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 2.  ABSTRACT  

In developing countries today, the population growth and the increasing penetration of higher 

standard of living electrical appliances in domestic places has resulted in a rapidly increasing 

residential load. In South Africa, the recent rolling blackouts and electricity price increase only 

highlighted this reality calling for sustainable measures to reduce the overall consumption and 

peak load. The cost and effectiveness of energy Utility residential intervention campaigns and 

the complexities linked to the architectural limitations of Home Energy Management Systems 

(HEMS) have long restricted grid interventions to the commercial and manufacturing sectors. 

Nevertheless, the dawn of the smart grid, smart energy meters, low-priced sensors, and 

embedded devices coupled with Internet-related technologies have paved the way to novel 

residential energy management interventions involving networking and interaction amongst 

devices, consumers, and the grid. In this regard, the Internet of Things (IoT), an enabler for 

intelligent and efficient HEMS, is seeing increasing attention in Home Area Network (HAN) 

design optimization while mitigating related cost limitations. This work presents the design and 

implementation of an IoT platform for residential smart-grid applications with the requirement 

of low cost, interoperability, scalability, and technology availability. The work focuses on the 

backend complexities of IoT home area networks (HAN) using IoT middleware. Cloud 

technologies as smart-grid tools augment the quality and services in IoT systems participating 

reducing the cost and complexities of HEMS. Thus, this work leverages open-source Cloud 

technologies from Back4App as BaaS to provide consumers and Utilities with a data 

communication platform for time and space agnostic “mind-changing” consumption feedback, 

appliance operation control, and Demand-Response Management(DRM) via an Android App. 

Considering these prerequisites, the  platform uses the Open Consortium Foundation(OCF) 

IoTivity-Lite middleware and implemented different case-study for awareness feedback and 

demand-side management.   

  

Keywords: IoT, IoTivity, Cloud, Back4App, CoAP, HA, Energy Feedback, HEMS, HAN, 

Android, DRM.  
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1. CHAPTER ONE   

INTRODUCTION  

  

 1.1.  Introduction  

The growing energy consumption in South Africa causes grave problems to 

energy supply sustainability. This situation is particularly alarming in households 

from which originate a significant share of peak loads and energy wastage. The 

recent rolling blackouts and electricity price increase only highlighted this reality 

calling for sustainable measures to reduce overall consumption. But in such 

context, the cost, and complexities of grid interventions in the residential sector 

has limited the Energy utility initiatives to awareness and educational campaign 

and flash addresses on digital media to address energy wastage. However, the 

growing demand emphasized the limitation of these interventions. Therefore, it 

is required for the grid to extend its technological tools to residential buildings.  

  

HEMS provides consumers with feedback on appliances or equipment 

operation while providing an automation platform for implementing energy 

management strategies. However, traditional HEMS designs suffer many 

constraints and limitations. Indeed, granularity, reusability, scalability, and 

costrelated limitations have impeded their performance. These have restricted 

their penetration in domestic space. As a component of the smart grid (SG), 

HEMS performance depends on its business case being operational. That is, 

their design will require scalable, reusable, and interoperable backend 

communication platforms. In other words, HEMS design will need these 

optimizations for effectivity in the current and future management of energy 

consumption within the smart grid. However, technology affordability and 

availability are significant barriers to deploying such intelligent platforms in 

developing contexts. Nevertheless, the recent advancement in mobile devices, 

cloud computing, and storage, embedded design highly mitigates these 

concerns. Thus, the Internet of Things (IoT) is an enabler for cost-effective and 

flexible communication platform HEMS design.  

  

This thesis explored the applicability of smart-grid IoT enabling technologies in 

providing an efficient, performant, and cost-effective communication platform for 

energy management applications, particularly in residential places. In this 

chapter, a research background is provided. Following are the research 

objectives and research questions identification. Then, the methodology is 

defined, and the structure of the thesis is briefly explained.  
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 1.2.  Background  

Across the world today the electricity consumption is fast reaching the point 

where resources cannot meet the demand (Smith et al., 2012). Indeed, 

industrial development and population growth-related demands have increased 

over the years faster than power systems expansion programs. This situation is 

highlighted by the increasing stress conditions, resource scarcity, and fossil fuel 

negative environmental impact (Zhang et al., 2015). The issue is even more 

pressing in developing countries having significant population growth. In SA, the 

population growth is closely related to the electricity demand (figure 1.1 below). 

Indeed, between 1994/5 and 2011/2012, the number of connected households 

(utility grid-connected) was more than double (4.5 to 9.8 million) in SA.  

  

  
Figure 1.1: Number of Households and Number of Electrified Households (Millions)  

(Human Sciences Research Council, 2013)  

  

The increase in this already high demand led to unpleasing energy supply for 

all related sectors mostly manifested as rolling blackouts due to the load 

shedding effect. Dealing with load shedding in the winter period (highest 

seasonal demand), the utility company, Eskom meets a two to four hours 

shortfall period using an open cycle gas turbine (Deventer, 2014). However, 

these counteraction measures come with a high cost (operating and 

maintenance) and significant negative environmental impacts. Considering the 

aging national grid, there is the need for increased generation and upgrading 

existing facilities. However, such improvements require significant investment 

and pose serious environmental threats (Kedar and Somani, 2015). To achieve 

the needed grid expansion actions, the government and Eskom agreed on a 

year-based electricity price increase that was between 2008 and 2012(figure  

1.2). Such an increase brings the issue of energy affordability for consumers  
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and businesses. Therefore, the efficiency of the power system is seeing a 

growing interest and is becoming a hot topic amongst researchers (Ki et al., 

2016).  

  
Figure 1.2: Electricity Price Increase in South Africa  

(Human Sciences Research Council, 2013)  

  

1.2.1. Residential building consumption  

Residential load accounting for around 30-40% of worldwide energy 

consumption is charged with a significant impact on peak demands(Beligianni 

et al., 2016). In SA, about 25% (figure 1.3) of energy demand is attributed to 

residential consumption, a substantial contributor to morning and evening peak 

results in a national load factor of 72% (Department of Energy, 2012).  

  
Figure 1.3: Proportion of Total energy consumption by economic sector  

(South African Department of Energy, 2016)  

  

Compared to early houses in the late ’80s, modern homes have seen an 

explosion of high-living conditions appliances penetration which has highly 

increased residential consumption (figure 1.4). In developing contexts, higher 

energy usage is generally due to cooling/heating, cooking, lighting, washing, 

and drying (figure 1.5). According to (Qayyum et al., 2015), these consumption 

activities (excluding lighting) account for about 70% of appliances in residential 
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buildings. However, residential energy consumption is not only a cause of high 

consumption appliances. Researchers estimate that about 8% of household 

energy consumption is attributed to wasteful usage patterns regarding standby 

(phantom load) appliances (Korsunova, 2010).  

  
Figure 1.4: Evolutions in residential loads and comfort levels   

Adapted from (Asare-Bediako, 2019)  

  

Indeed, according to the Department of Energy (2012), compared to the 

international benchmark for energy poverty (10%), households in SA are 

spending up to 4% higher of their total household income on energy needs. 

Energy usage is therefore invisible to most South African households incurring 

greater misuse.   

  
Figure 1.5: Residential Sector Energy End-Use   

(South African Department of Energy, 2013)  

  

Though metering devices enable a general perception of consumption, the data 

obtained is not informative enough and lacks the empowerment capability to 

curve down consumption. In SA, the power Utility (Eskom) has been engaging 

in energy-saving advice and educational campaigns with consumers. About the 

effectiveness of the Eskom approach, Coetzee & Eksteen (2012) writes: “It is 

highly debatable if this mechanism is effective at all, as most households do not 

feel that the load restriction applies to them”.  Current research in energy 
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conservation for residential buildings has shown that HEMS in the smart grid 

(SG) context will bring energy efficiency to households (Kedar and Somani, 

2015). Yet, conventional HEMS come with challenges of complexity, 

affordability, and technology availability. Indeed, their static and fixed network 

topology limits their reusability and scalability (Kim et al., 2015). Additionally, 

their usage of proprietary communication protocols restricts the access space 

and limits consumer products selection, thus increasing interoperability issues 

and cost (Lee and Lai, 2016). However, the recent emergence of the IoT 

paradigm in the smart grid context is challenging this reality. IoT devices enable 

affordable, simplistic, and scalable feedback and automation technologies for 

home or building energy management (Abdulrahman et al., 2016). IoT facilitates 

the development of heterogeneous communication platforms around ubiquitous 

devices that are scalable, affordable, and fit for different use cases  

(Jose et al., 2016). Moreover, an IoT-based HEMS can offer “mind changing” 

feedback bringing energy awareness at the appliance level to motivate and 

empower individuals to make smart decisions regarding when to turn their 

electrical equipment on or off (Coetzee and Eksteen, 2012). Furthermore, via 

open-source tools provided by developing technologies, IoT greatly reduces the 

cost of HEMS (Korkmaz et al., 2015a).  

  

However, the deployment of IoT systems suffers inherent device interoperability 

issues (Risteska Stojkoska and Trivodaliev, 2017a). IoT lacks standardization 

for communication and interaction, resulting in software architecture being 

unable to scale well to heterogeneous networks (Elfström, 2017). Current 

research in IoT, advocate for middleware to handle local area network (HAN) 

complexities. An IoT middleware, a framework running on supported devices 

offers services regarding semantics gaps, device discovery, and the 

management of large data (Wang, Hu, Zhou, Zhao, et al., 2015). Recent studies 

in energy efficiency, leverage cloud computing to extend the capabilities of 

HEMS. Cloud development gives access to a collection of user-adjustable web 

services and data storage to mitigate constraints related to resource scarcity 

and system expansion inherent to residential buildings' automation systems 

(Korkmaz et al., 2015a). Moreover, cloud computing enables end-users to 

access and manage HEMS remotely via the internet and mobile devices 

(Deshpande et al., 2015).  
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 1.3.  Research problem and Questions  

Energy management platforms for residential buildings need to rely on smart 

grid enabling technologies for greater efficiency. In this regard, IoT enabling 

technologies, cloud computing and advances in embedded devices provide an 

avenue for grid and consumers to effectively participate in the current 

energysaving effort. In a developing context, smart-grid interventions suffer 

costrelated implementation issues. Moreover, the initial investment in intelligent 

appliances required technological tools that can make existing household 

appliances effectively participate in the energy conservation effort. Thus, the 

research question of this project, is: “How can IoT enabling technologies within 

developing context, enhance and facilitate household energy management 

within the smart grid vision?”  

The following question will be guidelines for this research:  

1. How can IoT mitigate design complexities and limitations of 

traditional HEMS?  

2. How can IoT mitigate the cost of technology in SG effort for 

developing context?  

3. What backend middleware best handles IoT semantic gaps?  

4. How do IoT cloud technologies enhance smart grid effort in the 

residential sector?  

5. How can mobile technologies participate in IoT “mind-changing” 

feedback to enhance consumer awareness and energy 

management activities?  

  

 1.4.  Research Objectives  

This work aims to provide energy management interventions in residential 

places with an effective and performant data communication platform 

leveraging the smart grid IoT enabling technologies. Thus, the thesis purposed 

to address the interoperability, scalability, cost, and technology availability of 

technology constraints of HEMS design and deployment in developing contexts. 

Lately, a case study illustrating the platform performance in relation to effective 

real-time feedback, appliances operation control, and a DRM intervention is 

proposed. In this regard, the thesis objectives are to:   

1. Design and implement an IoTivity-based HAN to handle IoT 

semantic gaps (devices interoperability), increasing HAN device 

miniaturizations and lowering cost,  
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2. Design IoTivity smart plugs for interfacing existing home 

appliances,  

3. Optimize and scale the HAN using the cloud as BaaS to simplify 

the platform backend requirements,  

4. Develop an Android-based Energy management App leveraging 

the cloud BaaS.   

  

 1.5.  Significance of the research  

In developing context, the traditional DR grid for domestic consumers is 

inexistent mainly due to two causes. First, the great number of domestic units 

is difficult to handle from the grid side without communication, sensing devices, 

and effective automation tools. Secondly, compared to their implementation 

cost, the DR program's effect is negligible. However, as the Smart grid concept 

is trending amongst research, Utilities are slowly deploying AMI technologies in 

very constraining conditions in developing contexts. Thus, bringing efficient 

energy consumption taking advantage of current advances in technology while 

deploying systems that are scalable to smart grid future AMI are required. The 

internet and its related technology have been regarded as suitable in this 

required transition from the traditional grid to the smart grid. This thesis strives 

while leveraging Internet dependant technology in IoT, cloud computing, 

embedded design, Web Application to provide a two-way energy management 

platform mitigating the complexities of HEMS and HAN as well as the cost of 

their implementation. Thus, this study will be significant in bringing energy 

consumption literacy, action tacking as well as management at the appliance 

level, providing a platform that incorporates the existing appliances and 

residential technological facilities while being interoperable, scalable, and 

costeffective to greater penetration of the smart grid vision in the residential 

sector.  

  

 1.6.  Research Delineation  

IoT commands great research interest presenting many design and 

implementation challenges. Thus, the IoT platform for energy management 

addresses semantics gaps mainly related to interoperability, scalability issues, 

and implementation cost. That is, the research primarily focusses on the 

backend requirements for an IoT platform that offers protocols interoperability, 

device, and resource management within the HAN and leverage cloud 

computing to provide energy service on consumer loads. Thus, an IoT 
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middleware as the state-of-the-art tool for ideal IoT applications is used. 

However, this research does not aim to evaluate the middleware performance 

in handling the HAN, but this work focusses on the middleware tools that able 

to satisfy the research primary requirements as to enhance the platform and 

facilitate its deployment. Security is a primary concern in IoT system 

deployment. The IoTivity-Lite middleware is used in this work and provides 

security. However, the different software interactions within it are still in the 

development stage thus limiting the full implementation of this middleware 

security layer at this stage of the work. Therefore, the implementation mainly 

relies on the security layer of the cloud platform as handling security at a higher 

level of interaction. Additionally, the platform uses login credentials on the 

energy application to protect the home against unauthorized remote access. To 

decrease the cost of the IoT platform open-source cloud services and software 

frameworks provided by emerging technologies in IoT as well low-cost 

ubiquitous embedded devices are used.   

  

A smartphone Energy App build on the popular Android OS was employ 

leveraging android technologies pervasiveness in South African households. 

Although, this work intends to provide a platform for different DRM techniques 

the performance of these is not part of the evaluation of this platform. 

Nevertheless, an experimental study was deployed to demonstrate the 

platform's ability to provide appliance-level feedback, home automation, and a 

DRM application for a simplistic peak shaving algorithm around common 

household appliances of resistive type loading.   

  

 1.7.  Research Methodology  

The research aims to both identify and provide a technological solution around 

IoT middleware, cloud computing, HEMS, HAN, embedded design, and 

smartphone to develop an effective data communication platform to facilitate 

greater penetration of the smart grid vision in the residential sector within 

developing countries. Thus, the research reviews:   

• Smart Grid in developing context  

• IoT as an enabler for SG and smart home developments  

• Home Area Network around IoT technologies  

• Embedded design for IoT HAN devices  

• Internet of things middleware’s for backend services and semantic gaps  

• Cloud Technologies for IoT platforms   

• Mobile application as front-end for energy services.  
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 1.8.  Outline of the thesis  

Following the opening chapter (Chapter One), the remaining of the thesis is 

ordered as follow:  

Chapter Two: This chapter covers the literature on smart grid vision focusing 

on IoT as an enabler for smart grid penetration in residential load management. 

Then a review is carried out about the backbone of HEMS or Home Area 

Network focusing on their architecture, software stacks, and devices within the 

network. Therefore, this reviewed the current state of the art in embedded 

design for IoT applications. A review of different IoT middleware 

implementations as possible solution for IoT semantic gaps is done. Lately a 

review on cloud computing and related technologies as enablers for IoT-related 

interventions for energy management is performed.   

  

Chapter Three: This chapter covered specifications that govern the 

experimental work. Here, the rationale behind the selection of the different tools 

for the proposed solution was covered as reviewed in chapter 2. Moreover, it 

covered the new solutions that were developed or adapted to satisfy the 

research objectives.  

  

Chapter Four: This chapter cover the development of every part of the 

proposed solution. Firstly, the architecture of the Home Area Network 

responsible for data communication within the HEMS. Secondly, focus is placed 

on the design and development of devices that will interface with appliances to 

provide energy feedback and control interface at the appliance level. In this 

regard, the research focused on power consumption sensor technologies, 

electronics control devices as well as firmware development. Thirdly, the 

backend development for the HAN gateway were handled focusing on its 

client/server interface both to the local sensor/actuator network and the remote 

cloud services. Fourthly, cloud service interface is configured to support the 

application requirements. In this instance, the research concentrates on the 

cloud storage capacity of for the platform data and communication with the 

home gateway as well as the remote user front-end. Lastly, attention is place 
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on the development of an Android-based Energy App as a front-end for 

“mindchanging” feedback and DRM applications.  

  

Chapter Five: This chapter discussed the case study focusing on a DRM 

scenario used as validating test cases for this research objective as an attempt 

to answer the research questions. The different scenarios considered in 

assessing the platform are covered. Simulated loads profiles are defined based 

on a resistive load setup in a laboratory environment for high-consuming 

resistive appliances at a fixed RMS consumption. The disaggregated feedback 

provided both locally and remotely via the Energy App is evaluated. Lastly, the 

experimental results are presentable in tables and graphs followed by thorough 

discussion of the results.  

  

Chapter Six: This the study concluding chapter. It includes recommendations 

and suggests future works.  
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 2.  CHAPTER TWO  

SMART GRID AND ENABLING TECHNOLOGIES BACKGROUND  

  

 2.1.  Introduction  

In the traditional grid today, increasing peak load is challenging to the grid 

infrastructure and often demands from grid management measures involving 

supplementary power plant procurement, greater rates for consumers, and 

unwelcome load shedding or even blackouts (Longe et al., 2017). To meet these 

peak loads, Energy Utility had to grow generation capacity to satisfy the 

increasing load. Aside from peak capacity plants and storage technologies 

development, traditional solutions involve satisfying the supply with the required 

demand using DR to meet the irregular electricity demand (Haider, See and 

Elmenreich, 2016). In developing context this is mainly done using peak power 

plants, or direct load control (DLC) techniques avoiding systems overload 

conditions (Rasheed et al., 2016). Regarding this traditional approach, Haider 

et al., (2016) argue that these solutions are unsustainable and scarcely 

affordable as they are unsophisticated countermeasures matching the demand 

for a limited period as well as increasing environmental-related issues. In this 

chapter, the focus is on the traditional grid challenges in the South African 

context. In the latter section, a review is carried out on the relevant technological 

directions in research for modernizing the traditional grid as well as the stateof-

the-art for improving the residential sector demand.  

  

 2.2.  South African Electric Grid  

Aging traditional electric grid lacking intelligent management and situational 

awareness are now ill-suited to the fast-growing demand for electricity (Paridah 

et al., 2016b). This situation has placed Energy Utilities under pressure from 

annual increases in electricity demand coming mostly from residential 

consumers (Mortaji et al., 2016). Currently, domestic consumption represents 

about 30~40% of the overall energy use worldwide (Haider et al., 2016). The 

newest study by the Department of Energy in South Africa shows that on 

average, households in South Africa spend 14% of their overall monthly 

earnings on energy necessities a figure above the international standard of 10% 

for energy poverty. This residential load is regarded as the primary culprit for 

seasonal and daily peak demand. Following the traditional approach, the 

Energy Utility in South Africa (Eskom) has reacted to peak demand increase by 

increasing its power output building new power stations and Adhoc expensive 
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and climate adverse peak power plants, implementing higher tariffs for 

consumers, and adopting restrictive measures such as undesirable load 

shedding or even blackouts. Regarding the current investment in South Africa 

to support the current demand, (Abu-Mahfouz, Olwal, Kurien, Munda, &  

Djouani, 2015) noted that: “Eskom has R350- billion new-build program 

(Medupi, Kusile, and Ingula) to fulfil the increase in power demand. However, 

this program is facing several issues including the fact that it is two years behind 

the completion schedule, and it incurs significant overruns cost: ongoing labour 

unrest…”.  

   

 In the South African grid, electricity transmission is unidirectional. That is from 

the generating company Eskom to the consumers (figure 2.2-1 is a close 

adaptation). Nomusa et al., (2014) describe the interaction between utility and 

consumer as follow: “The meters in homes are linked to the service provider’s 

system. A user purchases unit from an agent against their meter number. In 

turn, recharge occurs when substations calculate supply against the meter 

number. For those who are not on prepaid electricity, a meter reader collects 

meter readings manually every month for generation of the bills”. To improve 

the actual energy interaction the author argues that two-way communication 

between utility and consumer is most viable as being beneficial to both.  

.  

  
Figure 2.1: Typical Tradition Electric system adapted from (Paridah et al., 2016b)  

  

To effectively reduce consumer peak demand, energy utilities have engaged in 

different awareness campaigns as well as Demanded Response programs with 

mitigated results. However, Longe et al., (2017) argue that DRM is essential to 

peak demand reduction and would benefit both Utility, consumers, and the 



  13  

environment. Hoosain and Paul., (2017) support this viewpoint when stating 

that: “Traditional investments can be reduced by applying demand response 

systems” to residential consumption. However, the centralized and 

unidirectional grid coupled with its inability to accurately profile consumption, 

the lack of direct and real-time communication between Utilities and consumers 

limits the effectiveness of the DRM approach in traditional grid systems (Rathi, 

Raja, Prof, & Rani, 2014). Consequently, with the elimination of past solutions, 

a new paradigm needs to be adopted (Mortaji et al., 2016).  The authors argued 

that a modern, automated grid to aid in controlling power consumption and 

increase the effectiveness of the grid via load management is needed to 

address the current issues. In this regard, the consensus amongst current 

researchers toward this goal is the smart grid vision.  

  

 2.3.  The Smart Grid   

Traditional grids are dealing with several challenges ranging from aging 

infrastructure, absence of communication, growing load, and security issues. 

Moreover, grid interventions to the drastic peak demand increase from Utilities 

have been supply-side mainly based on Peaker plants and awareness 

campaigns notwithstanding direct load control. Regarding these measures,  

Yardi., (2015) states: “However, these supply-side solutions ignore another 

attractive alternative which is to slow down or decrease energy consumption 

through the use of technology to dramatically increase energy efficiency”. Thus, 

to address the traditional grid these issues, Smart Grid (SG) concept emerged 

(Lobaccaro et al., 2016). The SG leverages advancement in ICT couple with 

smart hardware, autonomous and reliable software, for data management 

alongside a two-way channel amongst consumers and Utilities to consistently 

and efficiently dispense energy. (Hussain et al., 2018a). As stated by Khan et 

al., (2019), the SG's main objectives are to expand the consistency, efficiency, 

and security of power systems. That is, the SG delivers electricity in a controlled 

and intelligent manner from Utility to active consumers for an efficient and 

intelligent power system (Risteska Stojkoska and Trivodaliev, 2017a). 

Moreover, the smart grid concept enables Utilities to efficiently manage peak 

timings of usage (Qayyum et al., 2015). Consequently, SG add-ons ultimately 

improve the effectiveness, dependability, and flexibility of the power system 

(Hussain et al., 2018a).  
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In traditional power systems, residential energy management has been 

neglected mainly due to scalability concerns. However, The SG has launched 

the deployment of smart meters, low-cost sensors, and smart load on top of  

ICTs in residential units for energy management programs (Lobaccaro et al.,  

2016). Indeed, the SG has widened the scope of load management to the 

individual residential unit within the power grid. For instance, Utilities may 

remotely apply energy management to intentionally reduce peak load.   

  

2.3.1. Smart grid as an Enabler for HEMS  

DRM programs, the focus of smart-grid interventions have mainly targeted 

commercial and big industrial sectors for their large demand reduction to the 

grid. However, with the increasing portion of residential demand the total grid 

load, Utilities are showing increasing interest in residential demand response 

(RDR) (Rastegar, Fotuhi-Firuzabad and Zareipour, 2016). Home Energy 

Management System (HEMS) is an integral part of a smart grid that can 

potentially enable DR applications for residential customers (see figure 2.2). A 

HEMS monitors energy and collects data and manages the operation of 

domestic electrical appliances by enabling load management techniques 

according to a pre-determined set of requirements (Blanco-Novoa et al., 2017). 

Therefore, HEM is critical in realizing demand-side management within the 

smart grid. HEM provides residential owners the tools to autonomously execute 

smart load controls via utility signals, customers' preferences, and load priority 

(Yardi, 2015a). As stated by Kedar and Somani., (2015), by managing 

consumer demand via two-way communication with the energy market, HEMS 

optimizes consumer costs.  

  
Figure 2.2: HEMS over Smart Grid AMI Modified from (Paridah et al., 2016a)  

  

Residential clients embedded with HEMS have a net reduction of their baseload 

and peak demand. Aside from DRM application SG based HEMS provides an 
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effective platform for energy literacy via consumption feedback. Indeed, the 

ability to profile consumption and the advanced analytic and visualization tools 

proposed by the smart grid enable technologies to allow HEMS to provide an 

enhanced type of feedback to residential consumers. In this regard,  

Emeakaroha, Ang, and Yan., (2012), stated that: “energy feedback is a critical  

foundation for any attempt to reduce energy consumption, and the feedback 

itself will likely curb energy usage to some extent”.  

  

 2.3.1.1.  Case for Demand Side Management  

Electric utilities tend to meet growing consumer energy demand by expanding 

their generation capacities. These expansions are capital-intensive peak power 

plants known as “peakers” that are much more costly to operate than baseload 

power plants (Haider, See and Elmenreich, 2016a). As this strategy results in 

highly inefficient consumption behaviors and under-utilized power systems, 

demand-side energy management schemes aiming to optimally match supply 

with demand have emerged. According to Kailas et al., (2012), Demand-side 

management (DRM) refers to planning, implementation, and evaluation 

techniques, including policies and measures designed to either encourage or 

mandate customers to modify their electricity consumption. DRM interventions 

impact the behaviour of consumers concerning energy consumption. That is 

DRM techniques mostly depend on matching current generation figures with 

load by regulating the appliances' energy usage and enhancing operation at 

consumer side (Collotta and Pau, 2015). This is mainly accomplished using 

methods ranging from peak clipping, load shifting, load conservation, valley 

filling, and load building as illustrated in figure 2.3 below.  

  
Figure 2.3: DRM Load shaping techniques Adapted from  

 (Kailas, Cecchi and Mukherjee, 2012)  
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DRM within the smart grid empowers consumers toward intelligent and informed 

decisions regarding their energy consumption pattern while helping Utilities 

effectively decrease the peak load when the grid facing higher demand (Khan 

et al., 2019). Thus, for utilities, DRM means reducing supply costs and avoiding 

or delaying the need to invest in new capacities (Javor and Janjic, 2017). For 

the residential customer, it means reduced bills and taking advantage of the 

financial incentives offered by Utilities (Longe et al., 2017).  

Moreover, DRM programs are vital in improving consumers’ needs and shaping 

domestic load for an automated grid (Reka and Ramesh, 2016). The Major 

benefits of DRM are summed up in table 2.1.  

   
Table 2.1: DRM benefits Adapted from (Kailas, Cecchi and Mukherjee, 2012b)  

  

Customer benefits  Utility benefits  Societal benefits  

Satisfy demand for electricity  Lower cost of service  Conserve resources  

Reduce cost  Improve efficiency and  
flexibility  

Reduce environmental 

impact  

Improve service  Reduce capital needs  Protect environment  

Improve lifestyle and 

productivity  
Improve customer service  Maximize customer welfare  

  

  

 2.3.1.2.  Case for Energy Monitoring (Feedback)  

As stated by Suryanarayanan et al., (2013), increasing awareness amongst 

electricity customers regarding their energy consumption pattern coupled with 

efficient usage of domestic appliances will bring about effective energy 

management in domestic places. Studies show that feedback yields great 

potential in impacting domestic electricity conservation (Vine, Buys, and Morris, 

2013). According to Numusa (2012)), using smart meters linked to services 

provider’s systems, south African homes purchase units from agents against 

their meter number which are recharged after substation calculate supply 

against the meter number. The authors explained that consumers outside of 

prepaid electricity, depend on a meter reader that collects readings manually 

every month for bill generation. This largely un-itemized, non-visual, and 

infrequent feedback on South African residential has negatively impacted the 

residential load and encouraging inefficient usage behaviour. This lack of 

information has become increasingly problematic in South Africa's electric grid 

suffering from an ever-increasing peak demand from the residential sector.  
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According to the American Council for an Energy-Efficient Economy, feedback 

initiatives that make electricity consumption visible to residential users achieve 

maximum feedback-related savings. Indeed, electricity consumption reduction 

can be obtained by only providing the consumption profile of appliances to the 

consumers and accordingly tackling unsustainable behaviour (Collotta and Pau, 

2015). Effective feedback according to research is seen as household-specific 

information on electricity use. Indeed, residential users can achieve optimum 

feedback-related savings when energy consumption is made visible to them 

(Lobaccaro, Carlucci and Löfström, 2016). That is disaggregated feedback at 

the appliance level. Emeakaroha et al., (2012) proposed feedback as direct 

(real-time), indirect. Direct or real-time feedback is immediate and from a meter 

or a display monitor and has been found to provide greater energy savings than 

indirect feedback methods (figure 2.4). Real-time feedback can be more easily 

customized for individual households. Reviews of direct feedback experiments 

suggest that this type of feedback interventions yield between 5% and 15% 

energy savings for the time that they are installed, however, their lasting impacts 

on behaviour are much less certain (Vine, Buys and Morris, 2013).  

  

Figure 2.4: Disaggregated feedback type’s savings in average Households in the US.  
Adapted from (Lobaccaro, Carlucci and Löfström, 2016)  

  

  

Emeakaroha et al., (2012) argued that direct feedback can boost other DR 

programs, comprising higher user’s response and awareness to real-time or 

time-of-use (TOU) pricing programs and realizing the subsequent profits of load-

shifting so impacting peak consumption. Nevertheless, for the power system to 

provide such feedback, a mixture of beneficial smart grid enabling technologies 

supported by well-made programs to effectively notify, involve, and persuade 

consumers(Lobaccaro, Carlucci and Löfström, 2016).  
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 2.3.1.3.  The case for Home Area Networks  

The smart grid brings new possibilities in residential load efficiency in converting 

the outdated consumer sites into smart homes via smart appliances and smart 

meters interconnected as part of a home area network (HAN) (figure 2.5 below). 

Simply stated, HAN(s) are extensions of the smart grid AMI within a home. 

Using smart grid technologies, HAN brings monitoring and device control 

capabilities to energy management (Collotta & Pau, 2015).  

  
Figure 2.5: Smart Grid Enabling Smart Home and Home Area Networks  

Adapted from (Kailas, Cecchi and Mukherjee, 2012)  

  

In a smart home, controllable smart appliances interface with smart meters 

through the HAN. Via the HAN domestic load can be managed and residential 

grid interfaced with Utility networks. HAN(s) is central for smart grid enable 

HEM. it provides the data gathering and communication platform used by HEMS 

to collect information from home appliances that are used to optimize power 

supply and management (Kim et al., 2015a). The HAN enables smart grid DR 

interventions at consumers' premises providing a finer control platform for 

residential consumption efficiency(Zhang et al., 2015). Besides energy 

management, other functions of HAN in the SG comprise price signals 

awareness via consumer-centered settings, threshold setting, security 

monitoring, automatic load control (Longe, Ouahada, Ferreira, & Rimer, 2017)  

  

2.3.1.3.1. HAN Communication and Network Technologies  

According to (Kailas, Cecchi and Mukherjee, 2012), HEM is central to green 

buildings and enables domestic energy consumption monitoring and control 

usage via smart meters, smart devices and appliances, and smart plugs to 

provide efficient peak load management(Longe et al., 2017). The different 

technologies (physical and network layer specification) are generally 

categorized depending on the communication link into wired and wireless as 
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illustrated in figure 2.6 below. Such technologies provide data communication 

amongst utility meters and providers, thus building EMS, etc. wired and wireless 

technologies offer advantages and disadvantages (Table 2.2). Wired 

technologies provide more security for data communication.  

  
Figure 2.6: Communication and networking technologies for HAN  
Adapted from (Kailas, Cecchi and Mukherjee, 2012)   

  

However, when it comes to selecting communication technologies, the decision 

depends on the requirements of the problem. That is, Wired HAN uses 

transmission channels. That is electronics wiring, telephone lines, unshielded 

pairs, and/or optical fibre (Kailas, Cecchi and Mukherjee, 2012a). Generally, 

wired technologies yield a higher deployment cost and are physically prohibitive 

for any smart grid implementation. Alternatively, wireless technologies reduce 

equipment and installation costs as well as quicker deployment, extensive 

access, and superior flexibility which makes wireless preferred to wired 

technologies (Lobaccaro, Carlucci and Löfström, 2016). Many wireless 

technologies have been studied and implemented for HAN. However, the ones 

summarised (Table 2.2) below constituted the main area of focus in research.  

  
Table 2.2: Home Area Network Wireless technologies comparison adapted from (Lobaccaro, Carlucci 

and Löfström, 2016), (Kailas, Cecchi and Mukherjee, 2012), (Ahmad et al., 2016)  
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2.3.1.3.2. HAN Devices  

The trend in smart home design today is around embedded devices also known 

as Smart Home Micro-computers (SHMC). SHMC is a small-sized computer 

(generally a microcontroller or microprocessor) that can connect to other 

devices to monitor and control appliance consumption in the smart home 

system (Lobaccaro, Carlucci and Löfström, 2016). SHMC provides both 

appliances interface, Smart Grid, and internet servicing to HAN(s). For the 

latest, SHMC can work as HAN’s gateway or Home Energy Controller (HEC). 

According to (Kailas, Cecchi and Mukherjee, 2012b), the HEC is a networking 

device that coordinates with the networks within the home and the related ICT 

protocols for communication with smart appliances. The HEC provides 

consumers with engaging and simple energy management applications to and 

control appliances. To energy Utilities, it provides the ability to provision and 

manage HAN’s that monitor, and controls loads as well as very secure end-

toend data communications across wired and wireless media and networking 

protocols. When connected with power sensing and control devices sensor 

node and WSN mote can be created to monitor and control home appliances. 

Table 2.3 summarised the strengths and weaknesses of some of the most used 

embedded controllers in smart home design.  

  
Table 2.3: HAN devices comparison adapted from (Lobaccaro, Carlucci and Löfström, 2016)  

  

 
Product 

 Main Features Strenghts Weaknesses 
Name 

 (1) It is an open-source electronics platform 

equipped with hardware and software; 
(1) High flexibility and compatibility  with 

 

Arduino (2) it senses the environment by 

receiving input from many sensors, and 

affect its surrondings by controlling 

lights, motors, and other actuators 

different kind of sensors; 
(2) It is intended for anyone making interative project (1) All these systems require 

the user to have some technical 

background and ;  electronics basics 
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Banana Pi 

(1) It is a single board computer; 
(2) It can serve as a platfrom to make 

mayapplications for different purposes 

(1) It targets to be a cheap, small and flexible 

enough computer for daily life; 
(2) It is built with ARM Cortex-A7 Dual-core 

CPU and 
Mali400MP2 GPU and open source software; 
(3) Most of common extension accessories 

includingLCD panel, touch screen, camera module, 

UART console and GPIO control pin are accessible 

from 
Banana Pi on-board connector an header 

(2) It also require time to be 

learned  and become expert 

inassembling and  using it. 

However, many tutorials and  

detailed information about their 

assembly  and use are free 

available online;  (3) Another barrier 

is constituted by  their commercial 

price that can also  
 reach thousands of euros 

BeagleBone  

(1) It is an open hardware micro-

computer similar to both Raspberry Pi 

and Banana Pi; (2) It has an MR cortex-

A8 processor. It is equipped with Ubuntu 

and Android; 
(3) It is an open hardware, community 

supported embedded computer for developers 

and lobbysts 

(1) High flexiblity and compatibilitywith many kind of 

sensors 
(2) It is intended for anyone making interactive projects 

Raspberry 

PI 

It is a capable credit-card sized computer 

that allows developing electronics 

projects 

(1) Ability to interact with the external world, 

and has beenused in a wide array of digital products, 

from music machines and parent detector to weather 

stations and tweeting birdhouses with infra-red 

cameras; 
(2) Could be used by peaople of all ages; 
(3) Its challenges is to be used by people of all 

ages to explore computing and to learn how to 

program in languages like Scratch and Python and 

how to minipulate the electronic world around them 
  

2.3.2. Smart Grid implementations challenges  

The implementation of the smart grid suffers from different socio-economical, 

contextual, and technological factors. That is, implementations of SG 

technologies on current power systems could be problematic. Firstly, the 

century-old powerline systems were not designed to meet modern 

requirements. Secondly, the reconstruction of powerline systems for smart grid 

applications is costly and tardy. This reality is even more present in developing 

contexts where technological innovation in this sector has been very slow over 

time. A commonly cited reason for this slow evolution has been the excessive 

cost associated with upgrading existing building stock to include “smart” 

technologies such as network-connected devices (Suryanarayanan et al., 

2013). however, the communication architecture of the future smart grid 

systems is yet to be defined. As a result, lots of challenges and opportunities in 

the smart grid are defined. A series of challenges in interoperability, scalable 

internetworking, self-organizing, and security have been identified and 

discussed (Niyato et al., 2011). Though the implementation issues are 

generalized throughout the planet, it is important to consider solutions that meet 

country-specific needs like energy costs, fair billing, electricity thefts, system 

scalability, and reliability (which are more acute in developing contexts). On the 

one hand, the open standards-based approach enables seamless integration of 

the appliances at home to the existing internet infrastructure making remote 

monitoring, control, and data collection over the web possible (Sahana et al., 

2016a). On the other hand, Residential demand response requires advanced 

metering infrastructure (AMI) which is only now being rolled out. However, in 
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developing context (SA) the idea of the smart grid is still being discussed based 

on its vision which limits it at present at an infancy state with silo experimentation 

(no business case effective yet) (Abu-Mahfouz et al., 2015). What Utilities need, 

therefore, is a way to implement home energy management programs on a 

widespread basis independently of any AMI deployment plans (Szablya., 2012). 

Though most limitations to the SG implementation (technological innovations, 

customer acceptance, utility integration) can at present be overcome, the 

business case for SG suffers from the current status quo. Therefore, the 

implementation of the SG is challenging to an energy industry that lacks 

experience with time-of-use (TOU), critical peak pricing (CPP), and real-time 

pricing (RTP) rate structure which are at the heart of DRM applications over the 

SG. Despite consumer acceptance to energy management, Utility still faces 

implementation related to the maturity of the different standards needed for 

residential energy management systems (Szablya., 2012). Research agrees 

that the lack of a robust and inexpensive two-way communications system 

between the utility and the residential customers represents the main obstacle 

to residential DR implementations. Though the AMI network within the smart 

grid will fulfil this need, the business case still needs to be defined and AMI 

infrastructure deployed by energy utilities.  

  

2.3.3. Smart grid Enabling Technologies   

  

As of the past decade, several emerging technologies and techniques have 

emerged to support the “smart grid” initiative. Amongst many others, these 

techniques include advanced metering infrastructure (AMI), two-way 

communication, and the integration of HAN and HA (Kailas, Cecchi, and 

Mukherjee, 2012b). The AMI refers to systems of measurement that collection 

systems that include smart metering at customer premises, network 

infrastructure between customers and service providers, and data management 

systems to measure, collect, manage, and analyze the data for further 

processing (Paridah et al., 2016b). AMI is the backbone of the SG, enabling 

wider integration of energy and information and ICT (Nomusa, Mudumbe, and 

Ndwe, 2014). That is, AMI and associated technologies enable real-time, 

twoway communication between energy suppliers and consumers. Thus, 

creating a more dynamic control and interaction of the energy flow (Ahmad et 

al., 2016). Consequently, the extensive deployment of AMI has made available 

concrete information about user consumption from smart meters (Yardi, 2015b). 

Furthermore, when coupled with DR, AMI relieves stress from grids at peak 
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times while simultaneously shifting it to non-peak periods providing cheaper 

cost of electricity production (Thomas, Bansal and Taneja, 2014).  Although the 

business case and the required AMI infrastructure are still to be deployed in 

developing context, a ubiquitous, reliable, and secure two-way data 

communications network suitable for DRM that is available to every utility’s 

service area, to the increasing number of homes and is already installed exist. 

That is the: Internet. Through the internet, greater DRM investment return can 

be achieved in larger residences.  

  
Figure 2.7: Residential Energy Network server over AMI and/or Internet Gateway  

Adapted from (Szablya., 2012)  

  

The case is also true for developing contexts, where broadband penetration is 

increasing as DSL, cable modem, 3G/4G cellular communications, and satellite 

services are expanding (South Africa Connect, 2013). Moreover, rivalry 

amongst these different options reduces subscription rates. Therefore, for 

Utilities to leverage the Internet, a dedicated two-way communication platform 

over a home-installed internet-capable gateway is required (figure 2.7). That is 

an internet-connected HAN.  

  

 2.4.  The Internet of Things  

Smart devices with communication and computing capacities, going from simple 

sensor nodes to appliances, and cutting-edge smartphones have become 

ubiquitous around us. According to Stojkoska et al. (2017): “the heterogeneous 

network composing of such objects comes under the umbrella of a concept with 
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a fast-growing popularity, referred to as the Internet of Things (IoT)”. Simply 

speaking, the IoT is a novel world connecting nearly every device and appliance 

to a network. The objects can collaboratively be used to accomplish intricate 

tasks with a high degree of intelligence and flexibility. In other words, the objects 

in an IoT network become “smart objects”. As depicted in figure 2.8, IoT allows 

humans and things inter-connection anytime, anywhere, with anything and 

anybody, preferably via any network, and any services (Razzaque et al., 2016). 

However, IoT is not a stand-alone paradigm; rather it is an assortment of several 

technologies working alongside it. This is accomplished via a unified pervasive 

sensor, data analytics, and data representation via CC as the joining framework 

(Sethi & Sarangi, 2017).   

  

  
Figure 2.8: IoT Definitions adapted from (Razzaque et al., 2016)  

  

As shown in Figures 2.9, the increasing popularity of IoT will inevitably lead to 

innovation in several industries, such as smart grid, smart home, intelligent 

feedback, including new concepts of things technology (Wang, Hu, Zhou, & 

Zhao, 2015).  

  
Figure 2.9: Possible IoT applications adapted from (Razzaque et al., 2016)  
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2.4.1. The case for smart grid infrastructure  

The Smart Grid (SG) is the evolving energy system using ICT tools and 

techniques to make the electric grid perform more efficiently. It possesses 

demand response capacity to help balance electrical consumption with supply 

(Naveen et al., 2016). The integration of ICT and power delivery infrastructure 

into the SG will highly automate the production, distribution, monitoring, and 

management of electric grids. In this regard, the internet has emerged as a 

center of focus for smart grid applications enabling non-AMI interventions which 

offer immediate applications even in developing contexts.  

   

 IoT potential is significant for smart grid vision (Wang et al., 2015). Indeed, IoT 

facilitates electric power management by monitoring and controlling electrical 

energy production and consumption. consequently, it will lead to significant 

savings. According to Yao et al., (2016), improving the reliability and 

sustainability of the SG can be accomplished by easing the perception, 

aggregation, interaction, and visualization of energy-related information in a 

real-time and automated fashion. IoT makes the smart grid smarter by 

integrating intelligent technologies making the SG a network of power systems, 

telecommunication, and consumer devices (Nomusa, Mudumbe, and Ndwe, 

2014).  

  

2.4.2. The case for residential energy efficiency  

When coupled with smart metering, IoT has the potential to transform residential 

places into energy-aware environments. According to Stojkoska et al., (2017), 

there is an increasing interest in the research community to incorporate the IoT 

paradigm in the smart-grid concept, particularly for smarthome applications. 

Madhoo et al., (2015), concurred when stating that Internetconnected devices 

offer opportunities for better communication and efficient management of 

energy usage in the residential sector.  Aside from M2M interaction, the IoT 

paradigm enables a synergistic operation between humans and things (human-

in-the-loop) offering exciting opportunities to different applications (HEM) 

(Stankovic and Fellow, 2014). Indeed, HEM systems enable residential energy 

conservation programs in the smart-grid environment (Yardi, 2015a). In other 

words, numerous DR strategies can be deployed in the IoTenabled SG to allow 

active participation at the demand side, thereby improving the mismatch of 

electricity’s demand and supply (Yao, Shen, and Lim, 2016). According to Rathi 

et al., (2014), the main functionalities of HEM are DRMs, monitoring, and HA by 
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providing economic benefits to both suppliers and consumers via means of 

intelligent equipment or appliances. Therefore, IoT facilitates Utility DRM 

programs in the SG context (Coetzee and Eksteen, 2012). By interrelating 

different technological advancements, IoT enables the development of a 

platform that facilitates and enhances Utility and the user’s effort to save energy.  

  

Loudness and disruption (space and time) are the barriers to technology 

penetration in the household (Nakajima et al., 2008). In this regard, IoT 

enhances the concept of “calm-technology”. Indeed, using wireless network 

sensors (WSN), IoT facilitates the implementation of non-disruptive (near 

invisible) feedback systems although highly interactives. On one hand, IoT 

enables feedback that is independent of time (real-time and accumulated 

feedback). On the other hand, feedback is non-disruptive (space requirement) 

and remote. Therefore, IoT brings energy consumption context information 

anytime and anywhere. Coetzee & Eksteen (2012), refer to these IoT attributes 

as “Mind changing feedback”.  

  
Figure 2.10: IoT Platform for Smart home adapted   
from (Risteska Stojkoska and Trivodaliev, 2017a)  

  

According to the flesh (2010), of the different value add of IoT to society, “Mind 

changing feedback” can induce behavioral changes toward energy efficiency. 

Therefore, Internet-connected appliances that can measure and communicate their 

energy data will give a deeper insight into those appliances' consumption and facilitate 

investment toward efficient measures (Coetzee and Eksteen, 2012). In developing 

contexts, technology affordability and availability, and network connectivity are 
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challenging factors that require attention for successful technological intervention in 

energy conservation (Vine et al, 2013; Nomusa et al, 2013; Madhoo et al, 2015). 

Therefore, the question arises concerning the constituent of an IoT-empowered HAN 

in a developing context. Indeed, HEM systems are either ad hoc or close/uniform for 

the smart-grid vision. It is therefore critical to implement HEMS architectures that are 

opened, internetworked. Moreover, these architectures need to support several parallel 

applications allowing for reliable data/command transfer. According to Li et al., (2015), 

these limitations can be mitigated, and solutions implemented via the Internet of Things 

(IoT) paradigm and linked technologies enable the construction of HEMS that are more 

scalable, reusable, and interoperable.   

  

An effective HAN architecture based on current research focuses on system 

interoperability (protocols and devices) and scalability (new device easily added or 

plug-and-play capabilities) (Viswanath, Yuen, Tushar, W.-T. Li, et al., 2016). However, 

meeting these requirements brings architectural complexities and technology 

affordability challenges. Nevertheless, recent advancement in ICT, ubiquitous 

computing, and embedded technologies brings new design possibilities for HAN via IoT 

(Kim et al., 2015). In this regard, IoT is an enabler for HAN providing intelligent, 

contextual consumption monitoring and home automation (Collotta and Pau, 2015).  

  

2.4.3. Architecture for IoT  

Presently, there is no unique universally agreed-upon architecture for IoT. 

Therefore, diverse architectures have emerged from different researchers 

(Sethi and Sarangi, 2017). Viswanath et al., (2017), described a four-layered 

architecture layer around networking, cloud management, and application as 

shown in figure 2.11   

1. Perception layer senses and gathers data about the environment. This layer is 

also defined as the device Layer made up of two sub-layers. Things layers 

enclose sensing devices, actuating devices, smart plugs, and smart utility 

meters. These smart meters provide data feedback and appliance control. The 

gateway layer connects elements from the thing layer (Sethi and Sarangi, 

2017).  

2. The network layer ensures the interconnection between smart things, network 

devices, inter-connecting the application and the device layer and servers, and 

provides the transmission and processing of sensor data as well (Sethi and 

Sarangi, 2017)  

3. The application layer delivers targeted application services to the users.  
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4. The cloud management layer stores data and retrieves information, handles 

user authentication and data management.  

  
Figure 2.11: IoT communication layers (Viswanath et al., 2016)  

  

2.4.4. IoT enabling technologies   

It will be essential for IoT systems to interact and interconnect to offer the  

“always-promoted, everything-connected” paradigm(Gyrard and Serrano, 

2016). However, the IoT vision brings in numerous challenges regarding 

security, privacy, interoperability, resources and processing constraints, and 

network capabilities of IoT devices(Minoli, Sohraby and Occhiogrosso, 2017). 

Figures 2.12 depict the IoT challenges that attract the most IoT research 

attention.  

  
Figure 2.12: IoT challenges    

adapted from (Abdelsamea, Zorkany and Abdelkader, 2016)  
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A significant limitation of IoT is the communication and networking of heterogenous 

devices within Wireless Network Sensors (WSNs). WSNs are challenging in smart grid 

residential applications introducing several heterogeneous and intelligent devices able 

to operate, communicate and interact autonomously. Thus, interoperability is critical to 

successful IoT applications, mainly in smart home applications enabling devices in a 

network connecting over joint platforms to work together (Viswanath, Yuen, Tushar, W. 

T. Li, et al., 2016). Therefore, IoT interoperability is vital for smart devices to operate in 

tandem. Besides interoperability, another major feature of IoT systems is scalability. As 

an enabler for smart grid applications, it will be critical for IoT networks to be highly 

scalable to enable a progressive penetration of SG services and smart meters within 

existing systems. Amongst other software features (mainly at the application level) 

related to protocol designs should provide space for new devices to be incorporated 

into the system later while maintaining the firm QoS of existing systems. According to 

Khan et al. (2016), a key challenge to provide the above-required feature of IoT is 

standardization. Indeed, IoT must be reliable, easy to use, and secure via the 

standardization of the different layers of its architecture (Pawlowski, Jara, & Ogorzalek, 

2015). Increasing studies among research currently are looking at implementing 

different standards via integration and optimization of IoT enabling technologies. In 

Stojkoska et al. (2017), the author specifies five IoT technologies as indispensable for 

effective IoT solutions, for communication in WSNs, for middleware, for CC, and for 

application. This interaction is further optimized by incorporating mobile technologies 

in the application layer of IoT systems.  

  

2.4.5. Sensor and Embedded systems  

IoT is a highly Heterogeneous (see figure 2.13) network under whose umbrella 

interact with embedded electronics devices, sensor, software, and actuator 

under network connectivity enabling intelligent objects to gather and exchange 

data (Risteska Stojkoska & Trivodaliev, 2017).  

  
Figure 2.13: IoT heterogeneity adapted from (Razzaque et al., 2016)  

  

That is, IoT nodes have actuators, processors, transceivers, and embedded 

sensors. Information sensed via sensing device is sent to computing units 
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through the Internet. Indeed, the sensor operates as an integrated system or 

single-purpose CPU embedded into a larger system to control and monitor an 

environment (Dlodlo et al., 2015). Sensing devices are a critical component of 

intelligent objects. In IoT systems, these devices are constrained in size, cost, 

and power effectiveness (Sethi & Sarangi, 2017). In smart-grid applications, 

current/power transformers have long been used with wide acceptance in 

different contexts. Khattak et al., (2014), used CT and PT sensors to measure 

the consumed power from an Energy utility source. According to Ahmad et al., 

(2016), sensing in the high current application is done via current transformer 

(CTs) (typically above 100 A). The authors argued that the use of CTs in utility 

meters is obvious as these precise measurement instruments.  

   

IoT is a novel method to network devices with constrained memory-low 

computational power, and small power consumption print (Dlodlo et al., 2015). 

In literature, these intelligent devices are known as embedded systems (ESs). 

In the past, ESs were manufactured around 8-bit processors with a small 

memory footprint. But today most embedded devices are built around 32-bit 

processors with several megabytes of RAM (Buttazzo, 2006). Typically, these 

smart devices have the following significant properties in common:  

• Heterogeneous devices – Embedded devices, sensing devices, and 

higher-level computing devices to implement heavy-duty jobs. 

Differences in capacity, features, multivendor products, and application 

requirements define the heterogeneity amongst IoT devices 

(Abdelsamea, Zorkany, and Abdelkader, 2016). Figure 2.13 illustrates 

six different types of IoT devices.  

• Resources constraints - IoT devices are built based on memory, weight, 

and power constraints related to the specific applications. Therefore, 

embedded applications usually run-on smaller processing devices with 

restrained memory and computational power. Resource capacity 

declines (Figure 2.13) from left to right (Razzaque et al., 2016).  

• Real-time limitations - Embedded devices interrelate with the outside 

world promptly. Embedded devices respond to external events while 

performing computational actions within accurate timing restrictions 

(Razzaque et al., 2016).  

• Power constraints: Network communication consumes much power 

from battery powered IoT devices. Thus, it is expensive for ES to 

communicate all the time (Sethi & Sarangi, 2017).  
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Compared to high-level ES such as Beaglebones, Raspberry Pis, or 

smartphones, low-level ES usually have less memory, less CPU, consume less 

power, leverage networks with a reduced amount of data exchange (Roussel, 

Song and Zendra, 2015). According to Baccelli et al., (2018), Low-level smart 

devices rely on three core components:   

• Micro-Controller (MCU) is a sole piece of hardware comprising a CPU, 

a few kilobytes of RAM, and Read-Only Memory (ROM), and its register 

mapped GPIO and memory banks.  

• Varied external devices - Actuators, sensing devices, or storage 

connected to the MCU through GPIO registers to either directly interact 

with the environment or leverage other sensor and actuator devices.  

• Network interfaces (wired or wireless shield) connect devices to the 

Internet, usually through an energy-efficient transmission technology. 

These transceivers are system-on-chip (SoC), or devices connected 

externally through an I/O bus.  

  

 2.4.5.1.  Sensor networks  

WSNs, an emerging area of research consists of smart sensing devices that 

can communicate through direct radio communication. However, the blending 

of real-time features with dynamically oriented tasks together with resource and 

cost constraints generates novel issues to be addressed in WSNs design, at 

different structural levels (Beligianni et al., 2016). Being made of embedded 

devices, WSNs face a lot of problems related to limited computational 

resources, power constraints, low reliability, and higher density of sensor nodes 

(motes). A mote is a node in a WSN that can perform limited processing, gather 

sensor data, and communicate with other connected nodes in a network (Dlodlo 

et al., 2015).  

   

Central to WSN communication in the local network and external world is the 

gateway. A smart gateway can be employed between underlying networks to 

provide communication protocol translation within WSN. Although, the 

Operating systems (OS) are at the heart of the sensor node architecture. That 

is, the OS is critical in ensuing predictability in the run-mode behavior of the 

application, thus allowing an offline guarantee of the expected performance. 

However, typical WSN sensor nodes do not have enough resources to run 
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conventional operating systems (i.e., Linux, BSD, or Windows), thus more 

compact operating systems have been recently designed (Baccelli et al., 2018).  

  

 2.4.5.2.  Real-time operating systems (RTOS)  

IoT smart things are embedded systems that use real-time operating 

systems (RTOS) in their development. Abdelsamea et al., (2016), define 

RTOS as operating systems designed for real-time systems (RTS), or 

devices having time constraints relative to the system output. The authors 

point to the capabilities of RTOSs in providing a collection of services. Task 

management offers multitasking and other significant tools such as Intertask 

harmonization and communication responsible for information delivered 

and events shared amongst system jobs. RTOS streamlines ESs 

development as well as making systems more consistent (Abdelsamea et 

al., 2016). Mainly RTOS are sought-after features such as scalability, 

modularity, compactness meaning it boasts an efficient smaller as well as 

being reliable, predictable, and performant. Lastly, RTOS systems are more 

efficient than non-RTOS ones when dealing with many tasks or when 

handling very complex systems (Abdelsamea et al., 2016). Finally, RTOS 

have nearly continual switching time for several tasks compared to 

nonRTOS ones (figure 2.14).  

  

  
Figure 2.14: RTOS vs. Non-RTOS Systems   

adapted from (Abdelsamea, Zorkany and Abdelkader, 

2016)  

  

As stated by Baccelli et al., (2018), RTOS makes IoT WSNs consistent, effective, as 

well as predictable. It simplifies their system management. On the integration of IoT 

and RTOS, many research directions are followed in the literature. RTOS defines many 

applications system architectures. such integration brings new tendencies in RTOS and 

IoT integration (Abdelsamea, Zorkany, and Abdelkader, 2016). Figure 2.15depicts an 

integration that leverages an RTOS in an IoT implementation at the application and 
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network level bridging the two layers using an IoT middleware. Many researchers 

agreed that such implementations are well suited for smart building applications.  

  
  

Figure 2.15: IoT implementation using RTOS  
adapted from (Abdelsamea, Zorkany and 

Abdelkader, 2016)  

  

Dedicated Operating Systems for the low-memory devices constituting WSNs 

in IoT have been designed, distributed, readily accessible for fairly a long time. 

These range from event-based RTOS for tiny to medium devices (tiny OS) or 

full-fledge RTOS with kernel and multi-threading support targeting higher-end 

devices(Baccelli et al., 2018). However, tiny OS is not necessarily software 

constraints in their implementation but mostly present a low memory footprint, 

therefore able to run on very low memory devices.   

  

2.4.5.2.1. Contiki   

Contiki is a memory-proficient free Operating system for networked 

embedded devices focusing on power-constrained wireless Internet of 

Things devices (Sahana et al., 2016). It offers typical OS elements from 

threads, random number generators, timers, file systems, and others. 

Contiki offers IPv4 networking support and transport capabilities using 

TCP/UDP(Kavyashree, 2018). Furthermore, it supports the IPv6 stack in its 

newest version. ContikiOS has especially been developed for low-powered  

WSN apps (Sesli & Hacıoğlu, 2017). Below are the main features of the 

Contiki OS:  

• Event-driven Kernel:  shrink system size.  

• Pre-emptive multi-threading provision.  

• Simulator: COOJA   

• Written in ‘C’ Language  

Contiki runs within constrained memory boundaries. IPv6 network needs 

less than 10 k RAM and RPL routing needs less than 30 k ROM  
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(Kavyashree, 2018). It operates on a range of Hardware platforms, and it is 

easy to port to new hardware. According to Dwivedi et al., (2009), The 

Contiki kernel, a lightweight event scheduler that posts events to run 

processes and intermittently calls services polling handlers.  

  
Figure 2.16: Contiki OS architecture adapted from (Dwivedi, Tiwari and Vyas, 2009)  

  

Program implementation is activated either by events posted from the kernel or 

over-polling mechanism(Kavyashree, 2018). Once an event has been 

scheduled, the kernel does not pre-empt the execution of the event handler. 

Contiki kernel provides two types of events: asynchronous and synchronous. It 

is based on a hybrid model using an event-based model within the kernel and 

via protothread (an assortment of multi-threaded and event-driven programming 

mechanisms) providing threading as an application library (Sesli & Hacıoğlu, 

2017). The capability to use a unique stack that reduces the needed amount of 

system constitutes the main advantage of the protothread mechanism. This 

feature makes it suitable for hardware unable to handle heap memory allocation 

(Roussel, Song and Zendra, 2015).  

  

2.4.5.2.2.  RIOT  

RIOT is a free operating system developed on a sectional design assembled 

around a micro-kernel by a worldwide consortium of developers (Baccelli et 

al., 2018). RIOT is primarily adapted to low power embedded wireless 

sensors IoT applications. Open to C/C++ programmers, RIOT offers 

multitasking and real-time features needing 1.5 kilobytes of RAM only 
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(Abdelsamea et al., 2016). Indeed, RIOT design was motivated by these 

goals:  

• Minimized memory (ROM, RAM) usage as well reduced power 

consumption.  

• Flexible structures (8-bit to 32-bit MCUs), a wide collection of boards 

and applications  

• curtailed software replication through configurations.   

• Code flexibility, across supported hardware (see figure 2.3.4-6).  

• Basic programmable software platform.  

• Real-time aptitudes.  

  
Figure 2.17: RIOT architecture adapted from (Baccelli et al., 2018)  

  

RIOT kernel provides a comprehensive set of features, including multitasking, 

context switching, event scheduling, inter-process communication (IPC), and 

harmonization primitives (Baccelli et al., 2018). Other components consisting of 

the network stack, device drivers, or apps logic are preserved isolated to the 

kernel. RIOT kernel uses a scheduler built on fixed priorities and pre-emption 

allowing for soft real-time capabilities. Therefore, RIOT offers a clean way to 

order tasks and pre-empt management of low-priority jobs dealing with 

highpriority events. According to Roussel et al., (2015), RIOT beneficial feature 

compared to other RTOS:  

• Efficient, interrupt-driven, tickles micro-kernel  

• Priority-aware task scheduler, offering pre-emptive multi-threading  

• Extremely effective use of concurrent hardware timers offering the 

ability to schedule actions with high granularity. This offers the ability 

to schedule events at 32 microseconds resolution.  

• RIOT stack code is written in C. But, contrary to Contiki, there are 

no restrictions on available constructs.  

• Clean and segmental design, making development easier and more 

productive.  
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The authors above argue that, amongst the feature here above, the first three 

make RIOT a mature real-time operating system. However, RIOT present a 

major drawback compared to Contiki in that it demands a higher memory 

footprint (Roussel, Song, and Zendra, 2015). This can be explained by the fact 

that RIOT Operating System has traditionally been developed for ARM 

hardware and only recently been ported on more recent MCU architectures see 

(figure 2.18 below).  

  

  
  

Figure 2.18: RIOT supported CPUs (Baccelli et al., 2018)  

  

2.4.5.2.3. FreeRTOS  

FreeRTOS is a real-time kernel or scheduler developed for memory 

constraints to run on a low-resources device. Usually a kernel byte-code 

image ranges from 4 kB to 9 kB (Lazic, 2016). FreeRTOS is preferably 

wellmatched for embedded real-time applications using MCU or low-

memory microprocessors (Barry, 2016). FreeRTOS source code is written 

in assembly language and C. It is available on most embedded systems 

architectures as a library to create real-time, multi-tasking, embedded 

applications (Déharbe, Galvão, and Moreira, 2009). FreeRTOS has many 

developmental benefits. It is open source, well documented as well as 

boasts a large community. Besides real-time events the main features of 

FreeRTOS are:   

Task management - In multi-threading application tasks serve as 

computational units. In FreeRTOS, the task hold state alludes to its current 

mode of activity. That is, a task is either running, in a ready state, or blocked. 
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FreeRTOS uses priority (an integer value set a compilation time) to 

schedule task execution from the highest priority setting. (Lazic, 2016).  

• Inter-task Interaction and synchronization - FreeRTOS makes use of 

queues, Semaphores (derivative of queues held when the queues 

are empty otherwise released when the queues are filled). 

Additionally, counting Semaphore control entrees to resources to a 

determined number of running jobs as well as mutexes with priority 

inheritance to avoid the priority inversion problem (Déharbe, Galvão, 

and Moreira, 2009).  

• Memory management - FreeRTOS makes use of three memory 

provisioning models. Static memory allocation for each created task 

has the side effect of memory space wastage. The medium model 

dynamically provisions memory space and uses a best-fit model to 

find unoccupied space in memory. The hardest models use a 

userdefined algorithm for task particular requirements (Lazic, 2016).  

  

2.4.6. Communications and protocols  

The rapid growth of IoT is bringing a ubiquity of smart devices that are 

connecting to the internet over a multiplicity of communication channels and 

protocols (Figure 2.19). Sethi & Sarangi., (2017), list the issue below as the 

main challenges for communication in IoT networks:  

• Addressing and identification - A large addressing space is needed 

as millions of “things” are going to be connected and a distinctive 

address to every smart node will be needed.  

• Power-constrained communication - Interaction between devices is 

a power-consuming task. That is, low power communication 

solutions are required.  

• Routing protocol with low-memory print based on efficient 

communication patterns.  

• Non-lossy and fast communication, and Flexible and Mobile smart 

devices  
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Figure 2.19: Overview of communication protocols and models for IoT  

Adapted from (Elfström, 2017)  

  

Inherent resource constraints of IoT devices, heterogeneity, and scalability are 

limiting factors for the deployment of IoT networks. According to (Ko et al., 

2011), The limiting factor to the development of smart home solutions lies in the 

complexities and cost associated with the integration of intelligent devices. In 

this regard, smart device-producing companies around the world are tackling 

the interoperability challenges to ensure simple and seamless integration of new 

devices to the existing communication infrastructure, mainly the internet 

(Risteska Stojkoska & Trivodaliev, 2017). As the number of IoT devices with 

communication-intensive architecture increases, Viswanath et al., (2016) 

argued that standardization of software protocols is critical in enabling devices 

from different manufactures and features to effectively communicate. To 

support this vision, the Internet engineering task force (IETF) working groups 

have recently undertaken the definition of regular protocols at a different level 

of the network stack to simplify Internet solutions translation through the IoT 

protocol stack (Haider, See, & Elmenreich, 2016). Figure 2.20 displays the 

standard IoT protocol stack and the general Internet stack.  
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Figure 2.20: Standard Internet and IoT protocol stack; in red are the ITEF standards   
modified from (Haider, See and Elmenreich, 2016) and (Elfström, 2017)   

  

  

 2.4.6.1.  IoT protocol stack  

The IoT protocol stack parallels the current OSI reference protocol layers to 

define an internet communication structure for IoT devices targeting the different 

limitations of smart devices and complexities of low-power private networks.  

  

2.4.6.1.1. Network layer   

The internet protocol (IP) stack is typically used in IoT networks to interconnect 

smart things in HAN(s) as well as connecting to the Internet. IP is very complex 

and demands a large amount of power and memory from the connecting 

devices. The IoT protocol stack proposes non-IP networks, which consume less 

power, and connect to the Internet using smart gateways (Sethi and Sarangi, 

2017). IPv6 is considered the best protocol for communication in the IoT 

because of its scalability and stability(Kalmeshwar and K S, 2017). IPv6 over 

Low Power Wireless Personal Area Networks(6LoWPAN), is a very popular 

standard for wireless communication enabling communication using IPv6 over 

the IEEE 802.15.4 protocol(Haider, See and Elmenreich, 2016). Indeed, 

6LoWPANdevices can communicate with all other IP-based devices on the 

Internet via a gateway (WIFI or Ethernet), which also has protocol support for 

conversion between IPv4 and IPv6 as today’s deployed Internet is mostly IPv4 

(Sethi and Sarangi, 2017).  

  

2.4.6.1.2. Transport layer  

The transmission control protocol (TCP) is not suitable for communication in 

resource-constrained and low-power environments as it has a large overhead 
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because it is a connection-oriented protocol. The User Datagram Protocol 

(UDP) is instead preferred because it is a connectionless protocol and has low 

overhead(Kalmeshwar and K S, 2017).  

  

2.4.6.1.3. Application layer  

Inside the IoT protocol stack, the application layer ensures the formatting and 

presentation of data. On the Internet, this layer is centered on HTTP which is 

unsuitable for low-resource environments. indeed, HTTP is verbose and incurs 

large parsing overheads (Sethi and Sarangi, 2017). Shown below is a division of 

potential IoT standards and technologies applicable for HEMS.  

1. Constrained Application Protocol – CoAP, a dedicated web transmission 

protocol for low-resources devices and networks (Sahana et al., 2016). CoAP 

is an alternative to HTTP and offers a request/response interface model 

between use-case endpoints. it provisions integrated service and resource 

finding and comprises important web notions (Viswanath, Yuen, Tushar, W. T. 

Li, et al., 2016). However, unlike HTTP, CoAP provides multicast support as 

well as using the EXI (Efficient XML Interchanges) binary data formatting is 

much more efficient regarding space management than plain text HTML/XML 

(Sahana et al., 2016). To effectively suit constrained-bandwidth communication 

and constrained computational power device CoAP that is simpler and low-

latency as well as being connectionless compared to TCP uses the UDP 

protocol (Lin and N. W. Bergmann, 2016). Being Stateless, CoAP is structured 

around the clientserver architecture model. The model is based on the REST 

architecture which assigns to each resource on a server a unique uniform 

resource identifier (URI). Using GET, POST, PUT or DELETE methods, a client 

can request a server to access a resource (see semantic in table 2.4 below) 

(Madhoo et al., 2015). For security, CoAP employs Datagram Transport Layer 

Security (UDP-based) as its security protocol (Lin and N. W.  

Bergmann, 2016).  

  

Table 2.4: Verbs in CoAP according to RFC 7252 adapted from(Soto, 2017)  

  

Verb  Description  
GET  Retrieves a representation of the resources identified by the URI.  
POST  Request that the representation enclosed in the request be processed. It 

usually results in new resource being created or the target resource being 

updated.  
PUT  Request that the resource identified by the request URI be updated or 

created with enclosed representation.  
DELETE  Request that the resource identified by the request URI be deleted.  
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2. Message queue telemetry transport: MQTT is a lightweight publish/subscribe 

messaging protocol, intended for low-memory and low bandwidth, 

unpredictable networks running over TCP. Subscription’s coordination and 

authentication jobs used by clients are handled by brokers publishing or 

subscribing to a topic (Viswanath, Yuen, Tushar, W. T. Li, et al., 2016). As a 

lightweight protocol, MQTT is suitable for IoT applications. However, being 

based on TCP, the range of IoT applications using MQTT is limited. Moreover, 

its messaging content is text-based which increases its overhead (Sahadevan 

et al., 2017).  

3. RESTful HTTP: compared to protocol or standards, REST is an architectural 

model (Piyare, 2013). RESTful uses the REST principles with its 

implementation resting on the HTTP protocol. Therefore, HTTP implemented 

on REST is light, has basic request presentation, and is easy to implement. As 

stated by Viswanath et al., (2016), REST is suitable for asynchronous 

communication, and end-users’ application which can leverage HTTPS to 

enhance privacy.  

   

2.4.6.1.4. Datalink layer  

Local communication methods are needed for sensing and actuating devices 

distributed at different deployment locations (Haider, See and Elmenreich, 

2016b). According to Ahmad et al., (2016), the successful development of 

IoTcentric HAN platforms relies on communication infrastructure ability to satisfy 

the complex requirements of such networks. However, the complexity of IoT 

HAN’s brings difficulties in selecting appropriate communication architecture 

and mediums because many parameters and requirements should be 

considered depending on the applications.   

  

IEEE 802.15.4 specifies the physical layer and media access control for lowrate 

wireless personal area networks (WPAN). It is the foundation for several higher-

level specifications there are three kinds of common network transmission 

ways: wireless network (Wi-Fi, Bluetooth, etc.), wired network (Ethernet cable 

or fibre cable), mobile communication network (CDMA, GSM) (Li et al., 2015). 

In Table 4 are the various communication technologies appropriate to smart grid 

applications in terms of data rate, coverage distance, and limitation (Haider, See 

and Elmenreich, 2016).  
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Table 2.5: Summary of standard IoT communications technologies.  
adapted from (Haider, See and Elmenreich, 2016)  

  

  

  

2.4.7. Middleware for IoT smart grid applications  

For information fusion and ease the process of IoT application development, 

middleware is highly emphasized and are becoming a widely employed 

approach (Hu et al., 2016). According to Lin & Bergmann., (2016), a middleware 

is a software layer that sits between the low-level layer of devices and the 

highlevel application layer. It consists of a collection of enabling underlying 

software allowing several processes to connect through a network. The authors 

summarized the relationship as three visions of the IoT. That is, things-oriented, 

semantic-oriented, and Internet-oriented. According to its three characteristics, 

middleware in the IoT shall address internet and things issues, handle 

semantics gap, context awareness, device discovery, manage devices 

resources, scalability, big data, and privacy (Elfström, 2017). Via middleware, 

different IoT communication models can be integrated for richer IoT 

applications. However, devices in IoT networks are resource constrained. That 

is, direct internet connections of all devices are unrealistic as such connections 

are costly regarding computation power, bandwidth usage, and equipment cost 

(Christen et al., 2014). This makes persistent internet connectivity on devices 

challenging when trying to maintain device miniaturization in IoT networks. Due 

to such difficulties, IoT solutions need to support different types of devices with 

different resource limitations and capabilities. Figure 2.21 categorizes IoT 
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devices based on cost, memory, communication as well as computational 

power. To achieve this requirement, Razzaque et al., (2016), argued that an 

ideal IoT middleware solution should be able to take advantage and adapt to 

these different types of devices so to make the solution more efficient and 

effective. Perera et al., (2014), further pointed to device granularity (as support 

for lower-level categories) as essential for an ideal middleware. Indeed, 

middleware solutions designed specifically for resource-constrained devices 

are critical to enabling IoT in applications such as smart grid  

   
Figure 2.21: Classification of IoT devices centered on computational abilities, cost, and 

memory adapted from (Perera et al., 2014)  

  

Different middleware solutions have emerged to tackle the challenges of IoT. Li 

et al., (2015), classified middleware into three categories based on their design. 

This includes event-based, cloud-oriented, and Service-oriented. A consensus 

amongst research is that ideal IoT middleware should adopt the serviceoriented 

architecture that allows developers to integrate and deploy various bundles of 

IoT devices as services (A. H. H. Ngu M. Gutierrez and Sheng, 2016). Christen 

et al., (2014), identify middleware within the IoT vision as ideal to achieve 

scalability and supports the high level of interoperability through heterogeneity 

abstraction. According to Li et al., (2015), the application of middleware 

technology can satisfy the necessities for flexibility and reliability in data 

transmission. Lin and N. Bergmann, (2016) argue that all layers (from lower-

level hardware to higher interface) of middleware should implement security and 

privacy protection. According to Razzaque et al., (2016) IoT middleware must 

provide device discovery and management, cloud connectivity (analytics and 

storage), Ease-of-deployment, Programming abstraction, and Popularity. In 

Sethi and Sarangi, (2017) an Ideal middleware offers an API for computation 

tasks, data communication, management, and security and privacy. Figure 2.22 

summarises the middleware role for successful IoT platform implementations. It 

shows the interaction amongst the different middleware requirements, its device 

layer, and different features and services at the application layer.  
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Though many frameworks have large application instances, only a couple are 

open source, service-based, device and communication protocol agnostic 

support low-end MCU and being popular in smart home application with some 

reported success. As the smart-grid initiative is evolving in a developing context, 

a popular middleware must offer the benefit of extension and support as new 

smart grid cases develop (Wang, et al., 2014). In this regard, a couple of 

platforms within the competitive market stands out IoTivity released by the Open 

Connectivity Foundation (OCF), AllJoyn developed by AllSeen Alliance.  

  

Figure 2.22: Middleware requirements enabling interaction from IoT device to application 

layer adapted from (Razzaque et al., 2016)  

  

 2.4.7.1.  Alljoyn  

AllJoyn is a collaborative framework managed by AllSeen simplifying devices 

and application discovery and secured D2D communication (Jerabandi and M 

Kodabag, 2017). The AllSeen Alliance manages the AllJoyn open-source 

project with software code using open standards to enable the interoperability 

of IoT devices (Li et al., 2015). This middleware focuses on interoperability 

amongst IoT devices regardless of the transport layer, manufacturer enabling 

developers to write local/offline applications. Alljoyn embraces the 

servicesoriented architecture and provides features such as Onboarding 

Service to bring a new device onto WIFI network, Configuration Service, 
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Notification Service (Jerabandi and M Kodabag, 2017). An AllJoyn network 

involves AllJoyn Apps and AllJoyn Routers, where every App is connected to a 

single Router. Figure 2.23 depicts a typical network illustrating the two versions 

of the AllJoyn framework. The AllJoyn Standard Core Library (AJSCL) and 

AllJoyn Thin Core Library (AJTCL), intended for resource-constrained 

embedded devices (Larsson and Nimmermark, 2016). The main drawback of 

the AJTCL is that it does not include a router daemon, so devices running the 

thin client must utilize the router of an adjacent AJSCL device.   

  

AJTCL devices, the hosting bus segment, and the routers that handled all 

communication between all apps from a virtual bus are connecting using TCP 

(Wang, et al., 2014). The framework is developed to run on various platforms 

from Linux, Linux-based Android, iOS, Windows, and other lightweight real-time 

OS (Jerabandi and M Kodabag, 2017). AllJoyn presently provisioned ethernet, 

serial, PLC, and Wi-Fi. However, power-constrained wireless technologies, that 

is Bluetooth Low Energy (BLE) or Zigbee are not yet supported (Larsson and 

Nimmermark, 2016).  

  

  
Figure 2.23: AllJoyn Network adopted from (Larsson and Nimmermark, 2016)  

  

  

 2.4.7.2.  IoTivity  

IoTivity is an IoT communications framework that enables smooth peer-to-peer 

connectivity amongst devices irrespective of the underlying OS or protocol 

satisfying several requisites of the internet of things for framework. It enables 

seamless device-to-device connectivity irrespective of OS or communication 

protocol to satisfy various requirements of IoT(Le, 2017). The Open 

Connectivity Foundation (OCF) develops specification criteria, interoperability 

guidelines, and a certification program for these devices(Kang and Choo, 2017). 
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Thus, IoTivity is a free reference implementation of the OCF specification 

maintained by the Linux Foundation(Larsson and Nimmermark, 2016). Although 

OCF intended to provision several vertical domains, so far it is primarily focusing 

on smart home (Lee, Jeon and Kim, 2016).  

  

Several communication technologies (WIFI, Ethernet, BLE, and NFC) are 

supported by the Iotivity framework. The framework is available in many 

languages and supports various hardware platforms and OS; that is, several 

flavours of Linux, embedded Linux such as Tizen, Android, and Arduino(Lee, 

Jeon and Kim, 2016). As depicted in Figure 2.4.7.2-1, the IoTivity reference 

model provisioned both Rich and Lite devices. The service components are not 

supported, and the API only supports C base development. The instances of 

the lite devices are Arduino or ESP32 board(Jerabandi and M Kodabag, 2017). 

Both devices use CBOR to format and provisioned server resources for 

transport(Larsson and Nimmermark, 2016).   

  

  
Figure 2.24: IoTivity Stack and architectures adapted from (Macieira, 2016)  

  

The messaging model of IoTivity is structured around a resource-centered 

RESTful architecture in which everything (sensor, or devices.) is presented as 

resources using CRUDN (Create, Read, Update, Delete, Notify) model to 

handle resources by using CoAP protocol (figure 2.25) (Lee, Jeon and Kim, 

2016). Alshadi & Kinder (2017) and Coval et al., (2017) list the feature below as 

essential building blocks of IoTivity:  
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• Discovery: Collective technique for device discovery (IETF CoRE)  

• Messaging: Support for resource-limited device by default (IETF CoAP) 

also protocol translation using go-betweens  

• Common Resource Model: Real-world objects defined as resources  

• CRUDN: Request/Response mechanism using Create, Retrieve, 

Update, Delete and Notify commands  

• Device Management: Network communication settings and remote 

feedback, reset, restart functions.  

• ID & Addressing: For OCF entities (Clients, Servers, Devices, 

Resources)  

• Security: Basic security for the network, access control based on 

resources, key management, etc.  

  

  
Figure 2.25: Client/server CRUDN interactions: Create, Read, Update, Delete, Notify   

Adopted from (Sun, 2017)  

  

Being a CoAP oriented framework, most control in IoTivity is done mainly on the local 

area network (although cloud extension can be used) via UDP base requests. In figure 

2.26 below, client UDP multicast requests are routed through IP 224.0.1.187 on ports 

5683 and 5684.  

  
Figure 2.26: IoTivity client/server interaction adapted from (Maloor et al., 2015)  
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However, IoT home-related applications require remote access to resources 

and devices. IoTivity has lately released cloud services within its stack to extend 

the accessibility of devices with authentication(Dang et al., 2017). Cloud 

services accessibility requires protocol conversion. IoTivity provides this via 

CoAP-HTTP proxy using the Java API or the more developer-centric NodeJS 

API (Coval and Sun, 2017). The later one, a JavaScript API for OIC 

(IoTivitynode) targets web development via a common RESTful architecture on 

the CoAP-HTTP proxy, therefore facilitating cloud development (figure 2.27).  

  
Figure 2.27: IoTivity-node concept (Macieira, 2016)  

  

The IoTivity mainline stack is not compatible with lower category devices. It 

generally induced a higher processing and memory requirement. However, 

lower categories of device constraints have been vaguely defined because of 

the overwhelming variety of constrained devices that could be connected to the 

internet. To simplify these classifications, IETF has published an RFC 722 

(Table 2.6) that uses three categories for resources restricted devices as 

shown(Maloor, 2017)  

  

Table 2.6: Classification of constrained devices. adapted from (Maloor, 2017)  

  

 Name  Data size (eg., RAM)  Code size (e.g., Flash)  

Class 0, C0  << 10 KiB  << 100 KiB  

Class 1, C1  

Class 2, C2  

~ 10 KiB  ~ 100 KiB  

~ 50 KiB  ~ 250 KiB  
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To cope with constrained devices, the OCF group released IoTivity-Lite (figure 2.28). 

IoTivity-Lite is a small footprint implementation of the OCF specifications (C and Java 

API) suitable for all device classes (~10 KiB RAM) over many OS including Windows, 

Android, and some popular RTOSes (RIOT, ContikiOS, FreeRTOS) (Maloor, 2017). 

Like the mainline implementation (IoTivity) IoTivity-Lite provides a RESTful design, 

messaging using CRUDN operations over CoAP, CBOR for data formatting, and 

DTLSbased security feature leveraging the mbedTLS library(Maloor, 2019). The 

transport layer uses UDP over IP (WIFI and Ethernet) network with development 

underway to extend it to Bluetooth.  

  
Figure 2.28: IoTivity-Lite framework adapted from (Maloor, 2019)  

  

2.4.8. Cloud technologies  

The Internet world is built around computers, centralized software 

infrastructures, or in the cloud (Wang et al., 2016). As stated by Asare-Bediako., 

(2019), the IoT vision is facilitated amongst other technologies by cloud 

computing. The cloud terms networked computers that allocate computing 

power, applications, and services to any computer or device on request (Da Xu 

et al., 2014; Lee and Lee, 2015). In recent times the interaction between IoT 

devices and the surrounding environment has expanded thus generating a huge 

amount of data to be handled (Faruque and Vatanparvar, 2015). Moreover, the 

resource-limited nature of IoT demands expensive hardware and software to 

store the bulk amount of data (Lin and Bergmann, 2016). To avoid these 

limitations, data communications in IoT leverage cloud-based computing 
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infrastructures to accommodate Big Data requirements, provide protocols 

translation, data abstraction, and processing (see Figure) (Beligianni, 

Alamaniotis, and Fevgas, 2016). Initially, Cloud was used for the storage 

functions (Sahadevan et al., 2017). Nowadays, cloud computing provides 

development infrastructure, platform, software, and sensor network, as services 

(Faruque and Vatanparvar, 2015). According to Hu et al., (2017), cloud services 

are divided into three primary categories:  

• Infrastructure-as-a-Service: IaaS offers extendable infrastructure, web 

devices, and storage spaces to users as services on demand. Cloud 

access is delivered through web service, API, command-line interfaces 

(CLI), or graphical user interfaces (GUI) (Naveen. Ing. Danquah. Sidh.  

& Abu-Siada., 2013).  

• Platform-as-a-Service: PaaS offers to its users and customers a 

platform where to create and run their applications. Using PaaS 

platforms, developers can build and offer Web applications without 

directly handling the software requirements (download, installation, and 

configuration) needed. It ensures execution of users’ given task at 

runtime(Jian et al., 2017)  

• Software-as-a-Service: SaaS delivers several kinds of applications plus 

interfaces for the end-users. A Subscription service usage offered by a 

free software dealer is delivered over the network in SaaS. The main 

advantage of this architecture is that an App can be developed and 

deployed without the need to extend the enterprise data(Dlodlo et al., 

2015).   

  

Lately, numerous research ventures have focused on combining Cloud 

Computing and IoT to provide users improved services available anywhere at 

the same time ensuring scalability and security(Vinh et al., 2015). As stated in 

Risteska Stojkoska and Trivodaliev. (2017), the cloud “promises high reliability, 

scalability, and autonomy” for future IoT applications. That is, Cloud-based 

platforms support connectivity to the things making anything accessible in a time 

and space agnostic manner favouring user-friendless using the customized 

front end to access IoT and address the Big Data problems(Khatu et al., 2015). 

Furthermore, the cloud is an enabler for ideal IoT middleware. it can be used to 

extend and provide flexibility to IoT middleware deployment and to enable users 

to get improved understandings from the data collected by sensing 

devices(Sethi and Sarangi, 2017).  
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Numerous IoT cloud suppliers are presently emerging into the market 

leveraging appropriate and explicit IoT-based services(Ray, 2017). AWS, a 

reliable and affordable service, is one such cloud platform. It offers an efficient 

data storage mechanism, access to online servers anyplace worldwide 

leveraging any other application services accessible on the Internet 

(Sahadevan et al., 2017). Other studies have leveraged Google Cloud 

infrastructure offering cloud service to IoT applications (Abdulrahman et al., 

2016). According to Naveen et al., (2013), the Google cloud platform allows 

designers to build and deploy Apps on Google’s cloud infrastructure. It delivers 

disseminated storage and computing services. Google app engine is a PaaS 

providing software developers with a software developer kit (SDK) to develop 

web applications freely. Furthermore, it enables bi-directional massaging 

service between application servers and Android devices using the google cloud 

messaging (GCM)(Abdulrahman et al., 2016). The authors also discussed, 

google cloud datastore, a data storage service with a spread-out architecture 

that varies from the standard relational database regarding the manner it holds 

the non-relational data.  

  

 2.4.8.1.  The case for the smart grid applications  

As depicted in Figure 2.29, the challenges, and prospects of developing the next 

generation smart grids can be addressed partly by Cloud computing. For 

instance, cloud architecture can be used in a smart grid to handle the bulk of 

data processing (Big data problem) (Reka and Ramesh, 2016). Smart grid 

solutions can beneficiate to a greater extent by incorporating technologies such 

as cloud computing (Jose et al., 2016). Regarding smart homes, successful IoT 

energy management and HA applications aside from using middleware and 

gateways in local networks will need to incorporate the cloud as a unifying 

framework (Lin and Bergmann, 2016). An energy management cloud can gather 

consumption usage and then supports remote control and schedule the status 

of home appliances (Lee and Lai, 2016). As stated by Wang et al., (2015), the 

assimilation of WSN and the Cloud brings better flexibility, limitless resources, 

huge computing power, and the capacity to quickly respond to the user. Indeed, 

the cloud is proficient in monitoring, collecting, storing, abstracting, and 

processing data from devices maintaining secured standards. By analyzing this 

data, the cloud can prompt actions according to user-defined rules to achieve 

complex Smart Home control (Lin & Bergmann, 2016). According to Kedar and 

Somani. (2015), Cloud-based HEMS provide a daily demand forecast for the 
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homeowners. Rathi et al., (2014), argued that process history such as real-time 

energy consumption, load management, time-of-use, amongst others, can be 

ported to a cloud database to manage the load and significantly contribute to 

the energy balance in the residential premises (Rathi et al., 2014). That is, a 

cloud platform effectively helps to analyze the state of several settings and 

controls in the home controlling their state anytime anywhere (Dey, Roy, and 

Das, 2016). As far as consumer behavior is concerned, cloud-based services 

allow for smarter decision-making. These complex decisions can be provided 

to things (or humans) allowing them to act and affect the environment (Coetzee 

and Eksteen, 2012).  

  
Figure 2.29: Typical IoT Smart home management model   

adapted from (Risteska Stojkoska and Trivodaliev, 2017b)   

   

  

2.4.9. Mobile Technologies  

The emerging 3G/4G/5G mobile communication technology and the Internet of 

Things yield the potential to effectively influence human existence (Liu et al., 

2017). In this regard, the smartphone is a very handy and user-friendly device 

with a host of built-in communication and data processing features. Recently, 

the increasing popularity of smartphones among people has nurtured an 

increasing interest from researchers building smart IoT solutions (Sethi and 

Sarangi, 2017). Indeed, leveraging data from private or public cloud services, 

third-party services can be delivered to users via mobile App on smartphones 

(Fan et al.,2010). Moreover, mobile devices can be combined with Cloud 

solutions to offer users enhanced services that are accessible anywhere while 

guaranteeing scalability and security (Vinh et al., 2015). As stated by Christen 

et al (2014), Smartphone and mobile technologies are ubiquitous and easily 

operable and have the potential to extend IoT in different application domains 
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and contexts. Dlodlo et al (2015), supported this view stating that in developing 

countries such as SA the high cell phone coverage offers the opportunity to 

bring services to remote locations. A smartphone can play a significant role in 

smart grid effort in managing residential load. According to Dey et al., (2016), a 

smart home is an automated home that relies on home automation leveraging 

amongst other mobile devices to control basic home functions and features 

automatically through the internet.  

   

From the end user’s point of view, Internet-based HA is very convenient, flexible, 

and cheap (Pawar et al., 2016). In this regard, IoT-enabled web 

applications/mobile App on smartphones offer HA front ends to any users from 

any remote location (Korkmaz et al., 2015). Li et al (2015), summarised this 

stating that the combination of smart home systems and mobile devices is 

designed to help people take advantage of smartphones, tablet computers, and 

other mobile devices without restrictions of time and space to operate the 

equipment home. Mobile technology(smartphones) enhances IoT energy 

management activities with data anytime and anywhere (Thiyagarajan and 

Raveendra, 2015). Indeed, remote operation and data access are bringing the 

granularity of IoT context information closer to end-user attention, therefore, 

adding a new dimension to activity such as home energy management. 

According to Viswanath et al., (2016), a personal smartphone running cloud 

services can be leveraged in-home place to control and monitor appliance, 

receive and Utility DRM incentives (e.g., dynamic pricing), and for the user to 

send control commands (e.g., switch on/off plug) dedicated gateway. In HEMS, 

this is typically done via an Android mobile app augmented with a cloud 

messaging facility via push notifications.  

   

Smartphones offer an extra level of sophistication in visualization tools.  These 

displays not only show the overall home raw and tabular consumption but a 

disaggregated appliance level feedback (Liu et al., 2014). This type of feedback 

is mainly useful as it uses intuitive visual user interfaces (UI) to give consumers 

a deeper insight into their load. It enables users to learn more about their 

appliances thus, enabling their instinctive control based on their consumption 

profile (Risteska Stojkoska and Trivodaliev, 2017a). Via cloud technologies, the 

smartphone can enhance the bidirectional relationship between humans and 

objects providing a direct and effective platform for “human-in-the-loop” HEM 

applications (Stankovic, 2014). As stated in Li et al., (2015), the consumer can 
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fully master the real-time and historical information about their consumption by 

accessing the IoT energy management platform through the web, Android (Li et 

al., 2015). Consequently, such interaction will provide feedback that helps 

engage consumer behaviour effectively.  

  

 2.5.  Chapter summary  

In this chapter was discussed the status of the traditional grid, highlighting the 

different challenges that these are facing in handling the increasing energy 

demand within the existing grids, particularly from the residential sector. Then, 

the literature on the smart grid vision focusing on IoT as an enabler for smart 

grid penetration in residential load management was covered. A review was 

performed regarding HEMS backbone (HAN) focusing on their architecture 

software stacks, and devices management. In this regard, the current state of 

the art in embedded design for IoT applications and the different 

implementations of IoT middleware as possible solutions for IoT semantic gaps 

are reviewed. Finally, a review of cloud computing and related technologies as 

enablers for IoT-related interventions for energy management was carried out.  
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 3.  CHAPTER THREE  

Related Works and Solution Specifications  

  

 3.1.  Introduction  

This chapter builds on the literature review in the previous section to identify, 

discuss and compare related works around IoT-enabled smart grid interventions 

in the residential sector. In this regard, the research reviewed and compared 

works focusing on the implementation of IoT-enabling technologies for smart 

grid interventions in homes. For this purpose, the focus is on the 

implementations of sensor and actuator networks (within HAN) managed via 

middleware, augmented with BaaS cloud technologies extended over 

smartphone technologies to develop and implement an interoperable, scalable, 

affordable, and performant platform for smart grid DRM interventions in homes. 

Therefore, in this section, the aim is to review and compare similar works so to 

identify and define the specifications of the technological tools that will enable 

us to develop and implement a platform suitable to this study context.  

  

 3.2.  Related Works  

IoT is a novel ICT paradigm showing interest from various studies regarding IoT 

platforms for HEM. Saga K N & Kusuma, (2019), designed and implemented a 

home automation system that leverages IoT to control most household 

appliances over an easily adaptable web interface. The planned system offers 

great flexibility by using Wi-Fi technology to connect its spread-out sensing 

devices to a home automation server. Such an implementation aimed at 

decreasing the system deployment cost and facilitate future upgrades, and 

reconfiguration.  

  

Also, using a web browser interface from any local PC within the HAN via the 

server IP or remotely using a PC or a mobile device connected to the internet 

one can access the automation system. The authors argued that WIFI was 

selected to increase the system security (via a secured WIFI connection) and 

to improve system flexibility and scalability. Nevertheless, this works does not 

handle the communication between devices on the local network, a single 

server gateway to which home appliances sensors and actuators are 

connected. This setup is archaic and incurs a scalability issue. Furthermore, the 

need to connect to the home gateway via its IP requires private DNS which is 
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restrictive in many contexts as this suggests a payable subscription to some 

ISP. Here the cloud is used as SaaS to forward an email notification to users.  

However, the non-real-time nature and textual format of email limit the depth of 

feedback and analytics that can be done on consumption data. Moreover, this 

work lacks a middleware to manage devices on the network, provide 

interoperability and improve scalability which paramount factor in any effective 

IoT-based HEM platform. Another noticeable issue here is that the 

nonstandardized architecture will increase security concerns and increase 

deployment and maintenance costs.  

  

Kim et al., (2015), proposed an IoT-based DHAN for HEMS platform around ad 

hoc P2P networks between the home appliance and Nomadic Agents (NA’s) 

running on the user smartphone. The authors implemented a middleware 

(OSGi) to manage and provide service within the HAN energy saving (sensing 

and actuating) device (ESD) and the user smartphone working as a client or 

dynamic gateway over Bluetooth. In their work, the authors proposed a platform 

that aims to mitigate the static architecture of ZigBee based HAN composed of 

several fixed GWs gateway ‘always on’ using ad hoc Bluetooth based networks 

connecting a nomadic GW to a home appliance to transmit consumption data 

to a central management server (CMS) that aggregate the consumption of 

several households and provide analytics on user consumption. However, the 

work presented here add a level of dependency to the HAN as the smartphone 

become a network resource. this implies that the cell phone because a central 

device needed to be on during critical communication session. In this regard, 

smartphone power consumption becomes an important factor as wireless 

communication and the different energy services (provided via the nomadic 

agent) add additional load to an already application-intensive device. This may 

incur discomfort to the user, which must be notified and constrained to maintain 

an acceptable battery level. Although the use of smartphones is motivated by 

their ability to support emerging wireless technologies, the range limitations and 

signal interference of Bluetooth technologies in domestic places still required 

some level of signal amplification and relays for effective communication and to 

avoid data losses. Moreover, the lack of an emerging middleware but instead 

an architectural dependant does not present any form of protocol integration for 

interoperability which is a requirement for IoT platform for HEMS. Furthermore, 

this works lacks the cloud interface that provides energy management 

applications at anytime, anywhere monitoring and appliance control constituting 
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a powerful motivator for HEMS efficacity and acceptance and cost of these 

systems.   

  

In Beligianni, Alamaniotis, & Fevgas, (2016), a software architecture for efficient 

and secure energy management within the smart grid that leverages the recent 

developments in Smart Grid, IoT and Fog and cloud computing to deliver energy 

services load and price forecasting as well as handling the big data challenges 

of IoT and latencies and cost of cloud infrastructure is proposed. At the heart of 

their platform is the IoT gateway, design over a low-cost embedded 

device(raspberry-PI) running the Eclipse Kura framework, a scalable free IoT 

Edge framework built on Java/OSGi used as middleware to offer hardware 

abstracting (protocol interoperability) via an API that gives access to the 

hardware interfaces of IoT Gateways. Moreover, it connects the gateway to 

cloud infrastructure (edge and cloud platform) via the Mosquito MQTT. This 

enables the platform to push the stream of smart meter data to a message 

broker at the edge for analytics and knowledge extraction and further, push the 

aggregated data securely to the cloud preserving privacy. In accordance with 

the current trend in an ideal IoT platform for energy management, this work, 

make used of Gateway, cloud (over fog computing) infrastructure to provide 

energy service to the consumer. However, less attention is given to the 

management of HAN network devices as related to devising management, 

discovery, and security. Furthermore, the middleware being used required a 

higher category (see figure 2.3.6.5-1) embedded systems that can run the Java 

Virtual machine (JVM). This has the drawback of mitigating the expected 

miniaturization of IoT implementation, increase cost, and limit scalability.   

  

Korkmaz et al., (2015), proposed a HA system leveraging emerging open 

technologies providing a platform for multi-home automation via enabling 

opensource cloud infrastructures and web applications running on user’s 

Android smartphones as well as via a website. The focus of the authors was to 

offer cost-effective home automation as a service via open-source cloud 

services (GCM) and seamless integration to consumer life mainly using 

ubiquitous mobile technologies. Although this work integrated IoT enabling 

technologies (cloud services, smartphone for feedback, and remote 

management), the system architecture used here is not participating in the 

standardization effort for ideal IoT implementation. Moreover, the lack of 

middleware to manage local devices on the HAN further heterogeneity and 

scalability within this implementation. This is further highlighted in that the local 
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hardware within the HAN, mainly consists of the i.MX53 card, a 1 GHz ARM 

cortex-A8 processor, and its 1GB DDR3 main memory connect to the 

appliances either via its wired or wireless interfaces. As shown in figure 2.3.6.5-

1, this hardware sits within the higher category of IoT devices, thus limiting 

miniaturization and increasing deployment costs.   

  

Lee and Lai, (2016), propose an energy management cloud platform to provide 

energy management based on the Software-as-a-Service (SaaS) cloud model. 

To enhance interoperability, the authors propose a universal smart energy 

management gateway based on a free Internet of Things (IoT) framework 

named IoTivity to monitor and manage IoTivity-compatible devices. In this work 

the author used the IoTivity middleware to abstract from the monolithic, ad hoc 

implementation that locks traditional HEMS to private protocol or mechanism 

limited the choice and spectrum of possible devices to implement IoT HAN. 

Therefore, the main goal of the author here was to tackle of ever so common 

issue of interoperability and device management within IoT based HAN network 

provided a completed architecture that handles the platform requirement for 

data communication and management from appliances on the HAN to services 

provided in the cloud for local or remote management of consumer load. 

However, because IoTivity is CoAP based framework, the Authors proposed a 

REST framework for bridging CoAP to HTPP to access their dedicated cloud 

infrastructure. For further scalability and web interoperability as required for 

ideal IoT, energy management platforms using popular open-source REST API 

and cloud services facilitate grid service interfacing, reduce the cost of 

technologies, therefore increasing the penetration of such platforms in homes.   

  

Al Faruque & Vatanparvar, (2016), proposed a fog computing-based platform 

for energy management focusing on interoperability, scalability, adaptability, 

and local and remote monitoring while leveraging open-source 

software/hardware featured to allow users to implement the energy 

management with the customized control-as-services. The authors focused on 

facilitating the deployment of their platform in residential places by mitigated the 

cost associated with computing devices, software stack, and communication 

devices. Thus, they focus on using popular, open-source hardware within their 

HAN, in this regard, The Raspberry PI acting as a home gateway and TelsoB 

mote running TinyOS and communicating over wireless Zigbee or Bluetooth or 

wired Ethernet and serial have been used as network devices. To support 



  59  

device-to-device communication, security, and device management within their 

heterogeneous platform, the Author used the Devices Profile for Web Services 

(DPWS) middleware centered on SOAP-over-UDP, SOAP, WSDL, and XML 

schema to abstract the management of HAN devices and provide web 

connectivity. Through this platform, the authors proposed HEM as a service 

(monitor, control) on Fog via the HEM control panel forwarding DR signal to a 

local home gateway and provided a web page as front-end to users. Though 

the Author advocated the use of a middleware within the local HAN, the use of 

the home gateway for protocol translation complicated network architecture, 

and the cost of hardware has such gateway are generally high-end devices 

requiring more processing power thus consuming more power themselves. 

Moreover, A Web interface is provided based on the local router DNS info. This 

limits operation on the local network or increases the cost of implementation 

when an ISP subscription is required for remote control operations. 

Furthermore, the cloud is missing as fog only processed that on the edge. Fog 

computing transfers the paradigm of cloud computing further to the edge of the 

network. It is a platform that may also offer IoT with the ability of data 

preprocessing while meeting real-time requirements. Fog needs to include 

cloud for increase servicing in IoT platforms and increase acceptance of IoT 

platform as remote, anytime anywhere monitoring control is made possible.   

  

Sahana et al., (2016), proposed a sample implementation for home energy 

management and control providing consumers with a web-based interface to 

observe the power consumed by many appliances leveraging the internet to 

control home appliances from anywhere in the world. this is achieved by 

leveraging the Internet of Things protocol stack comprising emerging IETF open 

standards-based such as 6LoWPAN, RPL, and CoAP to allows unified 

integration of the appliances at home to the current internet infrastructure. In 

this work, the author develops a HAN based on low-cost, popular hardware and 

software technologies while proposing an architecture that offers interoperability 

and scalability. The author used 6LowPAN wireless technologies to handle 

communication within the HAN. To reduce the implementation cost of their HAN, 

an embedded device has been used. The TI CC2538, an ARM Cortex-M3-

based MCU system with up to 32KB on-chip RAM and up to 512KB on-chip 

flash running the contikiOS communicated via 6LOWPAN have been used to 

sense and control home appliances. a BeagleBK, running Ubuntu 14.04 acts as 

a gateway connecting the 6LoWPAN network to an Ethernet network. Although 
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this work incorporated popular and studied IoT technologies, it still lacks the 

enabling technologies to make it scale to different households and interface to 

grid services outdistancing the security issue related to such a monolithic 

implementation. According to the analysis of the existing smart home platform 

above, it transpired that the platform for these systems is ad hoc or 

close/monolithic. That is each system is on a single system without architecture 

that embedded recognizes IoT enabling technologies from WSN to cloud-based 

services accessible on user mobile devices.   

  

To achieve the above demand, Li, Nie, Chen, Zhan, & Xu, (2015), proposes a 

framework for energy management applications running on a home gateway 

and energy service systems for multi-homes running on Azure cloud leveraging 

dedicated 3rd party energy service providers. Each home is with a gateway 

(Intel(R) Core (TM) i3-2100 CPU) powered with Microsoft Lab of Things 

(HomeOS) middleware. Windows Azure cloud technology is used for data 

management to realize multi-family management. For front-end requirements, 

the Author provided an Android mobile terminal and Web using 

publish/subscribe MQTT model and azure push notification. The MQTT 

message middleware enables the realization of a reliable diffusion of data and 

command across the sensing layer, transmission layer, and application service 

layer in the third-party cloud. The authors aim to abstract away the limitation of 

monolithic IoT platforms by providing an architecture that incorporates within 

layers the different enabling technologies of IoT in the smart grid context. Using 

the cloud as both SaaS and PaaS the author proposed a platform that scales 

and fits a diversity of deployments. However, the use of the LoT middleware 

requiring the Homes to increase the processing power, power consumption, and 

cost for each home gateway. Being a gateway dedicated middleware, LoT 

(HomeOS) limits the miniaturization of devices in the HAN increase the cost of 

this implementation. The Use of MQTT instead of the more popular CoAP for 

communication on HAN is another limitation for interoperability and scalability.   

  

Viswanath et al., (2016), propose an IoT platform targeting residential 

consumers leveraging smartphone and cloud technologies to offer Smart grid 

empower energy management (DRM signal) and home automation as services. 

In this regard, the authors proposed the IoT elements, protocols, and the testing 

setup for IoT context together with the software designs that have been used 

for consumers’ energy usage patterns feedback and control focusing on the 
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response time and the ability of the platform to handle many users. To 

accomplish this, the authors propose, a UHG responsible for the transmission 

of collected data to the cloud via the network layer. This is accomplished using 

the popular Raspberry pi computer, an IP-based system and runs in HTTP and 

XMPP protocols, used as a translator to interact with other non-IP-based 

devices in the system. Openfire server as a middleware on the Gateway to 

provide uses pub-sub mechanism to push information to subscribers. To display 

real-time information (e.g., Dynamic Pricing) and for the user to send control 

command (e.g., switch on/off plug) to the UHG, native push to smartphone 

devices through GCM was implemented in the testbed and using RESTFUL 

HTTP periodic uploading of sensor node data is done from the gateway to the 

cloud platform. XMPP is TCP-oriented which expensive for lower-end device 

notwithstanding that it does not recommend with IETF standard for IoT. 

Moreover, XMPP is a heavyweight protocol streaming XML (with less 

interoperability than JSON) with a specification that has no complete 

implementation yet. Openfire essentially lacks functionalities such as discovery, 

provisioning, security which IoT middleware provides. Also, in this application 

security and permission is solely on the cloud this All of this is provided by 

middleware. Furthermore, Openfire is not supported on lower-end devices thus 

increase the cost.  

  

 3.3.  Solution Specification  

An energy management cloud platform is proposed to provide energy 

management based on the Software-as-a-Service (SaaS) cloud model for 

deploying energy services and BaaS for platform backend requirements. The 

proposed architecture is based on standard open-source protocols, services, 

and development tools. An overview of the proposed architecture is depicted in 

Figure 3.2. A three-layer platform consisting of a HAN gathering consumption 

data and controlling appliances, a home gateway (D2D and D2C connectivity), 

cloud computing, data storage was proposed. This architecture further offers 

services for both home gateway and consumer over the third party as well as a 

smartphone App as user front-end for enhanced feedback. Additionally, the 

cloud provides an interface to smart grid services as there are made available 

by smart grid third parties.  
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3.3.1. Software components  

To guide the development of the testbed, a certain number of technologies 

facilitating IoT application development and deployment in smart homes will be 

adopted. Adopting state-of-the-art solutions, the wok targets open-source 

software technology to alleviate the complexity of proprietary software and the 

related cost.  

  

 3.3.1.1.  Middleware for the platform HAN management  

As to focus on research goals, the IoTivity platform will handle local networks' 

interoperability, scalability as well device management complexities using the 

IoTivity framework. Therefore, IoTivity will handle resource discovery, device 

management, protocol conversion, and security requirement for the platform. 

IoTivity-Lite the OCF release for the constrained devices was recently released 

primarily devices within category 3 (Figure 2.21). Therefore, an adaptation or 

port needed to be developed to support lower category devices.   

  

3.3.1.1.1.  IoTivity-Lite arduino port  

To sustain the goal of low cost within the platform, IoTivity-Lite framework was 

ported to lower category (lower cost) devices (category 1&2). For this, the 

popular Arduino MCU and the Espressif ESP32 Wi-Fi MCU were targetted. 

However, the Port of the IoTivity framework, rely on OS running on the MCU. 

Based on the literature review on RTOS and the state-of-art FreeRTOS and 

ContikiOS were considered for being popular RTOS for low power, low-cost 

MCU. ContikiOS was used on the Arduino MCU because of its low memory 

footprint and simplicity in developing firmware that is seamless to IoTivity-Lite 

integration which uses ContikiOS itself within its stack. The ESP32 MCU, 

boasting a higher memory footprint of ~500Kbytes of RAM. In the case of the 

ESP32, an adaption of the Initial IoTivity port based on the FreeRTOS OS was 

used. Figure 3.1 below, shows the architecture for IoTivity-Lite Arduino port.  
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Figure 3.1: Porting IoTivity-Lite to Arduino MCU adapted from (Maloor, 2019)  

  

3.3.1.1.2. High-level devices management and cloud connectivity  

The OCF IoTivity group avails a JavaScript port of the IoTivity stack running on 

the Node engine or IoTivity-node for a high-level device. Using the IoT-rest-

APIserver, a NodeJS REST server for HTTP-based communication using 

IoTivitynode as a client, a device-to-cloud interface was established with the 

local CoAP devices offering those services or remote access on client App 

(mobile or desktop app). Connecting is provided using the IoTivity-node 

empowered IoT-rest-API-server on the gateway device (Raspberry PI).  

  

3.3.1.1.3. Communication technologies for the proposed solution  

In the HAN communication between IoTivity devices is around Wi-Fi primarily. 

However, Ethernet is used for demonstration purposes as the Wi-Fi shield for 

Arduino was not available. Wi-Fi and Ethernet are a communication technology 

that is ubiquitous to residential places. Thus, leveraging ICT infrastructure in a 

domestic environment, WSN can be simplified and made cost-effective. Wi-Fi 

decreases the deployment cost and will increase the ability of upgrading, and 

system reconfiguration, and high-end security mechanism. WIFI is selected as 

being advantageous due to its higher bandwidth, large coverage, easy 

expansion (M. Khan, Silva, & Han, 2016). Communication within HAN devices 

on the application layer is handled by the middleware using CoAP over UDP. 

RESTful HTTPS is used for cloud communication, publish, and subscribe via 

Parse server Live Query mechanism over Back4App BaaS tools.  
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 3.3.1.2.  Cloud deployment for the proposed solution  

In this work, the cloud is mainly used as Software-as-a-Service (SaaS), for 

energy data storage and as an energy services provider for energy monitoring 

and the management and control of appliances on the platform. Based on the 

literature, design requirements, the open-source Parse Server was used. Parse 

was used as a server to provide a RESTful API for a plethora of devices on the 

different programming languages. Parse server is flexible and can be hosted 

and migrated from one cloud platform to another. Though Google Cloud and 

Amazon are the most popular in terms of cloud Hosting, there are not native 

Parse server environments for pub-sub mechanisms which central to IoT 

platforms for smart home applications. The back4App cloud platform was 

chosen to provide computing, storage (mango DB), server management, Live 

Query, cloud background Jobs and third-party login (i.e., Facebook), and mobile 

push notification (mainly Android) all as BaaS for an IoT platform centered 

around a mobile or web application.  

  

 3.3.1.3.  Mobile development for proposed solution  

Smartphones are central to the front-end requirement of an ideal IoT platform 

for the smart home. In the implementation, smartphone is used for energy 

monitoring (enhanced feedback) and HA anytime and anywhere as well as to 

display smart grid incentives when the case is made operational within the 

South African context. In this regard, an Energy App for Android devices is 

developed. the App is cloud-based using Parse server BaaS and provides both 

energy monitoring and HA using Live Query and Android Push notifications 

mechanism. Again, being a Backend server for mobile application parse was 

thus used as the interface between the front-end and home cloud services. 

Android development was performed on Android Studio using Parse Android 

API and the Java programming language.  

  

 3.4.  Chapter Summary  

In this chapter was covered the specifications that govern the architectural 

designs and experimental work for the platform. The research went through the 

rationale behind the selection of the different tools for the proposed solution as 

the review in chapter 2. Moreover, it covered the new solutions that were 

developed or adapted to satisfy the research objectives.  
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Figure 3.1: Proposed System architecture 



 

  65  



  68  

 4.  CHAPTER FOUR  

PLATFORM DESIGN AND DEPLOYMENT  

  

 4.1.   Introduction  

This section describes the design and deployment of an experimental platform 

for energy management. Leveraging this platform, an energy application on an 

Android smartphone will be developed, tested for energy monitoring and HA. 

Integrating cloud computing, pub-sub mechanism, and cloud Job, and the HAN 

gateway in a home, a peak load management algorithm is implemented to 

manage consumption in the residential place. The architecture for the 

experimental platform followed by a rundown of its core components as well as 

the case study implementing the different objectives for the research are 

presented. The evaluation of the overall experimental platform according to 

research questions and objectives will be based on a methodology, relying on 

scenario testing and response time throughout the entire architectural layers. 

Secondly, are presented the results from the different experimentations and 

provided a throughout the discussion of observations made.  

  

 4.2.  Equipment for an experimental platform  

The experimental platform leveraged open-source embedded devices with wide 

support (development libraries) to facilitate an efficient design of the testbed. 

The hardware is comprised of server device interfacing sensing devices (CT 

and PT sensor) to provide consumption data in form of current and power 

consumption of different appliances or groups of appliances. The system will be 

composed of a single gateway device interfacing with the home router. This 

simplifies the security aspect of the system. All devices on the HAN, are 

selected based on their support for the IoTivity framework, flexibility in firmware 

design, availability, and affordability.  

  

Table 4.1: Device used for IoTivity network (HAN)  

  

  

  

As shown in Table 4.1 above, The HAN uses Arduino mega 2560 and Arduino  
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Due providing connectivity via Wi-Fi. However, for the reason of availability and  

affordability, Ethernet was used in this implementation over the Wiznet W5500 

shield. Nevertheless, Wi-Fi was used to provide connectivity for the ESP32. To 

provide a sensing and actuating interface, design and manufacturing are carried 

out for plug-play shields comprising current and voltage transformers. When 

assembled to the Arduinos and ESP32 this constitutes the IoTivity-Lite powered 

local server handling resources such as power and current information from 

household appliances. IoT HAN around the Raspberry Pi takes advantage of a 

large developer community and open-source software. The Raspberry Pi is well 

supported by IoTivity for constrained and Rich devices making it ideal for 

interfacing constrained device networks with the internet. Moreover, its small 

size makes it non-invasive and cost-effective. The Raspberry Pi 3 as the 

platform HAN’s gateway is used.   

  

4.2.1. Platform motes shields  

The HAN’s devices are augmented with motes designed and manufactured 

(Altium designer) as plug-and-play shields. These shields provided the 

sensing and actuating interface to existing home appliances via noninvasive 

and safe electronics devices. The design was carried out as shown in figure 

4.3 and figure 4.4. The completed manufactured and assembled motes are 

shown in figure 4.5.  

  

 4.2.1.1.  Current and voltage sensors  

An electric signal, either an analog voltage, electric current, or digitally encoded 

output is generated proportional to the current that flows through a conductive 

element for the current sensor. According to Blanco-Novoa et al., (2017), there 

are mostly four types of current sensors, that is, Ohm’s law sensor, sensors 

based on Faraday’s law sensors, magnetic field-based sensors, and 

Faradayeffect sensors. For the testbed, the magnetic field-based sensor in the 

Current Transformer (CT) as well as voltage transformer in the form of AC-AC 

transformer, depending on availability will be used measurement. In this regard, 

the current sensor from YHDC, a Chinese company heavily involved in electric 

power equipment is selected. The SCT-013-030, an inductive, ferrite split-core 

current transformer supporting a primary current of up to 30 amperes (RMS) 

with a proportional output voltage of 1V (RMS) is provided. The sensor used 

has an embedded burden resistor of 62 Ω outputting a voltage proportional to 

the current. The sensor output the voltage with an error tolerance of 1% of the 
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measured value and is equipped with an audio jack plug for interfacing. 

According to Miron-Alexe, (2016), the SCT-013-030 is a robust and suitable 

sensor for industrial and household applications not requiring a high grade of 

accuracy.   

  
Figure 4.1: Current Transformer (CT) adapted from (Miron-Alexe, 2016)   

  

Figure 4.1 represents an SCT-013 split-core transformers with a clamp-on 

mechanism, describing its physical characteristics and its electrical schematic. 

On the electric schematic, Ip is the current through the primary winding and RL 

is the embedded burden resistor whereas Vout is the output voltage of the CT 

(1Vrms). The voltage transformer (figure 4.2) from Mascot rated 230-240 V AC 

at 50 Hz outputting a 12 V/500 mA AC is used to measure the mains voltages 

for power calculation. According to Wall, (2016), this transformer exhibits a 

phase lead changing from 4° at the lower edge of the supply range up to 7½° 

at the upper limit.  

  
Figure 4.2: Mascot ac-ac 230V/12V 500 mA voltage transformer adapted  

from (Wall, 2016)  

  

Figure 4.3 depicts the schematic circuit for the sensing system. For voltage 

measurement, the 12Vac signal from the transformer is conditioned for the 

Arduino ADC and stepped down using the voltage divider (R7 and R8) which 

limits the voltage at A1 to 1.091Vac (RMS). The voltage follower based on the 

high impedance op-amps (LM358) is used to condition the before the ADC 

input. The LM358 input for voltage reading using a DC offset that lifts the signal 

reference to 2.5V via the voltage divider (R9 and R10). For voltage 

measurement, the LM358, for the high impedance it offers at the ADC input, 

thus increases stability and accuracy of the reading at A1. For current sensing, 
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the LM358 simplifies interfacing with the MCU by eliminating the negative part 

of the signal outputting a half-wave rectified signal (CT2).   

  
Figure 4.3: Schematic defining the wring of the SCT-013 current sensor  

Adapted from (Miron-Alexe, 2016) and (Sutisna et al., 2019)  

  

The main advantage of this circuit is in the stability and accuracy of the current 

reading. However, it was noted that the prior is only true for symmetrical ac 

signal. Moreover, measuring low current is not ideal with this circuit. Since the 

op-amp gain is 1, low voltage (μV) is directly read by the ADC which zeroes 

such a low signal through the 10 bits ADC resolution on the Arduinos. To 

counter that, a 2.5V DC offset was added to the current signal to obtain a full 

wave rectified signal (CT1). The sampling graph for both the half-wave and 

fullwave current sensing can be seen in figure 4.6. The voltage and current 

reading from both the CT and AC-AC adapter is a sine wave whose root mean 

square (RMS) value can be obtain from equation (4.1) (Serov, Serov and 

Makarychev, 2019). Thus, the RMS is computed on each signal at instant t while 

sampling the signal during an interval T. In Equation (4.1), t0 is the time instant 

when sampling begins.  

 𝑆𝑟𝑚𝑠 𝑑𝑡                                                       (4.1)  

Where 𝑆𝑟𝑚𝑠 can be either RMS current  𝐼𝑟𝑚𝑠 or RMS voltage𝑉𝑟𝑚𝑠. Since ADC are 

used to convert analog signal into series of digital samples. The measurement 

based on averaging the squares of the ADC input signal samples is the mostly 

= √ 
1 

𝑇 
∫ 𝑠 2 ( 𝑡 ) 

𝑡 0 + 𝑇 

𝑡 0 
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used. From this method, the RMS value is computed as in equation (4.2) after 

discretization of equation (4.1)(Albu and Heydt, 2003).  

 𝑆𝑟𝑚𝑠 𝑆𝑛
2                                                                  (4.2)  

  

Where N represents the number of samples for the period T. based on work 

from (Learn | OpenEnergyMonitor, 2021) related to resistive load, using both 

instantaneous current and voltage, the real power and apparent power were 

calculated using equations (4.3) and (4.4).  

 𝑃𝑟𝑒𝑎𝑙 𝐼𝑛 × 𝑉𝑛                                                             (4.3)  

Where N is the number of samples over period T and 𝐼𝑛and 𝑉𝑛 the instantaneous 

current and voltage.  

𝑆 = 𝐼𝑟𝑚𝑠 × 𝑉𝑟𝑚𝑠                                                             (4.4)   

 4.2.1.2.  Actuators  

Relays provide actuation of appliances via the mote. According to, BlancoNovoa 

et al., (2017), using a relay, appliances can safely be controlled via the electrical 

insulation that can be created between a low-voltage circuit and higher voltage 

circuit to which High current devices are connected. Among the different types 

of models, considering the current rating of the appliances in the case study the 

OMRON, G5LE-1-E 12VDC at 16A 250V AC relay is selected. This relay 

tolerates a maximum switching power of 4 kVA and has a low-coil power 

consumption(400mW) as well as a low price (around R35/units). Moreover, the 

small form factor of this relay makes it suitable for small form PCB design thus 

increasing the miniaturization of the motes.   

  

The actuation circuit uses a 2N2222 NPN transistor to actuate the high-power 

relay via a pulse signal from the MCU. A 470 μf capacitor is used to mitigate the 

wear of the mechanical closing circuit by adding a time delay. A red led indicated 

the status of the relay(on/off). See a complete schematic and PCB design as 

well as the manufactured and assembled motes for the Arduino and ESP32 

based shield in Appendix A.  

= √ 
1 
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Figure 4.4: Schematic describing the actuation within the mote shield  

  

The Final schematics used to design and manufacture the PCB(s) for the 

sensing and actuating shields (Appendix B, figure B.1) are shown in Appendix 

A, figure A.1 and A.2. The PCB were design on Altium designer 17 using the 

two layers (top and bottom) method easing routing and enabling larger track 

size for power lines. This structure enables isolation of current and voltage 

signals from noise (High power relays) while allowing for faster and better heat 

dissipation from active components. The Arduino based PCB shield were 

physically cut out to stack up above an AVR or ARM board. All components are 

DIP (through holes) as the component were to be mounted and soldered by the 

researcher.   

  

 4.3.  Platform system integration  

Before discussing the flow of information within the experimental platform, the 

final makeup of the power sensing and actuation motes within the platform is 

discussed.  

  

4.3.1. Platform motes Hardware Integration  

Figure 4.5 shows the different components of each type of motes used in the 

experimental platform in the HAN. On the left is the Arduino-based mote 

integrating the relays for actuation, the AC-AC adapter, and the Audio plug for 

current and voltage measurement on the data acquisition shield. On the right is 

the ESP32 based mote using an integrating Audio plug for current sensing. This 

mote can control up to two appliances with a current rating of up to 20A AC.  
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               Figure 4.5: Final assembly and main component for platform mote, left) Arduino based mote, 

right) ESP32 based mote  

  

4.3.2. Sensor Calibration and Signal conditioning  

Before deploying the mote, a calibration process was followed to generate the 

graphs in the figure below for the current signal read from the SCT-013 and a 

voltage signal from the AC/AC adapter. The raw signal from the SCT-013 is 

read as a sinusoidal half-wave (yellow line). The RMS value from equation (1) 

is computed after calibrating the input using equation (4.5) used to compute the 

conditioned current signal.  

  
Figure 4.6: Voltage and current signal calibration and conditioning  

  

The discretized ADC reading from the CT sensor signal is used to condition and 

filter out the actual instant sample value. Based on works from (Learn | 

OpenEnergyMonitor, 2021)  equation (4.5) and (4.6) were formulated. Here, 

counts represent the MCU ADC equivalent reading for the current signal, 

𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠 is the counts equivalent to the DC offset (2.5V DC) that is subtracted 
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to center the waveform around 0V. 𝑉𝑟𝑒𝑓 represent the MCU ADC reference 

voltage. This value is measured for each type of MCU (4.984V for  

Arduino AVR and ~3.3V for DUE and ESP32). 𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡𝑠 is the MCU ADC full 

counts (1024 for AVR and 4098 for DUE and ESP32). 𝐴⁄𝑉 is the CT conversion 

ratio (30 𝑎𝑚𝑝𝑠⁄𝑣𝑜𝑙𝑡). 𝐼𝑟𝑚𝑠 calculated from equation (4.1) is thus the CT primary 

coil current. That is the connected appliance consumption.  

𝑉𝑟𝑒𝑓 

𝐼𝑚𝑎𝑖𝑛𝑠 = (𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠) ×  × 𝐴⁄𝑉                                  (4.5)  

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡𝑠 

  

The red curve in figure 4.6, represents the AC/AC adapter input at the MCU 

ADC. As shown in this figure the sinusoidal full wave is centered about the DC 

offset which read 512 counts (see grey curve). However, this value is initially 

sampled by disconnecting the AC/AC adapter socket from the ADC interface 

and stored as a constant 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠.  

𝑉𝑟𝑒𝑓 

𝑉𝑚𝑎𝑖𝑛𝑠 = (𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠) ×  × 𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑛𝑠𝑡                         (4.6)  

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡 

  

𝑉𝑔𝑎𝑖𝑛 

𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑢𝑛𝑡 = 𝑉𝑚𝑎𝑖𝑛𝑑𝑒𝑓 ×                                                    (4.7)  

𝑉𝑐𝑎𝑙𝑖𝑏 

  

The Voltage signal from the AC/AC step-down adapter is sampled and 

converted to useful units based on equations (4.6) and (4.7). In (4.7), the ADC 

counts are filtered by removing the DC offset (~ 2.5V or 512 ADC counts). to 

convert the digital value to the analog voltage on the mains a calibration 

constant  𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑢𝑛𝑡 is calculated in (4.8). 𝑉𝑚𝑎𝑖𝑛𝑑𝑒𝑓 or 230 Vac in South Africa. 𝑉𝑔𝑎𝑖𝑛 

is the voltage divider gain (see figure 4.2.1-3)? 𝑉𝑐𝑎𝑙𝑖𝑏 is the output of the AC/AC 

adapter (secondary coil voltage) measured using a digital multimeter to 14.6 

Vac. The brown graph in figure 4.5 represents the 𝑉𝑚𝑎𝑖𝑛𝑠 centered around 0 V 

after conditioning and the 𝑉𝑟𝑚𝑠 is calculated as 237.67 V.  

  

4.3.3. Firmware development for Platform motes.  

The firmware running on the HAN devices (Arduino and ESP32) is composed 

of the IoTivity-Lite server code and the low-level sensing code interfacing to the 

device’s ADC and GPIO registers to control the mote actuation devices. The 

low-level code for interfacing to the sensing and actuating circuit implement 

equation (4.1) to (4.8) to compute the power properties of related appliances. 
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This code is used by the higher-level server code within the GET and PUT 

methods. Figure 4.7 depicts the algorithm for the DAQ system. The power 

properties for an appliance connected to either a mote based on the Arduino or 

ESP32 MCU were computed based on the algorithm in Figure D-1 in Appendix 

D. The algorithm samples the current and voltage for 25 cycles (at 50Hz) or 

500ms to calculate the different root means square properties and accumulate 

those to calculate the power consumption. The Arduino AVR use a 10bits ADC 

setting while ARM and ESP32 boards used 12bits resolution.  

  

The computed data is stored in a structure that will be made available for the 

IoTivity server code. The code implementing this algorithm was developed in C 

language and a complete listing can be seen in Appendix D. the IoTivity server 

that runs on either MCU architecture listens to CRUDN from the user to monitor 

and update the connected appliances. Figure 4.7 depicts the flow of operation 

of the server code from initialization to servicing of resources requests within 

the local HAN. See a complete listing of the IoTivity server code for Arduino and 

ESP32 in Appendix C. Network configuration and cloud BaaS communication. 

Network configuration and communication flow within the experimental platform 

are presented in figure 4.13. The communication is layered around a HAN, a 

gateway, a cloud BaaS. It leverages network (WIFI and Ethernet) infrastructure 

in the residential place to provide wireless communication. All HAN devices 

have statically assigned IP addresses on the private network 192.168.0.X 

starting at 192.168.0.100 for the Raspberry PI gateway. When powered on, two 

servers run on the gateway. First is the IoT-rest-API-server that provides a 

REST API over HTTP or HTTPS access to devices on the IoTivity HAN.  

Secondly, is the “main server” that initialized connectivity to the cloud BaaS. 

However, the platform cloud interface first creates using the Back4App free plan 

a BaaS App here “IoTivitySmartApp” (figure 4.9). this free plan offers file storage 

up to 1GB and real-time database storage of up to 0.25 GB on a hosted Mango 

DB (Back4App, 2017). The plan limit databases query to 10 requests/second 

and allow 10K request per month limited the data throughput within the platform. 

However, this is enough to demonstrate the capabilities proposed by this 

solution. Thus, on the Back4App App is created the “Loads”, “SmartHomes”,  

”DRM” classes to host the data for the energy cloud services the platform offers 

(see figure 4.10 and 4.12). For this implementation extension to multiple smart 

homes, the “owning” relationship mechanism implemented amongst the 

different classes. This mechanism scales the system by enabling many owners 
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in the “User” class to own a specific “smart home” that owns many different 

appliances in the “Loads” class and a specific “DRM” service data. Moreover, 

this method allows us not to create a class/table for each smart home context, 

thus keeping all related data together, easing development and maintenance of 

the platform.  

  



 

  

  

Figure 4.7: Algorithm for IoTivity Server   
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                    Figure 4.8: Platform App on Back4App BaaS  

                        Adapted from (Back4App, 2017)  

  

After an app was created and the databases classes for a smart home context 

define following a user login/signup process, the “main server” start a pub-sub 

subscription to the related “smart home”, DRM and Loads resources on the 

cloud platform using the Parse Server Live Query mechanism. This connection 

is realized by authenticated the user and defining the “smart home” against the 

username that was authenticated. This tool is part of the Back4App BaaS 

services and is user-configurable by adding the classes (holding database 

entries/objects) that will be part of the subscription services for the “main server” 

running on each home gateway and the Energy App developed around the 

Parse Android API working as a Parse Live Query client (see figure 4.10 below). 

This tool enables each client endpoint to receive events on the entry in the 

subscription list. Amongst other events emitted by the Live Query subscription 

are the “create” and “update” events which are received in real-time by the 

subscribed client along with meta-data regarding the specific entry that was 

created/updated. The Parse Live Query mechanism is performant, secure, and 

easy to use. It leverages the WebSocket technologies with its backend 

requirements handle by the Back4App cloud infrastructure.   

  

Using the Back4App App application ID, JavaScript Key (for gateway 

serverclient), and its Master Key for authentication purposes, and the App 

server URL, the parse Live Query mechanism is initialized. For the platform, the 

gateway server requirements are implemented using the NodeJS API while the 

Android API was leverage for the Energy App. An important feature of the Parse 

server on the Back4App platform is the Cloud code functionality. Cloud Code 
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enables an application developer to offset the application backend computing 

to the cloud infrastructure. According to Back4App, (2017) this tool enables the 

developer to run NodeJS functions directly on the Back4App cloud.  

  

  
Figure 4.9: Back4App Parse Live Query Tool Configurations  
Adapted from (Back4App, 2017)  

  

The code is executed either via API or SDK call on the Energy App or gateway 

server. The developer can upload JavaScript functions to the Back4App cloud 

code server after deploying (figure 4.11). This step immediately makes the 

Cloud Code Functions available to the IoT platform and can be used to 

implement services for the platform connecting to third-party tools. See  

Appendix A for the cloud code function “main.js” deployed on the platform.  

  

   
Figure 4.10: Configuring and Uploading Cloud Code Functions  

  

Once the cloud storage ad computing tools have been configured, the gateway 

server initiates a login/signup sequence with the cloud user authentication 

services. This process confirms the user and creates on the gateway side the 

smart home identification based on the credentials username. From this step, 

the Live Query mechanism is configured and initiate the server based on the 

communication flow of figure 4.13. The gateway server providing the cloud 
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interface connects to the Parse server and initiates a secure Live Query client 

based on the Apps ID and JavaScript keys. This is followed by a subscription 

open for the “SmartHomes”, “Loads”, and “DRM” classes resources for the 

“create”, “update” events. Next, the gateway server initiates the local DBs 

(monitor and Loads tables are created if not existing already) for offline storage 

(MySQL DB engine). The offline and offline storage is synchronized with an 

initial DB query to the parse server which returns the provisioned number of 

loads. This process is two-fold.   

  

First, the gateway server sends a DB query to get the number of known and 

provisioned appliances and retrieved those from the local storage which is also 

able to store newly discovered appliances. Secondly, a resource discovery from 

the is sent to the IoT-rest-API-server which generates a multicast request on 

the IoTivity COAP network to retrieve all resources. Subsequently, each 

appliance in the local DB is updated after submitting GET requests for their 

properties (state, power, and current). Lately, the remote DB appliance 

properties are also updated. These initial steps aim to update the resource IDs 

as those are reset after power failure. After initialization, an observation service 

based on pub-sub to resources on the IoTivity network using the OBSERVE 

mechanism is started and resources properties are regularly updated (although 

an update threshold is added) considering that cloud transactions are expensive 

for Free plan offer on Back4App. When a mobile client using the energy, App 

participates in the platform information exchange, first, the App establishes a 

connection to the cloud backend platform and starts a client subscription after 

the client Is successfully login/signup as an authenticated user. Back4App BaaS 

security features is implemented on the client and on the home gateway side to 

provide a secured data communication in both ways. As depicted in figure 4.14, 

all GET requests are submitted as Parse GET queries for each mobile client to 

access the related homes databases. a PUT request is forwarded to the Parse 

server on the cloud platform. As the gateway server is in Live Query mode, 

those requests are received as update events on the resources (here 

loads/appliances). The gateway server thus generates an HTTP POST request 

to the IoT-rest-API-server which generates a CoAP POST (i.e., 

/apiI/oic/ktn/kettle?di=’’) with the new state (i.e., state: true/false) which thus turn 

the corresponding appliance on/off. Using the Parse Live query 

mechanism(observation), the smartphone App listens to updates on appliances' 
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power properties from the gateway server’s observer service and updates the 

App front-end.  
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Figure 4.11: Platform databases structure and connections on Back4App BaaS  
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Figure 4.12: Network configuration and communication in the Platform 
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Figure 4.13: communication flow with Android smartphone App  
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 4.4.  Chapter Summary  

In this chapter was described the equipment used for the case study addressing 

the thesis research objectives. The focus was on the design of the motes used 

as IoTivity resources servers in the HAN. Here was considered the mote’s 

hardware and software requirements, mainly the IoTivity firmware based on the 

developed Arduino port. The DAQ interface that gathers the CT and controls 

the connected appliances, presenting the signal conditioning and conversion 

equations was discussed. Having described the hardware, consideration was 

given to the high-level software that interacts with the Back4App cloud service, 

REST service, and discussed the backend interaction from the resource’s 

server in the IoTivity HAN to the back4App cloud and the Smartphone Energy 

App developed.  
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 5.  CHAPTER FIVE  

CASE STUDY, RESULTS, AND DISCUSSION  
  

  

 5.1.  Introduction  

To illustrate the value and performance of the platform, this chapter proposed 

a case study deploying several scenarios demonstrating the ability of this 

platform to handle certain applications about energy management. Lately, the 

results are presented, and a thorough discussion is carried on the different 

observations.  

  

 5.2.  Energy Monitoring   

The objective here is to provide granular feedback at the appliance level 

anytime and anywhere via an engaging graphical display on an Android 

smartphone. The goal is to better understand the demand characteristic of the 

home under consideration which will help to make smart decisions about 

controlling its demand. Therefore, the work aims to build energy literacy in 

residential places and demonstrate energy efficiency based on the IoT 

“mindchanging” feedback. Furthermore, this can be used to bring consumer 

visibility to phantom load from unmanageable appliances (i.e., TV, PC, phone 

chargers, etc.). The performance is measured in the ability of the energy App 

to provide users with appliance consumption and status information as well as 

granular and overall energy consumption of a home in a near real-time manner.  

  

 5.3.  Home Automation  

 In this experimental test, the IoTivity platform works as a home automation 

service enabling users to control the status of their appliances via the energy 

App by turning the appliance on/off anytime and anywhere to manually reduce 

their energy usage. Performance is observed in the ability to change an 

appliance status in a near real-time manner as well as updating the user 

interface with the appliance’s new status.  

  

 5.4.  Demand Response Management  

DRM algorithm for peak load management was implemented a as a service that 

aims to demonstrate the impact of the IoTivity platform on residential load 

efficiency. The research followed related works in the area of HEM to define the 

experimental model. To demonstrate the performance of their IoT architecture 

for residential load, Viswanath et al., (2016), implemented an experiment based 
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on a maximum allowable peak threshold of 33KW. In their work, the DRM 

control was notified each time the overall consumption was greater than 

33.5KW. The author's algorithm control light bulbs at each house in peak time 

by slotting a 24 hours’ time duration into 8640-time periods. That is their smart 

grid simulation detected the total demand every 10 seconds. Al Faruque & 

Vatanparvar, (2016), implemented smart transformer Control-as-a-service over 

fog computing limiting the load of each home at 4KW. The authors, limiting the 

maximum load of microgrid transformer alimenting a group of homes at 20KW. 

The algorithm monitors the status of the power source and activates a DR signal 

when overload by cycling all home and shedding load in a home that has 

exceeded the 4KW thresholds. In both studies, the demonstrated DRM does 

not consider user preferences. Rasheed et al., 2016, introduce three-level 

priority scheduling for home appliances so users can switch on home 

appliances subject to their satisfaction level and preferences. That is, 

consumers willing to turn on appliances immediately could allocate it a higher 

priority and vice versa. Peak load DRM depends on mathematical models. In 

this case study, attention is given to regularly operated or fixed appliances and 

develop an algorithm based on equations (5.1) to (5.4) adapting formulation 

from (Hussain et al., 2018) and (Khan et al., 2019). Therefore, the experimental 

DRM is the home automation system application relying on the IoT granular 

feedback (from energy monitoring) to handle via a priority-based load shedding 

program home appliances load. The experimentation focusses on 

powerintensive appliances (70% of domestic consumption) with constant 

consumption (resistive loads) and maximum rating and priority as shown in 

Table 5.1.  

  

Table 5.1: Appliances in the considered home with their typical priority level  
Adapted from: (Qayyum et al., 2015)  

  

Home Appliances  Maximum Rating(W)  
Priority  

Morning  Evening  

Electric geyser  3000  High  Low  

Kettle  2200  Medium  Medium  

Toaster  950  High  Low  

Oven  2350  Low  High  

Stove  3000  Medium  High  

Iron  1800  Medium  Low  
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A load cycling (load reduction) system is implemented to shutdown appliances' 

operation based on user-defined consumption thresholds or consumption 

goals. Priority is introduced in this case study to dynamically limit the home 

instant load. However, a default value of 5KW based on literature and the 

appliance of table 5.1 will be used by the algorithm that will be implemented. 

Figure 5.1 depicts the experimental platform and the data flow for this case 

study.  

  

5.4.1. Energy Consumption Model  

A home Load primarily from resistive load appliances is considered. For the 

case study model, let 𝐴𝑛ϵ {𝑎1, 𝑎2, 𝑎3, . . ., 𝑎𝑛}, such that 𝑎1, 𝑎2, 𝑎3, . . ., 𝑎𝑛 

represents each appliance. The model considers 6 appliances (table 5.1). The 

peak periods in the south African context are two. The morning peak is from 6 

am to 9 am while the evening peak is from 6 pm to 9 pm. In the model each 

peak period is slice into a horizon time slot series T ϵ {1, 2, 3, . . ., T}. since 

each peak period span the same time length of  Ʈ𝑝𝑒𝑎𝑘 (4 hours), considering that 

each time slot is 15 min long, thus T is series of 16 elements. The total power 

consumption during a peak period is expressed as Ϛ𝑨𝒏𝑻𝑳  

 𝑇 𝐴𝑛 

Ϛ𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜁(𝑡))                                                      (5.1)  
𝑡=1 𝑛=1 

Where 𝜬𝒏(𝒕) is the power consumption for appliance 𝑎𝑛 at time slot t ϵ T. 𝜻(𝒕) ϵ 

[0,1] is the operational state of appliances in time interval t ϵ T. Similarly, the 

total cost per peak period of the 𝐴𝑛,  

 𝑇 𝐴𝑛 

£𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜀(𝑡) × 𝜁(𝑡))                                           (5.2)  

𝑡=1 𝑛=1 

Where 𝜀(𝑡) represent the cost of electricity at time t ϵ T.  

Based on equation (1), the DRM algorithm for the case study is formulated as 

below  

 𝑇 𝐴𝑛 

Ϛ𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜁(𝑡)) ≤ 𝛾(𝑡)                                      (5.3)  

𝑡=1 𝑛=1 

Where 𝛾(𝑡)is the home threshold? That is 𝛾(𝑡) is the maximum allowable peak 

load at time t ϵ T. A dynamic value for 𝛾(𝑡) of 5 KW is used.  
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5.4.2. DRM Algorithm implementation  

Each home DRM run on the raspberry PI gateway. The DRM algorithm 

implements equations (5.1) to (5.3) digitized within the algorithm, looping 

through the list of appliances and calculated the total power consumption for 

time slot t and storing that in power series 𝑃𝑛 (5.5) which is a list of б𝑛  elements  

(5.4). At the exit of a peak period, the algorithm thus calculates the total power 

consumption, the average peak power (5.6), and the maximum power consumption 

(4.14) for each peak period.  

  Ʈ𝑝𝑒𝑎𝑘 ×3600 б𝑛 =  900                                                                     (5.4)    
б𝑛  

𝑃𝑎𝑣𝑔 = ∑ 1 𝑃𝑝𝑒𝑎𝑘                                                                   

(5.5) б𝑛  

With 𝑃peak 𝜖 [𝑃1, 𝑃2,𝑃3, … , 𝑃𝑛] with n ≤ б𝑛, the max peak power is computed using 

equation (4.14) below.  

𝑃𝑚𝑎𝑥 = max(𝑃𝑝𝑒𝑎𝑘)                                                              (5.6) 

𝑛≤б𝑛 

  

The algorithm is implemented with an electricity price per unit considering a 

household in the research context (here the city of Cape Town) with 

consumption equal to or above 600 KWh/month municipality regulated unit at 

278.46 c/kWh (City of Cape Town, 2019). Figure C.1 in Appendix C is the 

pseudo-code for DRM firmware implemented after digitizing equation (4.8) to 

(4.10) to maintain the household consumption at any instant t. At the end of 

each peak period, the algorithm calculates the average power, average energy 

cost as well as maximum power peak and maximum peak energy consumption. 

This data is made available as statistical info to each smart home user. The 

code was implemented in NodeJS and can be seen in Appendix D and E.  

  

5.4.3. DRM Scenario Network communication  

For the DRM scenario, the communication platform extends the model of figure 

4.12. After the gateway server initialized the connection to the parse server  

BaaS platform, it opens a client subscription to the “DRM” object related to the 

user smart home and a listening event is activated on the object. The 

smartphone Energy App activates/deactivates the DRM mode by setting its 

status true/false. This event is forwarded via Live Query from the Back4App 

server to the gateway server, which processes the event and load/unload the 

DRM service. Moreover, an observer process is loaded at initialization by the 
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gateway server to update the parse online objects with the latest appliance’s 

status (see figure 4.13). This process is based on the IoT-rest-API-server and 

IoTivity-Lite observe mechanism which will return updates on a resource whose 

properties have changed (i.e., current or power).  

  

Figure 5.1: Case study system architecture  

  

  

 5.5.  Results  

In this section is presented the results from the experimental case study shown 

in figure 5.2, focusing on the output from each scenario to establish the platform 

efficiency and performance in realizing each required functionality. Using the 

setup in the figure below, the experimentation tests the feedback and home 

automation scenario within the platform. The response from the IoTivity-Lite 

HAN server device is presented. That is, the Arduino and ESP32 slaves’ 

response to resources request. Then, the underlining software services 

handling the smart home local and remote connectivity are discussed. In this 

regard, are described the different initialization steps via curtailed logs of each 

of the services running on the raspberry PI local home server. Secondly, 

feedback results, that is real-time home consumption via enhance visualization 

anytime anywhere using the energy App is exhibited. Thirdly, home automation 

is demonstrated using the Energy App to turn home appliances on/off. Lastly, 
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the DRM scenario conditions and assumptions are detailed, and the result of 

the peak shaving algorithm are shown.  

  

Figure 5.2: Experimental Platform used for Scenario’s testing  

  

5.5.1. HAN device responses to GET/POST requests   

The firmware on the HAN resource server runs the IoTivity-Lite core that was 

ported to the AVR and ARM Arduino Arch. In figure 5.3 below are shown the 

initialization logs for the devices, which request a local IP address within the 

192.168.0.1 subnet, initializing the IoTivity core and starting a listening server 

on IPv4 port 56789 for Arduino devices. The ESP32 slaves use both IPv4 and 

IPv6 listening sockets as provided by the IoTivity-Lite stack.  

  
  

Figure 5.3: Arduino slave initialization logs  

  

The firmware loaded in all slaves allows these devices to serve the client with 

resources data handling those as GET/POST requests. The IoT-rest-API-

server provisioned devices and resource on the IoTivity-Lite local network after 

issuing a multicast request on the endpoint (localhost:8000/ioc/res). A client can 

thus request local resources to issue HTTP requests to the REST server. In 

figure 5.4, are logs of GET requests received from the slaves, followed by the 
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IoTivityLite stack processing of the request and a response (74 bytes of 

resource data) to the client on 192.168.0.111:59264.  

  

  
  

Figure 5.4:HAN server GET response  

  

A similar POST interaction is executed whenever the client request and update 

an appliance status (On/Off). In figure 5.5, after updating the state of an 

appliance from a POST request, the resource server sends a 39 bytes 

acknowledgment response to the requesting client at 192.168.0.111:8000.  

  

  
  

Figure 5.5: HAN server POST response  

  

  

5.5.2. Smart home underlying services  

The daemon services started at boot time are the IoT REST API server and the 

main server service, the appliance observation service, and the DRM service.  

  
  

Figure 5.6: JavaScript packages used for services development  

  

The services are developed using Node JS with popular JavaScript libraries as 

shown in figure 5.6 above. The source for these services is developed within 5 scripts 

(see figure 5.7) and can be seen in Appendix E-F.  
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Figure 5.7: Smart home services scripts  

  

 5.5.2.1.  IoT REST service  

The gateway service uses the JavaScript IoTivity package named the IoT-

restAPI-server. Version 0.5.0 for backward compatibility is used. In the figure 

below, is the logs from the IoT REST services that started the HTTP server on 

the localhost (127.0.0.1) (raspberry pi) on port 8000. This service is started by 

running a JS file (index.js) as shown in figure 5.8 below.  

.  

   
Figure 5.8: IoT REST server logs  

  

 5.5.2.2.  Parse gateway service  

The Parse gateway service is the boot entry for the gateway services that 

handle connectivity to the online parse cloud on Back4App, launching of the 

resource observing, and the DRM daemon services. The service starts with an 

authentication procedure to either login/signup for a new installation of the 

system (new smart home system). This a basic securing feature to certify the 

smart home user.   

  
  

Figure 5.9: Sign up authentication  

  

The Gateway service (main_server.js) starts by detecting a previous installation 

(a registered parse user). It thus asks the user to sign up (figure 5.9 above) for 

a first-time installation or to log in to authenticate the smart home (figure 5.10 

below).  
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Figure 5.10: Login authentication  

  

After authentication, the server starts a subscription (Live Query clients) to the 

Parse clouds on Back4App to listen to query updates on the loads, DRM, and 

the related smart-home objects (figure 5.11). Following these steps, the service 

connects to the local storage (MySQL database storing appliances properties 

locally) as well the remote parse “Loads” object. This is also a synchronization 

step to ensure both the local and remote storage are homogenous.  

  

   
Figure 5.11: Live Query subscriptions  

  

Next, the service issue resources discovery and retrieves each resource 

property and thus update both the local MySQL storage and the remote Parse 

corresponding objects as shown in figure 5.12.  

              
Figure 5.12: Resources storage updates  

  

 5.5.2.3.  Observing service  

Following the initialization step, the main service starts a child process to 

observe for updates on the local appliances and push those to parse server on 

Back4App. This process listens to changes on 6 appliances (figure 5.13 below).  

  
  

Figure 5.13: Observing service logs  
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 5.5.2.4.  DRM service  

The DRM service handles the last scenario of the case study, it implements the 

algorithm for the 5 KW peak shaving scheme. The service is also started as a 

child service from the main service based on activation from the user registered 

via live query request on the DRM parse object. As shown in figure 5.14, the 

DRM handles a list of 6 appliances as defined in table 5.4-1. The logs here, 

show that the system is outside a peak period.  

  
  

Figure 5.14: DRM service logs  

  

5.5.3. Feedback via Energy App  

Regarding the Energy monitoring scenario, the platform's ability to provide 

space agnostic, real-time feedback is under evaluation.   

  
  

Figure 5.15: Energy Monitoring on IotSmartApp  

  

Using a Sony Xperia Z5 smartphone, the Energy feedback was tested on the 

platform using the IotSmartApp as shown in figure 5.15 above. The energy 

consumption is presented in engaging visual tools both graphic and textual with 

compelling colours (red under the consumption curve). The evaluation shows 

that feedback can be dispatch via the platform within ~3 seconds from HAN to 

the Back4App clouds and the smartphone App.  
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5.5.4. Home automation via Energy App  

As for home automation, the platform ability to provide space agnostic on/off 

control of the home appliance is evaluated. This Evolution is based on the setup 

of figure 5.17 in which two appliances (kettle and Iron) are used to demonstrate 

the system time and space agnostic on/off control via the platform.  

  
    (a)                                                       (b)       (c)  

Figure 5.16: Home automation with IotSmartApp; (a) appliance is turn off; (b) appliance is turn 

off; (c) appliance power consumption off  

  

In figure 5.16 is presented feedback about home automation via the 

IotSmartApp. This experimentation targets an iron-rated 1200W within the 

tested setup. On (a) the iron is off, thus its state is false (the lamp is grey). In 

this iron, consumptions share no part in the total house consumption as seen 

on the pie-chart. On (b) the iron is turn on (lamp is yellow), the consumption 

(power) at that instant was recorded as 1.16 KW which is also a graph on the 

line chart below on the App screen. This is practically demonstrated in figure 

5.3, where the Arduino server connected to the physical appliance control 

circuit is activated (red light is on, kettle light is on for that instance). The pie 

chart depicting the total consumption then registers the iron share at 34%. On 

(C) the iron internal workings have turn power consumption off (KW) though the 

user still has the appliance off (lamp off). This can is emphasized on the graph 

that shows the iron consumptions falling to zero. This behaviour graphically 

represented enhance the feedback and help user to understand the working of 

their appliances. Finally, the interaction (on/off) from the user on IotSmartApp 

to appliance connected to IoTivity server on HAN within the platform takes 

about ~6s for bi-directional updates.  
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5.5.5. DRM via Energy App  

The DRM scenario was tested within the platform using an Energy App 

developed for the purpose. In figure 5.17, configuration windows are proposed 

to the user to manage the DRM algorithm threshold (using the knob), reset the 

smart home's appliance IDs, and activate/de-activate (via the switch widgets) 

the DRM service running on the home server.   

  

Figure 5.17: DRM with Energy App  

  

When the user activates the DRM service, both the new status and threshold 

are passed to the listening home server via the Live Query mechanism. The 

output of the algorithm for analysis was logged and plotted to appreciate the 

benefit of the peak-saving algorithm that was implemented. For this scenario, 

the maximum allowable peak demand to satisfy equation (4.10) is 5KW with a 

10% positive margin (5.5KW. The experiment considered the morning peak 

running from 7 am to 9 am (3 hours) (which differs from the evening peak period 

by the difference of priority settings which are assumed as defined in table 5.1) 

and sample the consumption at 10 min duration. However, a timeframe of 5 min 

was used to simulate the peak period running the algorithm at 10 s then 

normalizing the results that stored during the simulation and presented in table  

5.2 below.  
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Table 5.2: DRM Simulation results  

  

Peak LoadDSM  Peak LoTime  duration  Peak Cost  c/KW  
cost_dsm 

 Threshold 

 0 0 7:02:38 PM 0,166666667 R 0,00 R 0,28 R 0,00 5500 

4946 3952 7:12:49 PM 0,166666667 R 0,23  R 

0,28 
 R 

0,18 

5500 

 5126 4848 7:22:58 PM 0,166666667 R 0,24 R 0,28 R 0,22 5500 

9090 7056 7:32:09 PM 0,166666667 R 0,42  R 

0,28 
 R 

0,33 

5500 

 8964 4841 7:42:19 PM 0,166666667 R 0,42 R 0,28 R 0,22 5500 

5595 5195 7:52:28 PM 0,166666667 R 0,26  R 

0,28 
 R 

0,24 

5500 

 2868 2871 8:02:38 PM 0,166666667 R 0,13 R 0,28 R 0,13 5500 

2807 2901 8:12:49 PM 0,166666667 R 0,13  R 

0,28 
 R 

0,13 

5500 

 2946 2988 8:22:59 PM 0,166666667 R 0,14 R 0,28 R 0,14 5500 

2822 2915 8:32:09 PM 0,166666667 R 0,13  R 

0,28 
 R 

0,14 

5500 

 2920 2851 8:42:19 PM 0,166666667 R 0,14 R 0,28 R 0,13 5500 

0 0 8:52:29 PM 0,166666667 R 0,00  R 

0,28 
 R 

0,00 

5500 

  
The data from Table 5.2 is used to plot the total peak load dynamics during and outside 

peak times, and the related consumption cost as shown in figure 5.18 below. The grey 

and blue curve of the figure denote the load profile with and without the demand 

management respectively whereas the brown and green curves represent the peak 

cost of consumption with and without demand management.  
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Figure 5.18: Peak load profiling through IoT platform  

  

The Redline shows the maximum allowable demand threshold (about 5.5KW). 

When the demand exceeds the peak limit, the DRM service controls the 

appliances on the Table and turns some off according to the priority assigned. 

The DRM load profile (brown curve) peak is lowered, and the valleys are filled 

as expected of a peak shaving algorithm. The maximum peak is reduced from 

~ 9KW (blue curve) on Default peak load to ~ 7KW on DRM profile this 

represents a ~ 17% reduction of peak load. However, the DRM peak overshoots 

the required threshold during the DRM operation. This is mainly because the 

DRM service computes the total appliance consumption every 10s couple to 

minor in code execution delays (internet latencies and underlying response to 

resource request). Thus, if the demand increases or changes rapidly within the 

sampling period, the DRM service gets the new demand with this delay and 

generates the controlling signal only after that delay. Hence the total load 

overshoots the peak limit. Nevertheless, the DRM load profile shows that the 

demand promptly falls back below the peak limit after performing the peak 

shaving algorithm.  

  

 5.6.  Results discussion  

The overall results support the platform goals of providing energy monitoring, 

home automation and DRM activities to customer locally or in remote location. 

However, the requirement of low-cost and miniaturization present noticeable 

performance issues in term of hardware memory constrained and response 

time. That is Arduino AVR presenting low RAM are not able to handle all 

essential requirements of the IoTivity stack (device and resource provisioning 

as well DTLS security). A 512K SRAM external memory shield compatible with 
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the AVR memory bus was added. Although this solution stabilized heap 

allocations, the rather slow AVR CPU clock did little to increase its response 

time.   

  

 5.7.  Chapter Summary  

In this chapter was described the case study used to demonstrate the platform 

effectiveness and performance according to research objectives. After defining 

the requirements and objectives of each scenario, the results were presented 

as evaluated within the platform. Being dependant on underlying services both 

running on the home gateway, and on the cloud platform, this chapter mainly 

present the different tools used to developed and deployed the backbone 

services as well as the interaction between all services as they are run through 

the raspberry PI and the Back4App cloud. Energy feedback and HA via the 

Energy App running on Android (Sony Xperia Z5) was presented and 

discussed. Lastly, the DRM algorithm implemented for peak shaving scenario 

to demonstrate energy management through the platform was described. Then, 

were presented and discussed the governing equations and the different 

assumptions used to perform the simulation of appliance consumption. Then, 

were presented the DRM peak shaving algorithm results graphically 

highlighting its influence on consumption using the different tools proposed 

within the platform.    

 6.  CHAPTER SIX  

CONCLUSION AND RECOMMENDATIONS  
  

  

 6.1.   Conclusion  

This project was conceived to participate in the growing research regarding the 

modernization of the electric grid within the smart grid effort to better handle the 

growing peak demand and traditional grid limitations in the residential sector.  

Therefore, “Cloud-based IoT platform for Energy management applications” an 

efficient and performant communication platform leveraging smart grid IoT 

enabling was presented in this thesis to provide smart energy management 

applications particularly in domestic places within the South African context. In 

this thesis was addressed the semantic gaps of IoT regarding interoperability, 

scalability as well as the cost and availability of technology issues as it pertains 

to HEMS. The thesis focused on the architectural design and backend 

requirements of an IoT platform around open source IoT technologies and 
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developed a prototype full-stack system providing an experimental platform to 

perform smart-grid-related interventions in homes.   

  

 6.2.  Meeting the research objectives  

The objective defined for this thesis included:  

1. Design and implement a responsive IoTivity-based HAN to handle IoT 

semantic gaps (devices interoperability), thereby increasing the 

miniaturizations of HAN devices and lowering cost,  

2. Design IoTivity smart plugs for interfacing existing home appliances,  

3. Optimize and scale the HAN using the cloud as BaaS to simplify the 

platform backend requirements,  

4. Develop an Android-based Energy management App leveraging the 

cloud BaaS.   

To reach these objectives, chapter 3 defined the specifications for the platform 

and selecting the technological tools required. In chapter 4 described the 

experimental setup developed to carry out the objectives. In chapter 5 was 

defined the characteristic, configurations, and requirements of each 

experimental scenario focusing on the DRM setup. Later in this chapter, the 

experimental results were presented as carried out through the platform. Thus, 

these objectives were addressed using the OCF IoTivity middleware which 

effectively provided interoperability of devices (Arduino, ESP32, Raspberry PI) 

and protocols (HTTP/S, CoAP), scalability as new motes could be plugged into 

the design without disturbing the current activities. Experimentation showed 

that WIFI and Ethernet devices could uniformly exchange data through the 

IoTivity HAN. The IoTivity smart plug were effectively design and deployed with 

sensing and actuating interfaces to any common household appliances 

(although focus was place on resistive ones). For higher MCU resources 

management and response time, two RTOS (Contiki RTOS and FreeRTOS) 

were used and adapted. Though FreeRTOS is inherent to ESP32, Contiki was 

chosen as being the basis for the IoTivity-Lite stack and lightweight for Arduino. 

The IoTivity firmware correctly and effectively enabled the motes to operate as 

HAN resources servers responding within latencies of ~3-5 second to CRUDN 

request from both local and remote resources clients. Cloud connectivity via the 

Back4App Parse BaaS clearly augment the performance and scalability of the 

platform. The Parse subscription mechanism greatly reduced computation and 

stack constraint allowing the local network architecture to focus solely on local 

resource requests. This has the benefit of increasing the system overall 
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response time. Energy management, that consumption monitoring appliance 

operation control and DRM interventions was simplified in this work by providing 

a two-way communication between consumers and their residential load via a 

Mobile App. Through the engaging graphics and notifications supported by the 

Back4App Parse subscription and query mechanism, consumer can in real-time 

within a responsive interaction effectively engage their load.   

  

 6.3.  Contributions of this research  

The smart grid concept is trending amongst researchers, leading Energy 

Utilities to slowly deploy AMI technologies in the current constraining economic 

and technological conditions within developing context. However, the stress on 

the traditional grid and the yearly increasing residential load call for efficient 

energy sustainability alternatives able to take advantage of the current 

advances in technology while being scalable and interoperable to smart grid 

future upgrades and investment. To accomplish this vision, the internet and its 

related technology are regarded as suitable tools in the necessary transition 

from the traditional to the smart grid. Therefore, this thesis strives to participate 

in this transition to sustainable energy consumption by leveraging Internet 

dependant technology in IoT, cloud technologies, embedded design, mobile 

applications to provide a two-way Energy management platform that mitigate 

the complexities of existing HEMS, the performance of HAN, implementation 

cost favouring their increasing penetration in households through hardware 

miniaturization. Thus, this work contributes to the current government and 

utilities goals to bring energy consumption literacy, action tacking as well as 

management of household consumption at the appliance levels to all parties. 

these goals are made possible via a platform that incorporates the existing 

appliances and residential connectivity facilities while being interoperable, 

scalable, and cost-effective for higher penetration of the smart grid vision in the 

residential sector.  

  

 6.4.  Recommendations  

  

• Security can be increased in the platform using the IoTivity onboarding and 

provisioning mechanism to authenticate the client that interfaces to the HAN 

resource server. This capability was not fully implemented because of 

software inconsistency with the IoT-rest-API-server. Thus, security was 

mainly at the cloud interface isolating IoTivity LAN resource servers.   
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• IoTivity Cloud, OCF has updated its IoTivity-Lite framework to add a cloud 

interface to the IoTivity network. This facility can be used to remove the 

need for IoT-rest-API-server reducing the development load and facilitates 

maintenance.  

• Higher-end embedded device for HAN servers able to handle multiple 

clients while maintaining a fast response time was observed an issue with 

AVR motes, and in some capacities with the DUE servers due its reduced 

processing speed and constrained memory. A miniaturized higher memory 

MCU running at faster clock would provide and smother response time.  

• Providing complete Offline access to services on the platform. It is 

necessary to offer the user with complete offline experience of the platform 

in a developing context where internet connection may be intermittent. The 

has some limited preparation for such, but the Energy App should still be 

able to provide Energy services on the local network (users are at home).  

• Wireless communication, here WIFI should be adapted to all HAN devices 

for easier penetration and adaptation in residential places. Technology with 

embedded wireless protocol should be used to optimize the HAN data 

communication. The ESP32 device was adopted with appropriate 

IoTivityLite network firmware modifications.  

• Smart grid signals from the Energy utility can take advantage of this 

platform. but the interface needs to be fully defined from the cloud interface 

this can be a cloud Job that needs to monitor or listen via an API provided 

by Utility to smart grid incentives and propagating these to home gateways.  
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 8.  APPENDIXES  
  

 Appendix A.  Motes DAQ Modules Circuit Diagram  
  

Below is the circuit diagram for the AVR and ARM Arduino. The circuit is divided in three sections mainly, the control section (with relay 

interface), the power and communication, and the CT sensor interface section  

  

  
Figure A.1:  Complete DAQ module for Arduino HAN resource servers  
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Below is the circuit diagram for the ESP32 based HAN resource server which is composed of similar section as that of the Arduino based 

DAQ modules.  

  
Figure A.2: Complete DAQ Module for ESP32 HAN resource servers  
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 Appendix B.  DAQ Modules PCB layout  
  

Altium Designer 2017 was used to design and Manufacture the PCB for the ESP32 and Arduino DAQ, the final designed files are show 

in Figure B.1 below.  

  

  
 (a)                                         (b)  

  

Figure B.1:  PCB layout for HAN Resource Server DAQ module  
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(a) ESP32 interfacing PCB; (b) Arduino (AVR&ARM) DAQ module 
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 Appendix C.  HAN Motes DAQ and DRM Firmware Pseudo-codes   
  

  

Figure C.1: Algorithm for appliance power properties computation  
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Figure C.2: Algorithm for DRM simulation scenario  
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 Appendix D.  DSM Peak Shaving source code  
  

  
var apputils = require("./app_utils"); 

var request = require('request'); 

const fs = require('fs') ; var 

peakCapacity = 5500 ; // 5 KW var 

loadsRatings =   
[   
  {name:'kettle', upper:3000000, lower:1200000},   
  {name:'geyser', upper:3000000, lower:2800000},   
  {name:'toaster',upper:1800000, lower:800000},   
  {name:'oven', upper:5000000, lower:3000000},   
  {name:'stove', upper:3000000, lower:1200000},   
  {name:'iron', upper:1200000, lower:1000000}  
];  var Ecost = 278.46 // c/KWH var averagePeakDemand = 0.0; 

//KW var monringPeakDuration = 10800 ; // 3 hours from 7am to 

10am var eveningPeakDuration = 7200 ;  // 2 hours from 6pm to 

8pm  
 var timeStep = 6000 // 50s  

min var loadCount = 6;  
  var peakActive =  false; var eveningPeakActive =  false; var 

morningPeakActive =  false; var peakType = false; // 0: 

morning; 1: evening; 2: not in peak var  Ppeak = []; var 

PpeakCost = [];  

var currentHours = 0;          // time value  
telling us about the current hours of the peak period var 

morningPeakHourBegin = 7;  // peak period start time : 7am  

var morningPeakHourEnd = 9;    // peak period start time : 7am  
var eveningPeakHourBegin = 18;  

hours  
// peakperioad end time: 8pm or 18  

var eveningPeakHourEnd = 21;    // peakperioad end time: 8pm or 18  
hours var run = false; 

var loads = []; var 

activeLoads = []; var 

homeDemand = []; var 

recycleLoads = []; var 

n = 5; var stream = 

null;  

  

 
  if(msg != null) {   var 

appliances = msg.loads;  

 if(appliances){  

    console.log(` %s <%s:%d>:Starting the dsm process!` ,__file,  

__func, __line);  
      for(let i = 0; i < appliances.length; i++){      

 loads.push(appliances[i]);  

    }       console.log(`%s <%s:%d>:dsm 

process list length:  

${loads.length}` ,__file, __func, __line);  
   

 console.log( 
 

'%s <%s:%d>: dsm loads ' 
 

process.on( 'message' , (msg) => {   
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__line, 

appliances);  
 ,__file

, 

__func,  
  }  
  if(msg.threshold) {     peakCapacity = msg.threshold;     

console.log(`%s <%s:%d>:threshold for smarthome: ${peakCapacity}  

 
  var appliance = msg.appliance;   if(appliance) {     

var appInfo = apputils.find(appliance, loads);     

if(appInfo.state){      loads[appInfo.pos].priority = 

appliance.priority;  

     

console.log(` 
%s <%s:%d>:updating priorityt  

${appliance.name}:${appliance.priority}`,__file, __func, __line);  
   }  
      if(!appliance.state) {     console.log(`%s <%s:%d>:appliance 

state: ${appliance.state}`,__file,  
__func, __line);   

if(recycleLoads.length > 0){  

    

console.log(` 
%s <%s:%d>:load to 

recycler` 
,__file, __func, __line,  

recycleLoads);  
    var appInfo = apputils.find(appliance, recycleLoads);   

if(appInfo.state) {  

     console.log(` %s <%s:%d>:size of recycler list:  

${recycleLoads.length}`,__file, __func, __line);  

 recycleLoads = remove(recycleLoads[appInfo.pos], recycleLoads);    

 console.log(` %s <%s:%d>:size of recycler list:  

${recycleLoads.length}` ,__file, __func, __line);        

        }  
      }   

    }   

  }  
  }  
});  

  

 
    };     return new Promise(function(resolve, reject) 

{         request.get(options, function(err, resp, body) 

{             if (err) {                 reject(err);             

} else {  

                properties = JSON.parse(body)  

' 

                var location = properties.name.split( '  

)[0].toLowerCase();                 

load.location = location  

W ̀  ,__file, __func, __line);   
   }   

function   getProperties(url, load) {   
     var   options = {   
         url: url,   
         method:  'GET' ,   
         headers: {   
             'User - Agent'   : 'request' ,   
             'Content - Type' :   'application/json'   
         }   
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                load.state = properties.state                 

load.current = properties.current                 

load.power = properties.power                 

resolve(load);  
            }  
        })  
    })  
}  
///////////////////////////////////////////////////////////////////////// 

var getDemand = async function() {   try    {     homeDemand = [];     

for(let i = 0; i < loads.length; i++){       var load = {       location:    

loads[i].location,       locationId:  loads[i].locationId,       

applianceId: loads[i].applianceId,       name:        loads[i].name,  

     deviceId:    loads[i].deviceId,       state:       

loads[i].state,       current:     loads[i].current,             power:       

loads[i].power   
     };        load_url='http://localhost:8000/api/oic/'+ 

load.locationId + '/' + load.name +'?di='+ load.deviceId     try {      

var data = await getProperties(load_url, load)      

homeDemand.push(data.power);  

     

console.info(` 
%s <%s:%d>:Load power  

${data.name}:${data.power}`,__file, __func, __line);       

var loadInfo = apputils.find(data, loads);  
     if(loadInfo.state) {    loads[loadInfo.pos].state = 

data.state;    loads[loadInfo.pos].current = 

data.current;    loads[loadInfo.pos].power = data.power;    

for(let j = 0; j < loadsRatings.length; j++){      var 

load = loads[loadInfo.pos];      var ratedLoad = 

loadsRatings[j]      if(load.name == ratedLoad.name){         

if(load.state) {            var appInfo = 

apputils.find(load, activeLoads);            

if(!appInfo.state) {  

        activeLoads.push(load);  
           } else {             

activeLoads[appInfo.pos].state = load.state;  
           }  

        

console.log(` 
%s <%s:%d>: Load ${loads[loadInfo.pos].name} is  

on`,__file, __func, __line);  
       } else {  
         loads[loadInfo.pos].state = false;  

         

console.log(` 
%s <%s:%d>: Load ${loads[loadInfo.pos].name} is  

off`,__file, __func, __line);  
      }  
      break;  
     }  
    }  
   }  
  } catch (err){  

    

console.error(` 
%s <%s:%d>: 

${err}` 
,__file, __func, __line);  

  }      
 }         }  

catch(err) {  
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console.error(` 
%s <%s:%d>: 

${err}` 
,__file, __func, __line);  

  }  
}  
// time step demand var computeDemand = 

async function(){   await getDemand();   

var demand = 0.0;   for(let i =0; i < 

loads.length; i++){     var load = 

loads[i];     console.error(`%s <%s:%d>: 

Load state:  

${load.name}:${load.state}` ,__file, __func, __line);  

    demand += ((load.power / 1000.0) * load.state);  
  }  
  return demand;  
}  var main = async function(){   if(!stream) {     stream = 

fs.createWriteStream("append.txt", {flags:'a'});  
  }   var date = new 

Date();   

console.log(`%s  

<%s:%d>:${date.getHours()}:${date.getMinutes()}` ,__file, __func, __line);  

  var currentHour = date.getHours();  
  if(currentHour >= morningPeakHourBegin && currentHour <= 

morningPeakHourEnd) {      peakActive =  true;      

morningPeakActive = true;      peakType = 1;  

 

console.log(` 
%s <%s:%d>: Morning peak active` ,__file, __func, __line);  

  } else if (currentHour >= eveningPeakHourBegin && currentHour <=  
eveningPeakHourEnd) {      

peakActive =  true;      

eveningPeakActive = true;      

peakType = 0;  

     

console.log(` 
%s <%s:%d>:Evening peak 

active` 
,__file, __func,  

__line);  
       } else {           peakActive 

=  false;    morningPeakActive = 

false;    eveningPeakActive = false;          

peakType = 2;  

 

console.log(` 
%s <%s:%d>:Not in either peak period` ,__file, __func,  

__line);  
 }  

if(peakActive){     

run();  } else {  
     if(Ppeak.length > 0 && PpeakCost.length > 0){  

        

console.warn(` 
%s <%s:%d>:Computing Peak 

parameters` 
,__file,  

__func, __line);  
     var sumPower = 0;      

var sumCost = 0;      var 

maxPower = Ppeak[0];      var 

maxCost = PpeakCost[0];      

var n;      for (let i = 0; i 

< Ppeak.length; i++){         

var tempPower = Ppeak[i];         
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if(tempPower > maxPower){         

maxPower = tempPower;  
     }      var tempCost = 

PpeakCost[i];      if (tempCost > 

maxCost) {           maxCost = 

tempCost;  
     }      sumCost += tempCost;      

sumPower += tempPower;      n++;   

}   var avgPeakCost = sumCost / 

n;  

      var avgPeak = sumPower / n;  

      console.warn(` %s <%s:%d>:Max Peak Load  

${maxPower}: Maximum Cost ${maxCost} `,__file, __func, __line);  

      console.warn(` %s <%s:%d>:Average peak power  

${avgPeak} Average Peak Cost ${avgPeakCost}` ,__file, __func, __line);  
      Ppeak.length = 0;  

    }  

    

  }  
} var run = async 

function(){  

  console.warn(` %s <%s:%d>:in peak 

period` 
,__file, __func, __line);  

  var demand = await computeDemand();  

  stream.write(demand +  " "  +new Date().toISOString() + "\n" );  

  //stream.end();  
  Ppeak.push(demand);  

  PpeakCost.push((demand * 15 / 60 * 1000) * Ecost)  

  console.warn(` %s 
<%s:%d>:Running` 

,__file, __func, __line);  

  // Recycle Loads  
  cycleLoads(demand);  

 // or shed Loads  

  shedLoads(demand);  
}  
// we can implement a critical shedding scheme that will  
// shed high power low priority load first. function 

getLoadToShed() {  

  

  var sheddingLoad = activeLoads[0];   for 

(let j = 0; j < activeLoads.length; j++){    

 var load = activeLoads[j];  

    if(sheddingLoad.priority == load.priority) {     // we 

will shed the load that consume most power of the two  

      if(load.power > sheddingLoad.power) {  

        sheddingLoad = load;  

      }  

    }   

    else {  

      if(sheddingLoad.priority > load.priority) {    

     sheddingLoad = load  

      }  

    }  
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 }    

  console.log(` %s <%s:%d>:Load to shed:  

${sheddingLoad.name} 

  return  

`,__file, __func, __line); 

sheddingLoad;  

} function setActiveLoads(){   // get 

active loads   for (let i = 0; i < 

loads.length; i++){  

    var load = loads[i];  

    var loadInfo = apputils.find(load, activeLoads);  

   if(!loadInfo.state) {       if(load.state == 

true) {         // get active loads      

   activeLoads.push(load)  

      }  

    }   

  }  

  console.log(` %s <%s:%d>:Active load:  

${activeLoads.length}`,__file, __func, __line);    
}  
var shedLoads = async function(demand){  

 while(demand > peakCapacity){  

    console.log(` %s <%s:%d>:Threshold 

reached` 
,__file, __func,  

__line);   

    var lowLoad = getLoadToShed();    

 resetLoads(lowLoad);  

    var appInfo = apputils.find(lowLoad, recycleLoads);    

 if(!appInfo.state) {      

 recycleLoads.push(lowLoad);  

    }       

    demand = await computeDemand();  

  }  
} var cycleLoads = async function(demand){    // remove load after 

recyclyng   while((demand < peakCapacity) && (recycleLoads.length > 

0)){  

    console.log(` %s <%s:%d>:load to recycle:  

${recycleLoads.length}`,__file, __func, __line);  
    setLoadPower(getLoadToRecycle())    

 demand = await computeDemand();  

  }  
} function getLoadToRecycle() 

{  

  var lowest = 0  

 var j = 0;  

  var recycleLoad = recycleLoads[0];   for 

(let i = 0; i < recycleLoads.length; i++){  

  

    load = recycleLoads[i];  

  

    if(recycleLoads.priority ==  load.priority ){      

 if(recycleLoads.power <= load.power) {  

        recycleLoads = load;  

      }   

    }   
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    else {  

      if(recycleLoads.priority >  load.priority) {  

        recycleLoad = load;  

      }   
}  

  } 

  return recycleLoad;  
}  function remove(load, 

loads){  

  return loads.filter(item => item !== load) }  function 

updateLoadState(load) {   var url='http://localhost:8000/api/oic/'+ 

load.locationId + '/' + load.name +'?di='+ load.deviceId;  

    console.warn(`%s <%s:%d>: About to change appliance ${load.name} 

at ${url} state`,__file, __func, __line);    

 apputils.postResource(url, load).then(function(result){     

process.send({ msg: "dsm load updated", load: load});         

  }, (err) => {  

    console.error(` %s <%s:%d>: 

${err}` 
,__file, __func,  

__line);   

  });  
}  function resetLoads(lowLoad){   console.log(`%s 

<%s:%d>:Lowest priority load is:  

${lowLoad.name}` ,__file, __func, __line);  

  lowLoad.state = false;  
  lowLoad.power = 0;  

 updateLoadState(lowLoad);   activeLoads = 

remove(lowLoad, activeLoads);   

}   function 

setLoadPower(lowLoad){  

  var power = 0;  

  for (let i = 0; i < loadsRatings.length; i++){  

   load = loadsRatings[i];    

 if(load.name ==  lowLoad.name ){      

 power = load.rating;       console.log(`%s 

<%s:%d>:Load power:  

${load.rating}` ,__file, __func, __line);  

      break;  
    }   

  }    

  lowLoad.state = true;   lowLoad.power 

= power;   updateLoadState(lowLoad);  

  recycleLoads = remove(lowLoad, recycleLoads);   
}   
setInterval(() => {    

main();  
}, timeStep);  

  

  
 Appendix E.  Observing Service Source Code  
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    help: false,     

host: "localhost",     

port: 8000,     https: 

false,     obs: false  
};   

proto = require( 'http' );  

  
const okStatusCode = 200; // All right var 

reqOptions = {   host: options.host,   port: 

options.port,   agent: new 

proto.Agent({keepAlive: true}),   headers: {  
    Connection: "keep-alive",     'Content-

Type': 'application/json'  
  },   ca: ca } var loads = 

[]; var startObserving = 

false;  

  

 
  if(msg != null) {     console.log(`%s <%s:%d>:Message 

from Main process:  

${msg.length}` ,__file, __func, __line);  

    for(let i = 0; i < msg.length; i++){  
      loads.push(msg[i]);  

    }  

  console.info(` %s <%s:%d>: Init Obrseving process with:  
${loads.length} to observe`,__file, __func, __line);     

if(!startObserving) {  

    console.info(` %s <%s:%d>: 

Observing.........` 
,__file, __func,  

__line)  
      observeAppliances();       

startObserving = true;  
    }  
  }  
});  function 

observeAppliances() {  
   for(let i = 0; i < loads.length; 

i++){  
 var load = {   location:    loads[i].location,   

locationId:  loads[i].locationId,   applianceId: 

loads[i].applianceId,   name:        loads[i].name,   

deviceId:    loads[i].deviceId,   state:       

loads[i].state,  
current:     loads[i].current,  

  power:       loads[i].power           

var   request = require( 'request' ) ;   
var   apputils = require( "./app_utils" ) ;   
require( 'magic - globals' ) ;   

var   proto =  null ;   
var   path = require( 'path' ) ;   
var   fs = require( 'fs' ) ;   
var   ca =  null ;   
var   args = process.argv.slice( 2 ) ;   
var   options = {   

process.on( 'message' , (msg) => {   
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  };  
    retrieveResources(load,onResource, (options.obs = true));   
  }  
}  function onResource(load, data) {   var loadInfo = 

apputils.find(load, loads);   if(loadInfo.state) {    

 if(Math.abs((loads[loadInfo.pos].current - data.current) /  
1000.0) > 1.0) {  

      loads[loadInfo.pos].power = data.power;       

loads[loadInfo.pos].state = data.state;       

loads[loadInfo.pos].current = data.current ;       

process.send({ msg: "Load updated", load: loads[loadInfo.pos]});  

    }   

  }  
}  function retrieveResources(load, callback, observe) {   

reqOptions.path = "/api/oic/" + load.locationId + "/" + load.name +  
"?di=" + load.deviceId;   

if (observe) {  

    reqOptions.path +=  "&obs=1" ;  

  }  

  var json =  "" ;  
  resourceCallback = function(res) {  

    

res.on( 
'data' , function(data) {  

      if (observe) {  
        callback(load, JSON.parse(data));  

        

console.info(` 
%s <%s:%d>: 

${data}` 
,__file, __func, __line);    

      }  
      else {         

json += data;  
      }  
    });   

    

res.on( 
'end' , function() {  

      if (json)  
        callback(load, JSON.parse(data));  
    });  

  
    

res.on( 
'abort' , function() {  

      

console.log( 
    });  

 

"event: abort" 
 

);  

 

  }   var req = proto.request(reqOptions, 

resourceCallback);  

  
  

req.on( 
'error' , function(e) {  

      

console.log( 
  });  

 

"HTTP Request error: %s" 
 

, 

e.message);  

 

  
  req.end();  
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}   

  


