

OPTIMISATION OF COD REMOVAL FROM THE EFFLUENT DISCHARGED BY THE WET CORN PROCESSING INDUSTRY IN WESTERN CAPE

by

THULETU MBITA

Student No. 209042567

Thesis submitted in fulfilment of the requirement for the degree

MASTER OF ENGINEERING IN QUALITY

In the Faculty of Engineering and Built Environment

At the Cape Peninsula University of Technology

Supervisor: Dr Bronwyn Claudia Swartz

Bellville

Date Submitted: 28 February 2021

CPUT Copyright Information

This thesis may not be published in part (in scholar, scientific or technical journals), or as a whole (as monograph), unless permission is granted by the company used for the conduct of this study.

DECLARATION

I, Thuletu Mbita, declare that the content of this thesis represents my own unaided work, and the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

A

28 February 2021

Signed

Date

ABSTRACT

This study was performed at a wet corn milling(WCM) plant in the Western Cape (WC). It explores the application of Six-Sigma DMAIC to develop a procedure for reducing the carbon oxygen demand (COD) concentrations in the WCM effluent, using the scientific approach – adsorption coconut granular activated (CGAC) method – relevant quality tools and quality techniques.

The research method followed a structured Six Sigma DMAIC framework for primarily investigating the root causes of non-conforming COD concentrations in the effluent generated by the WCM plant. Thereafter, it seeking a suitable procedure to improve the current management of the COD concentrations by the WCM plant to consistently adhere to the legislated COD concentrations requirement.

The data used in this research was collected by means of quantitative laboratory experiments. Where, trial one experiments used 36 acidic samples, and trial two used 36 alkaline samples. The data was interpreted and analysed using statistical tests. The validity of the data was assured by means of applying reference standards and repeated measurements under different environmental conditions.

The findings indicated that there was a gap in the current control measuring system used to ensure that the effluent was free of product cross-contamination. This research also found that the current procedures used for addressing the management of non-conforming of COD concentrations were not effective. Furthermore, the current COD detection system was found to be working, but not effectively enough; therefore, urgent continuous improvement is required to better its performance output.

This study recommends that an additional process step is required for treating the non-conforming COD concentrations to comply with the legislated COD standard requirement. Moreover, improvement is required in the skills development of the process owners to better monitoring of the interlinked processes. The current COD detection system requires improvement to enhance its performance.

Keywords: COD concentrations, effluent quality management, quality improvement, Six Sigma DMAIC, Process flow, RCA, hypothesis testing, and FMEA.

ACKNOWLEDGEMENTS

Firstly, I would like to give everlasting thanks to Elohim God for allowing me to start and complete this study. Thank you Lord for planting, watering and taking a good care of this sinner and refining me for the better, indeed I am humbled and grateful.

I also wish to acknowledge the following amazing and beautiful souls who supported me in many different ways and moulded me to be this person that I am today:

- I am extremely grateful to the departmental heads for granting me an opportunity to do my MEng at CPUT. I am highly honoured to be supervised by Dr Bronwyn Swartz: "Indeed you allowed me to develop new skills that are essential for survival in industry and in life".
- I would also like to give a special thank Mrs P. Jacobs for being a very supportive mom, my lifelong coaching mentor. Thank you for recognizing the hidden potential and for all the efforts that you made extracting and purifying it from the ore.
- I would like to thank my best friend Mr I.M. Madlakana for being a lifelong encouraging and extremely supportive friend... without you this could have never happened.
- To my parents: Patricia Ntsume, Zabelo Mbita, and Mrs N. Mbita (Stepmother); without your support none of this would be possible. I am honoured to have all of you in this journey called life.
- To my catalysts, my son Intando Mbita, Lisa Ntsume and Hope Ntsume, you give me strength and reasons to go and conquer all the impediments in front of me.

Final thanks to all my siblings, cousins, and spiritual sisters who have given me amazing support.

DEDICATION

This thesis is dedicated to my late Aunt Nombi Rhangana, my late Grandma Makhuboni Viginia Ntsume, my mother Patricia Ntsume, my mom Pauline Jacobs, and my son Intando Mbita

TABLE OF CONTENTS

CHA	PTER 1: SCOPE OF THE RESEARCH	
1.1 1.2	Introduction and motivation	
1.3	Research problem statement	
1.4	Aim of the study	
1.5	Primary research question	4
1.6	Investigative questions	4
1.7	Research objectives	5
1.8	Conceptual framework	5
1.8.1	Properties of GAC	5
1.8.2	Effluent quality management	6
1.8.3	Factors affecting GAC adsorption	6
1.8.4	Effluent quality improvement	7
1.9	Methodology and research design	8
1.10	Data collection and analysis	9
1.11	Data validity	10
1.12	Ethics	11
1.13	Research assumptions	11
1.14	Research constraints	11
1.14.1	Limitations	12
1.14.2	Delimitations	12
1.15	Chapter outline	12
1.16	Chapter 1 summary	14
	PTER 2: HOLISTIC OVERVIEW OF THE RESEARCH ENVIRONMENT	
2.1 2.2	Introduction to Chapter 2 Importance of water management in South Africa	
2.3		16
2.3	Industrial effluent charges	
2.5	Background to the WCM processing plant	
2.6	International organisational standards systems	
2.7	Introduction to WCM.	
2.8	WCM stages	
2.8.1	Dry corn inbound quality inspections and storage	
	Corn steeping	
	Steeped corn grinding and corn component separation	
	Wet starch modification	
	Glucose refinery	
2.9	Effluent generated by WCM processing stages and their environmental impact	
2.10	The impact of poor quality management of effluent	
2.11	WCM quality assurance and control overview	25

2.12	Chapter 2 summary	.26
3.1	Introduction to Chapter 3	.27
3.2	Background and motivation to the research problem	.27
3.3	A possible existing solution to the research problem	.28
3.3.1	Introduction to adsorption	.28
3.3.2	Optimisation of COD concentrations removal using the GAC adsorption	. 29
3.3.3	Impact of the variables on adsorption activity	. 30
3.5	Application of Six Sigma DMAIC	.31
3.5.1	Introduction the application of Six Sigma DMAIC	.31
3.5.2	Data analysis using quality tools	. 33
3.5.3	Process flow within the Define Phase	.34
3.5.4	T-test within the Measure Phase	. 34
3.5.5	Analyse Phase quality tools	.35
3.5.6	Improve Phase tools	.37
3.5.7	Failure modes effects application within the Control Phase	
3.6	Chapter 3 summary	.40
	PTER 4: RESEARCH METHODOLOGY	
4.1 4.2	Introduction to Chapter 4 Research worldviews	
4.3	Six Sigma DMAIC research methodology	
4.4	Data collection methods	
4.5	Data analysis methods following the DMAIC approach	
4.5.1	Application of the Six Sigma DMAIC Phases	. 50
4.6	Validity	.54
4.6.1	Internal validity	. 55
4.6.2	External validity	. 58
4.7	Considered ethics	. 59
4.8	Chapter 4 summary	. 59
	PTER 5: DATA ANALYSIS	
5.1	Introduction to Chapter 5	
5.2	Overview of Chapter 5	
5.3	Define Phase	.61
5.3.1	Wet Corn Milling effluent process flow	.61
5.3.2	Define Phase outcome summary	. 62
5.4	Measure Phase	.63
5.4.1	One-tailed t-test analysis within the Measure Phase	.63
5.4.2	Measure Phase summary	.64
5.5	Analyse Phase	.65
5.5.1	RCA analysis for the Condensate channel	.65
5.5.2	RCA analysis for the Effluent Tank channel	.67
5.5.3	RCA for the Glucose channel	.67

5.5.4	Analyse Phase summary	.68
5.6	Improve Phase	. 69
5.6.1	Trial one paired t-test analysis within the Improve Phase	.70
5.6.3	Trial two paired t-test analysis within the Improve Phase	.72
5.6.4	Trial two correlation analysis within the Improve Phase	.73
5.6.5	T-test for equal mean variances: A deduction	.74
5.6.6	Improve Phase summary	.76
5.7	Control Phase	.76
5.7.1	Failure mode effects analysis risk assessment of the current process	.77
5.7.2	Risk mitigation action plan	.79
5.7.3	Control Phase summary	.83
5.8	Validity	.83
5.8.1	Internal validity	.84
5.8.2	External validity	.89
5.8.3	Validity summary	.89
5.9	Chapter 5 conclusion	.90
	PTER 6: CONCLUSION AND RECOMMENDATIONS	
6.1 6.2	Introduction to Chapter 6 Summary of preceding chapters	
6.2.1		
	Summary of Chapter 2	
	Summary of Chapter 3	
	Summary of Chapter 4	
	Summary of Chapter 5	
	Summary of Chapter 6	
6.3	Revisited research questions, objectives and findings	
	Research problem statement	
	Aim of the study	
	Primary research question	
	Investigative questions	
	Revisited research objectives	
6.4	Conclusion to objectives and recommendations	
6.5	Recommendations for future research	
6.6	Conclusion	.99
7	REFERENCES	100
8	APPENDICES	116

LIST OF FIGURES

Figure	Page
Figure 2.1: Hydrologic cycle	15
Figure 2.2: Main process stages of the Wet Corn Processing	23
Figure 3.1: Application of quality tools and powdered active carbon	33
Figure 3.2: Fishbone or Ishikawa diagrams and six Ms	36
Figure 4.1: Four worldviews	42
. Figure 4.2: A research process followed in this study	43
Figure 4.3: Six Sigma DMAIC Methodology	45
. Figure 4.4: Stratified sampling plan for CGAC trials	48
Figure 5.1: Wet corn milling effluent process flow	62
Figure 5.2: Design of the COD treatment tank	80
Figure 5.3: Proposed WCM effluent process flow	81

LIST OF TABLES

Table		Pa
Table 2.1:	Effluent legal specification regulations	16
Table 4.1:	COD data collection plan of WCM effluent macro channels	47
Table 4.2:	DMAIC application plan for COD removal	49
Table 4.3:	T-test application plan for COD data interpretation collected from the	
	applicable WCM effluent macro channels	50
Table 4.4:	Application of the paired t-test to examine the mean difference between the	
	COD concentrations obtained before and after treatment	52
Table 4.5:	Procedures to be used for correlation analysis	52
Table 4.6:	Independent two-sample t-test plan for testing mean difference in the reduced	
	COD concentrations means of the two trials	53
Table 4.7:	Two-tailed t-test data interpretation plan for the internal validity of the	
	reference standards data to be collected during the trials	56
Table 4.8:	One-way ANOVA test plan for internal validity of the data to be collected	
	from the reference standards during the conduct of the trials	57
Table 5.1:	T-test results for the eleven WCM effluent macro channels	64
Table 5.2:	Condensate return channel RCA outcomes	66
Table 5.3:	Effluent tank channel RCA outcomes	67
Table 5.4:	Glucose channel RCA outcomes	68
Table 5.5:	Paired t-tests results for the mean difference between the COD concentrations	
	before and after treatments for trial one	71
Table 5.6:	Correlation coefficient results for trial one	72
Table 5.7:	Paired t-test results for the mean difference between the COD concentrations	
	before and after treatments for trial two	73
Table 5.8:	Correlation coefficient results for trial two	73
Table 5.9:T-test results for equal mean variance in the reduced COD means of		
	from the trials comparison	75
Table 5.10:	FMEA risks assessment results of the WCM effluent process	78
Table 5.11:	FMEA risks assessment results of the proposed WCM effluent	
	process	82
Table 5.12:	Precision and accuracy results obtained from the reference standard data	
	collected by the WCM laboratory	85
Table 5.13: Precision and accuracy results for the reference standards data		
	during the trials	86
Table 5.14:	Two-tailed t-test results obtained using the reference standard data collected	
	during the trials	87
Table 5.15	One-way ANOVA tests results obtained using the reference standards data	51
	collected during the trials	88
Table 5.16:	Linearity results obtained for the reference standards data collected during	50
	the trials	88

APPENDICES

Appendix A: Research standard operating procedure for COD Analysis	116
Appendix B: Data Analysis method, description & calculation formulas	120
Appendix C1: T-table	124
Appendix C2: F-table	124
Appendix D1: WCM reference standard measurements	125
Appendix D2: WCM reference standard % bias & precision calculations	126
Appendix D2: WCM reference standard linearity calculations	129
Appendix E1: Trial one reference standard calculations for % bias & precision	130
Appendix E2: Trial one reference standard calculations for %bias & precision	132
Appendix F1: Trial one reference standard tailed t-test calculations	134
Appendix F2: Trial two reference standard tailed t-test calculations	136
Appendix G: Trials One-way ANOVA calculations	138
Appendix H1: Linearity calculations for trial one reference standards	141
Appendix H2: Linearity calculations for trial two reference standards	144
Appendix I1: Anion COD concentrations data	147
Appendix I2: Cation COD concentrations data	148
Appendix 13: Effluent tank COD concentrations data	149
Appendix I4: Glucose COD concentrations data	150
Appendix I5: Liquefaction COD concentrations data	151
Appendix I6: Condensate COD concentrations data	152
Appendix I7: Evaporator COD concentrations data	153
Appendix I8: Concentrator COD concentrations data	154
Appendix I9: CPV tank COD concentrations data	155
Appendix I10: Condensate return COD concentrations data	156
Appendix I11: Hot water COD concentrations data	157
Appendix J: One-tailed t-test calculations for the WCM macro channels	158
Appendix K1: Trial one COD concentrations improvement data	159
Appendix K2: Trial two COD concentrations improvement data	165
Appendix L1: Paired t-test calculations for trial one	171
Appendix L2: Correlation calculations for trial two	175
Appendix M1: Paired t-test calculations for trial two	184
Appendix M2: Correlation calculations for trial two	188
Appendix N: T-test calculations for equal variance means	196
Appendix O1: Severity rating scale	204
Appendix O2: Occurrence rating scale	205
Appendix O3: Detection rating scale	206
Appendix P: Troubleshooting procedure	207

LIST OF ABBREVIATIONS

Abbreviation	Full name		
COD	Chemical oxygen demand		
CGAC	Coconut shell granular activated carbon		
DMAIC	Define, measure, analyse, improve and control		
FMEA	Failure mode effect analysis		
g	grams		
GAC	Granular activated carbon		
IRS	Internal Reference Standard		
Min	Minutes		
pН	I Potential hydrogens		
QC	Quality control		
SA	South Africa		
SANAS	South African National Accreditation System		
SHE	Safety, Health and Environment		
SOP	Standard operating procedure		
TOC	Total organic carbon		
WC	Western Cape		
WCM	Wet corn milling		
ISO 9001:2015	International Organization for Standardization for quality management		
	systems		
ISO 14001:2015	International Organization for Standardization for environmental		
	management systems		
ISO 17025	General requirements for the competence of testing and calibration		

GLOSSARY OF TERMS

Term	Definition		
Activated carbon	A powdered, granular or pelletized carbon product obtained by heating		
	or chemically treated charcoal to increase its adsorptive influence		
	(Rogowsky, 2006: 1).		
Adsorption	A process of adhesion of atoms, ions or molecules onto the surface of		
	an activated carbon (Roque-Malherbe, 2007: 39).		
Carbon	A naturally occurring non-metallic element that is present in all		
	organic compounds (Jhaveri & Roosa, 2009: 110).		
Chemical oxygen	Test used to measure the amount of dissolved oxygen required to		
demand	oxidize and stabilize organic and inorganic content of the sample		
	solution (McKinney, 2004: 225).		
Functional groups	The group of atoms within a molecule that are responsible for its		
	chemical behavior (Hanson, 2001: 1).		
Gemba walk A walk conducted in a process to evaluate its state (Mann, 200			
Hydrocarbons	Compounds that consists of hydrogen and carbon (Arora, Sachdeva, &		
	Sardana, 2018: 128).		
Insoluble proteins	Proteins that cannot be dissolved (Hermann & Razin, 2002: 511).		
Macro channels	Sub-process of steps in a process (Welch, 2008: 120).		
Mechanism	A systematic sequence of elementary reactions that occur during the		
	chemical change in a chemical reaction (Tomlin & Turanyi, 2014: 38).		
Potential of hydrogen	The parameter that is used to express the acidity or alkalinity of a		
	solution on a scale that ranges from 1 to 14 (Cameron & Craig, 2009:		
	17).		
Proteins	Groups of organic macromolecules that contain hydrogen, carbon,		
	oxygen and nitrogen (MacLaren & Morton, 2012: 50).		
Solute	The analyte sample that gets filtered (Raj, 2002: 117).		
Wet corn processing	A process of milling corn, involving preliminary soaking in another		
	liquid and separating the corn into its various components (Ndlovu,		
	2013: 18).		

CHAPTER 1: SCOPE OF THE RESEARCH

1.1 Introduction and motivation

This introductory chapter provides insight into the research environment of this research study, which seeks to create the most efficient filtration-bed granular activated carbon (GAC) procedure for optimal removal of COD concentration in the WCM-generated effluent in the WC. The primary concern of this research is the inconsistent adherence of the WCM to meet the government COD requirement for the disposal of the discharged effluent, and this chapter provides the background to the research issue, the intent of this research, and research goals of this report.

Brouckaert, Buckley and Gianadda (2002) explain the wet corn milling processing as a process of separating raw corn kernel into its components and transforming corn starch into different grades of glucose syrups. According to Garcia Einschlag (2011: 8), the amount of water used during wet corn milling processing is 0.64 m³/ton product; with the amount of COD loads 2.65 m³/ton product. Ndlovu (2013 :72) commented that only one of the WCM plants in South Africa (SA) discharges 1782 kilolitres of effluent per day with regard to this context. In addition, WCM is typically among the top two processes that produce the largest amounts of effluent with high COD concentrations across the worldwide (Islam, Sangeetha, & Thangadurai, 2020: 2006). Garcia Einschlag (2011: 8) states that wet corn milling consists mostly of organic matter, which is the source of high COD in it.

Brouckaert, *et al.* (2002) explain that the effluent generated by wet corn milling processing commonly contains high concentrations of dissolved solids; which translates into an elevated level of COD in the effluent. Ndlovu (2013: 69) reasoned that the high protein and starch content which is emitted as a direct result of the wet corn milling process is the primary reason why COD concentrations in the effluent is so high. Significantly, Das, Misra, Rao, and Swamy, (2005: 41) observe that elevated COD concentrations in water leads to the depletion of biodiversity in aquatic organisms. High COD content signifies the lack of oxygen water, hence the lessening of biodiversity (Van Schoor, 2005).

Rising levels of COD concentrations in the effluent generated by the WCM industry is causing concern about effluent quality control in this industry field (Akpor & Muchie, 2011: 2379). The poor quality (high COD) of the discharged effluent leads to increasing eutrophication and bacteriological pollution of rivers and dams, which is also significant (Hassan & Schreiner, 2011: 77). Ndlovu (2013: 1) stated that due to a rise in water demand in SA, the situation was exacerbated; which is a partial consequence of the growth and expansion of the WCM industry. For this reason, the amount of the effluent discharged into the municipal sewage system has also increased (Islam, *et al.*, 2020: 2006). Therefore, SA made it mandatory, through the promulgation of the South African Water Act No. 54 of 1956 that the quality of the effluent should be treated to the required standard before its release into the municipal systems (Mema, 2010: 60). The legislation for the treatment of effluent specifies that the COD concentrations of the effluent discharged may not exceed 5000 ppm which is equivalent to 5000 mg/L; according to the South African Water Act, No. 36, 1998 (South Africa, 2013: 7). Bwapwa and Jaiyeola (2016: 1) moot that the availability of usable water is a major concern in SA and forecast that water demand will exceed supply by 17% by 2030.

This foregrounds the important role of water in the industry and also the critical need for effective management of water. To prevent depletion of aquatic organisms, the South African government has legislated that municipalities must treat effluent water before it is discharged into rivers or oceans (Hassan & Schreiner, 2011: 77). Hence, this study focuses on decreasing COD concentrations in WCM effluent to improve the quality of the effluent discharged into the municipal water system in the WC.

1.2 Background

This quantitative study was conducted in a laboratory at a WCM plant in the WC, SA. The WCM manufactures different types of products from raw corn, and in 2013 it was reported that they generated an average of discharges 1782 kilolitres of effluent each day (Ndlovu, 2013: 72). Garcia Einschlag (2011: 8) state that effluent generated by the WCM is categorised as 'high COD concentrations', due to its high protein and starch content. The focus of this study is on the laboratory treatment of the effluent generated by WCM with GAC to manage the level of COD by reducing the concentrations of proteins and starch in the effluent to below admissible legislated levels.

Ndlovu (2013: 1) reports that the concentrations of the COD in the effluent generated by the WCM industry in SA differs from day to day, depending on the characteristics of the raw material and the effectiveness of the WCM processes. Moreover, in an interview, Mr Gwadla, systems manager at the WCM (2017) admitted that there are instances when effluent COD levels discharged by the WCM exceeded the regulated COD limit of 5000 ppm. He added that the average COD concentrations of the effluent ranged from 2000 ppm to as high as 30 000ppm. Mr Jackson, System plant manager (2017) pointed out that an increase in effluent COD concentrations was noted after the WCM plant had attempted to reuse its processed water to reduce fresh water supply consumption.

Notably, the Department of Water Affairs and Forestry (2000) states that failure to comply with the legislated effluent COD specifications results in financial penalties, or potential loss of the effluent discharge license and this can ultimately result in company or industry shutdown. Furthermore, Hot Water Treatment (2013) asserts that poor quality of the discharged effluent results in additional fresh water being required to dilute the effluent, besides additional treatment chemicals, which elevates the

labour cost required to treat the effluent at the City of Cape Town Water Treatment Stations. Thus during production runs at the WCM plant, a production operator collects samples which are then sent to the WCM internal laboratory for specific tests to be done (Gwadla, 2017). Six different effluent samples are collected from various sampling sites, namely condensate, glucose effluent, wet milling effluent, and sump effluent on the production line at 2 hour intervals twelve times per day (Jackson, 2017). In an interview, Gwadla, (2017) stated that the laboratory's testing equipment is calibrated annually by a South African National Accreditation System (SANAS) accredited vendor to validate the precision of instrumentations used in the laboratory. The tests performed on the samples are the total organic carbons (TOC) test, potential hydrogens (pH), conductivity and temperature measurements (Gwadla, 2017). The samples are then combined in an auto total effluent sample tank to form a 24hour composite sample for that day, and the same tests are redone on the composite sample. The results of the laboratory tests are communicated to the production operators for further process monitoring and adjustment, for pH, and for conductivity adjustments (Gwadla, 2017). Currently, there is no pretreatment system for effluent except for pH control prior to discharge to municipal pipes, even when the COD concentrations exceeds the municipality's specifications for industrial effluent discharge. Thus at present all the effluent, including the non-conforming effluent, is discharged into the municipal drains.

Concurrently, a City of Cape Town (Water and Sanitation Department: Scientific Services Branch) representative collects one effluent sample from the composite sampling effluent tank on the WCM site once every six weeks (Gwadla, 2017). Multiple analyses, including COD, are performed on the sample in City of Cape Town laboratories to determine if the effluent conforms to the prescribed limits. If the effluent does not meet minimum specifications, the City of Cape Town will issue a contravention to the WCM organisation for the discharged effluent and a follow-up sample is taken without pre-notification to the WCM plant (South Africa, 2013: 1-14).

Contraventions that are issued by the City of Cape Town, result in an increase in charge of effluent treatment and is calculated using the following factors: COD concentrations, pH, conductivity and the amount of potable water used for the particular month (Gwadla, 2017). The municipality stipulates that the COD value used in the industrial effluent charge process is calculated using the average of the last four COD measurements recorded by the City of Cape Town Water and Sanitation Department: Scientific Services Branch (South Africa, 2013:7).

Even though the WCM is ISO 14001 certified, at present this WCM organization does not have facilities to pre-treat its effluent COD prior to discharge, when it exceeds the municipality regulatory limit (Gwadla, 2017). Therefore, this research sets out to assess different filtration procedures for optimal removal of COD from the WCM effluent.

1.3 RESEARCH PROBLEM STATEMENT

The effluent discharged from a WCM does not consistently adhere to the required regulatory specification limit for the COD concentrations in the discharged effluent by the WCM plant based in northern suburb industrial area in the WC.

1.4 Aim of the study

This study aims to develop and document a processing step, which will improve the quality of the effluent (reduce COD concentrations) discharged by a WCM plant located in the WC province of SA to consistently adhere to the legislated discharge standard. In addition, the process introduced must be easily controlled at the operational level and will consider environmental concerns.

1.5 Primary research question

Can a quality management procedure be developed for a WCM plant to optimise the removal of COD in the effluent discharged to meet regulatory specifications consistently?

1.6 Investigative questions

- 1.6.1 Which stages in a WCM process contribute to increasing concentrations of COD in the discharged effluent?
- 1.6.2 What are the causes of the high COD content present in the discharged effluent of the various process stages?
- 1.6.3 Can a process variable(s) be identified that when adjusted yields the optimal removal of COD from WCM effluent?
- 1.6.4 Can a modified procedure be employed to reduce COD concentrations in effluent generated by the WCM process to comply with the regulatory specification consistently?

1.7 Research objectives

- 1.7.1 Investigate which stages in wet corn processing have a significant influence on the subsequent high COD in the discharged effluent.
- 1.7.2 Establish the causes of the increasing levels of COD in the effluent generated by a WCM.
- 1.7.3 Identify variables that can be adjusted to yield the optimal removal of COD from WCM effluent.
- 1.7.4 Establish an effective procedure for removal of the COD in the effluent generated by a wet corn milling process.

1.8 Conceptual framework

This study examines the extent to which different variables are able to influence the removal of COD concentrations from the effluent discharged by a particular WCM plant. The adjustable variables which are referred to in the third research question (as mentioned in section 1.6.3) and objective (as mentioned in section 1.7.3) above are the dependent variable in this study, includes the COD concentrations in the effluent sample. The independent variables are the quantity of the GAC applied for the filtration, pH and filtration time. A Six Sigma approach is proposed by Jelena, Krivokapic, Sokovic, and Vujovic (2009: 4) that is capable of framing the concepts included in this framework.

1.8.1 Properties of GAC

Research conducted by Aluyor and Badmus (2008: 3887) demonstrated that GAC filtration is an effective method for COD removal from effluent. They claim that GAC is the most chemically stable when compared to other methods and it is readily available. Consistent with this, Gaikwad and Mane (2013: 642) also reported that GAC is the best filtration method because of its multifaceted nature. Moreno-Castilla (2004: 5) noted that the functional groups in GAC that contain oxygen, namely carboxylic, phenolic, lactonic and carbonyl groups, are the most important since these result in most efficient adsorption activity of the GAC surface area.

Granulated activated carbon exist in a form of coconut-shell activated carbon (CGAC) (Dawn, Kumari and Nirmala, 2015: 238). Galloway (2019) reasoned that the CGAC's internal structure consists of millions of pores that form interconnected capillary passages for the molecules, which provides the optimal removal of COD. This research is focussed on COD removal using coconut shell GAC as an adsorbent.

Jong, Posttinger, and Sanford (2008: 97) stated that CGAC provides the most efficient removal of COD concentrations from the effluent. This is in agreement with the view of Singh and Verma (2019: 288), who adds that a key element of activated carbon's adsorption is the extensive internal surfaces of the pores, which allows the filtered sample to pass through varying pore sizes and optimizes the adsorption activity. The aim of this research is to establish a modified adsorption method to achieve optimal removal of COD from the effluent generated by a WCM plant in the WC.

1.8.2 Effluent quality management

The South African Department of Water Affairs and Forestry (2000) expresses the view that effluent management involves monitoring the quality of effluent that is discharged from organizations. Therefore, an integral part of effective effluent management is conducting experimental measurements of the effluent to ensure the quality is adequate. The results of measurements are analysed to evaluate whether the discharged effluent conforms to the prescribed regulatory requirements. The quality of the effluent is affected by quality variables which are also the components of water quality (as mentioned in section 1.2 of this chapter). The amount of these components that are present in the effluent has an impact on the quality of the effluent. It is believed that introducing effective and efficient operations will lead to a quality of the effluent discharged that conforms to requirements. These activities include process control tests, data analysis, and management commitment, to be able to implement interventions that ensure the quality of the effluent is improved and maintained in accordance with effluent quality regulations (Icon Water, 2015). Botes, Oelofse, Taljaard, Vilijoen (2004) stated that introducing efficient management of the quality of the effluent involves quality improvement initiatives which include the use of quantitative studies, which has advantages such as those highlighted in the section that follows.

From the preceding discussion it is deduced that CGAC filtration procedures may be regarded as an effective mechanism to remove COD concentrations from WCM effluent and thereby manage the quality of effluent.

1.8.3 Factors affecting GAC adsorption

According to Nekoo and Shohreh (2013: 87) and Davids (2006: 109), adsorption of the hydrocarbons by GAC can be improved by artificially manipulating variables during the adsorption procedure to optimize the removal activity of COD concentrations from the solute. Ghodale and Kankal (2014: 38) reported that there are many variables that can influence the optimisation activity of GAC; however, in this study, only three variables were studied, namely CGAC surface area, CGAC contact time with the

solute, and the effect of hydronium ions (pH). These variables were manipulated in this study with the aim of establishing the most suitable procedure for the optimal removal of COD concentrations in the WCM effluent.

Ushakumary (2013: 5), is in agreement with Nekoo and Shohreh (2013: 87) that different quantities of GAC beds affect the amount of COD concentrations removal in the GAC adsorption process. Wu (2004) also agrees with Ushakumary (2013: 8) that the availability of GAC exposure/capacity optimizes the removal of COD concentrations during the GAC filtration process. Another relevant variable that the three authors note for impact on the optimisation of GAC filtration is the contact time. Ghodale and Kankal (2014: 38) concur that the increase in GAC contact time with solute during the filtration process results in optimal removal of the concentrations of the contaminants. Furthermore, Davids (2006: 109) highlights another variable in reporting that the optimal removal of COD concentrations in a solution can be achieved when the pH of the filtered solution contains more hydroxyl ions and fewer hydronium ions. HAYCARB Activated Carbon Solutions (2020) mention the following advantages of using a GAC adsorption method:

- > Removal of both organic and inorganic substances from the effluent,
- > reduction of residual substances that contain chemicals from the effluent,
- > large scale removal of residual COD concentrations over sufficient low of a solute,
- > reduced land area requirement for GAC implementation,
- reduced sensitivity to daily flow variations,
- > simplicity of implementation and operational flexibility control at a plant level, and
- > it is dust-free and enables easy filtration of the treated effluent.

Thus, different CGAC filtration procedures investigated during the conduct of this research study by manipulating the different variables mentioned above with the aim of identifying the most significant procedure that results in an optimal removal of COD concentrations in the effluent discharged by the WCM plant.

1.8.4 Effluent quality improvement

Industrial effluent is considered to be one of the most significant sources of water pollution. The United Nations (2017) argues that effluent discharged into coastal areas, rivers and lakes results in serious problems and causes negative effects for the ecosystem and consequently human life. Moreover, Makgae (2011) claims that in the past, industry was solely geared towards economic aspects and totally

neglected ecological issues. In short, industrial activities release huge quantities of wastes into the environment.

The municipal bylaws regulating effluent in South Africa are considered to be strict according to Hot Water Treatment (2013), as the industries are currently facing unprecedented discharge fees in the view of this author. In addition, South Africa introduced a range of additional legislative measures aimed at improving the quality of the environment (South Africa, 2013: 7). It is worth noting that effective regulation of hazardous waste requires sufficient compliance and enforcement capacity on the part of Department of Environmental Affairs (Makgae, 2011). The author also elaborated that the waste management and improvement in South Africa are currently governed by means of a number of pieces of legislation, which include:

- > The South African Constitution Act 108 of 1996,
- ➢ Hazardous Substance Act 5 of 1973,
- > Environmental Conservation Act 73 of 1989,
- ▶ National Water Act 36 of 1998,
- > National Environmental Management Act No. 107 of 1998,
- > Minerals and Petroleum Resources Development Act 28 of 2002,
- > Air Quality Act 39 of 2004, and
- > National Environmental Management: Waste Act 59 of 2008.

This study sets out to develop a suitable industrial procedure to reduce the COD concentrations in the effluent discharged by the WCM plant in order to consistently meet regulatory requirements.

1.9 Methodology and research design

According to Williams (2007: 66), research methodology involves systematic methods adopted by a researcher to answer the research questions of the particular research study. Kumar (2008: 6) also acknowledges that research methodology is concerned with identifying a systematic approach to find solutions to the research problem of a study. Furthermore, Basson and Uys (2005: 8) mention that when doing research, there are two methodological models, namely quantitative and qualitative methodology.

Quantitative research is based on the measurements of quantity or amount, whereas qualitative research is concerned with phenomena involving types or qualities (Kothari, 2004: 3-4). With specific reference to laboratory experiments, Dijkstra, Forbes, and France (2005: 551) mention that quantitative research involves an empirical research study whereby the experimental data is used to describe a correlation or a relationship between a dependent and independent variable. Heppner, Owen, Thompson, Wampold,

and Wang, (2016: 117) add that laboratory experiments examine 'causality' by systematically varying or altering an independent variable or a set of independent variables. This study is focused on laboratory experiments to establish a more efficient and effective procedure for the reduction of COD concentrations in the WCM effluent. The laboratory experiments in this study involve stipulating the independent variables of the effluent to improve the quality of effluent discharged by the WCM.

Experimental designs are sometimes known as the scientific method because of their popularity in scientific research (Muijs, 2011: 11). According to Taylor (2005: 95), the scientific method involves manipulation of experimental variables under rigorously controlled conditions. Duckworth and Hoffmeier (2016: 38) propose that Six Sigma DMAIC methodology can be used in scientific methods to find solutions to the problem of interest. This methodology uses the scientific method and quality tools to provide solutions to a problem (Elshennawy, Gupta, Mcshane-Vaughn, & Walker, 2009: 319). Furthermore, Juneja, Sharma, and Verma (2014: 1065), claim that Six Sigma may be used as a research methodology during the process of academic research. Therefore, this study deduces that Six Sigma is appropriate for the process improvement undertaken.

Tayntor (2003: 23) state that the five phases of the DMAIC may be referred to as a process improvement tool. DMAIC is an acronym for five interconnected phases of a process improvement study namely 'Define', 'Measure', 'Analyse', 'Improve' and 'Control'. The Six Sigma DMAIC approach employs data for improving, optimizing, and stabilizing processes of interest (Gejdos, 2015). The DMAIC tool is thus adopted as a framework in this study in an endeavour to improve the quality of effluent discharged by WCM by reducing the COD concentrations.

1.10 Data collection and analysis

The analytical results of experiments performed in the laboratory at the WCM plant in the laboratory at a WCM plant in the WC are the primary data of this research study. Systematic and stratified random sampling are the sampling methods used in this research to ensure that the data interpretation of the findings achieved from the effluent samples is representative of the WCM effluent.

The samples collected were tested for COD concentrations before and after CGAC treatment, using a benchtop photometer. Both tests have been conducted in duplicate. Three different types of analytical tests (one for each variable) were analysed. In order to decide whether the procedure resulted in optimum removal of COD concentrations from the effluent. The above-mentioned three independent research variables were artificially manipulated and their influence on COD concentrations were evaluated with the aim of establishing whether the procedure resulted in optimal removal of COD

concentrations from the effluent. The result of the observations for each treatment were documented, including the COD concentrations result.

The representative effluent samples were collected from the effluent reservoir and analysed for COD concentrations before treatment. The sampling methods, data collection methods and data analysis methods applied in this research study are described and discussed in greater detail in Chapter 4 and Chapter 5 of this thesis. A quantitative approach was followed because of the analytical nature of this study, namely laboratory experiments performed during this research.

1.11 Data validity

According to Haradhan (2017: 59-60) both internal validity and external validity are crucial when performing experiments to provide the reader with assurance that the conclusions of the research study are correct. Babbie and Rubin (2010: 83) define validity as the extent to which an empirical measure adequately reflects the real meaning of the concept under consideration. Franzen (2002: 34) state that "…validity in an empirical sense may be defined as a statistical relationship between the results of a particular procedure and characteristics of interest". Furthermore, Taylor (2005: 2) adds that validity in empirical studies is proven by performing a validation procedure which involves the close scrutiny of logical arguments, and gathering empirical evidence to assure that the method followed yields accurate and valid results.

Internal validity the measure of the consistency of the measurements or the degree to which the instruments measure the same way each time that it is used (Breakwell & Rose, 2006: 73), under the same specified conditions with the same subject. The reliability of the data collected by this study is assured by:

- > Keeping the laboratory temperature constant throughout the conduct of the research,
- keeping the analytical balance used at controlled room temperature, to prevent moisture interference and eliminate random errors,
- > storing the GAC under controlled conditions that are specified by the supplier, and
- weighing the amount of the GAC used in the experiments accurately on a pre-calibrated analytical balance.

In this study validity measures were taken to provide the assurance that the quantitative primary data was truly representative of the population and secondly, to ensure that the data analysis and interpretation of the data was valid, accurate, trustworthy and repeatable.

1.12 Ethics

Gray (2011: 63) refers to ethics as the "rules of conduct" in research. Ethics is a word that is derived from the Greek word "ethos", meaning one`s character and ethics are linked to morality (Bless, Higson-Smith, & Kagee, 2007: 140). Ethics is the branch of philosophy that addresses questions about morality; research ethics is concerned with moral behaviour in research contexts (Wiles, 2013: 4). The following ethical procedure was observed in this research study:

- The researcher obtained approval from the organization on which the research was to be conducted,
- the researcher signed a confidentiality letter on the security of information shared or found, that might cause harm to the organization of interest,
- \succ the researcher adhered to the obligation of ethical practice during the research,
- > in this research, the findings were reported honestly, and
- > no data was fabricated to support a conclusion.

1.13 Research assumptions

Dantzker and Hunter (2012: 51) define research assumptions as a statement of concepts that are believed to be true with little or no evidence supporting it. Burns and Grove (2011: 48) argued that assumptions are things that a researcher takes for granted and accepts as valid without concrete proof. The research assumptions of this study are as follows:

- > Sampling was performed following with the approved SOPs,
- > the same grade experimental apparatus was used throughout this study,
- > all analytical instruments to be used were calibrated and verified before use,
- > the results of the measurements obtained were recorded accurately and kept safely, and
- > the results were accurate, and interpreted following a standard operating procedure.

1.14 Research constraints

According to Koh and Owen (2000: 38), research constraints refer to uncontrollable events that might interfere with the results of the study, restrictions related to restrictive weaknesses that present potential boundaries to the validity of the result, or a limit to which the study was significantly confined. The data was collected from a WCM plant that is located in the WC. The results and findings of this study

cannot be generalised to different organizations that do not have an identical process and environmental factors.

1.14.1 Limitations

Kuiper (2009: 255) defines limitations as the inadequacies of the study that cannot be controlled by a researcher. Koh and Owen (2000: 91) add that limitations are uncontrollable events that may interfere with the results of a study. Limitations may include any changes that take place in samples due to the time duration from when the data needs to be collected and measured, as well as weaknesses in the measurement instruments. Limitations are the variables or boundaries of the research established by factors or people other than the research.

The following limitations were part of this research:

- > The availability of literature which directly speaks to the selected research topic,
- > absence of past studies in the selected study environment. and
- > this study was only performed on one WCM plant located in the WC region in SA.

1.14.2 Delimitations

Kuiper (2009: 255) states that delimitations are the characteristics that limit the scope of a study and it defines the boundaries of a study which are controlled by a researcher. Sharma (2014: 96), writes that delimitations indicate what is going to be included in the study. The delimitations of this study will consist of the following:

- > Participation in this study included only one WCM in the laboratory,
- > the research was limited to a WCM plant that is located in the WC region, and
- this research focused on COD removal using adsorption method, but it focused on using the laboratory GAG filtration technique.

1.15 Chapter outline

Chapter 1- Scope of the research: This chapter outlines the aim of this study namely, to reduce COD concentrations from the effluent discharged in WCM plant located in the WC Province. This chapter briefly explains where the study was conducted; the research environment, including the significance of the study; the research statement, questions and objectives; the rationale and conceptual framework; research design and methodology; data collection and analysis; ethics; research assumptions and constraints; and the research plan.

- Chapter 2- A holistic perspective of the research environment: This chapter elaborates on the WCM plant processes and their outputs, systems implemented in the WCM plant, quality management of the effluent and the government regulations applicable to this industry. The main focus is on the COD concentrations of the effluent generated by the WCM process stages, and their impact on the composite of the effluent COD concentrations prior to discharge into the municipality drains. This chapter also navigates the current practices or measures of controlling the quality effluent (COD concentrations) adopted by the WCM plant.
- Chapter 3- COD removal literature review: A brief high level review of the importance of maintaining low COD content from the discharged effluent and its effect on the environment is provided in this chapter. Accompanied by an in-depth literature discussion on the concept of wet corn processing effluent (COD) quality improvement in laboratory-scale. The relevant scientific ways of reducing CODare explored, to establish a suitable method for this study. The methodology selected to explore the effectiveness of the selected COD removal method is presented, namely Six Sigma DMAIC.
- Chapter 4- Research Design and Methodology: This chapter starts by presenting theories and worldviews of research. Following this, details of the research design and research methodology that are relevant in this study are provided. The discussion of research design includes a description of all the applicable data collection and interpretation methods. The discussion on research methodology showcases the systematic approach of collecting, analysing, interpreting and making conclusions about the results obtained from the collected data. The ethics and data validity of this study are provided.
- Chapter 5- Data interpretation and analysis of the results: This chapter will present the data interpretation and analysis as described in Chapter 4, following the Six Sigma DMAIC methodology. The first data analysis conducted on the raw effluent COD using systematic random sampling and applicable tools to describe the data is described. Then further data, collected using stratified random sampling and used to test the effectiveness of the selected COD removal scientific method, is presented. The validity of the study is discussed, together with the risks of the method as tested using Failure Modes Effects Analysis (FMEA).
- Chapter 6- Conclusion and Recommendations: In this chapter, the research problem, research questions, and research objectives are revisited with the purpose of evaluating if they have been achieved. Chapter 6 concludes by providing suggestions for further studies that can be conducted in this field for more improvement, research recommendations and conclusion.

1.16 Chapter 1 summary

This chapter presented a high level context and background of the research environment with the justifications for performing this study, which took place at a WCM plant in the WC. The focus of this study rested on the COD level of the effluent discharged in the WCM plant. The aim of this study was to reduce the effluent COD level, in order for it consistently meet the regulatory effluent discharge requirement. To achieve the research objective, the quality improvement methodical approach known as Six Sigma DMAIC was adopted. Six Sigma's DMAIC provides a framework and directs the sequence of laboratory experiments and data analysis that are performed in a process of finding a way to optimise the removal of the COD from the WCM discharged effluent.

In the next chapter a holistic background to this research project is presented in order to provide clearer insight into the environment where this research took place, and the research problem.

CHAPTER 2: HOLISTIC OVERVIEW OF THE RESEARCH ENVIRONMENT

2.1 Introduction to Chapter 2

This chapter serves as the natural progression from Chapter 1 as it provides the reader with an in-depth holistic environmental overview relevant to COD concentrations in the effluent generated by the WCM plant in the WC. It commences with an explanation of how the water is formed and sustained and presents the profile of water contained on the planet. Thereafter, it discusses the availability of freshwater and factors that influence freshwater scarcity. An effluent profile is then presented and the consequences of non-conformity of the COD concentrations in the discharged effluent are highlighted. This chapter concludes with a discussion of the impact of the reusing the in-process water in the WCM processing stages on the quality of COD concentrations.

2.2 importance of water management in South Africa

Water Wise Rand Water (2018) commented that it is an undisputed fact that all the living things on this earth are dependent on water for survival. The USGS Water Science School (2016) states that the water on this earth is old and constant; therefore, water cannot be increased nor decreased and this emphasises the importance of recycling water. Frerot (2011: 20) reports that the earth's surface is covered with approximately 72% water, of which 97% is contained in in the sea and 2.5% is underground water and water that is frozen around the north and south poles and mountain glaciers. The author concludes that only 0.3% of the fresh water is available for human use. Logan and Power (2010: 25) provide the image of hydrologic cycles in on **Figure 2.1** below.

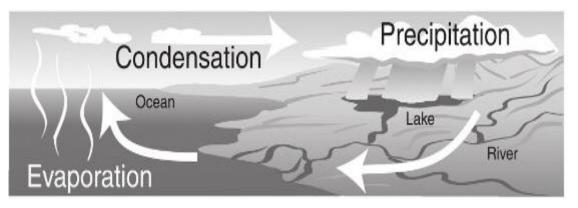


Figure 2.1: Hydrologic cycle (Logan & Power, 2010: 25)

Water News (2018) argues that water shortage is a major concern in SA, and that the WC worst drought in 2016 and 2017. Accordingly, the City of Cape Town declared increasing water restrictions from 2016 to 2018, which included an increase in water consumption fees. It is noteworthy that the World Cup

Legacy Report (2011) states that SA receives an annual rainfall of 492 mm, whereas the rest of the earth receives 985 mm, thus the percentage of rainfall in SA is a mere 50% compared to the global average rainfall. This agrees with Water News (2018), which also reported that since January 2016 the rainfall per meter square received in SA ranges from 300 to 500mm per annum, which is much less than the worldwide average.

South Africa has thus completely revised its legislative and policy framework, to govern effluent quality discharged into the oceans and dams due to increasing COD concentrations, effluent volumes and decrease in the availability of freshwater (Water Wise Rand Water, 2018). Hence, SA made it mandatory, through the promulgation of the South African Water Act No. 54 of 1956 that the quality of the effluent should be treated to the required standard before it is discharged into municipal treatment dams (Mema, 2010: 60-61).

2.3 Management of effluent in South Africa

In the past, industrial effluent regarded as an unimportant and troublesome by-product of a manufacturing process (Water Wise Rand Water, 2018). However, since 1996, South African municipalities implemented a regulatory requirement for the legislation of the discharge of effluent. This legislation specified the minimum requirements of discharged effluent intending to protect municipal sewage pipes from damage caused by the effect of the pH of effluent or flammable or corrosive effluent (Water Wise Rand Water, 2018). A COD concentrations regulatory requirement was implemented to avoid overburdening the local treatment works due to public and environmental pressure (Hot Water Treatment, 2013). Recently Water Wise Rand Water (2018) reported that the municipal limits have become even stricter on South African industries by tightening these requirements. This was due to increased volumes of the discharged effluent and COD's in the effluent received in the municipality effluent treatment facilities (Gumbo, Malaka, Nare & Odiyo, 2010: 1). The allowable specifications in the discharge effluent are illustrated in **Table 2.1** below.

 Table 2.1: Effluent legal specification regulations (Department: Government Communication and Information System

 Republic of South Africa Department of Water Affairs, 2014)

Variables	Not less than	Not to exceed
Temperature at point entry	0 °C	40 °C
Electrical Conductivity at 25 °C	-	500 mS/m
pH value at 25 ^o C	5.5	12.0
COD	-	5000 mg/L

Table 2.1 above indicates the legal quantity (stipulated measures) that are permitted by the South African Department of Environmental Affairs in the discharged effluent. These regulations are used to calculate the effluent charge should the plant fail to meet the requirements. Industrial effluent charge is explained in the section that follows.

2.4 Industrial effluent charges

A formula is used by City of Cape Town to calculate the effluent charge and then invoice an organization for the volume of freshwater used and the amount of effluent generated, which takes the results of all the variables highlighted in **Table 2.1** into consideration (Water Wise Rand Water, 2018). If both the COD concentrations and the freshwater consumption are very high, the organization is levied a significantly high bill (Gwadla, 2018). Therefore, the WCM embarked on a project of reducing the cost of the water consumption by reusing the process water; however, this consequently resulted in even higher COD concentrations readings (Ndlovu, 2013: 1). When COD concentrations are extreme in the effluent discharged by the industrial plants, it requires more chemicals, more energy and excessive use of other materials in the effluent treatment plant to treat it to the acceptable levels (Gwadla, 2018). Therefore, to overcome the cost of the effluent treatment, the Department of the Environmental Affairs has generated a formula that they use to bill the discharged effluent from different industries which is inclusive of the non-conforming COD concentrations charge (Department: Government Communication and Information System Republic of South Africa Department of Water Affairs, 2014).

The industrial effluent charge cost is a penalty associated with not meeting the effluent specification limits imposed by the municipality of a city in South Africa (Department: Government Communication and Information System Republic of South Africa Department of Water Affairs, 2014). There is an additional cost associated with of the non-conforming COD concentrations in the discharged effluent, and this cost is added on the cost of effluent management (Jackson, 2017). Historical records at the WCM indicate that all the other variables that were measured in the WCM discharged effluent conforms to the environmental regulations, except for COD requirements (Gwadla, 2017). This emphasizes the importance of the development of an appropriate method to reduce COD concentrations since this will not only reduce the risk to aquatic species but also further reduce the WCM penalties issued to WCM plant due to noncompliant effluent. (Jackson, 2017).

According to Van Schoor (2005) the legislation issued pertaining to the discharge of industrial effluent stipulates that the COD level should not exceed 5000 ppm, to prevent industries from discharging high COD concentrations levels in the effluent to the effluent treatment plants. Hassan and Schreiner, (2011: 77) report that the COD limit was made tighter due to increasingly excessive volumes of poor quality

effluent discharged into effluent treatment plants because of increased industrial activities. As a result, municipalities were experiencing financial problems treating the effluent in accordance with the requirements before it could be released into the rivers or oceans (Van Schoor, 2005). As the results, in addition to the tight chemical specifications in the discharged effluent, the effluent charge fee was introduced, calculated using the excessive values of the specified chemical contents into the tested effluent per plant (Hot Water Treatment, 2013).

The next section provides a background to the WCM processing to clarify the internal environment and the effluent process profile.

2.5 Background to the WCM processing plant

The WCM plant at which this research study took place is a significant contributor to industry on the African continent, as it processes about 30% of 600 000 tons of corn per annum into gluten 20, gluten 60, corn germ, starch and starch-based products (Jackson, 2017).

The wet corn processing plant located in the WC consists of a total of eight departments to ensure that its business unit is effective and sustainable (Jackson, 2017). The eight departments are:

- 1. Quality Control (QC),
- 2. Health, Safety, and Environmental (SHE),
- 3. Production (Wet Mill and Glucose Refinery),
- 4. Engineering,
- 5. Logistics (outbound and inbound),
- 6. Human Resources,
- 7. Process Engineering, and
- 8. Finance.

Jackson (2017) states that all these departments work together to ensure that the organization makes a profit, creates employment and takes good care of its stakeholders. The most important function of the QC Department, working in conjunction with the SHE Department is responsible for the implementation of systems to assure all the stakeholder's requirements are met (Gwadla, 2017). These stakeholder's requirements include compliance with the regulatory specifications for the COD in the discharged effluent (Gwadla, 2017). A brief discussion of the management systems implemented at the WCM is presented below.

2.6 International organisational standards systems

The WCM plant has been certified to ISO 14001:2015, which is a standard that provides guidance on an environmental management system to ensure that the activities carried out by this organization unit do not cause harm to the environment (Dentch, 2016: 1). ISO 9001:2015, provides guidance on quality management systems to ensure that the quality of the product meets regulatory and customer requirements (Purushothama, 2015: 1).

It is a requirement for any certified organization or plant to comply with ISO standards to maintain certification (Jackson, 2017), thus it is also important to strive for continual improvement of the ISO implemented systems, as outlined by the standard, to ensure that it is effectively implemented (Gwadla, 2017). According to the guidelines of the National Environmental Management Act No. 107 of 1998, the WCM plant is acquired to comply to the legal requirements established by the Environmental Affairs for COD content in the discharged effluent (South Africa, 2013).

The implementation of the aforementioned systems at the WCM plant demonstrates the organisation's commitment to striving for success in its business (Gwadla, 2017). The WCM organization has also pledged to comply with the applicable government legislation, such as national, provincial and local environmental, quality, and health and safety legislation and regulations (Jackson, 2017). Aligned with this commitment, this research study sets out to assist the WCM plant to improve their current system. A description of the wet corn processing system in operation at the WCM plant is discussed in the section that follows.

2.7 Introduction to WCM

Ndlovu (2013 :17-19) describes wet corn processing as a process of softening dry corn with water, then grinding it before it is separated into its various corn components. This description of the process is aligned with the view of Gunasekaran, Yaghmour and Yasri (2015) who add that a wet corn process is employed to fractionate wet corn into its various corn parts, namely corn germ, gluten 20, gluten 60 and corn starch. Wet corn starch is further modified to four different grades of glucose syrup (Taylor, 2004: 155).

Lakdawala and Lakdawala (2013: 90-91) comment that during this process the WCM industry utilises and generates huge quantities of potable water and effluent respectively. The authors add that effluent generated by the WCM is rich in proteins, both soluble and insoluble proteins, and hydrocarbons. Ross (1989: 231) argues that the characteristics of the effluent generated by the WCM vary depending on the compounds saturated in the effluent, which include proteins and carbohydrates that give rise to the levels of COD in the effluent.

Ndlovu (2013: 24) notes that effluent generated by the corn milling industry is classified as highly contaminated because it contains significantly high levels of protein and starch (also known as carbohydrates). Specifically, the effluent generated by corn processing contains traces of organics, namely soluble and insoluble proteins, fats and hydrocarbons generated during the wet milling processes (Babuna, Orhon, Ovez & Ozgun, 2002: 539). Ross (1989: 231), states that "organizations that generate effluent are held responsible to comply with the regulations of the requirements of the quality of discharged effluent, to prevent harm to the environment." The quality requirements that Ross (1989: 231) refers to are associated with the following variables in effluent: pH, conductivity, total solids, COD, temperature, and fats.

2.8 WCM stages

The wet corn process in the corn milling begins with the dry corn kernels being soaked in steep tanks filled with dilute aqueous sulphur dioxide solution (Chaney, Eckhoff, Haken, Hicks, Niu, Singh, Tumbleson, & Yang, 2005: 421). According to Taylor (2004: 154-157), the wet corn milling system consists of many interconnected process flows as it produces many different types of products. The main process stages include:

- Corn inbound quality inspections and storage,
- ➢ Corn steeping,
- ➢ Wet corn milling,
- Corn components separation,
- Starch modification or saccharification, and
- ➢ Glucose refinery.

Each process step is explained in the following sections.

2.8.1 Dry corn inbound quality inspections and storage

In the first stage, the dry corn received via rail is sampled and evaluated to confirm that it conforms to predetermined quality specifications before use (Gwadla, 2017). After all the critical tests establish compliance with specifications, the accepted corn is cleaned to remove all unwanted particles and then stored in silos, ready for the second stage. In an interview with Jackson (2017), he commented that the moisture content of dry corn helps to determine the time required to steep the corn sufficiently.

2.8.2 Corn steeping

The second stage (which is also the first active step in the wet milling of corn) is called steeping (Serna-Saldivar, 2019: 528-529). This process stage involves softening of the corn kernel by soaking in a waterbased sulphur dioxide solution to facilitate the separation of the various components of the corn kernel (Chaney, *et al.*, 2005: 421). The steeping stage marks the start of the wet milling process and commences when the corn is placed in warm water and sulphur dioxide under controlled conditions to aid the softening of the corn kernels in accordance with a specified procedure (Gunasekaran, *et al.*, 2015).

2.8.3 Steeped corn grinding and corn component separation

After the corn have been steeped accordingly, the steeped corn are separated by grinding them (Chaney, *et al.*, 2005: 421). When the grinding process is completed, the ground mush is spun down in a centrifuge to separate the mush to the components of the corn kernels (Taylor, 2004: 154-157). The corn kernel components are corn germ, gluten 20, gluten 60 and corn starch (Jackson, 2017). The separation stages are explained below.

- First separation stage: The corn germ is separated from the endosperm fragments in hydrocyclones, using different densities and then dried (Gunasekaran, *et al.*, 2015). All the process water generated by this process stage is deposited into the main effluent sump (Jackson, 2017).
- Second separation stage: The remaining kernel fragments undergo a further milling process to enhance the separation of gluten 20 from the slurry, which is essentially the external cover of the corn kernel (Rahman, 2007: 120). The gluten 20 is dried in accordance with specified conditions and whatever process water that is extracted during this stage is also deposited into the main effluent sump (Jackson, 2017).
- Last separation stage: The final residual slurry consists of gluten 60 and wet starch. It is then further separated in the primary separator apparatus on the principle of the difference in their respective densities, as gluten 60 is less dense than starch (Chaney, *et al.*, 2005: 421). Thus the lighter particles of the gluten 60 dissociate from the heavier particles of corn starch (Demirbas & Gupta, 2010: 80); then gluten 60 is dried and stored. The corn starch component that is left is dried, and another portion of wet starch is further processed into different glucose syrup products (Jackson, 2017). All the effluent generated by these three different separation stages is collected and measured.

2.8.4 Wet starch modification

Stage five is a liquefaction process stage also referred to as a pre-saccharification process stage (Jackson, 2017). During this stage the wet starch is prepared for the saccharification process stage by correcting its dextrose equivalence, pH and density (Chaney, *al.*, 2005: 421). After the liquefaction process stage has been completed, the saccharification occurs, which involves conversion of the liquefied starch into a desired glucose syrup grade, using selected enzymes under controlled variables (Demirbas & Gupta, 2010: 80). All the process water generated by these two process stages is first transferred into the effluent pH correction tank to correct its pH before it is discharged into the main effluent sump (Jackson, 2017).

2.8.5 Glucose refinery

After the saccharification process has been completed, the product undergoes glucose syrup refinement which is the final process stage (Demirbas & Gupta, 2010: 80). Here, the glucose syrup by-product is first filtered to remove all the fats and proteins from it (Jackson, 2017). The filtered, fat-free and protein free product then undergoes an ion-exchange process to purify the product by removing all the ions (Ndlovu, 2013: 21-23) The then ion-free product is concentrated by means of evaporating all the excess water before it is stored in the final product storage tanks (Gwadla, 2017).

The effluent generated by the ion-exchange is transferred to the effluent pH correction tank before it is discharged into the main sump, and all the other effluent generated by fat and protein removal, evaporation and glucose spillage is collected in the main effluent sump (Jackson, 2017).

The diagrams presented below summarises the different stages of the effluent generated in the WCM processing. **Figure 2.2** depicts process flow from dry corn delivery, corn processing, corn by-products refinery and final product storage, as described in the foregoing section.

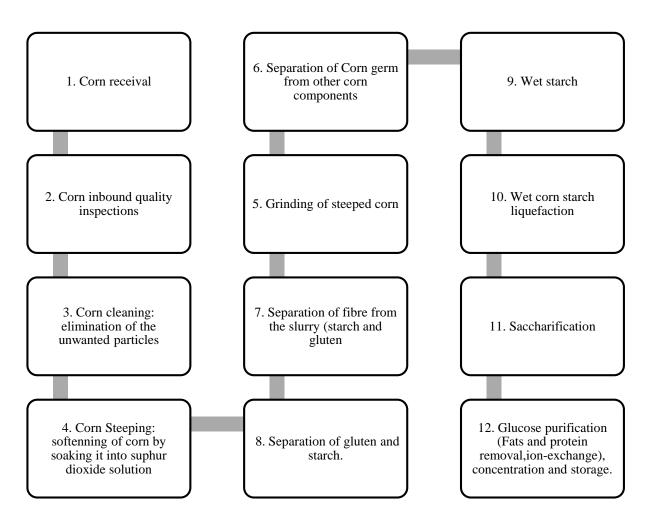


Figure 2.2: Main process stages of corn processing (Ndlovu, 2013: 17-23)

The quality of the effluent generated by each stage and its implications in to the environment are discussed in the following section.

2.9 Effluent generated by WCM processing stages and their environmental impact

Consistent with the discussion presented in the preceding section, Gunasekaran, *at el.* (2015) confirm that the individual process steps where the effluent is generated in the wet corn milling process are as follows:

- ➢ Steeping,
- Corn germ processing,
- ➢ Gluten 60 processing,
- Gluten 20 processing,
- Dry starch processing,
- Wet starch conversion,

- ➢ Glucose syrup filtration,
- ➢ Glucose syrup purification − ion exchanger,
- ➤ Glucose syrup concentrations evaporation, and
- > Spillages and cleaning water.

At the WCM plant, effluent samples are collected on a daily basis every two hours from each one of these effluent streams, thus each effluent stream serves as a sampling point. The samples are analysed in a laboratory to determine their quality in terms of COD. The effluent quality analysis includes the measurements of TOC, pH and conductivity. All the effluent generated in the wet milling and refinery processes is then collected in the effluent tank. The collected effluent is then dosed with caustic solution or hydrochloric acid to correct the pH to the required specification; the corrected effluent is then discharged into the main effluent sump, prior to discharge to the municipality (Jackson, 2017).

2.10 The impact of poor quality management of effluent

Water is a vital resource for living organisms and for other activities such as manufacturing, farming and some human activities such as cooking (Rampal & Sharma, 2018: 548). Despite the importance of water, Atem and Otieno (2016: 61) acknowledge that water is a very poorly managed resource, especially in developing countries. High concentrations of chemical compounds in discharged effluent have had a harmful effect on the environment, particularly in the 21st century (Rampal & Sharma, 2018: 548). Essentially, this is water pollution.

The Department of Environmental Water Affairs established and published the standard requirements pertaining to the content of chemical compound in discharged effluent (Department: Government Communication and Information System Republic of South Africa Department of Water Affairs, 2014), since the discharge of poor quality industrial effluent alters the natural balance in the environment (Rampal & Sharma, 2018: 548). An imbalance in the environment results in an array of detrimental effects in South Africa including massive fish mortalities (Selvarajan, Sibanda & Tekere, 2015), thus an approach to managing effluent quality from an environmental pollution control perspective evolved as a result.

The discharge of nonconforming COD concentrations can compromise the quality of the treated effluent at municipal effluent plants, as the effluent will require more resources and makes it more expensive to be treated to the required specifications before it is released into the rivers or oceans (Edokpayi, Msagati, Odiyo & Popoola, 2015: 7301). The release of high COD treated effluent into the rivers causes lack of oxygen inside the water which is extremely toxic to aquatic species (Igbinosa & Okoh, 2009).

Therefore, it is critical for the industries that discharge effluent to comply with the COD requirement of the discharged effluent which is a maximum of 5000 ppm (Van Schoor, 2005).

Significantly, South Africa is a country with limited water supply and the water demand places substantial pressure on water service providers in the country (South Africa 2014). Hence, the monitoring of good quality of the effluent is required to sustain the water cycle without compromising the ecosystem of the aquatic species and causing harm to the environment (Frerot, 2011: 20).

2.11 WCM quality assurance and control overview

Gwadla (2017), speaking in his capacity as production manager at the WCM, mentioned that to overcome the negative implications of poor quality management of the effluent, a quality effluent management system is in place. Hence, the quality control analytical chemistry laboratory in the WCM plant is part of the system to ensure that the effluent generated in the WCM is measured against the standard requirements (Gwadla, 2017). The interviewee further explained that effluent samples are then sent to the QC chemistry laboratory for analysis; the effluent is analysed for the following variables: total TOC or COD, pH, and conductivity.

Liptak (2003: 1229) discovered that COD concentrations can be directly measured using an online or in-line automated detector and can measure from 0 to 5000 ppm COD ranges. Rhosonics (2017) add that the on-line COD detector is a quick automatic method that provides a number of results in a period of time compared to off-line or manual detection. Despites of what the last two authors had highlighted, the WCM plant employs the manual method to measure the COD.

In a separate interview with Jackson (2017), speaking in his capacity as quality manager of the WCM, it was highlighted that the plant has a dosing system for correcting the pH before discharge; there was a theory that the volumes of the effluent generated by the processes with low COD concentrations could be diluted to reduce the COD of the total effluent to the required levels. However, the data gathered from the laboratory using TOC analysis contradicted or disproved the theory; it was indicated that the volumes were not sufficient to have an impact on reducing the COD levels in the total effluent (Gwadla, 2017). TOC is a quick accurate COD analysis test; provided that the coefficient factor is taken into consideration to correct the reading (Bai, Carpenter, Hwang, Ikhmayies, Li, Monteiro, Peng, and Zhang, 2013: 217).

Gwadla (2017) explains that to assure validity of results, external calibration which includes reliability tests of the instruments is performed annually by an external SANAS accredited service provider.

Moreover, the daily and monthly instrumentation maintenance and internal verification using an approved reference standard are performed internally. These are the instruments employed in this dissertation, namely pH meter, analytical balance, conductivity meter, and a benchtop photometer analyser unit. These instruments were used during the conduct of this research to establish an optimal GAC procedure for reducing the concentrations levels of the effluent discharged from the WCM plant to consistently comply with the regulations.

2.12 Chapter 2 summary

This chapter commenced with the presentation of an overview of the research environment focused on the water crises that are currently being experienced in SA. Thereafter, factors pertaining to the quality of the effluent discharged into municipal effluent treatment facilities and the implications of poor management of effluent quality were discussed. Finally, the chapter provided background information regarding the WCM plant, processes and systems in the context of this research study.

Chapter 3 will present a reader with current literature focused on the methods and procedures of improving the removal of the COD concentrations in the effluent.

CHAPTER 3: LITERATURE REVIEW

3.1 Introduction to Chapter 3

This chapter offers the reader a detailed theoretical insight into the main subject of this study: reduction of the COD concentrations in WCM effluent, through the evaluation of literature. Fink (2014: 3) describes a research literature review as a reproducible method for identifying and evaluating completed work produced by other researchers. Machi and McEvoy (2016: 7) state that a literature review presents a logically argued case, founded on a comprehensive understanding of the current state of knowledge about a topic of study. Keeping in mind what the authors mention above pertaining to the literature review, the conceptual process followed in the literature reviewed in this chapter is illustrated below:

- Background and motivation of this study,
- > possible existing solution to the research problem, and
- > application of Six Sigma DMIAC and quality tools.

The discussions that make up this literature review are presented in a manner that is focused on achieving the main objective of this study; which is to establish a procedure to optimally reduce the COD concentrations in the effluent discharged by the WCM plant.

3.2 Background and motivation to the research problem

Ndlovu (2013: 17) describes wet corn processing as a process of softening dry corn in a solution before it is separated into its various corn components. Gunasekaran, *et al.* (2015) mention that a wet corn process is employed to fractionate wet corn into its various corn parts namely, corn germ, gluten 20, gluten 60 and corn starch. Lakdawala and Lakdawala (2013: 90-91), comment that during this process the WCM industry utilises and discharges huge quantities of potable water and effluent respectively. Ross (1989: 231) notes that the characteristics of the effluent generated by the corn processing is rich in proteins and carbohydrates which increases the concentrations of COD in the effluent. Garcia Einschlag (2011: 8) states that effluent generated by the wet corn milling industry is classified as highly contaminated because it contains significantly high levels of protein and starch. Ahsan and Ismail (2019: 2) pointed out that the strategies to ensure proper treatment of the COD concentrations in the effluent must be developed to ensure conformance to legislated standard requirements.

3.3 A possible existing solution to the research problem

3.3.1 Introduction to adsorption

Chaturvedi, Deshmukh, Ingole, Joshi and Kulkarni (2014: 1211) state that the COD concentrations in effluent is a parameter used to categorise the state of the effluent (as being of good quality or bad quality). According to the Department of Water Affairs and Forestry (2000), management of the COD concentrations in effluent involves measuring, analysing and controlling the COD concentrations within the required specification. Ahsan and Ismail (2019: 2), assert that control of COD concentrations in effluent can be achieved using physical and chemical or biological methods. Ademiluyi, Amadi, and Amakama (2009: 39) recommend that the physical and chemical adsorption method is the most efficient and sustainable for COD removal. Bhandari, Ranade, and Sorokhaibam (2016) argue that the adsorption by physical and chemical method is a well-established technique for removal of the COD concentrations in the effluent.

Bonilla-Petriciolet, Mendoza-Castillo and Reynel-Avila (2017: 2) mention four advantages of chemical and physical adsorption methods, namely its low capital cost, ease of operation, minimum sludge generation and reusability. Activated carbon exists in three different forms, namely granular, powdered, and pellet (Dawn, *et al.*, 2015: 238). Only the use of the granular form is explored in this study.

Ahsan and Ismail (2019: 2) write that granular activated carbon is recognized by the United States Environmental Protection Agency as one of the best methods of environmental control due to its large specific pore surface area; this makes it a powerful adsorbent with the ability to adsorb a wide range of contaminants. Mazille (2019) observes that activated carbon is a material prepared in such a way that it exhibits a high degree of porosity and an extended surface area to optimize the rate of adsorption. Yusuf (2018: 16) comments that adsorption offers a cost-effective solution with reusable options using different regeneration methods. Ansari and Mohammad-Khan (2009: 859), Donau Carbon (2011: 2) and Rashed (2013) concur that the following are advantages of using GAC for effluent COD removal:

- > Removal of both organic and inorganic substances from the effluent,
- > reduction of residual substances that contain chemicals,
- > enormous removal of residual COD concentrations,
- > reduced land area requirement for GAC implementation,
- reduced sensitivity to daily flow variations,
- > simplicity of implementation and operational flexibility control at a plant level, and
- > it is dust free and enables easy filtration of the treated effluent.

Evaluation of the above advantages assisted the researcher with the selection of the form of the adsorbate to be used to develop a sustainable method for the optimal reduction of COD concentrations. It is believed that this will enable the WCM plant to consistently manage COD concentrations in the effluent discharged to the municipality to required standard in future.

Among the different types of materials that can be used for adsorption, Ahsan and Ismail (2019: 3) report that coconut granular activated carbon (CGAC) is a very good adsorbent material because it contains cellulose, hemicellulose and lignin. Dawn, *et al.* (2015: 238) explain that GGAC material is derived from coconut shell. Karalei and Suryavansh (2014: 14) applied low cost CGAC for reducing the COD and biochemical oxygen demand concentrations in dairy effluent. According to Evuti, Jibril, Noraini and Poh (2013: 16), activated carbon is considered more economical since it is made from coconut shell agricultural waste. Taking previous research studies that have been reviewed into account, CGAC was adopted in this research as an appropriate method of exploring the most efficient procedure for optimal COD removal from the WCM effluent. The main benefits of this method include its effectiveness and environmental friendliness.

3.3.2 Optimisation of COD concentrations removal using the GAC adsorption

In the context of this study, optimisation refers to the monitoring of the selected varaibles in the adsorption process with the purpose of achieving the research objective. According to Moreno-Castilla (2004: 5), the composition of the functional groups of the GAC determine the adsorption strength of the GAC surface area to adsorb filtered contaminants. Bhise, Deshpande, Patil, Patil, and Raskar (2013: 67) found that the GAC functional groups enhance the rate of adsorption process, which involves attraction of the adsorbent by forces on the GAC surface area. Wu (2004: 5) explains that the availability of the GAC surface area also plays an important role when optimizing the adsorption process; as it increases the chances for more adsorbate to be directly in contact with the adsorbent. Yangui (2013) commented on another factor that has a direct influence on activating the rate of adsorption, the GAC pore size. Wu (2004:7) agrees with Yangui (2013) that the GAC pore sizes provides transportation pathways through which the adsorbate solution travels.

The reviewed literature indicated that the CGAC adsorption method has more advantages when applied. The influence of the variables is studied with the aim to determine the variable profiles that will result in the most reduction of the COD concentrations. Therefore, providing an ideal answer to the third research objective which states, "Identify variables that can be adjusted to yield the optimal removal of COD from WCM effluent".

3.3.3 Impact of the variables on adsorption activity

According to Galloway (2019) the activity of CGAC adsorption depends on many factors such as contact time, adsorbent mass and pH content of the adsorbate. Ushakumary (2013: 7-9), Nekoo and Shohreh (2013:87), and Wu (2004: 7) report that the capacity of adsorption of the contaminants depends on different variables of the adsorption process; which include:

- > The contact time of the effluent with GAC,
- > the flow rate of untreated effluent through GAC adsorbent,
- ➤ the potential of hydrogen (pH),
- ➤ temperature,
- > effect of inlet untreated effluent concentrations, and
- > availability of the GAC surface area.

Three variables, namely the contact time, pH content, and GAC surface area or GAC weight are explored in this study, when determining the most effective process for the optimal removal of COD concentrations in the WCM effluent. The literature reviewed in this Chapter will helped the researcher to theoretically guide the research to develop an experiment; which is described in Chapter 4, to answer to the third investigative question: "Can a process variable(s) be identified, that when adjusted, yields the optimal removal of COD from WCM effluent?". The literature of the impact of the three variables to be explored in this study is discussed in the next three points.

3.3.4 Filtration contact time

El-Gawad and EL-Aziz (2018: 228) report that an increase in the contact time in an adsorption process results in more removal of COD concentrations. Ushakumary (2013: 7) notes that an increase in contact time results in more adhesion of solute molecules on the GAC surface; which enhances the removal of the COD concentrations. Liang, Liu, Lu, Pan, Xu, Zhang and Zhu (2011: 2-3) commented that an increase in contact time results in increased adsorption result in more reduction o-f COD concentrations in the solution. A study conducted by Goswami and Kulkarni (2013: 181), also concluded that increase in the contact time improves the removal of COD concentrations from the filtered solution. The influence of contact time on reducing WCM COD's in the effluent is discussed in Chapter 5.

3.3.5 pH content of the sample or solute

According to Ushakumary (2013: 7), the pH content of the adsorbate or solute also plays a vital role in accelerating the adsorption process. In a study conducted by Goswami and Kulkarni (2013: 181), they reported that as the pH decreases from 14 (alkaline) to 1 (acidic), the rate of the COD removal in the solution increases. El-Gawad and EL-Aziz (2018: 228) also achieved similar results when they applied

the GAC adsorption method for COD removal in the effluent. This study sets out to determine if the pH range have a significant impact in the optimal removal of CODs in the WCM effluent.

3.3.6 GAC surface area

Nekoo and Shohreh (2013: 87) claim that there is a direct relationship between the optimal removal of the COD concentrations and an increase in GAC surface area. Liang, *et al.* (2011: 2) report that the increase in GAC surface area could result in optimal COD concentrations removal, if the ions in the solution are available to bond with electrons available on the surface of the adsorbent. Bonilla-Petriciolet, *et al.* (2017: 10) agrees that an increase in adsorbent surface area results in an increase in the rate of adsorption. Guided by the views of Nekoo and Shohreh (2013: 87), Liang, *et al.* (2011: 2) and Bonilla-Petriciolet, *et al.* (2017: 10) mentioned above, this study sets out to explore the effect of the CGAC surface area on the optimal removal of COD concentrations in the WCM effluent.

3.4 Summary of the GAC adsorption method

The discussion of the variables that influence adsorption activity presented above illustrates that the GAC adsorption method is capable of achieving optimal removal of the COD concentrations; provided that variables such as contact time, pH and GAC are controlled accordingly. The control of the selected variables involves adjusting them to a certain degree to achieve the optimal COD concentrations removal.

In the next section, the applicable methodology and tools that can be used together with the CGAC adsorption method in a process of reducing the COD in the WCM effluent.

3.5 Application of Six Sigma DMAIC

Murray (2016) reports that the Six Sigma DMAIC problem-solving method has been proved to result in significant improvements using the appropriate quality tools. In this study, Six Sigma DMAIC will serve as a road map for data collection and analysis with the purpose of determining a solution for the research problem of this study.

3.5.1 Introduction the application of Six Sigma DMAIC

Boruah and Nath (2015: 589) used the Six Sigma DMAIC to improve the sustainability of environmental management, to improve the quality in the discharged effluent to conforms with the

legislated standard specification. Furthermore, it is noteworthy that Mihai, Pana, Presura, Robescu and Silivestru (2016: 30) also used the DMAIC framework to develop a continuous improvement strategy when they adopted a new approach to reduce non-compliance in effluent treatment plants. Belamkar and Singare (2016: 2042) report that the DMAIC is suitable for improving the process after identifying the root causes of poor performance. Graves (2012) notes that the DMAIC is very useful when developing and implementing new initiatives. According to Cahyadi, Hernadi, Kurniawan, Prasetyani, and Rimantho (2017: 849), Six Sigma DMAIC methodology can be successfully used to improve the quality of COD concentrations in effluent discharged by industrial activities. An explanation of the five systematic phases of the DMAIC methodology given by Graves (2012) is explained below:

- > **D Define:** Define where the process might fail to meet customer or statutory requirements,
- M Measure: Measure and determine if the sub-processes in a process meet customer or statutory requirements,
- A Analyse: Evaluate the root causes of not meeting customer requirements or statutory requirements,
- I-Improve: Introduce changes in a current process to meet customer requirements or statutory requirements, and
- **C Control:** Confirm the new standard operating procedures are documented accordingly.

In Chapter 5 of this research study, the extent or severity of the research problem is outlined in the Define and Measure Phases. In the Analyse Phase, the root causes of the researched problem identified from the two Phase, called Define and Measure are established. The outcomes of the Analyse Phase are used as inputs in the Improve Phase when establishing the proper solutions. In the Control Phase, control measures of the solutions are established to sustain improvement.

Patel (2014: 275) acknowledges Six Sigma DMAIC as a well-structured continuous improvement methodology that seeks to identify and eliminate defects or failures. Cahyadi, *et al.* (2017: 849) comments that quality improvement in Six Sigma DMAIC methodology is driven by statistical analysis of the process data. In Chapter 5 of this research study, selected statistical tools and techniques are employed in different DMAIC phases to analyse and interpret the collected data (quantitative). The application of the selected quality tools and techniques used in Chapter 5 are described in the next Chapter, Chapter 4.

3.5.2 Data analysis using quality tools

The Management Associate Information (2013: 1025) adopted the Six Sigma DMAIC method to improve a process performance in their study. Khandula and Singh (2015: 71) argue that each phase in the DMAIC process consists of a set of tools or techniques used for analysing data. Antony, Banuelas and Kumar (2006: 13) comment that Six Sigma DMAIC employs both statistical and non-statistical data to improve non-conformances in processes. Christmann (2012: 143) adds that the statistical tests provide a mechanism for making quantitative conclusions about the data that is being studied. The quality tools and techniques that are adopted in the context of Six Sigma DMAIC applicable in this study are presented in **Figure 3.1** below.

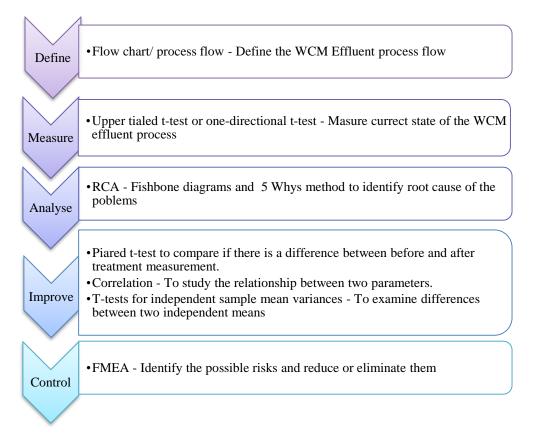


Figure 3.1: Application of quality tools and techniques in DMAIC methodology

The discussions of each tool or technique used in each Phase of the Six Sigma DMAIC are provided on the next points.

3.5.3 **Process flow within the Define Phase**

Antony, *et al.* (2006: 58) reports that a process flow or process map can also be used in the Define Phase to understand the key inputs and outputs of a process being studied. Davis and Yen (2000: 27) note that a process flow diagrams can be employed to identify main primary data collection areas. Vanzant-Stern (2012: 117) expounded that the process flow diagrams can be used in Define Phase as an information tool to help to identify the measurements required in the Measure Phase. Management Associate Information (2013: 1025) add that a process flow helps to measure the current performance against the target performance. From the abovementioned, it is deduced that a process flow may be employed to define all the WCM effluent process steps; as a primary step in answering the first investigative question of this research study in section 1.6.1, in Chapter 1.

3.5.4 T-test within the Measure Phase

Larson (2014: 132) comments that the Measure Phase focuses on measuring the baseline of a process to describe its current performance and to determine the key area(s) of improvement. According to Cramer and Howitt (2004: 166-167), a one-tailed t-test for one sample is considered to be a tool which may be used to determine whether the mean of a sample differs significantly from the true value or target value. Nestor and Schutt (2015: 276) explain that the one-tailed t-test is employed when a researcher wants to specify the exact direction of the difference.

According to De Muth (2014: 180), in one-tailed t-test, a rejection region is located at one end of the sample distribution. Christmann (2012: 143) notes that the decision to reject or accept the null hypothesis is made on the basis of the outcomes after comparing the critical value with the calculated statistical value. Hahs-Vaughn and Lomax (2012: 143) comment that the degrees of freedom and confidence limits (probability) must be clearly defined in order to find a critical value; which determines the decision to reject or accept the null or alternate hypothesis. Soderstrom (2008: 65), acknowledges that a one-sided or lower tailed t-test implies that the region of rejection lies only below the null hypothesized value. The author further comments that claims for the one-tailed t-test include the following hypotheses:

- > Null hypothesis H₀: Population parameter \leq hypothesis value
- > Alternate hypothesis H_1 : Population parameter > hypothesis value

Singh (2007:159) adds that the critical limits are the factors that define the acceptance or rejection of the stated null hypothesis. The critical values (t_{critical}) are found from the t-table, at the certain probability of the confidence of limits at a given degrees of freedom (Sirkin, 2006: 250). The degrees of freedom

are determined using the number of participants minus the number of groups (Nestor & Schutt, 2015: 276). Guided by the preceding discussion, in the Measure Phase presented in Chapter 5 of this study, the t-test is used to examine the effectiveness of the COD concentrations in the pre-identified effluent steps or channels. The t-test result analysis will help this research to fully answer the first research question of this study, by demonstrating the WCM effluent macro channels that are not performing in accordance with the legislated standard requirement.

The results of the data analysis in this Phase will provide the research with direction pertaining to the areas that need to be investigated further. This process is supported by Chien, Dou and Huang (2019: 581), as they define the purpose of the Measure Phase as to gather the data and analyse it, to describe the nature of the process and to define the extent of the research problem. Therefore, in this research study, the identified non-conforming WCM effluent macro channels in the Measure Phase will serve as the inputs in the Analyse Phase.

3.5.5 Analyse Phase quality tools

Management Associate Information (2013: 1025) reports that in the Analyse Phase, the root causes are investigated from the key process inputs that have an impact on the process outputs. Maass and McNair (2010: 8) assert that the Analyse Phase validates the sources of variation or the potential failures that have resulted in ineffective performance of the process. Akpolat (2004: 44) notes that the Analyse Phase helps to identify the critical factors for improvement. In this Phase, the root causes of nonconforming COD concentrations were identified to establish alternate solutions.

3.5.5.1 Fishbone diagrams within the Analyse Phase

Gupta (2005: 227) acknowledged that within the Analyse Phase, a Fishbone or Ishikawa diagrams can be used as quality tool for exploring the potential causes of the problem. Vanzant-Stern, (2012: 117) commented that in the Analyse Phase, the Fishbone diagrams may be employed to investigate the root causes of the bottlenecks identified in the Measure Phase. Marcel (2011: 169) agreed that the Fishbone provides the researcher with the identification of areas that could harm the process. A Fishbone or Ishikawa diagrams as seen in **Figure 3.2** below, is an excellent tool for facilitating brainstorming when the potential root causes of a failure are unknown, using six Ms, namely Man, Measurements, Material, Milieu, Methods, and Machine (Barsalou, 2015: 70).

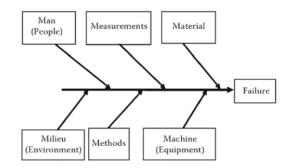


Figure 3.2: Fishbone and Ishikawa diagrams and six Ms (Barsalou, 2015: 70)

Rosenblatt and Shelly (2010: 70) state that a Fishbone diagrams is used to investigate the root causes of a failure by drawing the bone main bone linked to the problem, and the sub-bones that represent the possible causes. Carrell and Peterson (2010: 22-23) note that a Fishbone diagrams helps to visually explore all the potential causes that could result in a researched problem. Barsalou (2015:69) expounded that the 6Ms are used when creating a Fishbone diagrams to establish the root causes. Gupta (2005: 228-229) mentions the two benefits of using a Fishbone diagrams, namely gaining an understanding of the process issues and their relationship to the causes of the problems. Carrell and Peterson (2010: 22) add that in the Analyse Phase, the 5 Whys method is used in the Fishbone to further investigate the potential causes to identify the root causes. The 5 Whys method, discussed in the next section, is used to unpack the potential root causes of non-conforming COD concentrations in the WCM effluent identified using a Fishbone diagrams.

3.5.5.2 5 Whys method within the Analyse Phase

Rafinejad (2007: 338) states that the 5 Whys method helps to establish the factual root causes of problems. Laplante (2015: 978) explains that the root cause analysis (RCA) is a technique in which the 5 Whys is used for narrowing down every single effect identified in the Fishbone diagrams. Carkenord (2009: 310) elucidates that the 5 Whys method helps to establish the root causes of a problem by repeatedly asking the question "Why?" at least five times. Carrell and Peterson (2010: 22) emphasize that the 5 Whys is a not an absolute rule, but it helps to peel off layers of symptoms to get to the root cause of the problem. They add that the extent of the 5 Whys depends on the depths of the root causes of the root causes of high COD concentrations in the WCM effluent. The RCA will help to provide answers to the second investigative question of this study: "What are the causes of the high COD contents present in the discharged effluent of the various process stages?"

The outcomes in this Phase were used to identify the most suitable and sustainable solution that were explored in the Improve Phase.

3.5.6 Improve Phase tools

Cahyadi, *et al.* (2017: 850) state that the Improve Phase sets out to eliminate the root cause(s) of noncompliance identified during the Analyse Phase. According to Boby, Kabir and Lutfi, (2013: 1057), the problem can be resolved in the Improve Phase by implementing the solutions utilizing some of the following approaches to improve the process acknowledged by Juneja, *et al.* (2014: 1067) as follows:

- Brainstorming and action tests,
- ▹ benchmarking,
- > extracting the vital few contributing factors through screening,
- > understanding the correlation of the vital few contributing factors,
- process optimisation and validation experiment,
- hypothesis testing, and
- ➤ new process flow.

Cahyadi, *et al.* (2017: 850) observe that laboratory experiments can be used in the Improve Phase to explore ways to find solution(s) to causes of undesirable variation. Garza-Reyes, Jirasukprasert, Rocha-Lona, and Soriano-Meier (2012: 473) add that the Improve Phase involves the execution of experiments, accompanied by statistical data interpretation and analysis to validate the reduction of problems. This suggests that it is appropriate to conduct experiments and simultaneously perform applicable statistical techniques to explore the results of the experiments to establish improvement, as presented in Chapter 5 of this study.

The purpose of the Improve Phase is to design and test the experiments, and analyse the results obtained to interpret the signs of the improvement solutions (Chien, *et al.*, 2019: 581). Hypothesis testing is defined as a test that is used to evaluate the validity of the claims of the available data (Murphy, 2011: 20). According to De Muth (2014: 205), ANOVA hypothesis testing involves creating and validating of two separate hypotheses, namely the null hypothesis (H_0) and alternate hypothesis (H_1) using the data. Austin and Leong (2006: 99) mention that the most significant objective of hypothesis testing is to verify the correct hypothesis about the population data within a specified degree of freedom and certainty such as 95%.

The hypotheses tests were used in Improve Phase in Chapter 5 this study to examine the significance of the experimental adsorption procedures, designed from revised literatures of adsorption method; with the aim to answering this investigative question in section 1.7.3 in Chapter 1.

3.5.6.1 Paired two-tailed t-test within the Improve Phase

A two-sample paired t-test is employed to compare two levels of a discrete independent variable to statistically determine if the sample means are the same or different (De Muth, 2014: 183). A two-tailed two-sample paired t-test is a non-directional test conducted for examining whether there is a significant difference between the sample mean and the true value (Osborn, 2006: 168). Butler, Edwards, Jackson and Letswaart (2016: 163) used the paired t-test to determine significant changes after the improvement initiatives in a DMAIC project. Javier (2011: 144) also employed a paired t-test to explore the difference in electromyography to compare two conditions. Clarke and Woolson (2002: 154) reasoned that the paired t-test evaluates paired data with an assumption that the data of the pairs differences are normally distributed. Elliot and Woodward (2007: 71) write the null hypothesis testing of a paired t-test state that the difference between the means of two populations is zero (H_0 : $\mu_d = 0$), and the opposite, called alternate hypothesis states that the difference is not zero (H₁: $\mu_d \neq 0$). The decision is made to reject the null hypothesis if the statistical value falls outside of the non-rejection region or beyond one or both tails (critical values), and then the opposite is accepted (Heckard & Utts, 2006: 448). The critical values are obtained from the t-table, using the degrees of freedom and confidence of limits or alpha divide by two (Heckard & Utts, 2006: 448). In Consumer Dummies (2014: 406) it is acknowledged that the degrees of freedom one minus the number of pairs are employed to obtain a critical value at an applicable confidence limits should be used. Dytham (2011: 95) used the paired t-test to compare the amount of chlorine that was present before and after treatment. Thus, in this study, it is assumed that the use of the two-sample paired t-test would be an appropriate tool to compare the COD concentrations means before and after the applications of the adsorption procedures.

3.5.6.2 Correlation studies within the Improve Phase

According to Ramu (2017: 51), correlation studies may be employed in the Improve Phase to estimate the significance of the improvement. Haber, LoBiondo-Wood, Scheider and Whitehead (2013: 168) comment that correlation studies enable an analysis of the relationship between pairs or groups of variables. Cunningham, Pittenger and Weathington (2012: 246) add that the correlation studies allow to make predictions about the dependent variable using an independent variable. Mertens (2005: 158) note that the correlation coefficient predicts if a relationship exists between an independent variable and a dependent variable. The coefficient of determination "r" is used to statistically quantify the estimate degree or strength (Norcross, 2011: 77). A correlation analysis enables a researcher to determine the degree or strength of a relationship and a type of relationship (positive or negative) between two variables (Burns and Grove, 2011: 35). After determining a relationship, the researcher must indicate the direction of the relationship, whether it is positive or negative and the degree strength of the relationship, whether it is positive or negative and the degree strength of the relationship (Ariola, 2007: 48). Wilson (2019) comments that the closer the coefficients are to +1.0 and

-1.0, the greater the strength of the relationship between the variables, considering the direction indicated by the sign. Abraham, Franke and Koppen (2003: 55) add that when the prediction is perfect, a coefficient of determination of 1.0 is achieved, and when the prediction is opposite to the actual data, a coefficient of determination of -1 is achieved. Brewer and Picus (2014: 826) conclude that a correlation coefficient of 0.7 to 1 is considered a good correlation. The coefficient of determination is used in Chapter 5 to determine the strength and direction of a relationship between two or more variables tested in this study.

3.5.6.3 Two-tailed t-test for two independent samples within the Improve Phase

Martinez, Oppenlander, Shifflet and Shmerling (2020: 181) propose that a two-tailed independent t-test may be used to compare the means of two independent groups in the Improve Phase to determine if there is a statistically significant difference. The independent t-test is also referred to as a two-sample independent t-test and is an inferential statistical test used for determining a statistically significant difference between two means of two unrelated groups (Laerd Statistics, 2018). Damarla, Kundu and Kundu (2018: 22-23) comments that the test claim can be expressed as follow, null hypothesis is H₀: μ_1 = μ_2 , while the alternate hypothesis is H₁: $\mu_1 \neq \mu_2$. The null hypothesis is only accepted if the calculated t-value (t-statistics) falls within the accepted region or range (Six Sigma Material, 2020). The critical value is obtained from the t-table, using the point of intersection of the degrees of freedom and the applicable confidence of limits (Clark, 2020). T-testing of two independent samples helped in this study to explore if there is a significant difference between the independent means of data obtained from the two experimental trials in Chapter 5. The details of the use of the test are described in Chapter 4.

Sobh (2008: 169) comments that the Improve Phase involves testing the possible solutions which are later reviewed and validated for their effectiveness and sustainability in the Control Phase. Literature pertaining to the application of the Control Phase is presented in the next section.

3.5.7 Failure modes effects application within the Control Phase

Khatri (2019) advocates that the FMEA tool be used in the Control Phase to assess and control the risks after improvement of a process or system. Beauregard, McDermott and Mikulak (2008: 1) write that FMEA is a systematic method used to identify and prevent incidents in a process before they occur. De Carlo, Gygi and Williams (2012: 288) opine that FMEA is used in the Control Phase to eliminate risks by evaluating the effectiveness of each control measure. Dhillon (2007: 60) comments that FMEA is commonly used in the industrial sector to analyse engineering systems to improve their reliability. Gupta (2005: 227) agrees that FMEA tool is used to anticipate potential problems and to prevent or

reduce them from happening. Belokar and Rana (2017: 263) describe FMEA as a systematic and proactive method for evaluating a process to identify where it might fail and implement failure prevention to reduce or eliminate potential failures. Myers (2012: 306) writes that FMEA tool is employed to proactively identify potential failure risks by assigning a priority number or risk score to each detected risk. It employs three components to determine the priority of failures, namely severity, occurrence and detection (Jodejko-Pietruczuk, Mtynczak, Nowakowski & Werbinska-Wojciechowska, 2015: 153). Wasson)2016: 765) add that the FMEA use the Risk Priority Number (RPN) to predict the significance of the identified risks. Unnasch, Venkatesh and Waterland (2003: 3) reason that the RPN rating helps to quantify the significance of the failure risks, and also to prioritize them. Parsana and Thakore (2015: 413) write that the FMEA is employed to:

- Identify the impact (severity),
- > how often the failure is likely to occur (occurrence),
- > assess the likelihood of detecting the failure (detection), and
- > establish the areas of focus improvement using RPN.

According to Dunscombe, Mundt, Pawlicki, and Scalliet (2011: 111), FMEA is used to identify the potential failure modes and their causes by listing all the process controls, which include quality inspections, training, work instructions, standard procedures, and checklists. The use of the FMEA tool will in this study will help the researcher when identifying potential failure risks associated with the process establish to improve the conformance of the COD with a legislated standard specification.

3.6 Chapter 3 summary

Relevant literature was presented to the reader, guided by the extent and complexity of this research study. Firstly, the literature related to the background and motivation of this study was presented, followed by literature pertaining to existing possible solutions to this research problem. Following this, literature on applicable methodology to be used in a study such as this when planning, implementing and optimizing the possible solutions was discussed.

Literature presented in this chapter included the importance of and motivation for this study, a review of the existing solutions of the researched problems, and evaluation of their effectiveness and sustainability. The next chapter will provide insight into the research methodology, research design and methods adapted this study.

CHAPTER 4: RESEARCH METHODOLOGY

4.1 Introduction to Chapter 4

Cash, Stankovic and Storga (2016: 220) state that proper research design should give a clear explanation of the plan to study a phenomenon and controls for all the possible biases that could distort the research findings. Maxwell (2005: 107) confirms that in a study, proper planning of the research design is very important; this entails the data collection methods, data analysis tools, and controls to eliminate both anticipated and unanticipated validity threats. This chapter offers the reader an outline of the methodological aspects relevant to this research. It also present detailed explanations of the data collection procedures and methods of data analysis to be employed in Chapter 5 of this research study. This will help the researcher to explore the effectiveness of CGAC application to the WCM effluent to achieve optimal COD removal.

Guided by the view of Kumar (2011: 10) who argues that the research methodology describes research methods, approaches and designs in detail and highlights those used throughout the study. This chapter commences with a review of research designs and methodologies; thereafter an appropriate method relevant to this study is selected. Details of the research design are discussed within the context of this study. The population of the study, sampling frame, sampling units, sampling methods, sample preparation, and sample treatments are also discussed. Statistical methods employed for interpreting the quantitative data are then presented in detail, with a brief review of their application and significance in the research.

This chapter of the thesis justifies the choices made by the researcher by describing the advantages and disadvantages of the research approach and design reviewed. Before details of the research design are presented, various research worldviews are briefly explained below to help to the reader navigate the selection criteria of the research paradigm of the study.

4.2 Research worldviews

Ling and Ling (2017: 2) declare that a view paradigm in research is a term that is used to refer to worldviews that underpin all aspects of a research undertaking from the intent or motivation for the research to the final design and outcome. Collis and Hussey (2014: 11) write that a paradigm is a theory or a group of ideas that describes or provides a framework of how something can be done. Creswell (2014: 6) explains four worldviews that are widely discussed in literature namely, positivism,

constructivism, transformative and pragmatism. The major elements of each position of the worldviews are presented in **Figure 4.1** below.

Positivism	Constructivism	Transformation	Pragmatism
 Determination Reductionism Empirical observations and measurements Theory verification 	 Understanding Multiple participant meanings. Social and historical construction 	 Political Power and justice- oriented Collaborative Change-oriented 	 Consequences of actions Problem-centered Pluralistic Real-world practice oriented

Figure 4.1: Four worldviews (Creswell, 2014: 6)

Based on the descriptions of each research worldview presented in **Figure 4.1**, this thesis adopts a positivist paradigm. Davies, Howells and Sheldon (2011: 5) describe a positivist approach as one that involves the pursuit of models or laws that can be derived by conducting observations or measurements of the social world. Guided by this description, this study may be characterised as the use of positivistic empirical measurement to obtain quantitative data, as quantitative laboratory experiments are a central component of the study.

Kothari (2004: 4) elucidates on quantitative and qualitative approaches, stating that quantitative research is based on the measurements of quantity or amount of an item of interest, whereas qualitative research is concerned with phenomena involving types or qualities. Kostelis and Matthews (2011: 3) hold that a quantitative research design explores solutions to research questions by using quantifiable research variables, also known as 'parameters', that can be measured and can be assigned a numerical value. Thompson (2017) is of the opinion that quantitative research comprises certain strategic process elements which involve the collection of numerical data, a deductive views of the relationship between theory and research, a preference for a natural approach and an objectivist conception of social reality.

Furthermore, Grinnell and Unrau (2011: 396) propound that the inductive research process hypothesis is derived from existing theories. Depoy and Gitlin, (2011: 9) comment that a deductive research process follows when the empirical world is explored by collecting the data to test a hypothesis. It is worth noting that at the commencement of an inductive process approach, a researcher begins with few preconceptions as possible, allowing theory to emerge from the data. The nature of this research study lends itself to both inductive and deductive research processes respectively being followed to meet the objectives of this study. Chapter 3 of this study is inductive, since it reviews information on existing interventions concerning COD removal in effluent. Chapter 5 presents the findings of appropriate

existing methods that have been tested to deductively develop a new theory for the optimisation removal of the COD in the WCM plant effluent. The research process flow developed by the research is illustrated in **Figure 4.2** below.

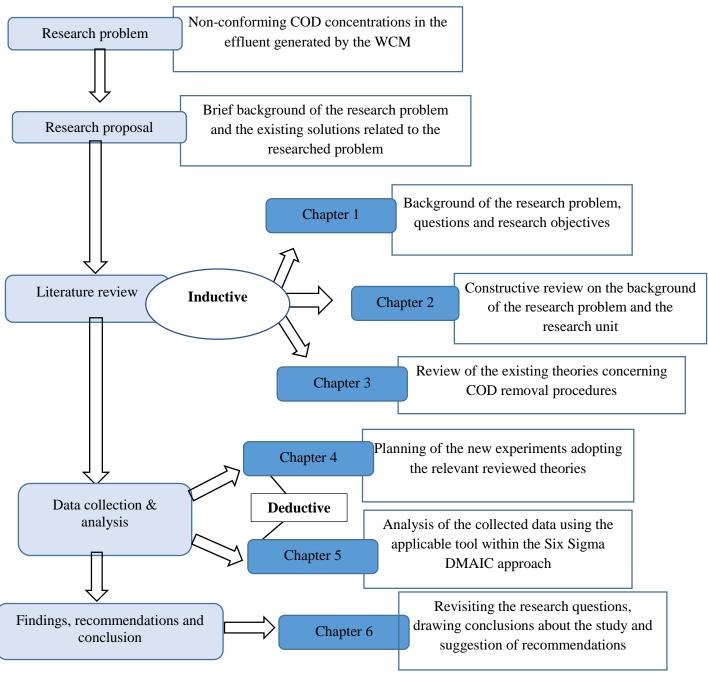


Figure 4.2: A process followed in this research

4.3 Six Sigma DMAIC research methodology

Bubevski (2018: 89) reports that the methodology of a research study are the specific procedures used to systematically solve research problems. Burton (2012: 35) agrees with Bubevski (2018: 89), that the research methodology of a study is a systematic method adopted by a researcher to perform a research study.

Chapter 3 discusses the uses of the relevant tools and techniques in Six Sigma DMAIC methodology to address problems and implement improvements. Khandula and Singh (2015: 71) acknowledge that each phase of Six Sigma DMAIC methodology entails the use of a set of quality tools and techniques for process improvement. In this chapter, a discussion of the application of the DMAIC to analyse collected data with the goal of providing answers to the four research objectives of this study is presented. The reader is reminded that the objectives are to:

- Investigate which stages in wet corn processing have a significant influence on the subsequent high COD of the discharged effluent,
- > establish the causes of the increasing levels of COD in effluent generated by a WCM,
- identify the variable(s) that can be adjusted to yield the optimal removal of COD from WCM effluent, and
- establish an effective procedure for removal of the COD in the effluent generated by a wet corn milling process.

Significantly Duckworth and Hoffmeier (2016: 38) assert that DMAIC methodology is a body of systematic techniques used mostly in a scientific discipline, and is characterised by a series of steps for solving problems. Furthermore, Bless, Higson-Smith and Kagee (2007: 7-8) hold that properties of a scientific research method include being systematic and logical, replicable, transmittable and reductive. Thus based on this description, it may be deduced that DMAIC is a scientific research approach. Moreover, Duckworth and Hoffmeier's (2016: 38) assertion is consistent with Williams's (2007: 66) definitions of research methodology, which implies that DMAIC may be used as a method to conduct research.

Khandula and Singh (2015: 16) argue that Six Sigma DMAIC makes use of empirical data gathering, which implies the use of real world data gathering within the context of specific theories. Therefore, for the purpose of this research, the Six Sigma DMAIC approach was used to empirically collect data, and then analyse and improve a process using the data. Saleh (2014) offers the following graphic representation of the five Phases of Six Sigma DMAIC methodology in **Figure 4.3** which follows.

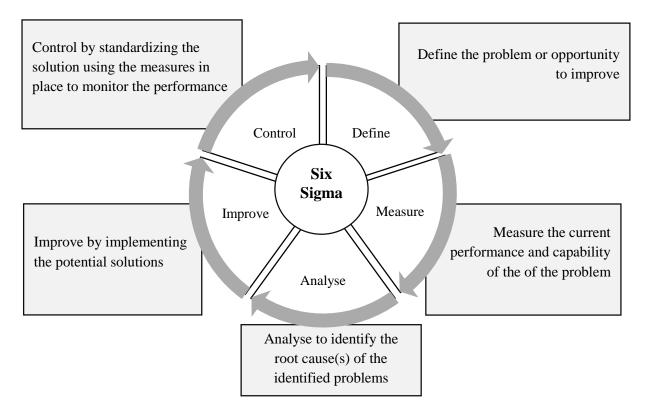


Figure 4.3: Six Sigma DMAIC methodology (Saleh, 2014)

Notably, the Six Sigma DMAIC methodology makes use of both scientific methods and quality tools to find solutions to research problem (Elshennawy, *et al.*, 2009: 319). The Six Sigma DMAIC methodology is therefore regarded as a suitable methodology for this thesis. The methodology is used in this thesis to investigate the primary research problem.

4.4 Data collection methods

Couper, Fowler, Groves, Lepkowski, Singer and Tourangeau (2009: 7) hold that sampling frames are the list of procedures employed to identify all the elements of a targeted population. Defining a population, Surbhi (2017), explains that a population is the total large group that consists of elements having at least one common feature, and a sample is a subgroup of the population that represents the entire group. The targeted population of this research study is the COD concentration in the total effluent generated by a WCM plant located in the WC.

Dudovskiy (2018) affirms that the careful selection of the data collection method is essential for good research and data collection involves primary sampling. Carter, Domholdt, and Lubinsky (2011: 92) declare that sampling is the process of selecting sub-group participants from a larger group of potential

participants. Lohr (2009: 2) states that a good sampling method is therefore critical to provide research with conclusions that are valid in that accurate generalizations have been made from reliable data.

According to Lohr (2009: 2), the aforementioned underscores the importance of the proper selection of appropriate sampling methods to ensure study validity. Fleetwood (2019) mentions that sampling methods are divided into two categories, namely probability sampling and non-probability sampling. Daniel (2012: 4) expounds that probability sampling procedure uses the principle of randomization or chance. Tashakkori and Teddlie (2009: 171) state that sampling procedure involves the random selection of specific units or cases to ensure that the probability of inclusion for all the elements of the population is presented. Carter, *et al.* (2011: 97) comment that non-probability sampling is widely used in sampling that is non-randomized. Bradley (2013: 162) notes that there are different types of probability sampling, namely simple random, interval or systematic, stratified, and clustered or multi-stage; while non-probability sampling includes convenience, snowballing positive or judgemental, and quota sampling (Babbie, 2008: 203).

Probability sampling is adopted in this study to assure results that are representative of the entire population being studied. Daniel (2012: 75) reasons that probability sampling is recommended when dealing with the measurement of a heterogeneous population for the variable(s) of interest. There are two types of probability sampling that are used in this research study, namely systematic sampling and stratified sampling.

Guided by Fleetwood's (2019) definition that systematic sampling is a type of probability sampling method where the elements are chosen from a target population after a fixed sampling interval. A systematic approach was used the Measure Phase, to collect COD concentrations data from the WCM for a period of sixty days, in which twelve effluent samples were collected each day at even hours. These samples were collected from the eleven WCM effluent macro channels, to be analysed for COD content individually. The total of 660 COD concentrations means and a total of 7920 COD concentrations subgroups collected at even hours for sixty days are outlined in **Table 4.1** below. The primary COD data collection was done by a qualified WCM laboratory analyst; the data interpretation and analysis is carried out in the Measure Phase, in Chapter 5. The analysis of the data is required to provide answers to the first research objective of this thesis: "Investigate which stages in wet corn processing have a significant influence on the subsequent high COD in the discharged effluent".

Sampling Time	Number of samples per macro	
	effluent channels	
06:00	1	
08:00	1	
10:00	1	
12:00	1	
14:00	1	
16:00	1	
18:00	1	
20:00	1	
22:00	1	
00:00	1	
02:00	1	
04:00	1	

Table 4.1: COD data collection plan from the eleven WCM effluent macro channels

Part two of the sampling method in Improve Phase in Chapter 5 involved stratified probability sampling. Kohl, Magnussen and Marchetti (2006: 105) explain stratified sampling as a type of sampling method in which the total population is divided into smaller subgroups or elements. Brown, Suter and Churchill (2018: 211) agree that stratified sampling is a form of probability sampling in which the population is divided into mutually exclusive and exhaustive subgroups, and secondly, samples are chosen from each of the subgroups. Guided by the views of the authors mentioned above, the stratified sampling in this study involved two groups of samples whereby group one is represented by 36 acidic samples in experimental trial one and group two by 36 alkaline samples in experimental trial two. See **Figure 4.4** below for the two groups of stratified sampling and **Appendix A** for detailed CGAC filtration procedures.

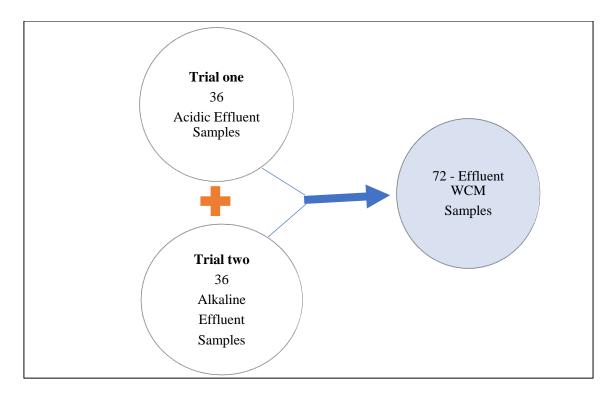


Figure 4.4: Stratified sampling plan for CGAC trials

When collecting the primary data, the pH, conductivity and COD measurements are conducted on each effluent sample, before and after the CGAC filtration procedure. The CGAC filtration procedures for each trial batch involved adjustments of the filtration weight (20 gram (g), 30 g and 40 g), and adjustment of the contact time (20 min (minutes), 30 min and 60 min). The effect of the adjustments of the independent variables mentioned in **Appendix 1** are studied in a process of investigating most optimal procedure for COD removal. The two trials are employed to study the effects of the pH using the WCM effluent, guided by the literature reviewed in section 3.3.5, the COD data collected from the eleven effluent macro channels is analysed using statistical tests, namely paired t-test, correlation studies and independent sample t-test to evaluate the effect in meeting the objectives of this study.

4.5 Data analysis methods following the DMAIC approach

The University of Pretoria Department of Library Sciences (2018) states that data analysis involves the interpretation of data to identify the trends, patterns, and relationships in the data being studied. Six Sigma DMAIC methodology was used as a framework in this study for data collection, interpretation and analysis to investigate the research problem and to find an answer to the investigative questions of this study, as outlined in section 1.6 in Chapter 1. The description of the type of data used in each DMAIC Phase and the tools or statistical tests used for data interpretation and analysis are depicted in **Table 4.2** below.

Table 4.2: Plan followed the application of DMAIC for COD concentrations removal from the WCM eff	luent

Six Sigma		Type of data source	Tools or techniques
Phase			
1. De	efine	WCM process map	Flow chart is used to describe the process flow of
			the WCM effluent to identify all the macro
			channels that make up the overall WCM effluent.
			The identified WCM effluent macro channels COD
			concentrations were measured in the Define Phase.
2. M	leasure	Raw or untreated	One tail t-tests are employed to test which macro
		effluent COD	channels had COD concentrations means that
		concentrations data	showed a significant difference (higher) compared
		collected from the WCM	to the standard requirement of 5000 ppm.
		effluent macro channels.	
3. A	nalyse	Incident records for the	Fishbone diagrams and 5 Whys are employed to
		selected WCM effluent	identify the all the possible causes of the incidents
		channels.	that resulted in high COD levels; with the ultimate
			aim of establishing their root causes.
4. In	nprove	The data of the trials	Paired two tailed tests are used to examine if
		were collected using	there is a significance different between the raw
		CGAC filtration	COD concentrations means versus the filtered
		procedures.	COD concentrations.
			Correlation studies are used to identify which
			procedures resulted in a good positive linearity for
			the COD concentrations removal in the WCM
			effluent.
			Independent two-sample t-tests were conducted
			to compare if there is a significant difference
			between the COD concentrations means obtained
			from the two trials (trial one and trial two) that
			used similar procedures but different effluent pH
			contents.
5. Co	ontrol	Data collected from the	FMEA tool is used to address the identified the
		risks assessment of the	failure risks that will hinder the effectiveness of the
		WCM effluent process	improved WCM process to achieve desired
		before and after the	outcomes.
		improvement.	

The application of these quality tools and statistical techniques mentioned in **Table 4.2** above is elaborated on in the discussion of the DMAIC phases below.

4.5.1 Application of the Six Sigma DMAIC Phases

In the Define Phase, the process flow is used to collect and map information to help to identify the areas or units of a problem being studied (Vanzant-Stern, 2012: 117). In the Define Phase, a process flow is used for mapping the WCM effluent process with the aim of identifying all the macro channels that contributed to the total COD concentrations in the WCM effluent. The information on the process flow is measured in the Measure Phase to identify the macro effluent channels that contributed to the innonconforming COD concentrations; thus, providing answers to the first research objective of this study: "Investigate which stages in wet corn processing have a significant influence on the subsequent high COD in the discharged effluent".

Bremer, Daniels, Gupta and McCarty (2005: 365) emphasize that the fundamental purpose of the Measure Phase is to gather information or data about the current status or performance of a process, and identify the areas of improvement. Antony (2014: 204) explains that the Measure Phase of DMAIC helps to study the current state "as it is", concerning to the performance of the problem being investigated. In this research study, the Measure Phase is employed to identify the macro channels with nonconforming COD concentrations. This is accomplished using the one-tailed t-test to test if the COD concentrations means obtained from each macro channel. Where the COD means were investigated if they are less or equal to the legislated standard specification of 5000 ppm. The null hypothesis of each t-test is that the COD concentrations of the effluent generated by each macro channel mean is less than or equal to the COD legislated standard specification. The alternate hypothesis is that the COD concentrations of the t-test analysis are found at the 95% confidence of limits (one-directional test). The results of the t-tests will determine the WCM effluent macro channels that contributed to nonconforming COD concentrations in the WCM effluent. See **Table 4.3** for the one direction t-test claims that are used in Chapter 5.

 Table 4.3: T-test application plan followed for the analysis of COD data collected from the applicable WCM effluent macro channels

Effluent macro channel	Test claim
Name of the applicable WCM macro channel	H ₀ : $\bar{x}_{COD \text{ concentrations}} \leq 5000 \text{ ppm}$ H1: $\bar{x}_{COD \text{ concentrations}} > 5000 \text{ ppm}$

The outcomes of the t-tests results are used as inputs in the Analyse Phase when constructing the RCAs to establish the root causes of non-compliance in the selected macro channels. Gopalakrishnan (2012: 133) advocates the Analyse Phase to investigate potential causes that contribute to a research problem. Hodges (2017: 250) reports that the 5 Whys analysis is a follow-up technique used for determining the root causes of effects identified in the Fishbone diagrams. In the Analyse Phase, a Fishbone and 5 Whys analysis are performed on each macro channel that failed the t-test null hypothesis in the Measure Phase to identify the root causes of the failure. The use of the Fishbone and 5 Whys analysis helped the researcher to answer research objective number two of this study: "Establish the causes of the increasing levels of COD in the effluent generated by a WCM".

The CIToolkit (2018) states that the Fishbone diagrams is used to prevent the recurrence of problems by implementing preventative actions. After identification of the root causes of the nonconforming COD concentrations in the applicable WCM effluent macro channels, preventative actions are embarked in the Improve Phase.

Anirban (2015: 45) proposes that the target of the Improve Phase of DMAIC is to design creative solutions to the problem by using the outcome of the previous, the Analyse Phase. Rumane (2017: 120) declares that the Improve Phase involves planning and execution of an action plan that consists of innovative ideas to permanently remove the root causes of the problem being investigated. In the Improve Phase of this research study, different CGAC procedures are explored to find a method that would result in optimal removal of the COD concentrations in the WCM effluent. The experimental procedures were designed to provide an answer to the third research objective of this study: "Identify variable(s) that can be adjusted to yield the optimal removal of COD from WCM effluent".

The Improve Phase is divided into two trials, where trial one involve testing the CGAC procedures in removing the COD concentrations using acidic WCM effluent samples. Trial two involve testing the same CGAC procedures used in trial one but with alkaline WCM effluent samples. In each trial, three batches of experiments are conducted. Batch one will evaluate the effect of changing the CGAC filtration weight (20 g, 30 g and 40 g), at constant contact time of 20 min. In batch two and batch three the effect of increasing contact time to 30 min and 60 min respectively are explored. See **Appendix A** in the appendix for insight into the procedures to be used in each trial. After the collection of the data from the different experimental trials, the hypotheses tests are performed to interpret and analyse the data, as explained in point 3.4 of Chapter 3. These tests included paired t-test, correlation coefficient and independent two sample testing. An explanation of how each test is conducted is discussed below.

Paired t-test hypothesis testing is used to determine whether there is a significant difference between the COD concentrations means obtained before and after the CGAC application. The paired t-tests is conducted at 95% (α /2-0.025) confidence of limits and at n-1 degrees of freedom for each trial batch. The null hypothesis for each test is that there is no significant difference between the COD concentrations means before and after the treatment and an alternate hypothesis is that there is a difference between the COD means before and after filtration. If the null hypothesis is accepted, it implies that the tested procedure to be considered not effective enough to result in optimal removal at the 95% confidence limit. The null hypothesis and alternate hypothesis clams are illustrated in **Table 4.4** below.

Trial Name	Hypothesis claim	Trial Name	Hypothesis claim
Trial 1: Batch 1	$H_0: \overline{X}_{\text{Difference}} = 0$ $H_1: \overline{X}_{\text{COD Difference}} \neq 0$	Trial 2: Batch 1	$H_0: \overline{X}_{\text{Difference}} = 0$ $H_1: \overline{X}_{\text{COD Difference}} \neq 0$
Trial 1: Batch 2	$\begin{array}{l} H_0: \overline{X}_{\text{ Difference}} = 0 \\ H_1: \overline{X}_{\text{ COD Difference}} \neq 0 \end{array}$	Trial 2: Batch 2	$H_0: \overline{X}_{\text{Difference}} = 0$ $H_1: \overline{X}_{\text{COD Difference}} \neq 0$
Trial 1: Batch 3	$H_0: \overline{X}_{\text{Difference}} = 0$ $H_1: \overline{X}_{\text{COD Difference}} \neq 0$	Trial 2: Batch 3	$\begin{array}{l} H_0: \overline{X}_{\text{ Difference}} = 0 \\ H_1: \overline{X}_{\text{ COD Difference}} \neq 0 \end{array}$

 Table 4.4: Application of the paired t-test to examine the mean difference between COD concentrations before and after treatment

The correlation study is used to evaluate the effect of increase in contact time and CGAC filtration weight on the optimal removal of the COD concentrations. The correlation studies are performed to identify procedures that would result in a significant positive correlation for optimal COD concentrations removal from the two trials. See **Table 4.5** below for the test procedures.

Acidic WCM effluent samples	Alkaline WCM effluent samples
20 g: 20 min, 30 min and 60 min	20 g: 20 min, 30 min and 60 min
30 g: 20 min, 30 min and 60 min	30 g: 20 min, 30 min and 60 min
40 g: 20 min, 30 min and 60 min	40 g:2 0 min, 30 min and 60 min
20 min: 20 g, 30 g, and 40 g	20 min: 20 g, 30 g, and 40 g
30 min: 20 g, 30 g, and 40 g	30 min: 20 g, 30 g, and 40 g
60 min: 20 g, 30 g, and 40 g	60 min: 20 g, 30 g, and 40 g

The conclusion of the Improve Phase is drawn using the independent two-sample t-tests result. The ttests results are used to determine if there was a difference in the reduced COD concentrations means obtained in trial one compared to trial two. The null hypothesis for each paired t-test is that there would be no significant difference between the reduced COD concentrations means obtained when using alkaline versus acidic samples. The alternate hypothesis will state that there would be a significant difference between the reduced COD concentrations means obtained when using alkaline samples versus acidic samples. If the null hypothesis is accepted, it will imply that the reduced COD concentrations means are the same at 95% confidence limits. If the alternate hypothesis is accepted, it will imply that there is a significant difference between the reduced COD concentrations means for the procedures. The results of the t-tests will help to answer the following research question of this study: "Identify variable(s) that can be adjusted to yield the optimal removal of COD from WCM effluent". See **Table 4.6** below for the procedure followed when conducting the paired t-tests.

Treatment	Hypothesis claim
	H ₀ : \overline{X} Difference = 0
20 g and 20 min	$H_1: \bar{X}_{COD \text{ Difference }} \neq 0$
	H ₀ : $\bar{X}_{\text{Difference}} = 0$
20 g and 30 min	H ₁ : $\bar{X}_{\text{COD Difference}} \neq 0$
	H ₀ : \bar{X} Difference = 0
20 g and 60 min	H ₁ : $\bar{X}_{\text{COD Difference}} \neq 0$
	H ₀ : $\bar{X}_{\text{Difference}} = 0$
30 g and 20 min	$H_1: \overline{X}_{COD \text{ Difference }} \neq 0$
	H ₀ : \overline{X} Difference = 0
30 g and 30 min	H ₁ : $\bar{X}_{\text{COD Difference}} \neq 0$
	H ₀ : $\bar{X}_{\text{Difference}} = 0$
30 g and 60 min	$H_1: \bar{X}_{COD \text{ Difference }} \neq 0$
	H ₀ : \overline{X} Difference = 0
40 g and 20 min	$H_1: \bar{X}_{COD \text{ Difference }} \neq 0$
	H ₀ : $\overline{X}_{\text{Difference}} = 0$
40 g and 30 min	$H_1: \bar{X}_{COD \text{ Difference }} \neq 00$
	H ₀ : \bar{X} Difference = 0
40 g and 60 min	$H_1: \bar{X}_{\text{COD Difference}} \neq 0$

 Table 4.6: Independent two-sample t-test for testing mean difference in the reduced COD concentrations means obtained

 when using alkaline versus acidic effluent samples

The outcomes of the analysis of the t-test results are used as the inputs in the Control Phase. The Control Phase involved designing the sustainable control measures to eliminate the failure risks of the improvements or recommendations made by preceding Phases, using FMEA. In Carroll's (2013: 76) view, the FMEA tool can be used in the Control Phase to develop action plans to prevent failures that have been identified happening. The application of the FMEA in the Control Phase is aligned with the

view of Anirban (2015: 45) who states that the Control Phase involves controlling the improvement interventions by documenting them for monitoring or sustainability purposes.

In this research study, the FMEA tool is used to assess the risks of having high COD concentrations in the WCM effluent after the implementation of the improvement actions. Ultimately, the Control Phase of this study is aimed at establishing the controls required for optimal removal of the COD concentrations in the WCM; refer to **Appendix O1 – OC** for the FMEA ratings. This provides answers to the last objective of this research study: "Establish an effective procedure for removal of the COD in the effluent generated by a corn wet milling process".

Berthouex and Brown (2002: 22) observe that all measurements are subject to error, and statistics play a vital role to quantify and characterize error, taking into account when data are used to make decisions. The errors considered in this study are discussed in the next point called validity.

4.6 Validity

Albery, Chandler, Field, Jones, Hammond, Messer, Moore, Sterling, Sutton and Trapp (2014: 25) state that validity is the extent to which a study produces accurate results that are widely applicable. Haradhan (2017: 59) opined that both external validity and internal validity are crucial when performing experiments. The National Institute of Health Research (2020) defines validity as the extent to which the method of measure is capable of providing measure(s) that match the true value. Reinard (2006: 137) stipulates that external validity involves the degree of generalizability of the findings to a population. The external validity in this research study were assured by selecting appropriate data collection and data analysis methods which are proven to be valid in the reviewed literature in Chapter 3. Studies conducted by Antony (2014: 204), Gopalakrishnan (2012: 133) and Rumane (2017: 120) indicate that the Six Sigma DMAIC methodology employed in this thesis is validated to provide generalizations about the population of a study.

Albery, *at el.* (2014: 25) contend that internal validity refers to the extent to which the actual test results of an experiment pass the hypothesis test claim. Anusree, Mohapatra and Sreejesh (2014: 90) add that internal validity involves proper experimental design in order to make valid conclusions about a study that are free of errors. In this study, internal validity was assured by making use of validated test procedures and externally maintained and calibrated measuring instruments, which included:

- Sampling methods for collecting primary and secondary data,
- experimental procedures including the operation of the instruments that were used to measure CGAC mass, effluent volume, pH, conductivity and COD concentrations, and

external calibration of the instruments that were used, and validated using a SANA accredited supplier or service provider.

Moreover, in the Improve Phase, each measurement is done in duplicate, and the means are used for data interpretation, the experiments conducted in different environmental conditions. Speight (2015: 70), and Crouch, Holler, Skoog and West (2004: 94-95) stipulate that internal validity in experimental observations or scientific methods is verified by using accuracy testing or absolute error calculations. Absolute error calculations are performed using internal reference standard solutions; which are measured during the conduct of the trials in the Improve Phase. This provided assurance about the reliability of the data collected, and analysed in Chapter 5. The statistical tests that are used for evaluating the internal validity of in this study included absolute error, linearity, and one-way ANOVA tests.

4.6.1 Internal validity

Crouch, *et al.* (2004:94-95) mention two types of uncertainty that can affect the validity of measurements, namely random and systematic errors. De Jong, Monette and Sullivan (2011: 124) define systematic errors as troublesome errors might affect the accuracy of the results. Crouch, *et al.* (2004:94-95) mention three types of sources of systematic errors that can originate from the instruments, methods, and personnel. Chaudhry and Nakra (2004: 33) explain that random errors can be minimised by making use of standard operating procedures (SOPs). Kirkup (2002: 33) reports that random errors can measured using a precision measure of uncertainty known as the percentage relative standard deviation. Carter and Lubinsky (2016: 243) declare that relative or absolute internal validity of measurements involves assessing the precision of the individual measurements within a group. Internal validity was taken into consideration in this research study through demonstration that the measurements used are accurate and repeatable. In Chapter 5 of this study, the interpretation of random errors is provided to the reader to present the percentage of uncertainty in the obtained data.

Internal validity analysis in this study began by presenting the accuracy (% bias) and precision (% RSD) of the reference standards data, namely 2000 ppm, 5000 ppm and 10 000 ppm. Part of the reference standards data are collected by the WCM and employed to prove the validity of the data used in the Measure Phase. Part two of the reference standards data are collected during the conduct of the two trials in the Improve Phase, to demonstrate internal validity of the measurements. T-tests and ANOVA testing is performed to interpret the validity of the reference standard to demonstrate the validity of the measurements obtained during the trials.

4.6.1.1 Application of hypothesis testing within internal validity

Mwavita and Strunk (2020: 82) comment that a t-test is a trustworthy measure that helps with probability analysis of measurements in association with any given true value. Oak Ridge National Laboratory (2002: 16) states that a t-test is a suitable hypothesis test to evaluate the accuracy of the measurements against the ideal value. MockInterview.co (2018) comments that a t-test is used to statistically evaluate if there is a difference between the measurement results and the control results. Applicable in this study, the t-test is used to present the results of deviation or variance obtained from the internal reference standards in order to demonstrate the effect of the systematic error of the data collected.

The reference standard measurements obtained at each set of the trials (which include trial one - day one, trial one - day two, trial two - day one and trial two - day one) were tested using a two-tail t-test. The two-tail t-test is used to assess if all the means obtained from the sets had no significant difference compared to the true values for the three reference standards, at a 95% confidence limit. The claims for each reference standard for the trial sets are presented in **Table 4.7** below.

Name of the reference standard	Claim
2000 ppm	H ₀ : $\bar{x} = \mu$
	$H_1: \bar{x} \neq \mu$
5000 ppm	H ₀ : $\bar{x} = \mu$
	$H_1: \bar{x} \neq \mu$
10 000 ppm	H ₀ : $\bar{x} = \mu$
	H ₁ : $\bar{x} \neq \mu$

 Table 4.7: Two-tailed t-test data interpretation plan for the internal validity of the reference standard data to be collected with the trial data in Chapter 5

Haber, *et al.* (2013: 228) claim that ANOVA can be used to examine the difference between more than two groups. De Bievre and Gunzler (2002: 91) declare that the one-way ANOVA test is a suitable hypothesis testing tool to examine the standard of uncertainty and repeatability of the measurements. Gamst, Guarino and Meyers (2013: 521) note that the one-way ANOVA test is suitable to examine the repeatability of the measures of the same variable under different conditions. Jones, Tohen and Tsuang (2011: 77-79) used one-way ANOVA to test the repeatability of the results to provide their estimated variation error. In this research study, one-way ANOVA testing is adopted to prove repeatability of measurements taken during the conduct of the experiments.

The one-way ANOVA tests are used to examine if there is no variance in the means of the same reference standard measurements collected at different times and conditions of the conduct of the trials.

These tests are conducted at a 95% confidence limit to demonstrate that the instruments and the method used during the conduct of the experiments were able to provide reproductive measurements during the trials. The one-way test claims for each reference standard is presented in **Table 4.8** below.

Name of the reference standard	Hypothesis claim
	H ₀ : $X_{Tria1-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2}$
2000 ppm	$H_1: X_{Tria1\text{-}Day1} \neq X_{Tria11\text{-}Day2} \neq X_{Tria12\text{-}Day1} \neq X_{Tria12\text{-}Day2}$
5000 ppm	$ \begin{array}{l} H_0: X_{Tria1-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2} \\ H_1: X_{Tria1-Day1} \neq X_{Tria11-Day2} \neq X_{Tria12-Day1} \neq X_{Tria12-Day2} \end{array} $
10 000 ppm	$ \begin{array}{l} H_0: X_{Tria1-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2} \\ H_1: X_{Tria1-Day1} \neq X_{Tria11-Day2} \neq X_{Tria12-Day1} \neq X_{Tria12-Day2} \end{array} $

 Table 4.8: One-way ANOVA analysis plan for internal validity using data to be collected from the reference standards during the conduct of the trials

Oak Ridge National Laboratory (2002: 17) reports that a correlation coefficient determines a linear relationship between the actual measurements and the ideal measurements. Badgett and Christmann (2009: 116) write that a coefficient correlation is a primary statistical concept used to test the validity of measurements. Jensen, *et al.* (2014: 478) report that a correlation coefficient measure provides the researcher with an analysis of the accuracy of the measurements collected in an experiment. Abraham, *et al.* (2003: 55), agree that the correlation coefficient is used to statistically estimate the correlation of actual results compared with expected results. Badgett and Christmann (2009: 116) note that a negative coefficient at any level signifies invalid test results, and tests with a positive coefficient of +0.9 signify highly valid results. In Chapter 5, the correlation studies are employed to prove the capability of the instruments and experimental method in providing with accurate measurements.

Applicable in this study, two measurements of each reference standard were measured in duplicate to prove that both the SOP and instruments are reliable and provided accurate measurements.

4.6.1.2 Confidence intervals

Jones (2002: 135) defines confidence intervals as a range of the values in which a mean is likely to fall with a specified level of confidence or certainty. Investopedia (2018) explains the confidence interval as a probability that a measured value will fall between an upper and lower bound of a probability distribution; the author further comments that the confidence interval probability ranges from 95% to 99%. Jawlik (2006: 102-107) adds that a 95% confidence interval corresponds to a 95% confidence level and 0.05 or 5% of the level of significance: the maximum allowed percentage of error. Ellis, Ogee and Pammer (2018) note that confidence intervals are commonly used in hypothesis testing to validate

the claim made about the test. In this research study, a 95% level of confidence is employed during the analysis of the COD measurements that are obtained using different GAC filtration methods (conditions).

Ary and Suen (2014: 99) note that validity, which includes internal validity or reliability and external validity, is key to assuring effective high quality quantitative research. These authors explain that external validity involves the ability of the collected data to reflect the underlying attribute of interest. Macnee and McCabe (2008: 199) note that if a study lacks internal validity, it automatically lacks external validity. Therefore, both internal and external validity are treated as a priority in this study. External validity taken into consideration in this study is discussed in the next point.

4.6.2 External validity

Warner (2008: 18) declares that external validity is the extent to which the findings of a research study can be generalized beyond the specific setting, and be applied to real world situations. Felbinger and Langbein (2006: 34) acknowledge that external validity concerns the conclusion of the inferences made in a particular study. Macnee and McCabe (2008: 199) add that external validity refers to the ability to infer that the findings for a particular sample can be applied to an entire population.

Kite and Whitley (2013: 213) mention two aspects of external validity in a study, "generalizability across" (the results can be generalized to more than one setting or population) and "generalizing to" (the results can only be generalized to a particular setting or population). Macera, Shaffer and Shaffer (2013: 151) acknowledge that external validity includes generalizability and representativeness of the results of the studied samples to different conditions. According to Albery, *et al.* (2014: 25), external validity presents the extent to which the results of the experiment can be applied to other situations. Maruyama and Ryan (2014: 39-40) expand that external validity specific to an experiment asks a question pertaining the extent of generalizability in which the findings can be applied to different groups, settings, subject, and under what conditions the experiment can be generalized. Felbinger and Langbein (2006: 35-36) also agree that external validity provides a degree to which the conclusions in one`s study can be accomplished by other persons in other places and times.

According to Cottrell and McKenzie (2005: 173), external validity includes the ability to conduct experiments and achieve similar results in different environmental conditions or settings. McKay (2008: 32) reports that external validity can be assured by assuring that the selected sample in the study is a representative of the target population. Bauman (2013: 212) comments that external validity can be maximized by a randomized sampling of the variable in a research study. McKay (2008: 32) adds that another approach to assuring external validity is to conduct multiple studies across different sample

sub-groups, settings or conditions and times. External validity is provided to the reader in Chapter 5 of this study, derived from the research design that includes sampling size and a data collection design plan. It helped the researcher to make valid findings in this study in relation to the real word. It is discussed in greater detail in Chapter 5 to provide assurance using externally approved, validated instruments for testing; standard operating procedures for collecting the primary data (experimental data); and the experiments were performed on different days, times and conditions.

4.7 Considered ethics

Concerning the ethics in this study, since this is an experimental research design and not social science research, there were no human research participants. However, permission from the company to collect data was granted and the protection of the company's identity in this research was agreed upon. Moreover, this research was conducted in accordance with the CPUT Faculty of Engineering and the Built Environment Ethics Guideline.

The Department of Industrial and Systems Engineering takes student researchers through all the ethical guidelines before the conduct of the actual research. This helps the researcher to be aware of the ethical requirements expected from him or her. Upon completion of the ethical research training, the researcher is then required to complete the ethical clearance form that pinpoints all the ethics that must be adhered to. Hence the ethical clearance letter that was issued by the WCM management granting the researcher permission to use their data and pertaining to the agreement of the protection of the company. Due to the nature of this study, humans and animals were not used for collecting the data, therefore, they were excluded. All this was done to ensure that the ethical compliance agreement between the relevant parties, including the assurance of the quality and integrity of the research.

4.8 Chapter 4 summary

This chapter first provided the reader with an overarching view of different research philosophies and worldviews. Then the chapter outlined the specific research methodology used by this study, namely Six Sigma DMAIC. The population and sampling plan was highlighted and data collection methods were discussed in detail. Thereafter, a detailed data analysis plan in each DMAIC phase was presented. The description of the measures that were taken to ensure internal validity and external validity of this research study were presented. In conclusion, the ethical considerations applicable in this study were discussed. In conclusion, validity (internal and external) was discussed.

The next chapter, Chapter 5 will present to the reader with analysis and interpretation of the data, following Six Sigma DMAIC methodology.

CHAPTER 5: DATA ANALYSIS

5.1 Introduction to Chapter 5

A research data analysis involves data interpretation using five aspects, namely credibility, meaning, importance, generalization of the extent and the implications of the findings (Beck & Polit, 2008: 653). In succession of data interpretation, the researcher presents the analysis to make deductions or inductions about the data (De Chesnay, 2015: 14). Guided by these definitions of data analysis, this chapter commenced by presenting data interpretation and analysis of the results, obtained using the Six Sigma DMAIC methodology. Then conclude with the presentation of the results of validity.

5.2 Overview of Chapter 5

Data analysis is the process through which inferences are drawn about the data available after its interpretation (Sharma, 2011: 8). Data analysis serves as the foundation of the improvement cycle by providing results that illustrate the effectiveness of current methods, procedures, and structures (Depka, 2006: 3). Data interpretation and analysis are used to examine data of this study and to draw conclusions regarding the research problem of this study.

Essentially, the Define Phase presents a detailed outline of the WCM effluent process, by identifying all the process inputs and output of each WCM effluent process steps. In the Measure Phase, the current performance of the WCM effluent process are measured, by examining the performance of the WCM effluent macro channels using the hypothesis t-tests. The findings of the Measure Phase provided a foundation for the Analyse Phase. Here the identification of the root causes of the problematic effluent macro channels took place with the use of the RCAs constructed using the Fishbone and 5 Whys method. The root causes that were identified in the Analyse Phase signified the areas to improve in the Improve Phase; where the improvement solution actions are developed and tested to address the research problem. The improvement solutions in the Improve Phase include scientific interventions to determine the most effective solution. The effectiveness of the solutions are examined for sustainability in the Control Phase using the FMEA tool. Then the internal validity was presented to the readers using selected statistical techniques, such as percentage bias, t-test, one-way ANOVA testing and the coefficient of determination. This is followed by the external validity considered in this study, from planning to execution. This chapter will conclude by presenting ethics that were considered in this research.

5.3 Define Phase

A process flow can be used in Define Phase to assist the analyst to gain a better understanding of the process being studied (Meredith and Safer, 2019: 276). The process flow is used to exhibit a detailed WCM effluent process flow, to identify all its process steps or macro channels. The process flow is created during a Gemba walk in the WCM effluent plant with the purpose of gaining a better understanding of the layout of the WCM effluent process. Thereafter, an analysis of measurement was conducted on each sub-process or macro channel.

5.3.1 Wet Corn Milling effluent process flow

The process flow shown in **Figure 5.1** provides the reader with the insight into the stages of the WCM effluent process. To demonstrate the complexity of the WCM effluent process, this comprehensive effluent process flow was developed. This detailed effluent process flow was created to illustrate the complexity of the WCM effluent process. It depicts all the effluent process steps (macro channels); which had input to the total WCM effluent. The process flow shows that the process has thirteen macro effluent channels. The process spillages are also included in the process flow, as they had a direct effect on the WCM effluent plant COD.

The WCM effluent process is divided into five categories; category one includes all the effluent generated by the corn steeping, separation processes of the steeped corn, and the drying of the byproduct processes. These effluent channels include the Evaporator, Wet Corn Milling Spillages, Condensate and Condensate Return. Category two includes all the effluent generated by the modification of the starch and refining stages of Glucose as a by-product. The Glucose Spillages, Hot Water, CPV Tank, and Concentrator are the effluent channels in the secondary category. Category three includes Saccharification, Spillages, Anion, Cation and the Effluent Tank; these are the effluents generated by the refining of glucose and germination of the starch. All the effluent generated by all three categories is collected in the Effluent Sump, which is the fourth category. The fifth category includes the product spillages from the loading bay.

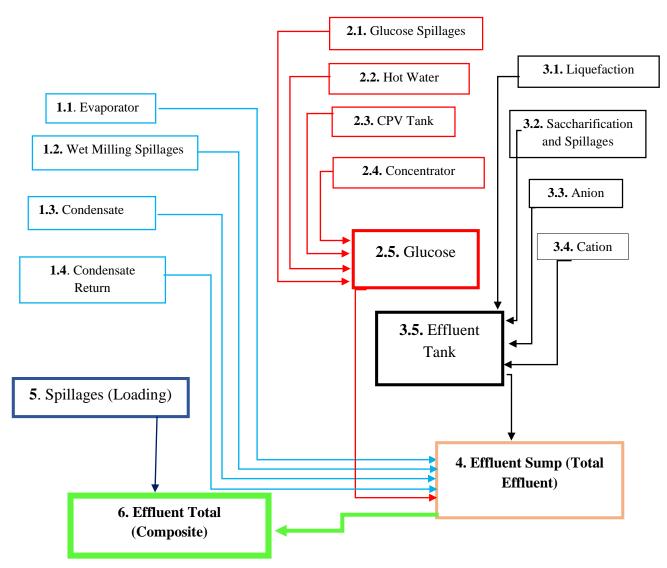


Figure 5.1: Wet Corn Milling effluent process flow

The conclusion of this phase is summarised in the next section below.

5.3.2 Define Phase outcome summary

Condensate Return, Concentrator, Evaporator, Hot Water, CPV Tank, Liquefaction, Condensate, Anion, Cation, Glucose and Effluent Tank are the eleven key effluent macro channels in the WCM. As the units of analysis in the Measure Phase, the eleven macro channels are used; following the reviewed literature in section 3.4.3, which revealed that flow chart can be used in Define Phase to help to classify major primary data collection areas (Davis & Yen, 2000: 27). The quality of the effluent COD concentrations in the effluent generated from the eleven effluent macro channels are presented in the

next Phase, Measure. The objective of the measurement of the eleven effluent macro channels is to determine the macro channels that had an impact on the nonconforming CODs in the WCM effluent.

5.4 Measure Phase

The one-tail test is used in this Phase to interpret the current state of the process or sub-process (Kadambi, 2012: 40). Results of one-tail t-tests are used to compare the measurements of COD concentrations produced in each macro channel to the standard specification requirement of government controlled COD concentrations. The goal of this Phase is to identify the effluent macro channels that produce COD concentrations greater than the standard specification of 5000 ppm required by the legislation. Therefore, reply to the first investigative question of this research study: "Which stages in a WCM process contribute to increasing concentrations of COD in the discharged effluent?"

5.4.1 One-tailed t-test analysis within the Measure Phase

The null hypothesis claims for all the t-test are: The COD concentrations in the effluent generated by each effluent macro channel is less than or equal to 5000 ppm (H₀: μ COD concentrations \leq 5000 ppm). The alternate hypothesis claims are: the COD concentrations of effluent generated by each macro channel is greater than 5000 ppm (H₁: μ COD concentrations > 5000 ppm).

At 95% confidence limits and at the degrees of freedom of n-1(59), the upper t-critical value was found to be 1.6710. The t-statistics of three of the eleven macro channels, namely Condensate, Effluent Tank and Glucose were found to be greater than the t-critical values. Therefore, their null hypotheses were rejected. Their alternate hypotheses were accepted, which stated that their COD concentrations means are significantly greater than 5000 ppm. See the t-tests result for all the eleven WCM effluent macro channels in **Table 5.1** below, and the calculations presented in **Appendix J**.

Effluent	Test claim	t-critical	t statistical	Decision
macro				(Accept or Reject)
channel				
Condensate	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-1012.8871	Accept the null
Return	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Concentrator	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-524.8158	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Evaporator	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-129.0892	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Hot Water	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-127.3751	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
CPV Tank	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-93.7038	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Liquefaction	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-35.5278	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Condensate	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	16.8249	Reject the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Anion	H ₀ : $\bar{x}_{\text{COD concentrations}} \leq 5000 \text{ ppm}$	1.671	-1.3211	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Cation	H ₀ : $\bar{x}_{COD \text{ concentrations}} \leq 5000 \text{ ppm}$	1.671	-0.8218	Accept the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Glucose	H ₀ : $\bar{x}_{COD \text{ concentrations}} \leq 5000 \text{ ppm}$	1.671	5.0150	Reject the null
	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis
Effluent	H ₀ : $\bar{x}_{COD \text{ concentrations}} \leq 5000 \text{ ppm}$	1.671	7.4328	Reject the null
tank	H1: $\bar{x}_{\text{COD concentrations}} > 5000 \text{ ppm}$			hypothesis

Table 5.1: T-test results for eleven WCM effluent macro channels

The t-tests result indicated that there were three WCM effluent macro channels that contributed to the nonconforming COD concentrations in the WCM effluent plant.

5.4.2 Measure Phase summary

For the three WCM effluent macro channels, the null hypothesis was dismissed on the grounds that there was substantial statistical evidence that their mean COD concentrations were significantly larger than 5000 ppm. This was therefore the answer to the first investigative question of this study: "Which stages in a WCM process contributed to increasing concentrations of COD in the discharged effluent?" Statistically, the three WCM effluent macro channels, namely Condensate, Glucose and Effluent Tank, were found to have higher mean COD concentration than the 5000 ppm controlled standard specification.

In line with the literature reviewed Chapter 3, section 3.4.5.1; which points out that the findings of the Measure Phase act as inputs to the Analyse Phase (Vanzant-Stern, 2012: 117). Therefore, the inputs of the RCAs are carried out in the next research step (Analyse Phase) are these three WCM effluent macro channels.

5.5 Analyse Phase

The root cause analysis is performed during the process to figure out what happened in the three macro channels that were established in the previous phase as problematic. Carrell and Peterson (2010: 22), who clarified the intent of the Analyse Phase as to determine what should happen to prevent the problems recurring. Then Antony (2014: 205), expounded that the RCA is a brainstorming tool to examine the root cause of the research problem; which include the Fishbone diagrams and 5 Whys methods. In this analysis, directed by Antony, the Fishbone diagrams is used to describe the possible causes of high COD concentrations caused three WCM effluent macro channels, namely Condensate, Effluent Tank, and Glucose.

In order to comply with the regulatory requirements, the root causes of non-conforming CODs are known to present risks. Identifying the root causes will help to improve the alternatives (appropriate correction and preventative). Using the Fishbone diagrams and 5 Whys approaches, the identification of the root causes of the high COD concentrations is studied. Led by the literature review presented in Chapter 3, section 3.4.5.2 in Chapter 3; which pin pointed out that the 5 Whys approach may not actually have to include specifically 5 Whys questions, but to include at most 5 explanations why to get to the root cause of the issue to peel off the layers of (Carrell & Peterson, 2010: 22). For this reason, in this study, only 3 Whys are used to navigate to the root cause of the symptoms; to find answers to the second question of this research study, namely "What are the causes of the high COD content present in the discharged effluent of the various process stages?"

The RCA is created for the three effluent macro channels that were identified as the problematic channels in the preceding Measure Phase. As Cahyadi, *et al.* (2017: 850) stated in section 3.4.6, in Chapter 3 that the Improve Phase sets out to eliminate the root cause(s) of non-compliance identified during the Analyse Phase. The findings of this Phase are the keys to find solutions to the researched problem; the analysis of each channel are discussed in the section that follows.

5.5.1 RCA analysis for the Condensate channel

Fewer than 5 Whys can be used to classify the root causes of a nonconforming process, according to Isixsigma (2020). Consequently, only three Whys were necessary from the three macro channels to classify the root causes of high COD concentrations. The results of the Condensate channel RCA suggested that the interlinked processes were not properly monitored or regulated, resulting in high COD level caused by cross-contamination of the substance. The explanation for this is that hydrocarbons, proteins and oils that are generate by wet maize processing, and if the interlinked processes are not properly regulated, these elements may contaminate the effluent and thus give rise to

higher concentrations of COD. In addition, if one or more of the processing stages of the WCM are not effectively regulated, some of the products can be channelled into the macro channel(s) of the effluent and the COD concentrations in the effluent can be elevated. The RCA also emphasized that the existing system in place are not adequate to identify accidents quickly and prevent from occurring. **Table 5.2** below presents the results of the RCA for the Condensate macro channel in tabular form.

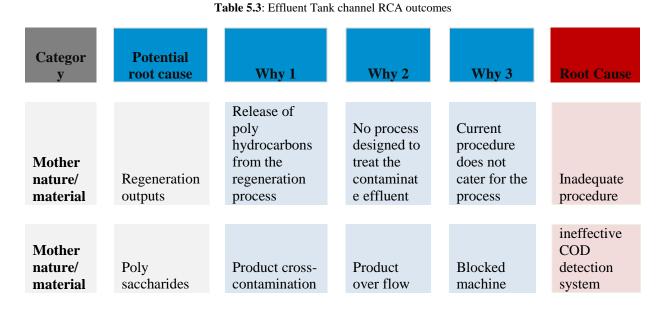

Category	Potential root cause	Why 1	Why 2	Why 3	Root Cause
Mother nature/m aterial	Poly saccharides	Inefficient separation in the WCM processes	Poor process operation	Gap in competenc y	Skills gap/level of understanding
Machine	Spillages	Blocked pumps/tan k overflows	Nature of the product being processed/ lack of tank monitoring	No system to detect these incidents sooner	No systematic approach to detect the problems sooner
Measure ments	Reactive rather than proactive	Taking a long time to sample and perform the measurem ents	The current sampling and analysing method used	Gap in technology innovation	Current measuring system is too reactive
menus	proactive	ents	useu	milovation	reactive

Table 5.2: Condensate channel RCA outcomes

The RCA above identified the level of knowledge of the process operators, and ineffectiveness in the current system used to measure COD deviations and alert the process operators when there was a deviation. To overcome these risks, it is proposed that improvement on skill development, and COD detection, is required to improve the monitoring of the WCM processes to ensure that each process stage does not leak the products into the effluent channel. A more proactive measuring system should be implemented in place to reduce the risks.

5.5.2 RCA analysis for the Effluent Tank channel

The findings obtained from the RCA of the Effluent Tank macro channel suggested that the two factors are responsible for the high COD concentrations. High COD concentrations that are produced during the regeneration process of anions and cations resins used to extract ions from the glucose syrups are factor one. The management of high COD concentrations produced during resin regeneration is not adequately addressed by the current procedure and system in place. Factor two is that there is an inadequate monitoring mechanism for COD concentrations to notify the process operators rapidly when the COD concentrations begin to deviate or elevate. This leads to the late identification of high levels of COD caused by leaks or product spillages, defective pumps or blocked channels. **Table 5.3** below presents the results of the RCA for the Effluent Tank macro channel.

The RCA above identifies the inadequate effluent management procedure, ineffective COD detecting control measure and preventative maintenance risks in this macro channel. To overcome these risks, the current procedure for managing the nonconformities in the WCM effluent should be reviewed for improvement, including the current COD detection and preventative maintenance.

5.5.3 RCA for the Glucose channel

The results obtained from the RCA Glucose channel indicated that there is a gap in the defined processes stipulating the actions that must be taken when to correct and prevent high COD concentrations when detected. Moreover, the existing system used for measuring or detecting high COD is not proactive or vigilant because it does not provide the results early enough to predict or anticipate the next deviation from the process deviation. Rather, it only waits and detects after the process has deviated from the normal. The Glucose channel's RCA findings are presented in **Table 5.4** below.

Categor y	Potential root cause	Why 1	Why 2	Why 3	Root Cause
Methods	No effective procedur es to monitor the tank levels	It was not included in the process risk assessme nt	At the time of the establishme nt of the process risks, the effluent was not rated as a major risk	The quality of the effluent was not as important as it is now	Inadequate procedures for COD effluent risk identification and management
Machine s	Product spillages	Blocked product channels, and faulty tank level indicators	Cold product left on the paths solidifies	The methods in place are not adequate and they are not followed	Inadequate operating procedures to address operational risks and preventative measure that need to be followed when there is an incident
Measure ments	Product cross- contamin ation low detection	Late detection of contamin ated effluent	Sampling and testing take too long	Current system implement ed	Inadequate resources

Table 5.4: Glucose channel RCA outcomes

The RCA above identifies a lack of procedures and resources as risks in this process. To overcome these risks, it is proposed that effective control measures should be implemented, such as establishment of procedures that stipulate how to correct and prevent pre-identified risks to ensure that the effluent discharged into the municipal drains adheres to regulated COD concentrations.

5.5.4 Analyse Phase summary

The results of the RCAs presented on the three identified nonconforming WCM macro effluent channels illustrate that there is a gap in the skills, ineffective COD control measures or a system and inadequacy in the implemented procedures in place. Suitable control measures are not available to detect, correct and prevent risks which might trigger an elevation in the COD concentrations in the WCM effluent.

This necessitates the establishment of a procedure that will help to improve the monitoring of the COD concentrations in the WCM effluent, to consistently meet the legislated standard specification, which is explored in the next phase.

5.6 Improve Phase

Following Cahyadi, *et al.* (2017: 850) statement in section 3.4.6 in Chapter 3, that say, the solutions of the problems identified in the Analyse Phase are tested in Improve Phase. In this Phase, the CGAC adsorption experiments are conducted to explore the most suitable procedure for removing COD concentrations in the WCM effluent. The goal of this Phase is to execute the action solution plans to eliminate the root causes of a problem (Tibbetts & Williams, 2006: 6). In the previous Phase, the root causes of high COD concentrations in the identified three WCM effluent macro channels and this Phase focuses on establishing an effective procedure for reducing the COD concentrations in the WCM effluent using the CGAC adsorption process.

In this Phase, the researcher tested different experimental procedures of CGAC to reduce the COD concentrations in the WCM effluent samples, with the aim of answering the third investigative question of this research study, which states: "Can a process variable(s) be identified that when adjusted yields the optimal removal of COD from WCM effluent?"

This is accomplished by means of conducting experimental trials to collect primary data, which is later interpreted and analysed using paired t-tests, correlation studies and independent-sample t-tests.

The primary data is collected from two experimental trials, namely trial one and trial two. Each trial consisted of three batches with different procedures used for evaluating the effectiveness of the CGAC procedure to achieve optimal COD removal. The two trials are conducted using the WCM effluent samples collected from the Condensate, Effluent Tank and Glucose non-conforming COD macro channels. The two trial procedures are presented in **Appendix 1**: Where trial one employed acidic range of the effluent samples, and trial two involved alkaline range effluent samples. The trial batches are outlined as follows:

- 1. **Trial one & two: batch one** Evaluating the effect of an increase in contact time (20, 30 and 60 minutes) at constant CGAC filtration weight of 20 gramss.
- Trial one & two: batch two Evaluating the effect of an increase in contact time (20, 30 and 60 minutes) at constant CGAC filtration weight of 30 gramss.
- 3. **Trial one & two: batch three** Evaluating the effect of an increase in contact time (20, 30 and 60 minutes) constant CGAC filtration weight of 40 gramss.

The interpretation of the results obtained in trial one and trial two batches are conducted using paired ttests and correlation studies. The interpretation tactic is guided by Butler, *et al.* (2016: 163), as they described a paired t-test as a test that is used to determine significant differences in the changes before and after the improvement implementations. Furthermore, Javier (2011: 144) used a paired t-test result at 95% confidence limits to examine the differences between two results obtained from independent variable(s). Therefore, in this Phase, initially, the paired t-tests are used to explore mean differences between the untreated COD concentrations and the treated COD concentrations. Ramu (2017: 51) states that correlation studies are employed in the Improve Phase to estimate the significant of the improvement; applicable in this study, the correlation studies are used to identify a CGAC filtration procedure that would result in good and positive correlation. Lastly, Martinez, *et al.* (2020: 181) reported that the two independent sample t-tests are used to compare two groups in the Improve Phase to determine if there was a statistically significant relationship. In this study, the t-tests are conducted to explore the statistical relationship between the reduced COD concentrations obtained when using two different pH content samples, namely acidic and alkaline samples.

5.6.1 Trial one paired t-test analysis within the Improve Phase

The paired t-tests are used to examine if there is a significant difference in the COD concentrations means before filtration versus after filtration in the acidic effluent samples. The purpose of this test is to determine if the treatment had a significant effect on removing the COD concentrations in acidic effluent samples.

All the paired t-tests results indicated that there are significant differences in the COD concentrations means before and after the CGAC filtration. This is demonstrated by the rejection of all the null hypotheses, which stated that there is no significant difference between the COD means before and after the filtration at confident limits of 95% and degrees of freedom of 2 (n-1). All the calculated t-tests values fell outside the non-rejection area; as a result, the alternate hypotheses are favoured for all the tests. Therefore, there is enough statistical evidence to prove that there are significant differences between the COD concentrations means before and after the CGAC filtrations. The calculations are documented in **Appendix K1** and the results are summarised in **Table 5.5** below.

Trial Name	Hypothesis claim	t-statistical	t-critical	Decision (Accept or Reject)
Tame	Trypotnesis claim	t-statistical	t-criticai	Reject the null hypothesis
Trial 1:	H ₀ : $\overline{X}_{\text{Difference}} = 0$			and accept the alternate
Batch 1	H ₁ : $\overline{X}_{\text{COD Difference}} \neq 0$	4.0151	2.1098 and -2.1098	hypothesis
				Reject the null hypothesis
Trial 1:	H ₀ : \overline{X} Difference = 0			and accept the alternate
Batch 2	H ₁ : $\overline{X}_{\text{COD Difference}} \neq 0$	4.0167	2.1098 and -2.1098	hypothesis
				Reject the null hypothesis
Trial 1:	H ₀ : $\overline{X}_{\text{Difference}} = 0$			and accept the alternate
Batch 3	$H_1: \overline{X}_{COD \text{ Difference}} \neq 0$	4.0824	2.1098 and -2.1098	hypothesis

 Table 5.5: Paired t-tests result for the mean difference analysis between the COD concentrations before and after treatments for trial one

It is deduced from the results obtained using the paired t-tests that CGAC did reduce the COD concentrations in the acidic WCM effluent samples. This deduction is supported by the rejection of all the null hypotheses which stated that there is no difference in the COD concentrations before and after the filtration.

5.6.2 Trial one correlation analysis within the Improve Phase

The correlation analysis is conducted to identify which suitable CGAC procedure that would result in a good positive relationship when applied in acidic effluent samples. This analysis is conducted to investigate the most stable and consistence procedure for the optimal removal of the COD concentrations in acidic WCM effluent samples. By exploring the effect of the variables, namely filtration time and CGAC filtration weight.

Statistically, based on the sample size of this study, a better positive correlation is obtained when the CGAC weights are increased to a constant contact time of 60 minutes, the maximum time used in this study. This interpretation is guided by Brewer and Picus (2014: 826) as they acknowledged a coefficient determination of 0.7 to 1 as good relationship. Therefore, a good correlation value of 0.7565 is achieved; which statistically implies that 75.65% of the relationship in the removal of the COD concentrations can be explained by the linear graph. The remaining 24.35% was subjected to other external factors which include the pH content of the samples used and the chemical composition of the effluent samples used. The results obtained during this trial are presented in **Table 5.6** below using the experimental data and the calculations that are presented in **Appendix K2**.

Treatment	Coefficient of determination
20 g: 20 min, 30 min and 60 min	0.05633
30 g: 20 min, 30 min and 60 min	0.05033
40 g: 20 min, 30 min and 60 min	0.38120
20 min: 20 g, 30 g, and 40 g	0.3971
30 min: 20 g, 30 g, and 40 g	0.1275
60 min: 20 g, 30 g, and 40 g	0.7565

Table 5.6: Coefficient of determination results for trial one

In trial one, the data interpretation indicated that when using acidic samples, positive linearity is obtained when the filtration time and CGAC filtration mass are increased. A good correlation for the COD removal is achieved when the contact time is 60 minutes using increasing CGAC weights. Therefore, it can be deduced that more consistent COD removal from acidic samples was achieved when the CGAC was increased gradually at the highest contact time of 60 minutes. The increase in contact time allowed molecules in the solute to react and adhered with the molecules on the surfaces of the CGAC. Consequently, resulted in more COD removal from the filtered effluent samples and this occurrence is supported with the reviewed literature in section 3.3.4.

Trial two experiments are carried out following the same CGAC filtration procedures used in trial one to explore the effect of alkaline samples on optimal COD removal in the WCM effluent. The effect of is examined using the paired t-test to evaluate if there was a statistically significant difference between the COD concentrations means before and after the filtrations.

5.6.3 Trial two paired t-test analysis within the Improve Phase

The purpose of conducting the paired t-tests is to determine if there would be a significant difference in the COD concentrations result obtained before and after CGAC filtration, using alkaline samples. All the paired t-tests result indicated that is a significant difference in the COD concentrations before and after the CGAC filtration of the alkaline samples. This is indicated by the rejection of the null hypothesis that stated that there is no significant difference between the COD means at confident limits of 95% and degrees of freedom of 2(n-1). All the calculated t-tests values fell inside the rejection area; as a result, the alternate hypotheses are favoured. Therefore, there is enough statistical evidence that there are significant differences between the COD concentrations when alkaline samples are used. The paired t-tests calculations are presented in **Appendix M1** and are summarised in **Table 5.7** below.

Table 5.7 : Paired t-tests result for the mean difference analysis between the COD concentrations before and after treatment
for trial two

Trial				Decision
Name	Hypothesis claim	t-statistical	t-critical	(Accept or Reject)
				Reject the null hypothesis
Trial 2:	H ₀ : \overline{X} _{Difference} = 0			and accept the alternate
Batch 1	H ₁ : $\overline{X}_{\text{COD Difference}} \neq 0$	4.0408	2.1098 and -2.1098	hypothesis
				Reject the null hypothesis
Trial 2:	H ₀ : \overline{X} Difference = 0			and accept the alternate
Batch 2	H ₁ : $\overline{X}_{\text{COD Difference}} \neq 0$	4.0987	2.1098 and -2.1098	hypothesis
				Reject the null hypothesis
Trial 2:	H ₀ : \overline{X} Difference = 0			and accept the alternate
Batch 3	H ₁ : $\overline{X}_{\text{COD Difference}} \neq 0$	4.1048	2.1098 and -2.1098	hypothesis

From the outcomes of this test it can be deduced using the paired t-test that all the CGAC adsorption procedures are able to reduce the COD concentrations from the alkaline WCM effluent samples. This is indicated by the rejection of all the null hypotheses from the nine different CGAC procedures, which stated that the COD concentrations before filtrations not different compared to the COD concentrations after the CGAC filtration.

5.6.4 Trial two correlation analysis within the Improve Phase

The correlation analysis in this trial is used to examine the effect of CGAC filtration weight and contact time on obtaining a good positive correlation, when using alkaline effluent samples. A positive correlation of 0.8801 is obtained when the contact time is kept constant at 60 minutes, while the CGAC weight was increased accordingly. The obtained coefficient of determination value statistically indicated 75.20% removal of the COD concentrations from the alkaline effluent samples. This is explained by the linearity obtained in this study. The results of the correlation analysis are presented in **Appendix M2**; see the results in **Table 5.8** below.

Treatment	Coefficient of determination
20 g: 20 min, 30 min and 60 min	0.0017
30 g: 20 min, 30 min and 60 min	0.5849
40 g: 20 min, 30 min and 60 min	0.7166
20 min: 20 g, 30 g, and 40 g	0.4609
30 min:20 g, 30 g, and 40 g	0.7392
60 min: 20 g, 30 g, and 40 g	0.8801

The correlation analysis results of trial two demonstrated that when using alkaline samples, the best correlation for the COD removal was achieved when the contact time was kept constant at 60minutes

for the increasing CGAC filtration weights. Therefore, this indicated that more COD removal in alkaline samples is achieved when the CGAC filtration weights are increased to a high contact time of 60 minutes. These results are similar to the one obtained when acidic effluent samples were used and the literature reviewed in this research; which indicated that an increase in time or GAC weight results in more removal of the COD in the effluent. Therefore, the outcomes of the correlation studies also demonstrated that the use of alkaline samples conceded to similar outcomes compared to the use of acidic samples pertaining to effect of filtration time and CGAC weight.

Paired t-tests results showed that when the CGAC treatment procedures are applied in acidic or alkaline samples, they are capable of removing the COD concentrations in the WCM effluent. Analysis of the results of trial one and trial two indicated that good linearity is achieved when the effluent samples (acidic or alkaline) are filtered through increasing CGAC weights for 60 minutes. Laerd Statistics (2018) defined the independent t-test as test used for determining a statistically significant difference between two means of two unrelated groups. Guided by this definition, the results of the independent t-tests used to explore the difference between the reduced COD data obtained using two pH content samples, acidic versus alkaline are discussed in the next point.

5.6.5 T-test for equal mean variances: A deduction

Nine t-tests are performed to statistically evaluate if there is a variance between the means of the reduced COD concentrations obtained using two different pH content samples, acidic and alkaline. The results of the t-tests indicated that there is no statistically significant variance between the reduced COD concentrations obtained, when eight similar CGAC procedures used to filter acidic and basic effluent samples. This claim is illustrated by the acceptance of the null hypotheses and rejection of the alternate hypotheses for the eight CGAC filtration procedures, at 95% confidence limits.

Initially, the null hypothesis was rejected for the last treatment, namely 40 g and 60 minutes, favouring the alternate hypothesis which stated that there is a significant variance between the reduced COD concentrations. Further analysis was conducted on the treatment with the rejected null hypothesis to validate if there was a variance using t-prime. The results of the t-test prime presented in **Appendix N** indicated that there is no significant variance between the reduced COD concentrations obtained for this treatment. Therefore, the rejection of the null hypothesis was reversed, and it is concluded that there is no difference between the reduced COD concentrations obtained that there is no difference between the reduced COD concentrations obtained when using the acidic effluent samples compared to alkaline effluent samples. See calculations of the summarised results in **Table 5.9** below in **Appendix N**.

	Hypothesis		Non-rejection	Decision
Treatment	claim	t-statistic	area	(Accept or Reject)
20 g				Accept the null hypothesis
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			and reject the alternate
20 min	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	0.1533	3.4954 and -3.4954	hypothesis
20 g				Accept the null hypothesis
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			and reject the alternate
30 min	$H_1: \overline{X}_A \neq \overline{X}_B$	1.2705	3.4954 and -3.4954	hypothesis
20 g				Accept the null
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			Hypothesis and reject the
60 min	$H_1: \overline{X}_A \neq \overline{X}_B$	1.5283	3.4954 and -3.4954	alternate hypothesis
30 g				Accept the null hypothesis
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			and reject the alternate
20 min	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	0.7217	3.4954 and -3.4954	hypothesis
30 g		0.7217		Accept the null hypothesis
30 g &	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			and reject the alternate
30 min	H ₀ : $\overline{X}_{A} \neq \overline{X}_{B}$ H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	0.3253	3.4954 and -3.4954	hypothesis
30 g	Π_{I} , $\Lambda_{A} \neq \Lambda_{B}$	0.3233		Accept the null
50 g	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			Hypothesis and reject the
60 min	H ₀ . $\overline{X}_{A} - \overline{X}_{B}$ H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	1.5021	3.4954 and -3.4954	alternate hypothesis
	Π_1 . $\Lambda_A \neq \Lambda_B$	1.3021	5.4754 and -5.4754	Accept the null
40 g	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			A
&	* ** -	1 0117	2 4054 and 2 4054	Hypothesis and reject the
20 min	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	1.2117	3.4954 and -3.4954	alternate hypothesis
40 g				Accept the null
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$		2 4054 1 2 4054	Hypothesis and reject the
30 min	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	0.9867	3.4954 and -3.4954	alternate hypothesis
40 g				Reject the null
&	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			Hypothesis and accept the
60 min	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	5.2545	3.4954 and -3.4954	alternate hypothesis
	t-pri	i <u>me results</u> f	or unequal mean vari	
40				Accept the null
40 g	H ₀ : $\overline{X}_{A} = \overline{X}_{B}$			Hypothesis and reject the
&	H ₁ : $\overline{X}_{A} \neq \overline{X}_{B}$	5 95 45	4.1765 and -4.1765	alternate hypothesis
60 min	, –	5.2545		

 Table 5.9: T-tests result for equal mean variance in reduced COD concentrations means obtained between alkaline and acidic effluent samples

All the t-tests result analysis indicated that there are no mean variances between the reduced COD concentrations, obtained when acidic and alkaline WCM effluent samples are treated in similar conditions. This claim is validated by the t-test outcomes, which imply similar results in the reduction of COD concentrations in the WCM effluent are obtained when using either acidic or basic effluent samples.

The results in **Appendix K1** and **Appendix K2** illustrated that more reduced COD means are obtained from the acidic samples; when acidic effluent samples are filtered through similar conditions compared to alkaline samples. This phenomenon is in agreement to what was reviewed in section 3.3.3.2 in

Chapter 3 of this study. Where the authors, namely, Ushakumary (2013: 7), Goswami and Kulkarni (2013: 181), El-Gawad and EL-Aziz (2018: 228) reasoned that the decrease in the pH content of the filtered solution results in more COD removal. However, the results of the t-tests presented in **Table 5.9** indicated that the differences between the reduced COD means are not big enough to result in a statistical significant difference at 95% confidence intervals in this study.

5.6.6 Improve Phase summary

The paired t-test outcomes indicated that there is a significant reduction in the COD concentrations before and after CGAC filtration when using either acidic or alkaline effluent samples. The results of the correlation studies showed positive good correction responses to the increased filtration times and CGAC filtration weights. Lastly, the t-test for equal and unequal mean variance indicated that there are no variances between the COD removal obtained using acidic effluent samples versus using alkaline effluent samples. Therefore, the results of the Improve Phase indicated that the CGAC adsorption procedures are capable of removing the COD from the WCM effluent.

Sobh (2008: 169) commented that the effective sustainability of the solutions of the Improve Phase are reviewed and validated in the Control Phase. For this reason, in the Control Phase, FMEA is adopted to explore all the risks of having high COD concentrations generated in the effluent current process flow. The use of FMEA is aimed to identify a procedure that could assist the WCM to ensure that the COD concentrations of the effluent discharged are consistently within legislated standard specification. Thus, provide an answer to the last investigative question of this research study: "Can a modified procedure be employed to reduce COD concentrations in effluent generated by the WCM process to comply with the regulatory specification consistently?"

5.7 Control Phase

The goal of the Control Phase is to ensure that improvement is maintained once effective solutions are identified (Larson, 2014: 134). Failure Modes Effects Analysis is applied in the Control Phase to assess the significance of the risks, and identify the control measures to eliminate them (DeCarlo, *et al.*, 2012: 288). Failure Modes Affects Analysis is a systematic tool for establishing a procedure to eliminate identified risks to control the process (Arivalager & Naagarazan, 2005: 120). Guided by the explanations above, the FMEA tool is employed in this study to establish a suitable procedure for improving the monitoring of the COD concentrations in the WCM in accordance with the standard regulation specification. This is carried out to answer the last question of this research study in section 1.6.4 in Chapter 1.

The FMEA is used to first assess all the risks in the current effluent process, and to seek a mitigating action plan to eliminate the identified risks. Then the last part in this phase involved a re-evaluation of the effect of the mitigating action plan in eliminating the identified risks in order to create a modified procedure to address the preventative actions.

5.7.1 Failure mode effects analysis risk assessment of the current process

The high risk failures are indicated with red shading, medium risks with amber shading and low or insignificant failure risks are indicated with green shading. Two risks are identified as medium, namely a skills gap, and spillages that are caused by over-filled tanks. Four are identified as high risk, which include poor control of the inter-linked process stages, blocked channels or pipes, faulty valves, and regeneration of the deionized beds. The outcomes of the risks assessment are tabled in **Table 5.10** below, using the rating presented in **Appendices: O1, O2 and O3**.

Risk - Bad events	Consequences	Severity	Occurrence	Current process control	Detection	Risk Priority Number	Recommendation
Skills gap	Ineffective process monitoring	9	5	Once-off entrance training and evaluations	3	135	Not applicable
Over-filled tanks that result in product spillages	Effluent contamination (non- conforming COD)	9	10	No control	4	350	Not applicable
Poor control WCM processing stages	High COD concentrations	8	10	Manual check	9	720	Install an inline COD detector at the total effluent and a warning alarm that will go off 4800 ppm.
Blocked channel flow or pipes	Leakages. overflows that cause effluent contamination (high COD concentrations)	9	8	Visual check	10	720	Install sensors on the critical process areas to detect if no flow of product
Faulty system (valves and detectors)	Effluent contamination/ product spillages	9	8	Visual check	10	720	Test valves using a systematic self- test programsme (maintenance), calibrate the detectors and perform daily verification of the validity of the warning alarms.
Regeneration of the anion and cation beds	Contamination of the effluent tank and overall WCM effluent	10	5	Manual check	5	250	Design a process to pre-treat the effluent generated during the regeneration of the beds.

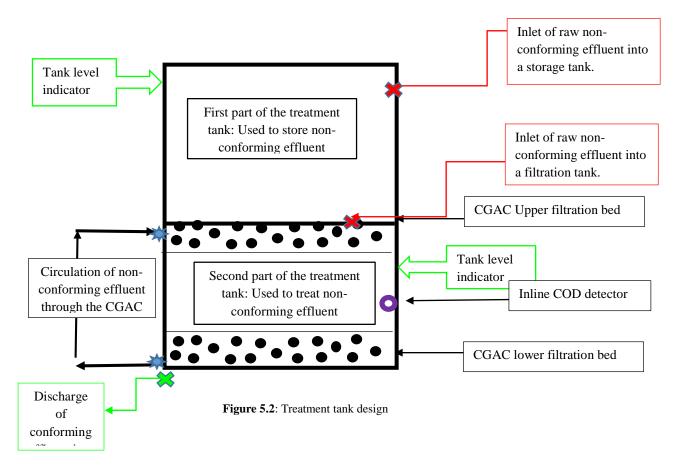
Table 5.10: FMEA risks assessment result of the WCM effluent process "as it is"

The risks associated with the inability of the WCM effluent to consistently comply with the legislated standard requirement of COD concentrations are presented in the above FMEA analysis. In agreement with the views of De Carlo, *et al.* (2012: 288), in section 3.4.7, who opine that FMEA to eliminate risks

by evaluating the effectiveness of each control measure, and Dhillon (2007: 60), who commented that FMEA is commonly used in the industrial sector to analyse engineering systems to improve their reliability; the corrective and preventative actions to reduce and eliminate the identified risks are discussed in the next point.

5.7.2 Risk mitigation action plan

The corrective and preventative actions for the four risks identified were used to finalise the development of a procedure to address the optimisation required to eliminate or reduce the risks to acceptable levels. This procedure included an action plan to redesign the current WCM effluent process to introduce measures that will eliminate the risks (see **Appendix P** for the proposed procedure). A recommendation from this analysis is that employees need to be re-trained and certified competent at least once per annum; and the plan must encourage the teams to improve performance by implementing team appraisals.


The current WCM effluent process needs to be redesigned to include measures that will control the identified risks. The redesigned WCM effluent process will help to improve the monitoring of the tank levels, thus preventing product spillages or wastage, and eliminating product wastage caused by faulty valves. Moreover, it will prevent high COD concentrations caused by regeneration of the resins. The redesigned process involves installing tank level indicators and installing a programsme with warning alarms to indicate when a tank is approximately 95% full. This programsme should automatically close the tank inlet valves when the tanks are full. This will eliminate product spillages caused by faulty valves and blocked channels, and eliminate non-conforming effluent COD concentrations caused by product spillage contamination.

In cases where the products are leaked due to procedures in the current processes that are not adequately controlled, automated inline COD detectors should be installed in all three problematic macro channel tanks and in the main effluent tank. These COD detectors must be programsmed to automatically give a warning alarm when the COD concentrations reaches 4800ppm, and completely stop the flow of the incoming contaminated channel(s), then open an alternate valve to channel the effluent with the contaminated COD concentrations into the COD pre-treatment tank until the COD concentrations are corrected.

There must be a high COD pre-treatment tank divided into two parts. The first part is to accommodate the non-conforming effluent, with an outlet valve into the second part of the tank. The second part should have a CGAC layer on top and on the bottom to increase the CGAC contact time with the effluent, as the correlation studies showed that an increase in contact time results in more COD removal.

The inline COD detector too must be installed inside the second part of the tank to measure the COD of the effluent during filtration; as Liptak (2003: 1229) and Rhosonics (2017) stated that on-line COD detector provide with quick COD results at source; therefore, in-line detection will help to improve the detection and management of nonconforming CODs. The tank should be designed with an outlet valve connected to the total WCM effluent tank. The level tank indicators should be installed in the second part at a certain level, and close the inlet valve from the first part of the tank once the tank reaches a certain level. The COD detector meter must be programsmed to close the outlet valve that allows the effluent to flow into the total effluent tank if the COD concentrations of the effluent is below 5000ppm. Inside the tank, a pump must be installed to circulate the effluent through the two CGAC beds.

This redesigned WCM effluent process will help to prevent high COD concentrations from contaminating the overall WCM effluent, thus preventing the discharge of nonconforming COD concentrations into the WCM effluent. The WCM effluent treatment tank design for COD is presented in **Figure 5.2** below, and the procedure is presented in **Appendix P**.

The new process flow presented in **Figure 5.3** below illustrates all the changes that could be made to improve the conformity of the COD concentrations in the WCM effluent.

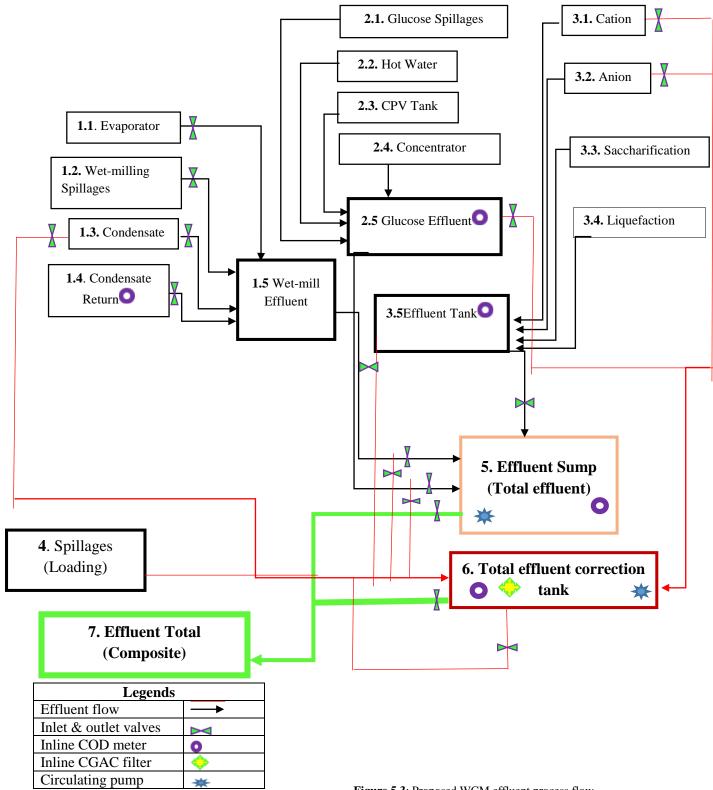


Figure 5.3: Proposed WCM effluent process flow

In alignment with the view of Beauregard, McDermott and Mikulak (2008: 1), acknowledged the FMEA as a tool used to identify and prevent incidents before they occur, FMEA risk assessment reviewed in the redesigned WCM effluent process to evaluate the effectiveness of the recommended actions in reducing or eliminating the pre-identified risks that are mentioned in **Table 5.10** above. The

new assessment process flow is designed to validate an answer the last investigative question, which states: "Can a modified procedure be employed to reduce COD concentrations in the effluent generated by the WCM process to comply with the regulatory specification consistently?".

The FMEA results for the recommended WCM process flow showed a very low risk priority number. This indicates that the recommended action plans will improve and sustain COD concentrations in the effluent discharged by the WCM are always compliant with the requirement. The FMEA risk assessment on the new recommended process flow is presented in **Table 5.11** below; the rating descriptions are documented in **Appendix O1-O3**.

Risk - Bad events	Consequences	Severity	Occurrence	Proposed process control	Detection	RPN	Actions
Skills gap	Poor control of the interlinked process stages	2	1	Automated inline COD detector in all the effluent macro channels	1	2	Conduct planned maintenance as per established frequency, calibrations and verifications of the detector and maintain the records
Poor control WCM processing stages	High COD concentrations	1	1	Automated inline COD detector in all the effluent macro channels	1	1	Conduct planned maintenance as per established frequency, calibrations and verifications of the detector and maintain the records
Blocked channel flow or pipes	Spillages and leakages that causes effluent contamination (high COD concentrations)	1	1	Automated inline sensor detectors	1	1	Implement a planned maintenance and testing schedule (verification) and maintain the records
Faulty system (valves and detectors)	Effluent contamination/ product spillages	1	1	Systematic automated full system check	1	1	Implement a planned maintenance and testing schedule (verification) and maintain the records
Regeneration of the anion and cation beds	Contamination of the effluent tank and overall WCM effluent	1	1	Automated	1	1	Design a process to pre- treat the effluent that gets generated during the regeneration of the beds

Table 5.11: FMEA risks assessment result of the proposed WCM effluent process flow

The risks assessment performed in the new proposed process showed very insignificant risks should the detection of risks be improved. These improvements in detection measures will impact positively on both the incident recurrences and on the impact or severity. Therefore, re-designing the risks away can

be adopted by improving the technology and moving away from manual detection, and becoming more proactive in detecting a problem before it occurs and preventing it from causing severe impact.

5.7.3 Control Phase summary

The FMEA tool identified the potential failure modes and risks that could result in COD concentrations contamination. The corrective and preventative solutions indicated a significant reduction on the preidentified failure risk, thus resulting in the establishment of a procedure that could be used to manage the COD concentrations in the WCM effluent to consistently adhere to the standard regulatory requirement.

The National Institute of Health Research (2020) made a statement that validity is the extent to which the method of measure is capable of providing measure(s) that match the true value and enable accurate generalizations about the study. Keeping this statement in mind, the validity of this study is presented in the next section.

5.8 Validity

Validity is the extent to which a study produces accurate results (internal validity) and results that are widely applicable (external validity) (Albery, *et al.*, 2014: 25). Ary and Suen (2014: 99) report that internal validity includes dependability, consistency, predictability and stability; while external validity involves the ability of the collected data to reflect the underlying attribute of interest. Internal validity is a prerequisite for validity even though it does not guarantee validity (Jolley & Mitchell, 2010: 143). Internal validity is the measurement of error which entails two meanings, systematic or instrumental errors and unsystematic error, also known as random error of measurement (Hunter & Schmidt, 2004: 252). Relative or absolute internal validity of the measurements involves assessing the precision of the individual measurements within a group (Carter & Lubinsky, 2016: 243). Bias affects external validity and the conclusions that are drawn about the target population (National Institute of Health Research., 2020). Percentage bias and standard relative error measurement analysis are performed to prove the reliability of the procedures and instruments employed during the conduct of this study.

Osborn (2006: 168) supports the view that the two-tailed t-test is a non-directional test that can be used to examine whether there is a significant difference between the sample mean and the true value. Following the analysis of percentage bias (also referred to as %Bias) and relative error, a two-tailed test are used to provide internal validity using reference standard sample measurements and their true values. According to Pham (2006: 262), one-way ANOVA hypothesis testing can be used to measure bias, to support the interval validity of the collected data analysis. Following the two-tailed t-test

analysis, analysis using one-way ANOVA to evaluate the validity of the repeatability of study using reference standards is presented. Thereafter, correlation of the internal reference standards analysis is presented, as Badgett and Christmann (2009: 116) reason that correlation is a primary statistical concept used to test the validity of the measurements.

In conclusion to this discussion of validity, external validity considered in this study was presented and discussed following the view of Carter and Lubinsky (2016: 244), who wrote that external validity is the quality associated with how results are applied. Felbinger and Langbein, (2006: 35-36) added that the external validity refers to the generalizability of research results, which relies on the selection of the unit of analysis and selection of larger random samples. Random sampling and use of recognized and approved methods for data collection and analysis are adopted in this study for external validity purposes.

5.8.1 Internal validity

Internal validity is the extent to which the actual experiment tests are the same as the hypothesis claim tests (Albery, *et al.*, 2014: 25). In this research, the accuracy of the measurements was assured by conducting measurements using the internal reference standardized solutions. The measurements of the reference standards were carried out to ensure that the instruments were capable of producing reliable data during the conduct of the experimental trials. Moreover, the standard operating procedures (SOPs) documented in **Appendix A** were used to eliminate the random errors.

To ensure the precision and accuracy of the experimental data used in this research, and to ensure that it was free of bias, ANOVA test and linearity test are performed using the data of the reference standards. These tests are carried out to give assurance that the conclusions made from the data used in this research study are true.

5.8.1.1 WCM reference standard data precision and accuracy

Bias of the measures poses very serious threats to the validity of the result in a study (Jolley & Mitchell, 2010: 142). Precision (%RSD) and accuracy (%Bias) are ensured using the reference standard data collected by the WCM laboratory. With regard to the data of the reference standards collected from 06 May 2017 until 30 July 2017 by the WCM laboratory analysts, see **Appendix D1** for the raw data and in **Appendix D2** for the calculations. All the precision results of the reference standards measurements conducted by the WCM laboratory ranged from 0.05996% to 0.1996%. This range illustrates that the method of measurements and the instruments are able to provide reproducible measurements. The bias

measurements obtained on the three reference standards had the highest value of 0.08%, which indicated a minimum accuracy of 99.92%. See a summary of the results in **Table 5.12** below.

Name of the Reference standard	Precision in % (%RSD)	Accuracy in % (%Bias)
2000 ppm	0.1996	0.2
5000 ppm	0.05996	0.06
10 000 pm	0.1099	0.08

 Table 5.12: Precision and accuracy results obtained from the reference standard data collected by the WCM laboratory from 06 May 2017 until 30 July 2017

5.8.1.2 WCM reference standard linearity

The coefficient of determination for the reference standard measurements obtained using the reference standard data collected by the WCM at the start is found to be 1.0000 (refer to **Appendix D3** for the calculations). This implies that 100% of the total variation in reference standard measurements can be explained by the linear curve.

5.8.1.3 Trial data precision and accuracy

The precision (%RSD) and accuracy (%Bias) trial results are conducted from the data of the reference standards that were measured when the trial measurements were taken. The detailed calculations for trial one and trial two are documented in **Appendix 5A** and **Appendix 5B** respectively.

The precision results of the reference standard measurements conducted for trial one experiments ranged from 0.3984% to 1.4115%, which is less than 5%. The measure of errors obtained on the three reference standards ranged from 0.3% to 1.12%, which indicates that a minimum accuracy of 98.88%.

The precision results of the reference standard measurements of trial two experiments ranged from 0.2197% to 2.2540%, which is less than the analytical tolerance of 5%. The measure of errors obtained on the three reference standards ranged from 0.12% to 2.04%; which indicates minimum accuracy of 97.96%, and achievement of high accuracy of 99.88%. See **Table 5.13** below for the outcomes of the results.

	Trial one – day 1		
Name of the reference standard	Precision in % (%RSD)	Accuracy in % (%Bias)	
2000 ppm	0.3984	0.4	
5000 ppm	1.4115	2.03	
10 000 ppm	0.9889	1.12	
	Trial one – day 2		
Name of the reference standard	Precision in % (%RSD)	Accuracy in % (%Bias)	
2000 ppm	0.3988	0.3	
5000 ppm	0.8723	0.88	
10 000 ppm	0.3779	0.55	
	Trial two – day 1		
Name of the reference standard	Precision in % (%RSD)	Accuracy in % (%Bias	
2000 ppm	0.6924	1.1	
5000 ppm	2.2540	2.04	
10 000 ppm	1.8953	1.83	
	Trial two – day 2		
Name of the reference standard	Precision in % (%RSD)	Accuracy in % (%Bias)	
2000 ppm	0.4475	0.55	
5000 ppm	0.2197	0.12	
10 000 ppm	0.4976	0.49	

Table 5.13: Precision and accuracy results for the reference standards trial measurements

The analysis results of the random and precision measurements indicated in the above **Table 5.3** demonstrate that the bias and precision measures are within the accepted criteria of 95%. This proves that measurements obtained on different days under different conditions are similar. The two tailed t-tests for each reference standard for the COD concentrations are discussed in the next section.

5.8.1.4 Two tailed test for accuracy testing of the reference standards run during the trials

The T-test is a statistical significance test that can be used to examine significant differences between two independent groups of study, such as experimental and control groups (Riazi, 2016: 333).

There is enough significant statistical evidence based on the t-test results that the instruments and procedures used in this research study are capable of providing accurate measurements. This conclusion is supported by the results of the two-tailed test which is demonstrated the acceptance of the null hypothesis for the three reference standards, namely 2000 ppm, 5000 ppm and 10 000 ppm at 95% confidence. All the calculated t-test values fall within the non-rejection criteria, which illustrates that there are no significant differences between the measurements of the reference standard means

compared with the true values. The calculations are documented in **Appendix F1** and **Appendix F2**, and a summary of the results is presented in **Figure 5.14** below.

		Trial o	ne – day 1	
Name of the reference standard	Claim	t-statistical	Non-rejection region	Decision (accept or reject claim)
2000 ppm	$\begin{array}{l} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	2.0000	-3.1820 to 3.1820	Accept the claim
5000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	2.8056	-3.1820 to 3.1820	Accept the claim
10 000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	2.2400	-3.1820 to 3.1820	Accept the claim
		Trial o	ne – day 2	
Name of the reference standard	Claim	t-statistical	Non-rejection region	Decision (Accept or reject claim)
2000 ppm	$\begin{array}{l} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	1.5000	-3.1820 to 3.1820	Accept the claim
5000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	2.0000	-3.1820 to 3.1820	Accept the claim
10 000 ppm	$\begin{array}{c} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	1.7739	-3.1820 to 3.1820	Accept the Claim
			wo – day 1	
Name of the reference standard	Claim	t-statistical	Non-rejection region	Decision (accept or reject claim)
2000 ppm	$\begin{array}{l} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	3.1429	-3.1820 to 3.1820	Accept the claim
5000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	1.7739	-3.1820 to 3.1820	Accept the claim
10 000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	1.8964	-3.1820 to 3.1820	Accept the claim
			wo – day 2	
Name of the reference standard	Claim	t-statistical	Non-rejection region	Decision (accept or reject claim)
2000 ppm	$\begin{array}{l} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	2.4444	-3.1820 to 3.1820	Accept the claim
5000 ppm	$\begin{array}{l} H_0: \bar{x} = \mu \\ H_1: \bar{x} \neq \mu \end{array}$	1.0909	-3.1820 to 3.1820	Accept the claim
10 000 ppm	H ₀ : $\bar{x} = \mu$ H ₁ : $\bar{x} \neq \mu$	1.9600	-3.1820 to 3.1820	Accept the claim

Table 5.14: Two-tailed t-test results from the reference standard collected from the trial data

There is enough statistical evidence that proved the procedures and the instruments used during data collection provided similar results at 95% confidence limits. One-way ANOVA analysis is conducted to prove accuracy of the reference standard results obtained through the conduct of the experiments.

5.8.1.5 One-way ANOVA for the reference standard measurements collected during the trials

One-way ANOVA testing provides analysis results for internal consistency in order to prove stability and reliability of the testing equipment and procedure (Salmons & Wilson, 2009: 368).

At the confidence limit of 95%, there is enough statistical evidence to accept the null hypothesis for all the reference standard, i.e. there is no significant difference in the variation of the reference standard means during the time of data collection, since all the calculated F-statistics values are found to be less than f-upper(Fu). The conclusion is reached that there is no significant difference between means of the reference standard measurements conducted in trial one – day one, trial one – day two, trial two – day one, and trial two – day two. See **Table 5.15** below for the summarized one-way ANOVA results for the reference standards, refer to **Appendix G** for measurements and calculations.

Name of the reference standard	Hypothesis claim	F- statistical	F- critical	Decision (accept or reject the claim)
	$H_0: X_{Tria11-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2}$			
2000 ppm	$H_1: X_{Trisl1-sDayl} \neq X_{Trial1-Day2} \neq X_{Trial2-Dayl} \neq X_{Trial2-Day2}$	1.8381	3.4903	Accept the claim
	H ₀ : $X_{Tria11-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2}$			
	H ₁ : $X_{\text{Trisl1-sDay1}} \neq X_{\text{Trial1-Day2}} \neq X_{\text{Trial2-Day1}} \neq X_{\text{Trial2-Day2}}$			Accept the
5000 ppm		1.7064	3.4903	claim
	H ₀ : $X_{Tria11-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2}$			
10 000 ppm	$H_1: X_{Trisl1-sDay1} \neq X_{Trial1-Day2} \neq X_{Trial2-Day1} \neq X_{Trial2-Day2}$	1.2282	3.4903	Accept the claim

Table 5.15: One-way ANOVA tests result using reference standards data collected during the trials

There is enough statistical evidence at 95 confident limits to demonstrate that there is no difference in the reference standard reading obtained when the experiments were conducted. It can thus be concluded that the method and instrument used in this study are capable of providing consistent measurements. The linearity of the reference standard is discussed in the next section.

5.8.1.6 Trial reference standard linearity

A negative coefficient at any level signifies invalid test results while a test with a positive coefficient of +0.9 signifies highly valid results (Badgett and Christmann, 2009: 116).

The correlation coefficient value for the reference standards measurements obtained for trial one at the start is found to be 0.9996. This implies that 99.96% of the total variation in y-intercept can be explained by the linear relationship between the independent and the dependent variables. The remaining 0.04% variation in the dependent variable cannot be explained due to certain other factors. The actual calculations are presented in **Appendices E1** and **E2**; see the results in **Table 5.16** below.

Name of trial	Coefficient of determination value	Coefficient of determination value in %
Trial one – day 1	0.9996	99.96
Trial one – day 2	0.9999	99.99
Trial two – day 1	0.9989	99.89
Trial two – day 2	0.9999	99.99

 Table 5.16: Linearity results for the reference standards (2000ppm, 5000ppm, and 10 000ppm) data collected during the trials

There is enough statistical evidence obtained from the results of the random error tests, hypothesis tests, and linearity tests conducted in the reference standard measurements collected during the primary data collection in this study to prove that the data used in this study is valid.

5.8.2 External validity

External validity indicates the extent to which the results of experiment can be applied to other situations (Albery, *et al.*, 2014: 25). All the procedures that were used to collect primary data were validated in accordance with ISO 17025 requirements. This assures that the sampling procedures can be repeated and similar results obtained, as the experiments were conducted for a period of two months under different conditions, and as these procedures provide guidance on how to prevent sampling errors and testing errors that could result in misleading data and inaccurate generalization of the data.

The use of the externally calibrated and approved analytical measuring apparatus by SANAS certified bodies also provided assurance on the integrity of the data. This means that when the procedures applied in this study are applied elsewhere, similar outcomes are attained, taking into consideration the applicable confidence of limits.

5.8.3 Validity summary

All the tests conducted to demonstrate internal validity of this study indicate that this study met the applicable internal validity criteria. External validity, which is illustrated by the methods followed

during the conduct of this research, also rests on valid protocols that were followed using the reviewed literature. Ethical considerations that are applicable in this study are presented in the next section.

5.9 Chapter 5 conclusion

This chapter presented the data interpretation and analysis of the findings of this research study. It identified the macro effluent channels that contributed to the nonconforming COD concentrations in the WCM, namely Concentrator, Effluent Tank and Glucose. Then, the root causes of the nonconforming effluent with high COD concentrations derived from the three macro channels were identified with the use of the Fishbone and 5 Whys method. The result of the RCAs indicated the skills gap, lack of process control, ineffective manual detection of process deviations and inadequacy of procedures for correcting nonconforming COD concentrations.

The experimental trials were performed to determine a parameter-adjusted procedure that will result in greater reduction of the COD concentrations in the WCM effluent. The results of analysis obtained from the trials using paired t-tests, correlation, and independent sample t-test studies indicated that the increase in the filtration time and CGAC surface area enhances reduction of the COD concentrations. The FMEA risk assessment was then used to identify all the failure risks in the proposed flow to identify preventative measures to eliminate or minimize the risks. This chapter concluded by presenting analyses of data validity in this study and the applicable ethics that were taken into consideration.

The next chapter, Chapter 6 will include a recap of this study before presenting the final research findings, conclusions, and recommendations of this study. The outcomes of this study will also be reviewed to see if the objectives of this research study are met.

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 Introduction to Chapter 6

This study is geared towards assisting a WCM plant in the WC Province in SA, to reduce COD content in the effluent discharged by the plant, so that it could consistently conform to the legislated standard specification for COD. The purpose of this research study is to develop a procedure that would be suitable for optimal reduction of the COD concentrations in the effluent generated by the specific WCM. This research study has found that the reduction of the COD concentrations in the WCM effluent can be achieved by applying a suitable scientific method and improving the current systems used by the plant. This involved the alteration of selected variable(s) within the specific effluent and evaluation of the adjustment of parameter in terms of effectiveness on COD removal. Thereafter, it involved improving the current process by incorporating the successfully tested procedure within the WCM effluent process and taking into consideration the failure risks to achieving a sustainable process.

This chapter presents a brief summary of each preceding chapter, then revisits the research problem statement, research aim, primary research question, investigation questions, and the research objectives. Following this, the final research findings are presented and recommendations and research conclusion are provided at the end of this chapter.

6.2 Summary of preceding chapters

A brief explanation of the context lay out of each chapter is explained in the next point below.

6.2.1 Summary of Chapter 1

The introduction and motivational background of this study is presented in Chapter 1 to articulate the background to the researched problem. The research problem statement, aim of the study, primary research question, investigative questions and research objectives to be embarked upon are also presented, accompanied by a brief introduction to the conceptual framework, methodology and research design, data collection and analysis, data validity, ethics, research assumptions and research constraints. Chapter 1 concluded by outlining the chapters which served as a research process followed in this study.

6.2.2 Summary of Chapter 2

In Chapter 2, an introduction to the research environment is presented, which included the importance of water management in SA in the context of this research study. This is followed by discussion on the importance management of effluent in SA and contraventions associated with its ineffective

management. The background to WCM plant in which this research is based was explained, including certified international organizational standard systems. Detailed explanation of wet corn processing is provided, and the environmental implications of COD concentrations in the effluent generated by the WCM, as well as the impact of poor COD concentrations management in the effluent. Chapter 2 concluded with the overview of the WCM plant's quality control implemented measures.

6.2.3 Summary of Chapter 3

Existing literature pertaining to the research problem is discussed in detail to provide the reader with a clear understanding of contextual variable(s) which played a role in the research problem. The implications of the research problem and its significance were presented, followed with the discussion of the possible solutions, and most effective solution applicable to the research problem. The Chapter concluded by discussing relevant tools used to find solutions to the research problem followed by possible solutions.

6.2.4 Summary of Chapter 4

Chapter 4 presented the research plan of this study. It commenced with an introduction to general research methodology, followed by an overview of research worldviews. The reader is then introduced to the research approach selected for this study, namely Six Sigma DMAIC, including data collection methods and data analysis methods. The specific methods that are planned to be used in the Six Sigma DMAIC phases were discussed, which entailed providing details on data analysis and interpretation using the specified quality tools and techniques. Furthermore, plans to ensure internal validity and external validity of this study; followed by a presentation of the considered ethical practices.

6.2.5 Summary of Chapter 5

Chapter 5 presented an analysis of empirical data within the DMAIC framework; in each phase, interpretation and analysis of the results of data were presented in the order outlined in Chapter 4. Data analysis is performed with the use of the appropriate quality tools or techniques, and taking into account the investigative questions that needed to be answered. The quality tools included a process flow, Fishbone diagramss, 5Whys and FMEA. Statistical techniques are employed to make inferences about data of interest, include the t-test hypothesis, paired t-test hypothesis and correlation studies. This Chapter concluded by explaining data validity; where the calculations and explanations are presented to provide assurance regarding the repeatability of this study.

6.2.6 Summary of Chapter 6

Chapter 6 commences with an overview of the preceding chapters before revisiting the research problem statement, research aim, primary research question, investigation questions and the research objectives. This is to review if the all the research questions and objectives are met. The chapter concludes by presenting the final research findings and proposed research recommendations for optimal COD concentrations reduction in the WCM effluent.

6.3 Revisited research questions, objectives and findings

The revisiting of the research questions and objectives are presented to review if they are met and the purpose of this study is accomplished. The research findings and recommendations are presented in accordance with the research objectives to reduce the COD concentrations in the WCM effluent to consistently meet the legislated standard specification.

6.3.1 Research problem statement

The research problem statement of this research study is "The effluent discharged from a WCM does not consistently adhere to the required regulatory specification limit". The research problem did not only impact on the environment but also affected costs in the business. Linked with the revisited research problem statement, the aim of the research study is revisited in the next section.

6.3.2 Aim of the study

The aim of this research study is "to develop and document a processing step which will improve the quality of the effluent (reduce COD concentrations) discharged by the WCM of a specific WCM organisation that will adhere to the legislated discharge standard. In addition, the process introduced must be easily controlled at the operational level and consider environmental concerns". This is aimed at reducing environmental risks to aquatic species and reducing the cost associated with effluent charges, and furthermore eliminating the hidden additional cost of treating the effluent in municipal effluent treatment plants prior to discharge. The primary research question applicable in this study to meet the research aim is provided below.

6.3.3 Primary research question

The primary research question proposed for this study is "Can a quality management procedure be developed for a WCM plant to optimise the removal of COD in the effluent discharged to meet

regulatory specifications consistently?" This question was posed to stop and think about the modification of the existing methods to achieve optimal removal of the COD in the effluent to consistently conform to the COD standard regulator, and eliminate the negatively effect. The revisited investigative question is provided on the next point.

6.3.4 Investigative questions

The investigative questions within the ambit of this thesis read as follows:

- 1. Which stages in a WCM process contribute to increasing concentrations of COD in the discharged effluent?
- 2. What are the causes of the high COD content present in the discharged effluent of the various process stages?
- 3. Can a process variable(s) be identified that when adjusted yields the optimal removal of COD from WCM effluent?
- 4. Can a modified procedure be employed to reduce COD concentrations in effluent generated by the WCM process to comply with the regulatory specification consistently?

6.3.4.1 Findings related to investigative question 1

- **6.3.4.1.1 Analogies drawn from literature:** According to Ndlovu (2013: 69), WCM processes emit high concentrations of the COD in the effluent, due to the nature of this process. Garcia Einschlag (2011: 8) mentions that the high organic components in the WCM effluent gives rise to high COD concentrations. Akpor and Muchie (2011: 2379) comment that increasing levels of the highly contaminated COD concentrations due to urbanization result in high COD concentrations.
- **6.3.4.1.2 Analogies drawn from data analysis:** The data illustrated that high COD concentrations in the WCM is caused by three macro processes, namely Condensate, Glucose, and Effluent Tank. The lack in the control and management of these three macro effluent channels resulted in cross-contamination of the COD in the effluent.

6.3.4.2 Findings related to investigative question 2

6.3.4.2.1 Analogies drawn from literature: Ndlovu (2013: 69) pointed out that the nature of the WCM process results in generation of high COD concentrations in the effluent. Ahsan and Ismail (2019: 2) added that high levels of carbohydrates in the effluent result in high COD

concentrations. Brouckaert, *et al.* (2002) also support the view that high levels of soluble proteins in WCM effluent is a major contributor to high COD concentrations.

6.3.4.2.2 Analogies drawn from data analysis: The data illustrated that high COD concentrations in the WCM is caused by ineffective management of the effluent process. Contributors to poor management are highlighted to be a skills gap, inadequate procedures, delayed detection of problems, and preventative maintenance.

6.3.4.3 Findings related to investigative question 3

- **6.3.4.3.1 Analogies drawn from literature:** Moreno-Castilla (2004: 5) states that the composition of the GAC surface area plays the most crucial role with regard to achieving the optimal reduction of COD concentrations. Bhise, *et al.* (2013: 67) note that the composition of the adsorbate surface area helps to improve the adsorption rate if selected appropriately. Wu (2004:7) explains that the size of the pores in the GAC can maximize reduction of the COD concentrations. Nekoo and Shohreh (2013:87) report that availability GAC surface area, the pH content of the filtered solution, and the GAC contact time with the solute can result in greater reduction of the COD concentrations. El-Gawad and EL-Aziz (2018: 228) reason that a decrease in pH of the solute can result in greater reduction of the COD concentrations.
- **6.3.4.3.2 Analogies drawn from data analysis:** The paired t-test and correlation study indicated that an increase in contact time and CGAC filtration weight resulted in optimal reduction of the COD concentrations in the WCM effluent. Even though the reduced COD means indicated that acidic effluent samples had better COD removal, compared to using alkaline samples. The independent two-samples test results indicated that at 95% confidence limits there is no difference in the removal of COD concentrations achieved when acidic effluent samples are used compared to alkaline samples. Thus implying the pH content had no significant effect on removal of the COD concentrations during the conduct of this study.

6.3.4.4 Findings related to investigative question 4

6.3.4.4.1 Analogies drawn from literature: Islam, *et al.* (2020: 2006) comment that the WCM generates a high volume of effluent with nonconforming COD concentrations. Icon Water (2015) notes that additional interventions are required to ensure that the quality of the COD concentrations in the effluent is controlled accordingly. Botes, *et al.* (2004) agree that integrated improved systems are needed to effectively manage the effluent.

6.3.4.4.2 Analogies drawn from data analysis: The results obtained from the FMEA tool highlighted the risks associated with the current WCM effluent process which can affect proper management of the COD concentrations. This helped to identify the solutions needed to consistently manage the COD concentrations in accordance with the legislated requirements. The proposed solution includes establishment of a modified procedure for reducing the COD concentrations to enable the COD concentrations in the WCM effluent to consistently comply with the legislated requirements.

6.3.5 Revisited research objectives

The revisited research objectives applicable in this thesis are:

- Investigate which stages in wet corn processing have a significant influence on the subsequent high COD of the discharged effluent,
- > establish the causes of the increasing levels of COD in the effluent generated by a WCM,
- identify variable(s) that can be adjusted to yield the optimal removal of COD from WCM effluent, and
- establish an effective procedure for removal of the COD in the effluent generated by a corn wet milling process.

All the research objectives are met as discussed in the revisited research questions which are linked to each research objective. Therefore, the aim of this research study was fully achieved. The recommendations are discussed below for the WCM to optimize the removal of the COD concentrations to consistently comply with the regulations, and eliminate the consequences thereafter of not doing so.

6.4 Conclusion to objectives and recommendations

6.4.1 Conclusion to objective 1 and recommendations: The conclusion to the first objective is that three macro channels contributed to the nonconforming COD in the WCM effluent. The three nonconforming WCM macro channels are: Condensate, Glucose and Effluent Tank. Recommendations on how to improve the performance of these macro channels are elaborated in the next section.

6.4.2 Conclusion to objective 2 and recommendations: The conclusion to the second objective is that the root causes of high COD concentrations from the effluent generated by the three macro effluent

channels included, poor control of process management caused by the skills gap, ineffective monitoring of the COD concentrations, unavailability of appropriate procedures for correcting and preventing nonconforming COD concentrations in the effluent, and lack of preventative maintenance to reduce the failure rate. The recommendation is to provide training and retraining for the process operators, perform procedure reviews to improve performance and review the systems in place to continuously better their performance to benefit the plant.

6.4.3 Conclusion to objective 3 and recommendations: The conclusion to the third objective is that CGAC surface area and filtration time can be adjusted to achieve more COD removal from the WCM effluent. Thus, to achieve optimal COD removal, more exposure of the effluent samples is required. The recommendation is to introduce a process step, where these two variable(s) are controlled accordingly to achieve more reduction of the COD concentrations.

6.4.4 Conclusion to objective 4 and recommendations: The conclusion to the fourth objective of this study is that there is a skill gap on the process operators; which affects the effective manner in which the process is controlled. Another factor, is the time it takes to detect the problem, which directly affects the time to correct the problem and its severity; and the fact that there are no process steps and procedures for correcting nonconforming effluent to comply with the requirements. The proposed recommendations to find solutions for the reported problems are as follows:

The WCM plant is recommended to conduct an effective effluent process management workshop with the employees who are directly involved with the effluent process. The purpose of this workshop will be firstly to educate the process operators about the importance of generating conforming effluent with COD concentrations. Secondly, the process operators must be educated in the consequences of generating and discharging effluent with non-conforming COD concentrations for the environment and for their business. Thirdly, they must be involved in the process of identifying the risks (risk assessment) that causes COD concentrations in the effluent to deviate from the manufacturing standard specification. Lastly, the process operators must form part of the team, when creating procedures or reviewing procedures, to ensure that adequate procedures are developed and understood at all levels, and are implemented accordingly. Moreover, they should undergo structured training to prevent the same failures from recurring. They must be certified as competent to independently conduct an effective RCA, using a structured approach designed by the plant management.

- > It is recommended that on-line or in-line COD detectors which are able to detect when COD concentrations deviate from the predetermined specifications must be installed, to improve the performance of the current system. The current system is not designed to quickly detect the process when it starts to deviate, but takes a long time to detect deviation, after the defect has spread and contaminated the total effluent. As the current measuring method takes about an hour or more to provide results of the COD generated by each channel. Significantly, the COD concentrations can deviate from the legislated limits within a minute. Therefore, if the detection method is not quick enough, it will be difficult for the plant to control the process in accordance with the required specifications. These on-line detectors should be installed in the main macro channel tanks and be programsmed to plot a moving range chart, using data points measured every 10 minutes. The integrated process control software will to help the process operator to predict process deviation before it goes out of the defined specification limits. The detectors must be programsmed to raise an alarm when the COD concentrations exceed a certain limit. A procedure should be established to stipulate actions that must be taken when the process has deviated from the norm. These interventions will react to and correct the process before it exceeds the standard specification. A system such as real time analysis of live COD concentrations data will help the plant isolate the main source of contamination until the problem is solved.
- The nature of the products that are manufactured by the WCM consist of polysaccharides; which gives rise to COD levels in the effluent once the product is mixed with the effluent (Ndlovu, 2013: 69-70). The Effluent Tank RCA analysis in Chapter 5 indicated that COD concentrations are also prompted during the regeneration of anions and cations, which is naturally part of the WCM process. Therefore, the WCM must establish a proper procedure of treating nonconforming COD concentrations, an additional effluent treatment step is needed. This step will consist of CGAC; which will enable the WCM to treat all the nonconforming COD to consistently meet standard specification requirements. As the literature reviewed in section 3.3.1 in Chapter 3 and the findings presented in section 5.5 in Chapter 5 of this study illustrated that the CGAC adsorption method can reduce the COD concentrations in the WCM effluent. Therefore, CGAC adsorption method can be used to correct the nonconforming COD in WCM effluent when contaminated.
- Block valves that causes product overflows and effluent contamination can be mitigated by generating a plant start-up and plant shut-down procedures. The start-up procedure should be

designed to cater the start-up inspections to ensure that there is free flow of the product through the process valves, thus, prevent product spillages or overflow on start-ups. The shut-down procedure should be designed to address product blockages; which could be accomplished through proper emptying the products out of the process channels. This will eliminate the products overflows that are cause by the blockages of the valves. The product flow check points should be identified and clearly labelled, and the line inspectors should be trained to be competent to perform the inspections accordingly.

6.5 Recommendations for future research

The final recommendation of this research for future research is to investigate the most cost-effective and environmentally effective way of managing or recycling the waste generated by the CGAC adsorption process. Further investigation could include the lifespan of CGAC when applied in effluent generated by a WCM, and finding a cost-effective and environmentally friendly procedure for reactivating or regenerating exhausted CGAC beds.

6.6 Conclusion

This research is carried out in a WCM plant located in the WC. The purpose this research is to establish a suitable procedure that can be employed to optimally reduce the COD concentrations in the WCM effluent, to consistently comply with the legislated standard requirement of 5000 ppm. The reviewed literature guided the data collection, interpretation and its analysis; which resulted in the conclusions and recommendations of this study. All the research questions are answered and research objectives are achieved.

The aim of this research study is to establish a procedure that will help the WCM plant to optimally remove COD concentrations from the effluent, and a procedure for achieving the most effective COD reduction in the effluent is established.

7 **REFERENCES**

Abraham, A., Franke, K., & Koppen, M. 2003. *Intelligent Systems Design and Applications*. New York: Springer-Verlag Berlin Heidelberg.

Ademiluyi, F. T., Amadi, A. S., & Amakama, J. N. 2009. *Adsorption and treatment of organic contaminants using activated carbon from waste Nigerian bamboo*. Journal of Applied Sciences and Environmental Management, 13(3): 39 - 47, September.

Water News. 2018. *Fears of Long Term Damage to SA's Water Supply as Eutrophication Strangles rivers and dams*. Available from: <u>https://www.fse.org.za/index.php/water-issues/</u> [Accessed: 22/07/2020].

Akpolat, H. 2004. Six Sigma in Transactional and Service Environments. Aldershot: Gower Publishing.

Akpor, B. O., & Muchie, M. 2011. Environmental and public health implications of wastewater quality. *African Journal of Biotechnology*, 10(13): 2379-2387.

Ahsan, A., & Ismail, A. F. 2019. *Nanotechnology in Water and Wastewater Treatment: Theory and Applications*. Cambridge: Elsevier Inc.

Albery, I. P., Chandler, C., Field, A., Jones, D., Hammond, N., Messer, D., Moore, S., Sterling, C., Sutton, J., & Trapp, A. 2014. *Complete Psychology*. 2nd ed. New York: Taylor & Frances Group.

Aluyor, E. O. & Badmus, A. M. 2008. COD removal from industrial wastewater using activated carbon prepared from animal horns. *African Journal of Biotechnology*, 7(21): 3887-3891, November.

Anirban, B. 2015. Software Quality Assurance, Testing and Metrics. New Delhi: PHI Learning Limited.

Ansari, R., & Mohammad-Khan, A. 2009. Activated charcoal: preparation, characteristics and application: a review article. *International Journal of ChemTech Research*, 1(4): 859-864.

Antony, J. 2014. Design of Experiments for Engineers and Scientists. London: Elsevier Ltd.

Antony, J., Banuelas, R., & Kumar, A. 2006. World Class Applications of Six Sigma: Real World Examples of Success. Burlington: Elsevier Ltd.

Anusree, M. R., Mohapatra, S., & Sreejesh, S. 2014. Business Research Methods: An Applied Orientation. Switzerland: Springer.

Ariola, M. M. 2007. Principles and Methods of Research. Manila: Rex Book Store, Inc.

Arivalager, A. A. & Naagarazan, R. S. 2005. *Total Quality Management*. New Delhi: New Age International (P) limited, publishers.

Arora, V., Sachdeva, A., & Sardana, S. 2018. *Me n Mine CPM Science Combo Class 10*. New Delhi: New Saraswati House (India) Pvt. Ltd.

Ary, D., & Suen, H. K. 2014. Analyzing Quantitative Behavioral Observation Data. New York: Psychology Press.

Atem, M. M. P., & Otieno, M. O. 2016. Impact of municipal effluent on the water of Pece Stream Gulu Town Uganda. *International Journal of Social Science and Technology*, 1(2): 59-92.

Austin, J. T., & Leong, F. T. 2006. *The Psychology Research Handbook: A Guide for Graduate Students and Research Assistants*. 2nd ed. Thousand Oaks: Sage Publications, Inc.

Babbie, E. 2008. The Basics of Social Research. 4th ed. Belmont: Thomson Wadsworth.

Babbie, E., & Rubin, A. 2010. *Essential Research Methods for Social Work*. Belmont: Brooks/Cole, Cengage Learning.

Babuna, F. G., Orhon, D., Ovez, S., & Ozgun, K. O. 2002. Biological treatability of corn wet mill effluent. *Water Science & Technology*, 10(6): 539-544, June.

Badgett, J. L., & Christmann, E. P. 2009. *Interpreting Assessment Data: Statistical Techniques You Can Use*. Arlington: National Science Teachers Association Press.

Bai, C., Carpenter, J., Hwang, J., Ikhmayies, J. S., Li, B., Monteiro, N. S., Peng, Z., & Zhang, M. 2013. *Characterization of Minerals, Metals, and Materials*. New Jersey: John Wiley & Sons, Inc.

Barsalou, A. M. 2015. *Root Cause Analysis: A Step-By-Step Guide to Using the Right Tool at the Right Time*. Boca Raton: Taylor & Francis Group, LLC.

Basson, A. A., & Uys, H. H. M. 2005. Research Methodology in Nursing. Cape Town: Kagiso Tertiary.

Bauman, B. E. 2013. *Game-Based Teaching and Simulation in Nursing and Healthcare*. New York: Springer Publishing Company, LLC.

Beauregard, M. R., McDermott, E. R., & Mikulak, J. R. 2008. *The Basics of FMEA*. Boca Raton: Taylor & Francis Group.

Beck, C. T., & Polit, D. F. 2008. Nursing Research: Generating and assessing evidence for nursing practice. 8th ed. New York: Humanalysis, Inc.

Belamkar, N., & Singare, P. U. 2016. Applying DMAIC principles for improving method performance of quantitative determination of levothyroxine sodium in tablet dosage from using high performance liquid chromatography technique. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 7(4): 2041-2052.

Belokar, M. R., & Rana, S. 2017. Quality improvement using FMEA: A short review. *International Research Journal of Engineering and Technology*, 4(6): 263-267.

Bless, C., Higson-Smith, C., & Kagee, A. 2007. Fundamentals of Social Research Methods: An African Perspective. 4th ed. Cape Town: Juta & Co. Ltd.

Berthouex, M. P., & Brown, C. L. 2002. *Statistics for Environmental Engineers*. 2nd ed. Boca Raton: CRC Press LLC.

Bhandari, M. V., Ranade, V. V., & Sorokhaibam, G. L. 2016. *Industrial wastewater treatment for fertilizer systematic sampling: definition, examples and types industry: A case study.* Available from: <u>http://uest.ntua.gr/iwwatv/proceedings/pdf/Bhandari-Gayatri.pdf./ [Accessed: 12/09/2019].</u>

Bhise, R. M., Deshpande, D. P., Patil, A. A., Patil, J.P., & Raskar, A. R. 2013. Removal of colour of spent wash by activated charcoal adsorption and electrocoagulation. *Research Journal of Recent Sciences*, 1(6): 66-69.

Boby, S. M., Kabir, E. M., & Lutfi, M. 2013. Productivity improvement using Six-Sigma. *International journal of Engineering Technology*, 3(12): 1056-1084.

Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., & Reynel-Avila, E. H. 2017. *Adsorption Processes for Water Treatment and Purification*. Switzerland: Springer International Publishing AG.

Boruah, M., & Nath, T. 2015. Application of Six-Sigma methodology in effluent treatment plant. *International Journal of Engineering & Technology*, 4(9): 589-594.

Botes, W. A. M., Oelofse, S. H. H., Talijaard, S., & Vilijoen, P. 2004. *Discharge of water containing waste emanating from land to the marine environment: A water quality management perspective*. Water SA, 30(5): 56-60.

Bradley, N. 2013. Marketing Research: Tools and Techniques. 3rd ed. Oxford: Oxford University Press.

Breakwell, G. M., & Rose, D. 2006. *Theory Method Design: Research Methods in Psychology*. London: Sage.

Bremer, M., Daniels, L., Gupta, P., & McCarty, T. 2005. *The Six Sigma Black Belt Handbook, Chapter 13 – Measure Phase, part 13*. New York: The McGraw-Hill Companies, Inc.

Brewer, D. J., & Picus, L. O. 2014. *Encyclopedia of Education Economics and Finance*. New York: Sage Publications.

Brown, J. T., Suter, A. T., & Churchill, A. G. 2018. *Basic Marketing Research: Customer Insights and Managerial Action*. 9th ed. Boston: Cengage Learning.

Bubevski, V. 2018. Novel Six Sigma Approaches to Risk Assessment and Management. Hershey PA: IGI Global.

Burns, N., & Grove, K. S. 2011. Understanding Nursing Research: Building an Evidence-Based Practice. 5th ed. Taxes: Saunders Elsevier.

Butler, A. J., Edwards, G. M., Jackson, L. P., & Letswaart, M. 2016. *Mental Practice: Clinical and Experimental Research in Imagery and Action Observation*. Cape Town: Frontiers Media SA.

Burton, T. T. 2012. *Out of the Present Crisis: Rediscovering Improvement in the New Economy*. Boca Raton: Taylor & Francis Group, LLC.

Bwapwa, J. K., & Jaiyeola, A. T. 2016. Treatment technology for brewery wastewater in a water-scarce country: A review. *South African Journal of Science*, 112 (3/4): 1-8.

Cahyadi, B., Hernadi, D., Kurniawan, Y., Prasetyani, R., & Rimantho, D. 2017. The Application of Six Sigma in Process Control of Raw Water Quality on Pharmaceutical Industry at Indonesia. *International Journal of Applied Engineering Research*, 12(6): 848-860.

Cameron, S., & Craig, C. 2009. Science Vocabulary Building, grades 3-5. New Delhi: Mark twain media, Inc.

Carkenord, B. 2009. Seven Steps to Mastering Business Analysis. Florida: J. Ross Publishing.

Carrell, D. T., & Peterson, C. M. 2010. *Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Infertility: Integrating Modern Clinical and Laboratory Practice*. New York: Springer.

Carroll, C. T. 2013. Six Sigma for Powerful Improvement: A Green Belt DMAIC Training System with Software Tools and a 25-Lesson Course. Boca Raton: CRC Press, Taylor & Francis Group.

Carter, E. R., Domholdt, E., & Lubinsky, J. 2011. *Rehabilitation Research: Principles and Applications*. 4th ed. Missouri: Elsevier Inc.

Carter, E. R., & Lubinsky, J. 2016. *Rehabilitation Research: Principles and applications*. 5th ed. Missouri: Elsevier Inc.

Cash, P., Stankovic, T., & Srorga, M. 2016. *Experimental Design Research: Approaches, Perspectives, Applications*. Switzerland: Springer International Publishing.

Chaney, R. S., Eckhoff, R. S., Haken, A. E., Hicks, B. K., Niu, Y., Singh, V., Tumbleson, M. E., & Yang, P. 2005. Effect of steeping with sulfite salts and adjust acids on corn wet-milling yields and starch properties. *AACC International, Inc.*, 82(4): 420-424, March 19.

Chaturvedi, A., Deshmukh, K., Ingole, P., Joshi,S., & Kulkarni, S. 2014. Process intensification of effluent treatment plant. *International Journal of Science, Engineering and Technology Research* (*IJSETR*), 5(3): 1211-2278.

Chaudhry, K. K., & Nakra, B. C. 2004. *Instrumentation, Measurements and Analysis*. 2nd ed. London: Tata McGraw-Hill Publishing Company Limited.

Chien, C., Dou, R., & Huang, G. Q. 2019. *Proceeding of the 24th International Conference on Industrial Engineering Management 2018*. Hong Kong: Springer.

Christmann, E. P. 2012. *Beyond the numbers: Making the Sense of Statistics*. Virginia: National Science Teachers Association.

CIToolkit. 2018. *Fishbone diagrams*. Available from: <u>https://citoolkit.com/articles/fishbone-diagrams/</u> [Accessed: 13-09-2018].

Clark, J. 2020. How to perform an Independent Sample t-test. Available from: <u>https://magoosh</u>.com/statistics/how-to-perform-an-independent-sample-t-test/ [Accessed: 10/06/2020].

Clarke, R. W., & Woolson, F. R. 2002. *Statistical Methods for the Analysis of Biomedical Data*. 2nd ed. New York: John Wiley & Sons, Inc.

Collis, J., & Hussey, R. 2014. Business Research: A Practical Guide for Undergraduate & Postgraduate Students. 4th ed. New York: Palgrave Macmillan.

Consumer Dummies. 2014. *Statistics: 1,001 Practice Problems for Dummies*. New Jersey: John Wiley & Sons, Inc.

Cottrell, R. R., & McKenzie, F. J. 2005. *Health Promotion and Education Research Methods: using the Five Chapter Thesis/Thesis Model*. Mississauga: Jones and Bartlett Publishers, Inc.

Couper, M. P., Fowler, F. J., Groves, R. M., Lepkowski, J. M., Singer, E., & Tourangeau, R. 2009. *Survey methodology*. 2nd ed. New Jersey: WILEY: A John Wiley & Sons, Inc., Publication:

Cramer, D., & Howitt, D. 2004. *The Sage Dictionary of Statistics: A Practical Resource for Students in the Social Sciences*. London: Sage Publications Ltd.

Creswell, J. W. 2014. *Research design: qualitative, quantitative, and mixed methods approaches.* 4th ed. California: SAGE Publication, Inc.

Crouch, R. S., Holler, F. J., Skoog, A. D., & West, D. M. 2004. *Fundamentals of Analytical Chemistry*. 8th ed. New York: Brooks/Cole, Cengage Learning.

Cunningham, C. J. L., Pittenger, D. J., & Weathington, B. L. 2012. *Understanding Business Research*. New Jersey: John Wiley & Sons, Inc.

Damarla, K. S., Kundu, K. P., & Kundu, M. 2018. *Chemometric Monitoring: Product Quality Assessment, Process Fault Detection, and Application*. Boca Raton: Taylor & Francis Group, LLC.

Daniel, J. 2012. Sampling Essentials: Practical Guidelines for Making Sampling Choices. California: SAGE Publication, Inc.

Dantzker, L. M., & Hunter, D. R. 2012. *Research methods for criminology and criminal justice*. London: Jones & Bartlett Learning.

Das, N. S., Misra, N. V., Rao, K. K., & Swamy, V. Y. 2005. *Pollution in Urban Industrial Environment*. New Delhi: Allied Publishers, Pyt. Ltd.

Davids, B. E. 2006. Trends in Environmental Research. New York: Nova Science Publishers, Inc.

Davies, J., Howells, K., & Sheldon, K. 2011. *Research in Practice for Forensic Professionals*. New York: Taylor & Francis Group.

Davis, S. W., & Yen, C. D. 2000. *The information System Consultant's Handbook: Systems Analysis and Design*. Florida: CRC Press LLC.

Dawn, S. S., Kumari, R., & Nirmala, N. 2015. Comparison of food waste, pongamia seed coats and commercial activated carbon as effective adsorbents in diary effluent treatment. *Asian journal of Pharmaceutical and Clinical Research*, 8(2): 238-241, January 02.

De Bievre, P., & Gunzler, H. 2002. *Measurement Uncertainty in Chemical Analysis*. New York: Springer-Verlag Berlin Heidelberg.

De Carlo, N., Gygi, C., & Williams, B. 2012. *Six Sigma for dummies*. 2nd ed. Hoboken: John Wiley & sons, Inc.

De Chesnay, M. 2015. Nursing research using data analysis: Qualitative designs and methods in Nursing. New York: Springer Publishing Company, LLC.

De Jong, C. R., Monette, D. R., & Sullivan, J. T. 2011. *Applied social research: A tool for the human services*. 8th ed. Belmont: Brooks/Cole, Cengage Learning.

Demirbas, A., & Gupta, B. R. 2010. *Gasoline, Diesel, and Ethanol biofuels from grasses and plants*. New York: Cambridge University Press.

De Muth, E. J. 2014. *Basic Statistics and Pharmaceutical Statistical Application*. 3rd ed. Boca Raton: CRC Press.

Dentch, M, P. 2016. The ISO 14001:2015 Implementation Handbook: A process approach to build an Environmental Management System. Milwaukee: American Society for Quality.

Department: Government Communication and Information System Republic of South Africa Department of Water Affairs. 2014. *South Africa Yearbook 2013/14*. Available from: <u>https://www.gcis.gov.za/content/resourcecentre/sa-info/yearbook2013-14</u> [Accessed: 21/07/2020].

Department of Water Affairs and Forestry. 2000. *Quality of domestic water supplies volume 2: sampling guide*. Available from: <u>http://www.dwa.gov.za/iwqs/AssessmentGuides/SamplingGuide/Sampling Guide.pdf</u> [Accessed: 29 /08/2017].

Depka, E. 2006. *The data guidebook for teachers and leaders: Tools for continuous improvement.* London: Sage Publications Ltd.

Depoy, E., & Gitlin, L. N. 2011. Introduction to research: Understanding and Applying Multiple Strategies. 4th ed. Elsevier, Inc. Missouri: Elsevier MOSBY.

Dhillon, B. S. 2007. Human Reliability and Error in Transportation Systems. London: Springer-Verlag.

Dijkstra, J., Forbes, J. M., & France, J. 2005. *Quantitative aspects of ruminant digestion and metabolism*. 2nd ed. London: CABI Publishing.

Donau Carbon. 2011. Activated carbon for wastewater treatment. Available from: <u>http://www.donau-carbon-us.com/Downloads/Waste-Water-E.aspx</u>/[Accessed: 12/10/2016].

Dougherty, C. 2002. Statistical Tables. Available from: <u>https://home.ubalt.edu/ntsbarsh/Business-stat/StatistialTables.pdf</u> [Accessed: 03/08/2020].

Duckworth, A. H., & Hoffmeier, A. 2016. A Six Sigma approach to sustainability: Continual improvement for social responsibility. Boca Raton: CRC Press Taylor & Francis Group.

Dudovskiy, J. 2018. *Research methodology: The process of sampling in primary data collection*. Available from: <u>https://research-methodology.net/sampling-in-primary-data-collection/</u> [Accessed: 20/10/2018].

Dunscombe, B. P., Mundt, A. J., Pawlicki, T., & Scalliet, P. 2011. *Quality and Safety in Radiotherapy*. Boca Raton:Taylor and Francis Group, LLC.

Dytham, C. 2011. *Choosing and Using Statistics: A Biologist`s Guide*. 3rd ed. West Sussex: John Wiley & Sons.

Edokpayi. J. D., Msagati, A. M., Odiyo, J. O., & Popoola, E. O. 2015. Removal efficiency of feacal indicator organisms, nutrient and heavy metals from a peri-urban water treatment plant in Thohoyandou Limpompo Province, South Africa. *International Journal of Environment Research in Public Health*, 12(7): 7300-7320, July.

El-Gawad, S. A., & EL-Aziz, H. S. 2018. Effective removal of chemical oxygen demand and phosphates from aqueous medium using entrapped activated carbon in algnite. MOJ Biology and Medicine, (3)6: 227-236, December 28.

Elliot, A. C., & Woodward, A. W. 2007. *Statistical Analysis Quick Reference Guidebook: With SPSS examples*. California: Sage Publications, Inc.

Ellis, M., Ogee, A., & Pammer, C. 2018. Understanding Hypothesis Tests: Confidence Intervals and Confidence Levels. Available from: <u>http://blog.minitab.com/blog/adventures-in-statistics-</u>2/understanding-hypothesis-tests-confidence-intervals-and-confidence-levels/ [Accessed: 25-08-2018].

Elshennawy, A., Gupta, B. C., Mcshane-Vaughn, M., & Walker, F. H. 2009. *The Certified Quality Inspector Handbook*. 3rd ed. Milwaukee: American Society for Quality. Quality Press.

Evuti, A, M., Jibril, M., Noraini, J., & Poh, L. S. 2013. Removal of colour from waste water using coconut shell activated carbon (CSAC) and commercial activated carbon (CAC). *Journal Technology* (*Engineering & Science*), 60(2013): 15–19.

Felbinger, C. L., & Langbein, L. 2006. Public *Programs Evaluation: A Statistical Guide*. New York: M.E. Sharpe, Inc.

Fink, A. 2014. *Conducting Research Literature Reviews from the Internet to Paper*. 4th ed. California: Sage Publications, Inc.

Fleetwood, D. 2019. *Probability sampling: Definition, types and examples, steps and advantages.* Available from : <u>https://www.questionpro.com/blog/probability-sampling/</u>[Accessed: 06/10/2019].

Franzen, D. M. 2002. *Reliability and Validity in Neuropsychological Assessment*. 2nd ed. New York: Springer.

Frerot, A. 2011. *Water: Toward a Culture of Responsibility*. Durham, NH: University of New Hamsphire Press.

Gaikwad, S., & Mane, S. J. 2013. Reduction of chemical oxygen demand by using coconut shell activated carbon and sugarcane bagasse fly ash. *International Journal of Science and Research*, 4(7): 642-645.

Galloway, J. 2019. The *reason coconut shell is the best activated Carbon*. Available from: <u>https://mywaterearth.com/is-the-best-activated-carbon-woodcoal-or-coconut/</u>. [Accessed: 11/09/2019].

Gamst, C. G., Guarino, A. J., & Meyers, L. S. 2013. *Performing Data Analysis Using IBM SPSS*. New Jersey: John Wiley & Sons, Inc.

Garcia Einschlag, F. S. 2011. Waste Water: Treatment and Reutilization. Croatia: InTech.

Garza-Reyes, A. J., Jirasukprasert, P., Rocha-Lona, L., & Soriano-Meier, H. 2012. A case study of defects reduction in rubber gloves manufacturing process by applying Six Sigma principles and DMAIC problem solving. *Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul*, Turkey, 3-6 July 2012, 472 -481.

Gejdos, P. 2015. Continuous improvement by statistical process control. *Elsevier*, 34(2015): 565-572.

Ghodale, D. M., & Kankal, B. S. 2014. Investigation of optimum operating parameter for BOD & COD removal using activated carbon. *International Journal of Recent Development in Engineering and Technology*, 2(4): 38-43.

Gopalakrishnan, N. 2012. *Simplified Six Sigma: Methodology, Tools and Implementation*. New Delhi: PHI Learning Private Limited.

Goswami, A. k., & Kulkarni, J. S. 2013. Adsorption studies for inorganic matter removal from wastewater using bagasse fyash in batch and column operations. *International Journal of Sciences and Research*, (11)2: 180 -183, November.

Graves, A. 2012. *Methodology Six Sigma; What is DMADV?* Available from: <u>https://www.sixsigmadaily.com/what-is-dmadv/</u>. [Accessed: 21/04/ 2019].

Gray. T. 2011. How to do your Case Study: A Guide for Students and Researchers. London: Sage.

Grinnell, M. R., & Unrau, A. Y. 2011. Social Work Research and Education: Foundations of Evidence-Based Practice. New York: Oxford University Press, Inc.

Gumbo, J. R., Malaka, E. M., Nare, L., & Odiyo, J. O. 2010. The health implications of wastewater reuse in vegetable irrigation: A case study from Malamulele, South Africa. *International Journal of Environmental Health Research*, 20(2): 1-11, 2010.

Gunasekaran, S., Yaghmour, A., & Yasri, G. N. 2015. Effective removal of organics from corn wet milling steepwater effluent by electrochemical oxidation and adsorption on 3-D granulated graphite electrode. *Journal of Environmental Chemical Engineering*, *3*(2): 930-937.

Gupta, P. 2005. *The Six Sigma Performance Handbook: A Statistical Guide to Optimizing Results*. Bothell: McGraw-Hill Companies, Inc.

Gwadla, M. 2017. Interview with the researcher on 15 May 2017, Cape Town.

Haber, J., LoBiondo-Wood, G., Scheider, Z., & Whitehead, D. 2013. *Nursing and Midwifery Research: Methods and Critical Appraisal for Evidence-based practice*. 4th ed. Victoria: Elsevier.

Hahs-Vaughn, D. L., & Lomax, G. R. 2012. *An Introduction to Statistical Concepts*. 3rd ed. New York: Taylor & Francis Group.

Hanson, J. R., 2001. Functional Group Chemistry. Cambridge: Royal Society of Chemistry.

Haradhan, M. 2017. Two criteria for Good Measurements in Research: Validity and Reliability. *Annals of Spiru Haret University*, 17(3): 58-82, October.

Hassan, R., & Schreiner, B. 2011. *Transforming Water Management in South Africa: Designing and Implementing a New Policy Framework*. New York: Springer Science+Business Media.

HAYCARB Activated Carbon Solutions. 2020. Activated Carbon Basics. Available from: <u>http://www.haycarb.com/activated-carbon [Accessed: 03/08/2020]</u>.

Heagerty, P. 2004. *F-Tables*. Available from: <u>http://faculty.washington.edu/heagerty/</u> <u>Books/Biostatistics/TABLES/F-Tables/index.html</u> [Accessed: 22/07/2020].

Heckard, F. R., & Utts, J. M. 2006. Statistical Ideas and Methods. Belmont: Thomson Brooks/Cole.

Heppner, P. P., Owen, J., Thompson, M. N., Wampold, B. E., & Wang, K. T. 2016. *Research Designing in Counselling*. 4th ed. Boston: Cengage Learning.

Hermann, R., & Razin, S. 2002. *Molecular Biology and Pathogenicity of Mycoplasmas*. New York: Springer Science+Business Media.

Hodges, J. 2017. Consultancy, Organizational Development and Change: A Practical Guide to Delivering Value. London: Kogan Page Limited.

Hot Water Treatment. 2013. *Anaerobic and Aerobic*. Available from: <u>http://hwt.co.za/wine-cellar-effluent/treatment-process/anaerobic-aerobic/[Accessed: 10/01/ 2018].</u>

Hunter, E. J., & Schmidt, F. L. 2004. *Methods of Meta-Analysis: Correcting Error and Bias in Research Findings*. 2nd ed. California: Sage Publication, Inc.

Icon Water. 2015. Acceptance guideline 22: Effluent Improvement Plan. Available from: https://www.iconwater.com.au/~/media/Files/Icon%20Water/Water%20and%20Sewerage%20Files/T rade%20Waste%20Acceptance%20Guidelines/Acceptance%20Guideline%2022%20-%20Effluent%20Improvement%20Plan.ashx?la=en/ [Accessed: 16/11/2019].

Igbinosa, E. O., & Okoh, A. I. 2009. Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. *International Journal of Environmental Science & Technology*, 6(2): 175-182.

Investopedia. 2018. *Confidence interval*. [**Online**]. Available from: <u>https://www.investopedia.</u> <u>com/terms/c/confidenceinterval.asp/</u> [Accessed: 25-08-2018].

Islam, S., Sangeetha, J., & Thangadurai, D. (eds.). 2020. *Beneficial Microbes for Sustainable Agriculture and Environmental Management*. Burlington: CRC Press-Apple Academic Press, Inc.

Isixsigma. 2020. *Determine the root cause: 5 WHYS*. Available from: <u>https://www.isixsigma.com/</u> tools-templates/cause-effect/Determine-root-cause-5-whys/. [Accessed: 19/05/2020].

Jackson, S. 2017. Interview with the researcher on 15 September 2017, Cape Town.

Javier, P. 2011. Handbook of Research on Personal Autonomy Technologies and Disability Information. Hershey: IGI Global.

Jawlik, A. A. 2006. *Statistics from A to Z: Confusing Concepts Clarified*. New Jersey: John Wiley & Sons, Inc.

Jelena, J., Krivokapic, Z., Sokovic, M., & Vujovic, A. 2009. Basic quality tools in continuous improvement process. *Journal of Mechanical Engineering*, 55(5): 1-9.

Jensen, C. S., Li Lee, M., Muliantara, A., & Thalheim, B. 2014. *Database System for Advanced Applications. Proceedings Part 1 of the 19th International Conference, DASFAA 2014*. Bali, Indonesia, 21-24 April, 2014. Switzerland: Springer.

Jhaveri, A. G., & Roosa, A. S. 2009. *Carbon Reduction: Policies, Strategies, and Technologies*. Lilburn: CRC Press: Taylor & Francis Group.

Jodejko-Pietruczuk, A., Mtynczak, M., Nowakowski, T., & Werbinska-Wojciechowska, S. 2015. *Safety and Reliability: Methodology and Applications*. Boca Raton: Taylor & Francis Group.

Jolley, J. M., & Mitchell, L. M. 2010. *Research Design Explained*. 7th ed. Belmont: Wadsworth Cengage Learning.

Jones, B. P., Tohen, M., & Tsuang, M. T. 2011. *Textbook of Psychiatric Epidemiology*. 3rd ed. West Sussex: John Wiley & Sons, Ltd., Publication.

Jones, D. 2002. *Pharmaceutical Statistics*. London: Pharmaceutical Press 2002.

Jong, C. E., Posttinger, P. S., & Sanford, A. C. 2008. *The Travel and Tropical Medicine Manual*. San Diego: Elsevier.

Juneja, D., Sharma, A., & Verma, V. 2014. Utilization of six sigma (DMAIC) approach for reducing casting defects. *International Journal of Engineering Research and General Science*, 2(6):1065-1075.

Kadambi, S. 2012. *Cracking the Six Sigma Black Belt Exam*. New Delhi: Tata McGraw Hill Education Private Limited.

Karalei, S., & Suryavansh, M. 2014. Dairy wastewater treatment using coconut shell activated carbon & laterite as low cost adsorbents. *International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development*, (2)4: 9-14.

Khandula, D., & Singh, B. J. 2015. Wrap the scrap with DMAIC: Strategic development of Six Sigma in India Foundry SME. Hamburg: Anchor Academic Publishing.

Khatri, V. 2019. *Process FMEA and DMAIC*. Available from: <u>https://www.benchmarksixsigma.</u> <u>com/forum/topic/35408-process-fmea-and-dmaic//</u> [Accessed: 10/06/2020].

Kirkup, L. 2002. *Data Analysis with Excel: An Introduction for Physical Scientists*. New York: Cambridge University Press.

Kite, E. M., & Whitley, B. E. 2013. *Principles of Research in Behavioral Science*. 3rd ed. New York: Taylor & Francis Group.

Koh, E. T., & Owen, L. W. 2000. *Introduction to Nutrition and Health Research*. New York: New York - US. 2000 Springer Science+Business Media.

Kohl, M., Magnussen, S., & Marchetti, M. 2006. *Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory*. Hamburg: Springer-Verlag Berlin Heidelberg.

Kostelis, K. T., & Matthews, D. T. 2011. *Conducting Research in Health and Human Performance*. San Francisco: John Wiley & Son, Inc.

Kothari, C. R. 2004. Research Methodology: Methods and Techniques. New Delhi: New Age International.

Kuiper, S. 2009. Contemporary Business Report Writing. Indiana: South-Western Cengage Learning.

Kumar, R. 2008. Research Methodology. 2nd ed. London: SAGE Publications Inc.

Kumar, R. 2011. *Research Methodology: A Step-by-Step Guide for Beginners*. 3rd ed. London: SAGE Publications Inc.

Lakdawala, J. M., & Lakdawala, M. M. 2012. Comparative study of effect of PAC and GAC on removal of COD contributing component of sugar industry waste water. *Research Journal of Recent Sciences*, 2(1): 90-97.

Laplante, A. P. 2015. *Encyclopedia of Information Systems and Technology*. Pisa: Taylor & Francis Group.

Larson, A. J. 2014. *Management Engineering: A Guide to Best Practices for Industrial Engineering in Health Care*. Boca Raton: Taylor & Francis Group.

Leard Statistics. 2018. *Independent t-test for two samples*. Available from: <u>https://statistics.laerd. Com /statistical-guides/independent-t-test-statistical-guide.php/</u> [Accessed:10/06/2020].

Liang, M., Liu, H., Lu, R., Pan, Y., Xu, Z., Zhang, Z., & Zhu, Y. 2011. Adsorption removal of COD from wastewater by the activated carbons prepared from sugarcane bagasse. 5th International Conference on Environmental pollution and Public Health (EPPH2011), Wuhan, 10-12 May 2011. China, Bioinformatics and Biomedical Engineering (iCBBE): 1-4.

Ling, L., & Ling, P. 2017. Methods and paradigms in education research. Hershey: IGI Global.

Liptak, B. G. 2003. *Instrument Engineer` Handbook, Volume One: Process Measurement and Analysis*. 4th ed. Boca Raton: CRC Press LCC.

Logan, L., & Powers, D. 2010. *Meteorology: Atmosphere and Weather Expanding Science Skills Series*. Quincy: Mark Twain Media, Inc.

Lohr, L. S. 2009. Sampling: Design and Analysis. 2nd ed. Boston: Brooks/Cole Cengage Learning.

Maass, E., & McNair, D. P. 2010. *Applying Design for Six Sigma to Software and Hardware Systems*. Boston: Pearson Education.

Macera, A. C., Shaffer, A. R., & Shaffer, M. P. 2013. *Introduction to Epidemiology: Distribution and Determinants of Disease*. Clifton Park: Delmar Cengage Learning.

Machi, A. L., & McEvoy, B. T. 2016. *The Literature Review: Six Steps to Success*. London: Sage Publications Ltd.

MacLaren, D., & Morton, J. 2012. *Biochemistry for Sport and Exercise Metabolism*. West Sussex: John Wiley & Sons, Ltd.

Macnee, C. L., & McCabe, S. 2008. Understanding Nursing Research: Using Research in Evidencebased Practice. 2nd ed. Philadelphia: Lippincott Williams & Wilkins.

Makgae, M. 2011. Key *Areas in Waste Management: A South African Perspective*. Available from: <u>https://www.intechopen.com/books/integrated-waste-management-volume-ii/key-areas-in-waste-management-a-south-african-perspective/</u> [Accessed: 31 March 2019].

Management Associate Information. 2013. Supply Chain Management Concepts, Methodologies, Tools and Applications. Hershey: IGI Global.

Mann, D. 2005. *Creating a Lean Culture: Tools to Sustain Lean Conversations*. New York: Productivity Press.

Marcel, R. 2011. *Win/Loss Reviews: A New Knowledge Model for Competitive Intelligence*. New Jersey: John Wiley & Sons, Inc.

Martinez, C., Oppenlander, J., Shifflet, A, M., & Shmerling, S. 2020. *Improving Health Care Quality: Case Studies with JMP*. Hoboken: John Wiley & Sons.

Maruyama, G., & Ryan, C. S. 2014. *Research Methods in Social Relations*. West Sussex: John Wiley & Sons, Ltd.

Maxwell, A. J. 2005. *Qualitative Research Design: An Interactive Approach*. 2nd ed. California: Sage Publications, Inc.

Mazille, F. 2019. *Adsorption (Activated Carbon)*. Available from: <u>https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/adsorption-%28activated-carbon%29/</u> [Accessed: 11/09/2019].

McKay, D. 2008. *Handbook of Research Methods in Abnormal and Clinical Psychology*. California: Sage Publications, Inc.

McKinney, E. R. 2004. *Environmental Pollution Control Microbiology: A Fifty-Year Perspective*. New York: Marcel Dekker, Inc.

Mema, V. 2010. Impact of poorly maintained wastewater and sewage treatment plant: Lessons from South Africa: Wastewater management. *Sabinet African Journals*, 12(3): 60-65, August.

Meredith, J. M., & Safer, M. S. 2019. *Operations and Supply Chain Management for MBAs*. 7th ed. Hoboken: Wiley.

Mertens, D. M. 2005. *Research and Evaluation in Education and Psychology: Integrating diversity with Quantitative, Qualitative, and Mixed Methods*. 2nd ed. California: Sage Publications, Inc.

Mihai, R., Pana, A., Presura, A., Robescu, D. L., & Silivestru, C. 2016. Application of Continuous Improvement Strategy for reducing environmental impact of wastewater treatment plant. *EWRA Water Utility Journal Publications*. 14(2016): 29-40, May 09.

MockInterview.co. 2018. *Case Study: How to validate A/B test results?* Available from: <u>http://mockinterview.co/index.php/question/case-study-how-to-validate-ab-test-results/</u> [Accessed: 10/06/2020].

Moreno-Castilla, C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. *Elsevier*, 42(1), 83-93.

Muijs, D. 2011. Doing Quantitative Research in Education with SPSS. 2nd ed. Los Angeles: Sage.

Murphy, K. R. 2011. Validity Generalization: A Critical Review. New Jersey: Taylor & Francis.

Murray, K. S., & Provost, L. P. 2011. *The health Care Data Guide: Learning from Data for Improvement*. San Francisco: John Wiley & Sons, Inc.

Mwavita, M., & Strunk, K. 2020. *Design and Analysis in Educational Research: ANOVA Designs in SPSS*. New York: Taylor & Francis Group.

Myers, A. S. 2012. *Patient Safety and Hospital Accreditation: A Model for Ensuring Success*. New York: Springer Publishing Company, LLC.

National Institute of Health Research. 2020. *Validity*. Available from: <u>https://www.dapa-toolkit.mrc.ac.uk/concepts/validity/</u> [Accessed: 04/06/2020].

Ndlovu, L. 2013. Wastewater treatment of effluents from corn processing plant. Published Master thesis, University of Kwazulu Natal, Durban.

Nekoo, H. S., & Shohreh, F. 2013. Experimental study and adsorption modelling of cod reduction by activated carbon for wastewater treatment of oil refinery. *Journal of Chemical Engineering*, 32(3): 81-89.

Nestor, G. P., & Schutt, K. R. 2015. *Research Methods in Psychology: Investigating Human Behavoir*. 2nd ed. Loss Angeles: SAGE Publications, Inc.

Norcross, C. J. 2011. *Psychotherapy Relationships that Work: Evidence-Based Responsiveness*. 2nd ed. New York: Oxford University Press, Inc.

Oak Ridge National Laboratory. 2002. Evaluation of Field Portable Measurement Technologies for Lead in Dust Wipes. Las Vegas: USA Environmental Protection Agency.

Osborn, C. E. 2006. *Statistical Application for Health Information Management*. 2nd ed. London: Jones and Bartlett Publishers, Inc.

Parsana, T. S., & Thakore, M. T. 2015. A case study: A process FMEA tool to enhance quality and efficiency of bearing manufacturing industry. *Scholars Journal of Engineering and Technology*, 3(4B): 413-418.

Patel, T. V. 2014. Quality improvement in steel making plant using Six Sigma DMAIC Methodology at Essar Steel Ltd. Surat. *International Journal of Mechanical Engineering and Information Technology*, (6)2: 275-286.

Pham, H. 2006. System Software Reliability. London: Springer.

Purushothama, B. 2015. Implementing ISO 9001:2015. New Delhi: Taylor & Francis Group.

Rafinejad, D. 2007. Innovation, Product Development and Commercialization: Case Studies and Key Practices for Market Leadership. Fort Lauderdale: J. Ross Publishing, Inc.

Rahman, M. S. 2007. Handbook of Food Preservation. 2nd ed. Boca Raton: Taylor & Francis Group, LLC.

Raj, G. 2002. *Surface Chemistry*. 4th ed. Meerut: GOEL Publishing House Unit of Krishna Prakashan Media(P) Ltd.

Rampal, K. R., & Sharma, D. 2018. Combined impact of sewage and industrial effluent on wheat in march block, Jammu (J7K). *Global Scientific*, 6(8): 547-553.

Ramu, G. 2017. *The Certified Six Sigma Yellow Belt Handbook*. Milwaukee: American Society for quality, Quality Press.

Rashed, N. M. 2013. Adsorption technique for the removal of organic pollutants from water and wastewater. Available from: <u>https://www.intechopen.com/predownload/42059</u>[Accessed: 08/08/2016].

Reinard, C. J. 2006. *Communication Research Statistics*. London: Sage Publications.

Rhosonics. 2017. *The benefits of in-line COD measurement in industrial wastewater*. Available from: <u>https://www.rhosonics.com/news/the-benefits-of-in-line-cod-measurement-in-industrial-wastewater/</u> [Accessed: 09 July 2020].

Riazi, A. M. 2016. The Routledge Encyclopedia of Research Methods in Applied Linguistics: *Quantitative, Qualitative, and Mixed-Methods Research*. Oxon: Routledge Taylor & Francis Group.

Rogowsky, A. B. 2006. Activated Carbon from China. Washington: U.S. International Trade Commission.

Roque-Malherbe, A. M. R., 2007. *Adsorption and Diffusion in Nanoporous Materials*. Boca Raton: Taylor & Francis Group, LLC.

Rosenblatt, H. J., & Shelly, B. G. 2010. *Systems Analysis and Design*. 8th ed. Boston: Course Technology, Cengage Learning.

Ross, W. R. 1989. Anaerobic treatment of industrial effluents in South Africa. *Division of Water Technology. Council for Science and Industrial Research*, 15(4): 231-246.

Rumane, A. R. 2017. *Handbook of Construction Management: Scope, Schedule, and Cost Control.* Boca Raton: Taylor & Francis Group, L.L.C.

Saleh, H. A. 2014. *Using Six Sigma in Laboratory*. Available from: <u>https://www.researchgate.net/publication/264495605_Using_Six_Sigma_in_Laboratory/link/53e1326</u> <u>80cf2235f35274970/download</u> [Accessed: 24/07/2020].

Salmons, J., & Wilson, L. 2009. Handbook of Research on Electronic Collaboration and Organizational Synergy. Hershey: IGI Global.

Selvarajan, R., Sibanda, T., & Tekere, M. 2015. Urban effluent discharges as causes of public and environmental health concerns in South Africa's aquatic milieu. Available from: <u>https://pubmed.ncbi.nlm.nih.gov/26408112/</u> [Accessed: 03/04/2019].

Serna-Saldivar, O. S. 2019. Corn: Chemistry and Technology. 3rd ed. Duxford: Elsevier Inc.

Sharma, A. 2011. *How to Prepare for Data Interpretation and Logical Reasoning for the CAT Common Admission Test.* 5th ed. New Delhi: Tata McGraw Hill Education Private Limited.

Sharma, K. S. 2014. *Nursing research and statistics*. 2nd ed. New Delhi: Reed Elsevier India Private Limited.

Singh, K. 2007. *Quantitative Social Research Methods*. New Delhi: Sage Publication Pty Ltd.

Singh, K. J., & Verma, N. (ed.). 2019. Aqueous Phase Adsorption: Theory, Simulations, and Experiments. Boca Raton: Taylor & Francis Group.

Sirkin, M. R. 2006. Statistics for the Social Sciences. Thousand Oaks: Sage Publications, Inc.

Six Sigma Material. 2020. *Hypothesis Testing*. Available from: <u>https://www.six-sigma-material.com/t-distribution.html/</u> [Accessed: 10/06/2020].

Sobh, T. 2008. Advances in Computer and Information Sciences and Engineering. Bridgeport: Springer.

Soderstrom, I. R. 2008. Introductory Criminal Justice Statistics. Long Grove: Waveland Press, Inc.

South Africa. 2013. National Water Act, no 36 of 199. Cape Town: Government printer.

Speight, J. 2015. *Educating Scientists and Engineers for Academic and Non-Academic Career Success*. New York: Taylor & Francis Group.

Surbhi, S. 2017. *Difference between population and sample*. Available from: <u>https://keydifferences.com/difference-between-population-and-sample.html/</u> [Accessed: 25/10/2019]. Tashakkori, A., & Teddlie, C. 2009. Foundations of Mixed Methods Research: Integrating Quantitative and Qualitative Approaches in the Social and Behavioural Sciences. London: Sage Publication, Inc.

Taylor, G. R. 2005. *Integrating Quantitative and Qualitative Methods in Research*. 2nd ed. New York: University press of America.

Taylor, S. 2004. Advances in Food and Nutrition Research, Volume 48. California: Elsevier Inc.

Tayntor, B. C. 2003. Six Sigma Software Development. Boca Raton: CRC Press LLC.

Thompson, K. 2017. *The Steps of Quantitative Research*. Available from: <u>https://revisesociology.com/2017/11/26/the-steps-of-quantitative-research/</u> [Accessed: 27/09/2019].

Tibbetts, P., & Williams, A. M. 2006. *Rath & Strong's Six Sigma Pocket Guide*. Massachusetts: Rath & Strong management consultants.

Tomlin, A. S., & Turanyi, T. 2014. Analysis of Kinetic Reaction Mechanisms. Heidelberg: Springer-Verlag Berlin.

United Nations. 2017. Improvement of the Industrial Effluent Treatment System. Available from: https://oceanconference.un.org/commitments/?id=17818/ [Accessed: 31/03/2019].

University of Pretoria Department of Library Services. 2018. *Research guide: Data analysis and findings*. Available from: <u>https://up-za.libguides.com/c.php?g=485435&p=4425510/</u> [Accessed: 20/10/2018].

Unnasch, S., Venkatesh, S., & Waterland, L. R. 2003. *Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)*. Colorado: National Renewable Energy Laboratory.

USGS Water Science School. 2016. *Water Cycle Components*. Available from: <u>https://www.usgs.gov/special-topic/water-science-school/science/water-cycle-components/[Accessed: 12/08/2018]</u>.

Ushakumary, E. R. 2013. Waste water treatment using low cost natural adsorbents. Doctor of Philosophy in Engineering. Cochin University of Science and Technology, Kerala.

Van Schoor, L. H. 2005. *Guidelines for the management of wastewater and solid waste at existing wineries*. Available from: <u>http://www.ipw.co.za/content/guidelines/WastewaterApril05English.pdf</u> [Accessed: 25/08/2017].

Vanzant-Stern, T. 2012. *Lean Six Sigma: International Standards and Global Guidelines*. California: Fultus Corporation.

Warner, M. R. 2008. *Applied Statistics: From Bivariate Through Multivariate Techniques*. California: Sage Publications, Inc.

Wasson, C. S. 2016. System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices. New Jersey: John Wiley & Sons, Inc.

Water Wise Rand Water. 2018. *Water and Sanitation in South Africa*. Available from: http://www.waterwise.co.za/site/water/environment/situation.html [Accessed: 04/04/ 2018].

Welch, H. P. 2008. Communicating Process Architectures 2008: WoTUG-31. Amsterdam: IOS Press.

Wiles, R. 2013. What are Quantitative Research Ethics? London: Bloomsbury Publishing Plc.

Williams, C. 2007. Research methods. Journals of Business & Economic Research, 5(3): 65-72, March.

World Cup Legacy Report. 2011. *South Africa a Water Scarce Country*. Available from: <u>https://www.environment.gov.za/sites/default/files/docs/water.pdf [</u>Accessed: 02.04.2018].

Wu, J. 2004. *Modeling adsorption of organic compound on active carbon*. Available from: *https://www.diva-portal.org/smash/get/diva2:142987/FULLTEXT01.pdf* [Accessed: 24 /09/2016].

Yangui, R. B. E. 2013. Removal of water contaminants by adsorption carbon prepared from olive-waste cakes and biological treatment using ligninolytic fungi. Published PhD, University Autonoma de Barcelona.

Yusuf, M. 2018. *Handbook of Textile Effluent Remediation*. Singapore: Pan Stanford Publishing. Pte. Ltd.

8 APPENDICES

Appendix A: RESEARCH STANDARD OPERATING PROCEDURE FOR COD ANALYSIS

	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Method for analysis of COD in the effluent

1. Introduction

This method was used for the analysis of the COD concentrations in the WCM effluent samples, which were collected from the WCM that is located in the WC.

2. <u>Personnel</u>

The person performing the procedure deemed competent through the test and the plan job observation.

3. Limitation, precision (random and systematic errors) of the method

- a. The method is applied effluent samples collected from the WCM plant in WC.
- b. The COD concentrations range that can be measured is 2000 ppm 10000 ppm.

4. Equipment, Apparatus and Materials

- a. 1ml pipette
- b. Coconut GAC
- c. 120 degrees' heat reactor
- d. Beakers (500 ml),
- e. 250 ml Erlenmeyer or conical flask
- f. Spatula,
- g. Analytical balance,
- h. Filter paper (90 mm).
- i. Stopwatch,
- j. COD meter (Benchtop Photometer)
- k. High Range (HR) COD vial reagents that range from 0 to 15 000 ppm/mg/L.

Appendix A: RESEARCH STANDARD OPERATING PROCEDURE FOR COD ANALYSIS

Cape Peninsula	Faculty of Engineering: Department Quality		
University of Technology	Method for analysis of COD in the effluent		

5. <u>Reagents (Good Quality Analytical Graded Reagents)</u>

- i. H93754-25 COD High Range Reagent Dichromate Vials Follows the dichromate method for the high range determination of chemical oxygen demand using a compatible benchtop photometer.
- ii. Coconut Shell Granular Activated Carbon A good adsorption performance, high strength, easy regeneration, economy and durability.

6. <u>Laboratory Reference Standards</u>

This product is prepared on a weight/volume basis, holds IEC/ISO 17025 accreditation for laboratory balances, and pipettes (Ref-265C). Product specifications, the accuracy of $\pm 0.5\%$, a liquid form, Packaging - HDPE Twin Neck bottle, matrix –water, physical form - liquid form.

- i. 2000 ppm Total Organic Carbon Standard suitable for calibrating a wide range of TOC analysers to high accuracy.
- ii. 5000 ppm Total Organic Carbon Standard suitable for calibrating a wide range of TOC analysers to high accuracy.
- iii. 10 000 ppm– Total Organic Carbon Standard suitable for calibrating a wide range of TOC analysers to high accuracy.

7. <u>Safety Precautions</u>

- i. A bump cap, safety shoes, goggles, gloves and acid resistant overalls must be worn when collecting the effluent samples.
- ii. A Laboratory coat, safety goggles, safety shoes and gloves must be worn when applying the procedures.
- iii. Pre-reading of the Material Safety Data Sheets is mandatory before using any of the chemicals.
- Adherence to the disposal of the chemical waste specified in the Material Safety Data Sheets is mandatory.

Appendix A: RESEARCH STANDARD OPERATING PROCEDURE FOR COD ANALYSIS

Cape Peninsula	Faculty of Engineering: Department Quality		
University of Technology	Method for analysis of COD in the effluent		

8. Sample and Standard Test Procedure

- a. Mix the sample and transfer 0.2 ml into the HR reagent vial using a 1 ml pipette.
- b. Keep the vial at an angle of 45 degrees relative to the pipette while transferring the sample.
- c. Invert the reagent vial containing the sample 20 times to mix the solution thoroughly.
- d. Transfer another 0.2 ml of deionised water into a new HR reagent vial using 1ml pipette.
- e. Keep the angle of the vial at an angle of 45 degrees relative to the pipette, while transferring deionised water.
- f. Invert the vial containing the deionised water 20 times to mix the solutions thoroughly.
- g. Insert the two vials into a 150 degrees Celsius pre-heated reactor for 2 hours.
- h. Switch of the heat reactor at the end of the tow hours (digestion period), and after 10 minutes, invert the vials 20 times.
- i. Place the HR reagent vials in a steel rack to allow them to cool down at room temperature for 30 minutes.
- j. After 30minutes, the samples were analysed using a Benchtop Photometer, NB: a careful handling of the samples is need to prevent forming bubbles and humidity from the samples (NB Do not shake the samples).
- k. Switch on the Benchtop Photometer and use the vial with the blank solution (Deionised water) to zero the instrument.
- 1. After zeroing the instrument, measure the sample and record the measurement. NB: No shaking of the sample after cooling and when taking the measurements.
- m. Each measurement was performed in duplicate.

Appendix A: RESEARCH STANDARD OPERATING PROCEDURE FOR COD ANALYSIS

Cape Peninsula	Faculty of Engineering: Department Quality
University of Technology	Method for analysis of COD in the effluent

9. <u>Effluent Sampling Procedure</u>

- a. Label the sampling container with the sample name to be sampled.
- b. Open the sampling tank for at least 10 seconds, before collecting a sample.
- c. Rinse the sampling container at least three times with the sample to be collected before collecting a sample.
- d. Then collect the sample and close the sampling container led.

10. Effluent Sample Preparation Procedure

- a. Weigh CGAC into 200 ml beaker using a four digital analytical balance.
- b. Measure 100ml of the effluent sample using a 100 ml measuring cylinder.
- c. Transfer the 100ml volume of the effluent sample into the beaker that contain CGAC, and start the timer/clock.
- d. Take 250 ml conical flask and insert a funnel with the filter paper.
- e. When the timer goes off, filter the effluent in the beaker.
- f. Use the filtered samples for conducting the COD measurements.

		Trial 1		
Batch Number	CGAC Weight in gramss	Contact Time in Minutes	Sample Name	pH Content
1	20	20	Condensate,	Acidic
		30	Effluent tank,	Acidic
		60	& Glucose	Acidic
2	30	20	Condensate,	Acidic
		30	Effluent tank,	Acidic
		60	& Glucose	Acidic
3	40	20	Condensate,	Acidic
		30	Effluent tank,	Acidic
		60	& Glucose	Acidic
		Trial 2		
Batch	CGAC Weight in	Contact Time in Minutes	Sample Name	pH Content
Number	gramss			
1	20	20	Condensate,	Alkaline
		30	Effluent tank,	Alkaline
		60	& Glucose	Alkaline
2	30	20	Condensate,	Alkaline
		30	Effluent tank,	Alkaline
		60	& Glucose	Alkaline
3	40	20	Condensate,	Alkaline
		30	Effluent tank,	Alkaline
		60	& Glucose	Alkaline

<u>11.</u>	The trial batches that were used in this study are illustrated in the table below:

Appendix B: DATA ANALYSIS METHOD, DESCRIPTION AND CALCULATION FORMULAS

Name of	Description	Calculation Formula
the method		
Bias or random error	Used to calculate the difference between the measured and actual value to measure the accuracy of the measurements.	% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 <u>Mean formula:</u>
		$\overline{x} = \frac{\sum_{i=1}^{n} \overline{x}}{n}$ Where: μ is the true value \overline{x} is the mean
Precision	Used to calculate closeness of the readings.	$\% RSD = \left[\frac{Std}{\bar{x}}\right] 100$ Where: Std is the standard deviation. \bar{X} is the mean. $Std = \sqrt{\frac{\sum(x - xbar)2}{n}}$ $\bar{x} = \frac{\sum_{i=1}^{n} \bar{x}}{n}$ $\beta_{0} = Y_{bar} - \beta_{1}X_{bar}$
Regressi on: Slope of the variable(s)	Used to determine internal calibration uncertainty in	$β_{I} is the slope and β_{0} is the Y-intercept.$ Where $β_{I}$: $b_{1} = \frac{SSXY}{SSX}$ Where SSXY is the cumulative sum of the X multiplied by the cumulative sum of variable y, divided by the number of observations and then subtracted from the accumulative product of X and Y. Where SSXY is calculated using: $\sum_{i=1}^{n} X_{i}Y_{i} - \frac{(\sum_{i=1}^{n} Xi)(\sum_{i=1}^{n} Yi)}{n}$ Where SSX is the squared value of the cumulative sum of variable x, divided by the number of observations and then subtracted from the accumulative sum of all the squared values of variable x.
Coefficie nt of determin ation	To measures the proportion of variation that is explained by the independent variable X in the regression model. The value of r^2 can range between 0 and 1, and the higher its value the more accurate the regression model is. A large r^2 value indicates a strong linear relationship between the two variable(s). A perfect correlation of ± 1 occurs only when the data points all lie exactly on a straight line. If $r = +1$, the slope of this line is positive. If $r = -1$, the slope of this line is negative.	$= \sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}$ $r^{2} = \frac{\text{Regressionsum of squares}}{\text{Total sum of squares}} = \frac{\text{SSR}}{\text{SST}} \text{ or } = \frac{\text{SSR}}{\text{SSR} + \text{SSE}}$ Where r is: $r = \sqrt{\frac{\text{SSR}}{\text{SST}}} \text{ where r takes the sign of b}$

Name of	Description	Calculation Formula
the method		
One Tail T-test	A sample statistic is used to make inferences about the entire population. It begins with the hypothetical claim: null hypothesis (H ₀) and the opposite of the null hypothesis, called alternate (H ₁). And make use of the t-statistical and t- critical to make decisions on the claim. Decision making: When a calculated t-value is found to be less than the critical value (t _{upper}), the null hypothesis is accepted and the alternate is rejected. However, if the calculated value is found to be greater than the critical value, the null hypothesis is rejected and the alternate hypothesis is accepted. Confidence limits at 95% for one direction (α -0.05), at n-1 degrees of freedom.	$t = \frac{\overline{x - \mu}}{s}$ Where: \sqrt{n} t is t-statistic calculated), x is the sample mean (calculated in excel), n is the number of samples, s is the sample standard deviation (calculated in excel). μ is the true value NB: for one direction one ail t-test, the null hypothesis is accepted when the calculated t- statistics is less than the t-critical (t-statistic< t- critical).
Paired t- test	A statistical test used to calculate if there is a difference between two groups of measurements or set of items. It begins with the hypothetical claim: null hypothesis, symbol H _D and the opposite of the null hypothesis, called alternate, H _D . Where D represents the difference between two means. It makes the use of the t-statistical and t-critical values to make decisions. If the calculated statistical value falls within the non-rejection criteria obtained from the table at specified confidence limits and degrees of freedom, the null hypothesis is accepted. However, if the statistical value falls outside of the non-rejected area, the alternate hypothesis is accepted instead of the null hypothesis. Confidence limits at 95% for two tail. Confidence limits at 95% for one directions (α /2-0.025), at n-1 degrees of freedom.	$t = \frac{\overline{D} - \mu_D}{s_D}$ Where: $\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n}$ And $s_D = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n-1}}$ Hypothesis: $H_0: \mu_D = 0 \text{ (where} \mu_D = \mu_1 - \mu_2)$ Alternate $H_1: \mu_D \neq 0$ Decision rule: Reject H_0 if t-statistical fall outside of a non-rejection criterion. Reject H_1 if t-statistical falls within the non-rejection criterion.

Name of	Description	Calculation Formula
Name of the method One-way ANOVA	Description Analysing if there is are variation among and within groups, to statistically determine if there are differences in the group means Decision rule is to reject H ₀ if Statistics is greater than F-critical (F>Fu), otherwise accept H ₀ . If the null hypothesis is rejected, the conclusion that there is a significant difference in the mean values of the groups considered. Confidence limits at 95%	Calculation Formula SST is the total variation. $SST = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (X_{ij} - \overline{X})^2$ Where: c is the number of groups, X _{ij} is the value in the group j, n is the total number of values in all groups nj is the number of values in group j, SSA is among-group variation $SSA = \sum_{j=1}^{C} n_j (\overline{X} j - \overline{X})^2$ where : c = number of groups $n_j = number of values in group j$ $\overline{X} = grand mean$ $\overline{X} j = mean of sample group j$ Where SSW is the variation within-group
		$SSW = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2$ Where: $X_{ij} = \text{the}i\text{th value in the group } j$
		X j = the sample mean in the group j
		Source Degrees Sums of Mean Square Of Freedom Squares (Variance)
		Among $c-1$ SSA $MSA = \frac{SSA}{C-1}$
		Within $\underline{n-c}$ \underline{SSW} $MSW = \frac{SSW}{N-C}$
l		Total n-1 SST
		F statistics: $F = \frac{MSA}{MSW}$ To obtain the F _{crita} statistic value, the degrees of freedom; which follows c-1 in numerator and n-c in denominator are used at α of 0.05 or 95% confidence of limits.

the methodThis hypothesis testing allows to compare the means of two independent samples. This test calculates the F test statistic is calculated by dividing the variance of a larger sample (numerator) divide by that of the smaller sample variance (denominator). The nullF test: $t = \frac{(\overline{X_1} - \overline{X_2})}{\sqrt{s_p^2(\frac{1}{n})}}$	
Pooled- This hypothesis testing allows to compare the means F test:	
variance of two independent samples. This test calculates the F t-test test statistic is calculated by dividing the variance of $t = \frac{(X_1 - X_2)}{(X_1 - X_2)}$	
I t-test Lest statistic is calculated by dividing the variance of $l = l = -$	$-(\mu_1-\mu_2)$
a larger sample (numerator) divide by that of the $s^2(-1)$	
smaller sample variance (denominator). The null $\sqrt{s_p^2(-n)}$	-+-)
hypothesis states that the sample means are equal and S^2p :	1 2
	$a^{2} + (n - 1)a^{2}$
are not equal; $s_n^2 = \frac{(n_1 - 1)!}{n_1 + 1}$	$\frac{s_1^2 + (n_2 - 1)s_2^2}{1) + (n_2 - 1)}$
$H_0: \mu_1 = \mu_2$ $(n_1 - \mu_2)$	$(1) + (n_2 - 1)$
H_1 : $\mu_1 \neq \mu_2$	
The critical values that are obtained on the F table are $df = n_1 + n_2$	_ 2
obtained by using two degrees of freedom of the two	2
samples Critical values	
	valenation:
Decision rule: $\frac{df(n-1)}{df(n-1)} \stackrel{(0)}{\leftarrow} \stackrel{(0)}{\leftarrow}$	f_sample_2_in_the_denominator)
Accept the null hypothesis if F-statistics is less than $\frac{2}{3}$	
the F-upper critical value and greater than F lower, F	
	ples are equal, $n_1 = n_2$; then use:
region, when F > Fu or F < F_L , the null hypothesis is	$+ s_{2}^{2}$
region, when F > Fu or F < F _L , the null hypothesis is rejected and the alternate is accepted. $s_p^2 = \frac{s_1^2}{s_p^2}$	2
If the F-test concluded that the variances observed	2
	ples are not equal, $n_1 \neq n_2$; then
separate variance t-test or t prime test is conducted.	
$(x_1 - x_2)$	(1) - (1) - (1)
$t = \frac{\alpha r + \beta r}{\alpha}$	$\frac{2}{s_1^2} - (\mu_1 - \mu_2) \frac{1}{s_1^2} + \frac{s_2^2}{n_2}$
	$s_1^2 + s_2^2$
$ \rangle \rangle \rangle \rangle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle$	$\overline{n_1} + \overline{n_2}$
	1 <i>L</i>
	$\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \bigg)^2$ $\frac{s_1^2}{n_1^2} + \frac{(s_2^2/n_2)^2}{n_2 - 1}$
	$s_{1}^{2} + s_{2}^{2}$
	$\overline{n_1}^{+}\overline{n_2}$
$df = \frac{1}{\sqrt{2}}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
$\frac{(s_1^2/n)}{(s_1^2/n)}$	$(s_2^-/n_2)^-$
$n_1 - n_2$	$1 n_2 - 1$

				Significa	nce level		
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
11		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13		1.771	2.160	2.650	3.012	3.852	4.221
14		1.761	2.145	2.624	2.977	3.787	4.140
15		1.753	2.131	2.602	2.947	3.733	4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18		1.734	2.101	2.552	2.878	3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29		1.699	2.045	2.462	2.756	3.396	3.659
30		1.697	2.042	2.457	2.750	3.385	3.646
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.348	3.601
36		1.688	2.028	2.434	2.719	3.333	3.582
38		1.686	2.024	2.429	2.712	3.319	3.566
40		1.684	2.021	2.423	2.704	3.307	3.551
42		1.682	2.018	2.418	2.698	3.296	3.538
44		1.680	2.015	2.414	2.692	3.286	3.526
46		1.679	2.013	2.410	2.687	3.277	3.515
48		1.677	2.011	2.407	2.682	3.269	3.505

t Distribution: Critical Values of t

Appendix C1: T-TABLE- USED FOR T-TESTS (DOUGHERTY, 2002)

Appendix C2: F-TABLE – USED FOR F-TESTS (HEAGERTY, 2004)

Table 3: Critical values (percentiles) for the <i>F</i> distribution. Upper one-sided 0.025 significance levels; two-sided 0.05 significance levels;
97.5 percent percentiles.

								97.5	percer	it perce	ntiles.								
								Num	erator	degree	s of free	edom							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	976.7	984.9	993.1	997.2	1001	1006	1010	1014	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45	39.46	39.47	39.48	39.49	39.50	
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17	14.12	14.08	14.04	13.99	13.95	13.90
4	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66	8.56	8.51	8.46	8.41	8.36	8.31	8.26
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.12	6.07	6.02
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.17	5.12	5.07	5.01	4.96	4.90	4.85
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.67	4.57	4.47	4.42	4.36	4.31	4.25	4.20	4.14
8	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.20	4.10	4.00	3.95	3.89	3.84	3.78	3.73	3.67
9	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.87	3.77	3.67	3.61	3.56	3.51	3.45	3.39	3.33
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.62	3.52	3.42	3.37	3.31	3.26	3.20	3.14	3.08
11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33	3.23	3.17	3.12	3.06	3.00	2.94	2.88
12	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.28	3.18	3.07	3.02	2.96	2.91	2.85	2.79	2.72
13	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.15	3.05	2.95	2.89	2.84	2.78	2.72	2.66	2.60
14	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.05	2.95	2.84	2.79	2.73	2.67	2.61	2.55	2.49
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	2.96	2.86	2.76	2.70	2.64	2.59	2.52	2.46	2.40
16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.89	2.79	2.68	2.63	2.57	2.51	2.45	2.38	2.32
17	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72	2.62	2.56	2.50	2.44	2.38	2.32	2.25
18	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67	2.56	2.50	2.44	2.38	2.32	2.26	2.19
19	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.72	2.62	2.51	2.45	2.39	2.33	2.27	2.20	2.13

Appendix D1: REFERENCE STANDARD MEASUREMENTS CONDUCTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

The data was collected by the laboratory analyst using the procedure that is outlined in **Appendix A** above. A total number of twelve samples for twenty-four hours, at even hours, were measured from 06 May 2017 to 30 July 2017. The means and the standard deviation were calculated for a total period of 60 days, and the results are presented in Appendix below. This data was used to calculate the t-statistical value in the t-test that was conducted using raw effluent COD data obtained from the eleven macro effluent channels. The validity of this data was assured by running the daily reference standards from 6 May 2017 to 30 July 2017.

Number	2000	5000 IRS	10000	Number	2000	5000	10000
of days	IRS in	in ppm	IRS in	of days	IRS in	IRS in	IRS in
1	ppm	5007	ppm	21	ppm	ppm	ppm
1	2009	5007	10005	31	2005	5003	10003
2	2007	5003	10001	32	2002	5004	10000
3	2002	5009	10019	33	2002	5001	10010
4	2005	5000	10002	34	2001	5000	10000
5	2010	5002	10009		2000	5002	10005
6	2003	5002	10030		2003	5003	10003
7	2003	5009	10018	37	2004	5005	10004
8	2007	5007	10013	38	2005	5007	10007
9	2002	5002	10005	39	2002	5002	10005
10	2001	5000	10001	40	2005	4999	10001
11	1998	5005	10008	41	2000	5003	10006
12	1999	5007	10005	42	1998	4996	10004
13	2001	5010	10007	43	2001	5000	10003
14	2005	5013	10013	44	2002	5003	10003
15	2007	5008	10001	45	2005	5006	10005
16	2002	5006	10020	46	2000	5006	10010
17	2022	5003	10000	47	2012	5001	10000
18	2001	5002	10010	48	2003	5002	10005
19	2008	5005	10080	49	2008	5002	10003
20	2003	5001	10020	50	2005	5001	10005
21	2005	5002	10013	51	2005	5002	10003
22	2013	5009	10008	52	2009	5004	10005
23	2007	5006	10006	53	2007	5006	10002
24	2005	5008	10001	54	2003	5005	10003
25	2001	5002	10005	55	2002	5002	10005
26	2000	4998	10012	56	2002	4998	10010
27	2002	5001	10009	57	2004	5003	10006
28	2003	5000	10013	58	2003	5002	10003
29	2011	5001	10005	59	2001	5005	10005
30	2004	5001	10002	60	2004	5001	10003
	2000 ppm IRS			0 000 ppm IRS		•	
Mean	2004	5003		10008	-		
Std	4	3		11	7		

Appendix D2: WCM REFERENCE STANDARD CALCULATIONS FOR % BIAS AND PRECISION

Precision calculations for 2000 ppm reference standard measurements: Std = 4 \bar{x} is 2004 ppm

$$\% RSD = \left[\frac{Std}{\bar{x}}\right] 100$$
$$\% RSD = \left[\frac{4}{2004}\right] 100$$
$$\% RSD = 0.1996\%$$

The state of the COD concentrations analysis when the COD measurements were conducted by the WCM laboratory on 2000 ppm reference standard was 0.1996 % imprecise.

% Bias (Random Error) calculations for 2000 ppm reference standard measurements

Where:

 \bar{x} is 2004 ppm

 μ is 2000 ppm

$$\% Bias = \left[\frac{\bar{x} - \mu}{\mu}\right] 100$$
$$\% Bias = \left[\frac{2004 - 2000}{2000}\right] 100$$
$$\% Bias = \left[\frac{4}{2000}\right] 100$$

% Bias = 0.2%

The state of COD concentrations analysis for 2000 ppm reference standard when the analysis of the COD concentrations conducted by the WCM laboratory showed a deviation of 0.2% from the true value of this reference standard.

Precision calculations for 5000ppm reference standard measurements:

Std = 3 \bar{x} is 5003 ppm % $RSD = \left[\frac{Std}{\bar{x}}\right] 100$ % $RSD = \left[\frac{3}{5003}\right] 100$

%RSD = 0.05996%

The state of the COD concentrations analysis when the COD measurements were conducted by the WCM laboratory at 5000 ppm reference standard was 0.06 % imprecise.

Random error calculations for 5000 ppm reference standard measurements:

Where: \bar{x} is 5003 ppm

μ is 5000 ppm

% Bias =
$$\left[\frac{\bar{x} - \mu}{\mu}\right] 100$$

% Bias = $\left[\frac{5003 - 5000}{5000}\right] 100$
% Bias = $\left[\frac{3}{5000}\right] 100$
% Bias = **0.06%**

The state of COD concentrations analysis for 5000 ppm reference standard when the analysis of the COD concentrations conducted by the WCM laboratory had a deviation of 0.06% from the true value of this reference standard.

Precision calculations for 10 000 ppm reference standard measurements:

Std = 11

 \bar{x} is 10 008 ppm

$$\% RSD = \left[\frac{Std}{\bar{x}}\right] 100$$
$$\% RSD = \left[\frac{11}{10008}\right] 100$$

%RSD = 0.1099%

The state of the COD concentrations analysis when the COD measurements were conducted by the WCM laboratory on 10 000 ppm reference standard was 0.1099 % imprecise.

Random error calculations for 10 000 ppm reference standard measurements:

Where:

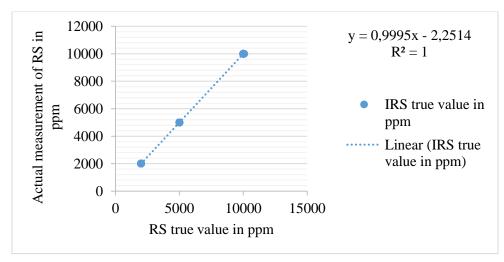
 \bar{x} is 10 008 ppm μ is 10 000 ppm

127 | Page

%
$$Bias = \left[\frac{\bar{x} - \mu}{\mu}\right] 100$$

% $Bias = \left[\frac{10008 - 10000}{10000}\right] 100$
% $Bias = \left[\frac{8}{10000}\right] 100$
% $Bias = 0.08\%$

The state of COD concentrations analysis for 10 000 ppm reference standard when the analysis of the COD concentrations conducted by the WCM laboratory had a deviation of 0.08% from the true value of this reference standard.


APPENDIX D3: WCM LABORATORY REFERENCE STANDARDS CALCULATIONS FOR LINEARITY

SUMMARY OUTPUT

Regression St	atistics
Multiple R	0,99999769
R Square	0,99999537
Adjusted R Square	0,99999535
Standard Error	7,14225874
Observations	180

ANOVA

	df	SS	MS	F	Significance F			
Regression	1	1961959823	1961959823	38460856,52	0	-		
Residual	178	9080,111054	51,01185986					
Total	179	1961968903						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
Intercept Reference Standard true	2,2787415	1,057893067	2,15403765	0,032581895	0,19111554	4,36636746	0,19111554	4,36636746
value in ppm	1,00049983	0,000161327	6201,68175	0	1,00018147	1,00081819	1,00018147	1,00081819

r² of 1.0000 and r of 1.0000 indicates good positive correlation or linearity.

F-ANOVA = 38460856.52 – the large number implies significant correlation.

Appendix E1: %BIAS AND PRECISION CALCULATIONS ON THE REFERENCE STANDARDS DATA COLLECTED DURING THE EXPERIMENTAL TRIAL ONE

Tria	l one – day o	one (28 Aug	ust 2018)
	2000	5000	10 000
	ppm	ppm	ppm
	2000	5006	10008
Start	2001	5180	10045
	2015	5118	10205
End	2015	5100	10190
Mean	2008	5101	10112
Std	8	72	100

Trial one – day two (10 September 2018)

	2000	5000	10 000
	ppm	ppm	ррт
	2005	5085	10027
Start	2018	5079	10033
	2000	5002	10049
End	2001	5010	10110
Mean	2006	5044	10055
Std	8	44	38

	Trial one – day one	
% Bias for 2000 ppm IRS	% Bias for 5000 ppm IRS	% Bias for 10 000 ppm IRS
\bar{x} is 2008 ppm	\overline{x} is 5101 ppm	\overline{x} is 10 112 ppm
μ is 2000 ppm	μ is 5000 ppm	μ is 10 000 ppm
% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100	$\% Bias = \left[\frac{\bar{x} - \mu}{\mu}\right] 100$	% Bias = $\left[\frac{\overline{x} - \mu}{\mu}\right] 100$
$ = \begin{bmatrix} 2008 - 2000 \\ 2000 \\ 1 \end{bmatrix} 100 $		
$\% Bias = \left[\frac{8}{2000}\right] 100$	$\% Bias = \left[\frac{101}{5000}\right] 100$	$\% Bias = \left[\frac{112}{10000}\right] 100$
% Bias = 0.4%	% Bias = 2.03%	% Bias = 1.12%
The state of COD concentrations analysis for 2000 ppm reference standard conducted in trial one at day 1 has a deviation of 0.4% from the true value of this reference standard.	The state of COD concentrations analysis for 5000 ppm reference standard conducted in trial one day 1 has a deviation of 2.03% from the true value of this reference standard.	The state of COD concentrations analysis for 10 000 ppm reference standard conducted in trial one at day 1 has a deviation of 1.12% from the true value of this reference standard.
Precision analysis: 2000 ppm	Precision analysis: 5000	Precision analysis: 10 000ppm
IRS	ppm IRS	IRS
Std = 8	Std = 72	Std = 100
$\overline{\mathbf{x}}$ is 2008 ppm	$\overline{\mathbf{x}}$ is 5101 ppm	x is 10 112 ppm
% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2008}\right]$ 100 % RSD = 0.3984%	% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{72}{5101}\right]$ 100 % RSD = 1.4115%	$\% \text{ RSD} = \left[\frac{\text{Std}}{\overline{x}}\right] 100$ $\% \text{ RSD} = \left[\frac{100}{10112}\right] 100$ % RSD = 0.9889%
The state of the COD concentrations analysis when the COD measurements conducted on 2000 ppm reference standard in Trial one day 1 is 0.4 % imprecise.	The state of the COD concentrations analysis when the COD measurements conducted on 5000 ppm reference standard in trial one day 1 is 2.03 % imprecise.	The state of the COD concentrations analysis when the COD measurements conducted on 10 000 ppm reference standard in trial one day 1 at the start is 1.12 % imprecise.

	Trial one – day two	
% Bias for 2000 ppm IRS	% Bias for 5000 ppm IRS	% Bias for 10 000ppm IRS
\bar{x} is 2006 ppm	\bar{x} is 5044 ppm	\overline{x} is 10 055 ppm
μ is 2000 ppm	μ is 5000 ppm	μ is 10 000 ppm
$\% Bias = \left[\frac{\bar{x} - \mu}{\mu}\right] 100$	% Bias = $\left[\frac{\bar{x}-\mu}{\mu}\right]$ 100	$\% Bias = \left[\frac{\bar{x} - \mu}{\mu}\right] 100$
% Bias	% Bias	% Bias
$= \left[\frac{2006 - 2000}{2000}\right] 100$	$= \left[\frac{5044 - 5000}{5000}\right] 100$	$= \left[\frac{10055 - 10000}{10000}\right] 100$
$\% Bias = \left[\frac{6}{2000}\right] 100$	$\% Bias = \left[\frac{44}{5000}\right] 100$	$\% Bias = \left[\frac{55}{10000}\right] 100$
% Bias = 0.3%	% Bias = 0.88%	% Bias = 0.55%
The state of COD	The state of COD	The state of COD concentrations
concentrations analysis for	concentrations analysis for	analysis for 10 000 ppm
2000 ppm reference standard	5000 ppm reference standard	reference standard conducted in
conducted in trial 1 day 1 has a deviation of 0.3% from the	conducted in trial 1 day 1 has a deviation of 0.88% from	trial 1 day 1 has a deviation of 0.55% from the true value of
true value of this reference	the true value of this	this reference standard.
standard.	reference standard.	uns reference standard.
standard.	Tererence standard.	
Precision analysis: 2000 ppm	Precision analysis: 5000	Precision analysis: 10 000 ppm
IRS	ppm IRS	IRS
IRS Std = 8	ppm IRS Std = 44	IRS Std = 38
IRS	ppm IRS	IRS
IRS Std = 8	ppm IRS Std = 44	IRS Std = 38
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100	ppm IRS Std = 44 \overline{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100	IRS Std = 38 \overline{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100	ppm IRS Std = 44 \overline{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100	IRS Std = 38 \overline{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100	ppm IRS Std = 44 \overline{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100	IRS Std = 38 \overline{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100 % RSD = 0.3988%	ppm IRS Std = 44 \overline{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723%	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779%
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100 % RSD = 0.3988% The state of the COD	ppm IRS Std = 44 \bar{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723% The state of the COD	IRS Std = 38 \overline{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779% The state of the COD
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100 % RSD = 0.3988%	ppm IRS Std = 44 \overline{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723%	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779%
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100 % RSD = 0.3988% The state of the COD concentrations analysis when	ppm IRS Std = 44 \bar{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723% The state of the COD concentrations analysis when	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779% The state of the COD concentrations analysis when the
IRS Std = 8 \overline{x} is 2006 ppm % RSD = $\left[\frac{Std}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{8}{2006}\right]$ 100 % RSD = 0.3988% The state of the COD concentrations analysis when the COD measurements	ppm IRS Std = 44 \bar{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723% The state of the COD concentrations analysis when the COD measurements	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779% The state of the COD concentrations analysis when the COD measurements conducted
IRSStd = 8 \bar{x} is 2006 ppm% RSD = $\left[\frac{Std}{\bar{x}}\right]$ 100% RSD = $\left[\frac{8}{2006}\right]$ 100% RSD = 0.3988%The state of the CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconducted on a 2000 ppm	ppm IRS Std = 44 \bar{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723% The state of the COD concentrations analysis when the COD measurements conducted on a 5000 ppm	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779% The state of the COD concentrations analysis when the COD measurements conducted on a 10 000 ppm reference
IRSStd = 8 \bar{x} is 2006 ppm% RSD = $\left[\frac{Std}{\bar{x}}\right]$ 100% RSD = $\left[\frac{8}{2006}\right]$ 100% RSD = 0.3988%The state of the CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconcentrations analysis whenthe CODconducted on a 2000 ppmreference standard in trial two	ppm IRS Std = 44 \bar{x} is 5044 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{44}{5044}\right]$ 100 % RSD = 0.8723% The state of the COD concentrations analysis when the COD measurements conducted on a 5000 ppm reference standard in trial	IRS Std = 38 \bar{x} is 10 055 ppm % RSD = $\left[\frac{\text{Std}}{\bar{x}}\right]$ 100 % RSD = $\left[\frac{38}{10055}\right]$ 100 % RSD = 0.3779% The state of the COD concentrations analysis when the COD measurements conducted on a 10 000 ppm reference standard in trial two day 2 is

Appendix E2: %BIAS AND PRECISION CALCULATIONS ON THE REFERENCE STANDARDS DATA COLLECTED DURING THE EXPERIMENTAL TRIAL TWO.

	Trial two – day 1 (30 September				
	2018) 2000 5000 10 000 ppm ppm ppm				
	2008	5002	10018		
Start	2012	5003	10015		
	2028	5203	10349		
End	2038	5200	10351		
Mean	2022	5102	10183		
Std	14	115	193		

	Trial two – day 2 (29 October 2018)				
	2000 ppm	5000 ppm	10 000 ppm		
	2000	4994	10010		
Start	2006	5001	10003		
	2015	5013	10103		
End	2021	5017	10079		
Mean	2011	5006	10049		
Std	9	11	50		

....

Trial two – day one				
% Bias for 2000 ppm IRS	% Bias for 5000 ppm IRS	% Bias for 10 000 ppm IRS		
\overline{x} is 2022 ppm	\bar{x} is 5102 ppm	\bar{x} is 10 183 ppm		
μ is 2000 ppm	μ is 5000 ppm	μ is 10 000 ppm		
% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{2022 - 2000}{2000}\right]$ 100 % Bias = $\left[\frac{22}{2000}\right]$ 100 % Bias = 1.1%	% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{5102 - 5000}{5000}\right]$ 100 % Bias = $\left[\frac{101}{5000}\right]$ 100 % Bias = 2.04%	% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{10183 - 10000}{10000}\right]$ 100 % Bias = $\left[\frac{183}{10000}\right]$ 100 % Bias = 1.83%		
The state of COD concentrations analysis for 2000 ppm reference standard conducted in trial two day 1 has a deviation of 1.1% from the true value of this reference standard.	The state of COD concentrations analysis for 5000 ppm reference standard conducted in trial two day has a deviation of 2.04% from the true value of this reference standard.	The state of COD concentrations analysis for 10 000 ppm reference standard conducted in trial two day 1 has a deviation of 1.83% from the true value of this reference standard.		
Precision analysis: 2000 ppm IRS	Precision analysis: 5000 ppm IRS	Precision analysis: 10 000 ppm IRS		
Std = 14	Std = 115	Std = 193		
$\overline{\mathbf{x}}$ is 2022 ppm	$\overline{\mathbf{x}}$ is 5102 ppm	x is 10 183 ppm		
% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{14}{2022}\right]$ 100 % RSD = 0.6924%	% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{115}{5102}\right]$ 100 % RSD = 2.2540%	% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{193}{10183}\right]$ 100 % RSD = 1.8953%		
The state of the COD	The state of the COD	The state of the COD		
concentrations analysis when	concentrations analysis when	concentrations analysis when the		

	1	1			
the COD measurements	the COD measurements	COD measurements conducted			
conducted on 2000 ppm	conducted on 5000 ppm	on 10 000 ppm reference			
reference standard in trial two	reference standard in trial two	standard in trial two day 1 is			
day 1 is 0.6924 % imprecise.	day 1 is 2.2540% imprecise.	1.8953 % imprecise.			
$\frac{\text{Trial two - day two}}{\text{PC}}$					
% Bias for 2000 ppm IRS	% Bias for 5000 ppm IRS	% Bias for 10 000 ppm IRS			
<i>x</i> is 2011 ppm	<i>x</i> is 5006 ppm	<i>x</i> is 10 049 ppm			
μ is 2000 ppm	μ is 5000 ppm	μ is 10 000 ppm			
% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{2011 - 2000}{2000}\right]$ 100 % Bias = $\left[\frac{11}{2000}\right]$ 100 % Bias = 0.55% The state of COD concentrations analysis for 2000 ppm reference standard conducted in trial two day 2 has a deviation of 0.55% from the true value of this reference standard.	% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{5006 - 5000}{5000}\right]$ 100 % Bias = $\left[\frac{6}{5000}\right]$ 100 % Bias = 0.12% The state of COD concentrations analysis for 5000 ppm reference standard conducted in trial two day 2 at the end has a deviation of 0.12% from the true value of this reference standard.	% Bias = $\left[\frac{\bar{x} - \mu}{\mu}\right]$ 100 % Bias = $\left[\frac{10049 - 10000}{10000}\right]$ 100 % Bias = $\left[\frac{49}{10000}\right]$ 100 % Bias = 0.49% The state of COD concentrations analysis for 10 000 ppm reference standard conducted in trial two day 2 has a deviation of 0.49% from the true value of this reference standard.			
Precision analysis: 2000 ppm IRS	Precision analysis: 5000 ppm IRS	Precision analysis: 10 000 ppm IRS			
Std = 9	Std = 11	Std = 50			
$\overline{\mathbf{x}}$ is 2011 ppm	$\overline{\mathbf{x}}$ is 5006 ppm	x is 10 049 ppm			
% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{9}{2011}\right]$ 100 % RSD = 0.4475%	% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{11}{5006}\right]$ 100 % RSD = 0.2197%	% RSD = $\left[\frac{\text{Std}}{\overline{x}}\right]$ 100 % RSD = $\left[\frac{50}{10049}\right]$ 100 % RSD = 0.4976%			
The state of the COD concentrations analysis when the COD measurements conducted on a 2000 ppm reference standard in trial two day 2 is 0.4475 % imprecise.	The state of the COD concentrations analysis when the COD measurements conducted on a 5000 ppm reference standard in trial two day 2 is 0.2197 % imprecise.	The state of the COD concentrations analysis when the COD measurements conducted on a 10 000 ppm reference standard in trial two day 2 is 0.4976 % imprecise.			

Appendix F1: TWO-TAILED T-TEST CALCULATIONS OF TRIAL ONE

Two-tail t-test: Reference standards mean differences - trial one-day one:

This test is carried out to examine if there was no significant difference between the reference standards measurements that were conducted when the experimental trials were carried out.

	Trial one – day one				
	IRS 2000p pm IRS 5000 ppm IRS 10 000 p				
Mean	2008	5101	10112		
Std	8	72	100		

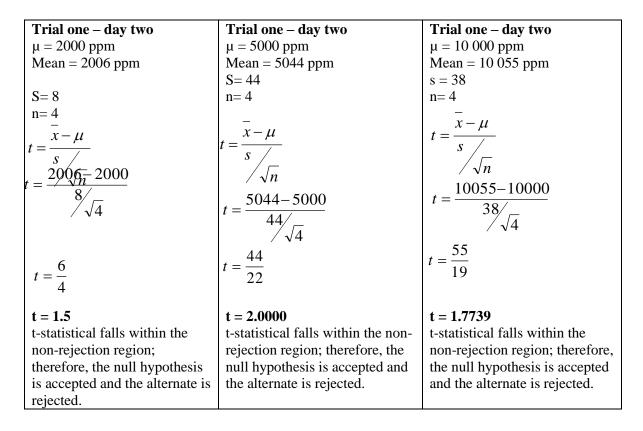
The test claim:

Null hypothesis (H₀): X Internal standard = μ

Alternate hypothesis (H₁): X Internal standard $\neq \mu$

Trial one – day one	Trial one – day one	Trial one – day one
$\mu = 2000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	$\mu = 10\ 000\ ppm$
Mean = 2008 ppm	Mean = 5101 ppm	Mean = 10 112 ppm
	S=72	s = 100
S= 8	n= 4	n= 4
$n=4$ $t = \frac{\overline{x} - \mu}{2008 - 2000}$ $t = \frac{2008 - 2000}{8^{17}}$	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$
$\sqrt{\frac{8}{\sqrt{4}}}$	$t = \frac{5101 - 5000}{\frac{72}{\sqrt{4}}}$	$t = \frac{10112 - 10000}{100 / \sqrt{4}}$
$t = \frac{8}{4}$	$t = \frac{101}{36}$	$t = \frac{112}{50}$
t = 2.0000	t = 2.8056	t = 2.2400
T-statistical falls within the non-rejection region; therefore, the null hypothesis is accepted and the alternate is rejected.	T-statistical falls within the non-rejection region; therefore, the null hypothesis is accepted and the alternate is rejected.	T-statistical falls within the non-rejection region; therefore, the null hypothesis is accepted and the alternate is rejected.

At 95% confidence ($\alpha/2 = 0.025$), the accepted criteria values are found to be -3.1820 and +3.1820. Since all the calculated t-statistical values found to fall within the non-rejection criteria, the null hypothesis is accepted for all the reference standards and the alternate is rejected. Therefore, a conclusion is reached based on the statistical evidence that the reference standard measurements conducted in trial one-day one are not significantly different compared to the true values of the reference standards.


Two-tail t-test: Reference standards mean differences - trial one - day two:

	Trial one – day two				
	IRS 2000 ppm IRS 5000 ppm IRS 10 000 pp				
Mean	2006	5044	10055		
Std	8	44	38		

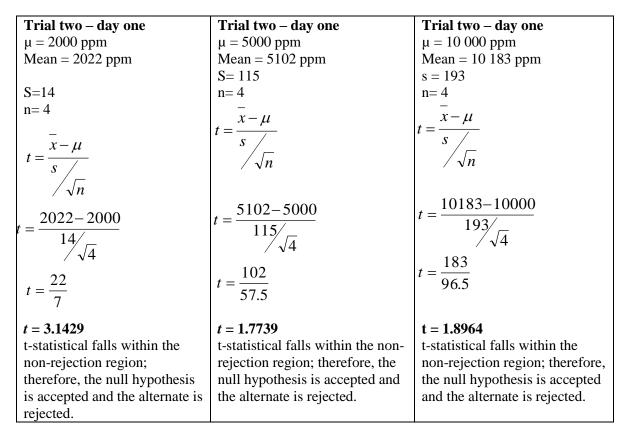
The test claim:

Null hypothesis (H₀): \overline{X} Internal standard = μ

Alternate hypothesis (H₁): \overline{X} Internal standard $\neq \mu$

There is enough statistical evidence at 95% confidence limits ($\alpha/2 = 0.025$), to accept the null hypothesis and reject the alternate hypothesis. As the t-statistical values for all the reference standards measurements conducted in trial one - day two, are found to fall within the non-rejection region, it is concluded that there is no significant difference between the reference standard measurements means and the true values of the reference standards.

Appendix F2: TWO-TAILED T-TEST CALCULATIONS OF TRIAL TWO


	Trial two – day two				
	IRS 2000 ppm IRS 5000 ppm IRS 10 000				
Mean	2022	5102	10183		
Std	14	115	193		

Two-tail t-test: Reference standards mean differences - trial two-day one:

The test claim:

Null hypothesis (H₀): X Internal standard = μ

Alternate hypothesis (H₁): X Internal standard $\neq \mu$

There is enough statistical evidence at 95% confidence limits ($\alpha/2 = 0.025$), to accept the null hypothesis and reject the alternate hypothesis. As the t-statistical values for all the reference standards measurements conducted at the start of trial two are found to fall within the non-rejection region, it is concluded that at the time of the conduct of the experiments on this day, that there was no significant difference between the reference standard measurements means and the true values of the reference standards.

Two-tail t-test: Reference standards mean differences - trial two-day two:

	Trial two – day two				
	IRS 2000 ppm IRS 5000 ppm IRS 10 000 pp				
Mean	2011	5006	10049		
Std	5	11	50		

The test claim:

Null hypothesis (H₀): X Internal standard = μ

Alternate hypothesis (H₁): X Internal standard $\neq \mu$

Trial two – day two	Trial two – day two	Trial two – day two
$\mu = 2000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	$\mu = 10\ 000\ ppm$
Mean $= 2011 \text{ ppm}$	Mean = 5006 ppm	Mean = 10 049 ppm
	S= 11	s = 50
S=9	n= 4	n= 4
n= 4	-	- x ((
_	$t = \frac{x - \mu}{x - \mu}$	$t = \frac{x - \mu}{$
$t - \frac{x - \mu}{2}$	S	s /
$l^{\iota} = \frac{1}{s}$	$t = \frac{\overline{x - \mu}}{\frac{s}{\sqrt{n}}}$	$t = \frac{x - \mu}{s / \sqrt{n}}$
$t = \frac{x - \mu}{s / \sqrt{n}}$, <u>-</u>
, , ,	$t = \frac{5006 - 5000}{\frac{11}{\sqrt{4}}}$ $t = \frac{6}{5.5}$	10049-10000
2011-2000	$t = \frac{5000 - 5000}{11}$	$t = \frac{10049 - 10000}{\frac{50}{\sqrt{4}}}$
$t = \frac{2011 - 2000}{2000}$		50/
$\frac{9}{\sqrt{4}}$	∕ √4 6	
/ \/4	$t = \frac{0}{1 - 1}$	$t = \frac{49}{25}$
$t - \frac{11}{1}$	5.5	$-\frac{1}{25}$
$t = \frac{11}{4.5}$		
	4 1 0000	4 1.0600
t = 2.4444	t = 1.0909	t = 1.9600
t-statistical falls within the	t-statistical falls within the non-	t-statistical falls within the
non-rejection region;	rejection region; therefore, the	non-rejection region; therefore,
therefore, the null hypothesis	null hypothesis is accepted and	the null hypothesis is accepted
is accepted and the alternate is	the alternate is rejected.	and the alternate is rejected.
rejected.		

There is enough statistical evidence at 95% confidence limits ($\alpha/2 = 0.025$), to accept the null hypothesis and reject the alternate hypothesis. As all the t-statistical values for the reference standards measurements conducted at the end of trial two (day 2) are found to fall within the non-rejection region. Therefore, it was concluded at the reference standard measurements conducted on this time had no significant difference compared to that of the true values of the reference standards.

All t-tests results statistically proved that at 95% confidence of limits, there is no significant difference between the reference standard means and the true values of the reference standards.

Number of Sub-group	Trial 1 –day 1 IRS in ppm	Trial 2 – day 2 IRS in ppm	Trial 2 – day 1 IRS in ppm	Trial 2 – day 2 IRS in ppm
1	2000	2005	2008	2000
2	2001	2018	2028	2006
3	2015	2000	2012	2015
4	2015	2001	2038	2021
Mean	2008	2006	2022	2011
std	8	8	14	9

One-way ANOVA test for: 2000 ppm internal reference standard mean variance test:

Test claim:

H0: $X_{Tria11-Day1} = X_{Tria11-Day2} = X_{Tria12-Day1} = X_{Tria12-Day2}$

 $H_1: X_{Trisl1\text{-}sDay1} \neq X_{Trial1\text{-}Day2} \neq X_{Trial2\text{-}Day1} \neq X_{Trial2\text{-}Day2}$

Anova: Single Factor

SUMMARY

~	~	~		
Groups	Count	Sum	Average	Variance
Trial 1 -Start	4	8031	2007,75	70,25
Trial 1 - End	4	8024	2006	68,66667
Trial 2 - Start	4	8086	2021,5	195,6667
Trial 2 - End	4	8042	2010,5	87

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	581,1875	3	193,7292	1,83811	0,193962	3,490295
Within Groups	1264,75	12	105,3958			
Total	1845,938	15				

The upper tail critical value of 3.4903 was obtained from an F distribution at 95% confidence limits, at the degrees of freedom of c-1(3) and n-c(12). Therefore, since the calculated F-statistics of 1.8381 is less than the F-critical value (F-statistic $\langle Fu/F-critical \rangle$, the null hypothesis is accepted and the alternate hypothesis is rejected. Therefore, the conclusion is that, based on the statistical evidence, there is no significant difference between means of the 2000 ppm reference standard measurements conducted in trial 1 – day 1, trial 1 – day 2, trial two – day 1, and trial two – day 2.

|--|

Number of Sub-group	Trial 1– day1 IRS in ppm	Trial 1 – day2 IRS in ppm	Trial 2– day 1 IRS in ppm	Trial 2 – day 2 IRS in ppm
1	5006	5085	5001	4994
2	5180	5079	5004	5001
3	5118	5002	5207	5013
4	5100	5010	5195	5017
Mean	5101	5044	5102	5006
std	72	44	115	11

Test claim:

 $H_0: X_{Tria11\text{-}Day1} = X_{Tria11\text{-}Day2} = X_{Tria12\text{-}Day1} = X_{Tria12\text{-}Day2}$

 $H_1 \text{: } X_{Trisl1\text{-}sDay1} \neq X_{Trial1\text{-}Day2} \neq X_{Trial2\text{-}Day1} \neq X_{Trial2\text{-}Day2}$

Anova: Single Factor

SUMMARY						
Groups	Count	Sum	Average	Variance		
Trial 1 -Start	4	20404	5101	5185,333		
Trial 1 - End	4	20176	5044	1942		
Trial 2 - Start	4	20407	5101,75	13159,58		
Trial 2 - End	4	20025	5006,25	112,9167		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	26107,5	3	8702,5	1,706386	0,21862	3,490295
Within Groups	61199,5	12	5099,958			
Total	87307	15				

The upper tail critical value of 3.4903 obtained from an F distribution at 95% confidence limits, at the degrees of freedom of c-1(3) and n-c(12). Therefore, since the calculated F-statistics of 1.7064 is less than the F-critical value (F-statistic \langle Fu/F-critical), the null hypothesis is accepted and the alternate hypothesis is rejected. Therefore, the conclusion is that, based on the statistical evidence, there is no significant difference between means of the 5000 ppm reference standard measurements conducted in trial 1 – day1, trial 1 – day 2, trial 2 – day 1, and trial 2 – day 2.

	One-way ANOVA test for: 10 000	ppn	n Reference standard mean variance test:
--	--------------------------------	-----	--

Number of Sub-group	Trial 1 – day1 IRS in ppm	Trial 1 – day2 IRS in ppm	Trial two – day1 IRS in ppm	Trial two – day2 IRS in ppm
1	10008	10027	10018	10010
2	10045	10033	10015	10003
3	10205	10049	10349	10103
4	10190	10110	10351	10079
Mean	10112	10055	10183	10049
std	100	38	193	50

Test claim:

 $H_0: X_{Tria11\text{-}Day1} = X_{Tria11\text{-}Day2} = X_{Tria12\text{-}Day1} = X_{Tria12\text{-}Day2}$

 $H_1 \text{: } X_{Trisl1\text{-}sDay1} \neq X_{Trial1\text{-}Day2} \neq X_{Trial2\text{-}Day1} \neq X_{Trial2\text{-}Day2}$

Anova: Single Factor

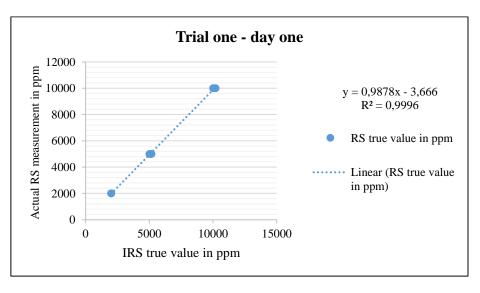
SUMMARY						
Groups	Count	Sum	Average	Variance	-	
Trial 1 -Start	4	40448	10112	10012,67	-	
Trial 1 - End	4	40219	10054,75	1442,917		
Trial 2 - Start	4	40733	10183,25	37076,25		
Trial 2 - End	4	40195	10048,75	2484,25		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	46993,19	3	15664,4	1,228193	0,342154	3,490295
Within Groups	153048,3	12	12754,02			
Total	200041,4	15				

The upper tail critical value of 3.4903 obtained from an F distribution at 95% confidence limits, at the degrees of freedom of c-1(3) and n-c(12). Therefore, since the calculated F-statistics of 1.2282 is less than the F-critical value (F-statistic <Fu/F-critical), the null hypothesis is accepted and the alternate hypothesis was rejected. Therefore, the conclusion is that, based on the statistical evidence, there is no significant difference between means of the 10 000 ppm reference standard measurements conducted in trial 1 - day1, trial 1 - day2, trial two - day1, and trial two - day2. All the one-way ANOVA tests results demonstrate that there is no statistical evidence of variation from the measurements results of the same reference standards conducted at different intervals during the conduct of this research study.

Appendix H1: REFERENCE STANDARDS CALCULATIONS – LINEARITY FOR TRIAL ONE

	111al 1 – uay 1. 20 August 2010.							
	2000 ppm	5000 ppm	10 000 ppm					
	2000	5006	10008					
Start	2001	5180	10045					
	2015	5118	10205					
End	2015	5100	10190					
Mean	2008	5101	10112					
Std	8	72	100					

Trial 1 – day 1: 28 August 2018.


SUMMARY

Regression Statistics						
Multiple R	0,9998					
R Square	0,999601					
Adjusted R Square	0,999561					
Standard Error	73,12059					
Observations	12					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	1,34E+08	1,34E+08	25025,51	2,5E-18
Residual	10	53466,2	5346,62		
Total	11	1,34E+08			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept RS true value in	6,002551	41,94609	0,143102	0,889052	-87,4592	99,46426	-87,4592	99,46426
ppm	1,011926	0,006397	158,1945	2,5E-18	0,997673	1,026179	0,997673	1,026179

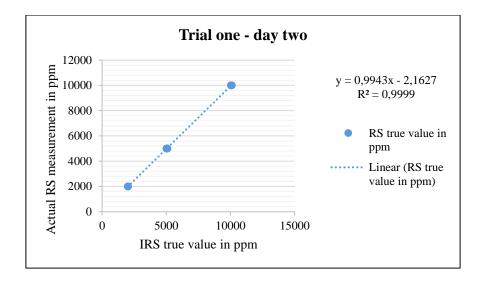
 $r^2\, of\, 0.9996$ and r of 0.9996 indicates good positive correlation or linearity.

F-ANOVA = 25025, 51; large number implies significant correlation.

The coefficient of determination for the reference standards measurements obtained for trial 1 day 1 is found to be 0.9996. This implies that 99.96% of the total variation in y-intercept can be explained by the linear relationship between the independent and the dependent variable(s). The remaining 0.04% variation in the dependent variable cannot be explained due to other factors.

	1 riai 1 – day 2: 10 September 2018.							
	2000 ppm	5000 ppm	10 000 ppm					
	2005	5085	10027					
Start	2018	5079	10033					
	2000	5002	10049					
End	2001	5010	10110					
Mean	2006	5044	10055					
Std	8	44	38					

Trial 1 – day 2: 10 September 2018


SUMMARY OUTPUT

Regression Statistics									
Multiple R	0,999957								
R Square	0,999914								
Adjusted R									
Square	0,999905								
Standard Error	33,72902								
Observations	12								

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	1,32E+08	1,32E+08	116168,1	1,16E-21
Residual	10	11376,47	1137,647		
Total	11	1,32E+08			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept RS true value in	2,665816	19,34887	0,137776	0,893152	-40,4461	45,77778	-40,4461	45,77778
ppm	1,005691	0,002951	340,8344	1,16E-21	0,999117	1,012266	0,999117	1,012266

 r^2 of 0.9999 and r of 0.9999 indicates good positive correlation or linearity.

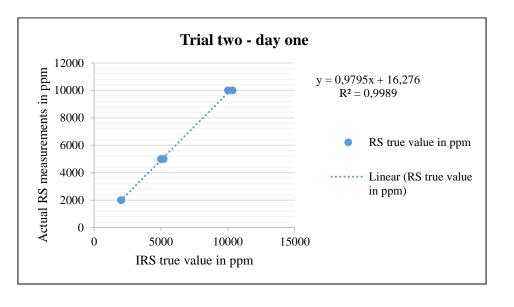
F-ANOVA = 25025, 51; large number implies significant correlation.

The coefficient of determination for the reference standard measurements obtained for trial one day 2 was found to be 0.9999. This implies that 99.99% of the total variation in y-intercept can be explained by the linear relationship between the independent and the dependent variable(s). The remaining 0.01% variation in the dependent variable cannot be explained due to other factors.

Appendix H2: REFERENCE STANDARDS CALCULATIONS – LINEARITY FOR TRIAL TWO

	I Hui Z u	uj 11 00 Dept	
	2000 ppm	5000 ppm	10 000 ppm
	2008	5002	10018
Start	2012	5003	10015
	2028	5203	10349
End	2038	5200	10351
Mean	2022	5102	10183
Std	14	115	193

Trial 2 – day 1: 30 September 2018.


SUMMARY OUTPUT

Regression Statistics									
Multiple R	0,99944								
R Square	0,998881								
Adjusted R									
Square	0,998769								
Standard Error	123,4088								
Observations	12								

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	1,36E+08	1,36E+08	8923,156	4,33E-16
Residual	10	152297,4	15229,74		
Total	11	1,36E+08			

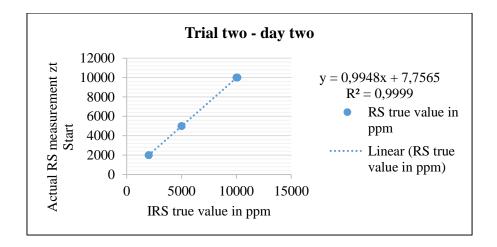
		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept RS true value in	-10,1403	70,79426	-0,14324	0,888949	-167,88	147,5991	-167,88	147,5991
ppm	1,019819	0,010796	94,46246	4,33E-16	0,995764	1,043874	0,995764	1,043874

 $r^2\, of\, 0.9989$ and r of 0.9989 indicates good positive correlation or linearity.

F-ANOVA = 8923,156; large number implies significant correlation.

The coefficient of determination for the reference standards measurements obtained for trial 2 day 1 was found to be 0.9989. This implies that 9989% of the total variation in y-intercept can be explained by the linear relationship between the independent and the dependent variable(s). The remaining 0.11% variation in the dependent variable cannot be explained due to some other factors.

	Trial 2 -	- day 2: 29 Octo	ber 2018.
	2000 ppm	5000 ppm	10 000 ppm
	2000	4994	10010
Start	2006	5001	10003
	2015	5013	10103
End	2021	5017	10079
Mean	2011	5006	10049
Std	9	11	50


SUMMARY OUTPUT

Regression S	tatistics
Multiple R	0,999966
R Square	0,999932
Adjusted R	
Square	0,999925
Standard Error	29,92595
Observations	12

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	1,32E+08	1,32E+08	147414,4	3,53E-22
Residual	10	8955,625	895,5625		
Total	11	1,32E+08			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept	-7,41071	17,16721	-0,43168	0,675134	-45,6616	30,84022	-45,6616	30,84022
RS true value								
in ppm	1,005161	0,002618	383,9458	3,53E-22	0,999328	1,010994	0,999328	1,010994

 r^2 of 0.9999 and r of 0.9999 indicates good positive correlation or linearity.

F-ANOVA = 147414,4; large number implies significant correlation.

The coefficient of determination for the reference standards measurements obtained using trial 2 day 2 was found to be 0.9999. This implies that 9999% of the total variation in y-intercept can be explained by the linear relationship between the independent and the dependent variable(s). The remaining 0.01% variation in the dependent variable cannot be explained due to some other factors.

Appendix I1: ANION COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

							Anio	n							
		r	r	1	1	1		ys of produc	tion	1	1	r	r	r	r
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	851	5084	889	119	4384	1372	2832	143	88	72	1659	307	984	1378	915
2	2970	6307	1203	56	8584	1629	2040	146	57	53	1929	483	14478	2089	23954
3	3518	6062	10444	24	3598	1299	2138	127	97	66	19042	247	1695	7943	273
4	3909	3176	1824	41	3241	1324	42	109	62	74	3327	284	1135	33422	288
5	3218	3206	1795	41	3434	1199	119	138	69	982	1665	726	1228	2993	1968
6	3831	3224	575	27	1301	2672	116	96	72	738	1883	742	1188	2251	1940
7	5193	3892	801	57	447	4937	85	1400	80	14181	1725	800	1011	2329	1982
8	3833	6533	14673	2705	1525	4382	83	1655	96	841	1666	3532	865	2164	1740
9	5051	1280	3858	2368	1481	1554	1895	1521	76	49	1692	2622	2581	2167	1134
10	5033	1187	10810	6406	632	1516	1883	1390	86	46	10778	168	2192	2041	952
11	4670	997	1497	5431	434	2435	451	1420	334	52	8396	29	9283	1927	1222
12	5234	1144	1455	5376	2033	831	554	5376	620	44	7738	27	4914	11170	1251
Average	3943	3508	4152	1888	2591	2096	1020	1127	145	1433	5125	831	3463	5990	3135
std	1258	2103	4893	2516	2310	1306	1043	1499	167	4031	5447	1099	4235	9132	6583
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	2810	229	2160	3370	1698	2073	831	1757	1506	27016	530	212	1368	6132	771
2	2964	119	13050	5533	17389	8293	1041	1631	1457	9309	1320	244	924	841	363
3	3264	452	14100	5623	4782	6383	4993	1888	1497	632	273	178	1099	494	20279
4	4471	3370	4800	5854	57183	2178	1759	1467	1681	192	526	6616	786	530	31491
5	3231	5533	3500	2059	2078	1294	1568	1627	765	180	1618	2368	635	6261	2796
6	340	5623	6640	2123	1738	1225	1204	1031	3633	150	2258	2131	647	1766	1194
7	240	6675	1565	11402	1623	7776	5274	1628	3965	89	326	1237	5855	307	1259
8	101	6651	2046	8435	35	19047	11092	6036	1614	72	202	1023	2824	380	1191
9	31271	533	3015	2043	854	3878	4284	2038	2015	93	187	12137	3273	340	1035
10	28990	2585	3406	1617	881	931	3681	2632	1849	443	162	3595	731	288	495
11	2622	340	4420	1582	1058	1091	2802	4545	503	1339	212	1840	644	6185	859
12	1111	240	3165	1112	1681	1161	3085	2360	9900	552	328	1854	674	1250	1605
Average	6785	2696	5156	4229	7583	4611	3468	2387	2532	3339	662	2786	1622	2065	5278
std	11004	2740	4168	3214	16302	5294	2853	1453	2529	7894	687	3445	1601	2527	9937
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	4943	511	1287	541	1265	1090	139	149	3936	5608	1278	320	271	791	9863
2	647	320	1388	514	1760	14899	207	131	3919	4285	1263	294	264	721	3343
3	701	315	1373	18	1695	21151	297	625	3853	4106	1208	311	4021	1578	2979
4	790	311	1222	572	2608	5624	19227	4716	520	1048	5015	286	3222	11462	13135
5	758	948	1150	330	4309	1303	18882	2312	657	4264	982	185	2710	25444	2224
6	646	641	1587	347	3725	11476	561	1648	634	7506	978	183	1608	17083	3931
7	600	4502	781	11853	917	1852	432	1448	601	17584	983	279	937	4347	4395
8	546	2686	766	18105	668	243	574	1474	625	14370	947	1893	915	3443	1664
9	701	4141	639	2556	890	300	5403	1383	295	2341	888	21021	996	3881	1536
10	583	19398	598	1433	813	366	158	18680	270	1568	827	2544	884	3534	1980
11	543	2531	590	1440	677	395	148	10757	290	1310	1700	476	797	18515	1035
12	418	1617	583	1314	9352	347	139	953	1556	945	397	282	826	3737	3852
Average	990	3160	997	3252	2390	4921	3847	3690	1430	5411	1372	2340	1454	7878	4161
std	1249	5325	373	5680	2503	7065	7254	5552	1528	5370	1189	5932	1208	8227	3652
Sample	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	3264	1480	752	1425	8044	2839	2714	16471	3484	88	1529	1777	101	1336	16
2	2246	14637	3450	3961	6651	2648	34622	554	1820	54	3975	3691	289	304	8
3	2423	14037	3634	3301	6984	2323	2250	36834	1639	18101	1668	2206	28368	20093	255
4	32631	30901	3418	6615	581	47009	2250	24395	1039	3395	17330	12035	3773	23093	235
4 5			705	4210	2817	47009	3272	24395 3290	2533	3395	1/330				
	12153 22295	24568 28099	705 850	4210 31557	2817 2748	47996 37915	3272 2148	3290 3421	2533 32892	3886 2552	14227	3106 25011	1788 1876	571 454	245 1148
			22801	22884	2/48		1602	2985	32892	2552	5203	20011	4539	454 492	2811
6	10260	3136	22001	22064		3687	1602								
6 7	10369	1454	21200	17/7	22000			3615	2469	928	3495	3357	1361	37	18
6 7 8	2187	1454	21390	1767	33098	15910			0.000	01.4	0177	22020	014		17
6 7 8 9	2187 3004	977	3967	37436	2047	2745	694	62855	2628	914	3177	33830	824	45	15
6 7 8 9 10	2187 3004 9394	977 1122	3967 2665	37436 8934	2047 2565	2745 1002	694 5444	62855 18543	1028	8356	2610	23414	401	45 9139	1303
6 7 8 9 10 11	2187 3004 9394 2370	977 1122 1829	3967 2665 45645	37436 8934 2814	2047 2565 2237	2745 1002 947	694 5444 2010	62855 18543 38565	1028 108	8356 4344	2610 2413	23414 13757	401 3516	45 9139 837	1303 32899
6 7 8 9 10	2187 3004 9394	977 1122	3967 2665	37436 8934	2047 2565	2745 1002	694 5444	62855 18543	1028	8356	2610	23414	401	45 9139	1303

Appendix I2: CATION COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

							Cation								
		1						r of days							
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	123	6115	3295	272	4397	970	2730	380	164	77	1440	213	2362	1108	590
2	1972	6108	2247	102	5235	1026	2618	260	106	69	9919	4130	985	1267	4258
3	4718	6289	2430	57	3793	1088	2371	223	144	81	2186	2262	941	1688	261
4	3131	3026	2781	93	3395	933	152	284	100	69	1760	2213	931	13187	258
5	2989	3054	6307	70	3644	11018	105	280	111	1181	1702	3563	974	5317	1787
6	3363	17383	2040	55	15110	8574	100	232	100	791	1458	3448	917	2362	1698
7	3090	1953	9580	47	12449	8122	147	1730	116	2741 941	1463	1017	1192 1965	2487	1628
<u>8</u> 9	3283	4360	5340	155	5296 4157	1798	152	1815	109	-	1605	5047		2396	1667
9 10	3485 4718	2185 1435	4240 4300	1937 1894	4137	1481 931	2704 37309	1542 1461	109 88	43 50	7266 6293	2865 158	9479 1808	2367 2300	1898 1644
10	3582	1433	3230	11830	2471	1692	9742	965	67	42	1658	46	34091	2300	1522
11	3666	1420	3160	20000	34246	3718	3982	2578	2770	58	4575	46	6586	2311	2940
Average	3177	4541	4079	3043	8191	3446	5176	979	332	512	3444	2084	5186	3247	1679
std	1210	4477	2153	6298	9071	3636	10482	817	768	815	2889	1767	9493	3300	1110
Sample	1210	17	18	19	20	21	22	23	24	25	2009	27	28	29	30
-					-			-			-		_		
1	38157	2487	4346	3907	1475	3926	49374	19300	3880	1710	1967	23697	836	7190	1035
2 3	4612 18859	2460	223 3160	9991 4982	1919 1552	1958 1907	33058 40858	3860 1449	4188 3845	5076	2034 2193	3842 992	1531 17718	2138 1144	1008 803
		2839								7572					
4 5	3333 4008	2735 35726	2695 2501	2267 4735	1634 1028	669 573	7861 4968	6439 1637	23585 33809	2391 1002	1922 1483	20101 10471	3648 1954	835 435	352 785
5	2880	40233	2501	4735 7830	26834	573	4968 6581	1637 2394	32918	2933	1485	837	1954 6799	435 547	785 817
7	3417	40233	1934	4819	1641	641	7298	488	7166	1800	2999	1537	5225	655	855
8	3462	13002	2587	4890	11370	7995	2557	30200	8109	19767	32633	2379	3621	466	6931
9	2862	1049	7331	4890	3944	2037	2361	13243	33989	17832	33754	31640	3277	555	2248
10	26574	3553	3808	5303	2330	1783	1534	6350	3454	4836	2635	3565	1366	26411	4151
10	4553	11771	3846	8308	1713	2110	1198	2404	2714	3042	2741	9385	1195	9312	613
11	2565	14555	20566	8857	14711	2876	1236	1313	2573	2054	3215	1861	27780	1384	1070
Average	9607	14218	6785	5893	5846	2252	13240	7423	13353	5835	7462	9192	6246	4256	1722
std	11779	15512	8603	2297	7944	2078	17312	9114	13447	6336	12032	10406	8193	7559	1933
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	501	1167	1604	1575	2121	5978	2032	8688	3919	4060	592	873	1980	42	22113
2	2102	964	14146	1529	931	1252	4447	211	370	5564	455	644	1658	40	22835
3	3103	1315	5101	1324	373	916	4985	653	17301	2200	630	799	294	42	559
4	1230	3174	2283	3410	717	1586	1101		2222	1243	260	668	2012	146	26742
5	960							493			369	000	1819	1202	1705
6		1385	2811	19542	545	920	15279	493 2528	1218	1387	1101	577	804		1735
	1187	1385 965	2811 1709	19542 3529	545 11592								001	1378	556
7	1187 810					920	15279	2528	1218	1387	1101	577	929	1378 1018	
7 8		965	1709	3529	11592	920 986	15279 3186	2528 19705	1218 1585	1387 1856	1101 541	577 736			556
	810	965 1089	1709 1018	3529 1564	11592 1557	920 986 3241	15279 3186 2231	2528 19705 4116	1218 1585 1873	1387 1856 5107	1101 541 912	577 736 444	929	1018	556 514
8	810 720	965 1089 633	1709 1018 918	3529 1564 1370	11592 1557 587	920 986 3241 6735	15279 3186 2231 1977	2528 19705 4116 2106	1218 1585 1873 1902	1387 1856 5107 830	1101 541 912 1146	577 736 444 1327	929 351	1018 960	556 514 1327
8 9	810 720 881	965 1089 633 1403	1709 1018 918 981	3529 1564 1370 1371	11592 1557 587 861	920 986 3241 6735 2868	15279 3186 2231 1977 3050	2528 19705 4116 2106 429	1218 1585 1873 1902 13264	1387 1856 5107 830 1902	1101 541 912 1146 756	577 736 444 1327 1462	929 351 1304	1018 960 1635	556 514 1327 1559
8 9 10	810 720 881 957	965 1089 633 1403 8712	1709 1018 918 981 1089	3529 1564 1370 1371 1036	11592 1557 587 861 887	920 986 3241 6735 2868 1791	15279 3186 2231 1977 3050 5909	2528 19705 4116 2106 429 5418	1218 1585 1873 1902 13264 2380	1387 1856 5107 830 1902 21973	1101 541 912 1146 756 45401	577 736 444 1327 1462 1260	929 351 1304 1211	1018 960 1635 7604	556 514 1327 1559 1910
8 9 10 11	810 720 881 957 854	965 1089 633 1403 8712 1681	1709 1018 918 981 1089 3517	3529 1564 1370 1371 1036 1138	11592 1557 587 861 887 820	920 986 3241 6735 2868 1791 1500	15279 3186 2231 1977 3050 5909 5338	2528 19705 4116 2106 429 5418 4215	1218 1585 1873 1902 13264 2380 1444	1387 1856 5107 830 1902 21973 3484	1101 541 912 1146 756 45401 1367	577 736 444 1327 1462 1260 1260	929 351 1304 1211 52	1018 960 1635 7604 2530	556 514 1327 1559 1910 1757
8 9 10 11 12	810 720 881 957 854 542	965 1089 633 1403 8712 1681 1304	1709 1018 918 981 1089 3517 1290	3529 1564 1370 1371 1036 1138 16594	11592 1557 587 861 887 820 877	920 986 3241 6735 2868 1791 1500 1009	15279 3186 2231 1977 3050 5909 5338 3468	2528 19705 4116 2106 429 5418 4215 3505	1218 1585 1873 1902 13264 2380 1444 780	1387 1856 5107 830 1902 21973 3484 1572	1101 541 912 1146 756 45401 1367 1234	577 736 444 1327 1462 1260 1260 1242	929 351 1304 1211 52 43	1018 960 1635 7604 2530 1338	556 514 1327 1559 1910 1757 492
8 9 10 11 12 Awerage	810 720 881 957 854 542 1154	965 1089 633 1403 8712 1681 1304 1983	1709 1018 918 981 1089 3517 1290 3039	3529 1564 1370 1371 1036 1138 16594 4499	11592 1557 587 861 887 820 877 1822	920 986 3241 6735 2868 1791 1500 1009 2399	15279 3186 2231 1977 3050 5909 5338 3468 4417	2528 19705 4116 2106 429 5418 4215 3505 4339	1218 1585 1873 1902 13264 2380 1444 780 4022	1387 1856 5107 830 1902 21973 3484 1572 4265	1101 541 912 1146 756 45401 1367 1234 4542	577 736 444 1327 1462 1260 1260 1242 941	929 351 1304 1211 52 43 1038	1018 960 1635 7604 2530 1338 1495	556 514 1327 1559 1910 1757 492 6842
8 9 10 11 12 Average std	810 720 881 957 854 542 1154 742	965 1089 633 1403 8712 1681 1304 1983 2211	1709 1018 918 981 1089 3517 1290 3039 3717	3529 1564 1370 1371 1036 1138 16594 4499 6422	11592 1557 587 861 887 820 877 1822 3113	920 986 3241 6735 2868 1791 1500 1009 2399 2000	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730	2528 19705 4116 2106 429 5418 4215 3505 4339 5443	1218 1585 1873 1902 13264 2380 1444 780 4022 5403	1387 1856 5107 830 1902 21973 3484 1572 4265 5790	1101 541 912 1146 756 45401 1367 1234 4542 12871	577 736 444 1327 1462 1260 1260 1242 941 347	929 351 1304 1211 52 43 1038 738	1018 960 1635 7604 2530 1338 1495 2072	556 514 1327 1559 1910 1757 492 6842 10353
8 9 10 11 12 Average std Sample	810 720 881 957 854 542 1154 742 46	965 1089 633 1403 8712 1681 1304 1983 2211 47	1709 1018 918 981 1089 3517 1290 3039 3717 48	3529 1564 1370 1371 1036 1138 16594 4499 6422 49	11592 1557 861 887 820 877 1822 3113 50	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55	1101 541 912 1146 756 45401 1367 1234 4542 12871 56	577 736 444 1327 1462 1260 1260 1242 941 347 57	929 351 1304 1211 52 43 1038 738 58	1018 960 1635 7604 2530 1338 1495 2072 59	556 514 1327 1559 1910 1757 492 6842 10353 60
8 9 10 11 12 Awerage std Sample 1	810 720 881 957 854 542 1154 742 46 478	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575	1709 1018 918 981 1089 3517 1290 3039 3717 48 210	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683	11592 1557 587 861 887 820 877 1822 3113 50 404	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737	577 736 444 1327 1462 1260 1260 1260 1242 941 347 57 659	929 351 1304 1211 52 43 1038 738 58 14904	1018 960 1635 7604 2530 1338 1495 2072 59 568	556 514 1327 1559 1910 1757 492 6842 10353 60 22481
8 9 10 11 12 Awerage std Sample 1 2	810 720 881 957 854 542 1154 742 46 478 363	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745	11592 1557 587 861 887 820 877 1822 3113 50 404 641	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669	577 736 444 1327 1462 1260 1260 1242 941 347 57 659 723	929 351 1304 1211 52 43 1038 738 58 14904 645	1018 960 1635 7604 2530 1338 1495 2072 59 568 530	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516
8 9 10 11 12 Awerage std Sample 1 2 3	810 720 881 957 854 542 1154 742 46 478 363 6666	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154	577 736 444 1327 1462 1260 1260 1242 941 347 57 659 723 2095	929 351 1304 1211 52 43 1038 738 58 14904 645 19373	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557	556 514 1327 1559 1910 1757 6842 10353 60 22481 8516 1947
8 9 10 11 12 Average std Sample 1 2 3 4	810 720 881 957 854 542 1154 742 46 478 363 6666 4334	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886	577 736 444 1327 1462 1260 1260 1242 941 347 57 659 723 2095 1686	929 351 1304 1211 52 43 1038 738 738 58 14904 645 19373 1005	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600
8 9 10 11 12 Awerage std Sample 1 2 3 4 5 6 7	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 372	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754	577 736 444 1327 1462 1260 1260 1242 941 347 57 659 723 2095 1686 1241	929 351 1304 1211 52 43 1038 738 738 58 14904 645 19373 1005 227	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163
8 9 10 11 12 Awerage std Sample 1 2 3 4 5 6	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552 8618	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493 2085	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 372 390	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098	929 351 1304 1211 52 43 1038 738 58 14904 645 19373 1005 227 197	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741
8 9 10 11 12 Awerage std Sample 1 2 3 4 5 6 7	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870 677	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119 328	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562 194	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296 13321	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994 4367	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552 8618 10543	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902 12035	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493 2085 1801	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459 1866	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 372 390 312	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880 2153	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098 1159	929 351 1304 1211 52 43 1038 738 58 14904 645 19373 1005 227 197 188	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169 327	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741 1907
8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870 677 922	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119 328 70 70	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562 194 8306	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296 13321 2619	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994 4367 2973	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552 8618 10543 846	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902 12035 3143	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493 2085 1801 2532	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459 1866 27212	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 372 390 312 10836	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880 2153 1239	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098 1159 979	929 351 1304 1211 52 43 1038 738 58 14904 645 19373 1005 227 197 1888 193	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169 327 330	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741 1907 13064
8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 8 9	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870 677 922 17134	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119 328 70 201	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562 194 8306 1770	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296 13321 2619 2018	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994 4367 2973 2725	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552 8618 10543 846 2281	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902 12035 3143 3111	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493 2085 1801 2532 32921	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459 1866 27212 3615	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 312 10836 2290	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880 2153 1239 881	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098 1159 979 31394	929 351 1304 1211 52 43 1038 738 58 14904 645 19373 1005 227 197 1888 193 200	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169 327 330 237	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741 1907 13064 20535
8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 8 9 10	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870 677 922 17134 2449	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119 328 70 201 2951 2951	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562 194 8306 1770 2331	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296 13321 2619 2018 3359	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994 4367 2973 2725 3058	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3552 8618 10543 846 2281 2132	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902 12035 3143 3111 3729	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3610 2687 2493 2085 1801 2532 32921 2723	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459 1866 27212 3615 2035	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 312 10836 2290 1611	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880 2153 1239 881 916	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098 1159 979 31394 1242	929 351 1304 1211 52 43 1038 738 58 14904 645 19373 1005 227 197 1888 193 200 17098	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169 327 330 237 777	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741 1907 13064 20535 5585
8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 8 9 10 11	810 720 881 957 854 542 1154 742 46 478 363 6666 4334 482 870 677 922 17134 2449 1855	965 1089 633 1403 8712 1681 1304 1983 2211 47 27575 28311 78 303 221 119 328 70 201 2951 5851	1709 1018 918 981 1089 3517 1290 3039 3717 48 210 1706 2201 728 910 562 194 8306 1770 2331 654	3529 1564 1370 1371 1036 1138 16594 4499 6422 49 683 745 2295 9455 1448 1296 13321 2619 2018 3359 412	11592 1557 587 861 887 820 877 1822 3113 50 404 641 19625 1121 934 994 4367 2973 2725 3058 1217	920 986 3241 6735 2868 1791 1500 1009 2399 2000 51 5190 3608 3634 2848 3652 8618 10543 846 2281 2132 1120	15279 3186 2231 1977 3050 5909 5338 3468 4417 3730 52 1854 1154 721 767 731 902 12035 3143 3111 3729 555	2528 19705 4116 2106 429 5418 4215 3505 4339 5443 53 36946 5041 3600 2687 2493 2085 1801 2532 32921 2532 32921 2723 2277	1218 1585 1873 1902 13264 2380 1444 780 4022 5403 54 14902 4350 2071 1478 1749 2459 1866 27212 3615 2035 2041	1387 1856 5107 830 1902 21973 3484 1572 4265 5790 55 13129 2672 2537 390 372 390 312 10836 2290 1611 695	1101 541 912 1146 756 45401 1367 1234 4542 12871 56 737 669 6154 886 754 10880 2153 1239 881 916 668	577 736 444 1327 1462 1260 1242 941 347 57 659 723 2095 1686 1241 1098 1159 979 31394 1242 412	929 351 1304 1211 52 43 1038 738 738 6 45 19373 1005 227 197 1888 193 200 17098 498	1018 960 1635 7604 2530 1338 1495 2072 59 568 530 557 205 219 169 327 330 237 777 190	556 514 1327 1559 1910 1757 492 6842 10353 60 22481 8516 1947 2600 2163 1741 1907 13064 20535 5585 2459

Appendix I3: GLUCOSE COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

<u> </u>							Glu	cose							
							Num	ber of	days						
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	21943	10501	13356	5887	5999	6217	8540	4270	8942	7038	6298	4286	4373	4117	5813
2	11803	6668	9443	6780	9143	4762	10090	8241	5351	2657	4282	10330	3590	13443	8852
3	16613	13691	5857	9002	8481	7501	2590	3524	4972	2251	6182	6888	5602	9738	4097
4	28603	15701	7326	12768	6528	3796	1536	8253	5631	2046	10128	6213	1063	19549	5553
5	1843	11706	11366	13363	8390	5792	2980	4549	4080	2095	3904	4614	6778	3433	5748
6	15029	11156	8875	12921	5230	6525	864	5062	3856	2205	4854	4004	6207	5155	8818
7	12771	10475	6663	12749	8439	5187	819	6186	3526	3073	4290	24000	3965	5856	8518
8	10539	9728	7888	19287	6059	4097	1219	4415	4721	2874	6569	3912	2903	4822	8743
9 10	10429 7093	10040 9366	6493 5124	19924 16855	5982 5737	5262 4663	1162 1305	2487 5301	3959 3411	4136 5024	5873 7012	3433 3764	3064 3621	4869 4204	8074 7880
10	7093	5703	4456	17806	8647	8310	5710	3828	5085	4490	6523	1845	4358	4204	7501
11	6664	6525	5424	11392	9542	8910	4065	8461	6899	3303	5683	2460	4660	4093	5016
Average	12547	10105	7689	13228	7348	5919	3407	5381	5036	3433	5967	6312	4182	7015	7051
Std	7293	2905	2668	4601	1549	1633	3141	1995	1586	1502	1664	6008	1551	4882	1696
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	8210	1638	45216	5061	4952	6571	10818	2155	10049	15231	14705	8608	4098	8008	28314
2	585	1296	26954	9596	4932	11396	10818	2036	13954	10519	17587	9440	3133	6374	3549
3	2190	1420	17321	6040	16293	7064	10130	16242	9591	10264	1525	7376	6891	12833	6708
4	1727	1853	59691	6425	12818	5347	10130	16551	4802	9807	4579	16232	8664	15869	4524
5	1649	739	125625	5633	11531	5943	13612	10251	3952	10040	29943	12456	9611	11913	7407
6	1490	740	8117	5688	6119	3343	26950	10023	5037	13858	9383	5172	8656	10208	2553
7	9090	8280	2687	8271	6281	10799	8120	5371	4388	24331	22967	4690	9916	11110	19875
8	5820	6720	2397	8735	5975	2181	6809	10562	8914	21010	23303	5132	9490	13401	19968
9	3500	6416	2128	7420	5132	2222	4420	12741	8440	16141	23826	4094	8656	9591	24061
10	3130	14930	9749	7087	5569	3704	5369	9401	8487	13610	18977	5762	9915	4160	16700
11	2230	10242	10486	6584	3937	6484	11263	7277	8021	11825	11655	4575	13987	4591	9678
12	1765	8252	8654	6453	3664	7741	9331	8588	4155	92542	10125	3859	9553	12108	7090
Average	3449	5211	26585	6916	7200	6066	10631	9267	7483	20765	15715	7283	8548	10014	12536
Std	2769	4631	36052	1366	4058	2991	5760	4666	3067	23053	8564	3821	2833	3619	8795
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	5582	8745	12931	11571	10119	11371	10119	9360	9270	11278	2423	8911	5894	7401	17540
2	2247								2 = 1.0				3694	7491	17542
3	3247	8145	11234	12055	6905	12055	6905	10882	7090	13360	3156	9246	7040	7491 7466	17542 24587
<u>⊢ </u>	2161	8145 8889	11234 9360	12055 18113	6905 19032	12055 18113	6905 19032	10882 17225		13360 11050	3156 3785				
4	2161 3141	8889 8353	9360 10822	18113 22665	19032 21730	18113 22665	19032 21730	17225 10600	7090 4990 4240	11050 11135	3785 5664	9246 7675 12378	7040 5746 6032	7466 5961 19031	24587 24512 14255
4 5	2161 3141 22068	8889 8353 15125	9360 10822 17225	18113 22665 10251	19032 21730 19476	18113 22665 10251	19032 21730 19246	17225 10600 3837	7090 4990 4240 3930	11050 11135 10317	3785 5664 5112	9246 7675 12378 18807	7040 5746 6032 6491	7466 5961 19031 5190	24587 24512 14255 12455
4 5 6	2161 3141 22068 3603	8889 8353 15125 14507	9360 10822 17225 10600	18113 22665 10251 5630	19032 21730 19476 9312	18113 22665 10251 5630	19032 21730 19246 9312	17225 10600 3837 3600	7090 4990 4240 3930 3550	11050 11135 10317 10276	3785 5664 5112 4730	9246 7675 12378 18807 10032	7040 5746 6032 6491 5148	7466 5961 19031 5190 7787	24587 24512 14255 12455 10125
4 5 6 7	2161 3141 22068 3603 3882	8889 8353 15125 14507 14463	9360 10822 17225 10600 3837	18113 22665 10251 5630 5395	19032 21730 19476 9312 6214	18113 22665 10251 5630 5395	19032 21730 19246 9312 6214	17225 10600 3837 3600 4350	7090 4990 4240 3930 3550 6600	11050 11135 10317 10276 13227	3785 5664 5112 4730 4310	9246 7675 12378 18807 10032 5326	7040 5746 6032 6491 5148 13085	7466 5961 19031 5190 7787 7176	24587 24512 14255 12455 10125 12451
4 5 6 7 8	2161 3141 22068 3603 3882 11291	8889 8353 15125 14507 14463 13528	9360 10822 17225 10600 3837 3600	18113 22665 10251 5630 5395 5018	19032 21730 19476 9312 6214 7040	18113 22665 10251 5630 5395 5018	19032 21730 19246 9312 6214 7040	17225 10600 3837 3600 4350 6191	7090 4990 4240 3930 3550 6600 5410	11050 11135 10317 10276 13227 12532	3785 5664 5112 4730 4310 3092	9246 7675 12378 18807 10032 5326 6606	7040 5746 6032 6491 5148 13085 10948	7466 5961 19031 5190 7787 7176 8774	24587 24512 14255 12455 10125 12451 14755
4 5 6 7 8 9	2161 3141 22068 3603 3882 11291 4375	8889 8353 15125 14507 14463 13528 13557	9360 10822 17225 10600 3837 3600 4350	18113 22665 10251 5630 5395 5018 16295	19032 21730 19476 9312 6214 7040 4754	18113 22665 10251 5630 5395 5018 16295	19032 21730 19246 9312 6214 7040 4754	17225 10600 3837 3600 4350 6191 6858	7090 4990 4240 3930 3550 6600 5410 12790	11050 11135 10317 10276 13227 12532 6568	3785 5664 5112 4730 4310 3092 2951	9246 7675 12378 18807 10032 5326 6606 4769	7040 5746 6032 6491 5148 13085 10948 6776	7466 5961 19031 5190 7787 7176 8774 8802	24587 24512 14255 12455 10125 12451 14755 16854
4 5 6 7 8 9 10	2161 3141 22068 3603 3882 11291 4375 13725	8889 8353 15125 14507 14463 13528 13557 13140	9360 10822 17225 10600 3837 3600 4350 6191	18113 22665 10251 5630 5395 5018 16295 12969	19032 21730 19476 9312 6214 7040 4754 4562	18113 22665 10251 5630 5395 5018 16295 12969	19032 21730 19246 9312 6214 7040 4754 4562	17225 10600 3837 3600 4350 6191 6858 6140	7090 4990 4240 3930 3550 6600 5410 12790 7485	11050 11135 10317 10276 13227 12532 6568 3129	3785 5664 5112 4730 4310 3092 2951 1739	9246 7675 12378 18807 10032 5326 6606 4769 2826	7040 5746 6032 6491 5148 13085 10948 6776 7970	7466 5961 19031 5190 7787 7176 8774 8802 6953	24587 24512 14255 12455 10125 12451 14755 16854 19514
4 5 6 7 8 9 10 11	2161 3141 22068 3603 3882 11291 4375 13725 18125	8889 8353 15125 14507 14463 13528 13557 13140 12912	9360 10822 17225 10600 3837 3600 4350 6191 6858	18113 22665 10251 5630 5395 5018 16295 12969 8961	19032 21730 19476 9312 6214 7040 4754 4562 5241	18113 22665 10251 5630 5395 5018 16295 12969 8961	19032 21730 19246 9312 6214 7040 4754 4562 12931	17225 10600 3837 3600 4350 6191 6858 6140 1794	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898	11050 11135 10317 10276 13227 12532 6568 3129 3334	3785 5664 5112 4730 4310 3092 2951 1739 4164	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245
4 5 6 7 8 9 10 11 12	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485
4 5 6 7 8 9 10 11 12 Average	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 1090	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732
4 5 6 7 8 9 10 11 11 12 Ave rage Std	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485
4 5 6 7 8 9 10 11 12 Average	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356 2672	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550
4 5 6 7 8 9 10 11 12 Average Std Sample	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356 2672 54	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60
4 5 6 7 8 9 10 11 12 Average Std Sample 1	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60 3036
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 1 5257	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973 16619	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708	19032 21730 19246 9312 6214 7040 4754 12931 11234 11090 5960 52 13781 9908 8015	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459	7090 4990 4240 3930 3550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16619 8353	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 1090 5960 52 13781 9908 8015 6707	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570
4 5 6 7 8 9 10 11 11 12 Average Std Sample 1 2 3 4 5	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16619 8353 8397	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 1090 5960 52 13781 9908 8015 6707 6461	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556 16277	24587 24512 14255 12455 10125 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16619 8353 8397 6208	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556 16277 8962	24587 24512 14255 12455 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843 6914
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6 7	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352 9460	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241 8489	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403 5058	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080 6053	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16619 8353 8397 6208 5427	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928 14565	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219 13398	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168 1717	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496 8689	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741 11439	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979 3732	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110 22590	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393 7025	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556 16277 8962 7636	24587 24512 14255 12455 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843 6914 4806
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6 7 8	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352 9460 6908	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241 8489 6034	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403 5058 6451	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080 6053 9015	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973 16619 8353 8397 6208 5427 11715	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928 14565 13409	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219 13398 11839	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168 1717 1782	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496 8689 9758	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741 11439 12515	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979 3732 2639	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110 22590 16997	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393 7025 9713	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556 16277 8962 7636 8189	24587 24512 14255 12455 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 5700 1843 6914 4806 9204
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6 7 8 8 9	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352 9460 6908 6474	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241 8489 6034 5770	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403 5058 6451 4289	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080 6053 9015 7523	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973 16619 8353 8397 6208 5427 11715 7670	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928 14565 13409 12159	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219 13398 11839 19388	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168 1717 1782 4622	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496 8689 9758 11956	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741 11439 12515 12797	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979 3732 2639 3154	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110 22590 16997 14352	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393 7025 9713 9897	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 39920 8968 3759 1 1570 10269 25879 20556 16277 8962 7636 8189 7870	24587 24512 14255 12455 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843 6914 4806 9204 10986
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6 7 8 8 9 10	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352 9460 6908 6474 6265	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241 8489 6034 5770 2352	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403 5058 6451 4289 7853	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080 6053 9015 7523 5506	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973 16619 8353 8397 6208 5427 11715 7670 9430	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928 14565 13409 12159 12325	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219 13398 11839 19388 23410	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168 1717 1782 4622 3444	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496 8689 9758 11956 7925	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741 11439 12515 12797 8304	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979 3732 2639 3154 4384	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110 22590 16997 14352 18648	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393 7025 9713 9897 9801	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 59 11570 10269 25879 20556 16277 8962 7636 8189 7870 7470	24587 24512 14255 12455 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843 6914 4806 9204 10986 7877
4 5 6 7 8 9 10 11 12 Average Std Sample 1 2 3 4 5 6 7 8 8 9 10 11	2161 3141 22068 3603 3882 11291 4375 13725 18125 16098 8942 6971 46 7007 6260 7142 5703 5355 12352 9460 6908 6474 6265 10127	8889 8353 15125 14507 14463 13528 13557 13140 12912 5252 11385 3281 47 14826 11828 5701 9883 5453 8241 8489 6034 5770 2352 6810	9360 10822 17225 10600 3837 3600 4350 6191 6858 7245 8688 4111 48 7998 14839 11042 4499 2474 4403 5058 6451 4289 7853 6314	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11554 5383 49 12365 26107 17194 30461 28454 6080 6053 9015 7523 5506 9776	19032 21730 19476 9312 6214 7040 4754 4562 5241 4985 9948 6375 50 27102 16973 16619 8353 8397 6208 5427 11715 7670 9430 15709	18113 22665 10251 5630 5395 5018 16295 12969 8961 9726 11537 5383 51 4809 4524 3708 6065 10143 9928 14565 13409 12159 12325 10632	19032 21730 19246 9312 6214 7040 4754 4562 12931 11234 11090 5960 52 13781 9908 8015 6707 6461 15219 13398 11839 19388 23410 16352	17225 10600 3837 3600 4350 6191 6858 6140 1794 10250 7591 4281 53 18421 12896 11459 9339 8235 8168 1717 1782 4622 3444 11065	7090 4990 4240 3930 550 6600 5410 12790 7485 6898 4016 6356 2672 54 10125 15257 16657 12790 8775 9496 8689 9758 11956 7925 6939	11050 11135 10317 10276 13227 12532 6568 3129 3334 3807 9168 3882 55 4772 2885 3057 2109 14169 10741 11439 12515 12797 8304 11422	3785 5664 5112 4730 4310 3092 2951 1739 4164 10769 4325 2326 56 9781 9175 9627 8654 5201 1979 3732 2639 3154 4384 6575	9246 7675 12378 18807 10032 5326 6606 4769 2826 4648 3424 7887 4481 57 9347 7742 2475 15580 11271 11110 22590 16997 14352 18648 15323	7040 5746 6032 6491 5148 13085 10948 6776 7970 7974 6659 7480 2322 58 14104 14065 11387 11364 4949 5393 7025 9713 9897 9801 10560	7466 5961 19031 5190 7787 7176 8774 8802 6953 13063 9920 8968 3759 39920 8968 3759 1 1570 10269 25879 20556 16277 8962 7636 8189 7870 7470 3785	24587 24512 14255 12451 14755 16854 19514 8245 25485 16732 5550 60 3036 2902 2859 570 1843 6914 4806 9204 10986 7877 10830

Appendix I4: EFFLUENT TANK COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

							Effluer		•						
Sample	1	2	3	4	5	6	Nu 7	mber of	days 9	10	11	12	13	14	15
-	1 24892	2 12604	3 12583	4 5688	7233	6146	4764	o 4297		6357	5013	4034	3989	9149	5061
1 2	24892	8345	12383	7666	5717	6937	4640	7894	8583 5477	6156	5758	4034	4000	15713	9596
3	10632	12219	15234	8596	9426	8250	3846	7813	5047	2304	4821	7046	7200	44680	6040
4	32987	13684	13645	12846	8495	7225	3686	7777	5153	3016	10438	6013	3946	26215	6425
5	31438	11547	10814	16655	8475	5603	4576	4876	4002	2243	4233	4105	9931	7380	5633
6	15417	12229	15071	12346	7321	6710	6540	5758	3684	2214	5123	4315	5934	5409	5688
7	13135	9481	6273	12052	8296	8800	6587	3234	3601	2387	4917	3593	3557	5209	8271
8	10017	8916	7575	22122	6005	8876	7994	3768	4429	2435	6016	3544	2849	5250	8735
9	10515	9909	7188	21853	6573	4844	4264	2290	3956	2657	5737	3504	3295	4749	7420
10	6993	9297	8924	20712	5958	4143	4006	5171	2979	2414	6446	3073	8325	4349	7087
11	5608	5973	5242	21450	5790	5329	4735	3785	4385	3842	6977	2158	5023	4200	6584
12	7405	5624	4248	10822	5561	4731	4618	6308	6097	3570	6274	2993	3279	4216	6453
Average	14313	9986	9965	14401	7071	6466	5021	5248	4783	3300	5979	4096	5111	11377	6916
std	10066	2571	3885	5952	1332	1609	1315	1896	1486	1478	1609	1342	2269	12345	1366
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	3204	5691	14592	14573	4737	2936	2807	7021	10523	4338	3716	4702	5967	10828	3978
2	3768	5916	23582	14199	4121	6610	1715	6893	14827	2523	3062	6425	8116	9886	2865
3	4089	5233	16330	12096	6467	5265	537	10008	17896	5729	3187	8070	7705	9281	2582
4	4253	4664	14836	5528	13798	8429	9552	10985	11846	6764	2796	8626	5515	8706	6484
5	2765	5092	22078	11504	11270	9853	10148	12431	11023	3789	3883	7495	12083	10609	8624
6	8578	4950	6376	6368	5830	8993	9664	12993	20894	2579	3046	9663	11303	7161	8259
7	6444	6424	5594	6628	5339	8285	25446	12348	18652	5614	30528	8067	9747	10695	1662
8	6372	5921	5101	5780	5494	4464	21762	8415	13221	4284	12390	6146	12947	11535	1453
9	5472	5597	4789	8137	5083	2129	15940	5055	17906	5385	5216	8498	11895	7963	4549
10	5227	5413	12230	15528	5147	4582	10387	5342	16082	3818	3990	7008	8980	7402	5016
11 12	5036 5910	2582 5090	11955 8685	21301 4256	3636 3486	2229 1963	7960 7016	7565 8448	13470 4557	3684 1924	4784 3633	6849 7559	10310 13976	8452 5483	7234 7502
				10402			10245	0050	14241	4202		7426	0870		
Average	5093	5214 963	12179 6411	10492	6201 3128	5478 2880	10245	8959 2761	14241	4203	6686 7942	7426	9879 2703	9000 1806	5017 2569
std	1621	963	6411	5217	3128	2889	7598	2761	4468	1463	7942	1315	2703	1806	2569
std Sample	1621 31	963 32	6411 33	5217 34	3128 35	2889 36	7598 37	2761 38	4468 39	1463 40	7942 41	1315 42	2703 43	1806 44	2569 45
std Sample 1	1621 31 10902	963 32 11088	6411 33 7893	5217 34 6479	3128 35 5709	2889 36 7512	7598 37 12728	2761 38 8388	4468 39 8152	1463 40 8686	7942 41 6726	1315 42 2211	2703 43 14382	1806 44 7882	2569 45 17466
std Sample 1 2	1621 31 10902 11286	963 32 11088 5618	6411 33 7893 8947	5217 34 6479 4630	3128 35 5709 7718	2889 36 7512 6023	7598 37 12728 11019	2761 38 8388 6542	4468 39 8152 9328	1463 40 8686 7667	7942 41 6726 5960	1315 42 2211 2015	2703 43 14382 10310	1806 44 7882 8249	2569 45 17466 7029
std Sample 1 2 3	1621 31 10902 11286 12455	963 32 11088 5618 8738	6411 33 7893 8947 14000	5217 34 6479 4630 9265	3128 35 5709 7718 6116	2889 36 7512 6023 8849	7598 37 12728 11019 6326	2761 38 8388 6542 6844	4468 39 8152 9328 6822	1463 40 8686 7667 5566	7942 41 6726 5960 3833	1315 42 2211 2015 4646	2703 43 14382 10310 10770	1806 44 7882 8249 10242	2569 45 17466 7029 4221
std Sample 1 2 3 4	1621 31 10902 11286 12455 13055	963 32 11088 5618 8738 12159	6411 33 7893 8947 14000 5876	5217 34 6479 4630 9265 17061	3128 35 5709 7718 6116 9076	2889 36 7512 6023 8849 14064	7598 37 12728 11019 6326 8373	2761 38 8388 6542 6844 5700	4468 39 8152 9328 6822 11251	1463 40 8686 7667 5566 5109	7942 41 6726 5960 3833 906	1315 42 2211 2015 4646 5511	2703 43 14382 10310 10770 9437	1806 44 7882 8249 10242 8483	2569 45 17466 7029 4221 3371
std Sample 1 2 3	1621 31 10902 11286 12455	963 32 11088 5618 8738	6411 33 7893 8947 14000	5217 34 6479 4630 9265	3128 35 5709 7718 6116	2889 36 7512 6023 8849	7598 37 12728 11019 6326	2761 38 8388 6542 6844	4468 39 8152 9328 6822	1463 40 8686 7667 5566	7942 41 6726 5960 3833	1315 42 2211 2015 4646	2703 43 14382 10310 10770	1806 44 7882 8249 10242	2569 45 17466 7029 4221
std Sample 1 2 3 4 5	1621 31 10902 11286 12455 13055 13563	963 32 11088 5618 8738 12159 12325	6411 33 7893 8947 14000 5876 4755	5217 34 6479 4630 9265 17061 23702	3128 35 5709 7718 6116 9076 12077	2889 36 7512 6023 8849 14064 12672	7598 37 12728 11019 6326 8373 11068	2761 38 8388 6542 6844 5700 7951	4468 39 8152 9328 6822 11251 9527	1463 40 8686 7667 5566 5109 6164	7942 41 6726 5960 3833 906 10441	1315 42 2211 2015 4646 5511 5169	2703 43 14382 10310 10770 9437 9725	1806 44 7882 8249 10242 8483 9853	2569 45 17466 7029 4221 3371 4833
std Sample 1 2 3 4 5 6	1621 31 10902 11286 12455 13055 13563 7878	963 32 11088 5618 8738 12159 12325 10632	6411 33 7893 8947 14000 5876 4755 4056	5217 34 6479 4630 9265 17061 23702 18352	3128 35 5709 7718 6116 9076 12077 16681	2889 36 7512 6023 8849 14064 12672 7008	7598 37 12728 11019 6326 8373 11068 8355	2761 38 8388 6542 6844 5700 7951 14534	4468 39 8152 9328 6822 11251 9527 5339	1463 40 8686 7667 5566 5109 6164 4463	7942 41 6726 5960 3833 906 10441 8418	1315 42 2211 2015 4646 5511 5169 4306	2703 43 14382 10310 10770 9437 9725 13179	1806 44 7882 8249 10242 8483 9853 12201	2569 45 17466 7029 4221 3371 4833 4833
std Sample 1 2 3 4 5 6 7	1621 31 10902 11286 12455 13055 13563 7878 18351	963 32 11088 5618 8738 12159 12325 10632 11994	6411 33 7893 8947 14000 5876 4755 4056 3981	5217 34 6479 4630 9265 17061 23702 18352 17259	3128 35 5709 7718 6116 9076 12077 16681 25677	2889 36 7512 6023 8849 14064 12672 7008 6920	7598 37 12728 11019 6326 8373 11068 8355 8260	2761 38 8388 6542 6844 5700 7951 14534 8400	4468 39 8152 9328 6822 11251 9527 5339 14754	1463 40 8686 7667 5566 5109 6164 4463 3308	7942 41 6726 5960 3833 906 10441 8418 8465	1315 42 2211 2015 4646 5511 5169 4306 4061	2703 43 14382 10310 10770 9437 9725 13179 11799	1806 44 7882 8249 10242 8483 9853 12201 11853	2569 45 17466 7029 4221 3371 4833 4833 5750
std Sample 1 2 3 4 5 6 7 8	1621 31 10902 11286 12455 13055 13563 7878 18351 18941	963 32 11088 5618 8738 12159 12325 10632 11994 13781	6411 33 7893 8947 14000 5876 4755 4056 3981 5862	5217 34 6479 4630 9265 17061 23702 18352 17259 9857	3128 35 5709 7718 6116 9076 12077 16681 25677 21969	2889 36 7512 6023 8849 14064 12672 7008 6920 5140	7598 37 12728 11019 6326 8373 11068 8355 8260 7319	2761 38 8388 6542 6844 5700 7951 14534 8400 7382	4468 39 8152 9328 9822 11251 9527 5339 14754 12216	1463 40 8686 7667 5566 5109 6164 4463 3308 4902	7942 41 6726 5960 3833 906 10441 8418 8465 13187	1315 42 2211 2015 4646 5511 5169 4306 4061 3380	2703 43 14382 10310 10770 9437 9725 13179 11799 6448	1806 44 7882 8249 10242 8483 9853 12201 11853 10113	2569 45 17466 7029 4221 3371 4833 4833 5750 6859
std std Sample 1 2 3 4 5 6 7 8 9	1621 31 10902 11286 12455 13055 13563 7878 18351 18941 22956	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 100	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146	2703 43 14382 10310 10770 9437 9725 13179 11799 6448 13647	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617
std std Sample 1 2 3 4 5 6 7 8 9 10	1621 31 10902 11286 12455 13055 13563 7878 18351 18941 22956 20146	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406	2703 43 14382 10310 10770 9437 9725 13179 11799 6448 13647 11512	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617 9818
std std Sample 1 2 3 4 5 6 7 8 9 10 11	1621 31 10902 11286 12455 13055 13563 7878 18351 18941 22956 20146 15271	963 32 11088 5618 \$5618 8738 12159 12325 10632 11994 13781 9908 8015 6707	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 10278	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 100	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617 9818 9258
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Awerage std	1621 31 10902 11286 12455 13053 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2183	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617 9818 9258 6470 7627 3946
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Awerage	1621 31 10902 11286 12455 13053 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642 46	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 50	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2183 52	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 14	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 56	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 57	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617 9818 9258 6470 7627 3946 60
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1	1621 31 10902 11286 12455 13053 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642 46 18126	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 50 3938	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2183 52 2185	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7502 7824 2275 53 18640	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 56 7263	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 57 7082	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2	1621 31 10902 11286 12455 13053 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642 48 20595	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2183 3649	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3684	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296	2569 45 17466 7029 4221 3371 4833 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3	1621 31 10902 11286 12455 13053 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 4967 11117 8911 1	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7502 7824 2275 53 18640 17331 12873	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4	1621 31 10902 11286 12455 13053 13563 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3062	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 55 4517 6811 4394 5288	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072 5602	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5	1621 31 10902 11286 12455 13563 7878 13551 138941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072 5602 5128	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 6	1621 31 10902 11286 12455 13055 13563 7878 18351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3684	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072 5602 5128 4138	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344 17083	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072 5602 5128 4138 4111	1315 42 2211 2015 4646 5511 5169 4306 4061 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9871 14099 9770 11819 9225	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8	1621 31 10902 11286 12455 13055 13563 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344 17083 16178	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 560 7263 8389 6072 5602 5128 4138 4111 3587	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633 10142	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848 8752	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700 4707	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344 17083 16178 12466	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482 5101	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254 14092	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949 4432	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232 7134	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046 30528	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278 9872	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 560 5602 5128 4138 4111 3587 7361	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579 5754	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951 9658	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410 5349	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804 12753
std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633 10142 17702	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848 8752 10614	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700 4707 6796	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 1 9 110 38 16461 5173 34219 25953 16344 17083 16178 12466 14814	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482 5101 5679	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254 14092 9550	7598 37 12728 11019 6326 8373 11068 8375 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949 4432 5486	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232 7134 7579	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046 30528 13290 13290	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278 9872 11128	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 560 5602 5128 4138 4111 3587 7361 9104	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579 5754 6216	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951 9658 6631	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410 5349 3995	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804 12753 10860
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633 10142 17702 16776	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848 8752 10614 11373	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700 4707 6796 11537	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344 17083 16178 12466 14814 11558	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482 5101 5679 6468	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254 14092 9550 3695	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949 4432 5486 3051	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232 7134 7579 5385	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046 30528 13290 11083	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278 9872 11128 10128	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 560 5602 5128 4138 4111 3587 7361 9104 7375	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579 5754 6216 6355	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951 9658 6631 5912	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 9999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410 5349 3995 6780	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804 112753 10860 11182
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10 11 12	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633 10142 17702 16776 11391	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848 8752 10614 11373 9124	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700 4707 6796 11537 11365	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 1 9 110 38 16461 5173 34219 25953 16344 17083 16178 12466 14814 11558 9953	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482 5101 5679 6468 10241	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254 14092 9550 3695 5309	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949 4432 5486 3051 10213	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232 7134 7579 5385 3818	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046 30528 13290 11083 7849	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278 9872 11128 10128 9847	7942 41 6726 5960 3833 906 10441 8418 8465 13187 13312 2703 3096 3387 6703 4136 56 7263 8389 6072 5602 5128 4138 4111 3587 7361 9104 7375 7805	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579 5754 6216 6355 5775	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951 9658 6631 5912 3150	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 9999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410 5349 3995 6780 5112	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804 12753 10860 111862 7041
std std Sample 1 2 3 4 5 6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11	1621 31 10902 11286 12455 13055 13363 7878 13351 18941 22956 20146 15271 20390 15433 4642 18126 20595 19476 9618 5995 5787 5057 4633 10142 17702 16776	963 32 11088 5618 8738 12159 12325 10632 11994 13781 9908 8015 6707 6461 9786 2654 47 5994 5848 7910 19334 15869 4656 6160 7848 8752 10614 11373	6411 33 7893 8947 14000 5876 4755 4056 3981 5862 9222 12310 13979 13596 8706 3924 48 14506 17461 19708 10696 12141 11377 13226 9700 4707 6796 11537	5217 34 6479 4630 9265 17061 23702 18352 17259 9857 9196 3330 3513 11629 11189 6569 49 11038 16461 5173 34219 25953 16344 17083 16178 12466 14814 11558	3128 35 5709 7718 6116 9076 12077 16681 25677 21969 16478 8813 5270 9011 #### 6700 3938 4528 3565 4214 9192 11456 9998 4482 5101 5679 6468	2889 36 7512 6023 8849 14064 12672 7008 6920 5140 5588 7625 10278 15612 8941 3468 51 4967 11117 8911 9141 10378 8529 11357 11254 14092 9550 3695	7598 37 12728 11019 6326 8373 11068 8355 8260 7319 7619 7673 6372 5401 8376 2185 3649 3434 4203 5137 5154 7533 5949 4432 5486 3051	2761 38 8388 6542 6844 5700 7951 14534 8400 7382 6058 7002 7585 7502 7824 2275 53 18640 17331 12873 26179 23488 24020 16231 14232 7134 7579 5385	4468 39 8152 9328 6822 11251 9527 5339 14754 12216 8100 7045 7908 8376 9068 2592 54 3684 1924 3716 3062 3187 2796 3883 3046 30528 13290 11083	1463 40 8686 7667 5566 5109 6164 4463 3308 4902 4500 6100 6571 6724 5813 1493 55 4517 6811 4394 5288 6650 8391 14331 12278 9872 11128 10128	7942 41 6726 5960 3833 906 10441 8465 13187 13312 2703 3096 3387 6703 4136 560 5602 5128 4138 4111 3587 7361 9104 7375	1315 42 2211 2015 4646 5511 5169 4306 4001 3380 10146 6406 8146 8355 5363 2507 7082 4084 7228 6828 7305 8326 9993 9579 5754 6216 6355	2703 43 14382 10310 9437 9725 13179 11799 6448 13647 11512 11307 9416 10994 2175 58 6014 5607 9871 14099 9770 11819 9225 5951 9658 6631 5912	1806 44 7882 8249 10242 8483 9853 12201 11853 10113 13901 9999 7957 7190 9077 3252 59 4564 3296 7130 6300 2320 12470 6960 8410 5349 3995 6780	2569 45 17466 7029 4221 3371 4833 5750 6859 11617 9818 9258 6470 7627 3946 60 2486 16075 27866 10733 9709 24660 11137 13804 11137 13804 12753 10860 11182

Appendix I5: LIQUEFACTION COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

						Lie	quefactio	on							
<i>a</i>	-				_	-	Numbe		1	10			4.0		
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 2	477 518	88 76	263 222	102 81	102 121	149 156	64 57	315 324	150 92	56 56	20 20	95 59	74 245	1341 159	146 108
3	121	56	197	30	444	122	147	297	92 78	70	20 95	59	243 66	178	90
4	113	52	243	43	299	137	128	208	68	68	81	58	66	130	89
5	306	69	153	39	239	128	126	134	64	116	94	65	42	1953	86
6	179	50	94	32	152	96	115	350	59	69	101	47	142	1825	92
7	180	59	121	48	143	73	159	232	60	105	98	39	106	1543	91
8	477	60	211	90	135	72	475	97	64	39	102	42	107	223	94
9	256	102	371	93	188	88	176	87	131	30	104	58	77	142	104
10	1	104	236	74	950	129	107	132	181	30	156	54	72	17	96
11	7	170	292	90	133	185	151	121	196	29	148	877	766	1241	1246
12	11	161	41	35	128	177	104	131	3553	3029	2773	719	153	1044	193
Average	221	87	204	63	253	126	151	202	391	308	316	180	160	816	203
std	189	41	91	28	240	38	108	98	997	857	775	291	199	745	330
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	233	2986	191	198	2902	930	313	215	184	146	587	3448	1444	217	2811
2	97	22	145	93	2582	3000	997	235	120	130	1447	1989	1618	151	1404
3	134	11	2089	116	2590	492	724	170	115	90	377	2237	519	181	769
4	260	512	145	152	307	84	140	211	133	105	520	1860	609	196	370
5	163	3560	151	130	559	85	137	170	115	110	1017	994	617	707	279
6 7	272 121	711	160 151	311	675	108 99	155 1315	271	126 134	142 95	382	1654	446	231	260
8	121	169 223	104	143 144	119 116	99 78	1315	113 308	335	95 81	1560 2883	1727 823	481 201	204 167	214 261
<u> </u>	3722	115	104	134	138	78 89	1312	184	309	105	2885	637	182	266	452
9 10	2852	113	108	134	965	75	1307	132	190	103	1249	934	255	232	432
10	1226	281	138	129	309	180	1515	184	334	420	1866	663	342	830	557
12	1166	131	212	146	501	260	483	132	133	757	27474	2245	240	3733	238
Average	867	738	310	152	980	457	816	192	186	190	3507	1601	580	593	670
std	1211	1207	561	56	1064	840	549	58	88	200	7595	836	471	1013	752
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	200	187	102	174	166	127	420	278	1733	340	115	18	12	131	36
2	185	197	311	1987	149	172	485	197	1944	134	80	43	12	102	41
3	193	195	223	1636	1184	145	357	219	1283	126	63	36	105	79	30
4	416	424	157	1045	600	156	86	115	103	105	213	12	118	94	28
5	474	250	179	899	103	164	103	108	96	120	181	50	107	104	47
6	335	311	133	1008	110	170	83	125	109	120	260	27	119	70	38
7	342	186	139	770	146	403	516	166	156	139	206	23	222	103	54
8	168	240	173	1169	137	35	76	209	147	125	184	52	334	109	37
9	169	202	163	782	124	33	103	171	234	99	24	54	36	81	66
10	203	214	145	771	114	37	107	135	445	58	28	22	12	1452	49
11	137	292								-		39	20	366	36
12	22.4		174	394	104	61	161	1315	181	96	48				
	326	336	181	183	253	261	187	973	245	67	27	25	58	47	41
Average	262	336 253	181 173	183 902	253 266	261 147	187 224	973 334	245 556	67 127	27 119	25 33	58 96	47 228	41 42
Average std	262 111	336 253 74	181 173 53	183 902 537	253 266 320	261 147 107	187 224 170	973 334 388	245 556 683	67 127 72	27 119 85	25 33 14	58 96 98	47 228 394	41 42 11
Average std Sample	262 111 46	336 253 74 47	181 173 53 48	183 902 537 49	253 266 320 50	261 147 107 51	187 224 170 52	973 334 388 53	245 556 683 54	67 127 72 55	27 119 85 56	25 33 14 57	58 96 98 58	47 228 394 59	41 42 11 60
Average std Sample 1	262 111 46 280	336 253 74 47 158	181 173 53 48 132	183 902 537 49 189	253 266 320 50 46	261 147 107 51 75	187 224 170 52 550	973 334 388 53 191	245 556 683 54 179	67 127 72 55 447	27 119 85 56 239	25 33 14 57 1401	58 96 98 58 115	47 228 394 59 192	41 42 11 60 151
Average std Sample 1 2	262 111 46 280 181	336 253 74 47 158 125	181 173 53 48 132 124	183 902 537 49 189 271	253 266 320 50 46 114	261 147 107 51 75 181	187 224 170 52 550 174	973 334 388 53 191 606	245 556 683 54 179 210	67 127 72 55 447 640	27 119 85 56 239 474	25 33 14 57 1401 2970	58 96 98 58 115 373	47 228 394 59 192 197	41 42 11 60 151 119
Average std Sample 1 2 3	262 111 46 280 181 231	336 253 74 47 158 125 63	181 173 53 48 132 124 172	183 902 537 49 189 271 255	253 266 320 50 46 114 5	261 147 107 51 75 181 166	187 224 170 52 550 174 190	973 334 388 53 191 606 698	245 556 683 54 179 210 123	67 127 72 55 447 640 347	27 119 85 56 239 474 557	25 33 14 57 1401 2970 1675	58 96 98 58 115 373 380	47 228 394 59 192 197 5662	41 42 11 60 151 119 113
Average std Sample 1 2 3 4	262 111 46 280 181 231 30	336 253 74 47 158 125 63 53	181 173 53 48 132 124 172 118	183 902 537 49 189 271 255 168	253 266 320 50 46 114 5 2	261 147 107 51 75 181 166 118	187 224 170 52 550 174 190 479	973 334 388 53 191 606 698 765	245 556 683 54 179 210 123 134	67 127 72 55 447 640 347 575	27 119 85 56 239 474 557 559	25 33 14 57 1401 2970 1675 765	58 96 98 58 115 373 380 562	47 228 394 59 192 197 5662 540	41 42 11 60 151 119 113 121
Average std Sample 1 2 3 4 5	262 111 46 280 181 231 30 72	336 253 74 47 158 125 63 53 31	181 173 53 48 132 124 172 118 72	183 902 537 49 189 271 255 168 190	253 266 320 50 46 114 5 2 189	261 147 107 51 75 181 166 118 26773	187 224 170 52 550 174 190 479 22348	973 334 388 53 191 606 698 765 823	245 556 683 54 179 210 123 134 587	67 127 72 55 447 640 347 575 341	27 119 85 56 239 474 557 559 147	25 33 14 57 1401 2970 1675 765 690	58 96 98 58 115 373 380 562 211	47 228 394 59 192 197 5662 540 306	41 42 11 60 151 119 113 121 119
Average std Sample 1 2 3 4 5 6	262 111 46 280 181 231 30 72 41	336 253 74 47 158 125 63 53 31 17	181 173 53 48 132 124 172 118 72 61	183 902 537 49 189 271 255 168 190 191	253 266 320 50 46 114 5 2 189 119	261 147 107 51 75 181 166 118 26773 28597	187 224 170 52 550 174 190 479 22348 28827	973 334 388 53 191 606 698 765 823 10	245 556 683 54 179 210 123 134 587 132	67 127 72 55 447 640 347 575 341 597	27 119 85 56 239 474 557 559 147 505	25 33 14 57 1401 2970 1675 765 690 109	58 96 98 58 115 373 380 562 211 152	47 228 394 59 192 197 5662 540 306 179	41 42 11 60 151 119 113 121 119 114
Average std Sample 1 2 3 4 5 6 7	262 111 46 280 181 231 30 72	336 253 74 47 158 125 63 53 31	181 173 53 48 132 124 172 118 72	183 902 537 49 189 271 255 168 190	253 266 320 50 46 114 5 2 189	261 147 107 51 75 181 166 118 26773 28597 22498	187 224 170 52 550 174 190 479 22348 28827 27250	973 334 388 53 191 606 698 765 823	245 556 683 54 179 210 123 134 587 132 240	67 127 72 55 447 640 347 575 341 597 335	27 119 85 56 239 474 557 559 147	25 33 14 57 1401 2970 1675 765 690	58 96 98 58 115 373 380 562 211 152 174	47 228 394 59 192 197 5662 540 306	41 42 11 60 151 119 113 121 119 114 112
Average std Sample 1 2 3 4 5 6	262 111 46 280 181 231 30 72 41 90	336 253 74 47 158 125 63 53 31 17 89	181 173 53 48 132 124 172 61 30	183 902 537 49 189 271 255 168 190 191 229	253 266 320 50 46 114 5 2 189 119 150	261 147 107 51 75 181 166 118 26773 28597 22498 21432	187 224 170 52 550 174 190 479 22348 28827	973 334 388 53 191 606 698 765 823 10 11	245 556 683 54 179 210 123 134 587 132	67 127 72 55 447 640 347 575 341 597 335 1321	27 119 85 56 239 474 557 559 147 505 291	25 33 14 57 1401 2970 1675 765 690 109 87	58 96 98 58 115 373 380 562 211 152	47 228 394 59 192 197 5662 540 306 179 143	41 42 11 60 151 119 113 121 119 114
Average std Sample 1 2 3 4 5 6 7 8	262 111 46 280 181 231 30 72 41 90 45	336 253 74 47 158 125 63 53 31 17 89 62	181 173 53 48 132 124 172 118 72 61 30 32	183 902 537 49 189 271 255 168 190 191 229 209	253 266 320 50 46 114 5 2 189 119 150 149	261 147 107 51 75 181 166 118 26773 28597 22498	187 224 170 52 550 174 190 479 22348 28827 27250 27071	973 334 388 53 191 606 698 765 823 10 11 11 14	245 556 683 54 179 210 123 134 587 132 240 183	67 127 72 55 447 640 347 575 341 597 335	27 119 85 56 239 474 557 559 147 505 291 269	25 33 14 57 1401 2970 1675 765 690 109 87 96	58 96 98 58 115 373 380 562 211 152 174 326	47 228 394 59 192 197 5662 540 306 179 143 179	41 42 11 60 151 119 113 121 119 114 112 81
Average std Sample 1 2 3 4 5 6 7 8 9	262 111 46 280 181 231 30 72 41 90 45 178	336 253 74 47 158 125 63 53 31 17 89 62 87	181 173 53 48 132 124 172 118 72 61 30 32 39	183 902 537 49 189 271 255 168 190 191 229 209 1919	253 266 320 50 46 114 5 2 189 119 150 149 1276	261 147 107 51 75 181 166 118 26773 28597 22498 21432 23373	187 224 170 52 550 174 190 479 22348 28827 27250 27071 24083	973 334 388 53 191 606 698 765 823 10 11 14 175	245 556 683 54 179 210 123 134 587 132 240 183 118	67 127 72 55 447 640 347 575 341 597 335 1321 733	27 119 85 56 239 474 557 559 147 505 291 269 1295	25 33 14 57 1401 2970 1675 765 690 109 87 96 104	58 96 98 58 115 373 380 562 211 152 174 326 266	47 228 394 59 192 197 5662 540 306 179 143 179 157	41 42 11 60 151 119 113 121 119 114 112 81 311
Average std Sample 1 2 3 4 5 6 7 8 9 9 10	262 111 46 280 181 231 30 72 41 90 45 178 33	336 253 74 47 158 125 63 53 31 17 89 62 87 61	181 173 53 48 132 124 172 118 72 61 30 32 39 40	183 902 537 49 189 271 255 168 190 191 229 209 1919 132	253 266 320 50 46 114 5 2 189 119 150 149 1276 74	261 147 107 51 75 181 166 118 26773 28597 22498 21432 23373 20657	187 224 170 52 550 174 190 479 22348 28827 27250 27071 24083 21676	973 334 388 53 191 606 698 765 823 10 11 14 175 133	245 556 683 54 179 210 123 134 587 132 240 183 118 158	67 127 72 55 447 640 347 575 341 597 335 1321 733 223	27 119 85 56 239 474 557 559 147 505 291 269 1295 1285	25 33 14 57 1401 2970 1675 765 690 109 87 96 104 33	58 96 98 58 115 373 380 562 211 152 174 326 266 210	47 228 394 59 192 197 5662 540 306 179 143 179 157 164	41 42 11 60 151 119 113 121 119 114 112 81 311 136
Average std Sample 1 2 3 4 5 6 7 8 9 10 11	262 111 46 280 181 231 30 72 41 90 45 178 33 49	336 253 74 47 158 125 63 53 31 17 89 62 87 61 55	181 173 53 48 132 124 172 118 72 61 30 32 39 40 60	183 902 537 49 189 271 255 168 190 191 229 209 1919 132 259	253 266 320 50 46 114 5 2 189 119 150 149 1276 74 79	261 147 107 51 75 181 166 118 26773 28597 22498 21432 23373 20657 6559 1835	187 224 170 52 550 174 190 479 22348 28827 27250 27071 24083 21676 276	973 334 388 53 191 606 698 765 823 10 11 14 175 133 140	245 556 683 54 179 210 123 134 587 132 240 183 118 158 127	67 127 72 55 447 640 347 575 341 597 335 1321 733 223 298	27 119 85 56 239 474 557 559 147 505 291 269 1295 1285 882	25 33 14 57 1401 2970 1675 765 690 109 87 96 104 33 130	58 96 98 58 115 373 380 562 211 152 174 326 210 197	47 228 394 59 192 197 5662 540 306 179 143 179 157 164 87	41 42 11 60 151 119 113 121 119 114 112 81 311 136 235

Appendix I6: CONDENSATE COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

							Conder	isate							
~	-	-	-		_			nber of o	•						
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	8698	8236	6987	5661	7752	20770	8836	7372	6015	4047	20611	7313	12043	9242	8777
2 3	8432 7842	8694	12632	5696	7418	20068	8557	7593	6301	4165	20372	8473	26174	12147	8693
3 4	7383	9530 8808	11315 8810	5092 7596	6792 6855	18799 21107	7953 6714	8361 9370	5733 4671	4849 4136	20174 20555	8459 8293	10203 17204	15464 32440	8602 8381
5	5845	8735	9514	8144	7355	20922	7908	6570	3390	6914	20333 8253	8351	9987	9086	8066
6	3651	9048	11254	8144	7677	20922	10373	5203	3355	6449	6359	8339	10346	9036	7936
7	9454	60765	4122	8056	7269	23029	9551	6530	32086	10097	8137	9516	9604	12531	9591
8	11256	52234	4256	7148	8055	22399	6431	6674	20213	10260	7728	10098	8689	10104	8946
9	4145	12885	12145	7902	6960	17671	6252	5941	16971	11018	24150	11278	7886	9315	7948
10	5421	12067	14323	6124	5214	16974	6190	6254	22849	9870	22542	10763	7501	9178	7678
11	9252	6459	125432	5243	14543	16938	7562	5455	4415	7515	21809	8312	7778	8634	7511
12	12254	8242	10555	6475	5356	15325	7664	4256	2199	5215	12541	5154	7729	7572	6988
Average	7803	17142	19279	6774	7604	19570	7833	6632	10683	7045	16103	8696	11262	12062	8260
std	2664	18552	33580	1190	2355	2400	1330	1403	9799	2662	6853	1615	5405	6773	713
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	7960	7732	16302	7714	11257	13117	91056	11414	12961	16689	15959	19271	6660	16317	28701
2	7141	7582	166689	9878	10751	14800	14922	10868	15780	14577	6296	19059	17504	17348	21060
3	7586	6493	12756	6769	10608	31817	22965	10500	15341	12972	13427	18736	18346	18758	29108
4	8207	7133	13384	12235	10279	30501	22614	11042	18195	15038	9342	17639	27110	18591	18132
5	8957	7112	10704	10235	10970	12140	20886	11688	17576	15873	10289	17692	20919	19655	30713
6	9259	7909	11006	10909	10252	11131	21300	10447	11764	15016	1689	20636	9380	20246	33044
7	8717	7055	9608	8647	11030	12000	10493	12576	18380	14430	1935	19913	20770	16947	31137
8	9922	7017	4784	12115	10539	11131	12294	11686	14033	14702	1044	55146	18268	16198	25552
9	9902	7200	8416	10235	10142	12000	12294	45860	11966	14505	21693	5219	13115	16979	31081
10	9539	6942	7910	46112	12300	11968	11552	13077	5281	15323	21355	18786	20302	16106	31766
11	9492	6958	9332	17947	12360	10917	11812	12080	7634	15498	23276	16709	20053	14474	30482
12	7215	4245	6215	10124	9542	25874	10985	12812	16321	12728	21236	17276	18487	28713	29096
Average	8658	6948	23092	13577	10836	16450	21931	14504	13769	14779	12295	20507	17576	18361	28323
std	1013	934	45331	10624	834	7987	22314	9912	4113	1108	8425	11618	5510	3651	4530
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	11660	28904	40372	13443	14993	17540	15232	18930	15372	64738	30892	31927	10412	15420	16012
2	31173	34268	34629	14772	19361	17133	10461	15667	31120	18110	34446	22816	22734	13929	11178
3	29983	21224	33057	20107	19082	20987	9416	11953	23042	19737	22985	23370	23267	20857	6064
4	26965	26446	29603	15040	19901	19431	6152	50123	19940	21694	22850	15789	22547	18575	6459
5	29409	29601	25899	17232	32622	18461	6046	17982	21803	20824	20479	23136	24439	14151	3991
6	31319	35444	23642	20954	20050	18785	5955	16440	10311	19234	74668	21541	2248	16451	11106
7	28921	30566	14742	17401	18196	18958	20736	19612	9146	19965	21107	29894	21105	16833	16724
8	18150	29865	14152	17298	17839	19265	20443	18950	14576	19370	23011	34640	23814	21524	16412
9	23179	37308	17064	16353	18732	18748	20674	17171	14422	21141	20305	20273	14969	21975	10411
10	32992	21807	18257	16514	17616	18923	22016	17104	21374	20755	21042	23275	37416	20283	17463
11	18915	23680	20939 17921	16607	19229	20748	25750	10561	7706	30309 19794	20828	20152	13859	19806	11551
12	19681	29211		24995	18115 19645	25169	24271	14154	25786		22281 27908	17587	13529	16051	12360
Average std	25196	29027 5125	24190 8570	17560 3134	19645 4301	19512 2093	15596 7588	19054 10176	17883 7151	24639 13002	27908 15375	23700 5689	19195 8881	17988 2873	11644 4478
			0.570	5134	1001	4073	1.000	101/0	1131	13002	13313				
Samula	6732 46			40				52	54	55	54	57			
Sample	46	47	48	49	50	51	52	53	54	55	56	13827	58	59	60 1027
1	46 13570	47 16216	48 12296	12858	50 15002	51 13801	52 17014	18614	18995	18905	14677	13827	7356	17178	1937
1 2	46 13570 12400	47 16216 12899	48 12296 14217	12858 13836	50 15002 15419	51 13801 15801	52 17014 16445	18614 16116	18995 18603	18905 11158	14677 11865	13827 12933	7356 7373	17178 20123	1937 3046
1 2 3	46 13570 12400 13965	47 16216 12899 25698	48 12296 14217 15530	12858 13836 12616	50 15002 15419 27182	51 13801 15801 15840	52 17014 16445 15651	18614 16116 9106	18995 18603 17734	18905 11158 18086	14677 11865 14350	13827 12933 13035	7356 7373 3731	17178 20123 3768	1937 3046 2732
1 2 3 4	46 13570 12400 13965 12340	47 16216 12899 25698 12004	48 12296 14217 15530 14294	12858 13836 12616 17961	50 15002 15419 27182 25522	51 13801 15801 15840 17140	52 17014 16445 15651 17339	18614 16116 9106 5946	18995 18603 17734 17037	18905 11158 18086 16086	14677 11865 14350 14303	13827 12933 13035 12495	7356 7373 3731 13804	17178 20123 3768 4046	1937 3046 2732 2570
1 2 3 4 5	46 13570 12400 13965 12340 11614	47 16216 12899 25698 12004 30068	48 12296 14217 15530 14294 27243	12858 13836 12616 17961 15836	50 15002 15419 27182 25522 17189	51 13801 15801 15840 17140 24180	52 17014 16445 15651 17339 29773	18614 16116 9106 5946 6691	18995 18603 17734 17037 17264	18905 11158 18086 16086 15829	14677 11865 14350 14303 10350	13827 12933 13035 12495 12897	7356 7373 3731 13804 8652	17178 20123 3768 4046 4299	1937 3046 2732 2570 4206
1 2 3 4 5 6	46 13570 12400 13965 12340 11614 11803	47 16216 12899 25698 12004 30068 7302	48 12296 14217 15530 14294 27243 25324	12858 13836 12616 17961 15836 15914	50 15002 15419 27182 25522 17189 14718	51 13801 15801 15840 17140 24180 6681	52 17014 16445 15651 17339 29773 13912	18614 16116 9106 5946 6691 18265	18995 18603 17734 17037 17264 16518	18905 11158 18086 16086 15829 15696	14677 11865 14350 14303 10350 17148	13827 12933 13035 12495 12897 5047	7356 7373 3731 13804 8652 4012	17178 20123 3768 4046 4299 3564	1937 3046 2732 2570 4206 5887
1 2 3 4 5 6 7	46 13570 12400 13965 12340 11614 11803 11019	47 16216 12899 25698 12004 30068 7302 6411	48 12296 14217 15530 14294 27243 25324 26204	12858 13836 12616 17961 15836 15914 17320	50 15002 15419 27182 25522 17189 14718 15322	51 13801 15801 15840 17140 24180 6681 4256	52 17014 16445 15651 17339 29773 13912 15844	18614 16116 9106 5946 6691 18265 16665	18995 18603 17734 17037 17264 16518 18882	18905 11158 18086 16086 15829 15696 14542	14677 11865 14350 14303 10350 17148 9987	13827 12933 13035 12495 12897 5047 7266	7356 7373 3731 13804 8652 4012 10958	17178 20123 3768 4046 4299 3564 2670	1937 3046 2732 2570 4206 5887 6031
1 2 3 4 5 6 7 8	46 13570 12400 13965 12340 11614 11803 11019 10524	47 16216 12899 25698 12004 30068 7302 6411 10472	48 12296 14217 15530 14294 27243 25324 26204 26236	12858 13836 12616 17961 15836 15914 17320 21798	50 15002 15419 27182 25522 17189 14718 15322 15646	51 13801 15801 15840 17140 24180 6681 4256 1538	52 17014 16445 15651 17339 29773 13912 15844 15690	18614 16116 9106 5946 6691 18265 16665 16273	18995 18603 17734 17037 17264 16518 18882 19855	18905 11158 18086 16086 15829 15696 14542 14343	14677 11865 14350 14303 10350 17148 9987 73648	13827 12933 13035 12495 12897 5047 7266 6653	7356 7373 3731 13804 8652 4012 10958 7729	17178 20123 3768 4046 4299 3564 2670 2262	1937 3046 2732 2570 4206 5887 6031 22441
1 2 3 4 5 6 7 8 9	46 13570 12400 13965 12340 11614 11803 11019 10524 10855	47 16216 12899 25698 12004 30068 7302 6411 10472 9563	48 12296 14217 15530 14294 27243 25324 26204 26236 14426	12858 13836 12616 17961 15836 15914 17320 21798 16925	50 15002 15419 27182 25522 17189 14718 15322 15646 14833	51 13801 15801 15840 17140 24180 6681 4256 1538 1307	52 17014 16445 15651 17339 29773 13912 15844 15690 17496	18614 16116 9106 5946 6691 18265 16665 16273 14761	18995 18603 17734 17037 17264 16518 18882 19855 39180	18905 11158 18086 16086 15829 15696 14542 14343 15099	14677 11865 14350 14303 10350 17148 9987 73648 13710	13827 12933 13035 12495 12897 5047 7266 6653 6714	7356 7373 3731 13804 8652 4012 10958 7729 10015	17178 20123 3768 4046 4299 3564 2670 2262 3977	1937 3046 2732 2570 4206 5887 6031 22441 6335
1 2 3 4 5 6 7 8 9 10	46 13570 12400 13965 12340 11614 11803 11019 10524 10855 9681	47 16216 12899 25698 12004 30068 7302 6411 10472 9563 13491	48 12296 14217 15530 14294 27243 25324 26204 26236 14426 13809	12858 13836 12616 17961 15836 15914 17320 21798 16925 13887	50 15002 15419 27182 25522 17189 14718 15322 15646 14833 15188	51 13801 15801 15840 17140 24180 6681 4256 1538 1307 16417	52 17014 16445 15651 17339 29773 13912 15844 15690 17496 19185	18614 16116 9106 5946 6691 18265 16665 16273 14761 37337	18995 18603 17734 17037 17264 16518 18882 19855 39180 36611	18905 11158 18086 16086 15829 15696 14542 14343 15099 13277	14677 11865 14350 14303 10350 17148 9987 73648 13710 14969	13827 12933 13035 12495 12897 5047 7266 6653 6714 6310	7356 7373 3731 13804 8652 4012 10958 7729 10015 10570	17178 20123 3768 4046 4299 3564 2670 2262 3977 3522	1937 3046 2732 2570 4206 5887 6031 22441 6335 2353
1 2 3 4 5 6 7 8 9 10 11	46 13570 12400 13965 12340 11614 11803 11019 10524 10855 9681 13460	47 16216 12899 25698 12004 30068 7302 6411 10472 9563 13491 13486	48 12296 14217 15530 14294 27243 25324 26204 26236 14426 13809 14999	12858 13836 12616 17961 15836 15914 17320 21798 16925 13887 13053	50 15002 15419 27182 25522 17189 14718 15322 15646 14833 15188 16119	51 13801 15801 15840 17140 24180 6681 4256 1538 1307 16417 14435	52 17014 16445 15651 17339 29773 13912 15844 15690 17496 19185 18146	18614 16116 9106 5946 6691 18265 16665 16273 14761 37337 21460	18995 18603 17734 17037 17264 16518 18882 19855 39180 36611 37689	18905 11158 18086 16086 15829 15696 14542 14343 15099 13277 13808	14677 11865 14350 14303 10350 17148 9987 73648 13710 14969 13755	13827 12933 13035 12495 12897 5047 7266 6653 6714 6310 8457	7356 7373 3731 13804 8652 4012 10958 7729 10015 10570 5418	17178 20123 3768 4046 4299 3564 2670 2262 3977 3522 4179	1937 3046 2732 2570 4206 5887 6031 22441 6335 2353 2658
1 2 3 4 5 6 7 8 9 10	46 13570 12400 13965 12340 11614 11803 11019 10524 10855 9681	47 16216 12899 25698 12004 30068 7302 6411 10472 9563 13491	48 12296 14217 15530 14294 27243 25324 26204 26236 14426 13809	12858 13836 12616 17961 15836 15914 17320 21798 16925 13887	50 15002 15419 27182 25522 17189 14718 15322 15646 14833 15188	51 13801 15801 15840 17140 24180 6681 4256 1538 1307 16417	52 17014 16445 15651 17339 29773 13912 15844 15690 17496 19185	18614 16116 9106 5946 6691 18265 16665 16273 14761 37337	18995 18603 17734 17037 17264 16518 18882 19855 39180 36611	18905 11158 18086 16086 15829 15696 14542 14343 15099 13277	14677 11865 14350 14303 10350 17148 9987 73648 13710 14969	13827 12933 13035 12495 12897 5047 7266 6653 6714 6310	7356 7373 3731 13804 8652 4012 10958 7729 10015 10570	17178 20123 3768 4046 4299 3564 2670 2262 3977 3522	1937 3046 2732 2570 4206 5887 6031 22441 6335 2353

Appendix I7: EVAPORATOR COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

						Evapor	rator o	epv							
							umbe	r of da	ř –					1	
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	381	505	114	43	303	106	144	82	49	79	4	58	56	2122	26
2	78	590	137	18	106	126	94	80	66	207	6	53	63	303	119
3 4	127 128	358 710	276 293	9	82 257	63 52	69 128	60 555	87 90	266 170	180 103	48 40	89 80	143 169	92 72
5	169	726	647	10	160	76	125	47	120	162	133	63	109	153	72
6	173	622	272	10	133	105	103	52	86	95	107	69	96	157	78
7	753	757	563	17	119	50	96	78	96	187	142	51	83	583	146
8	667	1122	884	368	70	50	103	103	75	166	144	37	77	620	138
9	617	626	240	323	87	42	125	161	75	65	66	33	76	177	85
10	399	648	181	64	45	44	88	129	51	78	109	40	78	167	86
11	439	67	166	174	78	41	107	73	94	99	4	5	47	159	6
12	334	325	131	191	78	38	112	48	12	132	6	59	46	3	4
Average	355	588	325	103	127	66	108	122	75	142	84	46	75	396	77
std	230	262	243	130	79	30	20	140	28	61	64	17	19	573	46
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	4	379	219	117	142	160	74	192	134	55	299	131	58	8832	682
2	8	886	199	148	169	167	44	184	132	103	125	141	118	8968	482
3	6	797	955	189	281	159	178	2305	272	247	81	124	14	94	527
4	612 564	736	749	148	599	138	479	218	111	104	115	94	74	62	693
5 6	564 34	648 732	230 127	124 67	288 155	151 74	289 238	205 15	107 110	194 170	114 188	122 100	82 113	223 52	534 5138
7	29	746	529	74	228	201	307	157	121	875	196	84	167	178	540
8	624	178	113	50	105	156	242	91	69	285	190	318	185	246	502
9	677	120	180	63	153	132	220	178	40	222	164	91	276	288	370
10	927	154	206	119	92	410	207	192	46	185	224	87	224	905	170
11	841	206	150	159	136	105	422	111	43	432	161	113	143	764	251
12	705	717	128	165	71	129	410	23	36	145	154	120	163	184	1129
Average	419	525	315	119	202	165	259	323	102	289	168	127	135	1733	918
std	369	292	277	46	143	83	132	628	66	230	58	63	74	3358	1351
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	177	955	175	95	62	188	150	179	309	473	787	2979	103	49	15
2	657	965	122	111	255	259	123	143	309	419	395	2310	437	52	16
3	808	453	181	82		304				500					
4					50		77	141	26	592	412	2443	257	62	129
	643	280	173	62	203	36	87	11	59	528	24	2144	260	62 64	24
5	562	280 350	173 259	62 347	203 84	36 85	87 163	11 47	59 181	528 190	24 124	2144 68	260 319	62 64 77	24 40
6	562 572	280 350 237	173 259 111	62 347 249	203 84 434	36 85 124	87 163 191	11 47 52	59 181 885	528 190 227	24 124 96	2144 68 54	260 319 800	62 64 77 126	24 40 31
6 7	562 572 446	280 350 237 208	173 259 111 158	62 347 249 74	203 84 434 349	36 85 124 95	87 163 191 213	11 47 52 22	59 181 885 33	528 190 227 108	24 124 96 99	2144 68 54 85	260 319 800 204	62 64 77 126 41	24 40 31 33
6	562 572	280 350 237	173 259 111	62 347 249	203 84 434	36 85 124	87 163 191	11 47 52	59 181 885	528 190 227	24 124 96	2144 68 54	260 319 800	62 64 77 126	24 40 31
6 7 8	562 572 446 453	280 350 237 208 105	173 259 111 158 299	62 347 249 74 44	203 84 434 349 340	36 85 124 95 24	87 163 191 213 311	11 47 52 22 107	59 181 885 33 35	528 190 227 108 774	24 124 96 99 308	2144 68 54 85 112	260 319 800 204 138	62 64 77 126 41 19	24 40 31 33 36
6 7 8 9	562 572 446 453 663	280 350 237 208 105 823	173 259 111 158 299 148	62 347 249 74 44 56	203 84 434 349 340 271	36 85 124 95 24 321	87 163 191 213 311 204	11 47 52 22 107 298	59 181 885 33 35 473	528 190 227 108 774 615	24 124 96 99 308 56	2144 68 54 85 112 79	260 319 800 204 138 2885	62 64 77 126 41 19 30	24 40 31 33 36 34
6 7 8 9 10	562 572 446 453 663 803	280 350 237 208 105 823 66	173 259 111 158 299 148 222	62 347 249 74 44 56 48	203 84 434 349 340 271 126	36 85 124 95 24 321 329	87 163 191 213 311 204 317	11 47 52 22 107 298 442	59 181 885 33 35 473 426	528 190 227 108 774 615 521	24 124 96 99 308 56 63	2144 68 54 85 112 79 171	260 319 800 204 138 2885 104	62 64 77 126 41 19 30 31	24 40 31 33 36 34 20
6 7 8 9 10 11	562 572 446 453 663 803 498	280 350 237 208 105 823 66 548	173 259 111 158 299 148 222 144	62 347 249 74 44 56 48 49	203 84 434 349 340 271 126 417	36 85 124 95 24 321 329 552	87 163 191 213 311 204 317 280	11 47 52 22 107 298 442 461	59 181 885 33 35 473 426 552	528 190 227 108 774 615 521 268	24 124 96 99 308 56 63 1073	2144 68 54 85 112 79 171 41	260 319 800 204 138 2885 104 62	62 64 77 126 41 19 30 31 20	24 40 31 33 36 34 20 25
6 7 8 9 10 11 12	562 572 446 453 663 803 498 487	280 350 237 208 105 823 66 548 398	173 259 111 158 299 148 222 144 142	62 347 249 74 44 56 48 49 50	203 84 434 349 340 271 126 417 392	36 85 124 95 24 321 329 552 613	 87 163 191 213 311 204 317 280 146 	11 47 52 22 107 298 442 461 226	59 181 885 33 35 473 426 552 309	528 190 227 108 774 615 521 268 659	24 124 96 99 308 56 63 1073 2033	2144 68 54 85 112 79 171 41 110	260 319 800 204 138 2885 104 62 59	62 64 77 126 41 19 30 31 20 9	24 40 31 33 36 34 20 25 32
6 7 8 9 10 11 12 Average	562 572 446 453 663 803 498 487 564 173 46	280 350 237 208 105 823 66 548 398 449	173 259 111 158 299 148 222 144 142 142 178	62 347 249 74 44 56 48 49 50 106 95 49	203 84 434 349 340 271 126 417 392 249	36 85 124 95 24 321 329 552 613 244	87 163 191 213 311 204 317 280 146 189	11 47 52 22 107 298 442 461 226 177 154 53	 59 181 885 33 35 473 426 552 309 300 	528 190 227 108 774 615 521 268 659 448 208 55	24 124 96 99 308 56 63 1073 2033 456	2144 68 54 85 112 79 171 41 110 883	260 319 800 204 138 2885 104 62 59 469	62 64 77 126 41 19 30 31 20 9 48	24 40 31 33 36 34 20 25 32 32 36
6 7 8 9 10 11 12 Average std Sample 1	562 572 446 453 663 803 498 487 564 173 46 18	280 350 237 208 105 823 66 548 398 449 313 47 71	173 259 111 158 299 148 222 144 142 178 56 48 30	62 347 249 74 44 56 48 49 50 106 95 49 141	203 84 434 349 271 126 417 392 249 142 50 18	36 85 124 95 24 321 329 552 613 244 192 51 28	87 163 191 213 311 204 317 280 146 189 81 52 8	11 47 52 22 107 298 442 461 226 177 154 53 403	59 181 885 33 473 426 552 309 300 259 54 17	528 190 227 108 774 615 521 268 659 448 208 55 19	24 124 96 99 308 56 63 1073 2033 456 593 56 6 9	2144 68 54 85 112 79 171 41 110 883 1187 57 23	260 319 800 204 138 2885 104 62 59 469 789 58 31	62 64 77 126 41 19 30 31 20 9 48 32 59 121	24 40 31 33 36 34 20 25 32 32 36 30 60 43
6 7 8 9 10 11 12 Average std Sample 1 2	562 572 446 453 663 803 498 487 564 173 46 18 39	280 350 237 208 105 823 66 548 398 449 313 47 71 147	173 259 111 158 299 148 222 144 142 178 56 48 30 41	62 347 249 74 44 56 48 49 50 106 95 49 141 24	203 84 434 349 271 126 417 392 249 142 50 18 18	36 85 124 95 24 329 552 613 244 192 51 28 32	87 163 191 213 311 204 317 280 146 189 81 52 8 16	111 47 52 22 107 298 442 461 226 177 154 53 403 318	59 181 885 33 35 473 426 552 309 300 259 54 17 113	528 190 227 108 774 615 521 268 659 448 208 55 19 9	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15	260 319 800 204 138 2885 104 62 59 469 789 58 31 10	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334	24 40 31 33 36 34 20 25 32 32 36 30 60 43 49
6 7 8 9 10 11 12 Average std Sample 1 2 3	562 572 446 453 663 803 498 487 564 173 46 18 39 40	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36	203 84 434 349 271 126 417 392 249 142 50 18 19 61	36 85 124 95 24 329 552 613 244 192 51 28 32 92	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110	59 181 885 33 35 473 426 552 309 300 259 54 17 113 150	528 190 227 108 774 615 521 268 659 448 55 19 9 9 28	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142	24 40 31 33 36 34 20 25 32 36 30 60 43 49 20
6 7 8 9 10 11 12 Average std Sample 1 2 3 4	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36 39	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87	59 181 885 33 35 473 426 552 309 300 259 54 17 113 150 45	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163	24 40 31 33 36 34 20 25 32 32 36 60 43 49 20 16
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36 39 40	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23	59 181 885 33 35 473 426 552 309 300 259 54 17 113 150 45 52	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 78 14	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135	24 40 31 33 36 34 20 25 32 32 36 60 43 49 20 16 25
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62	62 347 249 74 44 56 48 49 50 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 106 106 107 107 106 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 10 10 10	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73 185	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 78 14 25	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109	24 40 31 33 60 25 32 36 30 43 49 20 16 25 51
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38	62 347 249 74 44 56 48 49 50 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 3 9 40 3 31	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73 185 169	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 14 25 78 14	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 150	24 40 31 33 36 34 20 25 32 36 60 43 49 20 16 25 51 8
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34 41	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129 35	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38 43	62 347 249 74 44 56 48 49 50 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 3 9 40 2 3 3 1 3 55	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73 185 169 408	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27 19	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26 25	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12 20	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21 52	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 14 25 78 14 25 17 13	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46 21	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168 34	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27 266	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 150 113	24 40 31 33 36 34 20 25 32 36 30 60 43 49 20 16 25 51 8 8 123
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34 41 2130	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129 35 88	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38 43 59	62 347 249 74 44 56 48 49 50 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 95 49 106 3 9 40 2 3 3 1 3 55 78	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73 185 169 408 318	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27 19 9	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26 25 24	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12 20 41	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21 52 16	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 14 25 78 14 25 17 13 1	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46 21 17	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168 34 39	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27 266 217	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 150 113 109	24 40 31 33 36 34 20 25 32 36 30 60 43 49 20 16 25 51 8 8 123 217
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34 41 2130 1799	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129 35 88 88 105	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38 43 59 62	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36 39 40 23 31 35 78 37	203 84 434 349 271 126 417 392 249 142 50 18 18 19 61 67 73 185 169 408 318 72	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27 19 9 14	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26 25 24 44	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12 20 41 22 20 41 23	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21 52 16 21	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 14 25 78 14 25 17 13 1 17	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46 21 17 16	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168 34 39 11	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27 266 217 223	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 150 113 109 95	24 40 31 33 6 25 32 36 30 60 43 49 20 16 25 51 8 123 217 135
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10 11	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34 41 2130 1799 897	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129 35 888 105 120	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38 43 59 62 96	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36 39 40 23 31 35 78 37 29	203 84 434 349 271 126 417 392 249 142 50 18 19 61 67 73 185 169 408 318 72 17	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27 19 9 14 18	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26 25 24 44 14	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12 20 41 23 43	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21 52 16 21 22	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 19 9 28 78 14 25 17 13 17 13 17 93	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46 21 17 16 190	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168 34 39 11 9	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27 266 217 223 119	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 95 119	24 40 31 33 6 25 32 36 30 60 43 49 20 16 25 51 8 123 217 135 68
6 7 8 9 10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10	562 572 446 453 663 803 498 487 564 173 46 18 39 40 27 49 48 34 41 2130 1799	280 350 237 208 105 823 66 548 398 449 313 47 71 147 61 62 75 96 129 35 88 88 105	173 259 111 158 299 148 222 144 142 178 56 48 30 41 67 129 118 62 38 43 59 62	62 347 249 74 44 56 48 49 50 106 95 49 141 24 36 39 40 23 31 35 78 37	203 84 434 349 271 126 417 392 249 142 50 18 18 19 61 67 73 185 169 408 318 72	36 85 124 95 24 329 552 613 244 192 51 28 32 92 15 27 47 27 19 9 14	87 163 191 213 311 204 317 280 146 189 81 52 8 16 27 15 29 59 26 25 24 44	11 47 52 22 107 298 442 461 226 177 154 53 403 318 110 87 23 218 12 20 41 22 20 41 23	59 181 885 33 35 473 426 552 300 259 54 17 113 150 45 52 17 21 52 16 21	528 190 227 108 774 615 521 268 659 448 208 55 19 9 28 78 14 25 78 14 25 17 13 1 17	24 124 96 99 308 56 63 1073 2033 456 593 56 69 16 32 51 44 22 46 21 17 16	2144 68 54 85 112 79 171 41 110 883 1187 57 23 15 18 172 51 171 168 34 39 11	260 319 800 204 138 2885 104 62 59 469 789 58 31 10 35 88 102 51 27 266 217 223	62 64 77 126 41 19 30 31 20 9 48 32 59 121 334 142 163 135 109 150 113 109 95	24 40 31 33 6 25 32 36 30 60 43 49 20 16 25 51 8 123 217 135

Appendix I8: CONCENTRATOR COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

							Concer								
Commla	1	2	3	4	5	6	Nui 7	mber of	days 9	10	11	12	13	14	15
Sample 1	1 20	2 34	25	4 6	5 15	6 87	10	8 13	15	14	3	31	13 79	14 87	15
2	18	83	37	4	26	87 92	34	12	13	22	6	33	52	22	23
3	27	19	42	4	39	36	12	12	16	31	74	20	21	129	23
4	25	15	21	5	41	17	27	11	10	30	24	17	21	24	25
5	20	18	47	6	65	16	21	20	19	19	34	18	57	21	23
6	36	13	44	6	86	16	17	11	21	12	42	21	24	22	24
7	32	14	72	11	102	22	17	15	19	33	51	19	19	34	35
8	31	27	64	38	53	20	16	13	26	28	39	9	17	34	34
9	34	33	35	40	16	21	14	13	21	12	40	8	19	38	41
10	36	32	32	59	16	19	13	13	15	17	37	17	25	35	42
11	31	20	28	2	10	16	23	13	15	26	35	27	17	34	9
12	40	15	18	13	15	15	20	12	14	68	48	34	7	6	7
Average	29	27	39	16	40	31	19	13	18	26	36	21	30	41	37
std	7	19	16	19	31	28	7	2	4	15	19	9	21	34	39
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	7	19	46	26	78	39	390	90	62	27	28	11	19	724	49
2	27	18	3031	52	91	24	252	62	125	31	24	13	19	35	37
3	24	241	521	27	67 60	17	24	67	25	101	26	25	25	25	23
4 5	14	159	87 40	22	69 68	67 74	14 9	126	46	295	15	51	26	29 40	13
5 6	31 16	57 55	40 34	24 29	68 133	74	38	82 84	43 49	193 180	18 13	38 34	35 43	40 54	20 24
7	17	50	333	35	244	80	33	8	49 69	174	32	33	22	67	-24 68
8	34	41	116	41	244 74	19	39	8 16	73	312	- 32 - 98	47	22	43	40
9	39	40	0	41	31	19	79	10	19	137	154	50	33	25	38
10	42	30	29	28	45	33	71	20	21	53	152	46	20	23	76
11	29	34	27	30	84	22	68	56	14	29	12	62	28	24	78
12	19	57	22	41	143	44	94	63	21	25	14	59	1319	585	30
Average	25	67	357	33	94	43	93	58	47	130	49	39	134	140	41
std	11	66	856	9	57	25	114	36	32	103	54	17	373	243	22
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	37	33	21	35	45	20	38	22	35	67	32	30	106	43	18
2	35	58	19	37	49	45	34	30	47	57	27	40	23	52	19
3	29	36	50	34	48	66	32	30	37	78	37	953	11	53	36
4	28	34	35	37	52	38	32	53	34	58	51	190	7	30	30
5	27	30	24	40	34	30	54	61	109	62	44	160	16	22	37
6	60	25	23	45	39	34	117	28	40	35	24	46	13	19	42
7	62 60	25 23	39 20	53 24	38 84	36 49	82 79	456 31	38 59	37 30	25 24	21 18	22 16	21 19	113 65
9	41	25	32	24 194	33	51	10	2199	60	35	36	18	15	26	40
10	25	28	26	256	30	57	68	2199	115	22	36	20	160	36	15
11	22	23	37	162	23	66	32	124	65	27	45	45	36	41	36
12	108	25	48	33	21	66	26	37	111	20	86	37	45	21	55
Average	45	30	31	79	41	47	50	258	63	44	39	132	39	32	42
std	25	10	11	78	17	15	31	623	31	19	17	265	47	13	27
Sample	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
		21	13	5	8	3	10	5	3	28	59	2	31	22	91
1	19	21	15	5	0	-									
1 2	19 13	49	27	1	3	24	10	9	5	154	28	3	104	25	33
										154 5	28 5	3 119	104 94	25 35	33 25
2	13	49	27	1	3	24	10	9	5						
2 3	13 15	49 52	27 4	1 104	3 8	24 5	10 7	9 10	5 8	5	5	119	94	35	25
2 3 4	13 15 23	49 52 25	27 4 34	1 104 3	3 8 14	24 5 8	10 7 7	9 10 1	5 8 7	5 9	5 7	119 1	94 64 6 1	35 26	25 24
2 3 4 5 6 7	13 15 23 39 110 21	49 52 25 11 15 18	27 4 34 6 17 3	1 104 3 5 16 16	3 8 14 4 4 6	24 5 8 20 140 17	10 7 276 77 22	9 10 1 2 5 8	5 8 7 47 7 11	5 9 4 4 3	5 7 6 8 13	119 1 3 4 26	94 64 1 2	35 26 34 479 28	25 24 41 11 17
2 3 4 5 6 7 8	13 15 23 39 110 21 16	49 52 25 11 15 18 31	27 4 34 6 17 3 9	1 104 3 5 16 16 9	3 8 14 4 4 6 17	24 5 8 20 140 17 21	10 7 276 77 22 11	9 10 1 2 5 8 4	5 8 7 47 7 11 10	5 9 4 4 3 12	5 7 6 8 13 9	119 1 3 4	94 64 1 2 16	35 26 34 479 28 25	25 24 41 11 17 10
2 3 4 5 6 7 8 9	13 15 23 39 110 21 16 89	49 52 25 11 15 18 31 41	27 4 34 6 17 3 9 8	1 104 3 5 16 16 9 9	3 8 14 4 4 6 17 12	24 5 8 20 140 17 21 3	10 7 276 77 22 11 65	9 10 1 2 5 8 4 6	5 8 7 47 7 11 10 14	5 9 4 3 12 8	5 7 6 8 13 9 9	119 1 3 4 26 18 1	94 64 1 2 16 6	35 26 34 479 28 25 26	25 24 41 11 17 10 127
2 3 4 5 6 7 8 9 10	13 15 23 39 110 21 16 89 89	49 52 25 11 15 18 31 41 52	27 4 34 6 17 3 9 8 1070	1 104 3 5 16 16 9 9 6	3 8 14 4 6 17 12 18	24 5 8 20 140 17 21 3 133	10 7 276 77 22 11 65 19	9 10 1 2 5 8 4 6 9	5 8 7 47 7 11 10 14 7	5 9 4 3 12 8 9	5 7 6 8 13 9 9 23	119 1 3 4 26 18 1 3	94 64 1 2 16 6 2	35 26 34 479 28 25 26 22	25 24 41 11 17 10 127 11
2 3 4 5 6 7 8 9 10 11	13 15 23 39 110 21 16 89 89 58	 49 52 25 11 15 18 31 41 52 56 	27 4 34 6 17 3 9 8 1070 30	$ \begin{array}{c} 1\\ 104\\ 3\\ 5\\ 16\\ 16\\ 9\\ 9\\ 6\\ 33\\ \end{array} $	3 8 14 4 6 17 12 18 13	24 5 8 20 140 17 21 3 133 4	10 7 276 77 22 11 65 19 36	9 10 1 2 5 8 4 6 9 5	5 8 7 47 7 11 10 14 7 99	5 9 4 3 12 8 9 10	5 7 6 8 13 9 9 23 2	119 1 3 4 26 18 1 3 6	94 64 1 2 16 6 2 127	35 26 34 479 28 25 26 22 14	25 24 41 17 10 127 11 8
2 3 4 5 6 7 8 9 10 11 12	13 15 23 39 110 21 16 89 58 12	 49 52 25 11 15 18 31 41 52 56 33 	27 4 34 6 17 3 9 8 1070 30 4	$ \begin{array}{r} 1 \\ 104 \\ 3 \\ 5 \\ 16 \\ 16 \\ 9 \\ 9 \\ 6 \\ 33 \\ 19 \\ \end{array} $	3 8 14 4 6 17 12 18 13 18	24 5 8 20 140 17 21 3 133 4 10	10 7 276 77 22 11 65 19 36 11	9 10 1 2 5 8 4 6 9 5 1	5 8 7 47 7 11 10 14 7 99 91	5 9 4 3 12 8 9 10 7	5 7 6 8 13 9 9 23 2 7	$ \begin{array}{r} 119\\1\\4\\26\\18\\1\\3\\6\\6\\6\end{array} $	94 64 1 2 16 6 2 127 14	35 26 34 479 28 25 26 22 14 16	25 24 41 17 10 127 11 8 5
2 3 4 5 6 7 8 9 10 11	13 15 23 39 110 21 16 89 89 58	 49 52 25 11 15 18 31 41 52 56 	27 4 34 6 17 3 9 8 1070 30	$ \begin{array}{c} 1\\ 104\\ 3\\ 5\\ 16\\ 16\\ 9\\ 9\\ 6\\ 33\\ \end{array} $	3 8 14 4 6 17 12 18 13	24 5 8 20 140 17 21 3 133 4	10 7 276 77 22 11 65 19 36	9 10 1 2 5 8 4 6 9 5	5 8 7 47 7 11 10 14 7 99	5 9 4 3 12 8 9 10	5 7 6 8 13 9 9 23 2	119 1 3 4 26 18 1 3 6	94 64 1 2 16 6 2 127	35 26 34 479 28 25 26 22 14	25 24 41 17 10 127 11 8

Appendix I9: CPV TANK COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

						(CPV tar								
~ -					_			er of da	•						
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	117	165	144	45	296	75	70	117	82	55	3	80	109	52	145
23	131 114	167 128	156 155	17 16	333 216	76 124	74 65	78 73	80 75	77 90	135 129	129 61	65 94	493 479	112 106
4	82	128	133	21	175	75	122	85	55	90 99	129	62	61	473	86
5	82 89	163	155	18	107	72	122	73	63	107	114	66	72	208	90
6	90	146	155	29	107	64	94	70	68	97	93	69	56	321	104
7	91	182	171	672	88	67	96	84	70	327	102	63	52	328	86
8	95	302	289	521	79	74	89	76	75	331	97	56	56	299	85
9	114	370	410	331	258	55	110	81	55	40	92	34	84	316	82
10	95	329	476	231	265	56	94	70	67	56	95	70	84	306	82
11	97	350	479	181	165	45	75	101	1148	57	98	30	71	434	308
12	82	256	778	115	1136	46	75	79	361	65	75	44	68	250	171
Average	100	227	296	183	269	69	90	82	183	117	97	64	73	330	121
std	16	89	200	220	286	21	20	14	315	101	35	25	17	128	65
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	189	961	5562	2538	87	77	178	78	269	4206	604	1368	204	1202	143
2	202	251	5575	1188	29	105	179	112	291	909	261	1046	187	1361	121
3	255	271	5407	1317	229	150	150	80	268	384	882	1142	242	1514	127
4	15	277	19501	1519	226	138	191	85	312	341	1121	77	187	162	125
5	13	295	18667	1251	145	25	124	80	264	348	52	155	753	151	91
6	11	239	1524	1497	107	28	117	17761	2752	266	43	134	830	95	146
7	13	248	3130	1892	288	181	92	8791	2929	333	42	144	758	87	266
8	7	1259	2758	1248	58	141	98	550	4538	77	0	134	71	94	130
9	6	1192	968	1010	75	136	80	98	1148	77	42	218	145	75	245
10	6	895	2509	733	84	669	296	212	5033	107	146	1252	1560	81	126
11	7	330	4225	668	71	146	112	266	4419	126	961	218	1776	84	448
12	1151	3677	3305	88	71	183	90	128	4213	777	740	180	1545	77	643
Average	156	825 983	6094	1246	123 82	165	142 62	2353 5450	2203 1973	663 1146	408 423	506 521	688 627	415 574	218
std Sample	327 31	32	6253 33	620 34	35	167 36	37	38	39	40	425	42	43	44	167 45
3 anpre	1122	- <u>32</u> - 89	346	394	643	135	153	465	1337	969	443	37	242	41	51
2	151	97	258	422	508	127	95	325	171	125	430	35	248	117	3680
3	122	90	255	350	495	103	84	265	188	155	286	35	277	530	3590
4	58	472	339	347	448	94	90	288	171	103	235	73	269	415	3976
5	55	284	361	292	308	581	96	212	150	262	239				
6	96	207						212	159	363	251	259	275	381	120
7	433	297	409	368	233	717	108	191	105	363 77	220	259 253	275 245	381 398	120 130
8		324	409 528	368 234	233 183	717 566	108 127								
	264							191	105	77	220	253	245	398	130
9		324	528	234	183	566	127	191 191	105 113	77 263	220 280	253 901	245 246	398 372	130 117
9 10	264	324 287	528 469	234 430	183 163	566 622	127 120	191 191 184	105 113 115	77 263 71	220 280 115	253 901 918	245 246 199	398 372 1236	130 117 54
10 11	264 260 129 96	324 287 276 249 300	528 469 358 255 2201	234 430 493 164 159	183 163 151 1456 967	566 622 870 112 167	127 120 684 519 549	191 191 184 268 248 480	105 113 115 115 114 136	77 263 71 78 69 44	220 280 115 52 30 39	253 901 918 1092 1496 547	245 246 199 1023 358 245	398 372 1236 57 48 50	130 117 54 48 55 46
10 11 12	264 260 129 96 97	324 287 276 249 300 261	528 469 358 255 2201 355	234 430 493 164 159 168	183 163 151 1456 967 1168	566 622 870 112 167 230	127 120 684 519 549 518	191 191 184 268 248 480 452	105 113 115 115 114 136 128	77 263 71 78 69 44 235	220 280 115 52 30 39 38	253 901 918 1092 1496 547 567	245 246 199 1023 358 245 35	398 372 1236 57 48 50 60	130 117 54 48 55 46 64
10 11 12 Awerage	264 260 129 96 97 240	324 287 276 249 300 261 252	528 469 358 255 2201 355 511	234 430 493 164 159 168 318	183 163 151 1456 967 1168 560	566 622 870 112 167 230 360	127 120 684 519 549 518 262	191 191 184 268 248 480 452 297	105 113 115 115 114 136 128 238	77 263 71 78 69 44 235 213	220 280 115 52 30 39 38 201	253 901 918 1092 1496 547 567 518	245 246 199 1023 358 245 35 305	398 372 1236 57 48 50 60 309	130 117 54 48 55 46 64 994
10 11 12 Average std	264 260 129 96 97 240 298	324 287 276 249 300 261 252 112	528 469 358 255 2201 355 511 539	234 430 493 164 159 168 318 114	183 163 151 1456 967 1168 560 427	566 622 870 112 167 230 360 287	127 120 684 519 549 518 262 230	191 191 184 268 248 480 452 297 110	105 113 115 115 114 136 128 238 347	77 263 71 78 69 44 235 213 257	220 280 115 52 30 39 38 201 147	253 901 918 1092 1496 547 567 518 489	245 246 199 1023 358 245 35 305 238	398 372 1236 57 48 50 60 309 345	130 117 54 48 55 46 64 994 1663
10 11 12 Average std Sample	264 260 129 96 97 240 298 46	324 287 276 249 300 261 252 112 47	528 469 358 255 2201 355 511 539 48	234 430 493 164 159 168 318 114 49	183 163 151 1456 967 1168 560 427 50	566 622 870 112 167 230 360 287 51	127 120 684 519 549 518 262 230 52	191 191 184 268 248 480 452 297 110 53	105 113 115 115 114 136 128 238 347 54	77 263 71 78 69 44 235 213 257 55	220 280 115 52 30 39 38 201 147 56	253 901 918 1092 1496 547 567 518 489 57	245 246 199 1023 358 245 35 305 238 58	398 372 1236 57 48 50 60 309 345 59	130 117 54 48 55 46 64 994 1663 60
101112AveragestdSample1	264 260 129 96 97 240 298 46 43	324 287 276 249 300 261 252 112 47 283	528 469 358 255 2201 355 511 539 48 35	234 430 493 164 159 168 318 114 49 47	183 163 151 1456 967 1168 560 427 50 37	566 622 870 112 167 230 360 287 51 32	127 120 684 519 549 518 262 230 52 169	191 191 184 268 248 480 452 297 110 53 13	105 113 115 115 114 136 128 238 347 54 120	77 263 71 78 69 44 235 213 257 55 8807	220 280 115 52 30 39 38 201 147 56 11	253 901 918 1092 1496 547 567 518 489 57 28	245 246 199 1023 358 245 35 305 238 58 21	398 372 1236 57 48 50 60 309 345 59 151	130 117 54 48 55 46 64 994 1663 60 399
10 11 12 Average std Sample 1 2	264 260 129 96 97 240 298 46 43 40	324 287 276 249 300 261 252 112 47 283 187	528 469 358 255 2201 355 511 539 48 35 104	234 430 493 164 159 168 318 114 49 47 50	183 163 151 1456 967 1168 560 427 50 37 38	566 622 870 112 167 230 360 287 51 32 30	127 120 684 519 549 518 262 230 52 169 13	191 191 184 268 248 480 452 297 110 53 13 24	105 113 115 115 114 136 128 238 347 54 120 68	77 263 71 78 69 44 235 213 257 55 8807 57	220 280 115 52 30 39 38 201 147 56 11 6	253 901 918 1092 1496 547 567 518 489 57 28 28 45	245 246 199 1023 358 245 35 305 238 58 21 60	398 372 1236 57 48 50 60 309 345 59 151 119	130 117 54 48 55 46 64 994 1663 60 399 66
10 11 12 Average std Sample 1 2 3	264 260 129 96 97 240 298 46 43 40 25	324 287 276 249 300 261 252 112 47 283 187 56	528 469 358 255 2201 355 511 539 48 35 104 100	234 430 493 164 159 168 318 114 49 47 50 101	183 163 151 1456 967 1168 560 427 50 37 38 34	566 622 870 112 230 360 287 51 32 30 28	127 120 684 519 549 518 262 230 52 169 13 21	191 191 184 268 248 480 452 297 110 53 13 24 27	105 113 115 115 114 136 128 238 347 54 120 68 37	77 263 71 78 69 44 235 213 257 55 8807 57 140	220 280 115 52 30 39 38 201 147 56 11 6 7	253 901 918 1092 1496 547 567 518 489 57 28 45 28	245 246 199 1023 358 245 35 305 238 58 21 60 59	398 372 1236 57 48 50 60 309 345 59 151 119 95	130 117 54 48 55 46 64 994 1663 60 399 66 58
10 11 12 Average std Sample 1 2 3 4	264 260 129 96 97 240 298 46 43 40 25 20	324 287 276 249 300 261 252 112 47 283 187 56 30	528 469 358 255 2201 355 511 539 48 35 104 100 53	234 430 493 164 159 168 318 114 49 47 50 101 58	183 163 151 1456 967 1168 560 427 50 37 38 34 62	566 622 870 112 230 360 287 51 32 30 28 38	127 120 684 519 549 518 262 230 52 169 13 21 24	191 191 184 268 248 480 452 297 110 53 13 24 27 16	105 113 115 115 114 136 128 238 347 54 120 68 37 58	77 263 71 78 69 44 235 213 257 55 8807 57 140 326	220 280 115 52 30 39 38 201 147 56 11 6 7 9	253 901 918 1092 1496 547 567 518 489 57 28 45 28 45 28 28 26	245 246 199 1023 358 245 35 305 238 58 21 60 59 11	398 372 1236 57 48 50 60 309 345 59 151 119 95 145	130 117 54 48 55 46 64 994 1663 60 399 66 58 74
10 11 12 Average std Sample 1 2 3 4 5	264 260 129 96 97 240 298 46 43 40 25 20 17	324 287 276 249 300 261 252 112 47 283 187 56 30 27	528 469 358 255 2201 355 511 539 48 35 104 100 53 44	234 430 493 164 159 168 318 114 49 47 50 101 58 64	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69	566 622 870 112 167 230 360 287 51 32 30 28 38 24	127 120 684 519 549 518 262 230 52 169 13 21 24 8	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24	105 113 115 115 114 136 128 238 347 54 120 68 37 58 36	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23	253 901 918 1092 1496 547 567 518 489 57 28 45 28 45 28 28 26 23	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51
10 11 12 Average std Sample 1 2 3 4 5 6	264 260 129 96 97 240 298 46 43 40 25 20 17 17	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34	191 191 184 268 248 480 452 297 110 53 24 27 16 24 63	105 113 115 115 114 136 128 238 347 54 120 68 37 58 36 25	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28	253 901 918 1092 1496 547 567 518 489 57 28 45 28 45 28 28 26 23 17	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42
10 11 12 Average std Sample 1 2 3 4 5 6 7	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 19	191 191 184 268 248 480 452 297 110 53 24 27 16 24 63 34	105 113 115 115 114 136 128 238 347 54 120 68 37 58 36 25 37	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 28 41	253 901 918 1092 1496 547 567 518 489 57 28 45 28 45 28 28 26 23 17 31	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26
10 11 12 Average std Sample 1 2 3 4 5 6 7 8	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64 31	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40 26	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64 48	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40 35	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72 78	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25 19	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 34 19 18	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24 63 34 27	105 113 115 115 114 136 128 238 347 54 120 68 37 58 36 25 37 28	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56 23	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 41 4	253 901 918 1092 1496 547 567 518 489 57 28 45 28 28 28 28 28 26 23 17 31 51	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37 34	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112 142	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26 12
10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64 31 167	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40 26 44	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64 48 57	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40 35 63	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72 78 84	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25 19 60	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 34 19 18 21	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24 63 34 27 9	105 113 115 114 136 128 238 347 54 120 68 37 58 36 25 37 28 20	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56 23 24	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 41 4 5	253 901 918 1092 1496 547 567 518 489 57 28 45 28 28 28 28 26 23 17 31 51 63	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37 34 115	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112 142 1830	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26 12 151
10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64 31 167 90	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40 26 44 94	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64 48 57 71	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40 35 63 80	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72 78 84 54	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25 19 60 25	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 19 18 21 15	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24 63 34 27 9 7	105 113 115 114 136 128 238 347 54 120 68 37 58 36 25 37 28 20 45	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56 23 56 23 24 55	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 41 4 5 5 26	253 901 918 1092 1496 547 567 518 489 57 28 45 28 28 28 28 28 26 23 17 31 51 63 23	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37 34 115 66	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112 142 1830 3887	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26 12 151 101
10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10 11	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64 31 167 90 114	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40 26 44 94 109	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64 48 57 71 52	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40 35 63 80 42	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72 78 84 54 41	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25 19 60 25 141	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 19 18 21 15 9	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24 63 34 27 9 7 33	105 113 115 115 114 136 128 238 347 54 120 68 37 58 36 25 37 28 20 45 135	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56 23 24 55 17	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 41 4 5 26 19	253 901 918 1092 1496 547 567 518 489 57 28 45 28 28 28 28 28 26 23 17 31 51 63 23 23	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37 34 115 66 59	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112 142 1830 3887 3261	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26 12 151 101 1836
10 11 12 Average std Sample 1 2 3 4 5 6 7 8 9 10	264 260 129 96 97 240 298 46 43 40 25 20 17 17 17 64 31 167 90	324 287 276 249 300 261 252 112 47 283 187 56 30 27 29 40 26 44 94	528 469 358 255 2201 355 511 539 48 35 104 100 53 44 51 64 48 57 71	234 430 493 164 159 168 318 114 49 47 50 101 58 64 147 40 35 63 80	183 163 151 1456 967 1168 560 427 50 37 38 34 62 69 81 72 78 84 54	566 622 870 112 167 230 360 287 51 32 30 28 38 24 27 25 19 60 25	127 120 684 519 549 518 262 230 52 169 13 21 24 8 34 19 18 21 15	191 191 184 268 248 480 452 297 110 53 13 24 27 16 24 63 34 27 9 7	105 113 115 114 136 128 238 347 54 120 68 37 58 36 25 37 28 20 45	77 263 71 78 69 44 235 213 257 55 8807 57 140 326 95 33 56 23 56 23 24 55	220 280 115 52 30 39 38 201 147 56 11 6 7 9 23 28 41 4 5 5 26	253 901 918 1092 1496 547 567 518 489 57 28 45 28 28 28 28 28 26 23 17 31 51 63 23	245 246 199 1023 358 245 35 305 238 58 21 60 59 11 71 36 37 34 115 66	398 372 1236 57 48 50 60 309 345 59 151 119 95 145 217 122 112 142 1830 3887	130 117 54 48 55 46 64 994 1663 60 399 66 58 74 51 42 26 12 151 101

Appendix I10: CONDENSATE RETURN COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

						Conde	ensate								
Convelo	1	2	3	4	=	6	Numt 7	per of (days 9	10	11	12	12	14	15
Sample 1	1 10	28	8	4 8	5 8	6 15	6	12	8	18	11 3	8	13 8	19	25
2	5	28 8	6	5	0 11	13	6	12	10	10	3	0 1	0 11	13	16
3	15	12	11	6	8	56	19	10	27	14	14	19	13	12	15
4	9	12	20	3	28	86	19	7	30	11	13	6	7	12	25
5	18	399	10	2	18	14	5	26	11	38	22	8	14	15	15
6	14	6	20	3	9	9	11	13	14	26	14	10	13	14	15
7	12	4	88	7	10	12	12	11	13	24	18	22	6	13	13
8	26	7	25	9	8	11	11	12	10	15	19	10	10	13	12
9	53	10	8	10	7	12	82	8	78	5	20	5	6	17	13
10	69	8	10	20	10	9	16	11	11	5	13	7	7	13	15
11	11	10	10	6	45	13	16	9	20	7	12	7	6	14	13
12	18	9	22	53	22	75	23	8	197	8	13	4	40	15	12
Average	22	43	20	11	15	28	19	11	36	15	14	9	12	15	16
std	19	112	22	14	11	28	21	5	54	10	6	6	9	2	5
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	16	6	10	20	26	17	37	6	7	91	41	27	22	16	10
2	24	8	16	17	734	20	19	16	10	11	13	17	16	23	12
3	34	9	18	14	81	29	16	6	8	18	14	13	19	43	11
4	42	3	15	14	24	22	48	8	12	9	15	9	86	204	44
5	9	3	20	9	37	159	16	8	8	9	20	12	38	23	12
6	15	3	15	11	41	46	90	6	9	11	14	21	30	38	125
7	42	2	15	9	35	36	20	51	13	9	18	22	18	24	101
8	34	1	23	456	21	28	10	18	12	11	63	24	16	9	686
9	14	2	14	27	20	21	16	105	24	33	208	20	14	13	26
10	14	15	13	45	29	28	5	9	642	100	31	19	12	9	232
11	11	16	14	43	27	39	16	10	244	106	12	21	10	11	19
12	9	14	16	41	23	37	70	10	33	19	18	18	11	10	20
Average	22	7	16	59	92	40	30	21	85	36	39	19	24	35	108
std	13	6 32	3 33	126 34	203	38 36	26 37	29	188 39	39	55	5 42	21 43	54 44	194
Sample 1	31 16	54	33 19	34 14	35	19	18	38 20	100	40 42	41 26	42 19	43 24	44 29	45 24
2	30	20	24	14	16 15	25	797	20	100	21	20 248	19	24	37	33
3	28	17	24	17	25	40	177	23	21	20	248	65	22	71	34
4	31	17	21	35	15	38	80	30	44	20	25	20	34	46	23
5	63	10	18	27	50	37	22	21	20	23	19	23	49	32	19
6	73	10	24	14	26	67	19	22	14	22	18	26	19	37	31
7	41	8	16	21	30	22	31	16	119	15	19	28	22	27	52
8	43	9	7	78	34	283	23	20	278	42	19	34	36	28	62
9	20	12	12	47	25	18	20	14	34	18	26	30	33	30	29
10	21	21	12	23	21	20	24	18	23	20	32	23	77	39	23
11	15	22	11	18	19	14	20	19	32	29	21	23	32	32	29
12	14	19	12	16	18	13	19	15	25	19	22	26	14	24	40
Average	33	18	17	27	25	50	104	20	61	25	42	28	32	36	33
std	19	12	6	19	10	75	223	4	76	9	65	13	17	13	13
Sample	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	19	107	21	73	26	35	19	11	20	35	9	11	4	2	6
2	18	97	26	25	25	16	45	17	6	10	4	14	7	8	5
3	25	82	22	30	23	35	17	7	13	12	30	2	17	8	12
4	20	39	19	24	23	23	23	9	29	14	27	2	3	5	5
5	18	54	18	26	24	31	26	21	26	13	6	10	7	13	5
6	18	44	11	44	22	38	15	24	7	149	8	2	6	27	10
7	14	46	22	24	27	25	6	9	8	22	4	1	4	4	15
8	36	25	19	21	19	19	6	25	9	23	6	420	26	2	23
		100	27	46	18	25	5	8	8	13	4	4	43	10	25
9	14						5	10	13	13	129	18	7	4	3
9 10	20	63	27	22	30	17							~		
9 10 11	20 38	27	32	14	18	19	6	7	9	9	20	4	5	6	22
9 10 11 12	20 38 46	27 44	32 79	14 12	18 114	19 14	6 39	7 8	9 25	9 5	20 14	4 6	7	6 5	5
9 10 11	20 38	27	32	14	18	19	6	7	9	9	20	4		6	

Appendix I11: HOT WATER COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

						н	lot wate	er							
						-	Numb		-					1	
Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	94	57	225	62	331	82	18	134	66	44	140	76	159	1075	163
2	52	62	149	31	254	81	19	92	76	207	120	74	74	920	226
3	60	63	213	24	182	97	21	94	41	266	110	220	99	850	120
4	49	894	178	16	123	74	42	93	61	170	152	227	70	528	99
5	50	69	193	192	105	70	64	110	101	162	113	76	79	554	105
6 7	49	230	310	160	72	50	57	130	115	95	118 134	65 52	64	495	105
8	53 69	216 336	274 481	141 186	59 65	44 53	57 62	115 104	57 51	187 166	134	52 50	54 68	405 409	102 85
<u> </u>	69 60	384	534	219	4	52	- 62 - 91	76	94	65	91	77	75	409	83 87
9 10	46	408	742	137	19	53	91 97	70	94 6	78	91 92	83	75	400	25
10	67	459	540	307	13	48	77	67	10	99	126	46	64	347	58
12	49	452	141	303	11	50	93	8	6	132	9	46	3	420	565
Average	58	303	332	148	103	63	58	91	57	132	111	91	74	569	145
std	14	245	195	101	103	17	29	34	37	65	37	63	35	241	141
Sample	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	349	46	889	142	62	151	337	2415	288	67	484	75	37	89	36
2	717	6426	1004	122	64	160	4329	2384	241	75	414	739	40	144	287
3	375	2814	420	107	18	151	1852	2390	4	72	326	834	38	738	82
4	148	3031	1010	91	23	104	1553	1375	36	207	255	857	71	685	72
5	96	4074	238	65	64	108	1425	169	50	868	158	933	54	63	53
6	78	6477	181	60	33	42	936	213	97	346	138	873	52	49	57
7	81	6013	272	20	33	57	417	643	344	978	143	1349	108	46	48
8	98	2370	35	4	131	36	410	647	881	791	96	127	105	44	48
9	68	867	32	77	191	34	2902	1206	754	252	50	104	103	83	52
10	552	1316	31	72	145	75	2882	395	1055	1348	225	95	102	75	55
11	653	2516	24	70	2089	82	2590	376	81	571	345	101	117	84	56
12	358	3745	70	50	145	71	396	299	72	570	557	54	81	51	52
Average	298	3308	351	73	250	89	1669	1043	325	512	266	512	76	179	75
std	239	2137	392	39	582	46	1283	895	366	415	161	461	31	250	68
Sample	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	303	369	131	88	3325	161	198	54	109	471	265	403	233	16	32
2	306	349	86	84	122	237	145	22	37	465	262	35	254	113	33
3	270	205	120	521	77	86	138	50	33	304	254	33	221	34	21
4	284	165	113	509	93	227	148	50	477	140	69	37	112	40	23
5	311	189	102	57	148	298	154	55	37	304	250	61	71	33	94
6 7	98 84	178 354	105 107	63 45	155 148	461 478	138 138	140 227	30 27	336 51	232 10	4808 4779	52 36	188 34	17 275
8	84 91	462	1132	35	148	658	138	219	33	50	32	156	20	31	273
9	622	120	1132	33	144	197	53	57	26	41	32	1468	15	23	24
9 10	1792	136	1246	38	206	197	276	43	285	41	48	2124	16	23	24
10	382	108	78	116	268	202	182	43	327	61	33	164	13	20	56
11	232	100	.0	- 10	200	202	102			51	55			35	65
	406	97	75	40	181	212	48	415	227	47	392	281	17		
				-	181 421	212 285						281 1196			56
Average	412	228	75 364 476	40 136 179	421	285	147	115	227 137 154	193	157	281 1196 1803	17 88 94	49 50	56 73
Average std			364	136					137			1196	88	49	56 73 60
Average	412 460	228 123	364 476	136 179	421 916	285 164	147 60	115 118	137 154	193 171	157 131	1196 1803	88 94	49 50	73
Average std Sample	412 460 46	228 123 47	364 476 48	136 179 49	421 916 50	285 164 51	147 60 52	115 118 53	137 154 54	193 171 55	157 131 56	1196 1803 57	88 94 58	49 50 59	73 60
Average std Sample 1	412 460 46 65	228 123 47 25	364 476 48 15	136 179 49 55	421 916 50 16	285 164 51 25	147 60 52 44	115 118 53 24	137 154 54 10	193 171 55 8	157 131 56 44	1196 1803 57 278	88 94 58 6	49 50 59 168	73 60 130
Average std Sample 1 2	412 460 46 65 56	228 123 47 25 61	364 476 48 15 17	136 179 49 55 99	421 916 50 16 6	285 164 51 25 16	147 60 52 44 14	115 118 53 24 24	137 154 54 10 21	193 171 55 8 15	157 131 56 44 61	1196 1803 57 278 61	88 94 58 6 20	49 50 59 168 61	73 60 130 32
Average std Sample 1 2 3	412 460 46 65 56 34	228 123 47 25 61 47	364 476 48 15 17 72	136 179 49 55 99 70	421 916 50 16 6 7	285 164 51 25 16 14	147 60 52 44 14 8	115 118 53 24 24 20	137 154 54 10 21 9	193 171 55 8 15 12	157 131 56 44 61 95	1196 1803 57 278 61 123	88 94 58 6 20 6	49 50 59 168 61 32	73 60 130 32 11
Average std Sample 1 2 3 4	412 460 46 65 56 34 94	228 123 47 25 61 47 43	364 476 48 15 17 72 14	136 179 49 55 99 70 31	421 916 50 16 6 7 19	285 164 51 25 16 14 29	147 60 52 44 14 8 33	115 118 53 24 24 20 129	137 154 54 10 21 9 35	193 171 55 8 15 12 19	157 131 56 44 61 95 52	1196 1803 57 278 61 123 94	88 94 58 6 20 6 58 58	49 50 59 168 61 32 11	73 60 130 32 11 103
Average std Sample 1 2 3 4 5	412 460 46 65 56 34 94 26	228 123 47 25 61 47 43 43	364 476 48 15 17 72 14 38	136 179 49 55 99 70 31 27	421 916 50 16 6 7 19 12	285 164 51 25 16 14 29 44	147 60 52 44 14 8 33 19	115 118 53 24 20 129 97	137 154 54 10 21 9 35 33	193 171 55 8 15 12 19 15	157 131 56 44 61 95 52 35	1196 1803 57 278 61 123 94 115	88 94 58 6 20 6 58 56	 49 50 59 168 61 32 11 389 	73 60 130 32 11 103 638
Average std Sample 1 2 3 4 5 6	412 460 65 56 34 94 26 24	228 123 47 25 61 47 43 43 21	364 476 48 15 17 72 14 38 62	136 179 49 55 99 70 31 27 2	421 916 50 16 6 7 19 12 15	285 164 51 25 16 14 29 44 14	147 60 52 44 14 8 33 19 37	115 118 53 24 20 129 97 20	137 154 54 10 21 9 35 33 7	193 171 55 8 15 12 19 15 25	157 131 56 44 61 95 52 35 24	1196 1803 57 278 61 123 94 115 6831	88 94 58 6 20 6 58 56 58 56	49 50 59 168 61 32 11 389 511	73 60 130 32 11 103 638 89
Average std Sample 1 2 3 4 5 6 7	412 460 65 56 34 94 26 24 38	228 123 47 25 61 47 43 43 21 20	364 476 48 15 17 72 14 38 62 29	136 179 49 55 99 70 31 27 2 9	421 916 50 16 6 7 19 12 15 24	285 164 51 25 16 14 29 44 14 8	147 60 52 44 14 8 33 19 37 50	115 118 53 24 20 129 97 20 14	137 154 54 10 21 9 355 33 7 1	193 171 55 8 15 12 19 15 25 33	157 131 56 44 61 95 52 35 24 55	1196 1803 57 278 61 123 94 115 6831 1617	88 94 58 6 20 6 58 56 88 1020	49 50 59 168 61 32 11 389 511 304	73 60 130 32 11 103 638 89 200
Average std Sample 1 2 3 4 5 6 7 8	412 460 46 65 56 34 94 26 24 38 89	228 123 47 25 61 47 43 43 21 20 99	364 476 48 15 17 72 14 38 62 29 26	136 179 49 55 99 70 31 27 2 9 144	421 916 50 16 6 7 19 12 15 24 23	285 164 51 25 16 14 29 44 14 8 16	147 60 52 44 14 8 33 19 37 50 59	115 118 53 24 20 129 97 20 14 32	137 154 54 10 21 9 355 33 7 1 12	193 171 55 8 15 12 19 15 25 33 25	157 131 56 44 61 95 52 35 24 55 53	1196 1803 57 278 61 123 94 115 6831 1617 1560	88 94 58 6 20 6 58 56 88 1020 7976	 49 50 59 168 61 32 11 389 511 304 297 	73 60 130 32 11 103 638 89 200 80
Average std Sample 1 2 3 4 5 5 6 7 8 9	412 460 46 65 56 34 94 26 24 38 89 92	228 123 47 25 61 47 43 21 20 99 49	364 476 48 15 17 72 14 38 62 29 26 20 21	136 179 49 55 99 70 31 27 2 9 144 30	421 916 50 16 6 7 19 12 15 24 23 41	285 164 51 25 16 14 29 44 14 8 16 25	147 60 52 44 14 8 33 19 37 50 59 97	115 118 53 24 20 129 97 20 14 32 14	137 154 54 10 21 9 35 33 7 12 11	193 171 55 8 15 12 19 15 25 33 25 9	157 131 56 44 61 95 52 35 24 55 53 558	1196 1803 57 278 61 123 94 115 6831 1617 1560 5739	88 94 58 6 20 6 58 56 88 1020 7976 77	 49 50 59 168 61 32 11 389 511 304 297 197 	73 60 130 32 11 103 638 89 200 80 70
Average std Sample 1 2 3 4 5 5 6 7 7 8 9 9 10	412 460 46 65 56 34 94 26 24 38 89 92 66	228 123 47 25 61 47 43 43 21 20 99 99 49 50	364 476 48 15 17 72 14 38 62 29 26 21 7	136 179 49 55 99 70 31 27 2 9 144 30 29	421 916 50 16 6 7 19 12 24 23 41 12	285 164 51 25 16 14 29 44 14 8 16 25 16	147 60 52 44 14 8 33 19 37 50 59 97 21	115 118 53 24 20 129 97 20 14 32 14 25	137 154 54 10 21 9 35 33 7 1 12 11 8	193 171 55 8 15 12 19 15 25 33 25 9 18	157 131 56 44 61 95 52 35 24 55 53 558 202	1196 1803 57 278 61 123 94 115 6831 1617 1560 5739 33	88 94 58 6 20 6 58 56 88 1020 7976 77 108	49 50 59 168 61 32 11 389 511 304 297 197 181	73 60 130 32 11 103 638 89 200 80 70 92
Average std Sample 1 2 3 4 5 5 6 7 7 8 9 9 10 11	412 460 46 65 56 34 94 26 24 38 89 92 66 48	228 123 47 25 61 47 43 43 21 20 99 99 49 50 46	364 476 48 15 17 72 14 38 62 29 26 21 7 7 36	136 179 49 55 99 70 31 27 2 9 144 30 29 23	421 916 50 16 6 7 19 12 15 24 23 41 12 11	285 164 51 25 16 14 29 44 14 8 16 25 16 14	147 60 52 44 14 8 33 19 37 50 59 97 21 24	115 118 53 24 20 129 97 20 14 32 14 25 20	137 154 54 10 21 9 35 33 7 12 11 8 24	193 171 55 8 15 12 19 15 33 25 9 18 33	157 131 56 44 61 95 52 35 24 55 53 558 202 136	1196 1803 57 278 61 123 94 115 6831 1617 1560 5739 33 100	88 94 58 6 20 6 58 56 88 1020 7976 77 108 71	49 50 59 168 61 32 11 389 511 304 297 197 181 116	73 60 130 32 11 103 638 89 200 80 70 92 55

Appendix J: ONE-TAIL T-TEST CALCULATIONS OF THE COD CONCENTRATIONS DATA COLLECTED BY THE WCM LABORATORY FROM 6 MAY 2017 TO 30 JULY 2017

One-tail t-test calculations for the WCM macro effluent channels:

Number of samples (n) =6 t-critical at 95% confidence intervals at 59 (n-1) number of the degrees of freedom, the t-critical value from the t-table is 1.671.

The tests claims are:

Null hypothesis – H₀: μ COD concentrations \leq 5000 ppm. Alternate hypothesis - H1: μ COD concentrations > 5000 ppm.

The null hypothesis is accepted for the eight effluent channels, namely Anion, Cation, Liquefaction, Evaporator, Concentrator, CPV Tank, Condensate Return and Hot Water. The null hypothesis is rejected and the alternate is favoured for the three effluent channels namely, Condensate, Glucose and Effluent Tank.

Anion	Cation	Glucose
$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	μ= 5000 ppm
Mean = 4130 ppm	Mean = 4417 ppm	Mean = 8928 ppm
S = 5101	S= 5495	s = 6067
$t = \frac{x - \mu}{s / \sqrt{n}}$ $t = \frac{4130 - 5000}{5101 / \sqrt{60}}$ $t = \frac{-870}{658.5362683}$ t = -1.3211	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ $t = \frac{4417 - 5000}{5495 / \sqrt{60}}$ $t = \frac{-583}{709.4014496}$ $t = -0.8218$	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ $t = \frac{8928 - 5000}{6067 / \sqrt{60}}$ $t = \frac{3928}{783.246332}$ t = 5.0150
t-statistical < t-critical;	t-statistical < t-critical;	t-statistical falls outside the accepted
therefore, accept the null	therefore, accept the null	criteria, therefore, reject the null
hypothesis.	hypothesis.	hypothesis and accept the alternate
		hypothesis.

Effluent Tank	Liquefaction	Condensate	Evaporator
$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$
Mean = 8536 ppm	Mean = 817 ppm	Mean = 14 757 ppm	Mean = 817 ppm
S = 3685	s = <u>9</u> 12	S = 4492	S = 251
$t = \frac{\bar{x} - \mu}{s}$ $t = \frac{\frac{8536 - 5000}{3685}}{\frac{\sqrt{60}}{3536}}$ $t = \frac{\frac{3536}{475.7314544}}{t = 7.4328}$	$t = \frac{x - \mu}{s}$ $t = \frac{817 - 5000}{912}$ $t = \frac{-4183}{117.7386937}$ $t = -35.5278$	$t = \frac{\bar{x} - \mu}{s}$ $t = \frac{14757 - 5000}{4492/\sqrt{60}}$ $t = \frac{9757}{579.9147064}$ $t = 16.8249$	$t = \frac{\bar{x} - \mu}{s}$ $t = \frac{\frac{1}{s}}{\frac{17 - 5000}{251}}$ $t = \frac{-4183}{32.40396066}$ t = -129.0892
t-statistical> t-critical;	t-statistical> t-	t-statistical > t-critical;	t-statistical < t-
therefore, reject null	critical; therefore,	therefore, reject the	critical; therefore,
hypothesis and accept	reject null hypothesis	null hypothesis and	accept the null
the alternate	and accept the null	accept the alternate	hypothesis.
hypothesis.	hypothesis.	hypothesis.	
Concentrator	CPV Tank	Condensate Return	Hot Water
Concentrator μ = 5000 ppm	CPV Tank μ = 5000 ppm	Condensate Return $\mu = 5000 \text{ ppm}$	Hot Water μ = 5000 ppm
$\mu = 5000 \text{ ppm}$ Mean = 54 ppm S = 73	$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$	$\mu = 5000 \text{ ppm}$
μ = 5000 ppm Mean = 54 ppm	$\mu = 5000 \text{ ppm}$ Mean = 391 ppm S = 381	μ = 5000 ppm Mean = 3 1ppm	μ = 5000 ppm Mean = 297 ppm
$\mu = 5000 \text{ ppm}$ Mean = 54 ppm $S = 73$ $t = \frac{\bar{x} - \mu}{s}$ $t = \frac{54 - 5000}{73}$	$\mu = 5000 \text{ ppm}$ Mean = 391 ppm $S = 381$ $t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$ $t = \frac{391 - 5000}{381 / \sqrt{60}}$ $t = \frac{-4609}{1000}$	$\mu = 5000 \text{ ppm}$ Mean = 3 1ppm $s = 38$ $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{31 \sqrt{5000}}{38 \sqrt{60}}$ $t = \frac{-4969}{4.905778905}$	$\mu = 5000 \text{ ppm}$ Mean = 297 ppm $S = 286$ $t = \frac{\bar{x} - \mu}{s}$ $t = \frac{297 - 5000}{286}$ $t = \frac{-4703}{36.92244123}$
$\mu = 5000 \text{ ppm}$ Mean = 54 ppm $S = 73$ $t = \frac{\overline{x - \mu}}{s / \sqrt{n}}$ $t = \frac{54 - 5000}{73 / \sqrt{60}}$ $t = \frac{-4946}{9.424259476}$	$\mu = 5000 \text{ ppm}$ Mean = 391 ppm $S = 381$ $t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$ $t = \frac{391 - 5000}{381 / \sqrt{60}}$ $t = \frac{-4609}{49.1868885}$	$\mu = 5000 \text{ ppm}$ Mean = 3 1ppm $s = 38$ $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{31 \sqrt{5000}}{38 \sqrt{60}}$ $t = \frac{-4969}{4.905778905}$	$\mu = 5000 \text{ ppm}$ Mean = 297 ppm $S = 286$ $t = \frac{x - \mu}{s}$ $t = \frac{297 - 5000}{286}$ $t = \frac{-4703}{36.92244123}$ $t = -127.3751$
$\mu = 5000 \text{ ppm}$ Mean = 54 ppm S = 73 $t = \frac{\bar{x} - \mu}{s}$ $t = \frac{54 - 5000}{73/\sqrt{60}}$ $t = \frac{-4946}{9.424259476}$ t = -524.8158	$\mu = 5000 \text{ ppm}$ Mean = 391 ppm S = 381 $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ $t = \frac{391 - 5000}{381 / \sqrt{60}}$ $t = \frac{-4609}{49.1868885}$ t = -93.7038	$\mu = 5000 \text{ ppm}$ Mean = 3 1ppm s = 38 $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{31 \sqrt{50000}}{38 \sqrt{60}}$ $t = \frac{-4969}{4.905778905}$ t = -1012.8871	$\mu = 5000 \text{ ppm}$ Mean = 297 ppm $S = 286$ $t = \frac{x - \mu}{s}$ $t = \frac{297 - 5000}{286 \sqrt{60}}$ $t = \frac{-4703}{36.92244123}$ $t = -127.3751$ t-statistical < t-
$\mu = 5000 \text{ ppm}$ Mean = 54 ppm $S = 73$ $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{54 - 5000}{73/\sqrt{60}}$ $t = \frac{-4946}{9.424259476}$ $t = -524.8158$ t-statistical< t-critical;	$\mu = 5000 \text{ ppm}$ Mean = 391 ppm $S = 381$ $t = \frac{\bar{x} - \mu}{s}$ $t = \frac{391 - 5000}{381}$ $t = \frac{-4609}{49.1868885}$ $t = -93.7038$ t-statistical < t-	$\mu = 5000 \text{ ppm}$ Mean = 3 1ppm s = 38 $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{31 \sqrt{50000}}{38 \sqrt{60}}$ $t = \frac{-4969}{4.905778905}$ $t = -1012.8871$ t-statistical < t-critical;	$\mu = 5000 \text{ ppm}$ Mean = 297 ppm $S = 286$ $t = \frac{\overline{x} - \mu}{s}$ $t = \frac{297 - 5000}{286}$ $t = \frac{-4703}{36.92244123}$ $t = -127.3751$ t-statistical < t-critical; therefore,

Appendix K1: TRIAL ONE COD CONCENTRATIONS IMPROVEMENT DATA COLLECTED ON THE 28 AUGUST 2018 AND 10 SEPTEMBER 2018

				TR	IAL ONE – BATCH	[1			
				Condens					
]	BEFORE				AFTER			
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pH	Conductivity (mS/cm)	COD (ppm)	(minutes)	GAC n	nass (g)
1	4,21	4,13	9740 9720	6,65	5,02	609 596		2	0
1	4,21 Avei	,	9720	0,05	COD average	390	20	6025	0
	St	0	14		Std			92	
COD R	ange (R	aw v.s filtered)			-	3705			
	1	BEFORE			Effluent tank	AFTER			
			GOD	<i>a</i> .			005	751	GAC
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	Sample No	рН	Conductivity (mS/cm)	COD (ppm)	Time (minutes)	mass (g)
1	5.04		6800	2	0.1	7.41	4060	20	20
1	5,94 Avei	6,6	6890 6845	3	8,1 COD average	7,41	3996	20 4028	20
	St	0	64		Std			45	
COD R	ange (R	aw v.s filtered)				2817	·		
					Glucose				
Batch	BEFO		COD		Conduction	AFTER	Time		
No No	pН	Conductivity (mS/cm)	(ppm) 8260	pН	Conductivity (mS/cm)	COD (ppm)	(minutes)	GAC n	nass (g)
1	4,68	2,75	8030	7,18	4,71	551		2	0
	Aver	1	8145	., .	COD average			5475	
	St	-	163		Std			49	
COD R	ange (R	aw v.s filtered)				2670	Deen		
			St	ats			Raw Effluent	Filtered F	ffluent
				average			7801	460	
				d Std			104	67	
				Grand R	0			319	8
		DEFODE		-	Condensate				
Batch		BEFORE Conductivity	COD		Conductivity	AFTER COD	Time		
No	рН	(mS/cm)	(ppm) 9310	рН	(mS/cm)	(ppm) 5510	(minutes)	GAC m	ass (g)
1	6,08	5,38	9930	8,88	6,4	5190	30	2	C
	Ave	0	9620		COD average			350	
COD D	St		438		Std	1270	2	26	
CODR	ange (R	aw v.s filtered)			Glucose	4270			
		BEFORE			Gluebot	AFTER			
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm)	Time (minutes)	GAC m	ass (g)
1	4,68	2,75	8260 8030		4,87	5030 4980	30	2	0
	Ave		8145		COD average			005	
000 0	St	td aw v.s filtered)	163		Std	2140	3	35	
CODR	ange (R	aw v.s mtered)	<u> </u>		Effluent tank	3140			
		BEFORE				AFTER			
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	Time (minute	es) GAC	mass (g)
1	4,68	2,75	7740 7430		4,89	4950 4870	30		20
1	4,08 Ave		7430		COD average	40/0		910	20
	S	0	219		Std			57	
	ange (R	aw v.s filtered)				2675			
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	Time (minutes)	GAC	mass (g)
1	4,21	6,26	8785 8523		8,21	4650 4540	60		20
1	4,21 Avei		8523	7,00	COD avera		00	4595	20
	11101		0004	1	COD avoia	0-	1		

	St	d	185		Std			78				
COD R	ange (R	aw v.s filtered)		4059								
					Effluent tank							
		BEFORE		AFTI	ER							
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	Time (minutes)	GAC mass (g)					
1	4,68	2,75	8260 8030	7,92	5,54	60	20					
	Ave	rage	8145		COD average		4	4055				
	St	d	163		Std			49				
COD R	ange (R	aw v.s filtered)				4090						
					Glucose							
		BEFORE				AFTER						
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	Time (minutes)	GAC mass (g)				
1	6,30	2,75	7930 7920	7,94	5,5	4930 4960	60	20				
	Ave		7925		COD average		4	1945				
	St	d	7		Std			21				
COD R	ange (R	aw v.s filtered)				2980						
	Stats Raw Effluent											
				average			82					
			Grai	nd Std				98 83				
				Gra	nd Range			3656				

				TRI	AL ONE - BATCH	2						
					Condensate							
]	BEFORE					AFTE	R				
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pH	Conductivity (mS/cm)	СС	OD (ppm) Time (minutes)	GAC mass (g)			
2	4,21	4,13	9740 9720	7,58	5,39		532 499	-	30			
	Ave	0	9730		COD average				5155			
COD	St		14		Std		4575		233			
CODF	Range (R	aw v.s filtered)			Tell.	2	4575					
	1	BEFORE			Effluent tank		AFTE	D				
Batch No	рН	Conductivity (mS/cm)	COD (ppm)	pH	Conductivity (mS/cm)	co	DD (ppm	Time	GAC mass (g)			
			7740				450	0				
2	6,61	9,91	7430	7,31	10,98		439	0 20	30			
	Ave	0	7585		COD average				4445			
	St		219		Std				78			
COD F	Range (R	aw v.s filtered)				2	3140					
					Glucose							
]	BEFORE					AFTE					
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	CC	OD (ppm	(minutes)	GAC mass (g)			
			8260				474	-				
2	4,68	2,75	8030	7,83	5,19		469	1 20	30			
	Ave	0	8145		COD average				4716			
	St		163		Std				35			
CODF	Range (R	aw v.s filtered)				3	3430	~ 1				
			Stats					Raw Effluent	Filtered Effluent			
			Grand ave	0				7616	3994			
			Grand S					66	108			
			Gr	and Ran					3616			
					Condensate							
		BEFORE					AFTI	ER				
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)		COD (ppm)	Time (minut	es) GAC mass (g)			
2	4.21	4,13	9740 9720	8,03	5,72	_	4720 4350	30	30			
	,	rage	9730	- ,	COD average			4535				
		td	14		Std			262				
CODI	-	aw v.s filtered)	14	1	Siu		5195					
CODI	Kalige (K	aw v.s intered)			Effluent tank		5175					
					Enfuent tank							

		BEFOI	RE		AFTER									
Batch	pН	Cond	uctivity (COD	pН	Conduct		COD		me	GAC	mass (g)		
No	pm	(m	S/cm) (j	ppm)	pm	(mS/cr	n)	(ppm)	,	utes)	GAC	mass (g)		
2	5.04			7920	7.65	11.0	, –	492		80	20			
2	5,94	verage	6,6	7930 7925							4920	30		
	1	Std		7		St	0				0			
COD	Range	e (Raw v.s f	ïltered)					300	05					
					Glucose									
Detal		BEFOI				C 1		COD	AFTER		r			
Batch No	pН		•	COD opm)	pН	Conduc (mS/		COD (ppm)	Tin (minu		GAC	mass (g)		
				8260				4610						
2	4,68		2,75	8030	8,07	5,1		4590	30)		30		
	A	Average		8145		COD a					4600			
COD	Danga	Std (Raw v.s f	iltered)	163		St	d	354	15		14			
COD	Kange	(Kaw V.S I	intereu)					35		w				
				tats					Efflu	ent		ed Effluent		
				averag	e					8076	4	4281		
			Gra	nd Std	1.0					115		87		
				Gran	d Range							3795		
						Conden	sate							
		B	EFORE				1		AF	TER		1		
Raw effluer			Conductivity		COD		Conductivity		COD		Time	GAC mass		
subgro	-	рН	(mS/cm)	·	(ppm)	рН		S/cm)	(ppm)		(minutes)	(g)		
No			(,				x	,	TI /		((8/		
					8300	8300		30		40				
2		4,67	5,65		8350	8,67	.67 8,53		30	90	60	30		
		Average			8325		COD average				3065			
		Std			35			Std			35			
CC	DD Rai	nge (Raw v	s filtered)		5260									
						Effluent	tank							
							tuilly .							
		B	EFORE			AFTER								
Raw														
effluer	-	pН	Conductivity (mS/cm)		COD (ppm)		Conductivity (mS/cm)		COD (ppm)		Time (minutes)	GAC mass		
Subgro No		-	(m5/cm)		(ppm)	-	(m:	5/cm)	(ppm)		(minutes)	(g)		
					5730				910					
2		3,89	4,42		5760	8,23	6	,18	910		60	30		
		Average	,		5745	- , -		average			940			
		Std			21			Std			42			
CC	יים חר	nge (Raw v	s filtered)	+	21	1			4805		72			
		inge (itaw v	.5 morea)			Gluco	50		1003					
		D	EFORE			Giuco	50		AF	TER				
Raw	7	В	LIVKE						Af	I ILK				
effluer	nt	pН	Conductivity		COD	pH		uctivity	COD		Time	GAC mass		
Subgro	oup	pii	(mS/cm)		(ppm)	P	(ms	S/cm)	(ppm)		(minutes)	(g)		
No	-+			+	7020	+	-		200	70				
Averag	ge	7925	0.75		7930	0.72		C 4	20		60	20		
Std		7	2,75	_	7920	8,73		5,4	20	10	60	30		
CC	JD Rai	nge (Raw v	s filtered)	_	5885 Raw	1	COD	average			2040	J		
		Stats			Effluent			Std			42			
	C	Grand avera	ge						7535					
	C	Grand avera	0						7535			Filtered		
	C	Brand avera		Grand Grand R					7535		57 5331	Filtered Effluent 2204		

				TF	RIAL ONE – BA	тсн з								
					Condensate									
	r	BEFORE						FTER						
Batch No	рН	Conductivity (mS/cm)	COD (ppm)	pН	Conducti (mS/cm		CO (ppr	n)	Time (minute		GAC mass (g)			
3	4,21	4,13	9740 9720	8,18		-		520 593	20		40			
		rage td	9730 14		COD average Std	•					607 19			
COD R		aw v.s filtered)	14		Stu		5124				19			
CODIN	unge (n	uw vis intered)			Effluent tanl	K	5121							
D (1		BEFORE	COD				A	FTER						
Batch No	рН	Conductivity (mS/cm)	COD (ppm) 6800	pН	Conductivity (mS/cm)	C C	COD (ppm) Tim (minu				GAC mass (g)			
3	6,61	9,91 rage	6890 6845	8,3	11,48 COD average	Ē		2860 2890	20					
		td	64		Std	2				2875				
COD R		aw v.s filtered)	•				3970			-				
					Glucose									
Batch		BEFORE Conductivity	COD		Conductivity	7		FTER	Time	1				
No	рН	(mS/cm)	(ppm) 8260	pН	(mS/cm)	C C	OD (p	pm) 4170	(minute		GAC mass (g)			
3	4,68	2,75	8030	8,26	5,44			4290	20		40			
		rage	8145		COD average	e					230			
CODP		td aw v.s filtered)	163		Std		2015			8	85			
CODR	ange (R	(aw v.s Intered)					3915		aw					
			Stats						uent		Filtered Effluent			
			Grand aver	Ũ					7613		3451			
			Grand S						66		38			
			G	rand Rai	č						4162			
					Condensate									
Batch		BEFORE Conductivity	COD		Conductivity	COD		FTER Time						
No	рН	(mS/cm)	(ppm)	pН	(mS/cm)	(ppm) (1	ninutes)	G	GAC mass (g)			
3	4,2 1	4,13	9740 9720	8,4	5,96	4180 3840		30			40			
		erage	9730		COD average					401	-			
		td	14		Std					240)			
COD R	ange (F	Raw v.s filtered)			Effluent tanl	-	5720)						
		BEFORE			Enuent tan	5	Δ	FTER						
Batch	ոՍ	Conductivity	COD	pН	Conductivity	COD		Time		0	C moss (g)			
No	pН	(mS/cm)	(ppm)	рп	(mS/cm)	(ppm	, ,	ninutes)	G	GAC mass (g)			
3	4,6 8	2,75	7930 7920	8,55	5,6	4110 4170		30			40			
5	-	erage	7925	0,00	COD average	.1/	~	50	1	414				
		ltd	7		Std					42				
COD R	ange (F	Raw v.s filtered)					3785	i		_				
					Glucose									
n 1		BEFORE	CO -		a	005		FTER	1					
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm		Time ninutes)	G	GAC mass (g)			
3	4,6 8	2,75	8010 8070	8,63	5,7	4040		30			40			
	Average 8040 COD average 4060													
	S	ltd	42		Std					28				
COD R	COD Range (Raw v.s filtered) 3980													
			Stats					Raw Effluent		Fil	ltered Effluent			
			rand averag	ge			_	8460 4028						
			Grand Std	1.5				5	7		82			
			Gran	d Range							4432			
					Condensate									

	В	EFORE				AF	TER				
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivit y (mS/cm)	COD (ppm)	Time (minutes)	GAC mass (g)			
			8785			4240					
3	4,2	6,26	8523	8,3	8,76	4510	60	40			
	Averag	e	8654		COD average		43	75			
	Std		185		Std		191				
COD Rai	nge (Raw	v.s filtered)				4279					
	Glucose										
D	В	EFORE			[AF	TER				
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivit y (mS/cm)	COD (ppm)	Time (minutes)	GAC mass (g)			
			8260			4000					
3	4,68	2,75	8030	8,39	5,86	3950	60	40			
	Averag	e	8145		COD average	39	075				
	Std		163		Std	3	5				
COD Rai	nge (Raw	v.s filtered)				4170					
	В	EFORE			[TER					
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivit y (mS/cm)	COD (ppm)	Time (minutes)	GAC mass (g)			
			7930			3390					
3	4,68	2,75	7920	8,42	5,88	3320	60	40			
	Averag	e	7925		COD average		33	55			
	Std		7		Std		4	9			
COD Rai	nge (Raw	v.s filtered)				4570					
			Stats				Raw Effluent	Filtered Effluent			
		Gra	nd average				8262	3858			
		G	rand Std				98	81			
			Grand	Range				4155			

Appendix K2: TRIAL TWO COD CONCENTRATIONS IMPROVEMENT DATA COLLECTED ON THE 30 SEPTEMBER 2018 AND 29 OCTOBER 2018

				T	RIAL 2.	- BATCH	1							
						ensate	1							
	В	EFORE						AF	ГER					
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	рН		luctivity S/cm)	COL (ppm		Time (minute		AC mass (g)			
1	12,39	7,62	7570 7530	11,77		3,32	628 618		20		20			
1	Avera		7550	11,//		D average	010		20	623				
	Std	0	28			Std				71				
COD R	ange (Rav	w v.s filtered)			T-00		1	320						
	BEFO	RE			Efflue	nt tank	AF	TER						
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	(ms/cm) (ppm) (minutes)				AC mass (g)					
1	12	7,62	7990 7980	11,83		8,28	474 472		20		20			
	Avera Std	0	7985 7		CO	D average Std				473)			
COD R		w v.s filtered)	1	I		Sid	.3	255		14				
	UX	,			Glu	icose								
D. ()	B	EFORE	COD						FER					
Batch No	рН	Conductivity (mS/cm)	COD (ppm) 7740	pН		luctivity S/cm)	COE (ppm 497	I)	Time (minute	G	AC mass (g)			
1	13	7,62	7793	11,81		8,3	497		20		20			
	Avera	0	7767			D average				495)			
COD B	Std		37			Std	2	017		28				
COD K	ange (Ra	w v.s filtered)					2	817	Raw					
			Stats						Effluent	t Filte	ered Effluent			
			rand avera						7879		5353			
			Grand Sto Gran	a d Range					48	5	46 2526			
			Orun	a range	·						2320			
					Cond	lensate								
		BEFORE							AFTER	2				
Batch No	pH	Conductivity (mS/cm)		DD om)	pН	Conduct (mS/cr	•	CC (pp		Time (minutes)	GAC mass (g)			
				8130				4	4800					
1	13,1	7,62		8300	11,8	8,38		2	4840	30	20			
	Aver			8215	,	COD ave					20			
	St	0		120		Std					8			
CODI		aw v.s filtered)				5.0		3395	1	2	~			
2001		(is filtered)			Efflue	nt tank								
	BEF	ORE			Lind	will	A	FTEF	2					
Batch No		Conductivity (mS/cm)		DD om)	pН	Conduct (mS/cr	ivity	СС (рр	D	Time (minutes)	GAC mass (g)			
				7990					4850	,				
1	12,39	7,62		7980	11,73	8,35		4	4840	30 20				
	Aver	age		7985		COD ave	rage			48	45			
	St			7		Std					7			
COD I		aw v.s filtered)					:	3140						
					Gh	icose								
		BEFORE							AFTER	2				
										-				

Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)		Time (minutes)	GAC mass (g)	
			7930			47	90			
1	13,04	7,62	7740	11,82	8,41	45	60	30	20	
	Averag	ge	7835		COD average	4675				
	Std		134		Std		1	163		
COD Rai	nge (Raw	v v.s filtered)				3160				
			Stats				Raw	Effluent	Filtered Effluent	
		Gr	and average					7896	5171	
			Grand Std					72	76	
			Grand I	Range					2725	
				Cond	lensate					
		BEFORE				A	FTER			
Raw effluent subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm)		Time (minutes)	GAC mass (g)	
			8040			51	00			
1	13,1	15,74	8400	11,87	12,77	51	10	60	20	
	Average				COD average			5	5105	
	Std		255	Std					7	
COD Rat	nge (Raw	v v.s filtered)				3115				
				Efflue	ent tank					
		BEFORE				A	FTER			
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm)			GAC mass (g)	
			8130			494	40			
1	12,39	7,62	8300	11,68	8,43	50	00	60	20	
	Averag	ge	8215		COD average		4970			
	Std		120		Std		42			
COD Rai	nge (Raw	v v.s filtered)				3245	·			
				Gh	icose					
_		BEFORE				A	FTER			
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm)		Time (minutes)	GAC mass (g)	
			7990			48	90			
1	13,4	7,62	7980	11,7	8,38	492	20	60	20	
	Averag	ge	7985		COD average		4905			
	Std		7		Std				21	
COD Rat	nge (Raw	v v.s filtered)				3080				
			Stats				Raw	Effluent	Filtered Effluent	
		Gr	and average					8050	4545	
			Grand Std					103	152	
			Grand I	Range					3505	

				TF	RIAL 2 – BATCH	12					
					Condensate						
	B	EFORE				AFTE			-		
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	(mi	ime nutes)	GAG	C mass (g)	
2	13,11	25,6	8130 8300	12,68	20.2	521 518		20	30		
2	Avera		8215	12,00	COD ave			20	5199,5	50	
	Std		120		Std			28			
COD R	ange (Rav	w v.s filtered)			Effluent tank	3015,5					
	B	EFORE			Effuent tank	AFTE	R				
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)					GAC mass (g)	
	10.00		8130		0.50	463		•			
2	12,39 Avera	7,62	8300 8215	11,64	8,53 COD ave	468 rage	50	20	4655	30	
	Std	•	120		Std	luge			35		
COD R	ange (Rav	w v.s filtered)				3560					
	D	EFORE			Glucose	AFTE	R				
Batch No	рН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	Т	ime nutes)	GAC	C mass (g)	
			7990			474	· ·				
2	13,04	7,62	7980	11,6	8,5	474	0	20	17.10	30	
	Avera Std	0	7985 7		COD ave Std	rage			4740 0		
COD R		w v.s filtered)	7		510	3245		-			
		·						aw		1 7 90	
			Sta Grand a				uent 7879		Filtered Effluent 4883		
			Gran				48		28		
			(Grand Ra	nge		·		2	.996	
					Condensate						
		BEFORE				AF	TER				
Batch No) pH	Conductivity (mS/cm)	·	DD m)	рН	Conductivity (mS/cm)	COD (ppm)		Time ninutes)	GAC mass (g)	
				8130			4330)			
2	13,1	7,62		8300	11,45	8,65	4320)	30	30	
	Aver	age		8215	CO	D average			4325		
	St	*		120		Std			7		
COD		aw v.s filtered)		120		3890			,		
	Kange (Ka	w v.s meleu)			Effluent tank	5070					
		DEFODE			Entruent tank	A T	тер				
		BEFORE					TER		T .	010	
Batch No	pH	Conductivity (mS/cm)	y CC (pp		pH	Conductivity (mS/cm)	COD (ppm)		Time 1inutes)	GAC mass (g)	
				7990			4310				
2	12,39	7,62		7990	11,5	8,7	4310		30	30	
2						,	+3/	<u> </u>		50	
	Aver	2		7985	0	D average			4340		
	St			7		Std			42		
COD	Range (Ra	aw v.s filtered)				3645					
					Glucose						
		BEFORE	1			AF	AFTER				
Batch No	pH	Conductivity (mS/cm)	y CC (pp	DD om)	рН	Conductivity (mS/cm)	COD (ppm)		Time ninutes)	GAC mass (g)	
				7930			4270)			
2	13,04	7,62		7740	11,4	8,67	4280)	30	30	
-	,5	.,02			, .	-,	.20				

	Averag	e	7835	CO	D average		4275	;	
	Std		134		Std		7		
COD Rai	nge (Raw	v.s filtered)			3560				
	•	· · · ·	Stats				Raw Effluent	Filtered Effluent	
			Grand averag	e			7896	4661	
			Grand Std				72	37	
			Grai	nd Range				3235	
				Condensate					
	BEFORE AFTER				TER		1		
Raw effluent subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	pH Conductivity CO (mS/cm) (ppr			GAC mass (g)	
			9310			518	30		
2	8,2	5,38	9930	9,09	9,43	540	00 60	30	
	Averag	e	9620	CO	D average		5290)	
	Std		438		Std		156		
COD Rai	nge (Raw	v.s filtered)			4330				
				Effluent tank					
Raw]	BEFORE			AF	TER			
effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm		GAC mass (g)	
			8040			452	20		
2	12,48	15,74	8400	11,63	12,73	444	60	30	
	Averag	je	8220	COD average			4480		
	Std		255		Std		57		
COD Rai	nge (Raw	v.s filtered)			3740				
				Glucose					
_]	BEFORE			AF	TER		1	
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm		GAC mass (g)	
			7801			350	00		
2	13,05	15,74	7760	11,36	13,41	404	60	30	
	Averag	e	7781	CO	D average		3770)	
	Std		29		Std		382		
COD Rai	nge (Raw	v.s filtered)			4010,5			E :14	
			Stats				Raw Effluent	Filtered Effluent	
			Grand averag	e			8402	4596	
			Grand Std				182	156	
			Grai	nd Range				3806	

	TRIAL 2 BATCH 3							
	Condensate							
	BEFORE AFTER							
Batch No	pН	Conductivity (mS/cm)	COD (ppm)	pН	Conductivity (mS/cm)	COD (ppm)	Time (minutes)	GAC mass (g)
			9310			5900		
3	3 8,2 8,74 9930 9,26 7,6 5987 20 40							
	Aver	age	9620		COD average			5944

	Ste	t		438			Std		T			62	2
COD R	ange (Ra	iw v	s filtered)			T. 60			3677				
	Ē	BEF	ORE			Eff	uent tank		AF	TER			
Batch No	рН	C	onductivity (mS/cm)	COD (ppm) 8130	pН		ductivity nS/cm)	COI (ppm	1) (Time (minut		GAC mass (g)	
3	12,39		7,62	8130	11,4	9	8,71	400		20 40		40	
	Aver	0		8215		C	DD average					405	
COD R	Sto ange (Ra		s filtered)	120			Std		4165			71	l
					r	(Glucose						
Batch		· · · ·	ORE onductivity	COD		Con	ductivity	COI		TER Time	2		
No	pН	Č	(mS/cm)	(ppm)	pН		nS/cm)	(ppm	1) ((minut		(GAC mass (g)
3	13,04		7,62	7990 7980	11,4	9	8,69	434 444	-	20			40
5	Aver	age	7,02	7985	11,4		OD average			20		439	
COD D	Sto		.s filtered)	7			Std		3595			71	1
COD K	ange (Ra	iw v	.s intered)						3393	Raw	7		
				Stats						Efflue		Filt	tered Effluent
			G	rand aver Grand St	0					78	79 48		<u>4121</u> 285
					nd Ran	ige			I				3758
			FRODE			Co	ndensate				D		
			EFORE Conductivit	v C(DD		Conducti	vitv	CO	AFTE D	R Time	ρ	
Batch N	o pł	I	(mS/cm)	(pp	om)	рН	(mS/cn	•	(ррі	m)	(minut	-	GAC mass (g)
3	13.	1	15,74		8040 8040	11,87	12,77	F		3800 4220	30		40
		erag	e		8040		COD average					4010	
COD		Std Saw	v.s filtered)		0		Std		4030			2	297
COD	Runge (I		v.s mered)			Eff	uent tank		+050	,			
	-	B	EFORE		20			•		AFTE			
Batch N	o pł	ł	Conductivit (mS/cm)		DD om)	pН	Conducti (mS/cn	•	СО (рр1		Time (minut	-	GAC mass (g)
2	12,		7.62		8130	11.60	0.42	_		4340	20		40
3	-	erag	7,62 e		8300 8215	11,68	8,43 COD ave	erage		4300	30	4	40
~~~		Std			120		Std	0					28
COD	Range (I	₹aw	v.s filtered)			(	Glucose		3895	,			
		B	EFORE							AFTE	R		
Batch N	o pł	ł	Conductivit (mS/cm)	y CC (pp	DD	pН	Conducti (mS/cn		СО (рр1		Time (minut		GAC mass (g)
	13,	0	(mo/cm)		7930		(mo/en	1)		4100	(innut	(5)	
3	4		7,62		7740 7835	11,65	8,38 COD ave			4130	30	1	40
		erag Std	e		134		Std						-115 21
COD	Range (I	Raw	v.s filtered)						3720	)	_	-	
				Stat	s					1	Raw Effluent		Filtered Effluent
				Grand av	/erage						8019	9	4294
				Grand		Range					65	5	<u>92</u> 3725
					Grand		ndensate						5143
		B	EFORE							AFTE	R		
Raw effluent subgrou No	n	I	Conductivit (mS/cm)		DD om)	рН	Conducti (mS/cn	•	CO (ppi		Time (minut		GAC mass (g)
1	13,	1	25,6		7570 7530	12,64	18,25			2850 2845	60		40
1		1 erag			7530 7550	12,04	COD ave			2043	00	2	40
	S	Std			28		Std		4805	_			4
COD	Kange (l	≺aw	v.s filtered)			Eff	uent tank		4702,	5			
		B	EFORE				acht tallk			AFTE	R		
Raw effluent	t pł	I	Conductivit (mS/cm)		DD om)	pН	Conducti (mS/cn		СО (рр1		Time (minut		GAC mass (g)

Subgroup No									
3	12,3 9	7,62	7740 7930	11,21	8,5	34		40	
	Average		7835		COD average			3450	
	Std		134		Std			0	
COD Rai	COD Range (Raw v.s filtered)					4385			
	Glucose								
	В	EFORE				AF	TER		
Raw effluent Subgroup No	рН	Conductivity (mS/cm)	COD (ppm)	рН	Conductivity (mS/cm)	COD (ppm)	Time (minutes	GAC mass (g)	
			7990			35			
4	13,8	7,62	7980	11,2	8,54	35	10 60	40	
	Averag	ge	7985	COD average				3545	
	Std		7		Std			49	
COD Rat	nge (Raw	v v.s filtered)				4440			
	Stats Effluent Filtered Effluent							Filtered Effluent	
		Gr	and average				7896	3542	
		(	Grand Std				72	57	
			Grand	Range				4354	

# **Appendix L1:** PAIRED T-TEST TRIAL ONE CALCULATIONS, BEFORE AND AFTER TREATMENT

Paired t-test for the mean difference conducted on trial 1 batch 1: COD comparison before and after the treatment:

Sample No.	COD (ppm) Before Treatment - Acidic samples	COD (ppm) After Treatment - Acidic samples
1	9740	6090
2	9720	5960
3	6800	4060
4	6890	3996
5	8260	5440
6	8030	5510
7	9310	5510
8	9930	5190
9	8260	5030
10	8030	4980
11	7740	4950
12	7430	4870
13	8785	4650
14	8523	4540
15	8260	4090
16	8030	4020
17	7930	4930
18	7920	4960

Test claim:

H₀:  $\overline{X}$  Difference = 0; Where:  $\overline{X}$  Difference is ( $\overline{X}$  COD before treatment -  $\overline{X}$  COD after treatment)

H₁:  $\overline{X}$  Difference  $\neq 0$ 

		Trial One - Bat	ch 1			
Sample No.	COD Before Treatment	COD After Treatment	Difference	Diff - Mean Diff	(Diff - Mean Diff) Power2	
1	9740	6090	3650	3650	13322500	
2	9720	5960	3760	3760	14137600	
3	6800	4060	2740	2740	7507600	
4	6890	3996	2894	2894	8375236	
5	8260	5440	2820	2820	7952400	
6	8030	5510	2520	2520	6350400	
7	9310	5510	3800	3800	14440000	
8	9930	5190	4740	4740	22467600	
9	8260	5030	3230	3230	10432900	
10	8030	4980	3050	3050	9302500	
11	7740	4950	2790	2790	7784100	
12	7430	4870	2560	2560	6553600	
13	8785	4650	4135	4135	17098225	
14	8523	4540	3983	3983	15864289	
15	8260	4090	4170	4170	17388900	
16	8030	4020	4010	4010	16080100	
17	7930	4930	3000	3000	9000000	
18	7920	4960	2960	2960	8761600	
		Mean Diff	3378	3	212819550	= Sum Variance
	Under root	12518797,06				
	SD =	3538,191213				
	sqrt3	4,242640687				

	Test stat = AveDiff/(SD/sqrtn	At 95% confidence in two tail (0.025) and df n-1 (17)		
SD calculation	Test stat = 4,051089	Critical values 2.1098 and -2.1098		

The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.0511) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 1 batch 1 is rejected.

Paired t-test for the mean difference conducted on trial 1 batch 2: COD comparison before and after the treatment:

Sample	COD (ppm) Before Treatment - Acidic	COD (ppm) After Treatment - Acidic
No.	samples	samples
1	9740	5320
2	9720	4990
3	7740	4500
4	7430	4390
5	8260	4740
6	8030	4691
7	9740	4720
8	9720	4350
9	7920	4920
10	7930	4920
11	8260	4610
12	8030	4590
13	8300	3040
14	8350	3090
15	5730	910
16	5760	970
17	7930	2070
18	7920	2010

Test claim:

H₀:  $\overline{X}$  Difference = 0; Where:  $\overline{X}$  Difference is ( $\overline{X}$  COD before treatment -  $\overline{X}$  COD after treatment)

 $H_1: \overline{X}_{\text{Difference}} \neq 0$ 

		Trial One	- Batch 2			
	COD Before	COD After				
Sample No.	Treatment	Treatment	Difference	Diff - Mean Diff	(Diff -Mean Diff)Power2	
1	9740	5320	4420	4420	19536400	
2	9720	4990	4730	4730	22372900	
3	7740	4500	3240	3240	10497600	
4	7430	4390	3040	3040	9241600	
5	8260	4740	3520	3520	12390400	
6	8030	4691	3339	3339	11148921	
7	9740	4720	5020	5020	25200400	
8	9720	4350	5370	5370	28836900	
9	7920	4920	3000	3000	900000	
10	7930	4920	3010	3010	9060100	
11	8260	4610	3650	3650	13322500	
12	8030	4590	3440	3440	11833600	
13	8300	3040	5260	5260	27667600	
14	8350	3090	5260	5260	27667600	
15	5730	910	4820	4820	23232400	
16	5760	970	4790	4790	22944100	
17	7930	2070	5860	5860	34339600	
18	7920	2010	5910	5910	34928100	
		Mean Diff	431	5	353220721	= Sum Variance
	Under root	20777689,47				
	SD =	4558,255091				
	sgrt3	4,242640687				
	•	, , , , , , , , , , , , , , , , , , , ,				
		Test stat = AveDiff/(S	SD/sgrtn	At 95% confidenc	e in two tail (0.025) and	df n-1 (17)
	SD Calculation	Test stat = 4.016694	· ·		1098 and -2.1098	. /
	3D calculation	Test stat - 4,010094	<b></b>	Litural values 2.	1090 anu -2.1098	

The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.0167) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 1 batch 2 is rejected.

Paired t-test for the mean difference on trial 1 batch 3: COD comparison before and after the treatment:

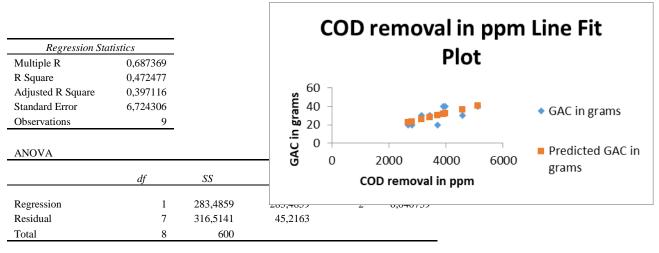
	COD (ppm) Before	COD (ppm) After
Sample	Treatment - Acidic	Treatment - Acidic
No.	samples	samples
1	9740	4620
2	9720	4593
3	6800	2860
4	6890	2890
5	8260	4170
6	8030	4290
7	9740	4180
8	9720	3840
9	7930	4110
10	7920	4170
11	8010	4040
12	8070	4080
13	8785	4240
14	8523	4510
15	8260	4000
16	8030	3950
17	7930	3390

	18	7925	3320	
Test claim:				

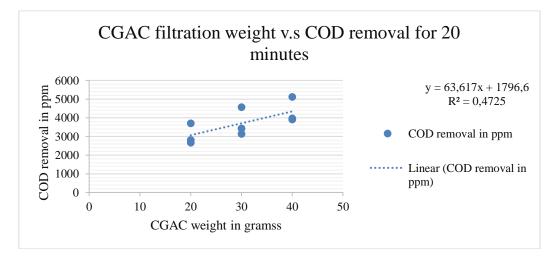
H₀:  $\overline{X}$  Difference = 0; Where:  $\overline{X}$  Difference is ( $\overline{X}$  COD before treatment -  $\overline{X}$  COD after treatment)

H₁:  $\overline{X}$  Difference  $\neq 0$ 

		Test stat = AveDiff/(S	SD/sqrtn	At 95% confidence	e in two tail (0.025) and d	f n-1 (17)
	SD Calculation	n Test stat = 4,082418		Critical values 2.1	098 and -2.1098	
		Trial One	e - Batch 3			
Sample No.	COD Before Treatment	COD After Treatment	Difference	e Diff - Mean Diff	(Diff -Mean Diff)Power2	
1	9740	4620	5120	5120	26214400	
2	9720	4593	5127	5127	26286129	
3	6800	2860	3940	3940	15523600	
4	6890	2890	4000	4000	1600000	
5	8260	4170	4090	4090	16728100	
6	8030	4290	3740	3740	13987600	
7	9740	4180	5560	5560	30913600	
8	9720	3840	5880	5880	34574400	
9	7930	4110	3820	3820	14592400	
10	7920	4170	3750	3750	14062500	
11	8010	4040	3970	3970	15760900	
12	8070	4080	3990	3990	15920100	
13	8785	4240	4545	4545	20657025	
14	8523	4510	4013	4013	16104169	
15	8260	4000	4260	4260	18147600	
16	8030	3950	4080	4080	16646400	
17	7930	3390	4540	4540	20611600	
18	7925	3320	4605	4605	21206025	
		Mean Diff	43	91	353936548	= Sum Variance
	Under root	20819796,94				
	SD =	4562,871567	,			
	sgrt3	4,242640687	,			


The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.0824) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 1 batch 3 is rejected.

## **Appendix L2:** TRIAL ONE CORRELATION STUDY ON IMPROVEMENT DATA – USING THE DATA COLLECTED ON THE 28 AUGUST 2018


CGAC in grams	COD removal in ppm
20	3705
20	2817
20	2670
30	4575
30	3140
30	3430
40	5124
40	3970
40	3915

Correlation of 20 minutes: 20g, 30g, and 40g:

#### SUMMARY OUTPUT



	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
				0,83115		29,0042		
Intercept	2,482399	11,21611	0,221324	7	-24,0395	9	-24,0395	29,00429
COD removal in				0,04075		0,01444		
ppm	0,007427	0,002966	2,503907	9	0,000413	1	0,000413	0,014441

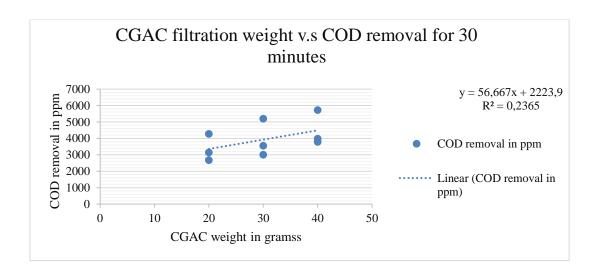


 $r^2$  of 0.4725 and r of 0.3971 indicates a weak positive correlation.

F- ANOVA of 6. 2696 indicates a small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.3971; which indicates that 39.71% of the total variation in the COD concentrations can be explained by the linear relationship. However, 60.29% of the variation cannot be explained because of other independent factors.

CGAC in grams	COD removal in ppm
20	4270
20	2675
20	3140
30	5195
30	3545
30	3005
40	5720
40	3980
40	3785


Correlation of 30 minutes: 20g, 30g, and 40g:

#### SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,486327					
R Square	0,236514					
Adjusted R Square	0,127445					
Standard Error	942,5969					
Observations	9					

	df	SS	MS	F	Significance F		
Regression	1	1926667	1926667	2,168476	0,184348		
Residual	7	6219422	888488,9				
Total	8	8146089					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lowe 95.0%

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept	2223,889	1196,434	1,858764	0,105402	-605,228	5053,006	-605,228	5053,006
GAC in grams	56,66667	38,48136	1,472575	0,184348	-34,3273	147,6606	-34,3273	147,6606

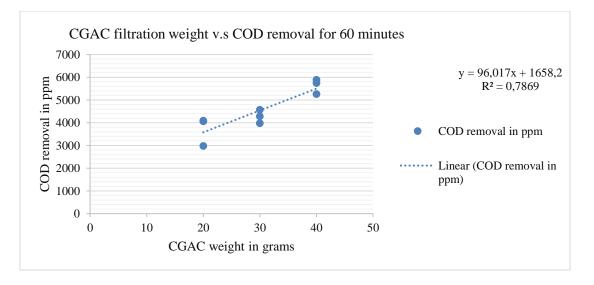


 $r^2$  of 0.2365 and r of 0.1275 indicates a very weak positive correlation.

F- ANOVA of 2.1685 indicates a small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.1275. This indicates that 12.75% of the total variation in the COD concentrations can be explained by the linear relationship, but 87.25% of the variation cannot be explained because of other independent factors.

CGAC in grams	COD removal in ppm
20	4059
20	4090
20	2980
30	4279
30	4570
30	3980
40	5260
40	5885
40	5745


## Correlation of 60 minutes: 20g, 30g, and 40g:

#### SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,887073					
R Square Adjusted R	0,786899					
Square	0,756456					
Standard Error	462,6007					
Observations	9					

	df	SS	MS	F	Significance F
	uj 1			25.0402	0.001.424
Regression	1	5531520	5531520	25,8483	0,001424
Residual	7	1497996	213999,4		
Total	8	7029516			
Total	8	7029516			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept	1658,167	587,177	2,823964	0,025627	269,7137	3046,62	269,7137	3046,62
GAC in grams	96,01667	18,88559	5,084122	0,001424	51,35933	140,674	51,35933	140,674

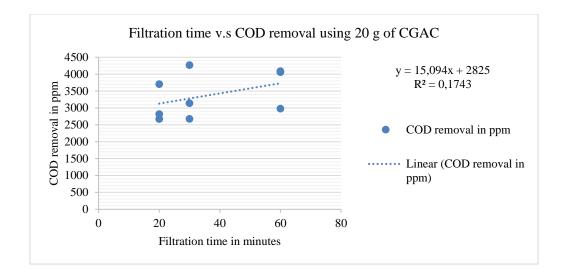


 $r^2$  of 0,7869 and r of 0,7565 indicates a very weak positive correlation.

F- ANOVA of 25.8483 indicates a high number which implies significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.7565. This indicates that 75.65% of the total variation in the COD concentrations can be explained by the linear relationship; 24.35% of the variation cannot be explained because of other independent factors.

Contact time in minutes	COD removal in ppm
20	3705
20	2817
20	2670
30	4270
30	2675
30	3140
60	4059
60	4090
60	2980


### Correlation of 20 grams: 20 minutes, 30 minutes, and 40 minutes:

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0,417478				
R Square Adjusted R	0,174288				
Square	0,056329				
Standard Error	633,1571				
Observations	9				

					Significance
	df	SS	MS	F	F
Regression	1	592322,8	592322,8	1,477527	0,263562
Residual	7	2806215	400887,9		
Total	8	3398538			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
Intercept Filtration in	2825,013	501,8365	5,629349	0,000791	1638,358	4011,668	1638,358	4011,668
min	15,09359	12,41723	1,215536	0,263562	-14,2685	44,45568	-14,2685	44,45568

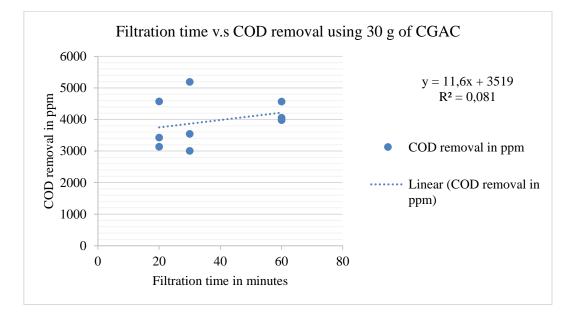


 $r^2$  of 0.1743 and r of 0.05633 indicates a very weak positive correlation.

F- ANOVA of 1.4775 indicates a very small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.05633. This indicates that only 5.6330% of the total variation in the COD concentrations can be explained by the linear relationship, but 94.37% of the total variation cannot be explained because of other independent factors.

Contact time in minutes	COD removal in ppm
20	4575
20	3430
20	3140
30	5195
30	3545
30	3005
60	4059
60	4570
60	3980


Correlation of 30 grams: 20 minutes, 30 minutes, and 40 minutes:

#### SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,284543					
R Square	0,0809647					
Adjusted R Square	-0,050326					
Standard Error	753,2061					
Observations	9					

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	349856	349856	0,6166826	0,4580331
Residual	7	3971236	567319,43		
Total	8	4321092			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept Filtration in	3519	596,98658	5,8946049	0,0006028	2107,3511	4930,6489	2107,3511	4930,6489
min	11,6	14,771587	0,7852914	0,4580331	-23,329253	46,529253	23,329253	46,529253

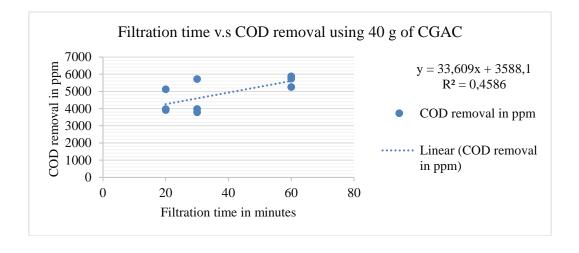


 $r^2$  of 0.08100 and r of 0,05033 indicates a very weak positive correlation.

F- ANOVA of 0.6168 indicates a very small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.05033. This indicates that only 5.0330% of the total variation in the COD concentrations can be explained by the linear relationship, but 94.97% of the total variation cannot be explained because of other independent factors.

Contact time in	COD removal in
minutes	ррт
20	5124
20	3970
20	3915
30	5720
30	3980
30	3785
60	5260
60	5885
60	5745


## Correlation of 40 gramss: 20minutes, 30minutes, and 40minutes.

#### SUMMARY OUTPUT

Regression Statistics					
Multiple R	0,6771876				
R Square Adjusted R	0,4585831				
Square	0,3812378				
Standard Error	703,80091				
Observations	9				

	df	SS	MS	F	Significance F
Regression	1	2936864,2	2936864,2	5,9290379	0,045091
Residual	7	3467350	495335,72		
Total	8	6404214,2			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept Filtration in	3588,1154	557,82832	6,4322933	0,0003562	2269,061	4907,1698	2269,061	4907,1698
min	33,608974	13,802671	2,4349616	0,045091	0,9708429	66,247106	0,9708429	66,247106



 $r^2$  of 0.4586 and r of 0.3812 indicates a weak positive correlation.

F- ANOVA of 5.9290 indicates a very small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.3812. This indicates that only 38.12% of the total variation in the COD concentrations can be explained by the linear relationship, but 61.88% of the total variation cannot be explained because of other independent factors.

# **Appendix M1:** PAIRED T-TEST TRIAL TWO CALCULATIONS, BEFORE AND AFTER TREATMENT

Paired t-test for the mean difference conducted on trial 2 - batch 1: COD comparison before and after the treatment:

Sample	COD (ppm) Before Treatment - Alkaline	COD (ppm) After Treatment - Alkaline
No.	samples	samples
1	7570	6280
2	7530	6180
3	7990	4740
4	7980	4720
5	7740	4970
6	7793	4930
7	8130	4800
8	8300	4840
9	7990	4850
10	7980	4840
11	7930	4790
12	7740	4560
13	8040	5100
14	8400	5110
15	8130	4940
16	8300	5000
17	7990	4890
18	7980	4920

Test claim:

H₀:  $\overline{X}$  Difference = 0; Where:  $\overline{X}$  Difference is ( $\overline{X}$  COD before treatment -  $\overline{X}$  COD after treatment)

H₁:  $\overline{X}$  Difference  $\neq 0$ 

		Trial Two	- Batch 1			
	COD Before	COD After				
Sample No.	Treatment	Treatment	Difference	Diff - Mean Diff	(Diff -Mean Diff)Power2	
1	7570	6280	1290	1290	1664100	
2	7530	6180	1350	1350	1822500	
3	7990	4740	3250	3250	10562500	
4	7980	4720	3260	3260	10627600	
5	7740	4970	2770	2770	7672900	
6	7793	4930	2863	2863	8196769	
7	8130	4800	3330	3330	11088900	
8	8300	4840	3460	3460	11971600	
9	7990	4850	3140	3140	9859600	
10	7980	4840	3140	3140	9859600	
11	7930	4790	3140	3140	9859600	
12	7740	4560	3180	3180	10112400	
13	8040	5100	2940	2940	8643600	
14	8400	5110	3290	3290	10824100	
15	8130	4940	3190	3190	10176100	
16	8300	5000	3300	3300	10890000	
17	7990	4890	3100	3100	9610000	
18	7980	4920	3060	3060	9363600	
		Mean Diff	2947		162805469	= Sum Variance
	Under root	9576792,294				
	SD =	3094,639283				
	sgrt3	4.242640687				

	Test stat = AveDiff/(SD/sqrtn	At 95% confidence in two tail (0.025) and df n-1 (17)
SD Calculation	Test stat = 4,040766	Critical values 2.1098 and -2.1098

The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.0408) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 2 batch 1 is rejected.

Paired t-test for the mean difference conducted on trial 2 - batch 2: COD comparison before and after the treatment:

Sample	COD (ppm) Before Treatment - Alkaline	COD (ppm) After Treatment - Alkaline
-		
No.	samples	samples
1	8130	5219
2	8300	5180
3	8130	4630
4	8300	4680
5	7990	4740
6	7980	4740
7	8130	4330
8	8300	4320
9	7990	4310
10	7980	4370
11	7930	4270
12	7740	4280
13	9310	5180
14	9930	5400
15	8040	4520
16	8400	4440
17	7801	3500
18	7760	4040

Test claim:

H₀:  $\overline{X}$  Difference = 0; Where:  $\overline{X}$  Difference is ( $\overline{X}$  COD before treatment -  $\overline{X}$  COD after treatment) H₁:  $\overline{X}$  Difference  $\neq 0$ 

		Trial Two	- Batch 2			
	COD Before	COD After				
Sample No.	Treatment	Treatment	Difference	Diff - Mean Diff	(Diff -Mean Diff)Power2	
1	8130	5219	2911	2911	8473921	
2	8300	5180	3120	3120	9734400	
3	8130	4630	3500	3500	12250000	
4	8300	4680	3620	3620	13104400	
5	7990	4740	3250	3250	10562500	
6	7980	4740	3240	3240	10497600	
7	8130	4330	3800	3800	14440000	
8	8300	4320	3980	3980	15840400	
9	7990	4310	3680	3680	13542400	
10	7980	4370	3610	3610	13032100	
11	7930	4270	3660	3660	13395600	
12	7740	4280	3460	3460	11971600	
13	9310	5180	4130	4130	17056900	
14	9930	5400	4530	4530	20520900	
15	8040	4520	3520	3520	12390400	
16	8400	4440	3960	3960	15681600	
17	7801	3500	4301	4301	18498601	
18	7760	4040	3720	3720	13838400	
		Mean Diff	3666	5	244831722	= Sum Variance
	Under root	14401866				
	SD =	3794,979051				
	sqrt3	4,242640687				
	SD =		14401866 3794,979051	14401866 3794,979051	14401866 3794,979051	14401866 3794,979051
		Test stat = AveDiff/(S	D/sqrtn A	t 95% confidence	in two tail (0.025) and d	f n-1 (17)
	SD Calculations	Test stat = 4,098696	C	ritical values 2.1	098 and -2.1098	

The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.0987) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 2 batch 2 is rejected.

Paired t-test for the mean difference conducted on Trial 2 - batch 3: COD comparison before and after the treatment:

Sample No.	COD (ppm) Before Treatment - Alkaline samples	COD (ppm) After Treatment - Alkaline samples
1	9310	5900
2	9930	5987
3	8130	4000
4	8300	4100
5	7990	4340
6	7980	4440
7	8040	3800
8	8040	4220
9	8130	4340
10	8300	4300
11	7930	4100
12	7740	4130
13	7570	2850
14	7530	2845
15	7740	3450
16	7930	3450
17	7990	3580
18	7980	3510

### Test claim:

## H₀: $\overline{X}_{\text{Difference}} = 0$ ; Where: $\overline{X}_{\text{Difference}}$ is ( $\overline{X}_{\text{COD before treatment}} - \overline{X}_{\text{COD after treatment}}$ )

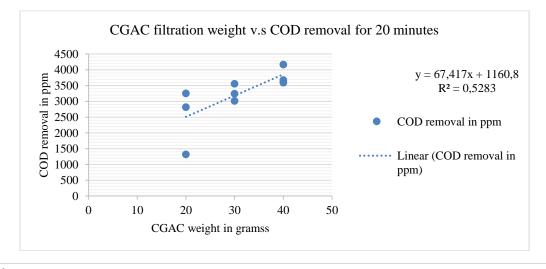
## $H_1: \overline{X}_{\text{Difference}} \neq 0$

		Trial Two	- Batch 3			
	COD Before	COD After	5:11	D:// 14 D://		
Sample No.		Treatment	Difference		(Diff -Mean Diff)Power2	
1	9310	5900	3410	3410	11628100	
2	9930	5987	3943	3943	15547249	
3	8130	4000	4130	4130	17056900	
4	8300	4100	4200	4200	17640000	
5	7990	4340	3650	3650	13322500	
6	7980	4440	3540	3540	12531600	
7	8040	3800	4240	4240	17977600	
8	8040	4220	3820	3820	14592400	
9	8130	4340	3790	3790	14364100	
10	8300	4300	4000	4000	1600000	
11	7930	4100	3830	3830	14668900	
12	7740	4130	3610	3610	13032100	
13	7570	2850	4720	4720	22278400	
14	7530	2845	4685	4685	21949225	
15	7740	3450	4290	4290	18404100	
16	7930	3450	4480	4480	20070400	
17	7990	3580	4410	4410	19448100	
18	7980	3510	4470	4470	19980900	
		Mean Diff	406	8	300492574	= Sum Variance
	Under root	17676033,76				
	SD =	4204,287545				
sqrt3		4,242640687				
		Test stat = AveDiff/(S	D/sqrtn A	t 95% confidence	in two tail (0.025) and d	f n-1 (17)
	SD Calculation	Test stat = 4.104773	C	ritical values 2.1	098 and -2.1098	

The critical values were found to be 2.1098 and -2.1098 at 95%  $0.025(\alpha/2)$  confidence limits, and 17(n-1) degrees of freedom. Since the calculated t_{stat} (4.1048) falls within a rejection area, there is significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis states that there is a difference in the COD concentrations means, between the COD concentrations before and after treatment. Therefore, the null hypothesis which states that there is no difference between the two COD concentrations means for trial 2 batch 3 is rejected.

# **Appendix M2:** TRIAL TWO CORRELATION STUDY USING THE DATA COLLECTED ON THE 30 SEPTEMBER 2018 AND 29 OCTOBER 2018

CGAC in	COD removal in
grams	ppm
20	1320
20	3255
20	2817
30	3016
30	3560
30	3245
40	3677
40	4165
40	3595


### Correlation of 20 minutes: 20g, 30g, and 40g:

#### SUMMARY OUTPUT

Regression Statistics					
Multiple R	0,7268406				
R Square Adjusted R	0,5282973				
Square Standard	0,4609112				
Error	589,77839				
Observations	9				

					Significance
	df	SS	MS	F	F
Regression	1	2727004,2	2727004,2	7,8398561	0,0265252
Residual	7	2434869,8	347838,55		
Total	8	5161874			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept GAC in	1160,8333	748,60307	1,550666	0,1649177	-609,33163	2930,9983	- 609,33163	2930,9983
grams	67,416667	24,077602	2,7999743	0,0265252	10,482185	124,35115	10,482185	124,35115

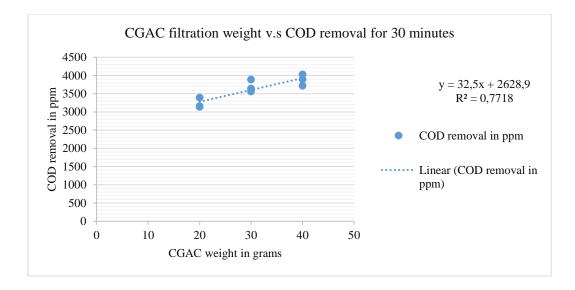


 $r^2$  of 0.5283 and r of 0.4609 indicates a weak positive correlation.

F- ANOVA of 5.9290 indicates a small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.4609. This indicates that only 46.09% of the total variation in the COD concentrations can be explained by the linear relationship, but 53.91% of the total variation cannot be explained because of other independent factors.

CGAC in grams	COD removal in ppm
20	3395
20	3140
20	3160
30	3890
30	3645
30	3560
40	4030
40	3895
40	3720


Correlation of 30 minutes: 20g, 30g, and 40g:

### SUMMARY OUTPUT

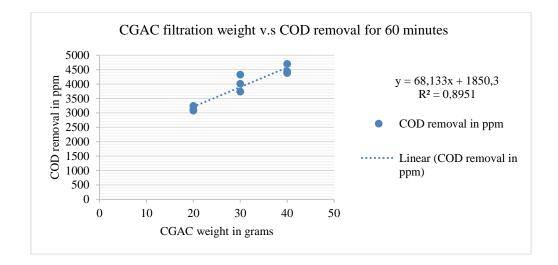
<b>Regression Statistics</b>				
Multiple R	0,878518			
R Square Adjusted R	0,7717939			
Square	0,739193			
Standard Error	163,61492			
Observations	9			

	df	SS	MS	F	Significance F
Regression	1	633750	633750	23,674029	0,0018234
Residual	7	187388,89	26769,841		
Total	8	821138,89			

	Standard					Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept	2628,8889	207,67568	12,658627	4,439E-06	2137,8139	3119,9638	2137,8139	3119,9638
GAC in grams	32,5	6,679551	4,8655965	0,0018234	16,705372	48,294628	16,705372	48,294628



 $r^2$  of 0.7718 and r of 0.7392 indicates a good positive correlation.


F- ANOVA of 23.6740 indicates a fair number which implies significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.7392. This indicates that 73.92% of the total variation in the COD concentrations can be explained by the linear relationship. The variation of 26.08% cannot be explained because of other independent factors.

<b>Correlation</b>	of	60	minutes:	20	g,	30g,	and	40	g:
					•	•			-

CGAC in grams	COD removal in ppm
20	3115
20	3245
20	3080
30	4330
30	3740
30	4011
40	4703
40	4385
40	4440

Regression	n Statistics							
Multiple R	0,946081							
R Square Adjusted R	0,8950692							
Square Standard	0,8800791							
Error	215,97795							
Observations	9							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	2785290,7	2785290,7	59,710634	0,0001137			
Residual	7	326525,33	46646,476					
Total	8	3111816						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
Intercept GAC in	1850,3333	274,13985	6,7495964	0,0002651	1202,0956	2498,5711	1202,0956	2498,5711
grams	68,133333	8,817263	7,7272656	0,0001137	47,283819	88,982847	47,283819	88,982847

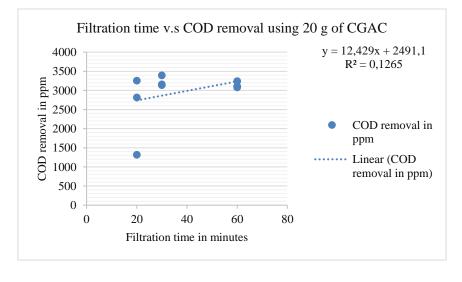


 $r^2$  of 0.8951 and r of 0.8801 indicates a good positive correlation.

F- ANOVA of 59.7106 indicates a high number which implies significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.8801. This indicates that 88.01% of the total variation in the COD concentrations can be explained by the linear relationship. Only the variation of 11.99% cannot be explained because of other independent factors.

Contact time in minutes	COD removal in ppm
20	1320
20	3255
20	2817
30	3395
30	3140
30	3160
60	3110
60	3245
60	3080


## Correlation of 20 grams: 20 minutes, 30 minutes, and 40 minutes:

### SUMMARY OUTPUT

Regression Statistics					
Multiple R	0,3556715				
R Square Adjusted R	0,1265022				
Square	0,0017168				
Standard Error	629,46659				
Observations	9				

	df	SS	MS	F	Significance F
Regression	1	401679,59	401679,59	1,0137583	0,347533
Residual	7	2773597,3	396228,18		
Total	8	3175276,9			

	Standard					Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept Filtration in	2491,141	498,91139	4,9931532	0,0015774	1311,403	3670,879	1311,403	3670,879
min	12,429487	12,344855	1,0068556	0,347533	-16,761457	41,620432	16,761457	41,620432

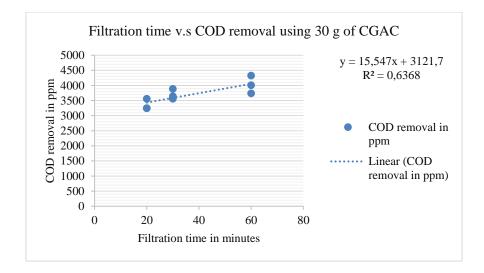


 $r^2$  of 0.1265 and r of 0.001717 indicates a very weak positive correlation.

F- ANOVA of 1.01376 indicates a very small number which implies non-significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.001717. This indicates that 0.1717% of the total variation in the COD concentrations can be explained by the linear relationship; however, 99.83% of the total variation cannot be explained because of other independent factors.

Contact time in minutes	COD removal in ppm
20	3245
20	3560
20	3245
30	3890
30	3645
30	3560
60	4330
60	3740
60	4011


Correlation of 30 grams: 20 minutes, 30 minutes, and 40 minutes:

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,7979756					
R Square	0,6367651					
Adjusted R Square Standard	0,5848743					
Error	226,30838					
Observations	9					

	df	SS	MS	F	Significance F
Regression	1	628479,18	628479,18	12,271274	0,0099522
Residual	7	358508,37	51215,482		
Total	8	986987,56			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95,0%	95,0%
Intercept Filtration in	3121,7051	179,37064	17,403657	5,086E-07	2697,561	3545,8493	2697,561	3545,8493
min	15,547436	4,4382724	3,5030378	0,0099522	5,0525893	26,042283	5,0525893	26,042283

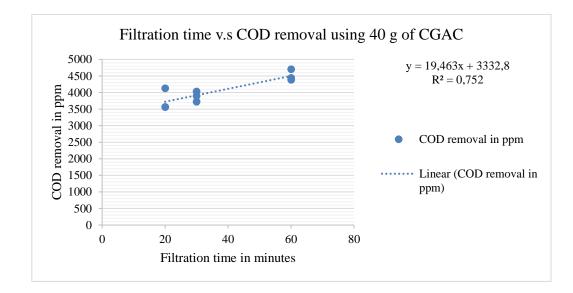


 $r^2$  of 0.6368 and r of 0.5849 indicates a good positive correlation.

F- ANOVA of 12.2713 indicates a number which implies significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.5849. This indicates that 58.49% of the total variation in the COD concentrations can be explained by the linear relationship. The variation of 41.51% cannot be explained because of other independent factors.

Contact time in minutes	COD removal in ppm
20	3560
20	4125
20	3560
30	4030
30	3895
30	3720
60	4703
60	4385
60	4440


Correlation of 40 grams: 20 minutes, 30 minutes, and 40 minutes:

#### SUMMARY OUTPUT

Regression Statistics					
Multiple R	0,8671513				
R Square Adjusted R	0,7519514				
Square	0,7165159				
Standard Error	215,43532				
Observations	9				

	df	SS	MS	F	Significance F
Regression	1	984883,59	984883,59	21,22028	0,002465

Residual	7	324886,63	46412,375					
Total	8	1309770,2						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
Intercept Filtration in	3332,8077	170,75272	19,518328	2,312E-07	2929,0417	3736,5737	2929,0417	3736,5737
min	19,462821	4,2250342	4,6065475	0,002465	9,4722023	29,453439	9,4722023	29,453439



 $r^2$  of 0.7520 and r of 0.7166 indicates a good positive correlation.

F- ANOVA of 21.2203 indicates a big number which implies significant correlation.

The coefficient of determination of the increased CGAC weight versus the COD concentrations removal is found to be 0.7166. This indicates that 71.66% of the total variation in the COD concentrations can be explained by the linear relationship. The variation of 28.34% cannot be explained because of other independent factors.

## **Appendix N:** T-TEST CALCULATIONS FOR EQUAL VARIANCE MEANS CONDUCTED ON TRIAL ONE AND TRIAL TWO COD REMOVAL DATA

COD removal in ppm					
Acidic – 20 grams: 20 minutes	Alkaline 20 grams: 20 minutes				
3705 ppm	3016 ppm				
2870 ppm	3255 ppm				
2670 ppm	2817 ppm				

Filtration	condition:	20	grams	&	20	minutes	:
			-				_

Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ 

H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

T-test: Two-sample assuming equal variances.					
	COD removal: Acidic 20 g	COD removal: Alkaline 20 g			
	&20 minutes	&20 minutes			
Mean	3081,666667	3029,333333			
Variance	301408,3333	48094,33333			
Observations	3	3			
<b>Pooled Variance</b>	174751,3333				
Hypothesized Mean					
Difference	0				
df	4				
t Stat	0,153325284				
P(T<=t) two-tail	0,885565781				
t Critical two-tail	3,4954 to -3,4954				

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 0.1533 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration	condition:	20	grams	&	30	minutes:

COD removal in ppm					
Acidic – 20 grams: 30 minutes	Alkaline – 20 grams: 30 minutes				
4270 ppm	3395 ppm				
2675 ppm	3140 ppm				
3140 ppm	3160 ppm				

Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ 

H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

T-test: Two-sample assuming equal variances.					
	COD removal: Acidic 20	COD removal: Alkaline 20 g &			
	g & 30 minutes	30 minutes			
Mean	3361,666667	3231,666667			
Variance	672858,3333	20108,33333			
Observations	3	3			
<b>Pooled Variance</b>	346483,3333				
Hypothesized Mean					
Difference	0				
df	4				
t Stat	0,270487878				
P(T<=t) two-tail	0,800168017				
t Critical two-tail	3,4954 to -3,4954				

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 0.2705 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration	condition:	20	grams	&	60	minutes:

COD removal in ppm		
Acidic – 20 grams: 60 minutes	Alkaline – 20 grams: 60 minutes	
4059 ppm	3115 ppm	
4090 ppm	3245 ppm	
2980 ppm	3080 ppm	

Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

	Acidic – 20 g: 60	
	minutes	Alkaline – 20 g: 60 minutes
Mean	3709,666667	3146,666667
Variance	399550,3333	7558,333333
Observations	3	3
<b>Pooled Variance</b>	203554,3333	
Hypothesized Mean		
Difference	0	
df	4	
t Stat	1,528318423	
P(T<=t) two-tail	0,201157585	
t Critical two-tail	3,4954 to -3,4954	

**T-test: Two-sample assuming equal variances.** 

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 1.5283 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration condition: 30 grams & 20 minutes:

COD removal in ppm		
Acidic – 30 grams: 20 minutes	Alkaline – 30 grams: 20 minutes	
4575 ppm	1320 ppm	
3140 ppm	3560 ppm	
3430 ppm	4165 ppm	

## Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ 

H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

	COD removal: Acidic 3 0g & 20 minutes	COD removal: Alkaline 30 g & 20 minutes
Mean	3715	3015
Variance	575725	2246275
Observations	3	3
Pooled Variance	1411000	
Hypothesized Mean		
Difference	0	
df	4	
t Stat	0,721738982	
P(T<=t) two-tail	0,510390544	
t Critical two-tail	3,4954 to -3,4954	

T-test: Two-sample assuming equal variances.

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 0.7517 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration condition: 30 grams & 30 minutes:

COD removal in ppm		
Acidic – 30 grams: 30 minutes	Alkaline – 30 grams: 30 minutes	
5195 ppm	3890 ppm	
3005 ppm	3645 ppm	
3545 ppm	3560 ppm	

## Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ 

H₁:  $\overline{X}_A \neq \overline{X}_B$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

	COD removal: Acidic 30 g & 30 minutes	COD removal: Alkaline 30 g & 30 minutes
Mean	3915	3698,333333
Variance	1301700	29358,33333
Observations	3	3
<b>Pooled Variance</b>	665529,1667	
Hypothesized		
Mean Difference	0	
df	4	
t Stat	0,325277621	
P(T<=t) two-tail	0,761274072	
t Critical two-tail	3,4954 to -3,4954	

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 0.3253 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

COD removal in ppm		
Acidic – 30 grams: 60 minutes	Alkaline – 30 grams: 60 minutes	
4279 ppm	4330 ppm	
4170 ppm	3740 ppm	
4570 ppm	4011 ppm	

Filtration condition: 30 grams & 60 minutes.

## Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

T-test: Two-sample assuming equal variances.

	COD removal: Acidic 30 g & 60 minutes	COD removal: Alkaline 30 g & 60 minutes
Mean	4339,666667	4027
Variance	42760,33333	87217
Observations	3	3
<b>Pooled Variance</b>	64988,66667	
Hypothesized Mean		
Difference	0	
df	4	
t Stat	1,502133044	
P(T<=t) two-tail	0,207476454	
t Critical two-tail	3,4954 to 3,4954	

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 1.5021 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, since the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration condition:	40 grams & 20 minut	es.

COD removal in ppm		
Acidic – 40 grams: 20 minutes	Alkaline – 40 grams: 20 minutes	
5124 ppm	3677 ppm	
3970 ppm	4165 ppm	
3915 ppm	3595 ppm	

Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ 

H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 

Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

	COD removal: Acidic 40 g	COD removal: Alkaline 40 g & 20
	& 20 minutes	minutes
Mean	4336,333333	3812,333333
Variance	466070,3333	94961,33333
Observations	3	3
<b>Pooled Variance</b>	280515,8333	
Hypothesized Mean		
Difference	0	
df	4	
t Stat	1,211708702	
P(T<=t) one-tail	0,146153203	
t Critical two-tail	3,4954 to -3,4954	

T-test: Two-sample assuming equal variances.

The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 1.2117 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, as the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

Filtration condition: 40 grams & 30 minutes.

COD removal in ppm		
Acidic – 40 grams: 30 minutes	Alkaline – 40 grams: 30 minutes	
5720 ppm	4030 ppm	
3785 ppm	3895 ppm	
3980 ppm	3720 ppm	

Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$  Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

	COD removal: Acidic 40 g & 30 minutes	COD removal: Alkaline 40 g & 30 minutes
Mean	4495	3881,666667
Variance	1134975	24158,33333
Observations	3	3
<b>Pooled Variance</b>	579566,6667	
Hypothesized		
Mean Difference	0	
df	4	
t Stat	0,9867122	
P(T<=t) two-tail	0,37964372	
t Critical two-tail	3,4954 to -3,4954	

### T-test: Two-sample assuming equal variances.

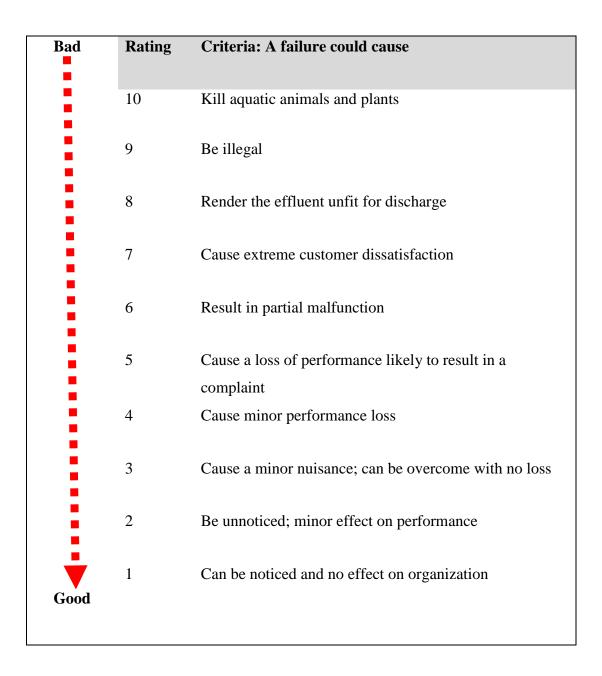
The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits; since the calculated t_{stat} of 0.9867 falls within a non-rejection area, there is enough significant statistical evidence to accept the null hypothesis and reject the alternate hypothesis. Therefore, as the null hypothesis is accepted, it can be concluded that mean of the reduced COD concentrations obtained when using acidic and alkaline samples are the same for this treatment.

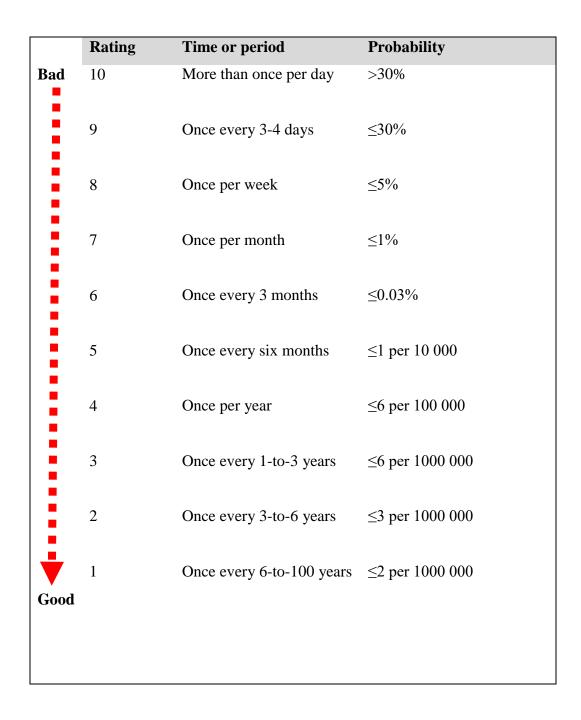
### Filtration condition: 40 grams & 60 minutes.

COD removal in ppm		
Acidic – 40 grams: 60 minutes	Alkaline 40 grams: 60 minutes	
5260 ppm	4703 ppm	
5745 ppm	4385 ppm	
5885 ppm	4440 ppm	

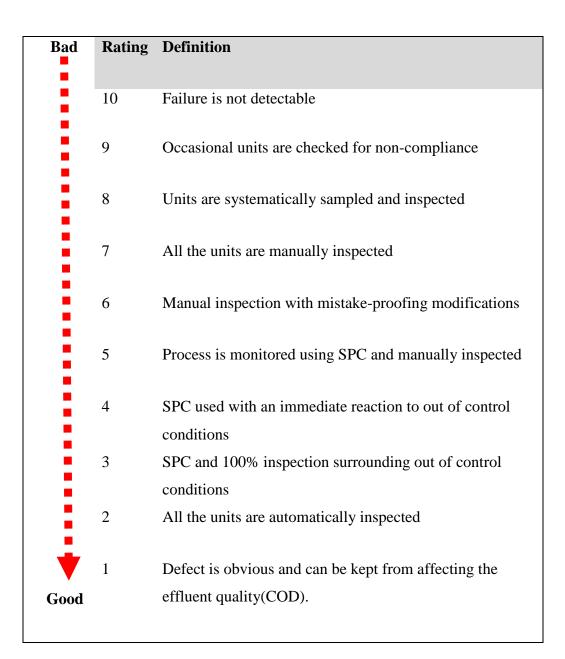
Test claim:

H₀:  $\overline{X}_{A} = \overline{X}_{B}$ H₁:  $\overline{X}_{A} \neq \overline{X}_{B}$ 


Where A is reduced COD concentrations from acidic samples and B is reduced concentrations from alkaline samples.

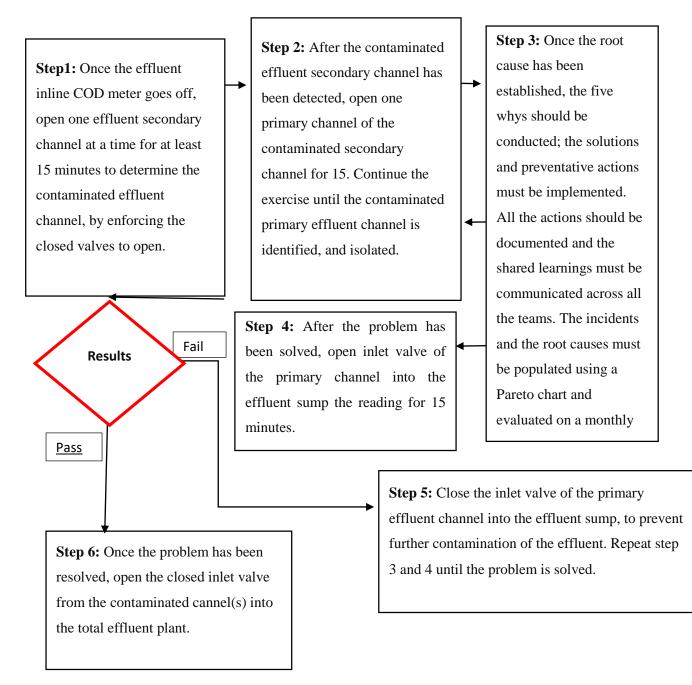

	COD removal: Acidic 40 g & 60 minutes	COD removal: Alkaline 40 g & 60 minutes
Mean	5630	4509,333333
Variance	107575	28886,33333
Observations	3	3
<b>Pooled Variance</b>	68230,66667	
Hypothesized Mean		
Difference	0	
df	4	
t Stat	5,254510649	
P(T<=t) two-tail	0,006277894	
t Critical two-tail	3,4954 to -3,4954	

**T-test: Two-sample assuming equal variances.** 


The critical values were found to be 3.4954 and -3.4954 at 95%  $0.025(\alpha/2)$  confidence limits since the calculated t_{stat} of 5.2545 falls within a rejection area. Therefore, there is enough significant statistical evidence to reject the null hypothesis and accept the alternate hypothesis. Therefore, as an alternate hypothesis is accepted, it can be concluded that means of the reduced COD concentrations obtained when using acidic and alkaline samples are not the same for this treatment. Since there was a significant difference in the reduced COD concentrations means, the t-test for unequal variances was conducted.

Since the t-statistic falls within the rejection area, we can therefore conclude that there is no significant statistical evidence to reject the null hypothesis which states that the reduced means obtained from the acidic samples are the same as the alkaline samples. Thus, the alternate hypothesis which states that there is a statistical difference in the reduced COD concentrations means obtained when the two pH content samples were used.






## **Appendix O3:** DETECTION RATING SCALE: HOW EASILY THE FAILURE CAN BE DETECTED



# **Appendix P:** TROUBLESHOOTING PROCEDURE FOR IMPROVING NON-CONFORMING COD CONCENTRATIONS IN THE WCM EFFLUENT

Purpose: To prevent the COD concentrations in the WCM effluent from exceeding COD regulatory.Frequency: Every time the COD siren or alarm goes off when the effluent is more than 4800ppm.Responsibility: Operator/Supervisor/Engineer/Production Manager,

