
FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT

DEPARTMENT OF ELECTRICAL, ELECTRONICS AND COMPUTER

ENGINEERING

A thesis submitted in part-fulfillment of the degree: Master of Engineering in Energy.

HARDWARE SIMULATOR FOR MICROGRID SYSTEMS

NAME

STUDENT ID

PROGRAM OF STUDY

SUPERVISOR

: Mr E.P MULUH

: 211050490

: MEng (Energy)

: Prof Mohamed T. E. Kahn

i

Abstract
The research thesis; Hardware simulator for Microgrid systems, takes a brief look at the

general definition of a Microgrid system and the constituent of a Microgrid system.

Special attention is paid to the solar PV as a stand-alone Microgrid system. The

characteristics of solar panels are studied.

An interconnected software and an electronics hardware system that mimics a solar PV

Microgrid system is then designed, simulated and built to operate within the solar PV

voltage and current rages of 48V / 5A respectively.

The software component is a LabVIEW graphical user interface (GUI) that allows one to

enter the data sheet parameters of a specific solar panel as well as any assumed

environmental conditions such as temperature and insolation. The block code then

continuously calculates and displays the power output info expected of the solar panel.

The built electronics hardware is a switch mode programmable buck converter (DC –DC

power supply). The buck converter is powered by a multiple-output adjustable AC to DC

power supply.

The electronics hardware’s current output limit is controlled from and by the GUI

through a national instrument data acquisition device; the NI USB 6009. The hardware’s

power output across a load is displayed using an LCD, Watt’s up power meter and also

on the GUI via the data acquisition device still.

.

ii

Acknowledgement
I am grateful to the almighty for his infinite blessing upon my life, must especially

concerning my education at the Cape Peninsula University of Technology. These

blessings were, and are still being manifested via the following ways:

 A family who gave me their moral and financial support, and are always willing to

do more.

 CPUT post graduate bursary and research funding, who granted me a University

bursary and Research Fund which made my research frictionless.

 The Department of Electrical, Electronics and Computer Engineering (DEECE)

who equipped the laboratories and gave me 24 /7 accessibility.

 A supervisor, who was at all times available, listened kindly to my complaints and

gave me the best advices.

iii

Table of Content
Abstract .. i

Acknowledgement ..ii

Table of Content .. iii

List of Figures ..vi

List of figures ...vi

List of equations... viii

Glossary ..ix

1. Introduction .. 1

1.1. Background .. 1

1.2. Problem statement ... 1

1.3. Aim and objectives ... 2

1.4. Thesis structure .. 3

2. Literature review ... 5

2.1. Microgrids... 5

2.1.1. Solar Photovoltaic systems .. 6

2.2. Solar panels ... 7

2.2.1. Operation of a PV cell .. 8

2.2.2. Solar PV array model... 9

2.2.3. Performance of solar photovoltaic panels .. 14

2.2.4. Advantages of stand-alone PV systems .. 15

2.2.5. Disadvantages of off-grid PV systems ... 16

2.3. Charge controllers .. 16

2.3.1. Series and Shunt charge controllers .. 16

2.3.2. PWM Charge controller ... 16

2.3.3. MPPT Charge controller .. 18

2.3.4. Advantages and disadvantages of both PWM and MPPT charge controller

19

2.3.5. Charge controllers 3 – 4 stages ... 20

2.4. Energy storage ... 20

2.5. Simulators .. 21

iv

2.5.1. PVSyst ... 21

2.5.2. Homer Pro ... 22

2.6. Photovoltaic emulator control strategy ... 23

2.6.1. Type of control strategy ... 23

2.7. Power supplies/amplifier .. 24

3. Methodology (Simulator design procedure) ... 26

3.1. Graphical user interface (GUI) ... 26

3.2. AC to DC Power Supply ... 26

3.3. DC – DC Buck Converter ... 27

3.3.1. Power stage ... 27

3.3.2. PWM signal conditioning circuit ... 34

4. Hardware simulator’s control strategy .. 38

4.1. Output voltage feedback .. 38

4.2. Output current feedback ... 40

4.3. Control flow .. 42

4.4. Calibration .. 45

5. Simulator operation .. 46

5.1. Operation Procedure .. 46

5.2. Performance Testing .. 49

6. Attempted design approaches.. 53

6.1. Matlab Support Package for Arduino ... 53

6.2. Serial monitor / serial communication .. 55

7. Conclusion and future research ... 56

Appendices ... 58

Appendix A: Build of material ... 58

Appendix B: LabVIEW block code ... 61

Appendix C: Arduino Uno c-code... 63

PWM control C-code .. 63

LCD display C-code ... 65

Appendix D: simulator’s Matlab Graphical-user-interface script 69

Appendix E: Project Images .. 81

v

Oscilloscope screen shots ... 81

Hardware images ... 83

List of References .. 86

vi

List of Figures

List of figures

Figure 1: A typical Microgrid structure [8]. ... 5

Figure 2: Stand - Alone PV systems [11] ... 6

Figure 3: Grid – Tied PV System [9] .. 6

Figure 4: Functioning of a PV cell [6]... 9

Figure 5: Equivalent electrical circuit of a single diode modelled solar cell 10

Figure 6: Equivalent electrical circuit of a double diode modelled solar cell [22] 12

Figure 7: Dynamic equivalent electric circuit of a solar panel [17] 14

Figure 8: I-V and P-V characteristic curve for a PV cell, module or array variation [23] 15

Figure 9: Maximum power point for a PV cell, module or array [13] 15

Figure 10: (a) Solar Panel maximum power output, (b) Charge controller’s harvested

power from solar PV [29] ... 17

Figure 11: 30A 12V/24V PWM charge controller ... 17

Figure 12: Graphical representation of the MPPT charge controller DC to DC

transformation ... 18

Figure 13: 12V/24V-20A MPPT solar charge controller series [30]. 19

Figure 14: Typical microgrid Power system hardware components [16] 23

Figure 15: Direct referencing method's control strategies: Current-mode (a), voltage-

mode (b) [41] ... 24

Figure 16: AC to DC power supply .. 27

Figure 17: Synchronous buck converter topology design .. 27

Figure 18: MOSFET driver typical connection diagram ... 28

Figure 19: DC to DC buck converter simulation diagram .. 30

Figure 20: Buck converter simulation results at 5% duty cycle 30

Figure 21: Buck converter output voltage ripple at 5% duty cycle 31

Figure 22: Buck converter output current ripple at 5% duty cycle 31

Figure 23: Buck converter simulation results at 50% duty cycle 32

Figure 24: Buck converter output voltage ripple at 50% duty cycle 32

Figure 25: Buck converter output current ripple at 50% duty cycle 32

Figure 26: Buck converter simulation results at 95% duty cycle 33

Figure 27: Buck converter output voltage ripple at 95% duty cycle 33

Figure 28: Buck converter output current ripple at 95% duty cycle 34

Figure 29: PWM signal conditioning circuit .. 35

Figure 30: Microcontroller PWM (0-5V) ... 35

Figure 31: comparator's 0-12Vp-p output PWM signal .. 36

Figure 32: Low Pass filter output PWM signal ... 36

Figure 33: Window comparator output PWM signals... 37

Figure 34: Hardware simulator block diagram ... 38

Figure 35: Output voltage feedback conditioning circuit. ... 39

vii

Figure 36: ACS712T Current sensor and V_out versus Sensed current curve [42]. 40

Figure 37: Differential amplifier circuit ... 41

Figure 38: Arduino Uno ATmega328PU programing board. .. 43

Figure 39: Microcontroller source code flow diagram .. 44

Figure 40: LCD Display calibration .. 45

Figure 41: Blank LabVIEW GUI ... 46

Figure 42: Gui display with Power vs voltage curve .. 48

Figure 43: GUI didplay with Current vs Voltage curve ... 49

Figure 44: Solarex Solar Panel I-V curves (from data sheet) [43] 50

Figure 45: Efficiency @ 80% duty cycle with variable load. .. 51

Figure 46: Efficiency @ 75% duty cycle with variable load ... 52

Figure 47: simulator's Matlab GUI ... 53

Figure 48: Matlab / Arduino Hardware Setup .. 54

Figure 49: GUI sub VI .. 61

Figure 50: I-V & P-V graph ploting sub-VI ... 62

Figure 51: Load current control sub-VI .. 62

Figure 52: PWM signal from Arduino Uno (5V PWM)... 81

Figure 53: Stage-one comparator output (12V PWM) ... 81

Figure 54: RC circuit output signal (12V PWM with longer rise time) 82

Figure 55: Window comparator output (Two 12V-PWM 180degree out of phase) 82

Figure 56: MOSFET's gates PWM signal .. 83

Figure 57: Completed project .. 83

Figure 58: Buck converter board ... 84

Figure 59: PWM control board .. 84

Figure 60: Display circuit boards ... 85

viii

List of equations

Equation 1: Albert Einstein photon energy equation ... 8

Equation 2: Einstein’s photoelectric equation .. 9

Equation 3: Single diode model solar cell output current [20] .. 10

Equation 4: Solar cell diode current [20] .. 10

Equation 5: Solar Cell Parallel resistor current [21] ... 10

Equation 6: Solar cell junction thermal (terminal) voltage [20] 11

Equation 7: Photocurrent ... 11

Equation 8: Solar Panel output current for a single diode model [17] [21] [19] 11

Equation 9: PV cell reverse saturation current [18] [21] .. 11

Equation 10: Nominal reverse bias saturation current ... 12

Equation 11: Double diode model solar cell output current [19] [22] 12

Equation 12: Solar panel detailed output current equation for double diode model [19]

[22] .. 13

Equation 13: Series resistance .. 13

Equation 14: Shunt (Parallel) resistance ... 13

Equation 15: PV panel efficiency ... 14

Equation 16 Critical inductance value [40] .. 28

Equation 17: Minimum Output Capacitance value [40].. 29

Equation 18: Minimum input capacitance value [40] ... 29

Equation 19: None inverting amplifier gain .. 38

Equation 20: ADC conversion formula .. 40

Equation 21: Differential Amplifier formula .. 41

Equation 22: Gradient of a linear line .. 42

ix

Glossary

Abbreviation / Acronym Meaning

AC Alternating current

ADC analogue to digital conversion

CPU Central Processing Unit

DC Direct Current

DER Distributed Energy Resources

DG Distributed Generation

GUI Graphic User Interface

IC Integrated Circuit

LCD Liquid Crystal Display

MPP Maximum Power Point

NI-daq National instrument data acquisition

OS Operating System

PV Photovoltaic

PWM Pulse width modulation

SAPV Stand -alone photovoltaic

USB Universal Serial Bus

1

1. Introduction

1.1. Background

A Microgrid is a minor power grid which is constituted of renewable power sources or

distributed generation (DG) units, power conditioning & control interface circuit, energy

storage, and loads [1]. These components that a Microgrid is made up of are referred to

as the hardware of the Microgrid system. There are different types of Microgrid system,

few of which are solar PV’s (photovoltaic), wind turbine etc. The primary energy

resource for the solar PV Microgrid system is the sun. The irradiation varies from

sunrise to sunset, summer to winter and as well as by latitude. The electrical output

from the solar panel is as a characteristic of the particular panel, angle of inclination and

irradiation. The primary energy resource for the wind turbine Microgrid system is the

wind. The hardware simulator will determine the possible output power based on the

Microgrid characteristics and environmental factors at its location to present a graphical

result.

A Microgrid is important in electricity supply in that based on its ability to operate grid-

connected as well as Islanded modes it can thus be separated from the utility during a

utility disturbance, with little or no interruption to the loads powered directly by the

Microgrid. In grid-connected mode, it reliefs the utility of overloading during peak load

hours thereby avoiding utility grid failure. This renders energy service reliability and a

decrease in the impact of load shedding [2]. A Microgrid leads to a reduction in fusil fuel

(coal) usage for electricity generation thereby reducing greenhouse gas emissions

which is environmentally beneficial. A Microgrid mitigates the cost of energy to its user

by providing some or all of its electricity requirement. Smart switching of a Microgrid

between grid-connected and Islanded modes allows for energy supply efficiency [3].

1.2. Problem statement

The problem is that projects’ implementations, especially Microgrid systems require

intensive planning. Planning will be financial and time costly if a physical prototype has

to be implemented for testing, considering all possible factors before the actual project

is adopted or improved. This inspires the need for a low cost solar energy hardware

2

simulator in the renewable energy research laboratory whereby virtual prototypes could

be tested without necessarily setting up the actual system in an appropriate scenario

such as experimenting a specific solar panel or wind turbine configuration, connected to

a load over a period of time and at different locations. A Hardware-simulator is therefore

required to be stationed in the laboratory allowing a researcher to record similar or

same results while simulating a solar panel inside a laboratory and even during night

time, thereby rendering much economic and time flexibility in future project planning.

1.3. Aim and objectives

The aim of this project is to design a Microgrid hardware simulator that would be able to

simulate the maximum current output and thus the maximum power point of different

types of solar panels’ Microgrid configuration based on the number of series and/or

parallel panels and the datasheet parameters entered. The simulator would then yield

results of the configuration numerically, graphically and control a programmable switch

mode direct-current (DC) power supply to supply a load following the characteristics

(software results) of the simulated PV panel.

The objectives will be to:

1) Comprehend the factors and patterns which affect the behaviour of solar panel

Microgrids

2) Design a solar PV graphical user interface based on a solar PV mathematical

model.

3) Design and built a programmable switch mode DC power supply directly linked to

the computer to mimic the software simulator’s results.

4) Set up a desk-top hardware simulator work station in the renewable energy

research laboratory.

5) Test and verify communication between the computer bases software and the

programmable switch mode power supply as well as the efficiency of the switch

mode power supply.

Methodologically, the first objective would be reached by downloading and reading

articles and books from academic sites (IEEE explore, Publish or perish, google

3

scholar, ScienceDirect) related to solar PV technology and their uses as in islanded PV

Microgrid systems. The second would be reached by acquaintance with and use

graphical design and modelling software such as Matlab and LabView. The third

objective would be reached by downloading and ready articles on switch mode power

converters and then design & simulate a chosen type using a power electronics

software such as Powersim (PSIM). The optimised design would be implemented using

power electronics components, a Multimeter and digital Oscilloscope. The fourth

objective will be achieved by using a USB data acquisition device to connect the switch

mode power supply to a laboratory computer CPU containing the graphical user

interface. Finally, the set up will be tested and verified by entering the datasheet

specifications of different solar panel and applying an adjustable load (Potentiometer or

resistor bank) to the switch mode power supply. The load would be varied stepwise and

the power flow is measured and recorded.

1.4. Thesis structure

Chapter-one: Here the background of the research topic was summarised and the

problem statement was clearly stated. The aim and objectives of the project were listed.

Chapter two: It contains the literature review of the research topic. The PV system as a

Microgrid, the operation/characteristics of solar panels, the disadvantages and

disadvantages of stand-alone solar PV’s as a Microgrid were discussed. The design of

simulators and the intelligence behind Microgrid systems simulators, such as HOMER

Energy were also studied.

Chapter three: This talks about the methodology adopted in the design of the hardware

simulator. The simulator’s data input, output methods, as well as the structural designs

were mentioned. The simulation of the electronic structural system was done in this

chapter.

Chapter four: Systems involving the intake, processing and outputting of data exhibit a

logical manner by which it does these. The different control strategies of flow of data

were discussed and a most convenient one for the design was adopted.

Chapter five: The steps as to how to efficiently use the desk-top simulator were out

lined. These steps make up the users’ manual of the simulator.

Chapter six & seven: Chapter six discusses other possible and attempted

methodologies during this research thesis. It also talks about why some were

discontinued. Chapter seven concludes the research. Last but not list, the appendix

4

contains the source codes for the microprocessor devises used, build of material, and

images of the project during and after completion.

5

2. Literature review

2.1. Microgrids

What is a Microgrid?

The universal definition of a Microgrid is yet indefinite on how small or how large one

may be with respect to energy use or geographic area. [4] However, there are some

unique characteristics of the definition [5]:

 Set of interconnected loads and distributed energy resources

 Can work in isolation or grid-connected if desired

 Can be linked and unlinked to the grid if desired

 Acts as a single controllable entity to the grid

For example, according to [6] a Microgrid is defined as a set of interconnected loads

and distributed energy resources (DER) with definitely stated electrical boundaries that

acts as a single controllable entity with respect to the grid. Also, [7] defines Microgrid as

“a controllable system consisting of distributed sources (typically renewable energy

sources), loads, and energy storage systems that together can work either when tied to

the grid or singled out from the grid”.

Figure 1: A typical Microgrid structure [8].

6

2.1.1. Solar Photovoltaic systems

A photovoltaic system is a connection of components generally such as PV panels,

power converters and storage components designed to deliver usable electric power for

a variety of purposes [9]. Photovoltaic systems can be generally grouped into two basic

categories: stand-alone PV (SAPV) or off-grid and grid connected (on-grid) systems [6].

The SAPV systems are used in remote areas and for space applications, where the PV

system (panels with batteries) only is able to assure the load demand. Other types of

stand-alone systems are based on a hybrid methodology; figure (Error! Reference s

ource not found.) above, which increases the efficacy and reliability of the installed

system [10].

Figure 2: Stand - Alone PV systems [11]

Figure 3: Grid – Tied PV System [9]

7

2.2. Solar panels

A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light

directly into electricity by an effect called photovoltaic, which is a physical and chemical

occurrence. Photovoltaic cells make up a solar panel or module [10]. Solar photovoltaic

(PV) panels are of different types based on the solar cell technology used by different

manufacturers. There are basically two types of solar cell technology: first generation

cells made up of crystalline silicon (monocrystalline, polycrystalline or multicrystalline)

and second generation cells; thinfilm. These types of solar PV panels further differ not

just in their temperature coefficients, spectral reactions, voltages and current values but

also differ in their reactions to environmental factors such as radiation, temperature and

wind speed [12].

Module Technology Efficiency Range
under standard test

conditions (%)

Highest Reported
Laboratory

Efficiency (%)

Monocrystalline silicon

16 - 19 22.9

Multicrystalline silicon

15 - 17 18.9

Thin-film CdTe CIGS

14 - 15 17.5

Advanced silicon design
(heterojunction, interdigitated back
contact etc)

18 - 21 Not available

Concentrator 27 - 33 38.9

Table 1: Different type of solar cell technology and efficiency range [13]

Thin-film technology

Amorphous silicon (α-Si), Copper indium gallium selenide (CIGS) and Cadmium

telluride (CdTe) are the major three thin-film solar cell technologies and there the most

broadly marketed thin film solar cells. CdTe and CIGS are relatively new technologies to

the α-Si. The α-Si solar cell is used largely in end-user electronics such as clocks,

watches, calculators. Amorphous silicon requires less silicone compared to CdTe and

8

CIGS and it is also less toxic. Cadmium has proven to be detrimental to both the maker

and the end-user thereby reducing a little bit its applications for commerce. The light-

take-up coefficient of the thin film material is too less than that of its crystalline

counterpart and they still lag behind in efficiency and reliability. [14]

Crystalline solar cell technology

Higher efficiency in the solar panels has always been desired. The conventional

crystalline silicon cells are widely used due to a low production cost but it has been

difficult to reach efficiency greater than 20%. The PERC (Passivated Emitter and Rear

Cell) is becoming the mainstream of the next generation of cells and so the

development and mass production of the PERC is rapidly in progress. The cell

efficiencies of mono-crystalline PERC and multi-crystalline PERC are respectively

22.61% and 21.63%. The efficiency of SHJ (Silicon Hetero Junction) cells and IBC

(Interdigitated Back Contact) cells which are highly efficient crystalline silicon cells has

also been improved to a maximum efficiency of over 25%. The SHJ-IBC cell merges the

merits of both SHJ and IBC and therefore has an efficiency of up to 26.33%. [15]

2.2.1. Operation of a PV cell

A PV cell operates by a phenomenon called photovoltaic (photoelectric) effect. Light is

constituted of massless particles named photons. These photons possess energy which

rely on the frequency and wavelength of the light and it is quantified by equation (1);

Albert Einstein law as follows [16]:

Equation 1: Albert Einstein photon
energy equation

𝐸 = ℎ𝑣. (1)

Where:

E is the photon energy

h is planks constant = 6.626×10 − 34Js

v is the photon frequency (speed)

The energy needed to release an outermost electron of an atom of an element; the

incident surface is called the work function of the element, denoted Ф. This work

9

function varies with different materials. The equation (equation (2)) describing the

process is [16]:

Equation 2: Einstein’s photoelectric
equation

ℎ𝑣 = Ф + 𝐸𝑘𝑖𝑛. (2)

Where:

 hv is photon energy; E

 Ф is Work out

 Ekin is motion energy of ejected electron

Figure 4: Functioning of a PV cell [6]

2.2.2. Solar PV array model

The Electric model

The electric replica of a PV cell can be considered base on the static characteristics

using many intrinsic parameters referred to the data sheets provided by the maker

including the detected irradiation, or the dynamic characteristics specifically when a

power electronic converter is linked to the PV panel [17]. A PV cell is made up of a p-n

junction, created in a thin coat of semiconductor and thus behaves as a diode [18]. This

brings about two models known as the one-diode and the double diode models [19].

Static model

10

The analogous electrical circuit of a one-diode PV cell model is made up of a current

source that represents the photocurrent, Iph and one diode representing the diffusion

occurrence and that allows the flow of a current Id. A leakage current Ish caused by the

distributed manufacturing defects inside the PV cell flows through a shunt (parallel)

resistor, Rsh. The PV cell current, I flows through a series resistor Rs resulting in power

lost which represents the reduction in the PV cell efficiency by thermal power dissipated

through the hole junction substrates [19] [20].

Iph

Irradiation Id

D Rsh

Ish

Rs
I

V

Figure 5: Equivalent electrical circuit of a single diode modelled solar cell

In the presence of insolation, the PV cell current, I can be given by the following

equation:

Equation 3: Single diode model
solar cell output current [20]

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (3)

The diode current Id is given by the following equation:

Equation 4: Solar cell
diode current [20]

𝐼𝑑 = 𝐼𝑜𝑠 {𝑒
𝑉+𝐼𝑅𝑆

𝑁𝑠𝑉𝑡 − 1} (4)

The shunt current, Ish that flows through the shunt resistor is related to the cell’s output

voltage by the following equation:

Equation 5: Solar Cell
Parallel resistor current [21]

𝐼𝑠ℎ =
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
 (5)

11

The junction thermal (terminal) voltage, Vt is provided according to the following

equation:

Equation 6: Solar cell
junction thermal (terminal)
voltage [20]

𝑉𝑡 =
𝛼𝑇𝐾

𝑞
 (6)

The photocurrent, Iph depends on the irradiation, G and temperature, T as follow:

Equation 7:
Photocurrent

𝐼𝑝ℎ =
𝐺

𝐺𝑛
[𝐼𝑝𝑣𝑛 + 𝐾𝑖(𝑇 − 𝑇𝑛)] ; Ipvn = Isc (7)

Substituting the diode current Id, the shunt current Ish, and the junction terminal voltage

Vt, the PV cell output current is express as follows:

Equation 8: Solar Panel
output current for a single
diode model [17] [21] [19]

𝐼 = 𝑁𝑝𝐼𝑝ℎ + 𝑁𝑝𝐼𝑜𝑠 {𝑒
𝑞(𝑉−𝐼𝑅𝑆)

𝛼𝑇𝐾𝑁𝑆 − 1} − 𝑁𝑝

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
 (8)

Where;

 Np is how many parallel cells there are.

 Ns is how many cells there are in series

 Ios is the dark or reverse saturation current of the diffusion phenomenon

 α is the diode quality (ideality) factor (1< α >2)

 T is the temperature of the operating cell (Degree Celsius)

 K is Boltzmann constant (1.38 x 10-23 J/K)

 q is electronic charge (1.6 x 10-19 C)

The unknown parameters such as α, Ish, Rs, Ios, and Iph are gotten from the datasheet of

the manufacturer.

The PV cell reverse saturation current, Ios is expressed as follows:

Equation 9: PV cell reverse
saturation current [18] [21]

𝐼𝑜𝑠 = 𝐼𝑜𝑛(
𝑇

𝑇𝑛
)3𝐸𝑋𝑃 [

𝑞𝐸𝑔

𝛼𝐾
(

1

𝑇𝑛
−

1

𝑇
)] (9)

12

Where:

 Ion is the nominal (STC) diode reverse bias saturation current

 Tn is nominal (reference) temperature

 Eg is the band gap for silicon (1.22 eV) at 25 degree Celsius

The nominal diode reverse bias saturation current is derived as follows:

Equation 10: Nominal reverse
bias saturation current

𝐼𝑜𝑛 =
𝐼𝑠𝑐𝑛

𝑒
(

𝑞𝑉𝑜𝑐𝑛
𝛼𝐾𝑇𝑛𝑠

)
− 1

 (10)

The double diode (D1 & D2) model further takes into accounts the recombination

phenomenon unlike the single diode model, thereby providing improved accuracy for

the I-V curve than the one-diode model. Two lumped resistances represent the shunt

resistance Rsh and the series resistance Rs by which the leakage current Ish flows and

the reduction in cell efficiency occurs respectively. The double diode equivalent circuit

diagram is as shown in figure 6 bellow.

D1 D2

Id1
Id2

Ish

Rsh

Rs
I

Irradiation

Iph

V

Figure 6: Equivalent electrical circuit of a double diode modelled solar cell [22]

The output current equation is shown in equation (11) below, where Id2 is the current via

D2 due to recombination phenomenon:

Equation 11: Double diode model
solar cell output current [19] [22]

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑠ℎ (11)

13

The detailed output current equation for the double diode modelled solar panel is as

shown below in equation (12).

Equation 12:
Solar panel
detailed output
current
equation for
double diode
model [19] [22]

𝐼 = 𝑁𝑝𝐼𝑝ℎ + 𝑁𝑝𝐼𝑜𝑠1 {𝑒
𝑞(𝑉−𝐼𝑅𝑆)

𝛼𝑇𝐾𝑁𝑆 − 1} − 𝑁𝑝𝐼𝑜𝑠2 {𝑒
𝑞(𝑉−𝐼𝑅𝑆)

𝛼𝑇𝐾𝑁𝑆 − 1}

− 𝑁𝑝

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

(12)

The series resistance and the shunt resistance are calculated as shown in equations

(13) and (14) below, respectively.

Equation
13: Series
resistance

𝑅𝑠 =
𝛼𝐾𝑇𝑁𝑝

𝑞𝐼𝑚
ln [𝑒

(
𝑞𝑉𝑜𝑐

𝛼𝐾𝑇𝑁𝑠
)

−
𝐼𝑚

𝐼𝑠𝑐
{𝑒

(
𝑞𝑉𝑜𝑐

𝛼𝐾𝑇𝑁𝑠
)

− 1}] −
𝑁𝑝𝑉𝑚

𝑁𝑠𝐼𝑚
 (13)

Equation
14: Shunt
(Parallel)
resistance

𝑅𝑠ℎ =

[[𝑁𝑠𝐼𝑠𝑐𝑅𝑠 − 𝑁𝑝𝑉𝑜𝑐] [𝑒
(

𝑞(𝑁𝑠𝑉𝑚+𝑁𝑠𝐼𝑚𝑅𝑠
𝛼𝐾𝑇𝑁𝑠𝑁𝑝

)
] 𝑞 + 𝛼𝐾𝑇𝑁𝑠𝑁𝑝 [𝑒

(
𝑞𝑉𝑜𝑐

𝛼𝐾𝑇𝑁𝑠
)

− 1]]

[𝑁𝑠
2𝛼𝐾𝑇𝑁𝑝 {𝐸𝑋𝑃 (

𝑞𝑉𝑜𝑐
𝛼𝐾𝑇𝑁𝑠

) − 1}]

𝑁𝑝𝑉𝑚 − 𝑁𝑠𝐼𝑚𝑅𝑠
− [𝐸𝑋𝑃 (

𝑞(𝑁𝑠𝑉𝑚 + 𝑁𝑠𝐼𝑚𝑅𝑠)
𝛼𝐾𝑇𝑁𝑠𝑁𝑝

)] 𝑞𝑁𝑠𝐼𝑠𝑐

 (14)

Dynamic models

The photovoltaic panel is conventionally demonstrated by the Shockley diode in

whereby the output current is described by a diode equation as in equation (8) above.

Meanwhile, in practice a power electronic converter that pulls a high-frequency

undulated current from the solar panel is used for tracking the maximum power point.

The rippled current leads to dynamic characteristics dissimilar from the static

characteristics derived by the conventional approach [17]. The equivalent electrical

circuit model of a solar panel shown in figure (7) below is based on the dynamic

conditions.

14

Iph

Irradiation
Id

D
Rc

Ic

Rs I

RD

V

Vth
Cp

Rsh

Figure 7: Dynamic equivalent electric circuit of a solar panel [17]

The ‘dynamic’ equivalent electrical circuit of a solar panel differs from the ‘static’ single-

diode equivalent electrical circuit, in that the resistive losses in the p-n junctions of the

PV cells are represented in a lumped resistance Rd. A voltage source matching

threshold voltage, Vth which is roughly similar to the voltage at the maximum power

point is included. A parasitic capacitor, Cp, in series with a resistance, Rs, is introduced

to the static circuit model to account for the dynamic behaviours of the solar panel as

figure (7) above. The current flow into the parasitic capacitor is denoted Ic [17].

2.2.3. Performance of solar photovoltaic panels

Figure (8) below shows the Current-Voltage and Power–voltage curves of a photovoltaic

cell or module or array demonstrating the maximum power point (MPP). The maximum

power point is utilized to quantify the efficiency of the device as provided by the

standard equation represented in equation (15) below [13].

Equation 15: PV panel
efficiency

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, ƞ =

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑉𝑚𝑝𝑝𝐼𝑚𝑝𝑝

𝐸𝑠𝑡𝑐 ∗ 𝐴
 (15)

Where:

 Pout is electrical output power

 Pin is radiation power (sun)

 Vmpp is effective value of output voltage

 Impp is effective value of the electricity output

15

 Estc is specific radiation power (1000W/m2 @ Standard test Conditions)

 A is area of solar PV panel

Figure 8: I-V and P-V characteristic curve for a PV cell, module or array variation [23]

Figure 9: Maximum power point for a PV cell, module or array [13]

2.2.4. Advantages of stand-alone PV systems

The outstanding advantages of a PV system are [24]

16

 Long life cycle of up to about 20 – 25 years.

 Null operation cost because it is a free resource.

 More reliable results and low variability of the system.

 The cost of up keeping of the system is low.

 No air and sound pollution.

 Energy conservation

2.2.5. Disadvantages of off-grid PV systems

Solar photovoltaic systems have some disadvantages as follows: [25]

 The most burden of affording a PV system is it high up-front cast which most of

low income families cannot afford up-front.

 Small stand-alone PV systems often require batteries for power storage and may

also need backup electric generators.

 Solar PV’s systems are not economical for thermal loads such as heating,

cooking and ironing. Often require efficient or direct current (DC) appliances.

2.3. Charge controllers

Charge controllers or charge regulators or battery regulators are used to charge

batteries with solar power. Generally, charge controllers actually allow the flow of power

only from the panel to the battery / load. Charge controllers also protect the battery from

overcharging and “deep” discharge which can damage the battery. There are three

types of charge controllers; the series, shunt, PWM (pulse width modulation) and the

MPPT (maximum power point tracking). [26] [27]

2.3.1. Series and Shunt charge controllers

The series controller is commonly used in small PV systems, though it can also be used

for large systems. It has a type of control element which is connected in series with the

solar PV array and the battery. The shunt charge controller controls the charging of a

battery by shot-circuiting the array internal to the controller. [28]

2.3.2. PWM Charge controller

The PWM charge controller acts as a switch connecting the solar array to the battery

and load. It will pull down the nominal voltage of the solar panel connected to its input,

to near that of the battery plus the voltage losses in the cabling and controller (referred

17

to as VPWM). It therefore requires that the solar panel’s nominal voltage be equal to that

of the battery. This way, the solar panel is not used at its maximum power point, quite

often. Unlike the series and shunt charge controller, the PWM charge controller does

control the charging rates (reduce the battery current as the battery gets full) of the

battery [29].

Figure 10: (a) Solar Panel maximum power output, (b) Charge controller’s harvested power from solar PV [29]

Pmax = Vmax x Imax, that is 18V x 5.6A = 100W

The power harvested from the solar panel by the PWM charge controller will be:

Pin = VPWM x IPWM, that is 13.5V x 6A = 81W which is 19% less. VPWM is equal to the

discharged battery voltage plus the cabling and charge controller losses.

Figure 11: 30A 12V/24V PWM charge controller

18

2.3.3. MPPT Charge controller

The maximum power point charge controller operates by transforming DC power at a

higher voltage with lower current to DC power at a lower voltage with higher current.

Therefore the amount of power at the input equals the amount of power at the output. It

also controls the battery charging rate by reducing the battery charging current as it

approaches full state. [29].

Figure 12: Graphical representation of the MPPT charge controller DC to DC transformation

Just like the PWM charge controller, the MPPT charge controller will pull down the solar

panel’s nominal voltage to near that of the charging battery (Vbat = 13V) but will pull up

the battery’s charging current, Ibat to the solar panel’s wattage (100W) divided by Vbat.

Ibat = 100W / 13V = 7.7A

Pmax = Vm x Im = 18V x 5.6A = 100W

Pbat = Vbat x Ibat = 13V x 7.7A = 100W

Therefore the solar panel’s power at maximum power point is same as the charge

controller output power to the charging battery at all times.

19

Figure 13: 12V/24V-20A MPPT solar charge controller series [30].

The MPPT- plus solar charge controller series exhibits the shunt, series and MPPT

modes of operation. This charge controller series is available in 10A, 20A, and 30A

amperages. Its most important characteristics are [30]:

 Suitable for lead acid, lead AGM, lead gel, and LIFePo.

 Solar input maximum voltage of 70V.

 Automatic battery voltage recognition 12/24V.

 Maximum efficiency of up to 97%

2.3.4. Advantages and disadvantages of both PWM and MPPT charge controller

The MPPT charge controller is more sophisticated than the PWM charge controller.

They both have advantages and disadvantages over one another as follows:

 PWM MPPT

Advantages 25% to 50% cheaper than the

MPPT charge controller

Highest efficiency, especially in

cold climates

 Has fewer Electronic components

and less thermal stress thus

longer lifespan

Can be used with 60 cell panel

Disadvantages Requires care and design

experience in sizing the PV array

and battery bank

2 to 3 type more expensive than

a comparable PWM charge

controller

20

 Cannot be used efficiently with 60

cell panels

Has more electronic components

and thermal stress, thus shorter

lifespan is expected
Table 2: Pros and Cons of PWM & MPPT charge controllers [26]

2.3.5. Charge controllers 3 – 4 stages

Charge controllers charge batteries in three to four stages; bulk charging, absorption

charging, float and/or recondition charging [31].

Bulk stage: During bulk charging, the charge controller supplies the maximum constant

charge current to the battery. Here, the flat battery voltage increases with time until it

reaches the set charging voltage.

Absorption stage: When the set charging voltage is reached, the battery continues to

charge at this regulated voltage for a while until the charging current tapers (drops) to

6.25% of the maximum charging current of the battery. Here the battery is fully charged.

Storage (Float) stage: This charging stage conserves the fully charged battery at 100%

without allowing the battery to overcharge and be damaged.

Recondition stage: If the battery is allowed connected to the charge controller, the

charge controller switches back to bulk stage for about 85 minutes in order to revive the

battery, after about 12 hours of being fully charged.

2.4. Energy storage

The need for energy storage is very critical in renewable energy technologies since

some of the resources such as wind and solar generate electricity in irregular daily

patterns depending on the availability of the resource. Storage therefore allows the use

of electricity instantaneously or stored for later use, thereby reducing wasted energy.

Lead acid batteries are frequently used for the storage of the energy generated from

renewable energy sources most especially as stand-alone systems for domestic

purposes. The most important advantage of energy storage is to provide a smoother

and more stable electrical supply to the domestic house. Furthermore, electrical

storage, benefits demand management, current quality and supply, and, improves the

reliability of electrical supply. On the other hand, energy storage has some few

21

disadvantages in that they can be costly and their lifetime can be significantly limited

which can be directly associated with their reversibility [32].

2.5. Simulators

A device or system that imitates well defined conditions or the behaviours of a true

process or machine for the essence of research or operator training is termed a

simulator [33]. This device or system that simulates is commonly computer based and

therefore has a desktop application referred to as a software (simulation) package.

Standard software off the shelf simulation packages are PVSyst, PSIM, Homer Pro,

Matlab-Simulink and so on. These software packages are programs that contain

fundamental information about the systems it is designed to simulate. The fundamental

information (default input parameters) is termed input data to the simulator and can be

modified and added.

2.5.1. PVSyst

PVSyst has an input file with the extension “.PAN” that gives specific module

parameters as simulation inputs. Simulation input files can be generated from

measurements of production modules under the different conditions of temperature and

irradiance. The PAN files of SunEdison’s PV modules are generated by independent

and accredited test laboratories while some manufacturers generate their own PAN

files. These laboratories measure randomly chosen production modules, then create

PAN files by regression analysis techniques [34].

22

Table 3: Typical simulation input parameters [34]

2.5.2. Homer Pro

HOMER is a simulation package and also an electrical system design that makes easy

the job of evaluating design options for both stand-alone and on-grid power systems for

distributed generation (DG) applications. The users are allowed to evaluate the

technical feasibility and economics of a large number of technology options and to

account for the energy resource availability, uncertainty in technological costs, and

other variables, by means of the software’s optimization and sensitivity analysis

algorithms [35]. The accuracy of the economic analysis is specifically based on the price

information of the system hardware components entered into Homer. The information

about project location and selected PV panel are already contained in the simulator as

default input data and are used for energy resource feasibility of the project. The figure

below shows a sample project that can be simulated.

23

Figure 14: Typical microgrid Power system hardware components [16]

2.6. Photovoltaic emulator control strategy

The control strategy of the simulator is about how to predict the operating point of the

PV module which is being simulated. It therefore does this by locating the voltage and

the current on the I-V characteristic curve depending on the resistance of the load at the

output of the simulator. This is though different from the MPPT algorithm which is aimed

at locating the highest point of the power-voltage (P-V) behaviour curve of the PV

module [36].

2.6.1. Type of control strategy

There are many types of control strategies such as the direct referencing method,

hybrid-mode controlled method, perturb and observe method, resistance comparison

method, analogue based control method etc.

The direct referencing method was used in this research. It is a common strategy since

it does not require additional algorithm (such as the look-up table method) to locate the

operating point of the PV module which is being simulated.

24

The direct referencing method is subdivided into two types according on the closed-loop

system and the PV model used for the PV simulator. These are the current-mode

controlled system with the PV module’s voltage as the input parameter, and the voltage

mode controlled system with the PV module’s current as the input parameter and shown

in figure 30a & 30b below respectively.

Figure 15: Direct referencing method's control strategies: Current-mode (a), voltage-mode (b) [36]

2.7. Power supplies/amplifier

In broad terms, a power supply is anything that delivers any form of power such as an

internal combustion engine or a hydraulic pump. In this research, power supplies will be

limited to electrical power supplies that are frequently used for test and measurement,

maintenance, and product development activities. In this regards, there are three major

types of electrical power supplies: the AC to DC power supply which can be seen in

battery chargers, bench-top power supplies, or then DC to AC power supplies as in

25

inverters and generators, the AC to AC power supplies as in isolation transformers,

frequency changers, and the DC to DC power supplies as in converters. The theory of

operation of these electrical power supplies is either by linear regulation or switching

mode [37]. The difference between these two modes of operations is as follows

Type advantage Disadvantage

Switching Higher efficiencies of up to 95%.

Lighter weight and take little space.

More affordable for higher power.

Noisier and including EMC

disturbances and impulse noise.

Much slower transient response.

Linear Good line and load regulation.

Fast transient response.

Low noise and EMC disturbances.

Can produce very low current output.

Low efficiency of about 30 to 40%.

Much weight due to Transformer.

Large heat sinks.

Larger for higher power.

Table 4: Pros and Cons of Power supply operation mode. [38]

26

3. Methodology (Simulator design procedure)

3.1. Graphical user interface (GUI)

A simulator requires data to be entered so it can then process the data and yield results.

A LabVIEW bloke code was designed to receive a solar PV system data via its

graphical users’ interface and then process it using the solar PV mathematical model.

Different solar cell materials have different diode quality (ideality) factors, α as well as

different band gap voltages, Eg. in electron volts (eV). These are as shown on the table

below.

PV Cell Material Types Diode Ideality Factor Bandgap Voltage (eV)

Si-mono 1.2 1.11

Si-poly 1.3 1.14

a-Si-H 1.8 1.65

a-Si-tandem 3.3 2.9

a-Si-tripple 5 4.6

Cadmium telluride (CdTe) 1.5 1.49

Copper Indium Sellenium (CIS) 1.5 1.48

Gallium arsenide (AsGa) 1.3 1.43

Table 5: PV material Band gap voltages and diode quality factors [39] [40]

3.2. AC to DC Power Supply

An AC to DC power supply was designed and built to be used in powering a

programmable switch mode DC-DC buck converter and its peripheral circuit network.

27

Figure 16: AC to DC power supply

3.3. DC – DC Buck Converter

A programmable switch mode power supply was designed and built. The control was

implemented such that the user of the simulator can adjust the output voltage by a push

of a button but the output current limit was controlled via the GUI by the set irradiation

value.

3.3.1. Power stage

The power stage was designed as shown in figure 16 below:

Figure 17: Synchronous buck converter topology design

28

Power MOSTFET’s (IRF540) were used whereby one served as a power switch and the

other as a free-wheeling diode for the inductor current. The MOSFET’s were driven

using a MOSFET driver IC (IR2113).

Figure 18: MOSFET driver typical connection diagram

3.3.1.1. Component Calculations

The design specifications were as follows:

V_in = 60V

V_out = 5V – 50V

Frequency = 50KHz

I_out = 0.25A to 5A

Change in V_out = 10mv

Duty cycle (D_min) = 5/60 = 8.3%

Duty cycle (D_max) = 50/60 = 83%

% V_out ripple = 10%

Sizing the critical inductance (Lc) value

Equation 16 Critical
inductance value [41]

𝐿𝑐 =
(1 − 𝐷𝑚𝑎𝑥). 𝑅𝑚𝑎𝑥

2𝑓
 (16)

29

Lc = ((1- 0.83)100)/(2*50KHz)

 = 170µH

L = 1.05*Lc

 = 178.3µH

Minimum output capacitance (C_out)

Equation 17: Minimum
Output Capacitance value
[41]

𝐶𝑜_𝑚𝑖𝑛 =
(1 − 𝐷𝑚𝑖𝑛). 𝑉𝑜

8. 𝐿. 𝑓2. ∆𝑉𝑜
 (17)

Co_min = ((1 - 0.083)*50) / (8*178.5µ*50K*50K*0.01)

 = 1284.3µF

A 2200µF @ 60V was used.

Minimum input capacitance (C_in)

Equation 18: Minimum input
capacitance value [41]

𝐶𝑖𝑛_ min =
(1 − 𝐷𝑚𝑎𝑥). 𝐷𝑚𝑎𝑥. 𝐼𝑜_𝑚𝑎𝑥

𝑓. ∆𝑉𝑖𝑛
 (18)

Cin_min = ((1 - 0.83)*0.83*5) / (50K*0.01)

 = 1411µF

A 2200µF @ 60V was used.

3.3.1.2. Power stage simulation

The buck converter simulation was done using PSIM software based on these

calculated values above.

30

Figure 19: DC to DC buck converter simulation diagram

The simulation was performed at a low duty cycle, mid duty cycle and high duty cycle,

and the output voltage and current signals analysed.

Low duty cycle

The following input (V1) and output (V2) voltages, and output current (I1) signals were

recorded at a low duty cycle of about 5%.

Figure 20: Buck converter simulation results at 5% duty cycle

The ripples of the output voltage (V2) and output current (I1) were analysed one at a

time as shown in figures 18 & 19 below.

31

Figure 21: Buck converter output voltage ripple at 5% duty cycle

An average output voltage of 2.771V with a ripple of about 0.3mV was noted as shown

above.

Figure 22: Buck converter output current ripple at 5% duty cycle

An average output current of 0.110266A with a ripple of about 0.25A was noted as

shown above.

Mid duty cycle

The following input (V1) and output (V2) voltages, and output current (I1) signals were

recorded at a mid-duty-cycle of about 50%.

32

Figure 23: Buck converter simulation results at 50% duty cycle

The ripples of the output voltage (V2) and output current (I1) were analysed one at a

time as shown in figures 23 & 24 below

Figure 24: Buck converter output voltage ripple at 50% duty cycle

An average output voltage of 24V with a ripple of about 1.5mV was noted as shown

above.

Figure 25: Buck converter output current ripple at 50% duty cycle

33

An average output current of 0.961541A with a ripple of about 1.5A was noted as shown

above.

High duty cycle

The following input (V1) and output (V2) voltages, and output current (I1) signals were

recorded at a mid-duty-cycle of about 95%.

Figure 26: Buck converter simulation results at 95% duty cycle

The ripples of the output voltage (V2) and output current (I1) were analysed one at a

time as shown in figures 26 & 27 below.

Figure 27: Buck converter output voltage ripple at 95% duty cycle

An average output voltage of 45.6V with a ripple of about 0.3mV was noted as shown

above.

34

The output voltage ripples at low and high duty cycles are the same but the ripple

signals appear relatively inverted. This is because at high duty cycles (longer ON-time)

the output capacitor is allowed to charge more (for longer time) and to discharges less

unlike at low duty cycle (shorter ON-time). At the mid duty cycle, the ripple signal is

equally shaped at the troughs and crest because of the ON & OFF time of the MOSFET

gate signal. Thus, equal charge and discharge time of the output capacitor.

Figure 28: Buck converter output current ripple at 95% duty cycle

An average output current of 1.826A with a ripple of about 0.25A was noted as shown

above.

The output current ripples at low and high duty cycles are the same but the ripple

signals are sloped more on opposite side to one another. This is because at high duty

cycles (longer ON-time) the inductor is allowed to charge for a longer time and to

discharge for a shorter time unlike at low duty cycle (shorter ON-time). At the mid duty

cycle, the ripple signal is equally sloped on both sides because of the equal ON & OFF

time of the MOSFET gate signal. Thus, equal charge and discharge time of the inductor.

3.3.2. PWM signal conditioning circuit

35

Figure 29: PWM signal conditioning circuit

The PWM signal conditioning circuit as shown above is made up of a comparator circuit,

a first order low pass filter, and a window comparator.

The comparator takes as input a 5Vp-p PWM signal from a microcontroller as shown in

figure 28 below with practical reference (digital-oscilloscope screen shot) in appendix E,

figure 49.

Figure 30: Microcontroller PWM (0-5V)

 The comparator then yields a 12Vp-p PWM signal at its output as shown in figure 29

below with practical reference (digital screen shot) in appendix E, figure 50.

36

Figure 31: comparator's 0-12Vp-p output PWM signal

The 0-12V PWM is the passed through a first order low pass filter to prolong the rise

and fall time of the 0-12V PWM. This delay in rise and fall of the PWM is important for

the death time of the power-stage switching MOSFET’s in that the MOSFET’s are

allowed to recover from an ON-state to an OFF-state.

Figure 32: Low Pass filter output PWM signal

The window comparator takes as input, the low pass filter PWM signal, to yield a PWM

signal at its two outputs each. Due to the above death time, the two signals appear off

together but never ON together. The practical reference (digital screen shot) is shown in

appendix E, figure 51.

37

Figure 33: Window comparator output PWM signals

These two PWM signals at the comparators’ outputs are almost 1800 out of phase such

that they both are allowed to be OFF at the same time (the death time) but never ON at

the same time. These two PWM signals go into the High_in and Low_in inputs of the

IR2113 MOSFET driver integrated circuit (IC). The practical reference (digital screen

shot) is shown in appendix E, figure 52.

38

4. Hardware simulator’s control strategy

Voltage-mode control system was the type of direct referencing control strategy used in

this research. The output current and the output voltage were read by the control

microcontrollers (arduino uno & NI daq-USB 6009) and then used the information to

drive the PWM signal in order to make the proper adjustments of the output voltage,

thereby regulating the load current and voltage to the operating point.

Hardware simulator

Simulator s control
panel

AC – DC
power supply

LabVIEW Graphical
user interface (GUI)

User PORT

Voltage
conditioning

Current
conditioning

Microcontroller Interface
DC – DC Buck

Converter Vo

Io

Load

Load current
Current Limit

 NI USB
6009 Daq

Figure 34: Hardware simulator block diagram

Once more, the simulator controller requires both the output voltage value as well as the

output current value, in order to carry out the appropriate control.

4.1. Output voltage feedback

The expected maximum output voltage of the buck converter was 48V. The maximum

input allowed at the microcontroller’s analogue input was 5V (analogue reference:

AREF). The 48V had to be scaled down within the microcontroller’s analogue reference

rage 0V to 5V. An LM741 operational amplifier was used to designed and build an

attenuating amplifier, with a gain of 5V divided by 48V; 0.1042 as follows:

Equation 19: None
inverting amplifier gain

𝐴𝑉 . 𝐴𝑉 = (−
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) (−1); 𝐴𝑉 = −

𝑅𝑓

𝑅𝑖𝑛
 (19)

From the calculated gain, the input and feedback resistors were calculated.

39

0.1042 = -Rf / Rin

Let Rin = 10KΩ

Therefore, Rf = 10K * 0.1042

 = 1.04KΩ

As shown in figure 34 below, the input voltage to the attenuating amplifier was going to

be followed by a buffer because it actually appears across the load at the output of the

buck converter. This was not the case because the attenuating amplifier is itself a

buffer. This is so in order that R1 does not in any way upset the electrical dynamics at

the buck converter output when a load is connected. This design takes the advantage

that a buffer has very large input resistance and a very low output resistance. The

attenuating amplifier (IC1) is an inverting amplifier (IC1, R1 & R2). Inverting amplifiers

exhibits a gain of less than unity unlike a non-inverting amplifier. Finally, the negative

voltage at the output of the inverting amplifier is again re-inverted to a positive voltage

by a unity gain inverting amplifier (IC2, R3 & R4)

Figure 35: Output voltage feedback conditioning circuit.

The output voltage (Vout) was then ‘read’ (sampled) by the microcontroller’s analogue

to digital conversion (ADC) circuits. The microcontroller’s ADC converter has a 10 bits

resolution and the converted value is stored in a 16 bits register but only the eight most

significant bits will be ‘read’ from the ADCH; 8 bits register.

40

Equation 20: ADC
conversion formula

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐴𝐷𝐶𝐻 ∗
𝐴𝑟𝑒𝑓

28𝑏𝑖𝑡𝑠
 (20)

The microcontroller then recalculates the actual buck converter output voltage (Vin to

amplifier) by using the attenuating amplifier gain and the converted voltage value.

𝑉𝑖𝑛 =
𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

0.1042

4.2. Output current feedback

The output current value was measure using an ACS712T ELC-20A current sensor.

The sensor converts the current flowing throw it to voltage at its output terminal. The

voltage was then ‘read’ (sampled) by the microcontroller’s analogue to digital

conversion (ADC) circuits.

Figure 36: ACS712T Current sensor and V_out versus Sensed current curve [42].

The resolution of the current sensor is 100mV/A as stated in the datasheet. That is

100mV/1000mA. Better still, that is 0.1mV/mA.

Given that the microcontroller’s resolution (sampling step size) is 19.5mV, the current

sensor resolution is therefore not good for the micro controller’s ADC step size or vice

versa. From the current sensor’s output voltage versus sensed current graph, the range

of the voltage change from 0A @ 2.5V to 5A@3.0V is just 0.5V. In order to improve on

this voltage range and therefore the current sensor sensitivity, a differential amplifier

41

was designed and built with a gain of 10 such that the 0.5V range becomes 5V and

equal to the Aref. This implies the 0.1mV/mA becomes 1mV/mA.

As shown on figure 36 below, the input of the buffer (IC2), at the differential amplifier’s

(IC1) negative input is fixed at 2.5V such that it cancels out the initial voltage of the

current sensor; 2.5V @ 0A. The current sensor’s output will be connected to the input of

the other buffer (IC3) at the differential amplifier’s (IC1) positive input. The output of the

differential amplifier will therefore be at 0V when no current flows through the current

sensor and be positive when there is current flow throw the sensor.

Figure 37: Differential amplifier circuit

Equation 21: Differential
Amplifier formula

𝑉𝑜𝑢𝑡 = (
𝑅4

𝑅3 + 𝑅4
) ∗ (

𝑅1 + 𝑅2

𝑅1
) ∗ 𝑉2 − (

𝑅2

𝑅1
∗ 𝑉1) (21)

𝑖𝑓 𝑅1 = 𝑅3 𝑎𝑛𝑑 𝑅2 = 𝑅4, 𝑡ℎ𝑒𝑛 𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1

(𝑉2 − 𝑉1)

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑉𝑜𝑢𝑡 =
10𝐾

1𝐾
(𝑉𝑐𝑢𝑟−𝑠𝑒𝑛𝑠𝑜𝑟 − 2.5)

mailto:2.5V@0A

42

The microcontroller then reads the output voltage of the differential amplifier, and the

ADC converted voltage (VADC_Con) is given by:

𝑉𝐴𝐷𝐶_𝐶𝑜𝑛 = 𝐴𝐷𝐶𝐻 ∗ 0.01953V

The current sensor voltage (Vcur_sensor) is given as follows:

𝐴𝑣 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 𝑡ℎ𝑎𝑡 𝑖𝑠, 10 =

𝑉𝐴𝐷𝐶_𝐶𝑜𝑛

𝑉𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑜𝑟

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑉𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑉𝐴𝐷𝐶_𝐶𝑜𝑛

10

The current (Isensor) through the sensor is calculated using the gradient equation of a

straight (linear) line.

Equation 22: Gradient of a
linear line

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
∆𝑦

∆𝑥
 (22)

∆𝑦

∆𝑥
=

2.5𝑉 − 3𝑉

0𝐴 − 5𝐴
= 0.1

Therefore, at the output of the differential amplifier, the equivalent current value is

calculated as follows:

0.1 =
𝑉𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑜𝑟

0𝐴 − 𝐼𝑠𝑒𝑛𝑠𝑜𝑟
 .

𝑁𝑜𝑡𝑒: 𝑉𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑟𝑜𝑚 2.5𝑉 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑙𝑜𝑤, 𝑡ℎ𝑢𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓. 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

𝑇ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠, 𝐼𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑉𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑜𝑟

0.1

4.3. Control flow

The microcontroller used in this project was the Atmega328P integrated circuit (IC) and

the national instrument data acquisition device; USB 6009. The Arduino Uno board,

based on this microcontroller IC was used to program it. Atmel Studio 6.1 integrated

43

development environment (IDE), was used to write, develop, compile and download the

embedded c++ source code into the IC.

Alternative microcontrollers were available and advance in processing speed and more

PORTs such as the Arduino Mega, Arduino Due and ARM cortex 4 etc. The major

disadvantage with these advance microcontrollers is that the IC is permanently attached

to their respective boards. The ARM cortex 4 is especially least robust, and also has a

lesser user friendly application IDE; kiel-microvision4 for source code development.

Figure 38: Arduino Uno ATmega328PU programing board.

The source code flow diagram is as shown below:

44

Start

Include c++
libraries

Define constants,
declare variables

and functions

Initialize the
variable declare

PORTS

Set up and start
ADC

Set up and start
PWM

If I_Load is 0.5A <
I_Ref

While PINB0 is
set, increment

duty cycle

While PINB1 is
set, decrement

duty cycle

Turn ON
overload-LED

Measure voltage
and current

Calculate R_Load
& wattage

If I_Load >
I_Ref

Display info on
LCD Screen and

LabVIEW

End

True

Turn OFF
Buck Converter

True

Figure 39: Microcontroller source code flow diagram

45

4.4. Calibration

The calibration was done using a Watt’s UP DC power meter. It was connected in series

with the load. The output display circuit of the Hardware simulator was then tuned such

that the displayed data matched that displayed by the power meter. This was done over

a range of display values to obtain an optimal adjustment of the Hardware simulator

display circuit.

Figure 40: LCD Display calibration

46

5. Simulator operation

5.1. Operation Procedure

The bench-top simulator’s operation starts by double clicking the GUI-file icon placed on

the desktop of the monitor.

A blank GUI opens up as shown in the figure 40 below.

Figure 41: Blank LabVIEW GUI

47

Information related to the solar panel to be simulated is entered on the white spaces, on

the left side of the GIU, from the solar panel’s data sheet. The solar irradiating is

adjusted by a click & hold, and then drag on the horizontal pointer slide.

The hardware of the simulator (buck converter) is pre-set to an output voltage equal to

the simulated panel’s maximum voltage, by a push of the red button (increment PWM).

The thick blank arrow on the top right side of the GUI tool bar is clicked to get the

simulator running.

The performance of the simulated solar panel at the pre-set irradiation as well as the

load characteristics are displayed both on the right side of the GUI (grey spaces) and,

power meter (Watt’s up) and LCD display shown in figure 39 above.

48

Figure 42: Gui display with Power vs voltage curve

Click on the P-V Graph tabs to view either the power vs voltage or current vs voltage

behaviour curves.

49

Figure 43: GUI didplay with Current vs Voltage curve

The irradiation can be adjusted to vary the hardware current limit (I-out Max). The load

(potentiometer) can also be varied while view the variation of the load current on both

the GUI and the power meter. Click on the stop button at the right bottom corner of the

GUI to stop the GUI from running continuously.

The LED on the stop button at the right bottom corner of the GUI turns red when the

load current is 0.5A less than the current limit. The simulator shots down the output

voltage to 2% PWM duty when the load current exceeds the current limit. The black

button (Decrease output voltage) or the red button (increase output voltage) can be

pushed to reset the buck converter.

5.2. Performance Testing

Once more, multiple data sheets of different solar panels from different manufacturers

were simulated and the exact results were reproduced on the GUI. Examples of solar

panels are Solarex MXS-60 and MSX-64, E20/435 series solar panels. The current

50

/voltage characteristic of the E20/435 solar panel with dependence on irradiance and

module temperature is shown in figure 45 below.

Figure 44: Solarex Solar Panel I-V curves (from data sheet) [43]

The simulator’s hardware (buck converter) was loaded using resistor banks to draw high

current. Since a DC buck converter tends to have low efficiency at lower voltages, it was

powered at 15VDC, and driven with 50KHz square signal @ 80% duty cycle and then

loaded incrementally while monitoring the input and output power as shown on the table

below. This process was then repeated by powering the converter at 32VDC and driven

by a 50KHz square signal @ 75% duty cycle.

Supply Input

current (A)

Power

input (W)

Output Power

Output (W)

Efficiency

(%) Voltage

(V)

Current

(A)

15VDC

50KHz Square

wave @ 80%

duty cycle

0.23 3,45 11.63 0.22
2,5586 74%

0.28 4,2 11.5 0.27
3,105 74%

0.37 5,55 11.57 0.39
4,5123 81%

0.5 7,5 11.5 0.6
6,9 92%

0.8 12 11.3 0.97
10,961 91%

1.1 15 11.2 1.4
15,68 95%

1.5 22,5 10.7 1.86
19,902 88%

2.1 31,5 10.4 2.6
27,04 86%

2.5 37,5 10.3 2.8
28,84 77%

51

3.2 48 10 3.6
36 75%

Average Power Efficiency
83%

32VDC

Square wave

@ 75% duty

cycle

50KHz

0.5 16 23.9 0.6
14,34 90%

1 32 23.58 1.26
29,7108 93%

1.5 48 22.8 1.7
38,76 81%

2 64 23.0 2.2
50,6 79%

2.5 80 23.5 2.3
54,05 68%

3 96 23.5 3.1
72,85 76%

Average Power Efficiency
81%

Table 6: Hardware Experimental data

The above data shows that the hardware component of the designed simulator (buck

converter) is generally efficient up to 75% and above. The efficiency tends to be greater

with high resistive loads where low current output is drawn and with high duty cycle

signal where the output voltage is closer to input voltage. At less resistive loads, more

current is drawn and so more of the power is lost in the form of heat energy dissipated

in the switching power transistors hence the inefficiency. At lower duty cycle where the

output voltage is lesser to the input voltage, the inductor charge time is less and thus

less output current gain, hence the inefficiency.

Figure 45: Efficiency @ 80% duty cycle with variable load.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

Ef
fi

ci
e

n
cy

Power input Eff @80% duty

Linear (Eff @80% duty)

52

Figure 46: Efficiency @ 75% duty cycle with variable load

The difference between the inclination of the above graphs show that the converter is

more efficient at higher duty cycles than at lower duty cycles. From the table, this

information is show by the difference between the efficiency average values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120

Ef
fi

ci
e

n
cy

 (
%

)

Power input (W) Eff @75% duty cycle

Linear (Eff @75% duty cycle)

53

6. Attempted design approaches
The graphical users interface of the simulator was intended to be designed, operated

and controlled from a matlab GUI as shown in figure 44 below, by exploring either the

Matlab Support Package for Arduino, or NI-daq and using a serial monitor (Tera Term)

by serial communication. These three alternative design approaches had significant

issues.

Figure 47: simulator's Matlab GUI

6.1. Matlab Support Package for Arduino

MATLAB Support Package for Arduino Hardware makes possible a communication

between Matlab (Simulink, command window, GUI) and an Arduino board, serially. This

54

support package is functional for Matlab version R2014a and beyond. It did require

registration on the Mathworks website where access to download and install the support

package for the specific Arduino family (UNO, DUE, Mega, NANO) board was allowed.

The registration on the Mathworks website was done and the installation done.

Figure 48: Matlab / Arduino Hardware Setup

This setup was tested with the following matlab script:

global a
a = arduino('com3','uno'); % connecting to target(arduino)

DutyCycle = Vm/24;
while 1
if DutyCycle <= 0.900
 writePWMDutyCycle(a,'D3',DutyCycle);
 writeDigitalPin(a,'D9',1);
 V_sensor = readVoltage(a,'A3');
 Load_current = (V_sensor - 2.5)/0.1
 %.........maintain Iout (output current) limit
 %if Load_current > (Iout+0.5)
 while Load_current > (Iout+0.5)% +0.5 is for tolerance

 DutyCycle = Dutycycle - 0.05
 writePWMDutyCycle(a,'D3',DutyCycle);
 end
 %else
% if
% while Load_current > (Iout+0.5)% +0.5 is for tolerance
%
% DutyCycle = Dutycycle - 0.05
% writePWMDutyCycle(a,'D3',DutyCycle);

55

% end
% end
else
 writeDigitalPin(a,'D12',1);

It did run the arduino UNO board but had some major challenges in that the PWM hard

a very low frequency of about 400 Hz. Converter operate best at higher frequencies of

about 50KHz and beyond. Besides, the converter for this research was prior designed

to operate at 62 KHz. The set of instruction available for use in the matlab script allows

no control over the microcontroller registers and subsequently little control over the

microcontroller’s PWM frequency.

Interfacing the matlab GUI with an NI-data acquisition device was promising. The

downloading of the NI-data acquisition support package for matlab, from mathworks

website and then installing it in order to experience this technique and for matlab skill

development was reserved for future research.

6.2. Serial monitor / serial communication

When the matlab support packages presented their shortcomings, the use of a

keyboard via a serial monitor, to operate the simulator was adopted. The microcontroller

does manage the ADC and PWM activities simultaneously. It was realized that when

the serial PORT is activated by running the serial monitor (Tera Term), the ADC

conversions and PWM tasks are interrupted. This implies the serial monitor as a third

task cannot be manages by the microcontroller processor since the time require of the

serial PORT in other to receive from the key board is not controlled by the processor but

the operator. Writing of data to the serial monitor from the processor did not pose any

issues with the PWM nor ADC tasks since the time required of the serial PORT, in this

case is dependent on the processor’s speed. This approach of operation was

abandoned.

56

7. Conclusion and future research
A device or system that imitates well defined conditions or the behaviours of a true

process or machine for the essence of research or operator training is termed simulator

[33]. This device or system that simulates is commonly computer based and therefore

has a desktop application referred to as a software (simulation) package. Standard

software off the shelf simulation packages are PVSyst, PSIM, Homer Pro, Matlab-

Simulink and so on. These software packages are programs that contain fundamental

information about the systems it is designed to simulate. The fundamental information

(default input parameters) is termed input data to the simulator and can be modified and

added.

The aim of this project was to design a Microgrid hardware simulator that would be able

to simulate different types of solar panels and wind turbines with different configuration

systems. The simulator would have a photovoltaic (PV) and a wind turbine system

configuration via a graphical user’s interface. The simulator would then yield results of

the configuration graphically. Overall, this objective was achieved in this thesis project.

The development of a hardware simulator for Microgrid systems was successfully

accomplished by implementing both hardware and software designs. The hardware part

of the simulator was the same as a desk top computer made up of a mouse and

keyboard connected to the central processing unit (CPU) via a universal serial bus

(USB) port, a monitor connected to the CPU via an high-definition multimedia interface

(HDMI) or video graphic array (VGA), and an analogue output of the CPU into a power

amplifier that powered up the load.

The software component consisted of the attached source code with a graphic user

interface (GUI) designed, for a desk top application. Several computer architectures

(Desk top PC, embedded systems, parallel systems, distributed systems etc) need

different operation systems (Windows, server 2008, UNIX, Linux, Mac-OS, Novell

Netware, and BSD). An operating system suitable for both desktop PC (personal

computer) and desktop-application development software (Java, visual studio) was

installed first. Then the desktop-application development software was installed and

used to develop the source code and GUI for the simulator.

A graphical user interface based on a solar PV mathematical model was designed and

a programmable switch mode DC power supply was then built to mimic the software

calculation results. The software (GUI) and the hardware (buck converter) were linked

via a data acquisition device, setting up a desktop hardware simulator work station as

shown in appendix E, figure 55. The deliverables of this research were therefore

achieved. The three attempted alternative approaches (matlab / arduino matlab-support

package, matlab / National Instrument DAQ matlab-support package, and matlab /

57

Tera-term serial monitor) as mentioned in chapter 6 above were also expanded upon

but some aspects can be undertaken as future research to refine it.

58

Appendices

Appendix A: Build of material

Bill of material

Components Type/Discription Values Quantities Ratings

Resistors 4 band

10KΩ 3 0.25W

1.5KΩ 4 0.25W

1.2KΩ 1 0.25W

1KΩ 6 0.25W

100Ω 2 0.25W

22Ω 2 0.25W

Pots Horzintal surface mount

22KΩ 2 0.25W

4.4KΩ 1 0.25W

2.2KΩ 5 0.25W

1KΩ 2 0.25W

220Ω 1 0.25W

100Ω 1 0.25W

Capacitors
Electrolytic

3300µf 1 63v

2200µf 2 16V & 63V

470µf 2 25V

150µf 2 35V

56µf 2 35V

Ceramic 18pf 4 /

Intergrated circuits
(IC's)

7805 regulator
/ 2 Io=1A, Vo=5V

74LS47 / 2 /

LM393 / 2 /

UA741 / 5 /

IR2113 / 1 /

Atmega328PU / 2 /

10mm Width IC sucket

8 Pins / 7 /

14Pins / 1 /

16Pins / 2 /

28Pins / 2 /

Diodes

14.2mm 7-segment
Common Anode (CA) 2 30ma-70mA

5mm LED / 1 /

General purpose / 4 6.0A-If/1000V-RRM

Zener / 2 24V

Fast Recovery(BV27Y) / 3 /

59

Heat shrinks

1mm Diameter / / /

2mm Diameter / / /

5mm Diameter / / /

10mm Diameter / / /

Heat sinks

Aluminium heatsink,
29x37.5mm x11.5 for

TO66 transistor / 2 11K/wat

Heat sink LIP 19488 NAT
100mm / 1 1 degree/wat

solid aluminium heat sink
for TO-220 / 2 /

Insulation washers

TO-220 Plastic washers set
/ 4 /

TO-3 Power transistor
insulation set.

/ 2 /

Connectors

Female Single row pin
header strip / 1 /

Male Single row pin
header strip / 1 /

5.08mm 2 pin terminal
screw / 16 /

5.08mm 3 pin terminal
screw / 4 /

4mm Red Banana plug
socket / 1 5A

 4mm black banana plug
socket / 1 5A

Transistors
IRF540

/ 2

Vds=100V,
Ids=20A@100degree,
Ids=28A@25degree

2N3055 / 2 Ic=15A, VCE= 60V, 115W

Inductor Ring Iron core 170µH 1 10A

Current sensor ACS712T ELC-20A / 1 20A

Switches

NC Push button / 2 /

NO Push button / 1 /

Toggle DPDT, 2 position / 2 10A

Oscillator Quartz crystal 16M Hertz 2 /

LCD 20 columns by 4 rows / 1 /

Traformer
Center tapped 13V/-13V,

and 48V/0V / 1 290VA

60

Fuse

Glass Cartridge Fuse, 5 x
20mm / 1 5A, 250VAC

Fuse holder 20mm fuse holder / 1 10A250VAC

DC Fan D80SH-12 1 12V, 0.18A

61

Appendix B: LabVIEW block code

Figure 49: GUI sub VI

62

Figure 50: I-V & P-V graph ploting sub-VI

Figure 51: Load current control sub-VI

63

Appendix C: Arduino Uno c-code

 PWM control C-code
#include <avr/io.h>
#include <avr/interrupt.h>
#define F_CPU 16000000L
#include <util/delay.h>
#include <stdlib.h> //itoa / atoi function header file.
#include <stdio.h> //itoa / atoi function header file.
#include <math.h>

#define USART_BAUDRATE 9600 //Declare baudrate
#define BAUD_PRESCALE (((F_CPU/(USART_BAUDRATE*16UL)))-1)//Declaring baud_prescale
//('BAUD_PRESCALE' is the variable which the 16bits baud prescale is assigned.

float V_C_measured, Load_resistance, V_outConverter;
float step_size, Current, Duty_cycle, V_out_C_Sensor;
float I_Max_Ref;
int n;
int main(void)
{
 unsigned char a = 0x01;
 unsigned char b = 0x02;
 unsigned char c = 0x04;

 int V_source = 23; // DC-DC convert input voltage

 DDRB = 0X78;//declare PB0-2 and PB3-6 as I/O respectively
 DDRD = 0x0F;//declare PD0-3 as output
 n = 12; //initializing duty cycle to 5% default.
 I_Max_Ref = 4; //initializing current limit(I_Max) to 500mV default
 PORTB =I_Max_Ref;
 PORTB = PORTB<<3;

 /*------------------SET UP ADC CONVERTION------------------*/

 ADMUX = 0x00; //ADC analog input channel (pin //0) select.
 ADMUX |= (1<<REFS0) |(1<<ADLAR); //Reference voltage select (5V internal) &
//Data-out Left adjustment.
 ADCSRA |= (1<<ADEN) |(1<<ADATE); //ADC enable(turn on ADC) & //Set free running
mode respectively.
 ADCSRA |= (1<<ADPS2) |(1<<ADPS1) |(1<<ADPS0); //ADC clock select (prescale =
//128)
 ADCSRA |= (1<<ADIE); //Enable interupt
 ADCSRA |= (1 << ADSC); //START ADC conversion

 /*---------------SET UP PWM--------------------------------------*/

 DDRD |= (1 << PORTD6);// PD6 is now an output
 OCR0A = n;// set(initialize) PWM for 5% (12/255)duty cycle
 TCCR0A |= (1 << COM0A1);// set none-inverting mode
 TCCR0A |= (1 << WGM01) | (1 << WGM00);//set fast PWM Mode
 TCCR0B |= (1 << CS00);// set prescaler to one(crystal freq divide by 1) and starts
PWM

64

 while(1)
 {
 sei(); //turn on internal interrupt

 /*....................PWM ADJUST.....................*/

 while((PINB & 0x01) == a)//permanently closed to gnd push to open button
 {
 n = n+1;
 OCR0A = n;
 _delay_ms(100);
 if (n > 242){n = 12;} //set duty cycle 5% to 95%
 }

 while((PINB & 0x02) == b)//permanently closed to gnd push to open button
 {
 n = n-1;
 OCR0A = n;
 _delay_ms(100);
 if (n < 12){n = 242;}//set duty cycle 5%(OCR0A=12) to 95%(OCR0A=242)
 }

 PORTB = I_Max_Ref;
 PORTB = PORTB<<3;
 PORTD = 10 * fmod(I_Max_Ref,1.0);

 if((PINB & 0x04) == c)//NI Daq sets 5V on PINB2 for shot circuit Protn
 {
 Duty_cycle = 2 / V_source;//duty cycle = 8% if over load
 OCR0A = (Duty_cycle * 256)-1;//generate duty cycle
 }

 }
}

ISR(ADC_vect)
{
 switch (ADMUX)
 {
 case 0x60:
 step_size = 19.53125;//0.01953125 = 19.53125mV to consider more DP's
 V_C_measured = (ADCH * step_size)/1000; //V at output of amplifier

 V_out_C_Sensor = V_C_measured / 10; //Equivalent V at current sensor output
 Current = V_out_C_Sensor / 0.1; //current drawn equivalent to sensor V_out
 ADMUX |= 0x62;//switch to analog channel 2
 break;
 //---------------
 case 0x62:
 step_size = 19.53125;
 I_Max_Ref = (ADCH * step_size)/1000; // calculating input voltage in V(In
volts and
 ADMUX &= 0x60; //switch to analog channel 0
 break;
 }
}

65

 LCD display C-code

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2); //Microcontroller digital pins to be used by the LCD.

const int analog_input_pin_Zero = 0; //Declaring the analog input pin (A0)

const int analog_input_pin_Two = 2;

int returned_analog_value_0, returned_analog_value_2; //Variable to store the analog

values

float converted_analog_voltage_0, converted_analog_voltage_2,

Actual_conveter_voltage, current;

float Power, Load_resistance;

//float current;

/*--*/

void setup()

{

 lcd.begin(20, 4); //set up the LCD's numbers of columns and rows.

 //analogReference(INTERNAL); //Selects the internal 1.1V reference voltage.

 //pinMode(buzzer, OUTPUT); //declaring the buzzer pin(Digit 13) as output.

 /*--*/

 lcd.setCursor(0,0);

 lcd.print("STUDENT: E.P MULUH");

 lcd.setCursor(0,1);

 lcd.print("SUPERVISOR:PROF KAHN");

 delay(5000);

 lcd.clear();

}

/*--*/

66

void loop()

{

 lcd.setCursor(1, 0); //locate cursor at second column,first row.

 lcd.print("HARDWARE SIMULATOR");

 lcd.setCursor(0, 1); //locate cursor at second column,first row.

 lcd.print("FOR MICROGRID SYSTEM");

 /*-----------------------Current drawn----------*/

 returned_analog_value_0 = analogRead(analog_input_pin_Zero);

 //Calculating the converted analog voltage(mV).

 converted_analog_voltage_0 = returned_analog_value_0 * (5.0 / 255);

 current = (converted_analog_voltage_0 / 2);

 //current = (2.6 - converted_analog_voltage_0) / 0.1;

 //current = (converted_analog_voltage_0 / 10) / 0.1 //gain=10 & grad =0.1)

 //= converted_analog_voltage_1

 lcd.setCursor(0,3);//setting cursor at (column 0, row 3)

 lcd.print("AMPS:");

 lcd.setCursor(5,3);//setting cursor at (column 5, row 3)

 lcd.print(current);

 //lcd.setCursor(11,3);

 //lcd.print("A");

 /*-----------------Voltage calculation------------------------------*/

67

 returned_analog_value_2 = analogRead(analog_input_pin_Two);

 converted_analog_voltage_2 = returned_analog_value_2 * (5.0 / 1023);

 //Calculate actual converter output Voltage

 Actual_conveter_voltage = converted_analog_voltage_2 / 0.105;

 lcd.setCursor(0,2);

 lcd.print("VOLT:");

 lcd.setCursor(5,2);//setting cursor at (column 6, row 1)

 lcd.print(Actual_conveter_voltage);

 //lcd.setCursor(11,2);

 //lcd.print("V");

 /*--------------------Power Calculation----------------------------*/

 Power = Actual_conveter_voltage * current;//P = IV

 lcd.setCursor(11,2);//setting cursor at (column 6, row 1)

 lcd.print("WAT:");

 lcd.setCursor(15,2);

 lcd.print(Power);

 /*-------------Load Resistance calculation--------------*/

 Load_resistance = Actual_conveter_voltage / current;//V=IR

 lcd.setCursor(11,3);//setting cursor at (column 6, row 1)

 lcd.print("OHM:");

68

 lcd.setCursor(15,3);

 lcd.print(Load_resistance);

}

69

Appendix D: simulator’s Matlab Graphical-user-interface script

function varargout = GUI(varargin)
% GUI MATLAB code for GUI.fig
% GUI, by itself, creates a new GUI or raises the existing
% singleton*.
%
% H = GUI returns the handle to a new GUI or the handle to
% the existing singleton*.
%
% GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUI.M with the given input arguments.
%
% GUI('Property','Value',...) creates a new GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI

% Last Modified by GUIDE v2.5 06-Dec-2018 23:30:16

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_OpeningFcn, ...
 'gui_OutputFcn', @GUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

70

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function PVbandGap_Callback(hObject, eventdata, handles)
% hObject handle to PVbandGap (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of PVbandGap as text
% str2double(get(hObject,'String')) returns contents of PVbandGap as a

double

% --- Executes during object creation, after setting all properties.
function PVbandGap_CreateFcn(hObject, eventdata, handles)
% hObject handle to PVbandGap (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function IdealityFactor_Callback(hObject, eventdata, handles)
% hObject handle to IdealityFactor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

71

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of IdealityFactor as text
% str2double(get(hObject,'String')) returns contents of IdealityFactor

as a double

% --- Executes during object creation, after setting all properties.
function IdealityFactor_CreateFcn(hObject, eventdata, handles)
% hObject handle to IdealityFactor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function AtmosphereTemp_Callback(hObject, eventdata, handles)
% hObject handle to AtmosphereTemp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of AtmosphereTemp as text
% str2double(get(hObject,'String')) returns contents of AtmosphereTemp

as a double

% --- Executes during object creation, after setting all properties.
function AtmosphereTemp_CreateFcn(hObject, eventdata, handles)
% hObject handle to AtmosphereTemp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Insolation_Callback(hObject, eventdata, handles)
% hObject handle to Insolation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Insolation as text
% str2double(get(hObject,'String')) returns contents of Insolation as

a double

72

% --- Executes during object creation, after setting all properties.
function Insolation_CreateFcn(hObject, eventdata, handles)
% hObject handle to Insolation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function MaxCurrent_Callback(hObject, eventdata, handles)
% hObject handle to MaxCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of MaxCurrent as text
% str2double(get(hObject,'String')) returns contents of MaxCurrent as

a double

% --- Executes during object creation, after setting all properties.
function MaxCurrent_CreateFcn(hObject, eventdata, handles)
% hObject handle to MaxCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function MaxVoltage_Callback(hObject, eventdata, handles)
% hObject handle to MaxVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of MaxVoltage as text
% str2double(get(hObject,'String')) returns contents of MaxVoltage as

a double

% --- Executes during object creation, after setting all properties.
function MaxVoltage_CreateFcn(hObject, eventdata, handles)

73

% hObject handle to MaxVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function MaxPowerRated_Callback(hObject, eventdata, handles)
% hObject handle to MaxPowerRated (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of MaxPowerRated as text
% str2double(get(hObject,'String')) returns contents of MaxPowerRated

as a double

% --- Executes during object creation, after setting all properties.
function MaxPowerRated_CreateFcn(hObject, eventdata, handles)
% hObject handle to MaxPowerRated (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function ShortCircuitCurrent_Callback(hObject, eventdata, handles)
% hObject handle to ShortCircuitCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ShortCircuitCurrent as

text
% str2double(get(hObject,'String')) returns contents of

ShortCircuitCurrent as a double

% --- Executes during object creation, after setting all properties.
function ShortCircuitCurrent_CreateFcn(hObject, eventdata, handles)
% hObject handle to ShortCircuitCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

74

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function OpenedCircuitVoltage_Callback(hObject, eventdata, handles)
% hObject handle to OpenedCircuitVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of OpenedCircuitVoltage as

text
% str2double(get(hObject,'String')) returns contents of

OpenedCircuitVoltage as a double

% --- Executes during object creation, after setting all properties.
function OpenedCircuitVoltage_CreateFcn(hObject, eventdata, handles)
% hObject handle to OpenedCircuitVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function TemperatureCoef_Callback(hObject, eventdata, handles)
% hObject handle to TemperatureCoef (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of TemperatureCoef as text
% str2double(get(hObject,'String')) returns contents of

TemperatureCoef as a double

% --- Executes during object creation, after setting all properties.
function TemperatureCoef_CreateFcn(hObject, eventdata, handles)
% hObject handle to TemperatureCoef (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

75

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function SolarPVarea_Callback(hObject, eventdata, handles)
% hObject handle to SolarPVarea (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of SolarPVarea as text
% str2double(get(hObject,'String')) returns contents of SolarPVarea as

a double

% --- Executes during object creation, after setting all properties.
function SolarPVarea_CreateFcn(hObject, eventdata, handles)
% hObject handle to SolarPVarea (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function NumOfSeriesCells_Callback(hObject, eventdata, handles)
% hObject handle to NumOfSeriesCells (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of NumOfSeriesCells as text
% str2double(get(hObject,'String')) returns contents of

NumOfSeriesCells as a double

% --- Executes during object creation, after setting all properties.
function NumOfSeriesCells_CreateFcn(hObject, eventdata, handles)
% hObject handle to NumOfSeriesCells (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

76

function NumOfParallelPV_Callback(hObject, eventdata, handles)
% hObject handle to NumOfParallelPV (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of NumOfParallelPV as text
% str2double(get(hObject,'String')) returns contents of

NumOfParallelPV as a double

% --- Executes during object creation, after setting all properties.
function NumOfParallelPV_CreateFcn(hObject, eventdata, handles)
% hObject handle to NumOfParallelPV (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function OutPutVoltage_Callback(hObject, eventdata, handles)
% hObject handle to OutPutVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of OutPutVoltage as text
% str2double(get(hObject,'String')) returns contents of OutPutVoltage

as a double

% --- Executes during object creation, after setting all properties.
function OutPutVoltage_CreateFcn(hObject, eventdata, handles)
% hObject handle to OutPutVoltage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

77

function OutputCurrent_Callback(hObject, eventdata, handles)
% hObject handle to OutputCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of OutputCurrent as text
% str2double(get(hObject,'String')) returns contents of OutputCurrent

as a double

% --- Executes during object creation, after setting all properties.
function OutputCurrent_CreateFcn(hObject, eventdata, handles)
% hObject handle to OutputCurrent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function OutputPower_Callback(hObject, eventdata, handles)
% hObject handle to OutputPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of OutputPower as text
% str2double(get(hObject,'String')) returns contents of OutputPower as

a double

% --- Executes during object creation, after setting all properties.
function OutputPower_CreateFcn(hObject, eventdata, handles)
% hObject handle to OutputPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Efficiency_Callback(hObject, eventdata, handles)
% hObject handle to Efficiency (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

78

% Hints: get(hObject,'String') returns contents of Efficiency as text
% str2double(get(hObject,'String')) returns contents of Efficiency as

a double

% --- Executes during object creation, after setting all properties.
function Efficiency_CreateFcn(hObject, eventdata, handles)
% hObject handle to Efficiency (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function FillFactor_Callback(hObject, eventdata, handles)
% hObject handle to FillFactor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of FillFactor as text
% str2double(get(hObject,'String')) returns contents of FillFactor as

a double

% --- Executes during object creation, after setting all properties.
function FillFactor_CreateFcn(hObject, eventdata, handles)
% hObject handle to FillFactor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 %.............CONSTANT VARIABLES...........%
q = 1.60217662*10^(-19); % Electronic Charge
K = 1.38064852*10^(-23); %Botzman constant
Go = 1000.0;% Standard irradiation
Tn = 298.0; % Refernce temperature

79

%..............INPUT VARIABLES...............%
Np = str2double(get(handles.NumOfParallelPV,'String'));
Ns = str2double(get(handles.NumOfSeriesCells,'String'));
DF = str2double(get(handles.IdealityFactor,'String')); % Diode ideality

factor
G = str2double(get(handles.Insolation,'String'));
T = str2double(get(handles.AtmosphereTemp,'String'));
Ki = str2double(get(handles.TemperatureCoef,'String')); % current temperature

coef
Voc = str2double(get(handles.OpenedCircuitVoltage,'String'));
Vd = 0.0:0.01:Voc;
Vm = str2double(get(handles.MaxVoltage,'String')); %MMP Voltage (Rated

Voltage)
Isc = str2double(get(handles.ShortCircuitCurrent,'String'));
Im = str2double(get(handles.MaxCurrent,'String')); %MMP current (I-rated)
Eg = str2double(get(handles.PVbandGap,'String')); %Bandgap
A =str2double(get(handles.SolarPVarea,'String'));

%%CALCULATIONS................%

Ion = Isc / (exp((q*Voc)/(DF*K*T*Ns))-1);
Ios = Ion*(T/Tn)^3*exp(((q*Eg)/(DF*K))*((1/Tn)-(1/T)));
Iph = Np*(G/Go)*(Isc + Ki*(T-Tn));

%%Shunt and Series Resistance Calcualtion..............
%Gsc = (Isc - Im)/ (0 - Vm) % Gradient at Shot-circuit condition (Isc point)
Gsc = (Isc - (Im+((Isc-Im)*0.75)))/ (0 - Vm); %accuracy
Rp = (-1)/Gsc;
%Goc = (Im - 0)/(Vm - Voc)% Gradient at opened-circuit condition (Voc point)
Goc = ((Im+((Isc-Im)*0.75)) - 0)/((Vm+(Voc-Vm)*0.75) - Voc); %accuracy
Rs = (-1)/Goc;

%%Iout at Max Power (or Vmax)....................
Id = Np*Ios*(exp((q*Vm)/(DF*Ns*K*T))-1);
Ish = Np*(Vm / Rp);
Iout_max = Iph - Id - Ish; % Max output current
Pout_max = Iout_max*(Vm);
Eff = (Pout_max / (1000*A))*100;
FF = Pout_max / (Voc*Isc);
Pmax_rated = Im*Vm;
%%Writing results to output fieldd......

set(handles.OutputCurrent,'String',Iout_max);
set(handles.OutputPower,'String',Pout_max);
set(handles.Efficiency,'String',Eff);
set(handles.FillFactor,'String',FF);
set(handles.MaxPowerRated,'String',Pmax_rated);
set(handles.OutPutVoltage,'String',Vm);

%..........Vout & Iout variation over the panel voltgae rage (0 - Voc) for
%graphical purpose.....................
Id = Np*Ios*(exp((q*Vd)/(DF*Ns*K*T))-1);%Diode current (Vd = V+IRs)
Ish = Np*(Vd / Rp);
Iout = Iph - Id - Ish; % output current

80

Vout = Vd - (Iout*Rs); % output voltage
Pout = Iout.*Vout;

%%Ploting..............

axes(handles.axes1)
plot(Vout, Iout)
grid, xlabel('Voltage V'), ylabel('Current I(A)')
xlim([0 ((Voc)+3)]);%x-axis scale limit
ylim([0 ((Np*Isc)+3)]);%y-axis scale limit
title('Current-Voltage characteristic curve')

axes(handles.axes2)
plot(Vout, Pout, 'r');
grid, xlabel('Voltage V'), ylabel('Pouwer (W)')
xlim([0 ((Voc)+3)]);% x-axis scale limit
ylim([0 ((Np*Isc*Voc)+3)]);%y-axis scale limit
title('Power-Voltage characteristic curve')

81

Appendix E: Project Images

Refer to chapter 3.3.2 (PWM signal conditioning)

Oscilloscope screen shots

Figure 52: PWM signal from Arduino Uno (5V PWM)

Figure 53: Stage-one comparator output (12V PWM)

82

Figure 54: RC circuit output signal (12V PWM with longer rise time)

Figure 55: Window comparator output (Two 12V-PWM 180degree out of phase)

83

Figure 56: MOSFET's gates PWM signal

Hardware images

Figure 57: Completed project

84

Figure 58: Buck converter board

Figure 59: PWM control board

85

Figure 60: Display circuit boards

86

List of References

[1] M. Mohiti, M. Mazidi and A. A. Moghaddam, "Microgrid optimal energy and reserve

scheduling considering frequency constraints," in 2019 International Conference on

Smart Energy Systems and Technologies (SEST), 2019.

[2] B. S. Hartono, Budiyanto and R. Setiabudy, "Review of Microgrid Technology," in

2013 International Conference on QiR, 2013.

[3] E. Wood, "microgridknowledge.com," MICROGRID KNOWLDGE, 04 November

2018. [Online]. Available: https://microgridknowledge.com/microgrid-benefits-eight/.

[Accessed 24 spetember 2020].

[4] DNV KEMA Energy & Sustainability and Massachusetts clean energy center,

"Microgrids – Benefits, Models, Barriers and Suggested Policy Initiatives for the

Commonwealth of Massachusetts," KEMA, Inc., Burlington, February 2014.

[5] P. P. Thomas Bialek, "http://cseweb.ucsd.edu," 22 May 2013. [Online]. Available:

http://cseweb.ucsd.edu/~trosing/lectures/cse291_microgrid.pdf. [Accessed 12 June

2017].

[6] D. Jardas, "www.irena-istra.hr," january 2012. [Online]. Available: http://www.irena-

istra.hr/uploads/media/Photovoltaic_systems.pdf. [Accessed 12 June 2017].

[7] V. A. Subramony, S. Doolla and M. Chandorkar, "Microgrids in India," IEEE

Journals & Magazines, vol. 5, no. 2, pp. 47 - 55, 2007.

[8] F. S. A. Iqbal, "Optimal configuration analysis for a campus microgrid—a case

study," Protection and Control of Modern Power Systems volume 2, p. 3, 24 June

2017.

[9] K. Benmouiza, M. Tadj and A. Cheknane, "Classification of hourly solar radiation

using fuzzy c-means algorithm for optimal stand-alone PV system sizing,"

International Journal of Electrical Power & Energy Systems, vol. 82, pp. 233-241,

November 2016.

[10] A. M. Bagher, M. M. A. Vahid and M. Mohsen, "Types of Solar Cells and

Application," American Journal of Optics and Photonics, vol. 3, pp. 94 -113, 2015.

[11] World of " Energy ", "https://shaikmohasin.wordpress.com," Shaik Mohasin, 13

October 2012. [Online]. Available:

87

https://shaikmohasin.wordpress.com/2012/10/13/explained-solar-pv-system-for-

home/. [Accessed 12 June 2017].

[12] E. Elibol, Ö. T. Özmen, N. Tutkun and O. Köysal, "Outdoor performance analysis of

different PV panel types," Renewable and Sustainable Energy Reviews, vol. 67, pp.

Pages 651-661, January 2017.

[13] N. Pearsall, "Chapter 1: Introduction Photovoltaic system performance," in The

Performance of Photovoltaic (PV) systems, Duxford, Woodhead publications, 2016,

pp. 1 - 12.

[14] T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and

challenges," Renewable and Sustainable Energy Reviews, vol. 70, p. 1286–1297,

2017.

[15] K. Nakamura, "Current Status and Technology Trend of Crystalline Si Solar Cell," in

24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-

FPD), Kawasaki-shi, 2017.

[16] VIKRAM BOOKS, "Chapter12: Dual nature of radiation and mater," in

INTERMEDIATE II YEAR PHYSICS(English Medium) Question Bank, Vikram

Publishers Pvt Ltd, September 2015, pp. 350 - 358.

[17] T.-H. Wu, W.-C. Liu, C.-S. Moo, H.-L. Cheng and Yong-Nong, "An Electric Circuit

Model of Photovoltaic Panel with Power Electronic Converter," in IEEE

Conferences, 2016.

[18] Y. Chaibi, M. Salhi, A. El-jouni and A. Essadki, "A new method to extract the

equivalent circuit parameters of a photovoltaic panel," Solar Energy, vol. 163, p.

376–386, 2018.

[19] F. Masmoudi, F. B. Salem and N. Derbel, "Single and Double Diode models for

Conventional Mono-Crystalline Solar Cell with Extraction of Internal Parameters," in

IEEE Conferences, 2016.

[20] A.-E.-H. M. Mohamed, "Efficient Approximation of Photovoltaic Model Using

Dependent Thevenin Equivalent circuit based on exponential sums function," in

IEEE Conferences, Qena, 2015.

[21] F. Rasool, M. Drieberg, N. Badruddin and B. S. M. Singh, "PV panel modeling with

improved parameter extraction technique," Solar Energy, vol. 153, p. 519–530,

88

2017.

[22] V. Tamrakar, S. Gupta and Y. Sawle, "SINGLE-DIODE AND TWO-DIODE PV

CELL MODELING USING MATLAB FOR STUDYING CHARACTERISTICS OF

SOLAR CELL UNDER VARYING CONDITIONS," Electrical & Computer

Engineering: An International Journal (ECIJ), vol. 4, pp. 1-11, June 2015.

[23] kavonesolar, "kavonesolar.com," kavonesolar, [Online]. Available:

http://kavonesolar.com/polycrystalline.html. [Accessed 20 June 2017].

[24] S. C. CHUN, "DEVELOPMENT OF A HYBRID SOLAR WIND TURBINE FOR

SUSTAINABLE ENERGY STORAGE," University of Hussein Onn Malaysia,

Hussein Onn, JULY 2015.

[25] M. Hankins, Stand-alone Solar Electric Systems, Washington DC: The Earthscan

Expert Handbook, 2010.

[26] Phocos North America, Inc., "www.phocos.com," 2015. [Online]. Available:

http://www.phocos.com/wp-content/uploads/2015/12/Guide-Comparing-PWM-

MPPT-Charge-Controllers.pdf. [Accessed 25 April 2018].

[27] M. Rokonuzzaman and M. Hossam-E-Haider, "Design and Implementation of

Maximum Power Point Tracking Solar Charge Controller," in 2016 3rd International

Conference on Electrical Engineering and Information Communication Technology

(ICEEICT), Dhaka, 2016.

[28] M. LokeshReddy, P. P. Kumar and S. A. M. Chandra, "Comparative study on

charge controller techniques for solar PV system," Energy Procedia, vol. 117, pp.

1070-1077, June 2017.

[29] Victron Energy B.V, "www.victronenergy.com," 28 June 2014. [Online]. Available:

https://www.victronenergy.com/upload/documents/White-paper-Which-solar-

charge-controller-PWM-or-MPPT.pdf. [Accessed 23 April 2016].

[30] IVT_Solartechnik, "http://www.ivt-hirschau.de/IVT_Solartechnik_Prospekt2017-

ENG-MAIL.pdf," March 2017. [Online]. Available: http://www.ivt-

hirschau.de/IVT_Solartechnik_Prospekt2017-ENG-MAIL.pdf. [Accessed 03 May

2018].

[31] COTEK, "www.mantech.co.za," September 2015. [Online]. Available:

http://www.mantech.co.za/Datasheets/Products/CX-SERIES_COTEK.pdf.

89

[Accessed 02 05 2018].

[32] N. Dodds, "Feasibility study of small-scale battery systems for domestic

application," University of Strathclyde, UK, Strathclyde, 2015.

[33] Collins Dictionaries, Collins English Dictionary, HarperCollins Publishers, 2014.

[34] SunEdison, "Obtaining Accurate Energy Harvest Estimations From SunEdison

Modules Using PVSyst v6.23 Solar Simulator," SunEdison Products Singapore Pte.

Ltd, 2016.

[35] M. Little and J. Persson, "Homer training for renewable energy system modeling,"

Community Energy Malawi, 2016.

[36] Razman, C. Ayop, Wei and Tan, "A comprehensive review on photovoltaic

emulator," Renewable and Sustainable Energy Reviews, vol. 80, p. 430–452, 2017.

[37] EE IIT, Kharagpur, "https://nptel.ac.in," [Online]. Available:

https://nptel.ac.in/courses/Webcourse-

contents/IIT%20Kharagpur/Power%20Electronics/PDF/L-

21(DP)(PE)%20((EE)NPTEL).pdf. [Accessed 05 06 2019].

[38] B&K Precision Power Supply Guide, Power Supply Guide, Yorba Linda: B&K

Precision Corporation, 2009.

[39] E. Płaczek-Popko, "Top PV market solar cells 2016," Opto-Electronics Review, vol.

25, pp. 55 - 64, 2017.

[40] H. Bellia, R. Youcef and M. Fatima, "A detailed modeling of photovoltaic module

using MATLAB," NRIAG Journal of Astronomy and Geophysics, vol. 3, no. 1, pp.

53-61, June 2014.

[41] Dr. and Taufik, "Practical design of buck converter," California Polytechnic State

University, USA, California, 2018.

[42] Allegro MicroSystems; Inc., "www.sparkfun.com," [Online]. Available:

https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf. [Accessed 05 02

2019].

[43] SUNPOWER, "https://pdf.directindustry.com," [Online]. Available:

https://pdf.directindustry.com/pdf/sunpower-corporation/e20-435-solar-panel/54792-

420469.html. [Accessed 05 10 2020].

90

[44] learnabout-electronics, "http://www.learnabout-electronics.org," 2012. [Online].

Available: http://www.learnabout-electronics.org/Downloads/amplifiers-module-

05.pdf. [Accessed 22 June 2017].

[45] N. Gupta, "http://www.sustainabilityoutlook.in," sustainabilityoutlook, 09 March

2012. [Online]. Available: http://www.sustainabilityoutlook.in/content/want-buy-solar-

panel-%E2%80%93-key-things-be-considered. [Accessed 12 June 2017].

