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Abstract 

Green peach aphid (Myzus persicae) is among the most destructive pests of agricultural 

and horticultural crops. This sap-sucking insect species reduces crop productivity and is 

a vector to many phytopathogens, and are often difficult to control with conventional 

synthetic insecticides. The quests for alternative environmentally-friendly insecticides for 

controlling aphids are intensifying. The use of entomopathogenic fungus presents an 

enticing opportunity to control sap-sucking insects such as M. persicae. Endophytic 

fungus such as B. bassiana is a natural parasite of insects and is a safer alternative to 

synthetic chemicals that are potentially toxic to human and environmental health.    

The objectives of this study were to (i) assess the Beauveria bassiana colonization on 

Lectuca sativa plants, (ii) assess pathogenicity of B. bassiana against M. persicae in the 

laboratory, (iii) assess the effect of B. bassiana on antioxidant contents of L. sativa, (iv) 

assess the effect of B. bassiana on proximate components of L. sativa, (v) assess the 

effect of Beauveria bassiana inoculation on secondary metabolites contents of lettuce, 

and (vi) assess the effect of B. bassiana inoculation on M. persicae infestation level on 

lettuce plants in a greenhouse. 

The B. bassiana strain (SM3) used in this study was first evaluated in an insect mortality 

bioassay to determine its pathogenicity and suitability for further study. Insects in each 

treatment group were exposed to one of four fungal conidial concentrations: 0, 1 x 106, 

1 x 107 and 1 x 108 conidia mL-1. The strain was pathogenic against M. persicae, with an 

LC50 of 1.1 to 1.6 x 106 conidia mL-1. 

Potted-lettuce plants were allocated to one of four conidial concentrations (0, 1x 106, 1 x 

107, and 1 x 108 conidia mL-1), following a complete randomized design, with a single-

factor. The effects of fungal inoculation on plant growth, plant physiology, plant 

secondary metabolites, and aphid infestations were assessed. 

After 21 days post-treatment, fresh leaves were picked off plants and taken to the 

laboratory to assess whether the fungus colonized the plant tissue. Leaf sections from 

the harvested leaves were surfaced sterilized. The leaves were then placed on selective 

solid potatoes dextrose agar (PDA) plates of half strength of 19.5 g/1000 ml, containing 
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0.04 g streptomycin, and 0.02 g ampicillin sodium salt. The plates were incubated at 25 

± 2 oC. Based on the mycelia outgrowth from the leaf sections, the fungus colonized up 

to 76% of plants in 1 x 108 conidia mL-1 suggesting that tissue colonization by the 

conidia of B. bassiana was high.  

The fungus did not significantly affect the growing parameters (P>0.05); however, there 

was a significant difference in crown size and plant height (P<0.001). The tissue 

contents of the micronutrients Mn, Fe, Cu, and B increased significantly (P<0.05) with 

the fungal treatment. On the other parameters assessed, antioxidant activities of the 

extracts and protein content of lettuce varied with conidial treatments. Interestingly, the 

values of antioxidant activities, carbon (C) content, and protein content in the control (no 

fungus) and highest conidial treatment were consistently higher than the moderate 

conidial treatments. The fatty acids and chlorophyll contents were not significantly 

(P>0.05) influenced by conidial inoculation. 

Chapter three results showed that the fungus did not affect insect infestation levels 

(P>0.05). However, there was a statistical difference among the treatments on total 

polyphenol content (P<0.001). Flavonols were not significantly affected (P > 0.05) by 

the fungal inoculation. A wide range of volatile compounds was detected using GC-MS 

analysis. Some are well-known insect repellents and antifeedents, such as Limonene 

and 3-octanol. The 3-octanol and 2,4-Di-tert-butyl-phenol were significantly (P<0.01) 

more concentrated in the fungal treated plants than the control plants. Generally, while 

B. bassiana inoculation significantly affected total polyphenol and micronutrient (Mn, Fe, 

B, Cu) contents, it did not significantly affect flavonol level nor insect infestation levels. 

In conclusion, the B. bassiana strain used in this study successfully colonized the 

lettuce plants. Overall, the fungus had minimal effects on plant growth and protection 

against aphid infestations. Exposure to the fungus did not significantly induce increased 

macronutrient contents in the plant tissue of nutrients and some volatile chemical 

constituents.  This study provides insights into the effect of fungal inoculation on the 

growth, physiology, and aphid infestation of lettuce plants. The study also highlights the 

need for further studies to better understand the endophytic fungus-host plant- 

herbivorous insect relationship. 
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Chapter One  

Introduction and Literature review 

1.1 Introduction  

Aphids have adapted to living off and feeding off plants.  They are sap-sucking plant 

pests that feed by inserting their stylets into plants and sucking the phloem sap (Elzinga 

and Jander, 2013). Regrettably, this feeding behaviour facilitates the transmission of 

phytopathogens since aphids are efficient vectors of plants'plants' well-known infectious 

agents (Stavrinides et al., 2010).  

Myzus persicae (Sulzer) (Homoptera: Aphididae) is among the most damaging insect 

species of agricultural and horticultural crops (Vieira et al., 2016). This phytophagous 

insect feeds on more than 50 plant families worldwide. Aphids are known to reduce crop 

production and quality, leading to massive economic losses to large and emerging 

farmers (Dedryver et al., 2010). Consequently, farmers tend to use insecticides to 

mitigate the losses and retain high yield.  

The control of these hemipterans is complicated: they can reproduce asexually in a 

short period (Augustinos et al., 2011; Ben-Issa et al., 2017), both male and female can 

produce alates (wings morph) that can disperse quickly and locate new host plants and 

increase their colony in a short period (Webster, 2012; Charaabi et al., 2018). Most of 

the aphids have developed a strategy of hiding on the leaves' underside, making it very 

challenging to control them (Webster, 2012). 

Conventional control of aphids relies primarily on synthetic chemicals; however, these 

chemicals are not bio-rational and are toxic to the environment and human health 

(Laamari et al., 2008; Soffan and Aldawood, 2014). Because of the increased 

recognition of the dangers associated with synthetic acaricides, in the past few years, 

studies that focus on the development of efficient bio-rational control methods for 

insects are on the increase (Sadeghi et al., 2009; Sallam et al., 2009). 

https://academic.oup.com/ee/article-abstract/32/2/327/374041
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The use of entomopathogenic fungi presents an enticing opportunity/prospect for 

controlling insect pests because they are natural parasites to insects (Ahmed and 

Leather, 1994). Furthermore, some entomopathogenic fungi are endophytic (Vidal and 

Jaber, 2015). They can colonize plant tissues (Mejia et al., 2008; Vega et al., 2008; 

Rodriguez et al., 2009; Aly et al., 2011). Endophytic fungi cause physiological and 

defensive reactions in plants (Vilcinksas and Matha, 1997). Once they colonized plants, 

these fungi may affect varied processes in plants, such as the production of secondary 

and primary metabolites and nutrient uptake (Ownley et al., 2010; Rohlfs and Churchill, 

2011), as well as insect herbivory. 

However, entomopathogenic fungi are living organisms and are susceptible to 

environmental stresses (Ortiz-Urquiza and Keyhani, 2015). Under uncontrolled 

environmental conditions in field trials, many EPF have produced inconsistent efficacy, 

hindering the widespread uptake of EPF. Encouragingly, investigations to minimise this 

and other setbacks of EPF are ongoing.  These fungi are currently applied as 

suspension (classical, augmentative, inundative or broadcast spray) (Jaronski, 2010), 

which is wasteful and may contaminate non-target species. On the other hand, a 

systemic application approach is perhaps a more feasible and efficient approaches, 

especially if the target insect is a sap-sucking insect with piercing mouthparts like 

aphids.    

Besides assessing the effects of B. bassiana inoculation on growth and aphid 

infestation on Lactuca sativa, this study will provide insight into plants, fungi, and 

insects, thus filling a critical knowledge gap in the use of fungi as bio-control agents. 

1.2 Literature review 

1.2.1 Beauveria bassiana overview  

Beauveria bassiana (Balsamo) Vuillemin is an entomopathogenic fungus that has a 

cosmopolitan distribution (Ownley et al., 2008). It occurs in diverse environmental 

habitats. This fungus belongs to the order Hypocreales (Brownbridge et al., 2012). 
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These hypocrealeans are soil-borne (Vanninen, 1995; Quesada-Moraga et al., 2007). 

However, some strains are both endophytic and pathogenic to insects (Khosravi et al., 

2015).  Endophytes occur in plant tissue without causing any harm to the plants 

(Bongiorno et al., 2016).  Endophytes form a mutualistic relationship with plants by 

protecting plants against insects (Clay, 1988; Carroll, 1988; Saikkon et al., 1998; 

Ownley, 2010). For a fungus to successfully infect an insect, it must first come into 

contact with the cuticle of the insect, and its spores must germinate on the cuticle (Shah 

and Pell, 2003). Entomopathogenic fungi use a blend of enzymes and mechanical 

mechanisms to penetrate the cuticle and infect the insects (Inglis et al., 2001). 

1.2.2 Lettuce  

Lettuce (Lactuca sativa L.) is one of the most consumed leafy vegetables worldwide. It 

is a member of the Asteraceae family, which has around 23 000 - 30 000 species (Still, 

2007:71; Noumedem et al., 2017). According to Noumedem et al. (2017), it is used 

worldwide for its nutritional content and medicinal properties. It is cultivated worldwide, 

with China being the leading cabbage producer, accounting for approximately 49.2% of 

the world total (Still, 2007:72). 

1.2.2.1 Challenges facing lettuce cultivation  

Production of lettuce is hindered by aphid infestations (Lu et al., 2011). Aphid 

infestations result in unmarketable lettuce and yield loss for growers (Fagan et al., 

2010). Aphids infest all growth phases of the plants, from the young to mature plants 

(McCreight, 2008) and transmit the destructive lettuce mosaic disease between lettuce 

plants (Moreno et al., 2007).  

1.2.3 The genus Myzus  

The genus Myzus consists of approximately 50 species. Members of this genus are 

small-bodied insects that feed on host plants' phloem by sucking the juice with their 

pierce-sucking mouth-part (Panini et al., 2017). Aphid species are competent vectors, 

transmitting approximately 55% of the plants' viral diseases (Linz et al., 2015).  
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The aphid species Myzus persicae (Sulzer) (Homoptera: Aphidae) is one of the most 

destructive pests in the agricultural and horticultural sectors. It has a worldwide 

distribution and is capable of causing damage to more than 50 families of plants 

(Ghaedi and Andrew, 2016).  Myzus persicae (green peach aphid) is well-known for 

transferring phytopathogenic viruses between plant families (Ghaedi and Andrew, 

2016). This pest can transfer diseases, including the lettuce mosaic virus (Tiwari and 

Singh, 2018).   

1.2.3.1 Historical and distribution of Myzus persicae 

The M. persicae is a polyphagous pest insect with a worldwide distribution feeding on 

more than 1600 plant species across 60 plant families (Tiwari and Singh, 2018). In 

India, it affects approximately 300 plant species in families such as Solanaceae, 

Brassicaceae, Poaceae, Asteraceae, Rosaceae (Tiwari and Singh, 2018). 

1.2.3.2 Morphology  

The green peach aphids can be alates or apterea depending on environmental 

conditions. The aletes can grow up to 2.5 mm long and have dark green color. The 

alates can be identified by their head black head and thorax with the yellow-green 

abdomen (CAFE, 2013).  Furthermore, the apterous aphid has different colors ranging 

from green, pale yellow-greenish, and pink or reddish (Goodarzifar et al., 2016). 

Nymphs of green peach aphid can reproduce asexually or sexually. Parthenogenetic 

reproduction is a common asexual reproductive strategy in aphids when they find a 

suitable host (Capinera, 2011). 

1.2.3.3 Female aphids 

Apterea green peach aphid females are easily identifiable, they resemble the yellow-

green colour with three brownish longitudinal lines, one is located at mid-dorsum and 

the others are on the left and right of the dorsum (Smith, 2015). The female can grow up 

to 2.5 mm long with green pale siphunculi and a swollen middle (Smith, 2015). Females 

reproduce sexually and asexually through pathogenesis, giving birth to live young 
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aphids (Cooper, 2012:69). The nymph may be alate or apterea (Figure 1). The alates fly 

and locate the food (Cooper, 2012:69-70).  

 

Figure 1: Adult apterea female M. persicae. 

Source (http://entnemdept.ufl.edu/Creatures/veg/aphid/green_peach_aphid.htm). 

1.2.3.4 Male aphids 

The male aphids are holocyclic — they can undergo sexual reproduction with females to 

produce alates or apterous nymphs (Margaritopoulos et al., 2002). Alates male can 

disperse for long distances to finds mates and host plant. On the contrary, apterous 

males cannot fly, but they develop quickly to compete with alates on the host plant 

(Braendle et al., 2006).  

1.2.3.5 Life cycle  

Green peach aphids can reproduce sexually and asexually depending on the suitability 

of the environmental conditions. According to Margaritopoulos et al. (2002), aphids' life 

cycle has three categories: holocyclic, anholocyclic, and androcyclic.  Holocyclic 

reproduces sexually; male mates with females and give birth to young ones. However, 

anholocyclic morphs are not able to mate. They produce females that are 

http://entnemdept.ufl.edu/Creatures/veg/aphid/green_peach_aphid.htm
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parthenogenetically active and overwinter on host plants (Margaritopoulos et al., 2002). 

Androcyclic morphs reproduce parthenogenetically morphs that can mate and 

reproduce (Margaritopoulos et al., 2002). 

1.2.3.6 Host plants  

This polyphagous aphid feeds on more than a hundred plant species in more than 50 

plant families (Shannag et al., 2014). It occurs worldwide, feeding on agricultural and 

horticultural crops (Shannag et al., 2014).  

1.2.4 Control Methods  

1.2.4.1 Chemical  

Most farmers use systemic insecticides to control aphid infestations on plants (Obopile 

and Ositile, 2010; Mahmoud et al., 2017). Chlorinated hydrocarbons, carbamates and 

organophosphates are commonly used chemical pesticides to control aphids (Tewary et 

al., 2006). However, these systemic insecticides' continuous use has contributed to the 

rampant insecticide resistance in insects (Torkey et al., 2009; Sial et al., 2018). 

Furthermore, their use is correlated with harmful effects on the environment and human 

health (Tewary et al., 2006; Misra et al., 2020). 

1.2.4.2 Biological control 

The control of aphids using biological control methods is gaining favour among farmers 

and researchers. Thus far, two groups of organisms — parasitoids and 

entomopathogens – have produced promising results in controlling aphid infestations. 

Aphid parasitoids are natural enemies of aphids and can reduce aphid densities under 

field conditions (Kaser and Heimpel, 2018). According to Rakhshani et al. (2005), aphid 

is a natural host for numerous aphidiines. Based on the research performed by 

Cardinale et al. (2003), the introduction of Nabis sp. (Hemiptera: Nabidae) played a 

major role in the suppression of small soft body aphids. Nabis sp. uses their piercing-

sucking mouthpart to attack the aphids (Cardinale et al., 2003).  
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Some strains of entomopathogenic fungal species, including B. bassiana, have proven 

efficacies against many insect pests (Rondot and Reineke, 2018; Javed et al., 2019). A 

few strains of these species are active ingredients in well-known commercial 

mycoinsecticides, such as Broadband and Real Metarhizium 69 OD (Jaronski and 

Mascarin, 2017), BotaniGard 22WP® (Kapongo et al., 2007). The use of 

entomopathogenic fungi has other advantages, for example, they can increase fitness 

and survival of the host plants (Latz et al., 2018). Furthermore, they colonize plant 

tissues without being pathogenic to the host plants (Latz et al., 2020). In addition, they 

have the ability to control insects over a long period of time and are compatible with 

systemic insecticide application method (Silva et al., 2020). Beauveria bassiana forms a 

mutual relationship with the plants and can colonize plant tissues (Ownley et al., 2010).  

According to Wagner and Lewis (2000), B. bassiana can be applied as foliar or injection 

to the plants.  

1.2.4.2.1 Entomopathogenic fungus (B. bassiana) 

1.2.4.2.1.1 Mode of action 

Beauveria bassiana (Ascomycota: Hypocreales) conidia are able to germinate under 

humid conditions (Feng et al., 1994). Beauveria bassiana penetrates the insect host by 

developing the germ tube that invades the insect’s hemocoel. Once the spore 

establishes contact with the cuticle of a suitable insect host, it secretes diverse 

hydrolytic enzymes that damage protein, chitins, and lipids (Feng et al., 1994). The 

steps of fungal insect colonization begin with adhesion to the insect cuticle, then 

penetration, followed by colonization and proliferation in the haemocoel. Eventually, B. 

bassiana eliminates their host by starvation and toxicity (Quesada-Moraga and Vey, 

2003). 

1.2.5 Potential benefits of entomopathogenic fungi in plant cultivation  

Applying endophytes on seeds or growing medium can lead to endophytic fungal 

colonization of plants (Tefera and Vidal 2009). The fungus-colonized plants may be 

protected against insect pests. Endophytes live within plants without causing any 
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apparent damage to plants (Latch et al., 1985). According to Meyling and Eilenberg 

(2007), some entomopathogenic fungi, such as Metarhizium anisopliae can occur in the 

rhizophere and protect plants against pathogens. These are known as rhizopheric fungi 

and have many important ecological roles (Pattnaik and Busi, 2019). They maintain the 

soil health and plant health and breakdown organic matter (Dundas et al., 2018). 

Rhizospheric fungi also form a mutual relationship with plant roots and promote plant 

growth through nutrient absorption and enable a protective mechanism against 

pathogens and pests (Meena et al., 2017; Hassan et al., 2019; Fuentes et al., 2020). 

They also enhance plants’ ability to tolerate environmental stresses (Fuentes et al., 

2020). Some genera of rhizospheric fungi can be used for the management of parasitic 

nematodes. These genera (Penicillium, Verticillium, Chaetomium, Fusarium, and 

Arthrobotrys) can affect nematodes through parasitism, predation, and antagonism 

(Zhou et al., 2016).    

1.2.6 Integrated pest management  

The development of entomopathogenic fungus as bio-insecticides, especially against 

aphids, has received much interest among those interested in integrated pest 

management (Yeo et al., 2003; Edson et al., 2013). Beauveria bassiana is commonly 

used as bio-insecticides because it is pathogenic against many insects (Kanzok and 

Jacobs-Lorena, 2006; Kergunteuil et al., 2016). The combined use of an 

entomopathogenic fungus and safer pesticides could be very effective against aphid 

infestations (Alizadeh et al., 2007; Sayed et al., 2019). An entomopathogenic fungus 

was successfully used to control Dociostaurus maroccanus; the fungus secreted toxic 

secondary metabolites such as, cyclic peptides and insecticidal properties against the 

insect (Quesada-Moraga and Vey, 2004). Beauveria bassiana based insecticides have 

been developed for commercial use such as BotaniGard 22WP® (Wraight et al., 2000; 

Kapongo et al., 2007; Aak et al., 2018).  
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1.2.7 Mycotoxins 

Endophytic fungi, including those in the order hypocreales, produce mycotoxins that are 

detrimental to herbivorous insects (Faeth, 2002). Moreover, these mycotoxins are being 

explored to control insects (Paszkiewicz et al., 2017). Endophytic fungi produce two 

main classes of mycotoxins - nonribosomal peptide (NRP) and polyketide (PK) synthase 

(Hu et al., 2016). The mycotoxins that have been detected in some of the hypocreales 

fungi are Fumonisin B1, Beauvericin, Enniatin A, Enniatin B, and Destruxin A 

(Paszkiewicz et al., 2017).  

Endophytic fungi can also induce host plants to produce secondary metabolites 

(Ludwig-Müller, 2015; Kusari et al., 2012). Although researchers have made progress in 

the characterization of endophytic fungi mycotoxin in grasses and some woody plants, 

few studies have focused on the effects of endophytic fungal colonization on lettuce and 

other vegetables. This study examined the effect of endophytic fungal 

entomopathogens on the production of secondary metabolites by lettuce. 

1.2.8 Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) are by-products of normal cellular metabolism in plants 

induced by a pathogen's stress or infection (Karuppanapandian et al., 2011). ROS plays 

a significant role in plants by regulating hormonal gene response against pathogen 

infection (Kreslavski et al., 2012). ROS induced redox systems in the plasmalemma and 

increased ROS generation in the apoplast are among the common plant cell responses 

to stress (Kreslavski et al., 2012). Endophytes have been found to increase 

antioxidants' production in host plants (White Jr and Torres, 2010), which can neutralize 

the ROS in plants (Hamayun et al., 2018).  

1.2.9 Proximate analysis  

A study by Hamayun et al. (2018) showed that plants that are inoculated with 

endophytes have increased sugar contents than untreated plants. White Jr and Torres 

(2010) suggested that plants with endophytes produce more glucose and fructose than 

non-endophytes.  However, available literature focusing on endophytes and 
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carbohydrates interaction is still limited. Therefore, it is interesting to study the effect of 

endophytes on sugar content in lettuce — an important food crop — with the view of 

getting a broader understanding of the role of fungal endophytes on plant response to 

stress and insect herbivory. A few studies have demonstrated that inoculating plants 

with fungal endophytes leads to an initial increase in insect infestation level and a drop 

over time (Akello and Sikora, 2012). 

1.3 Problem statement 

Conventional control of Myzus persicae has relied on chemical insecticides; however, 

despite their efficacies, they have challenges in maintaining sustainable aphid control. 

Insect resistance to insecticides and toxicity of insecticides are some of the main 

challenges. The search for alternative and benign bio-control agents such as 

entomopathogenic fungal endophytes is justified.  Endophytic fungi can colonize plant 

tissue and, therefore, be delivered systematically, targeting sucking insects like M. 

persicae through plant growth medium. 

1.4 Aim of the study: 

To evaluate the effect of the entomopathogenic fungus (B. bassiana [Hypocreales]) on 

growth, physiological responses and control of aphid (M. persicae [Hemiptera]) 

infestations on lettuce. 

 

1.5 Specific Objectives 

 

 To assess the pathogenicity of B. bassiana against M. persicae in the laboratory. 

 To assess the colonization of lettuce by endophytic fungus (Beauveria bassiana 

SM3- strain). 

 To assess the effect of endophytic fungus B. bassiana on growth parameters 

(height, crown size, roots length, dry weight, and fresh weight). 

 To assess B. bassiana inoculation on macro – and micro–nutrients contents on 

the plants' aerial parts. 
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 To assess the effect of B. bassiana on physiology of plant (antioxidant contents, 

proximate components and chlorophyll content). 

 To assess the effect of B. bassiana inoculation on secondary metabolites 

contents of lettuce, and to assess the effect of B. bassiana inoculation on M. 

persicae infestation level on lettuce plants in a greenhouse. 

1.6 Hypothesis 

 Higher concentration of B. bassiana will cause higher mortality of M. persicae  

 Inoculation of plants with fungus will influence growth parameters (height, crown 

size, roots length, dry weight, and fresh weight). 

 Inoculating lettuce plants with B. bassiana will positively influence the physiology 

(antioxidants, proximate components and chlorophyll content). 

 Inoculating lettuce plants with B. bassiana will positively influence the secondary 

metabolites (polyphenol, alkaloid and flavonol) in plants.  

 Lettuce plants will emit more insect-repelling volatiles than the control treated 

lettuce plants when exposed to B. bassiana inocula    

 The number of aphids infesting lettuce plants will be comparatively lower on B. 

bassiana-treated plants than on control-treated plants. 

1.7 Rationale of the study and significance 

Vegetables and fruits play a massive role in supplying food and preventing degenerative 

disease (Serafini et al., 2002). Lettuce is one of the most consumed vegetables 

worldwide (Rouphael et al., 2017). However, its cultivation and yield is hampered by 

insects' infestations, including aphids, on lettuce plants (Fagan et al., 2010). To improve 

the yield of lettuce, effective pest management strategies would have to be developed.  

The search for environmentally friendly insect control methods is ramping up. Many 

researchers are exploring the symbiotic relationship between entomopathogenic fungi 

and plants (Marquez et al., 2007). Entomopathogenic fungi are infective to insects 

(Mannino et al., 2019). Furthermore, some entomopathogenic fungi are also endophytic 

and rhizospheric (Rivas-Franco et al., 2020). Hence, the use of endophytic 
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entomopathogenic fungi could enhance protection of host plants against foraging by 

phytophagous insects. Results from many studies suggest the mutually beneficial 

relationship between endophytic fungi and plants may enhance plants' defence against 

herbivorous insects, thereby, reducing the rate of insects' infestations on plants (Clay, 

1988; Raps and Vidal, 1998; Lehtonen et al., 2005). The presence of endophytic fungus 

in plant tissues can influence the quantity and quality of certain secondary and primary 

metabolites produced by plants and, consequently, reduces insect infestations (Strasser 

et al., 2000).  

It is worth-noting that endophytic fungal conidia can be made available for uptake by 

plants during cultivation (Tefera and Vidal, 2009).  The endophytic spores can be 

applied directly to the medium during plant cultivation (Kumar et al., 2011). Based on 

the above-mentioned arguments, incorporating endophytic conidia in plant growth is an 

interesting approach of plant cultivation. According to Inglis et al. (1993) application of 

B. bassiana is mostly done as a foliar application. But because the fungus is susceptible 

to sunlight, it tends to become ineffective; hence, systemic application of the fungus is a 

viable method. This study seeks to provide an insight into the interactions of plant, 

fungus and insects and, thus, filling an important knowledge gap in the use of fungi as 

bio-control agents.   
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Chapter two 

Evaluating the endophytic activities of Beauveria bassiana on the physiology, 

growth and antioxidant activities of extracts of lettuce (Lactuca sativa L.)  

Abstract 

Endophytic entomopathogens have growth promoting and anti-insects properties that 

could enhance the cultivation of lettuce, a vegetable crop that has high demand but 

highly susceptible to aphid infestations. This study’s objective was to assess the 

colonization of the plant by conidia of Beauveria bassiana (SM3) (Hypocreales) as well 

as the effects of fungal inoculation on growth and physiology of the lettuce plants. 

Firstly, the pathogenicity of B. bassiana (SM3) was evaluated in an insect mortality 

bioassay, at 0, 1x 106, 1 x 107, and 1 x 108 conidia mL-1, to determine whether it was 

suitable for the greenhouse study. For the greenhouse study, potted lettuce plants were 

allocated to one of four treatment groups in a complete randomized design. Plants in 

each treatment group were exposed to one of four fungal conidial concentrations: 0, 1x 

106, 1 x 107, and 1 x 108 conidia mL-1. The effects of fungal inoculation on tissue 

colonization, plant growth, plant physiology, and proximate composition were assessed. 

The strain was pathogenic against M. persicae, with a mean insect mortality of 8 per 10 

insects recorded at the highest concentration (1 x 108 conidia mL-1) and an LC50 of 1.1 

to 1.6 x 106 conidia mL-1.  The B. bassiana endophytically colonized up to 76% of plants 

exposed to 1 x 108 conidia mL-1. Except for crown size and plant height, there was no 

significant difference in all the other growth parameters (roots length, dry weight and 

fresh weight). Among the plant macronutrients, only carbon tissue content was 

significantly (P<0.01) affected by conidial treatments. However, most of the 

micronutrients, viz. Mn, Fe, Cu, and B were remarkably higher (P < 0.05) in the fungal 

treated plants than the control. Similarly, antioxidant activities (FRAP and TEAC) of 

plant extracts were also significantly (P<0.001) enhanced in higher conidial treatments. 

In conclusion, the B. bassiana strain was endophytic in lettuce, pathogenic against 
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the M. persicae, and induced increased micronutrient tissue contents and antioxidant 

activities.  

2.1 Introduction 

Lactuca (Asteraceae) is one of the most consumed salad vegetables in North America, 

South America, Europe, Australia, and New Zealand. Aphid infestations on this crop 

often lead to declines in lettuce yields and economic losses among commercial and 

small-scale farmers (Barriere et al., 2015). Aphids are sap-feeding insects capable of 

causing direct injury to plants and vectoring many damaging phytopathogens, including 

the lettuce mosaic virus (Barriere et al., 2015). Reducing aphid infestations is an 

efficient strategy to manage viruses and other vector-borne phytopathogens (Chandi et 

al., 2018). However, conventional aphid control still depends mostly on synthetic 

insecticides, which are often toxic to the environment (Koch et al., 2018; Ricupero et al., 

2020). Furthermore, prolonged, excessive, and widespread use of these chemicals 

have been associated with insect resistance to insecticide and reduced soil fertility 

(Furlan et al., 2018). To achieve high quality and yield of lettuce, alternative, benign 

measures of aphid control needs to be developed. 

Endophytic fungi can colonize plant tissues without causing damage or disease to host 

plants (Nair and Padmavathy, 2014). Fungal endophytes have been found in different 

agricultural crops (Vega et al., 2008). Fungal endophytes are vital in the agricultural and 

horticultural sectors because they provide protection against herbivorous insects and 

improve plant health (Vega et al., 2008). Endophytic fungi have many effects on host 

plants. The literature suggests that endophytic fungi does not only enhance plant growth 

directly or indirectly (Shah et al., 2018) but also favor plant adaptation to adverse 

conditions including, biotic and abiotic stresses (Lugtenberg et al., 2016; Tiwari and 

Lata, 2018; Omomowo and Babalola, 2019, Chand et al., 2020).  

Researchers are interested in the mechanisms through which endophytic fungi protect 

plants. For example, B. bassiana can help plants adapt to different conditions and 

facilitate the transfer of nutrients from the soil to the roots (Afandhi et al., 2019). Some 
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endophytic fungi act as biostimulants that help disseminate macronutrients and 

micronutrients (Saia et al., 2019). Nutrient translocation and uptake can enhance plant 

growth by modifying phytohomornes (Ren et al., 2011; Lugtenberg et al., 2016). 

Endophytic fungi can produce or assist plants produce secondary metabolites that can 

defend the plant from pathogens and pests (White Jr and Torres, 2010; Vinale et al., 

2017).  White Jr and Torres (2010) reported that colonized plants by endophytes 

produce more glucose and fructose. Some studies suggest that endophytic fungi 

stimulate antioxidants production in plants, which is essential for neutralizing reactive 

oxygen species (Pan et al., 2017). Fungal endophytes can also solubilize phosphate 

(Otieno et al., 2015) and produce phytohormones such as cytokinins, indole acetic acid 

(IAA), gibberellin (GAs), and siderophore. Some fungi supply essential vitamins to the 

plant host (Waqas et al., 2012; Ismail et al., 2016; Jaber and Enkerli, 2017; Lata et al., 

2018; Ikram et al., 2018; Omomowo and Babalola, 2019). A study by Hamayun et al. 

(2018) suggested that endophytic fungi enhanced proximate composition in plants.  

Although many studies have examined the effects of endophytic fungi on plant growth 

and secondary metabolites, few studies have simultaneously and comprehensively 

investigated the effects on tissue colonization, plant growth, nutrient uptake, antioxidant 

content, and proximate components. This study intended to provide a deeper 

understanding of the physiological effects of endophytic fungus on L. sativa for 

improved cultivation 

The objectives of this chapter were (i) to assess the pathogenicity of B. bassiana 

against M. persicae in the laboratory,  (ii) to assess colonization of lettuce by endophytic 

fungus (B. bassiana SM3- strain), (iii) to assess effect of endophytic fungus B. bassiana 

on growth parameters (height, width, roots length, dry weight and wet weight), (iv) to 

assess the effect of B. bassiana on macronutrient and micronutrient contents on aerial 

parts of the plants, (v) to assess the effect of B. bassiana on antioxidant contents, (vi) to 

assess the effect of B. bassiana on proximate components of L. sativa, and (vii) to 

assess the effect of B. bassiana on chlorophyll content of lettuce. 
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2.2 Materials and methods 

2.2.1 Research design 

Laboratory and greenhouse experiments were carried out in this study. The selected 

Beauveria bassiana (SM3) virulence was evaluated in an insect mortality bioassay to 

determine its virulence and whether it could be considered for further study — the 

greenhouse study. In the greenhouse study, potted lettuce plants were allocated to one 

of four treatment groups in a complete randomized design, with a single factor. Plants in 

each treatment group were exposed to one of four fungal conidial concentrations: 0, 1x 

106, 1 x 107, and 1 x 108 conidia mL-1 (Figure 2.1). The effects of fungal inoculation on 

plant growth, plant physiology, plant secondary metabolites, and insect infestations 

were assessed. All experimental plants were maintained under the same environmental 

conditions. 

 

Figure 2. 1 Glasshouse experiment, the yellow tag is control , blue tag is 1x 106 conidial mL-1, 
red tag 1x 107 conidial mL-1 and green tag 1x 108 conidial mL-1. 

2.2.2 Plants material  

Lettuce (L. sativa) seedlings (cultivar: Green Oak) were sourced from Stodels Nurseries 

(Pty) Ltd in Bellville, Western Cape Province, South Africa. They were kept in the 

greenhouse of the Cape Peninsula University of Technology (CPUT), Bellville, South 
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Africa under the following conditions: 25 ± 2 oC, 60-80% RH, and 14/10 natural light/ 

dark regime. The individual plant was gently removed from the six-pack tray and 

transplanted into a 15 cm pot diameter containing a substrate mix: one-part silica sand, 

one-part perlite, one-part perlite, and one-part peat moss. Before its use, the substrate 

mix was sterilized with 1% sodium hypochlorite for 30 minutes and was rinsed with 

sterile distilled water three times. Plants were fed using recommended hydroponics 

Nutrifeed® hydroponic fertilizer (Starke Ayres Pty. Ltd., South Africa). The fertilizer was 

mixed with sterile distilled water at a concentration of 10g/ 5000 ml, and 200 ml was 

added in each plant once a week. Subsequently, each plant was watered with distilled 

water once a week for the six weeks. 

2.2.3 Fungus preparation  

An existing B. bassiana (SM3) strain that was previously isolated from a vineyard and 

identified molecularly by Moloinyane and Nchu (2019) was used in this study. The 

fungus was cultured on a selective medium: half-strength (19.5 g/ 1000 ml) of Potato 

Dextrose Agar (PDA) (Sigma-Aldrich PTY. LTD., South Africa), 0.04 g streptomycin, 

and 0.02 g ampicillin sodium salt.  The PDA was prepared in 9 cm- and 14 cm-diameter 

Petri dishes. Fungal cultures were incubated for three weeks at 25 ± 2 oC in the 

darkness. The mature conidia of B. bassiana were harvested using a sterile spatula and 

transferred into a 50 ml centrifuge tube containing 30 ml sterile water. The tube was 

capped and shaken for 3 min and mixed vigorously for two minutes using a vortex mixer 

(MI0101002D Vortex Mixer) at 3000 rpm to homogenise the conidial suspension. The 

homogenous conidial suspension was transferred into 1000 ml bottles containing 500 

ml sterile distilled water and 0.05% Tween 80 (Polysorbate, Sigma-Aldrich, South 

Africa). The conidia concentration was determined using a haemocytometer (Bright-

Line, Sigma-Aldrich, South Africa) and observed with a light microscope at 400X 

magnification to determine the required concentration of (1x 108, 1x 107, and 1x 106 

conidia mL-1). Germination percentage was assessed on 100 spore count at 40 x 

magnification (Latifian and Rad, 2012). Each plate was replicated four times, and over 

90% germination was observed. 
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2.2.4 Pathogenicity test against Myzus persicae  

The pathogenicity of the B. bassiana strain (SM3) on Myzus persicae was tested 

against the three different conidial suspensions of endophytic fungus Beauveria 

bassiana (SM3). The leaf dip method was adopted for pathogenicity bioassay.  Three 

conidial concentrations and control were used to determine the virulence of the fungus 

against the aphid. The spores were adjusted into three concentrations (1x 108, 1x 107, 

and 1x 106 conidia mL-1), and the control had only 0.05% Tween 80 and sterile water. A 

lettuce leaf section (with a diameter of 50 mm was cut for each treatment and immersed 

into 5 ml conidia suspension for 10 s for control 50 mm was immersed into sterile water 

with 0.05%Tween 80. Each treated leaf section was then placed on a Whatman No.1 

sterile filter paper for 15 minutes to remove excessive conidia suspension (Nazir et al., 

2018). Each treated leaf section was transferred into a Petri dish (90 mm diameter, 15 

mm depth) lined with moistened Whatman No.1 sterile filter. After that, 10 adult 

apterous aphids were transferred onto each leaf section using a camel hairbrush and 

under a light microscope. Each treatment had six replicates, and each replicate had ten 

apterous adults aphid. The petri dishes were sealed with parafilm and incubated in the 

growing chamber at 25 °C and a photoperiod of 12:12 (L: D) h for seven days. The 

mortality was observed after five days. Insects were considered dead if they remained 

unresponsive after probing with camel hairbrush.  Aphids that died were sterilised by 

dipping them into 70% ethanol for 10 s and rinsed with sterile distilled water for 1 

minute. The cadavers were moved to Petri dishes lined with damp filter paper and were 

incubated at 25 0C in the dark, with 90% relative humidity to increase fungal growth and 

sporulation to confirm that the insects died from fungus. 

2.2.5 Greenhouse study  

This experiment took place at CPUT in the Department of Horticultural Sciences, 

Bellville Campus, South Africa. Greenhouse's mean temperature was 27 ± 3 oC, 70 ± 

3% relative humidity, and the average light intensity was 31.77 kilo lux. Two weeks old 

lettuce seedlings were transferred into 15 cm pots containing a substrate mix of 25% 

silica sand 25% coco peat 25% perlite and 25% vermiculite. One hundred plants were 



32 
 
 

 

each planted into a 15 cm pot. This experiment had four treatments, and each treatment 

had twenty-five replicates. The first treatment was the control, which was drenched with 

100 ml of sterile distilled water with 0.05% Tween 20. Treatment one was drenched with 

100 ml conidial suspension of 1x 106 conidia mL-1. Treatment two was drenched with 

100 ml conidial suspension of 1x 107 conidia mL-1. Treatment three was drenched with 

100 ml conidial suspension of 1 x 1x 108 conidia mL-1. Plants were fed using 

recommended hydroponics Nutrifeed fertilizer (Starke Ayres Pty. Ltd., South Africa) 

comprising the following ingredients: N (65 mg kg-1), P (27 mg kg-1), K (130 mg kg-1), Ca 

(70 mg kg-1), Cu (20 mg kg-1), Mo (10 mg kg-1), Fe (1500 mg kg-1), Mg (22 mg kg-1), S 

(75 mg kg-1), B (240 mg kg-1), Mn (240 mg kg-1), and Zn (240 mg kg-1). The fertilizer was 

mixed with sterile distilled water at a concentration of 10g/ 5000 ml, and 200 ml was 

added to each plant once a week. Each plant was watered with distilled water twice a 

week. The data was collected, plant height was measured from the soil surface to the 

top of the highest leaf, and crown size was measured from the widest of the plant to the 

widest leaf. After 21 days post-treatment, fresh leaves were pick-off plants and taken to 

the laboratory to assess fungal colonization. Leaf sections were surfaced sterilized in 

the following sequence: 0.5% of sodium hypochlorite for two minutes, 70% ethanol for 

two minutes, and then rinsed with sterile distilled water for 1 minute.  The sterilized leaf 

sections were placed on a selective solid agar plates made up of potatoes dextrose 

agar (PDA) half strength of 19.5 g/1000 ml of sterile water containing 0.04 g 

streptomycin and 0.02 g ampicillin sodium salt and were incubated at 25 ± 2 oC. After 

six weeks post-inoculation, plants were uprooted from the pots, and roots height (cm 

plant-1) and fresh weight (g plant-1) of plants and roots were measured. Roots were 

separated from the aerial parts. Sub-samples of lettuce were oven-dried at 35 oC for 

168 hours, after which the dried plants were weighed to record the weight (g plant-1) of 

roots and plants. The experiment was repeated twice. 
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2.2.6 Antioxidants 

2.2.6.1 Sample material 

At the end of the glasshouse, experiment plants were randomly selected based on 

fungal colonization. Plants were oven-dried at 35 °C for 168 hours. The dried plant 

materials were ground, and the powered material transfered into plastic bags. Three 

samples representing three replicates were weighed for each treatment, and 0.1g of 

powdered plant material was transferred into centrifuge tubes. The samples were 

extracted with 25 ml of 60% ethanol and placed inside the incubator for 24 hours. 

2.2.6.2. FRAP 

The Ferric Reducing Antioxidant Power assay used is similar to the procedure discribed 

by Benzie and Strain (1996). This assay is based on the reduction of ferric-

tripyridyltriazine complex to its ferrous in the presence of antioxidants. The following 

reagents were used: 2.5 ml of a 10 mmol/L TPTZ (2,4,6- tripyridyl-s-triazine, Sigma) 

solution in 40 mmol/L HCl plus 2.5 ml of 20 mmol/L FeCl3 and 25 ml of 0.3 mol/L 

acetate buffer, and maintained at pH 3.6 was prepared freshly and warmed at 37°C. 

Aliquots of 40 μl of the sample supernatant were mixed with 0.2 ml distilled water and 

1.8 ml FRAP reagent. After incubation at 37 °C for 10 min, we employed 

spectrophotometric method to read the absorbance of the reaction mixture at 593 nm. 

The standard soluation was 1 mmol/L of FeSO4, and the final result was expressed as 

the concentration of antioxidants having a ferric reducing ability equivalent to 1 mmol/L 

FeSO4.   

2.2.6.3 Trolox equivalent antioxidant capacity (TEAC) 

The presence of antioxidants in lettuce was measured using the TEAC method 

described by Miller et al. (1993). The TEAC values were measured on the antioxidants' 

ability to scavenge the blue-green coloured ABTS•+ radical cation relative to the ABTS•+ 

radical cation scavenging ability of the water-soluble. 
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2.2.7 Tissue Nutrient Content Analyses  

After six weeks post-inoculation, 12 plants that showed fungal colonization, three from 

each treatment, were taken for analysis of macronutrients and micronutrients at a 

commercial laboratory, Bemlab (Pty) Ltd (Gant's Sentrum, 16 Van Der Berg Cres, 

Strand, Cape Town, 7140, South Africa. Before the analyses, the lettuce leaves were 

washed with teepol solution, followed by rinsing with sterile distilled water, and then 

drying at 65 °C overnight in an oven. Briefly, 5g of  dried leaves were milled and ashed 

at 480 °C, shaken up in a 50:50 HCl (50%) solution for extraction through filter paper 

(Xego et al., 2017). The phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 

Sodium (Na), Iron (Fe), manganese (Mn), zinc (Z), Boron (B), copper (Cu), and carbon 

(C) content of the extracts were analyzed using Ash method. Total nitrogen (N) content 

of the leaves was assessed through total combustion in a Leco N-analyser. The unit of 

the macronutrients was g kg-1 while micronutrients were expressed as mg kg-1. 

2.2.8 Proximate analysis  

2.2.8.1 Sample preparation 

Briefly, after 30 minutes of harvest, lettuce plants were frozen at -20 °C until they 

became lyophilized. The damaged leaves were carefully removed during this 

preparation. Dried materials were grounded with an ultracentrifuge mill. 

2.2.8.2 Protein analysis  

The method used was adopted from Chikwanha et al. (2019); nitrogen content was 

analyzed using the method described by Duma of macro-Nitrogen analyzer (LECO® 

FP528, LECO Corporation, Miami, USA). Total protein content was determined by 

multiplying the N content by a factor of 6.25. The total protein percentage was 

converted into g kg-1. 
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2.2.8.3 Fatty acid analysis 

The method was adopted from Sukhija and Palmquist (1998) with minor adjustment. 

Fatty acids were analysed on Agilent 7890A Gas Chromatography– Flame Ionisation 

Detector System. The column used was HP88 (100 m x 250 μm, 0.250 μm); the 

temperature was set at 50 oC hold for 2 min, increase at 5 oC/min to 250 oC, and hold 

for 15 min. Carrier gas: Nitrogen with a flow rate set at 1.0 ml/min. Injection volume: 1 μl 

(split; 50:1). The fatty acids were detected by evaluation of their retention times with that 

of internal standard. The fatty acids that were detected were expressed as mg kg-1. 

2.2.9 Chlorophyll content Analysis 

 

The chlorophyll estimation was adopted in the method of (Rajalakshmi and Banu, 

2014). Briefly, one gram of freshly harvested plants was ground with 20-40ml of 

acetone. It was then centrifuged for 5 min at 5000 –10000rpm. After that, the 

supernatant was transferred, and the procedure was constant until residue become 

colorless. Then the absorbance of the solution was red at 645nm and 663nm against 

the solvent (acetone) blank. 

2.2.9.1 Estimation of chlorophyll content  

The concentrations of total chlorophyll, chlorophyll a, and chlorophyll b were calculated 

using the following equations. 

Total Chlorophyll: 20.2(A645) + 8.02(A663) 

Chlorophyll a: 12.7(A663) – 2.69(A645) 

Chlorophyll b: 22.9(A645) – 4.68(A663) 

2.2.10 Statistical analysis 

The data collected were plant height, crown size, roots length, plant dry weight, roots 

dry weight, plant fresh weight, roots fresh weight, FRAP, TEAC, macronutrients, 

micronutrients, protein, and fatty acids, and chlorophyll. The growth parameters’ data of 
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the first and second experiments were pooled since no significant differences were 

observed when the growth results were compared. The data were then analyzed using 

one-way ANOVA. Dosage mortality response was subjected to Finney's probit analysis 

method (1952)] to obtain the LC50. The analyses were performed using the statistical 

software TIBCO Statistica® 13.3.0 Dell Inc., USA. Count mortality data was arcsine 

square root transformed and analysed using one-way analysis of variance (anova). The 

post hoc Turkey HSD was applied to separate means.  

2.3 Results 

2.3.1 Pathogenicity assessment 

Generally, the results showed that B. bassiana (strain: SM3) was pathogenic against M. 

persicae. Insect mortality increased with conidial concentration. The highest 

concentration (1 x 108 conidia mL-1) caused highest insect mortality (8) compared to 

other treatments (DF=3, 20; F=21.57; P<0.01) see table 2. The isolate had LC50 value of 

1.1 to 1.6 x 106 conidia mL-1 (Table 2.1). 

 

Table 2.1. LC50 values following leaf immersion of Beauveria bassiana against 

Myzus persicae in the laboratory.   

 

  

Slope ± SE LC50 (conidia ml−1) 

(95%FL) 

X2 (DF) 

0.411 ± 0.0582 1.1 x 106 – 1.6 x 106  0.995 (1) 
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Table 2.1.1. The pathogenicity (mean ± SE number of dead insects and (Abbott-

corrected percentage mortality), of Beauveria bassiana against Myzus persicae in 

the laboratory after five days following leaf immersion on fungal spores. 

                                            

 

 

 

 

 

 

Means with the same lowercase letters in the column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance. 

2.3.2 Colonization of tissues by fungus 

Beauveria bassiana was successfully re-isolated from the leaves of the plants after 

three weeks. All the fungal treatments recorded fungal colonization of lettuce leaves and 

roots but at varying levels, with treatment three (1 x 108) showing the highest 

colonization percentage (76%), followed by treatments two (1 x 107) and one (1 x 106), 

64% and 56%, respectively. Control did not show any fungal outgrowth in leaves. No 

fungal contamination was observed. B. bassiana was re-isolated from the roots and 

similar results were obtained with the leaves were also found in the roots; 1 x 108 

conidia mL-1 showed the highest colonization percentage (76%), followed by treatments 

two (1 x 107) and one (1 x 106), 64% and 56% (Figure 2.3). No fungal outgrowth 

occurred in the control. 

Treatments Mean ± SE number of dead insects and 

(Abbott-corrected percentage mortality) 

Control 2 ± 0.55a (0%) 

1x 106 conidia mL-1 6 ± 0.49b (48%) 

1x 107 conidia mL-1 7 ± 0.31b (66%) 

1x 108 conidia mL-1 8 ± 0.17b (78%) 
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A      B 

Figure 2.3 Mycelia outgrowth from leaf sections demonstrating successful colonization 

of roots (a) and leaf (b) tissues by endophytic fungus Beauveria bassiana.  

2.3.3 Effect of fungus on plant height, crown size and roots length. 

Generally, the B. bassiana inoculation significantly increased plant height (DF=3, 196; 

F=3.61; P<0.01); the heights ranged from 15.52 to 16.04 ± 0.18 (Table 2.2). Similarly, 

there was a significantly difference among the treatments in terms of crown size of the 

plant (DF=3, 196; F= 14.52; P<0.001); generally, fungus treated plants had larger crown 

size (Table 2.2). Unlike plant height and crown size there was no significantly difference 

in roots lenght (DF=3, 116; F= 0.996; P=0.40). 

2.3.3.1 Effect of fungus on fresh weight and dry weight of roots and the plant 

The fungus inoculation did not significantly affect (DF = 3, 116; P> 0.05) both fresh and 

the dry weights of the roots and aerial parts (Table 2.2.1 respectively). 
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Table 2.2 The effect of endophytic fungus (Beauveria bassiana) on root length, 

plant height and crown size of the plants on different concentrations of spores 

and control. 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance.  

  

Treatments Roots  

Length (cm) 

Plant  

height (cm) 

Crown  

size (cm) 

Control 19.50 ± 0.54a 15.52 ± 0.10a 25.94 ± 0.19a 

1x 106 conidia 

mL-1 

19.33 ± 0.47a 16.02 ± 0.12b 27.50 ± 0.27bc 

1x 107 conidia 

mL-1 

20.10 ± 0.51a 16.02 ± 0.12b 26.96 ± 0.29b 

1x 108 conidia 

mL-1 

20.33  ± 0.38a 16.04 ± 0.18b 28.14 ±  0.22c 
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Table 2.2.1 The effect of fungus (Beauveria bassiana) on Mean ± SE dry and fresh 

weights of plants and roots exposed to different conidial concentrations. 

Treatments Roots fresh 

Weight (g) 

Plant fresh 

Weight (g) 

Roots Dry 

Weight(g) 

Plant Dry 

Weight (g) 

Control 23.57  ± 0.62a 58.70 ± 1.60a 3.18 ± 0.12a 4.24 ± 0.11a 

1x 106 conidia 

mL-1 

23.12  ± 1.21a 61.70 ± 1.53a 3.30 ± 0.06a 4.49 ± 0.13a 

1x 107 conidia 

mL-1 

20. 48 ±  1.00a 54.17 ± 2.26a 3.39 ± 0.11a 4.61 ± 0.11a 

1x 108 conidia 

mL-1 

21.28  ± 0.95a 57.65 ±2.43 a 3.32 ± 0.10a 4.49 ± 0.18a 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance. 
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2.3.4 Effect of fungus (Beauveria bassiana) on antioxidant capacity 

The treatment significantly influenced antioxidant capacity in plant extracts (DF=3, 8; 

F=6.067; P<0.001 FRAP (umol AAE/g); DF=3, 8; F=31.669; P<0.001 ABTS (umol TE/g)), with 

higher levels occurring in the plants inoculated with the highest fungal conidial 

concentration (1 x 108 conidia mL-1) and in control treatments (Table 2.3) compared to 

the lower conidial concentrations of 1x 106 conidia mL-1 and 1x 107 conidia mL-1. 

Table 2. 3 The effect of endophytic fungus concentration on antioxidant capacity 

of lettuce extracts following exposure of plants to Beauveria bassiana conidial 

during cultivation.  

Treatments Frap (Umol AAE/g) 

Mean  ± SE 

TEAC (Umol TE/g) 

Mean  ± SE 

Control  86.13 ± 6.35a 88.92 ± 7.02a 

1 x 106 conidia mL-1 46.15 ± 3.61b 32.17 ± 6.43 b 

1x 107 conidia mL-1 55.81 ± 13.15b 43.14 ± 4.40b 

1x 108 conidia mL-1 89.43 ± 9.10a 97.97 ± 5.30a 

 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance.  
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2.3.5 Effect of fungus (Beauveria bassiana) on tissue analysis 

2.3.5.1 Macronutrients 

Among all the macronutrients, only carbon (C) tissue content was significantly (DF=3, 8; 

F=34.67; P<0.01) influenced by fungal treatment. Carbon varied significantly with fungal 

treatments, with plants in the control and highest conidial concentration recording higher 

tissue carbon contents than the moderate conidial treatments (1 x 106 conidia mL-1 and 

1x 107 conidia mL-1). No significant differences in N, P, K, Ca, and Mg tissue contents 

were found among treatments (Table 2.4a). 

2.3.5.2 Micronutrients 

Unlike the macronutrients, most micronutrients were significantly affected by conidial 

concentration in this study. Apart from Zn, all the other tissue micronutrients (Mn, Fe, B, 

Cu) assessed varied significantly (DF=3, 8; P < 0.05) among treatments, with a 

discernible association of fungal treatments and higher plant tissue micro-nutrient 

contents. The highest values for Mn (81.03 ± 4.39), Cu (5.90 ± 0.26), and B (50.27 ± 

1.01) were observed at 1x 107 conidia mL-1 (Table 2.4b). The tissue Fe (iron) content 

was highest at the highest conidial treatment and lowest in the control treatment, and 

the differences among treatments was statistically significant (DF=3, 8; F=7.956; 

P<0.01).   
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Table 2.4a Effects of inoculating lettuce plants with different conidial 

concentrations of Beauveria bassiana on tissue macronutrients contents (g kg-1). 

Treatments C N P K Ca Mg Na 

Control 407.36  ±  

0.41a 

20.90± 

0.60a 

4.10 ± 

0.60a 

55.33 ± 

0.33a 

10.10± 

0.45a 

4.27 ±  

0.15a 

2.43 ± 

0.14a 

1x 106 

conidia mL-1 

365.50  ± 

3.36b 

21.37± 

0.75a 

   

4.67 ± 

0.38a 

  

60.00 ± 

4.16a 

11.67±  

0.88a 

5.27 ± 

0.56a 

2.58 ± 

0.19a 

1x 107 

conidia mL-1 

363.13  ±  

1.48b 

22.13 ± 

0.47a 

  

4.53 ± 

0.18a 

  

60.67 ± 

0.67a 

10.33 ±  

0.33 a 

5.20 ±  

0.23a 

2.42 ±  

0.04a 

1x 108 

conidia mL-1 

396.33  ± 

6.55a 

21.20 ± 

0.81a 

  

4.60 ± 

0.30a 

  

58.33 ± 

2.73a 

10.03 ± 

0.48a 

4.63 ±  

0.20a 

2.44 ± 

0.29a 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance. 
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Table 2.4b Effects of inoculating lettuce plants with different conidial 

concentrations of Beauveria bassiana on tissue micronutrients contents (mg kg-

1). 

Treatments Mn Fe Cu Zn B 

Control 54.73±   

5.25a 

286.00 ± 

17.47a 

2.87 ± 

0.33a 

47.27±  

7.13a 

38.70  

± 1.29a 

1x 106 conidia 

mL-1 

70.63± 

7.58ab 

439.33± 

41.91b 

  

5.00±  

0.15b 

39.77±   

3.48a 

45.43± 

2.57ab 

1x 107 conidia 

mL-1 

81.03± 

4.39b 

427.33 ±  

2.85b 

5.90±  

0.26b  

38.33  ± 

4.99a 

50.27  

± 1.01b 

1x 108 conidia 

mL-1 

72.60± 

1.99ab 

464.67 ±  

34.36b 

3.57± 

0.35a  

36.10±   

2.21a 

46.27±  

3.44ab 

The means ± SE followed by the same lowercase letters column indicates means ± SE 

are not significantly different using Tukey HSD test at P = 0.05 level of significance. 

2.3.6 Proximate results 

2.3.6.1 Protein 

Generally, there was a significantly different in protein contents among treatments 

(DF=3, 8; F=5.18; P<0.05). Plants in the treatment 1x 106 conidia mL-1 had the lowest 
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protein content compared to other treatments (Table 2.5). Furthermore, there was no 

other significant difference among different treatments (Table 2.5).  

Table 2.5 Effects of inoculating lettuce plants with different conidial 

concentrations of Beauveria bassiana on protein contents (g kg-1). 

 

Treatments Protein (g kg-1) 

Mean  ± SE 

Control 27.87 ± 2.02ab 

1x 106 conidia mL-1 23.20 ± 1.19a 

1x 107 conidia mL-1 32.01 ± 2.25ab 

1x 108 conidia mL-1 34.06 ± 2.26b  

The same lowercase letters in the same column column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance. 

2.3.6.2 Fatty acids 

Fungal inoculation had no influence on palmitic acid (DF=3, 8; F=0.66 P>0.05), linoleic 

acid (DF=3, 8; F=4.00; P>0.05), linolenic acid (DF=3, 8; F=3.14; P>0.05) and total fatty 

acids (DF=3, 8; F=1.17; P>0.05). However, the total fatty acids were quite high in the 

control plants (1566.67 ± 233.33) than in those of fungal treatments (Table 2.6).  
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Table 2.6. Influence of endophytic fungus on proximate composition of Lactuca 

sativa (mg kg-1). 

Treatments Palmitic 

acid 

Mean  ± 

SE 

Stearic 

Acid 

Mean  ± 

SE 

Oleic 

acid 

Mean  ± 

SE 

Linoleic 

acid 

Mean  ± 

SE 

Linolenic 

acid 

Mean  ± 

SE 

Total 

Fatty 

Acids 

Mean  ± 

SE 

Control 366.67 ± 

33.33a 

ND ND 266.67 ± 

33.33a 

933.33 ± 

166.67a 

1566.67 ± 

233.33a 

1x 106 

conidia mL-

1 

466.67 ± 

166.67a 

ND ND 200.00 ± 

0.00a 

566.67 ± 

33.33a 

1233.33 ± 

185.59a 

1x 107 

conidia mL-

1 

300.00 ± 

0.00a 

ND ND 200.00 ± 

0.00a 

733.33 ± 

33.33a 

1233.00 ± 

33.33a 

1x 108 

conidia mL-

1 

400.00 ± 

0.00a   

ND ND 200.00 ± 

0.00a 

833.33 ± 

33.33a 

1433.33 ± 

33.33a 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using Tukey HSD test at P = 0.05 level of significance. n.d denotes 

not detected 
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2.3.7 Chlorophyll  

Generally, the exposure to B. bassiana conidium did not statistically affect chlorophyll 

contents (DF=3, 8; F=2.45; P>0.05; total chlorophyll ug g-1), (DF=3, 8; F=2.26; P=0.05; 

chlorophyll a ug g-1) and (DF=3, 8; F=2.96; P=0.05; chlorophyll b ug g-1), respectively. 

However, the chlorophyll contents were higher at 1 x 108 conidia mL-1 (Table 2.7). 

Table 2.7. Effects of inoculating lettuce plants with different conidial 

concentrations of Beauveria bassiana on total chlorophyll and chlorophyll 

contents a and b (Mean ± SE µg g-1). 

Treatments Total Chlorophyll Chlorophyll a Chlorophyll b  

Control 503.13 ± 36.73a 368.51 ± 28.31a 134.75 ± 8.45a 

1x 106 conidia mL-1 488.93 ± 6.71a 355.16 ± 5.15a 133.89 ± 1.56a 

1x 107 conidia mL-1 520.84 ± 25.97a 381.12 ± 17.63a 139.85 ± 8.38a 

1x 108 conidia mL-1 586.51 ± 31.21a 425.39 ± 22.37a 161.26 ± 8.82a 

Means with the same lowercase letters in the same column are not significantly different 

following comparison using the Tukey HSD at P = 0.05 level of significance. 

2.4 Discussion 

The B. bassiana used in this study induced aphid mean mortalities ranging 2 ± 0.55 - 8 

± 0.17 of 10 insects in the in vitro bioassay, increasing significantly (P<0.001) with 

concentrations and demonstrating that this fungus is pathogenic against aphids (Javed 

et al., 2019; Motholo et al., 2020; Cheong et al., 2020). Beauveria bassiana species 

have been known to be particularly virulent against sap-sucking homoteran because 

they can secrete proteases and chitinases that degrade insect cuticles (Fang et al, 

2009). Also, this study demonstrated that, depending on the concentration, the B. 

bassiana SM3 strain colonized 56 to 76% of lettuce's leaf tissue after six weeks. Despite 

the evidence of successful tissue colonization by the fungus, minimal effects were 
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observed on plants' growth.  However, interestingly, conidial inoculation significantly 

influenced tissue micronutrient contents, carbon tissue content, and antioxidant 

contents.   

The conidial colonization observed in this study could be described as moderate to high. 

The colonization of the plant tissues by a fungus can be influenced by several factors, 

which include the concentration of fungal conidia, age of the plant (Biswas et al., 2012), 

and type of fungal strain selected (Jaber and Ownley, 2018; Moloinyane and Nchu, 

2019). It is worth mentioning that some inoculation methods enhance colonization of the 

plant tissues by an EFP fungus (Muvea et al., 2014). For example, seed inoculation 

produced higher colonization compared with the seedling inoculation in a study by 

Muvea et al. (2014) on the colonization of onion plants by fungal endophytes.  

Plants colonized by endophytic fungus tend to perform better in terms of growth and 

tolerance to biotic and abiotic stresses (Abdelaziz et al., 2017). While the moderate to 

high fungal colonization was observed in this study, the influence of the B. bassiana 

isolate used in this study was observed on plant height and crown size of the plants. 

Moreover, plants that were inoculated with fungus showed increase in length and crown 

size compared to the control plants (P<0.01). This is in agreement with Dash et al. 

(2018) who reported that entomopathogenic fungi such as B. bassiana, Isaria 

fumosorosea, and Lecanicillium lecanii has potential to improve the growth of plants. 

Although the mechanism is not well document, EFP fungi produced siderophores and 

organic acids and can cause some nutrients to be available to the plants (Dash et al., 

2018). However, the B. bassiana isolate used in this study had a minimal effect on frest 

and dry weight of the plant (P>0.05) despite evidence of tissue colonization. Broadly, 

while these results are contrary to the widely held expectations that fungal endophyte 

promotes plant growth, many recent studies have demonstrated that their influence on 

plant growth varies with host and isolates (Moloinyane and Nchu, 2019).  
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Despite the successful colonization of plant tissues, there was no statistical difference in 

tissue macronutrients for most macronutrients measured, i.e., N, P, K, Ca, and Mg.  

Moloinyane and Nchu (2019) reported similar results with the same fungal strain. 

Because N, P, K, Ca, and Mg are important for increased plant growth and biomass 

accumulation, it is therefore not surprising the results in the current showed that the 

fungus had little effect on the plant growth. However, the fungus affected C tissue 

content as it was higher in the control plants compared to plants in the other treatments 

(1 x 106 and 1 x 107), with the exception of the highest concentration of 1x 108 conidial 

mL-1 (Table 2.4a). The high carbon content could be linked to higher amounts of 

structural carbon or carbon-based compounds (Gayler et al., 2008) and increased 

carbohydrate accumulation due to increased photosynthesis (Araya et al., 2010; 

Ainsworth and Bush, 2011). Carbon is an essential element for the photosynthesis 

process (Smith and Stitt, 2007). Carbon is an essential element for the photosynthesis 

process [39]. However, the reason for the lower tissue carbon in treatments 1 x 106 and 

1 x 107 conidia mL-1 is not clear. It is worth-mentioning that carbon is used by fungus for 

hyphal growth (Sun and Liu, 2006). Similarly, nitrogen and carbon are used by an EFP 

fungus as sources for conidia germination and growth (Safavi et al., 2007). 

The trend of the tissue micronutrient contents were quite obvious and interesting, as 

shown in the current results. There were statistical differences (P < 0.05) between 

fungal treated plants and control in three (Mn, Fe, and Cu) of the five micronutrients 

assessed, with control plants having lower levels of Mn, Fe, Cu, and B than fungus 

inoculated plants. Endophytic fungus can synthesize some of these micronutrients and 

improve the uptake of these nutrients (Vergara et al., 2019). While these elements are 

needed in small quantities, they have important physiological roles in plants: Fe is 

needed for the development of chlorophyll in plants (Rout and Sahoo, 2015); B is an 

essential microelement in the metabolism of nucleic acid, carbohydrates and protein 

(Uluisik et al., 2018); Cu plays critical roles in the physiological processes of plant such 

as photosynthesis, respiration, carbohydrate distribution, nitrogen fixation, metabolic of 

protein and antioxidant activity (Ruscitti et al., 2017) and Mn is significant for 
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metabolism and plant development (Schmidt and Husted, 2019). The deficiency or too 

much of these micronutrients can be detrimental to plants (Luciano et al., 2017; Singh et 

al., 2018). For example, Fe deficiency can cause yellowing and chlorosis on new leaves 

and reduces sugar metabolic enzymes (Das et al., 2017). Furthermore, the production 

of secondary metabolites is influenced by the concentration of micronutrients in plants, 

and these micronutrients are needed in small amounts (Luciano et al., 2017; Singh et 

al., 2018).  

Generally, our results showed that inoculating plants with varying conidial concentration 

influenced antioxidant content of L. sativa. Antioxidants play an essential role as an 

inhibitor of reactive oxygen species when plants are under stress whether it is caused 

by abiotic or biotic factors (Hasanuzzaman et al., 2017).  Remarkably, similar to C 

content, antioxidant content was lower among plants inoculated with conidial 

concentrations of 1 x 106 and 1 x 107 compared to control and 1 x 108 and corroborated 

with the results of the antioxidant capacity observed in the TEAC and FRAP assays. It is 

worth-noting that carbon-based secondary metabolites have antioxidant properties 

(Bidart‐Bouzat and Imeh‐Nathaniel, 2008). Nevertheless, the association and dip in both 

antioxidant capacity and tissue carbon in plants exposed to 1 x 106 and 1 x 107 needs 

further investigations. A proximate analysis may help clarify the nature of the carbon in 

the tissue. A study by Chatterjee et al. (2019) suggests that some endophytic fungus 

strains are a source of antioxidants. Future studies on metabolomics may also help 

elucidate the relationship between carbon contents and secondary metabolite 

production. 

The endophytic fungi have capability of producing biochemical metabolites that can be 

exploited in agricultural (Ray et al., 2016; Shahabivand et al., 2017). Based on the 

proximate analysis protein was significantly different (P<0.05). Protein play a pivotal in 

growth of the plants and mediating the antioxidants (Rasheed et al., 2020). However, 

further investigations are needed to determine the types of protein that enhance the 

plant growth. The fatty acids’ contents did not vary significantly (P>0.05) among conidial 

concentrations. 
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The chlorophyll content in plants has been studied as a response to abiotic stress. The 

endophytic fungus is well-known for increasing the plant's tolerance on biotic and abiotic 

factors (Idhan et al., 2018). In this study, the fungus did not influence chlorophyll content 

in plants despite the colonizing them. In the current study some of the key nutrients that 

are responsible for the synthesis chlorophyll were not affected by fungal treatment, 

Previously, Rozpądek et al. (2015) demonstrated that endophytic fungus improve 

chlorophyll content in plants.  

2.5 Conclusion  

The fungus successful colonized the plants that were inoculated. The laboratory results 

showed that the fungus is effective against the M. persicae. There was no evidence on 

that endophytic fungus influencing the fresh and dry weight except the plant height and 

crown size. The phytochemical showed that the fungal inoculation influences the C and 

micronutrients such as Mn, Fe, B, and Cu. Also, the endophytic fungus influenced the 

antioxidants. This study provides the knowledge on endophytic fungus and physiological 

aspect of the plants. 
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Chapter Three 

Evaluating the effect of Beauveria bassiana on secondary metabolite contents 

and green peach aphid (Myzus persicae) infestation level on lettuce (Lactuca 

sativa L.) 

Abstract  

Endophytic fungus could play a crucial role in the protection of food crops against 

phytophagous insects by endophytism and inducing the production of anti-insect 

secondary metabolites in plants. This study's objectives were to assess the effects of 

Beauveria bassiana (Hypocreales) inoculation on secondary metabolites, green peach 

aphid (Myzus persicae) infestation on lettuce plants, and plant volatile compounds, 

especially those with insect repellent properties. In this greenhouse study, two sets of 

potted lettuce plants were inoculated with one of four fungal conidial concentrations: 0, 

1 x 106, 1 x 107, and 1 x 108 conidia mL-1. The first set of plants was used to test the 

effect of B. bassiana inoculation on aphid infestation level on lettuce in meshed boxes. 

The second set of plants was used for assessing the effects of fungal inoculation on 

secondary metabolite contents (volatile and non-volatile compounds). The results 

showed that the fungus did not significantly (P > 0.05) affect insect infestation level. 

However, total polyphenol contents varied significantly with conidial concentrations. The 

flavanol content was not significantly (P > 0.05) affected by the fungal inoculation. GC-

MS analysis detected a wide range of volatile compounds, including limonene and 3-

octanol, which are well-known insect repellents and anti-feedents. The 3-octanol and 

2,4-Di-tert-butyl-phenol were significantly (P<0.01) more concentrated in the fungal 

treated plants than the control plants. In conclusion, B. bassiana inoculation significantly 

affected polyphenol and the quantity of some volatile compounds; however, it did not 

significantly influence flavonol level nor reduce insect infestation levels. 
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3.1 Introduction 

Green peach aphid (Myzus persicae) is among the most devastating pests of agriculture 

and horticulture crops (Davis et al., 2006; Kang et al., 2017; Tian et al., 2017). The 

financial loss caused by this pest is estimated at several billion US dollars per annum 

(Ren et al., 2015). They transmit some highly infectious viral agents to plants. These 

include potato virus y (PVY), mosaic virus, and beet western yellows virus (BWYV) (Lai 

et al., 2017; He et al., 2018; Yoshida and Tamada, 2019). Furthermore, high sums of 

money are spent on their control (Sarwar, 2013), which has mostly relied on the use of 

synthetic insecticide. 

 

Despite advances in synthetic insecticides, it is hard to achieve adequate control of 

green peach aphid. They can reproduce at a relatively fast rate (Madanat et al., 2016; 

Rix et al., 2016). Both females and males can develop wings and disperse to locate new 

host plants when food is scarce (Brisson, 2010). Furthermore, alate aphids are more 

alert to predators and parasitoids (Brisson, 2010). In the past century, the primary 

control method of aphids is chemical, espercially synthetic insecticides, such as 

organophosphates, carbamates, pyrethroids, and neonicotinoids (Foster et al., 2012; 

Silva et al., 2012). However, besides the efficacy challenges due to insecticide 

resistance, insecticides are toxic to the environment and human beings (Bass et al., 

2011; Faraone et al., 2015).   

Consequently, biorational control is gaining ground. Biological control agents, such as 

fungi, have good prospects in managing insect pest populations under field and 

greenhouse conditions, based on published results (Card et al., 2016). However, 

inconsistent stability and efficacy under adverse environmental conditions negatively 

affect their widespread use (Ortiz-Urquiza and Keyhani, 2015). Despite these setbacks, 

entomopathogenic fungi are quite versatile; they have specific characteristics that can 

be exploited to enhance their efficacy against some insects, such as aphids (Mascarin 

and Jaronski, 2016).  Some entomopathogenic fungi are endophytic. They can live in 

the tissues of plants without causing visible symptoms nor damage to the host plants 
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(Kusari et al., 2012). Beauveria bassiana and Clonostachys spp. can successfully 

colonized plant tissues, offering protection against insects and pathogens, and 

enhancing growth (Gurulingappa et al., 2010; Guesmi-Jouini et al., 2014; Bamisile et al., 

2018; Jaber and Ownley, 2018). Also, some entomopathogenic fungi can be easily 

mass-produced and formulated. 

Chemical analysis of plant tissues colonized by endophytic fungi revealed that the fungi 

enhance secondary metabolite contents (Chandra, 2012; Kusari et al., 2012; 

Venugopalan and Srivastava, 2015). Ren and Dai (2012) demonstrated that inoculating 

plants with fungus enhanced Jasmonic acid (JA) and increased the production of 

volatile oil compounds in plant hosts. Beauveria bassiana and Metarhizium robertsii can 

produce volatile organic compounds (VOC) that are insecticidal or repellent (Lozano-

Soria et al., 2020). Nitrosoamide, produced by Muscodor spp., is a classic example of a 

fungal volatile compound that is detrimental to insects (Lozano-Soria et al., 2020). 

Recently, Moloinyane and Nchu (2019) found higher volatile compounds on fungal 

treated grapevines than control, and interestingly, the fungus-treated plants released 

nephtalene, which has repellent and insecticidal properties. Beauveria and Metarhizium 

can produce volatile compounds that have repellent and pesticidal properties, and the 

most known volatile compounds produced by these endophytic fungi are 1‐octen‐3‐ol, 

3‐octanone, and 1‐octene (Khoja et al., 2019). The most known volatile compounds 

produced by these endophytic fungi are 1‐octen‐3‐ol, 3‐octanone, and 1‐octene (Khoja 

et al., 2019). Some species of the genus Beauveria produce toxic metabolites that 

reduce insects' survival or delay pest reproduction (Gurulingappa et al., 2011). Hence, 

endophytic fungi are enticing biocontrol agents (Gange et al., 2019). 

Our hypotheses for this study were: (i) inoculating lettuce plants with B. bassiana will 

positively influence secondary metabolite contents (polyphenol, alkaloid and flavonol) in 

lettuce plants, (ii) lettuce plants inoculated with B. bassiana will emit more volatile 

compounds that are potentially repelling to insects including M. persicae than the 

control treated plants, and (iii) the number of aphids infesting lettuce plants will be 

comparatively lower on B. bassiana-treated plants than on control-treated plants. This 
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chapter's objectives were to assess the effects of B. bassiana inoculation on secondary 

metabolites contents of lettuce and assess the effect of B. bassiana inoculation on M. 

persicae infestation level on lettuce plants in a greenhouse. 

3.2 Materials and methods 

3.2.1 Fungus preparation 

An existing B. bassiana (SM3) strain that was previously isolated from a vineyard and 

identified molecularly by Moloinyane and Nchu (2019) was used in this study. The 

fungus was cultured on a selective medium: half-strength (19.5 g/ 1000 ml) of Potato 

Dextrose Agar (PDA) (Sigma-Aldrich PTY. LTD., South Africa), 0.04 g streptomycin, 

and 0.02 g ampicillin sodium salt.  The PDA was prepared in 9 cm- and 14 cm-diameter 

Petri dishes. Fungal cultures were incubated for three weeks at 25 ± 2 oC in the 

darkness. The mature conidia of B. bassiana were harvested using a sterile spatula and 

transferred into a 50 ml centrifuge tube containing 30 ml sterile water. The tube was 

capped and shaken for 3 min and mixed vigorously for two minutes using a vortex mixer 

(MI0101002D Vortex Mixer) at 3000 rpm to homogenise the conidial suspension. The 

homogenous conidial suspension was transferred into 1000 ml bottles containing 500 

ml sterile distilled water and 0.05% Tween 80 (Polysorbate, Sigma-Aldrich, South 

Africa). The conidia concentration was determined using a haemocytometer (Bright-

Line, Sigma-Aldrich, South Africa) and observed with a light microscope at 400X 

magnification to determine the required concentration of (0, 1x 106, 1x 107, and 1x 108 

conidia mL-1). Germination percentage was assessed on 100 spore count at 40 x 

magnification (Latifian and Rad, 2012). Each plate was replicated four times, and over 

90% germination was observed. 

3.2.2 Plants 

Two week-old lettuce (Lactuca sativa L.; cultivar Green Oak) purchased from Stodels 

Nurseries (Pty) Ltd in Bellville, Western Cape Province, South Africa were used in this 

study. Plants were maintained at the Cape Peninsula University of Technology’s 
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greenhouse in Bellville, South Africa under the following conditions: at 25 ± 2 oC, 60-

80% RH, and 14/10 natural light/ dark regime. 

3.2.3 Aphid rearing  

Green peach aphid M. persicae Sulzer (Homoptera: Aphididae) were reared on Lettuce 

(Lactuca sativa L.; cultivar Green Oak), Cape Peninsula University of Technology 

greenhouse. Aphids were reared on lettuce in a greenhouse with controlled conditions: 

60– 65 % RH, 26 ± 2 oC and 12:12 light: dark (L: D) photoperiod.  

3.2.4 Greenhouse study two 

Research design/greenhouse experiment  

For the greenhouse study, two sets of potted lettuce plants were allocated to one of four 

treatment groups in a randomized complete design. Plants in each treatment group 

were exposed to 1 of four fungal conidial concentrations: 0, 1 x 106, 1 x 107 and 1 x 108 

conidia mL-1. The first set of plants were used to study the effect of fungal inoculation on 

insect infestation. The plants were confined in meshed boxes (with a mesh size of 0.6 

mm) to prevent insects from moving on different treatments. The second set of plants 

was not infested with insects, rather was used for assessing the effects of fungal 

inoculation on secondary metabolite contents. The greenhouse conditions were: 

temperature 27 ± 3 oC, 70 ± 3% relative humidity, and the average light intensity was 

31.77 kilo lux. Two week-old lettuce seedlings were transferred into 15 cm pots 

containing a substrate mix of 25% silica sand, 25% coco peat, 25% perlite, and 25% 

vermiculite. Plants were fed using recommended hydroponics Nutrifeed fertilizer (Starke 

Ayres Pty. Ltd., South Africa) comprising the following ingredients: P (27 mg kg-1), N (65 

mg kg-1), Ca (70 mg kg-1), K (130 mg kg-1), Cu (20 mg kg-1), Mo (10 mg kg-1), Fe (1500 

mg kg-1), Mg (22 mg kg-1), S (75 mg kg-1), B (240 mg kg-1), Mn (240 mg kg-1), and Zn 

(240 mg kg-1). The fertilizer was mixed with sterile distilled water at a concentration of 

10 g/ 5000 ml, and 200 ml was added to each plant once a week. Additionally, each 

plant was watered with distilled water twice a week.  
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Insect infestation 

After 35 days, the plants were infested with 10 adult female aphids using a camel 

hairbrush, and the number of infested plants was counted on the fifth day using 

handheld magnifying lenses to check the number of adult and number of nymphs 

aphids per plant. In each meshed box with a size of 0.6 mm, there were five plants and 

10 adults per plant of M. persicae. The effect of fungal inoculation on insect infestations 

was assessed.  

3.2.5 Sample material 

At the end of the greenhouse experiments, plants that showed successful fungal 

colonization were randomly selected for the analysis of secondary metabolite contents. 

The successful fungal colonization of the tissues was determined using the method 

decribed in Moloinayne and Nchu (2019). Briefly, after 21 days post-treatment, fresh 

leaves were pick-off plants and taken to the laboratory to assess fungal colonization. 

Leaf sections were surfaced sterilized in the following sequence: 0.5% of sodium 

hypochlorite for two minutes, 70% ethanol for two minutes, and then rinsed with sterile 

distilled water for 1 minute.  The sterilized leaf sections were placed on a selective solid 

agar plates made up of potatoes dextrose agar (PDA) half strength of 19.5 g/1000 ml of 

sterile water containing 0.04 g streptomycin and 0.02 g ampicillin sodium salt and were 

incubated at 25 ± 2 oC. Plants were oven-dried at 35 °C for 168 hours and were ground 

into plastic bags. For each treatment, three replicates were prepared. 0.1 g of each of 

the powdered materials from each replicate was transferred into separate centrifuge 

tubes. The samples were extracted with 25 ml of 60% ethanol and placed inside the 

incubator for 24 hours. 

3.2.5.1 Analysis of secondary metabolites on leaves of inoculated plants 

Total alkaloids: The spectroscopic method was used to determine total alkaloids in the 

plant (Fadhil et al., 2007). Briefly, 0.1 g of powdered lettuce leaves were extracted with 

25 mL of 60% ethanol and 40% of sterile distilled water for 24 hours in total darkness, 

centrifuged (4000 x g for 10 min), and the supernatant was used in the assay. 
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Subsequently, two millimetres of the extract supernatant and atropine standard 

solutions were mixed with 12 mL bromocresol green solution and 5 mL sodium 

phosphate buffer. We added 12 mL chloroform was added to the above-mentioned 

solution, and the solution was mixed using a vortex mixer. The spectrometrc 

absorbance at 417 nm and a standard curve of atropine were used to determine the 

concentration of mg atropine equivalent per g dry weight (mg AE/g DW) in the sample.  

 

Total polyphenol: The Folin-Ciocalteu method was used to determine total polyphenol 

content of the crude extracts of leaves (Singleton et al., 1999; Swain & Hillis, 1959). 25 

μL of the crude extract sample was mixed with 125 μL Folin-Ciocalteu reagent (diluted 

1:10 with distilled water) (Merck, South Africa). 100 μL (7.5%) aqueous sodium 

carbonate (Na2CO3) (Sigma-Aldrich, South Africa) was added to each well after 5 min. 

This was followed by the absorbance reading of the solution in the microplates, and 

results are expressed as mg gallic acid equivalents per gram dry weight (mg GAE/g 

DW). 

Total flavonol: The flavonol content was determined using the protocol described by 

Daniels et al. (2015). Quercetin standard concentrations of 0, 5, 10, 20, 40, and 80 mg/L 

in 95% ethanol (Sigma-Aldrich, South Africa) were used. 12.5 μL of the crude sample 

extracts were mixed with 12.5 μL 0.1% hydrochloric acid (HCl) (Merck, South Africa) in 

95% ethanol in the sample wells, and then incubated for 30 min at room temperature. 

The results were expressed as mg quercetin equivalent per g dry weight (mg QE/g 

DW). 

3.2.6 GC-MS analysis 

3.2.6.1 Sample preparation  

Twelve potted plants, three from each fungal treatment, were used for this analysis. 

Only plants that showed fungal colonization among the fungus treated plants were used 

for GC-MS analysis.   
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3.2.6.2 GC-MS Analysis (Headspace) 

The GC-MS method described by Moloinyane and Nchu (2019) was adopted for this 

study. We removed whole leaves from the fresh lettuce plants and freeze-dried them at 

-80 0C (overnight). We crushed the leaves in liquid nitrogen, and transferred 1 g of the 

crushed leaves into a solid-phase microextraction (SPME) vial, and then transferred 2 

ml of 12% ethanol solution (v/v) at pg 3.5 and 3 ml of 20% NaCl in the vial.  The 

samples were mixed vigorously using a vortex mixer. Finally, we analysed the 

headspace of the samples using a Divinylbenzene/Carboxen/Polydimethylsiloxane 

(DVB/CAR/PDMS) SPME fibre (gray).   

3.2.6.3 Chromatographic separation 

We identified and separated the volatile compounds in the lettuce plants using a gas 

chromatograph (6890N, Agilent Technologies Network) coupled to an inert Xl EI/CI 

Mass selective detector (model 5975B, Agilent Technologies Inc., Palo Alto CA). The 

protocol used is described in Moloinyane and Nchu [28]. The GC-MS system used was 

combined to a CTC Analytics PAL autosampler. The volatiles were separated on a polar 

ZB-WAX (30 m, 0.25 mm ID, 0.25 µm film thickness) Zebron 7HG-G007-11 capillary 

column. We used helium as the carrier gas. The flow rate of the helium was maintained 

at 1 mL/min. The injector temperature was 250 °C, with a split ratio of 5:1 and oven 

temperature was timed at 35 °C for 6 min, at a rate of 3 °C/min to 70 °C for 5 min, then 

at 4 °C/min to 120 °C for 1 min, and finally increased to 240 °C at a rate of 20 °C/min 

and maintained for 2.89 min. We operated the mass selective detector in full scan mode 

while maintaining the source, quad, and transfer temperatures at 230 °C, 150 °C, and 

250 °C, respectively. The electron impact mode at ionization energy of the mass 

spectrometer was run below 70 eV, scanning from 35 to 500 m/z. To estimate 

quantities, relative ratios were used and calculated using the expression (peak area/IS 

peak area) × IS concentration (IS = internal standard). A cut-off match quality of at least 

90% for organic volatile compound identities were used. 
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3.2.7 Statistical analysis  

The data collected were secondary metabolites, insect infestation, and volatile 

compounds.  Count data for insect infestation was arcsin square root transformed, and 

then analysed using one-way ANOVA. The post hoc Turkey HSD was performed to 

separate the different means. The data were analyzed using Statistica (TIBCO 

Statistica® 13.3.0 Dell Inc., USA). 

3.3 Results 

3.3.1 Effect of fungus on secondary metabolites  

Generally, there was a significant difference (DF=3, 8; F=15.518; P<0.001) among 

treatments for the total polyphenol contents in plants. The highest total polyphenol 

content was recorded among plants treated with the highest conidial concentration (1x 

108 conidia mL-1)(Table 1). The fungus had no effect on total flavonols (mg/QE/g) at 

(DF=3, 8; F=3.68 P>0.05); however, 1x 108 conidia mL-1 showed the best result (7.46 ± 

0.68 mg QE/g) and 1x 106 conidia mL-1 showed the lowest number (45 ± 0.59 mg QE/g) 

(Table 3.1.) Alkaloids were not detected in the lettuce plants in this study. 

Table 3. 1 Effect of Beauveria  bassiana inoculation on secondary metabolites of 

Lactuca sativa on different treatments. 

Treatments Polyphenols (*Mean 

± SE mg GAE/g) 

Flavonols (*Mean 

± SE mg QE/g)           

Total alkaloids 

Control 65.93 ± 4.22a 7.11  ± 0.63a ND 

1x 106 conidia mL-1 34.98 ± 0.27b 4.45  ± 0.59a ND 

1x 107 conidia mL-

1 

43.21 ± 7.30 b 5.94  ± 0.89a ND 

1x 108 conidia mL-1 71.54 ± 2.94a 7.46  ± 0.68a ND 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using the Tukey HSD test at P = 0.05 level of significance. ND 

denotes not detected. 
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3.3.2 Infestation level of aphid in the greenhouse 

The inoculation of plant with B. bassiana did not significantly affect immature aphids 

infestation (DF=3, 16; F=1.86 P>0.05). Similar results were obtained for the immature 

and the adult aphids (DF=3, 16; F=2.14; P>0.05). But the highest fungal concentration 

(1x 108 conidia mL-1) showed lower infestation by adult aphids, 29.40 ± 0.68 (Table 

3.2). ). Generally, the fungus-inoculated plants showed lower infestation by immature 

aphids compared to control (Table 3.2). 

Table 3. 2 Effect of endophytic fungus (Beauveria bassiana) on the infestation 

level of aphids (Myzus persicae) (Mean ± Se number of insects per plant) in the 

greenhouse. 

Treatments Immature aphids Adults aphids 

Control 51.20 ±  1.71a 33.40 ± 1.21a 

1x 106 conidia mL-1 48.00 ±  1.10a 32.00 ± 1.30a 

1x 107 conidia mL-1 47.40 ±  1.25a 30.80 ± 1.36a 

1x 108 conidia mL-1 48.00 ± 0. 89a 29.40 ± 0.68a 

The same lowercase letters in the same column indicates means ± SE are not 

significantly different using the Tukey HSD test at P = 0.05 level of significance. 

3.3.3 Volatile compounds following GC-MS analysis  

In the current study, diverse volatile compounds were identified following the GC-MS 

analyses in all treatments (Table 3.3). Some well-known insects' repellents and 

semiochemicals, such as limonene, dodacane, hexadene, benzaldehyde, hexadene, 

beta-cyclocitral, aromadendrene, and hexadecenal were detected in plants from all the 

treatments. Interestingly, the quantities of 3-Octanol (DF=3, 8; F=18.94; P<0.01) and 

2,4-Di-tert-butyl-phenol (DF=3,8; F=27.53; P<0.01) were significantly higher in fungal 

treated plants. 
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Table 3. 3 The mean area ratio of volatile compound (mean ±SE) of Lactuca sativa 

after exposure in different fungal concentration. 

Compound volatiles   control 1x 106 

conidia mL-

1 

1x 107  

conidia mL-

1 

1x 108 

conidia 

mL-1 

Dodecane 0.076 ±        

0. 012A 

0.046 ± 

0.022A 

0.067 ± 

0.014A 

0.068 ± 

0.009A 

Limonene 0.018 ± 

0.002A 

0.015 ± 

0.005A 

0.015 ± 

0.006A 

0.018 ± 

0.006A 

Nonanal 0.238 ± 

0.026A 

0.177 ± 

0.019A 

0.188 ± 

0.066A 

0.136 ± 

0.016A 

1,3-Di-tert-butylbenzene  ND ND ND 0.1 ± 

0.001 

Pentacedene 0.032 ± 

0.006A  

0.039 ± 

0.008A 

0.037 ± 

0.008A 

0.034 ± 

0.009A 

Trans,trans_2,4_heptadeina

l  

0.021 ± 

0.002A 

0.021 ± 

0.004A 

0.021 ± 

0.002A 

0.020 ± 

0.004A 

1-Octanol 0.023 

±0.001A 

0.020 ± 

0.003A 

0.024 ± 

0.004A 

0.017 ± 

0.002A 

Benzaldehyde   0.036 ± 

0.012A 

0.053 ± 

0.008A 

0.044 ± 

0.009A 

0.033 ± 

0.008A 

Hexadene 0.036 ±  

0.013A 

0.058 ± 

0.009A 

0.045 ± 

0.010A 

0.033 ± 

0.008A 
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Table 3.3 continues 

Undercanal 0.010  ± 

0.003A 

0.012 ±  

0.004A 

0.006 ±  

0.001A 

0.011 ± 

0.002A 

Ethyl-caprate 0.019 ± 

0.011A 

0.012 ± 

0.004A 

0.008 ± 

0.003A 

0.010 ± 

0.002A 

Beta-cyclocitral  0.029 ± 

0.007A 

0.057 ± 

0.023A 

0.040 ± 

0.019A 

0.045 ±  

0.022A 

Heptadecene 0.015  ± 

0.006A 

0.028 ± 

0.006A 

0.022 ± 

0.006 A 

0.017 ± 

0.006A 

1-Dodecanal 0.054 ± 

0.013A 

0.084 ± 

0.035A 

0.074 ± 

0.035A 

0.091 ± 

0.034A 

Aromadendrene  0.028 ± 

0.004A 

0.019 ± 

0.006A 

0.021 ± 

0.008A 

0.012 ± 

0.004A 

Delta-cadine 0.016 ± 

0.010A 

0.016 ± 

0.008A 

0.011 ± 

0.004A 

0.012 ± 

0.002A 

Ethyl-laurate  0.033 ± 

0.012A 

0.086 ± 

0.054A 

0.034 ± 

0.013A 

0.055 ± 

0.012A 

Pentadecanal-  0.033 ± 

0.012A 

0.086 ± 

0.054A 

0.034 ± 

0.013A 

0.055 ± 

0.012A 

2,6-Dimethylbenzaldehyde 0.135 ± 

0.026A 

0.224 ± 

0.070A 

0.224 ±  

0.089A 

0.180 ± 

0.054A 

Ethyl-linoleate  0.047 ± 

0.018A 

0.295 ± 

0.183A 

0.223 ± 

0.117A 

0.268 ± 

0.106A  
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Table 3.3 continues 

 

Beta-lonone 0.148 ± 

0.022A 

0.202 ± 

0.070A 

0.244 ± 

0.100A 

0.244 ± 

0.072A 

trans-beta-ionone-5,6-

epoxide  

0.040 ± 

0.010A 

0.077 ± 

0.026A 

0.073 ± 

0.035A 

0.055 ±  

0.016A 

Ethyl-myristate  0.030 ± 

0.008A 

0.064 ± 

0.022A 

0.087 ± 

0.042A 

0.063 ±  

0.019A 

Ethyl-decanate 0.010 ±  

0.003A 

0.020 ± 

0.007A 

0.016 ± 

0.006A 

0.024 ± 

0.010A 

(z,z,z)-9,12,15-

octadecatrienoic-acid,-

methyl-e   

0.185 ±  

0.086A 

1.013 ± 

0.499A 

0.600 ± 

0.269A 

0.666 ± 

0.261A 

Hexadecenal 0.018 ±  

0.006A 

0.045 ± 

0.015A 

0.039 ± 

0.012A 

0.036 ± 

0.012A 

Hexadecanol 0.198 ±  

0.084A 

1.060 ±  

0.520A 

0.631 ±  

0.286A 

0.087 ± 

0.040A  

Ethyl-stearate 0.020 ±  

0.006A 

0.053 ±  

0.023A 

0.037 ±  

0.020A 

0.038 ±  

0.015A 

Nonanoic-acid 0.003 ±  

0.000A 

0.004 ±  

0.001A 

0.004 ±  

0.001A 

0.003 ±  

0.000A 

6-Amyl-alpha-pyrone  0.898 ±   

0.142A 

1.331 ±  

1.072A 

0.756 ±  

0.356A 

2.633 ±  

1.030A 
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Table 3.3 continues 

 

Ethyl-palminate 0.896 ±  

0.140A 

2.003 ±  

0.894A 

2.631 ±  

1.029A 

2.217 ±  

0.900A 

Alpha-humelene 0.931 ±  

0.164A 

2.163 ±  

0.861A 

0.763 ±  

0.345AB 

4.088 ±  

0.225B 

Ethyl-9-hexadecenoate  0.055 ±  

0.009A 

0.288 ±  

0.078A 

0.255 ±  

0.092A 

0.363 ±  

0.149A 

2,4-Di-tert-butyl-phenol  0.062 ± 

0.007A 

2.462 ± 

0.352B 

2.801 ± 

0.365B 

3.773 ± 

0.321B 

3-Octanol 0.00A 2.775 ± 

0.237B 

2.801 ± 

0.630B 

3.744 ± 

0.313B 

The same uppercase letters in the same row indicates means ± SE are not significantly 

different following the Tukey HSD test at P = 0.05 level of significance. ND denotes that 

the volatile were not detected. 

3.4 Discussion 

Inoculation of lettuce with B. bassiana conidia had varied influences on secondary 

metabolites. The total polyphenol content was significantly influenced by B. bassiana 

exposure, while the total flavanol content was not affected. It is worth mentioning that 

the total polyphenol content was higher in the plants inoculated with the highest conidial 

concentration of B. bassiana. Similar findings were found in a study by Espinoza et al. 

(2019) that focused on the effect of the same fungal strain on the secondary metabolite 

content of chives. Previously, Song et al. (2017) reported that some endophytic fungal 

strains could increase the synthesis of secondary metabolites such as flavanoids in host 

plants. The role of flavonoids in plants has been studied extensively in plant resistance 

against phytophagous insects (Bentivenha et al., 2018; Hay et al., 2020).  
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In this study three volatile compounds were found in the fungus-treated plants at 

significantly higher levels (P < 0.05) following the GC-MS analysis. Among these volatile 

compounds is a well-known insects' repellent 3-Octanol (Mburu et al., 2013). The other 

volatile compound that was significantly correlated with fungal treatment was 2,4-Di-tert-

butyl-phenol. Although the effect of the higher amounts of these two volatile compounds 

did not translate into a reduction of insect infestation level, volatile compounds can elicit 

repellent and insecticidal activities against some insects. 

Despite the detected positive effect of fungus inoculation on the yield of some 

secondary metabolites, the number of adults and immature insects foraging on the 

lettuce plants were not affected by B. bassiana treatment. This result is different from 

that of Mahmood et al. (2019), which showed a reduction in aphid population and 

delayed fecundity on plants that were inoculated with endophytic fungus B. bassiana. 

Again, just as in plant growth, fungal strain, host plants, and insect species may 

influence endophytes' effects on insect herbivory. These findings suggest highlight the 

complex relationship between secondary metabolites on insect herbivory and foraging.  

Studies that focus on the effect of fungal endophytism on lettuce are scarce. The results 

obtained in this study provide insights on the effects of B. bassiana inoculation on 

secondary metabolite production and aphid infestation on lettuce plants as well as the 

complex yet intriguing endophytic fungus-lettuce-aphid relationship. It would be 

interesting to study the longterm sublethal effects of the fungus on the foraging aphids 

in a future study.    

3.5 Conclusion  

Generally, while B. bassiana inoculation significantly affected total polyphenol content, 

and the quantity of some volatile compounds, but its influence on flavonol level or insect 

infestation levels was not significant. This study provides some insights into the 

endophytic B. bassiana-lettuce-aphid relationship and recommends further studies on 

the chemical characteristics of fungal strains, host plants, and insects.  
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Chapter four 

4.1 General discussion  

Insect control is mostly still based on chemical insecticides that are not environmental 

friendly (Sarwar, 2016; Sparks et al., 2019; Karkanis and Athanassiou, 2020). The 

excessive use of insecticides has led many researchers to find alternative measures to 

control insects (Nardoni et al., 2018). The use of entomopathogenic fungus is gaining 

popularity amongst researchers (Mahmoudi et al., 2018; Lee and Kim, 2019). 

Endophytic fungi do not only protect plants from insects, it also improves plant growth 

(Espinoza et al., 2019; Staffa et al., 2020). These endophytic fungi can colonize the 

plant tissues without causing apparent symptoms to the host plant (Vergara et al., 2017; 

Jaber and Ownley, 2018; Yan et al., 2019). In this study, B. bassiana colonized up to 

76% of the fungus inoculated plants.  

Interestingly, the successful colonization of lettuce tissue by the fungus, in the current 

study, did not favourably influence the macronutrient contents nor fresh and dry weight 

of the plant. Nitrogen, phosphorus, and potassium are essential macronutrients required 

by plants for development (Shin et al., 2005). This insignificant effect of the fungal 

exposure on growth of lettuce could be explained by the minimal effect of the B. 

bassiana inoculation on the tissue macronutrients’ contents. 

Remarkably, B. bassiana induced higher micronutrients in the fungus-treated plants. 

Although these micronutrients are required in small quantities, they do, however, play a 

significant role in synthesis of secondary metabolite production in plants (Dordas, 2008). 

For example, B is a vital microelement that plays a role in the metabolism of nucleic 

acid, carbohydrates, and protein (Uluisik et al., 2018). There were noticeable variations 

in lettuce tissue C (carbon) content with treatments, and 1 x 108 conidia ml-1 recorded 

the highest tissue C content among the fungal treatments (Table 2.4a), with plants in 

the highest conidial concentration yielding the tissue C content. Carbohydrates are 

produced during photosynthesis (Hajihashemi et al., 2018). Moreover, photosynthesis 
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use light, absorb through the chlorophyll, and CO2 to produce carbohydrates 

(Hajihashemi and Sofo, 2018). This study did not find any effect of fungus treatment on 

the chlorophyll contents nor fatty acids. However, these results need further 

interrogating to determine whether the C content is due to structural carbohydrates or 

secondary metabolites. 

Although endophytic fungus may not be detrimental to the host plants, it can influence 

plants' physiology. In this study, antioxidant activities and secondary metabolites in 

lettuce plant extracts were affected by B. bassiana inoculation. Specifically, polyphenols 

and antioxidants activities (FRAP and TEAC) in plant extracts were higher in control, 

and the highest conidial concentration than in moderate conidial treatments. Few 

studies have investigated the effects of endophytes on antioxidant activities and 

secondary metabolites (Rahmawati et al., 2019). Some secondary metabolites triggered 

by endophytic fungus are antiviral, insecticidal, plant growth, and regulatory activities 

(Lee et al., 2017).  

While the B. bassiana strain (SM3) used in this study was pathogenic against M. 

persicae in our laboratory study and could colonise the lettuces' tissue in the 

greenhouse study, it did not reduce aphid infestations. Many factors influence the 

fungus-plant-insect relationship: the ability to colonize tissue varies between strains and 

species (Garrido-Jurado et al., 2017), host plant characteristics in terms of secondary 

metabolites and defense mechanisms varies (Zaynab et al., 2018), and insect 

adaptations varies (Sharma et al., 2020).  An initial increase followed by reduction 

insect infestation levels has been observed in previous studies (Akello and Sikora, 

2012). Since plants normally provide nutrient to endophytes, colonization by fungus may 

lead to an initial drop in important nutrients required by plants, causing stress to plants 

and increasing insect infestation levels (Faeth, 2002).  

In this study, two bioactive volatile compounds, 2,4-Di-tert-butyl-phenol and 3-Octanol, 

were significantly higher in fungal treated lettuce plants than control plants. Some 

endophytic fungi induce volatile compounds in plants (Herrera et al., 2015). This could 
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explain why plants inoculated with conidia showed higher volatile compounds than the 

control plants. However, although the fungus treatment induced a higher number of 

volatile repellent compounds, it did not translate to a reduction in insect infestations.  

This study provides insight into plant, fungus, and insects' interactions, thus filling a 

critical knowledge gap in using fungi as bio-control agents. However, more physiological 

studies are recommended to improve our understanding of the mechanisms through 

which endophytic fungus can reduce insect infestation levels.    

4.2 Recommendations 

Based on the outcomes of this study, the following recommendations are suggested for 

future studies. 

I. The reactive oxygen species (ROS) needs to be assessed to determine whether 

the fungus caused stress to the plant. 

II. The mycotoxins that are produced by the fungus needs to be assessed to find 

out whether they can cause harm to human beings. 

III. Metabolomic studies can help decipher the interactions endophytic 

entomopathogens and host plants 

IV. The inoculation of seeds by endophytic fungus to assess whether the seeds will 

improve colonization when compared to seedlings inoculation. 
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