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ABSTRACT  

Type 2 diabetes mellitus (T2DM) is a global health concern and has shown to be a rising 

public health crisis in Africa.  South Africa, in particular, has shown the highest prevalence of 

the disease with a large percentage of undiagnosed individuals. There is a need for 

intervention strategies that include early detection of at-risk individuals and the prevention of 

disease progression. Although studies have shown a relationship between the occurrence of 

T2DM and genetic and lifestyle factors, it has been suggested that epigenetic mechanisms 

such as DNA methylation contribute to the pathogenesis of T2DM through its association with 

the transcriptional activity of genes. There are however limited studies focussing on the 

genome-wide DNA methylation profiling of diabetic and prediabetic subjects from Africa and 

in particular, South Africa. The aim of the current study therefore was to conduct genome-wide 

DNA methylation in South African subjects with varying glucose tolerance and investigate the 

relationship between the observed DMRs and cardiometabolic risk factors.  

A cross-sectional case-control study design was used to conduct genome-wide DNA 

methylation profiling and lncRNA analysis on the peripheral blood of 48 South African 

individuals from the Bellville South community in the Western Cape. The participants were 

classified according to their glucose tolerance status and comprised 12 participants with 

known diabetes on metformin treatment, 12 screen-detected (newly diagnosed) diabetics, 12 

prediabetics and 12 participants with normal glucose tolerance (NGT). After DNA extraction, 

DNA immunoprecipitation sequencing was used to identify statistically significant differentially 

methylated regions (DMRs) and lncRNA-associated DMRs, followed by gene ontology and 

KEGG pathway analysis. Lastly, the significant DMRs identified were validated by performing 

pyrosequencing of bisulphite converted DNA.  

The study identified several DMRs and functional pathways affected in subjects with 

diabetes and prediabetes. A total of 366 DMRs and 641 lncRNA-associated DMRs were 

observed, of which 63% were hypermethylated and 37% hypomethylated. Gene ontology and 

KEGG pathway analyses identified hypermethylation in cardiovascular processes in screen-

detected diabetic subjects indicating that a decrease in the expression of the associated genes 

may be associated with these functions in diabetes. Furthermore, hypomethylation was 

evident in purine metabolism in the screen-detected diabetic subjects highlighting the risk of 

increased reactive oxygen species production, inflammation and cell damage associated with 

excess uric acid in diabetic individuals. The study also identified DMRs and their functional 

pathways which showed a possible progression from prediabetes to diabetes. 

Hypomethylation of LBP (Lipopolysaccharide Binding Protein) in prediabetic subjects 

suggested that increased expression of this DMR could potentially be used as a biomarker for 
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the progression to diabetes due to its association with increased inflammatory cytokines, 

insulin resistance and beta-cell dysfunction. Furthermore, hypomethylation of the regulation 

of wound healing and blood coagulation and their associated DMRs, SERPINF2 and DMTN, 

was observed in prediabetic subjects. Elevated levels of SERPINF2 (alpha 2-antiplasmin) and 

DMNT (dematin) expression in hyperglycaemic subjects could be used as an indicator of the 

increased risk for cardiovascular disease and red blood cell stability. 

Metformin, which is used as the first line of treatment for T2DM, has been shown to be 

affected by DNA methylation patterns. Hypermethylation of the cytokine-cytokine receptor 

interaction and oxidative phosphorylation pathways in known diabetics on metformin treatment 

suggested that metformin may have an inhibitory effect on complement-mediated 

inflammation and mitochondrial oxidative phosphorylation in diabetic individuals. The cAMP 

signalling pathway was also found to be hypermethylated in metformin-treated subjects which 

suggest the use of DNA methylation as a potential marker to monitor the effects of metformin 

on glucose homeostasis. Furthermore, hypermethylation of the functional pathways and 

DMRs identified in metformin-treated subjects when compared to the untreated screen-

detected subjects were associated with Diabetic Peripheral Neuropathy (DPN).  

Several novel lncRNAs were observed when comparing the lncRNA-associated DMRs 

identified amongst individuals with varying degrees of glucose tolerance. Hypomethylation of 

the complement component C4 was observed in hyperglycaemic subjects suggesting a 

possible association with the cardiometabolic risk factors and complement-mediated 

inflammation associated with T2DM. The lncRNA-associated DMRs observed in metformin-

treated subjects included the mitochondrial ATP synthase-coupling factor 6 (ATP5J) enzyme 

thought to be involved in the oxidative phosphorylation pathway with associations to T2DM 

and hypertension. 

In conclusion, these findings show that DNA methylation patterns differ amongst individuals 

with varying degrees of glucose tolerance within a South African population. Furthermore, the 

study showed that DNA methylation patterns are associated with certain cardiometabolic traits 

and diabetic complications, and could be used as potential biomarkers for the occurrence and 

progression of T2DM. The expression of several DMRs and lncRNA-associated DNA 

methylation regions observed in metformin-treated T2DM may also be potential targets for 

therapeutic monitoring in patients with diabetes. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Background 

The global prevalence of diabetes is growing rapidly and it has been predicted that Africa will 

be one of the regions with the greatest increase in diabetes prevalence (International Diabetes 

Federation, 2019). Type 2 diabetes mellitus (T2DM) in Africa is further characterised by the 

high number of undiagnosed cases as well as a high number of individuals who are at risk of 

developing the condition in the future. Although T2DM has been strongly linked to 

environmental factors, recent genome-wide association studies have shown that genetic 

variation plays a role in an individual’s susceptibility to diabetes. In addition, it has also been 

suggested that epigenetics plays a role in the link between environment and genetic factors 

for many diseases including T2DM (Davegårdh et al., 2018). Despite the large volume of 

reports on the topic of epigenetics, there are limited studies on the clinical utility of these 

genetic factors for the prediction and prevention of T2DM. 

 

The cohort of South Africans from a Bellville South community in this study came from a 

larger study group where the distribution of traditional risk factors did not differ fundamentally 

between diabetic and non-diabetic individuals (Erasmus et al., 2012). Furthermore, additional 

studies showed that the increase in glucose tolerance deterioration over time in the same 

community could not be explained by the known determinants of diabetes such as obesity 

(Matsha et al., 2013). This study, therefore, provided some insight into the epigenetic 

mechanism associated with T2DM within the Bellville South cohort.  

 

The literature review aims to provide an overview of T2DM, its epidemiology and the 

environmental and genetic factors affecting this disorder. Lastly, the review will highlight the 

relationship between T2DM and the epigenetic mechanism of DNA methylation. 

 

 

1.2 Diabetes mellitus 

Diabetes mellitus is a complex multi-organ disease often difficult to predict or cure and can 

be characterised by features such as beta-cell dysfunction, hyperglycaemia, insufficient insulin 

secretion and insulin resistance (Arpón et al., 2019). Diabetes is associated with numerous 
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complications including microvascular and macrovascular complications, increased 

susceptibility to infections and slow wound healing (Berbudi et al., 2019).  Furthermore, the 

global incidence, prevalence, mortality and disability of diabetes has increased over the years 

affecting both public health and social-economic development (Lin et al., 2020). Diabetes is 

ranked as one of the top ten causes of death in the world and together with cardiovascular 

disease, cancer and respiratory disease, it accounts for 80% of death by non-communicable 

diseases (NCDs) (Lin et al., 2020).   Diabetes mellitus is broadly divided into various subtypes 

including type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), gestational 

diabetes mellitus (GDM) and some monogenic diabetes such as maturity-onset diabetes of the 

young (MODY). There are also less common forms of diabetes which include genetic defects 

of insulin action, diseases of the pancreas and diabetes caused by drugs or infection (American 

Diabetes Association, 2019).   

 

 

1.2.1 Type 1 diabetes mellitus (T1DM) 

Globally, T1DM accounts for approximately 5-10% of diabetes cases and is often diagnosed 

in younger individuals (American Diabetes Association, 2020). It is also known as insulin-

dependent diabetes mellitus and occurs due to T-cell mediated autoimmune destruction of the 

pancreatic beta-cells. This leads to a loss of functional beta-cells resulting in insulin 

insufficiency and hyperglycaemia (DiMeglio et al., 2018). Individuals with T1DM therefore 

require insulin therapy. Although genetic predisposition was thought to be the main cause of 

T1DM, it has more recently been suggested that an interplay between environmental factors 

and the microbiome, genome, metabolism and immune systems may play a role in T1DM 

(Rewers and Ludvigsson, 2016).  Even though the condition mainly occurs in childhood or 

adolescence, onset in adulthood has been experienced by individuals and is referred to as 

latent autoimmune diabetes in adults (LADA) (Pozzilli and Pieralice, 2018). The autoimmune 

process in these older individuals appears to be milder with a slower progression of beta-cell 

failure. Since these individuals often do not require insulin therapy at diagnosis, they appear 

to be clinically similar to patients with T2DM (Carlsson, 2019). 
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1.2.2 Gestational diabetes mellitus 

According to the International Diabetes Federation in 2019, 16% of pregnancies, which 

equates to approximately 20 million births worldwide have been affected by gestational 

diabetes mellitus (GDM) (International Diabetes Federation, 2019). Gestational diabetes 

mellitus is defined as impaired glucose tolerance which occurs during pregnancy in women 

without previously diagnosed diabetes and is a result of beta-cell dysfunction and insulin 

resistance during pregnancy (Plows et al., 2018). The risk factors for GDM include obesity, 

advanced maternal age and a family history of diabetes. Furthermore, GDM  may result in an 

increased risk for pregnancy outcomes such as macrosomia (high birth weight), preeclampsia 

and caesarean delivery (Szmuilowicz et al., 2019). Intrauterine exposure to hyperglycaemia is 

associated with consequences such as a predisposition to obesity, metabolic syndrome and 

diabetes later in life for both the mother and the foetus (Kang et al., 2017). With increasing 

rates of obesity among women of child-bearing age, the global prevalence of GDM is expected 

to continue to increase which may further perpetuate the cycle of diabetes between mother 

and child (Zheng et al., 2018).  

 

 

1.2.3 Monogenic diabetes 

Monogenic diabetes such as neonatal diabetes mellitus and MODY which result from a 

single gene is less common and accounts for 1.5-2% of all diabetes cases (International 

Diabetes Federation, 2019; Standl et al., 2019). Neonatal diabetes occurs under 6 months of 

age and may be transient or permanent with some cases requiring insulin therapy (Hattersley 

and Patel, 2017).  Maturity-onset diabetes of the young (MODY)  is characterised by 

hyperglycaemia onset before 25 years and is mostly due to autosomal dominant mutations 

which influence beta-cell dysfunction (Hattersley and Patel, 2017; American Diabetes 

Association, 2020).  

 

 

1.2.4 Type 2 diabetes mellitus 

Type 2 diabetes, the more common type of diabetes mellitus which accounts for 90% of 

diabetes cases globally (American Diabetes Association, 2020), has contributed to the burden 

of mortality and disability worldwide  (Zheng et al., 2018). It is a chronic metabolic disease 

whereby individuals with T2DM are characterised by varying degrees of insulin deficiency in 
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conjunction with insulin resistance (Standl et al., 2019). There is an inability of cells to respond 

to insulin resulting in decreased glucose uptake by skeletal and adipose tissue and increased 

glucose production by the liver resulting in hyperglycaemia (Ling and Rönn, 2019). Initially, 

pancreatic beta-cells compensate by the overproduction and secretion of insulin, however, this 

overproduction and high glucose concentrations may eventually lead to a decrease in beta-

cell mass and function. When the beta-cells can no longer compensate with increased insulin 

secretion, it results in the manifestation of diabetes (Skyler et al., 2017).  

 

Chronic and inadequate glycaemic control in T2DM can lead to long term damage and 

dysfunction of organs such as the eyes, kidneys, heart, blood vessels and liver. These in turn 

can result in renal failure, cardiovascular disease, diabetic foot disorders as well as 

microvascular complications such as retinopathy or neuropathy (Pantalone et al., 2015; Cole 

and Florez, 2020).  Furthermore, the pathophysiology and complications of T2DM may be 

evident up to ten years before clinical diagnosis. The progression of T2DM is depicted in Figure 

1.1, where factors such as increased insulin resistance and declining beta-cell function are 

evident and progressing before diagnosis. Also, the progression shows that microvascular and 

macrovascular complications of T2DM can be evident five to ten years before clinical diagnosis 

(Ali et al., 2017a). Taking the progression of T2DM into consideration as well as the 

complications associated with T2DM, early detection and treatment interventions are of great 

importance in combating the disease.  

 

 

Figure 1.1: The progression of T2DM. The timelines indicate that the presence of complications and 
the effects of T2DM may be evident up to ten years before diagnosis (adapted from Ramlo-Halsted and 
Edelman, 1999) 
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Treatments for T2DM include modification of lifestyle such as dietary intervention, weight 

loss and physical activity as well as glucose-lowering drugs (Kolb and Martin, 2017; Zheng et 

al., 2018). These interventions aim to stabilise glucose levels and thereby reduce or prevent 

diabetes-induced complications (Galicia-Garcia et al., 2020). Oral anti-diabetic medication 

includes among others, Biguanides, Thiazolidinediones, Sulfonylureas and Alpha-glucosidase 

inhibitors which aim to reduce blood glucose levels. This is achieved by either stimulating 

insulin secretion from the pancreas, increasing tissue sensitivity to insulin or by delaying 

glucose absorption from the gastrointestinal tract (Maruthur et al., 2014; Marín-Peñalver et al., 

2016). If blood glucose levels cannot be controlled by oral medication alone, insulin therapy 

may be administered to provide sufficient control (Marín-Peñalver et al., 2016). Lastly, 

education in the form of adequate information about T2DM and training on self-monitoring of 

blood glucose levels could also play a role in the management of the disease (Marín-Peñalver 

et al., 2016). 

 

 

1.2.5 Impaired glucose tolerance and impaired fasting glucose 

Impaired glucose tolerance (IGT) or impaired fasting glucose (IFG), also referred to as 

prediabetes, characterises glucose levels that do not meet the criteria for diabetes but are 

higher than normal. Although not a clinical entity, prediabetes presents an increased risk for 

the development of T2DM as well as cardiovascular disease (Skyler et al., 2017). Individuals 

who have prediabetes are at a 5-12 times higher risk for developing diabetes than the general 

population (Ali et al., 2017a). Prediabetes is a reversible condition and if proper measures are 

taken during this phase, individuals can be spared the long-term complications of diabetes 

(Khan et al., 2019). 

 

When evaluating the different types of diabetes mellitus described, it is evident that T2DM is 

more prevalent. It affects more people globally in comparison to the other types which only 

account for 10% of cases globally. With its effects and complications manifesting years before 

diagnosis and the need for treatment interventions after diagnosis, T2DM is a prime target for 

research to expand on the approaches in addressing this global health concern. These 

reasons have provided the rationale for the current study’s focus on T2DM. 
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1.3 The epidemiology of Type 2 diabetes mellitus 

1.3.1 Global 

Type 2 diabetes mellitus (T2DM) is a global health problem with the number of diabetic 

individuals increasing rapidly due to population growth, ageing, urbanization, increasing 

physical inactivity, and obesity (Guariguata et al., 2014; Cho et al., 2018). The International 

Diabetes Federation (IDF) estimated that worldwide in 2019, there were 463 million people 

with diabetes and that this number is expected to rise to 578 million in 2030 and 700 million in 

2045 (Saeedi et al., 2019). Furthermore, the IDF showed that the global diabetes prevalence 

for the age group 20-79 years was 9.3% in 2019 with an expected increase to 10.9% in 2045. 

This global prevalence showed an increasing trend with age where adults aged 20-24 years 

had the lowest prevalence (1.4%) in 2019 in comparison to adults aged 70-70 years at 19.9% 

who were predicted to be 20.5% in 2045. Also, the estimated prevalence of women (9.0%) 

aged 20-79 years was lower than men (9.6%) in 2019 with expected increases in both genders 

by 2045 (Saeedi et al., 2019). Moreover, there are more people with diabetes living in urban 

areas with a global prevalence of 10.8% when compared to rural areas at 7.2% in 2019 (Saeedi 

et al., 2019). 

 

The prevalence of diabetes matches the socio-economic status of a country with developed 

and high-income regions showing higher prevalence rates  (Khan et al., 2020). The global 

prevalence of diabetes in adults aged 20-79 years according to World Bank income in 2019 

was found to be 10.4% in high-income counties, 9.5% in middle-income counties and 4.0% in 

lower-income counties with an expected increase to 11.9%, 11.8% and 4.7% respectively in 

2045 (Saeedi et al., 2019). This increase could not only be attributed to socio-economic 

changes such as urbanisation but may also be affected by advancements in healthcare which 

improve the life expectancy of individuals with diabetes (Cho et al., 2018). Cho et al (2018) 

further showed that people with diabetes in low- and middle-income counties were 

predominately found to be below the age of 65 years while those in higher-income countries 

were above the working age (Cho et al., 2018).  Although the prevalence of diabetes in low- 

and middle-income countries (LMICs) is less than that of high-income countries, these 

countries are projected to suffer the greatest increase in diabetes prevalence (Guariguata et 

al., 2014). This increase can be attributed to the rapid development and changes in lifestyle in 

developing countries coupled with the slow development of health systems in terms of early 

detection and treatment of diabetes. Furthermore, more than half (50.1%) of the individuals 

worldwide living with diabetes are unaware of their condition. A high proportion of undiagnosed 

diabetes is found in LMICs with the African region showing the highest percentage worldwide 

(Forouhi and Wareham, 2019; Saeedi et al., 2019). 



7 
 

1.3.2 Africa 

According to the IDF, Africa has the highest percentage of people with diabetes (56.7%) 

who are undiagnosed and living unaware of their condition (International Diabetes Federation, 

2019). Furthermore, diabetes prevalence is higher in urban areas (5.9%) than in rural areas 

(2.4%) with the highest prevalence (8.8%) of diabetes being amongst adults aged 65-69 years 

(Mapa-Tassou et al., 2019). The increase in urbanisation, rapid population growth, as well as 

lifestyle changes, are suggested to be responsible for the expected increase of diabetes 

prevalence in Africa from 3.9% in 2019 to an expected 4.4% in 2045 (Goedecke et al., 2017; 

Mapa-Tassou et al., 2019). It has been further projected that while all regions of the world 

would experience an increase in diabetes prevalence, Sub-Saharan Africa (SSA) would 

experience the greatest increase between 2019 and 2045 (Ekoru et al., 2019; Kibirige et al., 

2019). The five African countries with the highest number of people with diabetes include South 

Africa, Nigeria, the Democratic Republic of Congo, Ethiopia and the United Republic of 

Tanzania (see Table 1.1) with South Africa showing the highest number of people with diabetes 

(4.6 million) as well as the highest age-adjusted prevalence at 12.7%  (International Diabetes 

Federation, 2019).   

 

Table 1.1: The top five African counties for the number of people with diabetes in 2019 

 

 

The availability of data on the prevalence of diabetes in SSA is however limited as reported 

by the IDF in 2017. The report showed that more than three-quarters of the African region’s 

countries lacked primary data on diabetes prevalence in adults. Data obtained from the 

countries like South Africa, Ethiopia and the Democratic Republic of Congo with the highest 

Number of people 

with diabetes

Diabetes 

prevalence age-

adjusted

(20-79 years) (20-79 years)

South Africa 4.6 million 12.7

Nigeria 2.7 million 3.1

Democratic Republic 

of Congo
1.8 million 6

Ethiopia 1.7 million 4.3

United Republic of 

Tanzania
1.0 million 5.7

Country
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numbers were limited in the number of data sources and could not be used to accurately 

predict numbers for other African countries (Dessie et al., 2020). Furthermore, Atun et al (2017) 

reported on the absence of reliable data on the prevalence, age of onset and progression of 

diabetes in SSA which has been attributed to limited sample sizes and differences in 

methodologies used to ascertain the diagnosis and biomarkers for diabetes (Atun et al., 2017). 

Although there is evidence that diabetes numbers are increasing within the African region, data 

on the extent of this rise is still limited for a large number of SSA countries. Furthermore, it has 

been shown that the prevalence of undiagnosed diabetes is not consistent in the different 

African countries due to social, economic and genetic differences (Asmelash and Asmelash, 

2019). 

 

 

1.3.3 South Africa 

South Africa has been deemed one of the LMICs where there is an alarming rise in the 

prevalence of diabetes and prediabetes with only a low percentage of individuals being aware 

of their diagnosis (Shen et al., 2016; Mutyambizi et al., 2019). In addition, South Africa has a 

quadruple disease burden which includes high rates of Human immunodeficiency virus 

(HIV)/Acquired Immunodeficiency Syndrome (AIDS) and tuberculosis (TB), poverty-related 

illnesses, non-communicable diseases as well as injury-related disorders. This has resulted in 

some challenges experienced by the health system with health outcomes worse than that of 

many lower-income countries (Coovadia et al., 2009; Pillay-van Wyk et al., 2016). 

 

Although South Africa has been ranked as an upper-middle income country by the World 

Bank (2017), economic and health inequalities exist amongst populations due to the country’s 

history of racial segregation (Pillay-van Wyk et al., 2016). In South Africa, diabetes is 

increasingly common among disadvantaged or previously disadvantaged populations who 

were thought to be at lower risk of such conditions. With the improvement of the political and 

democratic condition in South Africa, the prevalence of diabetes has risen due to factors such 

as an ageing population, urbanisation, increased obesity and physical inactivity amongst these 

populations (Mutyambizi et al., 2019).  For instance, data from a South African study in 2012 

showed that the prevalence of diabetes (28.2%) in a mixed-ancestry population had a twofold 

increase within a decade. Moreover, about two-thirds of those with the disease (18.1%) were 

not aware of their condition, and therefore were not receiving interventions to improve the 

adverse health consequences of diabetes (Erasmus et al., 2012). Peer et al (2012) also 

reported similar trends in individuals of African descent where a substantial increase in 
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diabetes prevalence compared to that of two decades ago was observed. Among the study 

participants with diabetes, only 57.9% were aware of their condition and 38.6% were on 

treatment. Furthermore, the study also revealed an age-adjusted diabetes prevalence of 

13.1% which was amongst the highest in SSA (Peer et al., 2012).  Similarly, a study by Hird et 

al (2016) reported a high age-adjusted prevalence (12.9%) of diabetes in an urban black South 

African population which was more than double the prevalence (5.3%) found in a study 

conducted 30 years earlier in the same region (Omar et al., 1993; Hird et al., 2016). 

Furthermore, the highest prevalence was observed in females over the age of 65 years 

(39.3%) and in males aged 55-64 years (29.0%) with 31,1% of the total participants being 

undiagnosed with diabetes(Hird et al., 2016). The above-mentioned studies confirm the rise of 

the diabetes burden in South Africa, especially amongst the previously disadvantaged 

population groups.  

 

 

1.4 The aetiology of Type 2 diabetes mellitus 

The global rise in the number of individuals with T2DM has been linked to both genetic and 

environmental risk factors (Ronn and Ling, 2015; Zheng et al., 2018). These traditional risk 

factors however do not fully explain the rapid increase in T2DM in African populations. It has 

become evident that epigenetic mechanisms play a role in the gene-environmental interaction 

in T2DM and could provide insight into the pathogenesis of the disease (Ling and Groop, 2009; 

Matsha et al., 2016b; Ling and Rönn, 2019). 

 

 

1.4.1 Environmental factors 

The environmental risk factors for T2DM include both modifiable and non-modifiable risk 

factors. Non-modifiable risk factors include factors such as family history or genetic 

predisposition, age and ethnicity (Boles et al., 2017; Misra and Misra, 2020). For years the 

genetic origin of diabetes has been linked to family history with the risk increasing depending 

on the number of relatives affected or whether it stemmed from the paternal or maternal side 

(Meigs et al., 2000; Lauenborg et al., 2011; Prasad and Groop, 2015). Studies have also shown 

that ethnicity plays a role in the development of T2DM and this has been linked to various 

factors including the differences in socioeconomic status and access to healthcare in less 

developed countries (Shen et al., 2016; Bavuma et al., 2019). Certain ethnicities are more 
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prone to T2DM than others and migration to developed countries is also associated with higher 

risks for T2DM. Globally Asian-Indian immigrants have shown a higher prevalence of T2DM 

compared to Caucasian populations in the United States and Europe (Sattar and Gill, 2015). 

Similarly, studies in Tanzania and South Africa have shown that the frequency of T2DM is 

higher in migrant Asian-Indians when compared to the indigenous African population (Mbanya 

et al., 2010). In addition, the increased risk amongst different ethnicities has also been linked 

to a familial component whereby increased genetic susceptibility to the disease is passed from 

one generation to the next (Unnikrishnan et al., 2017; Galicia-Garcia et al., 2020).  The risk of 

diabetes has also shown to increase with age and studies have shown that higher rates of 

T2DM occur over the age of 45 (Werfalli et al., 2016; Boles et al., 2017). Often this increased 

risk is augmented by slowing metabolism, physical inactivity, obesity and the employing of 

unhealthy lifestyle choices over the years (Shrivastava and Ghorpade, 2014). Since T2DM 

cannot be acted upon by non-modifiable risk factors, most studies have focussed on improving 

the modifiable risk factors (Deepa et al., 2017; Issaka et al., 2018).  

 

Modifiable risk factors which play a role in the development of diabetes include factors such 

as sedentary lifestyle, physical inactivity, smoking, alcohol consumption, obesity, poor diet, 

stress and urbanisation, (Kengne et al., 2013; Wu et al., 2014; Zheng et al., 2018). Within an 

African context, these modifiable risk factors could be extended to broader determinants such 

as cultural, social, environmental and economic influences (Issaka et al., 2018). The extensive 

use of tobacco products and alcohol consumption has been associated with an increased risk 

of developing T2DM (Kolb and Martin, 2017). In African countries, these products have 

contributed to the increased risk of T2DM as alcohol plays a central role in certain cultural, 

traditional and social aspects and smokeless tobacco products are particularly popular due to 

being cheaper than cigarettes (Issaka et al., 2018). Urbanisation and sedentary lifestyles 

coupled with more westernised diets have been implicated as a contributor to T2DM and other 

cardiovascular diseases (Kengne et al., 2013; Kolb and Martin, 2017). Furthermore, these 

factors increase weight, body mass index and visceral fat, further increasing the chances of 

obesity. Obesity influences metabolic abnormalities resulting in insulin resistance and it has 

been shown that approximately 90% of T2DM cases are related to excess body weight, 

therefore making obesity the strongest risk factor for T2DM (Wu et al., 2014; Galicia-Garcia et 

al., 2020). Although obesity, poor diet and lack of exercise increase the susceptibility to T2DM, 

many individuals displaying these risk factors, do not develop T2DM. It is therefore thought 

that T2DM results from an interaction between environmental and genetic factors (Matsha et 

al., 2016a).  
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1.4.2 Genetic Factors 

There have been various approaches in understanding the genetics of T2DM and these 

were based on family-based linkage analysis, candidate gene approach and genome-wide 

association studies (GWAS) (Park, 2011; Muka et al., 2016). Although the heritability for T2DM 

has been estimated to be between 15 and 85%, genetic loci identified to date has only 

explained 5-10% of this heritability (Kwak and Park, 2016; Arpón et al., 2019). Earlier family-

based linkage studies used to identify T2DM susceptibility genes, identified loci associated 

with T2DM such as Calpain 1 (CAPN1) and Transcription Factor 7 Like 2 (TCF7L2) genes. 

These findings were however not consistent across the study population and the high-risk 

regions could not be reliably associated with T2DM (Park, 2011; Grant, 2019). The candidate 

gene approach investigated several candidate genes based on their known biological function. 

Although hundreds of candidate genes were investigated, only a few such as Peroxisome 

proliferator-activated receptor gamma (PPARG), Potassium Inwardly Rectifying Channel 

Subfamily J Member 11 (KCNJ11) and TCF7L2 showed to be associated with T2DM (Park, 

2011; Grant, 2019; Khan et al., 2019). More recently, genome-wide association studies have 

provided a breakthrough in identifying a genetic link to T2DM. It allowed for hundreds of 

thousands of single-nucleotide polymorphisms (SNPs) to be tested for association with T2DM 

in large scale analyses (Morris et al., 2012; Flannick and Florez, 2016). Besides the 

identification of several novel gene loci, known T2DM genes such as PPARG, KCNJ11 and 

TCF7L2 were also confirmed by GWAS (Park, 2011; Prasad and Groop, 2015; Khan et al., 

2019). In 2015, Prasad and Groop indicated that GWAS provided approximately 153 variants 

for T2DM mapping to more than 120 loci as well as several loci for glucose and insulin-related 

traits (see Figure 1.2) (Prasad and Groop, 2015). The majority of known T2DM related genetic 

risk variants were found to be associated with insulin secretion and not insulin resistance 

(Carlsson, 2019).  Chen et al (2019) conducted GWAS in 4347 Africans from South Africa, 

Nigeria, Ghana and Kenya to provide insight into the genetic architecture of T2DM in Africa as 

the 400 risk loci identified to date were from populations of European and Asian ancestry. The 

study identified a novel association signal at AGMO as well as replicated the widely known 

association at TCF7L2 (Chen et al., 2019a).  

 

Although GWAS has aided in identifying a large number of genes related to T2DM, their 

expression cannot specifically predict the risk of T2DM, indicating that there may be other 

factors involved in the development of T2DM. It has also been shown that genetically identical 

twins exposed to different environmental factors while growing up display different 

susceptibilities to T2DM (Tan et al., 2013; Wu et al., 2014). These findings indicate that genetic 

predisposition may not be the only factor contributing to T2DM. Furthermore, the increased 
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prevalence of T2DM over the last decades cannot be explained by genetics alone as it is 

unlikely that the human genome has changed during this short period (Jin et al., 2019). Unlike 

single-gene disorders whose expression is affected by a mutation at one gene locus, the 

disease expression of T2DM is dependent on many gene loci with varying effects (Lyssenko 

and Laakso, 2013; Flannick and Florez, 2016). As T2DM is a multifactorial disease, the 

predisposition to the disease could be as a result of a combination of genetic variants and 

environmental factors which limits the use of these genes for the prediction and prevention of 

T2DM.  This leads to the thought that epigenetic mechanisms may be a vital interface between 

genetic predisposition and environmental factors in the development of T2DM  (Ronn and Ling, 

2015; Jin et al., 2019). 

 

 

Figure 1.2: The T2DM and glycaemic trait-associated variants. Gene names are used to represent the 
variants that may either be located in the gene or the vicinity of the gene. The black circle represents 
the variants only associated with T2DM. The overlapping circles show additional associations for that 
variant. For example, TCF7L2, KCNQ1, MTNR1B, HNF18, GCKR, C2CD4A/B and ADCY5 ANK1 (in 
the brown circle) are associated with T2DM and with beta-cell dysfunction. In addition to T2DM, a variant 
of ADCY5 is associated with 2-hour insulin adjusted for 2-hour glucose and 2-hour glucose. Also, 
variants of TMEM163 are associated with T2DM and fasting insulin and TCFL2 is associated with fasting 
and 2-hour glucose (Prasad and Groop, 2015) 
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1.5 Epigenetics in diabetes mellitus 

1.5.1 Epigenetics 

Epigenetics is the study of heritable changes in gene expression or cellular phenotype 

without changing the primary nucleotide sequence. These changes can survive cell division 

and may be passed from one cell generation to the next  (Liyanage et al., 2014; Martínez et 

al., 2014; Ling and Rönn, 2019). Essentially, gene expressions start with the transcription of 

DNA into RNA followed by the translation into proteins. Epigenetic changes can either increase 

or inhibit transcription and thereby affect the expression of genes (Arpón et al., 2019). All cells 

in the body have the same genetic content but with individual or distinct epigenomes. 

Epigenomes are influenced by factors such as diet, chemical exposure and medication; and 

the accumulation of these environmental changes may affect individuals differently throughout 

the ageing process (Arpón et al., 2019). This explains why identical twins who start with the 

same genome may experience differences in their susceptibility to disease (Nilsson et al., 

2014b). 

 

Characteristic features of epigenetic change are that it is reversible and adaptable, meaning 

that it can be altered by environmental factors. Although epigenetic changes are part of normal 

development, they can lead to disease. This makes epigenetic markers a possible therapeutic 

target and diagnostic indicator for the risk and prognosis of disease (Kelly et al., 2012; Kwak 

and Park, 2016).  

 

The major epigenetic modifications have been classified to include cytosine methylation of 

DNA (DNA methylation), histone post-translational modifications (PTMs), and non-coding 

RNAs (ncRNAs) (Reddy and Natarajan, 2015).  

 

 

1.5.2 Histone modifications 

Chromatin is made up of a complex of chromosomal DNA wrapped around core histones 

(proteins) and is considered to be the major site affected by epigenetic changes (Wegner et 

al., 2014; Martire and Banaszynski, 2020).  Although the core histones are densely packed 

(Figure 1.3), they can be modified by histone-modifying enzymes resulting in acetylation, 

methylation, phosphorylation, sumoylation or ubiquitination. The families of enzymes involved 

include histone deacetylases (HDACs), K-acetyltransferases (KATs), K-methyltransferases 
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(KMTs), and K-demethylases (KDMs) (Pons et al., 2009; Dayeh et al., 2014; Costantino et al., 

2019).  These modifications determine the accessibility of the DNA for transcription and could 

result in the activation or suppression of special genes (Ling and Groop, 2009; Gilbert and Liu, 

2012; Al-Haddad et al., 2016). Post-translational modification of histones therefore plays an 

important epigenetic role in maintaining cellular transcriptional patterns (Sun et al., 2017). New 

techniques have made it easier to analyse histone modifications on a genome-wide scale and 

these may be useful when studying the impact of epigenetics on the pathogenesis of T2DM 

(Reddy and Natarajan, 2015; Sun et al., 2017; Zhang and Pollin, 2018). Recent studies have 

shown that histone modifications, especially acetylation and methylation modifications, seem 

to play a role in the pathobiology of Diabetic Kidney Disease (DKD). Histone modifications 

were shown to influence the progression of renal fibrosis of DKD through regulating the 

expression of extracellular matrix proteins (Sun et al., 2017; Ling and Rönn, 2019).   

 

Figure 1.3: An overview of histone modifications. (A) Chromosomal DNA is packaged around histone 
proteins to form nucleosomes. Post-translational modifications of histone tails which include 
phosphorylation, ubiquitination, acetylation (Ac) and methylation are responsible for regulating the 
opening of nucleosomes and their accessibility to nuclear factors. (B) Acetylation reactions on lysine 
residues by histone acetyl-transferase (HAT) result in chromatin having a less condensed or more open 
chromatin formation which favours transcription. In contrast, deacetylation reactions by histone 
deacetylase (HDAC) result in a more compact or closed chromatin structure which may prevent DNA 
transcription (Adapted from Lakshmaiah et al., 2014; Coco et al., 2019)  
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1.5.3  Non-coding RNAs 

Non-coding RNAs (ncRNAs) play a role in the post-translational regulation of transcription 

and are broadly classified according to their size as small ncRNAs (<200 nucleotides) or long 

ncRNAs (200bp) (Coco et al., 2019). In terms of their function, ncRNAs can be grouped in 

constitutive housekeeping molecules, for example, ribosomal (rRNA) and transfer (tRNA) 

RNAs as well as regulatory molecules such as micro (miRNA) and long non-coding (lncRNA) 

RNAs. Of these molecules, miRNA are the most extensively studied (Mukherjee et al., 2015; 

Coco et al., 2019). 

 

 

1.5.3.1 MicroRNA 

MicroRNA (miRNA) are small non-coding RNAs of approximately 20-25 nucleotides in 

length and are involved in several diverse biological functions including proliferation, 

differentiation, apoptosis and metabolic functioning (Gilbert and Liu, 2012; O ’Connell and 

Markunas, 2016). They have shown to play a significant role in gene regulation by acting as 

repressors as well as activators, mainly at the post-transcriptional level (Olivieri et al., 2013; 

Witkowski et al., 2018). MicroRNAs circulate in the bloodstream in a remarkably stable form 

and have been reported to be minimally invasive, reproducible and consistent amongst 

individuals as well as inexpensive biomarkers of complex processes like age-related diseases 

including T2DM and its complications (Olivieri et al., 2013; O ’Connell and Markunas, 2016; 

Vasu et al., 2019). 

 

 

1.5.3.2 Long non-coding RNAs 

Long non-coding RNAs (lncRNAs) are transcription products greater than 200 nucleotides 

with limited protein function (Huang et al., 2020). They exhibit tissue-specific expression and 

have the ability to fold into complex secondary and tertiary structures which interact with 

various molecules such as DNA, RNA and proteins and participate in numerous regulatory 

networks (Rinn and Chang, 2012; Coco et al., 2019). It is through these interactions that 

lncRNAs play a role in the regulation of gene expression at the epigenetic, transcriptional and 

post-transcriptional level (Zhang et al., 2019). The functions of lncRNAs include acting as a 

signal, decoy, scaffold, guide, enhancer RNAs and short peptides (see Figure 1.4) (Fang and 

Fullwood, 2016). Signal lncRNAs function as a molecular signal to regulate transcription in 
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response to stimuli and their presence can serve as an indicator of transcriptional activity (Li 

et al., 2016a). Decoy lncRNAs limit the availability of regulatory factors like transcription 

factors, catalytic proteins and miRNA by binding and sequestering these factors and thereby 

limiting their function (Lin et al., 2018). Scaffold lncRNAs provide platforms for the assembly 

of multiple-component complexes such as ribonucleoprotein (RNP) complexes which could 

either result in transcriptional repression or activation whereas guide lncRNAs play a role in 

the localisation of RPNs by directing them to specific target genes (Fang and Fullwood, 2016). 

Enhancer RNAs (eRNAs) influence the chromatin interactions and may tether the interacting 

proteins to enhancer regions (Malik and Feng, 2016). Lastly, lncRNAs can encode functional 

small peptides involved in cellular functions (Lin et al., 2018). 

 

 

Figure 1.4: The function of long non-coding RNAs (lncRNAs). Long non-coding RNAs regulate gene 
expression in several ways including the following: (1) LncRNAs interact with transcriptional activators 
leading to target gene activation. (2) LncRNAs can mediate transcriptional repression by acting as a 
decoy to withhold transcriptional activators from chromatin. (3) Enhancer lncRNAs recruits lineage-
specific complexes and regulates signalling. (4) LncRNAs may function as scaffolding proteins by 
recruiting chromatin remodelling complexes such as Polycomb Repressive Complexes 1 and 2 (PCR1 
and PCR2). (5) LncRNAs may either interact with splicing factors or bind the splicing junctions of pre-
mRNA and thereby regulate RNA splicing. (6) LncRNAs can act as molecular sponges by possessing 
the binding sites for miRNA and occupy their mRNA targets (Malik and Feng, 2016) 
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LncRNAs were initially viewed as ‘junk genes’ lacking coding capacity, however further 

studies revealed their importance in human diseases (Fang and Fullwood, 2016; Pengyu et 

al., 2020). Due to their impact on biological and pathologic processes, lncRNAs have been 

linked to numerous diseases including cancers, neurodegeneration, autoimmune disease and 

metabolic disorders (Xu et al., 2020). Although fairly limited, studies show that lncRNAs may 

play a role in the therapeutic and diagnostic management of diabetes due to the involvement 

of lncRNAs in the regulatory processes and complications of  T2DM (Leti and DiStefano, 2017; 

Sathishkumar et al., 2018). One study showed increased levels of lncRNAs in T2DM patients, 

including HOTAIR, MEG3, LET, MALAT1, MIAT, CDKN2BAS1/ANRIL, XIST, PANDA, GAS5, 

Linc-p21, ENST00000550337.1, PLUTO, NBR2THRIL, and SALRNA1. The majority of these 

lncRNAs were involved in cell cycle regulation and senescence with their expression levels 

correlating to poor glycaemic control, insulin resistance, and inflammation (Sathishkumar et 

al., 2018). Another study demonstrated that H19, a lncRNA expressed abundantly in skeletal 

muscle but with decreased expression in insulin-resistant rodents and T2DM individuals, 

functions to control or modulate DNA methylation by inhibiting S-adenosylhomocysteine 

hydrolase (SAHH) (Geng et al., 2018). Pengyu et al (2020) investigated the differentially 

expressed lncRNAs in T2DM patients when compared to non-diseased subjects and found 68 

763 significantly up-regulated lncRNAs. In addition, gene ontology (GO) and KEGG pathway 

analyses revealed lncRNAs mainly involved in the phagocytic signalling pathway (Pengyu et 

al., 2020). Chang et al (2020) showed that higher levels of the lncRNA MEG3 were evident in 

peripheral blood mononuclear cells of diabetic patients with vascular complications when 

compared to diabetic patients with no vascular complications and the healthy control group. 

Also, MEG3 was positively correlated with HbA1c indicating that abnormal expression of 

MEG3 may be related to high glucose levels. The study highlighted the use of MEG3 

upregulation as a prognostic tool in T2DM patients with vascular complications (Chang et al., 

2020).  Using a mouse cell model, Takahashi et al (2019) showed the role of lncRNAs by 

looking at the glucoregulatory effects of metformin on skeletal muscle cells. Metformin 

treatment reduced the expression of the lncRNA, Dreh, which in turn enabled glucose uptake 

via the increased expression of glucose 4 transporter (GLUT4) on the cell surface of skeletal 

muscle cells. The study identified Dreh as a new lncRNA with a role in glucose metabolism as 

well as a potential therapeutic target for diabetes (Takahashi et al., 2019). 

 

It has been suggested that the expression of lncRNAs vary in healthy and diabetic subjects 

and could be used as diagnostic biomarkers for T2DM (He et al., 2017). This was evident in a 

study where the lncRNA, GAS5 was highlighted as a potential prognostic biomarker as its 

expression could be used to distinguish between diabetic and non-diabetic patient samples 

(Carter et al., 2015). In addition to being easy to extract and detect with greater specificity in 
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comparison to proteins, lncRNAs expression is tissue and cell-specific in humans (He et al., 

2017). This makes the use of lncRNAs as potential T2DM biomarkers and targets for drug 

research promising. Furthermore, a large number of lncRNAs have not been well-

characterised in terms of their role in the pathogenesis of T2DM as well as a therapeutic 

intervention and therefore, lncRNAs and their relationship to diabetes warrants further 

investigation.  

 

 

1.5.4 DNA methylation 

1.5.4.1 Mechanism of DNA methylation 

DNA methylation is the biochemical reaction whereby a methyl group (-CH3) is transferred 

from S-adenyl methionine (SAM) through DNA methyltransferases (DNMTs) to the 5’ position 

of cytosine, forming 5-methylcytosine (5-mC) (Gilbert and Liu, 2012; Moore et al., 2012; 

Samblas et al., 2019). In mammals, the targets of DNA methylation are CpG dinucleotides 

(cytosine and guanine separated by phosphate) which can cluster together as repetitive 

sequences called CpG islands (CpGI), found in the gene promoter regions (Jones, 2012; 

Mahna et al., 2018). Sequences in the genome can be divided into CpG poor regions and CpG 

islands. The intergenic and the intronic regions of the genome is considered to be CpG poor. 

In humans, most of the CpG dinucleotides are methylated whereas the CpG islands are on 

average 1000bp long, usually unmethylated and associated with active gene expression 

(Deaton and Bird, 2011; Rao et al., 2018). Once methylated, CpG island promoters are 

associated with gene repression (Liyanage et al., 2014; Du et al., 2015). Where 

hypermethylation of promoter CpG islands can result in suppression of gene expression, 

hypomethylation is associated with the transcriptional activation of affected genes (Pasquier 

et al., 2015). 

 

DNA methylation can be catalysed by three DNA methyltransferase enzymes (DNMTs) 

namely DNMT1, DNMT3a and DNMT3b. The DNMTs are essential for establishing DNA 

methylation patterns in early development as well as methylation maintenance. The de novo 

methyltransferases,  DNMT3a and DNMT3b establish methylation in previously unmethylated 

cytosines, while  DNMT1 maintains a state of methylation, by copying methylation patterns 

from parent to daughter strands (Bansal and Pinney, 2017; Bridgeman et al., 2018). It has also 

been observed that 5-mC can be oxidised to 5-hydroxymethylcytosine (5-hmC) and further to 

5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by a family of dioxygenases named Ten-

eleven translocation (TETs) (Tan and Shi, 2012; López et al., 2017). Initially, the conversion 
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from 5-mC to 5-hmC was considered the first step in the DNA methylation pathway, however 

more recent studies have highlighted 5-hmC as an epigenetic marker with its own distinct 

regulatory functions (Li et al., 2017; López et al., 2017). 

 

DNA methylation plays a role in several processes such as gene imprinting, embryonic 

development, genomic stability, X-chromosome gene silencing and regulation of gene 

expression (Miranda and Jones, 2007; Moore et al., 2012; De Mello et al., 2014; Docherty et 

al., 2014; Jin and Liu, 2018). In addition, DNA methylation has also been associated with 

transcriptional silencing (Jones, 2012; Ponnaluri et al., 2017). For transcription to take place, 

the promoter regions of genes should be accessible to transcription factors. DNA methylation 

can however block the binding of transcription factors and thereby affect gene expression (see 

Figure 1.5) (Bansal and Pinney, 2017). Besides the direct inhibition of transcription factor 

binding, DNA methylation can also recruit methyl DNA binding domains (MBDs) proteins that 

specifically bind to methylated CpGs. This MBD family of proteins involved in transcriptional 

repression include MBD1, MBD2, MBD3, MBD4 and methyl-CpG-binding protein 2 (MeCP2) 

(Du et al., 2015). 

 

 

Figure 1.5: Methylated and unmethylated CpGs at gene promoter sites. (A) DNA methylation is 
facilitated by the adding of a methyl group to the carbon-5-position of cytosine with the aid of DNA 
methyltransferase (DMNT) enzymes in CpG islands. (B) Methylation of CpG islands may silence genes 
by preventing the binding of transcription factors to the promoter resulting in no transcription taking 
place. (C) Transcription may be enhanced by no or reduced methylation at the promoter regions of CpG 
islands, thereby allowing gene expression. (Mukherjee et al., 2015; Bansal and Pinney, 2017) 
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1.5.4.2 DNA methylation and disease 

Regulated DNA methylation is needed for normal development and plays an important role 

in tissue-specific gene regulation and transcription throughout life. DNA methylation can, 

however, be affected by genetic, environmental and lifestyle factors and thereby impact the 

development of diseases (Breitling et al., 2011; Rakyan et al., 2012; Dhingra et al., 2018; Liu 

et al., 2018). Changes in DNA methylation have been associated with certain pathologic 

conditions such as cancer, cardiovascular disease, infections and autoimmune diseases 

(Estellar, 2008; Bierne et al., 2012; Dang et al., 2013; Dayeh et al., 2014; Pasquier et al., 2015). 

Aberrant DNA methylation patterns are apparent in most human cancers and it has been 

shown that DNA hypermethylation leads to transcriptional suppression whereas global 

hypomethylation in gene bodies, intergenic regions as well as repetitive sequences can lead 

to genomic instability and altered gene expression (Kelly et al., 2010; Pan et al., 2018).  

Moreover, these changes in DNA methylation play a role in tumour development, the 

proliferation of cancer and metastasis as well as a potential biomarker for cancer diagnosis 

(Jin and Liu, 2018). Similarly, abnormal changes in DNA methylation affect the normal 

functioning of the immune system and play a role in autoimmune diseases. An example of 

such abnormal changes is the hypermethylation at gene regions, CCR6 and SPTBN1, in blood 

cells or synovial fibroblasts which are associated with rheumatoid arthritis (Ehrlich, 2019). 

Evidence has also suggested that DNA methylation is involved in the development and 

progression of diabetes (Dayeh et al., 2014; Van Otterdijk et al., 2017; Davegårdh et al., 2018; 

Ahmed et al., 2020). It has been proposed that the transcriptional activity of genes affected by 

epigenetic modifications may contribute to the T2DM phenotype, including the response to 

anti-diabetic agents and the occurrence of diabetes complications (Raciti et al., 2015; Bansal 

and Pinney, 2017). Epigenetics may, therefore, explain how environmental factors contribute 

to T2DM at the genomic level as well as provide information on the variance in T2DM 

susceptibility amongst individuals (Prasad and Groop, 2015).  

 

 

1.5.4.3 DNA methylation in T2DM 

Several human studies have shown evidence for associations between DNA methylation 

and T2DM. For instance, Kuroda et al (2009) showed in mouse and human studies using 

pancreatic beta cells that CpG methylation affected beta-cell maturation and insulin gene 

expression. Demethylation of the mouse insulin 2 gene and the human insulin gene promoters 

were found in insulin-producing cells and DNA methylation resulted in the suppression of 

insulin reporter gene activity (Kuroda et al., 2009). In a study by Ling et al (2008), a two-fold 
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increase in DNA methylation of PPARGC1A gene promoter was detected when comparing 

pancreatic islets of ten T2DM patients and nine control subjects showing that epigenetic factors 

affected PPARGC1A expression and insulin secretion (Ling et al., 2008). Another study by 

Ribel-Madsen et al (2012) showed methylation changes in promoter regions of genes related 

to T2DM and included PPARGC1A in muscle and HNF4A in adipose tissue (Ribel-Madsen et 

al., 2012). Yang et al (2012) showed that DNA methylation was increased in the PDX-

1(pancreatic and duodenal homeobox 1) promoter and enhancer regions in islets from nine 

T2DM patients when compared with 55 non-diabetic individuals. The increased DNA 

methylation was associated with decreased PDX-1 expression. Additionally, the study showed 

that hyperglycaemia decreased gene expression and increased DNA methylation of PDX-1 as 

the glycated haemoglobin (HbA1C) correlated negatively with mRNA expression and positively 

with DNA methylation (Yang et al., 2012). Dayeh and co-workers showed that regions closer 

to the transcription start site (TSS) displayed low levels of methylation whereas the regions 

further away from the TSS showed higher levels of methylation. They identified 853 

differentially methylated regions including TCF7L2, FTO, KCNQ1 of which 102 including 

CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2DM islets. Many 

of these differentially expressed genes are involved in the production and release of insulin 

(Dayeh et al., 2014). Furthermore in a study reported by Volkmar and co-workers in 2012 who 

used the pancreatic islets of five individuals with T2DM, 276 differentially methylated regions 

(DMRs) were identified of which 96% located in the promoter region were hypomethylated. 

The DMRs were associated with beta-cell function, cell death and adaption to metabolic stress 

(Volkmar et al., 2012). In 2013, Dayeh et al found that 19 of 40 T2DM associated SNPs 

introduced or removed CpG sites and all the CpG-SNPs were associated with differential DNA 

methylation of the CpG-SNP site. Moreover, CpG-SNPs of TCF7L2, KCNQ1, CDKN2A, 

ADCY5, WFS1 and HMGA2 were also associated with DNA methylation of surrounding CpG 

sites (Dayeh et al., 2013). Hall et al studied DNA methylation in human pancreatic islets from 

13 donors treated with palmitate in comparison to non-treated cells. The study showed that 

palmitate treatment affected the DNA methylation pattern in human islets and 290 genes, 

including TCF7L2 and GLIS3, showed altered gene expression and changes in DNA 

methylation levels which may contribute to impaired insulin secretion and T2DM (Hall et al., 

2014).  Van Otterdijk et al (2017) studied the role of DNA methylation as a biomarker for T2DM 

and metabolic syndrome in peripheral blood leukocytes from 25 T2DM individuals when 

compared to 11 healthy control subjects. Amongst others, hypermethylation of the PPARG 

gene was observed which is known to affect insulin sensitivity as well as hypomethylation of 

the PDK4 gene which may affect the regulation of glucose metabolism and mitochondrial 

function (Van Otterdijk et al., 2017). Ortiz et al (2018) observed that higher methylation of 

FKBP5 in 43 T2DM individuals was associated with risk factors for metabolic syndrome and 

cardiovascular disease. DNA methylation of FKBP5 was associated with higher levels of 
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HbA1c, LDL-cholesterol,  BMI (body mass index) and waist circumference indicating that DNA 

methylation could be used as a marker of cardiovascular risk in T2DM (Ortiz et al., 2018). 

Similar findings were observed by Willmer et al (2020) where hypermethylation of FKBP5 was 

observed in obese South African women when compared to those with normal weight. 

Hypermethylation of FKBP5 correlated with adiposity (BMI and waist circumference), insulin 

resistance and systemic inflammation (Willmer et al., 2020). In another South African study, 

genome-wide DNA methylation was performed on three prediabetic, three diabetic and three 

normoglycaemic subjects and showed altered DNA methylation patterns in genes related to 

the immune system, signal transduction, glucose transport and pancreas development in both 

prediabetic and diabetic subjects (Matsha et al., 2016a). Pheiffer et al (2016) conducted a 

study using peripheral blood DNA from the same South African cohort as Matsha et al (2016) 

and showed increased DNA methylation in intergenic regions when compared to gene bodies 

and promoter regions. Furthermore, 3 081 of the differentially methylated regions identified 

were associated with miRNAs, including miR-9, miR-34, miR-124 and miR1297 which have 

been linked to T2DM (Pheiffer et al., 2016). Matsha et al (2016) also studied global DNA 

methylation in a South African mixed ancestry cohort and investigated the relationship with 

diabetes and polymorphisms in genes involved in DNA methylation and folate metabolism. 

They found global methylation to be higher in prediabetes and newly diagnosed diabetes when 

compared to the participants with normal glucose tolerance and in newly diagnosed diabetes 

when compared to diabetics on treatment. The increased global DNA methylation was 

associated with the NOS3 gene polymorphism G894T which indicated that vascular 

complications could develop in T2DM despite glycaemic control (Matsha et al., 2016b). 

Although DNA methylation is the most extensively investigated epigenetic modification, 

genome-wide DNA methylation profiling in individuals with T2DM warrants further 

investigations. 

 

 

1.5.4.4 DNA methylation and antidiabetic therapy 

1.5.4.4.1 Metformin 

Metformin, an oral anti-diabetic biguanide drug with minimal side effects, is considered the 

first line of treatment in the management of T2DM (Zhou et al., 2018; Yendapally et al., 2020). 

It can increase insulin sensitivity, reduce hepatic gluconeogenesis, maintain beta-cell function 

and enhance peripheral glucose uptake resulting in lowered blood glucose (Priya and Kalra, 

2018). Metformin’s action includes promoting the phosphorylation and activation of AMP-

activated protein kinase (AMPK) which results in the inhibition of gluconeogenic genes (He 

and Wondisford, 2015). In addition to glucose metabolism, AMPK activation impacts other 



23 
 

pathways such as lipid metabolism, mitochondrial biogenesis, autophagy, cell growth and 

circadian rhythm (Bridgeman et al., 2018).  

 

Figure 1.6 depicts the various mechanisms identified for the action of metformin in hepatic 

gluconeogenesis and glucose production. Metformin is transported into hepatocytes through 

organic cation transporter 1 (OCT1) encoded by the SLC22A1 gene (García-Calzón et al., 

2017). Once inside the cells, it can indirectly activate AMPK through the inhibition of the 

mitochondrial respiratory-chain complex 1 resulting in the depletion of ATP and an increase in 

AMP levels (Foretz et al., 2019). The change in the AMP:ATP ratio causes the phosphorylation 

of AMPK by liver kinase B1 (LKB1) which activates AMPK. This activation in turn can inhibit 

gluconeogenic gene expression (He and Wondisford, 2015). Gluconeogenesis, which requires 

six ATP equivalents per molecule of glucose synthesised, is affected by the deficit of ATP. 

Furthermore, the elevated levels of AMP inhibit glucose production through its inhibition of the 

key gluconeogenic enzyme, fructose-1, 6-bisphosphatase (FBPase) (Foretz et al., 2014). The 

elevated AMP levels also inhibit adenylate cyclase which decreases cyclic AMP (cAMP) 

synthesis and protein kinase A (PKA) activity. Gluconeogenesis is therefore suppressed by 

both the decrease in gluconeogenic enzyme activity and the inhibition of gluconeogenic gene 

expression (Foretz et al., 2019). The metformin-induced activation of AMPK also inhibits 

lipogenesis through inhibitory phosphorylation of acetyl-CoA carboxylase (ACC) which 

decreases the synthesis of malonyl-CoA and stimulates fatty acid oxidation. Over time, this 

AMPK activation decreases hepatic steatosis and leads to improved insulin resistance and 

hyperglycaemia (Li et al., 2018a; Foretz et al., 2019). Metformin also suppresses 

gluconeogenesis through the direct inhibition of the mitochondrial glycerolphosphate 

dehydrogenase (mGPD) enzyme involved in the glycerol-phosphate shuttle. This inhibition 

disrupts the glucose production from glycerol and affects the cytosolic redox potential 

(NADH:NAD+ ratio) which impairs the incorporation of lactate into glucose (Foretz et al., 2014; 

Foretz et al., 2019). 
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Figure 1.6: The actions of metformin. Metformin is transported to hepatic cells through organic 
transporter 1 (OCT1) and inhibits the mitochondrial respiratory chain complex 1. This results in 
decreased levels of ATP and an accumulation of AMP. The decrease in ATP results in a reduction of 
gluconeogenesis, thereby limiting glucose synthesis, while the increased levels of AMP inhibit the 
activity of the gluconeogenic enzyme, fructose-1, 6-bisphosphatase (FBPase) and affect the cyclic AMP-
protein kinase A (cAMP-PKA) pathway by inhibiting adenylate cyclase activity. Elevated levels of AMP 
also activate AMP-activated protein kinase (AMPK) which inhibit lipogenesis and increase fatty acid 
oxidation through the phosphorylation of acetyl-CoA carboxylase (ACC). Metformin also inhibits the 
mitochondrial glycerophosphate dehydrogenase (mGPD) thereby contributing to the reduced 
conversion of glycerol to glucose (Adapted from Foretz et al., 2014; Li et al., 2018a) 

 

 

1.5.4.4.2 DNA methylation and metformin 

Metformin is considered as the gold standard for the treatment of T2DM and has shown to 

affect epigenetic processes through its activation of AMP-activated protein kinase (AMPK) 

(García-Calzón et al., 2017; Bridgeman et al., 2018; Elbere et al., 2018). Upon activation, 

AMPK phosphorylates epigenetic enzymes such as DNA methyltransferases (DNMTs) 

resulting in their inhibition and thereby affecting epigenetic processes. Alterations in DNA 

methylation due to metformin include both hypomethylation and hypermethylation at the 

promoters of different genes (Ishikawa et al., 2015; García-Calzón et al., 2017; Zhong et al., 

2017). A decrease in DNA methylation at the insulin gene (Ins1) promoter in a beta-cell line, 

cultured with high glucose concentrations was observed following metformin treatment in a 
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study by Ishikawa et al (2015). Their study showed an up-regulation of the insulin gene with 

metformin (Ishikawa et al., 2015). Garcia-Calzón et al (2017) observed decreased DNA 

methylation of the metformin transporter genes, SLC22A1, SLC22A3, and SLC47A1 in the 

human liver when comparing T2DM patients on metformin to untreated subjects (García-

Calzón et al., 2017).  

 

In addition to its anti-diabetic properties, it has been suggested that metformin may induce 

alterations in DNA methylation of cancer cells thereby displaying anti-cancer properties (Zhong 

et al., 2017; Cuyàs et al., 2018). Banerjee et al (2016) observed reduced DNA methylation and 

increase expression of the tumour suppressor gene E-cadherin in both the cancer cell lines 

and white blood cells from diabetic patients on metformin  (Banerjee et al., 2016). Furthermore, 

studies have reported that cancer cells exposed to metformin have led to hypermethylation of 

tumour promoting pathway genes and cell proliferation inhibition due to the restraining effect 

of metformin on S-adenosylhomocysteine hydrolase (SAHH) activity (Zhong et al., 2017). 

Metformin has also been shown to decrease the regeneration ability and tumorigenicity of 

osteosarcoma stem cells by directly acting on mitochondria and inducing reactive oxygen 

species-mediated apoptosis and autophagy (Zhao et al., 2019). These studies highlight the 

role of DNA methylation in the anti-diabetic and anti-cancer actions of metformin.   

 

 

1.5.4.5 Factors affecting DNA methylation 

Changes in DNA methylation can occur in response to numerous factors including 

biological, lifestyle and environmental factors. Ageing has been associated with changes in 

DNA methylation and a decrease in DNA methylation with age as well as a loss of the 

epigenetic state in CpG sites have been observed (Horvath, 2013; Dugué et al., 2018). 

Alterations in DNA methylation have been linked to environmental exposures that occur in the 

prenatal stage (Martin and Fry, 2016). A study by Heijmans et al was the first study to show 

that prenatal exposure to famine during the Dutch Hunger Winter had an impact on insulin 

growth factor 2 (IGF2) methylation which was associated with lowered birth weight, 

predisposition to obesity and adverse metabolic health outcomes later in life (Heijmans et al., 

2008). Chemicals have also been observed to affect methylation and the alterations to DNA 

methylation have been associated with lung conditions, cardiovascular disease, diabetes, 

cancers and immune deficiencies amongst others (Argos et al., 2015; Jung et al., 2017; Jin 

and Liu, 2018; Martin and Fry, 2018). In addition, urban development and traffic-related air 

pollution have been linked to alterations in DNA methylation levels of the mitogen-activated 
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protein kinase (MAPK) and adult exposures to the constituents of air pollution have been 

associated with global hypomethylation (Carmona et al., 2014; Plusquin et al., 2017). Tobacco 

smoke, a known carcinogen, has been associated with global hypomethylation with both in 

utero and adult exposures. The methylation targets of tobacco smoke include cancer, cell 

growth and metabolism-related genes (Rotroff et al., 2016; Tsai et al., 2018; Bakulski et al., 

2019). 

 

Alterations in DNA methylation can also occur due to nutritional factors by either the 

modification of DNA methyltransferase (DNMT) enzymes or by the availability or lack of methyl 

donors needed for S-adenosyl-methionine (SAM) synthesis (Elgendy et al., 2018). 

Supplementation with methyl donors such as methionine, folate, betaine and choline appears 

to increase global methylation levels and their deficiency is associated with global 

hypomethylation (Martin and Fry, 2018). Maternal dietary deficiencies have also been shown 

to affect DNA methylation patterns in the foetus resulting in increased risk of cardiovascular 

diseases, obesity and insulin resistance in the offspring (McKay and Mathers, 2016). 

Furthermore, paternal diet, lifestyle, obesity and diabetes may also result in DNA methylation 

alterations in the offspring which could lead to metabolic consequences (Samblas et al., 2019). 

In contrast, over-nutrition associated with urbanisation and the adoption of higher fat diets may 

alter DNA methylation patterns. An example is the supplementation of saturated fatty acids like 

palmitic acid induces hypermethylation in human pancreatic islets thereby impairing insulin 

secretion and increasing the risk of type 2 diabetes (González-Becerra et al., 2019). Excess 

dietary trans fatty acids induce TNF hypomethylation and PPARG1 hypermethylation and the 

increase and decrease in expression of these genes lead to an inflammatory environment in 

adipose tissue (Flores-Sierra et al., 2016).  

 

Alcohol consumption influences DNA methylation which in turn can affect gene expression 

and influence the risk of chronic diseases (Wilson et al., 2019). SAM levels are decreased by 

chronic alcohol consumption and result in DNA hypomethylation. In addition, the metabolism 

of ethanol promotes the formation of reactive oxygen species and acetate which impact 

regulatory mechanisms of epigenetics (Zakhari, 2012; Mahna et al., 2018). 
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1.5.4.6 Methods for detecting DNA methylation 

Several methods have been described for DNA methylation determination. There are, 

however, a variety of factors that influence the choice of method for DNA methylation analysis 

and these include the potential for bias, cost, reproducibility, sensitivity and specificity, amount 

and quality of DNA available, availability of equipment and bioinformatics software (Kurdyukov 

and Bullock, 2016). Previous methods used for DNA methylation determination were based on 

mass spectrophotometry (MS), high-performance liquid (HPLC), luminometric methylation 

assay (LUMA) and LINE-1/pyrosequencing which has the highest specificity and sensitivity 

with minimal variability for measuring global DNA methylation (Kurdyukov and Bullock, 2016). 

Recent advancements have however made DNA methylation more reliable and reproducible 

and the experimental techniques used to differentiate between methylated and unmethylated 

DNA can be divided into three groups which include restriction enzyme-based, affinity 

enrichment-based and bisulphite conversion-based methods (Rauluseviciute et al., 2019). For 

this thesis, the DNA methylation techniques addressed include bisulphite conversion, 

pyrosequencing and methylated DNA immunoprecipitation and array-based technologies. 

 

 

1.5.4.6.1 Bisulphite conversion 

Although several methods have been developed over the years to study DNA methylation, 

bisulphite conversion has been considered the ‘gold standard’ in the identification of DNA 

methylation at single-nucleotide resolution (Olova et al., 2018). In this process, DNA is treated 

with sodium bisulphite leading to the conversion of unmethylated cytosine to uracil which is 

then displayed as thymine in the PCR amplification and subsequent sequencing. The 

methylated cytosine remains unchanged during bisulphite conversion and can therefore be 

distinguished from unmethylated cytosine (Gupta et al., 2010; Raine et al., 2018). Numerous 

methodologies using bisulphite converted DNA has been developed due to the advantages of 

bisulphite conversion which include the allowance of quantitative DNA methylation analyses 

anywhere in the genome, single CpG resolution and detection of strand-specific methylation 

(Olkhov-Mitsel and Bapat, 2012; Wreczycka et al., 2017). Furthermore, bisulphite conversion 

has more recently been used in combination with next-generation sequencing (NGS) for the 

study of DNA methylation (Raine et al., 2018). 

 

Challenges are also presented when using bisulphite conversion such as the reduction of 

genome complexity to three nucleotides which affects the processing of bisulphite sequencing 
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data (Rauluseviciute et al., 2019). Also, high concentrations of bisulphite and long incubation 

periods can lead to DNA fragmentation and degradation of up to 90% of the incubated DNA. 

This may result in biased sequence representation and affect the estimation of methylated 

cytosine levels (Kurdyukov and Bullock, 2016; Olova et al., 2018). Furthermore, false-positive 

results may also occur as a result of incomplete conversions during bisulphite treatment when 

unconverted unmethylated cytosines are interpreted as being methylated (Wreczycka et al., 

2017). Bisulphite conversion is also unable to discriminate between 5-methylcytosine and 5-

hydroxymethylcytosine (Yong et al., 2016). Moreover, extensive bioinformatics for base calling, 

sequence alignment and statistical analysis is needed by methods that rely on bisulphite 

sequencing (Olkhov-Mitsel and Bapat, 2012). 

 

 

1.5.4.6.2 Pyrosequencing  

Pyrosequencing, a next-generation DNA sequencing technology, has been considered a 

gold standard for the identification of allele-specific methylation patterns and is suitable for 

both CpG rich and CpG poor regions (Frommer et al., 1992; Reed et al., 2010; De Chiara et 

al., 2020). It uses a platform that can interrogate many CpG sites within an amplicon in real-

time and can be conducted to identify methylated and unmethylated cytosines following 

bisulphite conversion in a sequencing-by-synthesis process (Kong, 2014; Delaney et al., 

2015).  The availability of commercial bisulphite conversion kits and PCR amplification makes 

the use of pyrosequencing cost-effective and more accessible in comparison to next-

generation sequencing and the more labour intensive Sanger sequencing. Moreover, 

sequences from different samples can be identified in the same run which increases efficiency 

and throughput while decreasing costs (Siqueira et al., 2012). Furthermore, studies comparing 

various methylation techniques found pyrosequencing together with bisulphite amplicon 

sequencing to be the best method for methylation marker validation and development (Bock 

et al., 2016; Šestáková et al., 2019). A disadvantage, however, is that the method is more time-

consuming as it involves a three-step process of PCR amplification and tagging using a 

biotinylated primer;  isolation of the PCR product with streptavidin beads and hybridization with 

a sequencing primer, and sequencing (Delaney et al., 2015; Šestáková et al., 2019). 

Furthermore, pyrosequencing only allows for the analysis of shorter regions (maximum of 

350bp) as longer amplicons could result in the formation of secondary structures and loops 

which could impede the sequencing process (Fakruddin and Chowdhury, 2012). Another 

challenge in pyrosequencing is the detection of long homopolymers, which is a string of more 

than three to four repeated nucleotide in the run (Ivády et al., 2018). These homopolymer 

regions may cause sequencing errors as they influence the synchronised synthesis of the DNA 
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strand resulting in irregular sequence peak heights which affect the read length (Balzer et al., 

2011; Heather and Chain, 2016). The design of primers for  PCR and sequencing is important 

for pyrosequencing as sequencing and base-calling complications can arise if self-looping, 

primer-primer hybridisation (primer dimers) or cross-hybridisation where more than one 

sequencing primer is used, occurs (Fakruddin et al., 2013). Pyrosequencing assays often 

require extensive PCR optimisation to gain sufficient PCR product. This amplified PCR product 

together with a negative PCR control should always be checked by an agarose gel 

electrophoresis to prevent complications in pyrosequencing (Šestáková et al., 2019).  

 

 

1.5.4.6.3 Methylated DNA immunoprecipitation sequencing (MeDIP-seq) 

Methylated DNA immunoprecipitation sequencing (MeDIP-seq) is an enrichment-based 

method that can be used to measure DNA methylation at a genome-wide level (Xing et al., 

2018). MeDIP-seq uses a monoclonal antibody against 5-methylcytosine to enrich methylated 

DNA, after which the immunoprecipitated DNA can be sequenced (Chen et al., 2016). This 

technique is beneficial as it can distinguish between 5-methylcytosine and 5-

hydroxymethylcytosine, an oxidation product of 5-methylcytosine (Willmer et al., 2018). In 

addition, MeDIP is impartial to a specific nucleotide sequence other than CpGs (Xing et al., 

2018). Moreover, MeDIP-seq can detect up to 70% of all CpG dinucleotides in the human 

genome which makes it suitable for exploring the 60-68% methylated CpGs in the human 

genome. In addition, the assay is more sensitive in high CpG density regions as DNA 

sequences with more adjacent methylated CpG sites are more effectively captured (Soozangar 

et al., 2018). Another advantage of MeDIP-seq is that it can be used to profile DNA methylation 

in small DNA samples, rare cell types and micro-dissected tissues as the assay is possible 

with low amounts of starting DNA (Yong et al., 2016). Although it is a cost-effective and useful 

technique that can bypass the need for bisulphite conversion, it displays a bias toward highly 

methylated regions. MeDIP CpG-rich fragments are more likely to be enriched than CpG-poor 

fragments leading to PCR bias and inaccurate estimation of methylation which then warrants 

the use of additional computational correction to normalise CpG content across the various 

densities (Soto et al., 2016; Yong et al., 2016).   

 

Although MeDIP-seq has its limitations, these are outweighed by the advantages of using 

this technique which include the relatively straightforward methodology with the generation of 

data that is relatively easy to analyse and interpret. With its specificity for 5-methylcytosine, 

the assay is useful for genome-wide analysis of DNA methylation (Soozangar et al., 2018). 
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1.5.4.6.4 Array-based technology 

Methylation arrays were initially developed to observe methylation at a single-base resolution 

and currently the most widely used assay is the Infinium HumanMethylation450 BeadChip 

developed by Illumina (Soto et al., 2016). This array involves the bisulphite conversion of 

genomic DNA and amplification, followed by the hybridization of the converted DNA to arrays 

containing predesigned probes to distinguish between methylated and unmethylated cytosines 

(Yong et al., 2016; Willmer et al., 2018). With the probes, this array can assess more than 485 

000 CpG sites across the whole genome and detect the fluorescent intensity of the methylated 

or unmethylated status for each CpG site (Chen et al., 2016). The main advantage of using 

array-based technologies is the ease with which experiments can be performed, even for those 

with limited experience. Also, data generated from these array-based technologies are easy 

to interpret with the use of software programs that do not require extensive computational skills 

(Leti et al., 2018). Array-based technologies also offer high sample throughput and provision 

of sensitivity and specificity that cannot be achieved by sequencing methods at a similar cost 

(Rauluseviciute et al., 2019). Limitations of array-based technologies however include the 

requirement for high-quality input DNA and possible DNA degradation by bisulphite treatment. 

In addition, DNA methylation is often found in repetitive sequences and the designing of probes 

that can distinguish between repetitive elements is not easy (Gupta et al., 2010; Soozangar et 

al., 2018). 

 

In terms of genome-wide methylation, array techniques are methylation-state dependant 

whereas sequencing methods provide the possibility of exploring methylation patterns beyond 

the single-site methylation. For this reason, sequencing supersedes arrays as the method of 

choice for methylation profiling even though data are more complicated to analyse (Soto et al., 

2016; Leti et al., 2018). 

 

 

1.6 Significance and local relevance of the study 

An overview of T2DM has been presented by describing the various types of diabetes mellitus 

as well as highlighting the global, African and South African burden of the disease. The chapter 



31 
 

also addressed the epigenetic mechanisms associated with T2DM with a focus on DNA 

methylation, which is the more commonly studied mechanism. 

 

Type 2 diabetes mellitus is a complex and multifactorial metabolic disease for which the 

clinical significance in an African setting is still poorly understood. This could be attributed to 

the fact that most of the studies looking at T2DM risk factors have been conducted within 

western countries and therefore it is unclear whether current knowledge applies to Africa. As 

T2DM has shown to be a rising public health crisis in Africa and particularly in South Africa, 

there is a need for intervention strategies that include early detection of at-risk individuals and 

the prevention of disease progression. 

 

Many studies have recognised a positive correlation between the occurrence of T2DM and 

the interaction between genetic and environmental factors such as dietary habits and lifestyle. 

Recent evidence has suggested the involvement of epigenetic mechanisms in the link between 

the effects of genetic predisposition and environmental factors. Due to the increase in the 

prevalence of T2DM within a South African population and a large number of undiagnosed 

cases, epigenetic studies present opportunities to improve the diagnosis and treatment 

management of the disease. Furthermore, the South African population has also been reported 

to have high rates of obesity and metabolic syndrome, and a high risk of developing 

cardiovascular diseases, particularly amongst individuals of mixed ancestral descent (Erasmus 

et al., 2012; Matsha et al., 2012). Follow up studies within South Africa communities have 

shown that the deterioration of glucose tolerance status overtime is not explained by the known 

determinants of T2DM occurrence in these individuals (Matsha et al., 2013). Therefore the 

identification of individuals who are at risk of developing T2DM could facilitate risk stratification 

and prevention of T2DM as well as facilitate improved classification of the subtypes of diabetes 

and reduce the burden of this disease.  

 

 

1.7 Hypothesis 

We hypothesize that epigenetics plays a major role in the genesis of diabetes in South 

Africans. We further hypothesize that altered epigenetic patterns are established early in the 

development of diabetes and may play a role as predictive markers. 
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1.8 Aims and objectives 

1. Conduct the genome-wide DNA methylation profile in 48 mixed ancestry individuals within 

a South African population with varying degrees of glucose tolerance.  

2. Validate significant differential methylated regions (DMRs) using pyrosequencing in the 

same 48 individuals. 

3. Investigate the relationship between the DMRs observed and cardiometabolic risk factors. 

4. Investigate the relationship between the lncRNAs observed and diabetes. 
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CHAPTER 2 

METHODOLOGY  

2.1 Ethical considerations and confidentiality 

This study was part of the Vascular and Metabolic Health (VMH) study that has been 

registered with the research ethics committees of the Cape Peninsula University of 

Technology (CPUT) Human Research Ethics Committee (Ref #:  NHREC: REC - 230 408 – 

014, renewed for 2017: CPUT/HW-REC 2015/H01 (renewal) and Stellenbosch University (Ref 

#: N14/01/003; approved on 21 May 2018). Specific ethical approval for this sub-project was 

sought from CPUT (CPUT/HW-REC 2017/H29) to extend the use of the samples obtained in 

the main study. The Code of Ethics of the World Medical Association (Declaration of Helsinki) 

was applied to the study. There was no additional recruitment or contact or participant identifier 

information beyond what has been ethically mandated in the main project. All participants gave 

informed written consent to participate in the study after the procedures were explained in the 

language of their choice. They were also informed that they had the right to withdraw from the 

study at any stage. Participants were allocated coded identifiers to keep personal details 

confidential. All data gathered was kept confidential and storage was on a password protected 

computer locked in the office of the project manager. 

 

 

2.2 Study design and settings 

This was a cross-sectional case-control study. 

 

The research setting is defined as Ward 009 by the City of Cape Town and it includes the 

areas of Bellville South, Bellville South Industrial, Cape Peninsula University of Technology 

(CPUT), Glenhaven, Greenlands, Sack’s Circle Industrial and Vogelvlei. The township was 

formed in the late 1950s and comprised largely of individuals of mixed ancestry. According to 

the 2011 population census, its population stood at approximately 24 642 with an average 

household of 4.84 individuals. The population is mainly individuals of mixed ancestry followed 

by those of African descent and with individuals of Caucasian and Asian ancestry making up 

a small percentage (City of Cape Town Census, 2013). The socio-economic condition of the 
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individuals in the community is average with 37% of households having a monthly income of 

R3 200 or less. Data from the Bellville South community has indicated an increased number 

of inhabitants with diabetes. The target population for the VMH study included subjects aged 

20 or older, both male and female, which comprises 16 168 individuals of which 14 352 were 

mixed ancestry individuals.  

 

 

2.3 Inclusion criteria 

All consenting adults, male and female aged 20 years or older who resided in the Bellville 

South community were included in the VMH study. For this particular study, the participants 

were all female and matched for both age and body mass index. 

 

 

2.4 Exclusion criteria 

All non-consenting participants as well as pregnant or breastfeeding women and bedridden 

patients were excluded from the study. In addition, any individuals with conditions prohibiting 

any of the study investigations such as blood sample collection or ambulatory blood pressure 

monitoring were also excluded from the study.  

 

 

2.5 Study sample and justification 

There is still uncertainty as to the estimation of statistical power and sample size for 

epigenome-wide association studies (EWAS) (Wang, 2011; Rakyan et al., 2012; Tsai and Bell, 

2015). Simulation studies by Tsai and Bell (2015) showed that a case-control EWAS design 

provided an 80% power to detect a mean DNA methylation difference of 1%, assuming a p-

value threshold of 0.05 for single-locus analysis, and 1x106 for genome-wide significance (Tsai 

and Bell, 2015).  It was further suggested by Chambers et al (2015) in a nested case-control 

study among Asian-Indians and Europeans that the mean difference in DNA methylation 

between people with type 2 diabetes and those without ranged between 0.05 and 0.11 



35 
 

(Chambers et al., 2015). Based on the above specifications, we initially aimed to select a 

minimum of 200 subjects each of normal glucose tolerance, prediabetic, screen-detected or 

newly diagnosed and treated diabetic participants from the existing VMH sample of about 

2000 individuals. Due to the budget available for this study, these targets were not possible. 

For genome-wide DNA methylation a convenient sample of 48 subjects was selected, 12 for 

each of the following glucose tolerance categories; 12 known diabetics on metformin 

treatment, 12 screen-detected or newly diagnosed diabetics, 12 prediabetics and 12 subjects 

with normal glucose tolerance (NGT). Based on previous findings by Matsha et al, where 

increased global DNA methylation was observed in screen-detected diabetes compared to 

those on treatment the inclusion of diabetics on treatment was important in explaining those 

epigenetic changes that may be due to treatment (Matsha et al., 2016b). 

  

 

2.6 Study procedure 

2.6.1 Questionnaire and data collection 

Trained personnel presented and explained a questionnaire to each participant to obtain 

information relevant to the study. Information requested included gender, age, previous 

medical history of diabetes, any family history of CVD and diabetes mellitus as well as lifestyle 

factors such as smoking, diet, alcohol consumption and physical activity. A detailed drug 

history was also obtained either by interrogation or by examining the clinic cards and record 

of drugs brought by participants to the study site. 

 

 

2.6.2 Blood pressure measurements 

Blood pressure (BP) measurements were performed by using an automatic blood pressure 

monitor (Omron M6 Comfort-performed Cuff Blood Pressure Monitor) on the arm of the 

participant while at rest in a sitting position. The correct adult cuff size for each participant was 

selected according to the circumference of the individual’s arm and placed 2cm above the 

elbow joint to ensure accurate readings. The systolic (SBP) and diastolic (DBP) readings 

(mmHg) were measured in triplicate at one-minute intervals according to the WHO guidelines 

(World Health Organisation, 1999). All readings were recorded, with the lowest reading chosen 

as the participant’s blood pressure. 
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2.6.3 Anthropometric measurements 

All anthropometric measurements were performed by a trained research assistant and 

performed in triplicate. The average of the readings was calculated and used for the final 

analysis. The participants were asked to wear light clothing with no shoes and socks for the 

anthropometric measurements. The height of each participant was measured using a portable 

stadiometer and recorded in centimetres (cm) to the nearest 0.5cm.  The body weight (to the 

nearest 0.1kg) of each participant was then measured using an Omron body fat meter HBF-

511 digital bathroom scale which was calibrated and standardised before use by using a 

weight of a known mass. The waist circumference was measured in centimetres (cm) by 

placing a non-elastic tape around the narrowest part of the abdomen (between the lowest rib 

and the top of the iliac crest) of each participant while in a standing position. This was followed 

by the measurement of the hip circumference (cm) which was performed by placing the tape 

around the widest circumference of the hips and buttocks of the participant while in a standing 

position. 

 

 

2.6.4 Body Mass Index (BMI) 

 The body mass index (BMI) of each participant was calculated by dividing the weight (kg) 

of the individual by the square of the height (m), BMI = 
𝐵𝑜𝑑𝑦 𝑚𝑎𝑠𝑠 (𝐾𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2  . The international 

classification of adult obesity using BMI according to the WHO criteria of 2004 (updated in 

2016)  is as follows  (Philip et al., 2004):  

 Underweight: BMI less than 18.50 kg/m2 

 Normal range: BMI 18.50 to 24.99 kg/m2 

 Overweight: BMI greater or equal to  25.00 - 29.99 kg/m2 

 Obese: BMI greater or equal to 30.00 kg/m2 

 

 

2.6.5 Biochemical analysis 

Fasting and postprandial blood samples were collected from each participant by a qualified 

registered nursing sister. The known diabetic subjects were self-reported and confirmed by 

their medical records or medication and only fasting blood samples were drawn from these 
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subjects. The samples were sent to Pathcare Reference Laboratory, Cape Town, South Africa 

where biochemical analyses of the parameters listed in Table 2.1 were performed in ISO15189 

accredited pathology laboratories.  

 

Table 2.1: The biochemical parameters measured at Pathcare Reference Laboratory 

 

 

The oral glucose tolerance test (OGTT) was performed on participants with no previous 

diagnosis of diabetes mellitus. The participants were required to fast overnight and the OGTT 

was performed the next day according to the WHO guidelines (World Health Organisation, 

1999). Fasting blood samples were collected from each participant after which they were given 

75 grams of anhydrous glucose dissolved in 250-300ml of water. Once ingested, the time was 

recorded and a second blood sample (postprandial) was collected after two hours. 

 

Analyte Method used Equipment/Analyser 

used 

Plasma glucose 

(mmol/L) 

Enzymatic Hexokinase Beckman AU; Beckman 

Coulter, South Africa 

Glycated 

haemoglobin (HbA1c) 

(%) 

High-Performance Liquid 

Chromatography 

Bio-Rad Variant Turbo, 

Bio-Rad, South Africa 

Serum insulin 

(mmol/L) 

Paramagnetic Particle 

Chemiluminescence Assay 

Beckman AU; Beckman 

Coulter, South Africa 

Total cholesterol 

(mmol/L) 

Enzymatic Immuno-inhibition Beckman AU; Beckman 

Coulter, South Africa 

High-density 

lipoprotein cholesterol 

(HDL-c) (mmol/L) 

Enzymatic Immuno-inhibition Beckman AU; Beckman 

Coulter, South Africa 

Low density 

lipoprotein cholesterol 

(LDL) (mmol/L) 

Enzymatic Selective 

Protection 

Beckman AU; Beckman 

Coulter, South Africa 

Triglycerides 

(mmol/L) 

Glycerol Phosphate Oxidase-

peroxidase 

Beckman AU; Beckman 

Coulter, South Africa 

Ultra-sensitive C-

reactive protein (U-CRP) 

((mg/L) 

Latex Particle 

Immunoturbidimetric 

Beckman AU; Beckman 

Coulter, South Africa 

Serum Cotinine 

(ng/mL) 

Competitive 

Chemiluminescent 

 

Immulite 2000, Siemens, 

South Africa 

Gamma-glutamyl 

transferase (IU/L) 

IFCC standardised method Beckman AU; Beckman 

Coulter, South Africa 
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In addition to the biochemical parameters analysed by Pathcare Reference Laboratory, a 

full blood count was also done for all participants. Furthermore, ethylenediaminetetraacetic 

acid (EDTA) treated blood samples were stored at −20 degrees Celsius for DNA extraction 

and analysis. 

 

 

2.6.6 Type 2 diabetes mellitus classification 

 The classification of participants was done according to the revised WHO criteria of 1999 

(Alberti and Zimmet, 1998; World Health Organisation, 1999; World Health Organisation, 

2006). The participants were categorised as being normoglycaemic or normal glucose 

tolerance (NGT), prediabetes, new diabetes or screen-detected diabetes and known diabetes 

on treatment. The diagnosis of diabetes was dependant on a history of diabetes and the 

fasting and postprandial glucose concentrations as categorised below: 

 T2DM: if fasting plasma glucose is ≥7.0 mmol/L or post-2-hour plasma glucose is ≥11.1  

      mmol/L 

 Impaired glucose tolerance: if fasting plasma glucose is <7.0 mmol/L and post 2-hour  

      plasma glucose is between ≥7.8 mmol/L and <11.1 mmol/L 

 Impaired fasting glucose: if fasting plasma glucose is between 6.1 and 6.9 mmol/L and if  

      measured, post-2-hour plasma glucose is <7.8 mmol/L 

 

 

2.6.7 Statistical analysis 

  Descriptive statistics for the general characteristics of participants were performed using 

the IBM SPSS Statistics for Windows (version 26) software (IBM Corp, Armonk, New York, 

USA). The distribution of data was evaluated. Data for the general characteristics that 

displayed normal distribution was reported as the mean. Standard deviation and one way 

ANOVA (analysis of variation) was used to determine the p-value. General characteristics 

which displayed a skewed distribution of data was reported with the median and interquartile 

range (25th and 75th percentile) and p-values were determined by using the Kruskal-Wallis 

test.  A p-value of <0.05 was considered significant.  
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2.6.8 DNA extraction 

Genomic DNA was extracted from peripheral blood samples collected in the EDTA tubes 

using the Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA) according to 

the manufacturer’s instructions. White blood cells were lysed with the Nuclei Lysis Solution 

followed by the removal of cellular proteins by salt precipitation. The high molecular weight 

genomic DNA left in solution was concentrated and desalted by isopropanol precipitation. DNA 

was then quantified using the NanoDrop One Spectrophotometer (ThermoFisher Scientific, 

Wilmington, USA) which measures the reflection or transmission of material and aides in 

estimating protein contamination in DNA samples. In terms of the A260/A280 and A260/A230 ratios, 

protein contamination is excluded to the greatest possible extent when the values are between 

1.8 and 2.  

 

 

2.6.9 Genome-wide DNA methylation sequencing 

For this particular study, DNA methylation was investigated using whole-genome 

methylated DNA immunoprecipitation sequencing (MeDIP-seq) (Illumina, San Diego, CA, 

USA). Although bisulphite sequencing is considered the gold standard, it does not distinguish 

between 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) which is possible 

with MeDIP-seq (Olova et al., 2018). Also, MeDIP-seq can detect up to 70% of all CpG 

nucleotides in the human genome, making it more suitable for large-scale applications 

generating a huge amount of data which is not the case for whole-genome bisulphite 

sequencing. In addition, MeDIP bypasses the need for a bisulphite conversion step and can 

be utilised at relatively low costs (Jeong et al., 2016). Although MeDIP-seq has some 

limitations which include a low resolution and inability to precisely locate the methylated CpG 

sites in the genome, the benefits of using this method was suited for the study. 

Genome-wide DNA methylation techniques involve three steps, namely the library 

preparation, sequencing and lastly data analysis. The workflow process depicted in Figure 2.1 

was utilised in this study and commenced once DNA extraction had been completed.  
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Figure 2.1: Overview of the experimental workflow for genome-wide DNA methylation using Methylated 
DNA immunoprecipitation 

 

 

2.6.9.1 Methylated DNA Immunoprecipitation and sequencing library preparation  

Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, 

MD, USA) according to Down et al.(2008), with minor modifications (Down et al., 2008). A 

minimum of 2 µg of DNA (concentrations ranging between 70 and 130 ng/μL) with A260/A280 

and A260/A230 ratios ≥ 1.8 was shipped frozen on dry ice, as instructed by Arraystar Inc. 

(Rockville, MD, USA). Genomic DNA was sonicated to approximately 200–500bp fragments 

with a Bioruptor sonicator (Diagenode, Denville, NJ, USA) and then 1μg of fragmented DNA 

was prepared for Illumina HiSeq 4000 sequencing. Firstly, the sonicated DNA was end-

repaired with T4 DNA polymerase, Klenow DNA polymerase and T4 polynucleotide kinase. A 

single adenine base was added to the 3’ ends with Klenow (exo minus) polymerase. Illumina’s 

single-end genomic adapters were ligated to the DNA fragments and agarose gel size-

selection was used to remove unligated adapters. The adaptor-ligated DNA fragments were 

immunoprecipitated by using a mouse monoclonal anti-5-methylcytosine antibody 

(Diagenode). DNA was heat-denatured at 94°C for 10 minutes, rapidly cooled on ice, and 

immunoprecipitated with 1 μL primary antibody overnight at 4°C   

with rocking agitation in 400 μL immunoprecipitation buffer (0.5% BSA in Phosphate buffered 

saline). The immunoprecipitated DNA fragments were recovered by adding 100 μL of protein 
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G magnetic beads (Life Technologies, Carlsbad, CA, USA) followed by incubation for an 

additional 2 hours at 4°C with agitation. After immunoprecipitation, a total of five 

immunoprecipitation washes were performed with ice-cold immunoprecipitation buffer. A 

nonspecific Mouse IgG immunoprecipitation was performed in parallel to methyl DNA 

immunoprecipitation as a negative control. Washed beads were resuspended in TE buffer with  

0.25% SDS and 0.25 mg/mL proteinase K for 2 hours at 65°C and then allowed to cool down 

to room temperature. MeDIP and supernatant DNA were purified using Qiagen MinElute 

columns and eluted in 16 μL elution buffer (Qiagen, Germantown, MD, USA). Fourteen cycles 

of PCR were performed using 5 μL of the immunoprecipitated DNA and single-end Illumina 

PCR primers. The resulting PCR reactions were purified with Qiagen MinElute columns, after 

which a final size selection of approximately 300-600 bp was performed using agarose gel 

electrophoresis 2% agarose (w/v). Library size was quality controlled by the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).  Quality assessment of the MeDIP 

procedure involved normalization of each library to 5 ng/μL of which 1 μL was used for real-

time PCR confirmation of successful methylation region enrichment. For the qPCR DNA 

immunoprecipitation enrichment assessment specific methylated sites and non-methylated 

sites at the H19 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene loci were 

used, respectively. 

 

 

2.6.9.2 Sequencing 

The library was denatured with 0.1 M NaOH to generate single-stranded DNA molecules 

and loaded onto channels of the flow cell at 8 pM concentration, amplified in situ using the 

TruSeq Rapid SR Cluster Kit (Illumina, San Diego, CA, USA). Sequencing was carried out by 

running 100 cycles on the Illumina HiSeq 4000 according to the manufacturer’s instructions. 

 

2.6.9.3 MeDIP-Seq data analysis 

2.6.9.3.1 Analysis of sequencing data 

After generation of the sequencing images, image analysis and base calling were 

performed using Off-Line Basecaller software (OLB V1.8). First, the reads had to pass through 

the Solexa CHASTITY quality filter. Individual bases generated from original image files had 

quality scores which reflected the probability of whether a base-call is correct or not. The 
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quality score was calculated by the CHASTITY Formula shown in Figure 2.2. In short, the 

CHASTITY (C) of each base in the short reads is determined by the intensity of four colours 

(IA, IC, IG, and IT), using the following formula: the ratio of the highest (IC) of the four (base type) 

intensities to the sum of the highest two (IC and IG). The CHASTITY (C) should be no less than 

0.6 in the first 25 bases. After passing a Solexa CHASTITY quality filter, the clean reads were 

aligned to the human genome (UCSC HG19) using HISAT2 software (V2.1.0). 

 

 

 

Figure 2.2: Diagram showing the CHASTITY Formula 

 

 

2.6.9.3.2 Detection of peaks 

Statistically significant MeDIP-enriched regions (peaks) were identified by MACS v2 

(Model-based Analysis of ChIP-Seq) software for each sample by comparison to input 

background, using a q-value threshold of 10-5. The peaks in samples were annotated by the 

nearest gene using the newest UCSC RefSeq database (https://genome.ucsc.edu/). The 

peaks were divided into three classes based on their distances to the UCSC RefSeq genes: 

1. Promoter peaks had their centres within promoter regions which were identified as 

2000 bp upstream and downstream from the transcription start site (TSS). 

2. Gene body peaks were found in the gene body region defined as + 2000 bp 

downstream of the transcription start site (TSS) to the transcription termination site 

(TTS). 

3. Intergenic peaks had their centres within intergenic regions which were defined as 

other genomic regions not included in the promoter or gene body regions. 

 

https://genome.ucsc.edu/
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In addition, the MACS v2 software was used to identify the statistically significant lncRNA-

associated MeDIP enriched peaks for each sample using a q-value threshold of 10-5 and 

annotated by the nearest gene using the newest UCSC RefSeq database. 

 

 

2.6.9.3.3 Differentially methylated regions (DMRs)  

Differentially methylated regions (DMRs) located within gene promoters (TSS − 2000 bp, 

TSS + 2000 bp) with statistical significance between two groups were identified by diffReps 

(Cut-off: log2FC = 1.0, p-value = 10−4). Both mRNA and lncRNA-associated DMRs within 

promoters were annotated by the nearest gene using the UCSC RefSeq and database of 

multiple databases integration. There were six comparison pairs for both the mRNA and 

lncRNA-associated DMRs provided in the study. They were as follows: 

1. Known diabetes versus NGT 

2. Screen-detected diabetes (newly diagnosed) versus NGT 

3. Prediabetes versus NGT 

4. Known diabetes versus screen-detected diabetes 

5. Known diabetes versus prediabetes 

6. Prediabetes versus screen-detected diabetes (newly diagnosed) 

 

 

 

2.6.9.4 Gene Ontology (GO) analysis 

 Following the identification of the statistically significant DMRs, gene ontology analysis 

was performed for each of the six comparison groups. The gene ontology project 

(http://www.geneontology.org) is a structured vocabulary of terms used to describe the gene 

and gene product attributes in any organism (Gene Ontology Consortium, 2006). The ontology 

covers three domains, namely biological process, cellular component, and molecular function. 

The biological process is the largest of the three GO domains and represents the larger 

processes or specific objectives an organism is programmed to achieve. Biological processes 

are usually achieved by several molecular processes carried out by specific gene products in 

a regulated manner and sequence (Thomas PD, 2017). The molecular function refers to 

molecular activities carried out by a single gene product or it may be part of a larger process 
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utilising multiple gene products (Thomas PD, 2017). The cellular component refers to the 

location related to the cellular structures or anatomy where the gene product performs its 

function (Thomas PD, 2017). Gene ontology structure is that of a Directed Acyclic Graph 

(DAG) where genes are linked to the most specific set of terms that describes its functionality. 

Each term can have multiple relationships to broader parent terms and more specific child 

terms which makes this a more flexible structure in comparison to a hierarchy (Du Plessis et 

al., 2011). 

 

 In the current study,  Fisher’s exact test was used to determine whether there was more 

overlap between the differentially enriched (DE) list and the GO annotation list than would be 

expected by chance. The p-value denoted the significance of GO terms enrichment in the DE 

genes. The lower the p-value, the more significant the GO term. A p-value of ≤ 0.05 was 

considered significant. Annotation was performed using standard workflow according to 

http://www.geneontology.org/.  

 

 

2.6.9.5 KEGG pathway analysis 

 Pathway analysis for each of the six comparison groups was done using the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) database. KEGG is a collection of databases 

linking genomic information with higher-level systemic functional information (Kanehisa and 

Goto, 2000). The integrated database initially consisted of three generic categories of systems 

information, genomic information and chemical information, but has grown and now includes 

18 databases in four categories (Kanehisa et al., 2019).  

 

  In this study, the p-value (EASE score, Fisher’s p-value, or hypergeometric p-value) 

denoted the significance of the pathway correlated to the conditions. The lower the p-value is, 

the more significant the pathway. A p-value of ≤ 0.05 was considered significant. 

 

 

2.6.10 Validation of significant DMRs using pyrosequencing 

The significant DMRs identified in the 48 participant samples by the MeDIP sequencing 

was validated using pyrosequencing. Pyrosequencing has been considered a golden standard 

for the quantitative methylation analysis of bisulphite converted DNA (De Chiara et al., 2020). 

The advantages and disadvantages of this sequencing technique have been addressed in 
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chapter one of the thesis and have aided in the decision to use pyrosequencing as a validation 

method. Also, in a study by Šestáková and co-workers (2019) where different DNA methylation 

validation methods were compared, pyrosequencing was deemed one of the most suitable 

methods in terms of overall feasibility, the DNA methylation information obtained and the 

consistency across various methylation levels (Šestáková et al., 2019). Despite it being a more 

time-consuming technique as well as costly due to the instrument required, pyrosequencing 

has more advantages in terms of assessing DNA methylation of a specific locus. 

 

Pyrosequencing assays require three main steps namely, bisulphite conversion of 

unmethylated cytosine to uracil, PCR to generate an amplicon and a pyrosequencing reaction 

to analyse the nucleotide content of the amplified fragment.  

 

 

2.6.10.1 Bisulphite conversion 

Bisulphite conversion was first performed on the 48 participant samples using the EpiTect 

Fast DNA Bisulphite Kit (Qiagen, Germantown, MD, USA). 

 

 

2.6.10.1.1 Principle of bisulphite conversion 

Bisulphite conversion has long been described as the gold standard for detecting DNA 

methylation (Frommer et al., 1992; Leti et al., 2018). DNA is treated with bisulphite which 

converts cytosine residues to uracil while methylated cytosine residues such as 5-

methylcytosines, remain unaffected. Following the conversion, sequencing can then 

distinguish between unmethylated cytosines which are displayed as thymine and 5-

methylcytosines which are displayed as cytosines in the resultant amplified sequence of the 

sense strand. The bisulphite conversion chemistry comprises three steps namely, 

sulphonation, hydrolytic deamination, and desulphonation. Sulphonation involves the addition 

of bisulphite to the 5-6 double bond of cytosine. This is followed by the hydrolytic deamination 

of the cytosine-bisulphite derivative resulting in a uracil-bisulphite derivative. Lastly, 

desulphonation is the removal of the sulphonate group by an alkali treatment to give uracil 

(Patterson et al., 2011). 
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2.6.10.1.2 Laboratory procedure 

The EpiTect Fast DNA Bisulphite Kit (Qiagen, Germantown, MD, USA) was applied to 

500ng of DNA according to the manufacturer’s instructions. The bisulphite reactions were 

prepared in 200 μL PCR tubes by adding the following components:  500ng DNA in RNAse-

free water up to a maximum volume of 20 μL; 85 μL bisulphite mix and 35 μL DNA Protect 

Buffer. After thoroughly mixing the PCR tube contents at room temperature and confirming 

the DNA Protect Buffer colour change from green to blue indicating that sufficient mixing and 

the correct pH for bisulphite conversion has been reached, the tubes were placed in a thermal 

cycler. The thermal cycler with a heated lid was programmed according to Table 2.2. 

 

Table 2.2: Bisulphite conversion thermal cycler conditions 

 

*Converted DNA can be left in the thermal cycler overnight without any loss 

 of performance 

 

Once the bisulphite conversion was completed, the PCR tubes containing the bisulphite 

reactions were briefly centrifuged and then transferred into clean 1.5 ml microcentrifuge tubes. 

This was followed by the addition of 560 μL of the freshly prepared Buffer BL containing 10 

μg/ml carrier RNA to each sample which was mixed and briefly centrifuged at room 

temperature. The mixture was then transferred into EpiTect spin columns where the Buffer BL 

promotes binding of the converted single-stranded DNA to the EpiTect spin column 

membrane. The spin columns were then centrifuged at maximum speed for 1 minute after 

which the flow-through was discarded and the spin columns placed back in collection tubes. 

STEP TIME TEMPERATURE

Denaturation 5 min 95°C

Incubation 25 min 60°C

Denaturation 5 min 95°C

Incubation 85 min (1 h 25 min) 60°C

Denaturation 5 min 95°C

Incubation 175 min (2 h 55 min) 60°C

Hold Indefinite *20°C
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Next, 500 μL Buffer BW was added to each spin column, centrifuged at maximum speed for 

1 minute and the flow-through discarded. The function of the Buffer wash was to efficiently 

remove residual sodium bisulphite as part of the washing process. Then 500 μl Buffer BD, the 

desulfonation agent, was added to each spin column, incubated for 15 minutes at room 

temperature, centrifuged at maximum speed for 1 minute and the flow-through discarded. This 

was followed by two washing steps using the Buffer BW to further desalt the DNA. Additional 

centrifugation at maximum speed for 1 minute, as well as incubation on a heating block for 5 

minutes at 56°C, was done to remove any residual liquid before the spin columns were placed 

in new and clean 1.5 ml microcentrifuge tubes. Next, 20 μL Elution buffer EB was dispensed 

onto the centre of each spin column membrane to elute the purified DNA by centrifugation for 

1 minute at approximately 15,000 x g (12,000 rpm). The purified DNA could then be stored for 

up to 24 hours at 2-8°C or longer periods at -15 to -30°C.  

 

 

2.6.10.2 Amplification of the bisulphite converted DNA 

The amplification of bisulphite converted DNA was conducted using the PyroMark PCR Kit 

(Qiagen, Germantown, MD, USA). This step aimed to ensure specific and unbiased 

amplification of the template DNA for pyrosequencing analysis. The reaction mixture was set 

up by adding 12.5 μL PyroMark PCR Master Mix, 2.5 μL CoralLoad Concentrate, 2.5 μL primer 

solutions (0.2 μM concentration), 2.5 μL MgCl2 (4 mM concentration) and 3 μL RNAse-free 

water in a PCR tube. Then 2 μL of the DNA template (500 ng/25 μL concentration) was added 

to the mix and the tubes were placed in the thermal cycler which was programmed according 

to Table 2.3. The EpiTect PCR Control DNA Set (Qiagen, Hilden, Germany) for methylated 

and unmethylated DNA was used as part of the quality control process. 
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Table 2.3: Thermal cycler program for the amplification of the bisulphite converted DNA 

 

 

The Pyromark CpG Assay primers (Qiagen, Hilden, Germany) used were designed 

specifically to bisulphite-modified DNA and were HPLC-purified biotinylated primers. One 

primer must be biotinylated at its 5’ end to prepare a single-stranded PCR product for use in 

the subsequent Pyrosequencing procedure.   

 

After amplification, the samples were ready for pyrosequencing but could also be stored 

overnight at 2–8°C or -20°C for longer periods. The PCR product integrity was verified before 

pyrosequencing by agarose gel electrophoresis (1% agarose w/v). Verification of single, 

strong bands with no unincorporated primers was an indication that PCR was successful.  

 

 

2.6.10.3 Pyrosequencing 

Pyrosequencing was conducted using the PyroMark Q48 Autoprep instrument, the 

PyroMark Q48 Autoprep reagents (Qiagen, Hilden, Germany) and PyroMark PCR Reagents 

(Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. Primers for 

selectively identified DMRs was used in pyrosequencing analysis to validate methylation 

levels detected during MeDIP analysis.  

STEP TIME TEMPERATURE ADDITIONAL COMMENTS

Initial PCR 

activation step
15 minutes 95°C

DNA Polymerase is 

activated by this heating 

step

3-step cycling:

Denaturation 30 seconds 94°C

Annealing 30 seconds 56°C Cycle repeated 45 times

Extension 30 seconds 72°C

Final extension 10 minutes 72°C
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2.6.10.3.1 Principle of pyrosequencing 

Pyrosequencing is a sequencing method used for the quantitative methylation analysis of 

bisulphite converted DNA (Šestáková et al., 2019). It uses a sequencing-by-synthesis method 

whereby nucleotides are dispensed one at a time and incorporated into an extending strand 

and then degraded before the dispensation of the next nucleotide. Pyrosequencing requires a 

single-stranded PCR amplicon that serves as a DNA template, four different enzymes 

including DNA polymerase, ATP sulfurylase, luciferase, and apyrase, as well as two different 

substrates including adenosine 5′ phosphosulfate (APS) and luciferin (Delaney et al., 2015). 

During the first step, a sequencing primer is annealed to a single-stranded DNA (ssDNA) 

template.  A single nucleotide is then subsequently incorporated by DNA polymerase, 

releasing pyrophosphate (PPi). The liberated PPi is used by ATP sulfurylase in the presence 

of APS to generate ATP, which activates the luciferase-mediated conversion of luciferin to the 

light-emitting oxyluciferin. The light that is emitted is proportionate to the number of nucleotides 

that are added to the elongating strand. The excess nucleotide is degraded by apyrase 

followed by the dispensation of the next nucleotide. The light intensity produced is detected 

and translated as a peak on a pyrogram. The amount of methylation can be determined by 

comparing the peak light emission of a cytosine (methylated signal) or thymine (unmethylated 

signal) incorporation at a CpG site within the amplicon. This will provide a precise measure of 

the amount of methylation at that position within the sample. 

 

 

2.6.10.3.2 Pyrosequencing analysis  

The PyroMark Q48 Autoprep instrument (Qiagen, Hilden, Germany) and related PyroMark 

Q48 Autoprep reagents (Qiagen, Hilden, Germany) were used to perform the pyrosequencing. 

The PyroMark Control Oligo (Qiagen, Hilden, Germany) was used for quality control and 

performed by using the Pyromark CpG Assay Primers (Qiagen, Hilden, Germany) (Table 2.4) 

selected for pyrosequencing. Thereafter, the prepared amplified DNA segments were 

analysed. 
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Table 2.4: The Pyromark CpG Assay Primers used in the pyrosequencing analysis 

 

 

Setting up the assay involved preparing the PyroMark Q48 Autoprep instrument which was 

guided by the PyroMark Q48 Autoprep software on the instrument itself. This preparation 

included the insertion of the absorber strip, injector loading, disc insertion and bead and 

template loading. Insertion of the PyroMark Q48 absorber strip involved the sliding of the strip 

into place ensuring that it was level. The main function of the absorber strip was to collect 

liquids spun out from the disc wells during a wash cycle as well as liquid waste from the priming 

and cleaning steps. Injector priming was performed to ensure that the injectors were operating 

correctly. Reagents were pipetted into the designated injectors according to the volumes 

shown on the instrument touchscreen. This ensured that sufficient reagents were available for 

the initial injector priming as well as the run. Following the injector priming, all injectors 

underwent test shots which had to be passed in order to proceed to the next step. Before 

Pyromark CpG Assay 

Name

Gene 

symbol
Accession number

Amplicon 

length

Number of 

CpGs
Primer sequence

Hs_CYP1A1_01_PM CYP1A1 ENSG00000140465 102 4
GTCCGCATTTTCGGTCCACGCC

TGTGGCASGACACGA

Hs_MIIP_01_PM MIIP ENSG00000116691 97 4 CGTGCGAAAACGGCGA

Hs_SEMA4F_01_PM  SEMA4F ENSG00000135622 118 5
CGGAACTTCGAAATGAACGACCT

CGGGCAGCCCCCACCCGA

Hs_GUK1_01_PM GUK1 ENSG00000143774 210 5

CGTCGGGAAGGCCTGCTGTTTC

CCCAAGTCCCCGTCTCTGCGCC

GT

Hs_AL118506.2_03_PM ABHD16B ENSG00000183260 84 5
GTGTTGGACGCCACCTTCGACG

ACCTTGTGCCGCTGGCGC

Hs_KIAA1467_02_PM KIAA1467 ENSG00000084444 241 3
TCCCCTCCACCTAACGGCAGCA

ACGACGC

Hs_SLC10A3_01_PM  SLC10A3 ENSG00000126903 107 3
GGCTGGGTGCCCGGGGTTAGG

GTTTTGGCCACGTTGCCGC

Hs_ZNF574_01_PM ZNF574 ENSG00000105732 191 6
CGTCGAGATTCCCCGCAGCGCC

CAACCAATCCTTTAGCGTCG

Hs_TFE3_01_PM TFE3 ENSG00000068323 195 6

GCGCGGTCTAGGGCTCAGATAT

TRCAAATATTGGCCGAAAGAGG

GCGCGGTTCCG

Hs_FXYD5_01_PM  FXYD5 ENSG00000089327 132 3 CGCCTCCCGCGC

Hs_ADK_01_PM ADK ENSG00000156110 233 5
TGGAGGCGCCGCAAGCGCTGA

GGTGAGCGCTGCCGGA

Hs_TNFSF9_01_PM TNFSF9 ENSG00000125657 143 4
CGAGTGGAGAAAATTCCGCAGA

GTCACGGGGACGA



51 
 

insertion of the PyroMark Q48 Disc, 10 μL of the biotinylated PCR product and 3 μL PyroMark 

Q48 Magnetic beads were loaded into the wells of the disc. The instrument software indicated 

the well position for each sample. When setting up the Control Oligo assay, 20 μL of the 

PyroMark Control Oligo and 3 μL PyroMark Q48 Magnetic beads were dispensed into the 

correct wells of the PyroMark Q48 Disc.  The PyroMark Q48 disc was then inserted into the 

instrument by matching the disc grips with those on the rotor and locking the disc into position 

by screwing down the lock nut. Once this was completed, the instrument was ready to proceed 

with the run. The run was initiated by selecting ‘Start’ on the instrument. Once the run was 

completed, the lid automatically opened and ‘Run Complete’ was displayed on the instrument 

touchscreen. The data was now ready for analysis. The sample run and analysis of data was 

completed in the CpG mode of the instrument and the resultant report at the end included the 

methylation percentages of all the passed CpG sites. Similarly, the analysis of the Control 

Oligo was completed in the AQ mode of the instrument and the report generated showed the 

percentages of the T (thymine) and C (cytosine) calculated.  
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CHAPTER 3 

RESULTS 

3.1 General characteristics of participants 

General characteristics of the 48 female participants are presented in Table 3.1. The study 

group comprised 12 normoglycaemic (normal glucose tolerance-NGT), 12 prediabetics, 12 

screen-detected (newly diagnosed) and 12 known (on treatment) diabetic individuals who were 

all matched for age and body mass index. As expected there was a significant increase in 

plasma glucose (p = <0.0001) and HbA1c levels (p = <0.0001) in the participants with 

hyperglycaemia (prediabetes, screen-detected diabetes and known diabetes) when comparing 

to the normoglycaemic group. The lipid profile only showed a significant increase in the 

triglycerides for the screen-detected and known diabetic groups (p= 0.004). The ultra-

sensitivity C - reactive protein (us-CRP) showed a significant difference (p = 0.024) amongst 

the groups. 
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Table 3.1: Table of characteristics of the 48 participants 

 

p-values were determined using one-way ANOVA; 
*, median [25th-75th percentiles], and p-values from Kruskal Wallis test. 

 

 

3.2 Differentially Methylated Regions (DMRs) 

There was a total of 954820 statistically significant MeDIP-enriched regions (peaks) identified 

for the 48 samples (Figure 3.1). When compared to the gene body and intergenic regions, the 

promoter region (TSS-2000bp, TSS+2000bp) as expected, showed the least amount of peaks 

for all the groups. The statistically significant differentially methylated regions (DMRs) between 

promoters of two groups were identified by diffReps using a limit of log2FC=1.0 and p-

value=0.0001.  

 

The DMRs identified for both hypermethylation and hypomethylation have been presented in 

Figure 3.1. There are six comparison pairs provided in the data, namely known diabetes versus 

NGT; screen-detected diabetes versus NGT; prediabetes versus NGT; known diabetes versus 

Characteristics Total Normoglycaemic IGT New DM Known DM  p-value

n 48 12 12 12 12

Age (years) 53.38(8.20) 52.08 (7.83) 53.50 (8.53) 54.75 (7.52) 53.17 (9.61) 0.893

Weight (kg) 75.49 (18.83) 70.18 (18.89) 79.31 (21.7) 80.80 (18.30) 71.66 (14.53) 0.403

Height (cm) 155.86 (6.22) 157.15 (7.86) 154.38 (5.98) 156.05 (5.93) 155.96 (5.54) 0.771

Body Mass Index (kg/m2) 30.95 (7.68) 27.35 (5.80) 33.27 (9.07) 33.52 (8.93) 29.37 (5.00) 0.145

Ave Waist (cm) 93.32 (16.97) 83.21 (18.53) 97.10 (13.78) 101.29 (19.70) 91.68 (10.50) 0.049

Ave Hip (cm) 106.14 (16.44) 102.00 (18.42) 109.92 (18.85) 109.38 (16.57) 103.28 (11.90) 0.540

Systolic blood pressure (mmHg) 137.85 (26.85) 135.25 (30.78) 137.00 (18.52) 142.92 (32.91) 136.25 (25.86) 0.904

Diastolic blood pressure (mmHg) 86.23 (16.56) 78.00 (16.06) 88.92 (11.68) 94.17 (22.07) 83.83 (11.52) 0.094

Pulse rate (bpm) 73.19 (14.14) 64.83 (12.19) 71.25 (5.82) 80.08 (16.40) 76.58 (16.09) 0.041

Fasting plasma glucose (mmol/L) 5.70 (4.90-8.10) 4.75 (4.08-4.90) 5.30 (4.93-5.78) 7.90 (6.08-11.48) 9.25 (5.85-16.95) <0.0001

Glucose 2 HRs Post Prandial (mmol/L) 9.00 (7.20-13.30) 5.20 (4.00-7.20) 9.00 (8.48-10.05) 15.10 (12.70-19.75) <0.0001

HbA1c(%)* 6.30 (5.60-7.45) 5.55 (5.10-5.83) 6.00 (5.28-6.55) 7.05 (6.43-9.48) 9.20 (6.53-10.85) <0.0001

Fasting serum insulin (mIU/L)* 8.00 (5.85-14.18) 5.65 (2.83-7.98) 9.45 (7.38-12.50) 14.10 (5.90-21.20) 7.90 (5.90-16.20) 0.012

2HR Insulin (mIU/L)* 53.20 (27.50-104.55) 28.50 (15.80-43.60) 111.20 (60.20-187.20) 48.80 (30.33-90.60) 0.003

Triglycerides-S (mmol/L)* 1.44 (1.04-2.10) 0.94 (0.70-1.27) 1.50 (1.07-2.00) 1.72 (1.37-2.95) 2.06 (1.20-2.36) 0.004

LDL Cholesterol (Measured) (mmol/L) 3.75 (1.04) 3.30 (0.96) 3.46 (0.96) 4.18 (0.84) 4.08 (1.22) 0.093

Cholesterol HDL-S (mmol/L)* 1.30 (1.10-1.60) 1.40 (1.20-1.85) 1.25 (1.10-1.40) 1.15 (1.10-1.48) 1.30 (0.90-1.60) 0.253

Cholesterol-S (mmol/L) 5.83 (1.15) 5.51 (1.10) 5.39 (0.98) 6.36 (0.85) 6.10 (1.47) 0.119

High-sensitivity CRP (mg/L)* 5.19 (2.24-14.66) 2.47 (1.47-3.41) 7.90 (4.89-14.03) 6.78 (1.75-18.67) 15.14 (3.04-24.16) 0.024

Cotinine (ng/mL)* 15.55 (10.00-216.75) 22.50 (10.00-268.00) 91.00 (10.00-222.00) 85.00 (10.00-208.00) 15.55 (10.00-189.50) 0.975

Gamma-glutamyl transferase (IU/L)* 30.00 (19.00-61.00) 19.50 (12.50-29.25) 37.50 (21.00-89.50) 45.00 (18.75-85.25) 33.00 (20.00-61.00) 0.118



54 
 

screen-detected diabetes; known diabetes versus prediabetes and prediabetes versus screen-

detected diabetes. A total of 366 DMRs have been observed, of which 63% were 

hypermethylated and 37% hypomethylated. The screen-detected and known diabetes subjects 

showed the highest number of DMRs and more than 70% of these DMRs were 

hypermethylated when compared to the NGT group. 

 

 

Figure 3.1: MeDIP enriched regions (peaks) identified in all the 48 samples. The total sites are the sum 
of the peak number for the subjects with known diabetes (known DM), screen-detected diabetes 
(screen-detected DM); prediabetes and normal glucose tolerance (NGT). The distribution of the peaks 
in the intergenic, gene body and promoter regions are shown. The hypermethylated and hypomethylated 
DMRs within the gene promoter for the various glucose tolerance groups are shown 

 

The DMRs were also grouped according to their chromosomal location (Figure 3.2). When 

looking at the six comparison groups, the most hypermethylated DMRs were found on 

chromosomes 19, particularly when comparing the known diabetes and screen-detected 

diabetes to the NGT group. In addition, hypermethylated DMRs were more common in 

chromosome 1 when observing the known diabetes to prediabetes subjects. On the other 

hand, most hypomethylated DMRs were commonly found in chromosomes X and 1.   
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Figure 3.2:  Heatmap presenting the distributions of differentially methylated regions (DMRs) among 
the chromosomes for all six comparison groups, namely known diabetes versus NGT; screen-detected 
diabetes versus NGT; prediabetes versus NGT; known diabetes versus screen-detected diabetes; 
known diabetes versus prediabetes and prediabetes versus screen-detected diabetes. Both 
hypermethylated and hypomethylated DMRs are presented 

 

The DMRs were further summarised according to the top ten DMRs per fold change for 

each of the six comparison groups (Table 3.2 and 3.3). As expected all the hypomethylated 

DMRs had a negative fold change (log2FC values less than -1).  

 

Furthermore, when observing all the DMRs for the diabetic subjects (known diabetes and 

screen-detected diabetes), there were 11 hypermethylated and 7 hypomethylated DMRs 

commonly found when comparing them to the NGT group (Table 3.4). The hypermethylated 

DMRs included BAGE2, BAGE3, BAGE4, BAGE5, CD248, COL8A2, IGSF9, PACSIN1, 
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SPACA3, SYT3 and TMEM89 whereas the hypomethylated DMRs included ADK, CCDC53, 

POTEB, POTEB2, RHOBTB3, RNF169 and SLC35B4.  When the groups were further 

categorised to include non-diabetic hyperglycaemia and compared to NGT, 1 hypermethylated 

DMR (TMEM89) and 4 hypomethylated DMRs (CCDC53, POTEB, POTEB2 and RHOBTB3) 

were observed (Table. 3.5).  

 

When comparing the known diabetic subjects on metformin treatment to the screen-

detected (newly diagnosed) diabetic subjects, there were 22 hypermethylated DMRs and 11 

hypomethylated DMRs identified (Table 3.6). The hypomethylated DMRs of interest are 

SLC25A35 and SLC28A1. 
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Table 3.2: The top ten hypermethylated DMRs for all comparison groups, known diabetes versus NGT; known diabetes versus screen-detected diabetes; known 
diabetes versus prediabetes; screen-detected diabetes versus NGT; prediabetes versus NGT and prediabetes versus screen-detected diabetes based on the fold 
change (log2FC) 

 

  



58 
 

Table 3.3: The top ten hypomethylated DMRs for all comparison groups, known diabetes versus NGT; known diabetes versus screen-detected diabetes; known 
diabetes versus prediabetes; screen-detected diabetes versus NGT; prediabetes versus NGT and prediabetes versus screen-detected diabetes 
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Table 3.4: Hypermethylated and hypomethylated DMRs in all diabetic individuals (known diabetes and 
screen-detected diabetes) versus NGT 

 

 

 

Table 3.5: Hypermethylated and hypomethylated DMRs in known diabetes, screen-detected diabetes 
and prediabetes versus NGT 

 

Gene Name

Accession 

number

Known DM vs 

NGT               

fold change p-value

Screen-detected 

DM vs NGT        

fold change p-value

BAGE2 NM_182482 1.44 1.64 x 10
-9

1.18 1.48 x 10
-5

BAGE3 NM_182481 1.44 1.64 x 10
-9

1.18 1.48 x 10
-5

BAGE4 NM_181704 1.44 1.64 x 10
-9

1.18 1.48 x 10
-5

BAGE5 NM_182484 1.44 1.64 x 10
-9

1.18 1.48 x 10
-5

CD248 NM_020404 1.56 6.86 x 10
-6

1.47 3.22 x 10
-5

COL8A2 NM_005202 1.04 3.65 x 10
-5

1.02 2.75 x 10
-5

IGSF9 NM_020789 1.53 9.07 x 10
-7

1.54 5.45 x 10
-6

PACSIN1 NM_020804 1.66 1.75 x 10
-5

1.39 1.27 x 10
-8

SPACA3 NM_173847 1.36 8.65 x 10-
7

1.73 1.31 x 10
-5

SYT3 NM_032298 1.49 1.49 x 10
-9

1.39 3.52 x 10
-8

TMEM89 NM_001008269 1.01 2.02 x 10
-5

1.04 3.14 x 10
-6

ADK NM_001202449 -1.1 1.87 x 10
-6 

-1.32 2.55 x 10
-6 

CCDC53 NM_016053 -1.28 1.52 x 10
-6

-1.05 1.03 x 10
-6 

POTEB NM_001277304 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

POTEB2 NM_001277303 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

RHOBTB3 NM_014899 -2.02 1.93 x 10
-7

-1.82 2.69 x 10
-7

RNF169 NM_001098638 -1.23 6.75 x 10
-7

-1.05 1.33 x 10
-6 

SLC35B4 NM_032826 -1.45 2.01 x 10
-5

-1.06 3.10 x 10
-6 

Hypomethylated DMRs

Hypermethylated DMRs

Gene Name

Accession 

number

Known DM vs 

NGT               

fold change p-value

Screen-detected 

DM vs NGT        

fold change p-value

Prediabetes 

vs NGT               

fold change p-value

TMEM89 NM_001008269 1.01 2.02 x 10
-5

1.04 3.14 x 10
-6

1.76 2.60 x 10
-7

CCDC53 NM_016053 -1.28 1.52 x 10
-6

-1.05 1.03 x 10
-6 

-1.61 4.91 x 10
-7

POTEB NM_001277304 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

-1.44 2.72 x 10
-5

POTEB2 NM_001277303 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

-1.44 2.72 x 10
-5

RHOBTB3 NM_014899 -2.02 1.93 x 10
-7

-1.82 2.69 x 10
-7

-1.88 2.24 x 10
-7

Hypermethylated DMRs

Hypomethylated DMRs
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Table 3.6: Hypermethylated and hypomethylated DMRs in known diabetes versus screen-detected 
diabetes 

 

 

 

 

Gene Name Accession number

Known DM vs 

Screen-

detected DM                  

fold change p-value

XAGE1E NM_001097604 1.66 5.36 x 10
-7

XAGE1B NM_001097594 1.66 5.36 x 10
-7

KIAA1467 NM_020853 1.62 2.21 x 10
-7

ASB2 NM_001202429 1.6 3.33 x 10
-7

GABPA NM_001197297 1.56 6.07 x 10
-6

ZNF346 NM_012279 1.47 6.99 x 10
-6

FKBP8 NM_012181 1.4 3.83 x 10
-7

CTAGE15 NM_001008747 1.38 2.62 x 10
-7

VIPR1 NM_001251882 1.37 9.82 x 10
-5

TMEM204 NM_024600 1.31 2.77 x 10
-6

RNF103-CHMP3 NM_001198954 1.31 2.43 x 10
-5

PARVB NM_001003828 1.26 6.86 x 10
-6

POTED NM_174981 1.23 5.31 x 10
-7

STAG2 NM_006603 1.21 1.9 x 10
-5

KCNQ3 NM_001204824 1.19 9.67 x 10
-5

TBCE NM_003193 1.16 7.23 x 10
-7

GAREML NM_001168241 1.14 3.93 x 10
-6

Sep-12 NM_001154458 1.13 4.44 x 10
-6

OR6C3 NM_054104 1.11 2.94 x 10
-5

PPP1R32 NM_001170753 1.1 4.38 x 10
-6

ZNF169 NM_194320 1.07 8.86 x 10
-5

TAS1R1 NM_177540 1.07 2.86 x 10
-7

TPD52L2 NM_001243895 -1 5.33 x 10
-6

GAGE7 NM_021123 -1.15 2.95 x 10
-5

NUDT10 NM_153183 -1.37 3.93 x 10
-7

OPN1MW2 NM_001048181 -1.39 1.64 x 10
-5

OPN1MW NM_000513 -1.39 1.64 x 10
-5

BRDT NM_001242808 -1.39 7.79 x 10
-5

ELAC2 NM_001165962 -1.45 3.08 x 10
-5

SLC25A35 NM_201520 -1.52 7.49 x 10
-6

C18orf8 NM_013326 -1.55 2.33 x 10
-6

SLC28A1 NM_001287761 -1.67 1.78 x 10
-5

FBXW8 NM_153348 -1.79 1.7 x 10
-5

Hypermethylated DMRs

Hypomethylated DMRs
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3.3 Gene Ontology (GO) analysis 

Gene Ontology analysis was performed and enabled the classification of the DMRs according 

to three domains, namely biological process, cellular component and molecular function. The 

GO analyses were completed for each of the six comparison pairs and highlighted all three 

domains for both the hypermethylated and hypomethylated DMRs. Fisher’s exact test was 

used to identify whether there was more overlap between the differentially expressed (DE) list 

and the GO annotation list than would be expected by chance. The p-value represents the 

significance of GO terms enrichment in the DE genes. A p-value of <= 0.05 was considered 

significant and the lower the p-value, the more significant the GO Term.  

 

Furthermore, GO Directed Acyclic Graphs (DAG) were formulated and displayed as p-value 

trees. The gene annotation moves from more general to more specific as one moves from the 

parent (precursor) nodes to child nodes. The top ten terms with the lowest p-value and their 

parents are shown in the p-value trees. The terms with pane marks are significant enrichment 

and the more red means more significant. Any p-values lower than 1 x10-20 will be displayed 

as 1x10-20 in the p-value tree. 

 

 

3.3.1 Known diabetes versus NGT 

The top 10 GO enriched terms for the known diabetic group versus the NGT group 

categorised into biological processes, molecular functions and cellular components are 

illustrated in Figure 3.3 and 3.4. Defense response to Gram-positive bacterium (biological 

process), mitochondrial respiratory chain (cellular component) and lysozyme activity 

(molecular function) have the highest-ranked enrichment score amongst the hypermethylated 

DMRs (Figure 3.3a). On the other hand, regulation of translational initiation (biological 

process), dihydrolipoyl dehydrogenase complex (cellular component) and translation initiation 

factor activity (molecular function) have the highest-ranked enrichment score among the 

hypomethylated DMRs (Figure 3.4a).  

 

P-value trees showing the hierarchy of gene ontology biological processes, cellular 

components and molecular functions are displayed for both hypermethylated (Figure 3.3 b-d) 

and hypomethylated (Figure 3.4 b-d) enriched terms. The most significant enrichment (lowest 

p-value) is displayed by the red blocks which show the biological process of defense response 
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to Gram-positive bacterium (hypermethylated) (Figure 3.3b) as well as regulation of 

translational initiation and regulation to cell shape (hypomethylated) (Figure 3.4b). The 

significant enrichment for cellular components includes the mitochondrial respiratory chain, 

ESCRT1 complex, acrosomal vesicle and respiratory chain (hypermethylated) (Figure 3.3c) as 

well as dihydrolipoyl dehydrogenase complex, cell−cell adherens junction,  site of the 

double−strand break,  cytosol,  cell−cell junction, sperm principal piece,  tricarboxylic acid cycle 

enzyme complex and  WASH complex (hypomethylated) (Figure 3.4c). Additionally, the 

significant enrichment for molecular functions includes lysozyme activity, peptidoglycan 

muralytic activity, calcium ion binding and extracellular matrix structural constituent 

(hypermethylated) (Figure 3.3d) as well as translation initiation factor activity and translation 

factor activity, RNA binding (hypomethylation) (Figure 3.4d).      
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(a)           (b)   
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(c)         (d)  

 

Figure 3.3: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in known diabetics compared to the normoglycaemic 
control group (NGT). (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms categorized into biological processes, cellular 
components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the (b) biological processes; 
(c) cellular components and (d) molecular functions 
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(a)       (b)   
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(c)                (d)  

 

Figure 3.4: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in known diabetics compared to the normoglycaemic 
control group (NGT). (a)The bars plot shows the top ten enrichment score values of the significant enrichment terms categorized into biological processes, cellular 
components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the (b) biological processes; 
(c) cellular components and (d) molecular functions 
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3.3.2 Screen-detected diabetes versus NGT 

The top 10 GO enriched terms for the screen-detected diabetic group versus the NGT group 

categorised into biological processes, molecular functions and cellular components are 

illustrated in Figure 3.5 and 3.6. Positive regulation of vasoconstriction (biological process), 

integral component of membrane (cellular component) and heparin sulphate proteoglycan 

binding (molecular function) have the highest-ranked enrichment score amongst the 

hypermethylated DMRs (Figure 3.5a). On the other hand, pyrimidine-containing compound 

transmembrane transport (biological process), integral component of endoplasmic reticulum 

membrane (cellular component) and endoribonuclease activity, producing 3'-

phosphomonoesters (molecular function) has the highest-ranked enrichment score among the 

hypomethylated DMRs (Figure 3.6a).  

 

The hierarchy of gene ontology biological processes, cellular components and molecular 

functions are displayed using p-value trees for both the hypermethylated (Figure 3.5 b-d) and 

hypomethylated (Figure 3.6 b-d) enriched terms. The most significant enrichment (lowest p-

value) is displayed by the red blocks which show the biological process of positive regulation 

of vasoconstriction (hypermethylated) (Figure3.5b) and pyrimidine-containing compound 

transmembrane transport (hypomethylated) (Figure 3.6b). The significant enrichment for 

cellular components includes the integral component of membrane and intrinsic component of 

membrane (hypermethylated) (Figure 3.5c) as well as integral component of endoplasmic 

reticulum membrane, intrinsic component of endoplasmic reticulum membrane, WASH 

complex and DNA-directed RNA polymerase III complex (hypomethylated) (Figure 3.6c). The 

significant enrichment for molecular functions include heparin sulphate proteoglycan binding 

and proteoglycan binding (hypermethylated) (Figure 3.5d) as well as endoribonuclease 

activity, producing 3'-phosphomonoesters, nucleoside kinase activity, bile acid transmembrane 

transporter activity, water channel activity, water transmembrane transporter activity, RNA 

polymerase III activity, macrolide binding, FK506 binding and K63-linked polyubiquitin binding 

(hypomethylation) (Figure 3.6d). 

 

 



68 
 

(a)       (b) 
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 (c)    (d)   

 

Figure 3.5: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in screen-detected diabetics when compared to the 
normoglycaemic control group (NGT). (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were 
categorized into biological processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value 
trees are presented for the (b) biological processes; (c) cellular components and (d) molecular functions 

 



70 
 

 

(a)    (b)  
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 (c)        (d)  

 

Figure 3.6: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in screen-detected diabetics when compared to the 
normoglycaemic control group (NGT). (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were 
categorized into biological processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value 
trees are presented for the (b) biological processes; (c) cellular components and (d) molecular functions 
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3.3.3 Prediabetes versus NGT 

The top 10 GO enriched terms for the prediabetic group versus the NGT group categorised 

into biological processes, molecular functions and cellular components are illustrated in Figure 

3.7 and 3.8. Spermatogenesis (biological process), chromatoid body (cellular component) and 

phospholipid scramblase activity (molecular function) have the highest-ranked enrichment 

score amongst the hypermethylated DMRs (Figure 3.7a). On the other hand, defense 

response to Gram-negative bacterium (biological process), WASH complex (cellular 

component) and histone demethylase activity (H3-K9 specific) (molecular function) has the 

highest-ranked enrichment score among the hypomethylated DMRs (Figure 3.8a).  

 

P-value trees showing the hierarchy of gene ontology biological processes, cellular 

components and molecular functions are presented for both hypermethylated (Figure 3.7 b-d) 

and hypomethylated (Figure 3.8 b-d) enriched terms. The most significant enrichment (lowest 

p-value) is displayed by the red blocks which show the biological process of spermatogenesis, 

male gamete generation, gamete generation, multi-organism process, histone-serine 

phosphorylation, spindle elongation, spindle midzone assembly and meiotic cell cycle 

(hypermethylated) (Figure 3.7b) as well as defense response to Gram-negative bacterium and 

defense response to Gram-positive bacterium (hypomethylated) (Figure 3.8b). The significant 

enrichment for cellular components includes chromatoid body, P granule, pole plasm, germ 

plasm, condensed nuclear chromosome, centromeric region and spindle midzone 

(hypermethylated) (Figure 3.7c) as well as WASH complex (hypomethylated) (Figure 3.8c). 

The significant enrichment for molecular functions includes phospholipid scramblase activity, 

histone kinase activity, inorganic anion exchanger activity and anion:anion antiporters activity 

(hypermethylated) (Figure 3.7d) as well as histone demethylase activity (H3-K9 specific), 

lysozyme activity, metalloendopeptidase inhibitor activity, bile acid transmembrane transporter 

activity, peptidoglycan muralytic activity, lipopolysaccharide binding, organic acid:sodium 

symporter activity and histone demethylase activity (hypomethylation) (Figure 3.8d). 
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(a)       (b)  

 



74 
 

(c)             (d)  

 

Figure 3.7: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in prediabetes when compared to the normoglycaemic 
control group (NGT). (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into 
biological processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented 
for the (b) biological processes; (c) cellular components and (d) molecular functions 
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(a)   (b)  
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(c)  (d)   

 

Figure 3.8: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in prediabetes when compared to the normoglycaemic 
control group (NGT). (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into 
biological processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented 
for the (b) biological processes; (c) cellular components and (d) molecular functions
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3.3.4 Known diabetes versus screen-detected diabetes 

The top 10 GO enriched terms for the known diabetic group versus the screen-detected 

diabetic group categorised into biological processes, molecular functions and cellular 

components are illustrated in Figure 3.9 and 3.10. Muscle atrophy (biological process), axon 

initial segment (cellular component) and macrolide binding (molecular function) have the 

highest-ranked enrichment score amongst the hypermethylated DMRs (Figure 3.9a). On the 

other hand, protein-chromophore linkage (biological process), photoreceptor outer segment 

membrane (cellular component) and G-protein coupled photoreceptor activity (molecular 

function) have the highest-ranked enrichment score among the hypomethylated DMRs (Figure 

3.10a).  

 

The hierarchy of gene ontology biological processes, cellular components and molecular 

functions are displayed using p-value trees for both the hypermethylated (Figure 3.9 b-d) and 

hypomethylated (Figure 3.10 b-d) enriched terms. The most significant enrichment (lowest p-

value) is displayed by the red blocks which show the biological process of muscle atrophy, 

membrane hyperpolarization, peripheral nervous system neuron differentiation, peripheral 

nervous system neuron development, negative regulation of DNA-dependent DNA replication, 

protein folding, regulation of cellular response to growth factor stimulus, negative regulation of 

megakaryocyte differentiation, lymph vessel development and dorsal/ventral neural tube 

patterning  (hypermethylated) (Figure3.9b) as well as protein-chromophore linkage 

(hypomethylated) (Figure 3.10b). The significant enrichment for cellular components includes 

axon initial segment, node of Ranvier and cell periphery (hypermethylated) (Figure 3.9c) as 

well as photoreceptor outer segment membrane (hypomethylated) (Figure 3.10c). The 

significant enrichment for molecular functions includes macrolide binding, FK506 binding, taste 

receptor activity, delayed rectifier potassium, channel activity, G-protein coupled receptor 

activity, peptidyl-prolyl cis-trans isomerase activity, cis-trans isomerase activity and GDP 

binding  (hypermethylated) (Figure 3.9d), as well as  G-protein coupled photoreceptor activity 

and photoreceptor activity (hypomethylation) (Figure 3.10d). 
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(a)    (b)  
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(c)     (d)  

 

Figure 3.9: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in known diabetes when compared to the screen-detected 
diabetes group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological 
processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the 
(b) biological processes; (c) cellular components and (d) molecular functions 
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(a)    (b)  
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(c)  (d)  

 

 

Figure 3.10: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in known diabetes when compared to the screen-detected 
diabetes group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological 
processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the 
(b) biological processes; (c) cellular components and (d) molecular functions
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3.3.5 Known diabetes versus prediabetes 

The top 10 GO enriched terms for the known diabetic group versus the prediabetes group 

categorised into biological processes, molecular functions and cellular components are 

illustrated in Figure 3.11 and 3.12. Muscle hypertrophy in response to stress (biological 

process), stress fiber (cellular component) and potassium channel regulator activity (molecular 

function) have the highest-ranked enrichment score amongst the hypermethylated DMRs 

(Figure 3.11a). On the other hand, carbohydrate derivative transport (biological process), 

catalytic step 2 spliceosome (cellular component) and nucleobase-containing compound 

transmembrane transporter activity (molecular function) have the highest-ranked enrichment 

score among the hypomethylated DMRs (Figure 3.12a).  

 

P-value trees showing the hierarchy of gene ontology biological processes, cellular 

components and molecular functions are displayed for both hypermethylated (Figure 3.11 b-

d) and hypomethylated (Figure 3.12 b-d) terms. The most significant enrichment (lowest p-

value) is displayed by the red blocks which show the biological process of muscle hypertrophy 

in response to stress, cardiac muscle adaptation, cardiac muscle hypertrophy in response to 

stress, muscle adaptation, regulation of epidermal growth factor-activated receptor activity, 

regulation of vascular endothelial growth factor receptor signalling pathway and muscle system 

process (hypermethylated) (Figure3.11b) as well as carbohydrate derivative transport and 

regulation of carbohydrate biosynthetic process (hypomethylated) (Figure 3.12b). The 

significant enrichment for cellular components includes stress fiber, contractile actin filament 

bundle, actin filament bundle, actomyosin and catalytic step 2 spliceosome (hypermethylated) 

(Figure 3.11c) as well as catalytic step 2 spliceosome, endoplasmic reticulum, 

oligosaccharyltransferase complex and nuclear transcription factor complex (hypomethylated) 

(Figure 3.12c). The significant enrichment for molecular functions includes potassium channel 

regulator activity (hypermethylated) (Figure 3.11d) as well as nucleobase-containing 

compound transmembrane transporter activity (hypomethylation) (Figure 3.12d). 
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(a)     (b)  
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(c)    (d)  

 

Figure 3.11: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in known diabetes when compared to the prediabetes 
group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological processes, 
cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the (b) biological 
processes; (c) cellular components and (d) molecular functions 
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(a)     (b)  

 



86 
 

(c)     (d)   

 

Figure 3.12: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in known diabetes when compared to the prediabetes 
group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological processes, 
cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the (b) biological 
processes; (c) cellular components and (d) molecular functions 
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3.3.6 Prediabetes versus screen-detected diabetes 

The top 10 GO enriched terms for the prediabetic group versus the screen-detected diabetic 

group categorised into biological processes, molecular functions and cellular components are 

illustrated in figure 3.13 and 3.14. Regulation of flagellated sperm motility (biological process), 

Golgi lumen (cellular component) and macrolide binding (molecular function) have the highest-

ranked enrichment score amongst the hypermethylated DMRs (Figure 3.13a). On the other 

hand, positive regulation of wound healing (biological process), sarcolemma (cellular 

component) and hormone activity (molecular function) have the highest-ranked enrichment 

score among the hypomethylated DMRs (Figure 3.14a).  

 

The hierarchy of gene ontology biological processes, cellular components and molecular 

functions are displayed using p-value trees for both the hypermethylated (Figure 3.13 b-d) and 

hypomethylated (Figure 3.14 b-d) enriched terms. The most significant enrichment (lowest p-

value) is displayed by the red blocks which show the biological process of regulation of 

flagellated sperm motility, hepatocyte growth factor receptor signalling pathway, pyrimidine-

containing compound transmembrane transport, humoral immune response, protein targeting 

to Golgi, mitochondrial DNA metabolic process, calcium-mediated signalling using intracellular 

calcium source, mitochondrion morphogenesis, sperm capacitation and methylation-

dependent chromatin silencing (hypermethylated) (Figure3.13b) as well as positive regulation 

of wound healing and positive regulation of response to wounding (hypomethylated) (Figure 

3.14b). The significant enrichment for cellular components includes Golgi lumen, integral 

component of endoplasmic reticulum membrane, sperm part and intrinsic component of 

endoplasmic reticulum membrane (hypermethylated) (Figure 3.13c) as well as sarcolemma, 

host cell part, platelet dense tubular network, inhibitory synapse, host and host cell 

(hypomethylated) (Figure 3.14c). The significant enrichment for molecular functions includes 

macrolide binding, FK506 binding, methyl-CpG binding, semaphorin receptor binding, 

chemorepellent activity, DNA-directed DNA polymerase activity, Ran GTPase binding, fatty-

acyl-CoA binding, nucleobase-containing compound transmembrane transporter activity and 

carbohydrate derivative transporter activity (hypermethylated) (Figure 3.13d) as well as 

hormone activity (hypomethylation) (Figure 3.14d). 
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(a)     (b)  
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(c)      (d)   

 

Figure 3.13: Gene Ontology (GO) enrichment analysis of the hypermethylated differentially methylated genes in the prediabetes group when compared to the screen-
detected group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological 
processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the 
(b) biological processes; (c) cellular components and (d) molecular functions 
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(a)  (b)   
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(c)     (d)  

 

 

Figure 3.14: Gene Ontology (GO) enrichment analysis of the hypomethylated differentially methylated genes in the prediabetes group when compared to the screen-
detected group. (a) The bars plot shows the top ten enrichment score values of the significant enrichment terms. Enriched GO terms were categorized into biological 
processes, cellular components and molecular function. Data are presented as enriched scores expressed as -log10 (p-value).  P-value trees are presented for the 
(b) biological processes; (c) cellular components and (d) molecular functions 
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3.4 KEGG Pathway analysis 

The functional analysis mapping of genes to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways were performed. The functional analysis was completed for each of the six 

comparison pairs and highlighted the significant pathways for both the hypermethylated and 

hypomethylated DMRs (Table 3.7). The p-value (Fisher P-value) denotes the significance of 

the pathway correlated to the conditions. A p-value of <= 0.05 was considered significant and 

the lower the p-value, the more significant is the pathway.  

 

The cytokine-cytokine receptor interaction pathway and cAMP signalling pathway were 

significantly hypermethylated in the known diabetic group when compared to the 

normoglycaemic and prediabetic groups, whereas RNA transport and PI3K-Akt signalling 

pathways were hypomethylated. In addition, the notch signalling pathway was 

hypermethylated in the newly diagnosed group and purine metabolism was hypomethylated 

when comparing to the control subjects. No enriched pathways were observed for the 

prediabetic group when comparing to the control group and similarly when comparing the 

known diabetic group to newly diagnosed diabetic participants. 
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Table 3.7:  KEGG analysis of the top ten enrichment score values (−log 10(P-value)) of the significantly 
enriched pathway 

 

 

 

3.5 Validation of significant DMRs using pyrosequencing 

The significant DMRs identified in the 48 participant samples by the MeDIP sequencing were 

validated using pyrosequencing. Selected Pyromark CpG Assay Primers (Qiagen, Hilden, 

Germany) (refer to Table 2.4 in Chapter 2: Methodology) were used in the pyrosequencing 

analysis to validate whether methylation existed and could be detected in the selected regions.  

Samples from participants in the various group were analysed and areas of hypermethylation 

Pathway ID Definition Fisher-Pvalue Enrichment Score Genes

hsa04060 Cytokine-cytokine receptor interaction 0.002346103 2.629653

IL12A//IL1R2//TNFSF8// 

TNFSF9

hsa05146 Amoebiasis - Homo sapiens 0.01963637 1.706939 IL12A//IL1R2

hsa00190 Oxidative phosphorylation 0.03465798 1.460197 COX7A1//NDUFB2

hsa05012 Parkinson's disease 0.03906889 1.408169 COX7A1//NDUFB2

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 0.04368588 1.359659 COX7A1//NDUFB2

hsa03013 RNA transport 0.0110018 1.958536 EIF2B3//EIF5

hsa04330 Notch signaling pathway 0.003803428 2.419825 MFNG//NUMBL

hsa04918 Thyroid hormone synthesis 0.00884694 2.053207 ATP1A3//IYD

hsa04260 Cardiac muscle contraction 0.00979235 2.009113 ATP1A3//CACNG8

hsa04261 Adrenergic signaling in cardiomyocytes 0.03322194 1.478575 ATP1A3//CACNG8

hsa00230 Purine metabolism 0.005656938 2.247419 ADK//POLR3H

hsa04024 cAMP signaling pathway 0.04261372 1.370451 AMH//GPR119

hsa04151 PI3K-Akt signaling pathway 0.01327285 1.877036 COL6A6//IRS1//TCL1A

hsa04510 Focal adhesion 0.03649743 1.437738 COL6A6//MYL2

hsa04914 Progesterone-mediated oocyte maturation 0.00013244 3.87798

SPDYE2//SPDYE2B//SP

DYE6

hsa04114 Oocyte meiosis 0.000266361 3.574529

SPDYE2//SPDYE2B//SP

DYE6

Hypomethylated Prediabetes versus Controls

Hypermethylated Known diabetes versus control

Hypomethylated Known diabetes versus controls

Hypermethylated New diabetes versus Controls

Hypomethylated New diabetes versus Controls

Hypermethylated Prediabetes versus Controls

There is no enriched pathway

Hypomethylated Known diabetes versus prediabetes

Hypermethylated prediabetes versus new diabetes

There is no enriched pathway

Hypomethylated prediabetes versus new diabetes

There is no enriched pathway

Hypermethylated Known diabetes versus New diabetes

There is no enriched pathway

Hypomethylated Known diabetes versus New diabetes

There is no enriched pathway

Hypermethylated Known diabetes versus prediabetes
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and hypomethylation were detected. In addition, the PyroMark Control Oligo (Qiagen, Hilden, 

Germany) was used for quality control for the experimental procedure. The results for the 

pyrosequencing are presented in pyrograms whereby the y-axis displays the light intensity and 

the x-axis presents the sequence of nucleotides added during the pyrosequencing run.   

 

The pyrogram for the Control Oligo run is presented in Figure 3.15. The results from the 

control run show that the percentage of C (cytosine) was 49% and T (thymine) was 51%. These 

results confirmed that the Control Oligo run passed the quality control check.  

 

 

Figure 3.15: Pyrogram showing the results from the Pyromark Control Oligo test run. The percentages 
shown for C (cytosine) and T (thymine) indicate that the control run has passed the quality control check 

 

Pyrogram results from participant samples where the selected Pyromark CpG Assay 

Primers were applied to the pyrosequencing can be seen in the examples presented in Figure 

3.16 and 3.17.  In Figure 3.16, the low percentage methylation detected in the sample run at 

the five CpG regions range from 5-12% and is indicative of hypomethylation. Readings at the 

first three CpG regions passed the quality check whereas readings at the last two CpG regions 

were flagged due to high peak deviation at dispensation 30. After evaluating the percentage 

methylation and the peak height detected at the fourth and fifth CpG region, the readings were 

manually passed. In Figure 3.17, the higher percentage of methylation detected in the sample 
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run at the four CpG regions ranged from 36-71% and indicated hypermethylation at these 

regions. The readings at all four CpG regions passed the quality check. 

 

 

Figure 3.16: Pyrogram showing the percentage methylation at five CpG regions. The percentage of 
methylation ranged from 5-12% across the five CpG regions indicating low levels of DNA methylation 

 

 

Figure 3.17: Pyrogram showing the percentage methylation at four CpG regions. The percentage of 
methylation ranged from 36-71% across the four CpG regions indicating higher levels of DNA 
methylation 
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Flagged messages due to high peak height deviation could at times be as a result of 

homopolymer regions whereby a string of repeated nucleotides are detected in the run. 

Homopolymer regions in a run affect the synchronised synthesis of the DNA strand and may 

result in irregular sequence peak heights which affect the read length (Heather and Chain, 

2016). In such cases, the instrument software is undecided and cannot discern between two 

bases next to each other. This is a common base-calling error that occurs in pyrosequencing 

(Miller et al., 2008; Balzer et al., 2011; Heather and Chain, 2016). An example of a 

homopolymer stretch can be seen in Figure 3.18 where the repeated occurrence of the A 

(adenosine) and T (thymine) nucleotide in the sample run resulted in exaggerated peak heights 

and uncertainty in the quality check at the second CpG region. This resulted in a reading of 

12% which was flagged, as indicated by the yellow highlighting of the reading in Figure 3.18. 

Upon further investigation of the peak height and percentage at this CPG region, the reading 

was disregarded as it was unclear whether the peak reading was a reflection of a T (thymine) 

or C (cytosine) due to the homopolymer stretch present. Repeating the run resulted in the 

same outcome indicating that this was a possible base calling error. 

 

 

Figure 3.18: Pyrogram showing the percentage methylation at four CpG regions. The reading at the 
second CpG region (indicated by the red arrow) was flagged and disregarded 
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3.6 Long non-coding RNAs (lncRNAs) 

In addition to the previous DNA methylation regions identified, lncRNA-associated DNA 

methylation was also measured. There was a total of 943947 statistically significant lncRNA-

associated MeDIP-enriched regions (peaks) identified for the 48 samples. As expected, the 

promoter region (TSS-2000bp, TSS+2000bp) showed the least amount of peaks for all the 

groups when compared to the gene body and intergenic regions. Statistically significant 

lncRNA-associated DMRs between promoters of the various groups were identified by 

diffReps using a limit of log2FC=1.0 and p-value=0.0001. Hypermethylated and 

hypomethylated DMRS are presented in Figure 3.19 with comparisons amongst the same six 

groups, namely known diabetes versus NGT; screen-detected diabetes versus NGT; 

prediabetes versus NGT; known diabetes versus screen-detected diabetes; known diabetes 

versus prediabetes and prediabetes versus screen-detected diabetes. Overall 641 lncRNA -

associated DMRs were identified of which 63% were hypermethylated and 37% 

hypomethylated. The highest number of hypermethylated lncRNA-associated DMRs were 

observed by the known diabetes group (77%) when compared to the NGT group. When 

grouping the lncRNA-associated DMRs according to their chromosomal location (Figure 3.20), 

the most hypermethylated and hypomethylated DMRs were found on chromosome 1.  
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Figure 3.19: LncRNA-associated MeDIP enriched regions (peaks) identified in all 48 samples. The total 
sites are the sum of the peak number for the subjects with known diabetes (known DM), screen-detected 
diabetes (screen-detected DM); prediabetes and normal glucose tolerance (NGT). The distribution of 
the peaks in the intergenic, gene body and promoter regions are shown. The hypermethylated and 
hypomethylated lncRNA-associated DMRs within the gene promoter for the various glucose tolerance 
groups are shown 
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Figure 3.20: Heatmap presenting the distributions of lncRNA-associated differentially methylated 
regions (DMRs) among the chromosomes for all six comparison groups, namely known diabetes versus 
NGT; screen-detected diabetes versus NGT; prediabetes versus NGT; known diabetes versus screen-
detected diabetes; known diabetes versus prediabetes and prediabetes versus screen-detected 
diabetes. Both hypermethylated and hypomethylated DMRs are presented 

 

Tables 3.8 and 3.9 summarises the lncRNA-associated DMRs according to the top ten 

DMRs per fold change for each of the six comparison groups. When observing all the common 

lncRNA-associated DMRS for the diabetic subjects (known diabetes and screen-detected 

diabetes), there were 11 hypermethylated and 14 hypomethylated DMRS when compared to 

the NGT subjects (Table 3.10). The hypermethylated lncRNA-associated DMRs included 

AC096669.2, AK126635, ARL17B, BAGE3, MLXIP, NGEF, PCMTD2, RPTOR, TMEM9, 

XLOC_002527 and XLOC_007696 whereas the hypomethylated lncRNA-associated DMRs 

included BC029473, C4A, CCDC53, CROCCP2, CTD-2154I11.2, FAM225B, MBD3, POMT1, 

POTEB2, RP11-119F7.5, RP11-219A15.4, RP11-429J17.4, RP11-77K12.5 and SLC35B4. 
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Table 3.8: The top 10 hypermethylated lncRNA-associated DMRs for all comparison groups, known diabetes versus NGT; known diabetes versus screen-detected 
diabetes; known diabetes versus prediabetes; screen-detected diabetes versus NGT; prediabetes versus NGT and prediabetes versus screen-detected diabetes 

 

 

Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value

SLC26A9 chr1:205895421-205895620 2.69 1.32 x 10
-7

SLC26A9 chr1:205895421-205895620 1.91 2.22 x 10
-7

POMP chr13:29231801-29232000 2.84 9.00 x 10
-8

ZNF346 chr5:176448161-176448360 2.28 4.34 x 10
-7

FAM223A chrX:153859601-153859800 1.82 3.06 x 10
-7

XLOC_008014 chrX:73047161-73047360 2.66 8.29 x 10
-8

LOC100130075 chr12:69198841-69199100 2.28 1.48 x 10
-7

SDK2 chr17:71432461-71432680 1.69 2.75 x 10
-7

AK128525 chr2:89160101-89160340 2.29 1.49x 10
-7

AF258560 chr16:24930681-24930880 2.2 2.33 x 10
-7

XAGE1B chrX:52260741-52261020 1.66 5.35 x 10
-7

KIAA1467 chr12:13198981-13199200 2.17 1.12 x 10
-7

ARL17B chr17:44429021-44429220 2.19 2.74 x 10
-7

SCRIB chr8:144877441-144877660 1.62 4.72 x 10
-7

ZNF346 chr5:176448161-176448360 2.14 8.49 x 10
-5

PRRC2B chr9:134364781-134365100 2.17 5.34 x 10
-9

KIAA1467 chr12:13198981-13199200 1.62 2.21 x 10
-7

RP11-502H18.2 chr1:180093741-180094000 2.13 3.34 x 10
-7

XLOC_002527 chr2:238039241-238039560 2.05 1.20 x 10
-7

AK092098 chr11:63591421-63591720 1.58 1.11 x 10
-7

KLK13 chr19:51567281-51567500 1.95 8.58 x 10
-7

LINC00521 chr14:94461821-94462080 2.04 1.11 x 10
-7

ATP5J chr21:27105221-27105420 1.56 6.07 x 10
-6

XLOC_001908 chr2:238120261-238120720 1.92 2.28 x 10
-7

CTD-2354A18.1 chr18:70993201-70993440 2.02 3.63 x 10
-8

AF420437 chr1:146216561-146217120 1.49 2.52 x 10
-6

AX748236 chr10:6568081-6568280 1.92 1.14 x 10
-7

IGH chr16:33753381-33753580 1.99 8.29 x 10
-7

ZNF346 chr5:176448161-176448360 1.47 6.99 x 10
-6

RP11-944C7.1 chr14:90101381-90101600 1.9 1.25 x 10
-7

Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value

FXYD5 chr19:35647241-35647460 2.84 2.16 x 10
-9

MIMT1 chr19:57352241-57352440 2.16 9.45 x 10
-8

SEMA4F chr2:74879901-74880100 1.88 2.20 x 10
-7

CTD-2534I21.9 chr17:43061181-43061480 2.4 1.48 x 10
-7

XLOC_l2_014834 chr9:69728801-69729040 1.99 3.91 x 10
-7

MAN1C1 chr1:26012381-26012620 1.57 1.95 x 10
-7

ARL17B chr17:44430841-44431040 2.38 2.38 x 10
-7

DQ572107 chr17:62120181-62120380 1.99 4.31 x 10
-7

XLOC_000777 chr1:33173461-33173660 1.53 2.92 x 10
-7

VANGL2 chr1:160389941-160390140 2.28 1.04 x 10
-6

RP11-357H3.1 chr18:73727201-73727400 1.88 3.87 x 10
-10

EHMT1-IT1 chr9:140656061-140656260 1.52 1.35x 10
-7

RP11-332J15.2 chr5:6867621-6867880 2.24 7.23 x 10
-9

LOC100288123 chr19:1820041-1820240 1.85 2.33 x 10
-7

RP11-782C8.5 chr1:143226161-143226400 1.48 2.74 x 10
-6

XLOC_013291 chr19:30186641-30186900 2.18 6.88 x 10
-7

LINC01508 chr9:93195001-93195220 1.8 6.04 x 10
-7

BC071797 chr21:9709901-9710100 1.45 4.48 x 10
-6

LINC00442 chr13:19582301-19582500 2.17 5.42 x 10
-8

RP11-676J12.8 chr17:694041-694240 1.79 1.13 x 10
-6

ADAMTS1 chr21:28212361-28212640 1.45 7.40 x 10
-8

SHKBP1 chr19:41084061-41084280 2.16 5.75 x 10
-10

GRTP1-AS1 chr13:114005801-114006000 1.72 1.15 x 10
-6

RP5-905H7.8 chr7:62815041-62815240 1.44 2.64x 10
-7

GTF2I chr7:74168921-74169120 2.06 3.08 x 10
-6

AP001046.6 chr21:44783281-44783480 1.72 7.68 x 10
-7

XLOC_l2_011193 chr4:93104781-93105020 1.42 1.51 x 10
-6

LTBP4 chr19:41116601-41116800 2.05 4.81 x 10
-5

RP11-75C10.7 chr17:75466201-75466440 1.67 3.92 x 10
-7

METTL23 chr17:74724801-74725000 1.38 1.50 x 10
-5

HYPERMETHYLATED lncRNA-associated DMRs

Known DM vs PrediabetesKnown DM vs NGT Known DM vs Screen-detected DM

Screen-detected DM vs NGT Prediabetes vs NGT Prediabetes vs Screen-detected DM
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Table 3.9: The top 10 hypomethylated lncRNA-associated DMRs for all comparison groups, known diabetes versus NGT; known diabetes versus screen-detected 
diabetes; known diabetes versus prediabetes; screen-detected diabetes versus NGT; prediabetes versus NGT and prediabetes versus screen-detected diabetes 

 

 

Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value

XLOC_004212 chr4:186941421-186941700 -1.02 3.71 x 10
-6

SSH1 chr12:109199901-109200160 -1.12 7.43 x 10
-6

RP11-79P5.3 chr5:72705681-72705960 -1.01 1.78 x 10
-6

BRF1 chr14:105689281-105689540 -1.03 9.73x 10
-5

XLOC_005639 chr6:21980601-21980860 -1.13 9.27 x 10
-5

RP11-67H24.2 chr16:32821721-32822020 -1.01 5.89 x 10
-5

THAP4 chr2:242540201-242540400 -1.06 3.16 x 10
-5

RP11-458D21.1 chr1:145380441-145380780 -1.19 2.76 x 10
-5

XLOC_005521 chr6:159549481-159549940 -1.02 7.46 x 10
-6

CROCCP2 chr1:16959961-16960280 -1.06 1.27 x 10
-6

LOC100506603 chr14:77252181-77252640 -1.19 1.55 x 10
-6

RP4-545C24.1 chr7:143890801-143891200 -1.03 2.16 x 10
-5

EIF4A3 chr17:78113501-78113740 -1.11 7.76 x 10
-6

AK125727 chr14:77252181-77252640 -1.19 1.55 x 10
-6

RCAN3 chr1:24861401-24861600 -1.06 7.29 x 10
-6

TMEM214 chr2:27253761-27253980 -1.13 3.31 x 10
-7

AP001476.3 chr21:47477561-47477760 -1.24 9.48 x 10
-5

CHRNB4 chr15:78953061-78953460 -1.06 4.32 x 10
-6

EIF2B3 chr1:45452441-45452640 -1.14 2.67 x 10
-7

BC034416 chr3:180586661-180586880 -1.31 1.44 x 10
-5

ADAMTS1 chr21:28212361-28212640 -1.11 4.90 x 10
-6

HOXA3 chr7:27179421-27179740 -1.15 1.34 x 10
-6

RN7SL367P chr16:1946361-1946700 -1.35 6.51 x 10
-6

RN7SKP204 chr6:13547661-13548000 -1.12 1.67 x 10
-7

CUX2 chr12:111651881-111652080 -1.15 4.87 x 10
-5

RP11-586K12.4 chr16:32752701-32752900 -1.37 1.00 x 10
-5

BC015435 chr1:228673261-228673560 -1.15 1.05 x 10
-5

VRK3 chr19:50527041-50527300 -1.16 2.26 x 10
-6

EIF3B chr7:2412041-2412260 -1.37 5.80 x 10
-6

PMS2L14 chr7:74928941-74929300 -1.16 3.25 x 10
-5

Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value Gene Name Genomic Coordinates log2FC p-value

TRMU chr22:46748281-46748680 -1 6.26 x 10
-7

ZNF556 chr19:2867381-2867620 -1.02 5.88 x 10
-7

XLOC_009483 chr11:69000461-69000660 -1.02 8.53 x 10
-6

TFE3 chrX:48900201-48900480 -1 6.62 x 10
-6

KIAA1257 chr3:128721801-128722040 -1.09 4.52 x 10
-5

AL928742.12 chr14:106065161-106065560 -1.04 4.80 x 10
-5

SNAR-A2 chr19:48438741-48438980 -1 2.21 x 10
-5

MIR210HG chr11:570301-570520 -1.12 5.30 x 10
-5

XLOC_l2_013648 chr7:149730661-149731040 -1.05 8.38 x 10
-5

RP11-503C24.2 chr6:168628021-168628220 -1 9.35 x 10
-6

WBP2 chr17:73847441-73847820 -1.13 5.23 x 10
-5

MIIP chr1:12080981-12081260 -1.09 5.18 x 10
-5

RP11-27N21.3 chr8:80697521-80697720 -1.01 1.61 x 10
-5

MFSD7 chr4:678821-679060 -1.14 5.47 x 10
-5

RP11-1260E13.1 chr17:171381-171760 -1.11 1.39 x 10
-5

POTEB2 chr15:21070661-21070880 -1.01 2.68 x 10
-5

RPS13 chr11:17100501-17100760 -1.15 9.31 x 10
-5

KIAA0586 chr14:58908521-58908840 -1.11 6.72 x 10
-5

AC011298.2 chr2:241624101-241624300 -1.02 2.03 x 10
-5

RP11-524F11.1 chr17:17409041-17409240 -1.2 8.63 x 10
-6

RDH8 chr19:10126581-10126940 -1.12 6.10 x 10
-5

RP11-219A15.4 chr17:16689761-16690120 -1.03 1.32 x 10
-5

HAUS1 chr18:43685801-43686080 -1.22 5.32 x 10
-5

RP11-158I23.1 chr3:125777161-125777520 -1.14 8.29 x 10
-8

PASK chr2:242072801-242073060 -1.04 2.59 x 10
-6

ADSL chr22:40759661-40759880 -1.26 7.70 x 10
-7

Z99756.1 chr22:43671621-43672000 -1.17 1.68 x 10
-6

RP11-119F7.5 chr10:70456261-70456580 -1.05 2.10 x 10
-6

TFF3 chr21:43732601-43732860 -1.29 1.51 x 10
-5

RP4-751H13.7 chr7:149558981-149559180 -1.2 8.05 x 10
-5

Known DM vs NGT Known DM vs Screen-detected DM Known DM vs Prediabetes

Prediabetes vs Screen-detected DMPrediabetes vs NGTScreen-detected DM vs NGT

HYPOMETHYLATED lncRNA-associated DMRs
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Table 3.10: Hypermethylated and hypomethylated lncRNA-associated DMRs in known diabetes and 
screen-detected diabetes versus NGT 

 

 

Furthermore, when including the non-diabetic hyperglycaemia to the diabetic subjects, the 

common hypomethylated lncRNA-associated DMRs found were C4A, CCDC53, CTD-

2154I11.2, POTEB2 and RP11-429J17.4 when compared to the NGT subjects (Table 3.11). 

LncRNA-associated DMRs were also summarised for the known diabetic subjects on 

metformin treatment compared to the screen-detected (newly diagnosed) diabetic subjects 

(Table 3.12). There were 36 hypermethylated and 21 hypomethylated lncRNA-associated 

DMRs identified. Amongst the hypermethylated lncRNA-associated DMRs, ATP5J and LOXL2 

were highlighted as having a possible association with diabetes.  

Gene Name Accession number

Known DM vs 

NGT               

fold change p-value

Screen-detected 

DM vs NGT        

fold change p-value

AC096669.2 ENST00000414300 1.47 4.05 x 10
-8

1.19 2.70 x 10
-5

AK126635 uc001lsk.1 1.04 7.04 x 10
-5

1.22 4.58 x 10
-6

ARL17B ENST00000572991 2.19 2.74 x 10
-7

2.38 2.38 x 10
-7

BAGE3 uc002yix.2 1.44 1.64 x 10
-9

1.18 1.48 x 10
-5

MLXIP ENST00000541750 1.27 9.71 x 10
-7

1.2 4.71 x 10
-7

NGEF ENST00000489127 1.21 3.82 x 10
-5

1.19 2.99 x 10
-5

PCMTD2 ENST00000266078 1.74 1.23 x 10
-8

1.15 9.99 x 10
-6

RPTOR ENST00000575542 1.53 1.78 x 10
-6

1.46 2.93 x 10
-7

TMEM9 ENST00000472411 1.56 4.64 x 10
-6

1.77 5.46 x 10
-8

XLOC_002527 TCONS_00004618 2.05 1.20 x 10
-7

1.65 2.90 x 10
-7

XLOC_007696 TCONS_00016322 1.38 2.27 x 10
-8

1.38 1.16 x 10
-7

BC029473 uc001ejd.1 -2.27 3.11 x 10
-7

-1.93 5.96 x 10
-7

C4A ENST00000463034 -1.81 7.70 x 10
-7

-1.13 1.27 x 10
-5

CCDC53 ENST00000544341 -1.28 1.53 x 10
-6

-1.05 1.04 x 10
-6

CROCCP2 ENST00000412962 -1.06 1.27 x 10
-6

-1.51 8.05 x 10
-7

CTD-2154I11.2 ENST00000512486 -2.02 1.94 x 10
-7

-1.82 2.69 x 10
-7

FAM225B ENST00000439875 -1.51 1.07 x 10
-6

-1.47 7.54 x 10
-7

MBD3 ENST00000590830 -1.33 2.98 x 10
-6

-1.26 6.72 x 10
-7

POMT1 ENST00000485278 -1.71 5.42 x 10
-7

-1.25 7.40 x 10
-7

POTEB2 NR_102390_1 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

RP11-119F7.5 ENST00000562082 -1.6 4.45 x 10
-7

-1.05 2.10 x 10
-6

RP11-219A15.4 ENST00000602730 -2.56 1.65 x 10
-7

-1.03 1.32 x 10
-5

RP11-429J17.4 ENST00000527579 -1.29 7.95 x 10
-5

-1.6 3.65 x 10
-7

RP11-77K12.5 ENST00000575421 -1.57 7.12 x 10
-7

-1.38 4.76 x 10
-7

SLC35B4 ENST00000416907 -1.45 2.02 x 10
-5

-1.06 3.10 x 10
-6

Hypermethylated lncRNA-associated DMRs

Hypomethylated lncRNA-associated DMRs
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Table 3.11: Hypermethylated and hypomethylated lncRNA-associated DMRs in known diabetes, 
screen-detected diabetes and prediabetes versus NGT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Name Accession number

Known DM vs 

NGT               

fold change p-value

Screen-detected 

DM vs NGT        

fold change p-value

Prediabetes 

vs NGT               

fold change p-value

none

C4A ENST00000463034 -1.81 7.70 x 10
-7

-1.13 1.27 x 10
-5

-1.43 1.13 x 10
-6

CCDC53 ENST00000544341 -1.28 1.53 x 10
-6

-1.05 1.04 x 10
-6

-1.61 4.91 x 10
-7

CTD-2154I11.2 ENST00000512486 -2.02 1.94 x 10
-7

-1.82 2.69 x 10
-7

-1.88 2.24 x 10
-7

POTEB2 NR_102390_1 -1.22 7.61 x 10
-5

-1.01 2.68 x 10
-5

-1.44 2.72 x 10
-5

RP11-429J17.4 ENST00000527579 -1.29 7.95 x 10
-5

-1.6 3.65 x 10
-7

-1.53 3.44 x 10
-7

Hypomethylated lncRNA-associated DMRs

Hypermethylated lncRNA-associated DMRs
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Table 3.12: Hypermethylated and hypomethylated lncRNA-associated DMRs in known diabetes versus 
screen-detected diabetes 

 

 

Gene Name Accession number

Known DM vs 

Screen-detected 

DM fold change p-value

SLC26A9 ENST00000491127 1.91 2.22 x 10
-7

FAM223A NR_027401_2 1.82 3.06 x 10
-7

SDK2 ENST00000479356 1.69 2.75 x 10
-7

XAGE1B NR_033254_2 1.66 5.36 x 10
-7

SCRIB ENST00000525051 1.62 4.72 x 10
-7

KIAA1467 ENST00000416494 1.62 2.21 x 10
-7

AK092098 uc001nxu.1 1.58 1.11 x 10
-7

ATP5J ENST00000486002 1.56 6.07 x 10
-6

AF420437 uc021ove.1 1.49 2.52 x 10
-6

ZNF346 NR_131773 1.47 6.99 x 10
-6

AX747590 uc003wwb.1 1.46 9.42 x 10
-7

AK128525 uc002sti.2 1.45 3.82 x 10
-7

XLOC_007349 TCONS_00015975 1.4 6.19 x 10
-7

FKBP8 ENST00000601844 1.4 3.83 x 10
-7

LOC101927468 NR_120331 1.38 5.35 x 10
-7

CTAGE15 ENST00000447022 1.38 2.62 x 10
-7

AF258560 uc002dnd.1 1.38 8.09 x 10
-6

LOXL2 ENST00000520925 1.35 4.57 x 10
-6

AC016644.1 ENST00000438553 1.35 6 x 10
-5

RP11-14N7.2 ENST00000457390 1.34 1.16 x 10
-5

AP001476.4 ENST00000429512 1.34 6.69 x 10
-5

RP3-399L15.2 ENST00000435802 1.31 2.95 x 10
-5

AK310441 uc009wkv.1 1.28 8.61 x 10
-7

RP11-423O2.7 ENST00000424640 1.25 5.17 x 10
-5

LOC101928402 NR_130770 1.21 1.9 x 10
-5

LINC00521 NR_024182 1.18 1.07 x 10
-5

TBCE uc010pxq.1 1.16 7.23 x 10
-7

SMIM22 ENST00000591004 1.13 4.44 x 10
-6

XLOC_l2_000395 TCONS_l2_00000554 1.11 9.64 x 10
-5

SEMA4C ENST00000482925 1.11 3.28 x 10
-5

LOC101929378 NR_110250 1.08 2.24 x 10
-5

ZNF169 ENST00000492115 1.07 8.86 x 10
-5

GNPTG ENST00000527076 1.07 6.09 x 10
-6

TIMELESS ENST00000557589 1.05 2.72 x 10
-6

RP13-638C3.3 ENST00000575085 1.02 2.17 x 10
-5

XLOC_009584 TCONS_00019787 1 1.07 x 10
-5

Hypermethylated lncRNA-associated DMRs
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SSH1 ENST00000546433 -1.12 7.44 x 10
-6

XLOC_005639 TCONS_00011466 -1.13 9.27 x 10
-5

RP11-458D21.1 ENST00000433081 -1.19 2.76 x 10
-5

LOC100506603 NR_104183 -1.19 1.55 x 10
-6

AK125727 uc001xsu.1 -1.19 1.55 x 10
-6

AP001476.3 ENST00000435738 -1.24 9.48 x 10
-5

BC034416 uc011bqi.2 -1.31 1.44 x 10
-5

RN7SL367P ENST00000584097 -1.35 6.51 x 10
-6

RP11-586K12.4 ENST00000561479 -1.37 1 x 10
-5

EIF3B ENST00000475415 -1.37 5.8 x 10
-6

ANKIB1 ENST00000422095 -1.37 3.43 x 10
-5

XLOC_010373 TCONS_00021545 -1.38 3.32 x 10
-5

RP11-510M2.5 ENST00000568523 -1.38 6.23 x 10
-6

OPN1MW ENST00000468495 -1.39 1.64 x 10
-5

ELAC2 ENST00000484122 -1.45 3.08 x 10
-5

SLC25A35 ENST00000585311 -1.52 7.49 x 10
-6

AK095057 uc021yjh.1 -1.53 8.5 x 10
-5

C18orf8 ENST00000590870 -1.55 2.33 x 10
-6

RP11-168K11.3 ENST00000437712 -1.62 8.8 x 10
-6

LL22NC03-N27C7.1 ENST00000602816 -1.63 2.06 x 10
-5

CRAMP1L ENST00000467286 -1.76 3.72 x 10
-5

Hypomethylated lncRNA-associated DMRs
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CHAPTER 4 

DISCUSSION  

Epigenetic changes have been shown to predispose to disease or occur once the disease 

has developed (Davegårdh et al., 2018). DNA methylation, the most widely studied epigenetic 

mechanism, targets unmethylated CpG nucleotides with the aid of DNA methyltransferases 

(DNMTs) enzymes (Ahmed et al., 2020). These CpG nucleotides which occur at high-

frequency in the promoter regions of genes can undergo hyper- or hypomethylation which can 

result in transcriptional suppression or activation of the affected genes (Du et al., 2015; 

Pasquier et al., 2015). Several studies suggest that these epigenetic modifications may alter 

the transcriptional activity of genes and contribute to pathogenic conditions, such as the type 

2 diabetes mellitus (T2DM) phenotype (Muka et al., 2016; Bansal and Pinney, 2017). The 

exact mechanism of DNA methylation’s involvement in the pathogenesis and development of 

T2DM and its association with cardiometabolic traits is still unclear, especially within an Africa 

context. The aim of the current study was therefore to conduct genome-wide DNA methylation 

in 48 subjects within a South African context, with varying glucose tolerance and investigate 

the relationship between the observed DMRs and cardiometabolic risk factors. The subjects 

were divided into four groups according to whether they were known diabetics on metformin 

treatment; newly diagnosed or screen-detected diabetics; had prediabetes and finally those 

with normal glucose tolerance (NGT). Comparisons were made between all four categories 

for both hypermethylated and hypomethylated DMRs as well as lncRNA-associated DMRs 

observed. Methylation observed in the DMRs was validated using pyrosequencing. 

Furthermore, gene ontology and KEGG pathway analysis were performed for all four 

categories. 

 

 

4.1 Differentially methylated regions (DMRs) 

Following the completion of the genome-wide DNA methylation analyses, several DMRs 

were observed.  Overall 366 DMRs were identified, of which 63% were hypermethylated and 

37% hypomethylated. The hypermethylated DMRs were more commonly observed on 

chromosome 19 whereas a large number of hypomethylated DMRs were found on 

chromosomes X and 1. More than 70% of the DMRs identified in the known diabetes and 

screen-detected diabetes were hypermethylated which could contribute to the hyperglycaemic 



107 
 

profile of these individuals. When observing all the DMRs for the diabetic subjects (known 

diabetes and screen-detected diabetes), there were 11 hypermethylated and 7 

hypomethylated DMRs commonly found when comparing them to the NGT group. When the 

groups were further categorised to include non-diabetic subjects with hyperglycaemia 

(prediabetes) and compared to NGT, 1 hypermethylated DMR and 4 hypomethylated DMRs 

were observed. 

 

 

4.1.1 DMRs identified in hyperglycaemic subjects 

The common hypermethylated DMRs identified in the diabetic and non-diabetic 

hyperglycaemic subjects (known, screen-detected and prediabetes) when compared to the 

NGT subjects included one hypermethylated DMR, TMEM89 and four hypomethylated DMRs 

namely CCDC53, POTEB, POTEB2 and RHOBTB3. Although the fold change for the 

hypermethylated DMR TMEM89 was highest in the prediabetic subjects and suggests 

possible repression of gene expression, no direct link to diabetes is evident. TMEM 

(transmembrane) proteins are thought to be components of various cell membranes including 

mitochondrial, endoplasmic reticulum, lysosomes and Golgi membranes serving as channels 

for the transport of substances across these membranes (Schmit and Michiels, 2018). TMEM 

genes other than that of TMEM89 have been implicated in diabetes. Genome-wide association 

(GWAS) studies have loosely associated the involvement of TMEM135, TMEM195 and 

TMEM163 in T2DM in individuals from diverse population groups (Ramos et al., 2011; 

Tabassum et al., 2013; Chidambaram et al., 2016). Ramos et al (2011) showed that several 

single nucleotide polymorphisms (SNPs) including DKGB-TMEM195, which mainly affects 

beta-cell function, was associated with fasting plasma glucose and T2DM in a population of 

African-Americans. The study identified shared loci associated with fasting plasma glucose 

across populations by replicating SNPs associated with T2DM in populations with European 

ancestry (Ramos et al., 2011). The study by Tabassum et al (2013) observed variants within 

TMEM163 that showed association with decreased fasting plasma insulin and impaired insulin 

secretion, thereby modulating T2DM susceptibility in the Indian cohort studied. Since 

TMEM163 is expressed in certain brain regions and within subpopulations of nerve terminals, 

the loci identified in the study suggested a role in the neurologic aetiology of T2DM (Tabassum 

et al., 2013). Similarly, Chidambaram and co-workers (2016) evaluated the association of 

genetic variants previously associated with T2DM in populations of European ancestry in an 

Asian-Indian population with early-onset T2DM. Variants in TMEM135 was suggested to have 
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a loose association with T2DM as it had a less robust replication in the GWAS in comparison 

to other genes. The reason could be that certain variants may differ in their frequency between 

different ethnic groups as well as various forms of diabetes such as early- and late-onset 

T2DM (Chidambaram et al., 2016).  

 

The association of TMEM89 observed in the current study warrants further investigation 

particularly in prediabetic individuals as a potential marker for the progression to T2DM. 

Hypermethylation of this DMR with subsequent suppression of the transmembrane protein 

function could suggest dysfunction of the transport of ions and glucose across cellular 

membranes. Additionally, studies such as the ones mentioned above have highlighted the 

benefits of investigating genes in diverse populations other than those from European 

ancestry. 

 

 

4.1.2 DMRs identified in subjects with diabetes (known and newly diagnosed)  

Amongst the hypomethylated DMRs identified in diabetic individuals (includes known and 

screen-detected subjects) was Adenosine Kinase (ADK) which encodes the metabolic 

enzyme adenosine kinase. ADK plays a role in cellular metabolism by regulating the 

intracellular and extracellular concentrations of adenosine through the phosphorylation of 

adenosine to AMP (Boison, 2013; El-Kharrag et al., 2019). Adenosine, a purine nucleoside, 

plays a role in glucose metabolism through interactions with insulin, glucagon and lipolysis 

(Boison, 2013). It has been shown to accumulate under stress, tissue injury and inflammation, 

especially in cells and tissue of the liver, pancreas, muscle and fat. In addition, any decrease 

in ATP has shown to cause an increase in adenosine levels (Antonioli et al., 2015).  Any 

changes in ADK activity impacts adenosine concentration and ADK dysfunction has been 

linked to pathological disorders such as epilepsy, cancer and diabetes (Kiese et al., 2016). In 

the current study, ADK was hypomethylated which could indicate an increase in expression of 

the enzyme activity in both known diabetics on treatment and screen-detected diabetics. This 

would be expected if one assumed that adenosine levels would be increased due to the stress 

caused by diabetes on cells and tissue. ADK has also shown to increase when greater 

clearance of adenosine is required (Kiese et al., 2016). Adenosine accumulation has also 

been shown to affect DNA methylation. Adenosine is an end product of DNA methylation 

where the transfer of a methyl group from S-adenosylmethionine (SAM) to DNA which results 
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in the formation of S-adenosyl-L-homocysteine (SAH). Increased levels of adenosine reverse 

the direction of the S-adenosyl-L-homocysteine (SAH)-hydrolase reaction resulting in an 

increase in SAH which is known to inhibit DNA methyltransferases (DMNTs) (Boison, 2013).  

 

Another hypomethylated DMR observed in all diabetic subjects was SLC35B4 which is part 

of the SLC35 solute transporter family. SLC35B4 is involved in the transport of nucleotide 

sugars, particularly UDP-xylose (UDP-Xyl) and UDP-N-acetylglucosamine (UDP-GlcNAc) 

from the cytoplasm to the Golgi apparatus where they are utilised (Ashikov et al., 2005; Hadley 

et al., 2019). UDP-GlcNAc is the end-product of the hexosamine biosynthesis pathway 

whereas UDP-Xyl is involved in glycosaminoglycan biosynthesis (Wex et al., 2018). UDP-

GlcNAc is considered to be a sensor for the nutritional state of the cell as it integrates glucose, 

glutamine, fatty acids, uridine and ATP metabolism (Wex et al., 2018). The intracellular 

concentration levels of UDP-GlcNAc have been linked to diabetes and insulin resistance. 

Hyperglycaemia leads to elevated UDP-GlcNAc synthesis through the hexosamine 

biosynthesis pathway and in turn increased protein O-GlcNAcylation. O-GlcNAcylation 

regulates many cellular functions including signal transduction, gene expression, protein 

degradation and stress response, and increased levels of O-GlcNAcylation lead to insulin 

resistance (Vigetti et al., 2012; Ma and Hart, 2013). It has been suggested that O-

GlcNAcylation may be a useful screening tool to assess varying glucose metabolism amongst 

individuals (Park et al., 2010; Springhorn et al., 2012; Myslicki et al., 2014). In a study by 

Myslicki et al (2014), it was demonstrated that O-linked β-N-acetylglucosamine (O-GlcNAc) 

had greater sensitivity to metabolic status when compared to HbA1C which is considered the 

gold standard for monitoring diabetes diagnosis and progression (Myslicki et al., 2014). 

Similarly, Park et al  (2010) observed increased expression of O-linked β-N-

acetylglucosaminidase (O-GlcNAcase), an enzyme involved in  O-GlcNAcylation, in 

erythrocytes of individuals with prediabetes and diabetes when compared to control subjects 

(Park et al., 2010). Springhorn et al (2012) also demonstrated that leukocytes from prediabetic 

and diabetic individuals had elevated global O-GlcNAc levels compared to that of the healthy 

controls (Springhorn et al., 2012). It has been found that HbA1C is not as sensitive in detecting 

prediabetes as it does not significantly reflect the glycaemic variance but only the mean blood 

glucose (Derr et al., 2003; Wang et al., 2009; Myslicki et al., 2014)). The above studies, 

therefore, show that besides HbA1C, the hexosamine biosynthesis pathway and its 

components such as O-GlcNAc have the potential to be used in the earlier detection of 

prediabetes and full-blown diabetes.  
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In a study by Chen and co-workers, increased SLC35B4 expression was found in 

subcutaneous adipose tissue in obese subjects, linking SLC35B4 to obesity-induced T2DM 

(Chen et al., 2013). Furthermore, it was also shown that SLC35B4 controlled hepatic glucose 

production in vitro in liver-derived tissue culture cells (Yazbek et al., 2011; Wex et al., 2018). 

In addition, Yazbek and co-workers also observed both in vivo and in vitro studies in mice 

showed that decreased SLC35B4 expression was associated with decreased 

gluconeogenesis (Yazbek et al., 2011). In the current study due to hypomethylation, the 

SLC35B4 expression in diabetic subjects is thought to be increased. This is in line with the 

profile of T2DM as increased gluconeogenesis is considered to be the main cause of fasting 

hyperglycaemia (Hatting et al., 2018). Moreover increased expression of SLC35B4 

transporters would be expected with hyperglycaemia due to its association with the nutrient 

sensor UDP-GlcNAc. Hyperglycaemia leads to increased UDP-GlcNAc which in turns needs 

to be transported by SLC35B4 transporters to the Golgi apparatus for the glycosylation 

process. 

 

The common hypermethylated DMRs identified in diabetic individuals included BAGE2, 

BAGE3, BAGE4, BAGE5, CD248, COL8A2, IGSF9, PACSIN1, SPACA3, SYT3 and TMEM89. 

These DMRs do not appear to have a direct relationship with T2DM, however, a  number of 

them, namely CD248 and TMEM89 are related to cancer in terms of fibroblast activity and 

metastasis, respectively (Schmit and Michiels, 2018; Teicher, 2019). 

 

 

4.1.3 DMRs in known versus screen-detected diabetic subjects 

Genes in the SLC family, specifically SLC25A35 and SLC28A1, were observed as 

hypomethylated DMRs when comparing known diabetic subjects on metformin treatment to 

the screen-detected diabetic subjects. The SLC family is known for its importance in drug 

development and its association with metabolic diseases (Rives et al., 2017; Zhang et al., 

2018). Proteins encoded by the SLC family include passive transporters, symporters and 

antiporters and facilitate the movement of a specific substrate across the cell or organelle 

membranes (Zhang et al., 2018).  

 

SLC28A1 encodes the sodium dependant concentrative nucleoside transporter (CNTs) 

proteins. The CNTs play a role in nucleoside homeostasis and are involved in mediating the 
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transport of nucleosides necessary for nucleic acid synthesis (Pastor-Anglada et al., 2008; 

Pastor-Anglada and Pérez-Torras, 2015). SLC28A1, therefore, indirectly plays a role in the 

control of cell and tissue growth. In addition, members of the SLC28 transporter family also 

have a pharmacological role as they mediate the transport of many clinical drugs associated 

with anticancer and antiviral therapies (Gray et al., 2004; Wang and Buolamwini, 2019). CNT-

1, a high-affinity pyrimidine nucleoside transporter is localised mainly in epithelial tissue and 

predominantly expressed in the kidney and jejunum. The involvement of SLC28A1 and its 

transporter CNT-1 in renal absorption, has shown to be impaired by diabetes,  with this 

impairment being an early marker in the development of diabetic nephropathy (Rodríguez-

Mulero et al., 2005). 

 

On the other hand, sequence analysis of SLC25A35 indicates that it likely functions as an 

oxaloacetate carrier which implies mitochondrial association (Haitina et al., 2006). The SLC25 

family of genes encode mitochondrial carriers that are localized in the inner mitochondrial 

membrane and these mitochondrial transporters have been functionally implicated in some 

metabolic pathways including oxidative phosphorylation, TCA cycle, fatty acid oxidation, 

gluconeogenesis, lipogenesis,  urea synthesis, amino acid degradation and regulation of 

nucleotide and deoxynucleotide pools in the mitochondrial matrix amongst others (Palmieri, 

2013; Palmieri and Monné, 2016). Other members of the SLC25 family of mitochondrial 

carriers have been associated with diabetes. These include the uncoupling proteins (UCPs) 

which play a role in energy homeostasis. UCP1, UCP2 and UCP3 encoded by SLC25A7, 

SLC25A8 and SLC25A9 respectively have been linked to obesity and T2DM in human and 

animal models suggesting that the expression of SLC25A8 and SLC25A9 could predict the 

onset of diabetes in humans (Palmieri et al., 2020; Schumann et al., 2020).  

 

Besides ATP generation, mitochondria also play a role in reactive oxygen species (ROS) – 

mediated signalling, apoptosis, calcium signalling and haem synthesis amongst others 

(Montgomery, 2019). Any defects in these processes will affect cellular energy metabolism as 

well as affect several tissues and systems. Mitochondria dysfunction has been associated with 

changes in gene expression of mitochondrial markers, decrease in mitochondrial biogenesis, 

decreased mitochondrial content, reduced enzymatic activities of mitochondrial proteins, ROS 

generation, and decrease in mitochondrial activity such as oxidative phosphorylation 

(Montgomery and Turner, 2015; Montgomery, 2019). Mitochondrial dysfunction with a 

decrease in oxidative phosphorylation and ATP production and a high production of ROS has 

been linked to insulin resistance and T2DM (Rovira-Llopis et al., 2017; Sergi et al., 2019).  
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As SLC proteins transport various solutes across the mitochondrial membrane to partake in 

several metabolic pathways (Palmieri, 2013; Palmieri and Monné, 2016), the decrease in 

methylation and subsequent increase in gene expression of SLC transporters in this study 

could be indicative of the antidiabetic effect of metformin treatment.  It is therefore likely that 

metformin in its demethylation action of SLC mitochondrial carriers could aid cell repair in 

these patients, however, this requires further investigation. Metformin treatment has been 

associated with lower methylation levels in SLC transporter genes as was shown in a study 

conducted on metformin transporter genes in liver tissue (García-Calzón et al., 2017). Lower 

methylation levels in SLC22A1, SLC22A3 and SLC47A1 which encode for the three metformin 

transporters OCT1, OCT3, and MATE1 in the human liver had a similar DNA methylation 

pattern when compared to that of non-diabetic subjects and diabetics not on any treatment 

(García-Calzón et al., 2017). Although the specific transporter genes SLC22A1, SLC22A3 and 

SLC47A1 were not detected in the current study, DNA methylation has shown to be tissue-

specific which has previously been noted in other studies (Zhang et al., 2013; Dujic et al., 

2017). The absence of these other SLC DMRs in the current study’s dataset could be 

attributed to this phenomenon. 

 

GABPA was identified as a hypermethylated DMR when comparing known diabetic subjects 

on metformin treatment to the screen-detected diabetic subjects. This gene encodes GA-

binding protein transcription factor subunit alpha, also known as the nuclear respiratory factor 

2 (NRF2) and thought to be involved in the respiratory chain and oxidative phosphorylation 

(Yang et al., 2014). Furthermore, GABPA (NRF2) may be involved in the activation of 

cytochrome oxidase expression and thereby impact mitochondrial function (Ongwijitwat et al., 

2006). Cytochrome oxidase, also known as complex IV, is an enzyme in the final stages of 

the electron transport chain responsible for energy production in the form of ATP (Helling et 

al., 2008; Van Der Schueren et al., 2015).  The absence of cytochrome oxidase would result 

in no energy production and could ultimately lead to cell death. Due to the hypermethylation 

of GABPA in the current study, it is assumed that the expression of this DMR has been 

suppressed. A decrease in GABPA expression would affect cytochrome oxidase activity and 

result in an increase in reactive oxygen species (ROS) and a decrease in ATP production. 

Reactive oxygen species, although a by-product of ATP generation, can result in damage to 

cellular components and ultimately lead to apoptosis and autophagy (Li et al., 2020). 

Hyperglycaemia in diabetics has been shown to cause an increase in ROS which leads to 

activation of the stress signalling Jun N-terminal kinase (JNK) pathway (Solinas and Becattini, 
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2017). This JNK pathway can also be activated by the increase of free fatty acids, 

inflammatory cytokines like tumour necrosis factor-alpha (TNF-α) and endoplasmic reticulum 

stress induced by hyperglycaemia (Kaneto et al., 2010).  It is suggested that this stress 

signalling pathway is involved in the development of insulin resistance and beta-cell 

dysfunction.  Hyperglycaemia-induced generation of  ROS and oxidative stress have been 

associated with cell death (apoptosis) of beta-cells as well as cells from the heart, retina, 

kidneys and nervous system thereby implicating ROS in the complications of diabetes (Volpe 

et al., 2018).  

 

 

4.2 Gene Ontology and KEGG pathway analyses 

Gene Ontology (GO) analysis was performed and enabled the classification of the observed 

DMRs according to the biological process, cellular component and molecular function 

domains. The GO analyses were completed for each of the six comparison pairs and 

highlighted all three domains for both the hypermethylated and hypomethylated DMRs. In 

addition, GO Directed Acyclic Graphs (DAG) was formulated and displayed as p-value trees 

showing the hierarchy of gene ontology for each of the GO domains. The top ten terms with 

the lowest p-value and were displayed in the p-value trees with the more significant terms 

highlighted in red. The functional analysis mapping of genes to the Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) pathways were also performed. The functional analysis was 

completed for each of the six comparison pairs and highlighted the significant pathways for 

both the hypermethylated and hypomethylated DMRs.  

 

 

4.2.1 Known diabetes versus NGT 

The hypermethylated DMRS identified in known diabetics on metformin treatment when 

compared to the NGT subjects were associated with the cytokine-cytokine receptor interaction 

and the oxidative phosphorylation pathways. The cytokine-cytokine receptor interaction 

pathway included DMRs, IL12A1 and TNFSF8. IL12A1 encodes a subunit of Interleukin-12 

(IL-12), an immune-regulatory cytokine that plays a role in the link between innate and 

acquired immune system as well as stimulates interferon production, particularly interferon-

gamma (IFN-γ). In addition,  IL-12 also promotes the maturation of cytotoxic T lymphocytes 
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and activates natural killer cells (Shen et al., 2017). Elevated levels of IL-12 have been 

associated with T2DM and insulin resistance as exposure of beta-cells to these inflammatory 

cytokines have been shown to mediate beta-cell dysfunction and apoptosis (Wegner et al., 

2008; Weaver et al., 2015). Weaver et al (2015) have also shown that the disruption of IL-12 

could act as a protection mechanism for beta-cells against the apoptosis associated with 

inflammatory cytokines (Weaver et al., 2015).  TNFSF8, on the other hand, encodes for a 

cytokine in the tumour necrosis factor ligand super family that induces the proliferation of T-

cells and acts as a pro-inflammatory cytokine (Chu, 2013). Studies have shown pro-

inflammatory cytokines such as IL-12 and tumour necrosis factor (TNF) are increased in the 

hyperglycaemic environments encountered in T2DM subjects (Wen et al., 2006; Wu et al., 

2010; Akash et al., 2018). These pro-inflammatory cytokines enhance insulin resistance in 

adipocytes, muscle and hepatic cells which leads to impaired insulin sensitivity and glucose 

homeostasis (Al-Shukaili et al., 2013). Metformin has shown to decrease the production of 

pro-inflammatory cytokines such as tumour necrosis factor and interleukins (Hyun et al., 2013) 

and thereby reduce inflammation in T2DM subjects (Cameron et al., 2016). In addition, 

metformin has an antimicrobial effect facilitated by its inhibition of the mitochondrial complex 

1 activity which affects ATP production and gluconeogenesis (Malik et al., 2018; Xiao et al., 

2020). In this study, the hypermethylated DMRs and their related GO terms support the action 

of metformin. IL12A1 and TNFSF8 were associated with the GO biological process of defence 

to Gram-positive bacteria, the molecular function of tumour necrosis factor receptor binding 

and the cellular component of the mitochondrial respiratory chain. These GO terms were all 

hypermethylated suggesting that the expression of the related genes was repressed by the 

increased methylation. In a study by Park and co-workers (2019), it was postulated that 

methylation levels could play a role in controlling the expression of TNF as increased levels 

were shown to induce tissue damage and death resulting in the development of Diabetic 

kidney disease (Park et al., 2019). Furthermore, both IL-12 and TNFSF8 play a role in the 

progression of atherosclerosis where chronic inflammation is associated with a continuous 

influx of immune cells. Increased glucose levels stimulate inflammatory reactions related to 

these cytokines and they in turn stimulate T-lymphocyte proliferation and migration to 

atherosclerotic plagues (Wegner et al., 2008; Foks et al., 2012). A reduction of these cytokines 

have been associated with a reduction of atherosclerosis (Wen et al., 2006) and metformin 

itself has also been shown to have a cardio-protective effect reducing atherosclerosis (Luo et 

al., 2019). Therefore, in this current study, the reduction of TNFSF8 and IL-12 expression and 

inflammatory effects could be a result of metformin treatment.  

KEGG analysis also highlighted the hypermethylation of the oxidative phosphorylation 

pathway. The process of oxidative phosphorylation takes place in the inner mitochondrial 
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membrane and comprises four electron transfer chain complexes (I-IV), ATP synthase 

(complex V) and the electron carriers ubiquinone and cytochrome c (Srinivasan and Avadhani, 

2012). The oxidative phosphorylation pathway in this study included the hypermethylated 

DMRs, COX7A1 and NDUFB2. NDUFB2 encodes the NADH dehydrogenase (ubiquinone) 1 

beta subcomplex subunit 2 enzyme whereas COX7A1 encodes the Cytochrome c oxidase 

polypeptide 7A1 enzyme. Both these enzymes play a role in the electron transport process 

within the mitochondrial respiratory chain with NDUFB2 and COX7A1 being involved in 

complex 1 and complex IV, respectively  (Wirth et al., 2016; Guerrero-Castillo et al., 2017). 

Studies have shown a decrease in the expression of oxidative phosphorylation genes in T2DM 

(Dahlman et al., 2006; Ling et al., 2007; Rönn et al., 2008). Studies looking at tissue-specific 

DNA methylation has shown that COX7A1 is only expressed in skeletal and heart muscle, with 

COX7A1 being down-regulated in diabetic muscle (Mootha et al., 2003; Chalaya et al., 2006). 

Rönn et al (2008) observed an increase in DNA methylation of COX7A1 with a decrease in 

the gene expression and increased insulin resistance in the skeletal muscle of elderly 

individuals (Rönn et al., 2008). Similar findings were observed for NDUFB6, a gene also 

involved in complex 1 of the respiratory chain by Ling et al (2007). NDUFB6 showed increased 

methylation and decreased gene expression in muscle from patients with T2DM (Ling et al., 

2007).   Additionally, metformin is known to inhibit mitochondrial oxidative phosphorylation by 

decreasing the mitochondrial respiratory chain (Vial et al., 2019).  In the current study, the 

results showed hypermethylation in these two genes as well as the gene ontology cellular 

components, mitochondria respiratory chain, associated with them. Collectively, these have 

shown increased methylation and a possible decreased expression of the oxidative 

phosphorylation pathway in known diabetic subjects on metformin treatment. The 

hypermethylation in this study could therefore be a result of the metformin treatment.   

 

The KEGG pathway analysis for the hypomethylated DMRs observed in known diabetics 

on metformin treatment when comparing to the NGT subjects was associated with RNA 

transport.  The DMRS identified were EIF2B3 and EIF5 which were also associated with the 

biological process of regulation of translational initiation. RNA transport and translation play 

an important role in gene expression with translation being a key component in the regulation 

of protein synthesis (Roux and Topisirovic, 2018). In addition, regulation of translation allows 

cellular adaptation to occur during stress or physiological conditions such as hypoxia, 

endoplasmic reticulum stress, apoptosis and heat shock where an immediate change in 

protein levels are required (Sharma et al., 2016).  The initiation of eukaryotic translation is a 

multistep process involving the assembly of a pre-initiation complex consisting of a small (40S) 

ribosomal subunit, methionyl initiator tRNA and numerous eukaryotic initiation factors (EIFs) 
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(Llácer et al., 2018). Eukaryotic translation initiation factors EIF2B3 and EIF5 play a role in 

translational control. EIF5 is a GTPase-activating protein specific for EIF2 and ensures that 

the correct AUG (start codon) selection occurs during the translation initiation. EIF2B3 on the 

other hand binds GTP and delivers the methionyl initiator tRNA to the small ribosomal subunit 

for the assembly of the pre-initiation complex (Nanda et al., 2013; Sharma et al., 2016).  In a 

study by Stenvers et al (2019) where gene expression was measured, individuals with T2DM 

showed decreased activity of the EIF2 signalling in translational initiation when compared to 

a healthy control group (Stenvers et al., 2019). This is in contrast to the current study where 

hypomethylation of the eukaryotic initiation factors EIF5 and EIF2B3 could indicate a possible 

increase in their expression and activity. Overexpression of EIF5 has been associated with 

the induction of translation for several genes, thereby enhancing the survival of normal and 

cancer cells under stress conditions (Ali et al., 2017b).  

 

 

4.2.2 New diabetes versus NGT 

The KEGG pathway analysis in screen-detected diabetics, when compared to the NGT 

subjects, was associated with hypermethylation of the Notch signalling pathway. Notch 

signalling plays a role in intercellular communication and is essential for tissue homeostasis 

and the regulation of metabolic processes in certain organs (Guruharsha et al., 2012; Bi and 

Kuang, 2015). This signalling pathway links the fate of one cell to that of a neighbouring cell 

and can promote or suppress cell proliferation, cell death, differentiation or the attainment of 

specific cell fates (Hori et al., 2013; Hasan et al., 2020). The Notch signalling pathway involves 

four Notch receptors (Notch 1-4) and five ligands (Delta 1, 3, 4 and Jagged 1-2) and is initiated 

when the Notch receptor interacts with its ligand on an adjacent cell (Mirtschink and Chavakis, 

2018). Since Notch signalling plays a major role in many processes across a wide range of 

tissue, the abnormal gain or loss of Notch signalling has been linked to several disorders 

including genetic disorders and cancers (Bi and Kuang, 2015).  A study by Hasan et al (2020) 

showed that Notch signalling in endothelial cells regulated insulin transport to muscle cells. 

Continued Notch signalling in endothelial cells lowered insulin sensitivity and increased blood 

glucose levels whereas inhibition of Notch signalling increased insulin sensitivity and improved 

glucose tolerance and uptake in muscle cells in a high-fat induced insulin resistance model 

(Hasan et al., 2020). Similarly, it was also shown that Notch signalling regulates glucose 

metabolism in liver and adipose tissue and over-activation in these tissues impaired insulin 

sensitivity (Bi and Kuang, 2015). These studies implied that Notch signalling could be used as 
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a therapeutic target for diabetes due to the control of insulin sensitivity and glucose 

homeostasis. Notch signalling also affects pancreatic tissue. The function and mass of 

pancreatic beta-cells adapt to the insulin requirements of an organism to maintain glucose 

homeostasis. The development of diabetes is associated with a decrease in beta-cell mass 

and function.  Bartolome et al (2019) found that the inhibition of notch signalling enhanced 

beta-cell proliferation and maturity, and improved glucose tolerance whereas activation of the 

pathway was associated with insulin resistance in the beta-cells of mice and human islets 

(Bartolome et al., 2019). Similarly, Eom et al (2020) also showed that notch signalling played 

a role in maintaining beta-cell mass by regulating beta-cell function and proliferation in the 

mice model and thereby play a role in diabetes (Eom et al., 2020). A study by Zheng and co-

workers showed that hyperglycaemia caused Notch 1 signalling to be over-activated in 

diabetic skin and mediate the inhibitory effect of diabetes on wound healing. By blocking the 

Notch 1 signalling using genetic or chemical modes, wound healing was improved in the 

diabetic subjects showing that notch signalling could be a potential therapeutic target for the 

treatment of diabetic foot ulcerations (Zheng et al., 2019). In the current study, Notch signalling 

was hypermethylated which could possibly indicate that the expression of this pathway was 

suppressed. Since Notch signalling plays role in many processes across a wide range of 

tissue, it is unclear whether the suppressed signalling pathway is due to an attempt to regulate 

insulin and maintain glucose homeostasis in the hyperglycaemic subjects. Furthermore, it is 

also known that individuals are often diagnosed many years after the onset of diabetes. 

Therefore, in terms of the current study, this statement would need to be further investigated. 

 

When looking at the GO analyses of screen-detected diabetic subjects compared to the 

NGT subjects, the hypermethylated biological processes included the regulation of 

vasoconstriction and blood circulation. The hypermethylated DMRs associated with these 

biological processes were DBH, SMTNL1, PTAFR, CACGN8 and ATP1A3. In addition, 

ATP1A3 and CACNG8 were identified as hypermethylated DMRs in the KEGG pathway of 

cardiac muscle contraction. Hypermethylation of these DMRs and pathway indicate that these 

processes may be repressed in diabetic individuals when comparing them to the NGT 

subjects.  

 

The DMR DBH encodes an enzyme, dopamine beta-hydroxylase, which catalyses the 

conversion of dopamine to norepinephrine and plays a role in blood pressure regulation 

through its association with the sympathetic nervous system (Abe et al., 2005; Bozek et al., 

2017). Studies have shown an association between the inhibition of DBH with hypotension 
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due to the imbalance between dopamine and norepinephrine caused by the DBH inhibition 

(Abe et al., 2005; Barrie et al., 2014).   Furthermore, a study by Arnold et al (2017) observed 

that a DBH deficiency in mice resulted in hyperinsulinaemia, lower plasma glucose levels and 

insulin resistance. They went on to further show impairment in cardiovascular autonomic 

regulation, hyperinsulinaemia and insulin resistance in a genetically deficient human patient 

(Arnold et al., 2017). The DMR SMTNL1 encodes for proteins involved in smooth muscle 

contraction and has been linked to the adaptation of vascular contractility in conditions such 

as hypertension, pregnancy and exercise (Turner and Macdonald, 2014). PTAFR, on the other 

hand,  encodes for the platelet-activating factor receptor involved in smooth muscle 

contraction, inflammation, immune response and hypotensive activity (Cao et al., 2018).  

Calcium-voltage gated channel subunit gamma 8 encoded by CACGN8, regulates the gating 

properties of AMPA-selective glutamate receptors which mediates the synaptic transmission 

in the central nervous system (Deng et al., 2006; Watson et al., 2017).  ATP1A3 encodes a 

transmembrane protein, sodium-potassium (Na+/K+) ATPase, responsible for the transport of 

sodium and potassium across the membrane and plays a role in the electrical excitability of 

nerves and muscles (Ju et al., 2016). Together these DMRs play a role in the cardiac muscle 

contraction pathway which was also identified as being hypermethylated in the KEGG pathway 

analysis. Disruptions of this pathway have been associated with diabetic cardiomyopathy as 

a result of cellular damage caused by hyperglycaemia (Ward, 2014). The process of cardiac 

muscle contraction is regulated by the control of calcium (Ca2+) into and out of the myocytic 

cell and sarcoplasmic reticulum. Decrease in mitochondrial function in diabetes with resultant 

defects in the calcium transport and uptake of calcium by the mitochondria together with 

reduced sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump activity results 

in calcium sequestration during cardiomyocytes diastolic relaxation. This leads to slowed 

cytosolic Ca2+  release and defective excitation-contraction coupling which contributes to the 

myocardial dysfunction in diabetic cardiomyopathy (Lebeche et al., 2008; Singh et al., 2018). 

In addition, it has been shown that cardiac dysfunction in diabetes is related to disruption of 

the Ca2+ homeostasis in the diabetic heart (Singh et al., 2018). Cardiac ion channels are 

essential in the contraction of heart muscles and it has been shown that down-regulation of 

CACNG8 which encodes a subunit of calcium channels was associated with left ventricular 

dysfunction in cardiomyopathy patients (Ortega et al., 2015). In a study by Dewey et al (2013) 

examining diabetic cardiomyopathy in mice, ATP1A3 was found to be suppressed. A decrease 

in ATP1A3, a subunit of the Na+/K+-ATPase membrane protein, resulted in a decrease in the 

capacity to maintain the sodium and potassium balance in the cell needed for maintaining the 

cellular electrochemical gradient. This in turn affected the Ca2+ regulation and cardiac muscle 

contraction (Dewey et al., 2013). These observations support the findings of the current study 
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where the hypermethylation of the cardiac muscle contraction and related DMRs suggest that 

they may be suppressed in diabetic individuals when comparing them to the NGT subjects. 

 

Pathway analysis in the screen-detected subjects, when compared to the NGT subjects, 

revealed hypomethylation of purine metabolism. The main function of purine metabolism is to 

maintain the level of nucleotides in tissues needed for biochemical processes, energy 

metabolism and the regulation of metabolic pathways (Papandreou et al., 2019). The end 

product of purine metabolism is uric acid and its overproduction has been associated with 

diseases such as gout, renal dysfunction, hypertension, hyperlipidaemia, diabetes and obesity 

(Maiuolo et al., 2016; Xiong et al., 2019). In terms of T2DM, hyperuricaemia has been 

associated with insulin resistance, impaired glucose intolerance and early onset of diabetic 

nephropathy (Ekpenyong and Akpan, 2014).  Furthermore, hyperuricaemia has been shown 

to influence inflammation by its positive association with inflammatory cytokines such as 

interleukin-6, interleukin- 1β and tumour necrosis factor alpha as well as C-reactive protein 

(Kirilmaz et al., 2010; Xiong et al., 2019). Excessive uric acid also leads to an increase in ROS 

production which leads to inflammation and cellular damage. In the current study 

hypomethylation of the purine metabolism pathway suggests that the end product of its 

metabolism would be overexpressed. Uric acid levels would be higher and therefore enhance 

the pro-inflammatory effect in the study subjects as well as put them at risk of developing gout 

and renal dysfunction. This enhanced pro-inflammatory effect is in contrast to previously 

mentioned findings in the current study where known diabetic subjects on metformin treatment 

possibly showed decreased levels of the pro-inflammatory cytokines from the  tumour necrosis 

factor and interleukin family. This contrast could be explained by the role metformin plays in 

reducing effect of the pro-inflammatory cytokines which is not the case for the untreated newly 

diagnosed subjects.    

 

Additionally, the hypomethylated DMR, ADK, identified in diabetic individuals (known and 

newly diagnosed) is associated with purine metabolism. As mentioned before in section 4.1.2, 

ADK levels tend to increase when more adenosine clearance is needed in the time of stress, 

tissue injury and inflammation.  
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4.2.3 Prediabetes versus NGT 

The hypermethylated DMRs observed in prediabetic subjects when compared to the NGT 

group did not appear to have a relevant association with diabetes as they were associated 

with biological processes such as spermatogenesis and male sexual reproduction. On the 

other hand, the hypomethylated biological processes showed defense to Gram-negative 

bacterium and included the DMR LBP ((Lipopolysaccharide Binding Protein). The gene LBP 

encodes a protein involved in the innate immune response to gram-negative bacteria which 

promotes the release of cytokines once it binds to lipopolysaccharides (LPS) on the outer cell 

wall (Sakura et al., 2017). The binding of LPS to LBP initiates the immune response by 

presenting LPS to CD14 which then associates with Toll-like receptor 4 (TLR4) on 

macrophages and initiates the inflammatory response, mostly by cytokines such as 

interleukin-1 (IL1), interleukin-6 (IL6) and tumour necrosis factor alpha (TNFα) (Tilves et al., 

2016). LBP is considered a biomarker for LPS and endotoxaemia (increased LPS in the 

bloodstream) as measuring LBP concentrations is an indirect way of assessing LPS (Gomes 

et al., 2017). Tilves et al (2016) showed that LBP levels were higher in African ancestry males 

with obesity, diabetes and insulin resistance. Furthermore higher LBP levels in individuals with 

normal serum glucose were associated with an increase in insulin resistance and increased 

fasting glucose at the six years follow up assessment suggesting that LBP could be a marker 

for prediabetes (Tilves et al., 2016). The hypomethylation of LBP in the current study suggests 

that LBP levels may be increased in the prediabetic subjects and these findings are 

comparable to those of Tilves et al (2016). The increased LBP would indirectly indicate an 

increase in LPS and this may be a marker of future cardiovascular disease as LPS is a source 

of vascular inflammation in atherosclerosis (Sakura et al., 2017). The release of pro-

inflammatory cytokines by the LBP-LPS binding could also impair beta-cell function as 

previously indicated by the effects of the JNK pathway. The JNK pathway can be activated by 

the increase of inflammatory cytokines like tumour necrosis factor alpha (TNF-α) which is 

suggested to be involved in the development of insulin resistance and beta-cell dysfunction.  

    

No enriched KEGG pathways were observed for both the hyper- and hypomethylated 

DMRs when comparing the prediabetic subjects to those with normal glucose tolerance.  
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4.2.4 Known diabetes versus new diabetes 

Functional pathway analysis observed in this study when comparing known diabetics on 

metformin treatment with the newly diagnosed diabetic subjects was consistent with the basic 

pathological abnormalities in Diabetic Peripheral Neuropathy (DPN). Diabetic Peripheral 

Neuropathy is a chronic progressive disorder characterised by complications of axonal 

degeneration and demyelination, lack of sensation, numbness, paraesthesia (pins and 

needles), pain and allodynia in diabetic individuals (Guo et al., 2019). Cell death of nerves in 

DPN results from multifactorial metabolic imbalances associated with diabetes. 

Hyperglycaemia, dyslipidaemia and insulin resistance may affect various pathways such as 

the protein kinase C (PKC), polyol, AGE, poly(ADP-ribose) polymerase (PARP), and 

hexosamine pathways which in turn may result in mitochondrial dysfunction (Miranda-Massari 

et al., 2011). The resulting mitochondrial dysfunction through a series of cascade effects 

involving AMP-activated protein kinase (AMPK), sirtuin (SIRT), and peroxisome proliferator-

activated receptor-γ coactivator α (PGCα) suppresses mitochondrial oxidative 

phosphorylation, resulting in neuronal and axonal degeneration through increased oxidative 

injury (Fernyhough, 2015; Fujimaki and Kuwabara, 2017).  Treatment with metformin was 

shown to decrease the incidence of DPN as was observed by the Bypass Angioplasty 

Revascularization Investigation 2 Diabetes trial (Pop-Busui et al., 2013). Although metformin 

cannot reverse the nerve damage caused by diabetes, it could assist in managing blood 

glucose levels and improving the symptoms for patients. 

 

The DMR, KCQN3 was associated with the hypermethylated GO cellular components of 

the axon initial segment. The KCNQ family of voltage-activated potassium (K+) channels 

encoded by KCNQ genes play a role in the hyperpolarisation and stabilisation of cell 

membrane potential. Due to this action, the KCNQ channels have a role in regulating the 

excitability of neurons, smooth muscle cells and cardiomyocytes (Fosmo and Skraastad, 

2017). KCNQ3 has shown an association with the development of encephalopathy and 

epilepsy in humans as well as an association with diabetic neuropathic pain (Fosmo and 

Skraastad, 2017; Yu et al., 2018). Diabetic neuropathic pain is one of the main symptoms of 

diabetic neuropathy and has shown to be associated with suppression of KCNQ3 channel 

expression. This down-regulation of expression causes enhanced neuronal excitability which 

results in the allodynia and neuropathic pain experienced by diabetics (Yu et al., 2018).  It is 

suggested that the activation of the KCNQ3 channels could be used as a therapeutic target 

for the treatment of neuropathic pain (Abd-Elsayed et al., 2019). In the current study, KCNQ3 

was hypermethylated which suggests that the expression of the KCNQ3 channels may be 
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suppressed. These findings are in line with those of the previous studies mentioned by Yu et 

(2018) and Abd-Elsayed et al (2019). Furthermore, it is unclear whether the metformin 

treatment has any effect on the improvement of the KCNQ3 channel activity in these study 

subjects. Although metformin exerts a neuroprotective effect, it could enhance peripheral 

neuropathy by inducing vitamin B12 deficiency (Chung et al., 2015; Ahmed et al., 2017). 

Previous studies have shown that prolonged treatment with metformin led to more severe 

neuropathy by inducing vitamin B12 deficiency in diabetic patients (Wile and Toth, 2010; 

Russo et al., 2016). To date, there are conflicting findings on the link between vitamin B12 

deficiency and metformin treatment based on the different tools used to assess neuropathy 

(Ahmed et al., 2017). Cumulatively, it has been reported that there was no difference found in 

the risk of peripheral neuropathy between metformin-treated individuals with vitamin B12 

deficiency and those with normal vitamin levels (Ahmed et al., 2016; Russo et al., 2016).  

  

No enriched KEGG pathways were observed for both the hyper- and hypomethylated 

DMRs when comparing the known diabetics on metformin treatment to the newly diagnosed 

diabetic subjects.  

 

 

4.2.5  Known versus prediabetes 

The KEGG pathway analysis revealed hypermethylation of the cAMP signalling pathway 

when comparing known diabetics on metformin treatment to the prediabetic subjects. One of 

the DMRs associated with this pathway was GPR119 (G Protein-Coupled Receptor 119).  

 

Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger playing a 

role in the regulation of insulin from beta-cells and glucagon from alpha-cells of the pancreas. 

It is synthesised from adenosine triphosphate (ATP) by adenylate cyclase (AC) which is 

activated by the binding of hormones and neurotransmitters to G-protein coupled receptors 

(GPCRs) (Yang and Yang, 2016). The physiological effects of cAMP are mediated by the 

activation of cAMP-dependent protein kinase (PKA), which in turn phosphorylates and 

regulates the functions of downstream protein targets including ion channels, enzymes, and 

transcription factors. The cAMP/PKA signalling pathway regulates glucose homeostasis 

including insulin and glucagon levels, glucose uptake, glycogen synthesis and 

gluconeogenesis breakdown (Deb et al., 2017).  GPR119 is a class A member of the 

https://en.wikipedia.org/wiki/Adenylate_cyclase
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rhodopsin family of G-protein coupled receptors whose expression is mainly found in cells of 

the pancreatic islets and gastrointestinal tract (Moran et al., 2016). Activation of GPR119 is 

mainly by fatty acid ethanolamides which results in the stimulation of the adenylate cyclase 

pathway leading to cyclic adenosine monophosphate (cAMP) production in cells expressing 

GPR119 (Moran et al., 2016). Upon activation of GPR119, endogenous lysophospholipids 

stimulate insulin secretion by acting directly on beta-cells and stimulating the secretion of 

glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This 

leads to the regulation of glucose homeostasis and improved glucose control. In addition, the 

stimulation of intestinal secretion of incretin is also part of the glucoregulatory effects of 

GPR119 (Zhou et al., 2019). These factors have led to the suggestion of GPR119 as a 

therapeutic target for T2DM (N. X. Li et al., 2018b).  

 

Glucagon levels, which are elevated in diabetic individuals, is responsible for activating 

adenylate cyclase which results in cAMP synthesis and activation of PKA activity (Tengholm 

and Gylfe, 2017). Metformin has been shown to inhibit the stimulation of cAMP levels by 

glucagon and disrupting the PKA activity. This is through the action of increasing AMP levels 

and the inhibition of mitochondrial complex 1 (Pernicova and Korbonits, 2014). Inhibition of 

complex 1 reduces NADH oxidation and the proton-driven synthesis of ATP causing the 

equilibrium between ATP, ADP and AMP to shift towards AMP synthesis by adenylate kinase. 

Increased AMP levels inhibit adenylate cyclase which catalyses the action of converting ATP 

to cAMP. In this way, metformin reduces cAMP levels and glucagon signalling (Pernicova and 

Korbonits, 2014). In the current study, the hypermethylation of the cAMP signalling pathway 

and related GPR119 in known diabetics on metformin treatment suggests possible 

suppression of the pathway. This is expected for the known diabetics as metformin has been 

shown to decrease cAMP synthesis and PKA activity.  

 

The KEGG pathway analysis also showed hypomethylation of the PI3K-AKT signalling 

pathway when comparing known diabetics on metformin to prediabetic subjects. In addition, 

the hypomethylated DMR, Insulin Receptor Substrate 1 (IRS1) was associated with this 

pathway. Phosphatidylinositol 3-kinase (PI3K)-AKT signalling is an intracellular signal 

transduction pathway that plays a role in several processes such as glucose homeostasis, 

lipid metabolism, protein synthesis, angiogenesis, cell growth and survival, in response to 

extracellular signals (Huang et al., 2018). Phosphatidylinositol 3-kinases (PI3Ks) are part of a 

lipid kinase family that phosphorylates a cell membrane component, phosphatidylinositol. The 

activation of PI3Ks is mediated by several receptors such as G-protein coupled receptors 
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(GPCR), receptor tyrosine kinases (RTKs), cytokines, hormones and growth factors amongst 

others. Once activated, PI3K recruits signalling proteins including AKT (protein kinase B) 

(Pompura and Dominguez-Villar, 2018). AKT regulates glucose and lipid metabolism and 

when activated, it is expressed in insulin-responsive tissues and promotes the translation of 

glucose transporter 4 (GLUT4) (Huang et al., 2018). The IRS1 is a cytoplasmic substrate for 

insulin and has found to be dysregulated in obesity and T2DM (Besse-Patin et al., 2019). 

Insulin is needed for many metabolic processes and when it binds to the insulin receptor, it 

leads to recruiting and phosphorylation of insulin receptor substrate proteins such as IRS1. 

Phosphorylated IRS1 activates PI3K producing phosphatidylinositol-3,4,5- triphosphate 

(PIP3) from phosphatidylinositol-4,5-bisphosphate which in turn activates the protein kinase 

B, AKT (Copps and White, 2012; Keshavarzi and Golsheh, 2019). Since activated AKT 

regulates glucose metabolism, the role of IRS1 in the insulin signalling pathway of its target 

tissue has a role in the development of T2DM as any disruption in this signalling process may 

result in insulin resistance.  

 

Metformin has shown to inactivate IRS1 and subsequently the PI3K-AKT signalling 

pathway thereby inhibiting hyperinsulinaemia-associated neoplastic activity in diabetic cancer 

patients. By inhibiting protein translation via the PI3K-AKT-mTOR pathway, cancer cell 

proliferation is restricted (Saini and Yang, 2018). Activation of AMPK by metformin has also 

been associated with a decrease in insulin sensitivity, so one would expect metformin to have 

an effect on the PI3K-AKT pathway. However, the PI3K-AKT pathway is also involved in many 

cellular processes which include cell proliferation and survival which means that its activation 

is context dependant (Schultze et al., 2012). Therefore the effect of metformin on the PI3K-

AKT pathway could vary according to the context of its activation and whether the activation 

is through insulin, growth factors, cytokines or environmental stresses.  In the current study 

known diabetic subjects on metformin displayed hypomethylation of the PI3K-AKT pathway 

and IRS1 when compared to prediabetic subjects suggesting that their expression might be 

increased. Since disturbances in the PI3K-AKT signalling results in insulin resistance, it is 

suggested that metformin treatment in these known diabetics may aid in the management of 

insulin resistance by enhancing the PI3K-AKT signalling pathway. This would need further 

investigation as it has also been shown that inappropriate activation of this pathway is 

associated with tumours and that the inhibition of the PI3K-AKT signalling pathway could be 

utilised as a potential treatment option for cancer and other diseases (Schultze et al., 2012). 

 



125 
 

4.2.6 Prediabetes versus new diabetes 

The hypermethylated DMRs observed in prediabetic subjects when compared to the NGT 

group did not appear to have a relevant association with diabetes as they were associated 

with biological processes such as sperm motility. Furthermore, the KEGG pathway analysis 

revealed no enriched hypermethylated pathways whereas the hypomethylated KEGG 

pathway analysis was associated with oocyte meiosis and maturation.  On the other hand, the 

hypomethylated biological processes showed positive regulation of wound healing and blood 

coagulation associated with the DMRs DMTN and SERPINF2. SERPINF2 also known as 

alpha 2-antiplasmin encodes a serine protease inhibitor that inhibits plasmin and plays a role 

in regulating fibrinolysis (Viganò et al., 2018). Diabetes has been linked to haemostasis 

disorders as hyperglycaemia has been shown to enhance thrombosis and decreased 

fibrinolysis  (Alzahrani and Ajjan, 2010; Kearney et al., 2017). Elevated levels of antiplasmin 

in diabetes have been associated with an increased risk for myocardial infarction (Meltzer et 

al., 2010; Agren et al., 2014). As antiplasmin regulates fibrinolysis, increased incorporation of 

antiplasmin into fibrin results in a more stable fibrin network. Furthermore, the binding of 

antiplasmin to fibrin will reduce fibrin degradation through its binding and inhibition of plasmin 

and this increased action could therefore contribute to diabetic complications (Agren et al., 

2014). In the current study, prediabetic subjects with hyperglycaemia have shown 

hypomethylation of the antiplasmin DMR which suggest possible elevation of its action. This 

could be used as an indicator of progression to full-blown diabetes and a risk for 

cardiovascular disease. Furthermore, targeting antiplasmin could have benefits as a potential 

therapeutic target in the treatment of diabetes. 

 

Dematin actin binding protein (DMTN) encodes a cytoskeletal protein which plays a structural 

role in maintaining erythrocytes shape and membrane stability as well as regulating cell 

movement (Lu et al., 2016). Deficient dematin has shown to result in defects in erythrocyte 

shape, membrane instability and haemolysis (Khan et al., 2008; Lu et al., 2016). Proteins in 

the erythrocyte membrane are organised in structural complexes anchoring the cytoskeleton 

to the lipid bilayer. In addition, glucose transporter 1 (GLUT1), which aids in regulating glucose 

transport in erythroid, endothelial, epithelial and neuronal cells,  interacts with dematin at the 

actin-spectrin junctional complex in erythrocyte membranes (Khan et al., 2008; Guizouarn and 

Allegrini, 2020). It is suggested that hyperglycaemia causes modifications in the cytoskeleton 

and protein complexes around GLUT1 in red blood cells which could interfere with glucose 

uptake through GLUT1 in diabetic individuals (Guizouarn and Allegrini, 2020). In addition to 

its role in haematopoietic cells, DMNT also plays a role in regulating the actin cytoskeleton in 
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non-erythroid cells (Ye et al., 2018).  In a study by Mohseni et al (2008), it was also shown 

that DMTN regulates cell shape, motility and wound healing by controlling RhoA activation 

which participates in cytoskeletal remodelling. The study revealed that the reepithelialisation 

and granulation in wound healing were delayed by the absence of dematin in fibroblasts 

(Mohseni and Chishti, 2008). In the current study, DMTN was found to be hypomethylated 

which could suggest an increase in expression. The increased expression of dematin could 

be linked to an increase in stability and structure of the red blood cell membranes in prediabetic 

subjects when compared to the newly diagnosed diabetic subjects. In addition, the increased 

expression of dematin and its link with the GLUT1 transporter could be an indication of the 

glucose transport mechanism in prediabetic individuals. The expression of dematin could also 

be monitored as an indicator of red blood cell stability with worsening glucose tolerance. Since 

diabetes is associated with delayed wound healing (Patel et al., 2019),  increased expression 

of dematin could aid in the epithelialisation and granulation processes in the wound healing of 

the prediabetic subjects. 

 

 

4.3  Long non-coding RNAs (lncRNAs) 

The impact of long non-coding RNAs (lncRNAs) on biological and pathological processes 

have been associated with several conditions including metabolic diseases. For this reason, 

lncRNA-associated DNA methylation was investigated in the current study. A total of 943947 

statistically significant lncRNA-associated MeDIP-enriched regions (peaks) were identified for 

the 48 samples. Of the 641 lncRNA-associated DMRs identified, 63% were hypermethylated 

and 37% hypomethylated of which the highest number of hypermethylated lncRNA-associated 

DMRs were observed by the known diabetes group (77%) when compared to the NGT group. 

In addition, most of the hypermethylated and hypomethylated DMRs were found on 

chromosome 1. 

 

 

4.3.1 LncRNA-associated DMRs identified in hyperglycaemic subjects 

The common hypomethylated DMRs identified in the diabetic and non-diabetic 

hyperglycaemic subjects (known, screen-detected and prediabetes) when compared to the 

NGT subjects included C4A.  Complement component 4A (C4A) is a polypeptide derived from 
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the cleavage of C4 upon activation of the classical and lectin pathways of the complement 

system involved in the innate immune system (Barnum, 2015; Wang et al., 2017a). Although 

the complement system is an essential part of the immune system, prolonged activation has 

shown to play a role in inflammation and cardiometabolic disease (Copenhaver et al., 2020). 

In the study by Copenhaver et al (2020), complement affected endothelial cells, especially in 

the earlier stages of endothelial dysfunction where higher levels of C4 were associated with 

impaired endothelial function due to poor reactive hyperaemic responses. Furthermore, 

inflammation was shown to increase as the markers of inflammation which included white 

blood cell and neutrophil counts as well as CRP and interleukin-6 (IL6) levels corresponded 

to the increased levels of C4 (Copenhaver et al., 2020). In addition, it has been shown that 

C4A increased stress fibre formation and the permeability of endothelial cells through its 

activation of the G-coupled protein receptor protease-activated receptors 1 and 4 (PAR1 and 

PAR4) which have a pro-inflammatory effect (Wang et al., 2017a). Although components of 

the complement system are involved in both diabetes mellitus type 1 and type 2, more studies 

have linked C4 to type 1 diabetes (Szilagyi et al., 2006; Wang et al., 2010; Mason et al., 2014). 

In the case of T2DM, increased levels of C4 was found when comparing T2DM patients to 

individuals with normal glucose tolerance. It was suggested that complement-mediated 

inflammation contributed to the acceleration of diabetic microangiopathy after seeing that the 

earlier phase of the complement pathway was excessively activated in T2DM patients (Shim 

et al., 2020). Furthermore, in a study by Nilsson et al (2014) the relationship between C4 and 

metabolic cardiovascular risk factors were assessed and found to be positively correlated. It 

was shown that raised C4 levels were associated with cardiometabolic risk factors such as 

obesity, blood pressure, blood lipids and metabolic syndrome (MetS) (B. Nilsson et al., 2014a). 

As these risk factors including MetS are associated with T2DM (Liu et al., 2016), one could 

suggest that C4 as part of the complement system plays a role in the development of the 

metabolic profile of individuals with T2DM. Liu et al (2016) found C4 levels to be increased in 

study participants with MetS and that the raised levels of C4 could be used as an indicator of 

increased risk for developing MetS (Liu et al., 2016). In the current study, the lncRNA-

associated DMR C4A was hypomethylated in all subjects with hyperglycaemia when 

compared to the control subjects which may suggest increased expression of this complement 

component. This possible increase in C4A expression correlates with the findings of the other 

studies mentioned where increased C4 was associated with T2DM and cardiometabolic risk 

factors.  
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4.3.2 LncRNA-associated DMRs identified in subjects with diabetes (known and  

            newly diagnosed) 

The hypermethylated DMRs identified in diabetic individuals (known and screen-detected 

subjects) included MLXIP and RPTOR. MondoA-interacting protein (MLXIP) plays a role in 

the transcriptional response to intracellular glucose concentration (Richards et al., 2017). It 

maintains glucose homeostasis under normal nutrient conditions, however, chronic nutrient 

overload causes dysregulation of MondoA and could result in insulin resistance and T2D 

(Song et al., 2019).  MondoA is highly expressed in skeletal muscle where it regulates the 

glycolytic pathway (Ran et al., 2020). It has been shown that once activated, MondoA inhibits 

the glucose uptake in skeletal muscle whereas repression of MondoA in skeletal myotubes 

has shown to increase glucose uptake (Ahn et al., 2019). Furthermore, the loss of MondoA in 

mice muscles have shown to improve high-fat-diet-induced glucose tolerance and insulin 

resistance by decreasing muscle lipid accumulation and increasing muscle insulin signalling 

and glucose uptake (Ahn et al., 2016). Richards et al (2018) also observed that MondoA is a 

glucose-responsive transcription factor in human pancreatic beta-cells. During high glucose 

conditions, MondoA up-regulated the expression of the genes, thioredoxin interacting protein 

(TXNIP) and arrestin domain-containing protein 4 (ARRDC4), which play a role in the inhibition 

of glucose uptake (Richards et al., 2018).  Studies have shown that metformin reduces the 

binding of the MondoA transcription factor complex to TXNIP and thereby reducing the 

expression of TXNIP. Since TNXIP acts by inhibiting cellular glucose uptake, metformin 

thereby aids in lowering blood glucose levels (Chai et al., 2012; Li et al., 2015).  With its 

glucose-sensing transcriptional activity playing a role in glucose metabolism and insulin 

sensitivity, MondoA may therefore provide a potential target for anti-diabetic therapy through 

its inhibition in various tissues. In the current study MLXIP was hypermethylated which may 

imply repression of the MondoA activity in both the known diabetics on metformin treatment 

and the newly diagnosed diabetic subjects. As noted in the previous studies, inhibition of 

MondoA improved glucose uptake by tissue. Treatment by metformin could therefore explain 

the possible decrease in expression of MLXIP in the known diabetic subjects. Since the newly 

diagnosed subjects were not on metformin treatment, it is unclear as to why the MLXIP 

expression may be repressed. A possible explanation could be that MLXIP expression varies 

amongst the different metabolic tissues as explained by Song et al (2019) who observed 

opposing effects of MondoA in the muscle and pancreas in comparison to the liver and white 

adipose tissue (Song et al., 2019). 
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Another hypermethylated lncRNA-associated DMR observed was the Regulatory-

Associated Protein of mTOR (RPTOR), also known as RAPTOR. RAPTOR forms part of the 

mTOR complex 1 (mTORC1), which is one of two large protein complexes of the nutrient-

sensing serine-threonine protein kinase (Yin et al., 2020). mTORC1 is an important driver of 

anabolic metabolism in response to growth factors and nutrients and plays a role in the 

promotion of protein synthesis, lipid biogenesis and metabolism as well as the reduction of 

autophagy (Howell et al., 2017). Although mTORC1 is essential for beta-cell development, 

growth and function, it's over activation by nutrient overload in the form of glucose has been 

shown to lead to beta-cell exhaustion, functional loss and eventually cell death in T2DM (Ni et 

al., 2017; Yuan et al., 2017). Yuan et al (2017) showed that mTORC1 activity was increased 

in human pancreatic islets from T2DM patients and that this elevated mTORC1 activation led 

to impaired beta-cell function and survival in response to metabolic stress (Yuan et al., 2017). 

In a study by Ni et al (2017), it was found that the deletion of RAPTOR and inactivation of the 

mTORC1 in murine beta cells affected their maturation and also resulted in hypoinsulinaemia 

and decreased glucose tolerance. Furthermore, the deficiency of RAPTOR showed reduced 

expression of the DNA-methyltransferase 3a resulting in hypomethylation and transcriptional 

activation of beta cell-specific disallowed genes (Hk1, Dlk1, Pdgfra, Oat and Mylk) involved in 

glucose metabolism, insulin secretion and beta-cell maturation (Ni et al., 2017). Metformin has 

shown to inhibit mTORC1 in the liver by its activation of AMPK (Soliman et al., 2016). An effect 

of metformin is to decrease cellular energy levels by inhibiting the mitochondrial complex 1 

and thereby decreasing cellular respiration and ATP levels. This stimulates the release of 

AMPK which in turn promotes ATP-producing catabolic processes as well as inhibiting 

anabolic processes which consume ATP. Processes stimulated by mTORC1 are reliant on 

energy provided by ATP and therefore are inhibited by the metformin-induced activation of 

AMPK during cellular energy depletion (Howell et al., 2017; Ardestani et al., 2018). In the 

current study, the DMR RAPTOR was hypermethylated which suggests that its expression 

and the activity of mTORC1 was suppressed in both known diabetics on metformin treatment 

and newly diagnosed diabetic subjects. In the metformin-treated subjects, the possible 

decrease in RAPTOR and mTORC1 activity can be explained by the inhibitory effect of AMPK. 

It is however unclear as to why there is a possible decrease in RAPTOR and subsequently, 

mTORC1 activity in the newly diagnosed diabetic subjects as no known inhibitors such as 

pharmaceutical measures was in place. A possible explanation could be that mTORC1 activity 

affects metabolism and energy homeostasis in a tissue-specific manner. This was suggested 

by Blandino-Rosano et al (2017) as tissue-specific deletion of RAPTOR  resulted in a loss of 

mTORC1 signalling in liver, muscle and adipose tissue with various outcomes (Blandino-

Rosano et al., 2017).  
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The hypomethylated lncRNA-associated DMR observed included C4A (previously 

discussed for all hyperglycaemic subjects) and Methyl-CpG Binding Domain Protein 3 

(MBD3). The methyl-CpG binding domain (MBD) family of proteins, including MBD3, are 

considered to be protein readers of methylation involved in interpreting DNA methylation into 

functional outcomes (Song et al., 2020). The members of the MBD family have no similarity in 

sequence except for MBD2 and MBD3 who are paralog genes and have a 70% amino acid 

sequence similarity (Leighton and Williams Jr, 2020). As opposed to the others, MBD3 is the 

only family member which does not bind to methylated DNA but instead can bind to non-

methylated CpG-rich promoters and enhancers (Gunther et al., 2013; Menafra and 

Stunnenberg, 2014). Furthermore, it has been suggested that there is potential coordination 

between MBD2 and MBD3 as the presence of MBD2 at genomic regions seems to be 

influenced by MBD3 at the same sites (Gunther et al., 2013; Du et al., 2015). A study by Brown 

et al (2008) showed that overexpression of MBD3 induced demethylation in specific targets of 

the genome and resulted in the activation of these genes. The study utilised HEK 293 cells 

and found that overexpression of MBD3 resulted in a loss of methylation in the promoters of 

the MMP24 and VEGF-C genes associated with certain cancers (Brown et al., 2008). Cui et 

al (2015) showed that MBD3 played a role in DNA methylation homeostasis as together with 

MBD2 and DNA methyltransferase 1 (DNMT1), it provided favourable conditions for continuing 

DNA maintenance methylation. The demethylating property of MBD3 provided a protective 

mechanism in the S-G2 phases of the cell cycle and insufficient MBD3 resulted in a disruption 

of DNA methylation homeostasis (Cui and Irudayaraj, 2015). Although there is no direct 

association between MDB3 and T2DM in literature, it was observed that MBD2 expression 

levels were increased in patients with T2DM when compared to control subjects. This study  

indicated that dysregulation of the methylation process occurred as high glucose levels 

induced DNA methylation by the up-regulation of DNMTs and MBD2 (Karachanak-Yankova 

et al., 2015). Since a close relationship has been shown between MBD2 and MBD3, one could 

speculate whether MBD3 expression levels are also increased in T2DM. This suggestion 

correlates with the findings of the current study, where MBD3 expression is suggested to be 

increased as the lncRNA-associated DMR was found to be hypomethylated in diabetic 

subjects. Furthermore additional studies would need to be conducted to determine which 

genes and their functional outcomes are affected by the suggested increased expression of 

MBD3 in the current study. 
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4.3.3 LncRNA-associated DMRs identified in known diabetes versus new diabetes 

When comparing known diabetics on metformin treatment to newly diagnosed diabetic 

subjects, hypermethylation of the mitochondrial ATP synthase-coupling factor 6 (ATP5J) 

enzyme was observed. ATP5J is a protein connecting two components, F0 and F1, of ATP 

synthase which is a crucial enzyme promoting oxidative phosphorylation in the mitochondria. 

Therefore ATP5J expression is related to both  ATP synthase synthesis and the synthesis of 

mitochondrial ATP and any change in their expression could mirror the functioning of the 

mitochondria and ATP synthase (Wang et al., 2017b; Bai et al., 2018). Previous studies have 

investigated the role of ATP5J in cardiovascular diseases. A study by Morena-Viedman et al 

(2016) identified dysregulation of the oxidative phosphorylation pathway and associated 

genes including ATP5J in an insulin resistant-atherosclerosis mouse model linking ATP5J to 

cardiovascular and metabolic diseases (Moreno-Viedma et al., 2016). Furthermore, a study 

by Osanai et al (2012) showed increased plasma levels of ATP5J, also known as coupling 

factor 6, was associated with diabetes and hypertension due to tissue acidosis. 

Overexpression of the coupling factor 6 (ATP5J) causes a decrease in intracellular pH in tissue 

expressing the coupling factor 6 receptor and this metabolic acidosis induces hypertension 

and insulin resistance (Osanai et al., 2012). Findings in the current study show 

hypermethylation of ATP5J in metformin-treated subjects possibly indicating suppression of 

this lncRNA. The suppression of the ATP5J expression could be a result of the metformin as 

previous studies have associated diabetes with increased levels of ATP5J. This, however, 

warrants further investigation.  

 

Another hypermethylated lncRNA-associated DMR identified in known diabetics on 

metformin treatment when compared to newly diagnosed subjects was lysyl oxidase-like 2 

(LOXL2). Lysyl oxidase (LOX) proteins consist of a family of copper-dependent enzymes 

which play a role in extracellular matrix (ECM) homeostasis and remodelling (Rodriguez and 

Martinez-Gonzalez, 2019). The ECM plays an important role in maintaining tissue integrity 

and housing mediators of cell signalling and growth and disruptions may lead to increased 

matrix synthesis and disease progression (Stangenberg et al., 2018).  One of the four LOX-

like enzymes, LOXL2, has been associated with cardiovascular diseases which are 

characterised by fibrosis and decreased cardiac function (Yang et al., 2016; Rodriguez and 

Martinez-Gonzalez, 2019; Erasmus et al., 2020). Fibrosis can be caused by several factors 

which include increased oxidative stress, inflammation, hyperglycaemia, hypertension and 

these factors may mediate epigenetic modifications and affect gene expression (Erasmus et 

al., 2020). Large amounts of ECM protein deposits, of which collagen is a major component, 
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is a risk factor for heart failure and T2DM has been associated with alterations in ECM patterns 

(Frangogiannis, 2019). Diabetes is a known risk factor for cardiovascular disease and it has 

been shown that cardiac damage induced by diabetes results in abnormally increased 

collagen deposits between the myocytes, resulting in thickening of the ventricle wall and 

stiffening of the heart muscles. Furthermore, the increased oxidative stress in cells and 

hyperglycaemia in diabetes lead to the production of advanced glycation end-products 

(AGEs), a complex and heterogeneous group of compounds associated with diabetes related 

complications (Chen et al., 2019b). Through its interaction with a number of pathways 

hyperglycaemia-induced AGEs as well as the activation of the receptors for AGEs have been 

linked to increased activation of inflammation and oxidative stress (Chen et al., 2019). The 

accumulation of AGEs in various organs such as the kidneys and the heart have been 

implicated in  vascular and endothelial disorders (Perera and Handuwalage, 2015). The 

aggregation of AGEs on proteins involved in fibrotic processes, such as collagen, can affect 

the normal degradation of proteins (Erasmus et al., 2020).  The combination of AGEs and 

collagen affects the elasticity and stiffness of heart tissue leading to myocardial fibrosis 

associated with LOXL2 gene expression (Erasmus et al., 2020). Johnson et al (2020) showed 

that increased expression of LOXL2 correlated with increased tissue fibrosis and suggested 

that LOXL2 could be used as a predictive marker to detect the early onset of diabetic 

cardiomyopathy (Johnson et al., 2020). Also, their study found that suppression of LOXL2 

reduced the expression of genes such as COL1A associated with increased tissue fibrosis 

and enhanced collagen formation. This  indicated that collagen formation was possibly 

controlled by LOXL2 (Johnson et al., 2020). Similarly, Stangenberg et al (2018) found that 

increased levels of LOXL2 was associated with renal fibrosis and the development and 

progression of diabetic nephropathy in an animal model. By inhibiting LOXL2 expression, an 

improvement in glomerular structure and function was observed, once again indicating that 

LOXL2 could be used as an therapeutic target for renal fibrosis and more particularly diabetic 

kidney fibrosis (Stangenberg et al., 2018).  

 

In the current study, LOXL2 was hypermethylated which may suggest that expression of 

this lncRNA-associated DMR was suppressed. This could be as a result of the metformin 

treatment as studies listed above have shown that diabetes is associated with increased 

fibrosis and ECM deposition. Studies by Li et al (2016) showed that metformin down-regulated 

the expression of LOXL2 and reduced the collagen deposition in adipose tissue in mice,  

thereby reducing fibrosis (Li et al., 2016b). It is therefore suggested that metformin may have 

decreased the expression of LOXL2 in the known diabetic subjects of the current study. 
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CHAPTER 5 

CONCLUSION 

5.1 Strengths of the study 

The inclusion of the diabetic and pre-diabetic groups add strength to the study, especially 

within a South African context where limited studies on DNA methylation have been 

conducted.  The classification of the study subjects was also well characterised with the use 

of the oral glucose tolerance test (OGTT) as well as the measurement of HbA1C for 

determining the glucose status.  

 

In this study, peripheral blood was used to assess DNA methylation. Although it has been 

shown that DNA methylation is tissue-specific, studies using peripheral blood DNA has shown 

consistent methylation patterns with other organs (Farré et al., 2015; Crujeiras et al., 2017). 

Therefore the use of blood which is an accessible and convenient biological material in a 

clinical setting may be a strength in DNA methylation studies. In addition, suitable amounts of 

quality DNA can be extracted from peripheral blood and banked for future use or extensions 

of the current study (Li et al., 2012). This highlights the use of blood-based DNA methylation 

as a potential non-invasive screening test for T2DM which can aid in the prevention, diagnosis 

and treatment of T2DM.  

 

Another strength of the study was the genome-wide approach. The benefit of using genome-

wide DNA methylation profiling instead of candidate gene methylation was that it provided a 

comprehensive view of the DNA methylation landscape within a South African population. It 

also provided the foundation for future studies whereby the identified DMRs and lncRNA-

associated DMRs could be further explored. Furthermore, the combination of utilising DNA 

methylation and pathway analysis methods in this study provided insight into the potential 

mechanisms influencing glucose regulation and the pathogenesis of T2DM.  
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5.2 Limitations of the study 

Limitations of the study include the use of only female participants from a South African 

community and therefore the generalizability of these findings to males is unknown. Although 

the small sample size can be considered a limitation, it allowed for comparison and limited 

error which may occur during statistical manipulation of small sample size by sex. Larger 

sample sizes may however have increased the statistical power of the study. The study 

participants were all from mixed genetic origin and therefore the possible effect of genetic 

heterogeneity on DNA methylation cannot be ignored. The mixed ancestry community in South 

Africa has genetic contributions from Europeans, South Asians, Indonesians and a population 

genetically close to the isiXhosa sub-Saharan Bantu (Patterson et al., 2009). Since it has been 

shown that genetic ancestry plays a role in DNA methylation patterns (Chu and Yang, 2017; 

Galanter et al., 2017), the identification of ancestry markers particularly within this 

heterogeneous South African population warrants further investigation.  

 

As the study participants were all matched for age, gender, ethnicity and body mass index 

(BMI), it was assumed that the environmental factors were similar for the participants living 

within this particular South African community. Since DNA methylation is affected by 

environmental and lifestyle factors such as physical activity, smoking, diet and alcohol 

consumption (Martin and Fry, 2018; González-Becerra et al., 2019; Wilson et al., 2019), a 

limitation of the study was the assumption of participant honesty during the questionnaire data 

collection phase. The current study did however measure serum cotinine levels which 

matched the participants’ responses on smoking habits. Further studies are however needed 

to determine whether these environmental and lifestyle factors had any effect on the DNA 

methylation patterns observed in this particular cohort. 

 

The study also used a cross-sectional study design which may not effectively demonstrate 

causality between the changes in DNA methylation and metabolic traits and therefore warrants 

further investigation with the use of a longitudinal study design. Although longitudinal studies 

are more suited to follow the long-term effects on DNA methylation patterns, the high cost and 

time challenges need to be considered. Also, the reversible nature of epigenetic changes over 

time as well as the long-time course for T2DM development would need to be considered. 

Since the development of T2DM may occur years before clinical diagnosis (Porta et al., 2014; 

Ali et al., 2017a), the methylation patterns observed in the diabetic (treated and untreated) 
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participants should be interpreted with caution as it is unclear whether the findings are as a 

result of the duration and severity of diabetes. 

 

While the current study has highlighted the strengths of using blood-based DNA methylation, 

it should be noted that blood is a heterogeneous tissue consisting of many different cell types 

(Jaffe and Irizarry, 2014). Since DNA methylation varies with cell type, the cellular 

heterogeneity of blood may affect DNA methylation patterns as each cell type possesses its 

own epigenetic signature (Houseman et al., 2015; Husby, 2020). The use of peripheral blood 

could therefore be noted as a limitation of the current study.  

  

The MeDIP sequencing technology used to measure genome-wide DNA methylation in the 

study has its limitations but these are outweighed by the advantages which included the lack 

of a bisulphite conversion step and the generation of large datasets which are easy to analyse 

and interpret. This resulted in MeDIP-seq being used as the primary method for DNA 

methylation over pyrosequencing, which while highly sensitive and reliable, only allows for the 

investigation of small genomic regions. Although pyrosequencing was used to validate the 

methylation status of the participant samples, a previous study comparing four sequencing-

based DNA methylation methods including MeDIP-seq showed comparable methylation in all 

four methods (Harris et al., 2010). It is however recommended that DNA methylation studies 

should use more than one sequencing-based DNA methylation profiling method to verify DNA 

methylation regions. 

 

 

5.3 Conclusion of the study 

Type 2 diabetes mellitus is a global health concern and it has become increasingly necessary 

to identify ways of recognising populations at risk of developing T2DM as well as improve the 

clinical diagnosis and treatment regimes for patients. Moreover, the number of people with 

diabetes in Africa is growing faster in comparison to other countries, with South Africa showing 

the highest age-adjusted prevalence of the disease and a large percentage of undiagnosed 

individuals (Asmelash and Asmelash, 2019; International Diabetes Federation, 2019; 

Mutyambizi et al., 2019).  Although studies have shown a relationship between the occurrence 

of T2DM and genetic and lifestyle factors, it has been suggested that epigenetic mechanisms 

such as DNA methylation contribute to the pathogenesis of T2DM through its association with 
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the transcriptional activity of genes. There are however limited studies focussing on the 

genome-wide DNA methylation profiling of diabetic and prediabetic subjects from Africa and 

in particular, South Africa. The aim of the current study therefore was to conduct genome-wide 

DNA methylation in South African subjects with varying glucose tolerance and investigate the 

relationship between the observed DMRs and cardiometabolic risk factors. Genome-wide 

DNA methylation profiling was conducted in 48 South African individuals from the Bellville 

South community in the Western Cape, using DNA immunoprecipitation sequencing (MeDIP-

seq). Following the identification of statistically significant differentially methylated regions 

(DMRs) and lncRNA-associated DMRs, gene ontology and KEGG pathway analysis was 

performed for the participants, comparing the findings between those with known diabetes on 

treatment, screen-detected (newly diagnosed) diabetes, prediabetes and normal glucose 

tolerance. Also, the significant DMRs identified were validated by performing pyrosequencing 

of bisulphite converted DNA.  

 

The study identified several DMRs and functional pathways affected in subjects with diabetes 

and prediabetes. These findings show that DNA methylation patterns differ amongst 

individuals with varying degrees of glucose tolerance within a South African population. 

Furthermore, the study showed that DNA methylation patterns are associated with certain 

cardiometabolic traits and diabetic complications, and could be used as potential biomarkers 

for the occurrence and progression of T2DM. For example, biological processes associated 

with cardiac muscle contraction, blood circulation and vasoconstriction were found to be 

hypermethylated in the screen-detected diabetic subjects when compared to the subjects with 

normal glucose tolerance. These findings suggest that cardiovascular processes may be 

affected in diabetic individuals due to a suggested decrease in the expression of the genes 

associated with these functions. Also, Notch signalling, which plays a role in many processes 

across a wide range of tissue, was found to be hypermethylated in the screen-detected 

diabetic subjects. The implied decrease in Notch signalling could be an attempt to regulate 

insulin and glucose homeostasis in diabetic individuals, however, this statement warrants 

further investigation. Pathway analysis in the screen-detected subjects revealed 

hypomethylation of purine metabolism and its associated DMR, ADK when compared to the 

subjects with normal glucose tolerance. The overexpression of purine metabolism and its end-

product uric acid has been linked to diseases such as gout, obesity, hypertension, 

hyperlipidaemia, renal dysfunction and diabetes (Maiuolo et al., 2016; Xiong et al., 2019). The 

hypomethylation and implied increase in expression of purine metabolism in this study 

suggests a role for DNA methylation in highlighting the risk of increased ROS production, 

inflammation and cell damage associated with excess uric acid in diabetic individuals.  
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The study also identified DMRs and their functional pathways which showed a possible 

progression from prediabetes to diabetes. The defense to Gram-negative bacterium and its 

associated DMR, LBP (Lipopolysaccharide Binding Protein) was hypomethylated in 

prediabetic subjects suggesting an increased expression of LBP levels in these subjects. 

Increased LBP levels have been associated with the release of increased inflammatory 

cytokines, insulin resistance and beta-cell dysfunction in diabetes (Tilves et al., 2016). 

Therefore the increased expression of LBP in this study indicates the potential use of this DMR 

as a biomarker for prediabetes with the potential for progression to diabetes. When comparing 

prediabetic subjects to the screen-detected diabetic subjects, hypomethylation of the 

regulation of wound healing and blood coagulation and their associated DMRs, SERPINF2 

and DMTN, was observed. As SERPINF2 plays a role in regulating fibrinolysis (Viganò et al., 

2018), the hypomethylation and elevated levels of SERPINF2 (alpha 2-antiplasmin) 

expression in subjects with hyperglycaemia could be used as an indicator of progression to 

full-blown diabetes and a risk for cardiovascular disease. Furthermore, DMTN (Dematin), 

which plays a role in erythrocyte shape and membrane stability is affected by hyperglycaemia 

resulting in changes in the glucose uptake through GLUT1 in red blood cells (Lu et al., 2016; 

Guizouarn and Allegrini, 2020). Therefore the increased expression of DMTN in this study 

indicates the potential use of this DMR as an indicator of red blood cell stability with worsening 

glucose tolerance. 

 

The expression of several DMRs and pathways were affected by the metformin treatment in 

the known diabetic subjects, showing that DNA methylation could be utilized as potential 

biomarkers for monitoring treatment regimes or developing new strategies. For example, the 

cytokine-cytokine receptor interaction and oxidative phosphorylation pathways were 

hypermethylated in known diabetics on metformin treatment when compared to the subjects 

with normal glucose tolerance. This suggested that metformin may have an inhibitory effect 

on complement-mediated inflammation and mitochondrial oxidative phosphorylation in 

diabetic individuals. In addition, hypermethylation of the functional pathways and DMRs 

identified in metformin-treated subjects when compared to the untreated screen-detected 

(newly diagnosed) subjects were associated with Diabetic Peripheral Neuropathy (DPN), 

suggesting that metformin may have a role in dampening the effects of DPN. When compared 

to prediabetic individuals, hypermethylation of the cAMP signalling pathway in known diabetics 

on treatment suggested a decrease in cAMP synthesis and cAMP-dependent protein kinase 

(PKA) activity. These findings correlate with a previous study on metformin’s inhibitory effect 

on cAMP and PKA activity (Pernicova and Korbonits, 2014). This, therefore, showed that the 

DNA methylation patterns observed in this study could be used to monitor the effects of 
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metformin on glucose homeostasis. The PI3K-AKT signalling pathway and its associated 

DMR, Insulin Receptor Substrate 1 (IRS1), was hypomethylated when comparing known 

diabetics on metformin treatment to prediabetic subjects. Metformin has shown to inactivate 

IRS1 and the PI3K-AKT signalling pathway in diabetic cancer patients through its activation of 

AMPK (Saini and Yang, 2018). Therefore, the hypomethylation and implied increase in the 

PI3K-AKT signalling pathway in metformin-treated diabetics in this study suggests that 

metformin treatment may aid in the management of insulin resistance by enhancing the PI3K-

AKT signalling pathway. Since activation of the PI3K-AKT signalling pathway is known to be 

context-dependent, these findings warrant further investigation. 

 

Several novel lncRNAs were observed when comparing the lncRNA-associated DMRs 

identified amongst individuals with varying degrees of glucose tolerance. When comparing 

hyperglycaemic individuals to those with normal glucose tolerance, the complement 

component C4 was hypomethylated suggesting a possible association with the 

cardiometabolic risk factors and complement-mediated inflammation associated with T2DM. 

This association was examined in other studies which linked increased levels of C4 to 

cardiometabolic risk factors such as obesity, blood pressure, blood lipid profile and metabolic 

syndrome (Nilsson et al., 2014a; Liu et al., 2016). The findings in the current study therefore 

suggest that increased expression of C4 could be used as a marker for the higher risk of 

developing cardiometabolic traits associated with T2DM. Furthermore, lncRNA-associated 

DMRs in diabetic individuals when compared to those with normal glucose tolerance showed 

hypermethylation of MLXIP and RPTOR. Both of these lncRNA-associated DMRs were found 

to be tissue-specific in their actions. The MondoA-interacting protein MLXIP plays a role in 

glucose-sensing transcriptional activity (Richards et al., 2017) and could be a potential target 

for anti-diabetic therapy through its inhibition in various tissues. In the current study, the 

hypermethylation and possible repression of MLXIP in diabetic individuals could be used as a 

potential marker for monitoring improved glucose uptake in tissues while on anti-diabetic 

treatment. Metformin has also shown to inhibit  RPTOR, a part of the mTOR complex 1, which 

when elevated in certain tissues has been associated with increased beta-cell dysfunction and 

metabolic stress in T2DM (Soliman et al., 2016; Yuan et al., 2017). In the current study, the 

hypermethylation and implied suppression of RPTOR in diabetic subjects on metformin 

treatment suggest that RPTOR expression may have an influence on the metabolism and 

energy homeostasis in these individuals. 
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When comparing known diabetics on metformin treatment to the newly diagnosed diabetic 

subjects, the lncRNA-associated DMRs observed included the mitochondrial ATP synthase-

coupling factor 6 (ATP5J) enzyme. Increased levels of the ATP5J enzyme thought to be 

involved in the oxidative phosphorylation pathway, has been associated with T2DM and 

metabolic acidosis in hypertension (Osanai et al., 2012). Further investigation is needed in the 

current study to determine whether the hypermethylation of this lncRNA suggests possible 

repression of ATP5J in metformin-treated diabetics. Lastly, the hypomethylated lncRNA-

associated DMRs identified in metformin-treated diabetics when compared to untreated newly 

diagnosed subjects included lysyl oxidase-like 2 (LOXL2). Increased levels of LOXL2 are 

associated with increased tissue fibrosis and have recently been implicated in diabetic 

nephropathy and diabetic cardiomyopathy (Erasmus et al., 2020). Furthermore, the effect of 

metformin on LOXL2 has been observed in a previous animal model where metformin down-

regulated the expression of LOXL2 (Li et al., 2016b). In the current study, the hypermethylation 

of LOXL2 in the known diabetic subjects therefore suggests that metformin treatment may aid 

in the decreased expression of LOXL2. Moreover, LOXL2 may serve as a potential marker for 

the early detection of diabetic-related complications. In conclusion, the lncRNA-associated 

DMRs observed in this study may serve as potential targets for the detection of diabetic-

related complications as well as the therapeutic monitoring in diabetic patients. 

 

 

5.4 Future recommendations 

The study has identified several DMRs and lncRNA-associated DNA methylation regions 

within a South African population which could be used as potential biomarkers for the 

monitoring of T2DM. These findings will however benefit from longitudinal studies which can 

ascertain the relationship between DNA methylation patterns and cardiometabolic risk factors. 

Moreover, the longitudinal studies can incorporate participants from varying age groups, 

gender and ethnicity and monitor the DNA methylation changes in the progression of the 

disease. Longitudinal studies will also aid in determining whether the DMRs and lncRNA-

associated DMRS identified in metformin-treated subjects were not influenced by the duration 

and severity of diabetes. 

 

 In terms of the genetic heterogeneity and its effect on DNA methylation within South Africa 

populations, future studies investigating methylation quantitative trail loci (mQTLs) together 
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with ancestry markers for population stratification may aid in expanding the genome-wide 

association studies of diabetes within Africa. Furthermore, meta-analyses using larger sample 

sizes will permit a better understanding of the DNA methylation profile of T2DM within a South 

African context and perhaps identify additional DMRs not detected in this study.  

 

Future DNA methylation studies may also benefit from the generation of additional 

transcription or expression data to ascertain whether the candidate genes identified are 

actually suppressed or overly expressed in cases of hypermethylation and hypomethylation. 

Further investigation is also needed on the DMRs and pathways identified in the current study 

where the results were not conclusive. Moreover, the novel lncRNAs identified in this study 

warrants further investigation to establish their possible roles in T2DM.  

 

Although blood is still a valuable tissue used in genome-wide DNA methylation assays, 

additional methods are required to explore the effect of its cellular heterogeneity on DNA 

methylation. These methods may include direct measurement of counts of the various cell 

types which could be expensive and time-consuming in large study populations. Alternatively, 

there is a need for advanced digital sequencing platforms with established reference data on 

cell type-specific epigenomic profiles or the development of statistical methods that account 

for cell-type composition. 

 

In conclusion, T2DM is often diagnosed years after its onset and manifestation of micro- and 

macrovascular complications. It is, therefore, necessary to understand the relationship 

between DNA methylation and the early pathogenic mechanisms of the disease to develop 

preventative mechanisms. The DNA methylation patterns identified in this study may therefore 

aid in the detection of early and established risk factors for T2DM as well as contribute to the 

therapeutic monitoring of the disease.     
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Title: The Cape Town Diabetes and Cardiovascular 
Disease Study (VMH) 

Principal Investigator:  Prof Tandi Matsha 

Name of Interviewer: ……………………………. 

Date of Interview:  ……. /…..../…....  Ref No ………… 

To the respondent: 

Thank you very much for your willingness to participate in the completion of this questionnaire. 
The information obtained on this questionnaire will provide us with information on all the possible 
health, family, life style and dietary risk factors within your house hold that might influence the 
development of diabetes. This is because many health conditions develop slowly over time yet 
could be prevented if diagnosed early or if pre-determined. This questionnaire therefore aims at 
getting information which may be used to determine the extent of diabetes and those likely to 
develop diabetes in the future. The questionnaire should not take long and we hope you find it 
interesting and enjoyable. All answers provided will be treated as confidential and anonymous.  

Note 

No special knowledge is needed to fill this questionnaire. Please feel free to ask for clarification if 
needed. 

Appendix A: Participant questionnaire
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Section A: General Questions  
 

1. Language 
 

1. What is your home language?           
 

□ English 
□ Afrikaans 
□ Xhosa 
□ Other: 

…………………………………………….. 
 

2. Which language would you prefer to be  
     communicated in? 

 

□ English 
□ Afrikaans 
□ Xhosa 
□ Other: 

…………………………………………….. 

2. Personal Questions 
 

 

1. Gender                    ___Male  ___Female  

2. Date of birth?                     ____/_____/_______ 

3.  What is your relationship status?        

□  Married/registered partnership  

□ Cohabiting (living together)  

□ Unmarried (never married)  

□ Divorced or separated 

□ Widow/widower  

 

 
4. Including yourself, how many   people are there in your household?     |__|__| person(s) .  

This includes children who live with you only some of the time. 
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Section B: General Health 
 

3. General Health 
 

3.1 In general, would you say your health is: □ Excellent 
 □ Very good 
 □ Good 
 □ Fair 
 □ Poor 

 
3.2 In general, would you say you are 

physically active (that is, gardening, 
jogging etc)? 

□ Yes 

□ No 
 

3.3 In general, would you say you have  
emotional problems (such as feeling 
depressed or anxious) 

□ Yes 

□ No 
  

3.4 During the past 4 weeks, how much did 
pain keep you from doing your normal 
activities? 

□ Not at all 

□ A little bit  

□ Quite a lot  
A  lot 

□ A very great deal�  
  

3.5 The following questions are about how you felt and how you were doing during the past 4   
weeks. For each question, please choose the answer that best describes how often you 
felt this way. 

a. During the past 4 weeks, how often 
did you feel calm and contented?   □ Always 

□ Usually 

□ Often 

□ Sometimes 

□ Hardly ever 

□ Never 
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b. During the past 4 weeks, how often 
did you feel very energetic? □ Always 

□ Usually 

□ Often 
 

□ Sometimes 

□ Hardly ever 

□ Never 
 
 

c. During the past 4 weeks, how often 
did you feel down and depressed? □ Always 

□ Usually 

□ Often 

□ Sometimes 

□ Hardly ever 

□ Never 
 

3.6 During the past 4 weeks, how often did 
your physical health or emotional 
problems limit your social activities (such 
as visiting friends or family)? 

□ Always 

□ Usually 

□ Often 

□ Sometimes 

□ Hardly ever 

□ Never 
 
 

3.7 Please indicate the status of your 
eyesight at the present time, using both 
eyes (with glasses or contact lenses, if 
you wear them)  

□ Excellent 

□ Good 

□ Fair 

□ Poor 

□ Very Poor 

□ Completely blind 
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4. Question for women 
 

If you are a woman, please answer the questions below. If you are a man, please go directly 
to   Question 5. 
 
4.1 How old were you when you had your first 

period (menstruation)? 
      If you aren’t sure, please try to estimate 

this. 

 
|___|___|   
 
 
 

4.2 How old were you the first time your 
period stopped for a whole year? 

      Do not include times when your period   
      stopped because of pregnancy,  
      breastfeeding, or using birth control. 
 

|___|___| 

4.3 Do you currently use contraceptive 
medication? (Birth control pill) □ Yes 

□ No 
 

4.4 Have you given birth to one or more 
children?  

 
□ Yes 

□ No- Go to question 5 
 

4.5 How many children have you had? 
(This includes still born babies) 

|____|____| children 
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Section C: Specific Illness and disorders 
 

5. Illness and disorders 
 

Please indicate which of the following illnesses and disorders you have now or that you have 
had in the past 12 months, and whether or not this was diagnosed by a doctor. 

If you don’t know or if you have had a certain illness or disorder, please fill in ‘No’. 
Please give an answer for every illness/disorder. [Interviewer: please explain medical 
terms if necessary] 

  No Yes, not 
diagnose

d by a 
doctor 

Yes, 
diagnos
ed by a 
doctor 

a. stroke, brain hemorrhage, cerebral infarction, or 
TIA (‘transient ischaemic attack’: temporary loss 
of bodily function)  

□  □  □  
b. heart attack (myocardial infarction) 

  □  □  □  
c. another serious heart condition (for example, 

heart failure or angina pectoris (severe chest 
pain)) 

□  □  □  
d. a form of cancer (malignant disorder) 

  □  □  □  
e. migraine or frequent severe headaches 

  □  □  □  
f. severe or chronic fatigue 

  □  □  □  
g. narrowing of the arteries in the belly or legs 

(artery stenosis)  □  □  □  
h. asthma, chronic bronchitis, lung emphysema, or 

CNSLD (chronic non-specific lung disease) or 
COPD (chronic obstructive pulmonary disease) 

□  □  □  

i. serious or persistent intestinal disorders lasting 
more than 3months 

  
□  □  □  

j. chronic inflammation of the joints (inflammatory 
rheumatism, chronic rheumatism, rheumatoid 
arthritis) 

□  □  □  
 

 

 

 

5.2  Have you had cancer □ Yes 
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□ No  
5.3 What type of cancer ____________________________________ 

 
____________________________________ 
 
____________________________________ 

6. Medicine and prescription 
 

6.1 Are you currently on medication? 
      (Do not include birth control and 
vitamins) 
 
 

□ Yes 

□ No 
 

6.2 How many days in the past have you   
been able to take your prescribed 
medicine(s)? 

□ Not a single day 

□ 1 to 2 days 

□ 3 to 4 days 

□ 5 to 6 days 

□ All 7 days 
 

6.3 Now I would like tell me the names of all medication(s) you currently taking on a regular  
      basis. I need you to include vitamins and over-the-counter medicine, as well as herbal   
      remedies that you have taken at least once a day over the past two weeks. 
 

1.___________________
_ 

7._______________________
_ 

13._____________________
_ 

2.___________________
_ 8.______________________ 

14._____________________
_ 

3. 
____________________ 9.______________________ 

15._____________________
_ 

4.___________________
_ 10.______________________ 

16._____________________
_ 

5.___________________
_ 11.______________________ 

17._____________________
_ 

6.___________________
_ 

12.______________________
_ 

18._____________________
_ 

 

6.4 Are you using or have used any 
prohibited drugs? 
 

□ Tik  

□ Marijuana (Dagga) 
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□ Cocaine 

□ Other:___________________ 

□ Prefer not to answer  
 

 

7. Blood pressure 
 

7.1 Have you ever been diagnosed with high 
blood pressure at a hospital or clinic (by 
a doctor or nurse etc)? 

□ No- got to Question 8 

□ Yes 
 

7.2 How old where you when you were 
diagnosed with high blood pressure? 

 
___ Years 
 

7.3 Do you use medication for your high 
blood pressure? □ No 

□ Yes 
 

7.4 Are you on a special diet (for example 
low salt) for your blood pressure □ No 

□ Yes 
 

8. Cholesterol 
8.1 Have you ever been diagnosed with a 

high blood cholesterol at a hospital or 
clinic (by a doctor or nurse etc)? 

□ No- Go to Question 9 

□ Yes 

□ I don’t know- go to Question 9 
 

8.2 When was the last time a doctor checked 
your cholesterol level? □ Never 

□ I don’t know 

□ More than 2 years ago 

□ Between 1 and 2 years ago 

□ Between 6 months and 1 year ago 

□ Less than 6 months ago 
8.3 How old where you when you were 

diagnosed with high blood cholesterol? 
 
___ Years 
 

8.4 Do you use cholesterol-lowering 
medication? □ No 
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□ Yes 
8.5 Are you on a cholesterol-lowering diet 

right now? □ No 

□ Yes 
 

9. Blood sugar and diabetes mellitus 
 

9.1 When was the last time a doctor checked your 
blood sugar (glucose) level? □ Never- go to Question 9.12 

□ I don’t know 

□ More than 2 years ago 

□ Between 1 and 2 years ago 

□ Between 6 months and 1 year 
ago 

□ Less than 6 months ago 
 
 
 

 

9.2 Have you ever been diagnosed with diabetes by a 
doctor or health care worker? □ No- go to Question 9.12 

□ Yes  

□ I don’t know  
  
9.3 Were you diagnosed with diabetes only when you 

were pregnant? □  No, I’m a man 

□ Yes- go to Question 9.12 

□ I don’t know  
  

9.4 How old were you when you were first diagnosed 
with diabetes? If you aren’t sure, please try to 
estimate this. 

     |   |   | years old 

  

9.5 Has a doctor or specialist treated you for diabetes in 
the past 12 months? □  No 

□ Yes 
 
  

9.6 Do you use tablets for your diabetes? □  No 

□ Yes 
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9.7 Are you on a diabetic diet right now? □  No 

□ Yes 
  

9.8 Do you use insulin injections for your diabetes? □  No 

□ Yes 
  

9.9 Did you start insulin injections immediately after 
being diagnosed with diabetes? □  No 

□ Yes  
9.10 Did you start insulin injections within 6 months of 

being diagnosed with diabetes? □  No 

□ Yes  
9.11 Have you ever been told by a doctor or health   

  care worker that you have eye disease or eye  
  damage as a result of your diabetes (diabetic  
  retinopathy)?  

□  No 

□ Yes 
9.12  Has someone in your immediate family (your  

  parents, brothers, sisters, or children) been  
  diagnosed with diabetes? 

□  No 

□ Yes 
 

10. Chest pain 
 

10.1 Have you ever had any pain or discomfort in   
        your chest? This does not include problems  
        caused by a cold, asthma, or a stomach ulcer. 

□ No- Go to Question 11 

□ Yes  
10.2 Do you get this pain when you’re exerting   

    yourself (for example, when you’re climbing  
    stairs, walking fast, or cycling)? 

□ No- Go to Question 10.8 

□ Yes 
  

10.3 Do you get this pain when you’re just walking  
    along the street at a normal pace? □ No 

□ Yes  
 

 
 

 

10.4 If you get pain or discomfort in your chest when  
    walking or cycling, what do you usually do? □ Continue at the same pace – 

go to Question 10.7 

□ Slow down or stop 
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□ Use tablet or spray under the 
tongue and continue at the 
same pace 

□ Use a tablet or spray under 
the tongue and slow down  

10.5 If you stop or slow down, or use a tablet or  
    spray under the tongue, does the pain  
    disappear? 

□ No- go to Question 10.7 

□ Yes  
10.6 How soon does it disappear? □ Within 10 minutes 

□ After more than 10 minutes  
10.7    Where do you get this pain or discomfort? 

You can give more than one answer. □ In the upper part of my chest 

□ In the lower part of my chest 

□ On the left side of my chest 

□ In my left arm 

□ Somewhere else namely: 
 
.…………………………………. 
  

10.8 Have you ever had severe pain across the front  
    of your chest that lasted for half an hour or  
    more? 

□ Yes 

□ No  
 

 

 

 

 

11. Leg pain 
 

11.1 Do you get pain in either leg when walking? □ No- go to Question 12 

□ Yes  
11.2 Does this pain ever start when you’re standing  

    still or sitting? □ No 

□ Yes  
11.3 In which part of your legs do you get this pain?  

    You can give more than one answer. □ In the calf 

□ Other location, namely: 
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………………………………….. 

11.4 Do you get this pain when walking fast or  
    climbing stairs? □ No  

□ Yes 

□ I never do this  
11.5 Do you ever get this pain when you’re just  

    walking along the street at a normal pace? □ No 

□ Yes  
11.6 Does the pain ever disappear while you’re still  

    walking? □ No 

□ Yes 
11.7 What do you do if this happens while you’re  

    walking? □ Continue on the same pace 

□ Stop or slow down  
11.8 What happens if you stop? □ The pain usually disappears 

within 10 minutes 

□ The pain usually disappears 
after more than 10 minutes 

□ The pain continues 

 
 

 

 

 

12. Neurologic dysfunction 
 

Neurologic dysfunction is a temporary loss of bodily function: sudden numbness or weakness in the face 
or other parts of the body (for example, having difficulty finding the right words, a partial or complete 
paralysis or ‘drop’ of your hand, arm, foot, leg, or face). 

12.1 Have you ever had a loss of bodily function   
    that lasted for less than one day? □ No- go to Question 12.3 

□ Yes  
12.2 On this day, was this on just one side of your  

    body or on both sides? □ On just one side 

□ On both sides(at the same time, 
or changing from left to right)  

12.3 Have you ever had a stroke? □ No 

□ Yes   
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12.4 Have you ever fainted? □ No 

□ Yes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Family 
By cardiovascular disease, we mean a heart attack, a dotter procedure (angioplasty) or 
bypass operation on the heart or legs, a TIA, or a stroke. 
 

13.1 Has anyone in your immediate family ( that is your   
    parents, brothers, sisters, daughters or sons) ever  
    been diagnosed with cardiovascular disease.   

□ No – go to Question 13.3 

□ Yes 

□ I don’t know  
 

13.2. Please indicate these family member(s), and how old they were when they were first   
    diagnosed with cardiovascular disease you can give more than one answer. If you aren’t  
    sure of their age, please try to estimate this.  

□ Father, at the age of |__|__| 

□ Mother, at the age of |__|__| 

□ Brother, at the age of |__|__|  
(if more than one brother, please put down the youngest age at occurrence) 
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□ Sister, at the age of |__|__|  
(if more than one sister, please put down the youngest age at occurrence) 

□ Son, at the age of |__|__|  
(if more than one son, please put down the youngest age at occurrence) 

□ Daughter, at the age of |__|__| 
(if more than one daughter, please put down the youngest age at occurrence)  

13.3 Has anyone in your immediate family (that is, your  
       parents, brothers, sisters, daughters or sons) ever  
       suddenly died when they were 60 years old or  
       younger with no clear cause of death? 

□ No- go to Question 14 

□ Yes 

□ I don’t know –go to 
Question 14 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

13.4 Could you please indicate these family member(s), and how old they were when they died  
    suddenly? You can give more than one answer. If you aren’t sure of their age, please try  
    to estimate this  

□ Father, at the age of |__|__| 

□ Mother, at the age of |__|__| 

□ Brother, at the age of |__|__|  
(if more than one brother, please put down the youngest age at occurrence) 

□ Sister, at the age of |__|__|  
(if more than one sister, please put down the youngest age at occurrence) 

□ Son, at the age of |__|__|  
(if more than one son, please put down the youngest age at occurrence) 

□ Daughter, at the age of |__|__| 
(if more than one daughter, please put down the youngest age at occurrence)  
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Section D: Country of birth and lifestyle 

14. Country of birth 
 

14.1 What is your country of origin? 

□ South Africa 

□ Other: ……………………………………………………….. 

14.2  What is your ethnicity? 

□ Black  

□ White 

□ Mixed ancestry (Coloured) 

□ Asian 

□ Indian  
 

14.3 How long have you been living in your area of residence? 
 
      Less than 6 Months                      Less than 1 Year    
  
              1-5 Years                            5 years and above 
 
 
 
 
 
 
 

 
14.4 What is your mother’s country of birth? □ South African 

□ Other: 
…………………………………… 

 
 

14.5 What is your mother’s ethnicity? □ Black 

□ White 

□ Mixed ancestry (Coloured) 

□ Asian 

□ Indian 
 
 

 
14.6 What is your father’s country of birth? □ South African 

□ Other: 
…………………………………… 
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14.7 What is your father’s ethnicity? □ Black 

□ White 

□ Mixed ancestry (Coloured) 

□ Asian 

□ Indian 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

15. Smoking 
 

15.1 Do you smoke at all? □ Yes – Go to question 15.4 

□ No, I’ve never smoked- go to 
question 15.6 

□ No but I used to smoke Go to 
question 15.4 

  
15.2 How long did you smoke? |__|__| years & |__|__| months  

15.3 How long has it been since you quit? |__|__| years & |__|__| months 
  

15.4 How many years have you smoked? If     
          you aren’t sure, please try to estimate  
           this. 

 

|__|__| years 
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15.5 What did you smoke and how much? You   
    can give more than one answer. 
(After answering go to question 16) 

□ About |__| cigarettes from a pack 
of |___| or hand-rolled a day 

□ About |___| cigars a week 

□ About |__|__| package(s) of pipe 
tobacco (50 grams) a week  

15.6    How many people in your household   
   smoke 
 

          |__|__| 

15.7 For how many hours, on average each   
   day, are you closely subjected to other  

          people's tobacco smoke?   

          |__|__| 

 
 

 

 

 

 

 

 

16. Alcohol 
 

16.1 Have you ever consumed any alcoholic drinks 
(Wine, Beer, and Spirits)?         □ Yes 

□ No 
 

16.2 Do you still consume alcoholic drinks? □ Yes 

□ No 
 

16.3 If you consume or consumed alcohol, how old 
were you when you first started drinking? 
       

      
           |__|___| years 

16.4 If you stopped, how old were you when you 
stopped drinking? 
 

  
           |__|___| years old 

16.5 Which type of alcohol do you or did you drink? 
 □ Beer 

□ Spirits 

□ Wine 
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□ Other:________________ 
 

16.6 When you drink or drank alcoholic drinks, how 
many drinks or glasses do you or did you 
consume daily? Indicate the number 
 

 
            |__|___|  

16.7 How many days a week do you or did you 
consume alcohol? 
 

             
            |__|___| day(s) 

16.8 Have you or did you ever feel you should cut 
down your drinking? 
 

□ Yes 

□ No 
 

16.9 Have people ever annoyed you by criticizing 
your drinking? □ Yes 

□ No 
 

16.10 Have you ever felt bad about your drinking? □ Yes 

□ No  
 
 
 

16.11 Have you ever had a drink first thing in the 
morning to steady your nerves or get rid of a 
hangover (Eye Opener) 

□ Yes 

□ No 
 

 

17. Physical activity 
 

Next I am going to ask you about the time you spend doing different types of physical activity in 
a typical   week. Please answer these questions even if you do not consider yourself to be a 
physically active person. Think first about the time you spend doing work. Think of work as the 
things that you have to do such as paid or unpaid work, study/training, household chores, 
harvesting food/crops, fishing or hunting for food, seeking employment. [Insert other examples if 
needed]. 

In answering the following questions 'vigorous-intensity activities' are activities that require hard 
physical effort and cause large increases in breathing or heart rate, 'moderate-intensity activities' 
are activities that require moderate physical effort and cause small increases in breathing or 
heart rate. 

17.1  Work  
Please describe your physical activity at work  
a. Does your work involve vigorous-intensity activity that causes 

large increases in breathing or heart rate like (carrying or lifting □ Yes 
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heavy loads, digging or construction work) for at least 10 
minutes continuously? □ No- go to Question   

       17.1d 
 
 

b. In a typical week, on how many days do you do vigorous-
intensity activities as part of your work?  

|__| days 

c. How much time do you spend doing vigorous-intensity activities at 
work on a typical day?  

Hours |__| Minutes|__| 

d. Does your work involve moderate-intensity activity that causes 
small increases in breathing or heart rate such as brisk walking 
(or carrying light loads) for at least 10 minutes continuously? 

  

□ Yes 

□ No- go to Question  
       17.2 

e. In a typical week, on how many days do you do moderate- 
intensity activities as part of your work? 

  
Number of days|__| 

f. How much time do you spend doing moderate-intensity activities 
at work on a typical day?  

Hours |__| Minutes|__| 
  
 
 
 
 
17.2 Travel to and from places  

 

The next questions exclude the physical activities at work that you have already mentioned. Now 
I would like to ask you about the usual way you travel to and from places. For example to work, 
for shopping, to market, to place of worship. [Insert other examples if needed]. 
  
a. Do you walk or use a bicycle (pedal cycle) for at least 10 minutes 

continuously to get to and from places? 
 
 
  

□ Yes 

□ No- go to Question 
17.3 

b. In a typical week, on how many days do you walk or cycle for at 
least 10 minutes to get to and from places? 

  

|__| days 

c. How much time do you spend walking or cycling for travel on a 
typical day? 

Hours |__| Minutes|__| 

  
 
17.3 Recreation al activities  

 

The next questions exclude the work and transport activities that you have already mentioned. 
Now I would like to ask you about sports, fitness and recreational activities (leisure), [Insert 
relevant terms].  

a. Do you do any vigorous-intensity sports, fitness or recreational 
(leisure) activities that cause large increases in breathing or heart 
rate (like running or football) for at least 10 minutes 
continuously? 

  

□ Yes 

□ No- go to Question 
17.3d 

b. In a typical week, on how many days do you do vigorous-
intensity sports, fitness or recreational (leisure) activities?  

|__| days 

c. How much time do you spend doing vigorous-intensity sports, 
fitness or recreational activities on a typical day?  

Hours |__| Minutes|__| 
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d. Do you do any moderate-intensity sports, fitness or recreational 
(leisure) activities that cause a small increase in breathing or 
heart rate such as brisk walking, (cycling, swimming, volleyball) 
for at least 10 minutes continuously?  

□ Yes 

□ No- go to question 
17.4 

e. In a typical week, on how many days do you do moderate- 
intensity sports, fitness or recreational (leisure) activities? 

  
Number of days|__| 

f. How much time do you spend doing moderate-intensity sports, 
fitness or recreational (leisure) activities on a typical day?  

Hours |__| Minutes|__| 

 
 
 
 
17.4 Sedentary behavior  

 

The following question is about sitting or reclining at work, at home, getting to and from places, 
or with friends including time spent sitting at a desk, sitting with friends, traveling in car, bus, 
train, reading, playing cards or watching television, but do not include time spent sleeping. 
[INSERT EXAMPLES] 
How much time do you usually spend sitting or reclining on a typical 
day? 
 
  

Hours |__| Minutes|__| 

Section E: Education and Employment 

18.  Education  
 

18.1. What is the highest level of education you have     
    completed?  

                           
             This is the highest level of education you          
             completed and for which you received a  
             diploma or a certificate of proficiency. 

□ Primary School or less
  

□  High School (Not Completed)
  

□ High School graduate
  

□ College Or Technical College 
(Not Completed)
  

□ College or Technical College 
Graduate
  

□ University or Technikon    
(Not Completed)
  

□ University or Technikon 
graduate 

 
18.2. Are you going to school at the moment? □ No -  go to Question 19 
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□ Yes, day classes 

□ Yes, evening classes 

□ Both day and evening classes 

□ Secondary education 
 

 
 

 
 

 

18.3. Which course of study are you following right now? □ Secondary education 

□ College 

□ University/Technikon  

□ Other, namely:…………………. 
 

19. Employment 
 

19.1. Which situation most applies to you? 
 □ I have a paid job, and work 32 or more 

hours a week. - Go to Question 19.4 

□ I have a paid job, and work between 20 
and 32 hours a week. -7 Go to Question 
19.4 

□ I have a paid job, and work between 12 
and 20 hours a week. -7 Go to Question 
19.4 

□ I have a paid job, and work less than 12 
hours a week. - Go to Question 19.4 

□ I’m retired. 

□ I’m unemployed and looking for work  

□ I’m unable to work I get social benefits  

□ I’m a full-time homemaker (male or 
female). 

□ I’m a student without part time work 

□ I’m a student with part time work 
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19.2. If you’re not working right now, have  
          you had a paid job in the past? 

 
□ Yes 

□ No- Go to Question 20 
 

19.3. When (in what year) did you stop  
          working? 
 
 
 
 
 
 

Year |__|__|__|__|  
 
 
 
 
 
 
 
 

19.4 . What is your job or profession now? Or   
           if you’re not working right now, what   
           was your last job or profession? 

 
                   Please describe this with as much  
                  detail as you can (for example, primary  
                  school teacher, manager of a software  
                  company, or worker in a cheese factory  
                    rather than teacher, manager, or factory   
                    worker). 
 

 
………………………………………………………. 
 
……………………………………………………… 
 
……………………………………………………… 
 
………………………………………………………. 
 
……………………………………………………… 
 
 
 

19.5. Do you (or did you) have to work   
         irregular  hours, such as shift work or   
          nights? 

 

□ Yes, namely |__|__| hours a week 

□ No 

19.6 Which situation best describes (or 
described) you? □ Salaried job 

□ Self-employed 

□ Working in a family business 
 

20. Household income 
 

20.1. Which of these options add to the net  
   income of your household? 

 
        This relates to the income of the whole      
         household, not just your own (so you 
can  
        give more than one answer 

□ Wages or salary 

□ Income from own company or activities 

□ Income from investments 

□ Pension  

□ State pension benefits 

□ Incapacity (sickness) benefits 
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□ Unemployment benefits 

□ Social benefits 

□ Student grants and loans 

□ Others, namely:………………………… 
 

20.2  How many people in your 
household  
        need to live from this income            
         (including yourself)? 
 
 

 
        |__|__| people 
 
 

20.3  Are there people outside your  
 household who live wholly or partially   
 from this income? 

 
       Think of children away at university,  
        alimony for an ex-partner, etc 

□ Yes, namely: |__|__| person(s) 
□ No 

 
 
 

  
 
20.4 During the past year, did you have  

  problems managing your household  
  income? 

 

 
□ No, no problems at all 

□ No problems, but I have to watch what I 
spend 

□ Yes, some problems 
Yes, lots of problems 

 
 
 
 
 
 
 
 
 
 
 
 

□  

… 
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Section F: Personality, Experiences and Well-being 

21. Dealing with everyday problems 
 

The following statements are about how you deal with everyday problems. 
For each statement please indicate to what extent it applies to you. 
 

 Totally 
disagree 

Disagree Neutral Agree Totally 
agree 

a.  I have little control about the things 
that happen to me. □  □  □  □  □  

 
b.  I can’t seem to solve some of my 

problems at all. □  □  □  □  □  
 

c. There isn’t much I can do to change 
important things in my life. □  □  □  □  □  

 
d.  I often feel helpless in dealing with 

the problems of life. □  □  □  □  □  
 

 
e.  Sometimes I feel like a play ball of life. □  □  □  □  □  
 

 

 

 

 

 

 

 

 

 

… 
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22. Diet 
22.1. What day was it yesterday 

  
 

22.2. Would you describe the food that you ate yesterday as typical of your usual food 
intake? 
 Yes  No 

 

I want to find out everything you ate or drank yesterday, including water or food you picked up 
from the veld. Please tell me everything you ate from the time you woke up to the time you went 
to sleep. I will also ask you where you ate the food and how much you ate. 

 

Morning (up to 9:00am) 
Time Place Description of food ate Amount 
    
    
    
    
    
    

 

Mid-Morning(9am to 11.59am) 
Time Place Description of food ate Amount 
    
    
    
    
    
    

 

Afternoon (12:00pm to 3:00pm) 
Time Place Description of food ate Amount 
    
    
    
    
    
    

 

 

 

 

 

Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | 
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Mid-Afternoon (3pm to 5pm) 
Time Place Description of food ate Amount 
    
    
    
    
    
    

 

Evening (5pm to 9pm) 
Time Place Description of food ate Amount 
    
    
    
    
    
    

 

Before bed( 9pm till late) 
Time Place Description of food ate Amount 
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23. Recent experiences 
 
23.1. We will now mention some events. Please indicate whether you've experienced these  

      events in the past 12 months 
 
a. You suffered from a serious illness or injury □ No □ Yes 

 
b. A close relative had a serious illness or injury □ No □ Yes 

 
c. Your parent, child, brother, sister, or spouse 

died □ No □ Yes 
 

d. Another relative (such as an aunt, cousin, or 
grandparent) or close friend died. □ No □ Yes 

 
e. You broke off a steady relationship □ No □ Yes 

 
f. A long-term friendship with a good friend or 

family member was broken off □ No □ Yes 
 

g. You had a serious problem with a good 
friend, family member, or neighbor □ No □ Yes 

 
h. You were sacked from your job or became 

unemployed □ No □ Yes 
 

i. You had a major financial crisis □ No □ Yes 
 

23.2. In the past 12 months, have you felt  
            stressed (feeling irritable or anxious or  
             having trouble sleeping) because of  
             the situation at work or place of study 
 
 

□ Never 

□ Some periods 

□ Several periods 

□ Constantly 

□ Doesn’t apply 
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24. Recent well being 
 

In the past 2 weeks, how often have you had the following problems? 

 Never On 
several 
days 

On more 
than half 
of the 
days 

Nearly 
every day 

a. Little interest or pleasure in doing 
things □  □  □  □ . 

 
b. Feeling down, depressed, or hopeless □  □  □  □ . 

 
c. Trouble falling or staying asleep, or 

sleeping too much □  □  □  □ . 
 

d. Feeling tired or having little energy □  □  □  □ . 
 

e. Poor appetite or overeating □  □  □  □ . 
 

f. Feeling bad about yourself or feeling 
like a failure or like you’ve let yourself 
or your family down 

□  □  □  □ . 
 
 

g. Trouble concentrating on things, like 
reading the newspaper or watching 
television 

□  □  □  □ . 
 
 

h. Moving or speaking so slowly that 
other people might notice □  □  □  □ . 

 
i. Being so fidgety or restless that you 

move around more than usual □  □  □  □ . 
 

j. Thinking that you’d be better off dead, 
or thinking about hurting yourself in 
some way 

□  □  □  □ . 
 
 

k. Feeling stressed due to the financial 
or material demands of your 
family/friends/relatives  

□  □  □  □ . 
 
 

l. Feeling stressed due to the demands 
of the society 

            (e.g. rules, fast way of living,  
              bureaucratic system) 

□  □  □  □  
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Section G: Body shape 

25. Body shape (Females only) 
If you are a woman, please answer the questions below. If you are a man, you can go directly 
to Question 26. 

Finally, we want to ask some questions about body shape. For the following questions, you 
can choose one of the pictures below. Under each picture is a number. Please use this 
number for your answer 

 Please put an X under one of the numbers 
below 

 1 2 3 4 5 6 7 8 9 
a. Which picture do you most 

look like right now? □  □  □  □  □  □  □  □  □  
          

b. Which picture would you most 
prefer to look like? □  □  □  □  □  □  □  □  □  
          

c. Which picture is most like other 
women your age? 

 
□  □  □  □  □  □  □  □  □  

          
d. Which picture do you think most 

of the men around you would 
prefer women to look like? 

 

□  □  □  □  □  □  □  □  □  

. 
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26. Body shape (Males only) 
If you are a man, please answer the questions below.  

 

Finally, we want to ask some questions about body shape. For the following questions, you 
can choose one of the pictures below. Under each picture is a number. Please use this 
number for your answer 

 Please put an X under one of the numbers 
below 

 1 2 3 4 5 6 7 8 9 
e. Which picture do you most 

look like right now? □  □  □  □  □  □  □  □  □  
          

f. Which picture would you most 
prefer to look like? □  □  □  □  □  □  □  □  □  
          

g. Which picture is most like other 
women your age? 

 
□  □  □  □  □  □  □  □  □  

          
h. Which picture do you think most 

of the men around you would 
prefer women to look like? 

 

□  □  □  □  □  □  □  □  □  
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27. Feelings 
 
Now I’m going to ask you questions about how you’ve been feeling over the past week. 
 
Please tell me the best answer for how you have felt over the past week: 
 
     Yes No  Geriatric Depression Scale  
 
1. [   ]    [   ] Are you basically satisfied with your life? 

 
2. [   ]    [   ] Have you dropped many of your activities and interests? 
 

         3. [   ]    [   ] Do you feel that your life is empty? 
 
4. [   ]    [   ] Do you often get bored? 
 
5. [   ]    [   ] Are you in good spirits most of the time? 
 
6. [   ]    [   ] Are you afraid that something bad is going to happen to you? 
 

      7. [   ]    [   ] Do you feel happy most of the time? 
 

    8. [   ]    [   ] Do you often feel helpless? 
 

          9. [   ]    [   ] Do you prefer to stay at home, rather than going out and doing new  
                                    things? 

 
10. [   ]    [   ] Do you feel that you have more problems with memory than most  
                           people? 
 
11. [   ]    [   ] Do you think it is wonderful to be alive now? 
 
12. [   ]    [   ] Do you feel pretty worthless the way you are now? 
 
 
                Yes No 
 
13. [   ]    [   ] Do you feel full of energy? 
 
14. [   ]    [   ] Do you feel that your situation is hopeless? 
 
15. [   ]    [   ] Do you think that most people are better off than you are? 
 
 

28. Anxiety (Hopkins Symptom Checklist): 
 

28.1 During the past week, have you felt nervous or shaky inside? 
 

0=No 
1=a little 
2=sometimes 
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3=extremely 
4=do not know 
 

28.2 During the past week, did you have to avoid certain things, places or activities because they  
    frighten you? 

 
0=No 
1=a little 
2=sometimes 
3=extremely 
4=do not know 

 
28.3 During the past week, have you felt tense? 

 
     0=No 
 1=a little 
 2=sometimes 
 3=extremely 
 4=do not know 
 

28.4 During the past week, have you felt fearful? 
 
 0=No 
 1=a little 
 2=sometimes 
 3=extremely 
 4=do not know 

29. Mastery: 
 

Please tell me whether you agree or disagree with this statement: I can do just about anything I  
 really set my mind to. 

 
1=strongly agree 
2=somewhat agree 
3=somewhat disagree 
4=strongly disagree 
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Section I: Clinical Measurements 

30. Body Weight 
30.1 What do you think of your body  

    weight? □ I’m much too heavy 

□ I’m a little too heavy 

□ I’m just about right 

□ I’m a little too thin 

□ I’m much too thin 
  
  

30.2  Are you trying to do something about  
       your weight right now? □ No, nothing  

□ Yes, I’m trying to lose weight 

□ Yes, I’m trying to stay the same 
weight 

□ Yes, I’m trying to gain weight 

31. Weight and height 
Body Weight (kg)    Comment: 

……………………………………….    

Body height   (cm)    Comment: 

………………………………………..    

Visceral fat     Comment: 

………………………………………..    

Body fat rate     Comment: 

…………………………………………..    

Muscle percentage    Comment: 

…………………………………………..    

RM    Comment: 

…………………………………………..    

BMI    Comment: 
………………………………………….. 
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32. Circumference measurements 
 

 

 

 

33. Blood pressure measurements 
 

                                     

 

 

 

 

 

 

 

 

Waist Circumference   1   (cm)    Comment: 

Waist Circumference   2   (cm)    

Waist Circumference   3   (cm)    

     

Hip Circumference            (cm)    Comment: 

Hip Circumference            (cm)    

Hip Circumference            (cm)    

Systolic  Pressure  1  (mmHg)    Comment: 

Systolic  Pressure  2  (mmHg)    

Systolic  Pressure  3  (mmHg)    

Diastolic  Pressure 1   (mmHg)    Comment: 

 Diastolic Pressure 2   (mmHg)             

Diastolic  Pressure 3   (mmHg)    

 

Pulse   1        (Beat per Minute)    Comment: 

Pulse   2        (Beat per Minute)    

Pulse   3        (Beat per Minute)    
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Section J: Blood collection 

34. Fasting bloods 

  

34.1 Are you a diabetic  □ Yes, Complete question 34.1 and 
skip  question 35 

□ No, must complete question 34 &35 
 

34.2  Have you collected the following fasting bloods?  
 

34.2.1  One(1) 5ml Green Top Tubes □ Yes 

□ No, why:________________________ 
34.2.2  Two (2) 10ml or Three (3) 5ml 
Gold Top Tubes □ Yes, 

□ No, why:________________________ 
34.2.3  One(1) 5ml Grey Top Tubes □ Yes 

□ No, why:________________________ 
34.2.4 Two (2) 5ml Purple Top Tubes □ Yes 

□ No ,why:________________________ 
34.2.4 One (1) RNA tube □ Yes 

□ No ,why:________________________ 

35. Glucose bloods 
 

Have you collected the following fasting bloods?  
 

35.2.1  One (1) 10ml or Two(2) 5ml   
            Gold Top Tubes □ Yes 

□ No, why:________________________ 
35.2.2  One (1) 5ml Grey Top Tubes □ Yes 

□ No, why:________________________ 
35.2.3 One(1) 5ml Purple Top Tubes □ Yes 

□ No, why:________________________ 
35.2.4 One(1) 4ml Light Blue Top  
            Tubes □ Yes 

□ No, why:________________________ 
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PARTICIPANT INFORMATION AND INFORMED CONSENT FORM FOR RESEARCH 
INVOLVING GENETIC STUDIES

TITLE OF RESEARCH PROJECT: PROGRESSIVE RESEARCH ON RISK FACTORS OF TYPE 
2 DIABETES AND CARDIOVASCULAR DISEASES IN SOUTH AFRICA

REFERENCE NUMBER:

PRINCIPAL INVESTIGATORS: Professor Tandi Matsha (Cape Peninsula 
University of Technology)
Professor Rajiv Erasmus (Stellenbosch University) 
Professor Andre Kengne (SA Medical Research 
Council)

Project manager: Dr Gloudina Maria Hon (Cape Peninsula 
University of Technology)

ADDRESS: Obesity and chronic diseases of 
lifestyle Department of Biomedical 
Sciences Faculty of Health & 
Wellness Sciences
Cape Peninsula University of Technology, Bellville

CONTACT NUMBER: Prof T Matsha 021 959 6366 or email:matshat@cput.ac.za

Ethics approval: Cape Peninsula University of Technology Ethics 
Reference number: CPUT/SW-REC 2015/H01
University of Stellenbosch Ethics Reference number: 
N14/01/003

We would like to invite you to participate in a research study that involves genetic analysis and 
possible long-term storage of blood or tissue specimens. Please take some time to read the 
information presented here which will explain the details of this project. Please ask the study 
staff or doctor any questions about any part of this project that you do not fully understand. It 
is very important that you are fully satisfied that you clearly understand what this research entails 
and how you could be involved. Also, your participation is entirely voluntary and you are free
to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. 
You are also free to withdraw from the study at any point, even if you do agree to take part 
initially.

This research study has been approved by the ethics Faculty of Health & Wellness Sciences 
of the Cape Peninsula University of Technology and it will be conducted according to
international and locally accepted ethical guidelines for research, namely the Declaration of 
Helsinki, and the SA Department of Health’s 2004 Guidelines: Ethics in Health Research: 
Principles, Structures and Processes.

Appendix B: Consent form

mailto:matshat@cput.ac.za


CPUT ethics reference: CPUT/HW-REC 2015/HO1 
Stellenbosch University ethics reference: N14/01/003 Page 2 of 7 

 

 

 
 
Genetic material, also called DNA or RNA, is usually obtained from a small blood sample. 
Occasionally genetic material is obtained from other sources such as saliva or biopsy specimens. 
(A biopsy is a tiny piece of tissue that is cut out e.g. from the skin or from a lump, to help your 
doctor make a diagnosis.) Genes are found in every cell in the human body. Our genes determine 
what we look  like  and sometimes what kind of diseases we may be susceptible to. Worldwide, 
researchers in the field of genetics are continuously discovering new information that may be of 
great benefit to future generations and also that may benefit people today, who suffer from particular 
diseases or conditions. 

 

 
 

This research study seeks to address the increasing problem of diabetes and cardiovascular 
diseases such as heart attack and stroke amongst the mixed ancestry or coloured population of 
South Africa. In this study we shall identify people with diabetes and those at high risk of diabetes 
as well as investigate the environmental and genetic risk factors that predispose some individuals 
to the development of diabetes and cardiovascular diseases. Examples of environmental factors 
include body weight, diet, and physical activity. Additionally, this project aims to investigate 
whether oral health is a risk factor for diabetes and cardiovascular diseases. In this study we 
shall investigate whether some individuals have early cardiovascular diseases by using an 
ultrasound machine. This project also aims to collect genetic material (blood) to analyze for certain 
variants and to store excess material for future research. When a large group of patients with 
similar diseases has been collected, meaningful research into the disease processes may become 
possible. 

 

 
 

Our research team has previously conducted a similar research study involving the coloured 
community and found out that more that 18 out of 100 individuals had diabetes but did not know. 
We also found that some of the risk factors associated with diabetes in other populations were not 
necessary the same as those affecting the coloured population of South Africa. You have therefore 
been invited to take part in this research study to assist in establishing the risk factors for diabetes 
and cardiovascular diseases affecting the coloured people of South Africa. 

 

 
 

A. You will be requested to provide information about your medical history, family history and 

information on eating, drinking and smoking habits. Completion of the questionnaire will take no 

longer than 30 minutes. 

B. You shall be requested to provide a record of the medication you are currently taking, therefore 
if you are taking chronic medication, you shall be requested to provide this to the research team to 
record the medication. 

C. Measurement such as weight, height, waist and hip will be done. 

D. Fasting Venous Blood (20ml) will be collected thereafter you will be asked to drink a glucose 
solution (glucose content 75g). After two hours another venous blood (10ml) will be collected. The 
blood will be used to determine whether you have diabetes or you are at high risk for developing 
diabetes. 
E. The other tests that will be determined from your blood sample are:  Cholesterol, triglycerides, 
creatine levels to assess your kidney function, liver enzymes to  assess your liver, and biochemical 
markers for inflammation. 

1.   What is Genetic research? 

2.   What does this particular research study involve? 

3.   Why have you been invited to participate? 

4.   What procedures will be involved in this research? 



CPUT ethics reference: CPUT/HW-REC 2015/HO1 
Stellenbosch University ethics reference: N14/01/003 Page 3 of 7 

 

F. A finger prick blood sample (a drop of blood), to be taken at the same time of the first venous 
blood sample, may also be required from you. The finger prick blood sample will be used to test 
for diabetes or the risk of developing diabetes on a point-of-care test instrument. Researchers 
will compare the finger prick point-of-care diabetes test with that of the send away venous blood 
laboratory test and would be able to establish whether the point-of-care test provides the same 
accurate results as that of the laboratory. Point-of-care testing may in the future be used to 
provide fast and accurate results without the need to send blood away to a laboratory for 
processing. This may be of benefit to people undergoing testing for diabetes as results would be 
available within a few minutes. 
G. The remainder of the blood sample will be used for genetic and future research studies. The 
serum and DNA may be stored for several years until the technology for meaningful analysis 
becomes available. No pharmaceutical agent (medication) will be tested in the study. 

H. For oral health,  research  study  personnel  will  extract  wooden  toothpick,  flocked  brush,  
and mouthwash saliva samples from you to test for the presence of Porphyromonas gingivalis as 
an indicator for periodontal disease. Flocked brush and wood toothpick sampling will involve 
inserting devices in the subgingival crevice between the last upper premolar and the first upper 
molar. The device will sweep down the anterior surface of the first upper molar with the direction 
of motion away from the gum to minimize any potential discomfort. Mouthwash sampling will 
involve rinsing with 10 ml sterile saline solution for 20 seconds. 
I. Early cardiovascular diseases will be performed by means of an ultrasound machine. 
J. The research team will follow up on you on a yearly basis and some of these test may be 
repeated. The investigators wish to follow you up for your entire life. In the unfortunate event 
that you are deceased during the study period. The study team will review stats SA data and/or 
medical records to ascertain whether the cause of death was due to diabetes or cardiovascular 
diseases. . If you do not wish to be followed up on a yearly basis and your Statistics SA 
and/or medical records not to be accessed in the unfortunate event that you are deceased 
whilst being a participant in the study, you will have an opportunity to request that it be not 
accessed when you sign the consent form. 
K. Radio imaging techniques will be done on consenting subjects. These include (i) ultra sound to 
assess whether you have signs of early cardiovascular diseases, (ii) computed tomography scan 
(CT-scan) to accurately assess the fat content that is dangerous for cardiovascular diseases (iii) 
Dual-energy X-ray absorptiometry (DXA) devices will be used to study the morphology of the 
liver. These radio imaging techniques involve radiation which can be harmful if one is exposed 
excessively. For this study a low dose radiation will be used for acquisition of the images thereby 
minimizing radiation exposure to the participant. . If you do not wish to undergo any of these 
radio imaging techniques, you will have an opportunity to decline when you sign the consent 
form. 
L. An eye examination will be done to test your eye vision and any other abnormalities inthe 
eye. For this examination, drops placed in your eyes widen (dilate) your pupils to allow the 
doctor to better view inside your eyes. The drops may cause your close vision to blur for a short 
while. 

 

 
 

A slight bruising might occur after blood has been drawn from the arm but this will heal quickly. 
After the administration of the glucose solution, you may feel nauseous and dizzy in which case 
you must notify the medical personnel. A medical nurse or doctor will be present on all occasions. 
You may also learn that you have diabetes, in which case you will be referred to your health care 
giver with the results for further treatment and management. If during the study it is discovered 
that you have changes in your genes that may lead to a serious disease, a genetic counsellor 
at the expense of the principal investigators will counsel you. Radio imaging techniques such as 
the CT-scan involves radiation which can be harmful if one is exposed excessively.  For this 
study  a low dose radiation will be used for acquisition of the images thereby minimizing radiation 
exposure to the participant. 

 

5.   Are there any risks involved in genetic research? 
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Your personal results will be made known to you only if they indicate that you may: 

• Have diabetes, thereafter, you will be referred to your local health centre or 

general practitioner for further investigations and treatment. 

• Have a condition or predisposition to developing diabetes that is treatable or 
avoidable 
e.g. by a lifestyle modification. 

• Need genetic counselling. 

 However, participants with normal results who wish to know their results are free 
to contact the research team and their results will be given upon written request. 

 

 
 

The blood samples may be stored indefinitely to accommodate new technologies that may 
develop. In the event that a technology is not available in South Africa to analyse your blood 
sample, your blood specimen may be sent to another country with the technology either now or at 
a later date. However, if your specimen is to be sent to another country, permission to do so will 
be sought from relevant bodies. Your blood specimen will be stored at the Cape Peninsula University 
of Technology. 

 

 
 

Your   blood    will    only    be    used    for    genetic    research    that    is    directly    related    to 
Diabetes and cardiovascular diseases. Also if the researchers wish to use your stored blood for 
additional research in this field they will be required to apply for permission to do so from the 
ethics Faculty of Health & Wellness Sciences of the Cape Peninsula University of 
Technology. If you do not wish your blood specimen to be stored after this research 
study is completed you will have an opportunity to request that it be discarded when you 
sign the consent form. 

 

 
 

Your identity will be recorded once and kept confidential throughout. This is to allow the 
principal investigators to convey information that may be beneficial to you. Access will be limited 
to the principal investigators by assigning a special study code to all your data and blood samples. 
This means that your sample will be identified with a special study code that will remain linked 
to your name and contact details. However, during the entire research study, your blood 
specimens will be anonymised and the research staff won’t be able to associate it with your 
name and contact details.  You shall also  be supplied this code so that if at anytime the 
investigators need to contact you, you may only identify yourself using your special code. Any 
scientific publications, lectures or reports resulting from the study will not identify you. 

 
Some insurance companies may mistakenly assume that taking part in research indicates a 
higher risk for disease. Thus no information about you or your family will be shared with such 
companies. 

 

 
 

6.   Are there any benefits to your taking part in this study and will you get told your results? 

7.   How long will your blood be stored and where will it be stored? 

8.   If your blood is to be stored is there a chance that it will be used for other research? 

9.   How will your confidentiality be protected? 

10. Will you or the researchers benefit financially from this research? 
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You will not be paid to take part in this study although your out-of-pocket expenses may be 
reimbursed. The expenses that will be covered by the research team are those that include 
transportation to a hospital radiography department should you consent to radio imaging. 

 

 
 

 
 

You should inform your family practitioner or usual doctor that you are taking part in a research 

study. You can contact 

Prof T Matsha at 021 959 6366 or matshat@cput.ac.za, 

If you have any further queries or encounter any problems, you can also contact the Cape 

Peninsula University of Technology Health and Wellness Sciences Research Ethics 

Committee, 

Chairperson: Prof Engel-hills at 0219596570 or EngelhillsP@cput.ac.za or 
 

You will receive a copy of this information and consent form for your own records if it is requested. 
 

 
 

By signing below, I …………………………………..…………. agree to take part in a research project 
that includes genetic research study entitled (PROGRESSIVE RESEARCH ON RISK FACTORS 
OF TYPE 2 DIABETES AND CARDIOVASCULAR DISEASES IN SOUTH AFRICA). 

I declare that: 
 

• I have read or had read to me this information and consent form and it is written 
in a language with which I am fluent and comfortable. 

• I have had a chance to ask questions and all my questions have been adequately answered. 

• I understand that taking part in this study is voluntary and I have not been 
pressurised to take part. 

• I have received a signed duplicate copy of this consent form for my records. 
 

 

 
 

I agree that my blood or tissue sample can be stored  indefinitely after the project is 
completed but that it is anonymised with all possible links to my identity removed, and 
that the researchers may then use it for additional research in this or a related field. 
Once my sample is anonymised, my rights to that sample are waivered. My sample 
may be shipped to another laboratory in SA or abroad to be used in other research 
projects in this or a related field 

 
OR 

 
I agree that my blood or tissue sample can be stored indefinitely, but I can choose 
to request at any time that my stored sample be destroyed. My sample will be identified 

Important information: In the unlikely event that this research leads to the development of a 
commercial application or patent, you or your family will not receive any profits or royalties, but 
profits will be reinvested into supporting the cause of further research which may bring benefits to 
you or your family and to the community, such as health screening, medical treatment, educational 
promotions, etc. 

11.  Is there anything else you should know or do? 

12. Declaration by participant 

13. Tick the option you choose: 

mailto:matshat@cput.ac.za
mailto:EngelhillsP@cput.ac.za
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with a special study code that will remain linked to my name and contact details. I have 
the right to receive confirmation that my request has been carried out. 

 
OR 

Please destroy my blood sample as soon as the current research project has been 
completed. 

 

 

 
 

 

I consent that the research team may follow me up for yearly check-up AND in the 
unfortunate event that I am deceased whilst still part of the study, I consent that the team may 
access Statistics SA and/or my medical records to ascertain whether the cause of my death was 
due to diabetes or cardiovascular diseases. 

 
OR 

 
I do not consent to follow me up for yearly check-up BUT in the unfortunate event that 

I am deceased whilst still part of the study, I consent that the team may access Statistics 
SA and/or my medical records to ascertain whether the cause of my death was due to 
diabetes or cardiovascular diseases. 

 
OR 

 
 

I do not consent to follow me up for yearly check-up AND in the unfortunate event that 
I am deceased whilst still part of the study, I do not consent that the team accessing Statistics 
SA and/or my medical records to ascertain whether the cause of my death was due to 
diabetes or cardiovascular diseases. 

 

 

 
 

 

I consent to ultra sound techniques to assess if I have early cardiovascular diseases 

 
I do not consent to ultra sound techniques that assess if I have early cardiovascular diseases 

 
AND 

 

I  consent  computed  tomography  scan  (CT-scan)  to  accurately  assess  the  fat  
content  that  is dangerous for cardiovascular diseases 

 

I do not consent to computed tomography scan (CT-scan) that accurately assess the 

fat content that is dangerous for cardiovascular diseases 

AND 
 

I consent to Dual-energy X-ray absorptiometry (DXA) used to study body composition. 
 

I do not consent Dual-energy X-ray absorptiometry (DXA) used to study body composition 

14. Tick the option you choose: 

15. Tick the option you choose: Radio Imaging 
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................... 

Signed at (place) .......................................................... on (date) ...................................................... 
 
 
 

 
 
 

Finger 
print 

.........................................................
 ........................................................................
.. 
Signature of participant Signature of witness 

 
 

 
 

I (name) ………………………………………………… declare that: 
 

• I explained the information in this document to …………………..……………... 

• I encouraged him/her to ask questions and took adequate time to answer them. 

• I am satisfied that he/she adequately understands all aspects of the research as 

discussed above. 

• I did/did not use a interpreter.  (If a interpreter is used then the interpreter must 
sign the declaration below. 

 
 

Signed at (place) ......................…........…………….. on (date) …………....……….. 2016. 
 

 
............................................................................ ........................................................................ 
Signature of investigator Signature of witness 

 
 

 
I (name) ………………………………………………… declare that: 

 
• I assisted the investigator (name) …………………………. to explain the information 

in this document to (name of participant) …………………………….. Using  the 

language medium of Afrikaans/Xhosa. 

• We encouraged him/her to ask questions and took adequate time to answer them. 

• I conveyed a factually correct version of what was related to me. 

• I am satisfied that the participant fully understands the content of this informed 
consent document and has had all his/her question satisfactorily answered. 

 
 

Signed at (place) ......................…........…………….. on (date) …………....……….. 2016. 
 
 

............................................................................ ........................................................................ 
Signature of interpreter Signature of witness 

 
16. Declaration by investigator 

17. Declaration By Interpreter 
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Abstract: Metformin, which is used as a first line treatment for type 2 diabetes mellitus (T2DM),
has been shown to affect epigenetic patterns. In this study, we investigated the DNA methylation
and potential lncRNA modifications in metformin-treated and newly diagnosed adults with T2DM.
Genome-wide DNA methylation and lncRNA analysis were performed from the peripheral blood
of 12 screen-detected and 12 metformin-treated T2DM individuals followed by gene ontology
(GO) and KEGG pathway analysis. Differentially methylated regions (DMRs) observed showed
22 hypermethylated and 11 hypomethylated DMRs between individuals on metformin compared
to screen-detected subjects. Amongst the hypomethylated DMR regions were the SLC gene family,
specifically, SLC25A35 and SLC28A1. Fifty-seven lncRNA-associated DNA methylation regions
included the mitochondrial ATP synthase-coupling factor 6 (ATP5J). Functional gene mapping and
pathway analysis identified regions in the axon initial segment (AIS), node of Ranvier, cell periphery,
cleavage furrow, cell surface furrow, and stress fiber. In conclusion, our study has identified a number
of DMRs and lncRNA-associated DNA methylation regions in metformin-treated T2DM that are
potential targets for therapeutic monitoring in patients with diabetes.

Keywords: metformin; DNA methylation; lncRNA; diabetes mellitus; Africa

1. Introduction

DNA methylation, the most widely studied epigenetic mechanism, involves the covalent addition
of a methyl group at the 5′ position of the cytosine ring within the 5′-CpG-3′ dinucleotides to create
a 5-methylcytosine (5-mC). The target of DNA methylation, catalyzed by DNA methyltransferases
(DNMTs) enzymes, are CpG nucleotides, which are usually unmethylated [1]. These CpG nucleotides
occur at high-frequency in the promoter regions of genes and are frequently associated with hyper- or
hypomethylation events [2]. Hypermethylation of promoter CpG islands can result in suppression
of gene expression, whereas hypomethylation is associated with the transcriptional activation of
affected genes [3]. Various studies suggest that these modifications may alter the transcriptional
activity of genes and contribute to pathogenic conditions, such as the type 2 diabetes mellitus (T2DM)
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phenotype [4,5]. Studies also indicate that response to anti-diabetic agents and occurrence of diabetes
complications can result from the actions of DNA methylation [4,6].

Although progression of disease cannot solely be attributed to DNA methylation, the impact of
long non-coding RNAs (lncRNAs) on biological and pathologic processes have also been linked to
various conditions including cancers and metabolic diseases [7,8]. LncRNAs are transcription products
greater than 200 nucleotides with limited protein coding function [9]. They have been implicated
in the regulation gene expression at the epigenetic, transcriptional, and post-transcription level [10].
Studies show that lncRNAs may also play a role in the diagnosis and therapeutic management of
diabetes due to their involvement in regulatory processes and complications of T2DM [11,12].

Metformin, a drug commonly used for the treatment of T2DM, is highly effective with minimal
side effects [13]. It has the ability to promote the phosphorylation and activation of AMP-activated
protein kinase (AMPK), which results in the inhibition of gluconeogenic genes. In addition to glucose
metabolism, the activation of AMPK impacts other pathways, such as lipid metabolism, mitochondrial
biogenesis, autophagy, cell growth, and circadian rhythm [14]. Once activated, AMPK phosphorylates
epigenetic enzymes, such as DNA methyltransferases (DNMTs), resulting in their inhibition [15].
The effects of metformin on DNA methylation include both hypo- and hypermethylation at the
promoters of different genes, which in turn, could act to enhance or suppress gene expression [16–19].
Metformin was shown to affect DNA methylation even in healthy individuals immediately 10 h after
drug administration [19]. These alterations in DNA methylation has also been evident in cancer related
studies, showing that DNA methylation plays a role in the antidiabetic and potential anti-cancer
actions of metformin [15,20–22].

Despite recent advances in the role of DNA methylation and diabetes, data on its effect in those
under treatment with metformin in Africa are lacking. We, therefore, aimed to characterize the DNA
methylation modifications in newly diagnosed and metformin-treated South Africans with T2DM.
The knowledge gained could be used as a basis for further studies to elucidate the role of DNA
methylation in the monitoring and treatment of T2DM within a South African context.

2. Results

2.1. Clinical Characteristics of the Study Population

The general clinical characteristics of the study population are summarized in Table 1. The study
sample comprised 24 participants—12 screen-detected and 12 metformin-treated T2DM. There were
no significant differences between the two groups in all the clinical characteristics. The duration of
disease in the metformin-treated T2DM ranged from 0.5 to 17 with an average of 5.2 years.

Table 1. Clinical characteristics of the study population.

Characteristics

Screen-Detected
Diabetes Mellitus

n = 12

Known Diabetes
Mellitus

n = 12 p-Value

Mean ± SD Mean ± SD

Age (years) 54.8 ± 7.5 53.2 ± 9.6 0.658
Body mass index (kg/m2) 33.5 ± 8.9 29.4 ± 5.0 0.174
Waist circumference (cm) 101.3 ± 19.7 91.7 ± 10.5 0.150
Hip circumference (cm) 109.4 ± 16.6 103.3 ± 11.9 0.311

Waist hip ratio 0.92 ± 0.07 0.89 ± 0.05 0.195
Systolic blood pressure (mmHg) 142.9 ± 32.9 136.3 ± 25.9 0.587
Diastolic blood pressure (mmHg) 94.2 ± 22.1 83.8 ± 11.5 0.165
Fasting plasma glucose (mmol/L) 9.1 ± 3.6 11.0 ± 5.8 0.352
Post 2-h plasma glucose (mmol/L) 16.5 ± 4.71 - -

HbA1c (%) 7.97 ± 2.58 9.33 ± 3.04 0.254
Fasting serum insulin (mIU/L) 15.3 ± 10.6 11.3 ± 7.6 0.316
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Table 1. Cont.

Characteristics

Screen-Detected
Diabetes Mellitus

n = 12

Known Diabetes
Mellitus

n = 12 p-Value

Mean ± SD Mean ± SD

Triglycerides (mmol/L) 2.18 ± 1.35 2.02 ± 0.96 0.760
Total cholesterol (mmol/L) 6.36 ± 0.85 6.10 ± 1.47 0.607

Low-density lipoprotein-cholesterol (mmol/L) 4.17 ± 0.84 4.08 ± 1.22 0.831
High-density lipoprotein-cholesterol (mmol/L) 1.38 ± 0.58 1.23 ± 0.35 0.448

Ultrasensitive C-reactive protein (mg/L) 11.1 ± 12.3 14.4 ± 12.5 0.531
Serum cotinine (ng/mL) 127.4 ± 149.5 120.7 ± 179.7 0.921

Gamma-glutamyl transferase (IU/L) 64.5 ± 57.4 43.7 ± 27.2 0.287

2.2. Differentially Methylated Regions, LncRNA-Associated DNA Methylation, Gene Ontology (GO) and
Pathway Analysis

A total of 33 differentially methylated regions (DMRs) were observed between individuals
on metformin treatment compared to screen-detected subjects. Of these, 22 were hypermethylated,
whilst another 11 were hypomethylated in participants treated with metformin, and these are
summarized in Table 2. Lnc-associated DNA methylation peaks in the promoter regions are summarized
in Table 3 showing that 36 were hypermethylated, and 21 were hypomethylated in individuals
on metformin. KEGG pathway analysis revealed no enriched pathways. Based on GO analyses,
we retrieved the biological process, cellular process, and molecular function of the DMRs, and these
are presented in Figures 1 and 2. The top enrichment scores for cellular processes of hypermethylated
DMRs in subjects on metformin were associated with the axon initial segment, node of Ranvier, cell
periphery, cleavage furrow, cell surface furrow, and stress fiber (Figure 1), whilst the hypomethylated
biological processes were associated with photoreceptor outer segment (Figure 2).

Table 2. Differentially methylated regions (DMRs) in T2DM on metformin versus newly diagnosed cases.

Hypermethylated DMRs

Gene Name Genomic Coordinates DMR Length log2FC p-Value q-Value

XAGE1E chrX:52260741-52261020 279 1.66 <0.001 0.001
XAGE1B chrX:52260741-52261020 279 1.66 <0.001 0.001

KIAA1467 chr12:13198981-13199200 219 1.62 <0.001 0.001
ASB2 chr14:94442921-94443160 239 1.6 <0.001 0.001

GABPA chr21:27105221-27105420 199 1.56 <0.001 0.004
ZNF346 chr5:176448161-176448360 199 1.47 <0.001 0.004
FKBP8 chr19:18655321-18655520 199 1.4 <0.001 0.001

CTAGE15 chr7:143268761-143269080 319 1.38 <0.001 0.001
VIPR1 chr3:42531141-42531360 219 1.37 <0.001 0.026

TMEM204 chr16:1584901-1585100 199 1.31 <0.001 0.002
RNF103-CHMP3 chr2:86948981-86949200 219 1.31 <0.001 0.010

PARVB chr22:44394581-44394780 199 1.26 <0.001 0.004
POTED chr21:14980641-14980880 239 1.23 <0.001 0.001
STAG2 chrX:123095761-123095980 219 1.21 <0.001 0.008
KCNQ3 chr8:133459461-133459680 219 1.19 <0.001 0.026

TBCE chr1:235532261-235532520 259 1.16 <0.001 0.001
GAREML chr2:26393901-26394160 259 1.14 <0.001 0.003

SEPT12 chr16:4838741-4839000 259 1.13 <0.001 0.003
OR6C3 chr12:55727101-55727440 339 1.11 <0.001 0.011

PPP1R32 chr11:61247661-61247920 259 1.1 <0.001 0.003
ZNF169 chr9:97023241-97023440 199 1.07 <0.001 0.024
TAS1R1 chr1:6616841-6617200 359 1.07 <0.001 0.001
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Table 2. Cont.

Hypomethylated DMRs

TPD52L2 chr20:62497561-62497920 359 −1 <0.001 0.003
GAGE7 chrX:49217161-49217580 419 −1.15 <0.001 0.011

NUDT10 chrX:51075781-51076040 259 −1.37 <0.001 0.001
OPN1MW2 chrX:153446941-153447140 199 −1.39 <0.001 0.008
OPN1MW chrX:153446941-153447140 199 −1.39 <0.001 0.008

BRDT chr1:92415321-92415520 199 −1.39 <0.001 0.023
ELAC2 chr17:12919641-12919840 199 −1.45 <0.001 0.012

SLC25A35 chr17:8196461-8196680 219 −1.52 <0.001 0.004
C18orf8 chr18:21081741-21081940 199 −1.55 <0.001 0.002

SLC28A1 chr15:85429461-85429660 199 −1.67 <0.001 0.008
FBXW8 chr12:117350081-117350320 239 −1.79 <0.001 0.008

Gene name refers to the name of the DMR-associated gene. Genomic coordinates refers to the genomic locus
of the DMR. DMR Length refers to the length of the DMR. log2FC refers to the fold change of normalized tag
counts between two groups (log2 transformed). The p-value refers to the p-value of the DMR, the smaller, the more
significant. The q-value refers to the Benjamini-Hochberg False Discovery Rate (BH FDR) corrected p-value.

Table 3. LncRNA-associated DNA methylation peaks of known diabetes versus screen-
detected diabetes.

Hypermethylated

Gene Name Genomic Coordinates DMR Length log2FC p-Value q-Value

SLC26A9 chr1:205895421-205895620 199 1.91 <0.001 0.001
FAM223A chrX:153859601-153859800 199 1.82 <0.001 0.001

SDK2 chr17:71432461-71432680 219 1.69 <0.001 0.001
XAGE1B chrX:52260741-52261020 279 1.66 <0.001 0.001

SCRIB chr8:144877441-144877660 219 1.62 <0.001 0.001
KIAA1467 chr12:13198981-13199200 219 1.62 <0.001 0.001
AK092098 chr11:63591421-63591720 299 1.58 <0.001 0.001

ATP5J chr21:27105221-27105420 199 1.56 <0.001 0.004
AF420437 chr1:146216561-146217120 559 1.49 <0.001 0.002
ZNF346 chr5:176448161-176448360 199 1.47 <0.001 0.004

AX747590 chr8:12435501-12435760 259 1.46 <0.001 0.001
AK128525 chr2:89160101-89160340 239 1.45 <0.001 0.001

XLOC_007349 chr9:38128521-38128740 219 1.4 <0.001 0.001
FKBP8 chr19:18655321-18655520 199 1.4 <0.001 0.001

LOC101927468 chr1:147717321-147717520 199 1.38 <0.001 0.001
CTAGE15 chr7:143268761-143269080 319 1.38 <0.001 0.001
AF258560 chr16:24930681-24930880 199 1.38 <0.001 0.005

LOXL2 chr8:23190561-23190780 219 1.35 <0.001 0.003
AC016644.1 chr5:56238121-56238320 199 1.35 <0.001 0.019
RP11-14N7.2 chr1:148934661-148934860 199 1.34 <0.001 0.006
AP001476.4 chr21:47470561-47470760 199 1.34 <0.001 0.020

RP3-399L15.2 chr6:114858501-114858700 199 1.31 <0.001 0.011
AK310441 chr1:148876821-148877060 239 1.28 <0.001 0.001

RP11-423O2.7 chr1:142958401-142958660 259 1.25 <0.001 0.017
LOC101928402 chrX:123095761-123095980 219 1.21 <0.001 0.008

LINC00521 chr14:94461821-94462080 259 1.18 <0.001 0.006
TBCE chr1:235532261-235532520 259 1.16 <0.001 0.001

SMIM22 chr16:4838741-4839000 259 1.13 <0.001 0.003
XLOC_l2_000395 chr1:142839541-142839880 339 1.11 <0.001 0.026

SEMA4C chr2:97531721-97531960 239 1.11 <0.001 0.012
LOC101929378 chr2:157111641-157111940 299 1.08 <0.001 0.010

ZNF169 chr9:97023241-97023440 199 1.07 <0.001 0.024
GNPTG chr16:1409001-1409360 359 1.07 <0.001 0.004

TIMELESS chr12:56816721-56817100 379 1.05 <0.001 0.002
RP13-638C3.3 chr17:80544641-80544940 299 1.02 <0.001 0.009
XLOC_009584 chr11:123084121-123084460 339 1 <0.001 0.006
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Table 3. Cont.

Hypomethylated

SSH1 chr12:109199901-109200160 259 −1.12 <0.001 0.004
XLOC_005639 chr6:21980601-21980860 259 −1.13 <0.001 0.025
RP11-458D21.1 chr1:145380441-145380780 339 −1.19 <0.001 0.011
LOC100506603 chr14:77252181-77252640 459 −1.19 <0.001 0.002

AK125727 chr14:77252181-77252640 459 −1.19 <0.001 0.002
AP001476.3 chr21:47477561-47477760 199 −1.24 <0.001 0.025
BC034416 chr3:180586661-180586880 219 −1.31 <0.001 0.007

RN7SL367P chr16:1946361-1946700 339 −1.35 <0.001 0.004
RP11-586K12.4 chr16:32752701-32752900 199 −1.37 <0.001 0.005

EIF3B chr7:2412041-2412260 219 −1.37 <0.001 0.004
ANKIB1 chr7:91999241-91999440 199 −1.37 <0.001 0.013

XLOC_010373 chr13:45618701-45618900 199 −1.38 <0.001 0.013
RP11-510M2.5 chr16:71577621-71577820 199 −1.38 <0.001 0.004

OPN1MW chrX:153446941-153447140 199 −1.39 <0.001 0.008
ELAC2 chr17:12919641-12919840 199 −1.45 <0.001 0.012

SLC25A35 chr17:8196461-8196680 219 −1.52 <0.001 0.004
AK095057 chr5:179268841-179269080 239 −1.53 <0.001 0.024

C18orf8 chr18:21081741-21081940 199 −1.55 <0.001 0.002
RP11-168K11.3 chr9:116382121-116382460 339 −1.62 <0.001 0.005

LL22NC03-N27C7.1 chr22:24081461-24081680 219 −1.63 <0.001 0.009
CRAMP1L chr16:1716841-1717040 199 −1.76 <0.001 0.014

Gene name refers to the name of the DMR-associated gene. Genomic coordinates refers to the genomic locus
of the DMR. DMR Length refers to the length of the DMR. log2FC refers to the fold change of normalized tag
counts between two groups (log2 transformed). The p-value refers to the p-value of the DMR, the smaller, the more
significant. The q-value refers to the Benjamini-Hochberg False Discovery Rate (BH FDR) corrected p-value.
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Figure 1. Gene ontology (GO) enrichment analysis of the differentially hypermethylated genes in 
metformin-treated diabetes. The bar plot shows the top ten enrichment score values of the significant 
enrichment terms. Enriched GO terms were categorized into biological processes, cellular 
components, and molecular function. Data are presented as enriched scores expressed as −log10 (p 
value). 

Figure 1. Gene ontology (GO) enrichment analysis of the differentially hypermethylated genes in
metformin-treated diabetes. The bar plot shows the top ten enrichment score values of the significant
enrichment terms. Enriched GO terms were categorized into biological processes, cellular components,
and molecular function. Data are presented as enriched scores expressed as −log10 (p value).
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node of Ranvier, cell periphery, cleavage furrow, cell surface furrow, and stress fiber. 
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substrate across the membrane with or against its concentration gradient and sequence analysis of 
SLC25A35 indicates that it likely functions as an oxaloacetate carrier, implying mitochondrial 
association [24]. On the other hand, SLC28A1, a high-affinity pyrimidine nucleoside transporter, 
plays a role in renal reabsorption and has been observed to be impaired during diabetes [25]. 
Metformin treatment has been associated with lower methylation levels in SLC transporter genes, as 
was shown in a study conducted on metformin transporter genes in liver tissue [18]. Mitochondrial 
dysfunction due to diabetes affects oxidative phosphorylation and decreases ATP production. As 
SLC proteins transport various solutes across the mitochondrial membrane in order to partake in a 
number of metabolic pathways [26,27], the decrease in methylation and subsequent increase in gene 
expression of SLC transporters could be indicative of the antidiabetic effect of metformin treatment. 

Figure 2. Gene ontology (GO) enrichment analysis of the differentially hypomethylated genes in
metformin-treated diabetes. The bar plot shows the top ten enrichment score values of the significant
enrichment terms. Enriched GO terms were categorized into biological processes, cellular components,
and molecular function. Data are presented as enriched scores expressed as −log10 (p value).

3. Discussion

In this study, we measured DNA methylation in diabetic individuals on metformin treatment
compared to newly diagnosed diabetes cases and found 33 differentially methylated regions (DMRs)
of which 22 (67%) were hypermethylated in diabetes subjects on metformin therapy. Furthermore,
57 lncRNA-associated DNA Methylation regions (36 hypermethylated and 21 hypomethylated) were
detected of which 63% were hypermethylated in metformin-treated subjects. Functional pathway
analysis of these DMRs revealed that they affect gene expression in the axon initial segment (AIS),
node of Ranvier, cell periphery, cleavage furrow, cell surface furrow, and stress fiber.

Amongst the hypomethylated DMRs found in this study were genes in the SLC family, specifically
SLC25A35 and SLC28A1. The SLC family is known for its importance in drug development, and their
proteins include passive transporters, symporters, and antiporters and are located in cellular and
organelle membranes [23]. Transporters facilitate the movement of a specific substrate across the
membrane with or against its concentration gradient and sequence analysis of SLC25A35 indicates
that it likely functions as an oxaloacetate carrier, implying mitochondrial association [24]. On the other
hand, SLC28A1, a high-affinity pyrimidine nucleoside transporter, plays a role in renal reabsorption
and has been observed to be impaired during diabetes [25]. Metformin treatment has been associated
with lower methylation levels in SLC transporter genes, as was shown in a study conducted on
metformin transporter genes in liver tissue [18]. Mitochondrial dysfunction due to diabetes affects
oxidative phosphorylation and decreases ATP production. As SLC proteins transport various solutes
across the mitochondrial membrane in order to partake in a number of metabolic pathways [26,27],
the decrease in methylation and subsequent increase in gene expression of SLC transporters could be
indicative of the antidiabetic effect of metformin treatment. It is, therefore, likely that metformin in its
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demethylation action of SLC mitochondrial carriers could possibly aid cell repair in these patients,
however, this requires further investigation.

Functional pathway analysis observed in this study is consistent with the basic pathological
abnormalities in Diabetic Peripheral Neuropathy (DPN), such as axonal degeneration and
demyelination, lack of sensation, numbness, paresthesia, and allodynia experienced by diabetic
individuals [28]. Cell death of nerves in DPN results from multifactorial metabolic imbalances
associated with diabetes. The resulting mitochondrial dysfunction through a series of cascade effects
involving AMP-activated protein kinase (AMPK), sirtuin (SIRT), and peroxisome proliferator-activated
receptor-γ coactivator α (PGCα) suppresses mitochondrial oxidative phosphorylation, resulting in
neuronal and axonal degeneration through increased oxidative injury [29,30].

Treatment with metformin was shown to decrease the incidence of DPN as was observed by the
Bypass Angioplasty Revascularization Investigation 2 Diabetes trial [31]. Although metformin cannot
reverse the nerve damage caused by diabetes, it could assist in managing blood glucose levels and
improving the symptoms for patients.

In addition to DMRs, 57 lncRNA-associated DNA Methylation Peaks were detected when
comparing known diabetic individuals to screen detected patients. Most recently the NONCODE
database has updated the numbers of human lncRNAs to 167,150 with numbers still increasing [32].
Recent genome-wide association studies (GWAS) have shown positive correlation of some lncRNAs
and diabetes [33]. In a related study, Sathishkumar et al. (2018) found increased levels of lncRNAs
in T2DM patients, including HOTAIR, MEG3, LET, MALAT1, MIAT, CDKN2BAS1/ANRIL, XIST,
PANDA, GAS5, Linc-p21, ENST00000550337.1, PLUTO, NBR2THRIL, and SALRNA1. The majority
of these lncRNAs were involved in cell cycle regulation and senescence with their expression levels
correlating to poor glycemic control, insulin resistance, and inflammation [11]. Similarly, HECTD4 and
MBTPS1 were identified as the target genes for lncRNAs ENST00000364558 and ENST00000565382,
respectively, with involvement in the development of T2DM by means of the lysosome and phagocytic
signaling pathways [34]. Our findings indicate several novel lncRNA, including a lncRNA associated
with the mitochondrial ATP synthase-coupling factor 6 (ATP5J) enzyme thought to be involved in the
oxidative phosphorylation pathway [35]. Our data suggest higher methylation levels of this lncRNA
in metformin-treated subjects, possibly pointing to suppression of this lncRNA allowing for ATP5J
expression. Although little association was found between metformin and lncRNAs in our study,
the significant novel lncRNA identified warrants further investigation to explore possible roles in
type 2 diabetes.

The limitations of this study include the small sample size and the inclusion of women only;
however, this allowed comparison and limited error that may result in statistical manipulation of a small
sample size by sex. Furthermore, we used peripheral blood DNA to perform the genome-wide DNA
methylation analysis. Epigenetic changes are believed to be organ specific; however, investigations
on peripheral blood DNA have shown consistent methylation patterns with other organs [36,37].
Although the average (5.2 years) duration of disease in metformin-treated subjects was within the four
to six years in which a person may have had the condition before clinical diagnosis [38], these findings
should be interpreted with caution. In conclusion, our study has identified a number of DMRs and
lncRNA-associated DNA methylation regions in metformin-treated T2DM that are potential targets for
therapeutic monitoring in diabetes patients. However, these findings require further longitudinal study
investigations that can clearly ascertain that these observations are not confounded by the duration
and severity of diabetes.

4. Materials and Methods

4.1. Ethical Approval of the Study

This investigation used data from the Cape Town Vascular and Metabolic Health (VMH) study),
which were approved by the Research Ethics Committees of the Cape Peninsula University of
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Technology and Stellenbosch University (resp., NHREC: REC-230 408-014 and N14/01/003; approved
date: 21 May 2018). The Code of Ethics of the World Medical Association (Declaration of Helsinki)
was also applied to the study. Signed written consent was obtained from all participants after all
procedures were explained in the language of their choice.

4.2. Study Procedures

In this case-control study, the participants were females matched for both age and body mass
index. All study participants underwent a standardized interview, blood pressure, and anthropometric
measurements. A 75 g oral glucose tolerance test (OGTT) was performed on participants with no previous
diagnosis of diabetes mellitus. Participants who met the World Health Organisation (WHO) criteria
for diabetes were termed as screen-detected or newly diagnosed diabetes. Biochemical parameters
analyzed at an ISO 15189 accredited pathology practice (PathCare, Reference Laboratory, Cape Town,
South Africa) included the following: plasma glucose, serum insulin, serum creatinine, total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), low-density lipoprotein cholesterol
(LDL), C-reactive protein (CRP), γ-glutamyl transferase (GGT), AST, ALT, and glycated hemoglobin
(HbA1c), certified by the National Glycohemoglobin Standardization Program (NGSP). In addition,
a full blood count was also done for all participants, and ethylenediaminetetraacetic acid (EDTA) treated
blood samples were stored at −20 degrees Celsius for DNA extraction and analysis.

4.3. Genome-Wide DNA Methylation Sequencing

Genomic DNA was extracted from peripheral blood using the Wizard Genomic DNA Purification
Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. At least 2 µg of DNA
(concentrations ranging between 70 and 130 ng/µL) with A260/A280 and A260/A230 ratios ≥ 1.8 was
shipped frozen on dry ice, as instructed by Arraystar Inc. (Rockville, MD, USA). Methylated DNA
immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA) according
to Down et al. [39], with minor modifications as follows. About 1 µg of fragmented DNA was
prepared for Illumina HiSeq 4000 sequencing as the following steps: (1) end repair of DNA samples
with T4 DNA polymerase, Klenow DNA polymerase, and T4 PNK; (2) a single ‘A’ base was
added to the 3’ ends with Klenow (exo minus) polymerase; (3) Illumina’s genomic adapters were
ligated to DNA fragments; (4) DNA fragments were immunoprecipitated by anti-5-methylcytosine
antibody (Diagenode); (5) immunoprecipitated DNA fragments were amplified by PCR amplification;
(6) ~300–600 bp DNA fragments were extracted by gel purification. The completed libraries were
quantified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The libraries
were denatured with 0.1 M NaOH to generate single-stranded DNA molecules, captured on Illumina
flow cell, amplified in situ. The libraries were then sequenced on the Illumina HiSeq 4000 following
the TruSeq SBS Kit v5 protocol. The enrichment of DNA immunoprecipitation was analyzed by qPCR
using specific methylated sites at H19 locus and non-methylated sites at GAPDH.

4.4. MeDIP-Seq Data Analysis

The enrichment of DNA immunoprecipitation was analyzed by qPCR using specific methylated
sites at H19 locus and non-methylated sites at GAPDH. Image analysis and base calling were performed
using Off-Line Basecaller software (OLB V1.8). After passing a Solexa CHASTITY quality filter, the clean
reads were aligned to the human genome (UCSC HG19) using HISAT2 software (V2.1.0). Briefly,
individual bases generated from original image files have quality scores, which reflect the probability
whether base calling is correct or not. The score is calculated by CHASTITY Formula. The CHASTITY
(C) of each base in the short reads is determined by the intensity of four colors (IA, IC, IG, and IT
here), and the formula means “the ratio of the highest (IC here) of the four (base type) intensities to
the sum of highest two (IC and IG here).” The CHASTITY (C) should be no less than 0.6 in the first
25 bases. Statistically significant MeDIP-enriched regions (peaks) detected by MACS v2 were identified
by comparison to input background, using a q-value threshold of 10−5. The peaks in samples were
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annotated by the nearest gene using the newest UCSC RefSeq database. Differentially methylated
regions (DMRs) located within gene promoters (TSS − 2000 bp, TSS + 2000 bp) with statistical
significance between the two groups were identified by diffReps (Cut-off: log2FC = 1.0, p-value = 10−4).

4.5. Gene Ontology (GO) and KEGG Pathway Analysis

The ontology covers three domains, namely biological process, cellular component, and molecular
function. Fisher’s exact test was used to determine whether there was more overlap between the DE
list and the GO annotation list than would be expected by chance. The p value denotes the significance
of GO terms enrichment in the DE genes. The lower the p value, the more significant the GO term;
a p value ≤ 0.05 was considered significant. Annotation was performed using standard workflow
according to http://geneontology.org/. Pathway analysis was done using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. The p value (EASE score, Fisher’s p-value, or hypergeometric
p-value) denotes the significance of the pathway correlated to the conditions. The lower the p value is,
the more significant the pathway is; a p value ≤ 0.05 was considered significant.
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