
i

PROGRAMMING LANGUAGES, CURRICULUM AND COMPUTATIONAL
THINKING AT A COGNITIVE LEVEL OF FORMAL OPERATIONS

by

WILHELM COENRAAD ROTHMAN

Thesis submitted in fulfilment of the requirements for the degree

Doctor of Technology: Information Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Dr André de la Harpe
Co-supervisor: Prof Johannes Cronje

District Six
Date submitted: 31 August 2020

CPUT copyright information
The thesis may not be published either in part (in scholarly, scientific or technical journals), or as a
whole (as a monograph), unless permission has been obtained from the University.

ii

DECLARATION

I, Wilhelm Coenraad Rothman, declare that the contents of this thesis represent my own
unaided work, and that the thesis has not previously been submitted for academic
examination towards any qualification. Furthermore, it represents my own opinions and not
necessarily those of the Cape Peninsula University of Technology.

_________________________ 31 August 2020

Signed Date

iii

PROOFREADING CERTIFICATE

iv

TURNITIN REPORT

v

ABSTRACT

High school learners underperform at a cognitive level of formal operations when engaging in

subjects such as Mathematics and Science. Computational thinking is concerned with

abstract methodology supporting mathematical thinking. The problem statement of this

research states that it is unclear how computational thinking can be enhanced among high

school learners at a cognitive level of formal operations. This “wicked” problem was

investigated by asking two research questions, namely: i) “What are the characteristics of an

enhanced learner’s teaching and learning strategy that can empower learners to master

computational thinking skills through APOS theory, infused by a programming language at

high school level?” and ii) “How can computational thinking skills at a cognitive level of formal

operations be promoted among high school learners through the teaching of a programming

language aligned to Action Process Object Schema (APOS)?”

The aim of this research was to explore and understand how a programming language, using

APOS theory as lens, could promote computational thinking skills at a cognitive level of

formal operations among high school learners. The study was conducted at a private high

school in the Western Cape.

The research methodology was based on an interpretivist research philosophy. The

ontological underpinning of the study was subjective and the epistemological stance

accepted opinions of learners through written, spoken and visual attributed meanings. The

axiology of the researcher was that of a practising educator in programming, a teaching and

learning expert and a certified Java-Greenfoot instructor through Oracle.

Data were collected during lectures, observations, interviews and assignments. Using

Greenfoot as a programming language, supported by Moodle as LMS, learners discovered

programming through “worked examples”. Qualitative data analysis was done through data

condensation, data display, and drawing and verification of conclusions using thematic

analysis. Ethical considerations were enforced by the ethical standards of the university of

study, maintaining a high level of confidentiality towards all subjects at all times. The

research strategy was based on Educational Design Research (EDR) as a validation study

through interventions. Findings show that computational thinking can be promoted among

learners at a cognitive level of formal operations through Greenfoot programming language

with APOS theory as lens.

Keywords: APOS theory, cognitive level of formal operations (CLFO), computational

thinking, embodied cognition, educational design research (EDR), Learner Management

System (LMS), programming language

vi

ACKNOWLEDGEMENTS

I wish to thank:

 Dr André de la Harpe, my supervisor, for his guidance, encouragement and support in
completing this research

 Prof Johannes Cronjé, my co-supervisor for his advice, wisdom and contagious
enthusiasm

 The organisations and individuals that participated in this research for their support
and time to share their insights

 My wife Melissa, daughters Grethe, Margot and son Loki for their love and
unconditional support

 To my mother, for always believing in me, but who is not able to comprehend life
anymore

 My family and friends for their emotional support, understanding and encouragement
in following my academic aspirations

 Curro Private School Durbanville, Durbanville High School and Bosmansdam High
School, who welcomed my efforts and took me in as part of the staff complement

The financial assistance of the National Research Foundation towards this research is
acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are
those of the author, and are not necessarily to be attributed to the National Research
Foundation.

vii

TABLE OF CONTENTS

DECLARATION ... ii
PROOFREADING CERTIFICATE .. iii
TURNITIN REPORT ... iv

ABSTRACT ... v

ACKNOWLEDGEMENTS... vi
TABLE OF CONTENTS .. vii
LIST OF FIGURES .. xvii
LIST OF TABLES ... xxi
GLOSSARY/ACRONYMS ... xxii
TERMS AND DEFINITIONS ... xxiii

CHAPTER 1: INTRODUCTION... 1

1.1 Introduction .. 2

1.2 Computational thinking and the mathematics connection 3

1.3 Computational thinking and the programming connection 3

1.4 Rationale of the research ... 4

1.5 Research problem statement.. 5

1.6 Aim of the research .. 5

1.6.1 Objectives of the research .. 5

1.7 Research questions (RQs) ... 6

1.8 Research focus .. 7

1.9 Methodological considerations ... 8

1.9.1 Research paradigm and research philosophy ... 8

1.9.2 Research approach .. 9

1.10 Research design .. 10

1.10.1 Sampling strategies .. 10

1.10.2 Data collection strategies ... 11

1.11 Contribution of the research ... 11

1.11.1 Theoretical contribution .. 11

1.11.2 Contribution to academic discipline .. 11

1.11.3 Methodological contribution .. 12

1.11.4 Practical contribution .. 12

1.12 Ethical considerations .. 12

1.13 Assumptions ... 13

1.14 Delineation of the research ... 13

1.15 Conclusion ... 13

viii

1.16 Summary .. 14

1.17 Structure of the thesis .. 15

CHAPTER 2: LITERATURE REVIEW .. 16

2.1 Introduction and background .. 16

2.2 Literature review ... 17

2.2.1 Research problem .. 18

2.2.2 Search and acquisition process .. 19

2.2.2.1 Research question (RQ) 1 .. 22

2.2.2.2 Research question (RQ) 2 .. 58

2.2.3 Theoretical conceptual framework .. 76

2.2.4 The viewpoint of educators and professionals on programming 81

2.2.5 Target group ... 84

2.3 Literature review summary ... 85

2.3.1 Mathematics research .. 88

2.3.2 How does one involve the whole body? .. 89

2.3.3 Discovery learning creates challenges ... 90

2.3.4 Status quo of teaching and learning ... 91

CHAPTER 3: DESIGN RESEARCH ... 93

3.1 Introduction .. 93

3.2 Design Research (DR) ... 93

3.2.1 Design Science Research (DSR) ... 94

3.2.2 Design-Based Research (DBR) .. 95

3.2.3 Educational Design Research (EDR) .. 96

3.2.3.1 Introduction .. 96

3.2.3.2 Paradigms in EDR .. 96

3.2.3.3 EDR approaches .. 97

3.2.3.4 EDR as model of choice ... 99

3.3 EDR implementation .. 100

3.3.1 Introduction .. 100

3.3.2 Step 1: Identification of the main phases of EDR .. 101

3.3.3 Step 2: Simplify the wicked problem ... 101

3.3.3.1 EDR research question .. 102

3.3.4 Step 3: The general phases of EDR ... 104

3.3.4.1 Phase 1: Preliminary research .. 104

3.3.4.2 Phase 2: Prototyping .. 105

3.3.4.3 Phase 3: Assessment ... 105

ix

3.4 Summary .. 106

CHAPTER 4: RESEARCH DESIGN ... 107

4.1 Introduction .. 107

4.2 Research paradigms .. 108

4.3 Research philosophy .. 110

4.3.1 Ontology – The nature of reality ... 111

4.3.2 Epistemology – The nature of knowledge ... 111

4.3.3 Axiology – The role of values and ethics .. 112

4.4 Research approach .. 112

4.5 Research strategy .. 113

4.5.1 The demonstration case ... 113

4.5.1.1 Background .. 113

4.5.1.2 The school visiting and planning process ... 113

4.5.2 Action research (AR) .. 115

4.5.3 Design Research (DR) strategy .. 117

4.5.4 Intervention development ... 118

4.5.4.1 Introduction .. 118

4.5.4.2 Intervention 1: Abstraction (abstract thinking) assessment (Appendix B-1) 118

4.5.4.3 Intervention 2: Implement Greenfoot programming language (Appendix C) 121

4.5.4.4 Intervention 2A: Introduction of a Genetic Decomposition process (Adapted from

Arnon et al., 2014:112; Appendices D-1, D-2) .. 122

4.5.4.5 Intervention 2B: Introduction of an enhanced Genetic Decomposition of “Load a

Greenfoot Scenario” (Appendix D-2) .. 123

4.5.4.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3) 123

4.5.4.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1) 124

4.5.4.8 Sub-Intervention 3A: Introduction of the Moodle LMS (Appendix E-1) 124

4.5.4.9 Intervention 3B: Juggling enactment to enforce Moodle usage among learners

(Appendix E-2) ... 124

4.5.4.10 Intervention 3C: Moodle and generalised terminology (Appendix 3C) 125

4.5.4.11 Intervention 4: Creating a Moodle Learner Management System (LMS) 125

4.5.4.12 Intervention 4A: Creating a Linux Server with external access (Appendix F-1) .. 126

4.5.4.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2) 126

4.5.4.14 Intervention 5: Greenfoot access ... 127

4.5.4.15 Intervention 5A: Introduction to Greenfoot (Appendix G-1) 127

4.5.4.16 Intervention 5B: Revisit previous activities (Appendix G-2) 127

4.5.4.17 Intervention 6: Applying Process and Object within mathematics (Appendix H) . 128

4.5.4.18 Intervention 7: Greenfoot as Process and Object (Appendix I)........................... 129

x

4.5.4.19 Intervention 8: Rollout of code in Greenfoot (Appendix J) 129

4.5.4.20 Intervention 9: Making decisions towards Encapsulation (Appendix K) 130

4.5.4.21 Intervention 10: Revisit encapsulation with Randomize option (Appendix L) 130

4.5.4.22 Intervention 11: Assessment (Appendix M) .. 131

4.5.4.23 Intervention 11A: Informing learners of the assessment in a structured manner

(Appendix M-1) .. 131

4.5.4.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and problem solving

(Appendix M-2) .. 131

4.5.4.25 Intervention 12: The variable in Greenfoot (Appendix N) 132

4.5.4.26 Intervention 13: Moving from Process to Object in APOS using Greenfoot

(Appendix O) ... 133

4.5.4.27 Intervention 14: GD creation on IF statement .. 134

4.5.4.28 Intervention 14A: Basic creation of scenario with World and Actor classes

(Appendix P-1) ... 134

4.5.4.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2) 134

4.5.4.30 Intervention 14C: Interaction of Actor within the World solving problems (IF

statement as precursor to GD) (Appendix P-3) .. 135

4.5.4.31 Intervention 14D: Adding graph paper as part of GD to develop algorithm

(Appendix P-4) ... 136

4.5.4.32 Intervention 14E: The IF statement as a solution to address problems (Appendix

P-5) .. 136

4.5.4.33 Intervention 15: Testing Greenfoot to be accepted among teachers (Appendix Q) ..

 .. 137

4.5.4.34 Intervention 16: Creating an arcade game (Appendix U) 137

4.5.5 Interviews ... 138

4.5.5.1 Interviews IA and IB: Algebra exercise on simplification; Science assessment

question and Voltage-Ampere-Resistance pyramid (Appendices R-1, R-2, R-3 and R-4) .. 138

4.5.6 Observations .. 138

4.5.7 Data collection strategies ... 139

4.5.8 Sampling .. 139

4.5.9 Data analysis .. 140

4.6 Summary .. 141

CHAPTER 5: DATA ANALYSIS AND FINDINGS... 142

5.1 Introduction .. 143

5.2 Mathematical belief system .. 143

5.3 EDR phases ... 147

5.4 Data collection and analysis ... 147

xi

5.4.1 Introduction .. 147

5.4.2 Phase 1: Preliminary research phase ... 147

5.4.2.1 Needs and context analysis .. 148

5.4.2.2 The literature review ... 149

5.4.2.3 Theory development ... 154

5.4.2.4 Target group ... 155

5.4.3 Phase 2: Prototyping/ Enactment phase ... 155

5.4.3.1 Introduction .. 155

5.4.3.2 Intervention 1: Abstraction (Abstract Thinking) assessment (Appendix B-1) 160

5.4.3.3 Intervention 2: Implement the Greenfoot programming language (Appendix C-1).....

 ... 162

5.4.3.4 Intervention 2A: Introduction of a Genetic Decomposition (GD) (Appendices D-1, D-

2) ... 171

5.4.3.5 Intervention 2B: Introduction of an enhanced GD (Appendix D-1) 173

5.4.3.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3) 177

5.4.3.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1) 177

5.4.3.8 Intervention 3A: Tools for Moodle (Appendix E-1) .. 178

5.4.3.9 Intervention 3B: Juggling enactment to enforce Moodle usage among learners

(Appendix E-2) ... 180

5.4.3.10 Intervention 3C: Moodle and generalised terminology (Appendix E-3) 184

5.4.3.11 Intervention 4: Creating a Moodle Learner Management System (LMS) 189

5.4.3.12 Intervention 4A: Creating a Linux Server with external access (Appendix F-1) .. 189

5.4.3.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2) 191

5.4.3.14 Intervention 5: Greenfoot Access ... 193

5.4.3.15 Intervention 5A: Greenfoot access (Appendix G-1) .. 194

5.4.3.16 Intervention 5B: Revisit previous activities (Appendix G-2) 198

5.4.3.17 Intervention 6: Applying Process and Object within mathematics (Appendix H) . 199

5.4.3.18 Intervention 7: Greenfoot as process and object (Appendix I) 200

5.4.3.19 Intervention 8: Rollout of code in Greenfoot (Appendix J) 203

5.4.3.20 Intervention 9: Making decisions towards Encapsulation (Appendix K) 207

5.4.3.21 Intervention 10: Revisit encapsulation with the Randomize option (Appendix L) 212

5.4.3.22 Intervention 11: Assessment (Appendix M) .. 214

5.4.3.23 Intervention 11A: Informing the learners of the assessment in a structured manner

(Appendix M-1) .. 214

5.4.3.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and problem solving

(Appendix M-2) .. 215

5.4.3.25 Intervention 12: The Variable in Greenfoot (Appendix N) 217

xii

5.4.3.26 Intervention 13: Moving from Process to Object in APOS using Greenfoot

(Appendix O) ... 219

5.4.3.27 Intervention 14: GD creation on IF statement .. 222

5.4.3.28 Intervention 14A: Basic understanding of a scenario with World and Actor classes

(Appendix P-1) ... 223

5.4.3.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2) 225

5.4.3.30 Intervention 14C: Interaction of Actor within the world solving problems (IF

statement as precursor to GD) (Appendix P-3) .. 227

5.4.3.31 Intervention 14D: Adding graph paper as part of GD to develop algorithm

(Appendix P-4) ... 231

5.4.3.32 Intervention 14E: The IF statement as a solution to address problems (Appendix

P-5) .. 233

5.4.3.33 Intervention 15: Testing Greenfoot to be accepted among teachers (Appendix Q) ..

 .. 234

5.4.3.34 Intervention 16: Creating an Arcade Game (Appendix U) 236

5.4.4 Interviews ... 237

5.4.4.1 Interviews: Algebraic Simplification and the Electrical Circuit Diagram (Appendix R)

 ... 237

5.4.4.2 Interview IA: Algebra Exercise on Simplification (Appendix R-1) 238

5.4.4.3 Interview 1B: Electrical Circuit (Appendix R-2 and R-3) 240

5.4.5 Phase 3: Assessment ... 243

5.4.5.1 Themes within interventions ... 243

5.4.5.2 Themes within interviews ... 246

5.5 Summary .. 246

CHAPTER 6: DISCUSSION .. 248

6.1 Introduction .. 248

6.2 Themes .. 249

6.2.1 Interventions ... 249

6.2.1.1 APOS theme .. 249

6.2.1.2 Beliefs theme ... 254

6.2.1.3 Cognitive Balance theme .. 255

6.2.1.4 Computational Thinking Theme .. 257

6.2.1.5 Learning theme .. 259

6.2.1.6 Learner Management System theme .. 259

6.2.1.7 Programming language theme ... 261

6.2.1.8 Technical theme ... 263

6.2.2 Interviews ... 264

xiii

6.2.2.1 APOS ... 265

6.2.2.2 Beliefs .. 266

6.2.2.3 Cognitive Balance .. 266

6.2.2.4 Computational Thinking .. 266

6.2.2.5 Learning ... 266

6.3 Summary .. 267

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS ... 269

7.1 Introduction .. 269

7.2 Conclusions .. 270

7.2.1 Linking RQ 1 with the findings .. 271

7.2.2 Linking RQ 2 with the findings .. 273

7.2.3 EDR Question .. 276

7.3 Overview of the Study .. 277

7.4 Research Chapters .. 278

7.4.1 Chapter 2 – Literature review ... 278

7.4.2 Chapter 3 – Design Research .. 279

7.4.3 Chapter 4 – Research Design .. 280

7.4.4 Chapter 5 – Data analysis and findings .. 280

7.4.5 Chapter 6 – Discussion .. 281

7.5 Summary .. 281

7.5.1 Conclusions .. 281

7.5.2 Recommendations ... 281

7.5.2.1 Programming language .. 281

7.5.2.2 Technical .. 282

7.5.2.3 Cognitive Balance and Beliefs .. 282

7.5.2.4 LMS .. 282

7.5.2.5 Learning ... 283

7.5.2.6 APOS ... 283

7.5.2.7 Education ... 283

CHAPTER 8: CONTRIBUTION, FURTHER RESEARCH AND REFLECTIONS 285

8.1 Introduction .. 285

8.2 Contributions of the research.. 286

8.2.1 Theoretical contribution .. 286

8.2.2 Contribution to academic discipline .. 287

8.2.3 Methodological contribution .. 287

8.2.4 Practical contribution .. 288

xiv

8.3 Further Research ... 289

8.4 Reflection ... 289

8.4.1 Learning perspective .. 289

8.4.2 Research perspective ... 290

8.5 Assessment of research ... 292

8.6 Assessment of the context and research purpose .. 292

8.7 Self-reflection ... 292

REFERENCES .. 295

APPENDICES ... 318

Appendix A: Introductory letters for the collection of research data 318

Appendix A-1: Curro Private School .. 318

Appendix A-2: Ethics Clearance from CPUT .. 319

Appendix A-3: Chester House Private School ... 320

Appendix A-4: Bosmansdam High Public School ... 321

Appendix A-5: Letter of Introduction to Schools ... 322

Appendix A-6: Videos Uploaded on Moodle Site for Learners to Access.................... 323

Appendix A-7: Greenfoot Developer... 324

Appendix A-8.1.1: Teachers Rollout Course on Greenfoot ... 325

Appendix A-8.1.2: Teachers Rollout Course on Greenfoot ... 326

Appendix A-8.2.1: Rollout to WCED Teachers Workshop 1 .. 327

Appendix A-8.2.2: Rollout to WCED Teachers ... 328

Appendix A-8.2.3: Location sent to Teachers .. 329

Appendix A-8.2.4: Timesheet o.b.o. Oracle for WCED Teachers Training Workshop 1
 .. 330

Appendix A-8.3.1: Rollout to WCED Teachers Workshop 2 .. 331

Appendix A-8.3.3: Location of WCED Teachers Workshop 2 332

Appendix A-8.3.4: Timesheet o.b.o. Oracle for WCED Teachers Training Workshop 2
 .. 333

Appendix A-8.3.5: WCED Teachers Training Signatures Workshop 2 334

Appendix A-8: Oracle Instructors Certificate ... 334

Appendix A-9: Emails sent to Authors of the APOS Theory ... 335

Appendix A-9.1: Email 1 to Prof Dubinsky (12 February 2015) 335

Appendix A-9.2: Email 2 from Prof Dubinsky (15 March 2015) 335

Appendix A-9.3: Email 2 from Prof Dubinsky (21 March 2015) 336

Appendix A-9.4: Email to Dr Illana Arnon .. 337

Appendix A-9.5.1: Email Response from Dr Arnon (8 March 2015) 338

xv

Appendix A-9.5.2: Email Response from Dr Arnon in attached Word document 04-12-
2015 @ 8:44 pm .. 338

Appendix A-9.6: Western Cape Education Plan to Salvage Mathematics.................... 339

Appendix B-1: Intervention 1 (Abstraction [Abstract Thinking] Assessment) 340

Appendix B-2: Questionnaire on Mathematics in General (Learner X) 341

Appendix B-3: Questionnaire on Mathematics in General (Learner Y) 342

Appendix B-4: Questionnaire on Mathematics in General (Learner Z) 343

Appendix C: Intervention 2A-1 computational thinking in motion (Compiled
interpretation taken from Denning (2017) and AHO(2011)) ... 344

Appendix D-1: Intervention 2A-2 (Genetic Decomposition Process adapted from Arnon
et al., 2004) ... 345

Appendix D-2: Intervention 2A-3 (Genetic Decomposition of “Load a Greenfoot
Scenario”) .. 346

Appendix D-3: Intervention 2B (Help Documentation in Greenfoot) 347

Appendix D-4: Intervention 14E (Genetic Decomposition of IF statement) 348

Appendix E-1: Intervention 3A (Introduction of the Moodle LMS) 349

Appendix E-2: Intervention 3B (Juggling enactment to enforce Moodle usage among
learners) ... 350

Appendix E-3: Intervention 3C (Moodle and Generalised Terminology) 351

Appendix F-1: Intervention 4A (Creating a Linux Server with external access) 352

Appendix F-2: Intervention 4B (Creating a Cloud-based Moodle LMS) 352

Appendix G-1: Intervention 5A (Introduction to Greenfoot) ... 353

Appendix G-2: Intervention 5B (Revisit previous Activities) .. 354

Appendix H: Intervention 6 (Applying Process and Object within mathematics) 355

Appendix I: Intervention 7 (Greenfoot as Process and Object) 356

Appendix J Intervention 8: Rollout of code in Greenfoot in Figure 4.20 357

Appendix K: Intervention 9 (Making decisions towards Encapsulation) 358

Appendix L: Intervention 10 (Revisit encapsulation with Randomize option) 359

Appendix M-1: Intervention 11A (Informing the learners of the assessment in a
structured manner) .. 360

Appendix M-2: Intervention 11B (Assessment in Greenfoot on Encapsulation and
problem solving) .. 361

Appendix N: Intervention 12 (The Variable in Greenfoot) ... 362

Appendix O: Intervention 13 (Moving from Process to Object in APOS using
Greenfoot) .. 364

Appendix P-1: Intervention 14A: Basic creation of scenario with World and Actor
classes.. 365

Appendix P-2: Intervention 14B: Manipulation of Actors in a World. 366

xvi

Appendix P-3: Intervention 14C: Interaction of Actor within the world solving problems
 .. 367

Appendix P-4: Intervention 14D: APOS theory as tool to investigate problem questions
 .. 368

Appendix P-5: Intervention 14E: The IF statement as a solution to address problems
 .. 369

Appendix Q: Rollout to WCED Schools ... 370

Appendix R-1: Task for interview 1A (Algebra Exercise on Simplification) 371

Appendix R-2: Task for interview 1B (Science Assessment Question) 371

Appendix R-3: Interview: Voltage-Ampere-Resistance pyramid 372

Appendix R-4: Interviews on Mathematics and Science ... 372

Appendix S: Greenfoot Name Badge.. 379

Appendix T: Order Form for the Greenfoot Badges .. 380

Appendix U: First Game Development ... 381

Appendix V: Putting it Together ... 384

Appendix W: Table of interventions and Actions .. 386

Appendix X: FEDS for Artefact Evaluation... 388

Appendix Y: Themes ... 389

xvii

LIST OF FIGURES

Figure 1.1: Chapter 1 layout ... 1

Figure 1.2: A 25-step model in Neo-Piagetian cognitive development and Neo-Eriksonian

social-affective development (Adopted from Young, 2012:242) ... 7

Figure 1.3: Research Onion (Adopted from Saunders, Lewis & Thornhill, 2019:130) 9

Figure 2.1: Chapter 2 layout ... 16

Figure 2.2: Hermeneutic framework for the literature review process (Adopted from Boell &

Cecez-Kecmanovic, 2014:264) .. 18

Figure 2.3: Scopus Database search outcome on “Abstraction in Mathematics” 20

Figure 2.4: Bruner’s three modes of representation (Adopted from Tall, 2003:2) 25

Figure 2.5: Three representational worlds and their associations with other viewpoints

(Adopted from Tall, 2003:4) ... 25

Figure 2.6: Three worlds in mathematics (Adopted from Tall, 2008:4) 27

Figure 2.7: Translate the “Appleness” of counting into a number object (Adapted from Meyer,

2010:2) .. 33

Figure 2.8: Model of predictors of OOP performance (Adopted from Cegielski & Hall,

2006:74) .. 36

Figure 2.9: Learning-by-design cycles (Adopted from Lee & Kolodner, 2011:6) 37

Figure 2.10: Computational thinking in motion (Adapted from Denning, 2017; Aho, 2011) ... 38

Figure 2.11: Cognitive development style of PLs (Adopted from White & Sivitanides,

2002:63) .. 39

Figure 2.12: Procedural and conceptual knowledge (Adopted from Tall, 2008:12) 46

Figure 2.13: Tearing corners of a triangle to form a straight line (Adopted from Tall, 2002:9)

 .. 46

Figure 2.14: A learning framework (Adopted from Tall, 2008:14) ... 48

Figure 2.15: An Actor class using a Stride scenario (Greenfoot ver 3.0) 54

Figure 2.16: Actor Camel class within a Java scenario (Greenfoot 3.0) 55

Figure 2.17: Schema and its construction (Adopted from Dubinsky, 1991:106) 58

Figure 2.18: Diagram based on Grossman’s Reformulation of PCK (Adopted from Saeli et al.,

2011:76) .. 61

Figure 2.19: TPACK framework accommodating technology (Adopted from Koehler & Mishra,

2009:63) .. 63

Figure 2.20: Interpretation and adaptation of APOS theory from a research and curriculum

development stance (Adapted from Arnon et al., 2014:112)... 70

Figure 2.21: The theoretical conceptual framework for the improvement of computational

thinking among learners ... 76

Figure 3.1: Layout of Chapter 3 ... 93

xviii

Figure 3.2: Framework and Context of DR (Adopted from Venable, 2006:3) 94

Figure 3.3: DSR process model (Adopted from Vaishnavi, Kuechler & Petter, 2019:14) 95

Figure 3.4: Perceptions of EDR objectives and methods (Adopted from Weber, 2010:4) 96

Figure 3.5: Refinement of problems, solutions, methods and design principles (Adopted from

Reeves, 2006:14) .. 98

Figure 3.6: Generic model for EDR (Adopted from McKenney & Reeves, 2012:14) 98

Figure 3.7: Questions and methods for DR using ILDF (Adopted from Bannan, 2013:55) 99

Figure 3.8: Synthesised generic model for educational DR (Adopted from Van Wyk & De

Villiers, 2018:305) .. 101

Figure 3.9: Overview of phases (Adopted from Plomp, 2013:19) 104

Figure 3.10: Diagram showing the problem identification phase (Adopted from Plomp,

2013:19) .. 104

Figure 4.1: Layout of Chapter 4 ... 107

Figure 4.2: Four quadrants of sociological and organisational research (Adopted from Burrel

& Morgan, 1979:22) ... 109

Figure 4.3: Research Onion (Adopted from Saunders, Lewis & Thornhill, 2019:130) 110

Figure 4.4: One term’s visits to the private school .. 114

Figure 4.5: Time table structured on a two-week period for first term 114

Figure 4.6: Time table structured on a two-week period for second term 115

Figure 4.7: Five phases of Action Research Method (Adopted from Susman & Evered, 1978

as illustrated by Järvinen, 2007:39) .. 115

Figure 4.8: Composite representation of DR, DSR and DBR (Adopted from Van Wyk & De

Villiers, 2018:304) .. 117

Figure 4.9: Relationship among DS, DR, DSR and EDR (Adapted from Venable, Pries-Heje

& Baskerville, 2016:141; Miah, Solomonides & Gammack, 2010:2) 118

Figure 4.10: Abstraction exercise ... 119

Figure 4.11: Computational thinking in motion (Adapted from Denning, 2017; Aho, 2011) . 121

Figure 5.1: Chapter Layout .. 142

Figure 5.2: Word Cloud on this thesis .. 142

Figure 5.3: Learner X answers questionnaire on geometry knowledge (Appendix B-2) 145

Figure 5.4: Learner Y answers questionnaire on geometry knowledge (Appendix B-3) 145

Figure 5.5: Learner Z sees Mathematics as an obstacle Appendix (B-4) 146

Figure 5.6: Cross Section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305) 147

Figure 5.7: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305) 153

Figure 5.8: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305) 154

Figure 5.9: The theoretical conceptual framework for learners ... 155

Figure 5.10: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305)

 .. 156

xix

Figure 5.11: Depicts the flow of Phase 2 .. 156

Figure 5.12: Adaptation of the theoretical conceptual framework to enhance computational

thinking among learners in Grade 8 ... 164

Figure 5.13: The Wombat Actor object within MyWorld World Object 168

Figure 5.14: The proposed theoretical conceptual framework for enhanced learning using

programming language and LMS ... 175

Figure 5.15: Questionnaire example .. 181

Figure 5.16: Comments on Juggling .. 182

Figure 5.17: General terminology ... 185

Figure 5.18:General terminology .. 185

Figure 5.19: General terminology ... 185

Figure 5.20: General terminology ... 185

Figure 5.21:General terminology .. 185

Figure 5.22: General terminology ... 186

Figure 5.23: General terminology ... 186

Figure 5.24: General terminology ... 186

Figure 5.25: General terminology ... 187

Figure 5.26: General terminology ... 187

Figure 5.27: General terminology ... 187

Figure 5.28: General terminology ... 188

Figure 5.29: (Adopted from https://www.filehippos.org/java-development-kit/) 194

Figure 5.30: Greenfoot editor with World Code .. 196

Figure 5.31: Greenfoot “SpaceWorld” scenario .. 196

Figure 5.32: Greenfoot “SpaceWorld” World scenario populated by Rocket objects 197

Figure 5.33: The Wombat Actor object within MyWorld World Object 201

Figure 5.34: The Wombat Actor code in Greenfoot editor .. 202

Figure 5.35: Greenfoot Class Documentation .. 204

Figure 5.36: Greenfoot ChessBoard World .. 205

Figure 5.37: Chessboard when using (600, 400, 1) dimension ... 205

Figure 5.38: Learner calculating the size of the World that will produce a perfect chess board

 .. 206

Figure 5.39: A learner’s response on Activity question ... 209

Figure 5.40: TurtleWorld in Greenfoot .. 209

Figure 5.41: The Turtle act () method coding ... 210

Figure 5.42: Encapsulating code .. 210

Figure 5.43: Greenfoot code illustrating the “turn” command.. 213

Figure 5.44: Greenfoot code for repeating code ... 216

Figure 5.45: Question 7 answer ... 224

xx

Figure 5.46: Question 3 on the term ‘compilation’ .. 226

Figure 5.47: Answer to what ‘compilation’ stand for ... 226

Figure 5.48: Answer consists of Greenfoot code for checking edges 227

Figure 5.49: Inspection parameters on Turtle object .. 228

Figure 5.50: Answer to Question 1 ... 228

Figure 5.51: Response from student regarding Car movement at edge of the World 229

Figure 6.1: Chapter 6 Layout ... 248

Figure 6.2: Flow of APOS theme.. 249

Figure 6.3: Computational thinking hub .. 257

Figure 7.1: Chapter layout.. 269

Figure 8.1: Chapter 8 Layout ... 285

Figure 8.2: Reflection of this EDR research (Adopted from van Wyk & De Villiers, 2018:305)

 .. 290

Figure 8.3: Processes flow diagram of this research (Adapted from Van Wyk & De Villiers,

2018:306) .. 291

Figure 8.4: Proposed conceptual framework .. 291

xxi

LIST OF TABLES

Table 1.1: Mapping of research methods and objectives to RQ 1 .. 6

Table 1.2: Mapping of research methods and objectives to RQ 2 .. 7

Table 1.3: Structure of the thesis ... 15

Table 2.1: Genetic Decomposition ... 72

Table 3.1: The structure of the EDR question .. 103

Table 4.1: Abstract thinking among grade 8 learners ... 120

Table 5.1: Mapping of research methods and goals to Research Question 1 152

Table 5.2: Mapping of research methods to Research Question 2 152

Table 5.3: The research EDR goals and objectives ... 153

Table 5.4:Criteria for high quality Interventions .. 157

Table 5.5: Detailed summary of interventions .. 158

Table 5.6: Abstract thinking among grade 8 learners ... 161

Table 5.7:The prerequistes for using Moodle ... 179

Table 5.8: The results of Intervention 3B is .. 181

Table 5.9: Moodle csv file structure .. 192

Table 5.10: Test 2 results .. 221

Table 5.11: Summary of the findings and themes of the interviews 242

Table 5.12: Themes from Interviews .. 242

Table 5.13: Grouping of findings, summary of findings, categories and themes 243

Table 5.14: Relationship of research questions, objectives, findings, main findings and

themes ... 245

Table 5.15: Grouping of interviews, summary of findings and themes 246

Table 6.1: Summary of findings per theme ... 249

xxii

GLOSSARY/ACRONYMS

Acronym/Abbreviation Full Word/Term

AMESA Association for Mathematics Education in South Africa

ANA Annual National Assessment

APOS Action Process Object Schema

AR Action Research

ASSA Actuarial Society of South Africa

CAPS Curriculum Assessment Policy Statements

CLT Cognitive Load Theory

CLFO Cognitive Learning of Formal Operations

CS Computer Science

DBR Design-Based Research

DR Design Research

DS Design Science

DSR Design Science Research

EDR Educational Design Research

EEG Electroencephalogram

GD Genetic Decomposition

IEA International Association for the Evaluation of Educational Achievements

ID Instructional Designer

LMS Learning Management System

EEG Electroencephalogram

MBSA Meta-Belief System Activity

MPH Mathematical Powerhouse

MPS Mathematical Problem Solving

NCTM Standards National Council of Teachers of Mathematics Standards in the USA in 1989

PL Programming Language

POMI Path of Minimal Interaction

OOP Object-Oriented Programming

SAMS South African Mathematical Society

SAMSAK South African Mathematics Swiss Army Knife

SCRATCHED Educators using Scratch at website https://scratched.gse.harvard.edu/

TIMSS Third International Mathematics and Science Study

TELEs Technology Enhanced Learning Environments

xxiii

TERMS AND DEFINITIONS

Terms Definition/Explanation

Abstractions Abstractions called computational models are at the heart of computation
and computational thinking (Denning, 2017:35).

Algorithm

An Algorithm for a function f is just a Turing machine that computes f
(Aho, 2011:5). It is any sequence of steps controlled by a computational
model (Denning, 2017:36).

Algorithm design

Algorithm design is a design that controls any machine that uses the
computational model to produce a desired effect in the world (Selby &
Woollard, 2014). It is expressions of recipes for carrying out tasks; no
awareness of computational models is needed (Denning, 2017:37).

Cognitive The Merriam-Webster dictionary defines cognitive as “Relating to, being,
or involving conscious intellectual activity (such as thinking, reasoning, or
remembering)” (Merriam-Webster.com, 2019).

Cognitive level of formal
operations

The final Piaget’s stage of development is known as the formal
operational stage and is present when someone reaches about the age of
12 and continues into adulthood. Deductive way of thinking and
understanding conceptual thoughts are present (Cherry, 2014).

Cognitive structures How concepts within a domain are organised and interrelated within a
person’s mind as the building blocks of meaningful learning and retention
of instructional materials (Ifenthaler, Masduki & Seel, 2011:41).

Computation Computation refers to a process that is defined in terms of some
underlying model of computation. A model of computation is a
mathematical abstraction of a computing system. For a clear definition,
the model must be well-defined such as the model of sequential
computation in CS or Turing machine. Other models, such as concurrent
models define concurrent computation (Aho, 2011:1-6).

Computational thinking Computational thinking refers to thought processes of abstraction,
decomposition, algorithmic design, evaluation and generalisation.
However, from an educational perspective it should include the idea of a
thought process, the concept of abstraction, and the concept of
decomposition (Selby & Woollard, 2014:1,3).

Electroencephalograms
(EEG)

An electroencephalogram (EEG) is a test that detects electrical activity in
the brain using small, metal discs (electrodes) attached to your scalp
(Blocka, 2017:1).

Embodied cognition (EC)

Embodiment is a radical hypothesis that the brain is not the only resource
in solving problems. The body of a human being and the perceptions from
guided motions assist in solving problems, removing the need of complex
internal mental representations to achieve the same goal (Wilson &
Golonka, 2013:1).

Epistemological fraud The pupil produces an exact response, but not because he has
“understood and solved the problem”, not because he has learned a
mathematical object, but simply because he has established a similarity
with another exercise (D’Amore, 2008:11).

Greenfoot

Greenfoot is an integrated educational software development
environment aimed at learning and teaching programming to young
novices. The target user group starts at pupils from about 14 years of
age, and also includes introductory university education (Kölling,
2010b:1).

xxiv

Terms Definition/Explanation

High road transfer

High road transfer depends on mindful abstraction from the context of
learning or application and a deliberate search for connections: Such a
transfer is not reflexive in general. It demands time for exploration and the
investment of mental effort. It can easily accomplish far transfer, bridging
between contexts (Perkins & Salomon, 1992:8).

Low road transfer

Low road transfer happens when stimulus conditions in the transfer
context are sufficiently similar to those in a prior context of learning to
trigger well-developed semi-automatic responses. A relatively reflexive
process, low road transfer figures most often in near transfer (Perkins &
Salomon, 1992:8).

Mathematical Pathology

Mathematical examples designed to violate properties that are perceived
as valid, depending on the degree of sophistication of the learner. Objects
“cooked up” to provide interesting examples of counterintuitive behaviour
(Wolfram MathWorld, 2020).

Pathology An experience of suffering (Sriraman & Dickman, 2017:1).

Pedagogical content
knowledge (PCK)

Shulman (1986:9) defines pedagogical content knowledge as the amount
and organisation of knowledge per se in the mind of the teacher. It is the
teacher’s interpretations and transformations of subject-matter knowledge
in the context of facilitating student learning (Van Driel Verloop & De Vos,
1998:673).

Piaget learning “Learning without being taught”. The concept of cognitive structure is
central to his theory (Papert, 1980:7).

Promote The Merriam-Webster dictionary defines promote as “to contribute to the
growth or prosperity of” (Merriam-Webster.com, 2020).

Object-oriented
programming

Object-oriented programming (OOP) is a software programming model
constructed around objects. This model compartmentalises data into
objects (data fields) and describes object contents and behavior through
the declaration of classes (methods) (Techopedia.com, 2017).

Scratch

Scratch has a simpler object model without classes which allows a very
quick and easy start, but has drawbacks for some kinds of more
advanced projects, especially those involving many objects of the same
kind (Kölling, 2010b:20).

1

CHAPTER 1: INTRODUCTION

Figure 1.1: Chapter 1 layout

2

1.1 Introduction
The underperformance of learners1 in especially mathematics at high schools in South Africa

(SA) remains a challenge for government, policymakers and educators (Reddy et al., 2015;

Voogt et al., 2015; Reddy, 2014; Spaull, 2013). The Department of Basic Education (DBE) in

SA has been embarking on a National Development Plan (NDP) with a five-year strategic

plan from 2015 to 2020, to enhance mathematics education among learners. In SA, systemic

tests have been introduced since 2012 as an upgrade of the Annual National Assessments

(ANAs) instruments (Schäfer, 2018), but computational thinking is not specifically addressed.

The implementation, in general across the world, to enhance the status quo of mathematics

education, remains complex, as highlighted by Voogt et al. (2015), Denning (2017), and

Lockwood and Mooney (2017).

Subjects such as Mathematics and Science expect from learners to operate effectively at a

cognitive level of formal operations in performing computational thinking. Computational

thinking demands thought processes, abstraction and decomposition (Guzdial, 2008; Wing,

2011; Selby & Woollard, 2014). Computational thinking is initially defined as that what

“involves solving problems, designing systems and understanding human behaviour, by

drawing on the concepts fundamental to computer science” (Wing, 2006:33).

Teaching towards mathematical problem solving remains a challenge, according to Chirinda

and Barmby (2018). Chirinda and Barmby (2018:122) consider mathematics to be

“inexplicable and beyond understanding for the majority of learners”. These challenges exist

due to many factors within the South African society, such as large or overcrowded

classrooms and beliefs about mathematics in general (Moscucci & Bibbo, 2015). Lockwood

and Mooney (2017) opine that detailed lesson plans and curriculum structures are lacking in

terms of computational thinking.

Teachers using a computational thinking educational framework seldom assess

competencies, but more often the “way of doing things” (Denning, 2017:36). The author

argues that the learner must be involved in the design of computations to become a

computational thinker as opposed to using instruments that do it for the learner. Similar

arguments are held by Lee et al. (2011), where the processes to create automations are

seen as computational thinking and not the interactions with automations as in the case of

robotics rollouts in education. Lockwood and Mooney (2017:1) regard the interfacing of

1 The statistics showed the decline in the overall grades of Grade 9 leaners (DBE, 2015; HSRC, 2014; Spaull, 2013). According
to Spaull (2013) and Reddy et al. (2015), the Literacy and Numeracy Assessment (LaNA) rolled out by the Trends in
International Mathematics and Science Study (TIMSS) indicates that South African learners are underperforming and hold the
last position out of a total of 143 countries (Reddy, 2014).

3

computational thinking and specific subjects as a work in progress and very much in its

“infant stage”. The authors reference multiple examples from all disciplines, but identified a

programming language approach to integrate computational thinking into the specific

discipline or in using some Computer Science (CS) principles within the discipline. This

approach is contradictory to that of Voogt et al. (2015) who do not view programming as the

sole source of computational thinking and above all, learners may not be comfortable when

programming is used. Denning (2009, 2017) has perceived computational thinking as a

hallmark of CS since the 1950s. Denning (2017) further posits that he has doubts about

statements made since 2006 to promote computational thinking to all K-12 educational

institutions, also known as “computational thinking for all” (Wing, 2006; Barr & Stephenson,

2011; Deschryver & Yadav, 2015, Yadav et al., 2016; Heintz & Manilla, 2018). Denning

argues that other domains offer vague and confusing definitions of computational thinking,

and acknowledges the challenge in the definition and assessment of computational thinking

within these domains. Researchers such as Heintz and Manilla (2018) perceive

“computational thinking for all” in context of using programming being rolled out to all, instead

of applying computational thinking in subjects other than CS.

1.2 Computational thinking and the mathematics connection
When looking at the mathematical problem-solving approach within SA, Chirinda and

Barmby (2018) find that the DBE’s adoption of such a rollout is not properly understood by

learners and teachers. Selby and Woollard (2014) opine that mathematical thinking points to

abstract structures and computational thinking to an abstract methodology. One of the

reasons for the misunderstanding between the DBE, teachers and learners in SA, is that

computational thinking is lacking among the majority of learners as indicated by low pass

rates in mathematics. Reflective abstraction and algorithms form the basis of the

mathematical problem-solving approach (Aho, 2012; Cetin & Dubinsky, 2017; Denning,

2017; Chirinda & Barmby, 2018). According to Selby and Woollard (2014), computational

thinking points to an abstract methodology and mathematical thinking to abstract structures.

The Action Process Object Schema (APOS) theory is well researched on how mathematics

learning takes place (Arnon et al., 2014) and has a strong connection with computational

thinking embedded in reflective abstraction (Cetin & Dubinsky, 2017).

1.3 Computational thinking and the programming connection
The initial definition of computational thinking by Wing (2006:33) states that it “involves

solving problems, designing systems, and understanding human behaviour, by drawing on

the concepts fundamental to computer science”. Voogt et al. (2015) argue that computational

thinking in CS requires knowledge of programming and that computational thinking concepts

are developed through CS. This viewpoint ties in with Wing’s computational thinking

4

automation and abstraction definition (Wing, 2011). According to Aho (2012) and Denning

(2017), abstraction refers to thought processes that formulate a solution. Automation

executes the solution using a computational model (Aho, 2012; Denning, 2017). The debate

revolves around the computational model being only a machine or any entity. The teaching of

computational thinking is governed by the methodology of instructors on the higher-level

concepts in multiple domains. “Teachers must be shown how computational thinking can

enhance their teaching and their students’ understanding of their content area” (Kale et al.,

2018:575). These authors further argue that successful application of technology to specific

teaching of content is still a challenge.

As stated earlier, Voogt et al. (2015) posit that the application of computational thinking in

multiple domains should deviate from Wing’s (2006) definition of computational thinking,

namely that learners should not think as computer scientists do, but stay within their own

discipline. This makes delineation of computational thinking within multiple domains a

challenge when compiling a curriculum. Denning (2017) points out that computational

thinking is not only as Wing (2006) intended it to be, where education embraces the term

‘computational thinking’ in general, but views computational thinking as a process or activity

whereby researchers or implementers of computational thinking are engaged in using

computational thinking when a solution to a problem is sought to establish a computational

model (Aho, 2012; Figure 2.10). The educational model for teaching and learning in SA

should be adjusted to focus on the development of competencies by eliminating all the

academic noise that sometimes clutters competency development.

This chapter further focuses on the (i) rationale of the research, (ii) problem statement,

(iii) research questions, (iv) aim of the research, (v) research methodology, (vi) contribution

of the research, (vii) ethical approach, (viii) assumptions, and (ix) delineation of the research,

which will be discussed in the next sections.

1.4 Rationale of the research
A magnitude of challenges exists at all levels of the pedagogical space when attempting to

provide an ideal learning environment for all learners. Some of these challenges include the

(i) different approaches to teaching and learning at schools, (ii) learner beliefs about

mathematics, and (iii) availability of resources. Other challenges are (iv) discipline at schools

and communities, (v) lack of respect for others, and (vi) basic needs such as electricity and

sanitation. Reddy et al. (2015) posit that poor discipline, violence and bullying at schools

have a negative effect on the performance of learners at a cognitive level of formal

operations.

5

Poor and middle class (economical) learners in grade 8 are seen as a barometer to predict

the pass rate in Grade 12. Raising the mathematical scores in Grade 12 implies raising the

scores in grade 8, especially in the case of poor academic performance. To achieve this

raising of mathematical scores, attention should be given to mathematical problem solving

from grade 8 onwards (Chirinda & Barmby, 2018). The educational playfield, when looking

for example at a subject such as Mathematics that requires computational thinking, is at risk

and the development of computational thinking requires urgent attention among high school

learners. Chirinda and Barmby (2018) highlight that an algorithmic approach is foreign to the

majority of learners and teachers, and a clear systematic approach in promoting

computational thinking is needed to deal with algorithms and reflective abstraction (Cetin &

Dubinsky, 2017).

1.5 Research problem statement
Spaull (2013), Reddy (2014) and Reddy et al. (2015) argue that there are not enough

learners in subjects such as Mathematics and Science where computational thinking is

required to satisfy the demand and expectations of industry and society. The manner in

which learners and students engage with their studies does not show sufficient support for

the development of computational thinking at a cognitive level of formal operations (Voogt et

al., 2015; Denning, 2017; Lockwood & Mooney, 2017). This phenomenon is mainly due to

the underperformance of learners. Computational thinking needs to be understood and

learners should engage with computational thinking in such a way that their computational

thinking skills are promoted at a cognitive level of formal operations, but it remains a

challenge to achieve (Voogt et al., 2015; Denning, 2017; Lockwood & Mooney, 2017).

Unfortunately, little research has been done on how computational thinking is promoted

among high school learners at a cognitive level of formal operations.

The problem statement is formulated as follows: It is unclear how computational thinking

can be promoted among high school learners at a cognitive level of formal operations.

1.6 Aim of the research
The aim of this research was to explore and understand how a programming language, using

Action Process Object Schema (APOS) theory as lens, could promote computational thinking

skills at a cognitive level of formal operations among high school learners.

1.6.1 Objectives of the research
In order to realise the aim of this research, the objectives of the research are the following:

i) To determine what computational thinking concepts are, and the role they play at a

cognitive level of formal operations.

6

ii) To determine the characteristics of a typical programming language that may promote

computational thinking skills at the cognitive level of formal operations.

iii) To determine the factors which promote computational thinking among high school

learners at a cognitive level of formal operations (CLFO).

iv) To determine higher-level constructs within a programming language which promote

APOS among high school learners.

v) To combine the usage of an LMS and a programming language in order to assist high

school learners with “worked examples” of advanced higher-level constructs in a

programming language and cognitive load theory.

1.7 Research questions (RQs)
To achieve the objectives, the researcher formulated two research questions (RQs), together

with sub-research questions (SRQs), to generate answers for the problem statement,

namely:

RQ 1: What are the characteristics of an enhanced learner’s teaching and learning strategy

that can empower learners to master computational thinking skills through APOS

theory, infused by a programming language at high school level?

RQ 2: How can computational thinking skills at a cognitive level of formal operations be

promoted among high school learners through the teaching of a programming

language aligned to Action Process Object Schema (APOS)?

The RQs, SRQs, methods to be used to answer the RQs as well as the objectives of each

question are presented in Table 1.1 and Table 1.2.

Table 1.1: Mapping of research methods and objectives to RQ 1

RQ 1: What are the characteristics of an enhanced learner’s teaching and learning strategy that can empower
learners to master computational thinking skills through APOS theory, infused by a programming language at high
school level?

SRQs Research
Method

Objective

1.1: What factors are needed to promote
computational thinking at a cognitive level of
formal operations among high school
learners?

Literature
Analysis

To determine the factors which promote
computational thinking among high school learners
at a cognitive level of formal operations (CLFO).

1.2: What type of programming language
may be used to promote computational
thinking skills at a cognitive level of formal
operations?

Literature
Analysis

To determine the characteristics of a typical
programming language that may promote
computational thinking skills at the cognitive level
of formal operations.

1.3: What constructs within the programming
language facilitate APOS theory at a
cognitive level of formal operations?

Literature
Analysis

To determine commonalities of constructs in APOS
and a programming language.

7

Table 1.2: Mapping of research methods and objectives to RQ 2

 RQ 2: How can computational thinking skills at a cognitive level of formal operations be promoted among high
school learners through the teaching of a programming language aligned to Action Process Object Schema
(APOS)?

SRQs Research
Method

Objective

2.1: How are the constructs of a programming
language taught among high school learners at a
cognitive level of formal operations?

Education
DR

To explore and understand how
constructs of a programming language
facilitate high school learners at a CLFO

2.2: How do the constructs of a programming language
align to APOS among high school learners at a
cognitive level of formal operations?

Education
DR

To determine higher-level constructs
within a programming language which
promote APOS among high school
learners

2.3: How does the use of an LMS, as a platform for
learning, aid the teaching of a programming language
aligned to APOS to promote computational thinking
skills at a cognitive level of formal operations among
high school learners?

Education
DR

To combine the usage of an LMS and a
programming language in order to assist
high school learners with “worked
examples” of advanced higher-level
constructs in a programming language
and cognitive load theory (CLT)

1.8 Research focus
This research focuses on the ages of learners in grades 8 and 9, which forms part of the

“Abstract-Coordination-Hierarchisation” stage within the Neo-Piagetian model of

development as depicted in Figure 1.2 (Young, 2012:244). The abstract and collective

intelligence stages are analogous to that level of formal operations, which is a broader

classification as inspired by Piaget’s (1977:121) original research.

Figure 1.2: A 25-step model in Neo-Piagetian cognitive development and Neo-Eriksonian

social-affective development (Adopted from Young, 2012:242)

8

Ojose (2008) identifies a challenge for learners at a cognitive level of formal operations

(CLFO) to connect mathematics with activities they do. This CLFO requires reasoning where

“reasoning skills within this stage refer to the mental process involved in the generalising and

evaluating of logical arguments and include clarification, inference, evaluation and

application” (Ojose, 2008:28).

1.9 Methodological considerations
A brief overview of the following methodological considerations governing the research will

be discussed next. These considerations are: (i) research paradigm and research

philosophy; (ii) research approach; (iii) research design; (iv) sampling strategies; and (v) data

collection strategies.

1.9.1 Research paradigm and research philosophy
Freshwater and Cahill (2012) as well as Saunders, Lewis and Thornhill (2019) argue that

research philosophies are investigated through research paradigms. The overall research

philosophy points to the development of knowledge and the nature of that knowledge

(Saunders, Lewis & Thornhill, 2019). Burrell and Morgan (1979) and Guba and Lincoln

(1994) view a paradigm as a set of basic beliefs. When criticising the term “belief”, D’Amore’s

(2008:3) definition states that a belief is “an opinion, set of judgements and of expectations,

which one thinks with regards to something”.

According to Burrell and Morgan (1979), certain assumptions are made by the researcher,

which revolve around the realities within the research (ontology), human knowledge

(epistemology) and how the values and beliefs influence the research process (axiology).

The ontology for Design Science Research (DSR), according to Iivari (2007), should be

based on Popper’s three worlds, of which World 3 is the significant world based on human

artefacts and institutions and theories within the ambit of this research. Cole et al. (2005)

perceive Design Science (DS) and Design Research (DR) as synonyms in the context of

Information Systems (IS) research. According to Venable and Baskerville (2012:142), DSR

points to a purposeful artefact for humans which can be “a product or a process; it can be a

technology, a tool, a methodology, a technique, a procedure, a combination of any of these,

or any other means for achieving some purpose”. This research addressed a significant

educational challenge and hence the DR method is that of Educational Design Research

(EDR) (Nieveen, 2013; Plomp, 2013; Bannan, 2013; Van Wyk & De Villiers, 2018).

Saunders, Lewis and Thornhill (2019) represent the traditional research process with the

research onion as depicted in Figure 1.3.

9

Figure 1.3: Research Onion (Adopted from Saunders, Lewis & Thornhill, 2019:130)

According to Saunders, Lewis and Thornhill (2019), a research philosophy is a reflexive

process because of too many variables and the subjectivity of the researcher, which

influences the research philosophy of the researcher. When criticising the research onion,

relative to this research, this research uses an interpretive research philosophy by adding to

the theory through an inductive approach using a research strategy namely EDR. Saunders,

Lewis and Thornhill (2019) did not include DSR and EDR as a research strategy. The

reasons for this are not clear, except that their research philosophy focuses on business as

opposed to education.

1.9.2 Research approach
According to Saunders, Lewis and Thornhill (2019), there are several approaches to conduct

research, namely deduction, induction and abduction. Creswell (2014), on the other hand,

recognises quantitative, qualitative and mixed methods as three approaches. This research

strategy was that of EDR and built on kernel theories that described the Information

Technology (IT) artefact (Weber, 2010). These kernel theories were established on “the

evaluation and modification of the natural and social theories” (Weber, 2010:2).

Within EDR, the worldview is regarded as a mixed paradigm rather than a single paradigm.

According to Vaishnavi and Kuechler (2008), Weber (2010), Beck and Weber (2013), and

Gregor and Hevner (2013), the instantiation of the artefact can be a construct, model,

method, instantiation or combinations of the former. An artefact is made with a purpose; it

can be a construct, model, framework, solution instantiation, or theory (Vaishnavi & Kuechler

10

2008; Beck & Weber, 2013; Gregor & Hevner 2013). Weber (2010) further argues that the

socio-technologist or developmentalist paradigm forms part of the EDR paradigm. EDR in its

full design life cycle consists of a three-part research paradigm. This research is positioned

as part of an interpretivist/constructivist paradigm to create an IT artefact as discussed in the

next section.

1.10 Research design
Research design refers to the way the research problem is investigated (Maree, 2012). This

research explores and understands how a programming language, using the Action Process

Object Schema (APOS) theory as lens, may promote computational thinking skills at a

cognitive level of formal operations among high school learners. Learners of a private high

school were the subjects who took part in the research, and the sample size of 15 to 20

learners per class was informed by the research design. The only difference between the

learners was the separation based on language. Furthermore, learners followed the same

curriculum in grades 8 and 9. At that stage of their schooling, they took the same subjects

overall and formed a homogenous group.

1.10.1 Sampling strategies
A non-probability, purposive sampling method was used to select the sample of research

participants within this qualitative research (Maree, 2012). Sharma (2017) states that

purposive sampling relies on the judgement of the researcher and is subjective for it is prone

to researcher bias. Although new-Piagetian perspectives are noted (Suizzo, 2000;

Rutherford, 2011; Young, 2012; Barrouillet, 2015), Piaget’s (1977) stage development model

was chosen. Learners fall within the cognitive level of formal operations (CLFO), which refers

to individuals of ages 12 years to adulthood. This correlates with the average age of grade 8

and 9 learners. The researcher accepted the Piagetian model of choice based on the

research sample (Piaget, 1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet,

2015; Bormanaki, & Khoshhal, 2017). The sampling method aligned with the theoretical

conceptual framework of this research (section 2.2.3, Figure 2.21). The sample of learners,

which constituted classes of English and Afrikaans speaking learners, separated only by

language, was chosen by the IT teacher of the school. This research replaced IT classes.

The IT teacher selected the participating IT classes based on availability of time slots to

conform to the practical day-to-day operation of the school without disrupting classes. To

mitigate researcher bias, as mentioned by Sharma (2017), the IT teacher did not make any

groupings based on performance; two classes, one for Afrikaans speaking learners and one

for English speaking learners, were selected as the unit of analysis.

11

1.10.2 Data collection strategies
The interaction with the same groups of learners spanned across two years, and lessons

were prepared based on the genetic decomposition of Dubinsky and McDonald (2001)

(Arnon et al., 2014). The research strategy was EDR using a programming language with

APOS theory as lens. Greene, Caracelli and Graham (1989), Onwuegbuzie and Collins

(2007), Venkatesh, Brown and Bala (2013) and Creswell (2014) suggested two frameworks

to collect data either concurrently or sequentially. This research used a sequential design,

focused on the promotion of computational thinking among high school learners. Data were

collected through lectures, semi-structured interviews, observation, assessments and tasks

received from learners. The interviews and outcomes of the assessments and assignments

were transcribed and provided insight into learner perceptions on certain concepts such as

abstraction. Interviews were done in a semi-structured manner based on a semi-structured

questionnaire (Appendices R1, R2 & R3). Learners interacted with one another and they

were observed when using a personal computer (PC) and the Greenfoot programming

language. These interactions were also captured on video and then analysed. The coding

produced by the learners can be seen as documentation that showed their competency

skills, highlighting strengths and weaknesses within the programming activities, supported by

the analysis of assessments of these programming activities.

1.11 Contribution of the research
Te’eni et al. (2015:564) state three success components for research, namely “contribution,

contribution and contribution”. The authors are critical of theoretical and empirical

contributions and urge researchers to make findings exciting by contextualising it outside the

scientific study as well. This research study contributed to the existing body of knowledge

through four types of contributions, namely, (i) theoretical, (ii) academic discipline knowledge,

(iii) methodological, and (iv) practical contributions, which will be explained in the following

sub-sections (Hofstee, 2009; Jansen, 2012).

1.11.1 Theoretical contribution
The researcher investigated the use and application of programming concepts, through

APOS theory as lens, to promote computational thinking skills among high school learners at

a cognitive level of formal operations (section 8.2.1). Teachers and researchers may promote

computational thinking by following the protocol as developed in this research.

1.11.2 Contribution to academic discipline
According to Maree (2012), academic disciplines grow when participants and the

participating context are enriched through research (section 8.2.2). The learners and

12

researcher gained qualities through research, such as developing new skills that enrich their

personal environment, the school environment and the broader community.

1.11.3 Methodological contribution
Many methodologies were researched, compared and applied to develop tools for this

research. Methodologies such as Schema development and research methodologies;

technical, pedagogical and content frameworks to develop curricula; and meta-cognitive

methodologies to address belief systems were combined to develop a framework. A

proposed conceptual framework (section 8.4.2, Figure 8.4) was constructed from the initial

theoretical conceptual framework (section 2.2.3, Figure 2.21) to facilitate the usage of

Greenfoot as a programming language in a controlled constructionist manner (section

2.2.2.1(b)).

1.11.4 Practical contribution
This research produced a guideline towards a radical change and the regulation dimension in

provisioning the rolling out of a new curriculum parallel with the existing curriculum on the

Greenfoot programming language and APOS theory. The abstract part (radical change),

according to Cronje (2016), which explores programming language concepts to determine

which programming language concepts were of importance to assist with computational

thinking, were addressed (section 8.2.4). Target audiences such as teachers and

researchers may follow protocol to replicate this research and promote computational

thinking among learners.

1.12 Ethical considerations
The Research and Ethics Committee of the Cape Peninsula University of Technology within

the Faculty of Informatics and Design granted permission to conduct this research (Appendix

A-2). Leedy and Ormrod (2014) state that ethical issues can be classified into the following

four categories: (i) protection from harm; (ii) informed consent; (iii) right to privacy; and (iv)

honesty with professional colleagues. The researcher ensured that informed consent was

obtained from the schools as a starting point (Appendix A), and that the learners and parents

were informed of daily activities the researcher performed with the learners. Privacy of the

research participants was ensured at all times (Leedy & Ormrod, 2014). Consent was also

obtained from Oracle Academy in South Africa prior to commencement of the study. The

names of the participating learners were encoded to ensure confidentiality between teacher-

parent-learner. The school was given the option to reveal its name in this thesis. The private

school was consulted to obtain permission before conducting the proposed study (Appendix

A-1). In a follow up visit, the teachers and the principal were consulted to clarify the aim of

the study. The teachers were given the surety that their involvement would be kept to a

13

minimum so as to not add to their workload, but the incentive of having an enhanced

educated learner was a convincing strategy which tied in with the contribution of academic

discipline. General data, interviews, videos and questionnaires are stored on a separate hard

drive protected by virus (Norton) and anti-malware software (Malwarebytes).

1.13 Assumptions
It was assumed that the age group 11 to 15 years is a relevant unit of analysis for the

research according to Piaget’s (1977) cognitive level of formal operations classification states

the age of 12 to adulthood (Piaget, 1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014;

Barrouillet, 2015; Bormanaki & Khoshhal, 2017). It was further assumed that the grade 8 and

9 learners were of the same emotional developmental stage. Owing to the researcher’s

subjectivist ontological stance and the teaching of programming language concepts in

Greenfoot, it was assumed that the researcher would play a part in the outcome of the

research. In the case of the chosen private school, their approach to learning was based on

a problem-solving model, and the application of Greenfoot provided a starting point in the

Java programming language. Consideration that Java was used in Grade 11 and Grade 12

and the research addressed their problem-solving model, the research was accepted.

1.14 Delineation of the research
The study was conducted at a private school where the infrastructure supported the research

initiative, i.e. teachers and technology. The private school was identified based on their

accessibility and because Java was installed on their computers. Public and state schools

were excluded from the study because the DBE abandoned Java, which affected resources

and the vertical articulation of the research as put forward as an advantage to conduct the

research.

1.15 Conclusion
The problem, namely it is not clear how computational thinking can be promoted among

learners to facilitate subjects that demand computational thinking, has been discussed.

Mathematical problem-solving deals with abstract structures, and computational thinking

focuses on an abstract methodology. APOS theory is a well-researched mathematical model,

framework and theory. Reflective abstraction forms part of APOS theory, which acts as

scaffold for computational thinking at methodological level. Computational thinking is poorly

structured in curricula and is mainly found within CS, which contradicts the “computational

thinking for all” vision among educationists. The aim of this research was therefore to explore

and understand the role of a programming language’s concepts and abstractions through

APOS theory in order to promote computational thinking. This was done by introducing

programming language concepts using the APOS theory from a mathematical perspective,

14

underpinning the research, to grade 8 and 9 learners at a private high school in South Africa.

The motivation is found in computational thinking being an abstract methodology and APOS

theory being a model and framework. Grade 8 and 9 learners fall within the age group of 11

to 15 years, aligned to Piaget’s (1977) development stage of the cognitive level of formal

operations. Researchers highlight numerous challenges in administering computational

thinking, but differ in their viewpoints. Computational thinking is vaguely described in mainly

CS curricula, which contributes to more confusion in the rollout of computational thinking and

assessment of competencies. Detailed lesson plans are lacking. Many researchers or

educators only view computational thinking in relation with programming and CS, which

creates a negative perception and complicates computational thinking rollout even more. To

remedy all the negative reasoning, this research was facilitated by detailed lesson plans.

Learners were involved with designing computations that strengthen computational thinking

rather than using or interacting with instruments such as robotics only. Programming should

not be perceived as a quick remedy to increase mathematics results, but rather as a long-

term fixing strategy in changing the traditional system of beliefs about mathematics of the

learner.

1.16 Summary
The acquisition of computational thinking involves learners’ thought processes, dealing with

abstraction and decomposition at a cognitive level of formal operations. Computational

thinking is a necessary competency needed to comprehend subjects such as Mathematics

and Science. The implementation of computational thinking among learners within the DBE

is either vague or non-existent.

This research aimed to explore and understand how a programming language, using Action

Process Object Schema (APOS) theory as lens, could promote computational thinking skills

at a cognitive level of formal operations among high school learners. As objective, the

researcher wanted to determine how computational thinking skills at a cognitive level of

formal operations could be promoted among high school learners by teaching a

programming language aligned with APOS theory.

EDR as research strategy was adopted using an induction-based approach through the lens

of a conceptual theoretical framework. Data were collected through lectures, semi-structured

interviews, observation, assessments and tasks received from learners. The interviews and

outcomes of the assessments and assignments were transcribed and analysed to provide

insight into learner perceptions on certain concepts such as abstraction. Semi-structured

interviews were conducted based on a questioning plan in a conversational style.

Interactions between leaners were also captured on video and analysed. The coding

15

produced by the learners was used as documentation that portrayed their competency skills,

highlighting strengths and weaknesses within the programming activities, supported by the

analysis of assessments on these programming activities.

The research methodology was based on an interpretivist research philosophy. The

ontological underpinning was subjective and the epistemological stance accepted opinions of

learners through written, spoken and visual attributed meanings. The axiology of the

researcher was that of a practicing educator in programming, a teaching and learning expert,

an instructional designer for the Independent Institute of Education, and a certified Java-

Alice-Greenfoot instructor through the Oracle academy.

All the research activities were based on sound ethical standards as maintained and

condoned by the Cape Peninsula University of Technology at the Faculty of Informatics and

Design (Appendix A-2). Informed consent was obtained from the schools as a starting point

(Appendices A-1, A-3, A-4, A-5) and the learners and parents were kept in the loop.

In Chapter 2, literature on computational thinking is reviewed and analysed to cast more light

on the two research questions and respective SRQs. These questions have been formulated

to investigate how computational thinking may be promoted among high school learners in

grade 8 and 9. The next section provides an overview on the structure of the thesis.

1.17 Structure of the thesis
The thesis consists of eight chapters as indicated in Table 1.3.

Table 1.3: Structure of the thesis

Flow of the research Logic and structure of the thesis

The research problem Chapter 1: Background of the research, the rationale and
the problem statement

The literature review Chapter 2: Literature review

Design research Chapter 3: Design research

Research design Chapter 4: Research design

Data analysis and findings Chapter 5: Data analysis and findings

Discussion Chapter 6: Discussion

Conclusions and recommendations Chapter 7: Conclusions and recommendations

Contributions and reflections Chapter 8: Contribution, further research and reflections

References used in the research References

Appendices referred to in the research Appendices

16

CHAPTER 2: LITERATURE REVIEW

Figure 2.1: Chapter 2 layout

2.1 Introduction and background
The underperformance of learners2 in especially mathematics at high schools in South Africa

remains a challenge for government, policymakers and educators (Spaull, 2013; Reddy,

2014; Reddy et al., 2015; Voogt et al., 2015). Subjects such as Mathematics and Science

expect from learners to operate effectively at a cognitive level of formal operations. The

2 The statistics showed the decline in the overall grades of Grade 9 leaners (Spaull, 2013; HSRC, 2014; DBE, 2015). According
to Spaull (2013) and Reddy et al. (2015), the Literacy and Numeracy Assessment (LaNA) rolled out by the Trends in
International Mathematics and Science Study (TIMSS) indicates that South African learners are underperforming and hold the
last position out of a total of 143 countries (Reddy, 2014).

17

cognitive level of formal operations is a Piagetian stage of development from the ages of 12

to 16 (Piaget, 1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015).

The literature review is done by determining key words and concepts from the thesis title,

problem statement, research questions and sub-research questions as well as the aim of the

study. The literature chapter (Figure 2.1) is presented as follows: (i) research focus; (ii) status

quo of mathematics in South Africa (SA); (iii) computational thinking and the mathematics

connection; (iv) computational thinking and the programming connection; (v) the literature

review; (vi) analysis and interpretation of the research questions; and (vii) summary.

2.2 Literature review
The following questions, from a mathematical perspective, where the researcher identified

challenges in the South African educational system, inform why/how computational thinking

skills should be promoted among learners:

i) What framework exists to promote mathematical thinking? In answering this question,

the APOS framework may cast light on understanding the problem of why there is a

lack of computational thinking skills among these learners, with the focus on

Mathematics.

ii) What factors are prominent within mathematical thinking among learners? In

answering this question, key concepts will be highlighted. These concepts include

abstraction, APOS theory, computational thinking, constructivist and constructionist

approaches, and different types of epistemologies that may enlighten the relationship

between mathematical thinking and computational thinking.

iii) How can learners be supported when involved in subjects that require computational

thinking? In answering this question, major issues must be identified, such as, where

is computational thinking found in our educational environment? Can a programming

language together with APOS theory be used to promote computational thinking

among learners?

The outcome of a search and acquisition cycle on the literature that addresses the problem

of a lack of computational thinking skills among learners aligns with the problem statement.

Keywords and concepts were identified from the problem statement. This led to using the

research questions and aim of the study as a guideline to search the literature and conduct a

literature analysis within this chapter. As strategy to interrogate the literature, a literature

review, and analysis of the literature was carried out. Although there are many literature

analysis frameworks available, the framework of Boell and Cecez-Kecmanovic (2014) was

selected for this study. The authors recognise that there is no single specific approach to

18

structure a literature review, but their framework as depicted in Figure 2.2 provides a definite

structure for analysis.

Figure 2.2: Hermeneutic framework for the literature review process (Adopted from
Boell & Cecez-Kecmanovic, 2014:264)

The hermeneutic framework consists of two hermeneutic circles, namely the search and

acquisition, and the analysis and interpretation. Within the search and acquisition circle, the

emphasis is on the high failure rate in mathematics in Western Cape Schools as well as in

the DBE at the time of the research. Upon closer inspection, Because of the low pass rates,

it is not clear how the school curriculum in general contributes towards the learners’

computational thinking skills to ensure a mathematical friendly mind. The term ‘mathematical

friendly’ can be substituted with the words ‘computational thinker’. The schooling system fails

to deliver enough learners who are successful in any subject that requires thought

processing at the cognitive level of formal operations, such as Mathematics and Science

(Howie, 2004, 2013; Plomp, 2013; Maree et al., 2006; Reddy et al., 2012; Spaull, 2013; CDE,

2014; DBE, 2015; Reddy et al., 2015).

There is a shortage of learners because learners do not possess competencies in

computational thinking at the cognitive level of formal operations. The low results, attributed

to poor performance at tertiary institutions during the Grade 12 exit level, are confirmed by

the Western Cape Education Department (WCED) (HSRC, 2014; DBE, 2015). All these

factors gave rise to the research problem as discussed in the next section.

2.2.1 Research problem
The way learners and students engage in their studies does not show sufficient support for

the development of computational thinking at the cognitive level of formal operations to yield

enough learners who satisfy the demand and expectations of industry and society in subjects

19

like Mathematics and Science. Mathematics and Science curricula may be integrated owing

to similar learning processes. This is supported by the National Council of Teachers of

Mathematics (NCTM), the School Science and Mathematics Association, American

Association for the Advancement of Science, and the National Research Council (NRC)

(Bosse et al., 2010). The argument of integration revolves around the phenomena that

“science provides mathematics with interesting problems to investigate, and mathematics

provides science with powerful tools to use in analysing them” (Rutherford & Ahlgren, 1990:

16). The findings of Bosse et al. (2010) indicate that science subject learners may enjoy

similar challenges as mathematics learners.

The problem statement is formulated as follows: It is unclear how computational thinking can

be promoted among high school learners at a cognitive level of formal operations. The

research questions as stated in section 1.7, Table 1.1 have been derived from this problem

statement.

2.2.2 Search and acquisition process
The literature analysis commences with interrogating the problem statement and research

questions through searching, reading and refining articles. These articles were critically

assessed, which gave rise to a literature analysis, which, in turn, highlighted the research

problem and sparked the formulation of more research questions to address the problem.

Data were collected by focusing on specific researchers who were found to be spearheading

their domain on these eligible articles. Key concepts, which emerged, are of an educational

concern. The mathematical challenge was investigated from an educational perspective, in

combination with the transfer of skills within the chosen programming language in order to

promote and enhance computational thinking.

Lastly, data were analysed by providing a narrative synthesis of the data through

summarising the findings from various studies and provide answers on the literature review

questions. A Scopus search (Figure 2.3: Scopus Database search outcome on “Abstraction in

Mathematics”) was done using the following criteria:

i) “APOS theory” produced 392 document results with a spike between 2017 and 2018.

“Computer Science” made up 5,7% and “Mathematics” 11,8% of the documents by

subject area. The United States took the lead with researchers such as Trigueros,

Martinez-Planell and Tayyari, while the founder, Dubinsky, creating most documents

on the topic.

ii) “Computational thinking in programming languages” yielded 310 documents with a

spike in interest between 2015 and 2018. The Computer Science subject area yielded

20

47% of the total documents produced, which came to 250 documents, while

mathematics only contributed 7%, with a total of 39 documents.

iii) “Computational thinking” on its own yielded 3926 documents, with a spike in 2018,

comprising 575 documents. The Computer Science subject area yielded 2342

documents.

iv) “Cognitive level of formal operations” yielded 117 documents with a spike in 2012.

v) “Greenfoot” programming language yielded 52 documents with a spike between 2009

and 2010 as well as in 2016. The well-known author, Prof M. Kölling, wrote 14 of the

26 documents.

vi) “Abstraction in Mathematics” yielded 1231 documents of which only 496 documents

were written on Mathematics as topic.

Figure 2.3: Scopus Database search outcome on “Abstraction in Mathematics”

The literature review highlights a mathematical approach in the form of APOS theory

supported by the Scopus search. Further to the Scopus search, APOS theory and

computational thinking combined with a programming language show a need for more

research as highlighted by the problem statement. Types of abstraction were discovered

that: (i) affect mathematical learning, (ii) extend abstraction towards computational thinking,

and (iii) conveying the importance of understanding what is meant by abstraction and

automation as two pillars in supporting computational thinking, according to Wing (2006,

2008, 2011). Finally, the status quo of available resources is investigated together with

significant research that influences mathematical thinking in practice.

Keywords such as computational thinking, abstraction, mathematics, cognitive level of formal

operations and programming language were observed through a Scopus search that

produced 1043 results. Focusing on a specific period between 2012 and 2019, the search

delivered 126 results. The search was then delineated to only include computational thinking,

abstraction, and cognitive levels of formal operations, which yielded 502 results. Using

21

Google Scholar and the CPUT Library Databases, another search yielded 1200 articles.

These articles included those found in the Scopus search, which were downloaded and read

to determine their relevance to the topic and research questions of this study. From this, 450

articles were used for the analysis, which produced 238 references but increased to 350 as

the researcher reflected on a network of contributing issues in the mix.

Using the databases available at the CPUT Library, i.e. EBSCOhost, ACM Library, Business

Source Premier, Career and Technical Education, Emerald, ERIS, Google Scholar, and IEEE

Xplore Digital Resources such as the Library, ProQuest, ProQuest Computing, Sabinet

Reference, Science Journals, Science Direct, Scopus, and SpringerLink, to mention a few,

350 full text papers were referenced. According to Boell and Cecez-Kecmanovic (2014), this

process comprises the ‘Search and Acquisition’ phase as part of the literature review. These

articles were then analysed and interpreted as per the Hermeneutic Framework of Boell and

Cecez-Kecmanovic (2014:264).

To find answers to the questions, according to Dempster and Hanna (2014), the protocol

must include eligible criteria, a search strategy, valid criteria, data extraction, analysis, and

dissemination properties. The eligible criteria that were searched for within articles are:

i) Frameworks that support mathematical learning (APOS theory for this research).

ii) The readiness level of learners, enabling them to digest activities that assist with

promoting computational thinking.

iii) Work done by researchers, which assists learners in their mathematical thinking, such

as the APOS theory, beliefs about mathematics, didactic contract, didactic situation,

and didactic transposition.

iv) Classification of programming languages.

v) Alignment of programming languages to APOS theory.

The connection between computational thinking and mathematical problem solving is

highlighted by Selby and Woollard (2014), among other researchers, in section 1.2, and the

promotion of computational thinking and programming (section 1.3) as an activity is

embedded within the methodology. This study explored how computational thinking skills at a

cognitive level of formal operations could be promoted among high school learners. The

study uses a programming language and Action Process Object Schema (APOS) theory as

lens to understand the exploration process.

Another reason for conducting this study was the lack of detailed lesson plans and

curriculum structures (Lockwood & Mooney, 2017:1) in terms of computational thinking, and

the notion that interfacing computational thinking with specific subjects is a work in progress,

still in its ‘infant stage’. A framework or tool to measure computational thinking and structures

22

to include computational thinking in the curriculum are not in place. A programming language

is used when promoting computational thinking in non-CS subjects (Kale et al., 2018). The

concept of “computational thinking for all” (Wing, 2006; Barr & Stephenson, 2011;

Deschryver & Yadav, 2015, Yadav et al., 2016; Heintz & Manilla, 2018) to promote

computational thinking to all K-12 educational institutions is challenging because of the

confusion to define and assess computational thinking. That is why programming is rolled out

in many studies when applying computational thinking in subjects other than CS.

2.2.2.1 Research question (RQ) 1

RQ 1: What are the characteristics of an enhanced learner’s teaching and learning
strategy that can empower learners to master computational thinking skills through
APOS theory, infused by a programming language at high school level?

To answer RQ 1, three SRQs were structured and analysed accordingly.

 Sub-research question (SRQ) 1.1
SRQ 1.1: What factors are needed to promote computational thinking at a cognitive level of

formal operations among high school learners?

The research method used to determine the role of computational thinking at a cognitive

level of formal operations, was a literature analysis. As indicated at the beginning of the

chapter, the focus needs to be on mathematical thinking, as this is the concept that initiated

the study. In answering SRQ 1.1, key factors emerged from the search and acquisition cycle,

which included concepts such as abstraction, computational thinking, and constructivist and

constructionist approaches to teaching and learning. Furthermore, APOS theory and different

types of epistemologies that may enlighten the relationship between mathematical thinking

and the role of computational thinking were investigated.

The sections in this chapter are arranged as follows: (i) Cognitive theory levels are

investigated first. This is followed by a discussion on (ii) mathematical learning and

embodiment, (iii) constructivism and constructionism, (iv) discovery learning challenges, (v)

computational thinking, (vi) cognitive ability and computational thinking, and (vii) abstraction

in action to cast more clarity as background knowledge for the relationship between

abstraction and computational thinking.

(i) Cognitive theory levels
Four cognitive levels, namely, (i) the sensorimotor, (ii) pre-operational, (iii) concrete

operational and (iv) formal operations level form part of the cognitive theory as created by

Piaget (1975). The stage of formal operations, according to Piaget’s (1977) Cognitive

23

Development Theory, is the stage where the deductive way of thinking and conceptual

thoughts play a role to increase intellectual capacity (Piaget, 1964; Young, 2012; Cherry,

2014; Ghazi et al., 2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017). It is at the level of

formal operations where a person deals with abstractions, forms hypotheses, solves

problems and is involved in mental manipulations (Biehler & Snowman, 1986; White &

Sivitanides, 2002). The following cognitive theory levels are discussed to add clarity and

position the level of formal operations in terms of Piaget’s (1977) cognitive development:

♦ Sensorimotor level (0-2 years)
According to Piaget (1977), this stage can be subdivided into six sub-stages. These stages

are: simple reflexes (0 to 1 month), primary circular reactions (1 to 4 months), secondary

circular reactions (4 to 8 months), coordination of reactions (8 to 12 months), tertiary circular

reactions (12 to 18 months) and early symbolic or representational thought (18 to 24

months). It comprises physical and motor practices such as basic sucking, standing and

eventually mental operations that replace actions (Piaget, 1964; Young, 2012; Cherry, 2014;

Ghazi et. al., 2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017).

♦ Pre-operational level (2-7 years)
Biehler and Snowman (1986:62) describes this Piagetian level as “a person using his/her

visual and body sensations to represent objects, but simply cannot reverse any actions”. As

an example of this level, if water is poured from one container into another and the size

differs, the person would judge the quantity as more or less. Imaginary play is a way by

which children gain knowledge during this stage (Piaget, 1964; Young, 2012; Cherry, 2014;

Ghazi et al., 2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017).

♦ Concrete operational level (7-11 years)
At this level, a person can understand conservation of matter and classifications and

generalisations, but cannot understand mathematical ratios (Barker & Unger, 1983). All dogs

are animals but not all animals are dogs. Children try to engage with abstract and theoretical

thought (Piaget, 1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015;

Bormanaki & Khoshhal, 2017).

♦ Formal operational level (12-16 years)
The cognitive level of formal operations is regarded as the highest cognitive level (Piaget,

1964; White, 2003; White & Sivitanides, 2002; Young, 2012; Cherry, 2014; Ghazi et al.,

2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017). At this Piagetian level, a person must

deal with abstractions, form hypotheses, solve problems systematically and engage in

mental manipulations (Biehler & Snowman, 1986). Within Piaget’s (1964) classification, the

24

cognitive level of formal operations is associated with mathematical thinking. The “Abstract-

Coordination-Hierarchisation” stages within the Neo-Piagetian model of development, as

depicted in Figure 1.2 (Young, 2012:242), match with the formal operations stage to a

degree. However, this research focused on the broader cognitive level of formal operations

as stated above.

The cognitive level of formal operations is an important platform to initiate computational

thinking (White & Sivitanides, 2002; White, 2003; Young, 2012; Cherry, 2014; Ghazi et al.,

2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017). When an incorrect version of the

concept, also known as a concept image (Arnon et al., 2014) is not supported by the actual

definition of such mathematical concepts, a warped epistemological understanding may be

reinforced. This leads to image concepts and rote learning (Dubinsky, 1991; Tall, 2004;

Arnon et al., 2014). Mathematical thinking is discussed in mathematical learning and

embodiment and its influence on abstraction and computational thinking in the next section.

(ii) Mathematical learning and embodiment
Tall (2004) argues that a range of theories exists in mathematics education. According to Tall

(2004), researchers such as Piaget (1965), Dienes (1960) and Bruner (1966) added to the

body of knowledge within mathematics. The tripartite theory of abstraction consists of three

abstraction concepts, namely empirical, pseudo-empirical and reflective abstraction, which

stems from Piaget’s (1964) research and is advocated by Dubinsky (1991). Dubinsky (1991)

further refines his research into the APOS theory, which also forms part of the foundation of

this thesis. Bruner (1966) highlights the complex world of mathematics by distinguishing

three modes of mental representation, namely: the sensorimotor, the iconic and the symbolic

mode, as illustrated in Figure 2.4. As an individual grows, he or she goes through these

phases in the form of action that is taken, then visualising those actions as thought

processes, and finally, expressing him or herself through language. Visualisation is

paramount towards language expression that is supported by actions as a starting point.

25

Figure 2.4: Bruner’s three modes of representation (Adopted from Tall, 2003:2)

Tall (2003, 2004) further uses the Bruner’s model and describes three mathematical worlds,

namely: (i) embodied; (ii) symbolic-proceptual; (iii) and formal-axiomatic worlds. It is about

our perceptions of the world, which consist of anyone’s thinking on how we perceive and

sense things both physically and mentally. Psychologists such as Wilson (2002), and Wilson

and Golonka (2013) use a term called ‘embodied cognition’ where the entire body and

perceptually guided motions play a role in complex internal mental representations when

problems are solved. This concept of including the body in learning is also highlighted

through Susan Goldin-Meadow’s research conducted among deaf learners (Barrouillet,

2015) in the form of gestures. Tall (2003) incorporates the Bruner model and creates a newer

model that focuses on the language aspect as well, as depicted in Figure 2.5.

Figure 2.5: Three representational worlds and their associations with other viewpoints

(Adopted from Tall, 2003:4)

Roth and Thom (2009) perceive the three worlds as the (i) conceptual embodied world,

(ii) proceptual world of symbols, and (iii) the world of properties. Tall (2003, 2004) combines

the inactive and visual aspects as proposed by Bruner (1966) within the embodied world.

26

The symbolic world consists of (i) arithmetic, (ii) algebraic and (iii) symbolic calculus, also

known as the symbolic-proceptual world. A procept refers to a mental object that originates

from a doable process that transforms into a thinkable concept. The world of properties

described by axioms is also known as the formal-axiomatic or formal world, e.g. vector

spaces are described by axioms. A sequence of theorems by inferring properties and new

concepts is defined within the axiomatic system (Tall, 2003; 2004; 2008).

Figure 2.6 illustrates the human embodiment of mathematical operations of symbolism and

then formalism of pure mathematics. This process then alternates back into embodiment and

symbolism, but at a higher level until the learner reaches the level of formal axiomatic

systems of formal proof.

The role of cognition, mathematical reasoning, learning and development of gestures were

researched by Cartmill, Beilock and Goldin-Meadow (2012:131) and they refer to this as

“embodied cognition”, for the body plays an important role in cognition. The authors further

distinguish action from gesture, where Piaget (1977) overlooked gestures in his research

(Barrouillet, 2015). Piaget (1975) brought terms such as equilibration, coordination,

regulation, formation, accommodation, compensation (optimised equilibration) and

assimilation to the fore (Bormanaki & Khoshhal, 2017). Movement also supports learning that

ties in with gestures, and gestures may also be a type of simulated action (Cartmill, Beilock &

Goldin-Meadow, 2012). The human brain is extremely limited and deals with an infinitesimal

number of pieces of information at a time. The final result is a thinkable concept through

compression in a category having a generic meaning to it (Tall, 2008). The Tall concept is

similar to Dubinsky’s (1991) APOS theory where the end result is a schema, but in some

form, the schema also becomes an object to which actions can be applied in turn (Arnon et

al., 2014).

27

Figure 2.6: Three worlds in mathematics (Adopted from Tall, 2008:4)

Unfortunately, the Schema construction as end result is hampered by “Dyscalculia” (difficulty

with numbers), which is encountered by learners and which necessitates rote learning that

may become a “way of life” (Tall, 2004:286) if the learner cannot convert specific processes

into thinkable concepts. Peabody (2014) views rote learning as a way to trigger learners’

investigative powers when reflection takes place, but uses rote learning only in crisis

situations. “Met-befores” may cause conflicts with new contexts, and, according to Tall

(2004), may necessitate rote learning. According to Bormanaki and Khoshhal (2017), Piaget

(1975) used terms such as assimilation and accommodation, interpreted as the adaptation of

a learner towards the concept or experience introduced to the learner at a cognitive level.

The process of adaptation is done through equilibration to achieve a balance between

assimilation and accommodation. Bormanaki and Khoshhal (2017) further state that

equilibration is an iterative or dynamic process when experiences are assimilated and

accommodated through equilibration and disequilibration. The “met-befores” highlighted by

Tall (2004) may act as a false state of equilibrium to cognitively adapt when new experiences

match existing schemata. Such schemata are a construct of Piaget (1975), and it can be

either formal or content-based. According to Bormanaki and Khoshhal (2017:1001), a

schema can be defined as “organised knowledge that one has about people, objects, places,

events processes, concepts and virtually anything that provides a basis for learning”. The

modality of a schema, whether formal or content, may influence the cognitive adaptation

(Bormanaki & Khoshhal, 2017). Assimilation is thus strengthening a schema in terms of

growth by which a learner cognitively adapts and organises the environment, which is a

quantitative change.

28

At a workshop in March 2015, teachers were re-educated on mathematical concepts. “The

training provides teachers with new methodologies, lesson plans, activities and resources for

their learners” (DBE, 2015b). The DBE wants to update old information by new information,

but the teachers must have schemata embedded to assimilate or grow their existing

schemata, thereby creating a quantitative change. In this case, the DBE should first

determine the level of these teachers’ schemata before re-educating teachers on

mathematical concepts. According to Moscucci (2007), belief systems about mathematics

may also influence the success of a learner’s mathematical problem solving. The DBE or any

educational governing body cannot simply assume a level of education and implement

refresher courses without considering mathematical beliefs among teachers and learners.

Accommodation can either happen through constructing new schemata or modifying existing

ones in order to match the new experience in a qualitative change. This may happen during

development or growth of certain mathematical concepts among learners (Bormanaki &

Khoshhal, 2017). Cognitive assimilation, cognitive accommodation, cultural assimilation and

cultural accommodation are four neo-Piagetian structures put forward by Rutherford (2011).

These cultural and social context issues are noted but partly ignored in this research and the

focus remains on cognitive development only (by choice) when investigating teaching and

learning issues.

Educators are pursuing Piaget’s (cited by Woolfolk, Winne & Perry, 2003) constructivist

approaches in mathematical learning. Piaget classifies thinking into two processes:

organisation and adaptation (Woolfolk et al., 2003; Bormanaki & Khoshhal, 2017). Adaptation

refers to an adjustment that involves Piaget’s assimilation and accommodation processes.

The process of organisation “deals with the combining, arranging, recombining, and

rearranging of the behavior and thought in the coherent system” (Bormanaki & Khoshhal,

2017:997). Dis-equilibration is a state of cognitive conflict and stress, when a balance is not

reached between assimilation and accommodation, known as the process of equilibration

(Cook & Cook, 2005).

Constructivism and constructionism are discussed in the next section to resolve the issue of

rote learning and instil an understanding or adaptation of mathematical concepts.

(iii) Constructivism and constructionism
The question regarding constructivism is, “What is constructivism and why has

constructivism become hegemonic within education?” The debate and implementation of

constructivism became analogous to a secular religion (McPhail, 2016:297). Piaget uses the

term constructivism and Papert uses the term constructionism (Ackermann, 2001).

Constructivism expresses the theory “that knowledge is built by the learner, not supplied by

29

the teacher”, as intended by Piagetian learning (Ackermann, 2001:4). Constructionism is “an

idea that happens especially felicitously when the learner is engaged in the construction of

something external or at least sharable” (Ackermann, 2001:4).

Papert (1993) further argues that emphasis needs to be placed on social constructivism and

psychological constructivism. Social constructivism focuses on the nature of human

knowledge around construction and survival, which points to epistemology. It is mainly

curriculum content that is affected by this. Because of knowledge being a human construct, it

is more relative than absolute and hence the actual existence of knowledge as the “truth” is

debatable. McPhail (2016) argues that constructivism denies human knowledge as an

objective picture of the world out there. It is almost a collapse of reality into the experience of

the individual’s reality. Learners’ understanding of mathematical concepts is verified in their

answers, but this verification is seldom correct. The learner’s understanding is more relative

than absolute when compared to the correct answer.

Psychological constructivism focuses on how humans learn in constructing their own

meanings and understandings (McPhail, 2016). From email communication between

Dubinsky (2018) and the researcher it can be deduced that Dubinsky does not use the term

‘constructivist’ as opposed to ‘constructionist’, but supports the idea of constructionism.

(iv) Discovery learning challenges
Teachers need to differentiate between learners when they teach new content and skills to

novices. This calls for teaching and learning strategies to be applied in order to differentiate

within a large class of learners, but it remains a challenge to do so. Teachers should walk

learners through the procedure and the concepts supporting the procedure, at least in the

initial phases of explaining how to solve a mathematical problem. Subsequent exercises may

then have little or no procedural explanations. Clark, Kirschner and Sweller (2012) interpret

this partially guided approach as experiential learning or constructivist learning, among other

synonyms. Experiential learning causes learners to experience the state of disequilibrium

more frequently than the state of equilibrium during the process of equilibration.

According to Bormanaki and Khoshhal (2017), learning can be described, through pure

discovery methods, as a state of discomfort or disequilibrium experienced by learners.

Although discovery learning was used, research shows that students who mastered concepts

using discovery learning “showed no signs of superior quality of learning” (Clark, Kirschner

and Sweller, 2010:80). Above all the arguments put forward by the authors, the most

important factor is the time it now takes in constructivist approaches, which may increase by

days instead of a normal 45-minute period. This is why educators such as Peabody (2014)

opt for rote learning.

30

The authors highlight an even more important concern in that learners will always choose the

approach that has the least impact on their input to learn concepts. A less-skilled learner will

rather opt for a less-guided approach for according to Clark, Kirschner and Sweller (2012) a

more guided approach requires learners to provide a more attention-driven approach.

Accommodation will increase the quality of the learner’s schema and his/her thinking

processes are challenged by greater adaptation. On the other hand, more-skilled learners

will opt for a guided-approach for it requires less attention and thinking, but adds to the

development of that learner through assimilation with minimum adaptation. A constructivist

approach is regarded as a means by which students should construct their own knowledge.

Many educators propagate this as the discovery of knowledge in solving problems without

explicit guidance. This is also known as a “constructivist teaching fallacy” (Clark, Kirschner &

Sweller, 2012:8). The authors further argue that hiding or withholding information from

learners cannot help with the construction of knowledge. There is a difference between

“constructing knowledge” and a “constructivist approach”. The latter construct knowledge to a

lesser degree.

The brain learns through long term, short-term or working memory (Mostyn, 2012; Sweller et

al., 2019). Cognitive load theory can be applied to complex learning such as Mathematics

and Science (Mavilidi & Zhong, 2019). Working memory can only hold information for a

couple of seconds, unless the learner uses his/her long-term memory to fetch concepts

previously learnt. Such as a chess player that can scan multiple chess board moves to make

an informed best choice regarding the move, he/she needs to make. Long term memory thus

provides a holding area for a “worked-example” in mathematics. The learner can then just

like an expert retrieve the worked-example from long-term memory and successfully perform

the procedure to solve a problem, based on that “worked-example”. The authors also coined

this as the “worked-example effect”. They see novices spending a considerable amount of

time engaging in problem-solving activities hardly learning anything during this engagement

(Clark, Kirschner & Sweller, 2012). The aim of CLT is to “generate novel instructional

techniques” (Sweller & Paas, 2017:86). CLT is regarded as the ability of learners to “process

new information and construct knowledge in long-term memory (Sweller et al., 2019:262).

As early as 1928, Brownell (1935) advocated his “meaning theory”. Brownell perceived

meaningful learning as an important ingredient to successful learning. Meaningful learning,

according to Brownell, can only take place when learners make sense of mathematics by

understanding the concept and how it is applied in the real world. Higgins and Wiest (2006)

posit that the slogan, “practice makes perfect”, does not always hold true when an incorrect

concept is practiced. Terms such as relative epistemology and constructivist teaching fallacy

are commonly linked to concepts practiced, but not as per mathematical definition.

31

(v) Computational thinking
Problem solving skills and logical thinking, which encompasses abstraction and automation

as its two main pillars, is computational thinking in a nutshell (Wing, 2006, 2008). Words

such as “thinking at multiple levels of abstraction”, “decomposition”, “heuristic reasoning to

discover a solution”, “prefetching and caching in anticipation of future use”, “recursive

thinking” and “algorithm and precondition” describe some of the skills needed to think like a

computer scientist (Wing, 2006:33).

Abstraction and automation are the “mental and metal tools” of computational thinking,

respectively (Wing, 2008:3718, 2011). Denning (2017) regards computational thinking as

being dependent on computational models, where computational models are abstractions as

well. If computational models are absent for specific problems, computational thinking is the

research activity for developing new computational models to secure solutions. The

computational model is always paramount as a solution to a problem.

Computational thinking is a challenging process because it demands a high level of

confidence, the ability to persist when one is confronted by complexity, the ability to deal with

ambiguity, the ability to deal with open-ended problems, and the quality to work within a

group in such a manner that the aims are achieved. After having mastered these important

characteristics, the individual should be able to formulate problems in such a way that it can

be solved tangibly through the use of computers or other tools. Data should be organised

and analysed logically. Abstractions must be employed to represent data using models and

simulations (Bar, Harrison & Conery, 2011). Algorithmic thinking should be applied, and all

possible solutions need to be inferred by analysis and identification in order to achieve the

most efficient and effective set of steps and resources. According to Denning (2017), these

said steps or algorithmic design are needed to control some computational models. The

ultimate solution should not be confined to that problem only, but need to be transferrable to

other problem situations (Barr, Harrison & Conery, 2011). Computational thinking revolves

around problem-solving skills, but it is applicable to almost any discipline (Wing, 2006). Wing

further regards computational thinking as a fundamental skill for everyone, which is not

particularly reserved for computer scientists, but this approach is challenged by Denning

(2017).

Computational thinking encompasses quite a bevy of skills, but these skills are challenging to

the average learner to understand and master. According to Philbin et al. (2013), problem

decomposition, pattern recognition, pattern generalisation, defining abstract models,

algorithmic design, and data analysis and visualisation are computational thinking techniques

that need to be mastered.

32

Distinguishing computational thinking from the different thinking processes in mathematics

and engineering is not easy (Cooper, Pérez & Rainey, 2010). Cooper, Pérez and Rainey

(2010) developed a model for computational learning as opposed to traditional computational

thinking, placing the emphasis on humans who use the computer and software to foster

computational learning. More research is needed on the understanding of what

computational thinking is and on strategies to assess ways in developing computational

thinking by means of design-based learning activities (DBLAs) (Brennan & Resnick, 2012).

(vi) Cognitive ability and computational thinking
Cognitive ability refers to a number of keywords overlapping with the definition of

computational thinking. Keywords used to define cognitive ability are the “cerebral function

that allows one to acquire, memorise, recall, combine, compare, and use information and

conceptual skills in new contexts” (Cegielski & Hall, 2006:74). According to the authors, while

cognitive ability explains variability in task performance, the theoretical value belief and

personality characteristics of an individual also plays an important role. Wing (2006) argues

that computational thinking builds on computing processes, irrespective of whether the

thinking processes stem from a human or a computer. Computational methods and models

empower individuals to solve problems and design complex systems. Cognitive ability is an

enabler of performing computational thinking. Computational thinking allows an individual to

provide a solution by using abstraction and decomposition when designing large complex

systems. Abstraction is one of the pillars of computational thinking (Wing, 2011) and will be

discussed in the next section.

(vii) Abstraction in action
Researchers such as Hayakawa (1949), Truran (1992), Wilensky (1991), Dubinsky (1991),

Hazzan (1999, 2003), Devlin (2003), Kramer (2007), and Perrenet (2010) state subtle

differences when arguing the concept of abstraction. Hazzan (1999) views abstraction as a

complex concept having many meanings for different contexts such as within mathematics.

Kramer (2007) uses examples of abstract paintings in art to illustrate generalisation that

focuses only on essential lines within a drawing. The author describes abstraction present in

the map of the London Underground railway designed by Harry Beck in 1933. The map

points to a concretisation of abstraction in a linear representation of the London

Underground, which makes more sense to travellers, compared to a true representation of

absolute routes and curves. This is a typical example where detail is removed, which differs

from the concept definition of abstraction. Hazzan (1999) points out that a concept tends to

be misinterpreted by students more often when students work at lower levels of abstraction

than what is required. According to Perrenet (2010:89), “abstracting is the bringing to a

higher aggregation level of a viewpoint (statement, model, theory) whereby it can be made

33

applicable to more cases”. Others understand abstraction as extracting, drawing-out or

‘abstrahering’ commonalities from a set of objects (Meyer, 2010) by removing detail. This is

also seen as performing a generalisation to identify a common focus point or essence

(Kramer, 2007). The common denominator is the quality of the relationship of the individual

with the object (Wilensky, 1991; Hazzan, 1999). Wilensky (1991:4) states that having the

“right relationship” with the object can lead to a concrete conceptual understanding and

“concreteness, then, is that property which measures the degree of our relatedness to the

object (the richness of our presentations, interactions, connections with the object), how

close we are to it, if you will the quality of our relationship with the object”. Wilensky (1991)

and Dubinsky (1991) regard abstraction as the degree of the relationship that exists between

the subject (learner) and the object (concept definition). The degree of the relationship also

points to the embodiment of the learner and the mathematics concept as researched by

Bruner (1966) and Tall (2003, 2004).

 In Figure 2.7 below, learners are expected to abstrahere apples into numbers. The

“appleness” (Meyer, 2010:2) principle is used by educators to teach learners for example to

count.

Figure 2.7: Translate the “Appleness” of counting into a number object (Adapted from Meyer,
2010:2)

Tall (2008) describes this abstraction as proceptual symbolism. Learners commence with

conceptual embodiment that leads to symbols or thinkable concepts called numbers such as

1+1 by performing an action schema called counting. Counting thus translates into a

thinkable concept called numbers. Learners now move from embodiment to the symbolic

world of procepts.

Learners are often given the freedom to solve problems in their own unique way and the

teacher ticks boxes to confirm that the mathematical concept has been dealt with. In many

cases learners may even get the right answer, but the method used to get to the solution is

not always friendly towards learners, who may find themselves in a whirlpool of so many

possible avenues to follow. This is when confusion dictates actions. Often these lower levels

of abstraction complicate understanding, as Hazzan (1999) and Kramer (2007) emphasise in

their research. This viewpoint of Hazzan (1999) and Kramer (2007) can also be considered

for the South African context where too few learners are benefiting when abstraction

becomes complicated. Researchers describe this state a learner is in as “abstraction anxiety”

(Sfard, 1991; Wilensky, 1991; Meyer, 2010), which forms an important component of

34

mathematical anxiety. Papert (1980:8) uses the term “mathophobia” and Tall (2004:281) and

Plerou (2014:XXVI) refer to this phenomenon as “dyscalculia”. Plerou (2014) not only

categorises dyscalculia as the difficulty to understand number concepts, but also regards

dyscalculia as a learning disability. According to Meyer (2010), educators should not only

classify subjects as being abstract, but also deal with this anxiety associated with

abstraction.

Many studies (Dubinsky, 1991, 2000; Hazzan, 1999; Wilensky, 1991; Dubinsky & McDonald,

2001; Kramer, 2007; Perrenet, 2010; Meyer, 2010; Maharaj, 2013; Brijlall & Maharaj, 2014)

have been conducted on the concept of abstraction as a prerequisite for subjects such as

Mathematics and Programming. However, many of these studies were conducted at

university level where students already acquired the skill of abstraction within certain

disciplines. Instruments for assessing certain characteristics associated with abstraction

skills are then devised or used to measure abstraction (Hill et al., 2008; Perrenet, 2010).

Unfortunately, only a few studies have been conducted at high school level from grade 8 to

grade 12.

The next section investigates the type of programming language and computational thinking

by discussing: (i) the positioning of a programming language; (ii) the characteristics of a

programming language that satisfies Piaget’s learning; (iii) computational thinking and a

programming language; (iv) Piaget’s cognitive level of formal operations and a programming

language; (v) definition and choice of a programming language; (vi) traditional syntax-based

programming languages are difficult to learn; (vii) programming language skills; and (viii) rote

learning and embodied experiences in a programming language.

 Sub-research question (SRQ) 1.2
SRQ 1.2: What type of programming language may be used to promote computational

thinking skills at a cognitive level of formal operations?

When performing coding at a cognitive level of formal operations, computational thinking is

implied owing to thought processes that will govern coding (Aho, 2012; Selby & Woollard,

2014; Denning, 2017) when using a programming language at a cognitive level of formal

operations (Piaget, 1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015;

Bormanaki & Khoshhal, 2017). The term ‘computational thinking’ needs be revisited. How

can learners be supported when they are involved in subjects that require computational

thinking? In answering this question, major issues need to be identified, such as, “Where is

computational thinking found in our educational space?” and “Can a programming language

be used to invoke computational thinking among learners that may play important roles in

this research to address the reason behind the lack of computational thinking skills among

35

learners in SA education? The next section will investigate computational thinking and the

relationship with a programming language.

(i) Positioning of a programming language
Wright, Rich and Leatham (2012) identify the positioning of programming language teachings

within technology education as an option, but do not prescribe where (in which grade)

programming must be taught. The authors position the teaching of a programming language

within the Standards for Technological Literacy (STL). The International Technology

Engineering Educators Association (ITEEA) also does not prescribe an exact curriculum for

technology teachings and hence suggests the positioning to be in STL. In South Africa, the

researcher attended Oracle training on Greenfoot programming where a teacher attendee

confirmed that she took the responsibility upon herself to teach learners programming skills

from an earlier age than the prescribed level of Grade 10. There are more such cases at

other schools, especially in private schools.

The fourth industrial revolution (4IR) is regarded as a disruptive technology that will generate

jobs in developed countries of origin as opposed to the remote developing countries of

consumption (Mpofu & Nicolaides, 2019). The researcher partially agrees with the authors

from a South African perspective, seeing that SA already embraced 4IR at educational

institutions, with a strong DBE support. The researcher’s stance is strengthened by how the

South African government is dealing with the COVID-19 pandemic in 2020 and how the

education departments are embracing programming and AI. However, if the youth of SA do

not embrace the concepts of computational thinking, SA will remain the consumers of the

developed countries. As correctly stated by Mpofu and Nicolaides (2019:11), “the social

effects of joblessness are devastating”, but SA is a population with a magnitude of

competencies that must be cherished to ensure prosperity for all its citizens and SA’s

strength lies in tapping into its diversity, which is lacking at the time of this writing. Szlávi and

Zsakó (2017) strongly advocate ICT competencies as contained in the National Curriculum

Statement of South Africa when considering Computer Science curricula.

(ii) Characteristics of a programming language that satisfies Piaget’s
learning

It seems that educators agree that programming must be taught earlier than Grade 10. The

debate around which program to use is an on-going one (Papert, 1980; Papert, 2005;

Cegielski & Hall, 2006; Kranch, 2010; Feurzeig & Papert, 2011; Lee, 2011; Brennan, 2012;

Brennan & Resnick, 2012; Bule & Seith, 2012; Weintrop & Welinsky, 2018b; Szabo et al.,

2019). A learner needs to be drawn into the programming language to discover a solution to

a complex problem adhering to CLT. This eventually stimulates learning without forced

36

learning, called “Piaget learning” or constructionist learning, also known as “learning without

being taught” (Papert, 1980:7). Brennan and Resnick (2012) rely on Scratch as a vehicle to

explore the learning process using computational thinking. According to Brennan (2012) and

Brennan and Resnick (2012), Scratch is a computational authoring tool developed by the

Lifelong Kindergarten research group at the MIT Media Lab and the most popular

programming language in education at the moment (Szabo et al., 2019). The authors of

Scratch defend computational thinking being a primary goal within the teachings of Scratch.

Scratch is a block-based language (Weintrop & Welinsky, 2018a) and requires no syntax,

which makes it difficult to classify it as an OO programming language. However, Cegielski

and Hall (2006) proposed a model of predictors for OO programming performance (Figure

2.8). The three enablers or predictors are (i) theoretical value belief, (ii) personality, and (iii)

cognitive ability.

Figure 2.8: Model of predictors of OOP performance (Adopted from Cegielski & Hall, 2006:74)

The value beliefs as depicted in Figure 2.8 that motivate people in different ways are:

i) Aesthetic value belief, motivated by art and beauty.

ii) Economic value belief, motivate by pragmatism.

iii) Theoretical value belief, motivated by the discovery of truth through personal

standards like the need for order, problem solutions, and proof are all aspects of

importance to the individual.

Value beliefs are the driving forces behind actions of the individual and hence theoretical

value belief can be seen as the antecedent of personality and cognitive ability (Cegielski &

Hall, 2006). According to Cegielski and Hall (2006:73), the usage of OOP in industry

increased “dramatically”. Object-oriented PLs focus on the object and an object in a natural

environment is three-dimensional, where Greenfoot is two-dimensional. Learning to program

is a challenging activity and the question is whether the learner needs to climb the ladder of

cognitive development before using Greenfoot. Many authors thus far described

37

computational thinking not only as the ability to decompose a problem into digestible steps or

sub-problems, but as a holistic view evaluating the problem from different angles (Wing,

2006; Denning, 2009, 2017; Brennan & Resnick, 2012). According to Brennan and Resnick

(2012), constructionism is achieved when learners use Scratch as a design tool in interactive

media. The researcher opines that the statement of Brennan and Resnick opens up

questions such as, “How does the researcher know this?” and “Can the degree of

constructionism be measured?” The author further argues that constructionism refers to

effective learning experiences that take place when learners are active in the construction of

all things that are personally and socially meaningful (Papert 1980, 1993; Ackerman, 2001;

Papavlasopoulou et al., 2019). Learners interact with each other and reflect upon themselves

or think about their own thinking to learn by design (LBD). Kolodner et al. (2003) found that

learning science from design activities require multiple forms of support and learning

opportunities, which points to using different tools to accomplish this. Sweller et al.

(2019:276) describes this as “complex learning”. Brennan (2012) describes constructionism

as designing, personalising, sharing and reflecting activities taking place when young

learners use interactive media. Lee and Kolodner (2011) suggest two cycles for learning-by-

design, consisting of design/ problem-solving/ redesign cycle and an investigation/

exploration cycle as depicted in Figure 2.9.

Figure 2.9: Learning-by-design cycles (Adopted from Lee & Kolodner, 2011:6)

The investigation/exploration cycle is entered into when the learner finds a need to learn

something new. After learning has taken place, he/she returns to the design cycle to set new

goals for learning to happen. This cycle motivates new goals and sub-goals (Lee & Kolodner,

2011). The authors further argue that any complex skill can only be acquired through practice

and reflection on one’s own reasoning, which ties in with a term called ‘reflective abstraction’.

(iii) Computational thinking and a programming language
Data should be organised and analysed through abstractions to represent data by means

models and simulations. Algorithmic thinking and all possible solutions inferred by analysis

and identification to achieve the most efficient and effective set of steps and resources for a

solution should be used. These steps or algorithmic design must control some computational

models, as illustrated in Figure 2.10 (Denning, 2017).

38

The ultimate solution should not only be confined to that problem; it should also be

transferrable or generalised to other problem situations (Barr, Harrison & Conery, 2011).

Computational thinking revolves around problem-solving skills, but it is applicable to almost

any discipline (Wing 2006). This concept of ‘computational thinking for all’ is disputed by

Denning (2017) and others as pointed out in section 2.2.2, where a programming language is

involved when computational thinking is researched.

Figure 2.10: Computational thinking in motion (Adapted from Denning, 2017; Aho, 2011)

Computational thinking is a skill, and a skill can only be acquired over time, separate from

the knowledge of facts (Denning, 2017). Competency is more than merely skillset

development. In most cases, the learners are assessed on knowledge and not competency.

Incompetent learners then end up in industry, which is highlighted by industry, when

receiving students for experiential learning during their academic studies (Selby & Woollard,

2014). This is analogous to the term “low road transfer of knowledge”, stated by Wilhelm

(2008:45). Denning (2017) posits that competency-based learning must enjoy greater

attention within an academic programme for the learner to fully embrace computational

thinking. These competency assessments must be given guidelines as to address different

skill levels within computational thinking. Following any sequence of steps or algorithm does

not necessarily make someone a computational thinker (Denning, 2017). Computational

thinking is about finding appropriate models of computation in order to find a solution for a

formulated problem (Aho, 2011). Linking APOS theory with computational thinking, reflective

abstraction is used in the context of computational thinking (discussed in section

39

2.2.2.1(c)(v)) (Cetin & Dubinsky, 2017). Students in urban school districts are only taught

basic literacy skills and subsequently fail to realise the huge computer technology investment

possible, all because of a lack in computational thinking education (Pearson, 2008).

(iv) Piaget’s cognitive level of formal operations and programming languages
(PLs)

Many students fail their first programming course because of the frail mathematical

foundation provided, but this degree and type of algebra course necessary to improve

programming skills can be a challenging one, because of the complex nature of a student

profile. Piaget’s cognitive theory should be considered when dealing with prerequisites of

mastering PLs, and Louden (1993) specifically highlights procedural programming (White,

2003). Cegielski and Hall (2006) and Barr, Harrison and Conery (2011) posit that cognitive

ability is not the only enabler for abstraction. There are three levels of cognitive development,

known as pre-operational, concrete, and formal operations. It is at the cognitive level of

formal operations where learners from the age of 12 years onto adulthood will be able to

think more abstract, show deductive logic, and understand conceptual thoughts (Cherry,

2014). White and Sivitanides (2002) classify PLs (Figure 2.11) into a specific level of

cognitive development (Piaget, 1977; Papert, 1980).

Figure 2.11: Cognitive development style of PLs (Adopted from White & Sivitanides, 2002:63)

Object-oriented programming (OOP) in Figure 2.11 shows that OOP it is a productive and

motivated activity at a cognitive level of formal operations. Although a huge body of research

is available on mathematics as the paramount contributor of being successful at

programming, Portnoff (2018) states that natural language may be an important role player

when looking at neurocognitive evidence during CS programming education. This research

also regards the way a learner constructs an algorithm as natural language dependent.

40

(v) Definition and choice of a programming language (PL)
Traditional PLs are best understood by studying several PLs available (Organick et al.,

1989). Programming is the act of understanding a problem, formulating a solution, and

writing down the solution in such a way that a computer can use the solution to solve the

problem (Moström, 2011; Aho, 2012; Denning, 2017).

Programming also evolved to accommodate the language of your choice. A common spoken

language does not suit the purpose because of its ambiguity. This viewpoint however

changed recently when Felleisen et al. (2018) stated that PLs changed to become domain

specific and language-oriented through specific interfaces. According to Felleisen et al.

(2018), a programming language is a problem-solving tool in itself. The authors regard a

programming language as an abstraction built around integrity. The authors further argue

that object-oriented programming and concurrency-oriented programming revolutionised the

world by utilising objects and message passing techniques. Software is now developed in

different ways and most research studies are sparked from these innovations. However,

Felleisen et al. (2018)advocate the use of embedded domain-specific languages (eDSL) that

may have a stronger relationship with the actual definition of computational thinking, namely

that it is for every discipline and not for Computer Science only. Research is done on a

programming language for programmers, or a language-oriented programming (LOP), with a

new syntax as well as static and dynamic semantics that map the new syntax to a host

language and peripheral languages by using a foreign-function interface instead of the

normal integrated development environments (IDEs). However, programming research does

not yet provide software developers with the tools formulate solutions in the languages of

problem domains (Felleisen et al., 2018).

The challenge learners now have to face, with available tools, is to abide by strict syntax to

accomplish an algorithm using a programming language. Some, but not all, authors restrict

the term ‘programming language’ to those languages that can express all possible

algorithms. Once again, ‘express’ can be accomplished in many ways. Seeing that this

research refers to a learner aged 12 and older, the choice of a programming language

revolves around Scratch, Alice and Greenfoot, whereby usage of syntax is minimised. The

DBE (2011) regards Scratch as a fun tool to assist learners with acquiring computational

thinking and programming skills through algorithmic design. Greenfoot expects of learners to

demonstrate more competence compared to Scratch (Maloney et al., 2008; Kölling, 2010b).

Greenfoot entails applying object-oriented concepts in applications and the ability to scale;

furthermore, Greenfoot it is easier to start with, compared to Scratch and Alice for first time

users.

41

 Scratch is a programming language with the ability to to create sophisticated computer

programs by selecting visual programming blocks using a pointing device. No typing or

writing of syntax statements for programming constructs is necessary, only the use of

programming blocks. These programming blocks will only fit together when the syntax is

correct (Lee, 2011). Language plays an important role in mathematics (Tall, 2008), and

hence the researcher excluded Scratch from the list because of the over-emphasis on the

visual approach only (Boyle et al., 2003). Perceptions of Scratch programming among

learners are determined by the exposure of these learners to programming. Although it is

argued that Scratch is intended to increase computational thinking through a cognitive

building-block approach, the actual programming part is neglected, which then prevents

learners from expressing themselves using a programming language with syntax and not

having to write text commands (Marimuthu & Govender, 2018:58). This perception that

Scratch does not assist with transitioning to a real programming language like Java when the

focus becomes syntax, is also conveyed by Grade 11 learners exposed to the Java

programming language. Brennan and Resnick (2012) defend the usage of Scratch as the

way learning takes place, as opposed to teaching Scratch as a programming language.

Scratch forms part of the block-based visual programming languages. Papavlasopoulou,

Giannkos and Jaccheri (2019) also describe Scratch as a block-based visual programming

environment. Novice programming environments (NPE) such as Scratch allow both learners

and teachers to gain entry into the world of programming (Papadakis et al., 2014). Perhaps

the word ‘language’ should be omitted from the description and replaced with programming

environment (PE). To consider the way learning takes place is important, but it places more

emphasis on the teaching style and expertise of the teacher than on the programming

language. The programming language should provide deeper learning and scalability into

language constructs, with near and positive learning transfers (Wilhelm, 2008).

Alice, a three-dimensional sister of Karel, used for algorithmic thinking, is another block-

based visual programming environment. It is “primarily a scripting and prototyping

environment that allows the user to build virtual worlds and write simple programs to animate

objects” (Zsakó & Szlávi, 2012:57). Alice is also an OO three-dimensional, interactive

environment without the requirement of explicit syntax (Ebrahimi, Geranzeli & Shokouhi,

2013). Alice is successful owing to its drag-and-drop programming interface and its “rich and

engaging 3D environment” (Cohen, 2013:82). Alice 3 allows the learner to import Alice

programs into NetBeans and extend the development of programs using industry standard

tools and programming languages. The author further states that a development path exists

into Eclipse IDE, which emphasises scalability (Cohen, 2013). Alice is also introduced as a

programming language by the Oracle Academy, forming a progression path with integration

capabilities for learners who choose Information Technology as a subject in Grade 10. Alice

42

makes use of property tables, but the actual language used for logical reasoning is hidden.

Another motivation in choosing a programming language for this research, according to

Papert (2005), is that children can use computational ideas to increase the understanding of

their own thinking and learning. The progression path is overshadowed by Papert’s (1980)

constructionist approach, with emphasis on an instant result as opposed to traditional

preparation of a programmer. Although Papert is referring to Logo, the language of his

choice that satisfies instantaneous results, Greenfoot is also a programming language or tool

that achieves just that for the majority of learners within any society. The wide range (rich

set) of applicability that Greenfoot provides and which aligns with higher order thinking and

usage, also coincides with the theory of Papert (2005). Papert argues that educationists

teach learners many disjoint aspects, such as grammar, history and numbers, with the hope

that something important will happen for these learners to make sense of a disordered

environment of topics and facts. The researcher regards this statement of Papert as an

important consideration when using a programming language to teach, if computational

thinking cannot be clearly identified within teachings of a novice programming environment

(NPE). Greenfoot contains a combination of graphical actors and scenarios available to

learners. The learner uses the scenarios and actors to generate objects that satisfy a

selected algorithm. The combination of these objects with the algorithm creates an absolute

reality. Owing to the variation of Greenfoot to solve problems using a graphical user

interface, learners may engage in the Java programming language to achieve similar

outcomes. This is mainly because the Java Development Kit (JDK) is needed as prior

installation of Greenfoot programming language. Having this progression path to Java,

learners are able to express themselves through language as well. The language may vary

between Greenfoot programming language and Java syntax used within the Greenfoot IDE,

thereby not limiting learners who need differentiation in difficulty levels when using the

Greenfoot programming language. As opposed to visual constructs in Alice and block-based

Scratch, Greenfoot was chosen as the programming language with its embodied approach,

scalability, optional language statement approach and OO application.

(vi) Traditional syntax-based PLs are difficult to learn
Having discussed the variety of visual and block-based NPEs such as Scratch, Alice and

Greenfoot, the pros and cons of traditional PLs need to be investigated. Kranch (2010) states

that PLs consist of syntax and semantics, and students need to investigate syntax as a

starting point. Educating students in PLs are filled with challenges, and what seems to have

be a “grand” challenge twelve years ago, still applies (Bennedsen & Caspersen, 2019:35).

According to Robins, Rountree and Rountree (2003), programming courses are difficult and

the question of what actions need to be implemented to make a good programmer is an

ongoing debate since 1970. The authors further argue that problem-solving and

43

computational thinking lack among students who take introductory programming courses that

use a text-based programming language. On the other hand, McGettrick et al. (2005) argue

that introductory programming courses are needed to address the problems of high dropout

rates and negative attitudes towards a programming language. The introductory

programming courses should start with some NPE as a gradual introduction, before

venturing into syntax-based PLs.

Concepts such as rigorous thinking, variables, classes, decomposition, debugging and

generalisation require a better or perfect understanding of the programming language and

algorithms (Malan & Leitner, 2007; Saeli et al., 2011) because of the preciseness of

programming language syntax expected from a programmer. Programming is a skill that

requires other skills (Rahmat et al., 2012).

Saeli et al. (2011:80) reported the following complexities while studying traditional PLs:

• Orientation (benefits of learning to program)

• Notional machine (understand the hardware one needs to control)

• Notation (syntax and semantics of a programming language)

• Structures (e.g. loops to achieve goals)

• Mastering the pragmatics of programming, i.e. learning the skills to specify, develop,

test and debug

There is a need for object-oriented programming languages (OOPLs) that can be addressed

using visual programming languages such as Greenfoot (Marimuthu & Govender, 2018).

Using and OOPL is a fun way to learn programming and remove the fears learners have

about a programming language in general as opposed to traditional PLs (Meerbaum-Salant,

Armoni & Ben-Ari, 2013).

(vii) Programming language skills
The usage of exact syntax to create a computational model may be difficult for the majority of

learners (Malan & Leitner, 2007; Saeli et al., 2011). The process of mapping an algorithm

using a programming language must be done in an unambiguous way without any mistakes

(Papert, 1980). Algorithmic thinking is a type of mathematical thinking simulating “intuitive

pattern recognition and analogical thinking” (Zsakó & Szlávi, 2012:58). The authors further

argue that programming includes specific skills such as:

i) functional decomposition,

ii) repetition, which may include iteration and/or recursion,

iii) basic data organisation such as lists and arrays,

iv) generalisation and parameterisation,

v) algorithm versus program,

44

vi) top down design, and

vii) refining a design.

Learning any programming language may be a paradigm shift in that it is problematic to shift

from procedural to object-oriented programming, but not vice versa. Exposing students to a

paradigm shift where students are forced to learn more than one programming language

belonging to a different paradigm, such as procedural and object-oriented PLs, may thus

create more complexities in terms of understanding. Many students in general are not

capable of dealing with the challenge because of their cognitive level of development

(Mazaitis, 1993; Kölling, 1999a, 1999b). Declue (1996) and Gomes and Mendes (2007)

support the views of Kölling (1999a, 1999b) and Mazaitis (1993) and state that learning to

program requires intensive practice. This statement has been relaxed since the inception of

novice programming environments (NPEs).

Problem solving skills of novice programmers is a major hurdle (Saeli et al., 2011). Weigend

(2006) argues that novices generate wrong outcomes. Weigend (2006) sees a challenge with

achieving the semantics when learners have to map an algorithm into a programming

language; although they (the learners) know the intuitive solution, they are not able to

produce the code for that intuitive solution. The focus here is not only syntactically but also

logically.

Notwithstanding all the disadvantages, the advantages of acquiring the skills to program are

pointed out by Papert (1980, 2005), who shows that the learner may investigate aspects of

science, mathematics and the art of intellectual model building, when practicing

programming. Papert (2005) also argues that programming creates experiences for learners

to strengthen their intuitions and concepts on how thinking, learning and playing take place.

Szlávi and Zsakó (2017) view language abstraction, analogy, algorithmic abstraction,

decomposition and superposition, conversion, intuition and variation as a cognitive toolkit for

programming where cognitive operations take place in the conscious and subconscious

mind.

(viii) Rote learning and embodied experiences in a programming language
According to Bruner’s (1966) mathematical research in Figure 2.4, mathematics consists of

enactment, iconic and symbolic representations. PLs may provide all these properties to

guide a learner into the do-able process, creating thinkable concepts from these do-able

processes. The programming language Greenfoot is rich in procepts, drawing on enactment,

i.e., iconic representation through symbols. However, rote learning may become a “way of

life” (Tall, 2004:286) if the learner cannot turn specific processes into thinkable concepts, as

45

in the case of mathematics as opposed to using a programming language that supports

many solutions to one problem.

 Sub-research question (SRQ) 1.3
SRQ 1.3: What constructs within the programming language facilitate APOS theory at a

cognitive level of formal operations?

The research method adopted is a literature analysis to cast more light on SRQ 1.3.

Concepts such as computational models, computational thinking, computational notation and

algorithms are researched, as well as how they interact to create abstractions when a

computational notation such as Greenfoot is used (Figure 2.11).

In order to show dependencies among a programming language and APOS theory in

promoting computational thinking, APOS theory is discussed in (i) foundational research

towards APOS, (ii) didactical situation when teaching mathematics, (iii) how APOS promotes

computational thinking, (iv) literacy, (v) abstraction, (vi) APOS theory and the Greenfoot

programming language, and (vii) the role of mental mechanisms in mental constructs within

Greenfoot.

(i) Foundational research towards APOS theory
Fischbein (1987) researched fundamental intuitions, the algorithms that promote computation

and symbolic manipulation, and formal axioms for definitions and formal proof. Skemp (1971,

1979) researched human learning in the classification of humans having receptors to receive

information, effectors to act on what they receive, thereby creating a system on which they

impose operations and forever reflect on the system. The learners thus undergo three types

of activity, namely (i) perception or input, (ii) action or output, and (iii) reflection, which entails

perception and actions all over again, climbing the ladder of cognitive development over

time. Bruner (1966) highlights the complex world of mathematics by distinguishing three

modes of mental representation, namely, the sensorimotor, the iconic and the symbolic

mode.

Revisiting SRQ 1.1, Tall (2004:282) coins his view as the “three worlds of mathematics”

being the perceptions of the world around the individual to perceive and sense the mental

and physical world. The world of symbols is described as where the individual switches

between the processes of doing mathematics, to thinking about mathematical concepts, to

the third world called the formal or formal axiomatic world. The journey of each individual

may be influenced by “met-befores”, which may force the individual into a relative

epistemology (Tall, 2004:286). This is a challenge in the learning process of any learner, as

many learners develop a belief system about mathematics (Moscucci, 2007; Moscucci &

46

Bibbo, 2015) that every operation on numbers does have an answer. This is not the case

when symbols are intermixed with integer values in algebra and there is no definite answer,

such as 3x + 7, where x may have a varying value.

As depicted in Figure 2.12, the focus is on embodiment and symbolism. Tall (2008) highlights

learners’ approaches as varying and put his three worlds forward as a theory that provides a

framework by which mathematical learning and thinking at all levels of schooling can be

considered.

Figure 2.12: Procedural and conceptual knowledge (Adopted from Tall, 2008:12)

Tall (2008) illustrates in Figure 2.12 the impact of the APOS theory compared to his procept

conception. Tall discusses many practical ways in which mathematics concepts can be

explained using practical solutions as depicted in Figure 2.13. Determining the sum of the

inner angles of a triangle, the corners of the triangle are torn off and placed adjacent to one

another, which resembles a straight line and equals 180 degrees. This requires actions such

as tearing of the paper and physically arranging the torn pieces of paper on a ruler.

Figure 2.13: Tearing corners of a triangle to form a straight line (Adopted from Tall, 2002:9)

Tall’s research on the three worlds of mathematics also provides insight into the importance

of embodiment and how learners need embodiment as part of their learning until reaching

47

the formal axiomatic level progressing through the three worlds. The learner is submerged

into a procept by thinking about the concept, such as the sum of the inner angles of a

triangle, and by adding the embodiment to the process by involving the learner through these

actions; the mathematical concept is better understood. APOS theory on the other hand uses

the word ‘Action’, whereby embodiment of a process points to the involvement of the learner

taking action, which then develops into a Process within the learner’s mind, not having to

take the same action again such as tearing off the corners of a triangle and place it on a

straight line. This process then develops into an Object around basic facts of a triangle in

geometry, which will be added into the Euclidean geometry schemata of the learner.

In one of Tall’s (2008) papers, a hypothesised learning framework (Figure 2.14) was

suggested for possible routes by which the teacher would guide the learner to cope with the

complexity of the derivative. Unfortunately for the researcher, the role of the teacher and the

role of the learner are illustrated as a framework and not in the form of a model. The same

applies to Tall’s three worlds, also discussed as a framework, which does not provide much

information on the actual role of the teacher or how the learner will apply his/her mind. Tall

does provide in-depth discussions on the actual mathematical concept, such as the cognitive

development of proof and how this is dealt with, within the three worlds. Although the actual

mathematical concept is discussed in detail, it ignores the processes of what might have

happened in the mind of the learner and teacher. The framework is quite clear, but the

detailed aspects of how the embodied and symbolic world will operate, is left for further

research. The framework in Figure 2.14 also states that the teacher is the responsible

mentor to guide the learners in a variety of ways to fuse knowledge structures that will make

sense (Tall, 2008). The role of the teacher in how his or her responsibility must be carried out

towards implementing mathematical concepts is absent from the framework. In South Africa,

the DBE already implemented mathematical workshops for teachers. The teachers may also

have instilled a relative system of belief about mathemats within these learners (Moscucci,

2007). If teachers are not explicit about the ‘how’, then leaving it to teachers to guide learners

may be a challenge within South African education.

48

Figure 2.14: A learning framework (Adopted from Tall, 2008:14)

APOS, on the other hand, is a theory, framework and model (Arnon et al., 2014). Research

in many articles shows exactly how the APOS theory is rolled out as a model. Cetin and

Dubinsky (2017:72) regard mathematics learning vested in four aspects, namely: (i) the

APOS theory; (ii) the ACE teaching cycle; (iii) computational thinking; and (iv) reflective

abstraction. The authors further argue that APOS theory is renowned for the discovery of

certain mental constructions that may lack among students, as pointed out by the majority of

research done in the APOS field. A possible solution for this situation may be found in the

APOS theory (Arnon et al., 2014). APOS is the acronym Actions, Processes, Objects and

Schemas, which are mental structures. APOS is a constructionist theory, based on mental

mechanisms or reflective abstractions such as interiorisation, encapsulation, de-

encapsulation, coordination, reversal, generalisation and thematisation. Reflective

abstraction is used in context of computational thinking (Dubinsky, 1991; Arnon et al., 2014;

Cetin & Dubinsky, 2017).

Pedagogical strategies such as the Activities, Classroom Discussions and Exercises (ACE)

Teaching Cycle may assist students and teachers with the understanding through the mental

constructions on a specific mathematical concept, known as a genetic decomposition (GD).

The embodiment within Tall’s (2002:9) research will be ideas that teachers can bring, such

as illustrated in Figure 2.13 during mathematics teaching, but it is not sustainable in all cases

and depends on the creativity of the teacher. The tearing of the paper triangle does not

provide extended use to provide clarity on other mathematical concepts, compared to the

versatility of a programming language. The aim is to promote computational thinking skills at

a cognitive level of formal operations among high school learners in a structured manner.

49

(ii) Didactical situation when teaching mathematics
Learners are instructed to correct or reproduce a solution similar to a mathematical problem,

but with a different example. Because of a similarity with the new example, learners may get

it right. So, both teacher and learner may think that they achieved success in ensuring that

the learner understands the problem. The learner only interpreted a didactical intention,

which is epistemological fraud (D’Amore, 2008). D’Amore (2008:11) regards epistemological

fraud as the learner reproducing the same solution method for a problem, based on

establishing a similarity with another exercise, which was done for the learner by another

individual. Brousseau (2002:225) coined the didactical contract as when “specific habits of

the teacher are expected by the student and the behaviour of the student is expected by the

teacher”. The “Jourdain effect” or fundamental misunderstanding is where both teacher and

learner feel comfortable with the result that does not contribute to learning a mathematical

concept per definition or even understanding that mathematical concept definition. From the

didactical contract, phenomena such as the “Topaze effect” and the “Jourdain Effect”

emerged (Brousseau, 2002:265). The “Topaze effect” is when the teacher wants to engage

learners in a manner where the answers are hidden. The “Jourdain effect” is when the

teacher guides the learner, motivating the learner in having enough or appropriate

knowledge to solve the problem. Didactical situations can be a-didactical where the teacher

uses a situation, known as devolution, when the learner is provoked by the teacher to feel

responsible for performing academically well.

Tramonti, Paneva-Marinova Pavlov (2017) proposed a framework based on Brousseau’s

(2002) three types of didactic situations, namely:

i) A-didactical – Learners learn mathematical concepts through discovery and not

through rote learning.

ii) Didactical – Learners learn mathematical concepts through teacher involvement,

where the learner is guided from concrete, to pictorial, to the abstract phase.

iii) Non-didactical – Teachers will act as mediator, but allow students free use of their

creative skills when producing artworks on math concepts.

The next section highlights APOS and computational thinking.

(iii) How does APOS theory inform computational thinking?
The APOS theory, framework and model originated from Dubinsky’s (1991) interpretation of

Piaget's (1973, 1975, 1977) concept of reflective abstraction. Piaget sees the properties of

objects, not in the objects itself, but the properties are embedded in the actions that learners

take when using these objects (Arnon et al., 2014).

50

 Each mental construction or conception uses mental mechanisms (interiorisation,

coordination, reversal, encapsulation and thematisation) to move through the APOS (mental

structures) cycle. Reflective abstraction is a possible description of what goes on in the

minds of individuals when engaged in creating knowledge, which is hypothetical, for nobody

can see what goes on inside another’s mind (Dubinsky, 1991, 2000). The next part of this

research focuses on Piaget’s contributions and how reflective abstraction fits into APOS. The

literature review covers literacy, abstraction, and measuring abstraction.

(iv) Literacy
Prensky (2008) argues that programming needs to be regarded as a new form of literacy and

the current 3R’s of “Reading, wRiting, aRithmetic” must be expanded to pRogramming as

well. Wright, Rich and Leatham (2012:5) argue that being literate, whether reading literate or

programming literate, means to “manipulate the object of literacy, e.g. “communication

technologies, in a meaningful way”. They draw an analogy that being able to read, does not

imply being literate. Wing (2011) also regards computational thinking as part of being literate.

(v) Abstraction
Many authors have debated abstraction for decades, but few brought a practical

implementation of abstraction to the table for subjects such as mathematics and

programming. An analysis on abstraction led to research on mathematics by researchers

such as Skemp (1976), Dubinsky and Lewin (1986), Dubinsky (1991, 2000), Tall (2008),

Hazzan (1999) and Kramer (2007). Certain researchers’ views are now highlighted.

♦ Hazzan and abstraction
 Quality of the relationship between the object of thought and the thinking

person
Anything being abstract or concrete must be seen as a property of the relationship between

the person and the object. The more connections that person forms to the object, the more

concrete he/she feels to it (Wilensky, 1991). Hazzan (1999) states that new knowledge can

only be constructed based on existing knowledge. This is similar to Tall’s (2008) “met-

befores” concept. This also applies to objects being constructed based on existing mental

structures. The more a learner becomes involved with an unfamiliar concept, the more

he/she engages in a process that ends in conceiving the concept as an object.

 Reflection of the process-object duality
Hazzan (1999) states that educators need to distinguish between process conception and

object conception when evaluating the duality of these concepts, also coined by Piaget as

reflective abstraction. Processes are separated from content, and the processes are

converted to objects of content. Reducing abstraction refers to a lower level of abstraction

51

when a mathematical concept is interpreted, also known as process conception. Process

conception becomes personal when students express themselves using first-person

language, e.g. “I want to check if I can find” It reflects a feeling that the person is doing

something himself/herself (Hazzan, 1999:80).

 Degree of complexity of the concept of thought
Hazzan (1999) sees a compound object as more abstract. It is then expected that the

student reduce the abstraction level in order to deal with compound objects not yet

constructed as a mental object. The learner should deal with whatever abstraction he/ she

faces, instead of reducing it for the learner. Specialisation refers to the identification of a

smaller set or even one object within the larger compound set of objects in order to analyse a

specific case (Cetin & Dubinsky, 2017). This may guide the student towards a general

solution, but if mental structures are not constructed to deal with a general case, students

may not reach that generalised solution (Hazzan, 1999).

♦ Kramer and abstraction
Abstraction is a basic principle in software engineering, if complexity should be mastered.

Able students and good lecturers are those with an ability to perform abstract thinking and

have abstraction skills (Kramer, 2007).

 Is abstraction about removing detail?
Kramer (2007) refers to abstraction as removing detail in order to simplify things. Kramer

also uses the term “generalisation” to identify a common focal point or essence; this term can

be compared to Piaget’s empirical abstraction, which does not always hold true for every

situation. The author extracts common features from specific examples, but a specific

circumstance and ay not be transferrable in all circumstances. Kramer (2007) also supports

the concept of abstraction as put forward by Hazzan (1999) and Cetin and Dubinsky (2017)

in that abstraction has different meanings for different concepts, e.g. The London

Underground map of 1928 and 1933. This map illustrates that it can only be used in context

of train commuters, and not by taxi drivers. In this specific case, the generalisation of the

map will not suffice for taxi drivers. Kramer (2007) further argues that abstraction is

necessary for Computer Science and Software Engineering. Computing is all about

constructing, manipulating and reasoning about abstractions. Writing programs is similar to

handling abstractions in a precise manner (Devlin, 2003). Kramer (2007) describes abstract

interpretation for program analysis as the generalisation of abstraction in programming.

Another generalisation example is the usage of data abstractions and classes in OOP.

52

♦ Arnon and abstraction
Abstraction can be classified into empirical, pseudo-empirical and reflective abstraction.

Each type will now be discussed to show the relevance of reflective abstraction in this

research.

 Empirical abstraction
Empirical abstraction is where knowledge is derived from the properties of objects. These

properties seem external to the learner or person, but the knowledge of the properties is the

outcome of constructions made internally regarding interventions undertaken by the learner

or person. The interaction happens between the learner and the object’s properties (Arnon et

al., 2014). Empirical abstraction is synonymous with the concept of extraction (Cetin &

Dubinsky, 2017).

 Pseudo-empirical abstraction
Pseudo-empirical abstraction is when the learner creates relationships through internal

constructions amongst the properties of the objects. According to research done by Dubinsky

(1991), Piaget (1977) created the term to denote an intermediate stage between empirical

and reflective abstraction. According to Dubinsky (1991), it is within this phase that

knowledge is generated on the properties of an object by the learner, owing to actions

introduced or taken by the learner. If the learner engages in thought on these properties of

an object, it promotes the quality of the relationship between the learner and the object. The

learner makes internal constructions with the objects by gaining more knowledge about the

objects. This knowledge that the learner develops of the objects, strengthens the relationship

the learner has with the objects. Euclidian mathematics is based on nine theorems. Only

when learners interact with problems by interacting with the object in thought, can a

relationship be built (Arnon et al., 2014).

 Reflective abstraction
Reflective abstraction, according to Dubinsky's interpretation from Piaget's research, is when

actions now emerge from within the learner, so that these actions are coordinated in general

and internalised to form a whole/new understanding which originated from these new actions

coming from within. The actions are not attributed to external stimuli, but from mental

processes within the mind. This can only happen if the learner considers what s/he already

knows, and these actions can now be regarded as an empirical abstraction, without

considering external objects anymore. It is thus a “new synthesis in midst of which particular

laws acquire new meaning” (Piaget & Garcia, 1989:299; Dubinsky, 1991:97). It is a case of

empirical abstraction all over again, but now it is an assimilation of schemas created during

reflective abstraction (Dubinsky, 1991). Assimilation is a Piagetian term, meaning to add

53

knowledge to existing schemas in the brain, but not changing the structure of what is inside

the brain. Accommodation happens when knowledge is assimilated into the brain, but

changes should take place within the brain to create a meaningful and useful construct of this

new knowledge (Bormanaki & Khoshhal, 2017). Assimilation can be prevented when the new

knowledge or mental construct does is not congruent with the current structure or schema.

The forced accommodation schema must be created instead, through equilibration. An

analogy would be when learning takes place and new actions bring about new knowledge

and understanding.

Dubinsky refers to these internal objects, using Piaget's term, as cognitive structures being

formed. It also appears that Piaget formed generalised concepts regarding individuals.

External objects, i.e. programming languages in its visual format, form a new variable to his

theories in that individual development takes on priority above the development of all

learners applying one theory about their development. Dubinsky (1991) states clearly the

author does not suggest that interiorising advanced mathematics is done by applying

reflective abstraction. Reflective abstraction is just a description of the process that happens

within an individual when intellectual thought develops. Cetin and Dubinsky (2017:72)

describe reflective abstraction as “reflecting on operations on a lower level and

reconstructing and integrating them on a higher level”.

Reflective abstraction is not about drawing out common features, but on ways of acting on

things. It is about the operations that individuals perform on objects and not about the

properties of those objects without the interactions of the individuals in relation to an object;

the object remains an object. A schema is regarded as those mental structures in the mind of

the learner who understands or develops an understanding of a concept (Arnon et al., 2014).

A schema may also be thematised into an object on which actions can be performed to make

it part of another schema(s). The most important part of a schema is that it is a coherent set

of objects and actions used by the learner to perform on these objects. A concept image, on

the other hand, can be seen as a set of mental images in the mind of the learner associated

with the name of the concept. The concept image is based on the learner’s experience of the

concept and not on the definition of the concept (Arnon et al., 2014). One can thus safely say

that a schema of a concept is not the same as a mental image of a concept.

♦ Measuring abstraction
A measuring tool to measure the degree of abstraction of a learner is still to be found

(Kramer, 2007). Although Perrenet (2010) claims that he discovered a measure, Dubinsky

(1991) states that it is not possible to know how learners or subjects construct concepts;

reflective abstraction can only help us to understand a concept, if and only if reflective

54

abstraction is considered as part of a study, observing a learner's acquisition of a

mathematical concept. This is possible through observing and intervening as the learner

investigates mathematical concepts or programming language concepts. The learner should

develop a general approach to discover and interiorise future concepts through administering

the general theory of reflective abstraction.

♦ Genetic decomposition
Dubinsky (1991) uses a term called ‘genetic decomposition’ (GD), which denotes a

description, in using his general theory based on empirical data, as extracted by studying the

learners as they create mental constructions of concepts in mathematics to further their

understanding of a concept. The analysis consists of a synthesis on how an aspect within the

programming language or mathematical concept can be learnt, based on an intervention by a

teacher. Dubinsky (1991) identified three types of abstractions that were put forward by

Piaget (1977) during his research, namely, empirical abstraction, pseudo-empirical

abstraction, and reflective abstraction as discussed above.

(vi) APOS Theory and Greenfoot

♦ Mental constructions and Greenfoot
The mental constructions, Action, Process, Object and Schema (APOS), need to be

identified within a programming language. The criticism is that mathematics is abstract

already, but so is a programming language. The learner takes mathematics since his/her first

day at school, and introducing a programming language at a later stage in his/her life,

creates a superset of schemas within his/her intellectual thought, thereby accommodating

not only programming language schemas, but also mathematical schemas, and definitely

other schemas as well.

Figure 2.15: An Actor class using a Stride scenario (Greenfoot ver 3.0)

55

An analogy can be drawn between Java classes in object-oriented programming and objects

of the APOS theory. A class in OOP, depicted in Figure 2.15, is a virtual creation, but it

becomes an object internal to computer memory, as internal as an object can become with

Dubinsky's theory. The difference is that this class, which is a general description of an

instance, is also created as mental objects in the learner's mind. This happens when the

learner interacts with Greenfoot, engaging in mental constructions simulated within the

“world” in Greenfoot through mental mechanisms. This is an internal mental construction of a

design. Physical proof of this mental construction is found in compiling and executing Java

code to enact the construction. The mental construction can be used and manipulated to

create new schemas. The Greenfoot programming language now carries two ways in which

a learner may explore Greenfoot – either a Stride or Java scenario. The idea behind Stride is

to remove any unnecessary syntactical jargon from the file and allow a learner to directly

devote more attention to his/her creativity instead of unravelling syntax.

Figure 2.16 presents a typical Java scenario:

Figure 2.16: Actor Camel class within a Java scenario (Greenfoot 3.0)

Unlike mathematics, these mental objects can be visualised with Greenfoot as a two-

dimensional object having many properties, thereby removing the abstract/ concrete

dichotomy criticised by Dubinsky (2000). Weintrop and Wilensky (2018b) coined Greenfoot

as a frame-based editor as opposed to Scratch, which is classified as a block-based novice

programming environment (NPE) (Zsakó & Szlávi, 2012; Papadakis et al., 2014;

Papavlasopoulou, Giannkos & Jaccheri, 2019). Hazzan (2003) also sees understanding of

abstraction as creating more connections to such an abstract concept. Greenfoot provides

import greenfoot.*; // (World, Actor, GreenfootImage, Greenfoot and MouseInfo)
/**
 * Write a description of class Camel here.
 *
 * @author (your name)
 * @version (a version number or a date)
 */
public class Camel extends Actor
{
 /**
 * Act - do whatever the Camel wants to do. This method is called whenever
 * the 'Act' or 'Run' button gets pressed in the environment.
 */
 public void act()
 {
 // Add your action code here.
 }
}

56

that functionality to test any mental construction through mental mechanisms, where in

mathematics, the answer or outcome of an applied mathematical concept may be correct

according to the learner, but not correct according to the teacher or memorandum. A

programming language such as Greenfoot can deliver immediate visual outcomes in terms of

what was coded. The learner can obtain a definite result on his/her abstracted view,

translated into Java code. The researcher regards this as an absolute epistemological view

of the problem.

Dubinsky and McDonald (2001:2) uses the term “action conception” when an action is

performed on physical objects or on objects (concepts) in the learner's mind. A genetic

decomposition is when small portions of the schema are dissected and described in terms of

the relationships that exist between schemas. When a learner is successful in his response

to a problem and we can describe that response by means of a schema, we should know

that the problem was assimilated into the schema, but if not, the existing schemas must be

accommodated to handle the new phenomenon (Dubinsky, 1991). According to Dubinsky

(2000), computer experiences can be used to help with reflective abstraction. Dubinsky

(2000) refers to ISETL, a programming language used to illustrate APOS theory when

looking at a function in mathematics. ISETL helped the learner increase his/her

understanding of an Object and Process within APOS theory, using a computer environment,

but confined to mathematics (Vidakovic, Dubinsky & Weller, 2018). The focus here is on

using a programming language application and not on constructing an algorithm, which

differs from computational thinking (Denning, 2017). As for this research, the focus is on

constructing algorithms, using Greenfoot. This seems doable for mathematics-oriented

learners, but it still places the learner within the mathematics realm, where mathematical

anxiety is still a reality. The next section elaborates on the Greenfoot programming language

as a computer experience to help with reflective abstraction.

(vii) The role of mental mechanisms within mental constructions in Greenfoot
Dubinsky (1991:106) indicates Piaget's 5 mechanisms needed for logical thinking, namely:

♦ Interiorisation
 With a programming language such as Java, which consists of classes, the learner needs to

understand the concept, but it is syntactically difficult to visualise and interiorise the outcome.

Greenfoot allows learners to internalise by means of a visual interface creating these objects

in a tangible way. The learner is able to involve his/her whole body within the Greenfoot

programming language. The body of the learner will simulate the Actor object when

developing algorithms to solve problems.

57

♦ Coordination of actions in general
This is when two or more classes interact in Greenfoot, e.g. wombat and apple, where the

wombat eats the apple. The learner needs to consider both instances of these classes and

provide code to make such objects interact and disappear. In general, the focus is on

integrating several different and similar Actions to achieve a certain Process. It strengthens

the relationship of the learner (subject) with the wombat and apple objects, which is

abstraction per definition.

♦ Encapsulation
The code to perform certain steps can be enclosed within a method. This is when we apply

encapsulation techniques, by hiding the specific code from the programmer within a

‘capsule’. The method is then called via its name and messaging is used to communicate

with internal structures or code. ‘Refactor’ is also a term used to make code tidy, not

disturbing the essence of the intended code.

♦ Generalisation of schemas
This happens when an existing schema is applied to a wider range of phenomena and the

learner becomes aware of other applications of such a schema. Sometimes certain pieces of

code can be identified as being common to other classes as well, and may be moved into a

class common to other sub-classes. As an example, specific animals, e.g., a dog and cat

may belong to a common class called animal. All these animals may walk and run, which are

common to specific animals. ‘Animals’ is a super class that may be inherited by all sub-

classes like dog and cat. It takes a new mental construction within the learner to identify this

Object from the existing Process and make it part of a schema called inheritance, among

classes.

♦ Reversal
Reversal is the investigation of a process, backwards, by starting at the end and unpacking

actions within a process that created a schema. These mental mechanisms are illustrated in

Figure 2.17 and can be applied in a programming language such as Greenfoot. The mental

constructions take place and trigger thought Processes, thus strengthening the relationship

of the subject with the Objects in confrontation. A schema, as identified by this research,

must develop through construction and be subjected to continuous reconstruction.

Reconstruction happens when a schema is subjected to Actions that lead to new processes

and objects. A schema is therefore a dynamic entity, not a static entity (Dubinsky, 1991).

58

Figure 2.17: Schema and its construction (Adopted from Dubinsky, 1991:106)

According to Dubinsky (1991), schema construction stems from a genetic decomposition of

schemas based on the five constructions of logical thinking. Dubinsky (1991) suggests a

general structure for constructing a schema, but above all, the constructions and genetic

decomposition of a schema allow the teacher to think of “how” and “what” needs to be

taught, and for the learner, “how” to apply computational thinking.

Applying Dubinsky's APOS theory, the learner must implement the five constructs of logical

thinking to be able to apply a GD of a schema construction, which forms the essence of

intellectual thought. The advantages of programming are pointed out by Papert (1980, 2005),

who shows that the learner may investigate aspects of science, mathematics, and the art of

intellectual model building, when practicing programming. Papert (2005) also argues that

programming creates experiences for learners to strengthen their intuitions and concepts on

how thinking, learning and playing take place. Teachers need to understand APOS theory,

but they will be confronted with terminology such as model, framework and formulation of a

mathematical concept. According to Arnon et al. (2014:17), APOS focuses primarily on

mathematical concepts. It is a model that points to the description of how to master

mathematical concepts; a framework that explains how a learner mentally construct his/her

understanding of such a mathematical concept using a genetic decomposition thereof; and is

distinguished from a mathematical formulation of the concept, which looks at the positioning

within the mathematical landscape. According to Piaget and Garcia (1989), learners use

mental constructions, also perceived as stages within APOS theory, in order to understand a

mathematical concept. In the next section, mental structures and mechanisms will be

discussed to show how computational thinking skills may be promoted.

2.2.2.2 Research question (RQ) 2

RQ 2: How can computational thinking skills at a cognitive level of formal operations
be promoted among high school learners through the teaching of a programming
language aligned to Action Process Object Schema (APOS)?

59

To answer RQ 2, three SRQs were structured and analysed accordingly.

 Sub-research question (SRQ) 2.1
SRQ 2.1, “How are the constructs of a programming language taught among high school

learners at a cognitive level of formal operations?” is answered in the next section by looking

at (i) the meaning and importance of being “programming” literate, (ii) existing frameworks for

programming language teaching, and (iii) a paradigm shift in teaching.

(i) The meaning and importance of being “programming” literate
It is important to discover how people learn as opposed to what their aptitude is. The focus

needs to be on studying the process of “language learning” (White & Sivitanides, 2002:59).

Hudak and Anderson (1990) perceive cognitive maturity and learning style as vehicles for

academic success. White and Sivitanides (2002) focus specifically on identifying the

hemispherical cognitive style and the stage of cognitive development necessary for different

programming paradigms, as depicted in Figure 2.11 (section 2.2.2.1(b)(iv)). The hemispheric

dominance (cognitive style) and cognitive development are considered as human cognitive

characteristics (White & Sivitanides, 2002).

Any mathematical activity, especially algebraic problems, stimulates the left brain, and so do

certain programming language activities (White & Sivitanides, 2002). White and Sivitanides

(2002, citing Riding, 1997) demonstrate by means of electroencephalograms (EEGs) that

cognitive styles use different sides of the brain, thus indicating hemispheric differences.

According to Gordon (1988), right and left cerebral hemispheres process information

differently. Algebra and programming use the left side of the brain (Rotenberg & Arshavsky,

1997). The left hemisphere of the brain is used for probabilistic reasoning and the right

hemisphere of the brain for deductive reasoning (Osherson, 1998). Another way of dealing

with the issue is by using the Inventory of Piaget’s (1977) Development Tasks (IPDT) to

measure a learner’s cognitive development for further research.

According to White and Sivitanides (2002), the age group from 11 to 12 years of age

onwards is when younger learners acquire the skill of formal operational thinking (Piaget,

1964; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015; Bormanaki &

Khoshhal, 2017). The transition from concrete to logical/ abstract thinking may occur much

later, or not at all (Griffiths 1973; Schwebel 1975; Pallrand 1979; Young, 2012).

According to White and Sivitanides (2002, citing Losh, 1984), Fletcher (1984), Little (1984),

Ott (1989) and Monfort, Martin and Frederickson (1990), cognitive development (what can be

learnt), cognitive styles (how learning takes place), and prior experiences are aspects to

consider when learning OOP. Cegielski and Hall (2006) also regard personality as an

60

important enabler for learning OOP. Barr, Harrison and Conery (2011) argue that

computational thinking is much more than just cognitive ability. Prior experiences may be

important for shaping personality, but personality, according to Cegielski and Hall (2006),

revolves around self-esteem, generalised self-efficacy, locus of control and neuroticism. This

shows that personality is so much more than mere experiences.

According to Wright, Rich and Leatham (2012:4), the Computer Science Teachers

Association (CSTA) provides four motivational factors for why programming literacy is

important, namely: (i) programming links to other fields; (ii) it teaches problem solving; (iii) it

engages every learner; and (iv) it provides greater employability. These points are extremely

broad and the researcher would rather consider the motivational factors of Szlávi and Zsakó

(2017).

Wright, Rich and Leatham (2012:5) argue that being literate, whether reading literate or

programming literate, means to “manipulate the object of literacy, e.g. communication

technologies, in a meaningful way”. They draw an analogy that being able to read, does not

imply being literate. Prensky (2008) added programming as a new form of literacy expanding

the current 3Rs to 4Rs.

(ii) Frameworks for teaching PLs
To become programming literate might depend on the framework being used. One such

framework is the Pedagogical Content Knowledge (PCK) framework (Saeli et al., 2011) in

Figure 2.18. This PCK framework originated from Shulman (1986) who suggested, “The

ways of representing and formulating the subject that make it comprehensible to others”

(Shulman, 1986:9). The domain of Information Technology using personal computers was

still in its infant stage at the time and the framework described all content under one

umbrella. Authors such Cooper, Pérez and Rainey (2010) and Brennan and Resnick (2012)

also proposed and implemented frameworks around computational thinking from specifically

an IT perspective using Scratch. Papert (1980), on the other hand, advocated teaching

strategies to accomplish the learning of PLs. Many authors agree that a PCK only develops

with years of experience (Grossman & Lynn, 1990; Rovegno, 1992; Sanders, Borko &

Lockard, 1993; Van Driel, Verloop & De Vos, 1998; Morine-Deshimer & Kent, 1999;

Loughran et al., 2001).

61

Figure 2.18: Diagram based on Grossman’s Reformulation of PCK (Adopted from Saeli et al.,

2011:76)

Grossman’s diagram (adopted from Saeli et al., 2011:76) (Figure 2.18) highlights what
should be taught, who needs the teaching and how the education will be rolled out. Although

Saeli et al. (2011) used the basic PCK Shulman’s (1986) PCK was already augmented by

Koehler and Mishra (2009) to include technology specifically. The technology domain is

complex and should be a separate grouping within the Shulman Framework. Koehler and

Mishra (2009) restructured the PCK to a Technical, Pedagogical and Content Knowledge

(TPACK) framework, depicted in Figure 2.19.

The Koehler and Mishra framework (2009) focuses on (i) a content domain, i.e., knowledge

about WHAT must be taught, (ii) a pedagogical domain, pointing to teaching and learning

about HOW teaching will be rolled out, and (iii) a technical domain, pointing to the platform

and resources necessary for a successful rollout. The remote desktop protocol technology

(RDP) on a Windows server was used by the learners during this research. The rollout of

Virtual Machines was a project in progress, which may have increased the speed of delivery.

The RDP makes use of shared memory and the more desktops joined, the slower the

execution of a scenario becomes. This technical knowledge influences the rollout of the

content and pedagogical approach. The cognitive load theory heavily relies on such a

framework as TPACK to ensure a decrease in cognitive load by limiting an extrinsic load

through proper content delivery and the way information is represented. The more complex

learning becomes, the less learners rely on support and guidance, which shows a decrease

in extraneous load, until new complex learning demands an increase in extraneous load

again (Sweller et al., 2019).

The following TPACK framework may be used to describe implementation of technology in

education and also for this research to promote cognitive load theory:

62

• What programming language to be taught to high school learners as well as the

hardware involved. Technical knowledge (TK) about the application of the

programming language and platforms to best achieve the outcomes of the approach

• Programming language syntax and possible algorithms and constructs of the

programming language to facilitate computational thinking; the storyboard techniques

for the LMS are used to compliment training Content knowledge (CK) about the

subject matter being taught involves multiple disciplines

• What are the best practices to teach and use for a programming language,

computational thinking and LMS? Pedagogical knowledge (PK) about each

specialised field, namely, programming language, computational thinking and LMS

need thorough research and understanding

The TPACK framework provides a shift from WHAT to HOW. These domains cannot live in

isolation and need to be integrated, as illustrated in Figure 2.19. These three domains are

interconnecting as Technical and Content Knowledge (TCK), Technical and Pedagogic

Knowledge (TPK), Pedagogical and Content Knowledge (PCK) and the intersection of

Technical, Pedagogical Content Knowledge (TPACK). Overall, the augmented TPACK is just

a framework and needs a specific conceptual strategy from a research perspective.

The original PCK framework focuses on “why the high school learner should learn to

program” as opposed to “why learners should be taught programming at all”. The complexity

of adding a visual programming environment into the mix makes manipulation of IT-related

content implicit. TPACK (Koehler & Mishra, 2009) would thus provide a better focus on IT,

and specifically, a programming mix within the PCK mix. The focus is on how computational

thinking is promoted when using programming concepts and APOS theory as lens, with a

constructionist approach.

63

Figure 2.19: TPACK framework accommodating technology (Adopted from Koehler & Mishra,

2009:63)

Highlighted by Cegielski and Hall (2006), a person exhibiting the skill of being fluent in OOP

is a computational thinker who has or is acquiring a cognitive level of formal operations.

Aspects like the relationship of values, cognitive ability and personality cannot be ignored

within any framework. Such a value component is called theoretical value belief.

The TPACK of programming (Koehler & Mishra, 2009), namely “why teach a programming

language?”, “what to teach?”, “what are the problems in learning a programming language?”

and then deciding on “how a programming language should be taught” may focus on the

structure/syntax of the programming language. Syntax and structure may blur the importance

of solving problems using the programming language. Developing algorithms to solve

problems are necessary to engage learners in using APOS theory within the programming

language to achieve computational thinking. Leaving the problem solving component for the

next level may remove the very essence of the advantage in teaching a programming

language in the first place. Complexity of syntax should be minimised or even removed

altogether, so that the learner only focuses on problem solving, gathering implicit syntactical

knowledge, also known as tacit knowledge. Considering Figure 2.11, a programming

language must provide a progression path, moving through the levels of cognitive

development and allowing the learner to grow through the usage of computational thinking

(White & Sivitanides, 2002). Weintrop and Wilensky (2018b) support this progression path,

but position the experience within modality programming environments and the learning

environment. Modality refers to the representational infrastructure used and the set of

64

interactions supported by the interface (Weintrop & Wilensky, 2018b). Szabo et al. (2019)

sees modality as the method by which the user creates the program, as visual blocks or text.

The secret is to blend block-based programming with text-based programming. Greenfoot

programming language can be classified as a dual-modality programming environment that

supports both block-based and text-based programming. The concept of supporting novice

programming environments (NPEs), as discussed by Papadakis et al. (2014), is not the focus

of this research, as this research focuses on the cognitive level of formal operations and thus

supports a dual-modality programming language.

(iii) Paradigm shift in teaching
Considering all the discussions above regarding computational thinking, abstraction, logical

thinking and the like, this research takes on the interpretation of Dubinsky’s (1991) APOS

theory. This research employs APOS theory from Piaget's reflective abstraction as a vehicle

for constructing programs using a programming language with a dual-modality programming

environment. This is the challenge in SA which needs to be addressed, in that learners must

reach that level of thinking where Dubinsky's research starts, hence focusing on learners

aged 11 to 15 years. Once again, the choice of age is based on a development stage called

formal operations, as identified by Piaget (1964, 1975, 1977), during his studies. This

research relies on more than 40 years of cognitive development research by Piaget.

Dubinsky (1991) further points out that his interpretation of Piaget's work describes the

epistemology of mathematical concepts, which should explain the challenges learners may

have when mastering these concepts, and hence may influence the design of instruction

(when administering these mathematical concepts).

One basic reason for not using mathematics to understand mathematics is the abstract

nature of mathematics and the various belief systems about mathematicsthat exist

(Moscucci, 2007). It can be a challenge explaining an abstract concept to someone using the

same abstract concept with no concrete entry points. The meta-belief system activity (MBSA)

of Moscucci (2007) was not used, but the semi-structured interviews and questionnaires

(Appendix B), answered by learners in this research show that mathematics teachings are

challenging.

The reason for attaching Dubinsky's research is the epistemological nature of his research

being acceptable when criticising all researchers in the field of computational thinking.

Mathematics is abstract in nature and so is a programming language (PL), but in using a

programming language like Greenfoot, its interiorisation capabilities are much more

advanced than the normal PLs such as pure Java, C# and the like, and above all, Greenfoot

enjoys a greater degree of interiorisation than mathematics does. Tall (2008) sees

65

embodiment as a prominent factor in moving up and down the ladder of conceptual

embodiment to proceptual symbolic until the learner is susceptible for the axiomatic-formal

world. Greenfoot is built around embodiment as illustrated during the interventions in this

research.

 Sub-research question (SRQ) 2.2
SRQ 2.2, “How do the constructs of a programming language align to APOS among high

school learners at a cognitive level of formal operations?” is discussed in the next section by

(i) how learners are taught programming in a less painful manner, (ii) reflective abstraction in

Greenfoot, (iii) mental structures and mental mechanisms, (iv) when should learners engage

in learning a programming language, and (v) using an example to show how mental

structures are applied.

(i) How can learners be taught programming in a less painful manner?
The question is, “How to teach programming then?” Saeli et al. (2011) quote Hromkovič

(2006) who states that programming must be seen as a skill to communicate in an

unambiguous manner. To minimise all the challenges stated earlier, the programming

language should be simple enough, yet encompassing the goal of instruction and focusing

mainly on semantics. This may lead to fewer syntax errors because of the nature of current

tools having interactive design qualities, as Brennan (2012) as well as Weintrop and

Wilensky (2018b) point out when using Scratch as an NPE (Papadakis et al., 2014).

Syntactically, Linn and Dalbey (1989) regard program comprehension and program

generation as a chain consisting of three links, namely, single language features, design

skills, and problem-solving skills. Du Boulay, O’Shea and Monk (1989) see the need of a

framework or model, to have a guideline when involving learners in programming which

should still be applicable in dual-modality programming languages. The model should aim at

their age, background or type of studies. Currently, interactive media or block-based visual

programming is available, and hence Brennan (2012) sees constructionism as an important

vehicle with the emphasis on design when young learners use interactive media like Scratch.

Greenfoot, on the other hand, is also a constructionist vehicle and allows for embodiment

from the learner’s perspective.

Saeli et al. (2011) argue that languages like LOGO (Feurzeig et al., 1970; Papert, 1980;

Resnick & Ocko, 1990), Scratch (Resnick et al., 2009), Alice, Greenfoot and Gamemaker

(Cooper, Dann & Pausch, 2003; Kölling & Henriksen, 2005; Overmars, 2005), to mention a

few, are based on Piaget’s (1997) model of learning. It allows learners to focus on semantics,

removing complexities from learning a programming language. Having used and taught

LOGO, it is similar to Greenfoot as a dual-modality programming language, except that

LOGO is a procedural language as opposed to Greenfoot being an OOP language.

66

(ii) Reflective abstraction within Greenfoot
The cognitive level of formal operations as researched and coined by Piaget (1985)

(Dubinsky, 1991) is a sufficient development stage in the life of any person for him/her to be

able to build mathematical structures using concepts such as commutativity, number,

trajectory, see-saw, multiplication and fluid levels. These mathematical concepts are formed

during the development stages of a child and should be present within the stage of formal

operations. Within Piaget's (1977) research, Dubinsky (1991) found various forms of mental

mechanisms within reflective abstraction necessary for mathematical thinking. By using

reflective abstraction, the mental mechanisms are:

• The ability to interiorise, i.e. making sense of pictures, mental images, symbols,

language, etc.

• “General coordinations of actions” in using actions to construct new ones (Dubinsky,

1991:97)

• Encapsulation of a Process (dynamic) into an Object (static). Dubinsky (1991) refers to

Piaget's (1985) statement as when “... actions or operations become thematised

objects of thought or assimilation” (Piaget, 1985:49, cited in Dubinsky, 1991:100). The

author perceives this as the construction of structures

• Generalisation of schemas, when an existing schema is applied to a wider range of

phenomena and the learner becomes aware of other applications. Typically, this can

be seen when learners are taught some aspects, but they must be able to see the

value of the teaching in a broader framework of applicability

• Think of an internal process in its reverse form

(iii) Mental structures and mechanisms
In order to comprehend mental mechanisms necessary to construct mental structures, this

research uses APOS theory as a vehicle to do just that. The researchers can provide a

conception of the APOS theory concept as put forward by Arnon et al. (2014), that the

schema is an encompassing term, which houses Actions, Processes, Objects and maybe

other schemas. These schemas describe the learner's mathematical conception of a

mathematical concept, how it is put together organisationally, and an operational roadmap of

the mental structures that it consists of. According to Arnon et al. (2014), APOS theory can

be used as both model and framework. The former describes how to master mathematical

concepts and the latter explains how individuals go about mentally to understand these

mathematical concepts from a cognitive perspective. Dubinsky (1991) puts Piaget's (1977)

reflective abstraction to work in mathematics and sees reflective abstraction as when mental

objects are constructed and mental actions on those objects are executed through mental

mechanisms. The author further argues that he incorporates a schema (collection of objects

and processes) which will be invoked by a learner in order to grasp a problem situation, but

67

based on prior knowledge or some specific concept of the domain (mathematics in this case)

in question.

This research reflects on the role of reflective abstraction in a frame-based editor (Weintrop

& Wilensky, 2018b) and the semi-visual programming language, Greenfoot, in order to create

an analogy whereby computer programming language objects and actions on those objects

transformed into mental objects and actions on those objects. Using a semi-visual

programming language like Greenfoot to initiate programming is a rather foreign mental

construction. However, it should aid in the assimilation of schemas, but even more in the

accommodation of schemas by changing those “linear” or preformed mental structures, to

allow quicker assimilation of schemas and synthesis as learning progresses.

(iv) When should learners engage in learning a programming language?
According to the Neo-Piagetian stage of cognitive development, primary school learners may

not be so far up the ladder of cognitive development (Young, 2012:242) as depicted in Figure

1.2, as opposed to high school learners, and the methodology needs to be changed in order

to reach the same goals in problem solving. The researcher’s exposure to the South African

educational system as a registered teacher at primary, secondary and tertiary levels has led

him to believe that the focus of the DBE in particular should start at a much lower level than

Grade 10 and not a selected group only.

The actual usage of technology by teachers should empower them to make Information

Technology available to younger learners from as early as Grade 6, when the necessary

mathematical emphasis on principles are taught. Teachers may argue that mathematics is

doing just that, but learners grapple with mathematics because of the subject being abstract

and directly addressing the level of formal operations. The DBE and other educational

departments should rather offer IT for more than just the elite learners who eventually are not

using the man hours and money spent by the tax payer and government to educate them in

skills they will not pursue enrolling for courses such as IT at a university.

Research conducted by Kranch (2010) shows that acquiring a skill such as programming,

takes a long period of time. This statement depends on what is meant by the term

programming. If programming refers to block-based programming within a novice

programming environment (NPE), the entry level is not as severe as text-based syntactical

programming languages. As pointed out earlier, many authors regard qualities such as

computational thinking and cognitive ability not as independent entities, but as entities resting

very much on human characteristics of personality and theoretical value beliefs (Cegielski &

Hall, 2006; Wing, 2006; Barr, Harrison & Conery, 2011).

68

(v) Applying mental structures as an example
Before having an in depth look at the mental structures, the APOS acronym needs to be

broken down into manageable parts and written down or typed out, i.e.:

A – Action

P – Process

O – Object

S – Schema

The reader needs to act and make sense of the acronym, also known as the interiorisation

mechanism. These actions may be done by means of writing down the acronym and

memorising each word associated with the letter. It is easily memorised in that “acronym” is a

word pronounced formed from the initial letters of words (Pearsall & Trumble, 2002).

According to Dubinsky (1991), the Actions taken are all external and act as a stimulus

coming from the outside of the reader.

Once the reader can visualise the acronym in his/her mind without writing it down, it is

interiorised within the reader’s mind, also known as a Process. APOS theory is an

abstraction, but the current state is a fuzzy abstraction to the reader. Currently, the APOS

theory concept and the conception of the reader may differ, more than likely. Although the

teacher or reader may encapsulate the process into an Object that represents the mental

constructions for an individual to enable an understanding of APOS theory as a model or a

framework, the abstraction process needs further analysis to remove the fuzziness. The

reader sees APOS as a totality in that the reader encapsulates the process into a cognitive

object, which may have meaning as either a model or framework to the reader (Dubinsky &

McDonald, 2001). The reader has now taken Action to create a Process of the APOS

acronym to form an Object with the role of a model or framework within the mind of the

teacher or reader.

The last letter “S” constitutes the word “Schema”, which points to the long- and short-term

memory of the teacher or reader. Several schemas pre-exist within the reader or teacher’s

mind. The fact that the reader is reading this thesis shows that the reader does have some

interest in constructionist learning or in the constructionist approach during teaching and

learning, and that some schema(s) do exist in his/her mind. The challenge is firstly to

understand what constitutes a schema, and secondly, how does one expand an existing

schema(s)? To answer this, one needs to compare the APOS theory concept to the reader's

conception through a reflective activity (Arnon et al., 2014). One can perform a genetic

decomposition to understand how APOS theory’s mental constructions are related to form a

69

larger mental structure called “Schema” (Arnon et al., 2014). According to the authors,

genetic decomposition can be inferred from data generated by analysis of observations or

interviews and from the historical development of a concept. The genetic decomposition acts

as a mechanism, which enables teachers or researchers to understand whether the learner

mentally understands a concept, or what the difficulties are. In using such a genetic

decomposition framework, the analysis of data is looked at from a similar perspective, which

gives more reliability to interpretations from different researchers. Furthermore, a genetic

decomposition is about how the actions are interiorised into Processes, and how the

Processes are encapsulated or coordinated into Objects. Care must be given to what these

Actions, Processes and Objects exactly are; it must not merely become confirmation of

taking action, resulting into a process that is encapsulated into an object, without stating

exactly or discovering the actual detailed actions, processes and objects involved in the

mental construction of a conception when understanding a concept. The focus should thus

be on the mental constructions of the learners when a conception is formed from a concept.

Within the genetic decomposition, a Schema, or certain schemas, will be prerequisites to

understanding a concept (Arnon et al., 2014).

The relationship between solving a mathematical problem based on a mathematical concept

and writing a program using a computer programming language to map an algorithm, is

different in that a multitude of programming concepts are used simultaneously for the latter.

Connolly, Murphy and Moore (2009) argue that computing is abstract in nature and that the

problem-solving activity generates anxiety among learners. The cognitive emotional and

physiological states that cause anxiety need to be addressed to improve confidence and

competence, similar to mathematics learners. This research is an investigation into the

conceptualisation of concepts in object-oriented programming languages using APOS theory

for mathematical concepts. Five basic concepts exist in any programming language, namely,

variables, control structures, data structures, syntax, and tools (Brennan & Resnick, 2012).

The researcher uses the Greenfoot gaming programming language that entails a broader

category as opposed to normal programming language concepts, namely OOP. Concepts

within OOP include dynamic lookup, abstraction, subtyping and inheritance, supported in

Greenfoot as a derivative of Java. Abstraction and inheritance together with concepts

identified by Brennan and Resnick (2012), which forms part of the Greenfoot programming

language, were investigated in this research.

Figure 2.20 depicts the research on discovering a programming concept as a hypothetical

mental process.

70

Figure 2.20: Interpretation and adaptation of APOS theory from a research and curriculum

development stance (Adapted from Arnon et al., 2014:112)

A brief discussion of Figure 2.20 follows next.

Step 1: Theoretical analysis
A theoretical analysis is required to determine what concepts and thus schemas are in

question or needed to learn a programming concept. According to Arnon et al. (2014), the

theoretical analysis is thus a driving force for the design and implementation of instruction in

those mental constructions identified in the literature analysis of this research. It can thus act

as a barometer to measure if learners indeed committed to the identified mental

constructions and how well the learners learnt a programming concept.

Take a simple concept in the Greenfoot programming language. Learners may attend your

class for the first time, where the instructor needs to introduce concepts such as:

• Tools necessary to run a Greenfoot scenario

71

• Structure and design of a Greenfoot scenario

• Successful rollout of the implementation of a Greenfoot scenario within the world of a

developer

Mental structures to consider within APOS theory are Actions, Processes and Objects to

eventually make up a Schema in order to find a place/niche for all Greenfoot scenarios. At

this stage, learners come with an existing Schema or none other PLs. An editor and compiler

are used to create object code and some degree of debugging may suffice to create and

execute code using the Greenfoot programming language. The aim is to identify mental

mechanisms that will help with the design and implementation of instruction when running

any Greenfoot scenario, once constructed, which is different from the existing schema. For

this example, the mental mechanisms may be interiorisation, coordination and encapsulation,

where the Object of instruction is to interiorise all those Actions into a Process called

“running of a Greenfoot scenario” and that may be encapsulated into an Object called

“Greenfoot Application”. Hopefully, the Schema of how to deal with the Greenfoot editor,

structuring a Greenfoot scenario, and then running (executing) that scenario may be

regarded as two Schemas. The structure of a Greenfoot scenario Schema and the usage of

the tools Schema must be coordinated and assimilated into the existing Schema of the

testing and debugging of a computer program. Here it is not only about the tools, but also

about the structure of the Greenfoot scenario. The two Schemas can be investigated

separately, but coordinated into one final Schema called “running of a Greenfoot scenario”.

Step 2: Design and implementation of instruction is needed to pave the way forward
According to Arnon et al. (2014), the design and implementation of instruction starts off with

a preliminary genetic decomposition (GD). One needs to anticipate how the mental

constructions may take place and it needs to be tested against step 1. It is also considered

as preliminary, for one must still test this against the theoretical analysis as described by

Arnon et al. (2014).

Step 3: A Genetic Decomposition (GD) is used to give meaning to activities, classroom
discussions and exercises (ACE)
For genetic decomposition, mental structures and mental mechanisms (see section 2.2.2.1

(c)(vii)) give prominence to ACE (Figure 2.20). Mental structures, which need to be acquired

through mental mechanisms, must then be combined into the stages of building a schema,

also known as the TRIAD, where intra-, inter- and trans-stages are deployed in alignment

with the specific schema in question.

72

Step 4: ACE re-enforces the classroom discussions based on the activities

The activities, classroom discussions and exercises identified, make the genetic

decomposition (GD) a reality, according to Cottrill et al. (1996). The authors used the

following Table 2.1 to state the structures and mechanisms identified in step 1. The actions

and processes of the GD are refined by describing how the learner will accomplish the

Actions and Processes.

Table 2.1: Genetic Decomposition (Adapted from Arnon, 2014:27)

Step 5: Schema construction
Each component of ACE is examined by means of APO (actions, processes and objects).

APO gives rise to a schema. The schema consists of intra-, inter- and trans-stages. The last

part in APOS theory refers to a schema. Arnon et al. (2014) describe a schema as a study

conducted on the relations and constructions which are built during problem solving. This

study should show the structure of the learner’s schema, which is also unique to that person.

Arnon et al. (2014:112) cites Piaget and Garcia (1989) using the “triad” that consists of three

stages to describe the progression and development of such a schema. Trigueros (2005)

views schema development as an effective way to understand the construction of schemas.

73

Any schema, according to Piaget and Garcia (1989), develops through intra-, inter- and

trans-stages linked to that schema’s name.

A real life mathematical example to relate is discussed next:

When viewing graph mapping towards a linear equation of a straight line, the intra-linear
stage focuses on the plotting of coordinates and represents these coordinates on graph

paper. It is assumed that the learner does possess a schema on positive and negative

numbers and x and y axes. The actions taken by the learners in plotting the coordinates

force them to observe in which quadrant an x and y coordinate with a specific sign will reside,

and after a while the learners will interiorise the quadrants of (-x,y), (x,-y), (-x, -y). The inter-
linear stage commences when the learner develops more knowledge on coordinates and

infers the sign of an x or y coordinate which relates to a specific quadrant on the graph.

Step 6: Action reverts back to collection and analysis of data
If the genetic decomposition (GD) was successful, the GD will be used to strengthen the

mathematical concept for learners. If not, the GD will be reconsidered using theoretical

analysis. From this step onwards the GD may be successful using formative assessment or

the GD will be taken back to the drawing board again to design and implement instruction to

repeat the cycle. Cognitive load theory remains a factor in the mix and an LMS is a proposed

way added to the extraneous load when complex learning is involved. The inclusion of an

LMS is discussed in the next section.

 Sub-research question (SRQ) 2.3
SRQ 2.3: How does the use of an LMS, as a platform for learning, aid the teaching of a

programming language aligned to APOS to promote computational thinking skills at a

cognitive level of formal operations among high school learners?

Baist and Pamungkas (2017) are concerned that learners do not receive sufficient

programming examples, and the lectures may be of poor quality in general. Their results

show that learners need more activities and discussions to acquire programming skills. The

access to an LMS that is properly structured by an instructional designer may assist in

reducing the concerns expressed by the authors who maintain cognitive load theory.

Prensky (2008) argues that programming must be regarded as a new form of literacy

(section 2.2.2.1(c)(iv)). The process of advancing any learner to acquiring the skills of the

fourth “R” is a Piagetian challenge. According to White (2003), other prerequisites such as a

different skills level required for mathematics, with specific mention of algebra, are

prerequisites for the fourth “R”. Wing (2006) however sees computational thinking as the

74

fourth component, not pRogramming. One way in which to uphold cognitive load theory is to

allow access to an LMS in order to balance learning in a constructionist way. Ways to

optimise cognitive load through an LMS is discussed next in (i) perspective on an LMS, (ii)

novice versus expert programmer, and (iii) the worked example effect in the next section.

(i) Perspective on an LMS
According to Schober and Keller (2012), researching the usage of an LMS to assist learners

with blended learning did not have the desired effect. Learners have not used the LMS as

expected, but the authors also state that the LMS was rolled out not using a proper

instructional design approach. The interface was frustrating to learners, which may be the

cause of the negative outcomes. In such an event, the basic principles of upholding cognitive

load theory are violated by increasing the cognitive load extraneously as a result of an

incorrect instructional delivery method (Mostyn, 2012; Sweller et al., 2019). The LMS used

for this research is the Modular Object-Oriented Dynamic Learning Environment (Moodle),

which is open source technology selected for this research with the purpose to save costs

with the implementation at schools. Alomari et al. (2020) state that human factors

contributing to the usability of the LMS need to be considered, which may be the answer to

the findings of Schober and Keller (2012), namely that learners did not use an LMS as

expected. The focus should be on LMS effectiveness, which can be measured in terms of the

duration it takes a learner to perform a task using an LMS, thereby promoting user

satisfaction (Alomari et al., 2020). User satisfaction points to the belief of users that the

information system to their disposal meets their information requirements (Eom, 2014).

(ii) Novice versus expert programmer
The speed at which a novice can become an expert in programming is dependent on worked

examples to speed up learning (Abdul-Rahman & Du Boulay, 2014). Van Gog, Paas and van

Merriënboer (2005) regard programming language expertise creation as optimising learner

working memory (LWM) by packing more information into fewer elements, hence releasing

more memory that can be used for problem solving. The cognitive load should become less

for the learner (Sweller et al., 2019). The short-term working memory of a human being can

only handle four independent chunks (Cowan, 2001), but is influenced by long term memory

activity. Becoming a programming language expert is a process of “internalising, organising

and automatising domain knowledge and skills” (Kranch, 2010:76). The process consists of

three stages. The first stage is where knowledge held by the novice is poorly organised. In

the second stage, the knowledge becomes hierarchical and understood. The third stage

refers to knowledge reorganisation, containing associations across knowledge levels to

create a personal complex knowledge repository (Kranch, 2010). This theory coincides with

75

Piaget’s (1977) two stages of thinking, embedded in organisation and adaptation (Woolfolk et

al., 2003).

To become an expert in a pure syntax-driven programming language, Zeitz and Spoehr

(1989:327) state the following stages:

• The novice should be taught the basic syntax of the language, only focusing on the

basic features of the language, called a breadth-first hierarchical organisational

approach

• After understanding the syntax, program plans and semantics (logic rules), i.e., an

experiential or problem-based instruction should be followed, as knowledge becomes

“hierarchical, orderly, and easily verbalised”

• Thirdly, the plans and problems being explained should increase in complexity as

expertise grows, and the instruction based on problem solving should be the chosen

method used. The knowledge remains hierarchical or scaffolded, being available at

“various levels of abstraction with important associations across and within levels of

abstraction”

The arguments of Zeitz and Spoehr (1989) may describe the final outcome of the expert, but

research brought visual programming languages into being. Visual programming languages

allow a gradual growth in complexity, thus making programming more accessible to

everyone, but with the aid of worked examples found on an LMS. Cognitive load theory has

an impact on the views of Zeitz and Spoehr, although their stages are still valid, where the

abstraction levels take on a different almost easier approach in visual systems. Having

advocated that instruction should be based on a chosen method of problem solving, the

“worked-example effect” is discussed in the next section.

(iii) The worked-example effect
As highlighted earlier, the LMS may provide a focused area of interest or knowledge domain

that the learner may access to complete a task. A programming language is a new concept

and an LMS may alleviate that uncertainty and frustration of where to research such a task

handed out to learners. The LMS thus provides domain-focused worked examples in

programming that support cognitive load theory (Clark, Kirschner & Sweller, 2012; Li, 2016;

McPhail, 2016; Sweller et al., 2019). The primary objective of cognitive load theory is “the

generation of novel instructional techniques” (Sweller & Paas, 2017:86). According to Li

(2016:58), many effects are developed from cognitive load theory, such as the “goal-free

effect, worked example effect, completion problem effect, split-attention effect, modality

effects, redundancy effect, and variability effect”.

76

2.2.3 Theoretical conceptual framework
A framework must “possess ontological, epistemological and methodological assumptions,

where each concept within the conceptual framework plays an ontological or epistemological

role” (Jabareen, 2009:51). Conceptual frameworks point to a network of interlinked concepts.

The ontological assumptions or the ‘way things are’ are supported by Bachelard (1938) and

Brousseau (1983) in context of the theoretical conceptual framework, depicted in Figure

2.21. The theoretical conceptual framework also depicts epistemological fraud (D’Amore,

2008; Jankvist & Niss, 2018). The researcher resolved the epistemological fraud through

dual-modality computational notation called Greenfoot. The framework was developed

through a qualitative analysis of the literature review. The proposed conceptual framework is

based on data collected during Educational Design Research (EDR) using literature reviews,

interviews and practices (Jabareen, 2009) as indicated in Chapter 5. The EDR process was

iterative and led to a few intermediate theoretical conceptual frameworks.

The concepts investigated, as depicted in Figure 2.21, are literacy skills, cognitive ability,

cognitive loads, value beliefs, critical thinking, mental structures, computational thinking,

didactical situations, abstraction, complexity cloud, programming language, learner

management system, mathematics and science.

Figure 2.21: The theoretical conceptual framework for the improvement of computational
thinking among learners

77

In Figure 2.21, the learner receives input through learning computational thinking subjects

such as Mathematics and Science. The schemas of such a learner are updated in terms of

the schemas of concept definitions within Mathematics and Science. As depicted in Figure

2.21, the cognitive environment of the learner is influenced by literacy skills, which should

include computational thinking, influenced by cognitive ability, theoretical and beliefs about

mathematicsand the learner’s personality (Cegielski & Hall, 2006; Moscucci, 2007; Prensky,

2008; Moscucci & Bibbo, 2015). The learner receives lessons and tuition in class and is

expected to investigate concepts, problems through critical thinking and computational

thinking. In order to accomplish such a task, the learner finds him or herself within a

complexity cloud of computational thinking and Pop-Ed thinking (Papert, 2005) that influence

the learner’s academic functionality.

The complexity cloud depicted in the theoretical conceptual framework is based on research

conducted by Bachelard (1938), who argued that existing cognitive beliefs might affect the

progress of science. Papert (2005) further argued that thinking processes and beliefs

become obstacles to understanding mathematical concepts as researched by Flavell (1976),

Moscucci (2007) and Jankvist and Niss (2018). McGowen and Tall (2010:170) posited that

learning can be impeded by “met-befores”. Brousseau (1983) did not use the term “met-

befores”, but posited that certain existing knowledge may prevent the acquisition of new

knowledge, also known as an epistemological obstacle. This also holds true for the didactical

situation (Brousseau, 2002) in the class at the private school and in general where teachers

are unaware or not concerned about the beliefs about mathematics of learners or

epistemological fraud. Based on these characteristics within the complexity cloud, the learner

will reach some solution when solving problems, because of the nature of Mathematics and

Science subjects. The solution can be either authentic or flawed, which feeds back into the

schema, thereby building structure of the learner.

Papert (2005:354) introduced the term “Pop-Ed Culture”, which points to the modern ideas

about education and the mind as depicted in Figure 2.21. Pop-Ed thinking considers:

• Blank-Mind theories, where a learner is conditioned to keep his/her mind blank in

order to memorise something and wait for the solution to arrive instead of fetching the

solution

• Getting-It theories, where a learner only recognises two states of his/her mind – either

understanding or not understanding at all. The learner does not even try to take the

necessary steps to overcome his/her lack of understanding if it cannot be

accomplished in one ‘bite’

• Faculty theories where a learner uses an extensive description or classification of the

status of the mind or understanding of a concept, such as building a habit of

78

describing the learner as “he’s a brain” or “he’s a retard” or “I am not mathematical-

minded”, instead of trying to analyse and diagnosing the shortcoming to overcome

the problem or lack of understanding (Papert, 1980:355)

• This may give rise to a flawed solution (D’Amore, 2008; Jankvist & Niss, 2018) of the

problem under investigation, as a learner is governed by theories that prevent him/her

from developing a mathematical understanding of mathematical concepts

• Computational thinking, on the other hand, consists of the analysis, synthesis and

concretisation of mathematical concepts. Computational thinking seems to be

supressed by the culture of Pop-Ed thinking (Papert, 2005) and epistemological fraud

(D’Amore, 2008), as also found among learners in the sample group of this research.

The probability of a correct result of the computational thinking component interaction

is likely to be an authentic solution to the problem or striving towards an authentic

solution. The solution, whether flawed or authentic, goes back to the learner, who

uses the flawed or authentic solution in scaffolding new mathematical concepts

building towards a schema. A typical example found among some of the learners who

partook in this research, was that they simply did not know the sum of the angles of a

triangle and guessed 60 degrees or 100 degrees. Such answers illustrate that

learners have several answers for certain mathematical concepts that should have

been understood as one correct answer only, based on the mathematical concept

definition

Computational thinking consists of thought processes, abstraction and decomposition that

are necessary to build and acquire the understanding of mathematical concept definitions

(Selby & Woollard, 2014). From literature that was reviewed, the researcher found that a

programming language may have the potential to raise the cognitive levels of formal

operations of learners, thus paving the way for successful completion of tertiary courses

involving Mathematics and Computer Science/Information Technology, instead of

encouragement only. Through a programming language an embodied cognitive experience is

evident, owing to more senses that are involved through practicing computational thinking.

Even Tall (2003, 2004, 2008) describes the three worlds of mathematics as illustrated in

Figure 2.6. When arguing the importance of worlds 1 and 2, a programming language such

as Greenfoot can strengthen the first two worlds without the learner having to become a

specialist programmer. The third world of the “formal-axiomatic” (Tall, 2003:4), where logical

deductions are made to prove theorems, may invade the formal world of a programmer

where algorithms are figured out and debated, based on the pre-knowledge of the first two

worlds in mathematics.

79

The Greenfoot programming language may provide a bridge to the specialised OO Java

programming language, which benefits the private schools and not the state schools. The

state schools abandoned Java as programming language driving IT as a subject in schools

and replaced Java with a proprietary programming language. The reason for this is not clear

to the researcher; clarification by the DBE is needed. However, research done by Goosen,

Mentz and Nieuwoudt (2007) in South African schools contradicts this decision made by the

DBE. The authors stated that affordability of the Java language was acceptable owing to a

free ownership, as found by their significant sample used. The research was done when

Java was still prescribed for both private and state schools before the decision of the DBE to

phase out Java. OOP was regarded as a significant role player at the time, providing

instructional value, critical thinking skills, analysis of programming problems and formulating

solutions, and basic programming principles. Important programming language aspects such

as data abstraction, Internet programming and design principles, emphasised in this

research, were seemingly not important. Goosen, Mentz and Nieuwoudt (2007) used a

sample consisting of educators as policy makers, trainers and teachers at tertiary institutions

in SA to research Java usage and implementation among schools. The danger of using such

research as a measure to judge Java as the best programming language in South African

schools may be that the sample chosen voices a collective opinion from a subjective

perspective of what is known to the sample only and that industry should play an important

role in such a study. The future of a country does not depend on this country being the

consumers of the developed countries only, as highlighted by Mpofu and Nicolaides (2019),

when considering the implications of 4IR. This research was done at a private school where

Java was used for their IT subjects and where Greenfoot provided a natural language and a

bridge towards Java. Java forms the foundation of Greenfoot. Portnoff (2018) states, that

learning a programming language should be like language learning. Students will struggle

when “English” is done in the first term and then “Russian” in the second term and so on. The

focus should be on learner confidence to create a contingency of the programming language

rather than jumping about teaching different programming languages. A specific

programming language should be mastered properly by learners, instead of introducing

different programming languages that may cause confusion among learners. These

tendencies pointed out by Portnoff (2018) might also be the reason why the private school

where this research was done, had their highest intake in IT learners from grades 10 to 12

following this research, which provided an introduction of the Java language to learners, prior

to starting with pure Java in Grade 10.

Being providers of technology and not only consumers of technology may be achieved

through constructionism, when the learner is an information constructor. Learners create

their own subjective representation of objective reality. Learners construct their own

80

understanding when making connections between intrinsic knowledge and new external

knowledge (McPhail, 2016). Sweller et al. (2019:264) state that intrinsic cognitive load is

determined by the complexity of the information as well as the knowledge of the person

processing the knowledge.

The word “communicate” emphasises the importance of natural languages, as found by

Portnoff (2018:34), who conducted research on functional Magnetic Resonance Imaging

(fMRI) in a 2014 study, that the comprehension of computer programs occurs in the same

regions of the brain that process natural languages. The author also attaches language

which becomes increasingly more sophisticated in describing our physical and mental

perceptions, incorporating internal conceptions, which involves visio-spatial imagery.

Programming requires a spoken language to describe and understand the problem, finding

an appropriate solution or algorithm for the problem and a programming language to express

the algorithm within such a computational notation.

This research developed research-based solutions for a “wicked” educational problem. This

was achieved through analysis of the results from Educational Design Research, contributing

to the body of scientific knowledge in line with the Plomp (2013) and the van Wyk and de

Villiers’s (2018) model on EDR.

The way learners interact with mathematics is a concern as it does not deliver positive

outcomes (Spaull, 2013). The outcomes of this literature study show that the mathematical

approach in schools is governed by working through papers and examples, which may

strengthen a concept-image approach outcome (Reddy et al., 2012; Spaull, 2013; CDE,

2014; Reddy et al., 2015). The approach may also re-iterate an incorrect understanding of

mathematical concepts, because, according to Higgins and Wiest (2006), practice does not

necessarily make perfect. Higgins and Wiest (2006) conclude that the learner may, by

practicing a relative or warped solution, create a concept-image of a mathematical concept

through a relative epistemological approach. The constructive approach may be more

damaging than a guided approach, as the constructive approach generally allows the learner

to explore the mathematical problem without guidance to discover a solution on his/her own.

This often leads to a warped or relative idea of any mathematical concept, thereby affecting

the epistemological views of mathematical education. It is argued that worked examples are

important to minimise time spent on concepts. A worked example (Clark, Kirschner &

Sweller, 2010, 2012; McPhail, 2016) usually originates from the professional who has the

right answer; it is not based on a relative viewpoint of the truth from a learner’s perspective.

Mathematical solutions to a mathematical problem may seem correct until the answer proves

differently and is thus relative when seen from the learner’s frame of mind. The student still

81

has to abide by the APOS framework, and solving a problem using a programming language

such as Greenfoot offers a trusted solution immediately visible to the student, underpinned

by the APOS theory. The APOS theory and a theoretical conceptual framework (Figure 2.21)

were used to implement a practical approach as a validation study (Plomp, 2013), which

points to Design-Based Research (DBR). DBR is used to validate the APOS theory against

the conceptual theoretical framework.

2.2.4 The viewpoint of educators and professionals on programming
Programming literacy should be taught in schools (Papert, 2005; Wright, Rich & Leatham,

2012). Information transfer is not a viable format of education to ensure that learners are

employed in the future (Gleason, 2018). The DBE as policymaker may provide more

instances in interfacing programming within the curriculum. This can be achieved in

focussing on what must be taught or achieved, instead of why a programming language

should be taught. Maybe the support of the importance of programming literacy in the

curriculum should be debated among a wider audience and not within the educational space

only. A trigger for such a debate may be the 4IR facing education and industry in RSA. The

problems that occur, such as low matriculation marks for mathematics (Spaull, 2013; Reddy,

2014; CDE, 2014; Reddy et al., 2015; Voogt et al., 2015) and science, enjoyed, at the time of

this writing, widespread attention, which ties in with the 4IR. Papert (2005) sees the problem

as one of assimilation and accommodation, referring to schema building.

The WCED introduced mathematics standard and higher grades at first. When learners could

still not succeed in acquiring the specified mathematical skills, the concept of mathematics

literacy was introduced. Papert (1980:38) describes this phenomenon as “Mathophobia” or

the fear of learning. Education then confuses this “fear of learning” with poor aptitude

(Papert, 1980:44). For this research, the researcher had to consider the positioning of

mathematics literacy as an enabler of logical and abstract thinking, as in the case of

mathematics. Bule and Seith (2012) opine that too much emphasis is placed on the

availability of computers at schools, instead on teaching programming using a programming

language. Bule and Seith (2012) further state that Livingstone, a computer games

entrepreneur, refers to the “narrowness” of teachings about computers, creating digital

illiterates in the UK, slowly killing important industries of the talent they need to maintain a

competitive advantage. According to Bule and Seith (2012:1), Livingstone describes

programming as the “lingua franca of competitive, innovative business”.

Papert (1980) argues that a language like LOGO blurs boundaries in such a way that no

specific exercise is specifically allocated for learning mathematics or spelling proficiency, etc.

(Papert, 1980). Bule and Seith (2012) further state that Scotland is delivering a higher

82

standard of computer programming at schools, involving lower levels of schooling, for PLs

such as Scratch, Alice, and LOGO. The focus of Scotland is on solving the problem, instead

of sorting the syntax. The authors further argue that with the advent of the Raspberry Pi,

many instructors and stakeholders advocate a formal programming approach around

teaching programming from as early as Grade 5, but there are many pedagogic arguments

against the idea. Educationists advocate the pedagogic development of the child, which

allows for the exposure of children to computer technology, but not to formal syntactical

programming teachings (Bule & Seith, 2012). The researcher also supports this view, but as

revealed by the literature review, dual-modality PLs such as Greenfoot may assist with the

need. The aim of the BBC Microcomputer created by Prof Steve Furber of the University of

Manchester underlines the teaching of PLs to create the opportunity to expose every child to

programming (Bule & Seith, 2012).

According to Hartley and Treagust (2014), learners appreciate the use of computers in

collaboration with their mathematics lessons. It was pointed out that these computers could

only be used once or twice and that the computers are also shared, which may cause a

breakdown in availability. The overall opinion is that if the situation was ideal, it would

contribute to a better understanding, provided that the exercises do have a direct correlation

with mathematics skills done in the classroom. It still remains the responsibility of both

teacher and learner to ensure that the usage of computer programs to promote mathematics

learning, correlates.

Papert studied under Piaget and much of this research is motivated by his research, which

developed from a number of studies done by Dubinsky. According to Feurzeig and Papert

(2011), the teaching of PLs should form part of the normal academic progress in order to

effectively reduce these formal barriers. The authors used Logo programming at the time to

introduce children to formal thinking processes in a playful manner. Feurzeig and Papert

(2011) regard the constructivist vision in mathematics teachings as the active construction of

knowledge. It is about creating an artefact based on a sound ontology (Iivari, 2007). This can

be achieved by using a programming language and by reflecting, discussing even failed

procedures to examine, analysing and repairing these failed procedures. The epistemology,

according to (Iivari, 2007), for Design Research focuses on three types of knowledge, which

are conceptual knowledge with no truth value, descriptive knowledge with a truth value, and

prescriptive knowledge with no truth value.

Mathematics has many formal methods, which forces a learner to think about the problem in

an uncontrolled manner. By using a programming language, many of these formal methods

can be changed from abstract to concrete (Feurzeig & Papert, 2011). The thinking may

become controlled thinking as opposed to uncontrolled thinking. Problem-solving and formal

83

concepts in algebra are major stumbling blocks for many learners and programming

languages can be used in such a way that those hurdles become enjoyable challenges.

Papert (2005) emphasises the processes of assimilation and accommodation at the core of

Piaget’s theory of development. According to the author, these two processes are seldom

understood by educators, i.e., assimilation refers to when new ideas need to be reconstituted

to fit the child’s mental structures, using existing schemas. Accommodation happens when

the interaction of many of these new ideas are assimilated into the child’s mental structures

causing change eventually (Papert, 2005).

Numerous studies abroad have been conducted on the concept of abstraction as a

prerequisite for mathematics, but many of these studies were conducted at university level

where students already acquired a level of abstraction within certain disciplines. In SA, Brijlall

and Ndlovu (2013:14) also studied the “mental constructions during optimisation problems in

Calculus” of high school learners based on the APOS theory, but it shows a state of being

after instruction and at the final stages of the learner’s schooling career. APOS theory

focuses on a developmental perspective or is used as an analytical evaluative tool (Arnon et

al., 2014), but the main focus is to understand how learners learn mathematical concepts. It

is thus a constructivist approach. What this research focused on is the APOS concept before

development or analysis can take place. The development of the individual or student at a

cognitive level of formal operations is considered as an important stage of APOS when

Piaget's stage of formal operations is in its initial phase, i.e. 11 year olds, to embrace

abstraction as a necessary skill in mathematics and other disciplines that requires some form

of abstraction. A much broader term, describing problem solving skills, encompassing

abstraction and automation as its two main pillars, is computational thinking. Research has

been done internationally on APOS analysis, but the research does not guide the teacher in

understanding APOS as a way of thinking about the thought processes necessary for

mathematics or computer programming (Dubinsky & Lewin, 1986; Dubinsky, 1991; Dubinsky

& McDonald, 2001; Arnon et al., 2014; Brijlall & Ndlovu, 2013; Cetin & Dubinsky, 2017). The

APOS theory is accepted as a theory already well-known to the reader, which in many cases

is not the case. Bule and Seith (2012) argue that the over emphasis on ICT being the driving

force behind computer education has led to “lessons on office products”, which created a

boredom, where learners are teaching themselves and not seeing a computing qualification

in Information Technology as an option.

According to Bule and Seith (2012), Quinton Cutts (a senior lecturer at the University of

Glasgow and an expert on Computer Science in education) wants Information Technology as

a separate and independent discipline. Cutts also supports the notion that “learning to

84

program” teaches an individual a new way of thinking, which is invaluable to a “highly

technologically-oriented world”.

The positioning of programming language education or education in information technology,

evaluating the meaning of programming literacy, opens up research on computational

thinking. Szlávi and Zsakó (2017) state that ICT competencies must be defined as part of a

country’s national curriculum that encompasses many traditional IT and current ICT

objectives, with algorithmic thinking as a central theme. The authors make mention of the

South African National Curriculum Statement, which states that a learner must be able to

design, implement, test and deliver efficient and effective solutions to problem situations. The

statement is absolute, but the implementation of the statement may raise other questions.

However, the debate on competency education is also an important facet raised by Denning

(2017).

2.2.5 Target group
Grade 8 and 9 learners fall within Piaget’s cognitive level of formal operations (Piaget, 1964;

Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015; Bormanaki & Khoshhal,

2017). The majority of Grade 9 learners are faced with subject choices for Grade 10 that

affect their future, as per DBE curriculum, and should make learners more responsible

towards their studies. The complex multitude of factors such as language orientation,

theoretical value belief, cognitive ability, and personality influenced by culture that may play a

role, as pointed out by Cegielski and Hall (2006) (section 2.2.2.1(b)(ii), Figure 2.8), are partly

ignored. Research in decolonising education in South Africa (Sayed, Motala & Hoffman,

2017) is a valid discussion, but may blur the focus of this research. This research focuses on

natural and formal sciences that entail a programming language perspective with APOS

theory as lens. Considering the complex multitude of other factors will direct the focus of this

research away from the formal and natural sciences to social sciences. The researcher touch

on beliefs about mathematics, but it becomes challenging and involved psychological

research (Cegielski & Hall, 2006; Moscucci, 2007). Although Lee and Choi (2017) state that

higher-order thinking is more directly affected by deep learning approaches than by

epistemological beliefs or attitudes towards technology use, other researchers (Cegielski &

Hall, 2006; Moscucci, 2007) state that epistemological beliefs affect academic performance

and influence achievement motivation, which supports the outcomes of this research.

As an extra note, regarding research conducted by Vygotsky (1978), the researcher deals,

among other things, with the fundamental role of social interactions in the development of

children. His notion of the zone of proximal development (ZPD) describes the gap between

what a child can achieve alone and what this child could potentially achieve with the help and

85

guidance from someone more knowledgeable, skilled or experienced. Greenfoot is also a

gaming platform on which learners create a game intuitively. Collaboration happened

naturally; learners started to help each other in getting their Actor objects functioning properly

to be able to engage in the game. This kept the participants motivated to complete their

programming.

2.3 Literature review summary
Chapter 2 provides clarity as to why computational thinking lacks among learners at a

cognitive level of formal operations within the context of the South African educational

system, and how computational thinking can be strengthened among learners. This was

accomplished by investigating the role of computational thinking concepts at a cognitive level

of formal operations, followed by the discovery of a programming language that may promote

computational thinking skills among learners where APOS theory and the programming

language share common ground. The reason for choosing a programming language was that

programming in itself exists within computational thinking, but a link was needed between

mathematical thinking and the chosen programming language to align the thinking processes

of the learner with that of learners doing mathematics within the APOS framework.

The literature review supports the problem statement and research questions in the following

manner:

i) Piaget’s cognitive level of formal operations prescribes development at the specific

starting age of 11 years.

ii) Embodiment plays a vital role in mathematics education, but also in any learning

requiring computational thinking that forms part of cognitive development at a level of

formal operations.

iii) Constructivist and constructionist learning rely on “met-befores”, which may be prone

to a relative truth. The emphasis should be on constructing knowledge as opposed to

constructivist approach.

iv) Computational thinking does have its origin in Computer Sciences and is grounded in

abstraction and automation.

v) Abstraction is broken down in empirical, pseudo-empirical and reflective abstraction,

where reflective abstraction forms the basis of mathematics learning and has a strong

connection with computational thinking.

vi) Abstraction is defined in different ways by different researchers, but APOS theory,

which is also a framework and model, provides a clear path as to how the theory can

be applied in mathematics learning.

86

vii) Any learning framework proposed for mathematics must have the functionality of a

model to be implemented as a methodology in order to guide learners with changing

their line of thought and belief system.

viii) Many PLs are available that provide different ways a learner can interact while still

practicing computational thinking in general. Considering embodiment and the use of

language as vehicles for mathematical learning, Greenfoot is an appropriate choice to

house the features necessary to accomplish computational thinking as well as the

visual component combined with a language of expression that satisfies APOS

theory.

ix) The success of a proposed solution for learners to understand concepts in creating or

building schemata at a cognitive level of formal operations is governed by the process

of Piagetian equilibration through organisation and adaptation.

x) The term literacy was redefined using a programming language and computational

thinking as an extension to the traditional definition of literacy.

xi) Cognitive ability is not the only component of any individual’s make-up, but cultural

and social issues are also contributors to computational thinking.

The 11 points highlighted in the literature review hone in on how APOS theory may

contribute to computational thinking within the Greenfoot programming language. From the

literature review, it is unlikely that traditional mathematical learning does not satisfy the goals

of the education departments in South Africa.

This triggers an investigation into how to strengthen computational thinking among learners

and raises more “how” questions, as posed in RQ2. In section 2.2.2.1(a)(i), the cognitive

theory levels are discussed. According to Piaget (1964), Young (2012), Cherry (2014), Ghazi

et al. (2014), Barrouillet (2015), Bormanaki and Khoshhal (2017) the cognitive level of formal

operations is the level where thought processes are prominent. Factors necessary to kick-

start computational thinking at a cognitive level of formal operations are investigated through

the SRQs. The study shows that mathematical problem solving and computational thinking

are linked through the concept of reflective abstraction.

Reflective abstraction is used in the context of computational thinking (Cetin & Dubinsky,

2017). Denning (2017) describes Aho’s (2012) definition of computational thinking as the

thought processes necessary to formulate problems. Selby and Woollard (2014) also link

thought processes to computational thinking. The thought processes should bring about

solutions to problems. These solutions can be represented as computational steps and

algorithms as depicted in Figure 2.10. Denning (2017) further argues that computation is a

process consisting of a computational model together with computational thinking. An

algorithm is a way to control any machine that uses the model. Aho (2012) states that

87

algorithms are implemented using a computational notation such as a programming

language to create computational models. These computational models are abstractions at

the core of computation and computational thinking. Selby and Woollard (2014) identified

three aspects that are always found in the definition of computational thinking, namely,

thought processes, the concept of abstraction, and the concept of decomposition. The

authors further argue that the terms ‘problem solving’ and ‘logical thinking’ are too broad and

focus more on skills development.

Abstraction and automation are the “mental and metal tools” of computational thinking (Wing,

2006, 2008:3718). Words and phrases such as “thinking at multiple levels of abstraction”,

“decomposition”, “heuristic reasoning to discover a solution”, “prefetching and caching in

anticipation of future use”, “recursive thinking”, and “algorithm and precondition” describe

some of the skills needed to think like a computer scientist (Wing, 2006:33). Learners who

master computational thinking are able to understand a relationship between subjects and

activities within and outside of school (Philbin et al., 2013).

Denning (2017) posits that following any sequence of steps or algorithm does not necessarily

make someone a computational thinker. Aho (2012) states that computational thinking is

about finding appropriate models of computation to derive a solution for a formulated

problem. Researchers such as Hayakawa (1949), Truran (1992), Wilensky (1991), Dubinsky

(1991), Hazzan (1999, 2003), Devlin (2003), Kramer (2007), Perrenet (2010) and Meyer

(2010) state subtle differences when arguing the concept of abstraction. Wilensky (1991:4)

states “concreteness, then, is that property which measures the degree of our relatedness to

the object, (the richness of our presentations, interactions, connections with the object), how

close we are to it, if you will the quality of our relationship with the object”.

The APOS theory originated from Dubinsky’s (1991) interpretation of Piaget's (1973) concept

of reflective abstraction. Piaget sees the properties of objects not in the objects itself, but

embedded in the actions taken by learners when they use these objects (Arnon et al., 2014).

Each mental construction – Action, Process, Object, Schema (section 2.2.2.1(c)(vii), Figure

2.18) – or conception uses mental mechanisms (interiorisation, coordination, reversal,

encapsulation and thematisation) to progress through the APOS (mental structures) cycle.

Reflective abstraction is a description of what goes on in the minds of individuals when they

are engaged in creating knowledge. It is hypothetical, as nobody can see what goes on

inside another’s mind (Dubinsky, 1991, 2000).

There are many possible ways to solve a mathematical problem, which may confuse the

leaners. This often leads to lower levels of abstraction that complicates their understanding

(Hazzan, 1999; Kramer, 2007). Researchers describe this state a learner is in as a state of

88

“abstraction anxiety” (Sfard, 1991; Wilensky, 1991; Meyer, 2010), which forms an important

component of mathematical anxiety. Papert (1980) uses the term “mathophobia” and Tall

(2004) refers to this phenomenon as “dyscalculia”. According to Meyer (2010), educators

should not only classify subjects as being abstract, but also deal with this anxiety associated

with abstraction.

Many studies have been conducted on the concept of abstraction as prerequisite to subjects

such as Mathematics and Programming (Wilensky, 1991; Dubinsky, 1991, 2000; Hazzan,

1999; Dubinsky & McDonald, 2001; Kramer, 2007; Perrenet, 2010; Meyer, 2010; Maharaj,

2013; Brijlall & Maharaj, 2014). However, many of these studies were conducted at university

level where students already acquired the skill of abstraction in certain disciplines.

Instruments for assessing certain characteristics associated with abstraction skills are then

devised or used to measure abstraction (Hill et al., 2008; Perrenet, 2010). Unfortunately, only

a few studies have been conducted to date at school level from grade 8 to grade 12.

2.3.1 Mathematics research
In researching journal articles from traditional English resources, researchers such as

Bachelard (1938), Brousseau (1983), Piaget (1965), Duval (2006), Chevallard (2005, 2006),

Op’t Eynde et al. (2002), D’Amore (2008), Vergnaud (1990, 2013) and Tramonti, Paneva-

Marinova and Pavlov (2017) made contributions from a different perspective within the

mathematics research discipline. The way learners approach mathematics vary in that some

take a more difficult approach and others perform better, using the correct way, “… a

different kind of mathematics that is often intolerably hard” (Gray & Tall, 1994:116). The US

recognised the need through the National Council of Teachers of Mathematics (NCTM)

Standards in 1989 to improve learners’ performance in mathematics. However, a well-

informed group of stakeholders in education rejected the NCTM doctrine in search of

“authentic reforms in mathematics education” (Budd et al., 2005:1).

Contrary to NCTM standards, the interest group against NCTM doctrine does not believe

that:

i) Learners must discover, but rather that discovery must be very selective in

exceptional cases.

ii) Learners must invent their own methods in performing basic operations, but should

rather just study and practice the standard algorithms.

iii) Learners must use a problem-solving approach and a drill-and-kill approach instead

of practicing arithmetical operations. Learners will only remember what they practiced

extensively.

89

iv) Learners with learning abilities fit the curriculum better, but learners having learning

disability perform better in a structured learning environment.

v) Learners perform better using calculators that promote cognitive gains, but learners

perform poor in calculus if they use a calculator in earlier grades.

vi) Learners must be given work in context such as story problems to better understand

concepts in context, but storyboard problems do not impact on understanding of

future mathematics.

Considering Figure 2.21, the theoretical conceptual framework (section 2.2.3), is used as a

starting point for this research based on the literature review. Within the concept of a flawed

solution interpreted by the learner, McGowen and Tall (2010:170) advocate that it would not

be “appropriate” to discuss the epistemological obstacles with a learner directly, but rather

refer to the “met-befores” that led the learner to think in such a way. This is indicated in the

interviews and helped with the learner’s reflection on his/her knowledge and understanding

of mathematical concepts. This approach is also synonymous to the meta-belief system

activity (MBSA) (Moscucci, 2007). The view of McGowen and Tall (2010) now shifts from an

earlier “met-before” vision as advocated by the seminal author Tall (2003, 2004, 2008). It is

necessary and important to understand a mathematical concept, to the idea that the “met-

before” may also impede further learning. This finding contributed to the conjecture that the

programming language provides a reliable “met-before”, because the outcome is tested with

an immediate effect. Learners must therefore be taught in a way where concepts are

questioned and problematic “met-befores” are minimised as learners deal with subjects like

Mathematics and Science.

Other obstacles that face the learner are embedded in the usage of language and symbols,

which play an important role in the understanding and execution of a solution to a problem.

McGowen and Tall (2010) see this as ambiguity that may cause learners to interpret

mathematical problems incorrectly. Within Greenfoot, deaf students may also engage in

verifying the outcome of their coded algorithms as being truthful.

2.3.2 How does one involve the whole body?
The three mathematical worlds consist of the embodied, symbolic-proceptual, and formal-

axiomatic worlds (Tall, 2004) (Figure 2.5). Our perceptions of the world consist of anyone’s

thinking on how we perceive and sense things both physically and mentally. The author also

attaches language which becomes increasingly more sophisticated in describing our physical

and mental perceptions, incorporating internal conceptions, which involves visio-spatial

imagery.

90

The other two worlds are augmenting the first world; hence, this research proposes the use

of a visual programming language such as Greenfoot to allow a higher order of embodied

cognition to take place. Greenfoot allows the learner to describe objects in an artificial world

using actors to enact. These actors are physical, but the learner can strengthen their internal

conceptions of visual-spatial imagery. Tall (2004:285) states that this will strengthen all

geometries in “that can be conceptually embodied Euclidian and non-Euclidian geometries”.

Within Greenfoot, the second and third worlds of symbols and properties can be addressed

using process-object theories of Dubinsky (1991), with a controlled constructionist approach.

Papavlasopoulou, Giannakos and Jaccheri (2019) describe these programming

environments as child friendly. According to Portnoff (2018), languages such as Scratch and

Alice may transfer to text-based languages.

2.3.3 Discovery learning creates challenges
Teaching new content and skills to novices, teachers should differentiate between learners.

This calls for teaching and learning strategies for differentiation in a large class of learners,

and it is challenging. Teachers need to walk learners through the procedure and concepts

behind the procedure, at least in the initial phases of explaining how to solve a mathematical

problem. Subsequent exercises may then have little or no procedural explanations. The

authors see this partially guided approach as experiential learning and constructivist learning

among other synonyms (Clark, Kirschner & Sweller, 2012).

Clark, Kirschner and Sweller (2012) state that many learners being taught through pure

discovery methods, become lost and frustrated. According to the authors, research shows

that those students mastering concepts using discovery learning inhibited no superior quality

of learning. The authors further argue that only the brightest and well-prepared students

succeed in making discoveries. Others do not participate or they simply mimic or duplicate

the outcomes of the successful students. The worst case is when students discover a

solution and it is a false interpretation or misinterpretation of the truth, also known as a

relative epistemological outcome. This may influence further learning, especially in

mathematics where certain concepts become actions and processes again to build new

schemas. Of all the arguments put forward by the authors, the most important factor is the

time it takes to teach a mathematical concept definition with constructivist approaches, which

may increase by days instead of a normal 25-minute period.

The authors highlight an even more important concern in that learners will always choose the

approach which has the least effect on their input to learn concepts. A less skilled learner will

rather opt for a less-guided approach. According to Clark, Kirschner and Sweller (2012), a

more guided approach requires of learners to provide a more attention-driven approach. On

91

the other hand, more skilled learners will opt for a guided approach, as it requires less

attention and thinking. A constructivist approach is regarded as a means by which students

should construct their own knowledge. Many educators propagate this as the discovery of

knowledge in solving problems without explicit guidance. This is also known as a

“constructivist teaching fallacy” (Clark, Kirschner & Sweller, 2012:8). The authors further

argue that hiding or withholding information from learners cannot help with the construction

of knowledge. There is a difference between “constructing knowledge” and a “constructivist

approach”. The latter does not construct knowledge.

The brain learns through long term memory, short-term memory or working memory. Working

memory can only hold information for a couple of seconds, unless the learner uses his/her

long-term memory to fetch concepts previously learnt, such as a chess player who can scan

multiple chess board moves to make an informed best choice regarding the move he/she

needs to make. Long-term memory thus provides a holding area for a “worked-example” in

mathematics. The learner can then, just like an expert, retrieve the worked-example from

long term memory and successfully perform the procedure to solve a problem, based on that

“worked-example”. Clark, Kirschner and Sweller (2012), also coined this as the “worked-

example effect”. They see novices spending a considerable amount of time engaging in

problem-solving activities and hardly learning anything during this engagement

This researcher investigated ways to improve mathematical skills by combining Dubinsky

and Lewin (1986); Dubinsky (1991, 2000); Dubinsky and McDonald (2001); Tall (2008)

research to apply programming language fluency.

2.3.4 Status quo of teaching and learning
Wilhelm (2008:45) points out that education in many instances entails low road transfer of

learning, for real world problems are “ill-formed and there is always a remainder”. High road

transfer of learning, which depends on “mindful abstraction”, is required in subjects that

require computational thinking (Perkins & Salomon, 1992:8). The complexity of mathematics

is also highlighted (Dienes, 1960; Bruner 1966; Biehler & Snowman, 1986; White, 2003;

White & Sivitanides, 2002; Young, 2012; Cherry, 2014; Ghazi et al., 2014; Barrouillet, 2015;

Bormanaki & Khoshhal, 2017) as well as the theory behind the education in mathematics

(Dienes, 1960; Piaget, 1965; Bruner, 1966; Dubinsky, 1991; Tall, 2004; 2008; Arnon et al.,

2014). Figure 2.21 shows the basic learner-subject interaction on computational thinking. In

Figure 2.21 the reasons for failures are depicted, such as the Pop-Ed thinking (Papert,

2005), which produce minimum authentic solutions compared to the majority of flawed

solutions as highlighted in the Grade 12 (HSRC, 2014; DBE, 2015; Chirinda & Barmby,

92

2018) results every year. These flawed and authenticated solutions influence the Grade 12

results, which dictate career choices being made on performance.

However, the country needs certain career choices for its survival and economic growth, and

performance lacks in those subjects that demand computational thinking. Learning now

becomes a higher degree of embodied cognition. The next phase is the theory development

phase, grounding the Educational Design Research (EDR) method.

93

CHAPTER 3: DESIGN RESEARCH

Figure 3.1: Layout of Chapter 3

3.1 Introduction
The Design Research (DR) was built on Design Science (DS) after discarding Action

Research (AR) (section 4.5.2), and is discussed under headings covering design research

(DR), Design Science Research (DSR) and Educational Design Research (EDR). Figure 3.1

represents the layout of Chapter 3.

3.2 Design Research (DR)
DR is applied DS, also known as DSR within the information systems discipline (Hevner et

al., 2004). DR is described as research about design, and DSR is research using design as a

research method (Vaishnavi, Kuechler & Petter, 2019). Good DR “must lead to shareable

theories that help communicate relevant implications to practitioners and other educational

designers” (Design-based Research Collective, 2003:5). Within education, DR is also known

as Design Based Research (DBR), (section 4.5.2) or Educational Design Research (EDR)

(section 5.3) (Van Wyk & De Villiers, 2018; Miah, Solomonides & Gammack, 2019).

A framework, as proposed by Venable (2006), on DR illustrated in Figure 3.2, suggests a

solution as outcome. Venable (2006) consulted several contributors in DSR such as

Nunamaker Jr., Chen and Purdin (1991), March and Smith (1995), Venable and Travis

(1999) and Hevner et al. (2004), to create the framework. The solution points to any

94

workable technique in information systems, information technology, algorithms, and

managerial practices, among others. It provides a detailed design, building and functional

testing of a solution technology to provide or assist in the treatment or reduction of the

“undesirable circumstances” of an identified problem (Venable, 2006:3).

Figure 3.2: Framework and Context of DR (Adopted from Venable, 2006:3)

Venable (2006) further argues that the solution technology must be supported by theory

building and tested through naturalistic or artificial evaluation. The naturalistic and artificial

evaluation may borrow from each other. Artificial evaluation may include laboratory

experiments, field experiments or simulations, whereas naturalistic evaluations include case

or field studies, surveys, ethnography or action research. Naturalistic evaluation may be

empirical, but people’s opinions or perceptions of whether the solution technology solved the

problem, often carry more weight than an objectively verifiable phenomenon (Venable,

2006). In the next section DSR is discussed, followed by EDR.

3.2.1 Design Science Research (DSR)
Takeda et al. (1990) developed a design process model, which was adapted by Vaishnavi

and Kuechler (2008) in terms of behavioural patterns for DSR, also known as “improvement

research” (Järvinen, 2007:49; Vaishnavi, Kuechler & Petter, 2019:14). Vaishnavi, Kuechler

and Petter (2019) adapted this model into a DSR process model based on the research done

by Takeda et al. (1990), to describe cognition processes within the DSR process model

(Figure 3.3).

According to Takeda et al. (1990), cognition is included in DSR through abduction, deduction

and circumscription as cognitive processes. Venable (2006) and Pries-Heje, Baskerville and

95

Venable (2008) regard DSR as the evaluation of DS outputs, including theory and artefacts,

where an artefact, according to March and Smith (1995:250), can be made up of “constructs,

methods and instantiations”. According to Venable (2006:3), DR is more than DSR in that DR

has theory building as “precursor and as a result”.

Figure 3.3: DSR process model (Adopted from Vaishnavi, Kuechler & Petter, 2019:14)

Winter (2008) defines DSR as reflection on, and guidance for the construction and evaluation

process of an IT-artefact. Circumscription, as highlighted by Vaishnavi, Kuechler and Petter

(2019) in Figure 3.3, forms part of the constraint knowledge, which is the process of

maintaining knowledge about theories that did not work.

3.2.2 Design-Based Research (DBR)
According to Plomp (2013), DR in education can be conducted either as a development

study or as a validation study in order to develop or validate theories. Plomp (2013) argues

that Research-Based Design (RBD) points to development studies and Design-Based

Research (DBR) points to validation studies where a theory is either developed or validated.

Overall, whether developmental or validation studies, the purpose is to develop research-

based solutions for ‘wicked’ educational problems through studying the educational

interventions and so contributing to the scientific body of knowledge (Plomp, 2013). This is in

congruence with the DR framework of Venable (2006) as depicted in Figure 3.2. This

research focused on education and computer science (CS). EDR is discussed next as the

DR/DBR option of choice for this research.

96

3.2.3 Educational Design Research (EDR)
3.2.3.1 Introduction

This research commenced with building the methodology around AR strategy (section 4.5.2),

but the research strategy was changed to DR and, more specifically, to EDR. The EDR

strategy suits the problem statement and research questions better. EDR is specifically used

to solve a wicked problem in education and CS as discussed in section 3.3.3. The EDR

strategy was followed, with the emphasis on exploring and explaining cognitive development

through the teaching, learning and training of grade 8 and 9 leaners (Bannan, 2013).

According to van Wyk and de Villiers (2018), EDR has dual outcomes, namely, practical and

theoretical contributions. This research produced an artefact of EDR as a real-world solution,

and a proposed conceptual framework as the theoretical contribution in Figure 8.4.

3.2.3.2 Paradigms in EDR

The ontological stance of this research was subjective in the approach to explore and

understand how the chosen programming language could be used to stimulate thought

processes among learners in a similar manner to engaging in mathematical learning and

computational thinking. In order to progress from the theoretical research to the evaluative

and development research for this study, as illustrated in Figure 3.4, positivist and

developmentalist paradigms had to be adopted, but this necessitated further research. The

further research refers to allowing the adoption of this research based on scientific evidence,

by a wider audience, such as the teachers of several school districts.

Figure 3.4: Perceptions of EDR objectives and methods (Adopted from Weber, 2010:4)

The actual completion of the full developmentalist process was not fully achieved in this

research, which entails the evaluation of the IT artefact by the teacher community; it was only

done up to the point of proposing or positioning an IT artefact, with the focus on theory-

building goals within the interpretive paradigm (Weber, 2010). The EDR approach was

97

followed with the emphasis on exploring and understanding cognitive development through

teaching, learning and training grade 8 and 9 leaners (Bannan, 2013). The learners were

from rich and poor communities, speaking different languages, and attending a private

school.

The programming language Greenfoot (or computational notation) was used as an

intervention tool. The study was conducted using APOS theory as lens. APOS is a proven

model, theory and framework through which Mathematics, among other subjects, is

mastered (Arnon et al., 2014).

3.2.3.3 EDR approaches

DR, and especially DBR, is used by an increasing number of researchers in artificial

sciences. The EDR model of van Wyk and de Villiers (2018) was chosen for this research

because it is an explicit model. Many researchers including Reeves (2006), Bannan (2013),

Mckenney and Reeves (2012), Plomp (2013) and Miah, Solomonides and Gammack (2019)

are improving and proposing models/frameworks to suit various DBR studies.

DBR encompasses different approaches that are determined by the focus areas of these

studies. Applications of DBR/EDR studies are found in the research of Norwich and Ylonen

(2015) that focused on learners with learning difficulties. The authors used a technique called

“Lesson Study”, which they performed as action research to deliver an artefact. Where they

have specific iterations to improve the area of focus and pedagogy, a DBR approach also

allows the researcher to return to previous stages, which shows similarity in research

techniques. Li and Chu (2018) used a DBR approach to investigate teaching and learning

among Chinese learners. Wolcott et al. (2019) used DBR to introduce theories into pharmacy

education in order to improve teaching and learning practices. Koivisto et al. (2018) use DBR

to create models to educate simulation facilitators. Miah, Solomonides and Gammack (2019)

proposed a general methodology for curriculum development, based on three phases, which

are supported by the six components of Peffers et al. (2008). Van Wyk and de Villiers (2018)

used EDR to develop, evaluate and improve two virtual reality safety training systems for the

South African mining industry.

A brief overview of different EDR approaches is provided by Reeves (2006), Bannan (2013),

Mckenney and Reeves (2012), Plomp (2013), van Wyk and de Villiers (2018) and Miah,

Solomonides and Gammack (2019). Reeves (2006) illustrates the traditional DBR approach

in Figure 3.5 by emphasising a stronger connection between educational research and real-

world problems in DBR. The diagrammatic illustration (Figure 3.5) reflects a generic

illustration rather than a specific guideline.

98

Figure 3.5: Refinement of problems, solutions, methods and design principles
(Adopted from Reeves, 2006:14)

Mckenney and Reeves (2012) proposed a generic model, depicted in Figure 3.5, with a

generic approach. The model shows movement towards implied outcomes through reflection.

The flow of activity may be in both directions, which is a more relaxed and open model

compare to the model of Reeves (2006), as the analysis and design can be revisited.

Bannan (2013), on the other hand, uses the Integrated Learning Design Framework (ILDF)

(Figure 3.7). The framework is quite extensive and may be overwhelming for researchers

who are not familiar with EDR. However, the role of expert validation is included into this

framework as part of the evaluation for general acceptance, complying with the

developmentalist paradigm that necessitates a positivistic approach. Above all, the pragmatic

demands of the learning environment are evaluated as part of the adoption of the artefact.

DBR is becoming a popular research approach for teaching and learning research used by

researchers to design educational artefacts. Peffers et al. (2008) provide six defined activities

when conducting design studies. The six activity steps are: (i) identify problem; (ii) define

solution objectives; (iii) design and development; (iv) demonstration; (v) evaluation; and

vi) communication.

Figure 3.6: Generic model for EDR (Adopted from McKenney & Reeves, 2012:14)

99

Figure 3.7: Questions and methods for DR using ILDF (Adopted from Bannan, 2013:55)

Miah, Solomonides and Gammack (2019) propose a three-phase DBR approach with

iterations among these phases, built on Peffers et al.’s (2008) six activity steps. These

iteration processes provide validity and relevance to the prototype or artefact. Although the

authors emphasise communication to scholars, stakeholders and experts, this is not reflected

in the methodology.

Lastly, van Wyk and de Villiers (2018) proposed a generic EDR model that integrates the

phases and processes of the precedents (DR, DSR, DBR), as illustrated in Figure 3.8. All of

the above approaches are based on iterative interventions within the proposed phases. The

EDR model of van Wyk and de Villiers (2018) was chosen as the model for this research.

This EDR model of choice is discussed in the next section.

3.2.3.4 EDR as model of choice

Having considered the different approaches, it has been concluded that they focus on three

generic phases of a validation EDR study as proposed by Plomp (2013). These phases are:

(i) preliminary research phase; (ii) prototyping phase; and (iii) assessment phase.

As discussed earlier, van Wyk and de Villiers (2018) proposed a generic model that

integrates the phases and processes of the precedents (DR, DSR, DBR), as illustrated in

Figure 4.8 (section 4.5.2), indicating the outcomes of each phase and not only in the last

reflection stage as illustrated in models and frameworks of other researchers. The researcher

100

may revert back to any process if the intervention dictates such action in an iterative manner.

Plomp’s (2013) three-phase generic approach was used to subdivide the model of van Wyk

and de Villiers (2018) in order to show pockets of development.

Vaishnavi, Kuechler and Petter (2019) emphasised circumscription and cognition. Van Wyk

and de Villiers (2018) did not indicate these two concepts in their model. Circumscription and

cognition should be added to the model to gain knowledge about interventions that were

unsuccessful. The outcomes of the model as proposed by van Wyk and de Villiers (2018)

were integrated under the three phases as described by Plomp (2013).

3.3 EDR implementation
3.3.1 Introduction
The EDR rollout was initially built on the Integrated Learning Design Framework (ILDF) as

proposed by Bannan (2013), but the rollout was changed to the three generic phases of a

validation EDR study as proposed by Plomp (2013) for simplicity. This research also

demanded the focus to be primarily on: (i) coding using a programming language; (ii) LMS as

educational approach for cognitive load theory; (iii) APOS theory being validated from a

mathematics perspective; (iv) computational thinking, which encompasses portions of EDR

and DSR to be included in this research. In terms of evaluation, the different EDR

approaches are contained in Plomp’s (2013) (Figure 3.9) phases, which are the (i)

preliminary research phase, (ii) prototyping phase, and (iii) assessment phase, integrated

into the model of van Wyk and de Villiers (2018). The authors largely focused on the

outcomes of EDR, with outcomes for each process, which differs from other EDR models.

The EDR approach adopted for this research can be classified as a validation study (Plomp,

2013), for the testing and application of the APOS theory as well as the design and

evaluation of educational interventions. The van Wyk and de Villiers (2018) model is iterative

and includes evaluation and reflection as integral stages in the model. The Framework for

Evaluation in Design Science Research (FEDS) (Venable et al., 2016) was adopted for the

evaluation phase. Although the steps followed in this research occurred before the release of

Venable et al.’s (2016) paper, their paper gave structure to what was an intuitive approach

during evaluation. The Gregor, Müller and Seidel (2013) framework was used for the

reflection phase of this study. The reflection phase generated an EDR solution for the

complex mathematical learning dilemma which points to a lack of computational thinking

among high school learners in SA. To understand EDR as a process, it was subdivided into

three steps, namely: (i) Identification of the main phases of EDR; (ii) simplifying the wicked

problem to describe the artefact as outcome; and (iii) the implementation of an EDR

approach.

101

3.3.2 Step 1: Identification of the main phases of EDR
This research used Plomp’s (2013) generic phases of EDR as an abstracted overview of van

Wyk and de Villiers’s (2018) model as depicted in Figure 3.8. These phases are: (i)

preliminary research phase; (ii) prototyping phase; and (iii) assessment phase. The

outcomes of the synthesised model for EDR are manifested in the goals, initial design,

artefact/prototype, research findings, and in the practical solution as well as the theoretical

contribution, through reflection (Van Wyk & De Villiers, 2018).

Figure 3.8: Synthesised generic model for educational DR (Adopted from Van Wyk & De
Villiers, 2018:305)

3.3.3 Step 2: Simplify the wicked problem
The wicked problem in education must be investigated to make it less wicked. All the

properties of a wicked problem are embedded in this research (Rittel & Webber, 1973;

Camillus, 2008; Peters, 2017) namely:

102

i) The content knowledge is fragmented into mathematics, computational thinking, PLs,

learning management systems and pedagogic principles.

ii) The teaching of the content is not transparent to learners and teachers although

instructional materials are available, but disconnected.

iii) The teachers’ knowledge and skills are substandard in many cases.

iv) Ubiquitous nature of learning is an important add-on for the research.

3.3.3.1 EDR research question

For this research, the van den Akker (1999:9) design principles dictated the construction of

the EDR research question. Furthermore, the EDR research question was structured to

address the intervention for the APOS theory validation. EDR is specifically designed to

solve wicked problems in education and produce the necessary outcomes through state-of-

the-art knowledge. Every component that plays a role must be interconnected to satisfy

consistency, and above all, the solution must be sustainable for the specific education

community (Plomp, 2013).

Consideration was given to the current two research questions to create one EDR research

question according to the Van den Akker (1999) EDR questioning framework to address

interventions, namely:

“Design for Intervention X for the purpose/function Y in context Z, then you are best advised

to give that intervention the characteristics A, B, and C [substantive emphasis], and to do that

via procedures K, L and M [procedural emphasis], because of arguments P, Q and R”

(Plomp, 2013:15). This design principle is also congruent with the didactic contract

(Brousseau, Sarrazy & Novotná, 2014) and the didactic situation (Brousseau, 2010). The

didactic situation is seen “where an agent, for example the teacher, organises an intervention

that manifests its intention to modify the knowledge of another agent, or causes it to develop”

(Pepin, 2014).

The second agent, for example, is the learner who is allowed to express him/herself through

actions. Pepin (2014) further states that the didactic contract is what the learner expects from

the teacher and what the teacher expects from the learner. The didactic contract refers to a

system of rules that applies to learner and teacher. Substantive knowledge refers to the

necessary characteristics of an intervention and procedural knowledge refers to a set of

design activities to produce a workable prototype.

This research supported the didactic situation of Brousseau (2010), embedded in Van den

Akker’s (1999) design principles, as indicted in Table 3.1.

103

Table 3.1: The structure of the EDR question

EDR questioning framework parameters EDR question values

Design for Intervention X The design for interventions within the research
project to validate

For the purpose/function Y The APOS theory

In context Z, to give that intervention(s) In context of computational thinking, employing

The characteristics A, B, and C [substantive
emphasis]

The characteristics of the programming language’s
scenarios, classes, methods and objects at a
cognitive level of formal operations, accomplished

To do that (accomplish) via procedures K, L
and M [procedural emphasis]

Through an LMS to uphold the cognitive load theory
(CLT) of learners and programming using a visual
interface, frames-based editor, progressing to syntax-
coding and debugging

Because of the accomplishment of arguments
P, Q and R

Owing to performing specific activities by design,
such as: lectures, flipped classroom techniques,
exercises (ACE), algorithmic design of problems,
abstraction and online tests

The EDR question fulfils the didactical contract and focuses on promoting computational

thinking through coding in a programming language using APOS theory as lens.

Furthermore, a didactic transposition (Chevallard, 1989) points to the programming language

as tool to be put to knowledge as an entity that is instructed to, and studied by learners.

Chevallard (2006) describes praxeology as the way in which society creates knowledge in an

organised way. Praxeology consists of praxis and logos (Bosch, Gascón & Trigueros, 2017).
In context of this research, praxis points to tasks or problems that need an algorithm, using a

technique through APOS theory, to promote computational thinking in order to create the

algorithm mapped into Greenfoot. The logos part points to procedures such as lectures,

algorithmic design of problems, abstraction, programming, exercises, online tests and flipped

classroom techniques that are embedded within theory and technology respectively

(Postelnicu, 2017).

The Van den Akker (2003) design principles are thus aligned with the research of Brousseau

(2002) and Chevallard (2006). This research was rolled out based on a combination of EDR,

programming language, Moodle and APOS. What started in EDR, affected actions in the

programming language, Moodle and APOS. After combining the two research questions, the

technological educational intervention was brought about by iterative formative evaluations

(Van den Akker, 1999). The research question according to Van den Akker’s (1999) design

principle (Table 3.1) for EDR reads as follows: “What teaching and learning strategies can

empower learners to mastering computational thinking skills, through APOS theory, which is

expected to function at Piaget’s cognitive level of formal operations, infused by concepts and

104

characteristics of a programming language at high schools, in order to cope with the

challenges in subjects such as Mathematics and Science?”

3.3.4 Step 3: The general phases of EDR
The EDR phases (Plomp, 2013) are summarised in Figure 3.9.

Figure 3.9: Overview of phases (Adopted from Plomp, 2013:19)

The preliminary research phase (Phase 1) required (i) a needs and context analysis, (ii) a

literature review, (iii) a conceptual theoretical framework, (iv) and the identification of a target

group (Figure 3.10).

Figure 3.10: Diagram showing the problem identification phase (Adopted from Plomp, 2013:19)

Having the artefact specified within the EDR question, namely “the teaching and learning

strategy to empower learners to master computational thinking”, the EDR phases were

implemented. The outcomes of the van Wyk and de Villiers (2018:305) model were classified

and integrated according to the proposed phases of Plomp (2013), namely:

3.3.4.1 Phase 1: Preliminary research

This phase consisted of an exploration of the problem through a needs and context analysis,

a literature review, theory development, and target group identification that required

preliminary research (section 5.4.2). Within the model of van Wyk and de Villiers (2018), this

phase points to the problem analysis within a real-world context. The problem is wicked,

authentic and practical. Literature was reviewed on the wicked problem to generate relevant

theory. The researcher collaborated with practitioners and set research goals, which

generated a research proposal based on these goals. The problem analysis and

Phase 2

Prototyping
Phase 1

Preliminary
Research

Phase 3

Assessment

Summary

105

identification focused on making the wicked problem less wicked and understanding the

problem logically. This is discussed in detail in Chapter 5 (section 5.4.2.1) under (i) needs

and context analysis, (ii) literature review (section 5.4.2.2), (iii) theory development (section

5.4.2.3), and (iv) identification of the target group (section 5.4.2.4). This design was

influenced by contextual limitations and the complexity of the interactions in real-world

settings. Finally, a solution was designed that functioned as initial design, iteratively feeding

back into the research goals and proposal (Van Wyk & De Villiers, 2018).

3.3.4.2 Phase 2: Prototyping

The approach of van Wyk and de Villiers (2018) was followed in developing a solution in the

form of a prototype or artefact that fulfilled the research purpose. The design principles and

technological innovations determined the process of development, which led to an innovative

and functional artefact. It assumed the form of a construct, model, method or instantiation

(March & Smith, 1995). During this phase, interventions were identified and supported

(section 4.5.4) by adding tentative products and design principles (Wademan, 2005) to the

intervention through formative evaluation in order to address this complex educational

problem. Interventions are built on the theoretical conceptual framework and presentation

mode of an intervention (Nieveen, 2013).

3.3.4.3 Phase 3: Assessment

Data were collected from participants and the findings were mapped against the research

questions (section 5.4.5; Table 5.14). A theory was constructed according to the van Wyk

and de Villiers (2018) model. The practicality of the theory was evaluated. Another essential

component of the assessment was reflection. The researcher reflected on findings and

analysed the findings to create categories and subsequent themes. Through reflection, the

dual outcomes were presented as a practical real-world solution and a theoretical

contribution in the form of a theory. The reflection on findings occurred through multiple EDR

cycles until the process was exhausted.

Executing a research process that accommodated computational thinking within an existing

curriculum was complex. The term ‘technology-enhanced learning environment’ (TELE)

refers to the integration of technology into teaching and learning processes and may promote

self-regulated learning (SRL) (Andrade & Bunker, 2010). In this research, the educational

practices needed educational interventions that accommodated TELEs to promote higher-

order thinking (Lee & Choi, 2017). Most interventions called for TELEs, which were either

illustrated in the Moodle LMS integration to comply with cognitive load theory and a

computational notation called Greenfoot as the programming language of choice, supported

by the Moodle LMS. The educational practices supported by the educational interventions

106

improve the quality of learning, also known as TELE&T (Lee & Choi, 2017:144), where the

“T”-suffix refers to teaching. The next section summarises Chapter 3.

3.4 Summary
Chapter 3 highlighted the foundation of DR. DR is viewed as DSR, DBR and EDR. The focus

is on DR in education and the term DBR is used. Takeda et al. (1990) added cognition to

DSR through abduction, deduction and circumscription, which also applies to DBR. DR in

education can be conducted as RBD or DBR. DBR was the focus of this research to validate

the APOS theory. EDR is more specific with describing DR in education that has dual

outcomes, namely, as practical contribution, producing an artefact as a real-world solution,

and as theoretical contribution, the proposed conceptual framework.

Having decided on EDR as the DR of choice, many approaches were considered. Most of

the approaches were generic proposed models, which lacked specific outcomes. The EDR of

choice was the van Wyk and de Villiers (2018) model. This model is descriptive and the three

phases of Plomp (2013) are clearly visible within this model. However, Vaishnavi, Kuechler

and Petter (2019) introduced circumscription and cognition to note the interventions that

were unsuccessful. “Circumscription is a rule of conjecture” found in constraint knowledge

about theories that are gathered through detection and analysis of contradictions when the

theory does not apply (McCarthy, 1980:27; Kuechler & Vaishnavi, 2011; Vaishnavi, Kuechler

& Petter, 2019:15).

The research design is discussed in Chapter 4 to elaborate on the context in which the

research was conducted.

107

CHAPTER 4: RESEARCH DESIGN

Figure 4.1: Layout of Chapter 4

4.1 Introduction

Research design forms the intersection of the research theory, research methodology and

the context in which research is conducted (Jonker & Pennink, 2010). This chapter

summarises the (i) research problem, (ii) research questions to address, (iii) theoretical

conceptual framework, (iv) research methodology, (v) strategy used, (vi) data collection, and

108

(vii) analysis techniques and procedures. The terminologies are sourced from Saunders,

Lewis and Thornhill (2019:128-170).

A sample of grade 8 and 9 learners was purposively drawn from a private school. Thirty-eight

(38) learners formed two groups (15 and 13 learners respectively) that participated in the

study. The data analysis was done sequentially. All the findings were summarised,

categories were then grouped into themes. The findings were gathered during interventions

(section 4.5.4) introduced to learners, and through assessments, tasks, analysing

transcriptions of interviews and notes from observations (Appendix A-Z). Because of the

nature of the wicked problem, a DR approach was adopted and an interpretivist-pragmatic

approach followed. In practice, this meant that depending on the situation, the research

fluctuated between interpretivist and pragmatic research.

The chapter is divided into the following sections, as indicated in Figure 4.1: the research

paradigms, philosophy, approach, strategy, and a summary of Chapter 4.

4.2 Research paradigms
Guba and Lincoln (1994:107) view a paradigm as “a set of basic beliefs”. It represents a

worldview that defines the nature of the world as lived by the researcher and the

relationships between the researcher and the world. When criticising the term “belief”,

D’Amore’s (2008:3) definition states that a belief is “an opinion, set of judgements and of

expectations, that which one thinks with regards to something”. The term “paradigm”,

according to Lauffer (2011:49), is also used to describe a model or a conceptual framework,

where a model is a representation of reality. A paradigm is a set of fundamental assumptions

and beliefs in how the researcher perceives the world (Jonker & Pennink, 2010; Wahyuni,

2012). Wahyuni (2012) sees ontology and epistemology as philosophical dimensions to

identify the research paradigms. Wahyuni (2012:69) argues that, “axiology and methodology

are two beliefs which impact the epistemology paradigm pointing to either interpretivist or

pragmatist research, where the epistemology is subjective and on social phenomena”.

According to Burrell and Morgan (1979) and Saunders, Lewis and Thornhill (2019), certain

assumptions are made by the researcher which revolve around human knowledge

(epistemology), the realities within the research (ontology), and how the researcher’s own

values and beliefs influence this research process (axiology). These assumptions and basic

beliefs define inquiry paradigms and are summarised by four questions namely:

(i) Ontology: What is the form and nature of reality? (See section 4.3.1).

(ii) Epistemology: What is the relationship between the knower or the candidate-knower

and what can be known? (See section 4.3.2).

109

(iii) Axiology: How will the research process be governed by the researcher’s values and

beliefs? (See section 4.3.3).

(iv) Methodology: How can the knower or candidate-knower extract findings that he or

she believes can be known? The methodology of EDR is discussed in section 4.3.3.

According to Freshwater and Cahill (2012), all research methods fall within a paradigm

resting on ontological, epistemological, axiological and philosophical groundings. Saunders,

Lewis and Thornhill (2009) see a paradigm (functionalist, interpretive, radical structuralist and

radical humanist) as a way to study social phenomena and through these studies, the

researcher may understand and explain them better in stating his/her research philosophical

position as positivism, critical realism, interpretivism, postmodernism or pragmatism.

This research starts in the radical humanist quadrant of the Burrel and Morgan (1979:22)

model, based on “what” questions, conducted as an abstract subjective exploration of

computational thinking (Cronje, 2016). The research then moves into the interpretivist and

then functionalist quadrants sequentially. Burrell and Morgan (1979) state their proposed

paradigms in Figure 4.2 for analysis of social theory as mutually exclusive. The authors

further argue that it is possible to operate sequentially in different paradigms over time.

Figure 4.2: Four quadrants of sociological and organisational research (Adopted from Burrel &

Morgan, 1979:22)

The purpose as set out in the aims of this research calls for radical change in such a manner

that computational thinking skills may be made part of a learner’s schemata to be used in

subjects such as Mathematics and Science. Computational thinking is explored by “what”

questions (section 1.7; section 2.2.2.1), which produced a theoretical conceptual framework

as outcome (section 2.3.2).

110

4.3 Research philosophy
The way researchers view the world determines “how” a researcher develops knowledge.

The “how” is vested in the beliefs and assumptions of the researcher (Freshwater & Cahill,

2012; Saunders, Lewis & Thornhill, 2019). Saunders, Lewis and Thornhill (2019) further

argue that research philosophies are investigated through research paradigms that points to

the ideological orientation of the researcher, as highlighted by Jonker and Pennink (2010);

Wahyuni (2012) and Burrell and Morgan (2016). For this research, the researcher

investigated social phenomena and gained specific understanding of these phenomena to

explain the findings. Saunders, Lewis and Thornhill (2019:130) view research philosophy as

“a system of beliefs and assumptions about the development of knowledge”, as depicted in

Figure 4.3. The authors further argue that research philosophy is a reflexive process

because of too many variables and the assumptions of the researcher, all of which influence

the research philosophy. When criticising the research onion relative to this research, the

researcher adopted an interpretivist-pragmatist research philosophy by adding to the theory

an abductive approach using a research strategy, i.e., EDR. Saunders, Lewis and Thornhill

(2019) do not include DSR and EDR as a research strategy, as their focus is on business

and management.

Figure 4.3: Research Onion (Adopted from Saunders, Lewis & Thornhill, 2019:130)

Answers to the research questions stated in Chapter 1 provide a deeper understanding of

how programming language concepts may assist learners to achieve the cognitive level of

formal operations, thereby sustaining computational thinking. This research aimed to explore

111

and understand how a programming language, using Action Process Object Schema (APOS)

theory as lens, could promote computational thinking skills at a cognitive level of formal

operations among high school learners (section 2.2.2). APOS is a proven model, theory and

framework (Arnon et al., 2014) through which mathematics, among other subjects, is

mastered. The usage of a programming language, namely Greenfoot, is highlighted and

motivated in the literature review (section 2.2.2.1(b)) and tools within Greenfoot augment the

APOS strategy. Research on the possible improvement of marks in mathematics by coding

in a programming language is a topic for further research and not a direct outcome of this

research. The focus of this research was not on mathematics per se, but on computational

thinking through APOS within the Greenfoot programming language as computational

notation.

4.3.1 Ontology – The nature of reality
According to Allison and Pomeroy (2000), ontology and epistemology are linked to values,

hence the important debate around discovering the truth based on either objectivism or

subjectivism. The social actors in this study were the grade 8 and 9 learners and the

researcher/ teacher/ technologist. Multiple realities exist for each actor within social

constructionism when reality is constructed “intersubjectively”. Several perceptions about

logical thinking and cognitive development played an integral part of the social reality of

education in this study. Objectivism, on the other hand, is a social reality external to, and

independent of the social actors involved in the development of cognitive thinking as an

example (Saunders, Lewis & Thornhill, 2019). For this study, such an approach seems less

desirable, as the learner and researcher interacted and intervened with the specific

interventions applied. The ontological stance is thus a subjective one. The researcher

adopted an ontological stance, as the grade 8 and 9 learners contributed to the social

phenomena.

4.3.2 Epistemology – The nature of knowledge
The nature of knowledge is also referred to as epistemology. Papert (1980) states that the

nature of knowledge (epistemology) is not to describe the study of the conditions of validity of

knowledge as is done by positivists, but rather to question the sources and growth of

knowledge. Epistemology is the relationship between the knower and the known while one

gets to know reality and discover truth in a subjective or objective manner (Kim &

Donaldson, 2018). Allison and Pomeroy (2000:2) best explain epistemology as “what we do

know and can know”. Muis (2004:317) regards epistemology as that branch of psychology

involved in “the nature of knowledge and the justification of belief”. Epistemology is thus the

relationship between the knower and the known while one gets to know reality and discover

truth in a subjective or objective manner. Conducting research using DR, the epistemological

112

stance was adopted through interpretivism and pragmatism by taking action through cyclical

interventions. The research moved between interpretivism and pragmatism, especially when

the EDR methodology was applied. The researcher interpreted data pragmatically to develop

new interventions as the research progressed. The focus of the research was on problems,

practices and relevance during the application of APOS theory in a programming language to

inform future practices such as computational thinking among high school learners.

Because the ontological underpinning of the study is subjective, the epistemological stance

focused on interpretivism of the written, spoken and visual attributed meanings put forward

by the opinions of learners, subjects or actors. The research was, above all, conducted by

people on people and not on objects as such, where each actor has his/her own reality that

influences his/her computational thinking.

4.3.3 Axiology – The role of values and ethics
Axiology is the role the researcher’s values play in the research. The interpretation is linked

to the real-life experiences, which is embodied in a practical world of information technology

and education. Having identified the assumptions based on the epistemological, ontological

and axiological stance (section 4.3), these assumptions inform the research paradigm, which

is discussed in the next section. This research is positioned as part of an

interpretivist/pragmatist philosophy in order to create an IT artefact (Section 1.11), based on

the researcher’s doubts and beliefs (Saunders, Lewis & Thornhill, 2019).

4.4 Research approach
According to Saunders, Lewis and Thornhill (2019), there are several approaches to conduct

research, which are through deduction, induction and abduction. Creswell (2014), on the

other hand, recognises quantitative, qualitative and mixed methods as three approaches.

Saunders et al. (2019) regard the three approaches of Creswell (2014) as strategies. This

research followed the Saunders, Lewis and Thornhill (2019) approach. Nicholls (2009),

Clarke and Braun (2013) and Woiceshyn and Daellenbach (2018) argue that qualitative

research is congruent with an inductive approach, in developing theory as opposed to

quantitative research, that aligns with a deductive approach. According to Woiceshyn and

Daellenbach (2018), deduction entails moving from general to the specific and induction

moving from the specific to general, which results in abduction when the research moves in

both directions.

In this research, the researcher investigated the relationship between APOS theory,

programming concepts and the realisation of the data generated through interventions put in

place, and the induction of theory in general. The Greenfoot programming language (section

2.2.2) provides these programming concepts practiced by learners in such a manner that the

113

APOS theory’s mental structures are realised through mental mechanisms (interiorisation,

encapsulation, de-encapsulation, coordination, reversal, generalisation and thematisation) to

foster computational thinking among learners.

4.5 Research strategy
The researcher explored the role of computational thinking among high school learners and

how computational thinking could be promoted among high school learners. The research

strategy is discussed next under the following headings: (i) a demonstration case; (ii) action

research; (iii) DSR strategy; (iv) intervention development; (v) interviews and observations;

(vi) data collection strategies; (vii) sampling; and viii) data analysis.

4.5.1 The demonstration case
The discussion is subdivided into the background and school visiting/planning process.

4.5.1.1 Background

A private school in Durbanville, Western Cape was the case for this research. Attendance

was kept as illustrated in Figure 4.4. The reason behind choosing the private school was the

high standard of education at this private school in that they also taught robotics at lower

grades and learners used tablets to conduct their everyday school activities. Robotics and

tablets were unknown to public schools when conducting this research. Public schools now

venture into robotics and tablet learning where resources are available, which makes the

research case more relevant when teachers want to apply the outcomes of this research at a

public school. A further motivation for choosing a private school is that teachers of one public

school were hesitant to participate using an LMS, as it brought negative perceptions of work

being added to their existing workload. During an information meeting with teachers of a

public school, the researcher found that these teachers are not at all familiar with an LMS or

the rollout of e-Learning in general. The vice-principal acknowledged that they are

investigating the implementation of e-Learning within the school.

Using the private school as case may have introduced some bias, as the assumption is that

the leaners already have some computer skills in e.g. elementary programming or coding.

The benefit of deliberately choosing this case lies with the assumption that the school

already has the infrastructure required for the research and that the learners already

obtained some level computer literacy.

4.5.1.2 The school visiting and planning process

Figure 4.4 is as an example of a three-month visiting schedule to the private school in 2014

and 2015. The IT teacher signed off each visit, which formed part of the learner’s daily

114

routine and the researcher’s quality control. The visits did not enforce a different routine on

the learner other than their learning content being more IT-programming language specific.

Figure 4.4: One term’s visits to the private school

These classes were managed by the researcher in his capacity as teacher and researcher,

identified or selected by the IT teacher, which coincided with the researcher’s schedule

availability. The timetable also stretched over two weeks and Figure 4.5 and Figure 4.6 show

classes in green on a two-week period timetable.

Figure 4.5: Time table structured on a two-week period for first term

115

4.5.2 Action research (AR)
From the outset of the research, AR was considered the strategy of choice. Rapoport

(1970:499) sees AR as contributing “both to practical concerns of people in an immediate

problematic situation and to the goals of social science by joint collaboration within [a]

mutually acceptable ethical framework”. According to Hult and Lennung (1980), AR assists in

practical problem-solving, it expands scientific knowledge, and it enhances the competencies

of the respective actors simultaneously. The authors further argue that AR increases

understanding of a given social situation if performed collaboratively in an immediate

situation, using data feedback in a cyclical process. Susman and Evered (1978), Page and

Meyer (2000), Coghlan and Brannick (2001) and Järvinen (2007) regard AR as a set of

steps, depicted in Figure 4.7, namely, diagnosing, action planning, action taking, evaluating

and specifying learning.

Figure 4.7: Five phases of Action Research Method (Adopted from Susman & Evered, 1978 as

illustrated by Järvinen, 2007:39)

Figure 4.6: Time table structured on a two-week period for second term

116

Page and (Meyer 2000) also propose an elaborate AR model with the following phases:

(i) diagnosis; (ii) data collection; (iii) feedback and participant work; (iv) action planning;

(v) action implementation; and (vi) evaluation. Keegan (2016) proposes a similar framework

but adds interactive reflection as part of the stages.

This spiral process of reflection and action is rigorously pursued in all AR projects. Three

main benefits of using AR are: (i) the contribution to the professional development of the

participant, in this case the teacher; (ii) its capacity to generate knowledge and new

practices; and (iii) the value of the teacher or researcher being part of the research.

Furthermore, motivational aspects to use AR as research strategy are: (i) “It is a method of

doing case study research” (Gummesson, 2000:83); (ii) It is a “type of applied research,

designed to find an effective way of bringing about a conscious change in a partly controlled

environment” (Collis & Hussey, 2014:67); and (iii) the research can be conducted within a

single organisation (Coghlan & Brannick, 2001).

AR was chosen because, according to Hill and Scott (2004), AR results in richer data

streams and provides deeper insights into the data by using a qualitative or quantitative

approach. Furthermore, the choice was made because of all the above-mentioned reasons

being congruent with the researcher’s ontological and axiological stance. The initial research

was built on identifying the problem of why learners did not perform in mathematics. The

approach was to intervene and discover the reason for non-performance, which led to

computational thinking being the motivation for the research. This led to investigating the

impact of a programming language on the development of computational thinking among

learners through a number of interventions, which affected mathematical learning. The result

could have been merely a “yes-no” answer to determine if the mathematics marks improved

or not after a programming language was introduced. However, for this study the result

would have been insufficient, as the “yes-no” answer lacks a deeper insight into the problem

of computational thinking development, at a level of formal operations necessary for proper

learning to take place in Mathematics and Science. More in-depth analysis was thus required

to fulfil the aim of the study.

As the study progressed, it became clear that AR did not suit the aim of the study. Although

AR, according to Baskerville (2008), produces an artefact, social or organisational change is

not part of the outcome. According to the FEDS framework (Venable, Pries-Heje &

Baskerville, 2016), a Human Risk and Effectiveness strategy was used that focused on

formative and naturalistic evaluation. This was done during reflection on the instance domain

(Gregor, Müller & Seidel, 2013), which showed that AR was not the suitable choice, as the

outcomes did not fully match the expectations. A richer depth of data was needed at an

educational level to bringing about change, especially because a wicked problem (section

117

3.3) was investigated. The researcher then decided to look at Design Science (DS) as

strategy. The DS paradigm originates from engineering and artificial science, as advocated

by Simon (1996).

DS focuses on artificial objects and phenomena that serve human purposes. Hevner et al.

(2004) introduced the theory behind DS research for information systems. The solution

produced by DS research is an artefact, which may take on the form of a construct, model,

method or instantiation (March & Smith, 1995). DS for this research was then executed by

the researcher as Design Research (DR), as Winter (2008) suggests. A generic solution is

developed and supported by the theory behind the artefact. Figure 4.8 shows a comparative

study by van Wyk and de Villiers (2018) of DR, DSR and DBR.

Figure 4.8: Composite representation of DR, DSR and DBR (Adopted from Van Wyk & De

Villiers, 2018:304)

4.5.3 Design Research (DR) strategy
An in-depth discussion on DR as the strategy of choice for this research is now discussed.

Figure 4.9 represents a flow of the discussion.

118

Figure 4.9: Relationship among DS, DR, DSR and EDR (Adapted from Venable, Pries-Heje &

Baskerville, 2016:141; Miah, Solomonides & Gammack, 2010:2)

The next section focuses on the interventions that were designed and implemented in this

research as part of the DR strategy. The interventions were developed and implemented

according to the EDR model of van Wyk and de Villiers (2018), combined with the FEDS

framework (Venable, Pries-Heje & Baskerville, 2016) to emphasise the evaluation phase and

reflection phase (Gregor, Müller & Seidel, 2013).

4.5.4 Intervention development
4.5.4.1 Introduction

The interventions for this research were structured as an exploratory sequential design, a

building method, followed by the interpretation and reporting. The formative evaluations of

the interventions were repetitively criticised based on relevance, consistency, practicality and

effectiveness, as depicted in Table 5.4. Each intervention was grounded in themes that

developed from the APOS intervention. Note that Interventions 5 and 11 consist of sub-

interventions A and B. Interventions 2 and 3 consist of three sub-interventions, A, B and C. In

the case of Intervention 2, further interventions were needed and marked as such.

Intervention 14 has five sub-interventions. The balance of the interventions (4, 7, 8, 9, 10, 11

& 12) consists of one intervention. In the cases where there were sub-interventions, the

interventions were numbered with A, B, C, etc. as a post-fix.

4.5.4.2 Intervention 1: Abstraction (abstract thinking) assessment (Appendix
B-1)

Intervention 1 was a starting point to determine if abstraction was absent, which then called

for action from the researcher. The measuring of abstraction can be done in different ways,

and the one in Figure 4.10 was chosen as a fun exercise for learners. The important aspect

was to create a “buzz” among learners and that they enjoyed the challenge. The intervention,

as in prior discussions, consists of three sections: Design, Method and Interpretation.

119

 Design
Exploratory Sequential Design (ESD) was used for this research and started with exploring,

collecting and analysing data from a qualitative perspective through observation and a test in

which the user had to indicate if s/he is ‘on the floor’ or ‘on top of step’, after taking 239

steps. This informed quantitative data collection in sequence. Figure 4.10 shows the first

intervention, which informed further interventions or iterations thereof, investigating

computational thinking. Abstraction and automation are the pillars of computational thinking,

where abstraction is the inherent quality of any learner or person. Hence, the focus was on

abstraction and not automation.

(i) Qualitative methodology of Intervention 1
During this intervention, the abstraction skills of learners were explored. This was done

because computational thinking consists of abstraction and automation (Wing 2008, 2011;

Bocconi et al., 2016; Cetin & Dubinsky, 2017). The exercise (Figure 4.10) was handed out to

learners, and through observation, the interactions of the learners were studied. In this

handout, learners had to determine the answer to the problem by stating if the figurine is on

top of the step or on the ground after 239 steps. In Figure 4.10, the figurine starts out by

standing in front of the bench with both feet on the floor. The researcher or teacher can also

give a dramatic illustration by stepping up and down using a chair.

Figure 4.10: Abstraction exercise

The time limit on the handout was set to one minute and the researcher used a stopwatch.

Each learner had to operate individually and the researcher used monitors in the class who

prevented learners from communicating with one another in order to obtain the answer. After

one minute elapsed, the learners indicated their answers with a cross (X) in the designated

120

block and all the forms were placed in a collection box. The cross had to be drawn where

learners determined the figurine would stop, either on the floor (incorrect position) or on top

of the step (correct position). No names were required on these forms so as to protect

leaners’ identity and motivate learners to be truthful in their answers.

(ii) Quantitative methodology on Intervention 1
This intervention then produced quantitative data as illustrated by the container in Table 4.1,

summarising the abstraction skills of both groups of learners. The analysis was done using

an Excel spreadsheet and implementing pivot tables and the data can be seen in Table 5.6.

Table 4.1: Abstract thinking among grade 8 learners

GROUPS Finish on Floor Finish on Step Guesses - TOTAL

A - - - -

B - - - -

TOTAL - - - -

Having the data at hand, an analysis should show that the current data collection procedures

lead to the data collection of the next procedure, the latter building onto the former (Fetters,

Curry & Creswell, 2013).

 Method
The current intervention informs the researcher of the degree of abstraction that does exist.

Intervention 2 ties in with the literature review and the EDR approach, where the motivation

and implementation of Greenfoot as programming language is identified and rolled out

(Appendix C).

 Interpretation
Using narrative as integration procedure, the qualitative and qualitative findings were

described by means of a single or series of reports. Each intervention was grounded in

121

themes that developed from the intervention Action, Process, Object and Schema, which are

mental structures that inform mental mechanisms – interiorisation, coordination, reversal,

encapsulation and thematisation – and which promote computational thinking.

4.5.4.3 Intervention 2: Implement Greenfoot programming language
(Appendix C)

The researcher or teacher established that abstraction in its practical form was a challenge.

The learners’ thoughts on mathematics and mathematical concept images governed

mathematical concept definitions. The researcher employed a programming language to

investigate computational thinking through a programming language aligned to APOS as

stated in the “how” questions of RQ2. SRQ 2.1 reads: “How are the constructs of a

programming language taught among high school learners at a cognitive level of formal

operations?”

 Design
As stated earlier, Exploratory Sequential Design (ESD) commenced by exploring, collecting

and analysing data from a qualitative perspective, which then informed qualitative data

collection in sequence. Figure 4.11 shows computational thinking using a programming

language as computational notation. Computational thinking was triggered through

computation as the process employed when creating computational models or abstractions

of a problem given to learners to solve.

Figure 4.11: Computational thinking in motion (Adapted from Denning, 2017; Aho, 2011)

The intervention suggested that learners need to understand and know the computational

notation selected for this research. This led to other challenges such as knowledge of the

programming environment, which could not simply be accepted as a fact.

122

 Method
The intervention triggered a bevy of pre-requisites that were needed for learners in order to

roll out a programming language effectively in order to achieve computational thinking,

unless the learners were knowledgeable in a programming language. The methodology did

not even consider APOS theory at this stage, as the Greenfoot programming language was

unknown to learners. Learners did not understand the interface of a programming language

or how to work with the interface to launch a simple program. The trigger of this intervention

created a roll-back to the pre-requisites the learner needed in order to make progress, which

initiated intervention 2A.

 Interpretation
The interpretation and reporting were done through observation. What was significant at this

stage of the process was that the researcher was locked into pre-requisites needed by

learners to become fluent in a programming language, as discussed in section 5.4.3.3(b).

4.5.4.4 Intervention 2A: Introduction of a Genetic Decomposition process
(Adapted from Arnon et al., 2014:112; Appendices D-1, D-2)

Intervention 2A was a starting point to understand how to roll out the concept of activities,

classroom discussions and exercises (ACE) (Dubinsky, 1991; Arnon et al., 2014). The

researcher was guided by this framework to ensure success. Figure 2.20 portrayed in

Appendix D-1 was composed after the literature study in section 2.2.2.2(b)(v).

 Design
ESD started with exploring, collecting and analysing the data from a qualitative perspective.

The rollout was based on ACE and the rollout process was called genetic decomposition

(Arnon et al., 2014), as it should change the way the learners approached and looked at the

problem of using the IDE to accomplish programming. The outcome created a schema which

should form part of the learners’ concept definition of a programming language.

 Method
The proposed schema is created by following the steps in Figure 2.20. The intervention 2B is

triggered based on the framework.

 Interpretation
EDR is based on an intervention framework and hence the results of each step are reported

using a multi-stage methods approach. These multi-stages can contribute to satisfying the

research questions.

123

4.5.4.5 Intervention 2B: Introduction of an enhanced Genetic Decomposition
of “Load a Greenfoot Scenario” (Appendix D-2)

Intervention 2B is a specific genetic decomposition that was created from observing the

learners based on the GD framework, as reported in Appendix D-1.

 Design
ESD was followed to explore how learners engaged with the IDE and a sequence of steps

was emerged from these observations to let learners accomplish the inner workings of the

Greenfoot IDE. During this intervention, the abstraction skills of learners were explored.

 Method
The intervention 2B is rolled out where the “Help” documentation was explored to allow

learners to be autonomous when exploring the Greenfoot programming language.

 Interpretation
The specific genetic decomposition was broken down as processes and refinements. Each

process described as 1P, where the “1” numeral indicated the ordinal position of the process,

was aligned with the “R” or refinements indicated as 1.1 and 1.2 and so on. The refinements

described each process in detail to indicate what was expected of the learner for the

researcher to have a specific rollout plan of action.

4.5.4.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3)

Intervention 2C was a starting point to understand the need among the designated group(s)

of learners, how the “Help” menus may assist learners in their quest to become self-

autonomous. A typical constructionist approach was followed, built on a truth basis as put

forward by experts in the field.

 Design
The learners were given exercises to explore the “Help” menus in order to better understand

the Greenfoot programming language. The Greenfoot programming language consists of

different classes grouped in libraries. The learners were required understanding the use of

these structures in order to solve problems and develop algorithms.

 Method
Conduct classes using flipped classroom techniques and assess what the learners

understand through a questionnaire. However, cognitive load theory dictates that the

extraneous cognitive load must be minimised. The next procedure that followed was

124

Intervention 3A, triggered to ensure a trusted source of information and mitigate the relative

epistemological dilemma caused by constructivist approaches.

 Interpretation
The learners were observed and assessments (Appendix E-3) were given to them to

interpret their understanding of the Greenfoot family of classes.

4.5.4.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1)

Circumscription was applied because of the complex nature of introducing Moodle without a

strategy. The strategy is discussed through sub-interventions 3A, 3B and 3C.

4.5.4.8 Sub-Intervention 3A: Introduction of the Moodle LMS (Appendix E-1)

Sub-Intervention 3A focused on creating an LMS for learners as a credible source of

information to help them when conducting research on Greenfoot programming language.

 Design
Learners were given a list of prerequisites (Appendix E-1), which informed them of how to

approach the Moodle LMS and what pre-requisites were allowed in class.

 Method
The list of prerequisites is supposed to motivate learners to participate with more enthusiasm

as it allows them the use of their cell phones and headphones, and watching videos.

Intervention 3B is triggered, and it entails a practical approach to make the LMS approach a

reality for each learner.

 Interpretation
The researcher had to determine whether the list of pre-requisites was acceptable to these

grade 8 learners and how the list was received.

4.5.4.9 Intervention 3B: Juggling enactment to enforce Moodle usage among
learners (Appendix E-2)

Intervention 3B was a fun activity to draw learners into using Moodle LMS as resource and

repository in order to guide them on how to develop the skill of juggling.

 Design
Each learner was given the opportunity to enact the process of juggling. It is a difficult

process if the learner approaches this activity without the basic mental structures of the

APOS theory. The researcher relied on observation and taking notes. Videography was done

to capture the learners’ phases of development.

125

The link is:
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40th

read.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FRe

search742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
(Currently on TEAMS).

 Method
The learners were given a questionnaire (Appendix E-2) on which they reported their

progress and reflected on their experience as to mould APOS theory and the exercise

together. The process led to Intervention (3C), with the purpose of determining whether an

LMS (in the case the Moodle LMS) is an important element towards learning.

 Interpretation
The narrative as integration procedure was used to describe the qualitative findings by

means of a single or series of reports.

4.5.4.10 Intervention 3C: Moodle and generalised terminology (Appendix 3C)

The aim of Intervention 3C is to verify if Moodle is a reliable source of information for the

learners.

 Design
ESD started with exploring, collecting data from the learners, and analysing the data by

providing a questionnaire to determine the knowledge and involvement of the learners.

 Method
The questionnaire (Appendix E-3) involved each learner to reflect on their involvement with

Moodle LMS and the Greenfoot programming language. The outcome led to intervention 4A,

which was triggered by providing learners with access to Moodle, considering cost of

ownership and ease of configuration.

 Interpretation
The Moodle LMS provided “flipped classroom” effects in the form of videos and forums for

these learners to participate in. The outcome informed intervention 4A as depicted in

Appendix F-1, which necessitated a Moodle LMS.

4.5.4.11 Intervention 4: Creating a Moodle Learner Management System (LMS)

Because of the complex nature of rolling out a Moodle LMS, this intervention was

circumscripted. The complex intervention is rolled out as interventions 4A and 4B.

https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED

126

4.5.4.12 Intervention 4A: Creating a Linux Server with external access
(Appendix F-1)

Intervention 4A was initiated to develop an in-house Linux server to accommodate learners

in a school with poor IT resources, but still provided state of the art access to resources for

teaching and learning.

 Design
A Linux server was built from scratch using a throwaway PC at the school. The Moodle LMS

as resource was constructed and rolled out. Internet connections were tested and

implemented to allow global access. The functionality had to be tested in circumstances

where larger populations were replicated and the impact on the Linux server was assessed.

 Method
The Linux server acted as a repository and informed learners as a knowledgeable resource.

However, many challenges emerged that led to Intervention 4B and which were triggered to

mitigate any possible challenges from Intervention 4A.

 Interpretation
The researcher needed to record all challenges and investigate how these challenges could

be overcome to promote teaching and learning for the learners and the teacher who

managed the initiative.

4.5.4.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2)

Intervention 4B was a natural decision made to overcome any challenges caused by the

previous intervention (4A) to assist learners in teaching and learning.

 Design
Exploring all possibilities, a web-based initiative was designed, focusing on the actual aim of

the initiative. The content remained the same, but the idea was to focus on the actual aim of

the initiative and not on connectivity as an obstacle.

 Method
Intervention 4B provided the necessary connectivity for teaching and learning to take place.

This triggered the original goal of the study, i.e., teaching the Greenfoot programming

language to develop abstraction and computational thinking among learners. The next

intervention (5A) was triggered, which entailed the rollout of the Greenfoot programming

language. This intervention entailed that learners’ focus is on Greenfoot and not on the

‘sideshows’ of programming language usage.

127

 Interpretation
Following an internet-based approach, the researcher applied Moodle functions and

developed more professional usage of all Moodle LMS capabilities rather than focusing on

enhancing connectivity and maintaining the Linux server. The focus is on the instructional

design of Greenfoot using the Moodle LMS to support cognitive load theory.

4.5.4.14 Intervention 5: Greenfoot access

This intervention was circumscripted due to learners being lost within the IDE of Greenfoot

programming language; the researcher needed to backtrack to deal with this gap in the

learners’ understanding. The intervention is rolled out as interventions 5A and 5B.

4.5.4.15 Intervention 5A: Introduction to Greenfoot (Appendix G-1)

Intervention 5A was a starting point to explore and understand how the Greenfoot

programming language affects learners and their teaching and learning activities in line with

this research.

 Design
The Greenfoot programming language was implemented by following a constructionist

approach. The link to the videos on the development of scenarios was made available on the

Moodle LMS for learners to investigate prior to algorithm implementation. The link is:
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40th

read.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FRe

search742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
(on MS TEAMS).

 Method
The purpose of intervention 5A was to expose and introduce the Greenfoot programming

language to the students, which triggered intervention 5B, to revisit previous mathematical

concept definitions and restore the original perspective of APOS theory for this initiative.

 Interpretation
Using narrative as integration procedure, the qualitative findings were described by means of

a single or series of reports.

4.5.4.16 Intervention 5B: Revisit previous activities (Appendix G-2)

Intervention 5B was a revisit of confirming the aim of this research to keep the focus on

APOS theory and mathematics. The learners had to maintain their perspective on the

mathematical thinking processes.

https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED

128

 Design
ESD was done to understand how the learners relate to programming, mathematics and

APOS theory.

 Method
The learners were given a questionnaire (Appendix G-2) based on their activities done in

class. The next intervention (6) was triggered, which illustrated APOS theory based on a

mathematical concept definition of simplification. This was triggered to apply the outcome of

the previous intervention (5B).

 Interpretation
Through observation and videos, the outcomes were recorded for direction on whether

additional help was still needed to assist learners with the APOS concept.

4.5.4.17 Intervention 6: Applying Process and Object within mathematics
(Appendix H)

Intervention 6 confirmed APOS theory as a starting point for the researcher to understand

the need among the designated group(s) of learners, to determine whether abstraction is

absent and calls for action from the researcher.

 Design
ESD was used to explore and understand how mathematical concept definitions interact with

APOS theory. The learners were given a worksheet (Appendix H) which they had to

complete to reflect on APOS theory in order to determine how they relate to mathematical

problem solving.

 Method
The questionnaire handed out to learners contained questions on simplification and the

APOS theory as underlying thinking strategy. The outcome of this reflection triggered

intervention 7, where the mental structures are developed within the Greenfoot programming

language.

 Interpretation
Learners need to link APOS theory within mathematics. The reflection guide learners to

visualise the APOS theory mental structures and mechanisms from a Greenfoot perspective,

which triggered the next intervention. This might relate to the previous intervention that used

mathematics concept definitions as the sole example.

129

4.5.4.18 Intervention 7: Greenfoot as Process and Object (Appendix I)

Intervention 7 was a complete rollout of Greenfoot to let learners experience APOS theory

when implementing an algorithm in the Greenfoot programming language.

 Design
ESD was used to implement a scenario in the Greenfoot programming language. The APOS

theory mental structures and mechanisms are monitored through observation and the

assessment of learners and their implementations.

 Method
The Greenfoot programming language scenario was used to reflect on their programming

language skills with specific Greenfoot references. Intervention 8 was triggered and focused

on the usage of Greenfoot as programming language and provided coding as part of the

rollout.

 Interpretation
Using narrative as integration procedure, the qualitative findings are described by means of a

single or series of reports. The learners were then assessed to produce code rather than

clicking on menus, which illustrated the dual modality of Greenfoot. Interpretation is one of

the important components of computational thinking in that the development of computational

thinking requires language.

4.5.4.19 Intervention 8: Rollout of code in Greenfoot (Appendix J)

Intervention 8 was rolled out to let learners experiment and discover coding as the next level

of developing computational thinking (Figure 5.35).

 Design
ESD was used to explore and understand how coding influenced computational thinking

among learners. A constructionist approach was followed to let learners investigate an

algorithm and bring it into perspective of using Greenfoot as computational notation and

developing computations.

 Method
The learners were given a task sheet (Appendix J) to create an algorithm for a problem. This

led to several lines of coding, which triggered Intervention 9 as a natural development to

encapsulate all these lines of coding, thereby giving meaning to these code snippets through

abstraction. The exercise was developed to enable mental mechanisms within the mental

structure of the learner.

130

 Interpretation
Using narrative as integration procedure, the qualitative findings are described by means of a

single or series of reports.

4.5.4.20 Intervention 9: Making decisions towards Encapsulation (Appendix K)

Intervention 9 was a logical development that entailed encapsulation of code.

 Design
ESD was used to explore and understand how encapsulation affected learners’ thinking

patterns in terms of the APOS Theory when considering Processes and Objects. The word

Object has a duality when referring to APOS theory and the Greenfoot programming

language.

 Method
Many lines of code led to abstraction of the code through nesting the code into a method.

Learners found these abstraction methods helpful, which triggered Intervention 10. The

encapsulation process was expanded to provide more meaning to learners in their

understanding of encapsulation.

 Interpretation
Learners produce multiple lines of coding, which they investigate through applying mental

mechanisms within a mental structure. The intervention was grounded in themes, which

developed from the Action, Process, Object and Schema (APOS) theory, which are mental

structures that inform mental mechanisms – interiorisation, coordination, reversal,

encapsulation and thematisation – thereby promoting computational thinking.

4.5.4.21 Intervention 10: Revisit encapsulation with Randomize option
(Appendix L)

Intervention 10 was a logical development stemming from Intervention 9, entailing the built-in

function (Randomize), which is encapsulation of code.

 Design
ESD was used to explore and understand how Randomization would influence encapsulation

in terms of the APOS theory when looking at Processes and Objects.

 Method
Randomization was used, which caused a natural flow of events. Learners were given the

opportunity to be assessed in Intervention 11A. Learners were informed of assessment

structures to motivate them and improve their results.

131

 Interpretation
Using narrative as integration procedure, the qualitative findings are described by means of a

single or series of reports. The learners can now develop a game using random parameters.

4.5.4.22 Intervention 11: Assessment (Appendix M)

Assessment is another complex task and cannot simply be ‘dumped’ onto these learners

without proper preparation; hence, the assessment was circumscripted (11A and 11B).

4.5.4.23 Intervention 11A: Informing learners of the assessment in a structured
manner (Appendix M-1)

Intervention 11A was applied to compel learners to prepare for an assessment on Greenfoot

programming language structures. The research did not form part of the traditional formal

curriculum; there was a need to provide space for learners to enjoy an assessment and at

the same time making the Greenfoot teaching and learning their own, with the focus on

cognitive load theory.

 Design
ESD was used to explore and understand how assessments could prepare learners in terms

of the APOS Theory in a positive manner.

 Method
Learners were taught with the focus on the assessment procedure. Learners had a specific

guideline on how to prepare for assessment. Intervention 11B was the outcome where

learners were assessed.

 Interpretation
Learners were taught with the focus on the assessment in order to at least make an effort to

own the assessment procedure and prepare for these assessments directly. The concept

definitions were highlighted in the learners’ assessment preparation.

4.5.4.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and
problem solving (Appendix M-2)

Intervention 11B was the assessment. Learners could opt for an open book approach to find

a solution to the problem. In this research, the assessment was a combination of Microsoft

Paint to develop the background of the scenario, group work to overcome the slowness of

the remote desktop (RDP) environment, and teamwork, completing the project in record time.

132

 Design
ESD was used to explore and understand how learners dealt with the assessment. The

researcher incorporated video, observation and a questionnaire to collect data for the

assessment rollout. The task at hand consisted of creating a total customised Greenfoot

scenario, from the world as background to images and sound clips. All these components

were stored in a specific folder and the learners had to understand the folder structure of

Greenfoot to accomplish the project.

 Method
Learners used Microsoft Paint and sound clips which they constructed themselves. The

folder structure was paramount to each learner’s understanding. Although the assessment

focused on basic programming, Intervention 12 was triggered when the learners recognised

the need to use a variable in the Greenfoot programming language.

 Interpretation
Learners were taught with the focus on the assessment procedure, in order to make an effort

to own the assessment procedures and prepare for these assessments specifically. With the

current academic load, the researcher wanted to alleviate extraneous load as well. This

intervention led to the assessment, where learners had to take ownership of the structures in

the Greenfoot programming language. This led to Microsoft Paint creations and

implementations of the folder structure, containing sound, images and code to provide the

solution to the problem in the Greenfoot programming language, as set out in Appendix M-2.

Every aspect of coding and structuring the project was associated with APOS theory, where

learners had to answer on an individual basis their impressions and understanding of how

APOS theory related to the project.

4.5.4.25 Intervention 12: The variable in Greenfoot (Appendix N)

Intervention 12 focused on introduction the variable into Greenfoot. A variable makes any

programming language open-ended and problems can be solved using generalised

solutions.

 Design
ESD was used to explore and understand how learners dealt with a variable in Greenfoot.

The intervention was based on the manipulation of x and y axis values, linked to built-in

methods. The Greenfoot problem (how to use variable), was interpreted to relate to the

learners’ current mathematical concept definition of graph theory. As mentioned previously,

when replicating the research, the intervention must be based on the current mathematics

concept definition explained in class at that time.

133

 Method
The method was built on using graph theory based on x and y values, which had to change

value and hence was illustrated by moving an object through changing x and y values. This

triggered Intervention 13, where the learners were given a problem to solve by applying the

variable concept definition in Greenfoot.

 Interpretation
Learners were taught what a variable was and how a variable’s values may change through

x and y axis values. The example highlighted the Boolean and Integer variable. The scenario

used was based on the rocket actor being moved either vertically or horizontally, which

promoted complex learning.

4.5.4.26 Intervention 13: Moving from Process to Object in APOS using
Greenfoot (Appendix O)

Intervention 13 focused on the introduction of a variable in Greenfoot.

 Design
ESD was used to explore and understand how learners dealt with a variable in Greenfoot.

The intervention was based on the manipulation of x and y axis values, linked to the built-in

methods getX() and getY(). The Greenfoot problem designed by the researcher using

variables could be interpreted in relation to the learners’ current mathematical concept

definition of graph theory.

 Method
The learners were given a task that involved red and blue coloured balloons. These balloons

were instantiations of a balloon actor class. The year came to an end regarding the

research, and Intervention 14 was an obvious next intervention where learners were given a

problem to solve in Greenfoot programming language, when they returned the next year.

 Interpretation
Learners were taught what a variable is and how a variable’s values may change through

changing x and y axis values. The example highlighted the Boolean and Integer variable.

The scenario was changed for learners to make decisions through coding. The IF statement

forms part of the decision structure in any language, and this statement was introduced to

the learning using the Greenfoot programming language. The solutions to problems became

more challenging, as the learners had to write general solutions to complex problems based

on decisions.

134

4.5.4.27 Intervention 14: GD creation on IF statement

Conditional statements are complex structures, which need time to explain, especially to

these learners acquiring programming language competencies.

4.5.4.28 Intervention 14A: Basic creation of scenario with World and Actor
classes (Appendix P-1)

Intervention 14 focused on recapping the Greenfoot programming language. The learners

were now in Grade 9 and the purpose of the intervention was to revisit the Greenfoot

programming language.

 Design
ESD was used to explore and understand how learners experienced the Greenfoot

programming language during the first year of the research. The exercise was a basic one

that covered the understanding and application of the Greenfoot programming language

scenario after the December holidays.

 Method
The learners were assessed through posing questions based on the problem they had to

solve. Intervention 14B was triggered where learners associated the APOS theory mental

mechanisms with the Greenfoot programming language structures.

 Interpretation
At the start of the New Year, learners were given a basic problem to solve through the

Greenfoot programming language. A questionnaire (Appendix P-1) was given afterwards to

determine if the students relate to APOS theory in terms of the mental structures and

mechanisms.

4.5.4.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2)

Intervention 14B focused on exploring and understanding how the learners’ thoughts were

ordered using the Greenfoot programming language.

 Design
ESD was used to explore and understand how learners’ thoughts were structured in the

Greenfoot programming language. The exercise was a scenario containing all the necessary

structures. The learners had to comment on their code and bring that into perspective

through reflection.

135

 Method
Learners were given a questionnaire (Appendix P-2) to determine their knowledge of

Greenfoot. Having the results at hand, intervention 14C was triggered, where learners had to

create a solution using the Greenfoot programming language through built-in methods and

control structures such as the IF statement.

 Interpretation
Learners were given a basic problem to solve through the Greenfoot programming language.

Learners answered questions on a questionnaire to determine if they related to APOS theory

mental structures and mechanisms. The questionnaire assessed if the learners could discuss

the composition of a Greenfoot programming language scenario. This was to see if the

learners thought about what they were doing through reflection and APOS theory.

4.5.4.30 Intervention 14C: Interaction of Actor within the World solving
problems (IF statement as precursor to GD) (Appendix P-3)

Intervention 14C focused on exploring and understanding how the learners’ thoughts were

ordered using the Greenfoot programming language by placing the learner into a problem

situation.

 Design
ESD was used to explore and understand how learners’ thoughts were structured in the

Greenfoot programming language in terms of making decisions using code. The exercise

was a scenario containing all the necessary structures. The learners had to provide

conditional code structures to solve a problem situation of the actor in the world.

 Method
Learners had to rely on the process component of APOS theory and relate to programming

language objects and schemas. In the next intervention, 14D, the learners had to create a

solution using the Greenfoot programming language using built-in methods and control

structures such as the IF statement.

 Interpretation
Learners were given a basic problem to solve through the Greenfoot programming language.

A questionnaire was given afterwards to determine if they related to APOS theory mental

structures and mechanisms. They were given a questionnaire (Appendix P-3) to assess if

they could discuss the composition of a Greenfoot programming language scenario. This

was to see if the learners though about what they were doing through reflection in APOS

theory.

136

4.5.4.31 Intervention 14D: Adding graph paper as part of GD to develop
algorithm (Appendix P-4)

Intervention 14D focused on exploring and understanding how the learners’ thoughts were

ordered using the Greenfoot programming language by creating a problem for learners to

solve.

 Design
ESD was used to explore and understand how learners’ thoughts were structured in the

Greenfoot programming language, making decisions using code. Learners were given a

problem and were compelled to go back to the Actions mental structure and pursue the

problem with pencil and graph paper. The idea was to determine how many learners could

visualise this problem in their minds without having to perform actions to solve the problem.

 Method
Learners were given a problem and they had to use graph paper and represent the scenario

as a storyboard. This triggered intervention 14E, where the learners had to create a solution

using the Greenfoot programming language and including the conditional IF structure to help

them solve the problem represented on paper.

 Interpretation
Learners were given questionnaires (Appendix P-4) afterwards to determine if they related to

APOS theory mental structures and mechanisms, developed a solution as a Process, and

implementd decision structures using IF statements.

4.5.4.32 Intervention 14E: The IF statement as a solution to address problems
(Appendix P-5)

Intervention 14E focused on exploring and understanding how the learners’ thoughts were

ordered using Greenfoot programming language, by creating a problem for learners to solve

based on a condition.

 Design
ESD was used to explore and understand how learners’ thoughts were structured in

Greenfoot programming language making decisions using code. Learners were given a

problem and were forced to go back to Actions mental structures and pursue the problem

with pencil and graph paper. The idea was to detect through observation and then marking

their answers, how many learners visualised this problem in their minds and not had to

perform actions to solve the problem using code.

137

 Method
Learners were left to code what developed in the previous intervention 14D but using

decision control structures in Greenfoot.

 Interpretation
The intervention assessed was grounded in themes namely actions, process, object and

schema. These were highlighted in their task. Learners had to code what they drafted on

paper. The researcher did not include the conclusion of these interventions by taking the

interventions as a block-based rollout to teachers within the data. However, to fulfil the

developmentalist paradigm in Figure 3.4 teachers were given multiple opportunities to

validate the researcher’s actions through three weekend rollouts offered to three regions of

schools in the Western Cape. This gave the researcher an opportunity to gauge the artefact

from a more objective community. The emphasis thus shifted from interpretivist to a positivist

paradigm.

4.5.4.33 Intervention 15: Testing Greenfoot to be accepted among teachers
(Appendix Q)

Intervention 15 focused on exploring and understanding how the teachers in IT and CAT

domains experienced the Greenfoot programming language. This intervention was

condensed into a weekend block-based rollout.

 Design
ESD was used to explore and understand how teachers’ thoughts were structured in terms of

the Greenfoot programming language. Teachers were invited at three different occasions

and in different regions of the WCED to attend the course on the Greenfoot programming

language. The courses were organised by the WCED in conjunction with Oracle, and the

researcher was the instructor.

 Method
The teachers were subjected to the same instructional methods covering the same work as

the learners, but the time period was shortened. The intervention commenced on a Friday

afternoon and continued throughout the Saturday.

 Interpretation
The assessed intervention was grounded in the action, process, object and schema themes.

4.5.4.34 Intervention 16: Creating an arcade game (Appendix U)

Intervention 16 was aimed at bringing together all Greenfoot programming language coding

learnt and constructing a fully-fledged arcade game using graphics and code.

138

 Design
ESD was used to explore and understand how learners’ thoughts were structured using

Greenfoot programming language and applying APOS theory. Learners were exposed to a

vast number of graphic designs and embedded mathematics.

 Method
The learners were exposed to videos on the Moodle LMS to show how the game was

constructed using different components to form a unit. It entailed sound clips as well.

 Interpretation
The assessed intervention was grounded in the action, process, object and schema themes.

4.5.5 Interviews
After completion of the interventions as indicated above, the researcher endeavoured to

determine if the learners developed the ability to link APOS theory with mathematics and

programming.

4.5.5.1 Interviews IA and IB: Algebra exercise on simplification; Science
assessment question and Voltage-Ampere-Resistance pyramid
(Appendices R-1, R-2, R-3 and R-4)

Interviews IA and IB were conducted to explore and understand how the learners’ thoughts

were ordered when assessments in Mathematics and Science were revisited. The interviews

were conducted in an informal environment and open-ended questions were asked to

explore the thinking of leaners on any mathematical problem of their choice. The researcher

provided several mathematical problems that learners encountered at the time and gave the

learners the choice to select any of them.

4.5.6 Observations
During observations, the researcher took notes on how learners reacted during interventions

and interviews. These observations were also supported by taking videos where possible.

The videos tended to distract the learners’ attention when they were busy with certain

programming tasks. Observations were conducted throughout the research process,

supported by notes. Reflections led to dual outcomes contained in (i) a practical real-world

contribution through abduction found in an ongoing sub0cycle of design-reflection-design,

and ii) a theoretical contribution where a new theory was developed through multiple EDR

cycles to reach maturity in the form of a conceptual framework.

139

4.5.7 Data collection strategies
For this research, the researcher explored the role of computational thinking among high

school learners and how computational thinking could be promoted among high school

learners. Data were collected from the interventions, the informal interviews, and the

observations. Each intervention was designed to collect data from the leaners. The

intervention data were used iteratively, as some intervention outcomes served as the input

for the next intervention. Depending on the intervention, the data collection adopted different

techniques, such as written assessments, projects, programming and interviews. The

interviews and outcomes of the assessments and assignments were transcribed

(Appendices R1 to R4) and provided insight into learner perceptions on concepts such as

abstraction. Four (4) Interviews were conducted informally based on a questioning plan in a

conversational style. The interaction of learners with one another was observed during their

PC and programming language usage. Informal notes (Appendix R-3, R-4) were made by the

researcher as the interactions proceeded. These interactions were also captured on video.

To view the videos, copy the following link to a browser or click on the following Microsoft

Teams link:
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40th

read.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FRe

search742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED).

The coding produced by the learners acted as documentation that showed their competency

skills, highlighting strengths and weaknesses of the programming activities, supported by an

analysis of assessments on these programming activities (Appendix G to P). Assessments

on the programming language concepts also contributed to the data collection (Appendix M-

1, M-2). The researcher’s interaction with the same learners spanned across two years,

during which lessons were prepared by the researcher and tasks were given to the learners.

These were based on genetic decomposition as introduced by Dubinsky (Arnon et al., 2014)

as part of his APOS theory to obtain an understanding through observation, assessments

and interviews. Data were also collected through lectures, and assessments and tasks given

to learners.

4.5.8 Sampling
According to Sharma (2017:749), sampling is a “means by which researchers may select a

subset from the total population to act as a data source for experimentation or observation to

achieve the objectives of the research”. A non-probability purposive sampling method was

used to select the sample consisting of research participants for this qualitative research

(Maree, 2012). This sampling method could further be categorised into several of which the

homogenous sampling scheme was used for a specific group of learners having the same

https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ctx=channel&context=NavorsingsVideos%2520Curro%2520WCED&rootfolder=%252Fsites%252FResearch742%252FShared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED

140

characteristics when considering their learning profiles. Although Sharma (2017) regards this

method as highly likely to be prone to researcher bias, the selection of the two classes,

consisting of one Afrikaans group and one English group of learners, was left to the teacher

dealing with timetabling of the school. Thus, the researcher was not responsible for the

selection and the researcher bias, as pointed out by Sharma (2017), was removed. The only

judgement of the researcher in using this sampling technique was made in terms of the ages

of the learners. Learners had to fall within the cognitive level of formal operations phase,

which coincided with the ages of learners in grades 8 and 9 of the private school (Piaget,

1964; White, 2003; White & Sivitanides, 2002; Young, 2011; Cherry, 2014; Ghazi et al.,

2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017).

The sampling method aligned well with the theoretical conceptual framework of this research.

The teacher chose classes based on the availability of time slots to conform to the practical

day-to-day operation of the school without disrupting classes. To mitigate researcher bias, as

mentioned by Sharma (2017), the teacher did not make any groupings on the basis of

performance, but selected two classes from the private school based on convenience

sampling. Grade 8 learners were also chosen, as no real programming education took place

at that point in time, which minimised any programming habits and concerns of beliefs

(Cegielski & Hall, 2006; Moscucci, 2007; Moscucci & Bibbo, 2015) that might already have

existed about mathematics in each learner. According to Piaget (1964), a factor that may

influence cognitive development is maturation when referring to the central nervous system

of the learner. This is influenced by cultural differences, experiences with objects in the

physical world, social transmission and equilibration when a learner reconciles his/her

experiences through assimilation or accommodation (Cherry, 2014; Ghazi et al., 2014; Arnon

et al., 2014; Barrouillet, 2015; Bormanaki & Khoshhal, 2017). The unit of analysis was

identified as the programming language used in the research. The unit of observation was

the learners participating in the research.

4.5.9 Data analysis
Miles, Huberman and Saldaňa (2014) regard qualitative data analysis as collecting data and

then embarking on a process of (i) data condensation, (ii) data display and (iii) drawing

conclusions or performing verifications. This can be positioned within the EDR method for

each intervention that was initiated. Data condensation is also an iterative process in terms

of summarising data, coding, developing themes, generating categories and writing analytic

memos (Miles, Huberman & Saldaňa, 2014:12). The data were coded and the findings were

summarised, as shown in Table 5.13. Once this was done, categories were identified. The

categories were then grouped into the themes of the study (Table 5.13 & Table 5.15).

141

4.6 Summary
Chapter 4 addressed the research and design of this study. The following concepts were

discussed: (i) the demonstration case; (ii) action research; (iii) DR strategy; (iv) intervention

development; (v) interviews and observations; (vi) sampling; and (vii) data analysis. The

research approach was focused on conducting research through abduction. Research

strategies were considered to explore the role of computational thinking among high school

learners and how computational thinking could be promoted through a programming

language using APOS theory as lens, at a cognitive level of formal operations.

AR as a research strategy did not satisfy the goals of this research, which included producing

an artefact; and social or organisational change was not part of the outcome. Didactics, the

learners’ involvement, mathematics, hardware IT platforms and programming attributed to

theory building. All these components played a role in the outcome of this research and

strengthened the scientific value of AR was limiting compared to EDR in terms of processes

and outcomes. EDR was chosen as research strategy. This research focused on the science

of the artificial, also known as Design Science (DS). DS focuses on phenomena that serve

human purposes. Thirty-four (24) interventions were executed for this study. In many ways,

the interventions fed into each other. A private school was chosen as case, with the

programming language as unit of analysis and the learners of the school the unit of

observation.

142

CHAPTER 5: DATA ANALYSIS AND FINDINGS

Figure 5.1: Chapter Layout

Figure 5.2: Word Cloud on this thesis

143

5.1 Introduction
Figure 5.1 represents the layout of Chapter 5. The research was done on the effect of a

programming language as a vehicle, with APOS theory as lens to influence the learner’s

computational thinking towards subjects which require the cognitive level of formal

operations, such as Mathematics or subjects that demand complex learning. Figure 5.2

illustrates these keywords used in this thesis, capturing the essence of the study. Greenfoot

as programming language was not used to predict a change in mathematical assessment

outcomes of learners. The goal of Greenfoot is to promote computational thinking through

APOS theory among learners or change their computational thinking that may influence their

system of beliefs about mathematics. By addressing computational thinking, the thought

processes (Selby & Woollard, 2014; Denning, 2017) of learners are influenced. It is widely

accepted that changing learners’ behaviour, teachers’ practices and their (learners and

teachers) approach to mathematics, need to change in both parties’ beliefs about

mathematics. This is a long-term goal as opposed to a ‘quick fix’ (Moscucci, 2007; Moscucci

& Bibbo, 2015; Jankvist & Niss, 2018).

5.2 Belief system about Mathematics
This research explored and aimed to understand the effect of Greenfoot as programming

language on computational thinking using APOS theory as lens. The research made use of

EDR to employ interventions among grade 8 and 9 learners sequentially. These interventions

were interactions with the Greenfoot programming language and positioned the learner as a

candidate computational thinker, in line with the APOS theory in mathematics. PLs are a

fresh and relatively unknown domain for most learners and teachers as pointed out by the

learners upon introducing the goals of the interventions at the time of this research.

Mathematical thinking that accompanied learners for twelve consecutive years created a

belief system about mathematicsfor each learner and each teacher. Every grade allows for a

new teacher with different beliefs about mathematics. According to Moscucci and Bibbo

(2015), belief systems require more research, for beliefs, attitudes and emotions are

interconnected. Moscucci (2007:1) describes the process as “learning of beliefs”, which

entails learners’ personal mathematical approach and that of the teachers’ beliefs about

mathematics as influential for any learner, when forming a system of beliefs about

mathematics. LeDoux (1998) and Damasio (1999) describe this with their cognitive-

emotional structure. Moscucci (2007) put forward the meta-belief system activity (MBSA),

which is a framework used to rebuild negative relationships with mathematics, but involves

attitudes, emotions and cognition towards mathematics. Moscucci and Bibbo (2015)

emphasise that mirror neurons (feeling the mind state of another human) play a role in

imitation and action understanding as highlighted by Rizzolatti and Craighero (2004). The

authors further see communication as visible and tangible components, but also as

144

unconscious and invisible components. It is this invisible and unconscious or hidden

communication that plays a role in beliefs about mathematics. Nelson (2012) sees an

example of hidden communication as empathy. Research of Moscucci and Bibbo (2015)

shows that learners have pre-set ideas of what teachers think of their ability developed

through these invisible components or mirror neurons.

Bachelard (1938), Brousseau (1983, 2002), Moscucci (2007), Jankvist and Niss (2018) argue

that existing beliefs about mathematics around mathematical education, beliefs about the

self, the social content form part of a difficult domain to penetrate and to change in an

instant, from a negative to a positive system of belief about mathematics. Belief systems

about mathematics within the sample group of learners were not specifically assessed using

the meta-belief system activity (MBSA) framework of Moscucci (2007). This MBSA is built on

meta-cognition as introduced by Flavell (1976) and transformed into a tangible framework by

Moscucci (2007). Metacognition is broadly defined as “thinking about thinking” (Moritz &

Lysaker, 2018). Livingstone (2003:2) quotes Flavell (1979) that metacognition is “higher

order thinking which involves active control over the cognitive processes engaged in

learning”. This research studied the promotion of computational thinking from an unknown

perspective (programming language belief system) such as a programming language, which

may act as a meta-cognitive approach, seeing that only one learner has encountered a

programming language before and the research is done by controlling learners’ cognitive

processes through APOS theory at a higher level. Jackson (2004) uses the term

metalearning to deviate from metacognition in its basic definition, by adding a high-level of

thinking about learning and how an individual acquires new knowledge through more

effective learning.

The research also highlights the challenge of the didactical contract, by Brousseau’s theory

on didactical situations, impacting the epistemological fraud, especially where learners’ and

teachers’ beliefs about mathematics affect the didactical contract (Moscucci, 2007; Jankvist

& Niss, 2018). For example, learner X (Appendix B-2) does not trust his belief about

mathematicsf that the sum of the inner angles of a triangle is 180 degrees. Viewpoints of

learners depicted in Figure 5.3 and Figure 5.4 show that they doubt their mathematical

knowledge about these basic facts. Without moving blame from the learners, it is likely that

the teacher was unaware of the APOS theory (from observation and conversation). The

teacher could have rectified this by using Actions (Tall, 2008:9; Figure 2.13). This would have

allowed the learner to move past the Action stage, to begin with a Process stage towards

building Objects and Schemas for Geometry. It may be negative emotions experienced by

learner X and Y that created a doubtful mind as well as the teacher’s ignorance about APOS

145

theory. The learner-teacher-mathematics relationship may not be a positive one towards

mathematics and geometry in this case.

Figure 5.3: Learner X answers questionnaire on geometry knowledge (Appendix B-2)

Figure 5.4: Learner Y answers questionnaire on geometry knowledge (Appendix B-3)

Questionnaires were handed out to the learners (Appendix B-3). From their responses,

(Figure 5.4) it became evident that some challenges were experienced by learners. Learners

were handed out the questionnaires (Appendix B-1, B-2, B-3, & B-4) and observed when

they filled in these questionnaires. According to Burton (2004), most mathematics learners

do not see mathematics as a creative subject, as indicated in the Figure 5.5 snapshot taken

from a questionnaire (Appendix B-4).

146

Figure 5.5: Learner Z sees Mathematics as an obstacle Appendix (B-4)

The research puts forward a new programming language belief system that influences

mathematical thinking implicitly through APOS theory. The programming language belief

system impacts the belief about the self in a positive manner and beliefs about the social

context of how learner and teacher can function within their own world. Furthermore, in

mathematics, a problem only has one right answer (Schoenfeld, 1989). When learners

attempt a problem in mathematics, their answers might be incorrect which differ from their

perception. According to Eisenkraft and Eisenkraft (2011), the education community may

view learners’ answers differently. However, a solution of an algorithm, rolled out using a

programming language, can be verified immediately by learners or teachers when comparing

the outcome with the result of execution. Although the coding may differ, the outcome should

be the same. When referring to the same outcome, it is meant that the same goal is

achieved, but the programming techniques might not be that elegant compared to other

learners’ programming code. As an example, learners may be asked to print the string

“Hello” 20 times on the screen. Some learners may use a “print statement” 20 times and

others may employ a “for”-loop structure consisting of two lines of code. In both cases “Hello”

will appear 20 times, which shows the same outcome, but the code tells a different solution.

The learner can verify his or her code as correct or incorrect based on the outcome. The

learner cannot always verify his or her answer in mathematics as correct, but in a

programming language these learners can use a technique called debugging to trace their

syntax to be logically correct. Learners enjoy an embodied experience when developing a

computational model for a problem in the Greenfoot programming language (section

5.4.3.32, intervention 14D, Appendix P-4). Within (embodied) coding the learner can

experience different forms of abstraction to implement a more elegant coded solution for the

problem. Although the outcome of the solution looks similar, the algorithm developed by the

learners is different and allows for free thinking. This varies from learner to learner. The

research method, as investigative tool motivated in section 3.2.3, is EDR by intervention.

The research further focused on the exploration and understanding of computational

thinking, which affects the mathematics dilemma that South Africa is facing (section 3.2).

This dilemma is because of learners shying away from taking Mathematics and Science

147

subjects, and those brave enough to take Mathematics and Science subjects, struggle with a

very low throughput as highlighted in the literature review in Chapter 2. The next section

focuses on the EDR phases used in this research.

5.3 EDR phases
Having considered the EDR phases of Reeves (2006), Mckenney and Reeves (2012),

Bannan, (2013), Plomp (2013), van Wyk and de Villiers (2018), Miah, Solomonides and

Gammack (2019), as described in section 3.2.3.3, the following three generic EDR phases

depicted in section 3.3.4, are integrated with the van Wyk and de Villiers (2018) model. The

van Wyk and de Villiers (2018) model describes processes and outcomes for each process.

It is also an inferred model that stems from DR, DSR and DBR (section 4.5.2, Figure 4.8).

This research has a diverse focus on education with a mathematics specialisation

programming language and coding and information systems with an emphasis on systems

development. Two important phases within the van Wyk and de Villiers (2018) model are

evaluation and reflection. Evaluation is investigated through the FEDS framework (Venable,

Pries-Heje & Baskerville, 2016) and the reflection phase through the framework of Gregor,

Müller and Seidel (2013).

5.4 Data collection and analysis
5.4.1 Introduction
The phases are integrated with the van Wyk and de Villiers (2018) EDR model and are

discussed in the following sections.

5.4.2 Phase 1: Preliminary research phase
This phase requires preliminary research that entails a needs and context analysis, a

literature review, theory development, and the identification of a target group (Figure 3.10,

section 3.3.4). The model of van Wyk and de Villiers (2018) describes the process as the

analysis of a complex problem (Figure 5.6). The process of the problem analysis yields

outcomes, such as research goals which contribute to the research proposal.

Figure 5.6: Cross Section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305)

148

The problem is identified by doing a needs and context analysis which is augmented by a

literature review and which is an interpretation of the literature review in the traditional

research track. The FEDS framework (Venable, Pries-Heje & Baskerville, 2016) and the

framework of Gregor, Müller and Seidel (2013) are used to accomplish the research goals

and proposal. This is followed by theory development and the identification of the target

group (Chapter 3, Figure 3.10) discussed in the next sections.

5.4.2.1 Needs and context analysis

 Needs analysis
Learner performance in mathematics is deteriorating in South Africa. The warning lights are

ignored up to Grade 9, and learners are left to partake in extra mathematics classes. These

learners pay exorbitant tuition fees to mathematical powerhouses (MPHs) to strengthen their

concept images of mathematical concepts (Arnon et al., 2014) where education should be a

basic right. Having identified the need to address this problem in education, the next section

highlights the need within the context of mathematics and a programming language.

 Context analysis
The concept images allow learners to answer mathematical papers during examinations and

adhere to DBE minimum standards (Chapter 2). Although there is a collective calling from

the DBE, national and international companies are making money off the mathematics

dilemma in South Africa. One such example is https://za.ixl.com, to mention one website that

adheres to CAPS in SA. As a side note, researcher rolled out the https://za.ixl.com site

among three schools and compared learners’ school assessments against previous

assessments after using the site. The method used on this site is based on explaining a

concept, but also monotonous repetition of those mathematical concepts. According to

Trends in International Mathematics and Science Study (TIMSS), in 2011, South African

learners performed the worst out of 21 middle-income countries (CDE, 2014). The trends as

given by CDE (2014) are rather old, but since 2014, the DBE changed from annual national

assessments (ANAs) to systemic assessments (Schäfer, 2018). Unfortunately, the systemic

assessments have not been substantiated as the results may hide weak performance. The

impact of systemic tests can be investigated by the reader as a trivial exercise of how

systemic tests may influence learners and schools. As a result, the research chose to use

the official 2014 figures/ results. The DBE attempted to rectify these figures in a learner’s

final year of study at school. This raises questions by the researcher such as “what was done

in the former schooling years of these learners towards their final year at school?” and “what

is being done at this stage”? How the DBE wants to raise the throughput of learners in

mathematics is a wicked problem because of their beliefs about mathematics(Moscucci,

https://za.ixl.com/
https://za.ixl.com/

149

2007) at both the teacher’s and the learner’s perspectives, which influences mathematical

problem solving and indirectly the computational thinking skills of learners in SA.

5.4.2.2 The literature review

As the literature review was done in Chapter 2, only a brief overview is provided here, and is

discussed under the headings: (a) thought processes; (b) computational thinking; and (c)

APOS theory. The review of the literature provides the problem identification and the needs

and context analysis.

 Thought processes
Characteristics such as “concept images” in mathematics, “beliefs about mathematics”,

“Mathematical problem solving”, “cognitive levels”, “computational thinking”, “reflective

abstraction”, “algorithms”, “thought processes”, “abstraction” and “automation” form part of

the challenge learners are facing in SA.

This research focused on the cognitive levels of learners to position the interventions at an

age and grade where accommodation and assimilation are successful to a degree. The

cognitive levels are discussed in section 2.2.2.1(a)(i). According to Piaget (1964), Young

(2012), Cherry (2014), Ghazi et al. (2014), Barrouillet (2015) and Bormanaki and Khoshhal

(2017) the cognitive level of formal operations is the level where thought processes

accommodate complex learning. Also see Figure 1.2, section 1.8 for an updated breakdown.

Factors necessary to kick-start computational thinking at a cognitive level of formal

operations are investigated through SRQs. The study shows that mathematical problem

solving and computational thinking are linked through the concept of reflective abstraction.

Reflective abstraction is used in the context of computational thinking (Cetin & Dubinsky,

2017). Denning (2017) interprets Aho’s (2012) definition of computational thinking as the

thought processes necessary to formulate problems. Selby and Woollard (2014) also link

thought processes to computational thinking. The thought processes should bring about

solutions to problems. These solutions can be represented as computational steps and

algorithms as depicted in section 2.2.2.1(b)(iii), Figure 2.10. Selby and Woollard (2014) show

that three aspects are always found in the definition of computational thinking, namely

thought processes, the concept of abstraction and the concept of decomposition. The terms

‘problem solving’ and ‘logical thinking’ are too broad, which focus more on skills

development.

 Computational thinking
Abstraction and automation are the “mental and metal tools” of computational thinking (Wing,

2006, 2008). Denning (2017) posits that following any sequence of steps or algorithm does

not necessarily make you a computational thinker. Aho (2012) states that computational

150

thinking is about finding appropriate models of computation to derive a solution for a

formulated problem. Researchers such as Hayakawa (1949), Truran (1992), Wilensky

(1991), Dubinsky (1991), Hazzan (1999, 2003), Devlin (2003), (Kramer 2007), Perrenet

(2010) and Meyer (2010) state subtle differences when arguing the concept of abstraction.

Wilensky (1991:4) states “concreteness, then, is that property which measures the degree of

our relatedness to the object, (the richness of our presentations, interactions, connections

with the object), how close we are to it, if you will the quality of our relationship with the

object”.

 APOS theory
The APOS theory originated from Dubinsky’s (1991) interpretation of Piaget's (1973) concept

of reflective abstraction. The research on APOS theory is based on mathematical problem

solving and how learners should approach mathematics in general (Arnon et al., 2014).

Piaget sees the properties of objects not in the objects itself but embedded in the actions that

learners take when using these objects (Arnon et al., 2014). Each mental construction

(Action, Process, Object, Schema) depicted in Figure 2.17 or conception uses mental

mechanisms (interiorisation, coordination, reversal, encapsulation and thematisation) to

move through the APOS (mental structures) cycle. Reflective abstraction is a description of

what goes on in the minds of individuals when engaged in creating knowledge. It is

hypothetical as nobody can see what goes on inside another’s mind (Dubinsky, 1991, 2000).

There are many possible ways to solve a mathematical problem, which may confuse the

leaners’ actions. This often leads to lower levels of abstraction that complicates their

understanding (Hazzan, 1999; Kramer, 2007). Researchers describe this state a learner is in

as a state of “abstraction anxiety” (Sfard, 1991; Wilensky, 1991; Meyer, 2010), which forms

an important component of mathematical anxiety. Papert (1980) uses the term ‘mathophobia’

and Tall (2004) refers to this phenomenon as ‘dyscalculia’. Meyer (2010) states that

educators should not only classify subjects as being abstract, but also deal with this anxiety

associated with abstraction. The next section describes the artefact as outcome from the

EDR approach.

 The EDR question
The EDR question which describes the artefact as one of the outcomes is motivated in

section 3.3.3.1 to determine the research goals after a problem analysis of the problem

statement (section 1.5).

(i) Research goals and proposal
The research problem for this thesis reads as follows: computational thinking lacks among

learners because it is not clear how computational thinking is promoted at the cognitive level

151

of formal operations among high school learners. The research questions addressing the

research problem are stated in the following two tables, for ease of reference. The objectives

are mapped in Table 5.1 and Table 5.2 to the SRQs as a first step to create the goals for this

research.

152

Table 5.1: Mapping of research methods and goals to Research Question 1

RQ 1 What are the characteristics of an enhanced learner’s teaching
and learning strategy that can empower learners to master
computational thinking skills through APOS theory, infused by a
programming language at high school level?

SQRs Research
Method Objective

1.1: What factors are needed for the
development of computational thinking at
a cognitive level of formal operations
among high school learners?

Literature
Analysis

The objective of the question is to determine the
factors which promote computational thinking
among high school learners at a cognitive level of
formal operations (CLFO).

1.2: What type of programming language
may be used to promote computational
thinking skills at a cognitive level of
formal operations?

Critical analysis
of the features of
programming
language

The objective of the question is to determine the
characteristics of a typical programming
language that may promote the cognitive level of
formal operations (CLFO).

1.3: What constructs within the
programming language facilitate APOS
theory at a cognitive level of formal
operations?

Critical analysis
when comparing
the constructs of
the programming
language and
APOS

The objective of the question is to determine
constructs in the programming language that
promote APOS theory at a cognitive level of
formal operations (CLFO).

Table 5.2: Mapping of research methods to Research Question 2

 RQ 2 How can computational thinking skills at a cognitive level of
formal operations be promoted among high school learners
through the teaching of a programming language aligned to
Action Process Object Schema (APOS)?

SQRs Research
Method Objective

2.1 How are the constructs of a
programming language taught among high
school learners at a cognitive level of
formal operations?

EDR Study To explore and understand how constructs of a
programming language facilitate high school
learners at a CLFO.

2.2 How do the constructs of a
programming language align to APOS
among high school learners at a cognitive
level of formal operations?

EDR Study To determine higher-level constructs within a
programming language which promote APOS
among high school learners.

2.3 How does the use of an LMS, as a
platform for learning, aid the teaching of a
programming language aligned to APOS to
promote computational thinking skills at a
cognitive level of formal operations among
high school learners?

EDR Study To combine the usage of an LMS and a
programming language in order to assist high
school learners with “worked examples” of
advanced higher-level constructs in a
programming language and cognitive load theory
(CLT).

(ii) Outcomes
The research purpose is to develop the teaching and learning strategy to master

computational thinking skills, through APOS theory, which is expected to function at Piaget’s

cognitive level of formal operations, infused by concepts and characteristics of a

programming language at high schools, in order to cope with the challenges in subjects such

153

as Mathematics and Science. Table 5.3 shows the EDR research goals. The APOS theory is

binds the programming language and computational thinking.

Table 5.3: The research EDR goals and objectives

Goals Objective

To determine the factors of computational
thinking at a CLFO.

The objective of the question is to determine the factors which
promote computational thinking among high school learners
at a cognitive level of formal operations (CLFO) using a
literature analysis.

To identify the constructs in Greenfoot that
enable APOS theory at a CLFO

The objective of the question is to determine constructs in the
programming language that enable APOS theory at a cognitive
level of formal operations (CLFO). This is done through a
critical analysis when comparing the constructs of the
programming language and APOS

To explore and understand the higher-level
constructs in Greenfoot programming
language linking into APOS theory.

The objective of the question is to explore and understand the
relationship of higher-level constructs of a programming
language and APOS theory during teaching and learning of
high school learners at a CLFO through EDR.

(iii) Design the solution
A theoretical conceptual framework as solution (section 5.4.2.3(a), Figure 5.9) is designed

(process of initial design Figure 5.7 below) to address the “teaching and learning strategy to

empower learners to master computational thinking” taken from the EDR question.

Figure 5.7: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305)

The APOS theory is applicable for mathematics learning and the goal is to determine

whether the learners can apply APOS theory in programming to promote computational

thinking. This EDR approach is thus a validation study to validate the APOS theory within

programming with similar cognitive outcomes as in mathematics learning. Over and above

answering the research questions, the following learning targets were set, based on the EDR

question (section 3.3.3.1) through reflection (Gregor, Müller & Seidel, 2013) namely:

 To empower mathematics and programming teachers within the DBE to acknowledge the

usefulness of APOS that promotes computational thinking within their teachings to

learners.

 To enable learners to understand APOS theory within their programming assignments

and practices.

154

 To let learners apply APOS theory from a programming perspective in their mathematics

learning.

 To enable teachers and learners to see the importance of an LMS as a constructionist

tool.

 To regard programming as a doable subject and not as a threat anymore within the mind

of the teacher and the learner.

 To increase the number of learners taking mathematics and IT.

The initial design process as depicted in Figure 5.7 consists of the identification of the target

group as well, as discussed in section 5.4.2.4. Teaching and learning of the target group is

done by the researcher, who is also an instructor in Greenfoot that is supported by

certification in Oracle. The first three research goals were used during the EDR approach to

establish the factors of computational thinking, the constructs of Greenfoot and the

constructs that promote APOS in Greenfoot. Teaching and learning the target group in

Greenfoot in a stepwise process supported by an LMS. The learners must apply the goals in

the Greenfoot application.

5.4.2.3 Theory development

The initial solution (Figure 5.8) shows what must be done to achieve computational thinking,

but it must be supported by the theoretical conceptual framework based on the applicable

theory discussed in the next section (a).

Figure 5.8: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305)

 Theoretical conceptual framework

A theoretical conceptual framework is developed (Figure 5.9) as the initial framework for

promoting computational thinking skills among learners. The theoretical conceptual

framework is based on the interventions rolled out by the researcher as well as the literature

study done on the problem at hand, regarding computational thinking and several genetic

decompositions. The interaction of learners and computational thinking subjects such as

Mathematics and Science are depicted in Figure 5.9. A discussion can be found in section

2.2.2. For ease of reference the theoretical conceptual framework for learners is once again

presented in Figure 5.9.

155

Figure 5.9: The theoretical conceptual framework for learners

5.4.2.4 Target group

The target group consisted of 18 learners of a private high school. The characteristics of

these learners were determined by Piaget’s cognitive levels of development. The cognitive

level of formal operations is the level which dictates the age and grade of the learner.

Learners should engage at a higher order of thought processes. See section 2.2.5 for

detailed information on the target group. Section 4.5 can be read in conjunction with this

section to gain clarity on the demonstration case as well as the sampling process at section

4.5.8.

5.4.3 Phase 2: Prototyping/ Enactment phase
5.4.3.1 Introduction

The next enactment phase according to Bannan (2013) involves learning targets, innovation,

choosing design principles, identifying and operationalising cognitive and performance

processes in design, and how the design covers the theoretical model.

Van Wyk and de Villiers (2018) describe the process as “Evaluate in practice” (Figure 5.10).

The outcome is the research findings, which can be found in this section under phase 2 on

prototyping and enactment (Plomp, 2013).

156

Figure 5.10: Cross section of EDR model (Adopted from Van Wyk & De Villiers, 2018:305)

Van Wyk and de Villiers (2018) correctly describe the process as an evaluation of artefacts

(Figure 5.10). The findings from these interventions are mapped to the research questions

(Figure 5.13, under the assessment phase 3, section 5.4.5) that support the research goals

of this research.

Figure 5.11: Depicts the flow of Phase 2

The needs analysis highlighted the absence of abstraction among learners and teachers not

using the APOS theory within Mathematics and related computational thinking subjects.

Furthermore, the basic interventions done (Intervention 1, Appendix B-1) with the learner

group show (section 5.4.3.2) that abstraction as minimum requirement was (50%) absent

from computational thinking. In order to conduct mathematical problem solving within

mathematics is a challenge. The literature review as part of the preliminary research phase

1, points out (section 5.4.2.2) that it is not the best option to resolve the challenge within an

existing belief system (section 5.2) such as a belief system about mathematics.

The formative evaluations of the interventions are repetitively criticised based on relevance,

consistency, practicality and effectiveness, as depicted in Table 5.4. The abstraction forms

part of computational thinking and the intervention determines whether this research should

continue, or whether the abstraction skills of learners are fine. The intervention was designed

around a fun element, as noticed through observation that learners enjoyed the intervention

and provided feedback. The intervention is practical and applicable for the abstraction

detection. The intervention is effective to provide an outcome that gives the go-ahead for this

157

research. The outcome is then put in perspective of the four APOS mental structures, namely

Action, Process, Object and Schema. The findings (Table 5.6) show that learners have not

reached a Process stage in APOS but reverted to mechanical actions in some sort or the

other. It is by either physically climbing the steps or using their fingers to enact the process.

These mental structures are used in mathematical thinking to perform manipulations through

mental mechanisms.

Table 5.4:Criteria for high quality Interventions (Adopted from Plomp, 2013:26)

The presentation mode (Nieveen, 2013) of the intervention to accomplish computational

thinking is built around infusing the Greenfoot programming language. Formative evaluation

has led to the introduction of an LMS to enhance the quality of the learning experience, but

accommodate the extra extrinisic load properly. Moodle has been used to house all the

definitions on APOS and provide teacher-learner interaction beyond the notion of the

curriculum. Furthermore, flipped classroom techniques as well as YouTube videos have

been stored on an in-house developed and password protected Moodle website. The website

can be found at (http://wrru.co.za/moodle), to explain abstraction and other related concepts

as learners are confronted by these terms.

Teachers of the private school already adopted the tablet approach to let learners use tablets

to access their curriculum per subject. The formative evaluation approach through

storyboarding has been refined to bring more clarity in Moodle, the chosen LMS for the study

(Bannan, 2013). The researcher, as a qualified instructional designer, created the storyboard

in Moodle and adopted the text as the research progressed. The formative evaluation is

determined by the FEDS framework to produce empirically based interpretations. These

interpretations came from observing teachers and making notes during conversations. The

evaluation is called formative, as it was done prior to rolling it out to learners.

Refinement was done by informing learners of concepts on Moodle through dynamic

questioning and answering approaches, to link “met-befores” with current concepts. These

storyboard techniques (http://wrru.co.za/moodle) make Moodle more interactive and

attractive in terms of teaching and learning strategies and cognitive load theory. The content

http://wrru.co.za/moodle
http://wrru.co.za/moodle

158

needed to guide learners instead of having a static repository of reference material. The

static presentation of most LMSs guarantees the absence of learner interaction, which

nullifies the aim of an LMS and increases extraneous load (Mostyn, 2012; Sweller et al.,

2019).

EDR is based on interventions to generate knowledge on computational thinking and APOS.

Table 5.5 provides a detailed summary of all tasks and interventions used in this research for

the private school that formed the single case study, based on a legend.

Table 5.5: Detailed summary of interventions

No Activity Description
Appendix(A)
Figure(F)
Table(T)

Target
Population Consent

G
ra

de

En
gl

is
h

A
fr

ik
aa

ns

1 Intervention 1 Abstraction (Abstract Thinking)
Assessment

B-1 (A)
4.10 (F)
5.6 (T)

8 X X Yes

2 Intervention 2 Implement Greenfoot (Circumscripted) C-1 (A)
4.11 (F)
5.12 (F)
5.13 (F)

3 Intervention 2A Introduction of Greenfoot D-1, D-2 (A)
4.11 (F)

8 X X Yes

4 Intervention 2B Introduction of a genetic decomposition
(GD)

D-1 (A)
5.14 (F)

8 X X Yes

5 Intervention 2C Introduction of an enhanced GD D-3 (A)
4.11(F)

8 X X Yes

6 Intervention 3 Interaction with the Moodle LMS
(Circumscripted)

E-1 (A)

7 Intervention 3A Tools to use the Moodle LMS E-1 (A)
5.7 (T)

8 X X Yes

8 Intervention 3B Juggling as the APOS example E-2 (A)
5.15 (F)
5.16 (F)
5.8 (T)

8 X X Yes

9 Intervention 3C Moodle and Generalised Terminology E-3 (A)
5.17–28 (F)

8 X X Yes

10 Intervention 4 Creating a Moodle Learner
Management System (LMS)
(Circumscripted)

F-1, 2 (A)

11 Intervention 4A Moodle Learner Management System
(LMS)

F-1 (A)

8 X X Yes

12 Intervention 4B Creating a Cloud-based Moodle LMS F-2 (A)
5.9 (T)

8 X Yes

159

No Activity Description
Appendix(A)
Figure(F)
Table(T)

Target
Population Consent

G
ra

de

En
gl

is
h

A
fr

ik
aa

ns

13 Intervention 5 Greenfoot Access (Circumscripted) G1, G2 (A)

14 Intervention 5A Introduction to Greenfoot G-1 (A)
A-7 (A)
5.29 – 5.37
(F)

8 X X Yes

15 Intervention 5B Revisit previous Activities G-2 (A) 8 X X Yes

16 Intervention 6 Applying Process and Object within
mathematics

H, D2 (A)

8 X X Yes

17 Intervention 7 Greenfoot as Process and Object I (A)
5.33, 5.34 (F)

8 X X Yes

18 Intervention 8 Rollout of code in Greenfoot J (A)
5.35 – 5.38
(F)

8 X X Yes

19 Intervention 9 Making decisions towards
Encapsulation

K (A)
5.39 – 5.42
(F)

8 X X Yes

20 Intervention 10 Revisit encapsulation with Randomize L (A)
5.43 (F)

8 X X Yes

21 Intervention 11 Assessment (Circumscripted) M (A)

22 Intervention
11A

Informing the Learners of the
Assessment

M-1 (A)

8 X X Yes

23 Intervention
11B

The Assessment depicted M-2 (A)
5.44 (F)

8 X X Yes

24 Intervention 12 The Variable in Greenfoot N (A) 8 X X Yes

25 Intervention 13 Moving from Process to Object in
APOS

O (A)
5.10 (T)

8 X X Yes

26 Intervention 14 GD creation on IF statement in
Greenfoot (Circumscripted)

D-1 (A)

27 Intervention
14A

Basic creation of scenario with World
and Actor classes

P-1 (A)
5.45 (F)

9 X Yes

28 Intervention
14B

Manipulation of Actors in a World P-2 (A)
5.46 – 5.47
(F)

9 X Yes

29 Intervention
14C

Interaction of Actor within the world
solving problems

P-3 (A)
4.48-5.51 (F)

9 X Yes

30 Intervention
14D

Adding graph paper as part of GD to
develop algorithm

P-4 (A)

9 X Yes

31 Intervention
14E

The IF statement as a solution to
address problems

P-5 (A)

9 X Yes

160

No Activity Description
Appendix(A)
Figure(F)
Table(T)

Target
Population Consent

G
ra

de

En
gl

is
h

A
fr

ik
aa

ns

32 Intervention 15 Testing Greenfoot to be accepted
among teachers

Q (A)
A-8.1 (A)
A–8.2/3 (A)

9 X Yes

33 Intervention 16 Visit a group of learners outside the
Greenfoot realm of instruction

U (A)

9 X Yes

34 Intervention 17 Manufacturing Greenfoot Badges V (A) 9 X Yes

5.4.3.2 Intervention 1: Abstraction (Abstract Thinking) assessment (Appendix
B-1)

 Description
For a full description see section 4.5.4.2.

 Results and discussion
The challenge on this intervention is infer the position of the learner after a specific number

of actions were taken by that learner. These actions were stepping on and off the step. The

researcher illustrated the action by physically stepping up and down on a chair. The

responses are grouped and reported on per theme in Action, Process, Object and Schema.

Videos such as the YouTube link https://www.youtube.com/watch?v=webaZKOMOyU were

given to the learners, which could be pre-watched before attempting to solve the position of

the person after taking 239 steps. If the learners enacted the task, as in the handout, the

learner took a long time to get to the answer, exceeding 2 minutes. Some learners used their

fingers to simulate climbing the steps and counted out loud as they let their fingers do the

walking. Other learners applied abstract thinking and they were already able to discover a

pattern within the flow of the question. They determined the answer in their minds. The

solution to the problem was for the learner to use a schema of number systems embedded in

his/her mind and not enacting the steps physically to determine the answer. Using their

fingers is just another form of Action taken by learners.

Table 5.6 shows “Finished on Floor” answers with a total of 9. This indicates that learners

either did not understand the question or in their mind understood what the question meant,

but although their understanding was correct according to them, it was not in line with the

concept definition of odd and even numbers. The “Finished on Step” total of 9 out of a

possible 18 learners showed that 50% was able to operate at a process/object and schema

level when applying the APOS theory. The Process level indicated that these learners need

https://www.youtube.com/watch?v=webaZKOMOyU

161

not enact calculations but perform them in memory as a process. They probably also

developed an odd and even number object that acted as a Schema which they used to find

the solution to the problem. The certainty that these learners did not guess was the speed

with which they answered the question without hesitation. The results are displayed in Table

5.6 depicting the two groups of learners in grade 8.

Table 5.6: Abstract thinking among grade 8 learners

GROUPS Finish on Floor Finish on Step Guess TOTAL

A 9 9 - 18

B 9 9 - 18

TOTAL 18 18 0 36

The intervention is considered based on relevance, consistency and effectiveness.

Relevance – There is a need for this intervention seeing that it gave the researcher and

learners insight in their abstraction skills. It thus contributed to the validity of

content in abstraction.

Consistency – The construct is logically a success for it attracted major learner attention

through enactment strategies that learners developed to find an answer.

The whole class was buzzing with discussions on the problem. The

example was even taken to the playground, where learners interrogated

other learners with the intervention.

Effectiveness – The task is effective in that learners’ thinking skills were clearly illustrated in

their answers. The task also motivated further investigation into the

learners’ mathematical and science skills. Having done the task that

highlighted the abstraction challenges of learners, the following intervention

motivated the use of the Greenfoot programming language.

 Findings
For following discussion on the analysis of the intervention, the following findings can be

stated.

Finding 1-1: Enactment in a physical format still governed the learner’s thinking processes

Finding 1-2: Abstraction is a challenge for most learners and need attention

Finding 1-3: Computational thinking is a challenge for all leaners

162

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Most learners enacted the task by using their fingers to simulate their legs, and so trying to

beat the time limit. Others used their feet to enact the problem given, which is maybe worse

than using their fingers. Substituting fingers for feet is already providing a form of abstraction,

but it remains an enactment of body movement.

(ii) Process
A minority (less than 50%) of learners did enact in the mind as a mathematical problem

associating “even” with the floor and “odd” being on the step. The mental construct of

Process helped to identify that it is about odd and even numbers.

(iii) Object
The minority group of learners saw odd and even numbers as part of their being. They had

the odd/even numbers as an object they could relate to.

(iv) Schema
The minority of learners used their number systems schema to isolate odd/even numbers.

This triggered thought processes within the learners’ minds to deal with the problem at an

abstracted level of thought.

 Summary
Words like minority or majority refer to less or more than 50% respectively of the learners.

Having interviewed learners that got the activity correct showed that they still did not use the

odd-even number system as guideline. Although the results showed a 50-50 split in the

class, the correct answer was provided by the minority of learners. This indicated that

computational thinking was absent to a larger extent and motivated further interventions.

Questionnaires were handed out to some learners as depicted in Appendix B-1 and B-2. The

learners indicated that they struggled with the current mathematical concepts, but above all

had challenges with previous mathematical concepts such as the question on the sum of the

triangle’s angles. The researcher assumes that the action phase that could have ensured

their understanding was not done by previous teachers.

5.4.3.3 Intervention 2: Implement the Greenfoot programming language
(Appendix C-1)

Having found challenges among learners to successfully answer the exercise on abstraction

in Intervention 1, the findings supported the introduction of the programming language to

163

learners in order to assist with their thought processes in developing computational thinking

(Selby & Woollard, 2014). When looking at what computational thinking encompasses, the

loose interaction of learners with flipped classroom concepts brought about an enhanced

theoretical conceptual framework as depicted in Figure 5.12. The goal was to expose

learners to a visual programming language with a gaming perspective. Introducing Greenfoot

meant that learners had to adapt through accommodation or assimilation by using a

programming language and develop a new belief system around programming. Programming

now acted as a computational notation, but also a meta-belief system, to devise

computational models, controlled by a machine (Appendix C). Prior to any algorithmic

developments the learners must have had a sound knowledge of the Greenfoot IDE in

general. The theoretical conceptual framework (section 2.2.3) in conjunction with the

literature review from an EDR perspective is updated to the depiction in Figure 5.12. All the

changes are shown in yellow.

The learner must be exposed to computational thinking using the Greenfoot programming

language. By using the Greenfoot programming language, the algorithms that were

developed based on some problem, were subject to reflective abstraction dealing with mental

mechanisms in APOS theory. This was achieved by understanding and utilising Learner

Working Memory optimally as depicted in Figure 5.12, to reduce the cognitive load. Keeping

the outcome in mind, the IDE as pointed out, remained a huge obstacle, as the IDE is the

heart of the Greenfoot programming language, the controlling element from where

computational thinking must be practiced. How the cognitive load can be reduced is by

decreasing the extraneous (extrinsic) load (Sweller et al., 2019), as illustrated in Figure 5.12.

164

Figure 5.12: Adaptation of the theoretical conceptual framework to enhance computational thinking among learners in Grade 8

165

 Description
Intervention 2 (Appendix C) was introduced to drive computational thinking through

Greenfoot as the programming language with APOS theory as lens. The goal was to guide

learners towards computational thinking by using Greenfoot to act as computational notation.

It was assumed that abstractions of computational models through computations can be

generated by learners. The computations were supposed to run as computational models on

some machine(s), controlled by an algorithm developed through computational thinking by

learners. The computational model was Greenfoot in this case.

 Results and discussion
The Greenfoot programming language was not an obvious straight forward intervention, and

sub-interventions were necessary after formative evaluations. Formative evaluations or

formative assessments were done prior or during the intervention. The formative evaluations

focused on learners switching-on PCs and logging into their accounts. This was followed by

allowing learners to launch the Greenfoot scenario, which did not happen. This was done to

cast some light on the successful outcome of the intervention and learners not spending time

on peripheral activities. Peripheral activities are those activities which are of importance to let

learners get to the programming language IDE, such as knowing their way around the

operating system, understand the process of compilation and logging in and out. In a

nutshell, it is about not having to struggle with the basics. Although learners were given

videos and documentation to pre-study one week prior to the first class on how to deal with

the Greenfoot IDE, the pre-study was unsuccessful. The learners just did not know what to

do, which created frustration among them. Documentation included videos and steps on how

to load a Greenfoot scenario were given to learners, stored on the school’s shared folder on

the server. Unfortunately, the learners did not pre-study or researched the documentation on

starting a Greenfoot scenario. Formative evaluations were done by the researcher in allowing

the learners to load a given Wombat scenario. Learners failed to find the Greenfoot

programming language on their workstation, let alone opening the Greenfoot IDE.

Many researchers (Brennan, 2012; Brennan & Resnick, 2012; Papavlasopoulou, Giannkos &

Jaccheri, 2019; Yu & Roque, 2019) use Scratch as a favourite programming language to

grow computational thinking among learners. However, debugging and use of language

constructs are important components of a programming language to assist learners with

computational thinking, but they are absent from the Scratch programming language

interface. Greenfoot does have that progression or path from visual coding approach to lines

of coding and be a higher order language to promote computational thinking. Scratch is

about boxes or shapes that represent a control structure without abiding by strict syntax.

These shapes will only fit together if they belong together, which simulates strict syntax.

166

However, Greenfoot also makes use of a visual interface (dual modality) that can be

programmed without writing any lines of code, as depicted in Figure 5.13.

The formative evaluation (Gregor, Müller & Seidel, 2013) through observation was

necessary, as learners could not use the IDE of Greenfoot or even reach that point. The

intervention was designed from a programming perspective to implementation, but because

of the challenges, such as physical enactment among learners (learners struggled to reach a

Process level of the Greenfoot IDE), and they were just not ready to use Greenfoot prior to

implementing sub-interventions, 2A, 2B and 2C. The “prototype of the intervention” to

introduce Greenfoot (Nieveen, 2013) did not produce the desired outcome, namely the

correct use of the Greenfoot integrated development environment (IDE), in that it failed as an

intervention theory. Learners were unable to understand or figure out what the purpose of an

IDE was. This is also the reason why formative evaluations are important to identify shortfalls

prior to the rollout of any intervention. One learner commented that she is in the arts and “this

programming is not for her”. Even during normal teaching and learning activity, formative

evaluations are sometimes overlooked to establish the “met-before” for students to

participate in a new lecture or class. The new lesson must align with previous knowledge

gained. It was found that most learners (90%) were not ready to accept Greenfoot as to how,

where and why Greenfoot should be used. This should hold true for any programming

language used by learners for the first time (researcher’s intervention). The programming

language was foreign to most students as “met-befores” were lacking and foreign to them.

The single intervention of introducing Greenfoot then spiralled into three sub-interventions

namely 2A, 2B and 2C as discussed further on in the section.

Intervention 2A: Introduction of a genetic decomposition (GD) (Appendix D-1)

Intervention 2B: Introduction of an enhanced GD (Appendix D-2)

Intervention 2C: Help Documentation in Greenfoot (Appendix D-3)

When studying any programming language, the habit in never stating anything about the

IDE, creates its own challenge. This may also undermine further research. Journal articles

seldom speak of this part where learners are not the ideal subjects and assume the subject’s

knowledge about the IDE as a given. Usually this is where learner confusion prevents

learners from interacting with the IDE and can be instrumental to failure in the rollout as the

student commented earlier.

The introduction of the programming language (Greenfoot) called for formative evaluations to

be considered such as:

167

 Formative evaluation 1: To establish a Greenfoot environment among learners the

researcher must consider aspects of learner “met-befores”. When using the term

environment, it refers to the IDE and installation of the product. The time spent on the

IDE is a basic Action to Process activity where learners should explore the IDE and

memorise how to start the Greenfoot programming language, how to compile and edit

code. The installation of Greenfoot is also of significance to those learners who want

to install Greenfoot on their home PCs. The researcher should consider this as pre-

knowledge.

 Formative evaluation 2: To observe the progress of Piaget’s organisation and

adaptation processes (Woolfolk, Winne & Perry, 2003; Bormanaki & Koschhal, 2017).

The researcher observed the status of all the learners within the group. Through

observation, the researcher became aware that some learners did not commit to any

Greenfoot activity. They did not participate in working with Greenfoot, but allowed the

fellow learner to take over. The researcher then assisted these learners or asked

those learners that could build scenarios in Greenfoot to assist other learners. This

also created a sense of urgency and collaboration among learners. Here the learners

with a low self-esteem now have the chance to show those mathematics performers

how to approach Greenfoot. This also addressed the Pop-Ed challenge raised by

Papert (2005) as depicted in Figure 5.13 as part of the theoretical conceptual

framework.

 Formative evaluation 3: To consider the status quo of learners within Greenfoot and

decide on a genetic decomposition (GD) to assist the learner to accomplish

equilibration as part of the adaptation process.

 Formative evaluation 4: Consider and evaluate the GD and augment the GD to

allow the learner to independently be able to rollout a scenario within the IDE of

Greenfoot using flipped classroom techniques.

As pointed out by Denning (2017) following any sequence of steps or algorithm does not

necessarily make you a computational thinker. It is about finding those appropriate models of

computation to create a solution to a formulated problem directed to some machine as

depicted in section 4.5.3(a), Figure 4.11.

168

Figure 5.13: The Wombat Actor object within MyWorld World Object

The IDE embedded within Greenfoot was a challenge as learners struggled to manage

‘getting into’ Greenfoot and hence a genetic decomposition (section 2.2.2.2(b)(v), Figure

2.20) was necessary before using Greenfoot. The concept of flipped classrooms was

selected as an option to utilise computer programming periods more effectively at school,

which was triggered by formative evaluations among teachers or educational experts. The

only difference in the technical status of teachers and learners was the local PC compared to

the remote desktop (RDP). Because of RDP technology, which dictates memory sharing

among workstations attached to the server, learners must make the compilations count.

Making compilations count refers to learners ensuring code is correct the first time round so

as to not wasting CPU cycles on the server. The RDP sessions prohibit quick compilation

and learners became restless when they compile code at the same time. The flipped

classroom concept was informally described to learners and they had to take it upon

themselves to access videos on the Internet. The Internet was accessed by only two

learners, but this was expected seeing that only two learners prepared the week prior to

starting programming language classes. Although this helped to roll out the genetic

decomposition of the IDE more elegantly, the flipped classroom concept needed refinement.

No official research has been done to compare a flipped classroom with the outcome and

purpose of a genetic decomposition. It is a combination of both GD and flipped classroom

techniques. The GD acts as a prescriptive tool and the flipped classroom illustrates what is

prescribed and the learner can experience learning from the specific to general.

During the formative evaluation, the ability to create scenarios was analysed through

observing teachers during the Greenfoot sessions as described by the FEDS framework. The

formative evaluation was naturalistic within a PC laboratory using the Human Risk and

Effectiveness strategy within the FEDS framework (Venable, Pries-Heje & Baskerville, 2016).

Observing especially the CAT teachers, notes were made prior to a rollout to the learners,

169

which compounded to experiences during class and their struggles in not knowing where to

click and what option to select. The conceptual status of the teacher/student’s current

dilemma was still prominent, as represented in Figure 5.12, when examining the complexity

cloud. Although the Greenfoot programming language was introduced, the APOS theory

stalled at the Actions phase and no progress was made. The learners were floating between

several theoretical subjects and apart from the confusion caused by this it did not help the

learner with organising his/her mind around the subjects as required by the DBE. The aim of

the enhanced theoretical conceptual framework as depicted in Figure 5.12 was to focus on

the introduction of the Greenfoot programming language completely outside the curriculum.

Having added the Greenfoot programming language to the learners’ cognitive load may have

caused more academic stress. A positive attitude among the learners was needed, which

might have enabled learners to deal with cognitive load and enhance construction of

artefacts (Papavlasopoulou, Giannkos & Jaccheri, 2019). Mostyn (2012) regards cognitive

load as the mechanics of how the human brain processes data so that learning takes place.

Using a GD through ACE is structured in such a way that the application of APOS theory

maintains cognitive load theory.

 Findings
Finding 2-1: Learners do not diligently follow instructions to do homework, especially when

it concerned flipped classrooms and Internet references

Finding 2-2: Only those learners with typical “met-befores” who completed the homework

given to them, were keen on investigating how the Greenfoot IDE worked

Finding 2-3: The “getting-to-know” the IDE or programming language environment cannot

simply be ignored and accepted as a ‘given’ known to learners

Finding 2-4: Learners need a GD or some proven method to clarify the IDE as dictated by

formative evaluations among teachers

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Actions are taken by learners to load or run Greenfoot. Because of the existing RDP setup,

these scenarios compiled and opened at a very slow speed, which sometimes made the

exercise a frustrating one. Learners created a Greenfoot World and added the Wombat Actor

into the World of Greenfoot. Most learners were struggling because of they did not

understand the IDE, which resulted in either assistance from fellow learners or the

researcher. This slowed down the goals which were set for that lesson, as the activity

became collections of actions or steps that needed to be looked up by the learners.

170

(ii) Process
Learners were asked to watch videos on the Internet to acquire the skill of creating a

scenario without performing manual steps written down. Because of the slowness of the

system during compilation of the scenarios, learners were asked to view these videos.

Learners performed Actions according to a physical list of steps and had no Process in

place. Creating a scenario and populating the scenario with multiple Actor objects became

an enjoyable exercise as they practiced more, and the Actions were slowly turned into a

process. It became popular because learners experienced immediate results, but they still

followed step-by-step actions to achieve the goal. Although some actions transformed into a

Process, the overall usage remained action driven.

(iii) Object
The learners had an abstracted intuitive idea but no Object or thought processes yet,

because they still had to refer to the physical steps.

(iv) Schema
No Schema. The conversion of the Actions taken by learners into a Process might have

triggered an Object, which would have added to a Greenfoot Operational Schema.

Unfortunately, learners did not practice at home, which was unacceptable, because it slowed

down the research and prevented the stages of APOS theory. The researcher constantly

made references to mathematics learning taking on the same progression path, so as to

bring that to the attention of learners.

 Summary
Due to learners not participating in the documentation and videos loaded on the shared

folder of the server, sub-interventions were needed to make some progress with the

research. The advice and directions given to learners on what to do and which activities to

follow need to be more presentable for learners to digest, as in the case of learner sessions.

In order to align the presentation and requests, the following sub-interventions were

suggested during formative evaluations of learners.

Intervention 2A: Introduction of a genetic decomposition (GD) (Appendix D-1)

Intervention 2B: Introduction of an enhanced GD (Appendix D-2)

Intervention 2C: Help Documentation in Greenfoot (Appendix D-3)

The EDR research question needed to be revisited in order to obtain clarity on the goal of the

interventions. The research question states: “What are the characteristics of an enhanced

learner’s teaching and learning strategy that can empower learners to master computational

171

thinking skills through APOS theory, infused by a programming language at high school

level?”

These characteristics prescribed a visual component to assist learners with understanding

how to use Greenfoot as a programming language. Learners found it challenging to read the

prescriptive GD and to translate the text into actions. Visually, through flipped classroom

techniques, the learners we able to take the necessary actions to achieve the execution of a

scenario. The GD was rolled out by the researcher as a prescriptive tool in presenting a

lecture.

5.4.3.4 Intervention 2A: Introduction of a Genetic Decomposition (GD)
(Appendices D-1, D-2)

 Description
The proposed GD was revised, as there were simply too many variables which the learners

had to master. The goal was to create focus and make learners comfortable with the IDE of

Greenfoot. The GD was supported by flipped classroom techniques to increase an

understanding of the IDE in Greenfoot (http://wrru.co.za/moodle). The intervention was

concerned with the breaking down of the Greenfoot environment such as the IDE. Learners

also had to experience the Greenfoot editor and study the Help option showing the classes

available and the methods per class as prescribed by the GD depicted in Appendix D-3.

 Analysis and discussions
The GD for “Loading a Greenfoot scenario” on the Wombat example consists of Intra-, Inter-

and Trans-Wombat stages namely:

 Intra-Wombat-Scenario Stage: The learner is focused on the computer and

Greenfoot scenario running as an application. They are confronted with looking up

every action and relying on videos and the explanations of the researcher. Videos can

be found on Moodle website (http://wrru.co.za/moodle).

 Inter-Wombat-Scenario Stage: The Actions of a learner to watch the video before

creating a scenario is now memorised and the actions were embedded as a process.

The process was encapsulated as an object called “Loading a Greenfoot scenario”.

The learners separated the computer operating system and Greenfoot in their mind.

This was clearly visible through observation during their interaction with Greenfoot, as

they focused more on Greenfoot. Only when a scenario needed to be saved on the

server, did they ask questions. The researcher explained the composition or structure

of a Greenfoot scenario, so learners could understand where sound, images and

source code are stored.

http://wrru.co.za/moodle
http://wrru.co.za/moodle

172

 Trans-Wombat-Scenario Stage: The schema was thematised and formed a static

structure to be acted upon to “Create Greenfoot scenarios”. The schema is coherent

as it guarantees success for learners when loading Greenfoot scenarios, but also

allows for the learner to act on the schema to create scenarios for further

development. The intervention was introduced by the researcher.

Through observation, the researcher could easily determine that learners struggled to

execute the “Load a Greenfoot Scenario” as a text based prescriptive activity (Figure 2.20),

although it was led by the researcher according to findings by Zeitz and Spoehr (1989)

(section 2.2.2.2(c)(ii)). Through conversations with learners, they stated that they do not have

internet or the Greenfoot installation at home. Videos contributed towards the learners’

understanding. The Actions to perform the activity, such as loading of a scenario, could have

converted into a Process much faster if learners watched the videos. Most learners (15) did

not access these videos, which lengthened the time of the research to reach the Process and

subsequent phases.

 Findings
Finding 2A-1: Learners were confused as how to obtain access to videos on Greenfoot

scenarios

Finding 2A-2: Learners still did not watch videos in general for learning purposes

Finding 2A-3: Cognitive load was still a problem in observing learners. They consulted their

neighbour’s work to manage the Greenfoot programming language

 APOS discussion
Through observation and questioning learners remained passive learners, but their cognitive

load became greater. The learners have not memorised any actions and hence no Process,

Object or Schema developed.

(i) Action
The learners resorted to numerous actions which they tried to obtain from anybody in order

to ‘survive’. The other mental constructions therefore do not exist.

 Summary
Actions were the only source these learners attempted in order to use the Greenfoot

programming language. However, a GD could be used as a step-by-step guideline to assist

learners to work in Greenfoot. Unlike mathematics, learners will not be able to build silos of

concept images to engage in programming.

173

5.4.3.5 Intervention 2B: Introduction of an enhanced GD (Appendix D-1)

 Description of Intervention 2B
The learners were put through a GD on the Greenfoot IDE to let learners argue and think on

a programming level rather than worrying about driving the application. The researcher

taught the learners by having them execute the GD in a practical programming session. This

was achieved by drilling editing and compilation techniques into learners when confronted

with a scenario. Drilling means to repeat a basic scenario repetitively. Much more emphasis

was placed on Greenfoot and less emphasis on the operating system and terminal in

general. The learners opened the Greenfoot environment and remained within this

environment. Files were only saved to disk on server by default.

 Analysis and discussion
The researcher engaged with learners as they loaded a Greenfoot application. The

researcher had to assist learners throughout the class, which resulted into an operating

system exercise. The importance of learners to acquire the skill to engage correctly and

quickly can speed up the goal of the research by letting the students engage in the

programming language through writing algorithms. Through observation, the researcher

noticed that the learners struggled to create a scenario and to get it to function.

Through observation the researcher furthermore noticed that the learners’ attention on

programming was distracted by several unrelated activities that caused stress. These

aspects, distant from programming, included:

 The workstation itself as a tool, and the slowness through an RDP session that

prevented the learners from accessing Greenfoot

 The Greenfoot programming language and the IDE. The learners had to make the

mind shift that the IDE is an aid towards constructing algorithms or code

 How a scenario is saved to disk. Learners had to save the scenario on the server

 The My Documents folder on the workstation and that of the server became

confusing to the learner, for although the names were identical, the path is different.

This led to the learners struggling finding the scenario to start a fresh Greenfoot

application

 The running or execution of the scenario

 The loading and execution of an existing scenario

 Installation of Greenfoot from scratch on the PCs where the programming language

was not yet installed

 How the scenario executed and the reason for taking such a long time. As mentioned

before, the RDP sessions were dependent on shared memory on the server,

influenced by all learners working on the server

174

The abovementioned challenges required learners to find help somewhere quickly and in a

ubiquitous manner without waiting on the researcher or fellow learners to assist. The GD was

augmented by adding an LMS where videos could (and still can be) be watched to facilitate a

repetitive approach for learners who needed to re-visit such a GD, as depicted in Appendix

D-2 (http://www.wrru.co.za/moodle/course/view.php?id=17).

The theoretical conceptual framework was adjusted (Figure 5.14) to accommodate the

Moodle LMS, which addressed the needs of learners when they searched for videos and

code snippets. Moodle also minimised the cognitive overload of the learners, as they could

find the necessary resources to create Greenfoot scenarios. The addition of Moodle further

addressed the complaints used as an excuse not to participate in flipped classroom

techniques. Any excuses of learners were set aside by directing them to Moodle, thus

addressing the unwillingness of learners when the researcher requested them to watch

videos in association with the GD. This called for new rules to be implemented in using the

Moodle LMS. These rules were that the researcher made it imperative for learners to visit the

Moodle site and watch these videos. More important was to convince learners that the LMS

was a source of information that would assist them fast in providing answers to most of their

questions. A few test runs were executed through asking a question and then visiting the

LMS to locate and watched the video to find a solution to the question. The videos were all

placed in one location, preventing learners from visiting unknown sites in their search for

Greenfoot videos. There was no need for learners to access the shared drive on their school

server anymore. The interventions were assessed based on relevance, consistency and

effectiveness, as depicted in Table 5.4 in section 5.4.3.

Relevance – For this intervention it was needed to include the Moodle LMS, as it positively

addressed the learners’ inability to implement a Greenfoot scenario, which was the starting

point of this research. It contributed to the validity of content in an enhanced GD.

Consistency – The construct is logically well designed, based on the GD definition of intra-,

inter- and trans-stages as a didactical construct. Consistency is obtained by adding a GD to

the theoretical conceptual framework depicted in Figure 5.14.

Effectiveness – The intervention was repeated five times, but learners realised that they

could perform these actions on their own with the aid of Moodle. Learners could visit and

execute the steps as many times as they required for their understanding. This promoted

self-confidence that the tasks were do-able. Some learners progressed further than were

expected of them. This was detected through observation. The researcher could easily see

whether the learner was creating a scenario or simply haphazardly clicking all options

available.

http://www.wrru.co.za/moodle/course/view.php?id=17

175

Figure 5.14: The proposed theoretical conceptual framework for enhanced learning using programming language and LMS

176

The criteria on relevance and consistency were met through quality interventions, based on

the GD. The consistency was achieved through introducing a GD as formatively evaluated by

the teachers who attended the Oracle sessions. The framework above (Figure 5.14) is a

stepwise outcome for educators, which has practical implications for educators and learners

as expected by design.

 Findings
Finding 2B-1: The Moodle was well received in that learners could access the platform in

class

Finding 2B-2: The cognitive load is more relaxed as learners had a repository where

information could be found

Finding 2B-3: The researcher had to impose strict measures to ensure that learners use

Moodle. These measures imposed by the researcher were challenging the

learners to see who could login quickly and find a topic. The researcher

issued a fizzer sweet during class when a learner managed to find the

answer in Moodle

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
The learners quickly remembered their login and passwords, which was their learner ID, and

they devised their own password.

(ii) Processes
After logging in and out, some learners returned with lost password requests, but the

researcher made them record it in a safe place. The process in waiting for a new password

enforced the learners to memorise their password and login procedure. The process was

incentivised by giving learners fizzer sweets when they performed well.

(iii) Object
The learners now developed Moodle as a source of information for research as an object.

The term ‘login; described the object, which caused learners to login without asking for help

or assistance.

(iv) Schema
The viewpoint of the learners now changed in having Moodle as a partner in their educational

process. This could be observed in class when they were confronted with a challenging

aspect, upon which they quickly went to Moodle.

177

 Summary
The Moodle LMS was introduced to reduce cognitive load; extrinsic load to be specific.

Learners managed to build a schema towards finding solutions to challenges when they

engaged with the Greenfoot programming language.

5.4.3.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3)

Intervention 2C was a starting point to understand the need among the designated group(s)

of learners, how the “Help” menus could assist learners in their quest to become self-

autonomous. This was a typical constructionist approach but built on a truth basis, as

proposed by experts in the field.

 Design
The learners were given exercises to explore the “Help” menus in order to better understand

the Greenfoot programming language. Greenfoot consists of different classes grouped in

libraries, which required from learners an understanding on how to use these structures in

order to solve problems and develop algorithms.

 Method
Learners answered a questionnaire regarding the component structure of Greenfoot, such as

the classes to be found in Greenfoot, among others. They could look it up using the terminal.

This triggered the next procedure, Intervention 3A, which aimed to ensure a trusted source of

information and counter the relative epistemological dilemma caused by constructivist

approaches.

 Interpretation
The learners were observed and assessments (Appendix E-3) were given to them in order to

interpret their understanding of the Greenfoot family of classes.

5.4.3.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1)

Based on the previous intervention (2C), Moodle LMS was not unconditionally accepted as a

source of information, but through forced guidance by the researcher. Intervention 3

addressed the Moodle LMS as a marketing strategy and communications tool to these

learners. The goal was to generate faith in Moodle as a tool through which the learner could

learn at his/her own pace. The only way this could happen was to ensure that assistance

could be found on Moodle LMS and that it is a trusted platform. Preparation of work always

had to be towards the Moodle platform as support. It was decided to state the prerequisites

for using Moodle LMS and an exercise that demanded physical actions from learners; and

this exercise evolved into into a process and object. This was achieved by sub-interventions

of intervention 3, namely:

178

Intervention 3A: Tools needed by the learners to use the Moodle LMS

Intervention 3B: Juggling as the APOS example that involves enactment among learners

Intervention 3C: Moodle and Generalised Terminology

5.4.3.8 Intervention 3A: Tools for Moodle (Appendix E-1)

 Description
Learners were given access to Moodle and the prerequisites were emailed to them. The

prerequisites included:

 Headphones to listen to videos

 Microphone/Skype to create own sounds

 PC to create applications

 Explain to each other how code/theory works

 Always do your own work and ask for help when needed

 No real homework apart from watching videos

 No race or competition

 http://moodle.efundo.co.za at the time (now http://wrru.co.za/moodle)

 Write down list of names

When using Moodle LMS (Appendix E-1), the goal was to state a policy around Moodle

usage in terms of what the learner needed and what was expected of him/her as discussed

in section 2.2.2.2(c). The graphics of the Greenfoot emblem was also uploaded onto the

Moodle site to foster a relationship for all learners to belong to the Greenfoot initiative.

 Analysis and discussion
The request to adhere to the suggested list (Appendix E-1) was received well in the sense

that learners were excited about the proposal, which made the classes already more

interesting. Through observation, the researcher saw that learners were excited to learn in a

different way. There were instances (5) where learners left their prerequisites at home. The

positive attitudes meant learners wanted to attend the classes and participate in discussions.

This was noticed through observing the eagerness and enthusiasm of learners who came to

class. The learners quickly discovered that the prerequisites were aimed at promoting their

successful learning of Greenfoot. Measuring successfulness was based on the learners

using their headphones in class to watch a video and then becoming involved in watching

and applying per video guidance. The researcher allowed each learner to access these video

clips within a 3-minute timeframe. The prerequisites such as headphones and microphones

gave others an advantage to learn on the go. Those without their headphones and

microphones had to watch a silent video. The prerequisites were loaded onto the LMS as

part of the instruction list but also handed out to learners in physical format (Table 5.7).

http://moodle.efundo.co.za/

179

Table 5.7:The prerequistes for using Moodle

Learners could use headphones in class, which was a revolutionary step when the

researcher observed the positive attitudes of learners. The positivity was observed in the

increase in questions these learners had on Greenfoot, which was more than usual.

 Findings
Finding 3A-1: Learners found this a better directive for learning, as they could bring and

use their ear/headphones in class

Finding 3A-2: Not all learners brought the pre-requisites to class

Finding 3A-3: Learners developed an on-demand learning (ODL) approach, to quickly

finding answers to their questions on creating a scenario and not having to

wait for the researcher to come to the rescue, thereby saving a lot of time

with learning concepts

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners took action in general by bringing headphones with them to class, but not always.

Learners watched videos as per topic or concept and made progress.

(ii) Processes
Watching videos on specific concepts forced ODL, and as a result learners formed

processes on rolling out concepts in Greenfoot, which placed them in a Process phase.

 Prerequisites

1 Headphones to listen to videos

2 Microphone/Skype to create own sounds

3 PC to create applications

4 Explain to each other how code/theory works

5 Always do your own work and ask for help when needed

6 No real homework apart from watching videos

7 No race or competition

8 http://moodle.efundo.co.za

9 Write down list of names

http://moodle.efundo.co.za/

180

(iii) Object
The Moodle LMS was an object with which more actions could be taken as the concepts

became more complex.

(iv) Schema
The learners held the LMS object as part of their learning schema.

 Summary
The list with pre-requisites was received well, although it was not always brought to class.

This was probably a normal learner challenge with a normal daily school routine at any

school. So, it is not something specifically targeted at this research and activities. The

researcher wished that the programming language would trigger an enthusiasm that would

foster more responsibility to make learners remember to bring their prerequisites along. Most

important is the ODL that may have far reaching effects on other subjects as well.

5.4.3.9 Intervention 3B: Juggling enactment to enforce Moodle usage among
learners (Appendix E-2)

 Description
Having done a formative evaluation among teachers during the Oracle sessions, the juggling

exercise was popular among teachers and the researcher saw the opportunity to rollout the

juggling to learners as well. The aim was to involve learners with the juggling and that these

learners at the same time would find it rewarding to participate, as this is a scarce skills

development.

Having added Moodle in Figure 5.14 as part of the theoretical conceptual framework, the

Moodle concept needed some marketing and acceptance to and by learners. Moodle needs

to be embedded into a learner’s mind as a source of knowledge. The goal of the intervention

was to promote Moodle as a resource where learning could take place. Learners needed

living proof of the contribution of Moodle to their learning. The researcher used an example

by Papert (1980) to teach individuals how to juggle. Learners were asked to bring three small

light weight balls to school that could fit in the palm of their hands.

 Analysis and discussion
The researcher showed learners how easy it is to juggle three balls and asked them to do the

same. The reaction was overwhelming, but the result was disastrous across the board.

Learners were then directed to the Moodle page and asked to look at the video on Juggling.

The video was shown in class as well and the learners needed to “LOOK AT THE

VIDEO” and “IDENTIFY” Actions. The APOS theory mental structures were pointed out to

learners, performing an Action in tossing one ball at a time. This should create a Process

181

called Juggle, which constituted a Schema, for doing or accomplishing “Juggling” as an

Object. The learners agreed that they could follow a strategy on how to juggle.

Learners accomplished the task if they kept to the rules. Appendix E-2 shows the

questionnaire (Figure 5.15). Learners admitted guilt of not using the Internet or Moodle upon

failing (12), when others succeeded (17) when using these tools. The results are discussed

further down.

Figure 5.15: Questionnaire example

The juggling activity depicted in the video on Moodle and per illustration in class by the

researcher shows that actions are needed before the actions become a process. This then

seamlessly enables the learner to perform juggling to whatever level each learner feels able.

They also realised that they had to bring the juggling devices (balls) to class in order to

participate in a good lesson similar to having the right equipment such as textbook and

calculator to do mathematics. The juggling activity was well received, and all the learners

took part in the juggling exercise.

Table 5.8: The results of Intervention 3B

Video Watched Video Not Watched

17 12

Seventeen out of 29 learners watched the video on Moodle on how juggling can be

performed. Initially, 12 leaners did not watch the video, but those who did could complete the

activity and advanced to juggling with two balls. This influenced the 17 other leaners to also

watch the videos and as a result, which the researcher found in their answers on the

questionnaires handed out, the “flipped classroom” technique brought meaning to their

learning. The aim of the exercise was to highlight that the activity needed actions and

practice. Questionnaires (Figure 5.15 and Figure 5.16) were handed out to learner, which

182

revealed some statistics on their juggling. Juggling with two balls delivered an acceptable

success rate (30%). Eleven learners juggled and seven learners managed to juggle two

objects physically, respectively, and four learners could juggle one object at a time within the

timeframe. The overall outcome and perception of the learners were that the goal of juggling

could have been reached or achieved earlier if more practice was put into the activity, and

they started out in the correct manner by bringing the objects to class and watched the video

beforehand. Many came back later in the month, stating that they were now capable of

juggling three balls (Link in Teams3). What emerged from this exercise as stated by the

learners was that they forgot to bring any juggling balls to class and hence could not perform

the actions, which had a direct effect on their competence and success rate. As indicated in

Figure 5.16, this learner identified the activity as a Process and wanted to exercise every

day. The learners also indicated that frustration was caused by not knowing how to juggle,

but through watching the video on Moodle, he managed to succeed.

Figure 5.16: Comments on Juggling

This is also analogous in their preparation of schoolwork in general. This questionnaire and

practical exercise is a step towards creating a process instead of staying with actions. The

activity sparked such interest that the learners started practicing juggling during breaks and

in class. One learner just copied her partner’s questionnaire answers which was an

exception, but disappointing. Twelve learners stated on the questionnaire that they had no

Internet access at home. The researcher had to take their word on the comment that they

had no internet at home, but experience shows that learners will cast the blame somewhere

3 https://teams.microsoft.com/l/file/A18BAF8B-B99B-42FB-9150-0B0C2D46A080?tenantId=90bb22db-a73a-4971-b7d6-
7ca3ef90cf06&fileType=pdf&objectUrl=https%3A%2F%2Fcputacza.sharepoint.com%2Fsites%2FResearch742%2FShared%20
Documents%2FGeneral%2FResearch%20Scans%202018%2FCaptured%20-
%20Curro%20Grade%208%202014%20Greenfoot%20programming%20English%20Group%20Juggling.pdf&baseUrl=https%3
A%2F%2Fcputacza.sharepoint.com%2Fsites%2FResearch742&serviceName=teams&threadId=19:8eff649f6647440ea80e6841
eb4dcce8@thread.tacv2&groupId=a426aad5-694a-4ee5-ac2f-8fae852bfb70)

https://teams.microsoft.com/l/file/A18BAF8B-B99B-42FB-9150-0B0C2D46A080?tenantId=90bb22db-a73a-4971-b7d6-

183

else. Seventeen (17) learners stated that they had to practice more to become good at

juggling. Learners became angry when they failed at juggling, but the videos gave them hope

in pursuing the action. The word perseverance was used more than often. Some used the

word “afraid” to make a mistake. Some (17) started to link the activity to the APOS model in

associating actions and turning that into a process when they became successful at it.

Others (12) saw the time they had to invest as a problem but admitted that practicing and

more exercising helped with their success. Very few (2) stated that they had no success as

they probably did not watch the videos.

 Findings
Finding 3B-1: Learners enjoyed the exercise

Finding 3B-2: Learners were interested in this activity

Finding 3B-3: Learners acquired a better understanding of APOS mental structures

Finding 3B-4: Learners wanted to put their achievement or skill on display without showing

fear among their peers

Finding 3B-5: Moodle was a ‘one-stop shop’ in getting information on acquiring the skill of

‘Juggling’ and was accepted by learners as a resource

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners understood the importance of an Action in tossing a ball as a starting point.

Learners also see Moodle as a one-stop shop to follow actions needed to complete the

challenge.

(ii) Process
Learners could transform the tossing Action into a Process by eradicating any bugs in the

tossing process. They need not go back to the step-by-step approach in tossing the ball.

(iii) Object
The learners realised that tossing combinations lead to the object of tossing balls. When the

researcher stated the word “tossing balls” or “juggling” the learners knew what was meant.

(iv) Schema
The name “Juggling” was given to the whole concept and the learner could associate the

tossing as an Object of doing, by combining these tossing strategies. A Schema called

Juggling was born. When they now hear the word juggling, an embedded Schema will be

available to perform up to a certain individual competency of tossing balls. In changing that

184

Schema back to a tossing Object and increasing the competency, a higher level of skillset

will be created and added to their existing “Juggling” Schema.

 Summary
Learners enjoyed the activity to such an extent that they took the challenge to the playground

and involved their peers to partake in the challenge. The learners had one advantage over

their peers in that they had access to Moodle to watch the video on explaining the “tossing”

of balls. The activity led to other learners visiting the class during breaks to speak to the

researcher.

5.4.3.10 Intervention 3C: Moodle and generalised terminology (Appendix E-3)

 Description of Intervention 3C
Having engaged learners in the previous intervention called “Juggling”, learners were now

more equipped to interact with the Internet/Moodle, and they had a basic understanding of

the APOS Theory. The goal of the intervention was that learners think about APOS theory

and then redirect the focus to Moodle and the Internet as resources. The form in Appendix E-

3 was handed out to learners to complete.

 Analysis and discussion
Learners answered the questionnaire (Appendix E-3). The number of answered

questionnaires totalled 29. The six questions on the questionnaire are now discussed.

Question 1: Explain in your own words how you would solve any mathematics problem?

What goes on in your mind when confronted with a maths problem? Even if it

scares you then state that!

The learners indicated that their attention was distracted from the problem at hand. Their

words indicated insecurity towards mathematics. Insecurity towards mathematics is found in

words such as “try”, “stress”, “hate”, “panic”, “impossible”, “confused” and “do what they

want”. Overall, words such as “doubt myself”, “panic”, “difficult”, “I think”, “frightens” indicate

insecurity towards mathematics. Some (12) stated “Attempt and figure out”, which indicates

that the learners had no plan or method to work with. Others (3) did show some idea by

using “break problem in smaller parts”. One learner stated the term “BODMAS” which is a

priority listing when simplifying an equation. However, no specific methodology was given of

how it will be done.

Question 2: Explain the term “computer programming” – your understanding with an

example.

185

The answers to this question showed a lack of understanding what programming is about.

Overall, two learners showed (Figure 5.17) some understanding of the concept of

programming.

Figure 5.17: General terminology

Twenty-nine (29) learners struggled to answer the question with insight based on “met-

befores” and one learner linked Microsoft as the origin of all programming. Learners wrote

insignificant sentences with some buzzwords they could think of (Figure 5.18).

Figure 5.18:General terminology

Figure 5.19: General terminology

Figure 5.20: General terminology

Figure 5.21:General terminology

186

There was no true understanding of what programming is about (Figure 5.21; Figure 5.22),

which was good for this research in terms of a programming language acting as the “meta-

cognitive” concept. Some learners (21) did use “coding of software”, “storing code on a PC”

and “programming”. One learner used the term “giving instructions that will turn input into

desired output”, but this learner was also exposed to Python programming (Figure 5.23).

Figure 5.22: General terminology

Figure 5.23: General terminology

Question 3: Have you done computer programming before? (Y/N). If Y(es), give me a brief

background on what exactly did you do in programming. If N(o), state why not

and if you think you cannot do it and why you think it's not for you.

Only one learner stated that he/she had IT as a subject somewhere and used the word

algorithm (Figure 5.24).

Figure 5.24: General terminology

Another learner made a connotation with Scratch and answered with a question that if

Scratch was about programming then he/she did do this before. The learner tied

programming to “cat” as if the “cat” manages the term programming. The cat was an avatar

used in Scratch (Figure 5.25).

187

Figure 5.25: General terminology

The majority (25) stated that they have never heard of or done programming before, because

of not being good with computers or that they may infect the PC with a virus, which shows

their misunderstanding of programming and viruses (Figure 5.26).

Figure 5.26: General terminology

Question 4: Have you heard of the programming language Greenfoot before? (Y/N). If

Y(es), tell me what it is or how you know Greenfoot.

Learners gave an overwhelming NO as an answer (Figure 5.27).

Figure 5.27: General terminology

All 29 learners have never heard of Greenfoot before. This was good from a research

perspective, as a new belief system could be grounded with the intention of enhancing

computational thinking.

Question 5: What do you understand by the term "ABSTRACTION"? Use any example to

illustrate your understanding.

No one could figure out what abstraction means. One learner watched the videos and made

some reference to a painting by Picasso, where with a few brush strokes visual meaning was

188

given to the painting. Another suggested it is when a rugby player obstruct another player’s

play/movement!

Question 6: Have you been using a technique “flipped classroom” before. Explain what

you understand by “flipped classroom”.

The flipped classroom technique was totally unknown to all the learners. This means that the

school may not have used the technique before, or used the technique but did not attach

meaning to the technique for their learners (Figure 5.28).

Figure 5.28: General terminology

 Findings
Finding 3C-1: Learners did not make a connection between APOS and mathematics

Finding 3C-2: Learners did not understand computer programming

Finding 3C-3: Learners have never encountered Greenfoot programming language

Finding 3C-4: Learners had no idea what “abstraction” means

Finding 3C-5: Learners were also unfamiliar with the term flipped-classroom

Finding 3C-6: Learners already have pre-set ideas of being negative towards

programming although they did not know what it was

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners were reluctant to use the Internet or Moodle as a frame of reference to answer the

questions. Thus, no action was taken and therefore no processes developed.

(ii) Process
No Process transformed from questionnaire exercise due to learners not taking action using

Moodle or the Internet to find answers to the questions.

(iii) Object
No object transpired as no process transpired.

(iv) Schema
No Object transpired and hence no schema emerged.

189

 Summary
The answers to all the questions showed some ignorance towards having any structure in

place to exhibit computational thinking. The APOS approach was simply not embedded to

accommodate successful teaching and learning in subjects that demanded computational

thinking. Learners might after the intervention have had a better understanding of the APOS

theory, but the actual binding with the APOS Theory was absent. The acronym APOS still

lacked insight and meaning for the learners. They also abandon the valuable lesson learnt in

the previous interventions to use resources such as Moodle or the Internet to assist in

answering the questions.

The ideal answer for Question 1 would have realised if the learner reflected on the Schemas

that were put in place. The learners should have stated that the Schema needs to link with

the concept definition in mathematics. If the leaners had a limited Schema, they should have

taken Action by finding a stepwise approach on Moodle or the Internet. These thoughts did

not come to the fore and one could sense that the learners were struggling when solving a

problem at this stage, even if it was just with answering these questions.

5.4.3.11 Intervention 4: Creating a Moodle Learner Management System (LMS)

Intervention 4A (Appendix F-1): Creating a Linux Server with external access

Intervention 4B (Appendix F-2): Creating a Cloud-based Moodle LMS

5.4.3.12 Intervention 4A: Creating a Linux Server with external access
(Appendix F-1)

 Description
The introduction of Greenfoot brought its own challenges, as explained in the genetic

decomposition of “Loading a Greenfoot scenario”. The goal of this intervention was to create

a server with Moodle as resource accessible by all Greenfoot learners. The evaluation of this

intervention is classified as a formative evaluation using the FEDS framework (Venable,

Pries-Heje & Baskerville, 2016) as a Technical Risk and Efficacy evaluation strategy. This

was done because schools in disadvantaged communities stated that facilities such as

Moodle are expensive because it needs registration of a domain and connectivity costs. A

repository was needed, which learners could access if they wanted to, but without incurring

costs. Above all, the flipped classroom techniques provided invaluable support for everyone

struggling with any concept as seen from Interventions 1, 2C and 3B. The configuring of a

local Linux server at any school will provide several advantages, such as: no internet is

needed, no extra maintenance costs are payable to a service provider, and teachers and

learners have access.

190

 Analysis and discussion
Maintaining a Linux server was not the only challenge; providing external access to all users

was an even greater challenge. This necessitated adapting the Moodle config.php file,

prescribing how the Moodle site could be accessed, e.g., as http://10.0.0.25/moodle:8090 or

as http://my.dyndns.edu/moodle:8090 or using a domain such as http://moodle.efundo.co.za,

which now changed to http://wrru.co.za/moodle. The port numbers were used to create a

passage from the outside into the router and allowed traffic to access the Linux box as part of

the internal network in the researcher’s office (house). The challenges could thus be

categorised based on the degree of accessibility. The approach necessitated a study of

dyndns setups, Linux server, setups of firewalls and router bridging setups to work with a

Linux operating system.

The approach to use a local Linux box as the server and a Moodle server/repository for all

interactions did work and showed that schools can setup their own service for eLearning

without external interventions. Due to power failures, it was decided to create a domain

wrru.co.za in the cloud and install a cloud-based Moodle application for better access. Part of

the decision was motivated as losing the Linux server hard drive after a year and most of the

work had to be recreated in the cloud. The maintenance of such a local server entailed much

more than merely using Moodle when you must accomplish this task by yourself. The rollout

entailed: full Linux installation, installation of Apache, MySQL and PHP. The installation of

Moodle and connection of all these packages together to function as a unit, as in the case of

WAMP, XAMPP, LAMP or MAMP, required much research to ensure proper functionality. To

allow access from the Internet through the router into the Linux server, a dyndns account

had to be created which, boiled down to costs for the researcher. Dyndns sites such as

NoIP-DDNS are available for a one-time connection, which was free of charge. Being

hampered by power fluctuations at inconvenient times did not ensure a perfect lecture at any

location due to these uncontrollable variables.

 Findings
Finding 4A-1: Moodle worked from a local Linux dual Core PC. The costs of a PC can thus

rather be low by using some unused PC in the school

Finding 4A-2: The Linux server needs a robust enterprise hard drive

Finding 4A-3: Learners and teachers could access the site externally

Finding 4A-4: Power failures made success intermittent

Finding 4A-5: Local content can be shared without any external connection, which relies on

the LAN connection only

 APOS discussion
The following mental structures emerged to create an eLearning platform.

http://10.0.0.25/moodle:8090
http://my.dyndns.edu/moodle:8090
http://moodle.efundo.co.za/

191

(i) Actions
The Linux server needs some expertise in terms of setup and installation.

(ii) Process
The access to the Linux server is seamless from any PC local on the LAN.

(iii) Object
Teachers and learners related the Linux server concept with eLearning.

(iv) Schema
eLearning was created as a Schema synonymous with Linux and Moodle.

 Summary
The Linux server can be setup as a local server within the network of any school. It can also

be linked to the Internet. The school can use the setup notes of this research or use a Linux

expert to configure the Linux PC. Linux runs on minimum resources and does not really need

any high-performance PC. During the WCED conference (Video on TEAMS4) the Linux ran

from the researcher’s study to facilitate 40 teachers working on the Linux server at the same

time. The connection was a normal ADSL 4 Mps line, using the dyndns router setup. There

was no real delay experienced, and if there were no power outages on either side, the

connection was solid. The learners at the private school also used the Linux server to access

from their laboratory. There was an incident where power outage happened in the area of the

researcher’s house and prevented access. Owing to these classes happening during

daytime, a power outage was minimal.

5.4.3.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2)

 Description
The Linux server hosted from the researcher’s office ‘fell over’ because of the high frequency

of hard drive access. It was decided that learners should still have some repository, which

they could access in a ubiquitous manner, discovering more than just the textbook and

classroom information. The goal of this intervention was to ensure a non-interrupted and

non-eroded connection for teachers and learners. The only way to accomplish this was to

register a domain and install an Open Source Moodle LMS.

4
https://teams.microsoft.com/_#/school/files/General?threadId=19%3A8eff649f6647440ea80e6841eb4dcce8%40thread.tacv2&ct
x=channel&context=2015-07-
02%2520WCED%2520Kongress%2520Praatjie%2520oor%2520Moodle&rootfolder=%252Fsites%252FResearch742%252FSh
ared%2520Documents%252FGeneral%252FNavorsingsVideos%2520Curro%2520WCED%252F2015-07-
02%2520WCED%2520Kongress%2520Praatjie%2520oor%2520Moodle)

192

The domain http://wrru.co.za/moodle housed the Moodle folder, depicted in Appendix F-2,

where Moodle was installed and the focus was on Moodle and not on maintaining the Linux

box anymore.

 Analysis and discussion
The learner names and their profile details were loaded in bulk using a .csv file in Excel. The

process to load user profiles (learners) onto Moodle can be done within 5 minutes if a .csv

file exists with all the learner names. After receiving a class list from the teacher, the file was

massaged with pre-defined headings to create a profile with login and password for each

learner. The researcher used a basic knowledge of Excel to massage some columns using

“concat” and “substring” functions in Excel to create a file as shown in Table 5.9.

Table 5.9: Moodle csv file structure

The learners now had an online email, belonged to a specific group to identify specific

exercises for that group only, and had a login and password they could use to login to the

LMS.

Two Moodle modules were created. One focuses on the APOS strategy looking at learners in

acquiring the APOS theory and the other was on the Greenfoot language and exercises to

practice examples and projects. The reason for this was the volume of Greenfoot information

that might become cluttered by extra APOS information at the time. Moodle carried all the

normal aspects of a learner management system, which included communication with the

learners and parents in a ubiquitous manner. Learners could also change their profile photo

using avatars of images that could be uploaded by the user self.

After structuring the Moodle LMS, the researcher engaged as Instructional Designer (ID).

The researcher attended ID courses, as well as rolling out three modules for a private

company to build capacity. At the time, the Linux server also ‘fell over’ and the essence had

to be put back into the cloud. The ID concept was based on goals/objectives of a private

institution that already formulated rules and standards on storyboarding their modules. The

process of storyboard development happened with a team which verified the goals against

the learning that took place, upon each deliverable and due date. This provided a framework

that could be followed for this research. A new Moodle structure and learning activities

emerged in Greenfoot with the focus on APOS theory. With Moodle structured and in place

http://wrru.co.za/

193

the next intervention triggered, which is to address the Greenfoot programming language in a

serious manner. Having an attractive pedagogic interface as part of Moodle LMS attracted

the learners.

 Findings
Finding 4B-1: Moodle in the cloud had the advantage that no power outages affected

delivery, unless the location of delivery had a power outage

Finding 4B-2: The cloud-based Moodle site provided ease of access ubiquitously

Finding 4B-3: Maintenance could also be taken care of in the cloud, which only needed an

internet connection

Finding 4B-4: Focus on Moodle and Greenfoot development and not on a Linux server.

The backups and development were a separate issue

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
The cloud-based setup needed expertise, but still required some mechanical steps.

(ii) Process
Moodle in the cloud is available 24/7. Learners knew exactly what URL to use to gain access

to Moodle in the cloud. Also, login and password details had to be memorised to ensure

learner access.

(iii) Object
Teachers and the researcher developed an eLearning concept linked to Moodle.

(iv) Schema
The Schema is the eLearning concept, but with a 24/7 approach.

 Summary
Cloud-based applications are spreading fast. Moodle is also cloud-based and accessible

through the cPanel by teachers and researchers. Learners can access Moodle ubiquitously,

through cell phone technology or browsers from notebooks, iPads or just tablet technology.

Apart from being utilised as a resource, it also acts as a communication tool through gmail or

any mailing systems held by learners.

5.4.3.14 Intervention 5: Greenfoot Access

Intervention 5A (Appendix G-1): Greenfoot Access

194

Intervention 5B (Appendix G-2): Revisit previous Activities

5.4.3.15 Intervention 5A: Greenfoot access (Appendix G-1)

 Description
The goal of this intervention was to provide learners with a solid foundation in how Greenfoot

is accessed for programming. Moodle was installed as an LMS, so learners could download

videos from the Moodle site to obtain technical assistance with creating scenarios. The

Moodle site was still accessed through a dyndns setting called Rothman.for-better.biz, using

port 8080. A scenario consisted of World and Actor classes within the world. The most

important advantage for programmers in Greenfoot is the folder structure of resources that

make up a scenario, such as the root folder with classes, sounds, images. Oracle’s library on

Greenfoot was also available to learners accessing it from the internet in a ubiquitous

manner. Learners could now experience the whole “flipped classroom” technique and

understand the benefit of having flipped classroom activities.

 Analysis and discussion
Owing to Java being lectured to the Grade 10 to 12 learners taking IT, the Java Standard

Edition Development Kit (JDK, Figure 5.29) was already installed on the Microsoft Server,

running on Hyper Terminal architecture.

Figure 5.29: (Adopted from https://www.filehippos.org/java-development-kit/)

The learners only needed to install Greenfoot within their user environment. Greenfoot then

ran within a session on the server. Due to memory intensive operations, Greenfoot

applications took quite some time to start up, which took away a large time allocation from

learners during the period. Any scenario being compiled took a long time before execution

could take place, which became very frustrating for both the learners and the researcher.

The reason for this was that Java uses compilation of applications and all terminal output

used compilation of applications on the server at the same time. This used up a lot of server

resources, such as memory necessary for each Java application to execute. Other terminals

then went into a waiting queue on the server regarding the output learners received from the

server.

195

The outcome/aim of this intervention is for learners to understand what a scenario is and all

the terminologies as published by Oracle. All learners had access to the Oracle library of

terminologies and code. This was supported by Prof Michael Kölling’s videos (Appendix A-7)

(Greenfoot, 2014), which he produced and published on his site. All the videos were loaded

onto Moodle as well. Many learners could do work in advance and attend the class well-

prepared, as a personal choice. This was not enforced, but a friendly request. The

researcher emphasised the folder structure of a scenario, consisting of doc, images, sounds

and the root folder with classes.

The flow of the next activity or lesson, “what learners should investigate”, was published on

the Moodle server. This allowed learners to pre-prepare, which benefitted many. The term

‘constructionist learning’ might be a more apt description of the type of learning, as the

learning entailed building practical artefacts during the research as compared to

constructivist learning. The challenge with the exercise was that pushing the research to get

learners into the frame of a Greenfoot mind did not suffice to the majority. Only those

learners (20) that took part in every instruction through hand-outs or on the Internet or

Moodle, succeeded.

EDR was the chosen strategy, which brought about a different perspective on mastering

APOS theory from a computational thinking perspective, embedded within the Greenfoot

programming language. The learners in the target group were subjected to constructionist

learning using the Greenfoot programming language in conjunction with Moodle as a support

mechanism and a resource repository to further their learning and computational thinking.

The Moodle LMS acted as a protective mechanism in hiding those learners with a self-

esteem problem to investigate and participate in the transfer of knowledge with minimum

teacher intervention or class exposure through questioning. The learners did not have to

expose his/her ignorance about concepts though asking questions in class; they were able to

research these concepts in their own time and bring knowledge to the class. It can again be

compared with a flipped classroom technique. This inspired many non-performing learners to

take that first step in participating in class discussions, questioning the researcher’s

approach with their own approach.

The “World” class uses the keyword “super”, which makes use of the superclass within the

Greenfoot package, as can be seen in Figure 5.30. The following code (Figure 5.30) draws a

rectangle of 600 by 400 cells consisting of 1 pixel each. The learner need not be concerned

with the mechanics of a superclass, although this is a simple technique when they further

their programming studies in Java.

196

Figure 5.30: Greenfoot editor with World Code

Learners could now resize their own world and create their own background, which they

stored in the images folder. Those who struggled could select specific images with a specific

layout as in the Actor class which contained the “Rocket” object through the “setImage”

option property. All these images were categorised, e.g., Background, Transport, Animals,

Food, Nature and so on, which abstracted the learner’s task. The learners enjoyed clicking

on new Rocket() and created an instance that populated the world (Figure 5.31). They

quickly learnt that keeping the “shift” key depressed will allow multiple instances of the

Rocket object with every mouse click, as depicted in Figure 5.32.

Figure 5.31: Greenfoot “SpaceWorld” scenario

197

Figure 5.32: Greenfoot “SpaceWorld” World scenario populated by Rocket objects

 Findings
Finding 5A-1: Visual output of intervention 5A attracted attention

Finding 5A-2: Running Greenfoot in an RDP environment created memory challenges that

slowed down execution of Greenfoot scenarios

Finding 5A-3: Attention span of learners became affected when scenarios took long to

compile

Finding 5A-4: Stand-alone PCs may be a better option to teach Greenfoot. The usage of a

VM dictates that every terminal shares memory on the server. The loading

and compile time of a terminal application may take up to 5 minutes or more,

depending on the utilisation of memory by the operating system

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners took certain steps from editor to compiler according to the GD broken down into

steps.

(ii) Process
Learners managed to create a scenario and compile and run that without following steps

other than that within the mind.

(iii) Object
Learners could easily relate to “scenario” as a compiled application in Greenfoot.

(iv) Schema
The Schema was created and embedded in most learners’ minds. Only the absentees

tended to stay stuck on a stepwise approach in visiting Moodle to obtain the procedure in

creating a scenario.

198

 Summary
Moodle was used as repository and resource to let learners adopt a constructionist approach

in creating, compiling and executing the basic scenario in Greenfoot. Learners that fell ill

during the lesson had to catch up extensively. Learners managed to accomplish the basic

scenario and compile for errors prior to execution. Learners also compensated compilation

because of the RDP environment by deciding among themselves the queuing of their

compilation times. Learners did achieve Schema status by embedding the process of

creating a scenario as an object in their minds. The entire approach of creating, debugging,

compiling and executing a scenario was done without having to watch videos or follow a

sequence of written steps.

5.4.3.16 Intervention 5B: Revisit previous activities (Appendix G-2)

The APOS mental structures in terms of the intervention are now discussed.

 Description
Learners had to revisit their association with APOS theory in Moodle as a resource of facts in

shaping their Greenfoot approach. The goal of intervention 5B is to revisit several Action

driven activities such as login procedures for learners and verifying that these Action driven

approaches converted into Processes. The learners need to accomplish a number of

aspects, namely: (i) login to the LMS; (ii) show an understanding of abstraction; (iii) know the

APOS acronym; (iv) juggle to apply APOS theory; and (v) create and compile a scenario as

shown in Appendix G-2. These important aspects could be done as part of another activity or

subject or even added to the previous year of study or grade. This could keep the focus of

the learners on Greenfoot instead of login and password management, acquisition of

competency in compiling a Greenfoot application, etc.

 Analysis and discussions
The task of “how to” login and to ensure that the learners kept track of their passwords and

logins took a considerable time. The term “abstraction” was revisited, and learners were

asked again to explain the term “abstraction”. This time they had to visit Moodle to assist

them in derteming how researchers such as Dubinsky (1991), Hazzan (1999, 2003) and

Kramer (2007) see abstraction. This also gave learners time to reflect. The “Juggle” schema

was tested, and learners could enact “Juggling” since they covered this during a previous

intervention.

 Findings
Finding 5B-1: Learners used Moodle to seek answers for the basics of Moodle, such as

their login and password

Finding 5B-2: Learners managed to find answers on abstraction in Moodle

199

Finding 5B-3: Learners revisited mathematical expressions with APOS as lens

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners took certain steps to visit Moodle and used Moodle as a resource.

(ii) Process
Learners could state exactly what the APOS acronym stands for and they displayed a

Process thought process on abstraction and meaning.

(iii) Object
APOS was brought into the context of mathematics, Moodle and programming.

(iv) Schema
APOS became a frame of reference.

 Summary
Learners acquired the APOS acronym as a lens when looking at abstraction and

mathematics when simplifying fractions. The researcher could see through observation that

learners are active in using Moodle and debating abstraction as put forward by Kramer

(2007).

5.4.3.17 Intervention 6: Applying Process and Object within mathematics
(Appendix H)

 Description
The goal of this intervention was to criticise the simplification of an algebraic fraction using

APOS as lens. The researcher allowed learners to simplify the algebraic fraction in a natural

manner. Terminologies as Action, Process, Object and Schema was used and brought into

perspective of the mathematics simplification problem. The researcher wanted the learner to

keep an eye on mathematics and APOS theory application in general to avoid learning how

to codie through rote learning.

 Analysis and discussions
Some learners were still at the Action stage. Through observation it was noted that learners

immediately started using calculators to divide two into eight. The researcher asked the

learners to illustrate how they would simplify this. They still made use of their calculators to

divide 8 by 2. Learners did not know their rules on exponents, which indicated that no

memorisation happened, hence the manual calculation of division. Being stagnant at an

200

Action phase will not allow learners to grasp the exponent rules. Exponent rules need

memorisation, or it must be looked up every time before it is applied. The researcher made

learners memorise APOS and the meaning of the letters of the acronym. The learners

understood that the use of calculators was an Action and that no learning took place.

 Findings
Finding 6-1: Most learners were still at the Action phase whilst applying simplification,

either in using a calculator or having difficulty to apply the rules of exponent

usage

Finding 6-2: Learners memorised APOS and understood the meaning of Action and

Process from questionnaire answers; the answers provided by these learners

show that they made a shift from action to process

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners used their calculators to calculate 8 divided by 2.

(ii) Process
Learners had difficulty processing the rules for exponents and did not reach the Process

phase.

(iii) Object
No object on this example although exponent mathematical concept was in their curriculum.

(iv) Schema
No schema on this intervention.

 Summary
Learners struggled to associate simplification as per the APOS theory. Learners relied on

their calculators to perform basic calculations, but their reasoning was limited beyond that.

The actual process was not developed yet, as the learners did not think about the

mathematical concept definition of simplification.

5.4.3.18 Intervention 7: Greenfoot as process and object (Appendix I)

 Description
Learners reverted back to the enhanced GD (Appendix D-2) with flipped classroom

techniques. The focus was on the basic creation of a scenario. Learners understood the

201

Action and Process phases of APOS much better after having completed Intervention 6. In

previous interventions they were drilled in writing down the APOS acronym and could

achieve the goal. Learners managed to think (reflect) on what Action and Process mean. The

goal of this intervention was to create a scenario with APOS theory as lens. APOS theory

was focused on in the previous intervention with mathematics as “met-before”. The previous

mathematical simplification example provided the learners with more insight into an object in

terms of the simplification of fractions and of the Schema, which is an umbrella mathematical

concept of simplification. The learners soon realised that their Schema simplification could

accommodate basic numbers, but not exponents. The goal of this intervention was to let

learners pursue the Greenfoot scenario through APOS theory upon discovering new

concepts on programming.

 Analysis and discussion
Learners were ready to do coding after creating scenarios earlier. Double clicking on the

Wombat Actor opens the editor. From the videos shown in class and on Moodle, learners

quickly added the move(5) instruction or code, depicted in Figure 5.34. The visual output can

be seen in Figure 5.33.

Each time the learner clicked on the run button, the act() method executed, continuously,

whereas clicking on the act button executed the act() method once only. This provided

debugging features for learners to measure their coding actions against the outcome.

Learners quickly discovered that clicking the “RUN” button executed the move(5) iteratively,

whilst clicking the “Act” button performed the move(5) step at a time.

Figure 5.33: The Wombat Actor object within MyWorld World Object

202

Figure 5.34: The Wombat Actor code in Greenfoot editor

 Findings
Finding 7-1: Most learners could create a scenario, especially those who watched the

videos posted on Moodle

Finding 7-2: Learners understood Action and Process better within the Greenfoot

programming language; learners watched the video and then followed suit in

creating the scenario

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners now understood the importance of an Action in the learning of concept definitions,

whether mathematics or programming. They could see how the “Act” and “Run” buttons differ

to either enact step-by-step or total execution of the scenario, respectively.

(ii) Process
Learners could transform the Action into a Process, thereby creating another Schema

without Moodle or external help. The learners also transformed basic simplification of

numbers into a process by not using their calculators upon completion of the coding, after

they discovered that they were performing an Action only when they used the calculator.

(iii) Object
The learners realised that there is basic simplification with a number and simplification with

exponents, which requires explicit rules that must be followed, and which deals with a

different set of mathematical concepts. The learners also saw the creation of the scenario

203

without any external help as a Process and tried to increase the speed of creating a scenario

every time.

(iv) Schema
The “Scenario” creation now forms part of the learner in terms of creating an application

Schema. The learner understood compilation before execution.

 Summary
The intervention brought both programming in Greenfoot and simplification in mathematics

together. Learners discovered that in mathematics and programming, the activities requiring

them to learn are the same. They have to go through the action phase first and then these

steps, whether in mathematics or programming, are embedded as thought processes.

5.4.3.19 Intervention 8: Rollout of code in Greenfoot (Appendix J)

 Description
The goal of the intervention is to ensure that the learner discovers the total Greenfoot

framework, with the focus on APOS theory and how it should be done. The intervention was

divided firstly into discovering the classes within Greenfoot; secondly, focusing on a method

housed within a specific class; finally, rolling out a scenario using the classes and methods.

The learners had to find the classes and methods and write them down. This intervention

focused on APOS mental structures where the learners discovered the classes and methods.

 Analysis and discussions
Greenfoot consists of a fixed number of “classes”. The learners were given a task to discover

these classes. They were given opportunity to understand the purpose of each class. During

this intervention, the Process stage was obvious, as most learners found it easy to open the

Greenfoot programming language and create a scenario with its World and Actors. The

researcher pointed out that they know this, as they memorised the Actions and turned them

into Processes. Learners actioned the task by watching the videos on Greenfoot scenario

and implemented the code in a sequential manner. They also realised they are in the

process stage of APOS when the activities were done without watching a video in most

cases. Because of the time it took to compile and run a scenario on any terminal, learners

complained that they fell short of time. Those who prepared at home and made use of flipped

classrooms had no problem in completing the task during class time. The Greenfoot scenario

provided immediate output and the response was 100% success or a compilation error.

Debugging now also started to play an important role to achieve success. Learners became

obsessed in finding a solution.

204

The Greenfoot Class Documentation option depicted in Figure 5.35 revealed the structure of

the Greenfoot programming language to the learners in a breadth-first manner (Zeitz &

Spoehr, 1989). They could research the idea of a CLASS and the composition of the

Greenfoot package, which consists of classes. The learners also realised that a class

consists of methods and hence could find the isKeyDown() method within the Greenfoot

class and read up on the meaning of such a method. The questions were all answered well

by all grade 8 learners, except for one. The learner failed overall because of being absent

from the instruction given. The Greenfoot programming language has the help option, as

depicted in Figure 5.3. This enabled learners to find the isKeyDown() method under the

Greenfoot class.

Figure 5.35: Greenfoot Class Documentation

The challenge within the intervention was to solve the dimension representation of a chess

board, as well as locating the position of a Turtle object within the World on the chess board,

as depicted in Figure 5.36. Although the image of the chessboard consisted of four squares,

the dimension of super (400, 400, 1) produced the chessboard. The learners soon learnt how

to create dimensions and how to determine the x and y positions of any object. This also

gave each learner the awareness of position in the World, but it also gave new meaning to

the x and y axis in mathematics as a welcome add-on, as depicted in Figure 5.36.

205

Figure 5.36: Greenfoot ChessBoard World

Based on the instruction given to the learners, they had to create a board of (600, 400, 1),

which is 600 pixels wide and 400 pixels on the vertical axis. A student inferred that the output

which produces 12 tiles (Figure 5.37), allows each block to be 50 pixels, when looking at his

calculations in Figure 5.38. The learner now developed thought processes on how to

construct a chess board from the basic square that consists of four squares (Figure 5.36).

The four squares alternated black and white tiles. The learner calculated that each block

within the square of 4 blocks, consists of 50 pixels. Representing one square with 4 blocks

will need a (100, 100, 1) dimension.

Figure 5.37: Chessboard when using (600, 400, 1) dimension

One student made the following remarks on questions 4.3, 5.1 and 5.2, depicted in Figure

5.38.

206

Figure 5.38: Learner calculating the size of the World that will produce a perfect chess board

 Findings
Finding 8-1: Learners could explain APOS as acronym as indicated by their answers,

which emphasised any stage higher than Action in APOS theory

Finding 8-2: Learners were able to construct a scenario in Greenfoot, without having to

watch a video

Finding 8-3: Learners were at least at the Process phase within Greenfoot

Finding 8-4: Learners used mathematics calculations in understanding how a chess board

was constructed using dimensions

Finding 8-5: Learners showed an understanding of dimensions through visualing the

Greenfoot output

Finding 8-6: Learners were in a process of finding solutions to problems, indicating thought

processes

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners now understood the importance of an Action through right-clicking on the Turtle and

discovering its x-y coordinate position. Learners could also, through trial and error, set the

dimensions and then discover how dimensions are created exactly by inspecting the output

after taking action.

(ii) Process
Learners could transform the Action into a Process by guessing the x and y coordinates. The

researcher asked them to place the Turtle object on the chessboard world and guessed the x

207

and y coordinates. The guessing became more accurate the more they memorised the exact

locations on account of the dimensions of the chessboard.

(iii) Object
The learners saw methods such as getX() and getY() and other methods belonging to the

Actor class as abstracted representation of their physical actions imposed on the Turtle Actor

object.

(iv) Schema
The “Scenario” creation now forms part of the learner in terms of creating an application

Schema. The learner could see and understand that the Schema called “Creating a scenario”

as a wider application using the assimilation of new concepts into an existing Schema as

opposed to accommodation. The researcher also brought this to the attention of the learners.

As depicted in Figure 5.34, the learner can either create code such as move(5) within the

act() method of the Actor or select the method to perform the action with a mouse click.

 Summary
Overall, learners made progress from the Action phase to the Process and Object phases.

Also, new Actions were imposed on the current Schema of “Creating a scenario”, which

expanded their Schema on Greenfoot. Through Intervention 8, the learners became more

enthusiastic with watching videos and observation. This shows that an understanding of the

concepts does help with the motivation of any subject material that needs exploration by

learners.

5.4.3.20 Intervention 9: Making decisions towards Encapsulation (Appendix K)

 Description
The goal of this intervention was to let learners construct an algorithm to solve the problem of

making the Actor sensitive to the edges of the world. The learners need to think about the

problem and automate code within a scenario to control the Actor within the world through

encapsulation and control structures in Greenfoot.

 Analysis and discussion of Intervention 9
Learners were given the challenge to create a scenario and position the turtle Actor object

within the world of Intervention 8. They were confronted with the researcher’s application/

scenario in controlling the turtle at the edges of the world. They had to implement Greenfoot

code and then relate that to APOS theory. Learners already in the previous intervention

experimented with finding the turtle’s location in the world and hence knew about Greenfoot

methods such as getX() and getY() methods through actions. Another important limitation is

to conclude any statement with a semicolon, which enforced discipline in having to adhere to

208

basic syntax. This forced learners to think about the structure of any coding sentence

syntactically. The conditional IF statement was needed where learners could position their

code within APOS theory. Learners accomplished the decision structure and enacted

abstraction such as atWorldEdge() as an Object to take Action on.

Learners experienced that a decision was needed by either the programmer or a manual

change to be imposed on the scenario. Learners experienced the advantage to have

knowledge on methods unlocked by the Process. These methods were discovered earlier

and memorised to provide the learners with much more “solution” power than not knowing.

Learners also discovered through constructionist learning how to construct code. Debugging

also played a role to force the learner to change code and eliminating any typing errors. This

forced the learners to focus on correctness.

Learners realised that running a haphazard trial and error process took so much longer than

pre-planning the code through creating a proper algorithm. Learners were now confronted

with decision structures becoming architects of algorithms. Learners for the first-time

encapsulated code and assigned a name to it. The learners then need not worry about the

specifics of the code and hence abstraction was done! This forms an Object which learners

could relate to and which performs certain functions through lines of code.

Learners were challenged to group/encapsulate code into a method. This is also a form of

abstraction by using encapsulation to hide any detailed code. The complex algorithm or

sequence of code could now be performed using a descriptive method name such as

atWorldEdge(). The questions posed to learners, such as “How will the ambulance (Actor

object) be controlled through the use of Java code to turn around at the edge of the world?”

This question was asked to learners to answer in their mother tongue. All the properties of

the problem were highlighted so that they could think about the problem holistically and not

simply zooming in on one aspect not related to the whole. See Activities 1 and 2 in Appendix

K.

Looking at Figure 5.39, the learners established the sense of width and height of the world

the Actor is living in. In this instance, the learner did not understand that the act() method

would be called iteratively and that the turn() method had to make one turn of 359 degrees

in an anti-clockwise direction. This is how Greenfoot operates, by calling the act() method

iteratively and even a small number will turn the Actor during every call of the act() method.

Learners were also given graph paper to show the dimension of the world. This further

strengthens graphs in mathematics, but it was not a main concern then.

209

Figure 5.39: A learner’s response on Activity question

 Coding
The Greenfoot scenario depicted in Figure 5.40 and Figure 5.41 reveals the dual-modality of

the Greenfoot programming language.

Figure 5.40: TurtleWorld in Greenfoot

The learners were asked to determine coordinates of the Turtle object and in the process

they discovered the coordinate map of the World. The learners were then given the code in

Figure 5.41 to implement and investigate why the Turtle actually changes direction, although

the command is only turn(10) degrees. This led to learners to enact the Turtle in the class

room, which boils down to an action taken by learners before understanding the command

turn(10). The Process changed into an Action.

210

Figure 5.41: The Turtle act () method coding

Most learners wanted to turn(90) or even turn(359) as indicated by the learner’s writing,

but realised that repetitive execution of the turn(10) would eventually make the Turtle turn

away from the edge. The researcher gave substance to the learners’ investigation by

directing them to use the Act button and they could visualise the code through Turtle

enactment. This is a typical Action taken by the learner to visualise the code. The researcher

added to the problem by encapsulating the code into a method atWorldEdge(), depicted in

Figure 5.42. The learners now knew that the name atWorldEdge() carried a deeper

meaning. The atWorldEdge() is an abstraction of certain commands that achieve one thing

in detecting the edge of the World.

Figure 5.42: Encapsulating code

Although this seemed very difficult to the average learner, they were able to watch videos,

such as Video#5 (http://wrru.co.za/moodle) on encapsulation, which explained the process.

Every line of code was first enacted and by clicking on the “Act” button the code was

executed line by line. This also allowed different abstraction levels of hierarchical design as

found becoming an expert by Zeitz and Spoehr (1989). The whole activity helped learners to

http://wrru.co.za/moodle

211

see patterns within programming, also called repetitive code, which may be grouped or

encapsulated within a method. Any instance was also loaded with properties that promoted

the relationship between the learner and the properties of the instance. The tighter the

relationship between learner and actor, the better the learners could manipulate the actor

instance or object. The relationship of the actor and the learner promotes reflective

abstraction. The learners had to enact the actual Actor object as if the learner was projected

into the scenario. The APOS theory was brought in context of Greenfoot coding. Reflective

abstraction is a huge achievement for learners and their Greenfoot competencies.

 Findings
Finding 9-1: Learners understood abstraction through system methods

Finding 9-2: Learners understood embedded code

Finding 9-3: Learners used an IF condition

Finding 9-4: Learners used actions to understand the execution of Greenfoot

Finding 9-5: Learners could enact the problem through trial and error using debugging

methods

 APOS discussion
The APOS mental structures in terms of the intervention are now discussed.

(i) Actions
Learners enacted the turn(10) command using the Act button, which is a higher order than

physical enactment.

(ii) Process
Learners accepted the built-in methods of the Actor class such as getX() and getY() and the

Greenfoot class’s getWorld().getHeight() methods. They need not enact or think about

these methods anymore but use them, as they built an understanding through enactment.

(iii) Object
The learners could abstract code through a descriptive name. Although this was a first

encounter, most learners agreed that the coding was more legible and they do not have to

worry about the code once it performed the steps it was intended for.

(iv) Schema
Learners became excited about new avenues opening to them, which empowered them to

do even more in terms of coding. The researcher described this as a Greenfoot programming

Schema being expanded with each exploration.

212

 Summary
Learners became aware of encapsulation, abstraction, breaking down an object into an

action, discovering computational thinking, based on abstraction and automation.

5.4.3.21 Intervention 10: Revisit encapsulation with the Randomize option
(Appendix L)

 Description
The goal of this intervention was to let learners impose actions on their current Schema that

exists around code encapsulated in a method. This exercise challenged learners to

investigate the methods which existed within classes. This exercise was synonymous with

the previous exercise, but it added the Randomize function to make the gaming environment

more real and unpredictable. The focus is on changing the Schema of the learner, expanding

the Schema through assimilation.

 Analysis and discussions
Learners found exercise fun, but challenging. Learners now understood abstraction

encapsulated within the Randomize method. Learners called and used methods getWidth(),

getHeight(), getX() and getY(). Gaming became reality owing to random positions. Learners

understood that a package consists of classes. The learner manipulated an Actor object to

randomly turn in any direction. The learner also quickly realised that accuracy when using

method names were of the essence and a sense of perfectionism was instilled in every

learner or else there was no success. After each compilation of the Greenfoot code, the

learner was confronted with debugging exercises.

In mathematics, such problems were left to the teacher to either mark it right or wrong, but

programming allowed the learner to immediately witness whether the outcome was correct,

by forcing the learner to apply corrections after each compilation. The researcher regards

patience as a competency when stuck on a problem and persevere until it is solved.

 Coding
The learners were requested to do research and found the application of the Randomize

method within the Greenfoot class. Learners were quite relaxed in extracting information on

the method from the Greenfoot API and seemed quite efficient. Randomization was used to

make the flow of the scenario more natural.

getRandomNumber

public static int getRandomNumber(int limit)

 Return a random number between 0 (inclusive) and limit (exclusive)

213

 Parameters:

 limit – An upper limit which the returned random number will be smaller than

 Returns:

 A random number within 0 to (limit-1) range

The learners could understand that 0 was inclusive, but the number or upper limit excluded.

The turn command will therefore receive a value of either 0 up to 99 when using the following

code snippet depicted in Figure 5.43.

Figure 5.43: Greenfoot code illustrating the “turn” command

 Findings
Finding 10-1: Learners automate the code in natural a way

Finding 10-2: Learners discovered the Randomize method through investigating the

Greenfoot classes

Finding 10-3: Learners investigated the rules of the Randomize method from help

documentation as done during intervention 2B, before implementing

Finding 10-4: Learners could connect abstraction to built-in methods and self-declared

methods

 APOS discussion
(i) Actions
Learners interacted with the Greenfoot class methods within the Greenfoot Class

Documentation under the Help menu option. Intervention 2B gave learners a “met-before” in

how to use the online documentation options.

(ii) Process
Once the learners investigated the getRandomNumber method, the implementation

allowed them to memorise the meaning of the method. Other methods were also seen during

their investigation, which broadened their knowledge. They could then just apply the method

and associated methods.

214

(iii) Object
Learners became aware of more methods within the Greenfoot class, which became Objects

towards their coding.

(iv) Schema
Learners became much more fluent in Greenfoot programming and expanded their Schema

by imposing Actions on the Object of a Greenfoot scenario.

5.4.3.22 Intervention 11: Assessment (Appendix M)

5.4.3.23 Intervention 11A: Informing the learners of the assessment in a
structured manner (Appendix M-1)

 Description of Intervention
The goal of the intervention was to guide the learners with preparing for an assessment. The

intervention focused on informing the learner in a structured manner of what they were

writing on. This minimised anxiety.

 Analysis and Discussion of Intervention
Learners found the guide on preparation extremely useful, which minimised their anxiety.

Learners understood what was being assessed. The learners were prepared for the

assessment using Greenfoot and Moodle as resources. Learners now used Greenfoot as a

reliable resource with Oracle prepared notes and videos by Prof Michael Kölling (Greenfoot,

Code, 2014). All exercises and pre-tests or assessments were available to the learner. The

teacher could also verify if the learner logged into the system to prepare for the assessment.

Resources such as Moodle were also tried and tested. Learners were prepared for the

assessment through practical exercises and were looking forward to the assessment.

 Findings
Finding 11A-1: Learners appreciated the tangible breakdown of what to study for the

assessment

Finding 11A-2: Learners consulted Moodle as source of information

 APOS discussion
(i) Actions
Learners were informed of the context of the test and could take action in preparing for the

assessment.

(ii) Process
Learners memorised most of the code through implementation and research.

215

(iii) Object
Learners regarded assessment as a measure of their competencies in the Greenfoot

programming language.

(iv) Schema
Learners could visualise the assessment to assess their programming competency and

understood exactly what was expected of them.

5.4.3.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and
problem solving (Appendix M-2)

 Description of Intervention
The goal of the intervention was to let learners solve a problem using Greenfoot with code as

output. Learners developed a scenario from scratch by creating their own Actor images and

background for the World class using Paint. The aim was to control movement in Greenfoot.

Learners had to understand how the world is constructed in Greenfoot. Learners constructed

a World and Actor objects using Paint. They then put together a game with their own

constructions and applied code through encapsulation (OBJECT).

 Analysis and Discussion on Intervention
Learners enjoyed the assessment thoroughly during the observation and capturing on video.

Learners could devise a solution/algorithm to integrate the Paint object into a scenario.

Learners understood the complexities of encapsulation through construction. Some learners

could create structures in Greenfoot which pointed to the existence of a Schema. Learners

manipulated sound and their own Actor and World objects beyond the Greenfoot given World

and Actor objects. Learners discovered their creative side through using Paint and

incorporating the Paint object in Greenfoot. This was then loaded as a World object as

background or backdrop to the game they devised. The learner was tested to his/her limits.

The learner created his/her own background for a World and in this case, a racing track

populated by trees and other objects. The learner then had to control actors such as a car or

vehicle with the cursor keys of the keyboard and guide the vehicle all along the road to the

finish point. Obstacles along the road alerted the learner if the vehicle actor instance collided

with objects such as trees or houses. The same coding was examined in the Crab scenario,

available in the Book Scenarios and in the videos. Here the Lobsters ate the Crabs, which

illustrated ehat happened when Actor objects invaded one another’s space and the action

that had to be taken through calling methods.

The learner was forced to visit the Moodle site and watch the video in preparing for the

activity.

216

The researcher also created videos where the learners worked in groups of two, and the

video illustrated the motivation and keenness of the learner to accomplish the goal of

creating the game. The activity was thoroughly enjoyed by both learners within each group.

Learners constructed the most fantastic designs and asked quality questions on “how to”

make the Paint jpeg file part of the Greenfoot scenario. This forced learners to explore the

folder structure of Greenfoot and where these files should be stored. This was covered when

they started out with Greenfoot and they had to unlock that part of their programming

experience. Some also added sound images to the car and sounds simulating a crash when

the vehicle collided with an object, thus making the game so much more interesting.

Aspects such as encapsulation, if-statements, understanding the dimensions of the world,

exploring the properties of actor instances in the scenario and coding in general were

constructed. The constructionist approach rested upon tried and tested theory within Moodle.

The APOS theory was re-enforced and the learner was asked to identify APOS elements

within the Paint exercise. A small number of learners identified and created an OBJECT and

a SCHEMA construction within the exercise. The researcher assisted to identify custom

methods as objects within the scenario and showed them how to move repeating code into a

method and just calling a method, not repeating the code, as illustrated in the following

Figure 5.44.

 Findings
Finding 11B-1: Learners incorporated other tools such as Paint to construct a background

or new World

Finding 11B-2: Learners applied encapsulation by moving code into a method

Finding 11B-3: Learners involved control structures into their code

Figure 5.44: Greenfoot code for repeating code

217

 APOS discussion
(i) Actions
Learners watched videos on how to create an image in Paint for a background.

(ii) Process
Learners knew the folder structure of Greenfoot and immediately saved the background n the

images folder.

(iii) Object
Learners saw the Greenfoot programming language scenario as an Object to construct

World and Actor objects.

(iv) Schema
Learners added many more methods to their Greenfoot Schema, which expanded into lines

of code that constitute a scenario.

5.4.3.25 Intervention 12: The Variable in Greenfoot (Appendix N)

 Description of Intervention
The goal of the intervention was to introduce learners to a basic variable and show how to

use Pascal or Camel case when defining these variables. Previously, no emphasis was

placed on the exact purpose of a variable. Now the focus is on describing a variable properly

and combining the variable as part of an IF-statement. Learners had to understand a basic

variable in Greenfoot. They had to apply a variable within code, understand how a controlling

statement is used, understand a Boolean variable, and had to investigate the proper notation

of a variable.

 Analysis and Discussion of Intervention
The activity was difficult, as the learners had to understand how an exclamation mark or

negation character describes the negative of the current situation. This was easily explained

and illustrated – when a rocket moves in a specific direction and when it touches the

opposite side or another object the direction is negated, which then gives a response to

driving the rocket in the opposite direction by subtracting from the x or y value. The learners

experienced a Boolean variable controlling the rocket movement and direction. Learners had

difficulty with the syntax at first, but after witnessing the output in having an “!” in front of the

Boolean variable taking an action to subtract from the x or y value, brought clarity to their

understanding, such as: if (!forward) xValue = xValue – 5 and so on.

218

 Challenges
The problem assigned to the learners was to create an object anywhere in the world. They

then had to make the object move up and down, depending on the direction and controlling

Boolean variable. At this stage, the coding was becoming challenging if learners missed

previous sessions or did not complete exercises. The academic school year also came to an

end and teachers and learners focused on studying for their assessments. This distracted

them from using Moodle or devoting as much attention as they have done throughout the

year. This made their understanding and interpretation very difficult in terms of find an

algorithm for a solution for the problem at hand. Moodle was always there for them to utilise,

but it was the researcher’s experience that the process of enforcing the learner to visit the

Moodle site and “pick up the pieces” would only realise if the subject was slotted into the

school system as an examinable subject. Due to some of those elements being missing, the

students returned unprepared, which created frustration within the learners and in the

researcher. Learners without home PCs even made the situation worse. As part of the GD,

two videos were created as flipped classroom techniques and an introduction for the learners

depicted in the “coding” section below. The learners could now create their own conceptual

image of the video that portrayed the conceptual definition of the problem.

 Findings
Finding 12-1: Learners could understand the usage of a Boolean variable as a controlling

variable, but with challenges

Finding 12-2: Learners applied the getX() and getY() methods

Finding 12-3: Learners understood the dimensions in terms of x and y values that make up

the grid

Finding 12-4: Learners did not prepare as well, or use Moodle as often as before, because

the subject was not a ‘real subject’ that influenced their future

Finding 12-5: Learners found the coding challenging when they had to apply syntax

 APOS discussion
(i) Actions
Learners engaged with getX() and getY() methods by clicking on act() method and

experimented with the moving of the object in the world.

(ii) Process
Learners used the IF control statement to determine the direction of the object.

(iii) Object
Learners could visualise the movement of an object in a vertical position.

219

(iv) Schema
Learners added many more methods to their Greenfoot Schema, which expanded into lines

of code that constituted a more complex scenario.

 Coding
To illustrate how the variables dovetail into a game, the “worked-example” effect was rolled

out to as two videos to the learners, which can be viewed at link:
 http://www.wrru.co.za/moodle/mod/resource/view.php?id=542
and
http://www.wrru.co.za/moodle/mod/resource/view.php?id=543

The two videos use breadth-first hierarchical organisation for the learners’ understanding.

5.4.3.26 Intervention 13: Moving from Process to Object in APOS using
Greenfoot (Appendix O)

 Description of Intervention
The goal of the intervention was to change the scenario of the Greenfoot application into a

turnkey application. Each learner gained more information and insight into the Greenfoot

environment through the Greenfoot application using the Moodle LMS as aid to assist in pre-

preparation. The learners were challenged to make the scenario a turnkey application. The

learner had to position the Actor object when the scenario opens, within the World at a

specific position. The scenario portrayed red and blue balloons, which changed position as

scenario executed.

 Analysis and Discussion on Intervention
The APOS acronym formed part of the learners’ arguments when dealing with Greenfoot.

Learners understood Greenfoot vocabulary within editor-compiler and help files. Learners

married Greenfoot as learning goal and Moodle as resource to explore and find solutions or

answers to their problems in Greenfoot. Learners understood the graphing of x and y axis

values owing to the constructionist approach in order to witness the outcome of their actions

through enactments in Greenfoot using the act() method. Although this was not the aim to

learn mathematics, the x and y coordinate concept became reality owing to enactment, when

the learner became the Actor (Balloon) in the scenario.

A mark out of 20 was assigned for each attempt, and most learners achieved above 80%

overall. Fourteen (14) English speaking learners completed the assessment and obtained an

average of 91%, whereas eighteen (18) Afrikaans speaking learners completed the

assessment with an average of 88%. After exposing the learners to the preparation modules,

i.e. Moodle and the Greenfoot application, the learners now researched the information on

http://www.wrru.co.za/moodle/mod/resource/view.php?id=542
http://www.wrru.co.za/moodle/mod/resource/view.php?id=543

220

the Internet and Moodle LMS. They were then subjected to a class test using the Greenfoot

editor and compiler as resources to answer the questions above in Appendix O.

The aim of the assessment was to verify that the learners understood the dimension

structure of the world within Greenfoot and the commands needed to manipulate an actor

within the world in all four directions – north, east, south and west. This affected the Action,

Process and Object stages of APOS theory.

Ten English speaking learners and seventeen (17) Afrikaans speaking learners participated

in the assessment.

Questions 1, 2 and 3 were answered quite well. Except for one student who struggled to

create a scenario, and compile and add actors to the scenario, everyone obtained full marks

for these questions. The learners understood the dimensions of the world regarding the x

and y coordinates and indicated correctly the directions by which the x and y values

increased and decreased using the 0,0 coordinate in the left top position of the screen.

Attention was required for question 4 and question 5, which needed understanding of the

movement of a red and blue balloon along the y-axis and the x-axis respectively. The

learners also discovered and understood that the act() method is called every time the

scenario is executed or run. The learners used the setLocation(x,y) command, and by doing

this, they had to change the x value for the blue balloon and the y-value for the red balloon.

Three (3) out of the 10 learners and 8 out of the 17 learners answered question 5 very well.

This demonstrated their insight into the actual location and movement of the red and blue

balloon actor instances. The Afrikaans speaking learners averaged 79% and the English

speaking learners averaged 76% for the assessment. The learners showed a strong

enactment with the actors in the world, which guaranteed the correct x-y coordinate

association of a balloon in the world.

The learners also grasped a very confusing and difficult concept in that of y=y-5 whereby the

y coordinate was incremented each time the act() method was called. When looking at this

equation at first, it simply does not make sense that y=y-5. Question 3 still demanded

physical action by the learners in most cases. Question 4 and question 5 indicated that the

Process stage of APOS made sense to most of the learners in that they started to visualise

the exact location of the balloons without taking action. Taking action means that the learners

would have used inspect or the same method to show the coordinates of the balloons

wherever they were positioned as opposed to visualise and memorise the world’s

dimensions in terms of x and y coordinates. Twenty percent (20%) of the learners still

dragged the red and blue balloon to a location as per stated problem and then inspected the

221

x and y values for that object, which is better than guessing. In this way, they discovered the

positions and whether x or y incremented. This also gave them an understanding of the

graph coordinates. Question 4 and question 5 demanded more from the learner in terms of

utilising his/her memory to represent the balloon at a location visualised in the learner’s mind.

This also implicated a process within APOS, which could only have developed if the learner

enacted the action into a Process and did not rely on an action to understand question 4 and

question 5.

The learners made use of the Moodle LMS and discovered the theory of Greenfoot as part of

a constructionist learning activity. Students achieved the basic minimum requirements of

being able to log into Moodle and retrieve information to answer the questions, with login

details as provided in the task. The researcher noticed that some of the introvert learners

were also beginning to ask questions in class, making them heard. The reason attributed to

this is that those who wanted to do so, also downloaded the source code from the Moodle

site and installed Greenfoot on their home PCs. This enabled accelerated learning at school

during the sessions.

Overall, most learners could write down the APOS acronym and explained what it stands for.

They also understood the Greenfoot language as consisting of classes and knew exactly

where to click to show the documentation within the editor-compiler. The learners understood

what was meant by dimension of the chess board and they could position an instance of an

actor at a specific x-y location. They understood that a class consists of methods and that an

instance of an actor class may participate in the specific world per definition. In summary, the

learners knew that they could fall back on the Moodle repository to find answers to the

questions, with results depicted in Table 5.10.

Table 5.10: Test 2 results

Test 2 Total Written Average %
English 10 76
Afrikaans 17 79
Total Learners 27 77

 Coding
The learner identified setLocation(x,y) where x or y changed to satisfy the goal of advancing

the red or blue balloon. The movement process was governed by a Boolean variable called

“up”. The “up” variable was used in conjunction with the red balloon going up or down.

222

 Findings
Finding 13-1: Learners used an Action to gain clarity on the changing x and y values,

which was achieved by physically dragging the red or blue balloon to a

position on the designated path and inspect the x and y values

Finding 13-2: Learners experienced challenges when they jumped straight into a Process,

instead of taking Action. The coding then became a guessing exercise

Finding 13-3: Learners understood the essence of a Boolean variable

 APOS discussion
(i) Actions
Learners took Action by dragging the red and blue balloons to a location as per instruction.

(ii) Process
Learners could use variables to imitate the balloon movement.

(iii) Object
Learners acquired “movement” as an Object in manipulating x and y settings.

(iv) Schema
The Schema expanded in accommodating variables as part of the Greenfoot Schema.

5.4.3.27 Intervention 14: GD creation on IF statement

The goal of Intervention 14 was to create a GD on the IF statement and on peripheral

programming language concepts. In the New Year, the English speaking group could not be

slotted into the timetable, thus only the Afrikaans speaking group of 2015 carried on. The

researcher decided to ‘throw’ problems at the learners all the time and assess if APOS

thoughts were applied when solving these problems. The GD should then allow learners to

comprehend the IF concept in programming, which was re-applied after the sub-interventions

were completed. These sub-interventions contributed to the GD. In order to get to a GD on

the IF statement, the intervention was subdivided into several sub-interventions as stated

below. The GD would then be perfected and tested again to ensure correctness, validity and

reliability. The GD consists of activities, class discussions and exercises (ACE) as depicted

in Appendix D-1.

Intervention 14A: Basic understanding of a scenario with World and Actor classes

Intervention 14B: Manipulation of Actors in a World

Intervention 14C: Interaction of Actor within the world solving problems

Intervention 14D: Adding graph paper and Greenfoot to develop an algorithm

Intervention 14E: The IF statement as a solution to address problems

223

5.4.3.28 Intervention 14A: Basic understanding of a scenario with World and
Actor classes (Appendix P-1)

 Description of Intervention
The goal of this sub-intervention was to determine the learners’ understanding of the basic

concepts of a scenario. The new school year started, and the researcher had to refresh

learners’ perspective of Greenfoot programming. The understanding of basic terminologies

such as scenario, World and Actor classes were assessed. Learners could refer to the GD

developed in Appendix D-1 and D-2.

The activity was to use Greenfoot programming language and create a scenario called

ArabianNights.

The class discussions were held through learner-researcher interaction or learner-on-learner

interaction. The exercises in this case were the problem to explain in words what learners

understood by the ArabianNights scenario. What had to be embedded in the mind before

attempting the scenario.

 Analysis and Discussion of Intervention
Learners had to familiarise themselves with the basic concepts. All these concepts, such as

class, object, world, Actor, compile and usage of Moodle, were enforced. The questions were

then given as part of this intervention, to test the learner’s response. Learners did not access

Moodle, as their responses were that they have already done so the previous year. Question

7, Figure 5.45, was answered well in that the learners already transformed the Actions as

thought processes in their minds to accomplish the task at hand. The Process phase was

therefor already entered, according to the APOS theory. They created the scenario

ArabianNights, being able to refer to the first GD namely “Creating a scenario” (Appendix D-

1, intervention 2A). Learners found it easy to create the trees along the pathways the object

would travel.

Figure 5.45 illustrates a typical answer that portrays a lot of detail connecting to physical

steps.

224

Figure 5.45: Question 7 answer

Question 7: Before you created the ArabianNights scenario, what flashed through your

brain to create the scenario (the steps). That is, how did you visualise the

process, or did you see it as a sequence of actions to complete the creation of

a scenario? Describe the image you have within your mind to complete the

scenario.

“I went to the subclass and called the class Desert and chosen a sand.png (and then
compiled) – Then I went to the Class Actor and made an object of the Actor class, by
clicking on new subclass and I called it Camel and chosen a camel.png.”

Homework: Please watch videos 4 and 5 before you attend the next class. Write this
down in your homework book please.

“I did the same and called it AppleTree and chosen a tree.png and then I compiled it.
Then I added an object (Camel and AppleTree).”

This shows that a Process phase of APOS theory was entered into by the learner. The

learner knew exactly what to do and could describe every detail in accomplishing the task in

solving the problem.

 Findings
Finding 14A-1: Some learners had to make use of the first GD as actionable steps

Finding 14A-2: A Process (APOS) was present, especially in answers provided for

question 7

Finding 14A-3: Learners were not keen to watch videos again once they have been there,

and could skip some steps in the GD

Finding 14A-4: Learners showed that a Schema did exist, which contributed towards

providing a solution to the problem

225

 APOS discussion
(i) Actions
Learners did not watch videos and the Action phase was in background. Some learners

referenced the GD, which points to an Action phase.

(ii) Process
Learners could describe the Actions embedded within their minds, which pointed to the

Process phase.

(iii) Object
Learners knew exactly what to do and brought back the Object of “Creating a scenario”

captured in GD in Appendix D-2, which formed part of their schema.

(iv) Schema
The Schema was recalled and updated.

5.4.3.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2)

 Description of Intervention
The goal of this sub-intervention was to create a scenario called Moon and control a rocket

within the Space world and guess its position in the world. The difference when comparing

this intervention with the previous one is found in augmenting code and understanding the

world dimension. That is, the movement from drag and drop to coding. Actions triggered in

the mind when receiving the challenge or problem, were highlighted. Learners were asked to

use Greenfoot and create the World and Actor classes, after refreshing the Greenfoot IDE

during previous lessons. They were then asked to explain what they have done by writing

down their thoughts. A simple move() method was used to move the Actor rocket object.

 Analysis and Discussion of Intervention
The learners enjoyed the activity. They have done this before and could relate to the GD in

Appendix D-2 and recalled their Schema on Greenfoot that came from the previous

intervention. From observation, the learners were eager to participate, and the problem given

was accomplished with ease. However, from the answers received such as “What is the
goal of the Compile button?” learners were not knowledgeable on the compile concept. As

depicted in Figure 5.46 it shows that an answer given by a learner was vague. The learner

used words such as “all or everything that were done must be created”. This is true to a

certain extent, but still, the words are generic and not specifically pointing to the concept.

226

Figure 5.46: Question 3 on the term ‘compilation’

The best answer was provided in Figure 5.47 (Translation: “To ensure that one does not

make any mistakes in one’s programming and that starts/runs the scenario”) where the

learner stated that it is about the removal of syntax errors and to ensure the scenario is

started.

Figure 5.47: Answer to what ‘compilation’ stand for

They were ready to control their objects using the IF statement. The questions were

answered in a much more professional or scientific manner, which indicated that learners are

in control.

 Findings
Finding 14B-1: Learners achieved the creation of World and Actor classes as a Process

Finding 14B-2: Learners could also manipulate the rocket Actor object in turning it 90

degrees

Finding 14B-3: Learners were unsure about the location of the rocket after the movement

 APOS discussion
(i) Actions
Learners did not watch videos and the Action phase was in background.

(ii) Process
Learners could describe the Actions that were in Process phase, with ease.

(iii) Object
Learners knew exactly what to do and brought back the Object of “Creating a scenario”,

which formed part of their schema.

(iv) Schema
The Schema was recalled and augmented.

227

5.4.3.30 Intervention 14C: Interaction of Actor within the world solving
problems (IF statement as precursor to GD) (Appendix P-3)

 Description of Intervention 14C on 06-03-2015
The goal of this intervention was to let learners solve the problem of how to control the object

when reaching the end of the world. A hypothetical genetic decomposition (GD) is also a by-

product of the outcome of the activity. Learners had to make choices to control the object

(ambulance or turtle – learners were given free choice on what object to choose). The task

consisted of 4 activities or class exercises. The focus of the activities was on investigating

the IF statement. Methods that output the location were used. The learners were given a

refresher tutorial before attempting this test as part of the class activities, discussions and

exercises (ACE). The learners were introduced to the IF statement. Prior to this test, the

learners were constantly reminded to watch the videos on Moodle and do a tutorial to guide

them for this test/task. They had to indicate which videos they watched, and their answers

reflected clearly when videos were not watched. The researcher brought it to their attention.

The questions focused on the problem of how the object can be guided to turn at the edges.

This is typical of computational thinking – in posing a problem to the learner and the learner

must provide a solution considering a number of variables, i.e. location of the object relative

to the x and y axis, Boolean variable use, and control structures such as the IF statement

became the focus. As indicated in Figure 5.48, the learner understood embedded methods

such as getX() and getY() and getWorld.getWidth().

Figure 5.48: Answer consists of Greenfoot code for checking edges

Translation:
Activity: Rewrite your description of the problem, but use Java(Greenfoot) code for
activity 2 and use syntax as much as possible. Consider every condition in detail.

The answer portrayed in Figure 5.48 clearly shows that the learner understands abstracted

methods in terms of the x and y coordinates. In this specific case, the getWorld().getWidth()

228

method was used, where with previous answers, the learner looked up the dimensions of the

world to establish the last x coordinate position, depicted in Figure 5.49.

Figure 5.49: Inspection parameters on Turtle object

The researcher also handed out graph paper so the learners could relate to the x and y

coordinates. The learners soon realised that these coordinates could be inspected onscreen

and that they did not need the graph paper pages.

 Analysis and Discussion of Intervention
The learners gave good answers in terms of detailed descriptions of what should happen

when the car or turtle reached the edge of the World.

Figure 5.50: Answer to Question 1

Translation:
Question 1: When should the car turnaround on the horizontal? Consider every case. Write

code you will use. Do each side separately. Do not number c before completing

a and b.

229

c. Your car now moves horizontally. You want to allow the car to move in any

direction and also move away from the top and bottom edges of the world.

Firstly, plan by determining when the car will reach the top and bottom edges by using an IF

statement to prevent the car from colliding with the left, right, top or bottom edges. The car

must turn away from the edges before a collision takes place. Look up method

getRandomNumber(180) by using the HELP option in the Greenfoot Class Documentation.

The student wrote in Figure 5.50: “When the car reaches the end of the World, it should turn

around (in my case, it should turn around 40 steps less than the end of the World). When

reaching the right side, it must turn again (in my case, the end is 40 steps closer)”. This

typical thinking shows that the student is conveying the message in algorithmic terms, being

very specific. The learner understood the precise steps that had to be coded to ensure a

solution to the problem. The learner however saw no built-in abstraction methods that could

have assisted. The answer illustrates that the learner’s thought processes are structured, but

in a manual way keeping to the basic steps. No use of abstraction is shown in the answer,

such as the use of system methods.

Another student showed a different, but more in depth understanding of what the code

entails, as depicted in Figure 5.51.

Figure 5.51: Response from student regarding Car movement at edge of the World

The translation of Question 1 is the same as in Figure 5.50. Figure 5.51 illustrates a different

understanding or angle to the problem. The learner referred to the x and y coordinates that

needed monitoring. The learner also made use of a random number generator and the

learner embedded that into the turn(Greenfoot.getRandomNumber(180)) method. Much

230

more intelligence was built into this learner’s thoughts, as he/she tracked the x and y

coordinates, using getX() and getY() built-in methods. The answers to these methods were

compared to the actual width and height of the World, instead of hard coding those values.

 Coding
Learners struggled with the task in general because many did not watch the videos that were

prescribed for the task. Some learners described the problem by breaking it down into steps

and assigning code to each step. Some learners could not describe the problem in general

but only focused on a specific side, i.e., right or left and forgot about above and below. Some

even understood the term inheritance and it became obvious that they could write code to

detect every point within the dimension but had to generate general code driven by a

variable. Some students realised that by having a move(x) as the first command within the

Act() method, the object may be against the edge and will stay there forever, hence the

coordinates should be obtained for the object prior to movement taking place and only

advance the object if there is space or turn the object if the edge was reached.

The following code only tests for the right-hand side of the World.

public void act()

 {

 // Add your action code here.

 move(30);

 if (getX()>getWorld().getWidth()-20) turn(20);

 }

This is typical of a learner that entered an object phase seeing the IF statement as part of a

generalised structure. Others did not describe the process in words, but used Greenfoot as

computational notation to code with a trial and error approach within the Act() method.

Overall, with exception of a few, learners have not as yet made an object from the processes

they knew, i.e., create an additional method to be called first before moving the object

further. Abstraction played a prominent role in this activity, which could be realised through

inheritance of a common method. One learner pointed to inheritance as the major factor in

the problem.

As part of preparation for the test, some learners returned to the Action phase to gain clarity

on the problem. They had to walk around in the classroom with his/her eyes closed and the

fellow learners communicated commands to guide the learner so as not to bump into objects

or the wall. This showed that learners remembered the APOS theory. The researcher also

re-emphasised the APOS theory in the video that was produced to discuss the IF statement

231

within the Greenfoot code. This gave each learner a sense of certain steps and commands

that needed to precede others to make the journey successful.

 Findings
Finding 14C-1: Learners had different Schemas on Greenfoot in terms of expertise

Finding 14C-2: Learners described the problem better in context of coding

Finding 14C-3: Learners enacted the “Car” object while walking around blind-folded in the

class guided by their fellow learners, i.e. physical steps and movements of

the Car and the classroom being the edge

 APOS discussion
(i) Action
Learners still enacted the trajectory of the Car object by walking in class simulation the Car’s

movement in an attempt to resolve the problem.

(ii) Process
Some learners were writing and describing the solution in much detail, without enacting.

(iii) Object
The Object on the IF statement took on form as a control structure concept.

(iv) Schema
The Schema was expanded again when some learners introduced more methods to

automate and code in an abstracted manner, by using pre-existing methods. The majority

still struggled with the IF statement.

5.4.3.31 Intervention 14D: Adding graph paper as part of GD to develop
algorithm (Appendix P-4)

 Description of Intervention
The goal of the intervention was to link APOS and augment the GD of the IF statement with

the learners’ coding strategy. The intervention wanted the learners to discover where the

object could fall off the World. The learners encountered problems with the IF statement

during previous test. Graph paper was now added as part of the test to represent the object

as per scale compared to the dimension. In the previous scenario, graph paper was an

option but for this intervention it was mandatory as part of augmenting or refining the GD.

The questions were changed in that it addressed the edges specifically and not demanded a

general method to address the edges. The questions were broken down so that the learner

could understand that each side or edge had to be checked individually and that the code

according to the x-y coordinates differed. A specific challenge or problem was highlighted,

232

namely that the learners had to write code to detect if the Camel object touched any side of

the World. Code was needed for the specific edges, such as the left, right, top or bottom. The

learners also had to describe what they understood by the IF statement.

 Analysis and Discussion of Intervention
The learners used graph paper as a given to represent the world on scale. Learners had to

mark the coordinates at all four corners of the graph paper. As part of the class discussion,

the researcher showed the learners how to enact the graph paper as an electronic exercise,

by positioning the object at each corner and inspect the object (Figure 5.49). The act()

method could also be used as a stepwise debugging option. They understood that the object

is a specific size, which had to be considered when verifying the location of the object when

turning. Learners performed much better when inspecting the actions through that shown in

Figure 5.49. Learners could explain the algorithms with better detail once the steps were

enacted. They also represented the object at the correct location on the graph paper

because their understanding overall was improved. The very fact of having Moodle available

gave most learners an advantage over those that did not use Moodle. Learners were now

ready to represent the code as a unit or object using encapsulation within a method by

“sharing” the method.

The genetic decomposition of an IF statement could now be indicated on paper in that

learners had to be given the opportunity to visualise the steps within such code without

abstracting the code in their mind at first. The next step would be to guide the learners on

how to abstract the code into a descriptive method performing some action, i.e., an object

with the ability to perform actions on other elements within the scenario. All objects playing a

role in the solution had to be accommodated, such as getX(), getY() or getWorld.getWidth()

and getWorld.getHeight().

 Findings
Finding 14D-1: Learners broke down the problem into steps and enacted them using the

act() method or physical Actions

Finding 14D-2: Learners used graph paper to position the Actor physically with pencil

Finding 14D-3: Learners used abstracted methods to determine x-y positions of the Actor

object

 APOS discussion
(i) Action
Learners used graph paper or physically moved the object to a position and then inspected

the object, as in Figure 5.49.

233

(ii) Process
Some learners wrote down the steps to enact from memory.

(iii) Object
The IF statement took on form in that a name was given to the group of statements verifying

the edges of the World e.g. turnAtEdge().

(iv) Schema
The Schema was expanded.

5.4.3.32 Intervention 14E: The IF statement as a solution to address problems
(Appendix P-5)

 Description of Intervention
The goal of the intervention was to create a turnkey Greenfoot application. Turnkey is when

the Greenfoot application is opened, it is launched. Questions were asked based on previous

outcomes in order to force the learner to think about how the object should behave. They

enacted the behaviour of the object using code. The scenario now contained trees and a Car

object in pre-formatted positions upon starting the Greenfoot scenario.

 Analysis and Discussions of Intervention 14E
The learners were given the challenge of writing or creating a turnkey application. That is,

when the application is loaded, the World and Actor classes are positioned at the correct

locations. The problem was to position the Car object and trees when compiled. Learners

added code into the Race World class by creating objects for Car and Trees. The challenges

were to detect when the CAR reached any side of the World and transform that into x and y

coordinates and take action so that the CAR would keep moving within the World. The

learners were also instructed to follow the commands in sequence. Learners now saw

several specific steps to solve the problem. Learners managed to position the trees and the

Car at specific locations using the addObject() method.

 Findings
Finding 14E-1: Learners enacted the algorithm in their minds as thought processes

Finding 14E-2: Learners could transcribe the problem in context of Greenfoot and the

World

 APOS discussion
(i) Actions
Learners imposed Actions on an existing Object, namely the IF statement

234

(ii) Process
Learners could create the scenario and added all the necessary methods.

(iii) Object
The turnAtEdge() method became an object as one abstracted name assigned to a number

of commands which discover the edges of the World

(iv) Schema
The Greenfoot Schema now became extensive because of all the scenarios that were

created by the learners.

5.4.3.33 Intervention 15: Testing Greenfoot to be accepted among teachers
(Appendix Q)

 Description of Intervention (Appendix A-8.1 to Appendix A-8.3)
The goal was to test the validity of the Greenfoot application thus far. Three official

workshops with the WCED teachers in IT were held to guide them towards investigate the

concepts. These workshops were officially arranged by Oracle in SA and took place in the

Western Cape at specific areas. The researcher as instructor used the learning material of

Greenfoot produced by Oracle to convey the Greenfoot concepts.

 Analysis and Discussions of Intervention 15
It was evident that some teachers struggled with creating solutions to problems in Greenfoot,

which could be attributed to compounding the entire course into a two-day course. However,

the lessons were received well and most teachers could relate to Greenfoot through their

Java programming language classes. Many of them were teaching Java as programming

language at the time and could easily construct code within the Greenfoot editor. The

Greenfoot IDE was easily assimilated. The compilation process was not unfamiliar to them

and debugging was kept to a minimum as opposed to CAT teachers who have not done any

Java programming. The Act method was also a new concept to teachers in that it was

recursively called during a run phase. Teachers had a sequential idea of code execution

where code started and stopped. Their concept of creating an algorithm now changed into

that of concurrency.

The most interesting of all outcomes was that many teachers doing IT and programming

already had pre-set ideas of variables and coding and found it difficult to understand how the

act() method is called recursively. The final scenario used with these teachers is captured in

Appendix V, mixing music with Greenfoot. Seeing that the teachers already had a solid

understanding of arrays, the keys and notes were stored in an array. The sounds of the

235

different keys were used from an existing scenario in the Book Scenario examples on the

Greenfoot site.

The teachers experienced the same challenges as the learners. This highlighted the fact that

learners were more acceptable to learning, seeing that certain existing knowledge could

prevent the acquisition of new knowledge, also known as ‘epistemological obstacle’

(Brousseau, 1983). Beliefs about the self, beliefs about social content are a difficult domain

to penetrate and to change in an instant (Jankvist & Niss, 2018).

The learners were much more open to learning than their teachers were.

 Findings
Finding 15-1: The teachers found the course challenging because of the short timeframe of

only two days

Finding 15-2: The teachers could see the relationship between Java and Greenfoot code

and applied some Java code within Greenfoot

Finding 15-3: Teachers and learners experienced the same challenges

Finding 15-4: Pre-knowledge prevented acquisition of new knowledge

Finding 15-5: Beliefs about mathematics may also become a limiting factor in making

progress in mathematics, unless some meta-belief system is implemented

Finding 15-6: Learners were much more open to Greenfoot, possibly because of pre-

knowledge and beliefs, which were more visible in adults

 APOS discussion
(i) Actions
The approach was that of enacting code at first. The researcher/instructor focused on

worked-examples to optimise time as opposed to constructivist learning.

(ii) Process
Teachers who taught programming showed more potential in terms of creating methods that

encapsulated code fragments into abstract concepts.

(iii) Object
Programming teachers already had control structures and variables as part of their Object

repository. Their adaptation was more focused on assimilation than accommodation of new

concepts.

236

(iv) Schema
Programming teachers had a programming Schema to assimilate where other teachers with

a CAT background had to accommodate new concepts. These CAT teachers commented

that the course was overwhelming, but doable, owing to the worked-examples.

 Summary
Appendix R-4 highlights the interviews conducted with learners on the Mathematics and

Science interventions done.

Chapter 5 reported on the EDR data collection process and analysis of the data. The design

was based on a mixed methods approach, where interventions and interviews were used to

collect data. Qualitative data analysis was the focus of the analysis. The EDR approach gave

the researcher a means to investigate the wicked problem at hand, namely the development

of computational thinking among grade 8 and 9 learners of a private school. The researcher

explored the use of Greenfoot as programming language to develop computational thinking

among learners, with APOS theory as lens. Understanding of APOS gave learners clarity of

enhancing computational thinking during basic programming in Greenfoot. The findings show

that there is a relationship between computational thinking and the application of Greenfoot

as programming language. Furthermore, learners do have the ability to apply APOS theory,

as used in mathematics learning, using the Greenfoot programming language through

specific applications and tasks. The analysis further shows that learners are better equipped

to apply computational thinking outside their system about mathematics. It is difficult to

change an existing belief system such as applying APOS theory whilst learning mathematics.

A programming language such as Greenfoot effectively highlights the phases of APOS

theory in a tangible manner when applied in a constructionist manner.

5.4.3.34 Intervention 16: Creating an Arcade Game (Appendix U)

 Description of intervention (Appendix U)
The goal was to let learners construct a more complicated arcade game. The learners were

briefed in terms of Appendix U. The game was supposed to be done in 2014, but because of

the distracting activities at the end of year, the researchers forwarded this to 2015. The

learners had to construct an upright rectangle for the Ping-Pong game. They had to construct

the paddle and the ball. They also had to move the paddle using the left or right arrow key to

move it horizontally. The researcher also produced videos of the game to help the learners

construct the game.

 Analysis and Discussions of Intervention
Learners participated selectively. The researcher did not force any learners to participate.

Only those learners with a more in-depth understanding of Greenfoot thus participated.

237

These learners saw the step-by-step development and had enough pre-knowledge on adding

objects such as the paddle and ball to the Green world. The learners used the Randomize

method to directing the ball in any randomized direction above the paddle. The learners only

worked up to the ball connecting to the paddle and then changing direction or bouncing off.

 Findings
Finding 16-1: The learners were able to use their Schema of Greenfoot to relate

Finding 16-2: The learners managed to bounce back the ball

Finding 16-3: The game was incomplete due to time constraints

 APOS discussion
(i) Actions
Learners watched videos on the game to enact every step.

(ii) Process
Learners relied on “met-befores” to construct the basic framework of the game.

(iii) Object
Similar methods such as turnAtEdge() was constructed to guide the ball. The object was the

Game. This was the structure for the learners when they referred to the construction of a

game through coding.

(iv) Schema
Assimilation and accommodation took place among the participant learners.

 Summary
The Ping-Pong game showed that programming concepts can be used as “met-befores” to

construct a game. Time was however a limiting factor.

5.4.4 Interviews
5.4.4.1 Interviews: Algebraic Simplification and the Electrical Circuit Diagram

(Appendix R)

Interviews were done at end of the research period. A summary of the findings and themes

of the interviews are depicted in Table 5.11 and the themes are depicted in

Table 5.12. Learners were given the sheets in Appendix R-1, R-2 and R-3 beforehand. These

examples were Mathematics and Science assessment examples that were taken down at the

time in the private school and public schools. The learners were therefore familiar with the

questions and level of work. The learners were to be assessed on this work again and all

238

interviews occurred before the assessment. Each interview was recorded using a recording

device and the learners were informed of this beforehand. The learner and researcher could

conduct the interview in a classroom away from other learners. Learners had a choice to

participate and the atmosphere was relaxed and quiet. The researcher guided the interview

and allowed the learner to select the problem equation for discussion. The researcher made

notes where the learner added gestures that could not be recorded.

5.4.4.2 Interview IA: Algebra Exercise on Simplification (Appendix R-1)

 Description
Interview IA consists of a selection of mathematical algebraic expressions that needed

simplification. Interview IA was taken from common examples done in mathematics at the

private school and given to these learners to establish the status quo of the skillset among

learners and their position within the mathematics concepts on algebraic expressions and

simplification. The researcher marked the answers and conducted open-ended interviews

with learners on those problems that learners struggled with.

 Analysis and Discussions
Learners completed the exercises so that the researcher could focus on the problem areas.

Learners showed anxiety during the exercise, as indicated in the theoretical conceptual

framework.

Learners were still at the Action phase of APOS, as they were locked into using a calculator

for any calculation. MDL responded: “Yes, I must use a calculator” (Appendix R-4). This led

to still performing Actions and due to not memorising their rules on exponents, the learners

were just not able to make progress with visualising objects within the problems, let alone

attaching that to a Schema. They therefore struggled with abstraction, like substituting an “a”

for 3x and a “b” for 2y in the expression. Some algebraic expressions were also calculated as

a Process without physically writing it down in taking an Action first. This was many a time

enforced by the teacher although the learner did not complete the Action phase, as the

teacher did not want to see steps. The teacher in this case knew they should not perform at

the Action phase anymore intuitively, but that they probably did not understand the APOS

theory. The learners never unpacked the algebraic expression into steps and became

confused with using the expression as a Process, i.e. memorising multiplication and

abstraction of the simplification of the expression, which resulted in errors.

Researcher: What do you do about your problems?

MA: I knew my rules but just forgot them. I am unsure about them. I take extra Master Maths

classes. I also have problems with geometry. I simply do not know my rules (Appendix R-4).

239

Researcher: What is area of rectangle and triangle and so on?

MDL: No I do not know the formulae. I will have to go home and memorise them. Hhm,

(quiet) (Appendix R-4).

The learner also calculated squares and multiplication without considering the sign of the

number. The important aspect is taking an Action by writing the values down and not just

calculating values all at once as a Process. This can only be achieved once the learner

understands the steps as part of the Action phase. Even where an expression consists of

many x’s and y’s, the learner could not use abstraction by assigning or substituting an

alphabetic letter to a sequence of numbers. Learners could not generate any formative

questions to explore deeper mathematical concepts, embedded in these basic expressions

to simplify.

 Findings
Finding IA-1: Most learners could not apply abstraction

Finding IA-2: The majority of answers were incorrect

Finding IA-3: Learners tried to place the Process phase before the Action phase

Finding IA-4: Learners memorised formulae of objects but in isolation and not as an object

that has a relationship with another object to form part of a Schema based on

a mathematical concept, which points to simplification with indices in this

case

Finding IA-5: Learners also worried about the formula rather than the concept definition

Finding IA-6: Most learners were still at the Action phase in APOS, but these actions were

also done in silos

Finding IA-7: Learners did not reflect on the problem within the context of algebra or

geometry

Finding IA-8: Learners lacked Schemas they could access to solve a problem

 APOS discussion
(i) Actions
Learners used calculators for very basic calculations, such as 3 x 2.

(ii) Process
Due to calculator usage for basic calculations these timetable activities were never

memorised, let alone more difficult processing of exponents or factorisation. No progress to

Process phase.

240

(iii) Object
The “exponent” mathematical Object within algebra was not fixed in the learners’ minds or

did not form part of the learners’ skillset or mathematical concept definition on exponents and

its rules. What teachers think should be a Process, learners first did not relate to some Action

phase.

(iv) Schema
Although a minority of learners possessed some exponent Schema, to name one, the overall

Schema that should house these mathematical concept definitions was absent.

 Summary
Learners skipped the action phase because the teacher’s expectation was that the learners

should not follow action-based approach. The APOS stage of action was forced to become a

process and it hampered learning. APOS stages were unknown at private school.

Learners relied on their belief system about mathematics, and the Pop-Ed culture (Papert,

2005) made them cling to the concept image instead of the definition. The silos of concept

images created learning challenges because of their beliefs about mathematics. Learners

showed that they could link APOS theory in programming and apply that to mathematics but

could not find the solutions to mathematics problems because of a lack of abstraction in

mathematics.

5.4.4.3 Interview 1B: Electrical Circuit (Appendix R-2 and R-3)

 Description of Interview 1B – Electrical Circuit
The learners were given the electrical circuit diagram (Appendix R-2) to infer the answers of

questions on this circuit diagram. The exercise concerned batteries or energy cells in series

and light bulbs as resistors in parallel. Questions were given on this circuit diagram such as

calculating resistance (R) or electrical current (I). The questions were rephrased, e.g., “What

is the reading on the ammeter?” or “What is the total resistance in parallel?”

 Analysis and Discussions of Task 1B
Learners were prematurely given the Voltage-Resistance-Current pyramid to memorise.

When they were confronted by this exercise, the learners made a drawing of the pyramid on

their paper. Learners were taught at all three schools, within the ambit of the research, to

draw a triangle with VIR as depicted in Appendix R-3. This provided a concept image as a

practical plan initiated by many schools to focus on better marks as opposed to better

understanding. Unfortunately, this did not enable learners to grasp the scientific and

mathematical concept as per definition for electrical circuits. Although learners performed

241

rote learning in total isolation, they could answer most questions using the pyramid and a

calculator.

The learners easily inferred the answers, but no real understanding of the real-world problem

emerged from questions posed to these learners afterwards. The learners thus showed no

connection with the circuit diagram and its properties other than applying the pyramid. The

relationship between learner and circuit diagram was absent. The individual terms like V =

Volts and so on, did not appeal to most of these learners.

 Findings
Finding IB-1: Learners followed a rote learning technique

Finding IB-2: Learners calculated the correct answers

Finding IB-3: Learners lacked a connection to the subject and electrical circuit diagram

topic

Finding IB-4: Learners were lost without the pyramid

 APOS discussion
APOS and learning were the main themes.

(i) Actions
Most learners enacted the task by using the pyramid as an aid. Let this be a “calculator”, as

Actions are taken with basic calculations using the formula. Even the pyramid suggested

what must be divided and what should be multiplied, having the V at the apex and I and R at

the base.

(ii) Process
Due to pyramid usage for basic calculations, these fractional parts, such as V=IR, could not

be deduced/inferred into I = V/R and so on without the pyramid available to learners. The

actual manipulation of V, I and R did not realised as a science concept definition and the

learners also never memorised the Actions.

(iii) Object
The “electrical circuit” as a Scientific Object was absent, together with the mathematical

calculations. Learners were ignorant about discussions on the electrical circuit.

(iv) Schema
Not sure if any learners owned the Schema on electrical circuit diagrams, as the pyramid did

not allow any growth or expansion of knowledge.

242

 Summary
Having performed these basic tasks with learners, they were relevant, consistent, effective

and practical within the context of computational thinking skills – relevant in that the tasks

addressed everyday life concerns of learners; consistent in being a valid construct to perform

as a measure to detect computational thinking; effective in that these tasks produced

outcomes which motivated further interventions to be executed. Practical for these tasks

could be identified and performed by teachers every day in the classroom. It was evident that

reflective abstraction forming part of computational thinking within mathematics was still a

challenge to most learners. It is therefore a concern that these everyday tasks place most

learners at an Action level only. Learners still have progress to be made in order to achieve

Schema status on mathematical concept definitions. Revisiting Appendix R-4, interviews

were held on the problems the learners struggled with initially. Greenfoot learners could

immediately position themselves within the APOS theory of mental structures and thought

about the mathematical problems differently. Differently points to opting for different ways in

solving the mathematical problem as opposed to just providing a wrong once-off answer.

A few discussion classes were held with 8 learners to address mathematics. From the

questionnaires they answered, the learners displayed a lack of insight into solutions they

would have thought about in terms of Actions that they could perform to solve the questions.

The fact that a learner stated she did not recall the difference between two squares, shows

that no Process was formed after the teacher’s explanation of the mathematical concept.

This created a blockage with discovering or building the Object for this mathematical concept

and no Schema could be created as a long-term goal.

Table 5.11: Summary of the findings and themes of the interviews

Findings Theme

Learners skipped the Action phase in mathematics because teachers
told them to

APOS/LE

Learners preferred concept images in mathematics above concept
definitions

LE/BE/CB

Learners followed recipes that provided answers without understanding Abstraction/ Computational
Thinking

Learners could not cope without a recipe LE

Table 5.12: Themes from Interviews

Themes Abbreviation
APOS APOS
Learning LE
Beliefs BE
Cognitive Balance CB

243

5.4.5 Phase 3: Assessment
5.4.5.1 Themes within interventions

The 98 findings derived from the 34 interventions were summarised,. Categories were

created and reduced to 8 themes, depicted in Table 5.13. Further assessments together with

the interviews in section 5.4.4 are discussed in section 6.2.

Table 5.13: Grouping of findings, summary of findings, categories and themes

Find# Summary Findings Category Themes

 14D-2 Learners went back to action to understand problem Action
APOS

 14B-3 Learners discovered how to debug step-by-step Action
 14A-2 Learners went back to action to understand problem Action

 14B-1 Learners re-enforced understanding through action Actions
 16-1 Learners illustrated APOS qualities APOS
 3B-3 Learners illustrated APOS qualities Process
 5B-3 Learners’ schema was better developed Schema
 8-3 Learners’ schema was better defined in their minds Schema
 2-4 Learners’ schema for maths had to be re-thought Schema

 13-1 Learners enhance understanding in Visual programming language Schema
 13-2 Learners’ schema became important Schema
 14A-3 Learners’ schema became important Schema
 14A-4 Learners’ schema became important Schema
 14C-1 Learners had urge to move through Schema stages Schema
 14E-1 Learners’ Schemas played prominent role in their understanding Schema

 14D-2 Learners’ schema expanded Schema
 14B-3 Learners’ schema expanded Thoughts
 15-5 Beliefs created challenges Beliefs

Beliefs

 15-6 Beliefs help with learning Beliefs
 15-4 Teachers made linkages with “met-befores” Met-befores
 3C-6 Negativity towards programming language due to unknown as in maths case Met-befores
 2A-2 Learners fixate on concept images Pop-Ed
 2B-3 Learners are not keen to to explore Cognitive Load

Cognitive
Balance

 2C-1 Learners welcome LMS as resource Cognitive Load
 2C-2 Learners welcome LMS as resource Cognitive Load
 3A-2 Learners had too much to memorise Cognitive Load
 3B-1 Interest in a topic generates positive attitudes Cognitive Load
 3B-2 Interest in a topic generates positive attitudes Cognitive Load

 2-1 Learners are not keen to to explore Cognitive Load
 2-2 Learners are not keen to to explore Cognitive Load
 14C-2 Learners used coding to describe algorithm Cognitive Load
 14E-2 Learners used coding to describe algorithm Cognitive Load
 2A-1 Learners want to explore work they understand Met-befores
 1-1 Learners used enactment to avoid abstraction Abstraction

Computational
Thinking

 1-2 Abstraction lacks from learners performing mathematics Abstraction
 3C-4 Learners show lack of knowledge and skills Abstraction
 1-3 Learners show lack of knowledge and skills Abstraction
 6-1 Teachers found topic challenging Abstraction
 9-1 Learners applied abstraction through encapsulation Abstraction
 9-2 Learners enhance understanding in Visual programming language Abstraction

244

Find# Summary Findings Category Themes

 10-1 Learners used built-in method to solve problem Abstraction

 10-4 Learners used built-in method to solve problem Abstraction
 11B-1 Learner linked programming language and Windows Tools Abstraction
 11B-2 Learners applied abstraction through encapsulation Abstraction
 14D-3 Learners used built-in method to solve problem Abstraction
 6-2 Learners followed APOS Process
 8-1 Learners followed APOS Process
 3C-1 Learner links absent between mathematics in Greenfoot Relation

 8-4 Learner linked mathematics in Greenfoot Relationships
 14A-1 Learners revisited GD Actions

Learning

 15-3 Teachers had similar challenges than learners Met-befores
 15-2 Teachers made linkages with “met-befores” Relationships
 3B-4 Learners fixated on concept images Skill
 5A-2 Technical challenges influenced learning Teaching

 5A-3 Technical challenges influenced learning Teaching
 5A-4 Technical challenges influenced learning Teaching
 11A-1 Learners’ academic world must be structured Teaching
 12-4 Learners’ academic world must be structured and official. Teaching
 15-1 Teachers found topic challenging Teaching and

 Learning

 3A-3 Learners could work on their own if they were given guidelines Teaching and
Learning

 3C-5 Learners show lack of knowledge and skills Teaching and
Learning

 2B-1 Learners are not keen to to explore Moodle
LMS

 2B-2 Learners are not keen to to explore Moodle
 3A-1 Learners liked a change in behaviour Moodle
 4B-1 Moodle solved challenges Moodle
 4B-2 Moodle solved challenges Moodle

 4B-3 Moodle has costs Moodle
 4B-4 Moodle solved challenges Moodle
 5B-1 Moodle solved challenges Moodle
 5B-2 Moodle solved challenges Moodle
 11A-2 Learners used Moodle for preparation Moodle
 3B-5 Moodle solved challenges Moodle
 16-2 Learners’ coding enhanced Coding

Programming
Language

 16-3 Learners’ coding time intensive Coding
 3C-2 Learners lack programming language knowledge Coding
 3C-3 Learners lack programming language knowledge Coding
 5A-1 Learners enhance understanding in Visual programming language Coding
 7-1 Learners enhance understanding in Visual programming language Coding
 7-2 Learners enhance understanding in Visual programming language Coding

 8-2 Learners enhance understanding in Visual programming language Coding
 8-5 Learners enhance understanding in Visual programming language Coding
 9-3 Learners see value of control structures Coding
 9-4 Learners had challenges to understand execution of Greenfoot Coding
 9-5 Learners enhance understanding in Visual programming language Coding
 2-3 Leaners show challenges with IDE of programming language Coding

 10-2 Learners enhance understanding in Visual programming language Coding
 10-3 Learners enhance understanding in Visual programming language Coding

245

Find# Summary Findings Category Themes

 11B-3 Learners enhance understanding in programming language Coding

 12-1 Learners enhance understanding in programming language Coding
 12-2 Learners enhance understanding in programming language Coding
 12-3 Learners enhance understanding in programming language Coding
 12-5 Learners found syntax challenging in coding Coding
 13-3 Learners enhance understanding in programming language Coding
 14B-2 Learners enhance understanding in programming language Coding
 4A-3 Technical networking allows learner external access Networking

TC

 4A-1 Technical wizardry can save costs Technical
 4A-2 Technical logic can secure productivity Technical
 4A-4 Power failures highjack technical expertise Technical

Table 5.14 links the findings with the problem statement, research questions and research

objectives.

Table 5.14: Relationship of research questions, objectives, findings, main findings and themes

Problem
Statement RQs Objective Themes

[Findings] Main Findings

It is unclear how
computational
thinking can be
promoted among
high school
learners at a
cognitive level of
formal operations

RQ 1: What are the characteristics
of an enhanced learner’s teaching
and learning strategy that can
empower learners to master
computational thinking skills
through APOS theory, infused by a
programming language at high
school level?

To explore and understand the
characteristics of a
programming language which
promote computational
thinking through APOS
theory, at a cognitive level of
formal operations

Computational
Thinking,
Programming
Language, TC,
APOS

1-1, 11B-2

SRQ 1.1: What factors are needed
to promote computational thinking
at a cognitive level of formal
operations among high school
learners?

To determine the factors
which inform computational
thinking among high school
learners at a cognitive level of
formal operations (CLFO)

Computational
Thinking [1-1, 1-2,
1-3, 3C-4, 9-1,
11B-2],
Programming
Language [9-2,
10-1, 10-4, 14D-3],
TC [11B-1]

Computational
Thinking &
Programming
Language
1-1, 9-2, 11B-2

SRQ 1.2: What type of
programming language may be
used to promote computational
thinking skills at a cognitive level of
formal operations?

To determine the
characteristics of a typical
programming language that
may promote the cognitive
level of formal operations
(CLFO)

Programming
Language [3C-2,
3C-3, 2-3, 5A-1, 7-
1, 7-2, 8-2, 8-5, 9-
2, 9-5]
LE [14E-2]

5A-1, 3C-2

SRQ 1.3: What constructs within
the programming language
facilitate APOS theory at a
cognitive level of formal
operations?

To determine
commonalities of constructs
in APOS and the
programming language

APOS [17-1, 3B-3,
14A-3, 5B-3],
LE [2-4, 13-1, 13-
2, 14C-3, 14C-
1,14D-2, 14E-1
Programming
Language [8-3,
14A-2, 14B-3,
14D-1]

RQ 2: How can computational
thinking skills at a cognitive level of
formal operations be promoted
among high school learners
through the teaching of a
programming language aligned to
Action Process Object Schema
(APOS)?

To explore and understand
how a programming
language aligned with APOS
theory promote
computational thinking at the
cognitive level of formal
operations (CLFO) for high
school learners

Programming
Language, CB,
LMS, LE

246

Problem
Statement RQs Objective Themes

[Findings] Main Findings

 SRQ 2.1: How are the constructs
of a programming language taught
among high school learners at a
cognitive level of formal
operations?

To explore and understand
how constructs of a
programming language
facilitate high school learners
at a CLFO

Programming
Language [2-3,
3C-2, 3C-3, 5A-1,
7-1, 7-2, 8-2, 14B-
2]

 SRQ 2.2: How do the constructs of
a programming language align to
APOS among high school learners
at a cognitive level of formal
operations?

To determine higher-level
constructs within a
programming language which
promote APOS among high
school learners

Programming
Language [2-3, 8-
5, 9-2, 9-3, 9-4, 9-
5, 10-1, 10-2, 10-
3, 11B-3, 12-1, 12-
2, 12-3, 12-5, 13-
3, 14B-2, 14D-1,
14D-3]

 SRQ 2.3: How does the use of an
LMS, as a platform for learning, aid
the teaching of a programming
language aligned to APOS to
promote computational thinking
skills at a cognitive level of formal
operations among high school
learners?

To combine the usage of an
LMS and a programming
language in order to assist high
school learners with “worked
examples” of advanced higher-
level constructs in a
programming language and
cognitive load theory (CLT)

CB [2A-1, 2C-1,
2C-2, 14C-2]
LMS [2B-1, 2B-2,
3A-1, 3B-5, 4B-1,
4B-2, 4B-3, 5B-1,
5B-2,
LE [11A-2]

2A-1, 14C-2
CB

5.4.5.2 Themes within interviews

The twelve findings of the interviews were summarised, as indicated in Table 5.15.

Categories were created and reduced to five themes, depicted in Table 5.15. The themes are

discussed in Chapter 6, section 6.2.

Table 5.15: Grouping of interviews, summary of findings and themes

Find# Summary Findings Themes

IA-1 Most learners could not apply abstraction APOS

IA-2 The majority of answers were incorrect BELIEFS

IA-3 Learners tried to place the Process phase before the Action phase APOS

IA-4
Learners memorised formulae of objects but in isolation and not as an object that
has a relationship with another object to form part of a Schema based on a
mathematical concept, which points to simplification with indices in this case

LEARNING

IA-5 Learners also worried about the formula rather than the concept definition BELIEFS

IA-6 Most learners were still at the Action phase in APOS, but these actions were also
done in silos

COMPUTATIONAL
THINKING

IA-7 Learners did not reflect on the problem within the context of algebra or geometry LEARNING

IA-8 Learners lacked Schemas they could access to solve a problem APOS

IB-1 Learners followed a rote learning technique LEARNING

IB-2 Learners calculated the correct answers APOS

IB-3 Learners lacked a connection to the subject and electrical circuit diagram topic COGNITIVE BALANCE

IB-4 Learners were lost without the pyramid LEARNING

5.5 Summary
This chapter covered the data collection process and analysis of the data. A qualitative

design was used through abduction on data obtained from interventions within the EDR. The

247

data were interpreted using a qualitative analysis based on the FEDS framework and

reflected on using the Gregor, Müller and Seidel (2013) framework. The FEDS framework

(Venable, Pries-Heje & Baskerville, 2016) (Appendix U) highlights two approaches, formative

or summative evaluation, on account of any of four suggested evaluation strategies. The

strategy used four steps, namely: (i) explicate the goals of the evaluation; (ii) choice of the

strategy; (iii) choose the properties to evaluate; and (iv) design the evaluation phases.

The data analysis and discussion are done in Chapter 6 by applying the Gregor, Müller and

Seidel (2013) framework.

248

CHAPTER 6: DISCUSSION

Figure 6.1: Chapter 6 Layout

6.1 Introduction
The low pass rates of learners enrolled for Mathematics and Science at high school level in

SA are of great concern (Reddy et al., 2015; Voogt et al., 2015; Reddy, 2014; Spaull, 2013)

(see section 1.1 for more information). This research proposes a conceptual framework

(section 8.4, Figure 8.3) that can be used to improve computational thinking of learners using

a programming language and LMS in applying APOS theory. Computational thinking is

embedded in reflective abstraction as found in APOS (Cetin & Dubinsky, 2017). Research on

APOS theory worldwide shows its positive contributions to the success rates of mathematics

of learners (Arnon et al., 2014) and is therefore used as a theoretical lens. Chapter 6 (Figure

6.1) is presented as (i) themes from the interventions and (ii) themes from the interviews and

observations.

249

6.2 Themes
6.2.1 Interventions
A total of 8 themes were constructed after subdividing the findings into categories (Table

6.1). The themes are APOS, Beliefs, Cognitive Balance, Computational Thinking, LMS,

Learning, Programming Language/ Coding, and Technical Themes (Appendix Y).

Table 6.1: Summary of findings per theme

Theme Number of Findings
APOS 17
Beliefs 5
Cognitive Balance 11
Computational Thinking 16
Learning 12
LMS 11
Programming Language/Coding 22
Technical 4

These themes will now be discussed according to Table 6.1.

6.2.1.1 APOS theme

The APOS theme comprises of 17 findings (Table 5.13). The APOS theory supports

mathematical problem solving and computational thinking through reflective abstraction (Aho,

2012; Selby & Woollard, 2014; Cetin & Dubinsky, 2017; Denning, 2017). These mental

structures are enforced among learners to acquire a sense of the phases.

Figure 6.2: Flow of APOS theme

250

Within these phases, the mental mechanisms (section 2.2.2.1(c)(vii)) were applied for each

mental structure. Figure 6.2 depicts the process that was applied to introduce the Greenfoot

programming language and APOS theory to learners. Learner non-compliance forced the

selection option as indicated in Figure 6.2, which determined whether learners worked with a

programming language before or not. Learners found the Greenfoot programming language

challenging, as indicated in Intervention 2 (Appendix C), through formative evaluations

(Gregor, Müller & Seidel, 2013) using observation. Learners were unable to step directly into

the Greenfoot programming language using the IDE, which necessitates literacy in the

Greenfoot programming language. The researcher had to rethink the approach, considering

the findings of Intervention 2. The theoretical conceptual framework needed a revision, and a

GD was necessary for teachers and other researchers, which demanded enhancements, as

rolled out to the learners through activities, classroom discussion and exercises (ACE, Figure

2.20).

Updating the theoretical conceptual framework transpired through ACE. Intervention 3,

namely the “Juggling” intervention, illustrates the practicality of APOS theory to learners

when they do not yet have the cognitive structures to use Greenfoot programming language

to write programs. Four formative evaluations were enforced by the Greenfoot programming

language introduction.

The APOS theory mental structures which make up the APOS theme will now be discussed.

It must be kept in mind that the APOS theory uses mental mechanisms (Figure 2.17), where

an Object can be broken down into steps using reversal to return to the Action phase or

where interiorisation is applied by learners when an Action phase goes forward into a

Process phase to build a Schema through generalisation (Dubinsky, 1991; Arnon et al.,

2014).

 Action Phase
The Process phase in APOS theory was absent for Intervention 2, which necessitated the

Action phase to be the initial step in the Greenfoot programming language rollout using a GD

informed by the fourth formative evaluation (Figure 2.20) and depicted in Table 2.1. The

reversal mental mechanism is used by introducing the “Juggling” intervention 3. Intervention

3 informs APOS theory in a practical manner, which evolved from the basic steps during the

Action phase into “Juggling” as an Object that builds onto the Schema, where learners

generalise the processes to juggle into “Juggling” as an object. The “Juggling” object has

different interpretations for different learners and is depended on their involvement to juggle,

as supported by the questionnaire handed out to learners during the intervention. These

different interpretations led to learner challenges during Intervention 3, which were affected

by the extent to which learners fulfilled the “Juggling” activity through ACE. ACE was applied

251

through the intervention, the Moodle step-by-step guidance in the form of a video, and the

exercise performed in class, on the playground and at home. The juggling intervention

created an awareness of APOS theory through practice, which gave learners a “met-before”

to approach the Greenfoot programming language with APOS as lens. Moodle as LMS and

the GD (Intervention 2) gave learners an understanding of how “juggling” can be perfected.

The success of the intervention became the learners’ choice. The findings of Intervention 2

show that learners did not follow instructions to complete homework. Furthermore “met-

befores” guides learners in their search for knowledge. The GD process (Appendix D-1) acts

as a framework for teachers and learners. The GD on “Load a Greenfoot Scenario”

(Appendix D-2) plays a pivotal role in the tasks of the learners, because it gives clarity on

how to approach the “Juggling” task. The interventions are of high quality, as relevance,

consistency, practicality, and effectiveness are guaranteed when looking at the outcomes

produced. The progression path is described by making learners aware of the phases of

APOS and emphasising that coding can be achieved through the GD within a programming

language. The teachers are also given a specific guideline in Appendix D-1 on how to

structure a GD and its rollout through the ACE (Intervention 2B, Figure 2.20) process as

discussed above.

The juggling exercise instilled thought processes in learners, which is found in computational

thinking, according to Selby and Woollard (2014), such as memorising the steps, and not

having to physically think about the tossing of a ball. The involuntary action only became a

reality through practice. Learners realised that they could not think about the action every

time the ball is tossed. Neither could they complete the juggling without watching the video

on Moodle. Learners stated in the questionnaires (Appendix E-2, Intervention 3B), that their

performance would have been better if they watched the video prior to the exercise, and

points to a personal choice. As indicated in Figure 6.2, the researcher ventured back into

current mathematical problems that learners were confronted with to link that with APOS

through learner interaction by means of a questionnaire (Appendix E-3).

Mathematics (Appendix G-2, Intervention 5B) was introduced with a discussion on the APOS

impact versus that of “juggling”. Learners were viewing mathematics problems through an

APOS lens. The learners saw memorisation of actions needed to revisit steps to complete

certain actions, which apply to simplification or juggling. This is also called the Action phase

of APOS, where learners needed to identify and show the steps towards a problem.

 Process Phase
When these steps are memorised, learners approach the Process phase. Learners were

given simple tasks such as login credentials (Intervention 4B) that needed to be memorised.

All these Actions reverted back to the APOS theory, and so they acquired a better

252

understanding of the APOS acronym. APOS theory started to become a frame of reference.

Intervention 8 focuses on the Greenfoot programming language code through the APOS

theory as lens. The Moodle LMS provided significant improvement among learners because

they could acquire the skills to create a scenario through flipped classroom techniques as

shown in Moodle. The researcher observed that time was shortened in creating scenarios in

the Greenfoot programming language during sessions.

The learners approached a problem (Figure 5.37) and had to derive an algorithm for the

problem in populating the scenario as a chess board. The problem created thought

processes which strengthened the Process phase in APOS. Thought processes involved

mathematical calculations assessed in the outcome of the chessboard in the Greenfoot

programming language. These algorithms then formed part of solutions using Greenfoot

methods. Learners applied APOS theory techniques in drilling down into complex issues by

applying Actions to the complex issues to understand the issues before abstracting. The

exercise involved using variables and understanding x and y values used when a balloon

moved horizontally or vertically. Some learners tried to venture into a process without taking

action first, with dire consequences. Actions entailed learners using the built-in features of

Greenfoot to physically establish the coordinates of the object on a chessboard (Figure 5.36)

by moving the turtle object on the board and show its x and y coordinates. In doing this, the

learners became familiar with the direction of movement, influencing the x and y values to

increase or decrease. Having taken these actions, learners can now translate these actions

into code, by memorising the outcomes of these movements and the commands that cause

the movement into the act() method. Figure 5.39 illustrates the Process phase of the learner

when he/she writes the code to manipulate the actor in question. To further strengthen the

Process phase, learners were also given graph paper to show their understanding of the

problem in question, which was to move the Actor object in the World, bouncing off the

edges of the World (Figure 5.41). The mental mechanisms emerged as learners plotted the

Actor objects on graph paper that resembled the Greenfoot programming language screen or

world; once again the turtle-actor-object-movement is reversed, by taking action using graph

paper and reconfigure the scenario itself.

After the December holiday break, the learners restarted the Greenfoot programming

language classes. The intervention revisited the steps in building a scenario and added code

to strengthen the existing Schema that the learners developed in Greenfoot. The Process

phase in APOS theory is well executed, which shows a movement in the thought processes

of learners. The mental mechanism used by learners is called interiorisation. Learners are

now less dependent on taking action first, that is, being at the Action phase; they perform

tasks in the mind instead of following physical steps. The Process phase of the learners was

253

supported by the answers on the questionnaires handed out to the learners. They had to

describe the exact execution that they had to follow to get the scenario going. Their answers

show insight into Processes. The researcher established, through observation during coding

sessions in class and from the answers on the questionnaires completed by the learners,

that Actions were interiorised as a Process, as the learners easily described these actions on

paper as well, i.e., projecting their thoughts on paper. The code learners wrote on paper

show that they could break down the process into steps, also known as reversal (mental

mechanism) of the interiorised steps. This was also supported in the decline of watching

videos as a source to discover techniques for building a scenario.

 Object Phase
Having the Action and Process phases embedded within the learners’ thoughts, the Object

and Schema phases are of essence.

Control structures such as the IF statement was illustrated by the researcher through

interventions 9, 10 and 11. Learners could abstract at a higher level such as creating

methods to nest common code including the control structures. When looking at Figure 5.42

where code was produced by learners to allow the turtle Actor object detecting the left, right,

upper and lower boundaries through x and y values, using built-in functions, learners

embedded that code into a method called atWorldEdge(), as depicted in Figure 5.42. When

the researcher referred to atWorldEdge(), learners immediately, through the reversal mental

mechanism, broke down the encapsulated method of code into code steps. Learners used

their own descriptions for such methods they produced through a mental mechanism called

encapsulation. This encapsulated method of code can be classified as an Object or small

piece of the bigger Schema. The Object phase was supported by videos on Moodle and

learners could spend as much time out of class on Moodle to perfect their understanding, as

it is their choice.

 Schema Phase
The researcher, through intervention 11B, established that more learning took place than

anticipated. The assessment entailed a project where learners worked in groups of two and

practiced constructionism at its best. Other aspects such as MS Paint used by learners to

create a World and Actors show that the thought processes of learners expanded into

research. Learners also created sound to align with the project. Computational thinking

consists of thought processes, abstraction and decomposition (Selby & Woollard, 2014). The

thought processes were apparent through videos the researcher took and observation of

learner enthusiasm during the project. Abstraction was shown in the outcome of the project

as a working scenario that addressed the problem within the assessment. The underlying

code produced the abstracted view of the problem. Decomposition was applied in coding

254

throughout. Even Wing’s (2006, 2008) definition of computational thinking as the mental and

metal tools in abstraction and automation, became reality in that the problem was abstracted

using coding and the code executed (automation) on a platform using the Greenfoot

programming language as computational notation (Aho, 2012; Denning, 2017). This was

achieved through computational steps that were constructed through thought processes

using a computational notation and not by following a sequence of steps (Denning, 2017).

The learners’ Schema for using Greenfoot programming language to solve problems was

sufficient to expand their Schema according to the assessment outcomes satisfying the

APOS theory and theme.

6.2.1.2 Beliefs theme

The Beliefs theme comprises five findings (Appendix Y). Learners have a tendency not to

explore, and they find it easier to memorise concept images without thinking about the

concept definitions, also supported by Arnon et al. (2014:13). This tendency is also apparent

in the annual mathematics results (Reddy et al., 2015; Voogt et al., 2015; Spaull, 2013; CDE,

2014). This research shows that the Pop-Ed culture (Papert, 2005) is rife among learners in

that they are insecure in terms of the solutions they produce. The memorising can be

because of the cognitive load that influences what learners can absorb during class hours

and can create a positive attitude among learners (Mostyn, 2012; Papavlasopoulou,

Giannkos & Jaccheri, 2019). The impact of “met-befores”, as discussed in section 2.3.1 and

section 5.4.3.3, Finding 2-2, can also play a role in this phenomenon. According to the

literature study (Moscucci, 2007; Bormanaki & Khoshhal, 2017), and through the results of

the practical interventions in this research, beliefs about mathematicsdominate the learner’s

mind. The beliefs of learners regarding mathematics influence other beliefs such as

programming when the domain, such as mathematics, informs ill theories about

programming in this instance. Answers of learners in questionnaires made a clear statement

about the state of mathematics and that a programming language is ‘not for them’. Although

learners also stated that they never used a programming language, they have already

formed a negative opinion of a programming language. In reflecting on these opinions,

beliefs are highly likely to create negative feelings towards subjects or related knowledge

domains and these feelings are sometimes the result of mirror neuron activity, as supported

by Moscucci and Bibbo (2015) in section 5.2. These negative attitudes which learners stated

in the questionnaires point to unconscious and invisible components that create pre-set ideas

among learners about a programming language and mathematics. However, the

programming language being unknown to learners, compared to mathematics being known,

the programming language as a meta-cognitive system (Flavel, 1976; Moscucci, 2007;

Jankvist & Niss, 2018) may influence the thoughts on APOS theory to allow for learning to

take place negatively or positively. The programming language meta-cognitive system is a

255

new approach to this research, which should be dealt with carefully and properly, because it

can influence learners’ thinking in future endeavours and form part of the learners’ belief

system. This may also be one of the many reasons why learners do not perform in

mathematics (Reddy et al., 2012; Spaull, 2013; CDE, 2014; Reddy et al., 2015). Spaul

(2013) describes this as the way in which learners interact with mathematics does not deliver

positive outcomes. The programming language approach and the usage of EDR to resolve

this wicked problem paves the way for life-long learning and can be damaging if it is not

properly and carefully executed (Rittel & Webber, 1973; Camillus, 2008; Peters, 2017;

Termeer et al., 2019).

6.2.1.3 Cognitive Balance theme

The Cognitive Balance theme comprises 11 findings (Table 5.8). The cognitive load can be a

limiting factor for any learner during coding (Mostyn, 2012; Papavlasopoulou, Giannkos &

Jaccheri, 2019) and cognitive load theory is a focus of this research by propagating a

constructionist approach during EDR. The instructional approach of learners was changed

through inclusion of Moodle, thus allowing learners to have a hub to find solutions to

problems which balanced the cognitive load. This promotes the learning efficiency in

providing resources to maximise research among learners (Mostyn, 2012).

The cognitive load balance became part of the theoretical conceptual framework through the

literature study (section 5.4.3.9). Intervention 3C (Appendix E-3) acted as a trigger to

investigate the concept of cognitive load theory and was hence included into the theoretical

conceptual framework. The questionnaires provided insight into the instructional resources

that needed adjustment, as the findings show that no structure was put in place towards the

acquisition of computational thinking among learners. Learners need to organise their

working-memory properly. Too many distractions are available to learners through cell

phones, noise and any other factors that can lead to a loss in concentration, which may

distract their attention. This is called the extrinsic load, also known as the extraneous load

(Mostyn, 2012). The learner’s working memory should include cognitive load. Learner

working memory consists of short- and long-term memory. The cognitive load can reach a

balance by keeping the programming language rollout simple, not exposing the learners to

too much work and using sensible “met-befores” to introduce new concepts (section 2.3.1;

section 5.4.3.9). The literature study shows that certain existing knowledge may prevent

acquisition of new knowledge (Brousseau, 1983) and that beliefs about the self and social

content are difficult to penetrate and change (Jankvist & Niss, 2018). Intervention 15 shows

truth in these authors’ statements, when Greenfoot programming language was rolled out to

teachers. Teachers who were practicing IT and programming had pre-set ideas about

programming language concepts and found it difficult to understand the recursive nature of

256

the act() method as an example of the Greenfoot programming language. Learners, on the

other hand, were not contaminated with “met-befores” and accepted and understood these

concepts easier compared to teachers. When “met-befores” cause conflicts with new

contexts, learners may resort to rote learning (Tall, 2004). Rote learning, when using a

programming language, is difficult or almost impossible when a learner creates algorithms

and produce code for those algorithms. Another structure amidst the constructionist

approach to reduce cognitive load, is the understanding and applying of APOS theory. APOS

theory was applied during the Greenfoot programming language rollout, as were

mathematical concepts in parallel. APOS theory gives learners a structured systems analysis

and design approach of any programming language concept that is needed to help create an

algorithm to address some problem, which is a positive belief system development in

programming. Learners know now how to approach a problem and may ask the right

questions to their subject teachers.

However, Schemas are created and stored into long-term memory to allow any learner the

use of important concepts as needed. The struggle of learners to abstract and organise

learner working-memory seems to be one of the major tasks that needs to be addressed in

education. Learners tend to build their trust through memorising concept images which do

not form an integrated network of understanding, also known as a Schema. These concepts

are floating as silos, which places an extra burden on the cognitive load (Mostyn, 2012;

Arnon et al., 2014; Papavlasopoulou, Giannkos & Jaccheri, 2019). This research used

essential cognitivist constructs (Mostyn, 2012) to provide instructional resources that support

cognitive load theory. Learners seemed to shy away from activities that could promote

learning, such as flipped classroom techniques, due to improper memory organisation.

Learners still tried to copy their friend’s work and as a result, the work is not embedded in the

learners’ long term memory. Learners’ working-memory was enhanced through providing an

LMS where information could be stored for the duration of the course. It was observed that

the research progressed and learners became more serious about solving problems using

this LMS relationship and APOS theory as part of the programming language. Learners

relied on Moodle to provide the correct answers as they needed these flipped classroom

videos and website references embedded in Moodle to solve problems. Although the LMS

was created with content, learners did not always bring the necessary aids to school to

accomplish learning, such as headphones as reported by learners in a questionnaire (

Table 5.7, section 5.4.3.9). The responsibility of the individual also played a role in the

success of the rollout. The learners were given the assurance that they could do it and with

all the necessary help, e.g. the LMS, they understood it was a choice they had to make. Only

learners with sound “met-befores” wanted to participate in the exercises. Discipline to follow

257

instructions was initially lacking in general (Intervention 2: Finding 2-2; Intervention 3A:

Finding 3A-2, Appendix E-1). Having rolled out the programming language alongside APOS

theory, learners described their code in writing. More complex problems could be enacted in

their mind to solve problems, which showed that that higher level of thinking occurred,

provided that the cognitive balance was kept optimal through an LMS that aided learners in

finding solutions. This phenomenon is also described by Mostyn (2012), namely that the

averages of students remain the same during application of cognitive load theory.

6.2.1.4 Computational Thinking Theme

The Computational Thinking theme comprises 16 findings (Table 5.13).

Figure 6.3: Computational thinking hub

Computational thinking consists of abstraction and automation, which, in conjunction with all

other discussions on computational thinking, forms a focus point in this research (Figure 6.3).

The mental structures or APOS theory supports mathematical problem solving and

computational thinking through reflective abstraction (Aho, 2012; Selby & Woollard, 2014;

Cetin & Dubinsky, 2017; Denning, 2017).

The interventions and consequent findings show that learners are struggling with abstraction,

because they enacted only simplistic actions during these sessions. When the problem is

mathematical, learners are incapable of understanding what or how to approach the

challenge, as indicated on the questionnaires that were completed by learners. Some tried to

punch in numbers on a calculator, which is another Action taken when dealing with

mathematics. Others would put forward the answer or jump steps when doing mathematics

258

as instructed by the researcher and hence the same happens in class when questions are

posed to them by their teachers. Questionnaires containing basic mathematics questions

were given to learners (section 5.2, Figure 5.3 & Figure 5.4, Appendix B-2), who just gave an

incorrect answer, which shows that even though they did not know the answer, they refused

to engage in a process of working the question. This shows that learners have not thought

about the question, nor have the skillset to calculate the answers. Thought processes thus

did not happen, which is a component of computational thinking (Selby & Woollard, 2014).

During the research period, the researcher also attended an ongoing workshop between

Oracle and Western Cape learners, where most heads of departments in mathematics and

computer studies convened for a table discussion. The researcher used the opportunity to

ask the teachers whether they were using APOS theory in their mathematics approach; none

of them have heard of APOS theory, as indicated through their responses. Being

representatives of the WCED, the researcher assumed that teachers have not heard of

APOS theory in general. At some stage in the curriculum it is suggested that learners must

not implement steps or break down the problem into steps. If learners hardly break down a

problem into steps, understanding an abstracted version of a problem remain a challenge.

Even simplifying a mathematical equation, as given to learners (Chapter 5, section 5.4.3.17;

Intervention 6, Appendix H) may become a challenge to some learners. Although this

“ignoring of steps” is advocated by the CAPS documents on mathematics as from grades 7

to 9 by the WCED, the teachers want to enforce this immediately, in accordance with the

interviews with learners. The CAPS document is correct, theoretically, and refers to “mental

calculations”, but the majority of learners are not ready. Learners want to state the steps of

the calculation to ensure a correct answer. Teachers understandably interpret the CAPS

document by demanding from their learners to rather perform these “mental calculations” and

not write them out. However, APOS theory, on the other hand specifically, contains the

Action mental structure, which forms an important component of problem solving through the

reversal mental mechanism. This research was not intended to investigate mathematics

CAPS documents, but rather to establish an APOS theory approach towards computational

thinking.

In the Greenfoot programming language, learners are able to encapsulate code into

methods, which is applying mental mechanisms such as encapsulation after interiorising

code and approaching problems afresh. Mental mechanisms are abstracted activities and

techniques performed by learners, such as embedding code within a method that points to

encapsulation (Figure 2.17). These encapsulation techniques are visible in system methods

as well as user defined methods. Learners master encapsulating code and then use the

abstracted code e.g. atWorldEdge(), to accomplish ‘some solution’ as set out in the

interventions on coding.

259

Learners also expressed the need to be informed of assessments, which led to improved

preparation and experimentation of the assessment to automate many features in Greenfoot.

One such example where learners combined mathematics with coding was when calculating

the configuration of a chess board during intervention X in Greenfoot (section 5.4.3.19,

Figure 5.36). When learners started out with this research, they stated in a questionnaire that

they have challenges in understanding any code, but the manner in which the learners

experienced their first encounter laid the foundation of the APOS theory approach. As

mentioned during the discussion of the “Beliefs” theme (section 6.2.1.2), much care must go

into the developing or nurturing of a programming language, as with the programming

language meta-cognitive system in building a programming language-belief, for the

programming language belief system of the learner may be damaged in the process, as in

the case of the mathematical-belief system. This is also a characteristic of a wicked problem

that the process may be more damaging than good, as it paves the way for life-long learning

(Rittel & Webber, 1973; Camillus, 2008; Peters, 2017; Termeer et al., 2019).

6.2.1.5 Learning theme

The learning theme comprises 12 findings (Table 5.13). Learning forms an important theme

as learners learn in different ways. One of the ways to streamline cognitive balance is to

alleviate the tension to find answers to challenges on the internet, also known as the

cognitivist theory in psychology (Mostyn, 2012). The Moodle LMS provides a way by which

learners could find answers to their problems when coding. This research introduced the

term ‘flipped classroom’ (section 5.4.3.15, Intervention 5A) and learners used the option to

watch videos and the like. Moodle further allows learners to study whenever and wherever

they wanted, which gave them an edge over other learners. Learners showed more

confidence to voice their opinion in front of their peers, as noticed in class through

observation. They were able to know and find answers outside the classroom, which

addresses Papert’s Pop-Ed culture (Papert, 2005). Learners were looking forward to the

assessment given to improve their learning, as they investigated and prepared beyond the

expected goals for the assessment as done in Intervention 11, Appendix M. The usage of

Moodle depends on whether the subject matter was applicable for their course. The GD

through ACE acted as a frame of reference when learners got stuck. Learning is influenced

by belief systems, which may have a positive or negative outcome in the academic lives of

learners, as illustrated with the interventions in this research. The belief system of

mathematics for local and international learners has a higher degree of negativity.

6.2.1.6 Learner Management System theme

The LMS theme comprises of 11 findings (Table 5.13). This theme has strong links with the

Cognitive Balance theme as well as the Learning theme. Cognitive balance adheres to the

260

cognitive load theory to minimise a learner’s cognitive load (Mostyn, 2012; Papavlasopoulou,

Giannkos & Jaccheri, 2019; Sweller et al., 2019) and the LMS supports that. Learning can

happen owing to an LMS that satisfies cognitive load theory and provides passage for

learners to take. It now became a choice and not a challenge anymore. At the start of this

research, learners were confused of where to search (Intervention 2B) and find videos in

order to prepare for the classes, especially with issues such as coding (Intervention 2C;

Appendix D-1; GD through ACE) and just making sense of the additional burden placed on

them. The researcher observed that certain learners initially attended Greenfoot sessions,

but without being bothered to learn anything during those sessions. This behaviour may be

because learners did not see the research as important towards their schooling performance;

they showed characteristics of the Pop-Ed culture (Papert, 2005) and wanted to demonstrate

how cool they are; they did not need to do any exercises that would influence them passing

the grade. The focus of the researcher’s approach had to address learners when they

entered the classroom, in providing a source specifically focusing on the Greenfoot

programming language and APOS theory.

Learners had to be accommodated within their current “met-befores” or the frustration could

have grown among learners. This called for a GD to be created on exactly what was

expected of them and how to accomplish the tasks. Appendix D-1 shows the different stages

in Schema building and GD building. The LMS and content were created, but the researcher

soon realised that there had to be rules attached to it, to make the LMS acceptable and a

quality tool worthwhile of motivating learners to access the LMS. The LMS was introduced

using the “juggling” exercise, so learners were ‘lured’ into using the LMS to investigate the

purpose in a latent manner. Using the LMS then became a “cool” activity, especially when

learners started to show off their juggling skills on the playground, without even noticing that

the researcher enforced APOS theory through juggling. The researched gained this

experience during his involvement with gifted child education when he allowed learners to

test their skills in extraordinary ways, for example, letting the children play “Double Dutch”

(https://www.youtube.com/watch?v=0a3jbQ5Edvo) on the playground. Immediately, this type of

behaviour attracts much attention and usually learners who were not noticed become instant

celebrities overnight, boosting their urge to add to their academic skills.

Latent thus means that the intervention forced learners to visit the LMS in an implied manner

in that learners are not forced or feel forced to use it. The LMS should not be subjected to

any external influences such as power outages, which might negatively influence learners’

access and impede learning when Moodle is inaccessible. During coding, learners could use

Moodle to seek and find specific answers on problems they were confronted with. This was

packaged in videos, or even in code-snippets, or as an explanation of various terminologies

https://www.youtube.com/watch?v=0a3jbQ5Edvo

261

(http://wrru.co.za/moodle). A strong point of the LMS was the clarity on assessments and tasks.

The LMS gave an absolute guideline to learners as well as parents on what is expected. The

cloud presence also tied in with their or the parents’ email accounts so any tasks expected

were transparent to all stakeholders. Learners raised an appreciation for being able to use

the LMS to obtain clarity on a major assessment (Intervention 11B) which they had to

prepare for.

6.2.1.7 Programming language theme

The programming language comprises 22 findings (Table 5.13). The Greenfoot programming

language was the programming language of choice and it is the tool which contributes to

computational thinking among learners. Pearson (2008) states that computational thinking

requires more than basic literacy skills in IT and the Greenfoot programming language

provides that incremental learning curve or development path from writing basic to complex

applications (Intervention 12; Appendix N). Although Cohen (2013) states that learners using

Alice also have a development path into Eclipse, the Greenfoot programming language is a

one-stop shop with visuals and coding easily accessible by learners, as was the case with

Intervention 11 (Appendix M), when learners cross-pollinated with image and sound utilities/

generators in Windows. Java programming language statements can be used with the

Greenfoot programming language. White and Sivitanides (2002) classify OOP in Figure 2.11,

hence Java (Figure 5.29) as a productive and motivated language that may require both

hemispheres of the brain. Any programming language relies on its users to know the IDE,

and Greenfoot does have a visual interface that ties the coding with the IDE. Many

languages used in education have a visual approach only, but mathematics also requires a

language component (Tall, 2008), which the Greenfoot programming language provides as

part of its syntactical component. This process can be found with many interventions in this

research, such as when learners apply mental mechanisms, for example, reversal and

encapsulation during the Object phase of APOS theory, applying the Randomize() method

as an abstraction in the code.

The programming language, which also acts as a meta-cognitive system for this research,

shows that learners, except one, were unfamiliar with any programming language at the time

of this research. Being familiar with the Greenfoot programming language would have

created some programming language belief system prior to this research, which would have

been difficult to measure whether the belief system is positive or negative. This meta-belief

system activity (MBSA) is built on meta-cognition as introduced by Flavell (1976) and

transformed into a tangible framework by Moscucci (2007).

262

The Greenfoot programming language has a gradual progression in terms of levels of

difficulty, which allows for a breadth-first hierarchical organisation (Zeitz & Spoehr, 1989) to

become an expert in a programming language, as found during this research in section

5.4.3.19 supported by section 5.4 (Figure 5.35 to Figure 5.35). Through APOS it relates to

mathematics (section 5.4.3.19) and is well documented on the internet as well in the Moodle

LMS developed by the researcher (Intervention 5A; Appendix G). Research done by Brennan

and Resnick (2012) as well as Papavlasopoulou, Giannkos and Jaccheri (2019) on Scratch

as a block-based visual programming language for NPEs, allows learners and teachers to

gain easier entry into the world of programming (Papadakis et al., 2014). The Greenfoot

programming language is open source, providing dual-modality to learners, which does not

only support the block-based, visual NPE approach, but also provide the gateway for

learners to engage as programmers in a syntax-based programming language. Portnoff

(2018) states that programming language education relates to learning a natural language,

also supported by Tall (2008) that languages are paramount in mathematics learning. SA

being a developing country of consumption, as found by Mpofu and Nicolaides (2019), is

urged to embrace 4IR. Learners may partake in the Greenfoot programming language

activity without costs in acquiring the software. It also provides a visual component that acts

as a way of embodiment or enactment (Tall, 2008; section 5.2). The learner can envelop

(make part of his/her body) him/herself in totality when using the Greenfoot programming

language, i.e. becoming the Actor within the scenario, which is similar to mathematics

learning (Tall 2008). This was observed during interventions when learners mimicked the

Actor object by walking around the classroom, as if the classroom was the world within the

Greenfoot programming language (Intervention 9; Appendix K). Other programming

languages can be used, but the embodiment features, ease of use, and the progression from

visual to syntactical programming are of importance not only to reach maturity in

computational thinking, but also to support the 4IR envisaged by SA for all its learners. The

flipped classroom examples in Moodle and the simple ways to create a scenario guarantee

success, which builds confidence in learners. This also allowed metacognition (Flavell, 1976;

Livingston, 2003; Jackson, 2004; Moritz & Lysaker, 2018) or the progression from the Action

to Process phases much faster, and the programming language provided several ways that

learners could investigate any problem during the Action phase to understand the challenge.

The Process phase of creating scenarios was achieved faster through using the LMS as

reference tool for learners (Intervention 11). Difficult concepts such as dimensions in the

Greenfoot programming language was achieved in the visual output of the two-dimensional

interface. The programming language also possesses a debugging function, and difficult

control structures such as the IF statement were broken down into Actions to simplify

understanding. Even making the applications more natural, the Randomize function (section

263

5.4.3.21) was researched using the IDE and Actions and Processes. The programming

language also consists of built-in functions or methods to allow abstraction as part of

computational thinking. Once again, the learners needed to investigate these methods to

understand what abstraction entails. The programming language allowed the creation of

gaming applications with a naturalistic approach. A rocket intervention (14B) showed that it

could perform certain actions that simulate reality in using control structures such as IF

statements and variables, especially Boolean variables. Processes developed from these

Actions led to an Object, such as method building to describe an abstracted concept

(atWorldEdge()). These abstracted concepts contributed to the learners’ Greenfoot Schema.

Many researchers (Brennan, 2012; Brennan & Resnick, 2012; Papavlasopoulou, Giannkos &

Jaccheri, 2019; Yu & Roque, 2019) use Scratch as a favourite programming language to

grow computational thinking among learners. However, debugging and use of language

constructs are seen as important components of a programming language to assist learners

with computational thinking, which is prominent in Greenfoot programming language.

6.2.1.8 Technical theme

The Technical theme comprises of four findings (Table 5.13). The technical platform is an

important part of this research, as it influences the performance of learners. The Moodle LMS

should not be influenced externally that which dictates the actual presentation of a class or

lesson. Any school may construct an inexpensive PC from scrap parts to drive Moodle and

the Greenfoot programming language as seen in Intervention 4A where the researcher used

a Dual Core Pentium with 4 Gigabyte of memory. Within the classroom, PCs should be the

option compared to RDP, to run Greenfoot, as it was a challenge during this research to work

on terminals; it hugely impacted the speed of teaching and led to learner frustration.

Greenfoot uses Java and needs to compile the scenarios prior to execution, which means

that learners will have to wait for compilation to complete on the server. The RDP is a shared

environment which changes the PC into a terminal or in the research environment the private

school invested in terminals only. Learner logins may go into a queue when processing is

requested for any scenario. The time to service the queue may cause frustration among

learners due to learners having to wait for compilation to take place. With the LMS in the

cloud (Intervention 4B; Appendix F-2), access is ubiquitous and separate from the compiling

challenge, which alleviates requests to the same server platform. The maintenance and

worry of a hard drive crashing is also minimised. If a school runs the LMS from a local PC as

part of their network, the hard drive management must have a failover to avoid any

breakdown in classes. This researcher did not spend money on failovers and lost the

physical hard drive in the process, although it was an enterprise drive. The hard drive lasted

for two years, which is quite good when even a class of 50 WCED teachers at two

264

conferences logged in simultaneously. The hard drive was also misused by teacher classes

presented on behalf of Oracle and learner access 24/7. The domain changed from

http://efundo.co.za to http://wrru.co.za/moodle depicted in Appendix F-2.

From an academic and educational perspective, the researcher used the TPACK (Koehler &

Mishra, 2009) framework. The TPACK framework provides a shift from WHAT to HOW.

These domains (TPACK) cannot live in isolation and need to be integrated as illustrated in

Figure 2.19. These three domains are interconnecting as TCK, TPK, PCK and the

intersection of TPACK. Overall, the augmented TPACK is just a framework and needs a

specific conceptual strategy from a research perspective, but is mandatory for this research

to be considered by teachers and researchers prior to rollout.

The original PCK framework focuses on “why the high school learner should learn to

program” as opposed to “why learners should be taught programming at all”. The complexity

of adding a visual programming environment into the mix makes manipulation of IT related

content implicit. The TPACK (Koehler & Mishra, 2009) would thus provide a better focus on

IT and specifically the programming mix within the PCK mix. The focus is on how

computational thinking is promoted when using programming concepts and APOS theory as

lens, with a constructionist approach.

The TPACK of programming (Koehler & Mishra, 2009:67) focus on the thought processes

and knowledge of teachers and the actions taken that may lead to observable effects. The

thought processes translate to “why teach a programming language”, “what to teach”, “what

are the problems in learning a programming language” and then decide on “how a

programming language should be taught” which may lead to observable effects by focusing

on the structure/syntax of the programming language, not paying too much attention to

solving problems. Developing algorithms to solve problems are necessary to engage

learners in using APOS theory within the programming language to achieve computational

thinking (Cetin & Dubinsky, 2017), it cannot be separated from the physical technical

platform. Leaving the problem-solving component to the next level, may remove the very

essence of the advantage in teaching a programming language in the first place. Complexity

of syntax must thus be minimised or even removed altogether, so that the learner only

focuses on problem solving, gathering implicit syntactical knowledge also known as tacit

knowledge.

6.2.2 Interviews
The interviews were conducted on the impact of Greenfoot programming language and

mathematics on learners. The objective was to examine if the learners interpreted

mathematics in a different manner, as they do with a programming language and if they

http://efundo.co.za/
http://wrru.co.za/moodle

265

could relate Greenfoot programming language with mathematics learning. These interviews

(Appendix R-1, R-2 and R-3) comprise of an algebra exercise on simplification and a science

assessment on the electrical circuit. These examples were model examples of what the

learners were busy with at the time the research happened, so they can relate the theory to

that of a programming language. The interviews conducted led to 12 findings (Table 5.15).

The five themes that crystallised from the categories were APOS, Beliefs, Cognitive balance,

Computational Thinking and Learning. These themes are now discussed in the next sections.

6.2.2.1 APOS

Although learners were cognisant of the programming language and how it related to APOS

theory, they were unable to advance from one phase to another in mathematics. They knew

what and how to do it using a programming language and they knew what question to ask in

mathematics, but needed a teacher or mediator to provide answers to their questions. The

mechanics of what to do in mathematics were absent, and although they knew that, for

example, an Action needed to be taken, they could not figure out what Action to take. They

could not explain or interpret such Actions, although they identified that some Action is

needed. The researcher fulfilled the role of the teacher during these sessions. Only when the

researcher guided them, did they realise the potential of APOS theory. Learners followed

rote learning to fulfill mathematical concept images of mathematical definitions, which

became concept images instead of concept definitions. The learners were more interested in

the answer than the logic by memorising the drawing of the triangle for the equation V=IR,

part of the “electrical current” exercise. The emphasis was on the physical drawing and not

on the understanding of the equation. The problem was that the concept image satisfied the

need to generate answers and obtain marks for the assessments. Learners were more

concerned about the formula and got lost in silos of concept images. These activities did not

complement nor enabled computational thinking and thus did not promote APOS. When the

questions read “Determine Voltage”, they read the V off the formula image triangle and used

a calculator to calculate the answer. Although the CAPS document stated that learners

should resort to mental calculations, learners adhered to the initial directive of using

calculators. Only when the researcher guided these learners and broke down the problems

into actionable steps, could they understand that only V=IR is needed. However, they still

found it difficult to identify these steps on their own. The learners now realised what

questions to ask the researcher to ensure understanding of mathematical concept definitions.

APOS theory provided learners with the skill to ask questions about their problem in

mathematics. They wanted to take Action to get to the Object phase of the mathematical

concept, but needed someone to provide those answers.

266

6.2.2.2 Beliefs

Beliefs about mathematics were shaped through “met-befores” that built up through the

years. These caused incorrect answers because actual Schemas did not exist. The learners

who were interviewed became anxious when the researcher asked them questions on

mathematics. Although the programming language was a new belief that took on shape,

mathematics was part of an existing belief system and sometimes cluttered the learners’

understanding of programming language concepts. The anxiety showed that their confidence

levels were low, even before the question was posed.

6.2.2.3 Cognitive Balance

Learners were unable to abstract in general. Greenfoot was a challenge for some learners.

Balancing all aspects of Greenfoot in what should be memorised and what not, were

realised, but for mathematics it was unclear. Cognitive load theory seemed to be absent. The

researcher tried to understand how learners’ cognitive load was minimised to turn

mathematics around into metacognition, but this will be recommended as further research. A

programming language necessitates that the learner understands the entire Schema on the

Greenfoot programming language. In mathematics, learners managed rote learning by

memorising silos of mathematics concepts such as the V=IR example (section 2.3).

6.2.2.4 Computational Thinking

Computational thinking became a challenge when learners could not reflect on mathematics

as they managed to do for a programming language. The abstraction challenges were

problematic, as the researcher had to guide them in making the association. Schemas were

also absent in mathematics, which hindered computational thinking within mathematics due

to silos of concept images. These concept images allowed learners to gain marks pertaining

to that concept image, but the cognitive load became heavier (section 5.2).

6.2.2.5 Learning

Learners were influenced by teachers who forced learners not to use actions as part of their

discovery because it was supposed not to happen at this stage of their lives. Learners

complained, when the researcher showed the steps of a problem, that teachers do not want

them to write down these steps as it was assumed that they must have the ability to do

mental calculation, as prescribed in the CAPS document. The problem with that was that

some learners never crossed the Action phase on the concept definitions and simply could

not continue to the Process phase to reach the Object phase and to scaffold to their

Schemas. The result was that learners simply followed any route that seemed a possible

solution. Learners depended strongly on the pyramid that housed the formula for V=IR, and

without that recipe, their answers were wrong and they failed to think beyond the pyramid.

267

Figure 2.13 is a typical example where an action could have saved learners from memorising

silos of concept images.

6.3 Summary
This research afforded meta-learning opportunities to learners through APOS, Beliefs,

Cognitive Balance, Computational Thinking, LMS, Learning, Programming Language and

Technical themes, which emerged from the findings.

Replicating the research, APOS theory as the epicentre of this research needs to be

introduced to learners through meta-cognitive processes with the proposed conceptual

framework as lens. The proposed conceptual framework together with GDs through ACE

should act as guidelines towards introducing computational thinking through APOS theory

within a programming language. The APOS theme shows that learners need a hands-on

approach to let learners gain a practical understanding of APOS theory prior to venturing into

the Greenfoot programming language. Learners need to believe in APOS theory through

practical activities such as juggling and a PL. Learners are enveloped by mental mechanisms

when practicing APOS theory during programming while algorithms are produced to solve

problems, as learners move through these mental structures. The Beliefs theme shows that

the beliefs of learners may influence their attitudes when dealing with this wicked problem of

computational thinking. Domains such as mathematics and programming that needs learners

to perform at a cognitive level of formal operations need a specific didactical approach which

will ensure a positive outcome in a learner’s education. The Cognitive Balance theme shows

that cognitive load theory must be included in the proposed conceptual framework, to ensure

learners taking on more academic tasks, but delivering the same or better performance. The

Computational Thinking theme emphasises abstraction, automation and thought processes,

which are embedded in practising the Greenfoot programming language. The Learning

theme shows that learners have more confidence in their learning through cognitive load

theory and a supporting LMS that balances learner working memory. The LMS embedded

within the LMS theme provides ubiquitous behaviour of academic support. The Programming

Language/Coding theme shows the literature study supports Greenfoot as a language that

provides opportunity to learners to make progress from the visual to the syntactical

approaches in writing algorithms. The Technical theme shows the dependency on hardware

platforms to make or break the research. Disadvantaged communities and schools can also

reap the benefits of using older PCs to act as a research platform.

All these themes are interrelated, providing a secure didactic platform where computational

thinking can be developed and practised. The interviews highlighted APOS, Beliefs,

Cognitive Balance, Computational Thinking and Learning themes. Within the APOS theme,

268

learners could form an analogy between mathematics and programming and knew what

questions to ask based on APOS theory, but needed a teacher to explain those questions to

them. The Beliefs theme shows that “met-befores” are crucial and mathematics had more

casualties than success story learners. It is also not always true that a learner enjoys

mathematics if he/she performs well. The anxiety that comes with the exercise can be

enormous. The Cognitive Balance theme shows that learners’ cognitive load in mathematics

was not built on cognitive load theory, as was the case with the Greenfoot programming

language that was rolled out in a structured manner, supported by an LMS to enforce

cognitive load theory. The Computational Thinking theme shows that computational thinking

was a challenge when learners could not reflect on mathematics, as was the case with the

Greenfoot programming language. Computational thinking in mathematics was built on

concept images more often than not. The Learning theme shows that learners did not follow

APOS theory in mathematics as with the Greenfoot programming language, where their

answers in mathematics were based on either guesses or concept images, i.e. silos of ideas

about mathematical concepts and not per concept definition.

The interventions executed with this research communicated the concept of academic choice

to learners. Within the proposed conceptual framework, learners were confident and honest

about the choice they had to make to achieve success.

269

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

Figure 7.1: Chapter layout

7.1 Introduction
In this Chapter, Figure 7.1 shows the layout of this Chapter. Conclusions are drawn on the

role of programming language concepts and APOS theory in order to promote computational

thinking. The problem statement of this research states that it is not clear how high school

learners’ computational thinking may be promoted at a cognitive level of formal operations.

This wicked problem is explored through two research questions namely, “What are the

characteristics of an enhanced learner’s teaching and learning strategy that can empower

learners to master computational thinking skills through APOS theory, infused by a

programming language at high school level?” and “How can computational thinking skills at a

cognitive level of formal operations be promoted among high school learners through the

teaching of a programming language aligned to Action Process Object Schema (APOS)?”.

The findings are linked to the research questions in this Chapter.

It is concluded that by using a programming language, it may promote computational thinking

among learners using APOS theory as lens. Furthermore, mathematics must be revisited by

the teachers of mathematics in addressing the learners’ questions based on their

270

programming language experience. By using a programming language, learners know what

and how to use APOS theory to approach their misunderstanding of mathematical concepts,

using the proposed conceptual framework. The APOS theory gives guidance to learners to

understand how APOS theory can enrich learners’ cognitive stance through meta-learning.

Chapter 7 consists of (i) sections, (ii) conclusions, (iii) and recommendations (Figure 7.1).

7.2 Conclusions
High school learners underperform at a cognitive level of formal operations when engaging in

subjects such as Mathematics and Science. Where computational thinking is about

abstraction, automation, thought processes and decomposition, mathematical thinking

concerns abstract structures and hence mathematical thinking is embedded in computational

thinking. The problem statement of this research states that it is unclear how high school

learners’ computational thinking may be promoted at the cognitive level of formal operations.

This wicked problem is investigated through two questions namely, “What are the

characteristics of an enhanced learner’s teaching and learning strategy that can empower

learners to master computational thinking skills through APOS theory, infused by a

programming language at high school level?” and “How can computational thinking skills at a

cognitive level of formal operations be promoted among high school learners through the

teaching of a programming language aligned to Action Process Object Schema (APOS)?”.

This research used a programming language as a metacognitive system. The findings show

that although a programming language paves the way to computational thinking, learners

have set ways in mathematics and need the researcher to assist learners with remedial work,

based on APOS theory questions. The researcher had to answer their questions which

emerged from their programming language approaches and experiences of computational

thinking when applying APOS theory within the Greenfoot programming language. The

learners now have a frame of reference to engage in computational thinking when solving a

problem.

The programming language is not a magic wand to provide solutions to all the learners’

questions, but at it least empowered them to know which questions to ask and what actions

to take to remedy a lost concept definition in mathematics or to avoid the stacking of concept

images. The programming language provided learners with a blue print on how to approach

their mathematics problems and with a choice to be successful.

The next section shows how the research addresses the research questions (Table 5.14).

271

7.2.1 Linking RQ 1 with the findings
Refer to Figure 5.14 to see the mapping of the findings to the themes per research question.

Each research question is now discussed.

RQ 1: What are the characteristics of an enhanced learner’s teaching and learning
strategy that can empower learners to master computational thinking skills through
APOS theory, infused by a programming language at high school level?

The characteristics of an enhanced learner’s Teaching and Learning (T&L) strategy, which

focus on computational thinking, are prominent in the computational thinking, programming

language, APOS and technical themes, as discussed in the SRQs below.

SRQ 1.1: What factors are needed to promote computational thinking at a cognitive level of

formal operations among high school learners?

The themes that were prominent during the exploration of this question include

computational thinking, programming language and technical. The interventions show that

abstraction is a problem for 50% of the learners in this research. During the literature study

the focus was put on PLs, based on the views of Wing (2008), Aho (2012) and Denning

(2017), who advocate a strong link to Computer Science and Programming, and more

specific, as the automation part of computational thinking. A programming language such as

Greenfoot does provide the visual and syntactical approaches learners and teachers may

explore to build computational thinking through thought processes (Selby & Woollard, 2014).

Assessments and questionnaires supported the validity and rigour of the EDR process.

Mental mechanisms such as interiorisation, encapsulation, de-encapsulation, coordination,

reversal, generalisation and thematisation are practiced from within Greenfoot as learners

illustrated mechanisms these during the interventions to align reflective abstraction within

APOS theory with computational thinking (Cetin & Dubinsky, 2017).

Teachers may either use the examples as performed in this research or use examples that

focus on any of the mental mechanisms for specific APOS mental constructions. These

mental mechanisms within APOS align reflective abstraction and computational thinking,

which connects computational thinking, mathematics and the programming language when

building Schemas. Computational thinking consists of automation and abstraction, and the

automation component is found in the programming language as advocated by Wing (2008,

2011), Aho (2012) and (Denning 2017). Embodiment (Tall, 2004, 2008) is also an important

component during learners’ development in mathematics and the Greenfoot programming

language strongly advocates embodiment, as summarised in the findings during the

enactment of problems by learners when using Greenfoot. All of the above as summarised

272

as thought processes which need to be stimulated, as promoted by Aho (2012), Selby and

Woollard (2014), Cetin and Dubinsky (2017) and Denning (2017). The answer to the SRQ is

that the factors needed for the development of computational thinking at a cognitive level of

formal operations among high school learners are abstraction, automation, mental structures,

mental mechanisms and a programming language necessary to develop computational

thinking among learners.

SRQ 1.2: What type of programming language may be used to promote computational

thinking skills at a cognitive level of formal operations?

Greenfoot programming language, as guided by the literature study on PLs, was chosen as

the programming language for this study and supports the automation component as

advocated by Wing (2008). The selected programming language must allow learners to

operate at a cognitive level of formal operations by providing a progression path from the

visual to syntactical approaches. The visual part of Greenfoot provides learners with the

functionality to perform mental mechanisms by constructing an algorithm to solve the

problem. Learners can see the result of the visual approach in the instructions or code, which

provides immediate feedback on their proposed algorithm. The visual approach aligns to

syntax, and vice versa. Greenfoot provides a constructionist approach, where learners learn

through the construction of an application or an algorithm in Greenfoot, while at the same

time adhering to cognitive load theory through an LMS (Papert, 1980). Although the

programming language was unknown to the learners, Greenfoot has a visual interface that

enables learners to interact without having to program at first, as done during the first

number of interventions and hence the availability of a progression path. The focus is on

solving the problem rather than worrying about syntax. Syntax is a challenge for most

learners when involved in programming and it discourages many from pursuing programming

(Malan & Leitner, 2007; Saeli et al., 2011). Greenfoot provides a progression path that allows

learners to climb the ladder of complexity to become involved in mental mechanisms by

developing methods to hold complex coding. The interventions as described in Chapters 4

and 5 adopted this gradual approach. This allowed learners to apply abstraction, as shown in

this research. The visual characteristics and progression path if Greenfoot affords its users

support with developing of computational thinking through a constructionist approach. Having

stated all of the above, learners became irritated when the Greenfoot programming language

took 5 minutes to show after compilation. The delay has led to learners performing

unnecessary additional clicks using the mouse. An additional burden was place on the CPU

that processd on the server, which delayed the compilation process even further.

Considering the TPACK framework (Koehler & Mishra, 2009), the technical platform does

play an important role when lessons are rolled out. Implementing Moodle and controlling

273

sequential compilation temporarily alleviated the compilation problem, and LMS searches

directed learners to the Internet. The learners and researcher could tolerate the situation,

which was not an ideal didactic environment. Greenfoot thus fits into the breadth-first

hierarchical organisation of learners for them to become experts (Zeitz & Spoehr, 1989). The

Greenfoot programming language offers more than the block-based languages, as promoted

by Brennan and Resnick (2012) and Papavlasopoulou, Giannkos and Jaccheri (2019).

Greenfoot programming language is open source and offers dual-modality to learners, which

entails a visual NPE approach and provides a gateway for learners to engage as

programmer in a syntax-based programming language, as advocated by Portnoff (2018) in

that learning to program also entails a natural language learning approach.

SRQ 1.3: What constructs within the programming language facilitate APOS theory at a

cognitive level of formal operations?

Greenfoot, as many other languages, comprises constructs such as control structures found

in loops and conditional statements. The IDE is built into Greenfoot with a “help” option that

describes the different classes and methods supported by examples for learners. Using the

control structures and IDE, learners are forced into thought processes about a problem or an

algorithm on the problem. The outcome of implementing these control structures is visible to

learners during compilation and execution, which means that learners are already able to

evaluate their outcomes as successful or not during these stages. Learners can see their

algorithms as outcome in visual format. Denning (2017) notes correctly that the executing of

applications alone does not turn a learner into a computational thinker, but discovering

algorithms does. This is an immediate outcome compared to mathematics where learners

cannot determine the correctness through inspection; neither may their peers ask to evaluate

the outcome of a mathematical problem. Constructs such as the IF statement, methods,

looping structures, and variables, together with the IDE, facilitate APOS theory in mental

mechanisms for mental constructions.

7.2.2 Linking RQ 2 with the findings
RQ 2: How can computational thinking skills at a cognitive level of formal operations
be promoted among high school learners through the teaching of a programming
language aligned to Action Process Object Schema (APOS)?

In answering this research question, programming language, Cognitive Balance, Moodle

(LMS) and Learning were prominent themes will be discussed when answering the following

SRQs.

274

SRQ 2.1: How are the constructs of a programming language taught among high school

learners at a cognitive level of formal operations?

As advocated by Denning (2017) in Figure 4.11, Greenfoot as computational notation is used

to compute some abstraction or computational model, which is controlled by an algorithm

developed by the learner. In developing the algorithm and mapping it into Greenfoot, thought

processes are inevitable and the learners engage in computational thinking as guided by

APOS theory. This, however, does have an effect on learners being mentally overloaded with

new concepts and ways to be creative in their thought processes when adhering to the

traditional didactics. The findings linked to this question include 2-3, 3C-2, 3C-3, 5A-1, 7-1, 7-

2, 8-2 and 14B-2, depicted in Table 5.14. The T&L strategy dictates interventions, and this

has led to these findings. The Greenfoot programming language was installed on a PC and

supported by an LMS to guide and assist learners with obtaining answers and ensuring a

cognitive balance through cognitive load theory to fulfil these tasks. Assignments are given to

learners to engage with the Greenfoot programming language in solving problems by

developing algorithms for such problems. The assignments can be grounded on GDs with

ACE (Intervention 2A-2; Table 2.1) to assist learners with following the correct steps when

developing algorithms. The mental mechanisms triggered by APOS theory (mental

structures) must be highlighted to learners for them to make any assignments part of a

constructionist approach governed by computational thinking through the APOS theory lens.

SRQ 2.2: How do the constructs of a programming language align to APOS among high

school learners at a cognitive level of formal operations?

As with many other languages, Greenfoot does have a debugging option. Learners are

taught to add comments to code to assist them with tracing the output of their code. The

visual interface of Greenfoot also allows learners to see what the actor does when the code

executes. The programming language theme was prominent during findings 2-3, 8-5, 9-2, 9-

3, 9-4, 9-5, 10-1, 10-2, 10-3, 11B-3, 12-1, 12-2, 12-3, 12-5, 13-3, 14B-2, 14D-1 and 14D-3.

The control structures mainly consist of conditional and repetitive constructs such as IF and

“for” looping statements, which the researcher crafted into interventions that forced learners

to develop an algorithm. Intervention 13 was such an intervention that introduced a

Greenfoot variable to enable a balloon actor instance to move horizontally and vertically. The

term ‘instance’ is specifically used here, because the learner may generate a bouquet of

balloon instances by repetitively creating a new balloon Actor object. Learners had to

consider a grid with an x and y axis and brainstorm the problem to move these balloons in

any direction. Having constructed the atWorldEdge() (Figure 5.32) method in a

constructionist manner a new dimension was introduced, where learners had to consider

how this object could be used within the current scenario. The method atWorldEdge() is

275

regarded as an Object that forms part of the code to verify if the Actor object will collide with

the edges. The method name atWorldEdge() is also used throughout the thesis, so the

reader may relate to terminology such as method, encapsulation, reversal, other mental

mechanisms, syntax and so on. These method names vary from learner to learner, seeing

that it is a personal creation with different code structures, depending on the aim of the

method. Normal coding rules such as Pascal case was adhered to, hence the mixing of

upper- and lower-case letters that form the method or variable names. It plays the role of an

Object because it is reusable code, not only within the same scenario when used by other

actors as well, but also across scenarios. The learners had to control different colour

balloons that drifted horizontally and vertically, which forced the learner to check if the left or

right margin was reached. Upon detecting these sides, the balloon changed direction. This

called for an IF statement. The for-loop is implied in that the run command calls the act()

method within the scenario repetitively. These constructs are debugged so learners can trace

their instructions that serviced the algorithm in the Act button. The steps are executed per

line and the learners can compare the code to the outcome or output visually step-by-step. In

some cases, learners only performed physical actions such as walking inside the classroom,

simulating the movement of the balloons. This is where the learner became the Actor object

and partook in an activity called enacting, which is also part of mathematical thinking. APOS

theory is followed by learners being in an Action, Process or Object phase; an object such as

atWorldEdge is broken down into actions again to discover a better Object that will fit the

purpose to solve the problem. If learners investigate the (APOS) Object, atWorldEdge, they

can de-encapsulate the Object through actions. If the code embedded within the method

becomes unclear or do not suit the purpose of the method, learners use specific mental

mechanisms to decompose the Object and compose a better Object. The reason can be

code that is not generalised enough, or components or chunks of code influenced by

cohesion. The whole process of interiorisation (mental mechanism, section 2.2.2.1(c)(vii),

Figure 2.17) then restarts as learners configure a new Process within their minds to structure

a method through encapsulation (Figure 2.17). Actions are imposed on Objects, leading to a

Process. Learners can generalise these encapsulated methods as re-usable code. Overall, a

Schema exists within the learner’s mind on how to create a scenario that will allow balloons

to move in a direction using an Object such as atWorldEdge() method, which is reusable to

solve other problems through programming. Through scaffolding, the Schema was

strengthened. Learners cannot build silos of concept images as with mathematics, because it

cannot suffice in coding. Coding expects learners to link constructs which cannot exist as

silos. This Schema is thus a dynamic entity on which actions are imposed, that may lead to

new Processes and Objects in APOS theory. This is what Piaget (1977) describes as

assimilation, when actions become thematised objects or accommodation (Figure 1.2)

276

depending on the status or relationship of the learner with the programming language and its

structures.

SRQ 2.3: How does the use of an LMS, as a platform for learning, aid the teaching of a

programming language aligned to APOS to promote computational thinking skills at a

cognitive level of formal operations among high school learners?

The themes that emerged are the Cognitive Balance theme in findings 2A-1, 2C-1, 2C-2,

14C-2, 14C-2, the LMS theme found within findings 2B-1, 2B-2, 3A-1, 3B-5, 4B-1, 4B-2, 4B-

3, 5B-1, 5B-2 and the learning theme in finding 11A-2. Learners want to obtain solutions for

problems, but the coding world is just too broad to pursue as an individual. Learners show

interest in having Moodle as the LMS to watch a video on coding to discover a possible way

to solve a problem. The learners found the extra academic burden as doable because

cognitive balance was implemented through the LMS and assistance was provided by the

researcher as Oracle instructor. This is necessary, as learners rather need to focus on

creativity than worryung about where they will find answers to these problems. Tall (2008)

argues that the human brain is very limited and only deals with a small number of pieces of

information at a time. The Moodle LMS gives learners the opportunity to discover new

knowledge on the Greenfoot programming language, such as how to compose artwork in

creating World or Actor objects through Paint and recording sound clips associated with

these Actors. At the same time, the LMS acts as a repository for elaborate explanations that

need to be synthesised by the learner. The researcher assessed learners’ practically and

gave the learners a questionnaire afterwards to assess their knowledge on the coding of

certain constructs. The learners answered these questions with meticulous descriptions

about the processes through code snippets, especially for Intervention 7 (Figure 5.33).

Moodle acts as a repository where specific answers could be found to assist learners in their

tasks, as moulded by the researcher as instructional designer. This also alleviates the

burden of memorising too many facts in the learner’s working memory. When learners were

exposed to Moodle, their creativity triggered, as found in the enthusiasm with which learners

participated, especially during assessments.

7.2.3 EDR Question
The EDR question is answered above, namely: “What teaching and learning strategies can

empower learners to master computational thinking skills, through APOS theory, which is

expected to function at Piaget’s (1977) cognitive level of formal operations, infused by

concepts and characteristics of a programming language at high schools, in order to cope

with the challenges in subjects such as Mathematics and Science?”

277

The EDR question combines both research questions as discussed above to simplify the

goals by the van Wyk and de Villiers (2018) EDR model. The teaching and learning strategy

comprises the ACE framework (Figure 2.20) of Dubinsky and McDonald (2001), tied to the

GD, which involves Greenfoot as programming language. Moodle LMS provides a cognitive

balance to let learners solve problems through Greenfoot with a computational thinking

focus. The cognitive level of Piaget (1977) was adhered to by starting this research with

grade 8 learners to tap into their cognitive level of formal operations. The strategy is further

strengthened by a technical platform that provides Greenfoot programming language

learners building their computational thinking skills by referring to the TPACK framework of

Koehler and Mishra (2009), who enhanced the Shulman (1986) PCK framework.

Mathematics was not realised as a spin-off in this research, but with computational thinking

as the focus, learners could criticise their mathematical problems based on APOS theory.

Learners demonstrated, during the interviews, what steps to take when confronted by

inconsistent understanding of mathematics concept definitions. Teachers in mathematics

need to assist these learners with unlocking those concept images and changing it to

concept definitions through the learners’ ability to ask better questions. Learners thus do

relate to their experiences in Greenfoot, moving hence and forth within APOS theory’s

mental constructions and mental mechanisms. However, the status of the didactical contract

that exists between teacher and learner dictates how teachers will respond to learners newly

acquired understanding of computational thinking in mathematics. It may add additional

strain on the approach of teachers to these new way/didactics of addressing mathematics,

influencing the success of such a rollout.

7.3 Overview of the Study
The aim of this research was to explore and understand how a programming language, using

Action Process Object Schema (APOS) theory as lens, could promote computational thinking

skills at a cognitive level of formal operations among high school learners. The study was

conducted at a private high school in the Western Cape.

The research methodology was based on an interpretivist research philosophy. The

ontological underpinning of the study was subjective, and the epistemological stance

accepted opinions of learners through written, spoken and visually attributed meanings. The

axiology of the researcher was that of a practising educator in programming and industry, as

teaching and learning expert, and as a certified Java-Greenfoot instructor through Oracle.

Data were collected during lectures, through observations, interviews, assignments and

assessments using the EDR approach. Using Greenfoot as a programming language,

supported by Moodle as Learner Management System (LMS), learners discovered

278

programming through “worked examples” and a constructionist approach as proposed by

Papert (2005). The terminologies ‘constructivist’ and ‘constructionist’ are viewed by many

researchers as the same, as indicated to the researcher by Prof Dubinsky (2015) in an email,

when Prof Dubinsky was asked if he distinguishes between constructivism and

constructionism. For the purpose of this research, the definition of Papert (1980) was

adhered to. Qualitative data analysis was done through data condensation, data display and

drawing and verification of conclusions using thematic analysis.

The research Chapters 2 to 6 are summarised in the following sections.

7.4 Research Chapters
7.4.1 Chapter 2 – Literature review
The literature study followed the hermeneutic framework of Boell and Cecez-Kecmanovic

(2014:264) (illustrated in Figure 1.2, section 1.8). The literature study cast light on

discovering a framework that promotes mathematical problem-solving approaches. This led

to prominent concepts within mathematical thinking such as abstraction, APOS theory,

computational thinking, constructivist and constructionist approaches and different types of

epistemologies that may enlighten and support the relationship between mathematical

thinking and computational thinking. Through the literature study, RQ 1, “What are the

characteristics of an enhanced learner’s teaching and learning strategy that can empower

learners to master computational thinking skills through APOS theory, infused by a

programming language at high school level?” was answered. The research question was

broken down into factors necessary for computational thinking, type of programming

language necessary to promote computational thinking, and the constructs within such a

programming language to facilitate APOS theory (section 2.2.2).

The literature study gave more clarity on Piaget’s (1977) stages of development to classify

the sample group of learners into a specific age and grade, also known as the level of formal

operations that fit the profile of grade 8 and 9 learners (section 2.2.5). Further reading and

analysis showed that mathematical learning revolves around embodiment, which ties in with

APOS theory during mathematical learning. The status of outcomes-based education (OBE)

raised concerns in exposing constructivist approaches as a constructivist teaching fallacy

and how this may impede learning among learners. The “worked-example effect” was

highlighted and accepted into this research as a more appropriate learning technique

strengthening the constructionist approach.

The relationship between computational thinking, mathematical problem-solving approaches

and a programming language aligned well with the three worlds of mathematics. Barrouillet

(2015) also distinguished actions from gestures, which highlighted a concern in Piaget’s

279

(1977) theories, but serves for future research especially when looking at teaching and

learning among deaf and blind learners.

The choice of a programming language was Greenfoot. Compared to other languages,

Greenfoot supports a progression path for learners in the form of a graphical user interface

through to the usage of language constructs with syntax and debugging properties.

Greenfoot was built on Java, and Java constructs can be used directly within Greenfoot.

Greenfoot is a gaming language which supports APOS theory when developing algorithms

for problems as investigated in this research. The progression path allows learners to

continue their programming experience in developing enterprise solutions and not having to

implement a drastic change in their programming skills by changing the programming

language. A most viable framework in teaching and learning is built on the restructured

pedagogical content knowledge or technical pedagogical and content framework which

recognises IT as part of the teaching and learning process recognised within this research.

The literacy framework of Prensky (2008) is now changed to include computational thinking

as opposed to programming in accordance with Wing’s (2006, 2008, 2011) proposal.

Programming will be implied as part of computational thinking as highlighted in this research.

The APOS mental constructions and mental mechanisms tie reflective abstraction and

computational thinking together, which shows the connection between computational

thinking, mathematics and the Greenfoot programming language, as illustrated in Figure 2.21

when building Schemas. The final motivation why a programming language should be used

is highlighted in the literature study through meta-cognitive systems. This research studied

the promotion of computational thinking from an unknown perspective (programming

language belief system) such as the Greenfoot programming language, which should act as

a meta-cognitive approach, seeing that only one learner has encountered a programming

language before in this research.

7.4.2 Chapter 3 – Design Research
Design Research (DR) stems from Design Science (DS), which is applied DS, also known as

DSR. The DS should produce shareable theories to provide communication to practitioners

and educational designers. Within the educational world, DR is also known as DBR or EDR.

Takeda et al. (1990) regard cognition in DSR through abduction, deduction and

circumscription as cognitive processes. This research used DBR as a validation study where

a theory such as APOS was investigated and explored. There are many approaches in EDR

in models and frameworks, but the van Wyk and de Villiers (2018) model was chosen for this

research. An EDR question was formulated based on the van den Akker (1999) principle

namely: “What teaching and learning strategies can empower learners to master

280

computational thinking skills, through APOS theory, which is expected to function at Piaget’s

(1977) cognitive level of formal operations, infused by concepts and characteristics of a

programming language at high schools, in order to cope with the challenges in subjects such

as Mathematics and Science?”

7.4.3 Chapter 4 – Research Design
Chapter 4 describes the research design, which started with Action Research, but changed

to educational DR as determined by the outcomes of this research. The motivation for EDR

was the artefacts as outcome, computational thinking as the wicked problem to be

researched (section 3.3), and a bevy of interventions that necessitated a move towards

solving the wicked problem. The wicked problem is found in the problem statement. The

EDR structure used design as promoted by the van Wyk and de Villiers (2018) model, based

on interventions. The sample consisted of grade 8 and 9 learners sequentially. Sequentially

means that the grade 8 learners continued with the research in grade 9. This research

explored the role of computational thinking among high school learners and how

computational thinking could be promoted in these learners. The following strategies were

considered: (i) a demonstration case; (ii) Action research; (iii) DR; (iv) DSR; (v) EDR; (vi)

interviews; and (vii) observations/ reflections. The DR strategy was DR (Figure 4.9), also

known as EDR in education. The abstracted phases found in the van Wyk and de Villiers

(2018) model are: (i) a preliminary research phase; (ii) the prototyping phase; and (iii) an

assessment phase. The DR strategy is DR as strategy of choice (section 4.5.3).

7.4.4 Chapter 5 – Data analysis and findings
As the research explored the impact of computational thinking using a programming

language with APOS theory as lens, the researcher focuses on the mathematical belief

system and how it influences learners’ attitudes towards mathematics (Moscucci, 2007)

(section 5.2). This triggered the idea to use a programming language as a meta-cognitive

approach and build a “clean” programming language belief system among learners to

augment their beliefs about mathematics. Augment means that an analogy can be drawn by

learners in comparing their existing system of belief about mathematics to that of the

programming language belief system. The concept of mirror neurons is something that the

researcher had to take cognisance of to build a positive belief system differerent from their

current system of belief about mathematics. While structuring the interventions, care was

taken to present the interventions in such a manner that it was didactically sound. This was

based on a didactical contract that created positive experiences. Every time the researcher

visited mathematics in the form of current problems done in class for learners to reflect,

learners demonstrated silos of concept images in terms of mathematics. Further data

collection processes and the analysis of data were covered. A qualitative design was used

281

through abduction on data that were gathered through interventions. Each intervention

produced findings which were summarised into 8 themes.

7.4.5 Chapter 6 – Discussion
A total of eight themes were constructed, namely APOS, Beliefs, Cognitive Balance,

Computational Thinking, LMS, Learning, Programming Language, and Technical. The van

Wyk and de Villiers (2018) model proposes an evaluation and reflection stage. The reflection

stage was expanded by using the framework of Gregor, Müller and Seidel (2013). The

theoretical conceptual framework was accepted as a proposed conceptual framework in

Figure 8.4.

7.5 Summary
This Chapter highlighted the conclusions and recommendations of the research, which are

discussed in the following sub-sections.

7.5.1 Conclusions
Using a dual-modality programming language may promote computational thinking among

learners, but mathematics needs to be revisited by the teachers of mathematics in

addressing the learners’ questions based on their programming language experiences.

Learners now know what and how to use and approach their misunderstanding of

mathematical concepts, built on the conceptual framework involving a programming

language, using APOS theory as lens. The actual guidance and coordination of mathematics

subjects must stem from mathematics teachers. The APOS theory as lens guides learners to

reflect on their education, using metacognition through the Greenfoot programming language

practising computational thinking, compared to mathematical problem solving. All the

research questions as well as the sub-research questions are linked to the findings within the

research.

7.5.2 Recommendations
The following themes will be discussed that influenced the researcher’s recommendations on

replicating the research within education. The themes were arranged according to

importance, which will secure success when rolled out, starting with the technical theme as

the most important and concluding with a view on education recommendation in SA.

7.5.2.1 Programming language

NPEs in education comprise mainly of Scratch and App Inventor, with Scratch the most

popular programming environment (Papadakis et al., 2014; Szabo et al., 2019). This

research was pitched at a cognitive level of formal operations and points to an age group of

282

11 years and older. The NPE approach in using block-based programming will not suffice

when writing code using APOS theory as lens to promote computational thinking. The

programming language for this research accommodated a mixed modality, from visual

programming to text-based programming. Learners that used the Greenfoot programming

language enjoyed an easy start, using a frame-based visual approach to syntax-based

interface.

7.5.2.2 Technical

This research should only be replicated among schools if the technical platform satisfies that

of a PC environment and not a terminal environment. Servers supporting the IT infrastructure

within a school need not use RDP technology, but may rely on basic PC environments for the

Greenfoot programming language, which will increase the compilation and maintain learner

attention. The PCs can be imaged using Norton image technology or Acronis technology

where multiple PCs can be imaged or prepared on a network at the same time to minimise

installation of software for each individual PC.

7.5.2.3 Cognitive Balance and Beliefs

A constructionist approach in using an LMS will promote cognitive load theory to maintain

academic performance among learners, although the workload increases. The LMS should

be developed by an instructional designer (ID), which can be configured by IDs within the

WCED or knowledgeable IDs to ensure cognitive load theory and constructionism. The ID

will structure the LMS content in such a way that it inhibits learning. The learner working

memory (LWM) must be considered when evaluating the learner and school environment

and the components of LWM must be discussed with all stakeholders to emphasise the roles

of intrinsic and extrinsic/extraneous cognitive loads on learners. All stakeholders must be

informed about the gravity of teaching programming and the impact of any new domain on

future endeavours of these learners, seeing that it is a wicked problem being addressed.

7.5.2.4 LMS

The LMS is a decision that every school can make based on their finances available.

Primarily, the IT teacher should involve IT skills of parents and install Centos Linux distro on

a PC, but preferably on an old server donated to the school. The researcher specifically

recommends Centos, as it is Windows based and is less cryptic compared to other distros.

Always choose a stable version and not a Beta version. Remember we just want to run

Moodle. Ensure the hard drives are of enterprise standard and if possible, enable RAID 1

using two hard drives if the hardware permits. The memory configuration should be 4 Gigs of

Ram as a minimum requirement. Preparing bootup USB flash drives can be accomplished

using Rufus, UNetbootin, win32diskmanager or balenaEtcher technologies. Normal DVD

283

drives have become too small, seeing that these distros easily exceed 7 Gigs of space.

Simply selects the bootup drive as the USB, boot the PC and follow the prompts. There are

many documents which describe the setup of Linux distros for PCs. As an abstracted

explanation, the responsible person must then install Moodle on such a PC, which may entail

LAMP or XAMP as pre-requisite. The PC must then be incorporated on the school’s network

and made available to everyone. To obtain support from all teachers, Moodle may be made

available for all subjects, which may necessitate some interest group, convening once a

week to discuss Moodle and its rollout.

If the school has finances, just register a domain or use the school’s domain and add-on

memory storage to the domain at minimal cost. Install Moodle in the cloud through cpanel by

verifyin the school’s service provider possibilities. Please note that open source and

proprietary driven domains will influence these decisions.

7.5.2.5 Learning

A bottom-up approach should be followed before the proposed conceptual framework is

implemented. A high level of cohesion should exist between mathematics and programming

subjects and the responsible teachers. Metacognition should be practiced, which implies a

teacher with passion and integrity that will promote the programming language belief system

of learners. Learning can only take place if the teacher implements the proposed conceptual

framework with a passion for programming and mathematics for learning to take place.

7.5.2.6 APOS

Mathematics and programming teachers must understand APOS and what is done in

programming should complement mathematics teachings by integrating mathematical

concept definitions into APOS theory. Mathematical teachers must assist learners in

understanding mathematics concept definitions through the programming language analogy.

7.5.2.7 Education

The educational landscape in SA propagates high road transfer of knowledge among

learners, through the CAPS curricula at school and tertiary curricula in higher education.

These curricula are designed according to best practices around high road transfer of

learning. Lee and Choi (2017) see high order thinking as a critical predictor of success.

However, students struggle to deliver upon entering industry once finished studying.

According to Wilhelm (2008), students may know terminologies, but making connections in

applying their knowledge show low road transfer of learning. Low road transfer of learning

refers to memorisation and rote learning. Wilhelm (2008) advocates high road transfer of

learning, such as this research provides to ensure abstraction through mental processes,

284

making connections from what were studied at school to new problems confronted with in

industry. This research ensures a positive transfer of learning, as APOS theory as lens used

within a programming language improves computational thinking, which should have a

positive transfer of learning effect on mathematical problem solving. The actual teaching of

mathematics may cause a negative transfer of learning, as it necessitates a low road transfer

of learning in the form of rote learning concept images through memorisation, as pointed out

throughout this research. Educators should employ the proposed conceptual framework to

ensure high road transfer of learning.

285

CHAPTER 8: CONTRIBUTION, FURTHER RESEARCH AND
REFLECTIONS

Figure 8.1: Chapter 8 Layout

8.1 Introduction
This Chapter as depicted in Figure 8.1 is divided into three sections, namely contribution of

this research, reflection, and further research based on the recommendations in Chapter 7.

The contributions of this research entail:

i) Psychology of didactics,

ii) educational practice,

iii) curriculum design,

iv) instructional design,

v) programming expertise in designing the architecture of the research,

vi) expertise in rolling out the hardware under different circumstances, i.e. cloud-based

or locally installed systems at a school’s premises and

vii) the actual research based on EDR,

viii) research didactics,

286

ix) programming language expertise, and finally,

x) teaching and learning expertise.

The most encompassing and satisfying contribution made through this research is that the

learner may know that education in a programming language is a choice which becomes

reality if the educational process followed adheres to cognitive load theory, which

encompasses all the themes identified in this research.

8.2 Contributions of the research
Te’eni et al. (2015:564) indicate three success components for research, namely

“contribution, contribution and contribution”. The authors are critical of theoretical and

empirical contributions and urge researchers to make findings exciting by placing it into

context relevant outside the scientific study as well.

Ågerfalk (2014) advocates the combination of practice with research. The mixed methods

approach in papers is more important than merely including statistical presentations. The

research should tell a story, and according to Baskerville (2009), the reader will be able to

engage in a process by applying the theory embedded in proposed IT artefact, which was an

outcome of this research.

This research study contributed to the existing body of knowledge. The four types of

contributions, namely theoretical, academic discipline knowledge, methodological and

practical contributions are discussed in the following sub-sections (Hofstee, 2009; Jansen,

2012).

8.2.1 Theoretical contribution
This research aimed to explore and understand how a programming language, using Action

Process Object Schema (APOS) theory as lens, could promote computational thinking skills

at a cognitive level of formal operations among high school learners (section 7.2.1).

Teachers and researchers may promote computational thinking by following the protocol as

developed in this research. An approach and attitude, in contributing to the learner’s belief

system, towards APOS theory was formed through the development of algorithms and

mapped into Greenfoot to solve real life problems. The researcher explored the disconnect

that exists between computational thinking and the learners. The researcher further

investigated the challenges learners experienced when applying computational thinking

using a programming language and how they overcame the challenges through computation.

The findings function as a driving force for programming language teaching to promote

computational thinking as prescribed by the conceptual framework (Figure 8.4).

287

8.2.2 Contribution to academic discipline
According to Maree (2012), academic disciplines evolve when participants and the

respective context are enriched by research. The learners and researcher gained qualities

through conducting this research, including developing new skills that enriching their

personal environment as well as the school and broader community.

The learners who participated in, and engaged with the research process and protocol, in

partnership with the researcher, contributed to the IT, Mathematics and Science disciplines

at the private school. The advancement of the academic discipline cannot be ignored as a

positive outcome within the community. Furthermore, the research impacted on the learners’

subject choices for grade 10, and positively influences teachers’ perception on their

expanded knowledge of programming competencies and their approach towards

computational thinking.

8.2.3 Methodological contribution
Many methodologies were researched, compared and applied towards developing tools for

conducting this research, including the following:

i) APOS theory,

ii) Genetic decompositions though ACE,

iii) Schema development methodologies,

iv) EDR research methodology, and a

v) technical, pedagogical, and content framework.

The above methodologies were applied to address a broken belief system about

mathematics, accommodate a new programming-belief system, and deliver a proposed

conceptual framework to amend these belief systems. The proposed conceptual framework

(section 8.4.2, Figure 8.4) was constructed from the initial theoretical conceptual framework

(section 2.2.3; Figure 2.21) to facilitate the usage of Greenfoot as a programming language

in a controlled constructionist manner (section 7.2.2).

The introduction of a programming-belief system and revisiting a broken belief system about

mathematics was accomplished through EDR. The EDR was based on the van Wyk and de

Villiers model (2018) and subsequent interventions built on APOS theory in applying this

model. The framework showed the programming concepts as identified in the literature

study, implemented with Greenfoot, and presented in a way that computational thinking was

promoted among the partaking learners through APOS theory. The programming language

was initially regarded by learners as a threat, as described by the analogy of psychological

status in mathophobia that exists within the mathematics learner (Papert, 1980). However,

introducing Greenfoot with its immediate response, embodied cognition, and two-dimensional

288

user-interface brought some calmness to learners and they realised that mastering

Greenfoot was easier than they thought it would be. The addition of a lapel badge with the

Greenfoot logo (Appendix T) presented to the learners also introduced a matter of pride to

their participation in the research.

Another aid was the Moodle LMS, which worked well for some but was perceived as a

burden for others who carried a heavy extra-mural load of activities. The LMS provided a

cognitive balance to the partaking learners and alleviated many of the unnecessary stress

and uncertainty in what to do and how to approach certain constructs using Greenfoot. The

major important aspect here was to involve the headmaster in the research. The LMS

provided a way for learners to complete their tasks faster.

8.2.4 Practical contribution
This research produced a guideline for radical change and regulation in provisioning the

rollout of a new curriculum in parallel with the existing curriculum on the Greenfoot

programming language and APOS theory. The abstract part (radical change), according to

Cronje (2011), that explores the programming language concepts to determine which

programming language concepts are of importance to assist with computational thinking,

were addressed (section 2.2.2.1(b)). The target audiences (teachers and researchers) can

now follow protocol to build an environment from the ground up to promote computational

thinking among learners through replicating this research. This may be done by asking

questions such as “What programming language concepts are available to facilitate

computational thinking?” and “How can these programming language concepts be

implemented in a language like Greenfoot to promote learners’ computational thinking skills

within the curriculum?”

The concrete part of the practical contribution, according to Cronje (2011), is the rationale of

the exploration which coincides with the EDR strategy used in this research. The Moodle

website was structured through a storyboard technique by the researcher in his capacity as a

qualified and experienced instructional designer. This configuration is depicted in a final

proposed conceptual framework as outcome (Figure 8.4), functioning as a guide for others to

promote computational thinking using the Greenfoot programming language. Together with

the framework, the LMS, the scenarios within the Greenfoot language created and

complimented by the flipped classroom techniques informed the artefact as an enabler for

computational thinking. All the exercises on the Moodle website may be used as practical

examples by other researchers, academia or educationists in high schools when replicating

this research. An instructional designer should develop Moodle content to promote didactics.

289

8.3 Further Research
Although three categories of teachers (Appendix A-8.1.1 to Appendix A-8.3.5) evaluated the

adoption of the innovation, further research needs to be done on the adoption of the

innovation when conducting local and broad impact evaluations as discussed by Bannan

(2013). Further research requires a positivistic approach within a developmentalist paradigm

to be adopted (Weber, 2010) (section 3.2.3.2, Figure 3.4). It is still unclear what role the

mathematics teacher plays in understanding the APOS theory, programming language and

LMSs because of APOS being unfamiliar to most mathematics teachers in SA. However,

mathematics and programming teachers should maintain a high level of cohesion to ensure

APOS theory is applied in both domains.

Barrouillet (2015) also distinguishes actions from gestures, which highlighted a concern in

Piaget’s theories. Gestures can be investigated in future research, especially when focusing

on teaching and learning among deaf and blind learners who may use programming to

promote their computational thinking.

This study focused on one private school only. It is therefore recommended that more

schools, including public schools, are approached. Preferably, a larger number of learners

commencing with grade 8 should participate using a programming language and APOS

theory as lens. The power of Greenfoot is found in it being a dual-modality (Szabo et al.,

2019), visual programming language, but it also provides a progression path into syntax-

driven coding. The learners are embodied in the actual language as computational notation

instead of merely remaining at a visual level, compared to other languages used in

education.

The positive impact of this research on teachers and learners as a whole opens so many

avenues for further research in education, even when only the few aspects as mentioned

above are considered.

8.4 Reflection
8.4.1 Learning perspective
Reflection from a learning perspective enables the researcher to dynamically change his

approach; this approach is also known as Kolb’s experiential learning cycle (Kolb, 1984). An

example from this research is where the students were asked to state the sum of the angles

of a triangle, which resulted in many incorrect answers (section 5.2, Figure 5.3). Through

reflection, the researcher envisaged Figure 2.13 as a possible approach for learners to solve

the problem of knowing the sum of the angles of a triangle. Such teaching and learning

activities through reflection were followed in this research as prescribed by Andresen, Boud

290

and Cohen (2000). The researcher intervened by influencing the learner’s thoughts to take

action, by tearing the corners of the drawn triangle and placing them on a ruler to form a

straight line, as depicted in Figure 2.13. The activity can be grouped under the Action phase

of APOS theory. The authors further identify reflection as a key element of learning from

experience, used during this research.

8.4.2 Research perspective
This research, driven by interventions, compelled the researcher to improve on these

interventions by develop artefacts in the form of practical outcomes and a theoretical

outcome.

Figure 8.2: Reflection of this EDR research (Adopted from van Wyk & De Villiers, 2018:305)

Reflection is therefore not a separate task; it forms an integral part of the van Wyk and de

Villiers (2018) EDR model as well as of this research (Figure 8.2). Upon reflection, this

research produced real-world solutions in the form of the Greenfoot programming language

APOS approach, structured content within a Moodle LMS, which can be transferred to any

LMS, as well as the theoretical component, which is a conceptual framework for teachers

and researchers to follow when this research is replicated. Figure 8.3 illustrates the flow of

this research’s processes. For further research, the instantiation of the artefact may take the

form of a construct, model, method, instantiation or combinations of the former (Weber,

2010; Vaishnavi & Kuechler, 2008); Gregor & Hevner, 2013). Weber (2010) further argues

that the socio-technologist or developmentalist paradigm forms part of EDR paradigm, hence

the double arrows even at the final artefact’s construction. The theoretical contribution

informs the proposed conceptual framework (Figure 8.4) as theoretical artefact.

291

Figure 8.3: Processes flow diagram of this research (Adapted from Van Wyk & De Villiers,
2018:306)

Figure 8.4: Proposed conceptual framework

292

8.5 Assessment of research
This research is built on a wicked problem, as stated in the educational research problem.

South Africa is in dire straits with mathematics teaching and learning. Coding is becoming a

popular topic/subject at schools and more people begin to understand what coding entails.

Both the conceptual framework and the LMS are artefacts providing a guideline to teachers

to replicate this research. The aim of this research was an exploration of how a programming

language and APOS theory could promote computational thinking at a cognitive level of

formal operations. This research furthermore provided a theoretical component to

substantiate the artefacts that were created.

8.6 Assessment of the context and research purpose
The researcher’s choice of a private school to conduct the research provided a stable

environment for the research. The private school offered Java as programming language and

it was easy for the researcher to add Greenfoot to the mix. The terminal setup for the

technical platform created challenges in terms of slow compilation speed. However, the EDR

processes with abductive inquiry contributed to the success of the results. EDR added

structure, technique, reliability, rigour, correctness and validity to the artefacts.

8.7 Self-reflection
Programming formed part of my life since 1981, when I started with a first course in data

processing based on card reader technology. I qualified as a teacher with a diploma in

education and a second higher teacher’s diploma with Mathematics and Biology as majors at

Stellenbosch University. The first computer I purchased was the BBC Model B micro-

computer, and I taught myself the art of programming in the BASIC programming language

by watching many videos made by BBC similar to the flipped classroom technique in 1983.

The difference was that these flipped classrooms ran on BETA Max tape technology.

Research done on the BBC Model B micro-computer gave birth to the release of the BBC

Master computer, which had better peripheral devices. I used to develop a library

program/database in BASIC for schools at the time. At the school I taught, I was responsible

for the procurement of computers and wrote manuals on word processing and held several

teacher training sessions. At the time, I held fund raisers at the school to motivate the

purchasing of 7 BBC model B micro-computers. I joined a committee that consisted of 4

members who arranged talks at school centres in the Western Cape. I also integrated the

BBC Model B micro-computer into my classroom setting, as I was responsible for gifted child

education and could make rapid progress with teaching programming to these gifted

children. This involved LOGO as a programming tool and I co-written manuals on LOGO to

help pupils gain access to programming. I soon started importing ROM chips from Britain to

enhance these BBC micro-computers in offering WordWise and spreadsheet computing for

293

teachers in 1983. Today I still own three BBC model B micro-computers. This led to an

interest in building and repairing computers, which encouraged a computer business in 1989.

In 1985, I furthered my studies to obtain a BSc degree in Computer Science at Stellenbosch

University. The passion to educate pupils and students in the art of programming, database

management systems, and IT in general became a way of life.

I became involved in industry as DBA-analyst to further my knowledge, where I rolled out

Microsoft and Linux servers to provide IT solutions for SME/SMMEs. My passion was still in

mathematics and computer programming. I could see the advantage of programming in

computational thinking, but never had the time to write up my multiple experiences with gifted

learners.

I became an instructor in Oracle products such as Java, Alice and Greenfoot. I noticed the

potential of Greenfoot and decided to register for a doctorate qualification to conduct

research in my field of passion. I also became a BlackBoard storyboard developer or

instructional designer (ID) and rolled out several projects in storyboarding programming and

educational modules. This taught me how to structure content on an LMS, governed by

moderators, to promote learning. During my research journey, I discovered APOS theory and

met up with Prof Dubinsky, the founder of APOS theory, who studied under Piaget. After

many discussions with officials of the Western Cape Education Department (WCED), I was

granted opportunities throughout the Western Cape at different school centres to address

teachers and train them in Greenfoot using APOS theory. Oracle had an agreement with the

WCED at the time because of the Java programming language being taught in schools in the

Western Cape. I had the opportunity to talk to heads of departments of mathematics and

computing at several schools and soon realised that APOS theory may affect our education

in a positive way. This gave me a sense of the challenges learners and teachers experienced

in our educational system on any subject that necessitates computational thinking.

After the DBE phased out Java PL at schools and opted for a proprietary programming

language, I joined a private school and executed my research at a private school in

Durbanville in 2014/15. In 2014 I entered into a competition on innovative teaching and

learning around mathematics and programming at a conference in Hatfield, England, and

managed to be among the top ten innovators where I pitched the idea to the international

academic community at Hatfield University in England. This also led to the publication of a

paper on mathematics and programming at the time.

The thesis provides me with an opportunity to share my IT knowledge with fellow colleagues

and learners on all facets that relate education to programming and to the environment to

294

replicate the research. From a technical perspective, the research provides a protocol that

forms part of prescribed system architecture to structures an educational system, using an

inexpensive hardware platform. The complex nature of the 4IR challenge faced by

developing countries in Africa may be addressed without venturing into expensive robotics

equipment to educate learners in computational thinking. I noticed with a sense of excitement

the learners who participated in this research realised that education in mathematics and

programming is about making a choice to become part of the 4IR challenge. It is my wish

that someone reading this thesis will embrace the ideas and make a difference in the lives of

those learners who desperately seek a better life through education.

In conclusion, I side with Baxter, Dubinsky and Levin (1989:v) that “learning” is superior to

“teaching” in that what the learner or student does; in other words, to learn is superior to what

the educator does to teach.

295

REFERENCES

CDE see Centre for Development and Enterprise.

DBE see Department of Basic Education, South Africa.

HSRC see Human Sciences Research Council.

Abdul-Rahman, S.S. & Du Boulay, B. (2014). Learning programming via worked-examples:
Relation of learning styles to cognitive load. Computers in Human Behavior, 30:286–
298.

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the
difference. Future of Learning Group Publication, 5(3):438.

Ågerfalk, P.J. (2014). Insufficient theoretical contribution. A conclusive rationale for rejection?
European Journal of Information Systems, 23(6):593–599.

Aho, A.V. (2011). Ubiquity Symposium: Computation and computational thinking. Ubiquity,
Article 1:1-8. 1–2. ACM. doi:10.1145/1895419.1922682.

Aho, A.V. (2012). Computation and computational thinking. The Computer Journal, 55:7.

Allison, P. & Pomeroy, E. (2000). Epistemology concerns in research in experiential
education. How Shall we “know?” Journal of Experiential Education, 23(2):91.

Alomari, M., El-Kanj, H., Alshdaifat, N. & Topal, A. (2020). A framework for the impact of
human factors on the effectiveness of learning management systems. IEEE Access, 8,
23542–23558. https://doi.org/10.1109/ACCESS.2020.2970278.

Andrade, M. & Bunker, E.L. (2010). The role of SRL and TELEs in distance education:
Narrowing the gap. In Fostering self-regulated learning through ICT. IGI Global: 105-
121. doi:10.4018/978-1-61692-901-5.ch007.

Andresen, L., Boud, D. & Cohen, R. (2000). Experience-based learning. In Foley, G. (Ed.).
Understanding adult education and training. Sydney: Allen and Unwin: 225–239.

Arnon, I., Cotrill, J., Dubinsky, E., Oktac, A., Fuentes, S.R., Trigueros, M. & Weller, K. (2014).
APOS theory: A framework for research and curriculum development in mathematics
education. New York: Springer-Verlag.

Bachelard, G. (1938, reprinted 1983). La Formation de l'Esprit scientifique, Contribution à
une psychanalyse de la connaissance objective. Revue de Métaphysique et de Morale,
45(4):5–7.

Baist, A. & Pamungkas, A.S. (2017). Analysis of student difficulties in computer
programming. Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2):81–92. October.

Bannan, B. (2013). The integrative learning design framework: An illustrated example from
the domain of instructional technology. In Plomp, T. & Nieveen, N. (Eds.), An
introduction to educational DR. Proceedings. Seminar conducted at the East China
Normal University, Shanghai, China, 23-26 November, 53–72.

https://doi.org/10.1109/ACCESS.2020.2970278

296

Barker, R.J. & Unger, E.A. (1983). A predictor for success in an introductory programming
class based upon abstract reasoning development. Proceedings. 14th SIGCSE
Technical Symposium on Computer Science Education of the ACM, Orlando, Florida,
17-18 February.

Barr, D., Harrison, J. & Conery, L. (2011). Computational thinking: A digital age skill for
everyone. The National Science Foundation has assembled a group of thought leaders
to bring the concepts of computational thinking to the K-12 classroom. Learning &
Leading with Technology, 38(6):20–23.

Barr, V. & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved
and what is the role of the computer science education community? ACM Inroads,
2(1):48–54.

Barrouillet, P. (2015). Theories of cognitive development: From Piaget to today.
Developmental Review, 38(C):1–12. https://doi.org/10.1016/j.dr.2015.07.004.

Baskerville, R. (2008). What DS is not. European Journal of Information Systems, 17(5):441–
443.

Baskerville, R. (2009). The EJIS editorial organisation and submissions. European Journal of
Information Systems, 8(1):1–3.

Baxter, N., Dubinsky, E. & Levin, G. 1989. Learning discrete mathematics with ISETL. New
York: Springer-Verlag.

Beck, R. & Weber, S. (2013). Enhancing IT artefact construction with explanatory and
predictive knowledge in DS Research. Journal of Information Technology Case and
Application Research, 15(1): 4–18. https://doi.org/10.1080/15228053.2013.10845714.

Bennedsen, J. & Caspersen, M. (2019). Failure rates in introductory programming: 12 years
later. Association of Computing Machinery Inroads, 10(2):30–36.
https://doi.org/10.1145/3324888.

Biehler, R.F. & Snowman, J. (1986). Psychology applied to teaching. Boston: Houghton
Mifflin.

Blocka, K. (2017). EEG (Electroencephalogram). Reviewed by D. Weatherspoon. [Online].
Available: https://www.healthline.com/health/eeg. [Accessed: 11 April 2020].

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P. & Punie,
Y. (2016). Developing computational thinking in compulsory education - Implications for
policy and practice. European Commission, JRC Science for Policy Report.
Publications Office of the European Union. doi:10.2791/792158 (online)/
10.2791/715431 (ePub).

Boell, S.K., Cecez-Kecmanovic, D. (2014). A hermeneutic approach for conducting literature
reviews and literature searches. Communications of the Association for Information
Systems, 34(12):257-286.

Bormanaki, H.B. & Khoshhal, Y. (2017). The role of equilibration in Piaget’s Theory Of
Cognitive Development and its implication for receptive skills: A theoretical study.
Journal of Language Teaching and Research, 8(5):996–1005.

https://doi.org/10.1016/j.dr.2015.07.004
https://doi.org/10.1080/15228053.2013.10845714

297

Bosch, M., Gascón, J. & Trigueros, M. (2017). Dialogue between theories interpreted as
research praxeologies: The case of APOS and the ATD. Educational Studies in
Mathematics, 95(1):39–52. https://doi.org/10.1007/s10649-016-9734-3.

Bosse, J., Lee, T.D., Swinson, M. & Faulconer, J. (2010). The NCTM process standards and
the five E’s of science, connecting math and science. School Science and
Mathematics, 110(5):262–276. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1949-
8594.2010.00033.x?casa_token=SHCvLmG.

Boyle, T., Bradley, C., Chalk, P., Jones, R. & Pickard, P. (2003). Using blended learning to
improve student success rates in learning to program. Journal of Educational Media
(Special Edition on Blended Learning), 28(2):165–178.
https://doi.org/10.1080/1358165032000153160.

Brennan, K. (2012). ScratchEd: Developing support for educators as designers. In Reilly, E.
& Literat, I. (Eds.), Designing with teachers: Participatory professional development in
education. MIT.

Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In American Educational Research
Association. Vancouver: MIT.

Brijlall, D. & Maharaj, A. (2014). Exploring support strategies for high school mathematics.
International Journal of Science Education, 7(1):99-107.

Brijlall, D. & Ndlovu, Z. (2013). High school learners mental construction during solving
optimisation problems in Calculus: A South African case study. South African Journal
of Education, 33(2):1–18.

Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques.
Recherches en didactique des Mathématiques, 4(2):164–198.

Brousseau, G. (2002). Theory of didactical situations in mathematics. New York: Kluwer
Academic.

Brousseau, G. (2010). Glossaire de quelques concepts de la théorie des situations
didactiques en mathématiques. http://guy-brousseau.com/wp-
content/uploads/2010/09/Glossaire_V5.pdf. [Date of access: 20 August 2014].

Brousseau, G., Sarrazy, B. & Novotná, J. (2014). Didactic contract in mathematics education.
In Lerman, S. (Ed.), Encyclopedia of Mathematics Education. Dordrecht: Springer.

Brownell, W.A. (1935). Psychological considerations in the learning and the teaching of
arithmetic. In Teaching of arithmetic. New York: Teachers College: pp.1–31.

Bruner, J.S. (1966). Towards a theory of instruction. New York: Norton.

Budd, K., Carson, E., Garelick, B., Klein, D., Milgram, R.J., Raimi, R.A., Schwartz, M.,
Stotsky, S., Williams, V. & Wilson, W.S. (2005). Ten myths about mathematics
education and why you shouldn't believe them. [Online]. Available:
http://www.math.jhu.edu/~wsw/ED/10myths.pdf. [Accessed: 23 May 2015].

Bule, E. & Seith, E. (2012). Time for young scots to switch on to computer programming. The
Times Educational Supplement Scotland. [Accessed: June 2013].

https://doi.org/10.1080/1358165032000153160
http://guy-brousseau.com/wp-content/uploads/2010/09/Glossaire_V5.pdf
http://guy-brousseau.com/wp-content/uploads/2010/09/Glossaire_V5.pdf
http://www.math.jhu.edu/%7Ewsw/ED/10myths.pdf

298

Burrell, G. & Morgan, G. (1979). Sociological paradigms and organisational analysis.
London: Heinemann.

Burrell, G. & Morgan, G. (2016). Sociological paradigms and organisational analysis.
Elements of sociology of corporate life. London and New York: Routledge; Taylor &
Francis Group.

Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics.
Dordrecht, The Netherlands: Kluwer Academic.

Camillus, J.C. (2008). Strategy as a wicked problem. Harvard Business review, May.
https://hbr.org/2008/05/strategy-as-a-wicked-problem. [Accessed: 20 May 2019].

Termeer, C., Termeer, J.A.M., Dewulf, A. & Biesbroek, R. (2019). A critical assessment of
the wicked problem concept: Relevance and usefulness for policy science and
practice. Policy and Society, 38(2):167–179. doi:10.1080/14494035.2019.1617971.

Cartmill, E.A., Beilock, S. & Goldin-Meadow, S. (2012). A word in the hand, action, gesture
and mental representation in humans and non-human primates. Philosophical
Transactions of the Royal Society, 367:129–143. http://doi.org/10.1098/rstb.2011.0162.

Centre for Development and Enterprise. (2014). What does research tell us about teachers,
teaching and learner performance in mathematics? Media release.
http://www.cde.org.za/what-does-research-tell-us-about-teachers-teaching-and-learner-
performance-in-mathematics-2/. [Date of access: 31 August 2018].

Cegielski, C. & Hall, D. (2006). What makes a good programmer? Communications of the
ACM, 49(10):73-75.

Cetin, I. & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of
Mathematical Behavior, 47:70–80. doi:10.1016/j.jmathb.2017.06.004.

Cherry, K. (2014). Formal operational stage of cognitive development.
http://psychology.about.com/bio/Kendra-cherry-17268.htm. [Accessed: 11October
2014].

Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In Steiner,
H.G. & Hejny, M. (Eds.). Proceedings. International Symposium on Selected Domains
of Research and Development in Mathematics Education University of Bielefeld,
Germany, and University of Bratislava, Slovakia: 51−62.

Chevallard, Y. (2005). Steps towards a new epistemology in mathematics education. Paper
presented. Fourth Congress of the European Society for Research in Mathematics
Education (CERME4), Sant Feliu de Guíxols, Spain, 17−21 February.

Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M.
Bosch. M. (Ed.). Proceedings. Fourth Conference of the European Society for
Research in Mathematics Education Barcelona, Spain: Universitat Ramon Llull
Editions: 21−30.

Chirinda, B. & Barmby, P. (2018). South African grade 9 mathematics teacher views on the
teaching of problem solving. African Journal of Research in Mathematics, Science and
Technology Education, 22(1):114–124.

https://hbr.org/2008/05/strategy-as-a-wicked-problem
https://doi.org/10.1080/14494035.2019.1617971
http://www.cde.org.za/what-does-research-tell-us-about-teachers-teaching-and-learner-performance-in-mathematics-2/
http://www.cde.org.za/what-does-research-tell-us-about-teachers-teaching-and-learner-performance-in-mathematics-2/
http://psychology.about.com/bio/Kendra-cherry-17268.htm

299

Clark, R.E., Kirschner, P.A. & Sweller, J. (2010). Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educational Psychologist, 41(2):75−86.

Clark, R.E., Kirschner, P.A. & Sweller, J. (2012). Putting students on the path to learning:
The case for fully guided instruction. American Educator, 6−11. Spring.

Clarke, V. & Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and
developing strategies for effective learning. The Psychologist, 26(2):120−123. ISSN:
0952-8229.

Coghlan, D. & Brannick, T. (2001). Doing action research in your own organisation. London:
Sage.

Cohen, H. 2013. Making from Scratch: A Transdisciplinary Research into the Historical and
Social Production of Subjectivity. pp. In Morgan, C. & Malva, F. (Eds.), Activating the
inanimate: Visual vocabularies of performance practise.
https://doi.org/10.1163/9781848881211_020. Leiden: BRILL, 209−218.

Cole, R., Purao, S., Rossi, M. & Sein, M. (2005). Being proactive: Where action research
meets design research. Proceedings. International Conference on Information Systems
(ICIS) | Association for Information Systems (ICIS 2005), Las Vegas, Nevada, USA,
11−14 December, 27. http://aisel.aisnet.org/icis2005/27.

Collis, J. & Hussey, R. (2014). Business research: A practical guide for undergraduate and
postgraduate students. 4th ed. Basingstoke, Hampshire: Palgrave Macmillan.

Connolly, C., Murphy, E. & Moore, S. (2009). Programming anxiety amongst computing
students − A key in the retention debate? IEEE Transactions on Education, 52(1):52–
56. https://doi.org/10.1109/TE.2008.917193.

Cook, J.L. & Cook, G. (2005). Child development. London: Pearson Education: Allyn &
Bacon.

Cooper, S., Dann, W. & Pausch, R. (2003). Teaching objects-first in introductory computer
science. Proceedings. The 34th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE 2003), Reno, Nevada, USA, 19–23 February.

Cooper, S., Pérez, L.C. & Rainey, D. (2010). Education K-12 computational learning.
Communications of the ACM, 53(11):27−29.

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K. & Vidakovic, D. (1996).
Understanding the limit concept: Beginning with a coordinated process schema.
Journal of Mathematical Behavior, 15:167–192.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental
storage capacity. Behavioral and Brain Sciences, 24(1):87–114.
https://doi.org/10.1017/S0140525X01003922.

Creswell, J.W. (2014). Chapter One: The selection of a research approach. In Creswell, J.W.
(Ed.), Research design: qualitative, quantitative, and mixed methods approaches.
Sage: 3−23.

Cronje, J.C. (2011). The ABC instant research question generator. Paper presented. The 4th
Building the Scientific Mind Colloquium, Stellenbosch, South Africa, March.

https://doi.org/10.1163/9781848881211_020
http://aisel.aisnet.org/icis2005/27

300

Cronje, J.C. (2016). Towards an integration of paradigmatic and pragmatic research in
information systems. The Electronic Journal on Information Systems in Developing
Countries (EJISDC), (77). https://dialnet.unirioja.es/servlet/oaiart?codigo=5695296.

D’Amore, B. (2008). Epistemology, didactics of mathematics and teaching practices.
Mediterranean Journal for Research in Mathematics Education, 7(1):1−22.

Damasio, A.R. (1999). The feeling of what happens. New York/San Diego/ London: Harcourt.

Declue, T. (1996). Object-orientation and the principles of learning theory: A new look at
problems and benefits. ACM SIGCSE Bulletin, 28:232-236.
doi:10.1145/236462.236546.

Dempster, M. & Hanna, D. (2014). How to write a systematic literature review for psychology
research for dummies. Wiley.

Denning, P.J. (2009). The profession of IT beyond computational thinking. Communications
of the ACM, 52(6):28–30.

Denning, P.J. (2017). Viewpoint remaining trouble spots with computational thinking.
Communications of the ACM, 60(6):33–38. June.

Department of Basic Education, South Africa. (2011). Curriculum and assessment policy
statement (CAPS). Pretoria: Government of South Africa.

Department of basic education, South Africa. (2015). South African Schools Act, 1996. (Act
No. 84 of 1996): Amended national norms and standards for school funding.
Government Notice 17/2015. 16 January.
http://www.gov.za/sites/www.gov.za/files/38397_gon17.pdf. [Accessed: 15 November
2015].

Department of Basic Education, South Africa. (2015b). DBE and Bright media equip maths
literacy teachers.
https://www.education.gov.za/DBEandBrightMediaequipMathsLiteracyteachers.aspx.
[Accessed: 20 March 2017].

Deschryver, M.D. & Yadav, A. (2015). Creative and computational thinking in the context of
new literacies: Working with teachers to scaffold complex technology-mediated
approaches to teaching and learning. Journal of Technology and Teacher Education,
23(3):411–431.

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm
for educational inquiry. Educational Researcher, 32(1):5–8.

Devlin, K. (2003). Why universities require computer science students to take math.
Communications of the ACM, 46(9):37–39. September.

Dienes, Z.P. (1960). Building up mathematics. London: Hutchinson.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Tall, D.
(Ed.), Advanced mathematical thinking. Netherlands: Springer: 95–126.

Dubinsky, E. (2000). Mathematical literacy and abstraction in the 21st century. School
Science and Mathematics, 100(6):289–297. March. doi:10.1111/j.1949-
8594.2000.tb17322.x.

https://dialnet.unirioja.es/servlet/oaiart?codigo=5695296
http://www.gov.za/sites/www.gov.za/files/38397_gon17.pdf
https://www.education.gov.za/DBEandBrightMediaequipMathsLiteracyteachers.aspx

301

Dubinsky, E. (2018). Constructivist as opposed to constructionist. Email communication
between researcher and author.

Dubinsky, E. & Lewin, P. (1986). Reflective abstraction and mathematics education: The
Genetic Decomposition of induction and compactness. The Journal of Mathematical
Behavior, 5:55–92.

Dubinsky, E. & McDonald, M. (2001). APOS: A constructivist theory of learning in
undergraduate mathematics education research. In Holton, D., Artigue, M.,
Kirchgräber, U., Hillel, J., Niss, M. & Schoenfeld, A. (Eds.), The teaching and learning
of mathematics at university level. New ICMI Study Series, Vol. 7. Dordrecht: Springer:
275–282.

Du Boulay, B., O’Shea, T. & Monk, J. (1989). The black box inside the glass box: Presenting
computing concepts to novices. In Spohrer, C. (Ed.), Studying the novice programmer.
London: Lawrence Erlbaum Associates, 431–446.

Duval, R.A. (2006). Cognitive analysis of problems of comprehension in a learning of
mathematics. Educational Study in Mathematics, 61:103–131.

Ebrahimi, A., Geranzeli, S. & Shokouhi, T. (2013). Programming for children: “Alice and
scratch analysis”. Proceedings. 3rd International Conference on Emerging Trends of
Computer and Information Technology (ICETCIT), Singapore, 6–7 November.

Eisenkraft, A. & Eisenkraft, N. (2011). When wrong answers receive top grades. Journal of
College Science Teaching, 41(2):28–31.

Eom, S.B. (2014). Understanding eLearners’ satisfaction with Learning Management
Systems. Bulletin of the IEEE Technical Committee on Learning Technology, 16(2):3–
6.

Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy, J. & Tobin-
Hochstadt, S. (2018). A programmable programming language. Communications of the
ACM, 61(3):62-71. doi:10.1145/3127323.

Fetters, M.D., Curry, L.A. & Creswell, J.W. (2013). Achieving integration in mixed methods
designs – principles and practices. Health Service Resources, 48(6):2134–2156.
https://doi.org/10.1111/1475-6773.12117.

Feurzeig, W. & Papert, S. (2011). Programming-languages as a conceptual framework for
teaching mathematics. Interactive Learning Environments, 19(5):487–501.

Feurzeig, W., Papert, S., Bloom, M., Grant, R. & Solomon, C. (1970). Programming-
language as a conceptual framework for teaching mathematics. Newsletter Special
Interest Group on Computer Uses in Education (SIGCUE) Outlook, 4(2):13–17.

Fischbein, E. (1987). Intuition in science and mathematics: An educational approach.
Dordrecht, Holland: Kluwer.

Flavell, J.H. (1976). Metacognitive aspects of problem solving. In Resnick, R.B. (Ed.), The
nature of intelligence. Hillsdale, NY: Erlbaum.

Flavell, J.H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-
developmental inquiry. American Psychologist, 34:906–911.

https://doi.org/10.1111/1475-6773.12117

302

Fletcher, S.H. (1984). Cognitive abilities and computer programming. Research/Technical
Report 143. EDRS(ED259700).

Freshwater, D. & Cahill, J. (2012). Why write? Journal of Mixed Methods Research,
6(3):151–53.

Ghazi, S.R., Khan, U.A., Shahzada, G. & Ullah, K. (2014). Formal operational stage of
Piaget's Cognitive Development Theory. An Implication in Learning Mathematics.
Journal of Educational Research, 17(2):71–84.

Gleason, N.W. (2018). Higher education in the era of the fourth industrial revolution. 1st ed.
(2018). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0194-0.

Gomes, A. & Mendes, A.J. (2007). Learning to program-difficulties and solutions.
Proceedings. International Conference on Engineering Education (ICEE 2007),
Coimbra, Portugal, 3–7 September.

Goosen, L., Mentz, E. & Nieuwoudt, H. (2007). Choosing the best programming language.
Proceedings. The 2007 Computer Science and IT Education Conference (SAICSIT
‘07), Port Elizabeth South Africa, October, 269–282.

Gordon, H.W. (1988). Specialised cognitive function and school achievement.
Developmental Neuropsychology, 4(3):239–257.

Gray, E.M. & Tall, D.O. (1994). Duality, ambiguity, and flexibility: A ‘proceptual’ view of
simple arithmetic. Journal for Research in Mathematics Education, 25(2):116–140.

Greene, J.C., Caracelli, V.J. & Graham, W.F. (1989). Toward a conceptual framework for
mixed-method evaluation designs. Educational Evaluation and Policy Analysis,
11:255–274. doi:10.2307/1163620.

Greenfoot. (2014). Joy of code. [Online]. Available: https://www.greenfoot.org/doc/joy-of-
code. [Accessed: 23 May 2014].

Gregor, S. & Hevner, A.R. (2013). Positioning and presenting DS research for maximum
impact. MIS Quarterly, 37(2):337–355.

Gregor, S., Müller, O. & Seidel, S. (2013). Reflection, abstraction and theorising in design
and development research. Proceedings. European Conference on Information
Systems ECIS (2013), Utrecht Netherlands, 6-8 June, 74.
http://aisel.aisnet.org/ecis2013_cr/74.

Griffiths, D.H. (1973). The study of the cognitive development of science students in
introductory level courses. ERIC [ED096108].

Grossman, P.L. & Lynn, P. (1990). The making of a teacher: Teacher Knowledge and
teacher education. New York: Teachers College Press, Columbia University.

Guba, E.G. & Lincoln, Y.S. (1994). Competing paradigms in qualitative research. In Denzin,
N.K. & Lincoln, Y.S. (Eds.), Handbook of qualitative research. London: Sage: 105–117.

Gummesson, E. (2000). Qualitative methods in management research. 2nd ed. Thousand
Oaks, CA: Sage.

https://doi.org/10.1007/978-981-13-0194-0
https://www.greenfoot.org/doc/joy-of-code
https://www.greenfoot.org/doc/joy-of-code
http://aisel.aisnet.org/ecis2013_cr/74

303

Guzdial, M. (2008). Education paving the way for computational thinking. Communications of
the ACM, 51:25-27. https://doi.org/10.1145/1378704.1378713.

Hartley, M.S. & Treagust, D.F. (2014). Learning Environments Research, 17(1):95–111.
https://doi.org/10.1007/s10984-014-9157-y.

Hayakawa, S. (1949). Language in thought and action. New York: Harcourt Brace
Jovanovich.

Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra concepts.
Educational Studies in Mathematics, 40:71–90.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of
mathematics and in the learning of computer science. Computer Science Education,
13(2):95–122.

Heintz, F. & Manilla, L. (2018). Computational thinking for all, an experience report on scaling
up teaching computational thinking to all students in a major city in Sweden.
Association for Computing Machinery (ACM) Inroads, 9(2):65–71.
https://doi.org/10.1145/3159450.3159586.

Hevner, A.R. March, S.T., Park, J. & Ram, S. (2004). DS in information systems research.
MIS Quarterly, 28:75–105.

Higgins, H.J. & Wiest, L.R. (2006). Individual Interviews as insight into children's
computational thinking. Australian Primary Mathematics Classroom, 11(1):25–29.

Hill, J., Houle, B., Merrit, S. & Stix, A. (2008). Applying abstraction to master complexity, the
comparison of abstraction ability in computer science majors with students in other
disciplines. Leipzig, Germany: s.n.

Hill, J. & Scott, T. (2004). A consideration of the roles of business intelligence and e-business
in management and marketing decision making knowledge-based and high-tech start-
ups. Qualitative Market Research: An International Journal, 7(1):48–57.

Hofstee, E. (2009). Constructing a good dissertation: A practical guide to finishing a master’s,
MBA or PhD on schedule. Sandton: EPE.

Howie, S.J. (2004). A national assessment in mathematics within an international
comparative assessment. Perspectives in Education, 22(2):149–162. June.

Howie S.J. (2013). Language and other background factors affecting secondary pupil’s
performance in Mathematics in South Africa. African Journal of Research in
Mathematics, Science and Technology Education, 7(1):1–20.
https://doi.org/10.1080/10288457.2003.10740545.

Hromkovič, J. (2006). Contributing to general education by teaching informatics. In
Mittermeir, R.T. (Ed.), ISSEP 2006. LNCS, 4226, 25–37.

Hudak, M.A. & Anderson, D.E. (1990). Formal operations and learning style predict success
in statistics and computer science courses. Teaching of Psychology, 17(4):231–234.

Hult, M. & Lennung, S-A. (1980). Towards a definition of action research, a note and
bibliography. Journal of Management Studies, 17(2):241–250. May.

https://doi.org/10.1007/s10984-014-9157-y
https://doi.org/10.1145/3159450.3159586
https://doi.org/10.1080/10288457.2003.10740545

304

Human Sciences Research Council. (2014). Report on the annual national assessments of
2014. Grades 1 to 6 & 9. http://www.hsrc.ac.za/en/news/view/ana-2014. [Accessed: 13
August 2018].

Ifenthaler, D., Masduki, I. & Seel, N. (2011). The mystery of cognitive structure and how we
can detect it, tracking the development of cognitive structures over time. Instructional
Science, 39(1):41–61. https://doi.org/10.1007/s11251-009-9097-6.

Iivari, J. (2007). A paradigmatic analysis of information systems as a DS. Scandinavian
Journal of Information System, 19(2): Article 5. http://aisel.aisnet.org/sjis/vol19/iss2/5.

Jabareen, Y. (2009). Building a conceptual framework, philosophy, definitions and
procedure. International Journal of Qualitative Methods, 8(4):49–62.
https://doaj.org/article/90c4fedb2fa541e49be6d0717f28c2de.

Jackson, N. (2004). Developing the concept of metalearning. Innovations in Education and
Teaching International, 41(4):391-403. doi:10.1080/1470329042000276995.

Jankvist, U. & Niss, M. (2018). Counteracting destructive student misconceptions of
mathematics. Education Sciences, 8(2):53. https://doi.org/10.3390/educsci8020053.

Jansen, J.D. (2012). The quality of doctoral education in South Africa: A question of
significance. In Maree, K. (Ed). Complete your thesis or dissertation successfully:
practical guidelines. Landsdowne: Juta, 1-11.

Järvinen, P. (2007). Action research is similar to DS. Quality and Quantity, 41(1):37-54.

Jonker, J. & Pennink, B. (2010). The essence of research methodology. A concise guide for
Master and PhD Students in Management Science. Heidelberg: Springer.

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N. & Grise, K. (2018).
Computational what? Relating computational thinking to teaching. TechTrends,
62(6):574–584. https://doi.org/10.1007/s11528-018-0290-9.

Keegan, R. (2016). Action research as an agent for enhancing teaching and learning in
physical education: A physical education teacher’s perspective. The Physical
Educator, 73(2):255–284. https://doi.org/10.18666/TPE-2016-V73-I2-6236.

Kim, T. & Donaldson, T. (2018). Rethinking right. Moral epistemology in management
research. Journal of Business Ethics, 148(1):5–20. https://doi.org/10.1007/s10551-015-
3009-2.

Koehler, M.J. & Mishra, P. (2009). What is technological pedagogical content knowledge.
Contemporary Issues in Technology and Teacher Education, 9(1):60–70.

Kolb, D. (1984). Experiential learning: Experience as the source of learning and
development. New Jersey: Prentice-Hall.

Kölling, M. (1999a). The problem of teaching object-oriented programming, Part II:
Environments. Journal of Object-Oriented Programming, 11(9): 6–12.

Kölling, M. (1999b). The Blue Language. Journal of Object-Oriented Programming, 12:10–
17.

http://www.hsrc.ac.za/en/news/view/ana-2014
https://doi.org/10.1007/s11251-009-9097-6
https://doaj.org/article/90c4fedb2fa541e49be6d0717f28c2de
https://doi.org/10.3390/educsci8020053
https://doi.org/10.1007/s11528-018-0290-9
https://doi.org/10.1007/s10551-015-3009-2
https://doi.org/10.1007/s10551-015-3009-2

305

Kölling, M. & Henriksen, P. (2005). Game programming in introductory courses with direct
state manipulation. Proceedings. The 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITiCSE 2005), Monte de Caparica,
Portugal. 27–29 June.

Kölling, M. (2010a). Introduction to programming with Greenfoot, object-oriented
programming in Java with games and simulations. New York: Prentice Hall.

Kölling, M. (2010b). The Greenfoot programming environment. Association for Computing
Machinery Transactions on Computing Education, 10(4):Article 14.
doi:10.1145/1868358.1868361. http://doi.acm.org/10.1145/1868358.1868361.

Kolodner, J.L., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S. (2003).
Putting a student centred learning by DesignTM curriculum into practice lessons
learned. Journal of the Learning Sciences, 12:485–547.

Koivisto, J.M., Hannula, L., Boje, R.B., Prescott, S., Bland, A., Rekola, L. & Haho, P. (2018).
Design-based research in designing the model for educating simulation facilitators.
Nurse Education in Practice, 29, 206–211. https://doi.org/10.1016/j.nepr.2018.02.002.

Kranch, D. (2010). A study of three instructional sequences for developing computer
programming expertise in novice learners. Dissertation presented in partial fulfilment of
the requirement for the degree Doctor of Philosophy, Capella University.

Kramer, J. (2007). Abstraction – The key to computing? Communications of the ACM,
50(4):36–42. April.

Kuechler, B. & Vaishnavi, V. (2011). Promoting relevance in IS research: An informing
system for design science research. Informing Science: The International Journal of an
Emerging Transdiscipline, 14: 124–138.

Lauffer, A. (2011). Concepts, theories, and classifications. In Understanding your social
agency. London: Sage: 38–56. doi:10.4135/9781452274690.n3.

LeDoux, J. (1998). The emotional brain. Phoenix: Orion Books.

Lee, J. & Choi, H. (2017). What affects learner’s higher order thinking in technology-
enhanced learning environments? The effects of learner factors. Computers &
Education, 115:143–152. https://doi.org/10.1016/j.compedu.2017.06.015.

Lee, C-S. & Kolodner, J.L. (2011). Scaffolding students development of creative design skills.
A curriculum reference model. Journal of Educational Technology & Society, 14(1):3–5.
http://search.proquest.com/docview/2139143858/.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. & Werner,
L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1):32–37.
doi:10.1145/1929887.1929902.

Lee, Y-L. (2011). Scratch. Multimedia Programming Environment for Young Gifted Learners,
34(2):26–31. https://doi.org/10.1177/107621751103400208.

Leedy, P.D. & Ormrod, J.E. (2014). Practical research: Planning and design. Global ed.
Pearson Education M.U.A.

https://doi.org/10.1016/j.compedu.2017.06.015
http://search.proquest.com/docview/2139143858/
https://doi.org/10.1177/107621751103400208

306

Li, X. (2016). Application of cognitive load theory in programming teaching. Journal of Higher
Education Theory and Practice, 16(6):57–65.
http://search.proquest.com/docview/1888963072.

Li, X. & Chu, S. (2018). Using design-based research methodology to develop a pedagogy
for teaching and learning of Chinese writing with Wiki among Chinese upper primary
school students. Computers & Education, 126:359–375.
https://doi.org/10.1016/j.compedu.2018.06.009.

Linn, M.C. & Dalbey, J. (1989). Cognitive consequences of programming instruction. In
Soloway, E. & Spohrer, J.C. (Eds.), Studying the novice programmer. London:
Lawrence Erlbaum Associates, 58–62.

Little, L.F. (1984). The influence of structured programming, gender, cognitive development
and engagement on the computer programming achievement and logical thinking skills
of secondary students. Dissertation Abstracts, A45(6), 1708.

Livingstone, J.A. (2003). Metacognition: An overview. [Online]. Available:
http://www.gse.buffalo.edu/fas/sheell/cep564/Metacog.htm. [Accessed: 10 January
2014].

Lockwood, J. & Mooney, A. (2017). CTen Education: Where does it fit? A systematic literary
review. Maynooth University, National University of Ireland.

Losh, C.L. (1984). The relationship of student hemisphericity to performance in computer
programming courses. Dissertation Abstracts A44(7), 2127.

Louden, K.C. (1993). PLs, principles and practice. Boston, MA: PWS Publishing.

Loughran, J., Milroy, P., Berry, A., Gunstone, R. & Mulhall, P. (2001). Documenting science
teachers’ pedagogical content knowledge through PaP-eRs. Research in Science
Education, 31:289–307.

Maharaj, A. (2013). An APOS analysis of natural science students’ understanding of
Derivatives. South African Journal of Education, 33(1):1–19.
http://dx.doi.org/10.15700/saje.v33n1a458.

Malan, D. & Leitner, H. (2007). Scratch for budding computer scientists. Proceedings. 38th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2007),
Covington, KY, USA, 7–10 March, 39. 10.1145/1227310.1227388.

Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M. & Rusk, N. (2008). Programming by
choice. Urban youth learning programming with scratch. Proceedings. 39th Technical
Symposium on Computer Science Education (SIGCSE’08), Portland USA, March.
https://dl.acm.org/doi/proceedings/10.1145/1352135.

March, S.T. & Smith, G.F. (1995). Design and natural science research on information
technology. Decision Support Systems, 15(4):251–266.

Maree, K. (2012). Complete your thesis or dissertation successfully: Practical guidelines.
Claremont: Juta.

Maree, K., Aldous, M., Hattingh, A., Swanepoel, A. & Van der Linde, M. (2006). Predictors of
learner performance in mathematics and science according to a large scale study in
Mpumalanga. South African Journal of Education, 26(2):229–252.

http://search.proquest.com/docview/1888963072
https://doi.org/10.1016/j.compedu.2018.06.009
http://dx.doi.org/10.15700/saje.v33n1a458

307

Marimuthu, M. & Govender, P. (2018). Perceptions of scratch programming among
secondary school students in KwaZulu-Natal, South Africa. The African Journal of
Information and Communication (AJIC),(21):51–80. https://doi.org/10.23962/10539/
26112.

Mavilidi, M. & Zhong, L. (2019). Exploring the development and research focus of cognitive
load theory, as described by its founders. Interviewing John Sweller, Fred Paas, and
Jeroen van Merriënboer. Educational Psychology Review, 31(2):499–508.
https://doi.org/10.1007/s10648-019-09463-7.

Mazaitis, D. (1993). The object-oriented paradigm in the undergraduate curriculum: A survey
of implementations and issues. SIGCSE Bulletin, 25(3):58–64.

McCarthy, J. (1980) Circumscription—A form of non-monotonic reasoning. Artificial
Intelligence, 13(1-2):27–39.

McGowen, M. & Tall, D. (2010). Metaphor or met-before. The effects of previous experience
on practice and theory of learning mathematics. Journal of Mathematical Behavior,
29(3):169–179. https://doi.org/10.1016/j.jmathb.2010.08.002.

McKenney, S. & Reeves, T. (2012). Conducting educational DR: What it is, How we do it,
and Why. London: Routledge.

McPhail, G. (2016): The fault lines of recontextualisation, the limits of constructivism in
education. British Educational Research Journal, 42:294–313. April.

Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2013). Learning computer science concepts
with scratch. Computer Science Education, 23(3):239–264.
https://doi.org/10.1080/08993408.2013.832022.

Merriam-Webster.com. 2019. Cognitive. [Online]. Available: https://www.merriam-
webster.com. [Accessed: 12 October 2019].

 Merriam-Webster.com. 2020. Promote. [Online]. Available: https://www.merriam-
webster.com/dictionary/promote. [Accessed: 7 August 2020].

Meyer, D. (2010). A literature review of the product and process of abstraction.
https://docs.google.com/document/d/1jj1FnxUz6INGajT1hXfuvMZ9sUUmLulJjT58xBqq
vec/edit?pli=1. [Accessed: 14 July 2016].

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., Mander, K., & McGettrick, A.
(2005). Grand challenges in computing: Education--A summary. The Computer
Journal, 48(1):42–48. https://doi.org/10.1093/comjnl/bxh064.

Miles, M., Huberman, A.M. & Saldaňa, J. (2014). Qualitative data analysis: A methods
sourcebook. 3rd ed. Thousand Oaks, CA: Sage.

Miah, S.J., Solomonides, I. & Gammack, J.G. (2019). A design-based research approach for
developing data-focused business curricula. Journal of Education and Information
Technologies. https://doi.org/10.1007/s10639-019-09981-5.

Monfort, M., Martin, S.A. & Frederickson. W. (1990). Information-processing differences and
laterality of students from different colleges and disciplines. Perceptual & Motor Skills,
70(1):163–172.

https://doi.org/10.1007/s10648-019-09463-7
https://doi.org/10.1016/j.jmathb.2010.08.002
https://doi.org/10.1080/08993408.2013.832022
https://www.merriam-webster.com/
https://www.merriam-webster.com/
https://docs.google.com/document/d/1jj1FnxUz6INGajT1hXfuvMZ9sUUmLulJjT58xBqqvec/edit?pli=1
https://docs.google.com/document/d/1jj1FnxUz6INGajT1hXfuvMZ9sUUmLulJjT58xBqqvec/edit?pli=1
https://doi.org/10.1093/comjnl/bxh064
https://doi.org/10.1007/s10639-019-09981-5

308

Morine-Dershimer, G. & Kent, T. (1999). The complex nature and sources of teachers’
pedagogical knowledge. In Gess-Newsome, J. & Lederman, N.G. (Eds.), Examining
pedagogical content knowledge. Dordrecht, The Netherlands: Kluwer Academic, 21–
50.

Moritz, S. & Lysaker, P. (2018). Metacognition – What did James H. Flavell really say and
the implications for the conceptualisation and design of metacognitive interventions.
Schizophrenia Research, 201, 20–26. https://doi.org/10.1016/j.schres.2018.06.001.

Moscucci, M. (2007). About mathematical belief systems awareness. Proceedings. CERME
5 Congress of European Society for Research in Mathematical Education Larnaca,
Cyprus, 22–26 February.

Moscucci, M. & Bibbo, C. (2015). About relationships in the affect domain. About
relationships in the affect domain conference. Proceedings. CERME 9 Ninth Congress
of the European Society for Research in Mathematics Education, Prague, Czech
Republic, 4–8 February, 1238-1244.<hal-01287351>.

Moström, J.E. (2011). A study of students problems in learning to program. Umea:
Department of Computing Science, Umea University, Sweden. ISSN: 0348-0542;
ISBN: 978-91-7459-293-1.

Mostyn, G. (2012). Cognitive load theory: What it is, why it's important for accounting
instruction and research. Issues in Accounting Education, 27(1):227–245.
https://doi.org/10.2308/iace-50099.

Mpofu, R. & Nicolaides, A. (2019). Frankenstein and the Fourth Industrial Revolution (4IR).
Ethics and human rights considerations. African Journal of Hospitality, Tourism and
Leisure, 8(5):1–25. https://doaj.org/article/671e14644c3b4e748ad675889e9e0d86.

Muis, K.R. (2004). Personal epistemology and mathematics. A Critical review and synthesis
of research. Review of Educational Research, 74(3):317–377. Fall. ProQuest
Educational Journals.

Nelson, E.E. (2012). The neurobiological basis of empathy and its development in the
context of our evolutionary heritage. In Narvaez, D., Panksepp, J., Schore, A.N. &
Gleason, T.R. (Eds.), Evolution, early experience and human development: From
Research to practice and policy. New York: Oxford University Press.

Nicholls, D. (2009). Qualitative research: Part two - Methodologies. International Journal of
Therapy and Rehabilitation, 16(11):586–92.

Nieveen, N. (2013). Educational DR: An introduction. In Plomp, T. & Nieveen, N. (Eds.), An
introduction to educational DR. Seminar conducted at the East China Normal
University, Shanghai, China, 23-26 November: 89–101.

Norwich, B. & Ylonen, A. (2015). Lesson study practices in the development of secondary
teaching of students with moderate learning difficulties: A systematic qualitative
analysis in relation to context and outcomes. British Educational Research Journal,
41(4):629–649.

Nunamaker Jr, J.F., Chen, M. & Purdin, T.D.M. (1991). Systems development in information
systems research. Journal of Management Information Systems, 7(3):89–106.

https://doi.org/10.1016/j.schres.2018.06.001
https://doi.org/10.2308/iace-50099
https://doaj.org/article/671e14644c3b4e748ad675889e9e0d86

309

Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F. & Fazio, F. (1998). Distinct brain
loci in deductive versus probabilistic reasoning.” Neuropsychologia, 36(4):396-376.

Ojose, B. (2008). Applying Piaget’s Theory of Cognitive Development to mathematics
Instruction. The Mathematics Educator, 18(1):26–30.

Onwuegbuzie, A. & Collins, M.T. (2007). A typology of mixed methods sampling designs in
social science research. The Qualitative Report, 12(2):281–316.

Op’t Eynde, P., De Corte, E. & Verschaffel, L. (2002). Framing students’ mathematics-related
beliefs. In Leder, G.C., Pehkonen, E., Törner, G. (Eds.), Beliefs: A hidden variable in
mathematics education? Dordrecht, The Netherlands: Kluwer Academic Publishers:
13–37. ISBN: 1-4020-1058-3.

Organick, E.I., Forsythe, A.I. & Plummer, R.P. (1989). Programming language structures.
Academic Press. doi:0-12-528260-5.

Ott, C.F.P. (1989). Predicting achievement in computer science through selected academic,
cognitive and demographic variables. Dissertation Abstracts, A49(10), 2988.

Overmars, M. (2005). Teaching computer science through game design. IEEE Computer,
37(4):81–83.

Pearsall, J. & Trumble, B. (Eds.) (2002). Oxford Encyclopedic English Dictionary. 2nd ed.
Oxford: Oxford University Press.

Page, C. & Meyer, D. (2000). Applied research design for business and management.
Sydney: McGraw-Hill.

Pallrand, G.J. (1979). The transition to formal thought. Journal of Research in Science
Teaching, 16:445–451.

Papadakis, S., Kalogiannakis, M., Orfanakis, V. & Zaranis, N. (2014). Novice programming
environments. Scratch & App Inventor: A first comparison. Proceedings. 2014
Workshop on Interaction Design in Educational Environments June (IDEE ‘1), New
York. USA, 27-30 April, 1–7. https://doi.org/10.1145/2643604.2643613.

Papavlasopoulou, S., Giannkos, M.N. & Jaccheri, L. (2019). Exploring children’s learning
experience in constructionism-based coding activities through design-based research.
Computers in Human Behavior, 99, 415–427.
https://doi.org/10.1016/j.chb.2019.01.008.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic
Books.

Papert, S. (1993). The children's machine: Rethinking school in the age of the computer. NY:
Basic Books.

Papert, S. (2005). Teaching children thinking. Contemporary Issues in Technology and
Teacher Education, (3):353–365.

Peabody, J. (2014). It hurts, but sometimes rote learning is right. The Times Educational
Supplement, London. https://www.tes.com/news/it-hurts-sometimes-rote-learning-right-
0. [Accessed: 21 July 2020].

https://doi.org/10.1145/2643604.2643613
https://doi.org/10.1016/j.chb.2019.01.008
https://www.tes.com/news/it-hurts-sometimes-rote-learning-right-0
https://www.tes.com/news/it-hurts-sometimes-rote-learning-right-0

310

Pearson, K. (2008). From a usable past to collaborative future: African American culture in
the age of computational thinking. Black History Bulletin, 72(1):41–44.

Peffers, K., Tuunanen, T., Rothenberger, M. & Chatterjee, S. (2008). A DS research
methodology for information systems research. Journal of Management Information
Systems, 24(3):45–77.

Pepin, B. (2014). Using the construct of the didactic contract to understand student transition
into university mathematics education. Policy Futures in Education, 12(5):646-657.
www.wwwords.co.uk/PFIE.

Perkins, D.N. & Salomon, G. (1992). Transfer of learning. In International Encyclopedia of
Education. 2nd ed. Oxford, England: Pergamon Press.
http://learnweb.harvard.edu/alps/thinking/docs/traencyn.htm. [Accessed: 31 March
2011].

Perrenet, C. (2010). Levels of thinking in computer science: Development in bachelor
students’ conceptualisation of algorithm. Education and Information Technologies,
15(2):87–107. doi:10.1007/s10639-009-9098-8.

Peters, B.G. (2017). What is so wicked about wicked problems? A conceptual analysis and a
research program. Policy and Society, 36(3):385–396.
doi:10.1080/14494035.2017.1361633.

Philbin, C.A., Bagge, P., Darbyshire, C. & Savage, M. (2013). Exploring computational
thinking. [Online]. Available: http://www.google.com/edu/computational-thinking/what-
is-ct.html. [Accessed: 14 July 2013].

Piaget, J. (1964). Cognitive development in children: Piaget development and learning.
Journal of Research in Science Teaching, Part I, 2(3):176–186.

Piaget, J. (1965). The child’s conception of number. Gattegno, C. & Hodgson, F.M. (trans).
New York: W.W. Norton. (Original work published 1941).

Piaget, J. (1973). Comments on mathematical education. In Howson, A.G. (ed.),
Developments in mathematical education. Proceedings. Second International
Congress on Mathematical Education, Cambridge, UK, 79–87.

Piaget, J. (1975). The equilibration of cognitive structures. Cambridge: Harvard University
Press.

Piaget, J. (1977). The essential Piaget. In Gruber, H.E., Voneche, J.J. (eds.). New York.

Piaget, J. (1985). The equilibration of cognitive structures. Cambridge MA: Harvard.

Piaget, J. & Garcia, R. (1989). Psychogenesis and the history of science. Feider, H. (Trans.).
New York: Columbia University Press. (Original work published, 1983).

Plerou, A. (2014). Dealing with Dyscalculia over time. Proceedings. Fourteenth Annual
International Conference on Information and Communications Technologies in
Education, Kos, Greece, 3-5 July, 2014. https://doi.org10.13140/2.1.4229.5681.

Plomp, T. (2013). Educational DR: An introduction. In Plomp, T. & Nieveen, N. (eds.), An
introduction to educational DR. Proceedings. Seminar conducted at the East China
Normal University, Shanghai, China, 23-26 November, 9–35.

http://www.wwwords.co.uk/PFIE
http://learnweb.harvard.edu/alps/thinking/docs/traencyn.htm
http://www.google.com/edu/computational-thinking/what-is-ct.html
http://www.google.com/edu/computational-thinking/what-is-ct.html

311

Portnoff, S. (2018). The introductory computer programming course is first and foremost a
language course. ACM Inroads, 9(2):34–52. https://doi.org/10.1145/3152433.

Postelnicu, V. (2017). Didactic transposition in school algebra: The case of writing equations
of parallel and perpendicular lines. Proceedings. Tenth Congress of the European
Society for Research in Mathematics Education (CERME 10), Dublin, Ireland, Feb. hal-
01914664.

Prensky, M. (2008). Programming is the new literacy. www.edutopia.org/programming-the-
new-literacy. [Accessed: 15 June 2014].

Pries-Heje, J., Baskerville, R. & Venable, J.R. (2008). Strategies for DS research evaluation.
Proceedings. European Conference on Information Systems ECIS (2008), Galway,
Ireland, 9-11 June, 87. http://aisel.aisnet.org/ecis2008/87.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N.F.M., Zainal, N.F.A. & Ab Rahman, R. (2012).
Major problems in basic programming that influence student performance. Procedia-
Social and Behavioral Sciences, 59:287-296.

Rapoport, R.N. (1970). Three dilemmas in action research. Human Relations, (23):499–513.

Reddy, V., Van der Berg, S., Janse van Rensburg, D. & Taylor, S. (2012). Educational
outcomes: Pathways and performance in South African high schools. South African
Journal of Science, 108(3-4): [online]. ISSN: 1996–7489.

Reddy, V., Zuze, T.L., Visser, M., Winnaar, L., Juan, A., Prinsloo, C.H., Arends, F. & Rogers,
S. (2015). Beyond benchmarks: What twenty years of TIMSS data tell us about South
African education. HSRC.

Reeves, T.C. (2006). DR from a technology perspective. In Van den Akker, J., Gravemeijer,
K., McKenney, S. & Nieveen, N. (Eds), Educational DR. London: Routledge: 52–66.

Resnick, M. & Ocko, S. (1990). LEGO/Logo: Learning though and about design.
Epistemology and Learning Group, E&L Memo No. 8, MIT Media Laboratory,
Cambridge.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B. & Kafai, Y. (2009). Scratch:
programming for all. Communications of the ACM, November.

Rittel, H.W.J. & Webber, M.M. (1973). Dilemmas in the general theory of planning. Policy
Sciences, 4:155–169.

Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of
Neuroscience, 27:169–192.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2):137–172.
doi:10.1076/csed.13.2.137.14200.

Rotenberg, V.S. & Arshavsky, V.V. (1997). Right and left brain hemispheres activation in the
representatives of two different cultures. Homeostasis in Health & Disease, 38(2):49–
57.

https://doi.org/10.1145/3152433
http://www.edutopia.org/programming-the-new-literacy
http://www.edutopia.org/programming-the-new-literacy
http://aisel.aisnet.org/ecis2008/87
https://doi.org/10.1076/csed.13.2.137.14200

312

Roth, W.M. & Thom, J.S. (2009). Bodily experience and mathematical conceptions: from
classical views to a phenomenological reconceptualisation. Educational Studies in
Mathematics, 70:175–189. https://doi.org/10.1007/s10649-008-9138-0.

Rovegno, I.C. (1992). Learning to teach in a field-based methods course: The development
of pedagogical content knowledge. Teaching and Teacher Education, 8:69–82.

Rutherford, D.G. (2011). A model of assimilation and accommodation in the cognitive &
cultural realms. Dynamical Psychology. http://dynapsyc.org/2011/Rutherford_2011.pdf.
[Accessed: 20 March 2015].

Rutherford, J. & Ahlgren, A. (1990). Science for all Americans. New York: Oxford University
Press.

Saeli, M., Perrenet, J., Swaneveld, B. & Jochems, M.G. (2011). Teaching programming in
secondary School. A pedagogical content knowledge perspective. Informatics in
Education, 10(1):73-88.

Sanders, L.R., Borko, H. & Lockard, J.D. (1993). Secondary science teachers’ knowledge
base when teaching science courses in and out of their area of certification. Journal of
Research in Science Teaching, 30:723–736.

Saunders, M., Lewis, P. & Thornhill, A. (2019). Chapter 4: Understanding research
philosophies and approaches. In Research methods for business students. 5th ed.
London: Pitman, 28-170.

Sayed, Y., Motala, S. & Hoffman, N. (2017). Decolonising initial teacher education in South
African universities: More than an event. South African Education Research
Association.

Schäfer, D. (2018). Systemic tests: Results show steady improvement in WCape.
https://www.politicsweb.co.za/politics/2018-systemic-tests-results-show-steady-
improvemen. [Accessed: 20 April 2018].

Schober, A. & Keller, L. (2012). Impact factors for learner motivation in blended learning
environments. International Journal of Emerging Technologies in Learning (iJET),
7(2012). https://www.learntechlib.org/p/44977/.

Schoenfeld, A. (1989). Explorations of students’ mathematical beliefs and behavior. Journal
for Research in Mathematics Education, 20(4):338–355.
https://doi.org/10.2307/749440.

Schwebel, M. (1975). Formal operations in first year college students. Journal of Psychology,
91:133-141.

Scotland, J. (2012). Exploring the philosophical underpinnings of research: Relating ontology
and epistemology to the methodology and methods of the scientific, interpretive, and
critical research paradigms. English Language Teaching, 5(9):9–16.
http://dx.doi.org/10.5539/elt.v5n9p9.

Selby, C. & Woollard, J. (2014). Refining an understanding of computational thinking.
University of Southampton. https://eprints.soton.ac.uk/372410/. [Accessed: 4
September 2019].

https://doi.org/10.1007/s10649-008-9138-0
http://dynapsyc.org/2011/Rutherford_2011.pd
https://www.politicsweb.co.za/politics/2018-systemic-tests-results-show-steady-improvemen
https://www.politicsweb.co.za/politics/2018-systemic-tests-results-show-steady-improvemen
https://www.learntechlib.org/p/44977/
https://doi.org/10.2307/749440
http://dx.doi.org/10.5539/elt.v5n9p9
https://eprints.soton.ac.uk/372410/

313

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes
and objects on different sides of the same coin. Educational Studies in Mathematics,
(22):1–36.

Sharma, G. 2017. Pros and cons of different sampling techniques. International Journal of
Applied Research, 3(7):749-752.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15(2):4–14. https://doi.org/10.3102/0013189X015002004.

Simon, H. (1996). The sciences of the artificial. 3rd ed. Cambridge, MA: MIT Press.

Skemp, R. (1971). The psychology of learning mathematics. New York, NY: Penguin.

Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics
Teaching in the Middle School, 12(2):88–95.

Skemp, R.R. (1979). Intelligence, learning and action. London: Wiley.

Sriraman, B. & Dickman. (2017). Mathematical pathologies as pathways into creativity. ZDM
– International Journal on Mathematics Education, 49:137–145. https://doi-
org.libproxy.cput.ac.za/10.1007/s11858-016-0822-8.

Spaull, N. (2013). South Africa’s education crisis: The quality of education in South Africa
(1994-2011). Report Commissioned by CDE. October.

Suizzo, M. (2000). The social-emotional and cultural contexts of cognitive development: Neo-
Piagetian Perspectives. Child Development, 71(4):846–849.

Susman, G.I. & Evered, R.D. (1978). An assessment of the scientific merits of action
research. Administrative Science Quarterly, 23(4):582-–603. December.

Sweller, J. & Paas, F. (2017). Should self-regulated learning be integrated with cognitive load
theory? A commentary. Learning and Instruction, 51:85–89.
https://doi.org/10.1016/j.learninstruc.2017.05.005.

Sweller, J., van Merriënboer, J.J.G. & Paas, F. (2019). Cognitive architecture and
instructional design: 20 years later. Educational Psychology Review. https://doi-
org.libproxy.cput.ac.za/10.1007/s10648-019-09465-5.

Szabo, C., Sheard, J., Luxton-Reilly, A., Simon, Becker, B.A. & Ott, L. (2019). Fifteen years
of introductory programming in schools: A global overview of K–12 Initiatives..
Proceedings. 19th Koli Calling International Conference on Computing Education
Research (Koli Calling '19), Koli National Park Finland, 21-24 November, Article No.:
8:1–9. https://doi.org/10.1145/3364510.3364513.

Szlávi, P. & Zsakó, L. (2017). The cognitive toolkit of programming – Algorithmic abstraction,
decomposition-superposition. Acta Didactica Napocensia, 10(4):33–40.

Takeda, H., Veerkamp, P., Tomiyama, T. & Yoshikawam, H. (1990). Modeling design
processes. AI Magazine: 37–48. Winter.

Tall, D.O. (2003). Using technology to support an embodied approach to learning concepts in
mathematics. In Carvalho, L.M. & Guimarães, L.C. (Eds.), História e Tecnologia no
Ensino da Matemática, 1:1–28.

https://doi.org/10.3102/0013189X015002004
https://doi-org.libproxy.cput.ac.za/10.1007/s11858-016-0822-8
https://doi-org.libproxy.cput.ac.za/10.1007/s11858-016-0822-8
https://doi.org/10.1016/j.learninstruc.2017.05.005
https://doi-org.libproxy.cput.ac.za/10.1007/s10648-019-09465-5
https://doi-org.libproxy.cput.ac.za/10.1007/s10648-019-09465-5
https://doi.org/10.1145/3364510.3364513

314

Tall, D.O. (2004). Thinking through three worlds of mathematics. Proceedings. 28th
International Conference of the International Group for the Psychology of Mathematics
Education (PME-28), Bergen, Norway, 14–18 July: 281–288.

Tall, D.O. (2008). The transition to formal thinking in mathematics. Mathematics Education
Research Journal, 20(2):5–24. http://doi.org/10.1007/BF03217474.

Techopedia.com. 2017. What is OOP? Techopedia. [Online] Available:
https://www.techopedia.com/definition/3235/object-oriented-programming-oop.
[Accessed: 23 May 2019].

Te’eni, D., Rowe, R., Ågerfalk, P.J. & Lee, J.S. (2015). Publishing and getting published in
EJIS: Marshalling contributions for a diversity of genres. European Journal of
Information Systems, 24:559–568.

Tramonti, M., Paneva-Marinova, D. & Pavlov, R. (2017). Math and art convergence for
education. Central Bohemia University, Prague: 851.

Trigueros, M. (2005). La nocio´n del esquema en la investigacio´n en matema´tica educativa
a nivel superior. Educacio´n Matema´tica, 17(1):5–31.

Truran, J. (1992). Integers as jelly beans. Australian Mathematics Teacher, 48(2):25.

Vaishnavi, V. & Kuechler, W. (2008). Design Science research methods and patterns:
Innovating Information and Communication Technology. Boston, MA: Auerbach.

Vaishnavi, V., Kuechler, W. & Petter, S. (Eds.) (2004/19). Design Science Research in
Information Systems. January 20, 2004 (created in 2004 and updated until 2015 by
Vaishnavi, V. and Kuechler, W.); last updated (by Vaishnavi, V. and Petter, S.), June
30, 2019. [Online]. Available: http://www.desrist.org/design-research-in-information-
systems/. [Accessed: 24 March 2019].

Van den Akker, J. (1999). Principles and methods of development research. In Van den
Akker, J., Branch, R.M.. Gustafson, K., Nieveen, N. & Plomp, T. (Eds.), Design
approaches and tools in education and training. Boston: Kluwer Academic, 1–14.

Van den Akker, J. (2003). Curriculum perspectives: An introduction. In Van den Akker, J.
Kuiper, W. & Hameyer, U. (Eds.), Curriculum landscapes and trends. Dordrecht:
Kluwer Academic, 1–10.

Van Driel, J.H., Verloop, N. & De Vos, W. (1998). Developing science teachers’ pedagogical
content knowledge. Journal of Research in Science Teaching, 35(6):673–695.

Van Wyk, E.A. & De Villiers, M.R. 2016. Applying educational design research to virtual
reality safety training in mines. Proceedings. of: the 15th European Conference on
Research Methodology for Business and Management Studies (ECRM 2016), Kingston
University, London, UK, 9–10.

Van Gog, T., Paas, F. & Van Merriënboer, J.J.G. (2005). Uncovering expertise-related
differences in troubleshooting performance: Combining eye movement and concurrent
verbal protocol data. Applied Cognitive Psychology, 19(2):205–221.

Venable, J. (2006). A framework for DS research activities. Proceedings. 2006 Information
Resource Management Association Conference (IRMA), Washington DC, USA, 21-24
May, 184–187.

http://doi.org/10.1007/BF03217474
https://www.techopedia.com/definition/3235/object-oriented-programming-oop
http://www.desrist.org/design-research-in-information-systems/
http://www.desrist.org/design-research-in-information-systems/

315

Venable, J. & Baskerville, R. (2012). Eating our own cooking: Toward a More Rigorous DS of
Research Methods. Electronic Journal of Business Research Methods, 10(2):141–153.

Venable, J., Pries-Heje, J. & Baskerville, R. (2016). FEDS: A framework for evaluation in DS
research. European Journal of Information Systems, 25(1):77–89.
http://www.tandfonline.com/doi/abs/10.1057/ejis.2014.36.

Venable, J.R. & Travis, J. (1999). Using a group support system for the distributed
application of soft systems methodology. Proceedings. 10th Australasian Conference
on Information Systems (ACIS), Wellington, New Zealand, 1-3 December, 1105–17.

Vidakovic, D., Dubinsky, E., Weller, K. (2018). APOS theory: Use of computer programs to
foster mental constructions and student’s creativity. In Freiman V. & Tassell J. (Eds.),
Creativity and technology in mathematics education. Mathematics Education in the
Digital Era, vol 10. Cham: Springer.

Venkatesh, V., Brown, S. & Bala, H. (2013). Bridging the qualitative-quantitative divide:
Guidelines for conducting mixed methods research in Information Systems.
Management Information Systems Quarterly, 37(1):21–54.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des
Mathématiques, 10(23):133–170.

Vergnaud, G. (2013). Pourquoi la theorie des champs conceptuels? Por qué la teoría de los
campos conceptuales? Infancia y Aprendizaje, 36(2):131–161.

Voogt, J., Fisser, P., Good, J., Mishra, P. & Yadav, A. (2015). CT in compulsory education:
Towards an agenda for research and practice. Education and Information
Technologies, 20(4):715–728.

Vygotsky, L.S. (1978). Socio-cultural theory. Mind in society. Cambridge, MA: Harvard
University Press.

Wademan, M.R. (2005). Utilising development research to guide people-capability maturity
model adoption considerations. Doctoral dissertation, Syracuse University. Dissertation
Abstracts International, 67-01A, 434. UMI: 3205587.

Wahyuni, D. (2012). The research design maze: understanding paradigms, cases, methods
and methodologies. Journal of Applied Management Accounting Research, 10(1):69–
80. SSRN: https://ssrn.com/abstract=2103082.

Weber, S. (2010). DS Research: Paradigm or approach? Proceedings. Americas Conference
on Information Systems (AMCIS 2010), Lima, Peru, 12-15 August, 214.
http://aisel.aisnet.org/amcis2010/214.

Weigend, M. (2006). From intuition to programme. In Mittermeir, R.T. (Ed.), Informatics
education – The bridge between using and understanding computers. ISSEP 2006.
Lecture Notes in Computer Science, 4226. Heidelberg: Springer, Berlin.

Weintrop, D. & Wilensky, U. (2018a). To block or not to block, that is the question: Students'
perceptions of block-based programming. Proceedings. 14th International Conference
on Interaction Design and Children (IDC '15.), Boston, Massachusetts, June, 199–208.
https://doi.org/10.1145/2771839.2771860.

http://www.tandfonline.com/doi/abs/10.1057/ejis.2014.36
https://ssrn.com/abstract=2103082
http://aisel.aisnet.org/amcis2010/214
https://doi.org/10.1145/2771839.2771860

316

Weintrop, D. & Wilensky, U. (2018b). How block-based, text-based, and hybrid block/text
modalities shape novice programming practices. International Journal of Child-
Computer Interaction, 17:83–92. https://doi.org/10.1016/j.ijcci.2018.04.005.

White, G. (2003). Standardised mathematics scores as a prerequisite for a first programming
course. Mathematics and Computer Education, 37(1):96–104.

White, G.L. & Sivitanides, M.P. (2002). A theory of the relationships between cognitive
requirements of computer PLs and programmers’ cognitive characteristics. Journal of
Information Systems Education, 13(1):59-66.

Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for
mathematics education. In Harel, I. & Papert, S. (Eds.), Constructionism. Norwood
N.J.: Ablex.

Wilhelm, J.D. (2008). The problem of teaching for transfer: Taking the low road or the high
road? Voices From the Middle Education Database, 15(4):45–47.

Wilson, A. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
9(4):625-636.

Wilson, A.D. & Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in
Psychology, 4(Article 58). doi:10.3389/fpsyg.2013.00058.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3):33–35.
March.

Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A, 366:3717–3725. doi:10.1098/rsta.2008.0118.

Wing, J. (2011). Research notebook: Computational thinking - What and why?
http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf. [Accessed: 25 March
2014].

Winter, R. (2008). DS research in Europe. European Journal of Information Systems,
17(5):470–475.

Woiceshyn, J. & Daellenbach, U. (2018). Evaluating inductive vs. deductive research in
management studies. Qualitative research in organisations and management. An
International Journal, 13(2):183–195. https://doi.org/10.1108/QROM-06-2017-1538.

Wolcott, M.D., Lobczowski, N.G., Lyons, K. & McLaughlin, J.E. (2019). Design-based
research: Connecting theory and practice in pharmacy educational intervention
research. Currents in Pharmacy Teaching and Learning, 11(3):309–318.
https://doi.org/10.1016/j.cptl.2018.12.002.

Wolfram MathWorld. (2020). Pathological. https://mathworld.wolfram.com/Pathological.html.
[Accessed: 25 August 2020].

Woolfolk, A.E., Winne, P.H. & Perry, N.E. (2003). Educational psychology. 2nd ed. Needham
Height, MA: Pearson Education Canada: Allyn & Bacon.

Wright, G., Rich, P. & Leatham, K.R. (2012). How programming fits with technology.
Technology and Engineering Teacher, 71(3):3–9.

https://doi.org/10.1016/j.ijcci.2018.04.005
http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf
https://doi.org/10.1108/QROM-06-2017-1538
https://doi.org/10.1016/j.cptl.2018.12.002
https://mathworld.wolfram.com/Pathological.html

317

Yadav, A., Hong, H. & Stephenson, C. (2016). Computational thinking for all: Pedagogical
approaches to embedding 21st century problem solving in K-12 classrooms.
TechTrends, 60(6):565–568. https://doi.org/10.1007/s11528-016-0087-7.

Young, G. (2012). A unitary Neo-Piagetian/Neo-Eriksonian model of development:
Fundamental assumptions and meta-issues. Elsevier.

Yu, J. & Roque, R. 2019. A review of computational toys and kits for young children.
International Journal of Child-Computer Interaction, 21:17-36. ISSN 2212-8689.
https://doi.org/10.1016/j.ijcci.2019.04.001.
http://www.sciencedirect.com/science/article/pii/S2212868918300825.

Zeitz, C. & Spoehr, K. (1989). Knowledge organisation and the acquisition of procedural
expertise. Applied Cognitive Psychology, 3(4):313–336.
https://doi.org/10.1002/acp.2350030404.

Zsakó, L. & Szlávi, P. (2012). ICT competences: Algorithmic thinking. Acta Didactica
Napocensia, 5(2):49–58.

https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1016/j.ijcci.2019.04.001
http://www.sciencedirect.com/science/article/pii/S2212868918300825
https://doi.org/10.1002/acp.2350030404

318

APPENDICES

Appendix A: Introductory letters for the collection of research data

Appendix A-1: Curro Private School

319

Appendix A-2: Ethics Clearance from CPUT

320

Appendix A-3: Chester House Private School

321

Appendix A-4: Bosmansdam High Public School

322

Appendix A-5: Letter of Introduction to Schools

323

Appendix A-6: Videos Uploaded on Moodle Site for Learners to Access

324

Appendix A-7: Greenfoot Developer

325

Appendix A-8.1.1: Teachers Rollout Course on Greenfoot

326

Appendix A-8.1.2: Teachers Rollout Course on Greenfoot

327

Appendix A-8.2.1: Rollout to WCED Teachers Workshop 1

328

Appendix A-8.2.2: Rollout to WCED Teachers

329

Appendix A-8.2.3: Location sent to Teachers

330

Appendix A-8.2.4: Timesheet o.b.o. Oracle for WCED Teachers Training
Workshop 1

331

Appendix A-8.3.1: Rollout to WCED Teachers Workshop 2

332

Appendix A-8.3.3: Location of WCED Teachers Workshop 2

333

Appendix A-8.3.4: Timesheet o.b.o. Oracle for WCED Teachers Training
Workshop 2

334

Appendix A-8.3.5: WCED Teachers Training Signatures Workshop 2

Appendix A-8: Oracle Instructors Certificate

Please see Physical Files at Pool of Resources.

335

Appendix A-9: Emails sent to Authors of the APOS Theory

Appendix A-9.1: Email 1 to Prof Dubinsky (12 February 2015)

Appendix A-9.2: Email 2 from Prof Dubinsky (15 March 2015)

336

Appendix A-9.3: Email 2 from Prof Dubinsky (21 March 2015)

337

Appendix A-9.4: Email to Dr Illana Arnon

338

Appendix A-9.5.1: Email Response from Dr Arnon (8 March 2015)

Appendix A-9.5.2: Email Response from Dr Arnon in attached Word document
04-12-2015 @ 8:44 pm

339

Appendix A-9.6: Western Cape Education Plan to Salvage Mathematics

340

Appendix B-1: Intervention 1 (Abstraction [Abstract Thinking] Assessment)

Figure B-1: Abstraction Exercise 1

341

Appendix B-2: Questionnaire on Mathematics in General (Learner X)

342

Appendix B-3: Questionnaire on Mathematics in General (Learner Y)

343

Appendix B-4: Questionnaire on Mathematics in General (Learner Z)

344

Appendix C: Intervention 2A-1 computational thinking in motion (Compiled
interpretation taken from Denning (2017) and AHO(2011))

345

Appendix D-1: Intervention 2A-2 (Genetic Decomposition Process adapted from
Arnon et al., 2004)

346

Appendix D-2: Intervention 2A-3 (Genetic Decomposition of “Load a Greenfoot
Scenario”)

347

Appendix D-3: Intervention 2B (Help Documentation in Greenfoot)

348

Appendix D-4: Intervention 14E (Genetic Decomposition of IF statement)

349

Appendix E-1: Intervention 3A (Introduction of the Moodle LMS)

350

Appendix E-2: Intervention 3B (Juggling enactment to enforce Moodle usage
among learners)

351

Appendix E-3: Intervention 3C (Moodle and Generalised Terminology)

352

Appendix F-1: Intervention 4A (Creating a Linux Server with external access)

Appendix F-2: Intervention 4B (Creating a Cloud-based Moodle LMS)

Figure 4.15: Moodle on Abstraction and Greenfoot

353

Appendix G-1: Intervention 5A (Introduction to Greenfoot)

354

Appendix G-2: Intervention 5B (Revisit previous Activities)

355

Appendix H: Intervention 6 (Applying Process and Object within mathematics)

356

Appendix I: Intervention 7 (Greenfoot as Process and Object)

357

Appendix J Intervention 8: Rollout of code in Greenfoot in Figure 4.20

358

Appendix K: Intervention 9 (Making decisions towards Encapsulation)

359

Appendix L: Intervention 10 (Revisit encapsulation with Randomize option)

360

Appendix M-1: Intervention 11A (Informing the learners of the assessment in a
structured manner)

361

Appendix M-2: Intervention 11B (Assessment in Greenfoot on Encapsulation
and problem solving)

362

Appendix N: Intervention 12 (The Variable in Greenfoot)

363

364

Appendix O: Intervention 13 (Moving from Process to Object in APOS using
Greenfoot)

365

Appendix P-1: Intervention 14A: Basic creation of scenario with World and
Actor classes

366

Appendix P-2: Intervention 14B: Manipulation of Actors in a World.

367

Appendix P-3: Intervention 14C: Interaction of Actor within the world solving
problems

368

Appendix P-4: Intervention 14D: APOS theory as tool to investigate problem
questions

369

Appendix P-5: Intervention 14E: The IF statement as a solution to address
problems

370

Appendix Q: Rollout to WCED Schools

371

Appendix R-1: Task for interview 1A (Algebra Exercise on Simplification)

Appendix R-2: Task for interview 1B (Science Assessment Question)

372

Appendix R-3: Interview: Voltage-Ampere-Resistance pyramid

Appendix R-4: Interviews on Mathematics and Science

Interview 1: MDL

Me: Do you take extra maths classes?

MDL: Now and then. I am carrying on with normal mathematics.

Me: Do you use a calculator?

MDL: Yes I must use a calculator.

Me: I explained the power of exponents in multiplication and not to the power of

MDL: I cannot calculate the power of exponents

Me: You struggle because you do not know your rules? (I tried to explain the basics by guiding the

learner.)

MDL: I am very nervous in attempting no 5. (3x – 2y)(3x + 2y). Have not done this in a while and I am
not sure how to simplify the expression.

Me: I tried to guide her in the right direction. I explained to use substitution where a=3x and b=2y so
the expression changes to (a – b)(a + b).
MDL: Oh ok now I see it is a2 – b2 – ab + ab = a2 – b2, so it is 9x2 – 4y2
Me: Do you see the difference between two squares
MDL: No I cannot remember, but oh yes now I remember.

Me: Let’s talk about the circuit diagram. What is V?

MDL: I need the diagram to infer the answers V=IR.

373

Me: Learner now could easily use the triangle to infer the answers, but no real understanding of the

real world problem. The learner has no connection with the circuit and its properties other than

applying the diagram given in the triangle.

Me: What are the formulae for circumference and area?

MDL: I struggle with determining which is which.

Me: Think about square as to power of 2. So the circumference is 2 x pi.Radius and area is pi.Radius2.

MDL: Oh yes I now understand how to memorise and know the difference.

Me: What is area of rectangle and triangle and so on?

MDL: No I do not know the formulae. I will have to go home and memorise them. Hhm, (quiet)

Me: What must you do for tomorrow’s test?

MDL: I need to memorise the formulae and associate them with a specific Figure.

Interview 2: MA

I interviewed learner MA and we spoke about their test to be taken down the next day. Upon asking

the learner what are the sum of the angles of a rectangle, he stated 45 degrees. I asked him to draw a

rectangle. After drawing the rectangle the learner could easily calculate the answer for he took a

physical action and represented the Figure on paper and could reason about the figure by applying

other schemas of a triangle to it. Another problem was that the learner did not know the formulae

associated with a geometrical figure such as circle, triangle or rectangle, which comes down to

memorising these formulae.

Me: Write down what problems you have in maths. What do you find difficult?

MA: Must I say what my problem is?

Me: Yes.

MA: Problem with memorising. I have problems with exponents.

374

Me: What do you do about your problems?

MA: I knew my rules but just forgot them. I am unsure about them. I take extra Master Maths classes. I

also have problems with geometry. I simply do not know my rules.

Me: OK if I ask what is area of trapezium. Would you know what to do?

MA: Is it not length times hhm… hhm ….

Me: What is area of triangle?

MA: Length x Base. When I study for test I forget the stuff I learnt.

Me: So what you say you have a problem with memorising. So what do you do about it, how do you

counter this problem?

MA: My parents helped me initially but they cannot anymore.

Me; Does Master Maths help?

MA: It increased my mark to 60%.

Me: Do you have problem with lines – Understanding?

MA: Yes lines are problems. I get confused with calculations like factorisation. Data handling is work I

need to study. If I prepare for it I am fine. The formulae of different figures are a problem.

ME: Why is that figure a trapezium. What distinguishes the figure from a triangle?

MA: Not sure.

ME: Let’s look at the problem of area. Write down what you know about area and we can investigate if

“what you know” can help you to solve other area problems. You know a triangle area formula. Look at

what you can infer from the figure.

MA: I now see that I actually knew how to calculate the area without knowing the actual formulae, but

by breaking the figure into two triangles, I can calculate 2(½ x Base x perpendicular height) =1 x Base

x perpendicular height. So can use other things I know to solve the problem.

ME: So to know the formula is a shortcut. When you struggle do not look at the problem, but what the

problem provides me to solve it. So what is the formula of the trapezium?

MA: It is 2(½ x Base x perpendicular height) =1 x Base x perpendicular height. So I can infer the area

without it being memorised. I see now I am not hopeless.

375

ME: Yes you possess the answer. What is square’s area?

MA: side x side x side?

ME: No just side x side. Please draw it and think again.

MA: Oh I now see it’s only side x side.

ME: You took an action by drawing the figure which clarified your understanding. The radius of a circle

is 6 cm, what is the circumference?

MA: hhm… hhmm.

ME: OK the area of a circle is what?

MA: it is pi x radius squared?

ME: OK how can you distinguish area from circumference? Take the squared sign and put infront as 2

x pi x radius and not pu x radius squared.

MA: Oh now I understand the difference.

So the learner moved to the process phase without an action phase. The process stage was thus

incorrect, due to a lack in the action phase. The enactment or visualisation was absent. The learner

thus haphazardly guessed his version of a solution to calculating the area of a triangle.

ME: Do the first question. (-3x2y3)3

MA: OK it is the x exponent x 3 and the y exponent x 3 and the 3 x 3

ME: Remember your exponent laws.

MA: OK it is 3 x 3 x 3 = 9

ME: One fault you made is the sign which you did not consider but just carried the minus over.

Remember – x - = + x - = - So your sign is determined by the even or odd number of times multiplied.

Algebraic expression was also calculated as a process without physically writing it down in taking an

action. The learner also just calculated squares and multiplication without considering the sign of the

number. The important aspect is taking an action by writing the values down and not just calculating

values. Even where an expression consists of many x and y’s the learner could not use abstraction by

assigning an alphabetic letter to a sequence of numbers.

376

After the learner came forward by taking an action and remembering the rules where applicable, he

wanted to do the last problem and enjoyed the challenge. He soon bought into taking action when he

was unsure about a memorised process.

Interview 3: KW

Me: Do you want to pursue normal mathematics this next year?

KW: I want to but maths percentage is 65%

Me: What problems do you have in mathematics you think and do you take extra classes?

KW: I will write down. I take maths at teacher at school, but I want to change for she thinks the same

line of thought. I have problems with lines and tomorrow I am writing geometry tomorrow.

Me: So do you have problems with geometry?

KW: I think I have problems with something I learnt yesterday. Translations and rotations are problem

sometimes.

Me: What is the problem?

KW: The x and y’s can be confusing when I rotate?

Me: Think about rotation of the following? 270 degrees anti clockwise is the same as 90 degrees

clockwise?

KW: Oh yes I see. Maybe the rules for geometry tomorrow are maybe difficult. The names of the

figures are sometimes difficult. Area is difficult for me.

Me: Let’s look at an example.

KW: If I know the rules it might be easier.

Me: Identify the figure and check what they ask. You must know the formula and you must know those

rules before you enter test tomorrow. Do you agree it’s your own fault if you do not memorise the

figures and rules.

KW: Yes I agree, I must spend time on the figures and formulae.

Me: What is area of triangle?

KW: half base time perpendicular height (Me correct and help her to get to correct answer)

Me: What figure is the following?

377

KW: It is a rectangle.

Me: What are the properties of a rectangle? Is it a rectangle?

KW: The rectangle is actually skew and hence a parallelogram.

Me: You must know the properties. Do you see? How will we calculate the area?

KW: Length x breadth x height?

Me: Let’s look at the figure. Which figure’s area do you know?

KW: I know the area of a triangle.

Me: OK draw the parallelogram and inspect the structure. Look at the figure and what do you see?

KW: It is two triangles.

ME: It is correct and what is area of ONE triangle in that figure?

KW: Can I calculate the area for the triangle is not in the middle regarding the height?

Me: Any triangle has a fixed formula which is ½ x Base x perpendicular height.

So how many triangles do we have? You can calculate that in your head, bit write it down.

KW: So it is ½ x Base x perpendicular height. But I have 2 of these triangle so the formula now is: 2(½

x Base x perpendicular height) =1 x Base x perpendicular height.

Me: So does the rectangle formula of Base x Height make sense now?

KW: Yes I now understand where the formula comes from.

Me: Solve the first simplification namely (-3x2y3)3

KW: The factorisation and simplification is a very difficult thing for me.

Me: Her answer was 9, but after reconsideration she said 27. Only when she wrote down the

expression, she realised that the minus will remain. Asking her what the problem was she stated that

the brackets cause confusion. Her problem was the 9, instead as 27. She could not calculate the

answer and never transferred her finger counting to a process. She then mentioned APOS in actions

and processes. She then admitted that using her fingers creates a problem.

What was your problem to calculate 3 to the power of 3.

378

KW: I could never calculate any such values without using my fingers.

Me: Remember APOS? You still count on your fingers which YOU must change to internalise those

finger counting.

KW: I sometimes not count using my fingers but I think in my mind using my fingers to count.

Me: No 7. 18x2 – 2. I lead the learner with questions to think about the common factor which is 2. She

then realised that 2 x 9 = 18, but must do this for the other term as well. She could not recognise the

difference between squares of two numbers. I used another easier example to explain the difference

of two squares. The learner then stated that she must know her rules which were lacking and

memorising certain actions. The learner admitted APOS which she learnt in programming and applied

that in mathematics.

Me: You identify 9 as common factor and remove the 9. What do you have left?

KW: I have 0 left.

Me: No, think again.

KW: Oh ok I have 9 left

Me: Have you heard of difference of two squares?

KW: No

She then asked about the gradient of a line, which indicated she started to enjoy the interview and the

mathematical reasoning. I suppose it boiled down to understanding her and overcoming her fears.

The interview on the electrical circuit was much clearer to identify the problem. The learners were

taught at all schools within my interviews to draw a triangle with VIR. Rather alarming that a concept

image is also a practical plan initiated by many schools to focus on better marks than better

understanding and not enabling the learners to grasp the concept as per definition.

The next aspect was about abstraction and that the learner can experience why abstraction plays an

important role in their conceptual understanding of any concept. The research became a bit fuzzy in

that I talk and assess certain important concepts with the learners, but there is nothing tangible as a

footprint of my research or any tangible ideas which the learners may take with on their journey to

tertiary education. The quantitative research which to establish reason for failure and non-interest in

subjects like mathematics and science did not appeal to me as the route to take and I had to

determine the status quo of what I found in the schools.

379

Appendix S: Greenfoot Name Badge

380

Appendix T: Order Form for the Greenfoot Badges

381

Appendix U: First Game Development

382

383

384

Appendix V: Putting it Together

385

Motivations

Using a more guided approach in Greenfoot:

A less-skilled learner will rather opt for a less-guided approach for according to Clark, Kirschner and

Sweller (2012) a more guided approach requires learners to provide a more attention-driven approach.

On the other hand more-skilled learners will opt for a guide. It is argued that worked examples are

important to minimise time spent on concepts. A worked example (Clark et al., 2010, 2012; McPhail,

2016) usually originates.

386

Appendix W: Table of interventions and Actions

Table 3.3 Interventions and sub-interventions in this research

DCA: Data Collection Action taken by the researcher.

Observation: O, Lectures: L, Interview: I, Reflection R, Practical P

No Activity Description DCA

1 Intervention 1A Abstraction (Abstract Thinking) Assessment O

2 Intervention 2 Implement Greenfoot (Circumscripted) P

3 Intervention 2A An enhanced Theoretical Conceptual Framework R

4 Intervention 2B Introduction of a genetic decomposition (GD) L,P

5 Intervention 2C Introduction of an enhanced GD L,P

6 Intervention 3 Interaction with the Moodle LMS(Circumscripted) L,P

7 Intervention 3A Tools for Moodle LMS P

8 Intervention 3B Juggling enactment for Moodle O,L,P

9 Intervention 3C Moodle and Generalised Terminology L,P

10 Intervention 4 Creating a Moodle Learner Management System
(LMS) (Circumscripted)

P

11 Intervention 4A Creating a Linux Server with external access P

12 Intervention 4B Creating a Cloud-based Moodle LMS P

13 Intervention 5 Greenfoot Access (Circumscripted) L,P

14 Intervention 5A Introduction to Greenfoot L,P

15 Intervention 5B Revisit previous Activities L,P,O

16 Intervention 6 Applying Process and Object within mathematics L,P

17 Intervention 7 Greenfoot as Process and Object L,P

18 Intervention 8 Rollout of code in Greenfoot L,P,O

19 Intervention 9 Making decisions towards Encapsulation L,P,O

20 Intervention 10 Revisit encapsulation with Randomize option L,P,O

21 Intervention 11 Assessment (Circumscripted) P

22 Intervention 11A Informing the Learners of the Assessment L,O

23 Intervention 11B Assessment in Greenfoot on Encapsulation and
problem solving

L,P

24 Intervention 12 The Variable in Greenfoot L,P

25 Intervention 13 Moving from Process to Object in APOS using
Greenfoot

L,P

26 Intervention 14 GD creation on IF statement in Greenfoot
(Circumscripted)

L,P

27 Intervention 14A Basic creation of scenario with World and Actor
classes

L,P,O

28 Intervention 14B Manipulation of Actors in a World L,P,O

387

No Activity Description DCA

29 Intervention 14C Interaction of Actor within the world solving
problems

L,P,O

30 Intervention 14D Adding graph paper as part of GD to develop
algorithm

L,P,O

31 Intervention 14E The IF statement as a solution to address problems L,P,O

32 Intervention 15 Testing Greenfoot to be accepted among teachers L,P,O

33 Intervention 16 Creating an Arcade Game L,P,O

34 Intervention 17 Manufacturing Greenfoot Badges P

388

Appendix X: FEDS for Artefact Evaluation

Structure of the Framework for Evaluation in DS Research (FEDS) (Venable, Pries-Heje & Baskerville,

2016:78-82)

Option: Used(U) Ignored (I)

No Activity Description Option

1 Formative evaluation Empirically based interpretations that provide basis
for successful action to improve characteristics or
performance of the evaluand

U

2 Summative evaluation Empirically based interpretations that provide basis
for shared meanings about evaluand in different
contexts – measure results of completed
development

U

3 Ex Ante evaluation Evaluates candidate systems before rollout U

4 Ex Post evaluation Evaluates systems after rollout. U

5 Functional purpose of
evaluation

Formative and/or summative U

6 Paradigm of the evaluation
study

Strategies based on i) naturalistic ii) artificial U

7 Strategies for evaluation i) Quick & Simple artefact
ii) Human Risk & Effectiveness artefact
iii) Technical Risk & Efficacy artefact
iv) Purely Technical artefact

I
U
U
I

389

Appendix Y: Themes

Find# Summary Findings Category Themes
 14D-2 Learners went back to action to understand problem Action APOS

 14B-3 Learners discovered how to debug step-by-step Action
 14A-2 Learners went back to action to understand problem Action
 14B-1 Learners re-enforced understanding through action Actions
 16-1 Learners illustrated APOS qualities APOS
 3B-3 Learners illustrated APOS qualities Process
 5B-3 Learners schema was better developed Schema
 8-3 Learners schema was better defined in their minds Schema
 2-4 Learners schema for maths had to be rethought Schema

 13-1
Learners enhance understanding in Visual programming
language

Schema

 13-2 Learners schema became important Schema
 14A-3 Learners schema became important Schema
 14A-4 Learners schema became important Schema
 14C-1 Learners had urge to move through schema stages Schema

 14E-1
Learners schemas played prominent role in their
understanding

Schema

 14D-2 Learners schema expanded Schema
 14B-3 Learners schema expanded Thoughts
 15-5 Beliefs created challenges Beliefs BELIEFS

 15-6 Beliefs helps with learning Beliefs
 15-4 Teachers made linkages with “met-befores” Met-befores

 3C-6
Negativity towards programming language due to unknown
as in maths case Met-befores

 2A-2 Learners fixate on concept images Pop-Ed
 2B-3 Learners are not keen to to explore Cognitive Load COGNITIVE

BALANCE

 2C-1 Learners welcome LMS as resource Cognitive Load
 2C-2 Learners welcome LMS as resource Cognitive Load
 3A-2 Learners had too much to memorise Cognitive Load
 3B-1 Interest in a topic generates positive attitudes Cognitive Load
 3B-2 Interest in a topic generates positive attitudes Cognitive Load
 2-1 Learners are not keen to to explore Cognitive Load
 2-2 Learners are not keen to to explore Cognitive Load
 14C-2 Learners used coding to describe algorithm Cognitive Load
 14E-2 Learners used coding to describe algorithm Cognitive Load
 2A-1 Learners want to explore work they understand Met-befores
 1-1 Learners used enactment to avoid abstraction Abstraction COMPUTATIONAL

THINKING 1-2 Abstraction lacks from learners performing mathematics Abstraction
 3C-4 Learners show lack of knowledge and skills Abstraction
 1-3 Learners show lack of knowledge and skills Abstraction
 6-1 Teachers found topic challenging Abstraction
 9-1 Learners applied abstraction through encapsulation Abstraction

 9-2
Learners enhance understanding in Visual programming
language

Abstraction

 10-1 Learners used built in method to solve problem Abstraction
 10-4 Learners used built in method to solve problem Abstraction

390

Find# Summary Findings Category Themes
 11B-1 Learner linked programming language and Windows Tools Abstraction
 11B-2 Learners applied abstraction through encapsulation Abstraction
 14D-3 Learners used built in method to solve problem Abstraction
 6-2 Learners followed APOS Process
 8-1 Learners followed APOS Process
 3C-1 Learner links absent between mathematics in Greenfoot Relation
 8-4 Learner linked mathematics in Greenfoot Relationships
 14A-1 Learners revisited GD Actions LEARNING

 15-3 Teachers had similar challenges than learners Met-befores
 15-2 Teachers made linkages with “met-befores” Relationships
 3B-4 Learners fixate on concept images Skill
 5A-2 Technical challenges influenced learning Teaching
 5A-3 Technical challenges influenced learning Teaching
 5A-4 Technical challenges influenced learning Teaching
 11A-1 Learners academic world must be structured. Teaching
 12-4 Learners academic world must be structured and official. Teaching

 15-1
Teachers found topic challenging Teaching and

Learning

 3A-3
Learners could work on their own if they are given
guidelines

Teaching and
Learning

 3C-5
Learners show lack of knowledge and skills Teaching and

Learning
 2B-1 Learners are not keen to to explore Moodle

LMS

 2B-2 Learners are not keen to to explore Moodle
 3A-1 Learners liked a change in behaviour Moodle
 4B-1 Moodle solved challenges Moodle
 4B-2 Moodle solved challenges Moodle
 4B-3 Moodle has costs Moodle
 4B-4 Moodle solved challenges Moodle
 5B-1 Moodle solved challenges Moodle
 5B-2 Moodle solved challenges Moodle
 11A-2 Learners used Moodle for preparation Moodle
 3B-5 Moodle solved challenges Moodle
 16-2 Learners coding enhanced Coding PROGRAMMING

LANGUAGE

 16-3 Learners coding time intensive Coding
 3C-2 Learners lack programming language knowledge Coding
 3C-3 Learners lack programming language knowledge Coding

 5A-1
Learners enhance understanding in Visual programming
language Coding

 7-1
Learners enhance understanding in Visual programming
language Coding

 7-2
Learners enhance understanding in Visual programming
language Coding

 8-2
Learners enhance understanding in Visual programming
language Coding

 8-5
Learners enhance understanding in Visual programming
language Coding

 9-3 Learners see value of control structures Coding

 9-4
Learners had challenges to understand execution of
Greenfoot Coding

391

Find# Summary Findings Category Themes

 9-5
Learners enhance understanding in Visual programming
language Coding

 2-3
Leaners show challenges with IDE of programming
language Coding

 10-2
Learners enhance understanding in Visual programming
language Coding

 10-3
Learners enhance understanding in Visual programming
language Coding

 11B-3 Learners enhance understanding in programming language Coding
 12-1 Learners enhance understanding in programming language Coding
 12-2 Learners enhance understanding in programming language Coding
 12-3 Learners enhance understanding in programming language Coding
 12-5 Learners found syntax challenging in coding Coding
 13-3 Learners enhance understanding in programming language Coding
 14B-2 Learners enhance understanding in programming language Coding
 4A-3 Technical networking allow learner external access Networking TC

 4A-1 Technical wizardry can save costs Technical
 4A-2 Technical logic can secure productivity Technical
 4A-4 Power failures high jack technical expertise Technical

	DECLARATION
	PROOFREADING CERTIFICATE
	TURNITIN REPORT
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	GLOSSARY/ACRONYMS
	TERMS AND DEFINITIONS
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Computational thinking and the mathematics connection
	1.3 Computational thinking and the programming connection
	1.4 Rationale of the research
	1.5 Research problem statement
	1.6 Aim of the research
	1.6.1 Objectives of the research

	1.7 Research questions (RQs)
	1.8 Research focus
	1.9 Methodological considerations
	1.9.1 Research paradigm and research philosophy
	1.9.2 Research approach

	1.10 Research design
	1.10.1 Sampling strategies
	1.10.2 Data collection strategies

	1.11 Contribution of the research
	1.11.1 Theoretical contribution
	1.11.2 Contribution to academic discipline
	1.11.3 Methodological contribution
	1.11.4 Practical contribution

	1.12 Ethical considerations
	1.13 Assumptions
	1.14 Delineation of the research
	1.15 Conclusion
	1.16 Summary
	1.17 Structure of the thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction and background
	2.2 Literature review
	2.2.1 Research problem
	2.2.2 Search and acquisition process
	2.2.2.1 Research question (RQ) 1
	(a) Sub-research question (SRQ) 1.1
	(i) Cognitive theory levels
	 Sensorimotor level (0-2 years)
	 Pre-operational level (2-7 years)
	 Concrete operational level (7-11 years)
	 Formal operational level (12-16 years)

	(ii) Mathematical learning and embodiment
	(iii) Constructivism and constructionism
	(iv) Discovery learning challenges
	(v) Computational thinking
	(vi) Cognitive ability and computational thinking
	(vii) Abstraction in action

	(b) Sub-research question (SRQ) 1.2
	(i) Positioning of a programming language
	(ii) Characteristics of a programming language that satisfies Piaget’s learning
	(iii) Computational thinking and a programming language
	(iv) Piaget’s cognitive level of formal operations and programming languages (PLs)
	(v) Definition and choice of a programming language (PL)
	(vi) Traditional syntax-based PLs are difficult to learn
	(vii) Programming language skills
	(viii) Rote learning and embodied experiences in a programming language

	(c) Sub-research question (SRQ) 1.3
	(i) Foundational research towards APOS theory
	(ii) Didactical situation when teaching mathematics
	(iii) How does APOS theory inform computational thinking?
	(iv) Literacy
	(v) Abstraction
	 Hazzan and abstraction
	 Kramer and abstraction
	 Arnon and abstraction
	 Measuring abstraction
	 Genetic decomposition

	(vi) APOS Theory and Greenfoot
	 Mental constructions and Greenfoot

	(vii) The role of mental mechanisms within mental constructions in Greenfoot
	 Interiorisation
	 Coordination of actions in general
	 Encapsulation
	 Generalisation of schemas
	 Reversal

	2.2.2.2 Research question (RQ) 2
	(a) Sub-research question (SRQ) 2.1
	(i) The meaning and importance of being “programming” literate
	(ii) Frameworks for teaching PLs
	 What programming language to be taught to high school learners as well as the hardware involved. Technical knowledge (TK) about the application of the programming language and platforms to best achieve the outcomes of the approach
	 Programming language syntax and possible algorithms and constructs of the programming language to facilitate computational thinking; the storyboard techniques for the LMS are used to compliment training Content knowledge (CK) about the subject matte...
	 What are the best practices to teach and use for a programming language, computational thinking and LMS? Pedagogical knowledge (PK) about each specialised field, namely, programming language, computational thinking and LMS need thorough research and...

	(iii) Paradigm shift in teaching

	(b) Sub-research question (SRQ) 2.2
	(i) How can learners be taught programming in a less painful manner?
	(ii) Reflective abstraction within Greenfoot
	(iii) Mental structures and mechanisms
	(iv) When should learners engage in learning a programming language?
	(v) Applying mental structures as an example

	(c) Sub-research question (SRQ) 2.3
	(i) Perspective on an LMS
	(ii) Novice versus expert programmer
	(iii) The worked-example effect

	2.2.3 Theoretical conceptual framework
	2.2.4 The viewpoint of educators and professionals on programming
	2.2.5 Target group

	2.3 Literature review summary
	2.3.1 Mathematics research
	2.3.2 How does one involve the whole body?
	2.3.3 Discovery learning creates challenges
	2.3.4 Status quo of teaching and learning

	CHAPTER 3: DESIGN RESEARCH
	3.1 Introduction
	3.2 Design Research (DR)
	3.2.1 Design Science Research (DSR)
	3.2.2 Design-Based Research (DBR)
	3.2.3 Educational Design Research (EDR)
	3.2.3.1 Introduction
	3.2.3.2 Paradigms in EDR
	3.2.3.3 EDR approaches
	3.2.3.4 EDR as model of choice

	3.3 EDR implementation
	3.3.1 Introduction
	3.3.2 Step 1: Identification of the main phases of EDR
	3.3.3 Step 2: Simplify the wicked problem
	3.3.3.1 EDR research question

	3.3.4 Step 3: The general phases of EDR
	3.3.4.1 Phase 1: Preliminary research
	3.3.4.2 Phase 2: Prototyping
	3.3.4.3 Phase 3: Assessment

	3.4 Summary

	CHAPTER 4: RESEARCH DESIGN
	4.1 Introduction
	4.2 Research paradigms
	4.3 Research philosophy
	4.3.1 Ontology – The nature of reality
	4.3.2 Epistemology – The nature of knowledge
	4.3.3 Axiology – The role of values and ethics

	4.4 Research approach
	4.5 Research strategy
	4.5.1 The demonstration case
	4.5.1.1 Background
	4.5.1.2 The school visiting and planning process

	4.5.2 Action research (AR)
	4.5.3 Design Research (DR) strategy
	4.5.4 Intervention development
	4.5.4.1 Introduction
	4.5.4.2 Intervention 1: Abstraction (abstract thinking) assessment (Appendix B-1)
	(a) Design
	(i) Qualitative methodology of Intervention 1
	(ii) Quantitative methodology on Intervention 1

	(b) Method
	(c) Interpretation

	4.5.4.3 Intervention 2: Implement Greenfoot programming language (Appendix C)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.4 Intervention 2A: Introduction of a Genetic Decomposition process (Adapted from Arnon et al., 2014:112; Appendices D-1, D-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.5 Intervention 2B: Introduction of an enhanced Genetic Decomposition of “Load a Greenfoot Scenario” (Appendix D-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1)
	4.5.4.8 Sub-Intervention 3A: Introduction of the Moodle LMS (Appendix E-1)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.9 Intervention 3B: Juggling enactment to enforce Moodle usage among learners (Appendix E-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.10 Intervention 3C: Moodle and generalised terminology (Appendix 3C)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.11 Intervention 4: Creating a Moodle Learner Management System (LMS)
	4.5.4.12 Intervention 4A: Creating a Linux Server with external access (Appendix F-1)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.14 Intervention 5: Greenfoot access
	4.5.4.15 Intervention 5A: Introduction to Greenfoot (Appendix G-1)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.16 Intervention 5B: Revisit previous activities (Appendix G-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.17 Intervention 6: Applying Process and Object within mathematics (Appendix H)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.18 Intervention 7: Greenfoot as Process and Object (Appendix I)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.19 Intervention 8: Rollout of code in Greenfoot (Appendix J)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.20 Intervention 9: Making decisions towards Encapsulation (Appendix K)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.21 Intervention 10: Revisit encapsulation with Randomize option (Appendix L)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.22 Intervention 11: Assessment (Appendix M)
	4.5.4.23 Intervention 11A: Informing learners of the assessment in a structured manner (Appendix M-1)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and problem solving (Appendix M-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.25 Intervention 12: The variable in Greenfoot (Appendix N)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.26 Intervention 13: Moving from Process to Object in APOS using Greenfoot (Appendix O)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.27 Intervention 14: GD creation on IF statement
	4.5.4.28 Intervention 14A: Basic creation of scenario with World and Actor classes (Appendix P-1)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.30 Intervention 14C: Interaction of Actor within the World solving problems (IF statement as precursor to GD) (Appendix P-3)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.31 Intervention 14D: Adding graph paper as part of GD to develop algorithm (Appendix P-4)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.32 Intervention 14E: The IF statement as a solution to address problems (Appendix P-5)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.33 Intervention 15: Testing Greenfoot to be accepted among teachers (Appendix Q)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.4.34 Intervention 16: Creating an arcade game (Appendix U)
	(a) Design
	(b) Method
	(c) Interpretation

	4.5.5 Interviews
	4.5.5.1 Interviews IA and IB: Algebra exercise on simplification; Science assessment question and Voltage-Ampere-Resistance pyramid (Appendices R-1, R-2, R-3 and R-4)

	4.5.6 Observations
	4.5.7 Data collection strategies
	4.5.8 Sampling
	4.5.9 Data analysis

	4.6 Summary

	CHAPTER 5: DATA ANALYSIS AND FINDINGS
	5.1 Introduction
	5.2 Belief system about Mathematics
	5.3 EDR phases
	5.4 Data collection and analysis
	5.4.1 Introduction
	5.4.2 Phase 1: Preliminary research phase
	5.4.2.1 Needs and context analysis
	(a) Needs analysis
	(b) Context analysis

	5.4.2.2 The literature review
	(a) Thought processes
	(b) Computational thinking
	(c) APOS theory
	(d) The EDR question
	(i) Research goals and proposal
	(ii) Outcomes
	(iii) Design the solution

	5.4.2.3 Theory development
	(a) Theoretical conceptual framework

	5.4.2.4 Target group

	5.4.3 Phase 2: Prototyping/ Enactment phase
	5.4.3.1 Introduction
	5.4.3.2 Intervention 1: Abstraction (Abstract Thinking) assessment (Appendix B-1)
	(a) Description
	(b) Results and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.3 Intervention 2: Implement the Greenfoot programming language (Appendix C-1)
	(a) Description
	(b) Results and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.4 Intervention 2A: Introduction of a Genetic Decomposition (GD) (Appendices D-1, D-2)
	(a) Description
	(b) Analysis and discussions
	(c) Findings
	(d) APOS discussion
	(i) Action

	(e) Summary

	5.4.3.5 Intervention 2B: Introduction of an enhanced GD (Appendix D-1)
	(a) Description of Intervention 2B
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Processes
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.6 Intervention 2C: Help documentation in Greenfoot (Appendix D-3)
	(a) Design
	(b) Method
	(c) Interpretation

	5.4.3.7 Intervention 3: Interaction with the Moodle LMS (Appendix E-1)
	5.4.3.8 Intervention 3A: Tools for Moodle (Appendix E-1)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Processes
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.9 Intervention 3B: Juggling enactment to enforce Moodle usage among learners (Appendix E-2)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.10 Intervention 3C: Moodle and generalised terminology (Appendix E-3)
	(a) Description of Intervention 3C
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.11 Intervention 4: Creating a Moodle Learner Management System (LMS)
	5.4.3.12 Intervention 4A: Creating a Linux Server with external access (Appendix F-1)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.13 Intervention 4B: Creating a cloud-based Moodle LMS (Appendix F-2)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.14 Intervention 5: Greenfoot Access
	5.4.3.15 Intervention 5A: Greenfoot access (Appendix G-1)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.16 Intervention 5B: Revisit previous activities (Appendix G-2)
	(a) Description
	(b) Analysis and discussions
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.17 Intervention 6: Applying Process and Object within mathematics (Appendix H)
	(a) Description
	(b) Analysis and discussions
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.18 Intervention 7: Greenfoot as process and object (Appendix I)
	(a) Description
	(b) Analysis and discussion
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.19 Intervention 8: Rollout of code in Greenfoot (Appendix J)
	(a) Description
	(b) Analysis and discussions
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.20 Intervention 9: Making decisions towards Encapsulation (Appendix K)
	(a) Description
	(b) Analysis and discussion of Intervention 9
	(c) Coding
	(d) Findings
	(e) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(f) Summary

	5.4.3.21 Intervention 10: Revisit encapsulation with the Randomize option (Appendix L)
	(a) Description
	(b) Analysis and discussions
	(c) Coding
	(d) Findings
	(e) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.22 Intervention 11: Assessment (Appendix M)
	5.4.3.23 Intervention 11A: Informing the learners of the assessment in a structured manner (Appendix M-1)
	(a) Description of Intervention
	(b) Analysis and Discussion of Intervention
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.24 Intervention 11B: Assessment in Greenfoot on Encapsulation and problem solving (Appendix M-2)
	(a) Description of Intervention
	(b) Analysis and Discussion on Intervention
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.25 Intervention 12: The Variable in Greenfoot (Appendix N)
	(a) Description of Intervention
	(b) Analysis and Discussion of Intervention
	(c) Challenges
	(d) Findings
	(e) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(f) Coding

	5.4.3.26 Intervention 13: Moving from Process to Object in APOS using Greenfoot (Appendix O)
	(a) Description of Intervention
	(b) Analysis and Discussion on Intervention
	(c) Coding
	(d) Findings
	(e) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.27 Intervention 14: GD creation on IF statement
	5.4.3.28 Intervention 14A: Basic understanding of a scenario with World and Actor classes (Appendix P-1)
	(a) Description of Intervention
	(b) Analysis and Discussion of Intervention
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.29 Intervention 14B: Manipulation of Actors in a World (Appendix P-2)
	(a) Description of Intervention
	(b) Analysis and Discussion of Intervention
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.30 Intervention 14C: Interaction of Actor within the world solving problems (IF statement as precursor to GD) (Appendix P-3)
	(a) Description of Intervention 14C on 06-03-2015
	(b) Analysis and Discussion of Intervention
	(c) Coding
	(d) Findings
	(e) APOS discussion
	(i) Action
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.31 Intervention 14D: Adding graph paper as part of GD to develop algorithm (Appendix P-4)
	(a) Description of Intervention
	(b) Analysis and Discussion of Intervention
	(c) Findings
	(d) APOS discussion
	(i) Action
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.32 Intervention 14E: The IF statement as a solution to address problems (Appendix P-5)
	(a) Description of Intervention
	(b) Analysis and Discussions of Intervention 14E
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	5.4.3.33 Intervention 15: Testing Greenfoot to be accepted among teachers (Appendix Q)
	(a) Description of Intervention (Appendix A-8.1 to Appendix A-8.3)
	(b) Analysis and Discussions of Intervention 15
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.3.34 Intervention 16: Creating an Arcade Game (Appendix U)
	(a) Description of intervention (Appendix U)
	(b) Analysis and Discussions of Intervention
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.4 Interviews
	5.4.4.1 Interviews: Algebraic Simplification and the Electrical Circuit Diagram (Appendix R)
	5.4.4.2 Interview IA: Algebra Exercise on Simplification (Appendix R-1)
	(a) Description
	(b) Analysis and Discussions
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.4.3 Interview 1B: Electrical Circuit (Appendix R-2 and R-3)
	(a) Description of Interview 1B – Electrical Circuit
	(b) Analysis and Discussions of Task 1B
	(c) Findings
	(d) APOS discussion
	(i) Actions
	(ii) Process
	(iii) Object
	(iv) Schema

	(e) Summary

	5.4.5 Phase 3: Assessment
	5.4.5.1 Themes within interventions
	5.4.5.2 Themes within interviews

	5.5 Summary

	CHAPTER 6: DISCUSSION
	6.1 Introduction
	6.2 Themes
	6.2.1 Interventions
	6.2.1.1 APOS theme
	(a) Action Phase
	(b) Process Phase
	(c) Object Phase
	(d) Schema Phase

	6.2.1.2 Beliefs theme
	6.2.1.3 Cognitive Balance theme
	6.2.1.4 Computational Thinking Theme
	6.2.1.5 Learning theme
	6.2.1.6 Learner Management System theme
	6.2.1.7 Programming language theme
	6.2.1.8 Technical theme

	6.2.2 Interviews
	6.2.2.1 APOS
	6.2.2.2 Beliefs
	6.2.2.3 Cognitive Balance
	6.2.2.4 Computational Thinking
	6.2.2.5 Learning

	6.3 Summary

	CHAPTER 7: CONCLUSION AND RECOMMENDATIONS
	7.1 Introduction
	7.2 Conclusions
	7.2.1 Linking RQ 1 with the findings
	7.2.2 Linking RQ 2 with the findings
	7.2.3 EDR Question

	7.3 Overview of the Study
	7.4 Research Chapters
	7.4.1 Chapter 2 – Literature review
	7.4.2 Chapter 3 – Design Research
	7.4.3 Chapter 4 – Research Design
	7.4.4 Chapter 5 – Data analysis and findings
	7.4.5 Chapter 6 – Discussion

	7.5 Summary
	7.5.1 Conclusions
	7.5.2 Recommendations
	7.5.2.1 Programming language
	7.5.2.2 Technical
	7.5.2.3 Cognitive Balance and Beliefs
	7.5.2.4 LMS
	7.5.2.5 Learning
	7.5.2.6 APOS
	7.5.2.7 Education

	CHAPTER 8: CONTRIBUTION, FURTHER RESEARCH AND REFLECTIONS
	8.1 Introduction
	8.2 Contributions of the research
	8.2.1 Theoretical contribution
	8.2.2 Contribution to academic discipline
	8.2.3 Methodological contribution
	8.2.4 Practical contribution

	8.3 Further Research
	8.4 Reflection
	8.4.1 Learning perspective
	8.4.2 Research perspective

	8.5 Assessment of research
	8.6 Assessment of the context and research purpose
	8.7 Self-reflection

	REFERENCES
	APPENDICES
	Appendix A: Introductory letters for the collection of research data
	Appendix A-1: Curro Private School
	Appendix A-2: Ethics Clearance from CPUT
	Appendix A-3: Chester House Private School
	Appendix A-4: Bosmansdam High Public School
	Appendix A-5: Letter of Introduction to Schools
	Appendix A-6: Videos Uploaded on Moodle Site for Learners to Access
	Appendix A-7: Greenfoot Developer
	Appendix A-8.1.1: Teachers Rollout Course on Greenfoot
	Appendix A-8.1.2: Teachers Rollout Course on Greenfoot
	Appendix A-8.2.1: Rollout to WCED Teachers Workshop 1
	Appendix A-8.2.2: Rollout to WCED Teachers
	Appendix A-8.2.3: Location sent to Teachers
	Appendix A-8.2.4: Timesheet o.b.o. Oracle for WCED Teachers Training Workshop 1
	Appendix A-8.3.1: Rollout to WCED Teachers Workshop 2
	Appendix A-8.3.3: Location of WCED Teachers Workshop 2
	Appendix A-8.3.4: Timesheet o.b.o. Oracle for WCED Teachers Training Workshop 2
	Appendix A-8.3.5: WCED Teachers Training Signatures Workshop 2
	Appendix A-8: Oracle Instructors Certificate
	Appendix A-9: Emails sent to Authors of the APOS Theory
	Appendix A-9.1: Email 1 to Prof Dubinsky (12 February 2015)
	Appendix A-9.2: Email 2 from Prof Dubinsky (15 March 2015)
	Appendix A-9.3: Email 2 from Prof Dubinsky (21 March 2015)
	Appendix A-9.4: Email to Dr Illana Arnon
	Appendix A-9.5.1: Email Response from Dr Arnon (8 March 2015)
	Appendix A-9.5.2: Email Response from Dr Arnon in attached Word document 04-12-2015 @ 8:44 pm
	Appendix A-9.6: Western Cape Education Plan to Salvage Mathematics
	Appendix B-1: Intervention 1 (Abstraction [Abstract Thinking] Assessment)
	Appendix B-2: Questionnaire on Mathematics in General (Learner X)
	Appendix B-3: Questionnaire on Mathematics in General (Learner Y)
	Appendix B-4: Questionnaire on Mathematics in General (Learner Z)
	Appendix C: Intervention 2A-1 computational thinking in motion (Compiled interpretation taken from Denning (2017) and AHO(2011))
	Appendix D-1: Intervention 2A-2 (Genetic Decomposition Process adapted from Arnon et al., 2004)
	Appendix D-2: Intervention 2A-3 (Genetic Decomposition of “Load a Greenfoot Scenario”)
	Appendix D-3: Intervention 2B (Help Documentation in Greenfoot)
	Appendix D-4: Intervention 14E (Genetic Decomposition of IF statement)
	Appendix E-1: Intervention 3A (Introduction of the Moodle LMS)
	Appendix E-2: Intervention 3B (Juggling enactment to enforce Moodle usage among learners)
	Appendix E-3: Intervention 3C (Moodle and Generalised Terminology)
	Appendix F-1: Intervention 4A (Creating a Linux Server with external access)
	Appendix F-2: Intervention 4B (Creating a Cloud-based Moodle LMS)
	Appendix G-1: Intervention 5A (Introduction to Greenfoot)
	Appendix G-2: Intervention 5B (Revisit previous Activities)
	Appendix H: Intervention 6 (Applying Process and Object within mathematics)
	Appendix I: Intervention 7 (Greenfoot as Process and Object)
	Appendix J Intervention 8: Rollout of code in Greenfoot in Figure 4.20
	Appendix K: Intervention 9 (Making decisions towards Encapsulation)
	Appendix L: Intervention 10 (Revisit encapsulation with Randomize option)
	Appendix M-1: Intervention 11A (Informing the learners of the assessment in a structured manner)
	Appendix M-2: Intervention 11B (Assessment in Greenfoot on Encapsulation and problem solving)
	Appendix N: Intervention 12 (The Variable in Greenfoot)
	Appendix O: Intervention 13 (Moving from Process to Object in APOS using Greenfoot)
	Appendix P-1: Intervention 14A: Basic creation of scenario with World and Actor classes
	Appendix P-2: Intervention 14B: Manipulation of Actors in a World.
	Appendix P-3: Intervention 14C: Interaction of Actor within the world solving problems
	Appendix P-4: Intervention 14D: APOS theory as tool to investigate problem questions
	Appendix P-5: Intervention 14E: The IF statement as a solution to address problems
	Appendix Q: Rollout to WCED Schools
	Appendix R-1: Task for interview 1A (Algebra Exercise on Simplification)
	Appendix R-2: Task for interview 1B (Science Assessment Question)
	Appendix R-3: Interview: Voltage-Ampere-Resistance pyramid
	Appendix R-4: Interviews on Mathematics and Science
	Appendix S: Greenfoot Name Badge
	Appendix T: Order Form for the Greenfoot Badges
	Appendix U: First Game Development
	Appendix V: Putting it Together
	Appendix W: Table of interventions and Actions
	Appendix X: FEDS for Artefact Evaluation
	Appendix Y: Themes

