img_files = [os.path.join(base_dir, f) for f in images_names]   
109.        
110.     for image_name,cnt in zip (test_img_files,range(10)):   
111.         orig = cv2.imread(image_name)   
112.         image = load_img(image_name, target_size=(224, 224))   
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113.         (heatmap, output) = output_heatmap(model,image,1)   
114.         # display the original image and resulting heatmap and output image 

  
115.         # to our screen   
116.         output = np.vstack([orig, output])   
117.         output = imutils.resize(output, height=700)   
118.         output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)   
119.            
120.         fig = plt.figure()   
121.         plt.style.use('seaborn-whitegrid')   
122.         title = Pecan_nut_type[Pecan_index] +' Activation Map'   
123.         plt.title(title)   
124.         plt.grid(False)   
125.         plt.imshow(output)   
126.         plt.xticks([])   
127.         plt.yticks([])   
128.            
129.         image_name = Pecan_nut_type[Pecan_index]+'_'+str(cnt)+'_Activation_M

ap.png'   
130.         print(image_name)   
131.         plt.savefig(image_name, dpi=300)   
132.         plt.close()   
133.    
134. #===========================================================================

========================   
135.    
136.    
137. #===========================   determine distance/size =====================

========================   
138. from mpl_toolkits.mplot3d import Axes3D   
139. import re   
140. import imutils   
141.    
142.    
143. Pecan_index = 0   
144. Pecan_nut_type = ["Mahan","Shoshoni","Wichita"]   
145.    
146. hist_blue_combine = np.zeros((256,0), dtype = "uint8")   
147. hist_green_combine = np.zeros((256,0), dtype = "uint8")   
148. hist_red_combine = np.zeros((256,0), dtype = "uint8")   
149.    
150. dim_list = []   
151.    
152. for Pecan_index in range(0,3):   
153.     base_dir = os.path.join('D:\Johann\Workspace\Python\images_Pecan\PiCamIm

ages\Masked\Test')   
154.     base_dir = os.path.join(base_dir,Pecan_nut_type[Pecan_index])   
155.        
156.     images_names = os.listdir(base_dir)   
157.     test_img_files = [os.path.join(base_dir, f) for f in images_names]   
158.        
159.     hist_blue = np.zeros((256,0), dtype = "uint8")   
160.     hist_green = np.zeros((256,0), dtype = "uint8")   
161.     hist_red = np.zeros((256,0), dtype = "uint8")   
162.        
163.     for img_path in test_img_files:   
164.         image = cv2.imread(img_path)   
165.         gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)   
166.         gray = cv2.medianBlur(gray, 7, 0)   
167.         thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY)[1]  #change

d from gray   
168.         thresh = cv2.erode(thresh, None, iterations=2)   
169.         thresh = cv2.dilate(thresh, None, iterations=2)   
170.         hist_blue = np.append(hist_blue,cv2.calcHist([image], [0], thresh, [

256], [1, 255]),axis=1)   
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171.         hist_green = np.append(hist_green,cv2.calcHist([image], [1], thresh,
 [256], [1, 255]),axis=1)   

172.         hist_red = np.append(hist_red,cv2.calcHist([image], [2], thresh, [25
6], [1, 255]),axis=1)   

173.            
174.         Camera = 0   
175.         if(re.search("_01", img_path)):   
176.             Camera = 1   
177.             pixelsPerMetricA = 6.0   
178.             pixelsPerMetricB = 6.0               
179.         else:   
180.             Camera = 2   
181.             pixelsPerMetricA = 6.5   
182.             pixelsPerMetricB = 6.0   
183.    
184.         cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_A

PPROX_SIMPLE) # changed from edge.copy.   
185.         cnts = imutils.grab_contours(cnts)   
186.         c = max(cnts,key=cv2.contourArea)   
187.         im = np.zeros(shape=[MAX_IMAGE_SIZE, MAX_IMAGE_SIZE, 3], dtype=np.ui

nt8)   
188.         ellipse = cv2.fitEllipse(c)   
189.         (x,y),(MA,ma),angle = cv2.fitEllipse(c)   
190.    
191.         box = cv2.minAreaRect(c)   
192.         box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(b

ox)   
193.         box = np.array(box, dtype="int")   
194.         cv2.drawContours(image, [box], -1, (0, 255, 0), 2)   
195.         # unpack the ordered bounding box, then compute the midpoint   
196.         # between the top-left and top-right coordinates, followed by   
197.         # the midpoint between bottom-left and bottom-right coordinates   
198.         (tl, tr, br, bl) = box   
199.         (tltrX, tltrY) = midpoint(tl, tr)   
200.         (blbrX, blbrY) = midpoint(bl, br)   
201.    
202.         # compute the midpoint between the top-left and top-right points,   
203.         # followed by the midpoint between the top-righ and bottom-right   
204.         (tlblX, tlblY) = midpoint(tl, bl)   
205.         (trbrX, trbrY) = midpoint(tr, br)   
206.    
207.         # compute the Euclidean distance between the midpoints   
208.         dA_rect = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))   
209.         dB_rect = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))   
210.    
211.         # if the pixels per metric has not been initialized, then   
212.         # compute it as the ratio of pixels to supplied metric   
213.         # (in this case, inches)   
214.     
215.         # compute the size of the object   
216.         dimA_Rect = dA_rect / pixelsPerMetricA   
217.         dimB_Rect = dB_rect / pixelsPerMetricB   
218.            
219.         if dimA_Rect > dimB_Rect:   
220.             tmp = dimB_Rect   
221.             dimB_Rect = dimA_Rect   
222.             dimA_Rect = tmp   
223.            
224.         print('rect : ' + str(dimA_Rect) + ' - ' + str(dimB_Rect))   
225.    
226.         dimA = MA / pixelsPerMetricA   
227.         dimB = ma / pixelsPerMetricB   
228.         print('eclipse : ' +str(dimA) + '-' + str(dimB))   
229.    
230.         dim_list.append([os.path.basename(img_path),Camera,MA,ma,angle,dimA,

dimB,dA_rect,dB_rect,dimA_Rect,dimB_Rect])   
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231.            
232.            
233.     hist  = [hist_blue,hist_green,hist_red]   
234.     name_color = ["blue","green","red"]   
235.     name_colormap = ["Blues","Greens","Reds"]   
236.     rstride = 10   
237.     cstride = 10   
238.        
239.     Y = range(256)   
240.     X = range(100)   
241.     X, Y = np.meshgrid(X, Y)   
242.        
243.     fig = plt.figure(figsize=(19.2,9.49))   
244.     plt.style.use('seaborn-whitegrid')   
245.        
246.     for chan,cnt,color,colormap in zip(hist,range(1,4),name_color,name_color

map):   
247.         # set up the axes for the first plot   
248.         ax = fig.add_subplot(2, 3, cnt, projection='3d')   
249.         ax.plot_surface(X, Y, chan, rstride=rstride, cstride=cstride,   
250.                         cmap=colormap, edgecolor='none')   
251.         title = Pecan_nut_type[Pecan_index] +' ' + color + " Spectrum"   
252.         ax.set_title(title)   
253.         plt.legend(loc="upper left")   
254.         ax.set_zlabel('Intensity')   
255.         ax.set_ylabel('Color Spectrum')   
256.         ax.set_xlabel('Samples')   
257.    
258.    
259.    
260.        
261.     for chan,cnt,color,colormap in zip(hist,range(4,7),name_color,name_color

map):   
262.         # set up the axes for the first plot   
263.         ax = fig.add_subplot(2, 3, cnt)   
264.         ax.plot(np.average(chan,axis=1), color = 'C0',linestyle='solid',line

width=1, label='Average')   
265.         ax.plot(np.max(chan,axis=1), color = 'C2',linestyle='dashed',linewid

th=1, label='Maximum')           
266.         title = Pecan_nut_type[Pecan_index] +' ' + color   
267.         ax.set_title(title)   
268.         plt.legend(loc="upper left")   
269.         ax.set_ylabel('Intensity')   
270.         ax.set_xlabel('Color Spectrum')   
271.            
272.    
273.     plt.savefig(Pecan_nut_type[Pecan_index]+'_colour_Spectrum'+'.png', dpi=3

00)   
274.     plt.close()   
275.    
276.     hist_blue_combine =  np.append(hist_blue_combine,hist_blue,axis=1)   
277.     hist_green_combine =  np.append(hist_green_combine,hist_green,axis=1)   
278.     hist_red_combine =  np.append(hist_red_combine,hist_red,axis=1)   
279.        
280. fig = plt.figure(figsize=(19.2,9.49))   
281. plt.style.use('seaborn-whitegrid')   
282. hist  = [hist_blue_combine,hist_green_combine,hist_red_combine]   
283. for chan,cnt,color,colormap in zip(hist,range(1,4),name_color,name_colormap)

:   
284.     # set up the axes for the first plot   
285.     print(cnt)   
286.     print(color)       
287.     print(colormap)           
288.    
289.     ax = fig.add_subplot(1, 3, cnt)   
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290.     ax.plot(np.average(chan[0:256,0:100],axis=1), color = 'C0',linestyle='so
lid',linewidth=1, label=Pecan_nut_type[0])   

291.     ax.plot(np.average(chan[0:256,100:200],axis=1), color = 'C1',linestyle='
solid',linewidth=1, label=Pecan_nut_type[1])   

292.     ax.plot(np.average(chan[0:256,200:300],axis=1), color = 'C2',linestyle='
solid',linewidth=1, label=Pecan_nut_type[2])   

293.     title = 'Combined average ' + color   
294.     ax.set_title(title)   
295.     plt.legend(loc="upper left")   
296.     ax.set_ylabel('Intensity')   
297.     ax.set_xlabel('Color Spectrum')   
298.    
299. plt.savefig('Combined_colour_Spectrum'+'.png', dpi=300)   
300. plt.close()       
301.    
302. tmp = np.zeros([150,12])    
303. idx = 0   
304.    
305. for cnt in dim_list:   
306.     print(cnt)   
307.     if(cnt[1]==1): # if camera 1    
308.         tmp[idx,0] = cnt[5] # Camera 1 DimA eclipse   
309.         tmp[idx,1] = cnt[6] # Camera 1 DimB eclipse   
310.         tmp[idx,2] = cnt[3]/cnt[2] # Camera 1 Ratio eclipse   
311.    
312.         tmp[idx,3] = cnt[9] # Camera 1 DimA rect   
313.         tmp[idx,4] = cnt[10] # Camera 1 DimB rect   
314.         tmp[idx,5] = cnt[10]/cnt[9] # Camera 1 Ratio rect   
315.            
316.     else: # if camera 2   
317.         tmp[idx,6] = cnt[5] # Camera 2 DimA eclipse   
318.         tmp[idx,7] = cnt[6] # Camera 2 DimB eclipse   
319.         tmp[idx,8] = cnt[3]/cnt[2] # Camera 2 Ratio eclipse   
320.    
321.         tmp[idx,9] = cnt[9] # Camera 1 DimA rect   
322.         tmp[idx,10] = cnt[10] # Camera 1 DimB rect   
323.         tmp[idx,11] = cnt[10]/cnt[9] # Camera 1 Ratio rect   
324.    
325.         idx = idx + 1   
326.    
327.    
328. #================================    eclipse dimensions ====================

============       
329. fig = plt.figure(figsize=(19.2,9.49))   
330. plt.style.use('seaborn-whitegrid')   
331. section = 0   
332. cnt_plt = 1   
333. for cnt in range(3):   
334.     print(cnt)   
335.     print(cnt_plt)   
336.     print(section)   
337.     ax = fig.add_subplot(3, 2, cnt_plt)   
338.     ax.plot(tmp[section:section+50,0], color = 'C0',linestyle='solid',linewi

dth=1,label='Camera 1')     
339.     ax.plot(tmp[section:section+50,6], color = 'C1',linestyle='solid',linewi

dth=1,label='Camera 2')   
340.     ax.plot(np.abs(tmp[section:section+50,0]-

tmp[section:section+50,6]), color = 'C2',linestyle='solid',linewidth=1,label='Delta
')   

341.     title = 'Major Axis :' + Pecan_nut_type[cnt]   
342.     ax.set_title(title,loc='left')   
343.     plt.legend(loc="center left")   
344.     ax.set_ylabel('Distance [mm]')   
345.     ax.set_xlabel('Samples')   
346.    
347.     ax = fig.add_subplot(3, 2, cnt_plt+1)   
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348.     ax.plot(tmp[section:section+50,1], color = 'C0',linestyle='solid',linewi
dth=1,label='Camera 1')     

349.     ax.plot(tmp[section:section+50,7], color = 'C1',linestyle='solid',linewi
dth=1,label='Camera 2')     

350.     ax.plot(np.abs(tmp[section:section+50,1]-
tmp[section:section+50,7]), color = 'C2',linestyle='solid',linewidth=1,label='Delta
')     

351.     title = 'Semi Major Axis :' + Pecan_nut_type[cnt]   
352.     ax.set_title(title,loc='left')   
353.     plt.legend(loc="center left")   
354.     ax.set_ylabel('Distance [mm]')   
355.     ax.set_xlabel('Samples')   
356.    
357.     section = section + 50   
358.     cnt_plt = cnt_plt + 2   
359.    
360. plt.savefig('Pecan_Dimension_eclipse.png', dpi=300)   
361. plt.close()     
362.    
363. #======================================== eclipse dimensions ===============

=================       
364.    
365. #============================ rectangle  dimensions ========================

==================   
366. fig = plt.figure(figsize=(19.2,9.49))   
367. plt.style.use('seaborn-whitegrid')   
368. section = 0   
369. cnt_plt = 1   
370. for cnt in range(3):   
371.     print(cnt)   
372.     print(cnt_plt)   
373.     print(section)   
374.     ax = fig.add_subplot(3, 2, cnt_plt)   
375.     ax.plot(tmp[section:section+50,3], color = 'C0',linestyle='solid',linewi

dth=1,label='Camera 1')     
376.     ax.plot(tmp[section:section+50,9], color = 'C1',linestyle='solid',linewi

dth=1,label='Camera 2')   
377.     ax.plot(np.abs(tmp[section:section+50,3]-

tmp[section:section+50,9]), color = 'C2',linestyle='solid',linewidth=1,label='Delta
')   

378.     title = 'Major Axis :' + Pecan_nut_type[cnt]   
379.     ax.set_title(title,loc='left')   
380.     plt.legend(loc="center left")   
381.     ax.set_ylabel('Distance [mm]')   
382.     ax.set_xlabel('Samples')   
383.    
384.     ax = fig.add_subplot(3, 2, cnt_plt+1)   
385.     ax.plot(tmp[section:section+50,4], color = 'C0',linestyle='solid',linewi

dth=1,label='Camera 1')     
386.     ax.plot(tmp[section:section+50,10], color = 'C1',linestyle='solid',linew

idth=1,label='Camera 2')     
387.     ax.plot(np.abs(tmp[section:section+50,4]-

tmp[section:section+50,10]), color = 'C2',linestyle='solid',linewidth=1,label='Delt
a')     

388.     title = 'Semi Major Axis :' + Pecan_nut_type[cnt]   
389.     ax.set_title(title,loc='left')   
390.     plt.legend(loc="center left")   
391.     ax.set_ylabel('Distance [mm]')   
392.     ax.set_xlabel('Samples')   
393.    
394.     section = section + 50   
395.     cnt_plt = cnt_plt + 2   
396.    
397. plt.savefig('Pecan_Dimension_rect.png', dpi=300)   
398. plt.close()    
399.    
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400. #============================ rectangle  dimensions ========================
==================   

401.    
402.    
403. #============================ eclipse  ratio ===============================

===========   
404.    
405. import scipy.stats as st   
406.    
407. fig = plt.figure(figsize=(19.2,9.49))   
408. plt.style.use('seaborn-whitegrid')   
409. section = 0   
410. cnt_plt = 1   
411. for cnt in range(3):   
412.     print(cnt_plt)   
413.     print(section)       
414. #Plot ratio of Mahan Camera 1   
415.    
416.     ax = fig.add_subplot(3, 2, cnt_plt)   
417.     ax.hist(tmp[section:section+50,2], density=True, bins='auto', label="Cam

era 1", linewidth=0.5,color='C0')   
418.     mn, mx = plt.xlim()   
419.     plt.xlim(mn, mx)   
420.     kde_xs = np.linspace(mn, mx, 301)   
421.     kde = st.gaussian_kde(tmp[section:section+50,2])   
422.     ax.plot(kde_xs, kde.pdf(kde_xs), label="PDF",color='C1')   
423.     plt.legend(loc="upper left")   
424.     plt.ylabel('Probability')   
425.     plt.title('Ratio Camera 1: '+ Pecan_nut_type[cnt],loc='left')   
426.        
427.     #Plot ratio of Mahan Camera 2   
428.     ax = fig.add_subplot(3, 2, cnt_plt+1)   
429.     ax.hist(tmp[section:section+50,8], density=True, bins='auto', label="Cam

era 2", linewidth=0.5,color='C0')   
430.     mn, mx = plt.xlim()   
431.     plt.xlim(mn, mx)   
432.     kde_xs = np.linspace(mn, mx, 50)   
433.     kde = st.gaussian_kde(tmp[section:section+50,8])   
434.     ax.plot(kde_xs, kde.pdf(kde_xs), label="PDF",color='C1')   
435.     plt.legend(loc="upper left")   
436.     plt.ylabel('Probability')   
437.     plt.title('Ratio Camera 2: '+ Pecan_nut_type[cnt],loc='left')   
438.    
439.     section = section + 50   
440.     cnt_plt = cnt_plt + 2   
441.    
442. plt.savefig('Pecan_Ratios_eclipse.png', dpi=300)   
443. plt.close()     
444.    
445. #============================ eclipse  ratio ===============================

===========   
446.    
447. #============================ rectangle  ratio =============================

=============   
448. fig = plt.figure(figsize=(19.2,9.49))   
449. plt.style.use('seaborn-whitegrid')   
450. section = 0   
451. cnt_plt = 1   
452. for cnt in range(3):   
453.     print(cnt_plt)   
454.     print(section)       
455.     #Plot ratio of Mahan Camera 1   
456.    
457.     ax = fig.add_subplot(3, 2, cnt_plt)   
458.     ax.hist(tmp[section:section+50,5], density=True, bins='auto', label="Cam

era 1", linewidth=0.5,color='C0')   
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459.     mn, mx = plt.xlim()   
460.     plt.xlim(mn, mx)   
461.     kde_xs = np.linspace(mn, mx, 301)   
462.     kde = st.gaussian_kde(tmp[section:section+50,5])   
463.     ax.plot(kde_xs, kde.pdf(kde_xs), label="PDF",color='C1')   
464.     plt.legend(loc="upper left")   
465.     plt.ylabel('Probability')   
466.     plt.title('Ratio Camera 1: '+ Pecan_nut_type[cnt],loc='left')   
467.        
468.     #Plot ratio of Mahan Camera 2   
469.     ax = fig.add_subplot(3, 2, cnt_plt+1)   
470.     ax.hist(tmp[section:section+50,11], density=True, bins='auto', label="Ca

mera 2", linewidth=0.5,color='C0')   
471.     mn, mx = plt.xlim()   
472.     plt.xlim(mn, mx)   
473.     kde_xs = np.linspace(mn, mx, 50)   
474.     kde = st.gaussian_kde(tmp[section:section+50,11])   
475.     ax.plot(kde_xs, kde.pdf(kde_xs), label="PDF",color='C1')   
476.     plt.legend(loc="upper left")   
477.     plt.ylabel('Probability')   
478.     plt.title('Ratio Camera 2: '+ Pecan_nut_type[cnt],loc='left')   
479.    
480.     section = section + 50   
481.     cnt_plt = cnt_plt + 2   
482.    
483. plt.savefig('Pecan_Ratios_rect.png', dpi=300)   
484. plt.close()     
485. #===========================================================================

========================   
486.    
487. #============================ image generators =============================

=============   
488.    
489. #from keras_preprocessing import image   
490. from keras_preprocessing.image import ImageDataGenerator,img_to_array,load_i

mg   
491. from tensorflow.keras import backend as K   
492.    
493. import matplotlib.pyplot as plt   
494.    
495. import numpy as np   
496. import cv2   
497. from pathlib import Path   
498.    
499. import os   
500.    
501.    
502.    
503. def setup_ImageGenerators(Train_Dir,Validation_Dir,Test_Dir,ClassificationMo

de='categorical',MAX_IMAGE_SIZE = 224,MAX_IMAGE_CHAN=3):   
504.     train_datagen = ImageDataGenerator( rescale=1./255,   
505.                                         rotation_range=40,   
506.                                         width_shift_range=0.1,   
507.                                         height_shift_range=0.1,   
508.                                         shear_range=0.2,   
509.                                         zoom_range=0.2,   
510.                                         horizontal_flip=True,   
511.                                         #validation_split=0.2,   
512.                                         fill_mode='nearest')   
513.        
514.     validation_datagen = ImageDataGenerator(rescale=1./255)   
515.        
516.     train_generator = train_datagen.flow_from_directory(Train_Dir,   
517.                                                         target_size=(MAX_IMA

GE_SIZE, MAX_IMAGE_SIZE),   
518.                                                         batch_size=5,   
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519.                                                         shuffle=True,   
520.                                                         #class_mode='binary'

   
521.                                                         class_mode=Classific

ationMode)   
522.        
523.     validation_generator = validation_datagen.flow_from_directory(Validation

_Dir,   
524.                                                             target_size=(MAX

_IMAGE_SIZE, MAX_IMAGE_SIZE),   
525.                                                             batch_size=5,   
526.                                                             shuffle=True,   
527.                                                             #class_mode='bin

ary'   
528.                                                             class_mode=Class

ificationMode)   
529.        
530.     test_datagen = ImageDataGenerator(rescale=1./255)   
531.    
532.     test_generator = test_datagen.flow_from_directory(Test_Dir,   
533.                                                       target_size=(MAX_IMAGE

_SIZE, MAX_IMAGE_SIZE),   
534.                                                       batch_size=1,   
535.                                                       shuffle=False,   
536.                                                       class_mode=Classificat

ionMode)   
537.       
538.     return train_generator,validation_generator,test_generator   
539. #===========================================================================

========================   
540.    
541. #============================ training and fine tuning of models ===========

===============================   
542. from tensorflow.keras.preprocessing.image import ImageDataGenerator   
543. from tensorflow.keras.optimizers import RMSprop   
544. from tensorflow.keras.optimizers import SGD   
545. from tensorflow.keras.applications import VGG16   
546. from tensorflow.keras.applications import MobileNetV2   
547. from tensorflow.keras.layers import Input   
548. from tensorflow.keras.models import Model   
549. from tensorflow.keras.callbacks import TensorBoard, EarlyStopping   
550. from imutils import paths   
551. import numpy as np   
552. import argparse   
553. import os   
554. from tensorflow.keras.models import load_model   
555.    
556.    
557. # import the necessary packages   
558. from tensorflow.keras.layers import Dropout   
559. from tensorflow.keras.layers import Flatten   
560. from tensorflow.keras.layers import Dense   
561.    
562. class FCHeadNet:   
563.     @staticmethod   
564.     def build(baseModel, classes, D):   
565.         # initialize the head model that will be placed on top of   
566.         # the base, then add a FC layer   
567.         headModel = baseModel.output   
568.         headModel = Flatten(name="flatten")(headModel)   
569.         headModel = Dense(D, activation="relu")(headModel)   
570.         headModel = Dropout(0.5)(headModel)   
571.    
572.         # add a softmax layer   
573.         headModel = Dense(classes, activation="softmax")(headModel)   
574.            
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575.         # return the model   
576.         return headModel   
577.    
578.    
579. #===================== VGG16 =======================   
580. baseModel = VGG16(weights="imagenet", include_top=False,   
581.                   input_tensor=Input(shape=(224, 224, 3)))   
582.    
583. # initialize the new head of the network, a set of FC layers   
584. # followed by a softmax classifier   
585. headModel = FCHeadNet.build(baseModel, len(Train_gen.class_indices), 256)   
586. #headModel = FCHeadNet.build(baseModel, 1, 256)   
587.    
588. # place the head FC model on top of the base model -- this will   
589. # become the actual model we will train   
590. model = Model(inputs=baseModel.input, outputs=headModel)   
591.    
592. #===================== MOBILENET_V2 =======================   
593.    
594. from tensorflow.keras.layers import Dropout   
595. from tensorflow.keras.layers import Flatten   
596. from tensorflow.keras.layers import Dense   
597. from tensorflow.keras.layers import GlobalAveragePooling2D   
598. from tensorflow.keras import regularizers   
599.    
600.    
601. baseModel = MobileNetV2(weights="imagenet", include_top=False,   
602.                   input_tensor=Input(shape=(224, 224, 3)))   
603.    
604. headModel = baseModel.output   
605. headModel = GlobalAveragePooling2D()(headModel)   
606. headModel = Dense(256, activation="relu")(headModel)   
607.    
608. headModel = Dense(len(Train_gen.class_indices), activation="softmax")(headMo

del)   
609.    
610. model = Model(inputs=baseModel.input, outputs=headModel)   
611.    
612.    
613. #=============================================================   
614. for layer in model.layers:   
615.     print(layer.name + " - " + str(layer.trainable))   
616.    
617.    
618. # loop over all layers in the base model and freeze them so they   
619. # will *not* be updated during the training process   
620. for layer in baseModel.layers:   
621.     layer.trainable = False   
622.    
623. # compile our model (this needs to be done after our setting our   
624. # layers to being non-trainable   
625. print("[INFO] compiling model...")   
626.    
627. opt = RMSprop(lr=0.00001)   
628. #model.compile(loss="binary_crossentropy", optimizer=opt,   
629. #              metrics=["accuracy"])   
630.    
631. model.compile(loss="categorical_crossentropy", optimizer=opt,   
632.               metrics=["accuracy"])   
633.    
634.    
635. model.summary()   
636.    
637.    
638. #===================== VGG16 =======================   



110 
 

639. model = load_model("D:\Johann\Workspace\Python\Tensorflow\Keras\\test_pecan_
VGG16_2NUT.h5")   

640. #===================== VGG16 =======================   
641.    
642. #===================== MOBILENET_V2 =======================   
643. model = load_model("D:\Johann\Workspace\Python\Tensorflow\Keras\\test_pecan_

MobilenetV2_2NUT.h5")   
644. #===================== MOBILENET_V2 =======================   
645.    
646. mylog_dir = 'mylogs\\2020031901\\run2'   
647.    
648. callbacks_list = [   
649.             TensorBoard(   
650.                                             log_dir=mylog_dir,   
651.                                             write_graph = False,   
652.                                             write_images = False,   
653.                                             update_freq = 'epoch',   
654.                                             profile_batch = 0,   
655.                                             embeddings_freq = 0,   
656.                                             embeddings_metadata = 0,   
657.                                             histogram_freq=1,   
658.                                             )   
659.             ]   
660.    
661.    
662. print("[INFO] training head...")   
663. model.fit_generator(Train_gen,validation_data=Val_gen, epochs=25,steps_per_e

poch=len(Train_gen.filenames) // 32,callbacks=callbacks_list)   
664.    
665. # evaluate the network after initialization   
666. print("[INFO] evaluating after initialization...")   
667. predictions = model.predict_generator(Test_gen)   
668. predictions = model.predict(testX, batch_size=32)   
669. print(classification_report(testY.argmax(axis=1),   
670.                             predictions.argmax(axis=1), target_names=classNa

mes))   
671.    
672.    
673. print(classification_report(testY.argmax(axis=1),   
674.                             predictions.argmax(axis=1), labels = labels))   
675.    
676. #===================== VGG16 =======================   
677. # now that the head FC layers have been trained/initialized, lets   
678. # unfreeze the final set of CONV layers and make them trainable   
679. for layer in baseModel.layers[15:]:   
680.     layer.trainable = True   
681.        
682. for layer in baseModel.layers[11:]:   
683.     layer.trainable = True   
684.    
685. #===================== VGG16 =======================   
686.        
687. #===================== MOBILENET_V2 =======================   
688. for layer in baseModel.layers[144:]:   
689.     layer.trainable = True   
690.        
691. for layer in baseModel.layers[135:]:   
692.     layer.trainable = True   
693.        
694. for layer in baseModel.layers[73:]:  #=> trying to solve the high val error,

 low training error issue.   
695.     layer.trainable = True   
696.        
697. #===================== MOBILENET_V2 ======================   
698.        
699.    
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700. # for the changes to the model to take affect we need to recompile   
701. # the model, this time using SGD with a *very* small learning rate   
702. print("[INFO] re-compiling model...")   
703. opt = SGD(lr=0.00001)   
704. #model.compile(loss="binary_crossentropy", optimizer=opt,   
705. #              metrics=["accuracy"])   
706. model.compile(loss="categorical_crossentropy", optimizer=opt,   
707.               metrics=["accuracy"])   
708.    
709.    
710. # train the model again, this time fine-tuning *both* the final set   
711. # of CONV layers along with our set of FC layers   
712. print("[INFO] fine-tuning model...")   
713. model.fit_generator(Train_gen,validation_data=Val_gen, epochs=100,initial_ep

och=81,steps_per_epoch=len(Train_gen.filenames) // 32,callbacks=callbacks_list, ver
bose=1)   

714.    
715.    
716.    
717. #=================================visuallise Training files ================

======   
718. from tensorboard.backend.event_processing import event_accumulator   
719. import matplotlib.pyplot as plt   
720.    
721. Train_acc = np.zeros(0)   
722. Train_loss = np.zeros(0)   
723. Val_acc = np.zeros(0)   
724. Val_loss = np.zeros(0)   
725.    
726. #run1   
727. trainFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs

\\2020031901\\run1\\train\events.out.tfevents.1584642807.JOHANN-
LAPTOP.25888.252226.v2")   

728. valFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs\\
2020031901\\run1\\validation\events.out.tfevents.1584642807.JOHANN-
LAPTOP.25888.252248.v2")   

729. #run2   
730. trainFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs

\\2020031901\\run2\\train\events.out.tfevents.1584643236.JOHANN-
LAPTOP.25888.3951176.v2")   

731. valFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs\\
2020031901\\run2\\validation\events.out.tfevents.1584643237.JOHANN-
LAPTOP.25888.3951198.v2")   

732. #run3   
733. trainFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs

\\2020031901\\run2\\train\events.out.tfevents.1584644366.JOHANN-
LAPTOP.25888.13123195.v2")   

734. valFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs\\
2020031901\\run2\\validation\events.out.tfevents.1584644367.JOHANN-
LAPTOP.25888.13123217.v2")   

735. #run4   
736. trainFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs

\\2020031901\\run2\\train\events.out.tfevents.1584645958.JOHANN-
LAPTOP.25888.28905284.v2")   

737. valFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs\\
2020031901\\run2\\validation\events.out.tfevents.1584645959.JOHANN-
LAPTOP.25888.28905306.v2")   

738. #run5   
739. trainFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs

\\2020031901\\run2\\train\events.out.tfevents.1584646645.JOHANN-
LAPTOP.25888.35118986.v2")   

740. valFile = os.path.join("D:\Johann\Workspace\Python\Tensorflow\Keras\mylogs\\
2020031901\\run2\\validation\events.out.tfevents.1584646646.JOHANN-
LAPTOP.25888.35119008.v2")   

741.    
742.    
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743. Train_ea = event_accumulator.EventAccumulator(trainFile,   
744.    ...:  size_guidance={ # see below regarding this argument   
745.    ...:      event_accumulator.COMPRESSED_HISTOGRAMS: 500,   
746.    ...:      event_accumulator.SCALARS: 0,   
747.    ...:      event_accumulator.HISTOGRAMS: 1,   
748.    ...:  })   
749.    
750. Train_ea.Reload() # loads events from file   
751.    
752.    
753. Val_ea = event_accumulator.EventAccumulator(valFile,   
754.    ...:  size_guidance={ # see below regarding this argument   
755.    ...:      event_accumulator.COMPRESSED_HISTOGRAMS: 500,   
756.    ...:      event_accumulator.SCALARS: 0,   
757.    ...:      event_accumulator.HISTOGRAMS: 1,   
758.    ...:  })   
759.    
760. Val_ea.Reload() # loads events from file   
761.    
762. #ea.Tags()   
763.    
764. Train_ea.Scalars('epoch_accuracy')   
765. #Train_ea.Scalars('epoch_loss')   
766. #Val_ea.Scalars('epoch_accuracy')   
767. #Val_ea.Scalars('epoch_loss')   
768.    
769.        
770.    
771. for T_acc,T_loss,V_acc,V_loss in zip(Train_ea.Scalars('epoch_accuracy'),Trai

n_ea.Scalars('epoch_loss'),Val_ea.Scalars('epoch_accuracy'),Val_ea.Scalars('epoch_l
oss')):   

772.     print(str(T_acc[2]) + " : "+ str(T_loss[2]))   
773.     Train_acc = np.append(Train_acc,T_acc[2])   
774.     Train_loss = np.append(Train_loss,T_loss[2])   
775.     Val_acc = np.append(Val_acc,V_acc[2])   
776.     Val_loss = np.append(Val_loss,V_loss[2])   
777.    
778.    
779. fig = plt.figure(figsize=(19.2,9.49))   
780. plt.style.use('seaborn-whitegrid')   
781.    
782.    
783. major_ticks = np.arange(0, 101, 10)   
784. minor_ticks = np.arange(0, 101, 1)   
785.    
786. ax = fig.add_subplot(1, 2, 1)   
787. ax.plot(Train_acc*100, color = 'C0',linestyle='solid',linewidth=1, label="Tr

aining Accuracy")   
788. ax.plot(Val_acc*100, color = 'C1',linestyle='solid',linewidth=1, label="Vali

dation Accuracy")   
789. title = 'VGG16 Training '   
790. ax.set_title(title)   
791. plt.legend(loc="upper left")   
792. ax.set_ylabel('Accuracy [%]')   
793. ax.set_xlabel('Epochs')   
794. #ax.set_xticks(major_ticks)   
795. #ax.set_xticks(minor_ticks, minor=False)   
796. ax.set_yticks(major_ticks)   
797. ax.set_yticks(minor_ticks, minor=True)   
798.    
799. # And a corresponding grid   
800. ax.grid(which='both')   
801.    
802. # Or if you want different settings for the grids:   
803. ax.grid(which='minor', alpha=0.2)   
804. ax.grid(which='major', alpha=0.5)   
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805.    
806.    
807. major_ticks = np.arange(0, 11, 1)   
808. minor_ticks = np.arange(0, 11, 0.5)   
809.    
810. ax = fig.add_subplot(1, 2, 2)   
811. ax.plot(Train_loss, color = 'C0',linestyle='solid',linewidth=1, label="Train

ing Loss")   
812. ax.plot(Val_loss, color = 'C1',linestyle='solid',linewidth=1, label="Validat

ion loss")   
813. title = 'VGG16 Loss '   
814. ax.set_title(title)   
815. plt.legend(loc="upper left")   
816. ax.set_ylabel('Loss')   
817. ax.set_xlabel('Epochs')   
818. #ax.set_xticks(major_ticks)   
819. #ax.set_xticks(minor_ticks, minor=True)   
820. ax.set_yticks(major_ticks)   
821. ax.set_yticks(minor_ticks, minor=True)   
822.    
823. # And a corresponding grid   
824. ax.grid(which='both')   
825.    
826. # Or if you want different settings for the grids:   
827. ax.grid(which='minor', alpha=0.2)   
828. ax.grid(which='major', alpha=0.5)   
829.    
830.    
831. plt.savefig('VGG16 Trainin_ACC_LOSS'+'.png', dpi=300,bbox_inches = 'tight',p

ad_inches = 0.2)   
832. plt.close()       

 

 


