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ABSTRACT

The Stockbridge damper is a tuned mass absorber used to suppress wind-induced vibrations
on slender structures such as overhead transmission power lines. The lines vibrate due to
wind motion and this causes fatigue failure to transmission lines usually at the suspension
clamp where the maximum stress occurs. The fatigue failure in transmission lines can lead to
outage of electricity. There are three types of vibration motions, that is, Aeolian vibrations,
conductor galloping and wake-induced oscillation. This is a preliminary study of the
characteristics of an asymmetric Stockbridge damper in order to establish the efficiency and
reliability of the current dampers. Experiments were conducted on dampers according to IEEE
664 standards at the Vibration Research and Testing Centre (VRTC) at the University of

KwaZulu Natal (UKZN). Experiments were also conducted on a modified vibrating damper.

The mathematical model of a vibrating damper is also presented in this thesis and theoretical

or computational results are validated by experimental results.
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CHAPTER 1
INTRODUCTION

1.1 Statement of the problem

Transmission lines vibrate because of wind motion and this causes a fatigue failure usually at
the suspension clamp where the maximum stress occurs; the fatigue failure can lead to the
shutdown of electricity. In order to protect them from induced forces there is a need to use
a device called a Stockbridge damper to minimize vibration in the transmission lines. The
Stockbridge dampers need to be improved by increasing their life span so that the
transmission lines last longer. Stockbridge damper consists of a messenger cable with two
masses or weights attached to the messenger cables. During its operation the two masses
attached to the end of each cable vibrate, if the Stockbridge fails there is the probability of
not protecting the transmission lines. The study of this research focuses more on

asymmetrical Stockbridge damper’s life which is the key piece in the system.

1.2 Aim and objectives

The purpose of the research is to propose improvements to the structural arrangement of
Stockbridge dampers used on transmission lines, in order to increase the life of these
dampers. Failure of a damper leads to failure of the transmission line, which then leads to
power outage. An increase in the lifespan of Stockbridge dampers will reduce the life-cycle

costs of transmission lines.

The objectives of the research project were to study the characteristics of an asymmetric
Stockbridge damper, in order to determine its efficiency and reliability as a damping device
for overhead transmission lines, and to develop a mathematical model of a vibrating damper.
Experiments were to be conducted on samples of a Stockbridge damper and the results used
to aid the design of an improved Stockbridge damper. The experimental results were to be
used to validate the theoretical or computational mathematical model. Experiments were to

be conducted also on a modified Stockbridge damper.
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1.3 Brief chapter overviews

This section offers an overview and explanation of what each chapter consists of.

Chapter 1 presents the statement of the problem, aim and the objectives of the project

Chapter 2 offers different types of wind motion that affect transmission lines and Stockbridge

dampers. It also presents different type of dampers.

Chapter 3 provides a literature review based on vibration from first principles and also

includes the previous study done by other researchers.

Chapter 4 describes the standard tests and methodologies used to achieve the results of this

research, it also presents the equipment and the material used for this project.

Chapter 5 provides the results in terms of graphs and the discussion of those results.

Chapter 6 presents an improved vibration damper using an analytical model.

Chapter 7 presents conclusions and recommendations for the project.

13



CHAPTER 2

WIND MOTION AND STOCKBRIDGE DAMPERS

2.1 Introduction

This chapter is an overview of the motions of conductors when subjected to wind motion and
of the different types of damper used on transmission lines, including those variants designed

to work on the Stockbridge principle.

2.2 Three different categories of cyclic conductor motion.

e Aeolian vibration
e Conductor galloping

e Wake-induced oscillation

2.2.1 Aeolian vibration

Aeolian vibration causes problems to transmission lines which lead to fatigue failure of the
conductor strands or of the items associated with the support, use, and protection of the
conductor. Aeolian vibration is characterized by having a low amplitude (conductor diameter)
and high frequency (5 to 150 Hz) (Lilien et al., 2013). It is approximately in the range of
3-200 Hz and frequency depends on the size and tensile load of the conductor (Chan, 2006).
Large conductors in low wind correspond to lower frequencies and small ground wires in
moderate winds produce upper frequencies. Aeolian vibration in terms of the wind speed is

caused by the wind velocity that ranges between 1 m/s — 7 m/s.

Vibration frequency is determined using the Strouhal formula: f = S/D, where S is the
Strouhal number (S = 0.18 — 0.22), V is the wind velocity in m/s, and D is the conductor
diameter. The conductor vibration at any point is shown in the form of a beat pattern shown
in Figure 2.1. This type of vibration is dangerous to transmission lines when conductor
tensions are very high, the terrain is smooth, with frequent, low moderate, steady winds and
the spans are long. The safest way to successfully control this vibration in most cases is by

installing dampers and or spacer-dampers. Conductor vibration may lead to the bending or

14



fatigue failure of the conductor strands at the suspension clamps or at the clamps of spacers,

spacer dampers and other devices installed on the conductors.

Ml

Figure 2. 1: Records of vibration at any chosen point on a conductor (Chan, 2006)

2.2.2 Conductor galloping

Conductor galloping is characterized by a low frequency, high amplitude, primarily vertical
conductor motion. It is nearly always produced by moderately strong, steady crosswinds
acting upon an asymmetrically iced conductor surface. Normally ice is deposited on the
windward surface of the conductor; if ice or snow builds up on the conductor it creates an
aerodynamically unstable shape and this can produce large forces and moments on the
conductor. The motion of the conductor due to wind can lead to oscillations in a vertical

direction.

2.2.3 Wake — induced oscillation

The shielding effect of windward subconductors on their leeward counterparts produces
forces; wake induced vibrations only appear in bundle conductors for which some
subconductors are in the wake induced by windward subconductors. One can distinguish four

types of wake induced motions see Figure 2.2:

15



A. SUBSPAN MODE
OR BREATHING

* D. ROLLING
C. HORIZONTAL GALLOPING OR TWISTING
OR SNAKING

Figure 2. 2: Four types of wake —induced vibrations

2.3 Comparison of types of wind motion

Table 2.1 shown presents a comparison of the characteristics of the three types of wind
motion namely Aeolian vibration, conductor galloping and wake-induced vibration

16



Table 2. 1: Comparison of types of cyclic conductor motion

Aeolian vibration

Conductor galloping

Wake — induced

amplitudes (peak-

D, is the conductor

D, is the conductor

Types of overhead All all Limited to lines with
lined affected bundled conductors
Frequency range 3 Hz- 150 Hz 0.08 Hz—3 Hz 0.015Hz-10Hz
Range of vibration 0.01-1D, 5-300 D, 0.5-80 D,

D, is the conductor

Affecting

Conductor motion

conductor self -

damping, use of

dampers, armor rods

natural frequency to
torsional frequency;
sag ratio and

support conditions

peak) diameter diameter diameter
Wind character Steady Steady Steady
Wind velocity 1m/s—-7m/s 7m/s—18 m/s 4m/s—18 m/s
Conductor surface | Bare or uniformly iced Asymmetrical ice Bare, dry
deposit on
conductor
Design Condition Line tension, Ratio of vertical Subconductor

separation, tilt of
bundle,
subconductor
arrangement, sub

span staggering.

Damage

Approx., time
required to severe

damage to develop

3 months to 20 +

years

1 to 48 hours

1 month to 8 +

years

Direct causes of

Metal fatigue due to

High dynamic loads

Conductor clashing,

most affected by

damage

wire strands

hardware,
insulators,

structures

damage cyclic bending accelerated wear in
hardware
Line components Conductor and shield | Conductor, all Suspension

hardware, spacers,
dampers, conductor

strand
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2.4 Vortex shedding from a circular cylinder

When a circular cylinder is positioned in a steady uniform air stream at an adequate velocity,

flow separation occurs on the cylinder’s surface, as shown in Figure 2.3. As the separation is

formed it leads to vortex shedding from the cylinder and the formation of a wake behind the

cylinder. Vortices are shed alternatively from the upper and lower surfaces of the cylinder at

a constant frequency (Kelly, 1993).

T

/

S

T,
.

™

N =

o

{a) {b)

| s
/ N U
I'K_ _./} oy
- ____2'

N
2
]

-

NURY4

Figure 2. 3: (a) circular cylinder in the steady flow; (b) cross section of the cylinder, showing
vortices shed alternatively from each surface of the cylinder resulting in a wake behind the
cylinder and harmonic force acting on the cylinder (Kelly, 1993).

The shedding caused by the vortices produces oscillating streamlines in the wake which, in

turn, leads to an oscillating pressure distribution; an oscillating force acting perpendicularly

or normal to the cylinder is formed due to the oscillating pressure distribution (Kelly, 1993).

This is the same as what happens to transmission lines when they vibrate due to wind speed.

The force is given by

F(t) = Fysinwt

2.1

Where F, is the magnitude of the force and w is the frequency of vortex shedding. These

parameters are dependent upon the fluid properties and the geometry of the cylinder (Kelly,

1993). That is,

FO = FO(V’p'M'D'L)

w = w(V,p;H,D;L)

18
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Where VV = magnitude of the fluid velocity, [L]/[T]
p = the fluid density, [M]/[L]3
u = the dynamic viscosity of fluid, [M]/[L][T]
D = the diameter of the cylinder, [L]
L = the length of the cylinder

The dependent parameters F,, and w are both functions of five independent.

2.5 Types of dampers used to absorb vibration from transmission lines.

To absorb some vibration energy from transmission lines various types of damper are used;
the main function of dampers is to protect power lines from being damaged by vibration
caused by wind motion. The wind speed during the test is set in the range of 1 — 7 m/s, which
is the speed of Aeolian vibration. Different types of damper are presented below in this

section.

2.5.1 Stockbridge damper

The problem of conductor strand failures due to Aeolian vibration was first recognized in 1923
and Stockbridge damper were established by George. H Stockbridge in 1924; after this
modifications were made to improve its operation. The damper consists of two shaped
masses, rigidly attached at the ends of a stranded steel cable, which in turn is rigidly clamped

to the conductor. The first design of the damper is shown in Figure 2.4.

Figure 2. 4: The original type of Stockbridge damper (Chan, 2006)

After the Stockbridge damper was established, Monroe and Templin upgraded it with the

two degrees of freedom damper shown in Figure 2.5 in which both the shape and the moment

19



of inertia of the masses were designed to take advantage of the second vibration mode of a

cantilever beam, within the frequency range of operation of the damper.

Figure 2. 5: Monroe and Templin damper

The Stockbridge damper after its invention was manufactured worldwide, with equal masses
supported by equal lengths of steel stranded cable. In 1968 modification was made to the
basic damper by Claren and Diana. The two halves were made asymmetrical, providing two

different masses with different moments of inertia and different lengths of the messenger

cable as shown in Figure 2.6.

Figure 2. 6: Claren and Diana damper with four accelerometers (4-R Stockbridge-type
Damper)

2.5.2 Haro damper

In 1970, Lauri Haro and Tapan Seppa established a vibration damper based on the Stockbridge
principle, known as the Haro damper shown in Figure 2.7. It consists of three weights and two
clamps for the connection to the conductor; the weights are of varying dimensions and are at

different moment arms on the messenger cable. Each of the two external weights has two
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degree of freedom and the central mass has only one degree of freedom; giving the device
five resonances. It is over a meter in length and not easy to transport and install. Many

became bent and damaged during transportation

- =
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Figure 2. 7: Haro damper.

2.5.3 Torsional Stockbridge-type damper

Some expansions of the Stockbridge-type vibration damper include a symmetrical damper
that, in addition to the flexural resonances, establishes a torsional resistance. This is achieved
by using weights whose center of gravity is offset with respect to the axis of messenger cable.
The most popular are the Australian “Dogbone” damper as shown in figure 2.8 and the

Japanese Aahi torsional damper.

Figure 2. 8: “Dogbone” damper

2.5.4 Bretelle dampers

This is widely used in France and its discovery as a damper device was largely accidental.
Normally it is made from pieces of scrap conductor that are the same size as the line on which
it is used. The Bretelle concept seems to be economically attractive but there are numerous
factors that need to be considered. It is difficult to conduct a definitive investigation of the

design variables because its configuration does not lend itself to indoor laboratory
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investigation. It has a jumper loop connecting two adjacent spans at the suspension points as

shown below in Figure 2.9

e “ja__-':':ﬂ:—_-—_-— a—

e —
E oy =

i e

Figure 2. 9: Bretelle damper profile (Chan, 2006)

2.5.5 Elgra

Elgra is a Swedish damper consisting of a vertical stem having three cast masses loosely fitted
to a vertical shaft. Each mass is separated by an elastomeric washer. This damper seems to
be an interesting study in extrapolation; before a mass can be lifted from its pad, the
acceleration of the damper must not exceed one gram. Tests have revealed that this type of
damper performs well for acceleration of about two grams. When the damper was first
established, transmission lines were smaller in diameter and, vibrated at higher frequencies.
The size of the damper was adjusted accordingly as the conductor diameter was increased.

Figure 2.10 shows Elgra damper

1|/

Figure 2. 10: Elgra damper
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2.5.6 Festoon dampers

Festoon dampers have been used on numerous long spans and they consist of a scrap
conductor like the Bretelle and are relatively inexpensive. Figure 2.11 shows festoon dampers
at suspension points and tension points. The main problems that have been reported with
the use of festoon dampers have occurred at their clamps. In places like Norway and other
cold countries, festoon dampers are preferred to Stockbridge-type dampers on long fjords
because the latter can be damaged by both conductor galloping and Aeolian vibration of

increased severity, during periods of icing

Festoon
B
C
—— —- — T

Figure 2. 11: Festoon dampers. (A) and (B) are festoon dampers for suspension; (C) is a festoon
damper for tension points
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CHAPTER 3

THEORY OF VIBRATION OF MECHANICAL SYSTEMS

3.1 Introduction

This chapter presents the theory of vibration of mechanical systems. Free and forced
vibrations with varying degrees of damping and multi degrees of freedom were considered.

The theory is based on standard text books for example Inman

The spring-mass system was used to derive the equations governing the vibration of a free
structure, undamped and damped; the dashpot was introduced to represent damping. For
forced vibration, both steady and transient states were considered for undamped vibration;
damping was considered also. Thereafter, work carried out on Stockbridge dampers by others

was reviewed.

3.2 Mechanical vibration

Mechanical vibration is taken as the measurement of periodic motion with respect to an
equilibrium point. Vibration is also considered as a repetitive motion of mechanical systems
from machine parts to large structures. Vibrations produced during the earthquake as in the
case of vibrating ground motion are unwanted. Typical examples of vibration familiar to most
are the motion of a guitar string, the quality of ride of an automobile or motorcycle, the
motion of an airplane’s wings and the swaying of a large building due to wind or an

earthquake.

3.3 Analysis of mechanical vibrations

This section introduces the basic terminology used in the study of mechanical vibration, as
well as two important elements found in vibration models. These are the spring element,
which produces a restoring force or moment as a function of the displacement of the mass
element, and the damping element, which produces a restoring force or moment as a

function of the velocity of the mass element (Palm Ill, 2007).

There are many types of vibration but all of them start from analysing the free vibration of a

spring mass system. In terms of vibration we have a vibration known as free vibration.
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The phase angle 6 describes the relative shift in the sinusoidal vibration of the spring-mass

system.

 — 1
e
=
S
= |
&= >
= J - ”[' ¢
y
unstretche
= 1
equilibrivm »f X
position (:_:g_ 2
mg —ks=0 Ry
motion
(a) (b) (c)

Figure 3. 1: Spring mass system (Zill and Cullen, 2005)

Free undamped vibration (spring mass system)

From Figure 3.1 the spring (a) with no mass attached to it is a free spring, spring (b) has the
mass attached to it and will stretch to a point where the mass/weight is in equilibrium to a
force applied by the spring in the opposite direction of motion. By Hooke’s Law, the spring
itself exerts a restoring force F opposite to the direction of elongation and proportional to the
amount of elongation (Zill and Cullen, 2005). Simply stated, F= ks, where k is a constant of
proportionality called the spring constant. After the mass is attached to the spring, it
stretches the spring with an amount s and attains a position of equilibrium at which the
weight W is balanced by the restoring force ks. As shown in the above Figure 3.1 (b) it means
the condition of equilibrium is mg = ks or mg — ks = 0. When the mass is displaced by an
amount of x from its equilibrium position, the restoring force of the spring is then k(x + s).
It is assumed that there are no retarding forces acting on the system and the mass is assumed
to vibrate free of other external forces (Zill and Cullen, 2005). By using Newton’s second law
for linear motion the sum of all the forces is equal to the product of an acceleration and the

mass being accelerated

im=—k(s+x)+mg 3.1
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xm = —ks —kx +mg 3.2

But mg = ks it means they cancel each other in the equation

im = —kx 3.3

im+kx=0 3.4

i+Ex=0 35
m

Most of the equations of motion of many oscillatory systems have a solution of the form

x(t) = Asin( w,t + 0) 3.6

Equation 3.6 is a sine function in its most general form, where the constant A is the amplitude,
or maximum value of the function; w,,, the angular frequency, determines the interval in
time during which the function repeats itself, and 0, called the phase, determines the
initial value of the sine function. The frequency is measured in rad/sec and the phase
angle is measured in radians. The related frequency is cycles per unit time and is often
denoted by w . The two frequencies are related by w = 2rf (Palm III, 2007). The first

derivative of equation 3.6 gives the velocity and the second derivative gives an

acceleration
x(t) = w,A cos(wy,t + 0) 3.7
%(t) = —w2Asin(w, t + 0) 3.8

Substitution of equations 3.6 and 3.8 into 3.4 yields

—mw?2A sin(w, t + ) +kAsin(w, t +8) =0 3.9
From equation 3.9 w? = %01’ W, = \/% therefore equation 3.5 becomes

¥+ wix =0 3.10
Alternative form of x(t) = Asin(w,t + 8) is
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x(t) = C;cosw, t + C, sinw, t 3.11

where x(t) is the displacement of a mass (Palm Ill, 2007). The radian frequency is w,, and the
period T = 2m/w,. Equation 3.11 can be proved by using 3.6 the trigonometry identity as

follows

o
P

|1

yAa
o B

.,‘,f'_i_l_ F
o +eg

Figure 3. 2: A relationship between C; > 0,C, > 0 and phase angle 8 = ¢ (Zill and Cullen,
2005).

x(t) = Asin(wt + 8) = Asinf coswt + Acos 8 sin wt 3.12
sin@zﬂ,c056=2 and tanezﬂ. 3.13
A A C,

A= /Clz + CZZ and 6 is defined as the phase angle. It follows from Figure 3.2 that 0 is

defined by

. c c
sin @ = —— ==, cosf =—=2—==2

/612+622

Then 3.12 becomes

C1 Cy . .
x(H) =A — Coswp t + A — sinwt = Cicosw,t+ Cysinw,t 3.14
The x (t) is the displacement of the mass.

There is an alternative way to find the constant A and 6. If the mass in the spring shown in
Figure 3.1 is displaced to a position of x, at time t = 0, the potential energy in the spring will
result in motion (Inman, 2001). Also if the mass is given initial velocity of V/; at t = 0, motion

will result. These are called initial conditions and when substituted into the solution 3.6 yield
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x, = x(0) = Asin(w, 0+ 0) = Asiné 3.15

vy = x(0) = w,Acos(w, 0 +6) = w,Acos 3.16

Combining the square of each equation,

x,% = (Asin 6)? 3.17
2
(sin6)? = =& 3.18
vy% = w2A? (cos 6)? 3.19
2
(cos6)? = (wv:A)Z 3.20

Solving equations 3.18 and 3.20 simultaneously yields

Uoz
wn(A)?2

2
(cos0)? + (sin§)? = % + but (cos 8)? + (sin8)? =1 3.21

2, 2 2
1= w”z"% Make A the subject of the formula
w%x02+v02
A="——— 3.22
w
0 = tan~1(22%9) 3.23
Vo

The solution of the equation of motion for the spring-mass system is called a free response of
the system, because no external force to the system is applied at t = 0 (Inman, 2001) and is

given by

,w,zlx,,2+v 2
x(t) = Y=———sin [ w,t + tan~ (2220)] 3.24
0

n

With regard to the derived equations 3.24, Figure 3.3 shows harmonic motion and how the

initial conditions determine the response of such a system.
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Figure 3. 3: Summary of the description of Simple Harmonic Motion (Inman, 2001)

3.3.1 Free damped motion (spring mass system)

4
|—> x(?) .
k
fk - mg

= Friction-free £, l

surface
T N

Figure 3. 4: Schematic of a single degree of freedom system with viscous damping indicated
as dashpot (Inman, 2001).

From the free body diagram shown in Figure 3.4, the damping force, denoted by f, has the
form

fe = cx(t) 3.25
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where c is a constant of proportionality related to the oil viscosity. The constant c, called the
damping coefficient, has units of N s/m, or kg/s. The damping force is proportional to the
velocity but it acts in the opposite direction of mass motion (Brownjohn, 2005, Inman, 2001).
By using Hook’s law, the spring itself exerts a force, denoted by f;, which is opposite to the
direction of displacement or elongation and proportional to the elongation (Zill and Cullen,

2005, Inman, 2001).

fk = kx 3.26

The theory of simple harmonic motion is unrealistic, since the motion described by equation
3.1 assumes that there are no retarding forces acting on the moving mass unless the object is
in a perfect vacuum but in real life there are retarding forces. By using Newton’s law, taking

all the forces acting horizontally on the free body diagram shown on figure 2.4

mi = —cx — kx 3.27
Assume the solution

x(t) = Aest 3.28

x(t) = ASest 3.29

i(t) = AS?est 3.30

Substituting 3.28, 3.29 and 3.30 into 3.27
mAS?est + cASest + kAeSt = 0 3.31

Equation 3.31 forms the characteristic equation:

mS?+cS+k=0 3.32
— Vvh2—
Rootsare §;, = W 3.33
- \VC2 =
Sl,Z = —Ci Zc;n Amk 334

To examine the three cases in detail, we begin with critical damping Cc. In this case the
discriminant equals to zero

C?—4mk =0 3.35
C? = 4mk 3.36
2

Ly 3.37

4m
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3.38

It is convenient to express damping in non — dimensional ratio, called damping ratio as

C
Z—C—C 3.39
C lC,
—:—:(

3.40
. —C+
Equation 3.34 becomes S;, —

2m 2m
2 2
Cc 4mk -C + C k
S CEEET
2m 2m 4m?2 2m 2m m

Therefore equation 3.41 becomes

S12=—qw, + w3 — w3 3.42
S12 = wn (—¢ /1) 3.43
The general solution is given by:
x(t) = Ae’tt + Btestt 3.44
Or
x(t) = e*1*(4 + Bt) 3.45
Case 1: c?2 > 4mk. In this case the system is said to be overdamped, see figure 3.5
Displacement {(mm)
0.4 1 xp=03, =0
_1 2. Xo :0, Vo=
07 1 3. x5=—03, v5=0
2
0.0
—-0.2 3
—-04 T T T T T —— Time (s)
0 1 2 3 4 5 6

Figure 3.5: Response of an overdamped system { > 1, for two values of the initial
displacement and zero initial velocity and one case with x, = 0 and v, = 1 (Inman, 2001)
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Case 2: ¢2 = 4mk. In this case the system is said to be critically damped, see figure 3.6

Displacement (mm)

0.6 T 1 x= 0.4 mm, vy =+ 1mm/s
_ 2. xp = 04mm,vy= 0 mm/s

& 3. xg = 0.4 mm, vy = —1mm/s

.""\,1
\.

K4

04 F

0.2

-
e
",

0 T e~ == — F — — ~1

_o0d 05 1 15 2 25 3 35

Figure 3. 6: Response of a critically damped system for three different initial velocities. The
response properties are k = 225 N/m, m = 100 kg and { = 1 (Inman, 2001).

Case 3: c? < 4mk. In this case the system is said to be underdamped, see figure 3.7

Displacement (mm)

X U U__:\;,_:_,,"’- Time (s)

Figure 3. 7: Response of an underdamped system 0 < { < 1 (Inman, 2001).

3.3.2 Forced vibrations (steady state and transient state)

Ikx

m i x i £(£) mi F(£) = P sin 0t

(a) (b)

Figure 3. 8 Forced vibration steady state
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Suppose we include an external force f(t) acting on a vibrating mass on a spring in figure 3.8.
For example f(t) represents a driving force causing an oscillatory vertical motion of the
spring. Sketch (a) is a free body diagram representing all the forces acting on the mass. The
driving force f(t) is chosen to be of the form P sin 2t where P represents the magnitude, or
maximum amplitude, of the applied force and {2 denotes the frequency of the applied force
(Inman, 2001). The frequency {2 is also called the input frequency, or driving frequency, or
forcing frequency and has units of rad/s. Using Newton’s second law gives the differential

equation of driven or forced motion:

mx = —kx + f(t) 3.46
mxX + kx = Psin (2t 3.47
X +%x = %sin[)t 3.48
But — =g 3.49
% +2x= qsin0t 3.50
X +w2x = gsinflt 3.51
Let us assume solution to be
x = C3sinflt 3.52
x = C3cos Nt 3.53
¥ = —C30?%sin Nt 3.54
Substitute 3.52 and 3.54 into 3.51
—C30?%sin 0t + w2C; sint = g sin Nt 3.55
—C30% + wiC; =q 3.56
—C3(%2 —w2)=q 3.57
C3(wi —0%) =¢q 3.58
Cy = m 3.59
Substitute 3.59 into 3.52 x(t) = (w%qu)sin ot 3.60

Forced vibration transient state is now shown, consider the equation 3.51

X +wix = qsinft
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The general solution is given by

q

x(t) = C1 cos w,t + C, sinw, t + msin Nt 3.61
Using the initial conditions
x(t) = —C; wysin w,t + Cow, cosw, t + (wzq—fﬂz)cos Nt 3.62
x(0) = C; + (0) + (0) 3.63
X(O) = Cl = xo 3.64
. q
x(0)=(0)+ Cw, + m 3.65
% (0) = v, 3.66
q
Czwn = Vg — m 3.67
— % ___ 92
it prrey 3.68
v w2 — _
szo(n—”z)q“ 3.69
“n(wh-0?)
Therefore the general equation 3.62 becomes
_ vo(w%—ﬂz)—q!)) . q .
x(t) = xocos wt + (—wn(w%—nz) sin wt + (o) Sin 0t 3.70

3.3.3 Forced damped vibration

fex ’/T ¢ kx cx

| L

@ O )

Figure 3. 9: Forced vibration viscous damped
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Figure 3.9 (b) shows the free body diagram with an additional force called the damping force
denoted by f. = cx and u(t) = PsinQt represents the driving force causing an oscillatory
vertical motion of the spring. Using Newton’s second law gives the differential equation of

driven or forced motion:

mx = —kx —cx + f(t) 3.71
Butc = 2{w,m
mx + kx + cx = Psinflt 3.72
mx + 2{w,mx + kx = Psinlt 3.73
¥+ 2{wyx + w2x = qsin Nt 3.74
Assume the solution to be
x(t) = Asindt 3.75
x(t) = A cos Nt 3.76
i(t) = —AN?sin Nt 3.77

Substitute 3.75, 3.76 and 3.77 into equation 3.74

—AN? sin Nt + 2{w, AR cos Nt + w2 Asinflt = qsin 0t 3.78

—A0? sin Nt + 2{w,A cos Ot + wz Asinfdt — gsin2t =0 3.79

But —A0?sin0t + w2 Asindt — qsint =0 3.80
—AN?+wiA-q=0 3.81

From 3.78 2(w,A2cos Nt =0 3.82
20w 0A = 0 3.83
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Therefore 3.78 becomes

Therefore

3.3.4 Two degrees of freedom

x(t) = (

—AQ? + w2 A—q+ 2{w,A =0 3.84
- (02+02)+2{w, 2 3.85

q .
mSlnﬂt 3.86

This is a very important aspect of this study that deals with transmission line represented

by m, and the Stockbridge Damper represented by m, .The mass m, is called mass vibration

absorber because it absorbs energy of vibration from mass m,, having forced vibration (Seto,

1964). In other words it cuts down as much as possible the amplitude of the driving force

causing an oscillatory vertical motion of transmission line. The response of a multi-degree of

freedom system due to harmonic excitation is the sum of the homogeneous solution and the

particular solution (Kelly, 1993). The support of the mass-spring system is given a forced

sinusoidal displacement

(Seto, 1964).

x(t) = F, cos wt. Find the steady state vibration of the masses

Fy cos wt

I ky

X1
k;
1
X2 (a)

Fy cos wt

l

mq ¥y

my

T

m,

(b)

kqx;y
ky(xy — x3)
ky(xy — x3)

Figure 3. 10: (a) Simple two-degree of freedom model consisting of two masses connected in
series by two springs. (b) Free body diagram of each mass in the system.
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my¥, = —kyx; — ky(x; — x3) + Fy cos wt 3.87

my ¥, + kyx; + k,(x; — x,) = Fycos wt 3.88
myXq + (kq + kz)xq — kx5 = Fy cos wt 3.89
myi, = ko (X, — x3) 3.90
myxy — kyxq + kyx, =0 3.91

Assume the solution

x,(t) = A; cos wt 3.92
x%,(t) = —Ajwsinwt 3.93
%,(t) = —A;w? cos wt 3.94
x,(t) = A, cos wt 3.95
X,(t) = —A,w sin wt 3.96
¥, (t) = —A,w? cos wt 3.97

Using books by (Ayres, 1962, Seto, 1964, Stroud and Booth, 2001)

0 ] [xl] n (ky + k2) —kz] [ ] FO cos wt] 3.98
my| | X —k, .
Alw ] (k1 +k3) _kz] FO
mz][ Azw -k, [ [ 3.99
- 2
_ml(l) + (kl + kz) _kz ] [Al] FO
= 3.100
- _kZ _mz(l)z + k2 Az [ 0 ]
-myw? +k k
Adjoi t:[ 2 2 2 ] 3101
join k, —myw? + (ky + ky)
Determinant = [-m;w? + (ky + k)] [-maw? + ky] — [k, ][—k,] 3.102
A1 _ adjoint[lg’]
AZ] " deteminant 3.103
[_mzwz + kZ kz ] [FO
Al] = ko —myw? + (ky + k)
Azl [Fmyw? + (kg + k)] [-maw? + k] — [—k,][—k,]
Therefore
_ (—m2w2+kz)F0
Al - [_m1w2+(k1+k2)] [_m2w2+k2]—[—k2][—k2] 3.104
4z = — 3.105

[-miw?+(ky+kp)] [-maw?+kz|—[-k2][—k2]

Therefore the displacement for x;and x, are
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(—mz w? +k2)F()

x1(t) = [-mw?+(ky+k2)| [-maw?+ky|—[—k][—k2] cos wt 3.106

k2Fg

X (1) = [-mqw?+(ky+k2)| [-maw?+ky|—[—k][—k2] cos wt 3.107

3.3.5 Previous work done by other researchers on the Stockbridge Dampers

Barry et al. (2015) presented a nonlinear model dealing with the nonlinearity of the dynamics
of the Stockbridge damper. The nonlinearity was from damping coefficient and geometric
stretching of the messenger cable. The Stockbridge damper was modelled as two cantilevered
beams with tip masses. Barry et al. (2015) used Hamilton’s principle to derive the equation of
motion and boundary conditions. Explicit expressions were presented for the frequency
equation, modes shapes, nonlinear frequency, and modulation equations. The experimental
setup and procedure were performed according to IEEE guide. The Stockbridge damper was
mounted on an electrodynamic shaker (B & K 4802). Experiments were conducted to measure
the damper resonant frequencies and to validate the proposed analytical model. The
proposed model can be used on asymmetric and symmetric Stockbridge dampers. Numerical
simulation showed that both the nonlinear frequency and vibration amplitude were
significantly affected by the counterweight mass and rotary inertia. It was also noticed that
the damping coefficient is an important factor in determining the influence of the geometric
stretching of the messenger cable. It was discovered that the model can be used by design

engineers to predict the dynamic behaviour of Stockbridge damper.

Kalombo et al. (2012) and Badibanga (2012) developed an effective mathematical model. It
was describing the bending stress of a symmetrical Stockbridge damper’s messenger cable
close to the clamped end. During its operation, the damper’s messenger cable vibrates and
bending stress is developed. This can affect the performance of the Stockbridge damper. The
aim of the study was to analyse the developed mathematical model describing the bending
stress of the Stockbridge damper’s messenger cable near the clamped end. Data from

experiments agreed with that from theory (mathematical model) at resonance frequency.
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Results show that the model can be used to predict the stress at resonance frequency

(Kalombo et al., 2012, Badibanga, 2012) .

Standard Stockbridge dampers are designed so that their mechanical impedance matches as
closely as possible the optimum damper impedance determined for the cable to be protected
(Markiewicz, 1995). Since the optimum impedance is calculated assuming that the cable is
clamped at its extremity, the optimally tuned standard dampers will work efficiently only
when they are mounted near suspension clamps. In some spans, however, conductors are
connected to the tower by means of special tension equipment which may affect the
efficiency of the mounted standard damper. Analysis were done to show that the optimum
damper impedance required for such spans (called Dead-end spans) differs significantly from
the optimum impedance of the standard damper. Markiewicz (1995) presented a method and
computational model for the evaluation of the optimum dynamic characteristics of
Stockbridge dampers to be mounted near tension insulator assembilies. It also shows how the

efficiency of a standard damper used in such spans may be improved by its proper location.

Experimental measurement campaign was conducted with a modified dynamometric
Stockbridge damper clamped to a laboratory test span (Diana et al., 2003). The goal was to
get the force and the torque exerted between the cable and the damper on a span. Three
tests were done to get the needed parameters: cable self-damping tests, tests with the
Stockbridge damper clamped on the shaker, and tests on the span equipped with the

dynamometric damper (Diana et al., 2003).

All the design parameters that influenced the Stockbridge damper model were undertaken
using the design sensitivity analysis of a Stockbridge damper (Kim, 2017). Using partial
derivatives of the functions of two eigenvalues with respect to each design parameter the
design sensitivity equations were formulated; the contribution of each variable was
determined according to the partial derivatives with respect to the concerned variable. The
possibility of the sensitivity analysis result was validated using a simple model of a Stockbridge
damper and modifying the value of each parameter by up to 30 % from the baseline (Kim,
2017). Based on the simulation results the design guidelines for a Stockbridge damper were

then established
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Vaja et al. (2018) developed an analytical model of an unusual vibration damper with an
increased number of resonant frequencies of the damper. The 3D finite element was also
developed to validate the result of an analytical model. Experiments were not conducted
(Vaja et al., 2018). This research focuses on doing experiments and the development of an
analytical model of an asymmetric damper which was not done by the other researchers.

Experiment is also conducted in changing the geometry of the counterweight of the damper.
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CHAPTER 4

MATERIAL AND METHOD

4.1 Equipment

This chapter describes the equipment used and the procedure followed in conducting the
tests carried out at the vibration research and testing facility at the University of KwaZulu-
Natal. The vibration system is composed of important components shown in Figure 4.1. It

consist of:

e An electro-dynamic shaker (TIRA Model, Type TV 56263/LS-340) for providing an
input force to the damper.

e An amplifier to control the voltage or current to the shaker.

e A control system (known as a computer controlled data acquisition system)

e A compressor for load protection

e Ten (10) asymmetric Stockbridge dampers of various sizes.

Figure 4. 1: Components of the vibration test system on the shaker base. (a) controller.
(b) Amplifier. (c) Shaker, asymmetric damper and accelerometers. (d) Compressor.

4.2 Experimental setup

The procedure used for the force response test is presented in figure 4.3 and experimental

setup made with the following units:
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e Mount the jig on the shaker

e Mount two transducers on each support of the jig

e Mount the Damper in an upright position in the middle of the rigid bar of the jig

e Stick one accelerometer on the shaker base for control

e Stick two accelerometers using glue on each damper’s weights as shown in figure 4.2

e Make a sweep at constant velocity of 0.1 m/s in the frequency range between
5 —300 Hz (to cover a broad spectrum of frequencies) for 30 minutes.

e Repeat the experiment for each damper following the same procedure.

e 30 tests of Stockbridge Dampers will be tested and statistical methods will be used.

e After collecting the data obtain the graph of amplitude vs frequency representing the

characteristic of asymmetrical Stockbridge Damper

Figure 4. 2: Asymmetric Stockbridge damper with four accelerometers
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No.| Transducer | Sensitivity |Location
1| 6959 100 mv/g |lig base
2| 55811 21.3 mV/N |lig
3| 55810 [21.64 mV/N|lig
4, 6524 98.3 mv/g [Damper(s)
5 6966 [103.6 mv/g|Damper(s)
6| 6730 93.6 mv/g [Damper(L)
7| 6964 99.7 mv/g |Damper(L)

Figure 4. 3: Experimental setup used in the current study
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1 Introduction

This chapter presents the results of the thirty tests conducted on three different sets of
asymmetrical dampers and the analyses of the results obtained. The resonant frequencies

and amplitudes were presented for the various configurations of asymmetrical damper.
The following three sets of dampers were tested:

e Damper (182 025-301) @31 — 39 mm :4 of them set A

e Damper (182 025-401) @39 —47mm :3 of them set B

e Damper (182 025-101) @7 — 15 mm :3 of them set C

e In total the number of dampers is ten (10) and each damper to be tested three times

which makes thirty tests to be done for statistical consideration

5.2 Experimental results for set A Stockbridge Damper no. 1 (182 025-301)
@31 -39 mm

The following results are related to the set A damper 1 (182 025-301) @31 — 39 mm. There
were 4 of them as mentioned before; however in this section only one sample shown tested

in triplicate. The remaining results of set A are attached in appendix A

5.2.1 Discussions for damper 1 (182 025-301) #31 —39 mm of set A

5.2.1.1 There are effectively 4 masses on the Stockbridge damper therefore the damper is a
four degrees of freedom as shown in Figure 5.1;

5.2.1.2 From the big mass, it is observed that it vibrates at 8 Hz with an amplitude of 0.6 G
and 1 G as shown in Figure 5.2;

5.2.1.3 From the big mass, it is also observed to vibrate at 50 Hz with an amplitude of 1.9 G

and 5 G as shown in Figure 5.2;
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5.2.1.4 Each mass has a two degrees of freedom ( inner and outer part) as shown in
Figure 5.1;

5.2.1.5 At resonance, or maximum peak it has a frequency of 8 Hz and 50 Hz corresponding
to the bigger mass as shown in Figure 5.2;

5.2.1.6 Figure 5.5 and 5.6 show the first and second modes of the bigger mass during
operation;

5.2.1.7 From the small mass, it is observed that it vibrates at 22 Hz with an amplitude of
1.9 G and 4 G (log) as shown is Figure 5.3;

5.2.1.8 From the same small mass it also vibrates at 70 Hz with an amplitude of 4 G and
10 G (log) as shown in Figure 5.3;

5.2.1.9 At resonance, or maximum peak it has 22 Hz, 70 Hz corresponding to the small mass;

5.2.1.10 Figure 5.7 and 5.8 show the first and second modes of the small mass during

operation;

5.2.1.11 The Stockbridge damper has resonance frequencies at 8 Hz, 22 Hz, 50 Hz and 70 Hz;

5.2.1.12 The Stockbridge damper is a mass vibration absorber;

5.2.1.13 At any other frequencies except 8 Hz, 22 Hz, 50 Hz and 70 Hz the damper is not a

mass absorber;

5.2.1.14 Statistics: 30 experiments to increase significant or confidence level of results or

certainty, normal distribution.
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DAMPER 1 (182 025-301) TEST 2
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Figure 5. 3: The graph of acceleration amplitude G (log) vs Hz (log)

DAMPER 1 (182 025-301) TEST 3
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1G (log)

Outer part m, Inner part m,
First mode at SN

0.6 G (log)

Figure 5. 5: Bigger mass of the Stockbridge damper (first mode at 8 Hz)

5 G (log)

Inner part m,
A/second mode at 50 Hz

Outer part m,

1.9 G (log)

Figure 5. 6: Bigger mass of the Stockbridge damper (second mode at 50 Hz)
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Smaller mass

4 G (log)

Outer part m, Inner part m,
First mode at 22I—|z\A

1.9 G (log)

Figure 5. 7: Smaller mass of the Stockbridge damper (first mode at 22 Hz)

10 G (log)

Outer part m, Inner part m,
A/second mode at 70 Hz

4 G (log)

Figure 5. 8: Smaller mass of the Stockbridge damper (second mode at 70 Hz)
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5.3 Experimental results for set B Stockbridge Damper no. 5 (182 025-401) #39 —47mm

The following results are related to the set B of damper no.5 (182 025-401). There were 3 of
them as mentioned before, however in this section only one sample of damper (182 025-401)

tested in triplicate. The remaining results of set B are attached in appendix B

5.3.1 Discussions for set B damper 5 (182 025-401) @39 — 47mm

5.3.1.1 Everything is the same for damper 5 (182 025-401) #39 — 47 mm set B if it is compared
to damper 1 (182 025-301) @31 -39 mm set A discussed previously in terms of results.
The only thing that differs is the frequency, the amplitude for the first mode and
second mode of the bigger mass and the small mass.

5.3.1.2 From the big mass, it is observed that it vibrates at 6.2 Hz with an amplitude of 0.5 G
and 1.2 G (log) as shown in Figure 5.9;

5.3.1.3 From the big mass, it is also observed to vibrate at 26 Hz with an amplitude of 1 G and
4 G (log) in Figure 5.9;

5.3.1.4 Table 5.1 presents the first and the second modes of the bigger mass;

5.3.1.5 From the small mass, it is observed that it vibrates at 14 Hz with an amplitude of 1 G
and 2.8 G (log) as shown is Figure 5.10;

5.3.1.6 From the same small mass it also vibrates at 52 Hz with an amplitude of 1.8 G and
12 G (log) as shown in Figure 5.10;

5.3.1.7 Table 5.2 presents the first and the second modes of the smaller mass;

5.3.1.8 The Stockbridge damper has resonance frequencies at 6.2 Hz, 26 Hz, 14 Hz and 52 Hz;

5.3.1.9 At any other frequencies except 6.2 Hz, 14 Hz, 26Hz and 52 Hz the damper is not a

mass absorber.
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Figure 5. 10: The graph of acceleration amplitude G (log) vs Hz (log)



DAMPER 5 (182 025-401) TEST 3
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Figure 5. 11: The graph of acceleration amplitude G (log) vs Hz (log)

Table 5.1: Represents the first and second modes of the bigger mass of damper 5
(182 025-401) 39 — 47mm.

Bigger mass first mode

frequency 6.2 Hz (log)

Amplitude 0.5Gand1.2G
(log)

Bigger mass second mode

frequency 26 Hz (log)

amplitude 1Gand 4G (log)
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Table 5.2: Represents the first and second modes of the smaller mass of damper 5
(182 025-401) @39 — 47mm.

Smaller mass first mode

frequency 14 Hz (log)

Amplitude | 1 Gand 2.8 G (log)

Smaller mass second mode

frequency 52 Hz (log)

amplitude | 1.8 Gand 12 G (log)

5.4 Experimental results for set C Stockbridge Damper no. 8 Damper (182 025-101) @7

—15mm

The following results are related to the set C of damper 10 (182 025-101). There were 3 of
them as mentioned before, however in this section only one sample of damper (182 025-101)

tested in triplicate. The remaining are attached in appendix C

5.4.1 Discussions for set C damper 8 (182 025-101) @7 — 15 mm

5.4.1.1 Everything is the same for damper no 8 (182 025-101) @7 — 15 mm set C if it is
compared to sets A and B discussed previously in terms of results. The only thing that
differs is the frequency, the amplitude for the first mode and second mode of the
bigger mass and the small mass.

5.4.1.2 From the big mass, it is observed that it vibrates at 15 Hz with an amplitude of 1.1 G
and 2 G (log) as shown in Figure 5.12

5.4.1.3 From the big mass, it is also observed to vibrate at 70 Hz with an amplitude of 3 G
and 10 G (log) in Figure 5.12

5.4.1.4 Table 5.3 presents the first and the second modes of the bigger mass;

5.4.1.5 From the small mass, it is observed that it vibrates at 30 Hz with an amplitude of

2.4 G and 4 G (log) as shown is Figure 5.13;
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5.4.1.6 From the same small mass it also vibrates at 190 Hz with an amplitude of 7 G and
40 G (log) as shown in Figure 5.13;

5.4.1.7 Table 5.4 presents the first and the second modes of the smaller mass;

5.4.1.8 The Stockbridge damper has resonance frequencies at 15 Hz, 30 Hz, 70 Hz and 190 Hz;

5.4.1.9 At any other frequencies except 15 Hz, 30 Hz, 70 Hz and 190 Hz the damper is not a

mass absorber
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Figure 5. 12: The graph of acceleration amplitude G (log) vs Hz (log)
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DAMPER 8 (182 025-101) @7 — 15 mm
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Figure 5. 13: The graph of acceleration amplitude G (log) vs Hz (log)
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Figure 5. 14: The graph of acceleration amplitude G (log) vs Hz (log)
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Table 5.3: Represents the first and second modes of the bigger mass of damper 8
(182 025-101) @7 — 15 mm.

Bigger mass first mode

frequency 15 Hz (log)

Amplitude | 1.1 Gand 2 G (log)

Bigger mass second mode

frequency 70 Hz (log)

amplitude | 3 Gand 10 G (log)

Table 5.4: Represents the first and second modes of the smaller mass of damper 8
(182 025-101) §7 — 15 mm.

Smaller mass first mode

frequency 30 Hz (log)

Amplitude | 2.4 Gand 4G (log)

Smaller mass second mode

frequency 190 Hz (log)

amplitude | 7 Gand 40 G (log)

5.5 Additional experiments.

5.5.1 Introduction

Another set of experiments was conducted with two accelerometers on the inner part of each
mass of the Stockbridge damper as shown in Figure 5.15. This was aiming to check if there is
rotational motion on each mass of the Stockbridge damper during its operation. Three tests
were conducted for each Stockbridge (182 025-301) and (182 025-401). The remaining results
are attached in appendix D. The experimental procedure has not changed the only change is
that each mass of the damper has two accelerometers on the inner part of the smaller and

bigger mass.
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Figure 5. 15: The asymmetric Stockbridge damper with two accelerometers on the inner part
of each mass.

5.5.2 Discussion for damper (182 025-301) and (182 025-401)

On Figure 5.16 and 5.17 the graphs of the inner accelerometers are moving together showing
that there is no rotational motion. This is to confirm that there was no rotation of the dampers
about the messenger wire and only up and down vertical motion of the dampers due to the
shaker applied force were observed and only vertical motion will be necessary for the

mathematical models, thereby ignoring rotation.
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5.6 Introduction

The number of resonant frequencies produced by the Stockbrigde damper are very significant
and they characterize the effectiveness of it. A set of experiments was conducted by adding
a mass on each one side of the inner part of the damper as shown in Figure 5.18. The first
experiment was conducted by adding a mass of 57.5 g and 100 g on each side of the inner

part. The second experiment was done by doubling the masses.

Added mass of 115 g

Figure 5. 18: The asymmetric Stockbridge damper with added masses on each side inner part
of each mass.

5.6.1 Discussion for damper (182 025-401)

The two graphs on Figure 5.19 and 5.20 are the results of the experiment conducted when
the inner part of the asymmetric Stockbrigde damper is changed by adding masses as shown
in Figure 18. This shows that the damper is a six degree of freedom and has six resonant

frequencies
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CHAPTER 6

MODELLING AND DESIGN OF A NEW STOCKBRIDGE DAMPER

6.1 Introduction

The governing equations for the vibrating system represented by a half model of a vibration

damper are presented. The purpose is to present theory for the design of Stockbridge

dampers configured for better efficiency. The equations are overwhelming. An example case

was presented for a two-degree-of-freedom modified damper to determine the frequencies

and amplitudes of vibration. Material properties were assumed for a case, to obtain the

frequencies and amplitudes of vibration for the damper.

6.2 Analytical model

MESSENGER CABLE

COUNTER WEIGHT

Figure 6. 1: Vibration damper (Vaja et al., 2018)

The mathematical model of the complete vibration damper will be large. The computation is

simplified by looking at a half model of the vibration damper as shown in figure 6.2 (Vaja et

al., 2018). Three coordinate systems (0,0, and O3) are used. The model is treated as a

three cantilever system each cantilever having a concentrated load at its end. The first
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coordinate system 0O, is at the clamp of the damper with a mass M;at the end of the
messenger cable. The second coordinate is on the right side of mass M;and has a mass M, at
its end. The third coordinate is on the left side of M; with a mass M;. The mass M; will have
rotational motion during its operation while M, and M5 are regarded to be concentrated
masses acting at the ends of each beam. The masses M, and M5 are equal in terms of mass
and similar in shape. The vibration displacement along the j coordinate is given as Y3, Y, and

Y5 respectively in the first, second, and third coordinate system.

Figure 6. 2: Diagram of the half model of vibration damper (Vaja et al., 2018)

There are various parameters that need to be considered:

e Potential energy

e Kinetic energy

e Deflection of the beam

e Slope on the beam

e Bending moment of the beam
e Shear force acting in the beam

e Force per unit length
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The following equations take all these parameters into consideration. The strain energy is

considered as

L M2dx
U= fO 2EI (6.1)
But the bending moment
M = EIY! (6.2)
Substitute equation 6.2 into 6.1
_ (L (EIY"")? dx
U= fo 2EI (6.3)
U=2EI[‘Y" dx (6.4)
= X .

Equation 6.4 becomes the potential energy equation of the system because the beam after

being strained has the strain energy converted to potential energy (V)
v=2EI["y"? dx (6.5)
2 0 :

The kinetic and potential energy of the system are provided by equations 6.6 and 6.7
respectively. The derivation of the equation, the free body diagram, the resulting equations

are adapted from (Vaja et al., 2018) and are conveniently repeated as follows:

T=2mf" Vi’ Cxpt) dx + . MY, (L, t) + JY) (Ly, ©) + Lo, [ 07 Gt d 4

% szzz(lq: t) + % ms fOL3 Y32 (x3,t) dx + % M3Y32(L3, t) (6.6)
V=2EL (MY, t) dx +2EL [2Y"2(xp,t) dx +=El5 [*Y"2 (x5, t) dx (6.7)
- 2 1 0 1 2 2 0 2 2 3 0 3 *

The highpoints in the above equations represent differentiation with respect to time which is
represented by dots, and differentiation with respectto x. E is Young’s modulus of elasticity,
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I;, I, and I5 are the second moments of area of the messenger cables and beams respectively.
J is the rotational moment of inertia of the mass M;, L, is the length, m, is the mass per unit
length of the cable. L,, L3 are the lengths and m,, m5 are the mass per unit length of the
beams respectively. The rate of change of the shear force at any point on the axis of the beam
is equal to the negative of the intensity of the distributed load at any point (Gere and
Timoshenko, 1997). Using Hamilton’s principle, Lagrange equations and Newton’s second

Laws, the equations of motions of the system are obtained as

ELYY +mY; =0 (6.8)
ELYY + m,Y, =0 (6.9)
ELY) + my¥; =0 (6.10)

For harmonic motion the system shows the following equations as given below

Y, (x4, t) = F(x;)e®t (6.11)
Y,(x,, t) = G(x,)e®t (6.12)
Y3(.X3, t) = H(X3)eiwt (613)

The natural frequency is represented by w and the mode shapes at these frequencies is

given as

F(x,) = a, sin B1x; + a, cos B1x; + az sinh B;x; + a, cosh Bx; (6.14)
G(x;) = assin Byx, + a4 cos Byx, + a; sinh Byx, + ag cosh Byx, (6.15)
H(x3) = aqsin f3x3 + a;( cos B3x3 + a,; sinh B3x5 + a,, cosh f3x3 (6.16)

The equations 6.14, 6.15 and 6.16 into equation 6.11, 6.12 and 6.13 respectively give:
Y, (x1,t) = (ay sin Byx; + a, cos B1x; + as sinh f;x; + a, cosh f;x;) et (6.17)

Y,(x,,t) = (as sin f,x, + ag cos f,x, + a, sinh B,x, + ag cosh B,x,)e'®t (6.18)
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Y3 (x3,t) = (aqsin f3x3 + a;q cos B3x3 + ayq sinh B3x3 + a;, cosh fzx3)e’t  (6.19)

So that:

Y] (x1,t) = (a, cos Byx; — a, sin B;x; + as cosh B;x; + a, sinh Byx;)B,e't (6.20)

Y, (x5, t) = (as cos Brx, — ag Sin X, + a; cosh f,x, + ag sinh Brx,) f,et (6.21)

Y3 (x3,t) = (agcos f3x3 — ayq sin f3x3 + aq; cosh f3x3 + ay, sinh fax3)fze®t (6.22)
Y{'(x;,t) = (—ay sin B1x; — a, cos Byx; + as sinh B,x; + a, cosh B;x;)fe'wt (6.23)
Y, (x,,t) = (—as sin f,x, — ag cos Box, + a, sinh Byx, + ag cosh Brx,) et (6.24)
Y3'(x3,t) = (—ag sin B,x3 — ayq cos f,X3 + ayq sinh fox3 + ay, cosh Box3)p5et (6.25)
Y/" (x1,t) = (—ay cos Byx; + a, sin f1x; + az cosh f1x; + a, sinh Byx;) B et (6.26)
Yz'”(xl, t) = (_a5 CoS ﬂzXz + Ag sin ﬁzXz + a,; cosh Bzxz + ag sinh ﬁzXz)ﬁSeiwt (627)
Yé’,(xl, t) = (_ag CoS ﬂ3X3 + aq9 sin ﬁ3X3 + a1 cosh ﬁ3X3 + a4z sinh ﬁ3X3)ﬁ3§eiwt (628)
Y, (x1,t) = (ay sin B1x; + a, cos f1x; + as sinh f;x; + a4 cosh f;x;)wie'®t (6.29)
Y, (x4, t) = — (a, sin Byx; + a, cos B1x; + ag sinh f;x; + a, cosh B;x;)w?e'®t (6.30)
Y,(x,,t) = (assin f1x; + ag cos f1x; + a, sinh B;x; + ag cosh Byx;)wie®? (6.31)
Y,(x,,t) = — (as sin f1x; + ag cos f1x; + a, sinh B;x; + ag cosh By x;)w?e’®t (6.32)
Y3(x3,t) = (aqsin B1x; + @y cos B1x; + aq4 sinh Byx; + ay, cosh By x;)wiet®t (6.33)
Y3(x3,t) = — (agsin f1x; + ayo cos Byx; + a4 sinh f;x; + a;, cosh Byx;)w?ei®t (6.34)

Using the boundary conditions the messenger cable is fixed at the left end, therefore the

slope and deflection at this point are zero. Therefore x; =0
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Y;1(0,t) = 0; (6.35)
Y/ (0,t) = 0; (6.36)

At x; = L, attheright end of the cable there is the mass M. At this point the
displacement is expected to be equal, but the slope is opposite in direction due to the

choice of reference coordinates. Therefore,
Y1(Ly,t) =Y2(0,t) = Y3(0,t) (6.37)

Y{(L,t) = —Y,(0,t) = —Y5(0,t) (6.38)

The bending moment and the shear force are going to be the continuity conditions at

x; =Ly, x, =0 and x3 = 0. Figure 6.3 below shows the free body diagram of moments

]YII(LII t
ELY{'(Ly,t)
ELY) (0, ¢

ELLY;'(0,t)

Figure 6. 3: The free body diagram of the beam for equating moments

ELY{ (L, t) — JY{(L,t) + ELY,(0,t) + EI3Y{'(0,t) = 0 (6.39)
— ELY{"(Ly,t) — ELY,"(0,t) — EI3Y3"(0,t) = My Y, (L, t) (6.40)

There are two beams attached to mass M,, the first beam is free at the end; therefore the

boundary conditions at x, = L, are:

Yy (L, t) = 0 (6.41)
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M,Y,(Ly,t) — ELY," (L, t) = 0 (6.42)

The same thing will happen to the second beam because it is also free at the end. Therefore

the boundary conditions at the free end at x5 = L3 are:
Y3'(Ls,t) =0 (6.43)

MY (L, t) — EIYS" (L3, t) = 0 (6.44)

All the calculations for the boundary conditions for each point are shown in the appendix E. Applying
the boundary condition ¥; (0,t) = 0 to equation 6.17 gives

0 = (a, sin(0) + a, cos(0) + a; sinh(0) + a, cosh(0))e®*
0 = (a, + a,)e't

This implies that either e/t = 0 for all values of t, or a, + a, = 0. The first statement is clearly not
true, so it must be the case that

a;+a, =0 (6.45)
Applying the boundary condition ¥ (0,t) = 0 to equation 6.20 gives
0 = (a, cos(0) — a, sin(0) + a; cosh(0) + a, sinh(0))B; et
(ay + az)B.e™ =0

At x; = L, atthe cable thereis the mass Mj; at this point the displacement is expected
to be equal, but the slope is opposite in direction due to the choice of reference

coordinates. Therefore,
Y1 (L, t) = Y,(0,t) = Y3(0,t)

Applying the boundary condition Y;(L{,t) = Y,(0,t) = Y3(0,t) to equations 6.17, 6.18 and 6.19
gives
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Yi(L1,8) =Y,(0,0)

a;sinf,L; +acosfB{L; +azsinhfL; +a,coshf{Li —as—ag=0 (6.47)

Same procedure applies
Y1(Ly,t) =Y3(0,0)

a;sin 1Ly + a; cos 1Ly + azsinh L, + a,coshf{ Ly — a9 —a;; =0 (6.48)

Applying the boundary condition Y] (L;,t) = — Y,(0,t) = — Y3(0,t) to equations 6.20, 6.21 and
6.22 gives

Yll(Lll t) = - YZI(OJ t)

aq ﬂlcos B1L1 - azﬂl sinﬂl L1 + as ﬁl(:OSh ﬂl L1 + ay ﬂlsinhﬂl L1+a5ﬂ2 +
a;B, =0 (6.49)

Yi(Ly,t) = = Y3(0,8)

aq ﬂlcos B1L1 - azﬂl sinﬂl L1 + as ﬁl(:OSh ﬂl L1 + ay ﬂlsinhﬂl L1 + agﬂg +
a;13 =0 (6.50)

ELY'(Ly,t) = JY{(Ly,t) + ELY,'(0,t) + EI;¥5'(0,8) = 0
For x; =L;,x, =0 and x3 = 0. We have from 6.23, 6.24, 6.25 and 6.30 the following:

Y/'(Ly,t) = (—ay sin B;L; — a, cos By L, + as sinh B;L; + a4 cosh B;L,)pZe't

Y{(Ly,t) = — (ay Bycos B1Ly — ay Bysin By Ly + az Bycosh BiLy + a, Bysinh fiL,)w?e't

Y;'(0,t) = (—ae + ag)pie’"
Y3'(0,t) = (—ayo + a;,)p5e™™"

Substitute the above equations to equation 6.39, we obtain

al(—Ellﬁ% sin BlLl +](1)2 ﬁlcos ﬁlLl) + az(_Ellﬁ%COSﬁlLl —](Dzﬁlsin ﬁl Ll) +
az(EI;B3sinhBLy + Jw?Bqcosh B1L,) + as(EI; B3 cosh B1Ly + Jw?Bysinh B1L,) —
agEI,B5 + agEl,B5 — a0EIsB5 + aEI;B5 =0 (6.51)
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— ELY]"(L,t) — ELY,"(0,t) — ELLY;"(0,t) = M, ¥, (L, t)

Applying the boundary conditions to equation 6.40 lead to the following

al(— Ellﬁicos ﬁl L1 - leZSin ﬁll‘l) + az(EIIBiSinBILl - Ml wZCOS Bll’l) +
a:;(EIlﬁ:{COSh ﬂlLl — Ml(l)ZSinh ﬁl Ll) + a4(E11B§Sinhﬁ1L1 — M1 (l)ZCOSh ﬁll‘l) -
asEILB3 + a,EI,B5 — asEI;B3 + aEIsB3 =0 (6.52)

There are two beams attached to mass M;, the first beam is free at the end. Therefore the

boundary conditions at x, = L, are:
Y, (Ly,t) =0
M,Y,(L,,t) — ELY," (L, t) =0
Applying the boundary condition to equation 6.41 gives
(—assinB, L, — ag cos By Ly + a, sinh B,L, + ag cosh f,L,)f2e'“t = 0
Therefore
—asp3sin B, L, — ag Bicos B, L, + a, B3sinh B, L, + ag f5cosh B,L, = 0 (6.53)

Applying the boundary condition to equation 6.42 gives

as(M,w?sin B,L, — B3 EIycos B,L,) + ag(Myw? cos B,L, + B3EI,sin B,L,) +
a7(M2(1)ZSinh Bz Lz + BgElz(:OSh Bsz) + ag(Mz(l)z cosh BZ L2 + ﬁgElzsinhﬁsz) =
0 (6.54)

The second beam is also free at the end at x3 = L3, apply the boundary conditions in

equation 6.43 and 6.44

—aqf5 sin B3 Ly — ajg B5c0s B3 Lz + asq B3sinh 3L + ag, Bicosh B3l =0
(6.55)
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ag(MngSinB3L3 - ﬂg EI3COSﬁ3L3) + alo(Mng COS ﬁ3L3 + BgElgsinﬁng) +
all(Mg(I)ZSinh ﬁ3 L3 + ﬂgEI";COSh ﬂ3L3) + alz(Mng cosh 33 L3 +
BAEI3sinh B3L3) =0 (6.56)

The characteristic equation is created by subjecting the general solution to the above
boundary conditions. Twelve simultaneous homogeneous equations are determined and
arranged to form the coefficient matrix shown in the appendix F. The characteristic equation

is obtained by equating the determinant of the coefficient matrix to zero.

By referring to equation 3.102 and figure 3.10, the frequency equation is formed because
solutions of this equation produce the frequencies of the characteristic values of system.

The determinant of coefficient of Y; and Y, must be equal to zero.

[-miw? + (kg + k)] [-mpw® + ko] — [=k,][—k,] = 0

[-miw? + (ky + ky)] [-myw? + k] — k3 =0

mimyw* — myw?k, — myw?(ky + k) + ky(ky +ky) — k2 =0

mymyw* — w?[myk, + my(ky + k)] + kik, =0

Let ag = ki k, = (12.6770 x10%)(26.1736 x10°) = 331.803 x 10° See appendix G

a; = mik, + my(k; + k,) = (0.25)(26.1736 x10°) + (0.25)(12.6770 x10* +
26.1736 x10°) = 1340372.5 See appendix G

a, = mym, = (0.25)(0.25) = 0.0625 See appendix G
a,w* —a,w?+ay=0
Let £ = w? therefore

a2 —a;£+ay=0

a; ++a,% — 4a,a,

2a,

1{1,2 =

_ 13403725 +/(1340372.5) 2 — 4(0.0625)(331.803 x 10°)
Lz ™ 2(0.0625)
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£, = 21195489.35 or £, = 250470.6503

Therefore w, = + 4603.855922 744/, . or w, = + 500.470429 7ad/ .
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CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

The main objective of this study was to conduct a set of experiments aiming to identify the

characteristics of an asymmetric damper and to develop a mathematical model for the design

of a modified damper. The experiments involved the investigation of the characteristics of an

asymmetric damper, the rotational motion of the damper and the degrees of freedom for the

masses attached to the messenger cable. From these investigations the following were

established after conducting experiments:

From the graphs it was found that the damper is a four degrees of freedom
Resonance frequencies for each damper are not the same depending on the size of
the damper.

One of the dampers had resonant frequencies at 8Hz, 22 Hz, 50 Hz and 70 Hz. At any
other frequency except the above resonance frequencies, the damper is not a mass
absorber

There is no rotation of the damper about the messenger wire, only up and down

vertical motion of the damper due to the shaker during operation.

If the two masses or weight of the damper are modified for operation, it changes from
being a four degree of freedom to a six degree of freedom. It means it has six
resonance frequencies.

The mathematical model was developed and the theoretical or computational results
were validated by experimental results.

The results were presented at three conferences and were well received by the
audience. At the Thirteenth International Conference on Computational Structures
Technology in Spain, The South African Conference on Computational and Applied
Mechanics (SACAM) at VUT and SAIMechE Postgraduate Conference on Mechanical,

Materials, Manufacturing and Biomedical Engineering at CPUT.
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7.2 Recommendations

From the findings of this study the following suggestions for future investigations are

recommended for further research on dampers:

e The design and manufacturing of a prototype which may be tested at VRTC for more
relevant data and improvements.
e For the mathematical model it is required to include rotation of damper about the

messenger wire for further computational data and predictions.
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APPENDIX A

GRAPHS OF DAMPER (182 025-301) @31 — 39 mm

DAMPER 2 (182 025-301) TEST 1
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Figure A.1: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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DAMPER 2 (182 025-301) TEST 2
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Figure A.2: The graph of acceleration amplitude G (log) vs frequency Hz (log)

DAMPER 2 (182 025-301) TEST 3
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The graph of acceleration amplitude G (log) vs frequency Hz (log)

Figure A.3

DAMPER 3 (182 025-301) TEST 1
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Figure A.4: The graph of acceleration amplitude G (log) vs frequency Hz (log)

DAMPER 3 (182 025-301) TEST 2
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Figure A.5
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DAMPER 3 (182 025-301) TEST 3
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The graph of acceleration amplitude G (log) vs frequency Hz (log)

Figure A.6
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DAMPER 4 (182 025-301) TEST 2
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Figure A.8

DAMPER 4 (182 025-301) TEST 3
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Figure A.9: The graph of acceleration amplitude G (log) vs frequency Hz (log)

APPENDIX B

GRAPHS OF DAMPER (182 025-401) #39 — 47 mm

DAMPER 6 (182 025-401) TEST 1
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Figure B.1: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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DAMPER 6 (182 025-401) TEST 2
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Figure B.2: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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DAMPER 7 (182 025-401) TEST 1
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DAMPER 7 (182 025-401) TEST 3
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APPENDIX C

GRAPHS OF DAMPER (182 025-101) @7 — 15 mm

DAMPER 9 (182 025-101) TEST 1
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Figure C.1: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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DAMPER 9 (182 025-101) TEST 2

SnaGE CESroglq

L e L]

B s e T

DAMPER 9 (182 025-101) TEST 3

P Bl fp
TEL 1B
A0 4L A% AL AL A%

[ -

86

ASnoald

The graph of acceleration amplitude G (log) vs frequency Hz (log)

'
b h f - =
_, _T | g g
e - " 2 " £
1 1 1 1 .
3 ! - - ful Il el Sy S el Sl St o
1 1 1 o
‘ ‘ ‘ 3|
1 1 1 il |
F-=--a--- ' L L L e Y R B e e et T
' ' ' Sl
- m "
' ' ' o |
R " ol [
' 5.8 ' A
) ol |
TR-EY ‘ ‘ SO STk S S S e R S
rWlWl.wuml I I < AL VURURUL Iy | FL . SRR SDUpUSL. SR, RS R i
S m m Sl et ETRCEESEPT LY EEPPCTTERE EEPE R PRy
I . S R . Wi sl Ok EEEE SRS
1r|1.|_._m||ﬁ||._.||||_|||_|||._. it il dlits Bl ity _.ﬂ R e e l L LR T T
T ;) . n 2=
[ | [N | (IR L rerprrg et | R T
o o - R — . "
& 7 = d mubc_ o @ ﬂ m i = | W =]
- (=]
O
a.lm
o
(V]
S
>
.20
(N5

The graph of acceleration amplitude G (log) vs frequency Hz (log

Figure C.3



CSnog e

DAMPER 10 (182 025-101) TEST 1

BSnoolS

A Srad) B

Beliolyg —
ABabad Y
ERLET o
F- RN R - =
1 i 1 1 1 1 1 E N 1 1 1 " 1 1
: : o P T : b b
1 i 1 1 i 1 1 > 1 1 1 I 1
o4 P B T T TR S N ) R T R Rk Bt tr S|
W [ S S e i L B B = A
1 1 1 1 1 1 1 (D] " " " " " "
" " " " " " " =) 1 1 1 1 1 1
1 ' ' ' | ' ' O (@] " " " " " "
" " " " " " " m g 1 1 1 " 1 1
R s Ry Spupo = L S SRS SRR S S
[ R ) A 2 = : Dt T T SR S N
."||||_..|3_| P ||.._||||_..||.._|||"|||||“|||"||| - — “_I ._p .".||||"|||.._|||"||||.._|||"||| -
oo L R L e oo P H (L I SR AL SR B
1 r a F==a r B I
1 1 1 1 1 1 1 1 b i ._p .".||||"|||.“|||"||||.._|||"|||.|
R Tl 4= A : R R R R
b me 80 o : R RSk UL RN SRS R
I FIS S S ] o N " R
T TR Tty T T T 4 © o L Y [ . T B I
: ' ' o P > x ; A Lo
! s ' '
= 2 | S ek ST R R R N
1 1 1 1 1 1 1 1 Q. o = " 1 1 " 1 1
' ' ' '
: ‘ ‘ o P £ — Al b Lo
i ' ' ' '
E S R N T RT r TN L N . x alff | SN S S S S
1 1 1 1 1 1 1 1
o 1 ' ' ' ' ' '
' ' ' ' ' ' ' ' o
P onig A = > e 7 o A
A | s '
LoEE A © < o %8 P Lo
1 8.8 1 1 1 1 1 1 — o = ! oom 1 ! 1 1 1 1 [
1 - 'm 1 1 1 I 1 1 (] ] ! e - 1 ! L 1 1 ' 1 1
- — 1 d ] 1 1 L}
EEE e | g e e
[ .E.“.ﬁ.n.uun_uun.uun_u i e Q Lo o o Y I T || O PPN IR S IPRp
....1|1...|r.._n.m.|..|||T||||.|||T|| B A el s e s (&} ."._._lmnn..l_lp | 1 .“.|||" ||||||| u|||.“|||"||||.“|||u|||.|
[l b ] 1 ] ] ] f ] ] [¢o] S ! !
t Pt S IS, VN SO R I S "  fie-5- AR RN S N
e e S e U 1 1 1 1 1 1 1 1 1
THHH AT N s 3 qm-m,.-" Hai ek il sk et etk el el
' L L L ' L L L L L L L n ] .
I B LI B B LI R & R L N a T Q B e [L LI B e B IR & B To S W B T
n o -
E E e ....._ Q [=] m W w m m E E =] (4} ™ - M M m m m w m
(]
<
Boq) B =
(Be1) - {6o7) 6
|

Hr [l rank
The graph of acceleration amplitude G (log) vs frequency Hz (log)
87

Figure C.4

Figure C.5



DAMPER 10 (182 025-101) TEST 3

= Sneg 5

B S

A Sneg 4

I . Y

Hem e e m e

=

Hzr (I ok

Figure C.6: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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APPENDIX D

GRAPHS OF DAMPER (182 025-301) AND (182 025-401)

DAMPER (182 025-301) TEST2
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Figure D.1: The graph of acceleration amplitude G (log) vs frequency Hz (log)
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The graph of acceleration amplitude G (log) vs frequency Hz (log)
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APPENDIX E

Applying the boundary condition Y; (0,t) = 0 to equation 6.17 gives

0 = (a sin(0) + a, cos(0) + as sinh(0) + a, cosh(0))ei®t

0 = (a, + a,)e't
This implies that either e/t = 0 for all values of t, or a, + a, = 0. The first statement is clearly not
true, so it must be the case that

a,+a, =0 (E.2)
Applying the boundary condition ¥ (0,t) = 0 to equation 6.20 gives
0 = (a, cos(0) — a, sin(0) + a; cosh(0) + a, sinh(0))B; et
(ay + az)Be™t = 0

At x; = L, attheright end of the cable there is the mass M. At this point the
displacement is expected to be equal, but the slope is opposite in direction due to the

choice of reference coordinates. Therefore,
Yl (Lli t) = YZ(Ol t) = Y3 (O’ t)

Applying the boundary condition Y;(Lq,t) = Y,(0,t) = Y3(0,t) to equation 6.17, 6.18 and 6.19
gives

Y (Ly,t) = Y2(0,0)

(aysin B1L; + a, cos By Ly + az sinh B4 L, + a, coshf; Ly)e'@t = (as sin 3,(0) +
ae cos B,(0) + a; sinh B,(0) + ag cosh B, (0))e'®t

a,;sin Ly + a,cos L, + azsinhB,L; + a,coshf{ Ly —ac—ag =0 (E.3)

Same procedure applies

Yl (Ll' t) = Y3 (O! t)
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(ay sinByL; + a, cos By Ly + as sinh f;L; + a, coshp; Ly)e't = (ag sin $3(0) +
ay cos B3(0) + a4 sinh B5(0) + ay, cosh B3 (0))e'®*

a,sin 4Ly + a; cos 1Ly + azsinh B,L; + a,coshf{ Ly — a9 —a; =0 (E.4)

Applying the boundary condition ¥{ (L1, t) = — Y;(0,t) = — Y5(0, t) to equation (6.20), (6.21) and
(6.22) gives

Y(Ly,t) = = Y;(0,0)

(a; cos ByL; — ay sin B; L, + az cosh f; L; + a4 sinh B; L) B, e®t
= —(as cos B,(0) — ag sin B,(0) + a; cosh B, (0) + ag sinh B, (0))B,et

aq BICOS BlLl - azﬂl Sinﬂl Ll + as Bl(:OSh Bl L1 + ay Blsinhﬁl L1+a5B2 +
a;f, =0 (E.5)

Y (L, t) = —Y3(0,¢)

(a; cos B1L; — ay sin B; L, + az cosh B L + a4 sinh B L1)B,e'“t = —(aq cos f5(0) —
@10 sin B3 (0) + ay; cosh B (0) + ay, sinh B(0)3)Bze'*

aq BICOS ﬁll’l - azﬁl Sinﬁl Ll + as Bl(:OSh Bl L1 + ay Blsinhﬁl L1 + a9ﬁ3 +
a;1f3=0 (E.6)

ELY'(Ly,t) = J¥{(Ly,t) + ELY;'(0,t) + EI;Y5'(0,8) = 0

For x; =L;,x, =0 and x3 = 0. We have from 6.23, 6.24, 6.25 and 6.30 the following:
Y;'(L,t) = (—ay sin B;L; — a, cos B1L, + as sinh B;L; + a, cosh B;L,)BZe't

Yll(Lli t) = — (ay Bycos B1Ly — a, Bysin fy Ly + az Bicosh 1L, + ay Bysinh B L) w?
Y;'(0,t) = (—ae + ag)pie’"

Y3'(0,t) = (—ayo + a;,)p5e™™"

Substitute the above equations to equation 6.39, we obtain
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El,(—a, sinB;L; — a, cos B1L; + az sinh B;L; + a, cosh B;L,) et +
J(ay B1cos B1L; — a,f; sin By Ly + as Bicosh B L, + a, fysinh B L) w?e'®t + EL,(—ag +
ag)fze't + El;(—ay + ai)pie't =0

—a,ELBE sin B1L; + a;Jw? By cos B1Ly — a,E1 fZcos BiL, — a, Jw?Bysin By Ly +
azEI f?sinh B, L, + as Jw?B,cosh L, + a,EIl 7 cosh B1L; + a, Jw?Bysinh ;L —
asELP3 + agEL B3 — aigElB5 + a;,ELRE =0

al(—Ellﬁ% sin ﬁll‘l +](1)2 ﬁlcos ﬁlLl) + az(—E11B%COSB1L1 —]a)zﬁlsin ﬂl Ll) +
as (Ellﬁ§5inhﬁlL1 +]w2ﬁ1COSh ﬁll‘l) + a4(EIIﬁ% cosh ﬁll’l +]w2ﬁlsinh ﬁlLl) -
asEILB5 + agELB5 — ai0EI3B3 + aEI3B5 = 0 (E.7)

— ELY)"(Ly,t) — ELY,"(0,t) — EI3Y3"(0,t) = MY, (Ly, 1)

Applying the boundary conditions to equation 6.40 lead to the following

— Eli(—ay B3cos By Ly + a, B3sin B1L; + a3 B3cosh B1L; + a, B3sinh f;L,)e®t —
El,(—as B3cos B1(0) + ag B3sin B1(0) + a; B3cosh B1(0) + ag B3sinh B; (0))e™" —

El;(—aq B3cos B1(0) + aso B3sin B (0) + aq; B3cosh By (0) + ay, B3sinh B;(0))e™t +
M, (a; ?sin B;L; + a, w?cos B1Ly + az w*sinh B Ly + a, w?cosh B1L;)e't = 0

— El,(—a, Bicos Py Ly + ap Bisin B1L; + az B3 cosh By Ly + a, Bsinh By Ly)e®t —
El,(—asP; + a;B3)e't — El;(—aof3 + ay163)e't + My (a, w?sin B1L, +
az w?cos By Ly + az w?sinh B Ly + a, w?cosh B1L)e'®t = 0

—a, ELB3cos By Ly + ay EL, 3sin 1L, + a3 EI,B3cosh B L, + a,El B3sinh 1L, —
a5E12ﬂ23 + a7E12ﬁ23 - agElgﬁg + a11E13ﬁ§ — aq leZSin ﬁlLl - ale (UZCOS ﬁlLl -
as leZSinh ﬁl L1 - a4M1 wZCOSh ﬁlLl =0

a,(— EI B3cos B Ly — Myw?sin B1Ly) + a,(EI B3sin B1L; — My w*cos B1Lq) +
a3(EllﬁiCOSh ﬂll‘l — Ml(l)ZSinh ﬁl Ll) + a4(E11ﬁ§Sinh31L1 — M1 wZCOSh ﬁlLl) —
asEILB5 + a;EIB5 — agEl3B3 + a EI3B5 = 0 (E.8)
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There are two beams attached to mass M;, the first beam is free at the end. Therefore the

boundary conditions at x, = L, are:

Y, (Ly,t) =0

M,Y,(L,,t) — ELY," (L, t) =0
Applying the boundary condition to equation 6.41 gives
(—assin B, Ly, — ag cos By Ly + a, sinh B,L, + ag cosh f,L,)f2e'®t = 0

Therefore

—asPB%sin B, L, — ag Bicos B, L, + a, B3sinh B,L, + ag Bicosh B,L, = 0 (E.9)

Applying the boundary condition to equation 6.42 gives

— M, (as sin B,L, + ag cos L, + a, sinh B, L, + ag cosh B, L,)w?e'®t —
El,(—as cos Byx, + ag sin Bpx, + a, cosh Byx, + ag sinh frx,) 5wt = 0

as(M,w?sin B,L, — B3 EIycos Brx;) + ag(Mow? cos B,oL, + B3EILsin Brx,) +
a;(M,w?sinh B, L, + B3EIcosh B,x,) + ag(M,w? cosh B, L, + B3EI,sinh B,x,) =
0 (E.10)

The second beam is also free at the end. Therefore the boundary conditions at the free end

at x3 = L3, apply the boundary conditions in equation 6.43 and 6.44
—a«;ﬁ% sin ﬁg L3 — Aq9 ﬁ%COS ﬂg L3 + aqq ﬁ%Slnh ﬂ3L3 + aq» ﬂ%COSh B3L3 =0 (Ell)
ag(Mzw?sin B3L; — B3 EI3cos B3x3) + aio(Msw? cos B3L3 + BIEIssin B3x;) +

all(Mg(l)ZSinh B3 L3 + ﬁgEI_gCOSh ﬁgxg) + alz(Mg(l)Z cosh ﬁ3 L3 +
BAEI3sinh B3x3) = 0 (E.12)
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APPENDIX F

0 A, 0 A, 0 0 0 0 0 0
B, 0 B3 0 0 0 0 0 0 0
Cy C, Cs Cy 0 Ce 0 Cg 0 0
Dy D, D3 D, 0 0 0 0 0 Dy
E; E, E; E, Es 0 E, 0 0 0
F; F, Fs F, 0 0 0 0 Fy 0
G G, Gs Gy 0 Gg 0 Gg 0 G1o
H, H, H; H, Hs 0 H, 0 Hq 0
0 0 0 0 Is Ig I; Ig 0 0
0 0 0 0 Is Je I Js 0 0
0 0 0 0 0 0 0 0 Ko Ky
0 0 0 0 0 0 0 0 Lo Ly
Where
A, =14, =1
B;=1;B;=1

Cl = sin ﬁILI 5 CZ = COS ’81 Ll!
C3 = sinh ﬁlLl ; C4, = COShﬁl L1

C6 = _1, CS =-1

D1 = sin BILI 5 DZ = CO0S ﬁl Ll,
D3 = sinh ﬁlLl ; D4 = COShﬁl Ll

D10 = _1; D12 = _1

E; = BicosfBy Ly; E; = By sinfyLy

E3 = Bycoshpy Ly ; Eq = Bysinh By Ly

Es =P, E7 = [,
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Fy = pBycosPyLy; F, = —pysinfqL,

F3 = ’81C05h’81 Lll F4_ == Blsinh BlLl

Fy = B3; F11 = B3

G, = _E11ﬁ12 sin ;L4 +]a)2 picos fiLly; Gy = _E11,812C05ﬁ1L1 —]a)zﬁlsinﬁl L4
G; = ELBZsinhp,L; + Jw?Bycosh Ly ; Gy = EI,B? cosh ;L + Jw?B,sinh B;L,
Ge = Elzﬁzzi Gg = Elzﬁzz

G0 = 513/5'32; Gip = EI3,332

Hl = _EllﬁfCOSBl L1 _leZSinﬁlLl ) H2 == EllﬁfSinﬁlLl _Ml Q)ZCOSﬁlLl
H3 = EllﬁfCOSh BlLl - lezsinhﬁl L1 ; H4_ = Ellﬁi?’SlnhﬂlLl - Ml wZCOSh ﬁlLl
Hs = ELB3 ; H; = ELS3

Hy = —Elsﬁgi Hy; = 513/33?

Is = _322 sinf,Ly; Ig = —322 sin 8, L,

I; = .BZZSinhﬁsz ; Ig = ,BZZCOShﬁsz

]5 = Mza)ZSinﬁsz - ﬁ23 E12C05ﬁ2L2 ; ]6 = Mza)z COoS ﬁsz + ﬁ;Eleinﬁsz

], = Myw?sinh 8, L, + B3EI,cosh B,L, ; J§ = Myw? cosh B, L, + f3El,sinh B,L,

Ko = —,33? sinf3 Ls; K9 = —332‘305 B3 L3

Ky, = ,Bgsinh P3ls ; Ky, = .B??COSh PsLs
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Lg = M3(I)25in ﬁ3L3 - ﬁ33 EI3COS ﬁ3L3; LlO = M3(l)2 CosS ﬁ3L3 + ﬁSEI?)Sln,B:g L3

L11 = M3(l)25inh 183 L3 + B;EI3COSh ’B3L3 ; L12 = M3(,U2 COSh 'B3 L3 + 'B'EEI3Sinh’B3L3
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APPENDIX G

Figure G.1: Diagram of the half model of vibration damper (Vaja et al., 2018)

Messenger cable with a mass (M,)

M1 = 0-5 kg
Diamete of the messenger cable is 9 mm

4 4
I =00 = O _ 64412 x 10-10m*

L, = 0.145m

m m 1w T T T

cos(L{;) = cos B (6 could be >7°5'1c "33 ")
cos(0.145p8,) = cos%

B, = 10.833

G = 200 GPa for steel

2 2
Jeota = Seabetcatte 4 gy 2 = COIDOID. 4 (025)(0.145) = 5.631 x 10-*kgm*
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k. = 3Eh (3)(200)(109)(6 4412x10710)
1= 0.1453
considered as the cantilever beam with a load acting at the end)

Cantilever beam with a concentrated load (M,)

A, = Cross sectional area of the cantilever beam

wuw §°0¢
v
x

10.5 mm

M2 - 0-25 kg
3 3
12 — & — (0.0105)(0.0205) — 7538 x 10_9 m4
12 12
L,=012m

cos(L,B,) = cosg

m m mw mw T T
)

cos(0.12p,) = cos— (0 could be 397315 '3 ' 2

B, = 13.0899
E = 200 GPa for steel

9
K, = b _(3)(200)(10°)(7.538 x107%) _ o 473105 N/

L3 0.123
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=12.6770 x10* N/m (The messenger cable is



Cantilever beam with a concentrated load (M;)

M3 == 0.25 kg
h=1,= "% =7538 x 10 m*
L, =012m

T T T s T

COS(L3ﬁ3)—COS— (0 could be A TirTE 64)

cos(0.12f3) = cos%
B = 13.0899
E = 200 GPa for steel

9
ky = 28 _(@00)(10°)(7.538 x107%) _ 1 oac 405 N/

L3 0.123
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