
1 
 

 

 

 

NUMERICAL AND EXPERIMENTAL PROCEDURES FOR DETERMINING 

CHARACTERISTICS OF STOCKBRIDGE DAMPERS 
 

Zakhele Mathews_ Zondi_ 216249805 

 

 

 

Submitted in fulfilment of the academic requirements for the degree of MEng: 

Mechanical Engineering qualification in the Department of Mechanical 

Engineering, Faculty of Engineering and the Built Environment 

 

 

 

 

 

 

Department of Mechanical Engineering 

Cape Peninsula University of Technology 

Supervisor: Prof Modify Andrew Elton Kaunda 

Cape town, South Africa 

February 2021 



2 
 

DECLARATION 

I hereby declare that this dissertation has not been copied and it is my own work. I submit 

this thesis to the Cape Peninsula University as my own independent work. The experimental 

graphs presented in this thesis were not taken from other person’s work and it has not been 

submitted to any other institution before for attainment of any qualification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

ACKNOWLEDGEMENT 

I would like to thank God for being with me with all my efforts that I have contributed to this 

thesis. Things were not going to be possible for me to finish my work without him throughout 

this study. 

My great thanks goes to Professor M.A.E Kaunda for his dedicated supervision when I started 

this thesis I had no idea about research but his knowledge, time and guidance was helpful to 

me. I would not forget to thank Dr. Tiyamike Ngonda for his guidance in doing experiments 

and advising me to do modelling using Matlab.   

Great thanks goes to Mangosuthu University of Technology for supporting my study with the 

financial support and to the research office for contributing with finance for travelling to Cape 

Peninsula University of Technology to visit my supervisor. I would also thank them for their 

support to buy some items which were needed for my project. 

My sincere thank you goes to Professor D. Dorrell for allowing me to do my experiments at 

VRTC and Dr. Richard C. Loubser with some information regarding mathematics at UKZN 

University. I will not forget Pravesh Moodley (technician) for his contribution with assistance 

during the time when I was conducting experiments, he was always with me during the time 

of experiments to help me with the setup of experiments. My appreciation also goes to Dr. 

Ntumba Marc-Alain Mutombo for his contribution to my thesis.  

I dedicate this dissertation to my late mother, late father and my family. I would like to take 

this opportunity to thank my wife for the support she contributed to my study because I used 

to come late and spent considerable time in my office and at VRTC doing my project. 

Lastly I would like to thank all those who have contributed, either directly or indirectly to the 

preparation, research and compilation of this project report. 

 

 

 

 



4 
 

ABSTRACT 

The Stockbridge damper is a tuned mass absorber used to suppress wind-induced vibrations 

on slender structures such as overhead transmission power lines. The lines vibrate due to 

wind motion and this causes fatigue failure to transmission lines usually at the suspension 

clamp where the maximum stress occurs. The fatigue failure in transmission lines can lead to 

outage of electricity. There are three types of vibration motions, that is, Aeolian vibrations, 

conductor galloping and wake-induced oscillation. This is a preliminary study of the 

characteristics of an asymmetric Stockbridge damper in order to establish the efficiency and 

reliability of the current dampers. Experiments were conducted on dampers according to IEEE 

664 standards at the Vibration Research and Testing Centre (VRTC) at the University of 

KwaZulu Natal (UKZN). Experiments were also conducted on a modified vibrating damper. 

The mathematical model of a vibrating damper is also presented in this thesis and theoretical 

or computational results are validated by experimental results.  
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the problem 

Transmission lines vibrate because of wind motion and this causes a fatigue failure usually at 

the suspension clamp where the maximum stress occurs; the fatigue failure can lead to the 

shutdown of electricity. In order to protect them from induced forces there is a need to use 

a device called a Stockbridge damper to minimize vibration in the transmission lines. The 

Stockbridge dampers need to be improved by increasing their life span so that the 

transmission lines last longer. Stockbridge damper consists of a messenger cable with two 

masses or weights attached to the messenger cables. During its operation the two masses 

attached to the end of each cable vibrate, if the Stockbridge fails there is the probability of 

not protecting the transmission lines. The study of this research focuses more on 

asymmetrical Stockbridge damper’s life which is the key piece in the system. 

 

1.2 Aim and objectives 

The purpose of the research is to propose improvements to the structural arrangement of 

Stockbridge dampers used on transmission lines, in order to increase the life of these 

dampers. Failure of a damper leads to failure of the transmission line, which then leads to 

power outage. An increase in the lifespan of Stockbridge dampers will reduce the life-cycle 

costs of transmission lines. 

The objectives of the research project were to study the characteristics of an asymmetric 

Stockbridge damper, in order to determine its efficiency and reliability as a damping device 

for overhead transmission lines, and to develop a mathematical model of a vibrating damper. 

Experiments were to be conducted on samples of a Stockbridge damper and the results used 

to aid the design of an improved Stockbridge damper. The experimental results were to be 

used to validate the theoretical or computational mathematical model. Experiments were to 

be conducted also on a modified Stockbridge damper. 
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1.3 Brief chapter overviews 
 

This section offers an overview and explanation of what each chapter consists of. 

Chapter 1 presents the statement of the problem, aim and the objectives of the project 

Chapter 2 offers different types of wind motion that affect transmission lines and Stockbridge 

dampers. It also presents different type of dampers. 

Chapter 3 provides a literature review based on vibration from first principles and also 

includes the previous study done by other researchers. 

Chapter 4 describes the standard tests and methodologies used to achieve the results of this 

research, it also presents the equipment and the material used for this project. 

Chapter 5 provides the results in terms of graphs and the discussion of those results. 

Chapter 6 presents an improved vibration damper using an analytical model.  

Chapter 7 presents conclusions and recommendations for the project.   
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CHAPTER 2 

WIND MOTION AND STOCKBRIDGE DAMPERS 

2.1 Introduction 

This chapter is an overview of the motions of conductors when subjected to wind motion and 

of the different types of damper used on transmission lines, including those variants designed 

to work on the Stockbridge principle.  

2.2 Three different categories of cyclic conductor motion. 

 Aeolian vibration 

 Conductor galloping 

 Wake-induced oscillation  

 

2.2.1 Aeolian vibration 

Aeolian vibration causes problems to transmission lines which lead to fatigue failure of the 

conductor strands or of the items associated with the support, use, and protection of the 

conductor. Aeolian vibration is characterized by having a low amplitude (conductor diameter) 

and high frequency (5 to 150 Hz) (Lilien et al., 2013). It is approximately in the range of                      

3 – 200 Hz and  frequency depends on the size and tensile load of the conductor (Chan, 2006). 

Large conductors in low wind correspond to lower frequencies and small ground wires in 

moderate winds produce upper frequencies. Aeolian vibration in terms of the wind speed is 

caused by the wind velocity that ranges between 1 m/s – 7 m/s. 

Vibration frequency is determined using the Strouhal formula: 𝑓 = 𝑆/𝐷, where 𝑆 is the 

Strouhal number (S = 0.18 – 0.22), 𝑉 is the wind velocity in m/s, and 𝐷 is the conductor 

diameter. The conductor vibration at any point is shown in the form of a beat pattern shown 

in Figure 2.1. This type of vibration is dangerous to transmission lines when conductor 

tensions are very high, the terrain is smooth, with frequent, low moderate, steady winds and 

the spans are long. The safest way to successfully control this vibration in most cases is by 

installing dampers and or spacer-dampers. Conductor vibration may lead to the bending or 



15 
 

fatigue failure of the conductor strands at the suspension clamps or at the clamps of spacers, 

spacer dampers and other devices installed on the conductors. 

 

Figure 2. 1: Records of vibration at any chosen point on a conductor (Chan, 2006) 

 

2.2.2 Conductor galloping 

Conductor galloping is characterized by a low frequency, high amplitude, primarily vertical 

conductor motion. It is nearly always produced by moderately strong, steady crosswinds 

acting upon an asymmetrically iced conductor surface. Normally ice is deposited on the 

windward surface of the conductor; if ice or snow builds up on the conductor it creates an 

aerodynamically unstable shape and this can produce large forces and moments on the 

conductor. The motion of the conductor due to wind can lead to oscillations in a vertical 

direction. 

2.2.3 Wake – induced oscillation 

The shielding effect of windward subconductors on their leeward counterparts produces 

forces; wake induced vibrations only appear in bundle conductors for which some 

subconductors are in the wake induced by windward subconductors. One can distinguish four 

types of wake induced motions see Figure 2.2: 
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Figure 2. 2: Four types of wake – induced vibrations 

 

 

2.3 Comparison of types of wind motion 

Table 2.1 shown presents a comparison of the characteristics of the three types of wind 
motion namely Aeolian vibration, conductor galloping and wake-induced vibration 
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Table 2. 1: Comparison of types of cyclic conductor motion  

 Aeolian vibration Conductor galloping Wake – induced  

Types of overhead 

lined affected 

All all Limited to lines with 

bundled conductors  

Frequency range 3 Hz - 150 Hz 0.08 Hz – 3 Hz 0.015 Hz – 10 Hz 

Range of vibration 

amplitudes (peak-

peak) 

0.01 – 1 𝐷𝑐  

𝐷𝑐  is the conductor 

diameter 

5 – 300 𝐷𝑐  

𝐷𝑐  is the conductor 

diameter 

0.5 – 80 𝐷𝑐  

𝐷𝑐  is the conductor 

diameter 

Wind character  Steady  Steady Steady 

Wind velocity  1 m/s – 7 m/s 7 m/s – 18 m/s 4 m/s – 18 m/s 

Conductor surface Bare or uniformly iced Asymmetrical ice 

deposit on 

conductor 

Bare , dry 

Design Condition 

Affecting 

Conductor motion  

Line  tension, 

conductor self -

damping, use of 

dampers, armor rods 

Ratio of vertical 

natural frequency to 

torsional frequency; 

sag ratio and 

support conditions 

Subconductor 

separation, tilt of 

bundle, 

subconductor 

arrangement, sub 

span staggering.  

Damage     

Approx., time 

required to severe 

damage to develop 

3 months to 20 + 

years 

1 to 48 hours 1 month  to 8 + 

years 

Direct causes of 

damage 

Metal fatigue due to 

cyclic  bending 

High dynamic loads Conductor clashing, 

accelerated wear in 

hardware 

Line components 

most affected  by 

damage 

Conductor and shield 

wire  strands 

Conductor, all 

hardware,  

insulators, 

structures 

Suspension 

hardware, spacers,  

dampers, conductor 

strand 
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2.4 Vortex shedding from a circular cylinder 

When a circular cylinder is positioned in a steady uniform air stream at an adequate velocity, 

flow separation occurs on the cylinder‘s surface, as shown in Figure 2.3. As the separation is 

formed it leads to vortex shedding from the cylinder and the formation of a wake behind the 

cylinder. Vortices are shed alternatively from the upper and lower surfaces of the cylinder at 

a constant frequency (Kelly, 1993).  

 

Figure 2. 3: (a) circular cylinder in the steady flow; (b) cross section of the cylinder, showing 
vortices shed alternatively from each surface of the cylinder resulting in a wake behind the 
cylinder and harmonic force acting on the cylinder (Kelly, 1993). 

 

The shedding caused by the vortices produces oscillating streamlines in the wake which, in 

turn, leads to an oscillating pressure distribution; an oscillating force acting perpendicularly 

or normal to the cylinder is formed due to the oscillating pressure distribution (Kelly, 1993). 

This is the same as what happens to transmission lines when they vibrate due to wind speed. 

The force is given by 

𝐹(𝑡) = 𝐹0 sin𝜔𝑡     2.1 

Where 𝐹0 is the magnitude of the force and 𝜔 is the frequency of vortex shedding. These 

parameters are dependent upon the fluid properties and the geometry of the cylinder (Kelly, 

1993). That is, 

𝐹0 = 𝐹0(𝑉, 𝜌, 𝜇, 𝐷, 𝐿)    2.2 

𝜔 = 𝜔(𝑉, 𝜌, 𝜇, 𝐷, 𝐿)                                            2.3 
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Where 𝑉 = magnitude of the fluid velocity, [𝐿]/[𝑇] 

 𝜌 = the fluid density, [𝑀]/[𝐿]3 

 𝜇 = the dynamic viscosity of fluid, [𝑀]/[𝐿][𝑇]  

 𝐷 = the diameter of the cylinder, [𝐿] 

 𝐿 = the length of the cylinder 

The dependent parameters 𝐹0 and 𝜔 are both functions of five independent. 

 

2.5 Types of dampers used to absorb vibration from transmission lines. 

To absorb some vibration energy from transmission lines various types of damper are used; 

the main function of dampers is to protect power lines from being damaged by vibration 

caused by wind motion. The wind speed during the test is set in the range of 1 – 7 m/s, which 

is the speed of Aeolian vibration. Different types of damper are presented below in this 

section.  

 

2.5.1 Stockbridge damper 

The problem of conductor strand failures due to Aeolian vibration was first recognized in 1923 

and Stockbridge damper were established by George. H Stockbridge in 1924; after this 

modifications were made to improve its operation. The damper consists of two shaped 

masses, rigidly attached at the ends of a stranded steel cable, which in turn is rigidly clamped 

to the conductor. The first design of the damper is shown in Figure 2.4.  

 

Figure 2. 4: The original type of Stockbridge damper (Chan, 2006)  

 

 After the Stockbridge damper was established, Monroe and Templin upgraded it with the 

two degrees of freedom damper shown in Figure 2.5 in which both the shape and the moment 
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of inertia of the masses were designed to take advantage of the second vibration mode of a 

cantilever beam, within the frequency range of operation of the damper. 

 

Figure 2. 5: Monroe and Templin damper  

 

The Stockbridge damper after its invention was manufactured worldwide, with equal masses 

supported by equal lengths of steel stranded cable.  In 1968 modification was made to the 

basic damper by Claren and Diana. The two halves were made asymmetrical, providing two 

different masses with different moments of inertia and different lengths of the messenger 

cable as shown in Figure 2.6. 

 

 

 

Figure 2. 6: Claren and Diana damper with four accelerometers (4-R Stockbridge-type 
Damper) 

 

2.5.2 Haro damper 

In 1970, Lauri Haro and Tapan Seppa established a vibration damper based on the Stockbridge 

principle, known as the Haro damper shown in Figure 2.7. It consists of three weights and two 

clamps for the connection to the conductor; the weights are of varying dimensions and are at 

different moment arms on the messenger cable. Each of the two external weights has two 
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degree of freedom and the central mass has only one degree of freedom; giving the device 

five resonances. It is over a meter in length and not easy to transport and install. Many 

became bent and damaged during transportation   

 

Figure 2. 7: Haro damper. 

 

2.5.3 Torsional Stockbridge-type damper 

Some expansions of the Stockbridge-type vibration damper include a symmetrical damper 

that, in addition to the flexural resonances, establishes a torsional resistance. This is achieved 

by using weights whose center of gravity is offset with respect to the axis of messenger cable. 

The most popular are the Australian “Dogbone” damper as shown in figure 2.8 and the 

Japanese Aahi torsional damper. 

 

 

Figure 2. 8: “Dogbone” damper  

 

2.5.4 Bretelle dampers 

This is widely used in France and its discovery as a damper device was largely accidental. 

Normally it is made from pieces of scrap conductor that are the same size as the line on which 

it is used. The Bretelle concept seems to be economically attractive but there are numerous 

factors that need to be considered. It is difficult to conduct a definitive investigation of the 

design variables because its configuration does not lend itself to indoor laboratory 
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investigation. It has a jumper loop connecting two adjacent spans at the suspension points as 

shown below in Figure 2.9 

 

 

Figure 2. 9: Bretelle damper profile (Chan, 2006)  

 

2.5.5 Elgra 

Elgra is a Swedish damper consisting of a vertical stem having three cast masses loosely fitted 

to a vertical shaft. Each mass is separated by an elastomeric washer. This damper seems to 

be an interesting study in extrapolation; before a mass can be lifted from its pad, the 

acceleration of the damper must not exceed one gram. Tests have revealed that this type of 

damper performs well for acceleration of about two grams. When the damper was first 

established, transmission lines were smaller in diameter and, vibrated at higher frequencies. 

The size of the damper was adjusted accordingly as the conductor diameter was increased. 

Figure 2.10 shows Elgra damper   

 

Figure 2. 10: Elgra damper  
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2.5.6 Festoon dampers 

Festoon dampers have been used on numerous long spans and they consist of a scrap 

conductor like the Bretelle and are relatively inexpensive. Figure 2.11 shows festoon dampers 

at suspension points and tension points. The main problems that have been reported with 

the use of festoon dampers have occurred at their clamps. In places like Norway and other 

cold countries, festoon dampers are preferred to Stockbridge-type dampers on long fjords 

because the latter can be damaged by both conductor galloping and Aeolian vibration of 

increased severity, during periods of icing 

 

 

Figure 2. 11: Festoon dampers. (A) and (B) are festoon dampers for suspension; (C) is a festoon 
damper for tension points  
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CHAPTER 3 

THEORY OF VIBRATION OF MECHANICAL SYSTEMS 

3.1 Introduction 

This chapter presents the theory of vibration of mechanical systems. Free and forced 

vibrations with varying degrees of damping and multi degrees of freedom were considered. 

The theory is based on standard text books for example Inman  

The spring-mass system was used to derive the equations governing the vibration of a free 

structure, undamped and damped; the dashpot was introduced to represent damping. For 

forced vibration, both steady and transient states were considered for undamped vibration; 

damping was considered also. Thereafter, work carried out on Stockbridge dampers by others 

was reviewed. 

3.2 Mechanical vibration 

Mechanical vibration is taken as the measurement of periodic motion with respect to an 

equilibrium point. Vibration is also considered as a repetitive motion of mechanical systems 

from machine parts to large structures. Vibrations produced during the earthquake as in the 

case of vibrating ground motion are unwanted. Typical examples of vibration familiar to most 

are the motion of a guitar string, the quality of ride of an automobile or motorcycle, the 

motion of an airplane’s wings and the swaying of a large building due to wind or an 

earthquake.    

3.3 Analysis of mechanical vibrations 

This section introduces the basic terminology used in the study of mechanical vibration, as 

well as two important elements found in vibration models. These are the spring element, 

which produces a restoring force or moment as a function of the displacement of the mass 

element, and the damping element, which produces a restoring force or moment as a 

function of the velocity of the mass element (Palm III, 2007). 

There are many types of vibration but all of them start from analysing the free vibration of a 

spring mass system. In terms of vibration we have a vibration known as free vibration.  
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The phase angle 𝜃 describes the relative shift in the sinusoidal vibration of the spring-mass 

system.  

 
Figure 3. 1: Spring mass system (Zill and Cullen, 2005) 

 

Free undamped vibration (spring mass system) 

From Figure 3.1 the spring (a) with no mass attached to it is a free spring, spring (b) has the 

mass attached to it and will stretch to a point where the mass/weight is in equilibrium to a 

force applied by the spring in the opposite direction of motion. By Hooke‘s Law, the spring 

itself exerts a restoring force F opposite to the direction of elongation and proportional to the 

amount of elongation (Zill and Cullen, 2005). Simply stated, F= ks, where k is a constant of 

proportionality called the spring constant. After the mass is attached to the spring, it 

stretches the spring with an amount s and attains a position of equilibrium at which the 

weight W is balanced by the restoring force ks. As shown in the above Figure 3.1 (b) it means 

the condition of equilibrium is mg = ks or mg – ks = 0. When the mass is displaced by an 

amount of x from its equilibrium position, the restoring force of the spring is then   𝑘(𝑥 + 𝑠).  

It is assumed that there are no retarding forces acting on the system and the mass is assumed 

to vibrate free of other external forces (Zill and Cullen, 2005). By using Newton’s second law 

for linear motion the sum of all the forces is equal to the product of an acceleration and the 

mass being accelerated 

 �̈�𝑚 = −𝑘(𝑠 + 𝑥) + 𝑚𝑔        3.1 
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�̈�𝑚 = −𝑘𝑠 − 𝑘𝑥 + 𝑚𝑔         3.2 

But 𝑚𝑔 = 𝑘𝑠 it means they cancel each other in the equation 

�̈�𝑚 = −𝑘𝑥          3.3 

�̈�𝑚 + 𝑘𝑥 = 0          3.4 

�̈� +
𝑘

𝑚
𝑥 = 0          3.5 

Most of the equations of motion of many oscillatory systems have a solution of the form                                    

x(t) = A sin(𝜔𝑛𝑡 + 𝜃)          3.6  

Equation 3.6 is a sine function in its most general form, where the constant A is the amplitude, 

or maximum value of the function; 𝜔𝑛, the angular frequency, determines the interval in 

time during which the function repeats itself, and 𝜃, called the phase, determines the 

initial value of the sine function. The frequency is measured in rad/sec and the phase 

angle is measured in radians. The related frequency is cycles per unit time and is often 

denoted by  ⍵ . The two frequencies are related by ⍵ = 2𝜋𝑓 (Palm III, 2007). The first 

derivative of equation 3.6 gives the velocity and the second derivative gives an 

acceleration 

 �̇�(𝑡) = 𝜔𝑛𝐴 cos(𝜔𝑛𝑡 + 𝜃)        3.7 

�̈�(t) = −𝜔𝑛
2A sin(𝜔𝑛 𝑡 + 𝜃)        3.8 

Substitution of equations 3.6 and 3.8 into 3.4 yields  

−m𝜔𝑛
2A sin(𝜔𝑛 𝑡 + 𝜃) +kA sin(𝜔𝑛 𝑡 + 𝜃) = 0     3.9 

From equation 3.9   𝜔𝑛
2 =

𝑘

𝑚
𝑜𝑟  𝜔𝑛 = √

𝑘

𝑚
    therefore equation 3.5 becomes  

�̈� + 𝜔𝑛
2𝑥 = 0          3.10   

Alternative form of   x(t) = A sin(𝜔𝑛𝑡 + 𝜃) is 
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 𝑥(𝑡) = 𝐶1 cos𝜔𝑛 𝑡 + C2 sin𝜔𝑛 𝑡          3.11 

where x(t) is the displacement of a mass (Palm III, 2007). The radian frequency is 𝜔𝑛 and the 

period 𝑇 = 2𝜋/𝜔𝑛. Equation 3.11 can be proved by using 3.6 the trigonometry identity as 

follows 

 

Figure 3. 2: A relationship between 𝐶1 > 0, C2 > 0  and phase angle 𝜃 = 𝜙 (Zill and Cullen, 
2005). 

x(t) = A sin (⍵𝑡 + 𝜃) = A sin 𝜃  cos𝜔𝑡 + A cos 𝜃  sin⍵𝑡    3.12 

sin 𝜃 =
𝐶1

𝐴
 , cos 𝜃 =

𝐶2

𝐴
  and  tan 𝜃 =

𝐶1

𝐶2
.      3.13 

  𝐴 = √𝐶1
2 + 𝐶2

2  and  𝜃 is defined as the phase angle. It follows from Figure 3.2 that 𝜃 is 

defined by 

sin 𝜃 =
𝐶1

√𝐶1
2+𝐶2

2
=

𝐶1

𝐴
,              cos 𝜃 =

𝐶2

√𝐶1
2+𝐶2

2
=

𝐶2

𝐴
 

Then 3.12 becomes 

𝐱(𝐭) = A 
𝐶1

𝐴
cos𝜔𝑛 𝑡 + A 

𝐶2

𝐴
sin⍵𝑡 = 𝑪𝟏 𝐜𝐨𝐬 𝝎𝒏 𝒕 + 𝐂𝟐 𝐬𝐢𝐧𝝎𝒏𝒕   3.14 

The x (t) is the displacement of the mass. 

There is an alternative way to find the constant A and  𝜃. If the mass in the spring shown in 

Figure 3.1 is displaced to a position of 𝑥𝑜 at time 𝑡 = 0, the potential energy in the spring will 

result in motion (Inman, 2001). Also if the mass is given initial velocity of 𝑉0 at  𝑡 = 0, motion 

will result. These are called initial conditions and when substituted into the solution 3.6 yield 
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𝑥𝑜 = 𝑥(0) = 𝐴 sin(𝜔𝑛 0 + 𝜃) = 𝐴 sin 𝜃       3.15 

𝑣0 = �̇�(0) = 𝜔𝑛𝐴 cos(𝜔𝑛 0 + 𝜃) = 𝜔𝑛𝐴 cos 𝜃     3.16 

Combining the square of each equation, 

𝑥𝑜
2 = (𝐴 sin 𝜃)2          3.17 

(sin 𝜃)2 =
𝑥𝑜

2

𝐴2                                                                                                                         3.18 

𝑣0
2 = 𝜔𝑛

2𝐴2 (cos 𝜃)2         3.19  

(cos 𝜃)2 =
𝑣0

2

(𝜔𝑛𝐴)2
                 3.20 

Solving equations 3.18 and 3.20 simultaneously yields 

(cos 𝜃)2 + (sin 𝜃)2 =
𝑥𝑜

2

𝐴2 +
𝑣0

2

𝜔𝑛(𝐴)2
    but  (cos 𝜃)2 + (sin 𝜃)2 = 1   3.21 

1 =
𝜔𝑛

2𝑥𝑜
2+𝑣0

2

𝜔2𝐴2   Make A the subject of the formula 

𝑨 =
√𝝎𝒏

𝟐𝒙𝒐
𝟐
+𝒗𝟎

𝟐

𝝎
         3.22 

𝜽 = 𝐭𝐚𝐧−𝟏(
𝝎𝒏𝒙𝟎

𝒗𝟎
)         3.23 

The solution of the equation of motion for the spring-mass system is called a free response of 

the system, because no external force  to the system is applied at 𝑡 = 0 (Inman, 2001) and is 

given by 

𝐱(𝐭) =
√𝝎𝒏

𝟐𝒙𝒐
𝟐
+𝒗𝟎

𝟐

𝝎𝒏
𝐬𝐢𝐧 [𝝎𝒏𝒕 + 𝐭𝐚𝐧−𝟏(

𝝎𝒏𝒙𝟎

𝒗𝟎
)]     3.24 

With regard to the derived equations 3.24, Figure 3.3 shows harmonic motion and how the 

initial conditions determine the response of such a system.  



29 
 

 

Figure 3. 3: Summary of the description of Simple Harmonic Motion (Inman, 2001) 

 

 

3.3.1 Free damped motion (spring mass system) 
 

 

Figure 3. 4: Schematic of a single degree of freedom system with viscous damping indicated 
as dashpot (Inman, 2001). 

 

From the free body diagram shown in Figure 3.4, the damping force, denoted by 𝑓𝑐  has the 

form 

     𝑓𝑐 = 𝑐�̇�(𝑡)     3.25 
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where 𝑐 is a constant of proportionality related to the oil viscosity. The constant   𝑐, called the 

damping coefficient, has units of N s/m, or kg/s. The damping force is proportional to the 

velocity but it acts in the opposite direction of mass motion (Brownjohn, 2005, Inman, 2001). 

By using Hook’s law, the spring itself exerts a force, denoted by 𝑓𝑘 which is opposite to the 

direction of displacement or elongation and proportional to the elongation (Zill and Cullen, 

2005, Inman, 2001). 

     𝑓𝑘 = 𝑘𝑥     3.26 

The theory of simple harmonic motion is unrealistic, since the motion described by equation 

3.1 assumes that there are no retarding forces acting on the moving mass unless the object is 

in a perfect vacuum but in real life there are retarding forces.  By using Newton’s law, taking 

all the forces acting horizontally on the free body diagram shown on figure 2.4   

    𝑚�̈� = −𝑐�̇� − 𝑘𝑥    3.27 

Assume the solution 

      𝑥(𝑡) = 𝐴𝑒𝑠𝑡     3.28 

     �̇�(𝑡) = 𝐴𝑆𝑒𝑠𝑡     3.29 

     �̈�(𝑡) = 𝐴𝑆2𝑒𝑠𝑡    3.30 

      

Substituting 3.28, 3.29 and 3.30 into 3.27  

     𝑚𝐴𝑆2𝑒𝑠𝑡 + 𝑐𝐴𝑆𝑒𝑠𝑡 + 𝑘𝐴𝑒𝑠𝑡 = 0  3.31 

Equation 3.31 forms the characteristic equation: 

     𝑚𝑆2 + 𝑐𝑆 + 𝑘 = 0    3.32 

Roots are 𝑆1,2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
        3.33 

     𝑆1,2 =
−𝑐 ± √𝐶2−4𝑚𝑘

2𝑚
    3.34 

To examine the three cases in detail, we begin with critical damping Cc. In this case the 

discriminant equals to zero 

𝐶𝑐
2 − 4𝑚𝑘 = 0     3.35 

𝐶𝑐
2 = 4𝑚𝑘     3.36 

𝐶𝑐
2

4𝑚
= 𝑘      3.37 
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(
𝐶𝑐

2𝑚
)
2

=
𝑘

𝑚
= 𝜔𝑛    3.38 

 

 

It is convenient to express damping in non – dimensional ratio, called damping ratio as 

𝜁 =
𝐶

𝐶𝑐
       3.39 

𝐶

2𝑚
=

𝜁𝐶𝑐

2𝑚
= 𝜁𝜔𝑛    3.40 

Equation 3.34 becomes  𝑆1,2 −
−𝐶 ±

2𝑚
√(

𝐶

2𝑚
)
2

−
4𝑚𝑘

4𝑚2 = −
−𝐶 ±

2𝑚
√(

𝐶

2𝑚
)
2

−
𝑘

𝑚
  3.41 

Therefore equation 3.41 becomes  

 

𝑺𝟏,𝟐 = −𝜻𝝎𝒏 ± √𝜻𝟐𝝎𝒏
𝟐 − 𝝎𝒏

𝟐    3.42 

𝑺𝟏,𝟐 = 𝝎𝒏 (−𝜻 ± √𝜻𝟐 − 𝟏)   3.43 

 

The general solution is given by: 

     𝒙(𝒕) = 𝑨𝒆𝒔𝟏𝒕 + 𝑩𝒕𝒆𝒔𝟏𝒕   3.44 

Or 

𝒙(𝒕) = 𝒆𝒔𝟏𝒕(𝑨 + 𝑩𝒕)    3.45 

Case 1: 𝑐2 > 4𝑚𝑘. In this case the system is said to be overdamped, see figure 3.5 

 

Figure 3.5: Response of an overdamped system 𝜁 > 1, for two values of the initial 
displacement and zero initial velocity and one case with 𝑥0 = 0 and 𝑣0 = 1 (Inman, 2001) 
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Case 2: 𝑐2 = 4𝑚𝑘. In this case the system is said to be critically damped, see figure 3.6 

Figure 3. 6: Response of a critically damped system for three different initial velocities. The 
response properties are 𝑘 = 225 N/m, 𝑚 = 100 𝑘𝑔 and 𝜁 = 1 (Inman, 2001). 

 

Case 3: 𝑐2 < 4𝑚𝑘. In this case the system is said to be underdamped, see figure 3.7  

 

Figure 3. 7: Response of an underdamped system 0 < 𝜁 < 1 (Inman, 2001). 

 

 

3.3.2 Forced vibrations (steady state and transient state) 

Figure 3. 8 Forced vibration steady state  

m 𝑥 𝑓(𝑡) 𝑓(𝑡) = 𝑃 sin 𝛺𝑡 𝑚�̈� 

𝑘𝑥 

(𝑎) (𝑏) 

m 
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Suppose we include an external force 𝑓(𝑡) acting on a vibrating mass on a spring in figure 3.8. 

For example 𝑓(𝑡) represents a driving force causing an oscillatory vertical motion of the 

spring. Sketch (a) is a free body diagram representing all the forces acting on the mass. The 

driving force 𝑓(𝑡) is chosen to be of the form 𝑷𝐬𝐢𝐧𝜴𝒕 where 𝑷 represents the magnitude, or 

maximum amplitude, of the applied force and 𝜴 denotes the frequency of the applied force 

(Inman, 2001). The frequency  𝜴 is also called the input frequency, or driving frequency, or 

forcing frequency and has units of  𝑟𝑎𝑑/𝑠. Using Newton’s second law gives the differential 

equation of driven or forced motion:  

𝑚𝑥 ̈ = −𝑘𝑥 + 𝑓(𝑡)    3.46 

𝑚𝑥 ̈ + 𝑘𝑥 = 𝑃 sin 𝛺𝑡    3.47 

𝑥 ̈ +
𝑘

𝑚
𝑥 =  

𝑃

𝑚
sin𝛺𝑡    3.48 

But  
𝑃

𝑚
= 𝑞     3.49 

𝑥 ̈ +
𝑘

𝑚
𝑥 =  𝑞 sin 𝛺𝑡    3.50 

𝑥 ̈ + 𝜔𝑛
2𝑥 =  𝑞 sin𝛺𝑡    3.51 

Let us assume solution to be 

𝑥 = 𝐶3 sin𝛺𝑡     3.52 

�̇� = 𝐶3 cos𝛺𝑡     3.53 

�̈� = −𝐶3𝛺
2 sin𝛺𝑡    3.54 

Substitute 3.52 and 3.54 into 3.51 

−𝐶3𝛺
2 sin 𝛺𝑡 +𝜔𝑛

2𝐶3 sin𝛺𝑡 = 𝑞 sin 𝛺𝑡  3.55 

 −𝐶3𝛺
2 + 𝜔𝑛

2𝐶3 = 𝑞    3.56 

     −𝐶3(𝛺
2 − 𝜔𝑛

2) = 𝑞    3.57 

     𝐶3(𝜔𝑛
2 − 𝛺2) = 𝑞    3.58 

     𝐶3 =
𝑞

(𝜔𝑛
2−𝛺2)

     3.59 

Substitute 3.59 into 3.52  𝒙(𝒕) =
𝒒

(𝝎𝒏
𝟐−𝜴𝟐)

𝐬𝐢𝐧𝜴𝒕   3.60 

 

Forced vibration transient state is now shown, consider the equation 3.51 

𝑥 ̈ + 𝜔𝑛
2𝑥 =  𝑞 sin𝛺𝑡 
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The general solution is given by 

𝒙(𝒕) = 𝑪𝟏 𝐜𝐨𝐬 𝝎𝒏𝒕 + 𝑪𝟐 𝐬𝐢𝐧𝝎𝒏 𝒕 +
𝒒

(𝝎𝒏
𝟐−𝜴𝟐)

𝐬𝐢𝐧𝜴𝒕 3.61 

Using the initial conditions 

�̇�(𝑡) = −𝐶1 𝜔𝑛sin𝜔𝑛𝑡 + 𝐶2𝜔𝑛 cos𝜔𝑛 𝑡 +
𝑞𝛺

(𝜔𝑛
2−𝛺2)

cos𝛺𝑡 3.62 

𝑥(0) = 𝐶1 + (0) + (0)   3.63 

𝑥(0) = 𝐶1 = 𝑥0    3.64 

𝑥 ̇ (0) = (0) + 𝐶2𝜔𝑛 + 
𝑞𝛺

(𝜔𝑛
2−𝛺2)

  3.65 

𝑥 ̇ (0) = 𝑣0     3.66 

 𝐶2𝜔𝑛 = 𝑣0 −
𝑞𝛺

(𝜔𝑛
2−𝛺2)

    3.67 

𝐶2 =
𝑣0

𝜔𝑛
−

𝑞𝛺

𝜔𝑛(𝜔𝑛
2−𝛺2)

    3.68 

𝐶2=
𝑣
0(𝜔𝑛

2−𝛺2)−𝑞𝛺

𝜔
𝑛(𝜔𝑛

2−𝛺2)

    3.69 

Therefore the general equation 3.62 becomes 

𝒙(𝒕) = 𝑥0𝐜𝐨𝐬 𝝎𝒕 + (
𝒗𝟎(𝝎𝒏

𝟐−𝜴𝟐)−𝒒𝜴

𝜔𝑛(𝝎𝒏
𝟐−𝜴𝟐)

) 𝐬𝐢𝐧𝝎𝒕 +
𝒒

(𝝎𝒏
𝟐−𝜴𝟐)

𝐬𝐢𝐧𝜴𝒕  3.70 

 

 

3.3.3 Forced damped vibration 
 

 

Figure 3. 9: Forced vibration viscous damped  

u(t) 

 𝑘𝑥 𝑐�̇� 

u(t) 

𝑘𝑥 

(a) (b) 

𝑐 
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Figure 3.9 (b) shows the free body diagram with an additional force called the damping force 

denoted by  𝒇𝒄 = 𝒄�̇� and 𝒖(𝒕) = 𝑷𝒔𝒊𝒏𝜴𝒕 represents the driving force causing an oscillatory 

vertical motion of the spring. Using Newton’s second law gives the differential equation of 

driven or forced motion:  

 

𝑚𝑥 ̈ = −𝑘𝑥 − 𝑐�̇� + 𝑓(𝑡)   3.71 

But 𝑐 = 2𝜁𝜔𝑛𝑚 

𝑚𝑥 ̈ + 𝑘𝑥 +  𝑐�̇� = 𝑃𝑠𝑖𝑛𝛺𝑡   3.72 

𝑚𝑥 ̈ + 2𝜁𝜔𝑛𝑚�̇� + 𝑘𝑥 = 𝑃𝑠𝑖𝑛𝛺𝑡  3.73 

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑥 = 𝑞 sin 𝛺𝑡  3.74 

Assume the solution to be  

𝑥(𝑡) = 𝐴𝑠𝑖𝑛𝛺𝑡    3.75 

�̇�(𝑡) = 𝐴𝛺 cos𝛺𝑡    3.76 

�̈�(𝑡) = −𝐴𝛺2 sin𝛺𝑡    3.77 

Substitute 3.75, 3.76 and 3.77 into equation 3.74 

−𝐴𝛺2 sin 𝛺𝑡 + 2𝜁𝜔𝑛𝐴𝛺 cos𝛺𝑡 + 𝜔𝑛
2 𝐴𝑠𝑖𝑛𝛺𝑡 = 𝑞 sin𝛺𝑡  3.78 

−𝐴𝛺2 sin 𝛺𝑡 + 2𝜁𝜔𝑛𝐴 cos𝛺𝑡 + 𝜔𝑛
2 𝐴𝑠𝑖𝑛𝛺𝑡 − 𝑞 sin𝛺𝑡 = 0  3.79 

But  −𝐴𝛺2 sin 𝛺𝑡 + 𝜔𝑛
2 𝐴𝑠𝑖𝑛𝛺𝑡 − 𝑞 sin𝛺𝑡 = 0     3.80 

−𝐴𝛺2 + 𝜔𝑛
2 𝐴 − 𝑞 = 0   3.81 

From 3.78    2𝜁𝜔𝑛𝐴𝛺 cos𝛺𝑡 = 0    3.82 

2𝜁𝜔𝑛𝛺𝐴 = 0     3.83 
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Therefore 3.78 becomes 

−𝐴𝛺2 + 𝜔𝑛
2 𝐴 − 𝑞 + 2𝜁𝜔𝑛𝐴 = 0  3.84 

𝑨 =
𝒒

(𝝎𝒏
𝟐+𝜴𝟐)+𝟐𝜻𝝎𝒏𝜴

    3.85 

Therefore     𝒙(𝒕) =
𝒒

(𝝎𝒏
𝟐+𝜴𝟐)+𝟐𝜻𝝎𝒏𝜴

𝒔𝒊𝒏𝜴𝒕   3.86 

3.3.4 Two degrees of freedom 

This is a very important aspect of this study that deals with transmission line represented  

by 𝑚1 and the Stockbridge Damper represented by  𝑚2 .The mass 𝑚2 is called mass vibration 

absorber because it absorbs energy of vibration from mass 𝑚1, having forced vibration (Seto, 

1964). In other words it cuts down as much as possible the amplitude of the driving force 

causing an oscillatory vertical motion of transmission line. The response of a multi-degree of 

freedom system due to harmonic excitation is the sum of the homogeneous solution and the 

particular solution (Kelly, 1993). The support of the mass-spring system is given a forced 

sinusoidal displacement   𝑥(𝑡) = 𝐹0 cos𝜔𝑡. Find the steady state vibration of the masses 

(Seto, 1964). 

 

Figure 3. 10: (a) Simple two-degree of freedom model consisting of two masses connected in 
series by two springs. (b) Free body diagram of each mass in the system. 

𝑘1 

𝑘2 

𝑚1 

𝑚2 

𝑚1 

𝑚2 

𝑥1 

𝑥2 

 

𝐹0 cos𝜔𝑡 

  

𝑘1𝑥1 

𝑘2(𝑥1 − 𝑥2) 

𝑘2(𝑥1 − 𝑥2) 

 

𝐹0 cos𝜔𝑡 

𝑚1�̈�1 

(a) 
(b) 
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  𝑚1�̈�1 = −𝑘1𝑥1 − 𝑘2(𝑥1 − 𝑥2) + 𝐹0 cos𝜔𝑡   3.87 

  𝑚1�̈�1 + 𝑘1𝑥1 + 𝑘2(𝑥1 − 𝑥2) = 𝐹0 cos𝜔𝑡   3.88 

𝒎𝟏�̈�𝟏 + (𝒌𝟏 + 𝒌𝟐)𝒙𝟏 − 𝒌𝟏𝒙𝟐 = 𝑭𝟎 𝐜𝐨𝐬𝝎𝒕   3.89 

𝑚2�̈�2 = 𝑘2(𝑥1 − 𝑥2)      3.90 

𝒎𝟐�̈�𝟐 − 𝒌𝟐𝒙𝟏 + 𝒌𝟐𝒙𝟐 = 𝟎     3.91 

Assume the solution 

𝑥1(𝑡) = 𝐴1 cos𝜔𝑡      3.92 

�̇�1(𝑡) = −𝐴1𝜔 sin𝜔𝑡      3.93 

�̈�1(𝑡) = −𝐴1𝜔
2 cos𝜔𝑡      3.94 

𝑥2(𝑡) = 𝐴2 cos𝜔𝑡      3.95 

 �̇�2(𝑡) = −𝐴2𝜔 sin𝜔𝑡      3.96 

�̈�2(𝑡) = −𝐴2𝜔
2 cos𝜔𝑡      3.97 

Using  books by (Ayres, 1962, Seto, 1964, Stroud and Booth, 2001) 

[
𝑚1 0
0 𝑚2

] [
�̈�1

�̈�2
] + [

(𝑘1 + 𝑘2) −𝑘2

−𝑘2 𝑘2
] [

𝑥1

𝑥2
] =[

𝐹0 cos𝜔𝑡
0

]  3.98 

[
𝑚1 0
0 𝑚2

] [
−𝐴1𝜔

2

−𝐴2𝜔
2] + [

(𝑘1 + 𝑘2) −𝑘2

−𝑘2 𝑘2
] [

𝑥1

𝑥2
] =[

𝐹0

0
]  3.99 

[
−𝑚1𝜔

2 + (𝑘1 + 𝑘2) −𝑘2

−𝑘2 −𝑚2𝜔
2 + 𝑘2

] [
𝐴1

𝐴2
] = [

𝐹0

0
]  3.100 

Adjoint = [
−𝑚2𝜔

2 + 𝑘2 𝑘2

𝑘2 −𝑚1𝜔
2 + (𝑘1 + 𝑘2)

]    3.101 

Determinant = [−𝑚1𝜔
2 + (𝑘1 + 𝑘2)] [−𝑚2𝜔

2 + 𝑘2] − [−𝑘2][−𝑘2]  3.102 

[
𝐴1

𝐴2
] =

𝑎𝑑𝑗𝑜𝑖𝑛𝑡[
𝐹0
0

]

𝑑𝑒𝑡𝑒𝑚𝑖𝑛𝑎𝑛𝑡
       3.103 

[
𝐴1

𝐴2
] =

[
−𝑚2𝜔

2 + 𝑘2 𝑘2

𝑘2 −𝑚1𝜔
2 + (𝑘1 + 𝑘2)

] [
𝐹0

0
]

[−𝑚1𝜔2 + (𝑘1 + 𝑘2)] [−𝑚2𝜔2 + 𝑘2] − [−𝑘2][−𝑘2]
 

Therefore 

𝑨𝟏 =
(−𝒎𝟐𝝎𝟐+𝒌𝟐)𝑭𝟎

[−𝒎𝟏𝝎𝟐+(𝒌𝟏+𝒌𝟐)] [−𝒎𝟐𝝎𝟐+𝒌𝟐]−[−𝒌𝟐][−𝒌𝟐]
   3.104 

𝑨𝟐 =
𝒌𝟐𝑭𝟎

[−𝒎𝟏𝝎𝟐+(𝒌𝟏+𝒌𝟐)] [−𝒎𝟐𝝎𝟐+𝒌𝟐]−[−𝒌𝟐][−𝒌𝟐]
   3.105 

Therefore the displacement for 𝑥1and 𝑥2 are 
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𝒙𝟏(𝒕) =
(−𝒎𝟐𝝎𝟐+𝒌𝟐)𝑭𝟎

[−𝒎𝟏𝝎𝟐+(𝒌𝟏+𝒌𝟐)] [−𝒎𝟐𝝎𝟐+𝒌𝟐]−[−𝒌𝟐][−𝒌𝟐]
𝐜𝐨𝐬 𝝎𝒕  3.106 

𝒙𝟐(𝒕) =
𝒌𝟐𝑭𝟎

[−𝒎𝟏𝝎𝟐+(𝒌𝟏+𝒌𝟐)] [−𝒎𝟐𝝎𝟐+𝒌𝟐]−[−𝒌𝟐][−𝒌𝟐]
𝐜𝐨𝐬 𝝎𝒕  3.107 

 

 

 

3.3.5 Previous work done by other researchers on the Stockbridge Dampers 

Barry et al. (2015) presented a nonlinear model dealing with the nonlinearity of the dynamics 

of the Stockbridge damper. The nonlinearity was from damping coefficient and geometric 

stretching of the messenger cable. The Stockbridge damper was modelled as two cantilevered 

beams with tip masses. Barry et al. (2015) used Hamilton’s principle to derive the equation of 

motion and boundary conditions. Explicit expressions were presented for the frequency 

equation, modes shapes, nonlinear frequency, and modulation equations. The experimental 

setup and procedure were performed according to IEEE guide. The Stockbridge damper was 

mounted on an electrodynamic shaker (B & K 4802). Experiments were conducted to measure 

the damper resonant frequencies and to validate the proposed analytical model. The 

proposed model can be used on asymmetric and symmetric Stockbridge dampers. Numerical 

simulation showed that both the nonlinear frequency and vibration amplitude were 

significantly affected by the counterweight mass and rotary inertia. It was also noticed that 

the damping coefficient is an important factor in determining the influence of the geometric 

stretching of the messenger cable. It was discovered that the model can be used by design 

engineers to predict the dynamic behaviour of Stockbridge damper.  

Kalombo et al. (2012) and Badibanga (2012) developed an effective mathematical model. It 

was describing the bending stress of a symmetrical Stockbridge damper’s messenger cable 

close to the clamped end. During its operation, the damper’s messenger cable vibrates and 

bending stress is developed. This can affect the performance of the Stockbridge damper. The 

aim of the study was to analyse the developed mathematical model describing the bending 

stress of the Stockbridge damper’s messenger cable near the clamped end. Data from 

experiments agreed with that from theory (mathematical model) at resonance frequency.  
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Results show that the model can be used to predict the stress at resonance frequency 

(Kalombo et al., 2012, Badibanga, 2012) . 

Standard Stockbridge dampers are designed so that their mechanical impedance matches as 

closely as possible the optimum damper impedance determined for the cable to be protected 

(Markiewicz, 1995). Since the optimum impedance is calculated assuming that the cable is 

clamped at its extremity, the optimally tuned standard dampers will work efficiently only 

when they are mounted near suspension clamps. In some spans, however, conductors are 

connected to the tower by means of special tension equipment which may affect the 

efficiency of the mounted standard damper. Analysis were done to show that the optimum 

damper impedance required for such spans (called Dead-end spans) differs significantly from 

the optimum impedance of the standard damper. Markiewicz (1995) presented a method and 

computational model for the evaluation of the optimum dynamic characteristics of 

Stockbridge dampers to be mounted near tension insulator assemblies. It also shows how the 

efficiency of a standard damper used in such spans may be improved by its proper location.  

Experimental measurement campaign was conducted with a modified dynamometric 

Stockbridge damper clamped to a laboratory test span (Diana et al., 2003). The goal was to 

get the force and the torque exerted between the cable and the damper on a span. Three 

tests were done to get the needed parameters: cable self-damping tests, tests with the 

Stockbridge damper clamped on the shaker, and tests on the span equipped with the 

dynamometric damper (Diana et al., 2003). 

All the design parameters that influenced the Stockbridge damper model were undertaken 

using the design sensitivity analysis of a Stockbridge damper (Kim, 2017). Using partial 

derivatives of the functions of two eigenvalues with respect to each design parameter the 

design sensitivity equations were formulated; the contribution of each variable was 

determined according to the partial derivatives with respect to the concerned variable. The 

possibility of the sensitivity analysis result was validated using a simple model of a Stockbridge 

damper and modifying the value of each parameter by up to 30 % from the baseline (Kim, 

2017). Based on the simulation results the design guidelines for a Stockbridge damper were 

then established   
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Vaja et al. (2018) developed an analytical model of an unusual vibration damper with an 

increased number of resonant frequencies of the damper. The 3D finite element was also 

developed to validate the result of an analytical model. Experiments were not conducted  

(Vaja et al., 2018). This research focuses on doing experiments and the development of an 

analytical model of an asymmetric damper which was not done by the other researchers.  

Experiment is also conducted in changing the geometry of the counterweight of the damper.  
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CHAPTER 4 

MATERIAL AND METHOD  
 

4.1 Equipment 

This chapter describes the equipment used and the procedure followed in conducting the 

tests carried out at the vibration research and testing facility at the University of KwaZulu-

Natal. The vibration system is composed of important components shown in Figure 4.1. It 

consist of: 

 An electro-dynamic shaker (TIRA Model, Type TV 56263/LS-340) for providing an 

input force to the damper. 

 An amplifier to control the voltage or current to the shaker. 

 A control system (known as a computer controlled data acquisition system) 

 A compressor for load protection 

 Ten (10) asymmetric Stockbridge dampers of various sizes. 

 

Figure 4. 1: Components of the vibration test system on the shaker base. (a) controller.              
(b) Amplifier. (c) Shaker, asymmetric damper and accelerometers. (d) Compressor. 

4.2  Experimental setup 

The procedure used for the force response test is presented in figure 4.3 and experimental 

setup made with the following units: 

(a) 

(b) 

(c) 

(d) 
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 Mount the jig on the shaker 

 Mount two transducers on each support of the jig 

 Mount the Damper in an upright position in the middle of the rigid bar of the jig 

 Stick one accelerometer on the shaker base for control 

 Stick two accelerometers using glue on each damper’s weights as shown in figure 4.2 

 Make a sweep at constant velocity of 0.1 m/s in the frequency range between                  

5 – 300 Hz (to cover a broad spectrum of frequencies) for 30 minutes. 

 Repeat the experiment for each damper following the same procedure. 

 30 tests of Stockbridge Dampers will be tested and statistical methods will be used. 

 After collecting the data obtain the graph of amplitude vs frequency representing the 

characteristic of asymmetrical Stockbridge Damper 

 

 

Figure 4. 2: Asymmetric Stockbridge damper with four accelerometers 
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Figure 4. 3: Experimental setup used in the current study  

 

No. Transducer Sensitivity Location

1 6959 100 mv/g Jig base

2 55811 21.3 mV/N Jig

3 55810 21.64 mV/N Jig

4 6524 98.3 mv/g Damper(s)

5 6966 103.6 mv/g Damper(s)

6 6730 93.6 mv/g Damper(L)

7 6964 99.7 mv/g Damper(L)

Acc. (1)

Acc.(7)

Acc.(6)

Force (2) 

Shaker

Force (3)

Acc. (4)

Acc(5) Damper

Jig
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CHAPTER 5 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

5.1  Introduction 

This chapter presents the results of the thirty tests conducted on three different sets of 

asymmetrical dampers and the analyses of the results obtained. The resonant frequencies 

and amplitudes were presented for the various configurations of asymmetrical damper. 

The following three sets of dampers were tested: 

 Damper (182 025-301) Ø31 – 39 mm :4 of them set A 

 Damper (182 025-401) Ø39 – 47mm  :3 of them set B 

 Damper (182 025-101) Ø7 – 15 mm :3 of them set C 

 In total the number of dampers is ten (10) and each damper to be tested three times 

which makes thirty tests to be done for statistical consideration 

 

5.2 Experimental results for set A Stockbridge Damper no. 1 (182 025-301)                       

Ø31 – 39 mm 

The following results are related to the set A damper 1 (182 025-301) Ø31 – 39 mm. There 

were 4 of them as mentioned before; however in this section only one sample shown tested 

in triplicate. The remaining results of set A are attached in appendix A 

 

5.2.1 Discussions for damper 1 (182 025-301) Ø31 – 39 mm of set A 

5.2.1.1 There are effectively 4 masses on the Stockbridge damper therefore the damper is a 

four degrees of freedom as shown in Figure 5.1; 

5.2.1.2 From the big mass, it is observed that it vibrates at 8 Hz with an amplitude of 0.6 G 

and 1 G as shown in Figure 5.2; 

5.2.1.3 From the big mass, it is also observed to vibrate at 50 Hz with an amplitude of 1.9 G 

and 5 G as shown in Figure 5.2; 
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5.2.1.4 Each  mass has a two degrees of freedom ( inner and outer part) as shown in              

Figure 5.1; 

5.2.1.5 At resonance, or maximum peak it has a frequency of 8 Hz and 50 Hz corresponding 

to the bigger mass as shown in Figure 5.2; 

5.2.1.6 Figure 5.5 and 5.6 show the first and second modes of the bigger mass during 

operation; 

5.2.1.7 From the small mass, it is observed that it vibrates at 22 Hz with an amplitude of           

1.9 G and 4 G (log) as shown is Figure 5.3; 

5.2.1.8 From the same small mass it also vibrates at 70 Hz with an amplitude of 4 G and                   

10 G (log) as shown in Figure 5.3; 

5.2.1.9 At resonance, or maximum peak it has 22 Hz, 70 Hz corresponding to the small mass; 

5.2.1.10 Figure 5.7 and 5.8 show the first and second modes of the small mass during 

operation; 

5.2.1.11 The Stockbridge damper has resonance frequencies at 8 Hz, 22 Hz, 50 Hz and 70 Hz; 

5.2.1.12 The Stockbridge damper is a mass vibration absorber; 

5.2.1.13 At any other frequencies except 8 Hz, 22 Hz, 50 Hz and 70 Hz the damper is not a 

mass absorber; 

5.2.1.14 Statistics: 30 experiments to increase significant or confidence level of results or 

certainty, normal distribution. 
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Figure 5. 1: The asymmetric Stockbridge damper is a four degrees of freedom 

 

  

Figure 5. 2: The graph of acceleration amplitude G (log) vs Hz (log) 
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Figure 5. 3: The graph of acceleration amplitude G (log) vs Hz (log) 

 

 

  

Figure 5. 4: The graph of acceleration amplitude G (log) vs Hz (log) 
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Figure 5. 5: Bigger mass of the Stockbridge damper (first mode at 8 Hz) 

 

 

 

Figure 5. 6: Bigger mass of the Stockbridge damper (second mode at 50 Hz) 
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Figure 5. 7: Smaller mass of the Stockbridge damper (first mode at 22 Hz) 

 

 

 

 

Figure 5. 8: Smaller mass of the Stockbridge damper (second mode at 70 Hz) 
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5.3 Experimental results for set B Stockbridge Damper no. 5 (182 025-401) Ø39 – 47mm   

The following results are related to the set B of damper no.5 (182 025-401). There were 3 of 

them as mentioned before, however in this section only one sample of damper (182 025-401) 

tested in triplicate. The remaining results of set B are attached in appendix B 

5.3.1 Discussions for set B damper 5 (182 025-401) Ø39 – 47mm   

5.3.1.1 Everything is the same for damper 5 (182 025-401) Ø39 – 47 mm set B if it is compared 

to damper 1 (182 025-301) Ø31 – 39 mm set A discussed previously in terms of results. 

The only thing that differs is the frequency, the amplitude for the first mode and 

second mode of the bigger mass and the small mass. 

5.3.1.2  From the big mass, it is observed that it vibrates at 6.2 Hz with an amplitude of 0.5 G  

and 1.2 G (log) as shown in Figure 5.9;  

5.3.1.3  From the big mass, it is also observed to vibrate at 26 Hz with an amplitude of 1 G and 

4 G (log) in Figure 5.9; 

5.3.1.4 Table 5.1 presents the first and the second modes of the bigger mass; 

5.3.1.5 From the small mass, it is observed that it vibrates at 14 Hz with an amplitude of 1 G 

and 2.8 G (log) as shown is Figure 5.10; 

5.3.1.6 From the same small mass it also vibrates at 52 Hz with an amplitude of 1.8 G and                   

12 G (log) as shown in Figure 5.10; 

5.3.1.7 Table 5.2 presents the first and the second modes of the smaller mass; 

5.3.1.8 The Stockbridge damper has resonance frequencies at 6.2 Hz, 26 Hz, 14 Hz and 52 Hz; 

5.3.1.9 At any other frequencies except 6.2 Hz, 14 Hz, 26Hz and 52 Hz the damper is not a 

mass absorber. 
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Figure 5. 9: The graph of acceleration amplitude G (log) vs Hz (log) 

 

 

Figure 5. 10: The graph of acceleration amplitude G (log) vs Hz (log) 
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G (Log) 

DAMPER 5 (182 025-101) TEST 1 

DAMPER 5 (182 025-101) TEST 2 
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Figure 5. 11: The graph of acceleration amplitude G (log) vs Hz (log) 

 

 

 

 

Table 5.1: Represents the first and second modes of the bigger mass of damper 5                
(182 025-401) Ø39 – 47mm. 

Bigger mass first mode 

frequency 6.2 Hz (log) 

Amplitude 0.5 G and 1.2 G 

(log) 

Bigger mass second mode 

frequency 26 Hz (log) 

amplitude 1 G and 4 G (log) 

 

 

 

G (Log) 

DAMPER 5 (182 025-401) TEST 3 
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Table 5.2: Represents the first and second modes of the smaller mass of damper 5           
(182 025-401) Ø39 – 47mm. 

Smaller mass first mode 

frequency 14 Hz (log) 

Amplitude 1 G and  2.8 G (log) 

Smaller mass second mode 

frequency 52 Hz (log) 

amplitude 1.8 G and 12 G (log) 

   

 

 

5.4 Experimental results for set C Stockbridge Damper no. 8 Damper (182 025-101)        Ø7 

– 15 mm   

The following results are related to the set C of damper 10 (182 025-101). There were 3 of 

them as mentioned before, however in this section only one sample of damper (182 025-101) 

tested in triplicate. The remaining are attached in appendix C 

5.4.1 Discussions for set C damper 8 (182 025-101) Ø7 – 15 mm   

5.4.1.1 Everything is the same for damper no 8 (182 025-101) Ø7 – 15 mm set C if it is 

compared to sets A and B discussed previously in terms of results. The only thing that 

differs is the frequency, the amplitude for the first mode and second mode of the 

bigger mass and the small mass. 

5.4.1.2  From the big mass, it is observed that it vibrates at 15 Hz with an amplitude of 1.1 G 

and 2 G (log) as shown in Figure 5.12  

5.4.1.3   From the big mass, it is also observed to vibrate at 70 Hz with an amplitude of 3 G 

and 10 G (log) in Figure 5.12 

5.4.1.4 Table 5.3 presents the first and the second modes of the bigger mass; 

5.4.1.5 From the small mass, it is observed that it vibrates at 30 Hz with an amplitude of           

2.4 G and 4 G (log) as shown is Figure 5.13; 
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5.4.1.6 From the same small mass it also vibrates at 190 Hz with an amplitude of 7 G and                   

40 G (log) as shown in Figure 5.13; 

5.4.1.7 Table 5.4 presents the first and the second modes of the smaller mass; 

5.4.1.8 The Stockbridge damper has resonance frequencies at 15 Hz, 30 Hz, 70 Hz and 190 Hz; 

5.4.1.9 At any other frequencies except 15 Hz, 30 Hz, 70 Hz and 190 Hz the damper is not a 

mass absorber 

 
DAMPER 8 (182 025-101) Ø7 – 15 mm  

 

Figure 5. 12: The graph of acceleration amplitude G (log) vs Hz (log) 
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DAMPER 10 (182 025-101) TEST 1 
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DAMPER 8 (182 025-101) Ø7 – 15 mm 

 

Figure 5. 13: The graph of acceleration amplitude G (log) vs Hz (log) 

 

 

DAMPER 8C (182 025-101) Ø7 – 15 mm  

 

Figure 5. 14: The graph of acceleration amplitude G (log) vs Hz (log) 
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Table 5.3: Represents the first and second modes of the bigger mass of damper 8                             
(182 025-101) Ø7 – 15 mm. 

Bigger mass first mode 

frequency 15 Hz (log) 

Amplitude 1.1 G and 2 G (log) 

Bigger mass second mode 

frequency 70 Hz (log) 

amplitude 3 G and 10 G (log) 

  

 
 
Table 5.4: Represents the first and second modes of the smaller mass of damper 8 
(182 025-101) Ø7 – 15 mm. 

Smaller mass first mode 

frequency 30 Hz (log) 

Amplitude 2.4 G and  4 G (log) 

Smaller mass second mode 

frequency 190 Hz (log) 

amplitude 7 G and 40 G (log) 

 

             
 

5.5 Additional experiments. 
 

5.5.1 Introduction 

Another set of experiments was conducted with two accelerometers on the inner part of each 

mass of the Stockbridge damper as shown in Figure 5.15. This was aiming to check if there is 

rotational motion on each mass of the Stockbridge damper during its operation. Three tests 

were conducted for each Stockbridge (182 025-301) and (182 025-401). The remaining results 

are attached in appendix D. The experimental procedure has not changed the only change is 

that each mass of the damper has two accelerometers on the inner part of the smaller and 

bigger mass.  
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Figure 5. 15: The asymmetric Stockbridge damper with two accelerometers on the inner part 
of each mass. 

 

5.5.2 Discussion for damper (182 025-301) and (182 025-401) 

On Figure 5.16 and 5.17 the graphs of the inner accelerometers are moving together showing 

that there is no rotational motion. This is to confirm that there was no rotation of the dampers 

about the messenger wire and only up and down vertical motion of the dampers due to the 

shaker applied force were observed and only vertical motion will be necessary for the 

mathematical models, thereby ignoring rotation. 
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Figure 5. 16: The graph of acceleration amplitude G (log) vs Hz (log) 
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Figure 5. 17: The graph of acceleration amplitude G (log) vs Hz (log) 
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5.6  Introduction  

The number of resonant frequencies produced by the Stockbrigde damper are very significant 

and they characterize the effectiveness of it. A set of experiments was conducted by adding 

a mass on each one side of the inner part of the damper as shown in Figure 5.18. The first 

experiment was conducted by adding a mass of 57.5 g and 100 g on each side of the inner 

part. The second experiment was done by doubling the masses. 

 

 
 
Figure 5. 18: The asymmetric Stockbridge damper with added masses on each side inner part 
of each mass. 

 
 

5.6.1 Discussion for damper (182 025-401) 

The two graphs on Figure 5.19 and 5.20 are the results of the experiment conducted when 

the inner part of the asymmetric Stockbrigde damper is changed by adding masses as shown 

in Figure 18. This shows that the damper is a six degree of freedom and has six resonant 

frequencies 

 

Added mass of 200 g Added mass of 115 g 
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Figure 5. 19: The asymmetric Stockbridge damper with added masses of 57.5 g and 100 g on 
each side inner part of each mass. 
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Figure 5. 20: The asymmetric Stockbridge damper with added masses of 115 g and 200 g on 
each side inner part of each mass. 
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CHAPTER 6 

MODELLING AND DESIGN OF A NEW STOCKBRIDGE DAMPER 
 

6.1 Introduction 

The governing equations for the vibrating system represented by a half model of a vibration 

damper are presented. The purpose is to present theory for the design of Stockbridge 

dampers configured for better efficiency. The equations are overwhelming. An example case 

was presented for a two-degree-of-freedom modified damper to determine the frequencies 

and amplitudes of vibration. Material properties were assumed for a case, to obtain the 

frequencies and amplitudes of vibration for the damper. 

 

6.2 Analytical model 

 

Figure 6. 1: Vibration damper (Vaja et al., 2018) 

 

The mathematical model of the complete vibration damper will be large. The computation is 

simplified by looking at a half model of the vibration damper as shown in figure 6.2  (Vaja et 

al., 2018). Three coordinate systems (𝑂1 , 𝑂2 𝑎𝑛𝑑 𝑂3) are used. The model is treated as a 

three cantilever system each cantilever having a concentrated load at its end. The first 
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coordinate system 𝑂1 is at the clamp of the damper with a mass 𝑀1at the end of the 

messenger cable. The second coordinate is on the right side of mass 𝑀1and has a mass  𝑀2 at 

its end. The third coordinate is on the left side of 𝑀1 with a mass 𝑀3. The mass 𝑀1 will have 

rotational motion during its operation while 𝑀2 and 𝑀3 are regarded to be concentrated 

masses acting at the ends of each beam. The masses 𝑀2  and 𝑀3  are equal in terms of mass 

and similar in shape. The vibration displacement along the 𝑗 coordinate is given as 𝑌1, 𝑌2, and 

𝑌3 respectively in the first, second, and third coordinate system. 

 

Figure 6. 2: Diagram of the half model of vibration damper (Vaja et al., 2018) 

 

There are various parameters that need to be considered: 

 Potential energy 

 Kinetic energy 

 Deflection of the beam 

 Slope on the beam 

 Bending moment of the beam 

 Shear force acting in the beam 

 Force per unit length 
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The following equations take all these parameters into consideration. The strain energy is 

considered as  

𝑈 = ∫
𝑀2𝑑𝑥

2𝐸𝐼

𝐿

0
              (6.1) 

But the bending moment   

𝑀 = 𝐸𝐼𝑌𝐼𝐼               (6.2) 

Substitute equation 6.2 into 6.1 

𝑈 = ∫
(𝐸𝐼𝑌′′)

2
 𝑑𝑥

2𝐸𝐼

𝐿

0
               (6.3) 

 

𝑈 =
1

2
𝐸𝐼 ∫ 𝑌′′2𝐿

0
 𝑑𝑥               (6.4) 

Equation 6.4 becomes the potential energy equation of the system because the beam after 

being strained has the strain energy converted to potential energy (𝑉) 

𝑉 =
1

2
𝐸𝐼 ∫ 𝑌′′2𝐿

0
 𝑑𝑥               (6.5) 

The kinetic and potential energy of the system are provided by equations 6.6 and 6.7 

respectively. The derivation of the equation, the free body diagram, the resulting equations 

are adapted from (Vaja et al., 2018) and are conveniently repeated as follows:    

 

𝑇 =  
1

2
 𝑚1 ∫ �̇�1

2𝐿1

0
(𝑥1, 𝑡) 𝑑𝑥 + 

1

2
 𝑀1�̇�1

2
(𝐿1, 𝑡) + 𝐽�̇�1

′ (𝐿1, 𝑡) + 
1

2
 𝑚2 ∫ �̇�2

2𝐿2

0
(𝑥2, 𝑡) 𝑑𝑥 +

1

2
 𝑀2�̇�2

2
(𝐿2, 𝑡) +

1

2
 𝑚3 ∫ �̇�3

2𝐿3

0
(𝑥3, 𝑡) 𝑑𝑥 +

1

2
 𝑀3�̇�3

2
(𝐿3, 𝑡)                  (6.6) 

𝑉 =
1

2
𝐸𝐼1 ∫ 𝑌′′2(𝑥1, 𝑡)

𝐿1

0
 𝑑𝑥 +

1

2
𝐸𝐼2 ∫ 𝑌′′2(𝑥2, 𝑡)

𝐿2

0
 𝑑𝑥 +

1

2
𝐸𝐼3 ∫ 𝑌′′2(𝑥3, 𝑡)

𝐿3

0
 𝑑𝑥              (6.7) 

The highpoints in the above equations represent differentiation with respect to time which is 

represented by dots, and differentiation with respect to   𝑥.  𝐸 is Young’s modulus of elasticity, 
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𝐼1, 𝐼2 and 𝐼3 are the second moments of area of the messenger cables and beams respectively. 

𝐽 is the rotational moment of inertia of the mass  𝑀1, 𝐿1 is the length, 𝑚1 is the mass per unit 

length of the cable. 𝐿2, 𝐿3 are the lengths and   𝑚2,  𝑚3 are the mass per unit length of the 

beams respectively. The rate of change of the shear force at any point on the axis of the beam 

is equal to the negative of the intensity of the distributed load at any point (Gere and 

Timoshenko, 1997). Using Hamilton’s principle, Lagrange equations and Newton’s second 

Laws, the equations of motions of the system are obtained as 

𝐸𝐼1𝑌1
𝐼𝑉 + 𝑚1�̈�1 = 0    (6.8) 

𝐸𝐼2𝑌2
𝐼𝑉 + 𝑚2�̈�2 = 0    (6.9) 

𝐸𝐼3𝑌3
𝐼𝑉 + 𝑚3�̈�3 = 0    (6.10) 

For harmonic motion the system shows the following equations as given below 

𝑌1(𝑥1, 𝑡) = 𝐹(𝑥1)𝑒
𝑖𝜔𝑡    (6.11) 

𝑌2(𝑥2, 𝑡) = 𝐺(𝑥2)𝑒
𝑖𝜔𝑡   (6.12) 

𝑌3(𝑥3, 𝑡) = 𝐻(𝑥3)𝑒
𝑖𝜔𝑡   (6.13) 

The natural frequency is represented by 𝜔 and the mode shapes at these frequencies is 

given as 

𝐹(𝑥1) = 𝑎1 sin 𝛽1𝑥1 + 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh𝛽1𝑥1 + 𝑎4 cosh𝛽1𝑥1   (6.14) 

𝐺(𝑥2) = 𝑎5 sin 𝛽2𝑥2 + 𝑎6 cos 𝛽2𝑥2 + 𝑎7 sinh 𝛽2𝑥2 + 𝑎8 cosh𝛽2𝑥2  (6.15) 

𝐻(𝑥3) = 𝑎9 sin 𝛽3𝑥3 + 𝑎10 cos 𝛽3𝑥3 + 𝑎11 sinh 𝛽3𝑥3 + 𝑎12 cosh 𝛽3𝑥3  (6.16) 

The equations 6.14, 6.15 and 6.16 into equation 6.11, 6.12 and 6.13 respectively give: 

𝑌1(𝑥1, 𝑡) = (𝑎1 sin 𝛽1𝑥1 + 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh𝛽1𝑥1 + 𝑎4 cosh 𝛽1𝑥1)𝑒
𝑖𝜔𝑡 (6.17)  

𝑌2(𝑥2, 𝑡) = (𝑎5 sin 𝛽2𝑥2 + 𝑎6 cos 𝛽2𝑥2 + 𝑎7 sinh𝛽2𝑥2 + 𝑎8 cosh 𝛽2𝑥2)𝑒
𝑖𝜔𝑡 (6.18) 
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𝑌3(𝑥3, 𝑡) = (𝑎9 sin 𝛽3𝑥3 + 𝑎10 cos 𝛽3𝑥3 + 𝑎11 sinh 𝛽3𝑥3 + 𝑎12 cosh 𝛽3𝑥3)𝑒
𝑖𝜔𝑡 (6.19) 

So that:  

𝑌1
′(𝑥1, 𝑡) = (𝑎1 cos 𝛽1𝑥1 − 𝑎2 sin 𝛽1𝑥1 + 𝑎3 cosh 𝛽1𝑥1 + 𝑎4 sinh𝛽1𝑥1)𝛽1𝑒

𝑖𝜔𝑡  (6.20) 

𝑌2
′(𝑥2, 𝑡) = (𝑎5 cos 𝛽2𝑥2 − 𝑎6 sin 𝛽2𝑥2 + 𝑎7 cosh 𝛽2𝑥2 + 𝑎8 sinh𝛽2𝑥2)𝛽2𝑒

𝑖𝜔𝑡  (6.21) 

𝑌3
′(𝑥3, 𝑡) = (𝑎9 cos 𝛽3𝑥3 − 𝑎10 sin 𝛽3𝑥3 + 𝑎11 cosh 𝛽3𝑥3 + 𝑎12 sinh 𝛽3𝑥3)𝛽3𝑒

𝑖𝜔𝑡  (6.22) 

 

𝑌1
′′(𝑥1, 𝑡) = (−𝑎1 sin 𝛽1𝑥1 − 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh 𝛽1𝑥1 + 𝑎4 cosh𝛽1𝑥1)𝛽1

2𝑒𝑖𝜔𝑡  (6.23) 

𝑌2
′′(𝑥2, 𝑡) = (−𝑎5 sin 𝛽2𝑥2 − 𝑎6 cos 𝛽2𝑥2 + 𝑎7 sinh𝛽2𝑥2 + 𝑎8 cosh𝛽2𝑥2)𝛽2

2𝑒𝑖𝜔𝑡  (6.24) 

𝑌3
′′(𝑥3, 𝑡) = (−𝑎9 sin𝛽3𝑥3 − 𝑎10 cos𝛽3𝑥3 + 𝑎11 sinh𝛽3𝑥3 + 𝑎12 cosh𝛽3𝑥3)𝛽3

2𝑒𝑖𝜔𝑡  (6.25) 

 

𝑌1
′′′(𝑥1, 𝑡) = (−𝑎1 cos 𝛽1𝑥1 + 𝑎2 sin 𝛽1𝑥1 + 𝑎3 cosh 𝛽1𝑥1 + 𝑎4 sinh 𝛽1𝑥1)𝛽1

3𝑒𝑖𝜔𝑡  (6.26) 

𝑌2
′′′(𝑥1, 𝑡) = (−𝑎5 cos 𝛽2𝑥2 + 𝑎6 sin 𝛽2𝑥2 + 𝑎7 cosh 𝛽2𝑥2 + 𝑎8 sinh 𝛽2𝑥2)𝛽2

3𝑒𝑖𝜔𝑡  (6.27) 

𝑌3
′′′(𝑥1, 𝑡) = (−𝑎9 cos 𝛽3𝑥3 + 𝑎10 sin 𝛽3𝑥3 + 𝑎11 cosh 𝛽3𝑥3 + 𝑎12 sinh 𝛽3𝑥3)𝛽3

3𝑒𝑖𝜔𝑡 (6.28)  

 

𝑌1̇(𝑥1, 𝑡) = (𝑎1 sin 𝛽1𝑥1 + 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh 𝛽1𝑥1 + 𝑎4 cosh𝛽1𝑥1)𝜔𝑖𝑒𝑖𝜔𝑡  (6.29) 

𝑌1̈(𝑥1, 𝑡) = − (𝑎1 sin 𝛽1𝑥1 + 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh𝛽1𝑥1 + 𝑎4 cosh𝛽1𝑥1)𝜔
2𝑒𝑖𝜔𝑡  (6.30) 

𝑌2̇(𝑥2, 𝑡) = (𝑎5 sin 𝛽1𝑥1 + 𝑎6 cos 𝛽1𝑥1 + 𝑎7 sinh𝛽1𝑥1 + 𝑎8 cosh𝛽1𝑥1)𝜔𝑖𝑒𝑖𝜔𝑡  (6.31) 

𝑌2̈(𝑥2, 𝑡) = − (𝑎5 sin 𝛽1𝑥1 + 𝑎6 cos 𝛽1𝑥1 + 𝑎7 sinh𝛽1𝑥1 + 𝑎8 cosh𝛽1𝑥1)𝜔
2𝑒𝑖𝜔𝑡  (6.32) 

𝑌3̇(𝑥3, 𝑡) = (𝑎9 sin 𝛽1𝑥1 + 𝑎10 cos 𝛽1𝑥1 + 𝑎11 sinh𝛽1𝑥1 + 𝑎12 cosh𝛽1𝑥1)𝜔𝑖𝑒𝑖𝜔𝑡  (6.33) 

𝑌3̈(𝑥3, 𝑡) = − (𝑎9 sin 𝛽1𝑥1 + 𝑎10 cos 𝛽1𝑥1 + 𝑎11 sinh 𝛽1𝑥1 + 𝑎12 cosh𝛽1𝑥1)𝜔
2𝑒𝑖𝜔𝑡 (6.34) 

 

 

Using the boundary conditions the messenger cable is fixed at the left end, therefore the 

slope and deflection at this point are zero. Therefore  𝑥1 = 0  
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𝑌1(0, 𝑡) = 0;     (6.35) 

𝑌1
′(0, 𝑡) = 0;     (6.36) 

At  𝑥1 = 𝐿1  at the right end of the cable there is the mass    𝑀1. At this point the 

displacement is expected to be equal, but the slope is opposite in direction due to the 

choice of reference coordinates. Therefore, 

𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡) = 𝑌3(0, 𝑡)    (6.37) 

𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡) = − 𝑌3
′(0, 𝑡)   (6.38) 

 

The bending moment and the shear force are going to be the continuity conditions at 

  𝑥1 = 𝐿1, 𝑥2 = 0  and   𝑥3 = 0. Figure 6.3 below shows the free body diagram of moments 

Figure 6. 3:  The free body diagram of the beam for equating moments 

𝐸𝐼1𝑌1
′′(𝐿1, 𝑡) −  𝐽�̈�1

′(𝐿1, 𝑡) +  𝐸𝐼2𝑌2
′′(0, 𝑡) + 𝐸𝐼3𝑌3

′′(0, 𝑡) = 0   (6.39)  

− 𝐸𝐼1𝑌1
′′′(𝐿1, 𝑡) −  𝐸𝐼2𝑌2

′′′(0, 𝑡) − 𝐸𝐼3𝑌3
′′′(0, 𝑡) = 𝑀1�̈�1(𝐿1, 𝑡)   (6.40) 

There are two beams attached to mass  𝑀1, the first beam is free at the end; therefore the 

boundary conditions at  𝑥2 = 𝐿2  are: 

𝑌2
′′(𝐿2, 𝑡) = 0    (6.41) 

𝐽�̈�1
′(𝐿1, 𝑡) 

𝐸𝐼1𝑌1
′′(𝐿1, 𝑡) 
𝐸𝐼2𝑌2

′′(0, 𝑡) 

𝐸𝐼3𝑌3
′′(0, 𝑡) 
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𝑀2�̈�2(𝐿2, 𝑡) − 𝐸𝐼2𝑌2
′′′(𝐿2, 𝑡) = 0  (6.42) 

The same thing will happen to the second beam because it is also free at the end. Therefore 

the boundary conditions at the free end at  𝑥3 = 𝐿3   are: 

𝑌3
′′(𝐿3, 𝑡) = 0    (6.43) 

𝑀3�̈�3(𝐿3, 𝑡) − 𝐸𝐼3𝑌3
′′′(𝐿3, 𝑡) = 0  (6.44) 

 

All the calculations for the boundary conditions for each point are shown in the appendix E. Applying 

the boundary condition 𝑌1(0, 𝑡) = 0 to equation 6.17 gives 

0 = (𝑎1 sin(0) + 𝑎2 cos(0) + 𝑎3 sinh(0) + 𝑎4 cosh(0))𝑒𝑖𝜔𝑡 

0 = (𝑎2 + 𝑎4)𝑒
𝑖𝜔𝑡 

This implies that either 𝑒𝑖𝜔𝑡 = 0 for all values of 𝑡, or 𝑎2 + 𝑎4 = 0. The first statement is clearly not 

true, so it must be the case that 

𝒂𝟐 + 𝒂𝟒 = 𝟎     (6.45) 

Applying the boundary condition 𝑌1
′(0, 𝑡) = 0 to equation 6.20 gives 

0 = (𝑎1 cos(0) − 𝑎2 sin(0) + 𝑎3 cosh(0) + 𝑎4 sinh(0))𝛽1𝑒
𝑖𝜔𝑡 

(𝑎1 + 𝑎3)𝛽1𝑒
𝑖𝜔𝑡 = 0 

𝒂𝟏 + 𝒂𝟑 = 𝟎     6.46) 

 

At  𝑥1 = 𝐿1  at the cable there is the mass    𝑀1; at this point the displacement is expected 

to be equal, but the slope is opposite in direction due to the choice of reference 

coordinates. Therefore, 

𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡) = 𝑌3(0, 𝑡)     

𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡) = − 𝑌3
′(0, 𝑡)    

Applying the boundary condition 𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡) = 𝑌3(0, 𝑡) to equations 6.17, 6.18 and 6.19 

gives 
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𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡)  

𝒂𝟏 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝒂𝟐 𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝒂𝟒 𝐜𝐨𝐬𝐡𝜷𝟏 𝑳𝟏 − 𝒂𝟔 − 𝒂𝟖 = 𝟎 (6.47) 

 

Same procedure applies 

𝑌1(𝐿1, 𝑡) = 𝑌3(0, 𝑡)  

𝒂𝟏 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝒂𝟐 𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝒂𝟒 𝐜𝐨𝐬𝐡𝜷𝟏 𝑳𝟏 − 𝒂𝟏𝟎 − 𝒂𝟏𝟐 =𝟎 (6.48) 

 

Applying the boundary condition 𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡) = − 𝑌3
′(0, 𝑡)  to equations 6.20, 6.21 and 

6.22 gives 

𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡)  

𝒂𝟏 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝒂𝟐𝜷𝟏 𝐬𝐢𝐧𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏 𝑳𝟏 + 𝒂𝟒 𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏+𝒂𝟓𝜷𝟐 +

𝒂𝟕𝜷𝟐   = 𝟎          (6.49) 

𝑌1
′(𝐿1, 𝑡) = − 𝑌3

′(0, 𝑡)  

𝒂𝟏 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝒂𝟐𝜷𝟏 𝐬𝐢𝐧𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏 𝑳𝟏 + 𝒂𝟒 𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏 + 𝒂𝟗𝜷𝟑 +

𝒂𝟏𝟏𝜷𝟑 = 𝟎           (6.50) 

 

𝐸𝐼1𝑌1
′′(𝐿1, 𝑡) −  𝐽�̈�1

′(𝐿1, 𝑡) +  𝐸𝐼2𝑌2
′′(0, 𝑡) + 𝐸𝐼3𝑌3

′′(0, 𝑡) = 0    

For    𝑥1 = 𝐿1, 𝑥2 = 0  and   𝑥3 = 0. We have from 6.23, 6.24, 6.25 and 6.30 the following: 

𝑌1
′′(𝐿1, 𝑡) = (−𝑎1 sin 𝛽1𝐿1 − 𝑎2 cos 𝛽1𝐿1 + 𝑎3 sinh𝛽1𝐿1 + 𝑎4 cosh 𝛽1𝐿1)𝛽1

2𝑒𝑖𝜔𝑡  

�̈�1
′(𝐿1, 𝑡) = − (𝑎1 𝛽1cos 𝛽1𝐿1 − 𝑎2 𝛽1sin 𝛽1 𝐿1 + 𝑎3 𝛽1cosh𝛽1𝐿1 + 𝑎4 𝛽1sinh𝛽1𝐿1)𝜔

2𝑒𝑖𝜔𝑡

  

𝑌2
′′(0, 𝑡) = (−𝑎6 + 𝑎8)𝛽2

2𝑒𝑖𝜔𝑡  

𝑌3
′′(0, 𝑡) = (−𝑎10 + 𝑎12)𝛽3

2𝑒𝑖𝜔𝑡  

Substitute the above equations to equation 6.39, we obtain 

𝒂𝟏(−𝑬𝑰𝟏𝜷𝟏
𝟐 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏) + 𝒂𝟐(−𝑬𝑰𝟏𝜷𝟏

𝟐𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝑱𝝎𝟐𝜷𝟏𝐬𝐢𝐧𝜷𝟏 𝑳𝟏) +

𝒂𝟑(𝑬𝑰𝟏𝜷𝟏
𝟐𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏𝑳𝟏) + 𝒂𝟒(𝑬𝑰𝟏𝜷𝟏

𝟐 𝐜𝐨𝐬𝐡𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏) −

𝒂𝟔𝑬𝑰𝟐𝜷𝟐
𝟐 + 𝒂𝟖𝑬𝑰𝟐𝜷𝟐

𝟐  − 𝒂𝟏𝟎𝑬𝑰𝟑𝜷𝟑
𝟐 + 𝒂𝟏𝟐𝑬𝑰𝟑𝜷𝟑

𝟐 = 𝟎    (6.51) 
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− 𝐸𝐼1𝑌1
′′′(𝐿1, 𝑡) −  𝐸𝐼2𝑌2

′′′(0, 𝑡) − 𝐸𝐼3𝑌3
′′′(0, 𝑡) = 𝑀1�̈�1(𝐿1, 𝑡)    

Applying the boundary conditions to equation 6.40 lead to the following 

𝒂𝟏(−𝑬𝑰𝟏𝜷𝟏
𝟑𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 − 𝑴𝟏𝝎

𝟐𝐬𝐢𝐧𝜷𝟏𝑳𝟏) + 𝒂𝟐(𝑬𝑰𝟏𝜷𝟏
𝟑𝐬𝐢𝐧𝜷𝟏𝑳𝟏 − 𝑴𝟏 𝝎𝟐𝐜𝐨𝐬 𝜷𝟏𝑳𝟏) +

𝒂𝟑(𝑬𝑰𝟏𝜷𝟏
𝟑𝐜𝐨𝐬𝐡𝜷𝟏𝑳𝟏 − 𝑴𝟏𝝎

𝟐𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏) + 𝒂𝟒(𝑬𝑰𝟏𝜷𝟏
𝟑𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 − 𝑴𝟏 𝝎𝟐𝐜𝐨𝐬𝐡 𝜷𝟏𝑳𝟏) −

𝒂𝟓𝑬𝑰𝟐𝜷𝟐
𝟑 + 𝒂𝟕𝑬𝑰𝟐𝜷𝟐

𝟑  − 𝒂𝟗𝑬𝑰𝟑𝜷𝟑
𝟑 + 𝒂𝟏𝟏𝑬𝑰𝟑𝜷𝟑

𝟑 = 𝟎    (6.52) 

 

There are two beams attached to mass  𝑀1, the first beam is free at the end. Therefore the 

boundary conditions at  𝑥2 = 𝐿2  are: 

𝑌2
′′(𝐿2, 𝑡) = 0     

𝑀2�̈�2(𝐿2, 𝑡) − 𝐸𝐼2𝑌2
′′′(𝐿2, 𝑡) = 0  

Applying the boundary condition to equation 6.41 gives 

(−𝑎5 sin 𝛽2 𝐿2 − 𝑎6 cos 𝛽2 𝐿2 + 𝑎7 sinh𝛽2𝐿2 + 𝑎8 cosh𝛽2𝐿2)𝛽2
2𝑒𝑖𝜔𝑡 = 0  

Therefore  

−𝒂𝟓𝜷𝟐
𝟐 𝐬𝐢𝐧𝜷𝟐 𝑳𝟐 − 𝒂𝟔 𝜷𝟐

𝟐𝐜𝐨𝐬𝜷𝟐 𝑳𝟐 + 𝒂𝟕 𝜷𝟐
𝟐𝐬𝐢𝐧𝐡𝜷𝟐𝑳𝟐 + 𝒂𝟖 𝜷𝟐

𝟐𝐜𝐨𝐬𝐡 𝜷𝟐𝑳𝟐 = 𝟎 (6.53) 

Applying the boundary condition to equation 6.42 gives 

𝒂𝟓(𝑴𝟐𝝎
𝟐𝐬𝐢𝐧𝜷𝟐𝑳𝟐 − 𝜷𝟐

𝟑 𝑬𝑰𝟐𝐜𝐨𝐬𝜷𝟐𝑳𝟐) + 𝒂𝟔(𝑴𝟐𝝎
𝟐 𝐜𝐨𝐬 𝜷𝟐𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐬𝐢𝐧𝜷𝟐𝑳𝟐) +

𝒂𝟕(𝑴𝟐𝝎
𝟐𝐬𝐢𝐧𝐡𝜷𝟐 𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐜𝐨𝐬𝐡 𝜷𝟐𝑳𝟐) + 𝒂𝟖(𝑴𝟐𝝎
𝟐 𝐜𝐨𝐬𝐡𝜷𝟐 𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐬𝐢𝐧𝐡𝜷𝟐𝑳𝟐) =

𝟎           (6.54)  

 

The second beam is also free at the end at   𝑥3 = 𝐿3, apply the boundary conditions in 

equation 6.43 and 6.44 

−𝒂𝟗𝜷𝟑
𝟐 𝐬𝐢𝐧𝜷𝟑 𝑳𝟑 − 𝒂𝟏𝟎 𝜷𝟑

𝟐𝐜𝐨𝐬 𝜷𝟑 𝑳𝟑 + 𝒂𝟏𝟏 𝜷𝟑
𝟐𝐬𝐢𝐧𝐡𝜷𝟑𝑳𝟑 + 𝒂𝟏𝟐 𝜷𝟑

𝟐𝐜𝐨𝐬𝐡 𝜷𝟑𝑳𝟑 = 𝟎 

           (6.55)  
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𝒂𝟗(𝑴𝟑𝝎
𝟐𝐬𝐢𝐧𝜷𝟑𝑳𝟑 − 𝜷𝟑

𝟑 𝑬𝑰𝟑𝐜𝐨𝐬𝜷𝟑𝑳𝟑) + 𝒂𝟏𝟎(𝑴𝟑𝝎
𝟐 𝐜𝐨𝐬 𝜷𝟑𝑳𝟑 + 𝜷𝟑

𝟑𝑬𝑰𝟑𝐬𝐢𝐧𝜷𝟑𝑳𝟑) +

𝒂𝟏𝟏(𝑴𝟑𝝎
𝟐𝐬𝐢𝐧𝐡𝜷𝟑 𝑳𝟑 + 𝜷𝟑

𝟑𝑬𝑰𝟑𝐜𝐨𝐬𝐡𝜷𝟑𝑳𝟑) + 𝒂𝟏𝟐(𝑴𝟑𝝎
𝟐 𝐜𝐨𝐬𝐡𝜷𝟑 𝑳𝟑 +

𝜷𝟑
𝟑𝑬𝑰𝟑𝐬𝐢𝐧𝐡𝜷𝟑𝑳𝟑) = 𝟎        (6.56)  

The characteristic equation is created by subjecting the general solution to the above 

boundary conditions. Twelve simultaneous homogeneous equations are determined and 

arranged to form the coefficient matrix shown in the appendix F. The characteristic equation 

is obtained by equating the determinant of the coefficient matrix to zero. 

  

By referring to equation 3.102 and figure 3.10, the frequency equation is formed because 

solutions of this equation produce the frequencies of the characteristic values of system. 

The determinant of coefficient of 𝑌1 and 𝑌2  must be equal to zero. 

 

 [−𝑚1𝜔
2 + (𝑘1 + 𝑘2)] [−𝑚2𝜔

2 + 𝑘2] − [−𝑘2][−𝑘2] = 0  

[−𝑚1𝜔
2 + (𝑘1 + 𝑘2)] [−𝑚2𝜔

2 + 𝑘2] − 𝑘2
2 = 0 

𝑚1𝑚2𝜔
4 − 𝑚1𝜔

2𝑘2 − 𝑚2𝜔
2(𝑘1 + 𝑘2) + 𝑘2(𝑘1 + 𝑘2) − 𝑘2

2 = 0 

𝑚1𝑚2𝜔
4 − 𝜔2[𝑚1𝑘2 + 𝑚2(𝑘1 + 𝑘2)] + 𝑘1𝑘2 = 0   

Let  𝒂𝟎 = 𝑘1𝑘2 = (12.6770 𝑥104)(26.1736 𝑥105) = 331.803 𝑥 109 See appendix G 

𝒂𝟏 = 𝑚1𝑘2 + 𝑚2(𝑘1 + 𝑘2) = (0.25)(26.1736 𝑥105) + (0.25)(12.6770 𝑥104 +
26.1736 𝑥105) = 1340372.5 See appendix G 

𝒂𝟐 = 𝑚1𝑚2 = (0.25)(0.25) = 0.0625  See appendix G 

𝑎2𝜔
4 − 𝑎1𝜔

2 + 𝑎0 = 0 

Let ʎ = 𝜔2 therefore 

𝑎2ʎ
2 − 𝑎1ʎ + 𝑎0 = 0 

ʎ1,2 =
𝑎1 ± √𝑎1

2 − 4𝑎2𝑎0

2𝑎2
 

ʎ1,2 =
1340372.5 ± √(1340372.5) 2 − 4(0.0625)(331.803 𝑥 109)

2(0.0625)
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ʎ1 = 21195489.35   or   ʎ2 = 250470.6503    

Therefore 𝜔1 = ± 4603.855922 𝑟𝑎𝑑
𝑠𝑒𝑐⁄   or  𝜔2 = ± 500.470429 𝑟𝑎𝑑

𝑠𝑒𝑐⁄  
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1  Conclusion 

The main objective of this study was to conduct a set of experiments aiming to identify the 

characteristics of an asymmetric damper and to develop a mathematical model for the design 

of a modified damper. The experiments involved the investigation of the characteristics of an 

asymmetric damper, the rotational motion of the damper and the degrees of freedom for the 

masses attached to the messenger cable. From these investigations the following were 

established after conducting experiments: 

 From the graphs it was found that the damper is a four degrees of freedom 

 Resonance frequencies for each damper are not the same depending on the size of 

the damper. 

 One of the dampers had resonant frequencies at 8Hz, 22 Hz, 50 Hz and 70 Hz. At any 

other frequency except the above resonance frequencies, the damper is not a mass 

absorber 

 There is no rotation of the damper about the messenger wire, only up and down 

vertical motion of the damper due to the shaker during operation. 

 If the two masses or weight of the damper are modified for operation, it changes from 

being a four degree of freedom to a six degree of freedom. It means it has six 

resonance frequencies. 

 The mathematical model was developed and the theoretical or computational results 

were validated by experimental results.  

 The results were presented at three conferences and were well received by the 

audience. At the Thirteenth International Conference on Computational Structures 

Technology in Spain, The South African Conference on Computational and Applied 

Mechanics (SACAM) at VUT and SAIMechE Postgraduate Conference on Mechanical, 

Materials, Manufacturing and Biomedical Engineering at CPUT. 
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7.2  Recommendations  

From the findings of this study the following suggestions for future investigations are 

recommended for further research on dampers: 

 The design and manufacturing of a prototype which may be tested at VRTC for more 

relevant data and improvements.  

  For the mathematical model it is required to include rotation of damper about the 

messenger wire for further computational data and predictions.  
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 APPENDIX A 

GRAPHS OF DAMPER (182 025-301) Ø31 – 39 mm 

 

DAMPER 2 (182 025-301) TEST 1 

 

Figure A.1: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

 

 

 

 

 

 

 

 

 

 

G (Log) 
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DAMPER 2 (182 025-301) TEST 2 

 

Figure A.2: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

 

DAMPER 2 (182 025-301) TEST 3 

 

G (Log) 

G (Log) 
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Figure A.3: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

DAMPER 3 (182 025-301) TEST 1 

 

Figure A.4: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 3 (182 025-301) TEST 2 

 

Figure A.5: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

G (Log) 

G (Log) 
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DAMPER 3 (182 025-301) TEST 3 

 

Figure A.6: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 4 (182 025-301) TEST1 

 

Figure A.7: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

G (Log) 

G (Log) 



80 
 

 

DAMPER 4 (182 025-301) TEST 2 

 

Figure A.8: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

 

DAMPER 4 (182 025-301) TEST 3 

 

G (Log) 

G (Log) 
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Figure A.9: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

APPENDIX B 

GRAPHS OF DAMPER (182 025-401) Ø39 – 47 mm 
 

DAMPER 6 (182 025-401) TEST 1 

 

Figure B.1: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

 

 

 

 

 

 

 

 

 

 

G (Log) 
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DAMPER 6 (182 025-401) TEST 2 

 

Figure B.2: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 6 (182 025-401) TEST 3 

 

G (Log) 

G (Log) 
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Figure B.3: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 7 (182 025-401) TEST 1 

 

Figure B.4: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

DAMPER 7 (182 025-401) TEST2 

 

Figure B.5: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

G (Log) 

G (Log) 
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DAMPER 7 (182 025-401) TEST 3 

 

Figure B.6: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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 APPENDIX C  

GRAPHS OF DAMPER (182 025-101) Ø7 – 15 mm 
 

DAMPER 9 (182 025-101) TEST 1 

 

Figure C.1: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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DAMPER 9 (182 025-101) TEST 2 

 

Figure C.2: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 9 (182 025-101) TEST 3 

 

Figure C.3: The graph of acceleration amplitude G (log) vs frequency Hz (log 

G (Log) 

G (Log) 
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DAMPER 10 (182 025-101) TEST 1 

 

Figure C.4: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER 10 (182 025-101) TEST 2 

 

Figure C.5: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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DAMPER 10 (182 025-101) TEST 3 

 

Figure C.6: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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APPENDIX D 

GRAPHS OF DAMPER (182 025-301) AND (182 025-401)   

 

DAMPER (182 025-301) TEST2 

 

Figure D.1: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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DAMPER (182 025-301) TEST3 

 

Figure D.2: The graph of acceleration amplitude G (log) vs frequency Hz (log) 

 

DAMPER (182 025-401) TEST2 

 

Figure D.3: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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DAMPER (182 025-401) TEST 3 

 

Figure D.4: The graph of acceleration amplitude G (log) vs frequency Hz (log) 
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APPENDIX E 
Applying the boundary condition 𝑌1(0, 𝑡) = 0 to equation 6.17 gives 

0 = (𝑎1 sin(0) + 𝑎2 cos(0) + 𝑎3 sinh(0) + 𝑎4 cosh(0))𝑒𝑖𝜔𝑡 

0 = (𝑎2 + 𝑎4)𝑒
𝑖𝜔𝑡 

This implies that either 𝑒𝑖𝜔𝑡 = 0 for all values of 𝑡, or 𝑎2 + 𝑎4 = 0. The first statement is clearly not 

true, so it must be the case that 

𝒂𝟐 + 𝒂𝟒 = 𝟎     (E.1) 

Applying the boundary condition 𝑌1
′(0, 𝑡) = 0 to equation 6.20 gives 

0 = (𝑎1 cos(0) − 𝑎2 sin(0) + 𝑎3 cosh(0) + 𝑎4 sinh(0))𝛽1𝑒
𝑖𝜔𝑡 

(𝑎1 + 𝑎3)𝛽1𝑒
𝑖𝜔𝑡 = 0 

𝒂𝟏 + 𝒂𝟑 = 𝟎     (E.2) 

 

At  𝑥1 = 𝐿1  at the right end of the cable there is the mass    𝑀1. At this point the 

displacement is expected to be equal, but the slope is opposite in direction due to the 

choice of reference coordinates. Therefore, 

𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡) = 𝑌3(0, 𝑡)     

𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡) = − 𝑌3
′(0, 𝑡)    

Applying the boundary condition 𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡) = 𝑌3(0, 𝑡) to equation 6.17, 6.18 and 6.19 

gives 

𝑌1(𝐿1, 𝑡) = 𝑌2(0, 𝑡)  

(𝑎1 sin 𝛽1𝐿1 + 𝑎2 cos 𝛽1 𝐿1 + 𝑎3 sinh 𝛽1𝐿1 + 𝑎4 cosh𝛽1 𝐿1)𝑒
𝑖𝜔𝑡 = (𝑎5 sin 𝛽2(0) +

𝑎6 cos 𝛽2(0) + 𝑎7 sinh 𝛽2(0) + 𝑎8 cosh𝛽2 (0))𝑒𝑖𝜔𝑡  

𝒂𝟏 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝒂𝟐 𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝒂𝟒 𝐜𝐨𝐬𝐡𝜷𝟏 𝑳𝟏 − 𝒂𝟔 − 𝒂𝟖 = 𝟎 (E.3) 

 

Same procedure applies 

𝑌1(𝐿1, 𝑡) = 𝑌3(0, 𝑡)  
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(𝑎1 sin 𝛽1𝐿1 + 𝑎2 cos 𝛽1 𝐿1 + 𝑎3 sinh 𝛽1𝐿1 + 𝑎4 cosh𝛽1 𝐿1)𝑒
𝑖𝜔𝑡 = (𝑎9 sin 𝛽3(0) +

𝑎10 cos 𝛽3(0) + 𝑎11 sinh𝛽3(0) + 𝑎12 cosh 𝛽3 (0))𝑒𝑖𝜔𝑡  

𝒂𝟏 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝒂𝟐 𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝒂𝟒 𝐜𝐨𝐬𝐡𝜷𝟏 𝑳𝟏 − 𝒂𝟏𝟎 − 𝒂𝟏𝟐 =𝟎 (E.4) 

 

 

Applying the boundary condition 𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡) = − 𝑌3
′(0, 𝑡)  to equation (6.20), (6.21) and 

(6.22) gives 

𝑌1
′(𝐿1, 𝑡) = − 𝑌2

′(0, 𝑡)  

(𝑎1 cos 𝛽1𝐿1 − 𝑎2 sin 𝛽1 𝐿1 + 𝑎3 cosh𝛽1 𝐿1 + 𝑎4 sinh𝛽1 𝐿1)𝛽1𝑒
𝑖𝜔𝑡

= −(𝑎5 cos 𝛽2(0) − 𝑎6 sin 𝛽2(0) + 𝑎7 cosh𝛽2 (0) + 𝑎8 sinh𝛽2 (0))𝛽2𝑒
𝑖𝜔𝑡 

𝒂𝟏 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝒂𝟐𝜷𝟏 𝐬𝐢𝐧𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏 𝑳𝟏 + 𝒂𝟒 𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏+𝒂𝟓𝜷𝟐 +

𝒂𝟕𝜷𝟐   = 𝟎          (E.5) 

 

𝑌1
′(𝐿1, 𝑡) = − 𝑌3

′(0, 𝑡)  

(𝑎1 cos 𝛽1𝐿1 − 𝑎2 sin 𝛽1 𝐿1 + 𝑎3 cosh𝛽1 𝐿1 + 𝑎4 sinh𝛽1 𝐿1)𝛽1𝑒
𝑖𝜔𝑡 = −(𝑎9 cos 𝛽3(0) −

𝑎10 sin 𝛽3 (0) + 𝑎11 cosh𝛽3 (0) + 𝑎12 sinh𝛽(0)3)𝛽3𝑒
𝑖𝜔𝑡  

𝒂𝟏 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝒂𝟐𝜷𝟏 𝐬𝐢𝐧𝜷𝟏 𝑳𝟏 + 𝒂𝟑 𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏 𝑳𝟏 + 𝒂𝟒 𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏 + 𝒂𝟗𝜷𝟑 +

𝒂𝟏𝟏𝜷𝟑 = 𝟎           (E.6) 

 

𝐸𝐼1𝑌1
′′(𝐿1, 𝑡) −  𝐽�̈�1

′(𝐿1, 𝑡) +  𝐸𝐼2𝑌2
′′(0, 𝑡) + 𝐸𝐼3𝑌3

′′(0, 𝑡) = 0    

For    𝑥1 = 𝐿1, 𝑥2 = 0  and   𝑥3 = 0. We have from 6.23, 6.24, 6.25 and 6.30 the following: 

𝑌1
′′(𝐿1, 𝑡) = (−𝑎1 sin 𝛽1𝐿1 − 𝑎2 cos 𝛽1𝐿1 + 𝑎3 sinh𝛽1𝐿1 + 𝑎4 cosh 𝛽1𝐿1)𝛽1

2𝑒𝑖𝜔𝑡  

�̈�1
′(𝐿1, 𝑡) = − (𝑎1 𝛽1cos 𝛽1𝐿1 − 𝑎2 𝛽1sin 𝛽1 𝐿1 + 𝑎3 𝛽1cosh𝛽1𝐿1 + 𝑎4 𝛽1sinh𝛽1𝐿1)𝜔

2  

𝑌2
′′(0, 𝑡) = (−𝑎6 + 𝑎8)𝛽2

2𝑒𝑖𝜔𝑡  

𝑌3
′′(0, 𝑡) = (−𝑎10 + 𝑎12)𝛽3

2𝑒𝑖𝜔𝑡  

Substitute the above equations to equation 6.39, we obtain 
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𝐸𝐼1(−𝑎1 sin 𝛽1𝐿1 − 𝑎2 cos 𝛽1𝐿1 + 𝑎3 sinh𝛽1𝐿1 + 𝑎4 cosh𝛽1𝐿1)𝛽1
2𝑒𝑖𝜔𝑡 +

 𝐽(𝑎1 𝛽1cos 𝛽1𝐿1 − 𝑎2𝛽1 sin 𝛽1 𝐿1 + 𝑎3 𝛽1cosh𝛽1𝐿1 + 𝑎4 𝛽1sinh𝛽1𝐿1)𝜔
2𝑒𝑖𝜔𝑡 +  𝐸𝐼2(−𝑎6 +

𝑎8)𝛽2
2𝑒𝑖𝜔𝑡 + 𝐸𝐼3(−𝑎10 + 𝑎12)𝛽3

2𝑒𝑖𝜔𝑡 = 0  

−𝑎1𝐸𝐼1𝛽1
2 sin 𝛽1𝐿1 + 𝑎1𝐽𝜔

2𝛽1 cos 𝛽1𝐿1 − 𝑎2𝐸𝐼1𝛽1
2cos 𝛽1𝐿1 − 𝑎2 𝐽𝜔2𝛽1sin𝛽1 𝐿1 +

𝑎3𝐸𝐼1𝛽1
2sinh𝛽1𝐿1 + 𝑎3 𝐽𝜔2𝛽1cosh𝛽1𝐿1 + 𝑎4𝐸𝐼1𝛽1

2 cosh𝛽1𝐿1 + 𝑎4 𝐽𝜔2𝛽1sinh𝛽1𝐿1  −

𝑎6𝐸𝐼2𝛽2
2 + 𝑎8𝐸𝐼2𝛽2

2  − 𝑎10𝐸𝐼3𝛽3
2 + 𝑎12𝐸𝐼3𝛽3

2 = 0      

 

𝒂𝟏(−𝑬𝑰𝟏𝜷𝟏
𝟐 𝐬𝐢𝐧𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐 𝜷𝟏𝐜𝐨𝐬𝜷𝟏𝑳𝟏) + 𝒂𝟐(−𝑬𝑰𝟏𝜷𝟏

𝟐𝐜𝐨𝐬𝜷𝟏𝑳𝟏 − 𝑱𝝎𝟐𝜷𝟏𝐬𝐢𝐧𝜷𝟏 𝑳𝟏) +

𝒂𝟑(𝑬𝑰𝟏𝜷𝟏
𝟐𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐𝜷𝟏𝐜𝐨𝐬𝐡 𝜷𝟏𝑳𝟏) + 𝒂𝟒(𝑬𝑰𝟏𝜷𝟏

𝟐 𝐜𝐨𝐬𝐡𝜷𝟏𝑳𝟏 + 𝑱𝝎𝟐𝜷𝟏𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏) −

𝒂𝟔𝑬𝑰𝟐𝜷𝟐
𝟐 + 𝒂𝟖𝑬𝑰𝟐𝜷𝟐

𝟐  − 𝒂𝟏𝟎𝑬𝑰𝟑𝜷𝟑
𝟐 + 𝒂𝟏𝟐𝑬𝑰𝟑𝜷𝟑

𝟐 = 𝟎    (E.7) 

 

− 𝐸𝐼1𝑌1
′′′(𝐿1, 𝑡) −  𝐸𝐼2𝑌2

′′′(0, 𝑡) − 𝐸𝐼3𝑌3
′′′(0, 𝑡) = 𝑀1�̈�1(𝐿1, 𝑡)    

Applying the boundary conditions to equation 6.40 lead to the following 

− 𝐸𝐼1(−𝑎1 𝛽1
3cos 𝛽1 𝐿1 + 𝑎2 𝛽1

3sin 𝛽1𝐿1 + 𝑎3 𝛽1
3cosh𝛽1𝐿1 + 𝑎4 𝛽1

3sinh𝛽1𝐿1)𝑒
𝑖𝜔𝑡 −

 𝐸𝐼2(−𝑎5 𝛽2
3cos 𝛽1(0) + 𝑎6 𝛽2

3sin 𝛽1(0) + 𝑎7 𝛽2
3cosh𝛽1(0) + 𝑎8 𝛽2

3sinh𝛽1 (0))𝑒𝑖𝜔𝑡 −

𝐸𝐼3(−𝑎9 𝛽3
3cos 𝛽1(0) + 𝑎10 𝛽3

3sin 𝛽1 (0) + 𝑎11 𝛽3
3cosh𝛽1 (0) + 𝑎12 𝛽3

3sinh𝛽1(0))𝑒
𝑖𝜔𝑡 +

𝑀1(𝑎1 𝜔2sin 𝛽1𝐿1 + 𝑎2 𝜔2cos 𝛽1𝐿1 + 𝑎3 𝜔2sinh 𝛽1 𝐿1 + 𝑎4 𝜔2cosh 𝛽1𝐿1)𝑒
𝑖𝜔𝑡 = 0  

 

− 𝐸𝐼1(−𝑎1 𝛽1
3cos 𝛽1 𝐿1 + 𝑎2 𝛽1

3sin 𝛽1𝐿1 + 𝑎3 𝛽1
3cosh𝛽1𝐿1 + 𝑎4 𝛽1

3sinh𝛽1𝐿1)𝑒
𝑖𝜔𝑡 −

 𝐸𝐼2(−𝑎5𝛽2
3 + 𝑎7𝛽2

3)𝑒𝑖𝜔𝑡 − 𝐸𝐼3(−𝑎9𝛽3
3 + 𝑎11𝛽3

3)𝑒𝑖𝜔𝑡 + 𝑀1(𝑎1 𝜔2sin 𝛽1𝐿1 +

𝑎2 𝜔2cos 𝛽1𝐿1 + 𝑎3 𝜔2sinh𝛽1 𝐿1 + 𝑎4 𝜔2cosh𝛽1𝐿1)𝑒
𝑖𝜔𝑡 = 0  

 

−𝑎1 𝐸𝐼1𝛽1
3cos 𝛽1 𝐿1 + 𝑎2 𝐸𝐼1𝛽1

3sin 𝛽1𝐿1 + 𝑎3 𝐸𝐼1𝛽1
3cosh𝛽1𝐿1 + 𝑎4𝐸𝐼1𝛽1

3sinh𝛽1𝐿1 −

𝑎5𝐸𝐼2𝛽2
3 + 𝑎7𝐸𝐼2𝛽2

3  − 𝑎9𝐸𝐼3𝛽3
3 + 𝑎11𝐸𝐼3𝛽3

3 − 𝑎1 𝑀1𝜔
2sin 𝛽1𝐿1 − 𝑎2𝑀1 𝜔2cos 𝛽1𝐿1 −

𝑎3 𝑀1𝜔
2sinh𝛽1 𝐿1 − 𝑎4𝑀1 𝜔2cosh𝛽1𝐿1 = 0  

 

𝒂𝟏(−𝑬𝑰𝟏𝜷𝟏
𝟑𝐜𝐨𝐬 𝜷𝟏 𝑳𝟏 − 𝑴𝟏𝝎

𝟐𝐬𝐢𝐧𝜷𝟏𝑳𝟏) + 𝒂𝟐(𝑬𝑰𝟏𝜷𝟏
𝟑𝐬𝐢𝐧𝜷𝟏𝑳𝟏 − 𝑴𝟏 𝝎𝟐𝐜𝐨𝐬 𝜷𝟏𝑳𝟏) +

𝒂𝟑(𝑬𝑰𝟏𝜷𝟏
𝟑𝐜𝐨𝐬𝐡𝜷𝟏𝑳𝟏 − 𝑴𝟏𝝎

𝟐𝐬𝐢𝐧𝐡𝜷𝟏 𝑳𝟏) + 𝒂𝟒(𝑬𝑰𝟏𝜷𝟏
𝟑𝐬𝐢𝐧𝐡𝜷𝟏𝑳𝟏 − 𝑴𝟏 𝝎𝟐𝐜𝐨𝐬𝐡 𝜷𝟏𝑳𝟏) −

𝒂𝟓𝑬𝑰𝟐𝜷𝟐
𝟑 + 𝒂𝟕𝑬𝑰𝟐𝜷𝟐

𝟑  − 𝒂𝟗𝑬𝑰𝟑𝜷𝟑
𝟑 + 𝒂𝟏𝟏𝑬𝑰𝟑𝜷𝟑

𝟑 = 𝟎    (E.8) 
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There are two beams attached to mass  𝑀1, the first beam is free at the end. Therefore the 

boundary conditions at  𝑥2 = 𝐿2  are: 

𝑌2
′′(𝐿2, 𝑡) = 0     

𝑀2�̈�2(𝐿2, 𝑡) − 𝐸𝐼2𝑌2
′′′(𝐿2, 𝑡) = 0  

Applying the boundary condition to equation 6.41 gives 

(−𝑎5 sin 𝛽2 𝐿2 − 𝑎6 cos 𝛽2 𝐿2 + 𝑎7 sinh𝛽2𝐿2 + 𝑎8 cosh𝛽2𝐿2)𝛽2
2𝑒𝑖𝜔𝑡 = 0  

Therefore  

−𝒂𝟓𝜷𝟐
𝟐 𝐬𝐢𝐧𝜷𝟐 𝑳𝟐 − 𝒂𝟔 𝜷𝟐

𝟐𝐜𝐨𝐬𝜷𝟐 𝑳𝟐 + 𝒂𝟕 𝜷𝟐
𝟐𝐬𝐢𝐧𝐡𝜷𝟐𝑳𝟐 + 𝒂𝟖 𝜷𝟐

𝟐𝐜𝐨𝐬𝐡 𝜷𝟐𝑳𝟐 = 𝟎 (E.9) 

Applying the boundary condition to equation 6.42 gives 

− 𝑀2(𝑎5 sin 𝛽2𝐿2 + 𝑎6 cos 𝛽2𝐿2 + 𝑎7 sinh𝛽2 𝐿2 + 𝑎8 cosh𝛽2 𝐿2)𝜔
2𝑒𝑖𝜔𝑡 −

𝐸𝐼2(−𝑎5 cos 𝛽2𝑥2 + 𝑎6 sin 𝛽2𝑥2 + 𝑎7 cosh 𝛽2𝑥2 + 𝑎8 sinh𝛽2𝑥2)𝛽2
3𝑒𝑖𝜔𝑡 = 0  

𝒂𝟓(𝑴𝟐𝝎
𝟐𝐬𝐢𝐧𝜷𝟐𝑳𝟐 − 𝜷𝟐

𝟑 𝑬𝑰𝟐𝐜𝐨𝐬𝜷𝟐𝒙𝟐) + 𝒂𝟔(𝑴𝟐𝝎
𝟐 𝐜𝐨𝐬 𝜷𝟐𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐬𝐢𝐧𝜷𝟐𝒙𝟐) +

𝒂𝟕(𝑴𝟐𝝎
𝟐𝐬𝐢𝐧𝐡𝜷𝟐 𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐜𝐨𝐬𝐡 𝜷𝟐𝒙𝟐) + 𝒂𝟖(𝑴𝟐𝝎
𝟐 𝐜𝐨𝐬𝐡 𝜷𝟐 𝑳𝟐 + 𝜷𝟐

𝟑𝑬𝑰𝟐𝐬𝐢𝐧𝐡𝜷𝟐𝒙𝟐) =

𝟎           (E.10)  

 

The second beam is also free at the end. Therefore the boundary conditions at the free end 

at   𝑥3 = 𝐿3, apply the boundary conditions in equation 6.43 and 6.44 

−𝒂𝟗𝜷𝟑
𝟐 𝐬𝐢𝐧𝜷𝟑 𝑳𝟑 − 𝒂𝟏𝟎 𝜷𝟑

𝟐𝐜𝐨𝐬 𝜷𝟑 𝑳𝟑 + 𝒂𝟏𝟏 𝜷𝟑
𝟐𝐬𝐢𝐧𝐡𝜷𝟑𝑳𝟑 + 𝒂𝟏𝟐 𝜷𝟑

𝟐𝐜𝐨𝐬𝐡 𝜷𝟑𝑳𝟑 = 𝟎   (E.11) 

𝒂𝟗(𝑴𝟑𝝎
𝟐𝐬𝐢𝐧𝜷𝟑𝑳𝟑 − 𝜷𝟑

𝟑 𝑬𝑰𝟑𝐜𝐨𝐬𝜷𝟑𝒙𝟑) + 𝒂𝟏𝟎(𝑴𝟑𝝎
𝟐 𝐜𝐨𝐬 𝜷𝟑𝑳𝟑 + 𝜷𝟑

𝟑𝑬𝑰𝟑𝐬𝐢𝐧𝜷𝟑𝒙𝟑) +

𝒂𝟏𝟏(𝑴𝟑𝝎
𝟐𝐬𝐢𝐧𝐡𝜷𝟑 𝑳𝟑 + 𝜷𝟑

𝟑𝑬𝑰𝟑𝐜𝐨𝐬𝐡𝜷𝟑𝒙𝟑) + 𝒂𝟏𝟐(𝑴𝟑𝝎
𝟐 𝐜𝐨𝐬𝐡𝜷𝟑 𝑳𝟑 +

𝜷𝟑
𝟑𝑬𝑰𝟑𝐬𝐢𝐧𝐡𝜷𝟑𝒙𝟑) = 𝟎        (E.12)  
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0
0
𝐶8

0
0
0
𝐺8

0
𝐼8
𝐽8
0
0

       

0
0
0
0
0
𝐹9

0
𝐻9

0
0
𝐾9

𝐿9

       

0
0
0

𝐷10

0
0

𝐺10

0
0
0

𝐾10

𝐿10

       

0
0
0
0
0

𝐹11

0
𝐻11

0
0

𝐾11

𝐿11

       

0
0
0

𝐷12

0
0

𝐺12

0
0
0

𝐾12

𝐿12]
 
 
 
 
 
 
 
 
 
 
 

 .

[
 
 
 
 
 
 
 
 
 
 
 
𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

𝑎12]
 
 
 
 
 
 
 
 
 
 
 

= 0 

 

Where   

𝐴2 = 1; 𝐴4 = 1 

 

𝐵1 = 1;𝐵3 = 1 

 

𝐶1 = sin𝛽1𝐿1 ; 𝐶2 = cos 𝛽1 𝐿1; 

𝐶3 = sinh𝛽1𝐿1 ; 𝐶4 = cosh𝛽1 𝐿1 

𝐶6 = −1; 𝐶8 = −1 

 

𝐷1 = sin𝛽1𝐿1 ; 𝐷2 = cos𝛽1 𝐿1; 

𝐷3 = sinh𝛽1𝐿1 ; 𝐷4 = cosh𝛽1 𝐿1 

𝐷10 = −1;𝐷12 = −1 

 

𝐸1 = 𝛽1 cos 𝛽1 𝐿1;  𝐸2 = 𝛽1 sin 𝛽1𝐿1  

𝐸3 = 𝛽1cosh𝛽1 𝐿1 ;  𝐸4 = 𝛽1sinh𝛽1𝐿1 

𝐸5 = 𝛽2;  𝐸7 = 𝛽2 
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𝐹1 = 𝛽1 cos 𝛽1 𝐿1;  𝐹2 = −𝛽1 sin 𝛽1𝐿1 

𝐹3 = 𝛽1cosh𝛽1 𝐿1 ;  𝐹4 = = 𝛽1sinh𝛽1𝐿1 

𝐹9 = 𝛽3;  𝐹11 = 𝛽3 

 

𝐺1 = −𝐸𝐼1𝛽1
2 sin 𝛽1𝐿1 + 𝐽𝜔2 𝛽1cos 𝛽1𝐿1;  𝐺2 = −𝐸𝐼1𝛽1

2cos𝛽1𝐿1 − 𝐽𝜔2𝛽1sin 𝛽1 𝐿1 

𝐺3 =  𝐸𝐼1𝛽1
2sinh𝛽1𝐿1 + 𝐽𝜔2𝛽1cosh𝛽1𝐿1 ;  𝐺4 = 𝐸𝐼1𝛽1

2 cosh 𝛽1𝐿1 + 𝐽𝜔2𝛽1sinh𝛽1𝐿1 

𝐺6 = 𝐸𝐼2𝛽2
2 ;  𝐺8 = 𝐸𝐼2𝛽2

2 

𝐺10 = 𝐸𝐼3𝛽3
2 ;  𝐺12 = 𝐸𝐼3𝛽3

2 

 

𝐻1 = −𝐸𝐼1𝛽1
3cos 𝛽1 𝐿1 − 𝑀1𝜔

2sin 𝛽1𝐿1  ;  𝐻2 = 𝐸𝐼1𝛽1
3sin𝛽1𝐿1 − 𝑀1 𝜔2cos 𝛽1𝐿1 

𝐻3 = 𝐸𝐼1𝛽1
3cosh 𝛽1𝐿1 − 𝑀1𝜔

2sinh 𝛽1 𝐿1 ;  𝐻4 =𝐸𝐼1𝛽1
3sinh𝛽1𝐿1 − 𝑀1 𝜔2cosh𝛽1𝐿1 

𝐻5 =  𝐸𝐼2𝛽2
3 ;  𝐻7 =  𝐸𝐼2𝛽2

3 

𝐻9 = −𝐸𝐼3𝛽3
3 ;  𝐻11 =  𝐸𝐼3𝛽3

3 

 

𝐼5 = −𝛽2
2 sin 𝛽2 𝐿2 ;  𝐼6 = −𝛽2

2 sin 𝛽2 𝐿2 

𝐼7 = 𝛽2
2sinh𝛽2𝐿2  ;  𝐼8 = 𝛽2

2cosh𝛽2𝐿2 

 

𝐽5 = 𝑀2𝜔
2sin 𝛽2𝐿2 − 𝛽2

3 𝐸𝐼2cos 𝛽2𝐿2  ;  𝐽6 = 𝑀2𝜔
2 cos 𝛽2𝐿2 + 𝛽2

3𝐸𝐼2sin 𝛽2𝐿2 

𝐽7 = 𝑀2𝜔
2sinh 𝛽2 𝐿2 + 𝛽2

3𝐸𝐼2cosh𝛽2𝐿2  ;  𝐽8 = 𝑀2𝜔
2 cosh 𝛽2 𝐿2 + 𝛽2

3𝐸𝐼2sinh 𝛽2𝐿2 

 

𝐾9 = −𝛽3
2 sin 𝛽3 𝐿3;  𝐾10 = −𝛽3

2cos 𝛽3 𝐿3 

𝐾11 = 𝛽3
2sinh𝛽3𝐿3  ; 𝐾12 = 𝛽3

2cosh𝛽3𝐿3 
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𝐿9 = 𝑀3𝜔
2sin 𝛽3𝐿3 − 𝛽3

3 𝐸𝐼3cos 𝛽3𝐿3 ;  𝐿10 = 𝑀3𝜔
2 cos 𝛽3𝐿3 + 𝛽3

3𝐸𝐼3sin 𝛽3 𝐿3 

𝐿11 = 𝑀3𝜔
2sinh 𝛽3 𝐿3 + 𝛽3

3𝐸𝐼3cosh𝛽3𝐿3  ;  𝐿12 = 𝑀3𝜔
2 cosh 𝛽3 𝐿3 + 𝛽3

3𝐸𝐼3sinh𝛽3𝐿3 
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APPENDIX G 

 

Figure G.1: Diagram of the half model of vibration damper (Vaja et al., 2018) 

 

Messenger cable with a mass (𝑀1) 

𝑀1 = 0.5 𝑘𝑔  

𝐷𝑖𝑎𝑚𝑒𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑏𝑙𝑒 𝑖𝑠 9 𝑚𝑚       

𝐼1 =
𝜋(𝐷)4

32
= 

𝜋(0.009)4

32
= 6.4412 𝑥 10−10𝑚4             

𝐿1 = 0.145 𝑚                                                                                      

cos(𝐿1𝛽1) = cos 𝜃  ( 𝜃 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 
𝜋

2
 ,

𝜋

4
 ,

𝜋

8
 ,

𝜋

16
 ,

𝜋

32
 ,

𝜋

64
 )                                                                                                                                                                     

cos(0.145𝛽1) = cos
𝜋

2
                                                                                                                                                                         

𝛽1 = 10.833 

𝐺 = 200 𝐺𝑃𝑎 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 

𝐽𝑡𝑜𝑡𝑎𝑙 =
𝑀𝑐𝑎𝑏𝑙𝑒𝐿𝑐𝑎𝑏𝑙𝑒

2

3
+𝑀1𝑟

2 =
(0.05352)(0.145)2

3
+ (0.25)(0.145)2 = 5.631 𝑥 10−3𝑘𝑔𝑚4  

𝐿3 

𝐿2 

𝐿1 
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𝑘1 =
3𝐸𝐼1

𝑙1
 =

(3)(200)(109)(6.4412 𝑥 10−10)

0.1453
= 12.6770 𝑥104  𝑁 𝑚⁄   (The messenger cable is 

considered as the cantilever beam with a load acting at the end)  

 

Cantilever beam with a concentrated load (𝑀2) 

   

 

𝑀2 = 0.25 𝑘𝑔   

𝐼2 = 
𝑏ℎ3

12
=

(0.0105)(0.0205)3

12
= 7.538  𝑥 10−9 𝑚4  

𝐿2 = 0.12 𝑚                                                                                      

cos(𝐿2𝛽2) = cos
𝜋

2
                                                                                                                                                                      

cos(0.12𝛽2) = cos
𝜋

2
  ( 𝜃 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 

𝜋

2
 ,

𝜋

4
 ,

𝜋

8
 ,

𝜋

16
 ,

𝜋

32
 ,

𝜋

64
 )                                                                                                                                                                        

𝛽2 = 13.0899 

𝐸 = 200 𝐺𝑃𝑎 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 

𝑘2 =
3𝐸𝐼2

𝐿2
3  =

(3)(200)(109)(7.538  𝑥 10−9)

0.123 = 26.1736 𝑥105  𝑁 𝑚⁄    

 

 

 

 

 

2
0

.5
 m

m
 

h 

10.5 mm 

Y 

X 

b 

𝐴2 = Cross sectional area of the cantilever beam 
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Cantilever beam with a concentrated load (𝑀3) 

𝑀3 = 0.25 𝑘𝑔           

𝐼3 = 𝐼2 = 
𝑏ℎ3

12
= 7.538  𝑥 10−9 𝑚4   

𝐿3 = 0.12 𝑚                                                                                      

cos(𝐿3𝛽3) = cos
𝜋

2
   ( 𝜃 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 

𝜋

2
 ,

𝜋

4
 ,

𝜋

8
 ,

𝜋

16
 ,

𝜋

32
 ,

𝜋

64
 )                                                                                                                                                                   

cos(0.12𝛽3) = cos
𝜋

2
                                                                                                                                                                         

𝛽3 = 13.0899 

𝐸 = 200 𝐺𝑃𝑎 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 

𝑘3 =
3𝐸𝐼3

𝐿3
3  =

(3)(200)(109)(7.538  𝑥 10−9)

0.123 = 26.1736 𝑥105  𝑁 𝑚⁄   
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