

RESIDENTIAL ENERGY EFFICIENCY OVER A PERSUASIVE INTERNET OF

THINGS BASED FEEDBACK

By

YANN STEPHEN MANDZA

Thesis submitted in fulfilment of the requirements for the degree.

Master of Engineering in Electrical Engineering

in the Faculty of Engineering and the Built Environment

at the Cape Peninsula University of Technology

Supervisor: Dr. A.K Raji

Bellville

June 2021

CPUT copyright information

The dissertation/thesis may not be published either in part (in scholarly, scientific, or technical

journals), or as a whole (as a monograph), unless permission has been obtained from the

University

 1. DECLARATION

I, Yann Stephen Mandza, declare that the contents of this dissertation/thesis represent my

unaided work and that the dissertation/thesis has not previously been submitted for academic

examination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

 ii

Signed Date

08 November 2021

 iii

 2. ABSTRACT

In developing countries today, the population growth and the increasing penetration of higher

standard of living electrical appliances in domestic places has resulted in a rapidly increasing

residential load. In South Africa, the recent rolling blackouts and electricity price increase only

highlighted this reality calling for sustainable measures to reduce the overall consumption and

peak load. The cost and effectiveness of energy Utility residential intervention campaigns and

the complexities linked to the architectural limitations of Home Energy Management Systems

(HEMS) have long restricted grid interventions to the commercial and manufacturing sectors.

Nevertheless, the dawn of the smart grid, smart energy meters, low-priced sensors, and

embedded devices coupled with Internet-related technologies have paved the way to novel

residential energy management interventions involving networking and interaction amongst

devices, consumers, and the grid. In this regard, the Internet of Things (IoT), an enabler for

intelligent and efficient HEMS, is seeing increasing attention in Home Area Network (HAN)

design optimization while mitigating related cost limitations. This work presents the design and

implementation of an IoT platform for residential smart-grid applications with the requirement

of low cost, interoperability, scalability, and technology availability. The work focuses on the

backend complexities of IoT home area networks (HAN) using IoT middleware. Cloud

technologies as smart-grid tools augment the quality and services in IoT systems participating

reducing the cost and complexities of HEMS. Thus, this work leverages open-source Cloud

technologies from Back4App as BaaS to provide consumers and Utilities with a data

communication platform for time and space agnostic “mind-changing” consumption feedback,

appliance operation control, and Demand-Response Management(DRM) via an Android App.

Considering these prerequisites, the platform uses the Open Consortium Foundation(OCF)

IoTivity-Lite middleware and implemented different case-study for awareness feedback and

demand-side management.

Keywords: IoT, IoTivity, Cloud, Back4App, CoAP, HA, Energy Feedback, HEMS, HAN,

Android, DRM.

 iv

 3. ACKNOWLEDGEMENTS

I would like to thank all those who contributed in any manner possible to me completing this

work.

The Lord God Almighty for the strengths, encouragement, and provision you provided through

the different ups and downs to complete this work.

Mr. Ivan, Kholer, former Head of IET department at iThemba LABS for giving a chance, trusting

me, and maturing at iThemba LABS and facilitating resource access, and giving directions to

shape this work.

Mr. Mike Hogan, Head of Software department at iThemba LABS, for mentoring me in different

software technologies that ended up valuable to complete the experimental works for this

thesis.

Professor, Paul Papka, Head of Ithemba INIT department for pushing me, giving advice,

support, financial assistance, and equipment, and making available iThemba LABS resource

that helps me test and gather data throughout this work.

My supervisor Dr. Atanda Raji. Your encouragements, directions, and longsuffering have been

central in guiding this works and seeing it to the end.

 v

 4. DEDICATION

The thesis is dedicated to my grandmother Nkama Claire, my first teacher, confidence, and

God’s love extensions in my life. You taught me to be hard-working, kind, and care for others.

Though you are gone, your legacy stays in me and I will keep going further and become a

better man to make you proud in the hope of seeing you again when I go the way of all men.

With thanksgiving to God, I am honored to have known you.

 5. TABLE OF CONTENTS

DECLARATION ...i

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

DEDICATION ...v

TABLE OF CONTENTS ..v

LIST OF FIGURES .. viii

LIST OF TABLES .. xi

GLOSSARY .. xii

CHAPTER ONE... 1

INTRODUCTION .. 1

1.1. Introduction .. 1

1.2. Background ... 2

 vi

1.2.1. Residential building consumption ... 3

1.3. Research problem and Questions .. 6

1.4. Research Objectives .. 6

1.5. Significance of the research ... 7

1.6. Research Delineation .. 7

1.7. Research Methodology .. 8

1.8. Outline of the thesis ... 9

CHAPTER TWO .. 11

SMART GRID AND ENABLING TECHNOLOGIES BACKGROUND 11

2.1. Introduction .. 11

2.2. South African Electric Grid ... 11

2.3. The Smart Grid .. 13

2.3.1. Smart grid as an Enabler for HEMS .. 14

2.3.1.1. Case for Demand Side Management .. 15

2.3.1.2. Case for Energy Monitoring (Feedback) .. 16

2.3.1.3. The case for Home Area Networks ... 18

2.3.1.3.1. HAN Communication and Network Technologies .. 18

2.3.1.3.2. HAN Devices .. 20

2.3.2. Smart Grid implementations challenges ... 21

2.3.3. Smart grid Enabling Technologies .. 22

2.4. The Internet of Things .. 23

2.4.1. The case for smart grid infrastructure ... 25

2.4.2. The case for residential energy efficiency ... 25

2.4.3. Architecture for IoT ... 27

2.4.4. IoT enabling technologies ... 28

2.4.5. Sensor and Embedded systems ... 29

2.4.5.1. Sensor networks ... 31

2.4.5.2. Real-time operating systems (RTOS).. 32

2.4.5.2.1. Contiki ... 33

2.4.5.2.2. RIOT ... 34

2.4.5.2.3. FreeRTOS ... 36

2.4.6. Communications and protocols ... 37

2.4.6.1. IoT protocol stack ... 39

2.4.6.1.1. Network layer .. 39

2.4.6.1.2. Transport layer .. 39

2.4.6.1.3. Application layer ... 40

2.4.6.1.4. Datalink layer .. 41

2.4.7. Middleware for IoT smart grid applications.. 42

2.4.7.1. Alljoyn ... 44

2.4.7.2. IoTivity .. 45

2.4.8. Cloud technologies ... 49

2.4.8.1. The case for the smart grid applications .. 51

2.4.9. Mobile Technologies ... 52

 vii

2.5. Chapter summary .. 54

CHAPTER THREE .. 55

Related Works and Solution Specifications ... 55

3.1. Introduction .. 55

3.2. Related Works ... 55

3.3. Solution Specification .. 61

3.3.1. Software components ... 62

3.3.1.1. Middleware for the platform HAN management ... 62

3.3.1.1.1. IoTivity-Lite arduino port .. 62

3.3.1.1.2. High-level devices management and cloud connectivity 63

3.3.1.1.3. Communication technologies for the proposed solution 63

3.3.1.2. Cloud deployment for the proposed solution ... 64

3.3.1.3. Mobile development for proposed solution .. 64

3.4. Chapter Summary ... 64

CHAPTER FOUR .. 68

PLATFORM DESIGN AND DEPLOYMENT .. 68

4.1. Introduction ... 68

4.2. Equipment for an experimental platform .. 68

4.2.1. Platform motes shields ... 69

4.2.1.1. Current and voltage sensors ... 69

4.2.1.2. Actuators .. 72

4.3. Platform system integration ... 73

4.3.1. Platform motes Hardware Integration ... 73

4.3.2. Sensor Calibration and Signal conditioning ... 74

4.3.3. Firmware development for Platform motes ... 75

4.4. Chapter Summary ... 87

CHAPTER FIVE .. 88

CASE STUDY, RESULTS, AND DISCUSSION .. 88

5.1. Introduction .. 88

5.2. Energy Monitoring .. 88

5.3. Home Automation .. 88

5.4. Demand Response Management .. 88

5.4.1. Energy Consumption Model ... 90

5.4.2. DRM Algorithm implementation .. 91

5.4.3. DRM Scenario Network communication ... 91

5.5. Results .. 92

5.5.1. HAN device responses to GET/POST requests .. 93

5.5.2. Smart home underlying services ... 94

5.5.2.1. IoT REST service .. 95

5.5.2.2. Parse gateway service .. 95

5.5.2.3. Observing service ... 96

5.5.2.4. DRM service ... 97

5.5.3. Feedback via Energy App ... 97

5.5.4. Home automation via Energy App .. 98

5.5.5. DRM via Energy App .. 99

 viii

5.6. Results discussion ... 101

5.7. Chapter Summary .. 102

CHAPTER SIX .. 102

CONCLUSION AND RECOMMENDATIONS.. 102

6.1. Conclusion ... 102

6.2. Meeting the research objectives .. 103

6.3. Contributions of this research ... 104

6.4. Recommendations ... 104

REFERENCES .. 105

APPENDIXES ... 109

Appendix A. Motes DAQ Modules Circuit Diagram ... 109

Appendix B. DAQ Modules PCB layout .. 111

Appendix C. HAN Motes DAQ and DRM Firmware Pseudo-codes................................. 113

Appendix D. DSM Peak Shaving source code.. 115

Appendix E. Observing Service Source Code .. 121

6. LIST OF FIGURES

Figure 1.1: Number of Households and Number of Electrified Households (Millions)

2
Figure 1.2: Electricity Price Increase in South Africa .. 3
Figure 1.3: Proportion of Total energy consumption by economic sector 3

Figure 1.4: Evolutions in residential loads and comfort levels .. 4
Figure 1.5: Residential Sector Energy End-Use ... 4

 ix

Figure 2.1: Typical Tradition Electric system adapted from (Paridah et al., 2016b) 12

Figure 2.2: HEMS over Smart Grid AMI Modified from (Paridah et al., 2016a)

14
Figure 2.3: DRM Load shaping techniques Adapted from .. 15

Figure 2.4: Disaggregated feedback type’s savings in average Households in the US.

17
Figure 2.5: Smart Grid Enabling Smart Home and Home Area Networks

18
Figure 2.6: Communication and networking technologies for HAN 19

Figure 2.7: Residential Energy Network server over AMI and/or Internet Gateway 23

Figure 2.8: IoT Definitions adapted from (Razzaque et al., 2016) .. 24
Figure 2.9: Possible IoT applications adapted from (Razzaque et al., 2016) 24
Figure 2.10: IoT Platform for Smart home adapted .. 26
Figure 2.11: IoT communication layers (Viswanath et al., 2016) .. 28

Figure 2.12: IoT challenges.. 28
Figure 2.13: IoT heterogeneity adapted from (Razzaque et al., 2016)

29
Figure 2.14: RTOS vs. Non-RTOS Systems .. 32

Figure 2.15: IoT implementation using RTOS .. 33
Figure 2.16: Contiki OS architecture adapted from (Dwivedi, Tiwari and Vyas, 2009)

34
Figure 2.17: RIOT architecture adapted from (Baccelli et al., 2018) 35

Figure 2.18: RIOT supported CPUs (Baccelli et al., 2018) ... 36
Figure 2.19: Overview of communication protocols and models for IoT 38

Figure 2.20: Standard Internet and IoT protocol stack; in red are the ITEF standards

39 Figure 2.21: Classification of IoT devices centered on computational abilities, cost, and

memory adapted from (Perera et al., 2014) ... 43
Figure 2.22: Middleware requirements enabling interaction from IoT device to application

layer adapted from (Razzaque et al., 2016) ... 44
Figure 2.23: AllJoyn Network adopted from (Larsson and Nimmermark, 2016) 45

Figure 2.24: IoTivity Stack and architectures adapted from (Macieira, 2016) 46
Figure 2.25: Client/server CRUDN interactions: Create, Read, Update, Delete, Notify

47

Figure 2.26: IoTivity client/server interaction adapted from (Maloor et al., 2015)

47

Figure 2.27: IoTivity-node concept (Macieira, 2016) .. 48
Figure 2.28: IoTivity-Lite framework adapted from (Maloor, 2019) 49
Figure 2.29: Typical IoT Smart home management model ... 52
Figure 3.1: Porting IoTivity-Lite to Arduino MCU adapted from (Maloor, 2019)..................... 62

Figure 3.1: Proposed System architecture ... 65
Figure 4.1: Current Transformer (CT) adapted from (Miron-Alexe, 2016)

68

Figure 4.2: Mascot ac-ac 230V/12V 500 mA voltage transformer adapted

68

Figure 4.3: Schematic defining the wring of the SCT-013 current sensor 69
Figure 4.4: Schematic describing the actuation within the mote shield 71
Figure 4.5: Final assembly and main component for platform mote, left) Arduino based mote,

right) ESP32 based mote ... 72
Figure 4.6: Voltage and current signal calibration and conditioning

72
Figure 4.7: Algorithm for IoTivity Server ... 75

Figure 4.8: Platform App on Back4App BaaS .. 76
Figure 4.9: Back4App Parse Live Query Tool Configurations ... 77

 x

Figure 4.10: Configuring and Uploading Cloud Code Functions ... 77

Figure 4.11: Platform databases structure and connections on Back4App BaaS 79

Figure 4.12: Network configuration and communication in the Platform 80
Figure 4.13: communication flow with Android smartphone App .. 81
Figure 5.1: Case study system architecture ... 87

Figure 5.2: Experimental Platform used for Scenario’s testing ... 88
Figure 5.3: Arduino slave initialization logs .. 88
Figure 5.4:HAN server GET response ... 89
Figure 5.5: HAN server POST response .. 89
Figure 5.6: JavaScript packages used for services development ... 89

Figure 5.7: Smart home services scripts .. 90

Figure 5.8: IoT REST server logs ... 90
Figure 5.9: Sign up authentication.. 90
Figure 5.10: Login authentication ... 91

Figure 5.11: Live Query subscriptions .. 91
Figure 5.12: Resources storage updates ... 91
Figure 5.13: Observing service logs ... 91

Figure 5.14: DRM service logs ... 92
Figure 5.15: Energy Monitoring on IotSmartApp .. 92
Figure 5.16: Home automation with IotSmartApp; (a) appliance is turn off; (b) appliance is

turn off; (c) appliance power consumption off ... 93
Figure 5.17: DRM with Energy App .. 94

Figure 5.18: Peak load profiling through IoT platform ... 95
Figure A.1: Complete DAQ module for Arduino HAN resource servers 103
Figure A.2: Complete DAQ Module for ESP32 HAN resource servers 105

Figure B.1: PCB layout for HAN Resource Server DAQ module

(a) ESP32 interfacing PCB; (b) Arduino (AVR&ARM) DAQ module 106
Figure C.1: Algorithm for appliance power properties computation 107
Figure C.2: Algorithm for DRM simulation scenario .. 108

 xi

7. LIST OF TABLES

Table 2.1: DRM benefits Adapted from (Kailas, Cecchi and Mukherjee, 2012b) 16

Table 2.2: Home Area Network Wireless technologies comparison adapted from (Lobaccaro,

Carlucci and Löfström, 2016), (Kailas, Cecchi and Mukherjee, 2012), (Ahmad et al., 2016) 19

Table 2.3: HAN devices comparison adapted from (Lobaccaro, Carlucci and Löfström, 2016)

 .. 20
Table 2.4: Verbs in CoAP according to RFC 7252 adapted from(Soto, 2017) 40
Table 2.5: Summary of standard IoT communications technologies.

42
Table 2.6: Classification of constrained devices. adapted from (Maloor, 2017) 48

Table 4.1: Device used for IoTivity network (HAN) ... 66
Table 5.1: Appliances in the considered home with their typical priority level

84

Table 5.2: DRM Simulation results ... 95

 xii

 8. GLOSSARY

Key Word

 Description

AC Alternating Current

ADC Analogue to Digital Converter

API Application Programming Interface

App software program with graphical interface

CoAP Constrained Application Protocol

BaaS Backend-as-a-Service

CRUDN Create, Retrieve, Update, Delete, and Notify

CT Current Transformer

DAQ Data Acquisition Device

D2D Device-to-Device

D2C Device-to-Cloud

DR

Demand Response

DSM

Demand Side Management

DRM Demand Response Management.

ESKOM Electricity Supply Commission of South Africa

GUI Graphical User Interface

HEMS Home Energy Management Systems

HAN Home Area Network

HTTP Hypertext Transfer Protocol

Hz Hertz

ICT information and communication technologies

IoT Internet of Things

JSON JavaScript Object Notation

LAN Local Area Network

MAC Media Access Control

MW Mega Watts

 xiii

M2M Machine to Machine communication

P2P Peer to Peer communication

SG Smart Grid

SA South Africa

OS Operating System.

OCF Open Connectivity Foundation

OIC Open Interconnect Consortium

REST Representational State Transfer

TOU Time of Use

UDP User Datagram Protocol

URI Uniform Resource Identifier

WSN Wireless Network Sensor

WLAN Wireless Local Area Network

XML Extensible Markup Language

IEEE Institute of Electrical and Electronics Engineers

EDR Enhanced Data Rate

HS High Speed

MAC Medium Access Control.

SaaS Software-as-a-Service

VT Voltage transformer.

 1

1. CHAPTER ONE

INTRODUCTION

 1.1. Introduction

The growing energy consumption in South Africa causes grave problems to

energy supply sustainability. This situation is particularly alarming in households

from which originate a significant share of peak loads and energy wastage. The

recent rolling blackouts and electricity price increase only highlighted this reality

calling for sustainable measures to reduce overall consumption. But in such

context, the cost, and complexities of grid interventions in the residential sector

has limited the Energy utility initiatives to awareness and educational campaign

and flash addresses on digital media to address energy wastage. However, the

growing demand emphasized the limitation of these interventions. Therefore, it

is required for the grid to extend its technological tools to residential buildings.

HEMS provides consumers with feedback on appliances or equipment

operation while providing an automation platform for implementing energy

management strategies. However, traditional HEMS designs suffer many

constraints and limitations. Indeed, granularity, reusability, scalability, and

costrelated limitations have impeded their performance. These have restricted

their penetration in domestic space. As a component of the smart grid (SG),

HEMS performance depends on its business case being operational. That is,

their design will require scalable, reusable, and interoperable backend

communication platforms. In other words, HEMS design will need these

optimizations for effectivity in the current and future management of energy

consumption within the smart grid. However, technology affordability and

availability are significant barriers to deploying such intelligent platforms in

developing contexts. Nevertheless, the recent advancement in mobile devices,

cloud computing, and storage, embedded design highly mitigates these

concerns. Thus, the Internet of Things (IoT) is an enabler for cost-effective and

flexible communication platform HEMS design.

This thesis explored the applicability of smart-grid IoT enabling technologies in

providing an efficient, performant, and cost-effective communication platform for

energy management applications, particularly in residential places. In this

chapter, a research background is provided. Following are the research

objectives and research questions identification. Then, the methodology is

defined, and the structure of the thesis is briefly explained.

 2

 1.2. Background

Across the world today the electricity consumption is fast reaching the point

where resources cannot meet the demand (Smith et al., 2012). Indeed,

industrial development and population growth-related demands have increased

over the years faster than power systems expansion programs. This situation is

highlighted by the increasing stress conditions, resource scarcity, and fossil fuel

negative environmental impact (Zhang et al., 2015). The issue is even more

pressing in developing countries having significant population growth. In SA, the

population growth is closely related to the electricity demand (figure 1.1 below).

Indeed, between 1994/5 and 2011/2012, the number of connected households

(utility grid-connected) was more than double (4.5 to 9.8 million) in SA.

Figure 1.1: Number of Households and Number of Electrified Households (Millions)

(Human Sciences Research Council, 2013)

The increase in this already high demand led to unpleasing energy supply for

all related sectors mostly manifested as rolling blackouts due to the load

shedding effect. Dealing with load shedding in the winter period (highest

seasonal demand), the utility company, Eskom meets a two to four hours

shortfall period using an open cycle gas turbine (Deventer, 2014). However,

these counteraction measures come with a high cost (operating and

maintenance) and significant negative environmental impacts. Considering the

aging national grid, there is the need for increased generation and upgrading

existing facilities. However, such improvements require significant investment

and pose serious environmental threats (Kedar and Somani, 2015). To achieve

the needed grid expansion actions, the government and Eskom agreed on a

year-based electricity price increase that was between 2008 and 2012(figure

1.2). Such an increase brings the issue of energy affordability for consumers

 3

and businesses. Therefore, the efficiency of the power system is seeing a

growing interest and is becoming a hot topic amongst researchers (Ki et al.,

2016).

Figure 1.2: Electricity Price Increase in South Africa

(Human Sciences Research Council, 2013)

1.2.1. Residential building consumption

Residential load accounting for around 30-40% of worldwide energy

consumption is charged with a significant impact on peak demands(Beligianni

et al., 2016). In SA, about 25% (figure 1.3) of energy demand is attributed to

residential consumption, a substantial contributor to morning and evening peak

results in a national load factor of 72% (Department of Energy, 2012).

Figure 1.3: Proportion of Total energy consumption by economic sector

(South African Department of Energy, 2016)

Compared to early houses in the late ’80s, modern homes have seen an

explosion of high-living conditions appliances penetration which has highly

increased residential consumption (figure 1.4). In developing contexts, higher

energy usage is generally due to cooling/heating, cooking, lighting, washing,

and drying (figure 1.5). According to (Qayyum et al., 2015), these consumption

activities (excluding lighting) account for about 70% of appliances in residential

 4

buildings. However, residential energy consumption is not only a cause of high

consumption appliances. Researchers estimate that about 8% of household

energy consumption is attributed to wasteful usage patterns regarding standby

(phantom load) appliances (Korsunova, 2010).

Figure 1.4: Evolutions in residential loads and comfort levels

Adapted from (Asare-Bediako, 2019)

Indeed, according to the Department of Energy (2012), compared to the

international benchmark for energy poverty (10%), households in SA are

spending up to 4% higher of their total household income on energy needs.

Energy usage is therefore invisible to most South African households incurring

greater misuse.

Figure 1.5: Residential Sector Energy End-Use

(South African Department of Energy, 2013)

Though metering devices enable a general perception of consumption, the data

obtained is not informative enough and lacks the empowerment capability to

curve down consumption. In SA, the power Utility (Eskom) has been engaging

in energy-saving advice and educational campaigns with consumers. About the

effectiveness of the Eskom approach, Coetzee & Eksteen (2012) writes: “It is

highly debatable if this mechanism is effective at all, as most households do not

feel that the load restriction applies to them”. Current research in energy

 5

conservation for residential buildings has shown that HEMS in the smart grid

(SG) context will bring energy efficiency to households (Kedar and Somani,

2015). Yet, conventional HEMS come with challenges of complexity,

affordability, and technology availability. Indeed, their static and fixed network

topology limits their reusability and scalability (Kim et al., 2015). Additionally,

their usage of proprietary communication protocols restricts the access space

and limits consumer products selection, thus increasing interoperability issues

and cost (Lee and Lai, 2016). However, the recent emergence of the IoT

paradigm in the smart grid context is challenging this reality. IoT devices enable

affordable, simplistic, and scalable feedback and automation technologies for

home or building energy management (Abdulrahman et al., 2016). IoT facilitates

the development of heterogeneous communication platforms around ubiquitous

devices that are scalable, affordable, and fit for different use cases

(Jose et al., 2016). Moreover, an IoT-based HEMS can offer “mind changing”

feedback bringing energy awareness at the appliance level to motivate and

empower individuals to make smart decisions regarding when to turn their

electrical equipment on or off (Coetzee and Eksteen, 2012). Furthermore, via

open-source tools provided by developing technologies, IoT greatly reduces the

cost of HEMS (Korkmaz et al., 2015a).

However, the deployment of IoT systems suffers inherent device interoperability

issues (Risteska Stojkoska and Trivodaliev, 2017a). IoT lacks standardization

for communication and interaction, resulting in software architecture being

unable to scale well to heterogeneous networks (Elfström, 2017). Current

research in IoT, advocate for middleware to handle local area network (HAN)

complexities. An IoT middleware, a framework running on supported devices

offers services regarding semantics gaps, device discovery, and the

management of large data (Wang, Hu, Zhou, Zhao, et al., 2015). Recent studies

in energy efficiency, leverage cloud computing to extend the capabilities of

HEMS. Cloud development gives access to a collection of user-adjustable web

services and data storage to mitigate constraints related to resource scarcity

and system expansion inherent to residential buildings' automation systems

(Korkmaz et al., 2015a). Moreover, cloud computing enables end-users to

access and manage HEMS remotely via the internet and mobile devices

(Deshpande et al., 2015).

 6

 1.3. Research problem and Questions

Energy management platforms for residential buildings need to rely on smart

grid enabling technologies for greater efficiency. In this regard, IoT enabling

technologies, cloud computing and advances in embedded devices provide an

avenue for grid and consumers to effectively participate in the current

energysaving effort. In a developing context, smart-grid interventions suffer

costrelated implementation issues. Moreover, the initial investment in intelligent

appliances required technological tools that can make existing household

appliances effectively participate in the energy conservation effort. Thus, the

research question of this project, is: “How can IoT enabling technologies within

developing context, enhance and facilitate household energy management

within the smart grid vision?”

The following question will be guidelines for this research:

1. How can IoT mitigate design complexities and limitations of

traditional HEMS?

2. How can IoT mitigate the cost of technology in SG effort for

developing context?

3. What backend middleware best handles IoT semantic gaps?

4. How do IoT cloud technologies enhance smart grid effort in the

residential sector?

5. How can mobile technologies participate in IoT “mind-changing”

feedback to enhance consumer awareness and energy

management activities?

 1.4. Research Objectives

This work aims to provide energy management interventions in residential

places with an effective and performant data communication platform

leveraging the smart grid IoT enabling technologies. Thus, the thesis purposed

to address the interoperability, scalability, cost, and technology availability of

technology constraints of HEMS design and deployment in developing contexts.

Lately, a case study illustrating the platform performance in relation to effective

real-time feedback, appliances operation control, and a DRM intervention is

proposed. In this regard, the thesis objectives are to:

1. Design and implement an IoTivity-based HAN to handle IoT

semantic gaps (devices interoperability), increasing HAN device

miniaturizations and lowering cost,

 7

2. Design IoTivity smart plugs for interfacing existing home

appliances,

3. Optimize and scale the HAN using the cloud as BaaS to simplify

the platform backend requirements,

4. Develop an Android-based Energy management App leveraging

the cloud BaaS.

 1.5. Significance of the research

In developing context, the traditional DR grid for domestic consumers is

inexistent mainly due to two causes. First, the great number of domestic units

is difficult to handle from the grid side without communication, sensing devices,

and effective automation tools. Secondly, compared to their implementation

cost, the DR program's effect is negligible. However, as the Smart grid concept

is trending amongst research, Utilities are slowly deploying AMI technologies in

very constraining conditions in developing contexts. Thus, bringing efficient

energy consumption taking advantage of current advances in technology while

deploying systems that are scalable to smart grid future AMI are required. The

internet and its related technology have been regarded as suitable in this

required transition from the traditional grid to the smart grid. This thesis strives

while leveraging Internet dependant technology in IoT, cloud computing,

embedded design, Web Application to provide a two-way energy management

platform mitigating the complexities of HEMS and HAN as well as the cost of

their implementation. Thus, this study will be significant in bringing energy

consumption literacy, action tacking as well as management at the appliance

level, providing a platform that incorporates the existing appliances and

residential technological facilities while being interoperable, scalable, and

costeffective to greater penetration of the smart grid vision in the residential

sector.

 1.6. Research Delineation

IoT commands great research interest presenting many design and

implementation challenges. Thus, the IoT platform for energy management

addresses semantics gaps mainly related to interoperability, scalability issues,

and implementation cost. That is, the research primarily focusses on the

backend requirements for an IoT platform that offers protocols interoperability,

device, and resource management within the HAN and leverage cloud

computing to provide energy service on consumer loads. Thus, an IoT

 8

middleware as the state-of-the-art tool for ideal IoT applications is used.

However, this research does not aim to evaluate the middleware performance

in handling the HAN, but this work focusses on the middleware tools that able

to satisfy the research primary requirements as to enhance the platform and

facilitate its deployment. Security is a primary concern in IoT system

deployment. The IoTivity-Lite middleware is used in this work and provides

security. However, the different software interactions within it are still in the

development stage thus limiting the full implementation of this middleware

security layer at this stage of the work. Therefore, the implementation mainly

relies on the security layer of the cloud platform as handling security at a higher

level of interaction. Additionally, the platform uses login credentials on the

energy application to protect the home against unauthorized remote access. To

decrease the cost of the IoT platform open-source cloud services and software

frameworks provided by emerging technologies in IoT as well low-cost

ubiquitous embedded devices are used.

A smartphone Energy App build on the popular Android OS was employ

leveraging android technologies pervasiveness in South African households.

Although, this work intends to provide a platform for different DRM techniques

the performance of these is not part of the evaluation of this platform.

Nevertheless, an experimental study was deployed to demonstrate the

platform's ability to provide appliance-level feedback, home automation, and a

DRM application for a simplistic peak shaving algorithm around common

household appliances of resistive type loading.

 1.7. Research Methodology

The research aims to both identify and provide a technological solution around

IoT middleware, cloud computing, HEMS, HAN, embedded design, and

smartphone to develop an effective data communication platform to facilitate

greater penetration of the smart grid vision in the residential sector within

developing countries. Thus, the research reviews:

• Smart Grid in developing context

• IoT as an enabler for SG and smart home developments

• Home Area Network around IoT technologies

• Embedded design for IoT HAN devices

• Internet of things middleware’s for backend services and semantic gaps

• Cloud Technologies for IoT platforms

• Mobile application as front-end for energy services.

 9

 1.8. Outline of the thesis

Following the opening chapter (Chapter One), the remaining of the thesis is

ordered as follow:

Chapter Two: This chapter covers the literature on smart grid vision focusing

on IoT as an enabler for smart grid penetration in residential load management.

Then a review is carried out about the backbone of HEMS or Home Area

Network focusing on their architecture, software stacks, and devices within the

network. Therefore, this reviewed the current state of the art in embedded

design for IoT applications. A review of different IoT middleware

implementations as possible solution for IoT semantic gaps is done. Lately a

review on cloud computing and related technologies as enablers for IoT-related

interventions for energy management is performed.

Chapter Three: This chapter covered specifications that govern the

experimental work. Here, the rationale behind the selection of the different tools

for the proposed solution was covered as reviewed in chapter 2. Moreover, it

covered the new solutions that were developed or adapted to satisfy the

research objectives.

Chapter Four: This chapter cover the development of every part of the

proposed solution. Firstly, the architecture of the Home Area Network

responsible for data communication within the HEMS. Secondly, focus is placed

on the design and development of devices that will interface with appliances to

provide energy feedback and control interface at the appliance level. In this

regard, the research focused on power consumption sensor technologies,

electronics control devices as well as firmware development. Thirdly, the

backend development for the HAN gateway were handled focusing on its

client/server interface both to the local sensor/actuator network and the remote

cloud services. Fourthly, cloud service interface is configured to support the

application requirements. In this instance, the research concentrates on the

cloud storage capacity of for the platform data and communication with the

home gateway as well as the remote user front-end. Lastly, attention is place

 10

on the development of an Android-based Energy App as a front-end for

“mindchanging” feedback and DRM applications.

Chapter Five: This chapter discussed the case study focusing on a DRM

scenario used as validating test cases for this research objective as an attempt

to answer the research questions. The different scenarios considered in

assessing the platform are covered. Simulated loads profiles are defined based

on a resistive load setup in a laboratory environment for high-consuming

resistive appliances at a fixed RMS consumption. The disaggregated feedback

provided both locally and remotely via the Energy App is evaluated. Lastly, the

experimental results are presentable in tables and graphs followed by thorough

discussion of the results.

Chapter Six: This the study concluding chapter. It includes recommendations

and suggests future works.

 11

 2. CHAPTER TWO

SMART GRID AND ENABLING TECHNOLOGIES BACKGROUND

 2.1. Introduction

In the traditional grid today, increasing peak load is challenging to the grid

infrastructure and often demands from grid management measures involving

supplementary power plant procurement, greater rates for consumers, and

unwelcome load shedding or even blackouts (Longe et al., 2017). To meet these

peak loads, Energy Utility had to grow generation capacity to satisfy the

increasing load. Aside from peak capacity plants and storage technologies

development, traditional solutions involve satisfying the supply with the required

demand using DR to meet the irregular electricity demand (Haider, See and

Elmenreich, 2016). In developing context this is mainly done using peak power

plants, or direct load control (DLC) techniques avoiding systems overload

conditions (Rasheed et al., 2016). Regarding this traditional approach, Haider

et al., (2016) argue that these solutions are unsustainable and scarcely

affordable as they are unsophisticated countermeasures matching the demand

for a limited period as well as increasing environmental-related issues. In this

chapter, the focus is on the traditional grid challenges in the South African

context. In the latter section, a review is carried out on the relevant technological

directions in research for modernizing the traditional grid as well as the stateof-

the-art for improving the residential sector demand.

 2.2. South African Electric Grid

Aging traditional electric grid lacking intelligent management and situational

awareness are now ill-suited to the fast-growing demand for electricity (Paridah

et al., 2016b). This situation has placed Energy Utilities under pressure from

annual increases in electricity demand coming mostly from residential

consumers (Mortaji et al., 2016). Currently, domestic consumption represents

about 30~40% of the overall energy use worldwide (Haider et al., 2016). The

newest study by the Department of Energy in South Africa shows that on

average, households in South Africa spend 14% of their overall monthly

earnings on energy necessities a figure above the international standard of 10%

for energy poverty. This residential load is regarded as the primary culprit for

seasonal and daily peak demand. Following the traditional approach, the

Energy Utility in South Africa (Eskom) has reacted to peak demand increase by

increasing its power output building new power stations and Adhoc expensive

 12

and climate adverse peak power plants, implementing higher tariffs for

consumers, and adopting restrictive measures such as undesirable load

shedding or even blackouts. Regarding the current investment in South Africa

to support the current demand, (Abu-Mahfouz, Olwal, Kurien, Munda, &

Djouani, 2015) noted that: “Eskom has R350- billion new-build program

(Medupi, Kusile, and Ingula) to fulfil the increase in power demand. However,

this program is facing several issues including the fact that it is two years behind

the completion schedule, and it incurs significant overruns cost: ongoing labour

unrest…”.

 In the South African grid, electricity transmission is unidirectional. That is from

the generating company Eskom to the consumers (figure 2.2-1 is a close

adaptation). Nomusa et al., (2014) describe the interaction between utility and

consumer as follow: “The meters in homes are linked to the service provider’s

system. A user purchases unit from an agent against their meter number. In

turn, recharge occurs when substations calculate supply against the meter

number. For those who are not on prepaid electricity, a meter reader collects

meter readings manually every month for generation of the bills”. To improve

the actual energy interaction the author argues that two-way communication

between utility and consumer is most viable as being beneficial to both.

.

Figure 2.1: Typical Tradition Electric system adapted from (Paridah et al., 2016b)

To effectively reduce consumer peak demand, energy utilities have engaged in

different awareness campaigns as well as Demanded Response programs with

mitigated results. However, Longe et al., (2017) argue that DRM is essential to

peak demand reduction and would benefit both Utility, consumers, and the

 13

environment. Hoosain and Paul., (2017) support this viewpoint when stating

that: “Traditional investments can be reduced by applying demand response

systems” to residential consumption. However, the centralized and

unidirectional grid coupled with its inability to accurately profile consumption,

the lack of direct and real-time communication between Utilities and consumers

limits the effectiveness of the DRM approach in traditional grid systems (Rathi,

Raja, Prof, & Rani, 2014). Consequently, with the elimination of past solutions,

a new paradigm needs to be adopted (Mortaji et al., 2016). The authors argued

that a modern, automated grid to aid in controlling power consumption and

increase the effectiveness of the grid via load management is needed to

address the current issues. In this regard, the consensus amongst current

researchers toward this goal is the smart grid vision.

 2.3. The Smart Grid

Traditional grids are dealing with several challenges ranging from aging

infrastructure, absence of communication, growing load, and security issues.

Moreover, grid interventions to the drastic peak demand increase from Utilities

have been supply-side mainly based on Peaker plants and awareness

campaigns notwithstanding direct load control. Regarding these measures,

Yardi., (2015) states: “However, these supply-side solutions ignore another

attractive alternative which is to slow down or decrease energy consumption

through the use of technology to dramatically increase energy efficiency”. Thus,

to address the traditional grid these issues, Smart Grid (SG) concept emerged

(Lobaccaro et al., 2016). The SG leverages advancement in ICT couple with

smart hardware, autonomous and reliable software, for data management

alongside a two-way channel amongst consumers and Utilities to consistently

and efficiently dispense energy. (Hussain et al., 2018a). As stated by Khan et

al., (2019), the SG's main objectives are to expand the consistency, efficiency,

and security of power systems. That is, the SG delivers electricity in a controlled

and intelligent manner from Utility to active consumers for an efficient and

intelligent power system (Risteska Stojkoska and Trivodaliev, 2017a).

Moreover, the smart grid concept enables Utilities to efficiently manage peak

timings of usage (Qayyum et al., 2015). Consequently, SG add-ons ultimately

improve the effectiveness, dependability, and flexibility of the power system

(Hussain et al., 2018a).

 14

In traditional power systems, residential energy management has been

neglected mainly due to scalability concerns. However, The SG has launched

the deployment of smart meters, low-cost sensors, and smart load on top of

ICTs in residential units for energy management programs (Lobaccaro et al.,

2016). Indeed, the SG has widened the scope of load management to the

individual residential unit within the power grid. For instance, Utilities may

remotely apply energy management to intentionally reduce peak load.

2.3.1. Smart grid as an Enabler for HEMS

DRM programs, the focus of smart-grid interventions have mainly targeted

commercial and big industrial sectors for their large demand reduction to the

grid. However, with the increasing portion of residential demand the total grid

load, Utilities are showing increasing interest in residential demand response

(RDR) (Rastegar, Fotuhi-Firuzabad and Zareipour, 2016). Home Energy

Management System (HEMS) is an integral part of a smart grid that can

potentially enable DR applications for residential customers (see figure 2.2). A

HEMS monitors energy and collects data and manages the operation of

domestic electrical appliances by enabling load management techniques

according to a pre-determined set of requirements (Blanco-Novoa et al., 2017).

Therefore, HEM is critical in realizing demand-side management within the

smart grid. HEM provides residential owners the tools to autonomously execute

smart load controls via utility signals, customers' preferences, and load priority

(Yardi, 2015a). As stated by Kedar and Somani., (2015), by managing

consumer demand via two-way communication with the energy market, HEMS

optimizes consumer costs.

Figure 2.2: HEMS over Smart Grid AMI Modified from (Paridah et al., 2016a)

Residential clients embedded with HEMS have a net reduction of their baseload

and peak demand. Aside from DRM application SG based HEMS provides an

 15

effective platform for energy literacy via consumption feedback. Indeed, the

ability to profile consumption and the advanced analytic and visualization tools

proposed by the smart grid enable technologies to allow HEMS to provide an

enhanced type of feedback to residential consumers. In this regard,

Emeakaroha, Ang, and Yan., (2012), stated that: “energy feedback is a critical

foundation for any attempt to reduce energy consumption, and the feedback

itself will likely curb energy usage to some extent”.

 2.3.1.1. Case for Demand Side Management

Electric utilities tend to meet growing consumer energy demand by expanding

their generation capacities. These expansions are capital-intensive peak power

plants known as “peakers” that are much more costly to operate than baseload

power plants (Haider, See and Elmenreich, 2016a). As this strategy results in

highly inefficient consumption behaviors and under-utilized power systems,

demand-side energy management schemes aiming to optimally match supply

with demand have emerged. According to Kailas et al., (2012), Demand-side

management (DRM) refers to planning, implementation, and evaluation

techniques, including policies and measures designed to either encourage or

mandate customers to modify their electricity consumption. DRM interventions

impact the behaviour of consumers concerning energy consumption. That is

DRM techniques mostly depend on matching current generation figures with

load by regulating the appliances' energy usage and enhancing operation at

consumer side (Collotta and Pau, 2015). This is mainly accomplished using

methods ranging from peak clipping, load shifting, load conservation, valley

filling, and load building as illustrated in figure 2.3 below.

Figure 2.3: DRM Load shaping techniques Adapted from

 (Kailas, Cecchi and Mukherjee, 2012)

 16

DRM within the smart grid empowers consumers toward intelligent and informed

decisions regarding their energy consumption pattern while helping Utilities

effectively decrease the peak load when the grid facing higher demand (Khan

et al., 2019). Thus, for utilities, DRM means reducing supply costs and avoiding

or delaying the need to invest in new capacities (Javor and Janjic, 2017). For

the residential customer, it means reduced bills and taking advantage of the

financial incentives offered by Utilities (Longe et al., 2017).

Moreover, DRM programs are vital in improving consumers’ needs and shaping

domestic load for an automated grid (Reka and Ramesh, 2016). The Major

benefits of DRM are summed up in table 2.1.

Table 2.1: DRM benefits Adapted from (Kailas, Cecchi and Mukherjee, 2012b)

Customer benefits Utility benefits Societal benefits

Satisfy demand for electricity Lower cost of service Conserve resources

Reduce cost Improve efficiency and
flexibility

Reduce environmental

impact

Improve service Reduce capital needs Protect environment

Improve lifestyle and

productivity
Improve customer service Maximize customer welfare

 2.3.1.2. Case for Energy Monitoring (Feedback)

As stated by Suryanarayanan et al., (2013), increasing awareness amongst

electricity customers regarding their energy consumption pattern coupled with

efficient usage of domestic appliances will bring about effective energy

management in domestic places. Studies show that feedback yields great

potential in impacting domestic electricity conservation (Vine, Buys, and Morris,

2013). According to Numusa (2012)), using smart meters linked to services

provider’s systems, south African homes purchase units from agents against

their meter number which are recharged after substation calculate supply

against the meter number. The authors explained that consumers outside of

prepaid electricity, depend on a meter reader that collects readings manually

every month for bill generation. This largely un-itemized, non-visual, and

infrequent feedback on South African residential has negatively impacted the

residential load and encouraging inefficient usage behaviour. This lack of

information has become increasingly problematic in South Africa's electric grid

suffering from an ever-increasing peak demand from the residential sector.

 17

According to the American Council for an Energy-Efficient Economy, feedback

initiatives that make electricity consumption visible to residential users achieve

maximum feedback-related savings. Indeed, electricity consumption reduction

can be obtained by only providing the consumption profile of appliances to the

consumers and accordingly tackling unsustainable behaviour (Collotta and Pau,

2015). Effective feedback according to research is seen as household-specific

information on electricity use. Indeed, residential users can achieve optimum

feedback-related savings when energy consumption is made visible to them

(Lobaccaro, Carlucci and Löfström, 2016). That is disaggregated feedback at

the appliance level. Emeakaroha et al., (2012) proposed feedback as direct

(real-time), indirect. Direct or real-time feedback is immediate and from a meter

or a display monitor and has been found to provide greater energy savings than

indirect feedback methods (figure 2.4). Real-time feedback can be more easily

customized for individual households. Reviews of direct feedback experiments

suggest that this type of feedback interventions yield between 5% and 15%

energy savings for the time that they are installed, however, their lasting impacts

on behaviour are much less certain (Vine, Buys and Morris, 2013).

Figure 2.4: Disaggregated feedback type’s savings in average Households in the US.
Adapted from (Lobaccaro, Carlucci and Löfström, 2016)

Emeakaroha et al., (2012) argued that direct feedback can boost other DR

programs, comprising higher user’s response and awareness to real-time or

time-of-use (TOU) pricing programs and realizing the subsequent profits of load-

shifting so impacting peak consumption. Nevertheless, for the power system to

provide such feedback, a mixture of beneficial smart grid enabling technologies

supported by well-made programs to effectively notify, involve, and persuade

consumers(Lobaccaro, Carlucci and Löfström, 2016).

 18

 2.3.1.3. The case for Home Area Networks

The smart grid brings new possibilities in residential load efficiency in converting

the outdated consumer sites into smart homes via smart appliances and smart

meters interconnected as part of a home area network (HAN) (figure 2.5 below).

Simply stated, HAN(s) are extensions of the smart grid AMI within a home.

Using smart grid technologies, HAN brings monitoring and device control

capabilities to energy management (Collotta & Pau, 2015).

Figure 2.5: Smart Grid Enabling Smart Home and Home Area Networks

Adapted from (Kailas, Cecchi and Mukherjee, 2012)

In a smart home, controllable smart appliances interface with smart meters

through the HAN. Via the HAN domestic load can be managed and residential

grid interfaced with Utility networks. HAN(s) is central for smart grid enable

HEM. it provides the data gathering and communication platform used by HEMS

to collect information from home appliances that are used to optimize power

supply and management (Kim et al., 2015a). The HAN enables smart grid DR

interventions at consumers' premises providing a finer control platform for

residential consumption efficiency(Zhang et al., 2015). Besides energy

management, other functions of HAN in the SG comprise price signals

awareness via consumer-centered settings, threshold setting, security

monitoring, automatic load control (Longe, Ouahada, Ferreira, & Rimer, 2017)

2.3.1.3.1. HAN Communication and Network Technologies

According to (Kailas, Cecchi and Mukherjee, 2012), HEM is central to green

buildings and enables domestic energy consumption monitoring and control

usage via smart meters, smart devices and appliances, and smart plugs to

provide efficient peak load management(Longe et al., 2017). The different

technologies (physical and network layer specification) are generally

categorized depending on the communication link into wired and wireless as

 19

illustrated in figure 2.6 below. Such technologies provide data communication

amongst utility meters and providers, thus building EMS, etc. wired and wireless

technologies offer advantages and disadvantages (Table 2.2). Wired

technologies provide more security for data communication.

Figure 2.6: Communication and networking technologies for HAN
Adapted from (Kailas, Cecchi and Mukherjee, 2012)

However, when it comes to selecting communication technologies, the decision

depends on the requirements of the problem. That is, Wired HAN uses

transmission channels. That is electronics wiring, telephone lines, unshielded

pairs, and/or optical fibre (Kailas, Cecchi and Mukherjee, 2012a). Generally,

wired technologies yield a higher deployment cost and are physically prohibitive

for any smart grid implementation. Alternatively, wireless technologies reduce

equipment and installation costs as well as quicker deployment, extensive

access, and superior flexibility which makes wireless preferred to wired

technologies (Lobaccaro, Carlucci and Löfström, 2016). Many wireless

technologies have been studied and implemented for HAN. However, the ones

summarised (Table 2.2) below constituted the main area of focus in research.

Table 2.2: Home Area Network Wireless technologies comparison adapted from (Lobaccaro, Carlucci

and Löfström, 2016), (Kailas, Cecchi and Mukherjee, 2012), (Ahmad et al., 2016)

 20

2.3.1.3.2. HAN Devices

The trend in smart home design today is around embedded devices also known

as Smart Home Micro-computers (SHMC). SHMC is a small-sized computer

(generally a microcontroller or microprocessor) that can connect to other

devices to monitor and control appliance consumption in the smart home

system (Lobaccaro, Carlucci and Löfström, 2016). SHMC provides both

appliances interface, Smart Grid, and internet servicing to HAN(s). For the

latest, SHMC can work as HAN’s gateway or Home Energy Controller (HEC).

According to (Kailas, Cecchi and Mukherjee, 2012b), the HEC is a networking

device that coordinates with the networks within the home and the related ICT

protocols for communication with smart appliances. The HEC provides

consumers with engaging and simple energy management applications to and

control appliances. To energy Utilities, it provides the ability to provision and

manage HAN’s that monitor, and controls loads as well as very secure end-

toend data communications across wired and wireless media and networking

protocols. When connected with power sensing and control devices sensor

node and WSN mote can be created to monitor and control home appliances.

Table 2.3 summarised the strengths and weaknesses of some of the most used

embedded controllers in smart home design.

Table 2.3: HAN devices comparison adapted from (Lobaccaro, Carlucci and Löfström, 2016)

Product

 Main Features Strenghts Weaknesses
Name

 (1) It is an open-source electronics platform

equipped with hardware and software;
(1) High flexibility and compatibility with

Arduino (2) it senses the environment by

receiving input from many sensors, and

affect its surrondings by controlling

lights, motors, and other actuators

different kind of sensors;
(2) It is intended for anyone making interative project (1) All these systems require

the user to have some technical

background and ; electronics basics

 21

Banana Pi

(1) It is a single board computer;
(2) It can serve as a platfrom to make

mayapplications for different purposes

(1) It targets to be a cheap, small and flexible

enough computer for daily life;
(2) It is built with ARM Cortex-A7 Dual-core

CPU and
Mali400MP2 GPU and open source software;
(3) Most of common extension accessories

includingLCD panel, touch screen, camera module,

UART console and GPIO control pin are accessible

from
Banana Pi on-board connector an header

(2) It also require time to be

learned and become expert

inassembling and using it.

However, many tutorials and

detailed information about their

assembly and use are free

available online; (3) Another barrier

is constituted by their commercial

price that can also
 reach thousands of euros

BeagleBone

(1) It is an open hardware micro-

computer similar to both Raspberry Pi

and Banana Pi; (2) It has an MR cortex-

A8 processor. It is equipped with Ubuntu

and Android;
(3) It is an open hardware, community

supported embedded computer for developers

and lobbysts

(1) High flexiblity and compatibilitywith many kind of

sensors
(2) It is intended for anyone making interactive projects

Raspberry

PI

It is a capable credit-card sized computer

that allows developing electronics

projects

(1) Ability to interact with the external world,

and has beenused in a wide array of digital products,

from music machines and parent detector to weather

stations and tweeting birdhouses with infra-red

cameras;
(2) Could be used by peaople of all ages;
(3) Its challenges is to be used by people of all

ages to explore computing and to learn how to

program in languages like Scratch and Python and

how to minipulate the electronic world around them

2.3.2. Smart Grid implementations challenges

The implementation of the smart grid suffers from different socio-economical,

contextual, and technological factors. That is, implementations of SG

technologies on current power systems could be problematic. Firstly, the

century-old powerline systems were not designed to meet modern

requirements. Secondly, the reconstruction of powerline systems for smart grid

applications is costly and tardy. This reality is even more present in developing

contexts where technological innovation in this sector has been very slow over

time. A commonly cited reason for this slow evolution has been the excessive

cost associated with upgrading existing building stock to include “smart”

technologies such as network-connected devices (Suryanarayanan et al.,

2013). however, the communication architecture of the future smart grid

systems is yet to be defined. As a result, lots of challenges and opportunities in

the smart grid are defined. A series of challenges in interoperability, scalable

internetworking, self-organizing, and security have been identified and

discussed (Niyato et al., 2011). Though the implementation issues are

generalized throughout the planet, it is important to consider solutions that meet

country-specific needs like energy costs, fair billing, electricity thefts, system

scalability, and reliability (which are more acute in developing contexts). On the

one hand, the open standards-based approach enables seamless integration of

the appliances at home to the existing internet infrastructure making remote

monitoring, control, and data collection over the web possible (Sahana et al.,

2016a). On the other hand, Residential demand response requires advanced

metering infrastructure (AMI) which is only now being rolled out. However, in

 22

developing context (SA) the idea of the smart grid is still being discussed based

on its vision which limits it at present at an infancy state with silo experimentation

(no business case effective yet) (Abu-Mahfouz et al., 2015). What Utilities need,

therefore, is a way to implement home energy management programs on a

widespread basis independently of any AMI deployment plans (Szablya., 2012).

Though most limitations to the SG implementation (technological innovations,

customer acceptance, utility integration) can at present be overcome, the

business case for SG suffers from the current status quo. Therefore, the

implementation of the SG is challenging to an energy industry that lacks

experience with time-of-use (TOU), critical peak pricing (CPP), and real-time

pricing (RTP) rate structure which are at the heart of DRM applications over the

SG. Despite consumer acceptance to energy management, Utility still faces

implementation related to the maturity of the different standards needed for

residential energy management systems (Szablya., 2012). Research agrees

that the lack of a robust and inexpensive two-way communications system

between the utility and the residential customers represents the main obstacle

to residential DR implementations. Though the AMI network within the smart

grid will fulfil this need, the business case still needs to be defined and AMI

infrastructure deployed by energy utilities.

2.3.3. Smart grid Enabling Technologies

As of the past decade, several emerging technologies and techniques have

emerged to support the “smart grid” initiative. Amongst many others, these

techniques include advanced metering infrastructure (AMI), two-way

communication, and the integration of HAN and HA (Kailas, Cecchi, and

Mukherjee, 2012b). The AMI refers to systems of measurement that collection

systems that include smart metering at customer premises, network

infrastructure between customers and service providers, and data management

systems to measure, collect, manage, and analyze the data for further

processing (Paridah et al., 2016b). AMI is the backbone of the SG, enabling

wider integration of energy and information and ICT (Nomusa, Mudumbe, and

Ndwe, 2014). That is, AMI and associated technologies enable real-time,

twoway communication between energy suppliers and consumers. Thus,

creating a more dynamic control and interaction of the energy flow (Ahmad et

al., 2016). Consequently, the extensive deployment of AMI has made available

concrete information about user consumption from smart meters (Yardi, 2015b).

Furthermore, when coupled with DR, AMI relieves stress from grids at peak

 23

times while simultaneously shifting it to non-peak periods providing cheaper

cost of electricity production (Thomas, Bansal and Taneja, 2014). Although the

business case and the required AMI infrastructure are still to be deployed in

developing context, a ubiquitous, reliable, and secure two-way data

communications network suitable for DRM that is available to every utility’s

service area, to the increasing number of homes and is already installed exist.

That is the: Internet. Through the internet, greater DRM investment return can

be achieved in larger residences.

Figure 2.7: Residential Energy Network server over AMI and/or Internet Gateway

Adapted from (Szablya., 2012)

The case is also true for developing contexts, where broadband penetration is

increasing as DSL, cable modem, 3G/4G cellular communications, and satellite

services are expanding (South Africa Connect, 2013). Moreover, rivalry

amongst these different options reduces subscription rates. Therefore, for

Utilities to leverage the Internet, a dedicated two-way communication platform

over a home-installed internet-capable gateway is required (figure 2.7). That is

an internet-connected HAN.

 2.4. The Internet of Things

Smart devices with communication and computing capacities, going from simple

sensor nodes to appliances, and cutting-edge smartphones have become

ubiquitous around us. According to Stojkoska et al. (2017): “the heterogeneous

network composing of such objects comes under the umbrella of a concept with

 24

a fast-growing popularity, referred to as the Internet of Things (IoT)”. Simply

speaking, the IoT is a novel world connecting nearly every device and appliance

to a network. The objects can collaboratively be used to accomplish intricate

tasks with a high degree of intelligence and flexibility. In other words, the objects

in an IoT network become “smart objects”. As depicted in figure 2.8, IoT allows

humans and things inter-connection anytime, anywhere, with anything and

anybody, preferably via any network, and any services (Razzaque et al., 2016).

However, IoT is not a stand-alone paradigm; rather it is an assortment of several

technologies working alongside it. This is accomplished via a unified pervasive

sensor, data analytics, and data representation via CC as the joining framework

(Sethi & Sarangi, 2017).

Figure 2.8: IoT Definitions adapted from (Razzaque et al., 2016)

As shown in Figures 2.9, the increasing popularity of IoT will inevitably lead to

innovation in several industries, such as smart grid, smart home, intelligent

feedback, including new concepts of things technology (Wang, Hu, Zhou, &

Zhao, 2015).

Figure 2.9: Possible IoT applications adapted from (Razzaque et al., 2016)

 25

2.4.1. The case for smart grid infrastructure

The Smart Grid (SG) is the evolving energy system using ICT tools and

techniques to make the electric grid perform more efficiently. It possesses

demand response capacity to help balance electrical consumption with supply

(Naveen et al., 2016). The integration of ICT and power delivery infrastructure

into the SG will highly automate the production, distribution, monitoring, and

management of electric grids. In this regard, the internet has emerged as a

center of focus for smart grid applications enabling non-AMI interventions which

offer immediate applications even in developing contexts.

 IoT potential is significant for smart grid vision (Wang et al., 2015). Indeed, IoT

facilitates electric power management by monitoring and controlling electrical

energy production and consumption. consequently, it will lead to significant

savings. According to Yao et al., (2016), improving the reliability and

sustainability of the SG can be accomplished by easing the perception,

aggregation, interaction, and visualization of energy-related information in a

real-time and automated fashion. IoT makes the smart grid smarter by

integrating intelligent technologies making the SG a network of power systems,

telecommunication, and consumer devices (Nomusa, Mudumbe, and Ndwe,

2014).

2.4.2. The case for residential energy efficiency

When coupled with smart metering, IoT has the potential to transform residential

places into energy-aware environments. According to Stojkoska et al., (2017),

there is an increasing interest in the research community to incorporate the IoT

paradigm in the smart-grid concept, particularly for smarthome applications.

Madhoo et al., (2015), concurred when stating that Internetconnected devices

offer opportunities for better communication and efficient management of

energy usage in the residential sector. Aside from M2M interaction, the IoT

paradigm enables a synergistic operation between humans and things (human-

in-the-loop) offering exciting opportunities to different applications (HEM)

(Stankovic and Fellow, 2014). Indeed, HEM systems enable residential energy

conservation programs in the smart-grid environment (Yardi, 2015a). In other

words, numerous DR strategies can be deployed in the IoTenabled SG to allow

active participation at the demand side, thereby improving the mismatch of

electricity’s demand and supply (Yao, Shen, and Lim, 2016). According to Rathi

et al., (2014), the main functionalities of HEM are DRMs, monitoring, and HA by

 26

providing economic benefits to both suppliers and consumers via means of

intelligent equipment or appliances. Therefore, IoT facilitates Utility DRM

programs in the SG context (Coetzee and Eksteen, 2012). By interrelating

different technological advancements, IoT enables the development of a

platform that facilitates and enhances Utility and the user’s effort to save energy.

Loudness and disruption (space and time) are the barriers to technology

penetration in the household (Nakajima et al., 2008). In this regard, IoT

enhances the concept of “calm-technology”. Indeed, using wireless network

sensors (WSN), IoT facilitates the implementation of non-disruptive (near

invisible) feedback systems although highly interactives. On one hand, IoT

enables feedback that is independent of time (real-time and accumulated

feedback). On the other hand, feedback is non-disruptive (space requirement)

and remote. Therefore, IoT brings energy consumption context information

anytime and anywhere. Coetzee & Eksteen (2012), refer to these IoT attributes

as “Mind changing feedback”.

Figure 2.10: IoT Platform for Smart home adapted
from (Risteska Stojkoska and Trivodaliev, 2017a)

According to the flesh (2010), of the different value add of IoT to society, “Mind

changing feedback” can induce behavioral changes toward energy efficiency.

Therefore, Internet-connected appliances that can measure and communicate their

energy data will give a deeper insight into those appliances' consumption and facilitate

investment toward efficient measures (Coetzee and Eksteen, 2012). In developing

contexts, technology affordability and availability, and network connectivity are

 27

challenging factors that require attention for successful technological intervention in

energy conservation (Vine et al, 2013; Nomusa et al, 2013; Madhoo et al, 2015).

Therefore, the question arises concerning the constituent of an IoT-empowered HAN

in a developing context. Indeed, HEM systems are either ad hoc or close/uniform for

the smart-grid vision. It is therefore critical to implement HEMS architectures that are

opened, internetworked. Moreover, these architectures need to support several parallel

applications allowing for reliable data/command transfer. According to Li et al., (2015),

these limitations can be mitigated, and solutions implemented via the Internet of Things

(IoT) paradigm and linked technologies enable the construction of HEMS that are more

scalable, reusable, and interoperable.

An effective HAN architecture based on current research focuses on system

interoperability (protocols and devices) and scalability (new device easily added or

plug-and-play capabilities) (Viswanath, Yuen, Tushar, W.-T. Li, et al., 2016). However,

meeting these requirements brings architectural complexities and technology

affordability challenges. Nevertheless, recent advancement in ICT, ubiquitous

computing, and embedded technologies brings new design possibilities for HAN via IoT

(Kim et al., 2015). In this regard, IoT is an enabler for HAN providing intelligent,

contextual consumption monitoring and home automation (Collotta and Pau, 2015).

2.4.3. Architecture for IoT

Presently, there is no unique universally agreed-upon architecture for IoT.

Therefore, diverse architectures have emerged from different researchers

(Sethi and Sarangi, 2017). Viswanath et al., (2017), described a four-layered

architecture layer around networking, cloud management, and application as

shown in figure 2.11

1. Perception layer senses and gathers data about the environment. This layer is

also defined as the device Layer made up of two sub-layers. Things layers

enclose sensing devices, actuating devices, smart plugs, and smart utility

meters. These smart meters provide data feedback and appliance control. The

gateway layer connects elements from the thing layer (Sethi and Sarangi,

2017).

2. The network layer ensures the interconnection between smart things, network

devices, inter-connecting the application and the device layer and servers, and

provides the transmission and processing of sensor data as well (Sethi and

Sarangi, 2017)

3. The application layer delivers targeted application services to the users.

 28

4. The cloud management layer stores data and retrieves information, handles

user authentication and data management.

Figure 2.11: IoT communication layers (Viswanath et al., 2016)

2.4.4. IoT enabling technologies

It will be essential for IoT systems to interact and interconnect to offer the

“always-promoted, everything-connected” paradigm(Gyrard and Serrano,

2016). However, the IoT vision brings in numerous challenges regarding

security, privacy, interoperability, resources and processing constraints, and

network capabilities of IoT devices(Minoli, Sohraby and Occhiogrosso, 2017).

Figures 2.12 depict the IoT challenges that attract the most IoT research

attention.

Figure 2.12: IoT challenges

adapted from (Abdelsamea, Zorkany and Abdelkader, 2016)

 29

A significant limitation of IoT is the communication and networking of heterogenous

devices within Wireless Network Sensors (WSNs). WSNs are challenging in smart grid

residential applications introducing several heterogeneous and intelligent devices able

to operate, communicate and interact autonomously. Thus, interoperability is critical to

successful IoT applications, mainly in smart home applications enabling devices in a

network connecting over joint platforms to work together (Viswanath, Yuen, Tushar, W.

T. Li, et al., 2016). Therefore, IoT interoperability is vital for smart devices to operate in

tandem. Besides interoperability, another major feature of IoT systems is scalability. As

an enabler for smart grid applications, it will be critical for IoT networks to be highly

scalable to enable a progressive penetration of SG services and smart meters within

existing systems. Amongst other software features (mainly at the application level)

related to protocol designs should provide space for new devices to be incorporated

into the system later while maintaining the firm QoS of existing systems. According to

Khan et al. (2016), a key challenge to provide the above-required feature of IoT is

standardization. Indeed, IoT must be reliable, easy to use, and secure via the

standardization of the different layers of its architecture (Pawlowski, Jara, & Ogorzalek,

2015). Increasing studies among research currently are looking at implementing

different standards via integration and optimization of IoT enabling technologies. In

Stojkoska et al. (2017), the author specifies five IoT technologies as indispensable for

effective IoT solutions, for communication in WSNs, for middleware, for CC, and for

application. This interaction is further optimized by incorporating mobile technologies

in the application layer of IoT systems.

2.4.5. Sensor and Embedded systems

IoT is a highly Heterogeneous (see figure 2.13) network under whose umbrella

interact with embedded electronics devices, sensor, software, and actuator

under network connectivity enabling intelligent objects to gather and exchange

data (Risteska Stojkoska & Trivodaliev, 2017).

Figure 2.13: IoT heterogeneity adapted from (Razzaque et al., 2016)

That is, IoT nodes have actuators, processors, transceivers, and embedded

sensors. Information sensed via sensing device is sent to computing units

 30

through the Internet. Indeed, the sensor operates as an integrated system or

single-purpose CPU embedded into a larger system to control and monitor an

environment (Dlodlo et al., 2015). Sensing devices are a critical component of

intelligent objects. In IoT systems, these devices are constrained in size, cost,

and power effectiveness (Sethi & Sarangi, 2017). In smart-grid applications,

current/power transformers have long been used with wide acceptance in

different contexts. Khattak et al., (2014), used CT and PT sensors to measure

the consumed power from an Energy utility source. According to Ahmad et al.,

(2016), sensing in the high current application is done via current transformer

(CTs) (typically above 100 A). The authors argued that the use of CTs in utility

meters is obvious as these precise measurement instruments.

IoT is a novel method to network devices with constrained memory-low

computational power, and small power consumption print (Dlodlo et al., 2015).

In literature, these intelligent devices are known as embedded systems (ESs).

In the past, ESs were manufactured around 8-bit processors with a small

memory footprint. But today most embedded devices are built around 32-bit

processors with several megabytes of RAM (Buttazzo, 2006). Typically, these

smart devices have the following significant properties in common:

• Heterogeneous devices – Embedded devices, sensing devices, and

higher-level computing devices to implement heavy-duty jobs.

Differences in capacity, features, multivendor products, and application

requirements define the heterogeneity amongst IoT devices

(Abdelsamea, Zorkany, and Abdelkader, 2016). Figure 2.13 illustrates

six different types of IoT devices.

• Resources constraints - IoT devices are built based on memory, weight,

and power constraints related to the specific applications. Therefore,

embedded applications usually run-on smaller processing devices with

restrained memory and computational power. Resource capacity

declines (Figure 2.13) from left to right (Razzaque et al., 2016).

• Real-time limitations - Embedded devices interrelate with the outside

world promptly. Embedded devices respond to external events while

performing computational actions within accurate timing restrictions

(Razzaque et al., 2016).

• Power constraints: Network communication consumes much power

from battery powered IoT devices. Thus, it is expensive for ES to

communicate all the time (Sethi & Sarangi, 2017).

 31

Compared to high-level ES such as Beaglebones, Raspberry Pis, or

smartphones, low-level ES usually have less memory, less CPU, consume less

power, leverage networks with a reduced amount of data exchange (Roussel,

Song and Zendra, 2015). According to Baccelli et al., (2018), Low-level smart

devices rely on three core components:

• Micro-Controller (MCU) is a sole piece of hardware comprising a CPU,

a few kilobytes of RAM, and Read-Only Memory (ROM), and its register

mapped GPIO and memory banks.

• Varied external devices - Actuators, sensing devices, or storage

connected to the MCU through GPIO registers to either directly interact

with the environment or leverage other sensor and actuator devices.

• Network interfaces (wired or wireless shield) connect devices to the

Internet, usually through an energy-efficient transmission technology.

These transceivers are system-on-chip (SoC), or devices connected

externally through an I/O bus.

 2.4.5.1. Sensor networks

WSNs, an emerging area of research consists of smart sensing devices that

can communicate through direct radio communication. However, the blending

of real-time features with dynamically oriented tasks together with resource and

cost constraints generates novel issues to be addressed in WSNs design, at

different structural levels (Beligianni et al., 2016). Being made of embedded

devices, WSNs face a lot of problems related to limited computational

resources, power constraints, low reliability, and higher density of sensor nodes

(motes). A mote is a node in a WSN that can perform limited processing, gather

sensor data, and communicate with other connected nodes in a network (Dlodlo

et al., 2015).

Central to WSN communication in the local network and external world is the

gateway. A smart gateway can be employed between underlying networks to

provide communication protocol translation within WSN. Although, the

Operating systems (OS) are at the heart of the sensor node architecture. That

is, the OS is critical in ensuing predictability in the run-mode behavior of the

application, thus allowing an offline guarantee of the expected performance.

However, typical WSN sensor nodes do not have enough resources to run

 32

conventional operating systems (i.e., Linux, BSD, or Windows), thus more

compact operating systems have been recently designed (Baccelli et al., 2018).

 2.4.5.2. Real-time operating systems (RTOS)

IoT smart things are embedded systems that use real-time operating

systems (RTOS) in their development. Abdelsamea et al., (2016), define

RTOS as operating systems designed for real-time systems (RTS), or

devices having time constraints relative to the system output. The authors

point to the capabilities of RTOSs in providing a collection of services. Task

management offers multitasking and other significant tools such as Intertask

harmonization and communication responsible for information delivered

and events shared amongst system jobs. RTOS streamlines ESs

development as well as making systems more consistent (Abdelsamea et

al., 2016). Mainly RTOS are sought-after features such as scalability,

modularity, compactness meaning it boasts an efficient smaller as well as

being reliable, predictable, and performant. Lastly, RTOS systems are more

efficient than non-RTOS ones when dealing with many tasks or when

handling very complex systems (Abdelsamea et al., 2016). Finally, RTOS

have nearly continual switching time for several tasks compared to

nonRTOS ones (figure 2.14).

Figure 2.14: RTOS vs. Non-RTOS Systems

adapted from (Abdelsamea, Zorkany and Abdelkader,

2016)

As stated by Baccelli et al., (2018), RTOS makes IoT WSNs consistent, effective, as

well as predictable. It simplifies their system management. On the integration of IoT

and RTOS, many research directions are followed in the literature. RTOS defines many

applications system architectures. such integration brings new tendencies in RTOS and

IoT integration (Abdelsamea, Zorkany, and Abdelkader, 2016). Figure 2.15depicts an

integration that leverages an RTOS in an IoT implementation at the application and

 33

network level bridging the two layers using an IoT middleware. Many researchers

agreed that such implementations are well suited for smart building applications.

Figure 2.15: IoT implementation using RTOS
adapted from (Abdelsamea, Zorkany and

Abdelkader, 2016)

Dedicated Operating Systems for the low-memory devices constituting WSNs

in IoT have been designed, distributed, readily accessible for fairly a long time.

These range from event-based RTOS for tiny to medium devices (tiny OS) or

full-fledge RTOS with kernel and multi-threading support targeting higher-end

devices(Baccelli et al., 2018). However, tiny OS is not necessarily software

constraints in their implementation but mostly present a low memory footprint,

therefore able to run on very low memory devices.

2.4.5.2.1. Contiki

Contiki is a memory-proficient free Operating system for networked

embedded devices focusing on power-constrained wireless Internet of

Things devices (Sahana et al., 2016). It offers typical OS elements from

threads, random number generators, timers, file systems, and others.

Contiki offers IPv4 networking support and transport capabilities using

TCP/UDP(Kavyashree, 2018). Furthermore, it supports the IPv6 stack in its

newest version. ContikiOS has especially been developed for low-powered

WSN apps (Sesli & Hacıoğlu, 2017). Below are the main features of the

Contiki OS:

• Event-driven Kernel: shrink system size.

• Pre-emptive multi-threading provision.

• Simulator: COOJA

• Written in ‘C’ Language

Contiki runs within constrained memory boundaries. IPv6 network needs

less than 10 k RAM and RPL routing needs less than 30 k ROM

 34

(Kavyashree, 2018). It operates on a range of Hardware platforms, and it is

easy to port to new hardware. According to Dwivedi et al., (2009), The

Contiki kernel, a lightweight event scheduler that posts events to run

processes and intermittently calls services polling handlers.

Figure 2.16: Contiki OS architecture adapted from (Dwivedi, Tiwari and Vyas, 2009)

Program implementation is activated either by events posted from the kernel or

over-polling mechanism(Kavyashree, 2018). Once an event has been

scheduled, the kernel does not pre-empt the execution of the event handler.

Contiki kernel provides two types of events: asynchronous and synchronous. It

is based on a hybrid model using an event-based model within the kernel and

via protothread (an assortment of multi-threaded and event-driven programming

mechanisms) providing threading as an application library (Sesli & Hacıoğlu,

2017). The capability to use a unique stack that reduces the needed amount of

system constitutes the main advantage of the protothread mechanism. This

feature makes it suitable for hardware unable to handle heap memory allocation

(Roussel, Song and Zendra, 2015).

2.4.5.2.2. RIOT

RIOT is a free operating system developed on a sectional design assembled

around a micro-kernel by a worldwide consortium of developers (Baccelli et

al., 2018). RIOT is primarily adapted to low power embedded wireless

sensors IoT applications. Open to C/C++ programmers, RIOT offers

multitasking and real-time features needing 1.5 kilobytes of RAM only

 35

(Abdelsamea et al., 2016). Indeed, RIOT design was motivated by these

goals:

• Minimized memory (ROM, RAM) usage as well reduced power

consumption.

• Flexible structures (8-bit to 32-bit MCUs), a wide collection of boards

and applications

• curtailed software replication through configurations.

• Code flexibility, across supported hardware (see figure 2.3.4-6).

• Basic programmable software platform.

• Real-time aptitudes.

Figure 2.17: RIOT architecture adapted from (Baccelli et al., 2018)

RIOT kernel provides a comprehensive set of features, including multitasking,

context switching, event scheduling, inter-process communication (IPC), and

harmonization primitives (Baccelli et al., 2018). Other components consisting of

the network stack, device drivers, or apps logic are preserved isolated to the

kernel. RIOT kernel uses a scheduler built on fixed priorities and pre-emption

allowing for soft real-time capabilities. Therefore, RIOT offers a clean way to

order tasks and pre-empt management of low-priority jobs dealing with

highpriority events. According to Roussel et al., (2015), RIOT beneficial feature

compared to other RTOS:

• Efficient, interrupt-driven, tickles micro-kernel

• Priority-aware task scheduler, offering pre-emptive multi-threading

• Extremely effective use of concurrent hardware timers offering the

ability to schedule actions with high granularity. This offers the ability

to schedule events at 32 microseconds resolution.

• RIOT stack code is written in C. But, contrary to Contiki, there are

no restrictions on available constructs.

• Clean and segmental design, making development easier and more

productive.

 36

The authors above argue that, amongst the feature here above, the first three

make RIOT a mature real-time operating system. However, RIOT present a

major drawback compared to Contiki in that it demands a higher memory

footprint (Roussel, Song, and Zendra, 2015). This can be explained by the fact

that RIOT Operating System has traditionally been developed for ARM

hardware and only recently been ported on more recent MCU architectures see

(figure 2.18 below).

Figure 2.18: RIOT supported CPUs (Baccelli et al., 2018)

2.4.5.2.3. FreeRTOS

FreeRTOS is a real-time kernel or scheduler developed for memory

constraints to run on a low-resources device. Usually a kernel byte-code

image ranges from 4 kB to 9 kB (Lazic, 2016). FreeRTOS is preferably

wellmatched for embedded real-time applications using MCU or low-

memory microprocessors (Barry, 2016). FreeRTOS source code is written

in assembly language and C. It is available on most embedded systems

architectures as a library to create real-time, multi-tasking, embedded

applications (Déharbe, Galvão, and Moreira, 2009). FreeRTOS has many

developmental benefits. It is open source, well documented as well as

boasts a large community. Besides real-time events the main features of

FreeRTOS are:

Task management - In multi-threading application tasks serve as

computational units. In FreeRTOS, the task hold state alludes to its current

mode of activity. That is, a task is either running, in a ready state, or blocked.

 37

FreeRTOS uses priority (an integer value set a compilation time) to

schedule task execution from the highest priority setting. (Lazic, 2016).

• Inter-task Interaction and synchronization - FreeRTOS makes use of

queues, Semaphores (derivative of queues held when the queues

are empty otherwise released when the queues are filled).

Additionally, counting Semaphore control entrees to resources to a

determined number of running jobs as well as mutexes with priority

inheritance to avoid the priority inversion problem (Déharbe, Galvão,

and Moreira, 2009).

• Memory management - FreeRTOS makes use of three memory

provisioning models. Static memory allocation for each created task

has the side effect of memory space wastage. The medium model

dynamically provisions memory space and uses a best-fit model to

find unoccupied space in memory. The hardest models use a

userdefined algorithm for task particular requirements (Lazic, 2016).

2.4.6. Communications and protocols

The rapid growth of IoT is bringing a ubiquity of smart devices that are

connecting to the internet over a multiplicity of communication channels and

protocols (Figure 2.19). Sethi & Sarangi., (2017), list the issue below as the

main challenges for communication in IoT networks:

• Addressing and identification - A large addressing space is needed

as millions of “things” are going to be connected and a distinctive

address to every smart node will be needed.

• Power-constrained communication - Interaction between devices is

a power-consuming task. That is, low power communication

solutions are required.

• Routing protocol with low-memory print based on efficient

communication patterns.

• Non-lossy and fast communication, and Flexible and Mobile smart

devices

 38

Figure 2.19: Overview of communication protocols and models for IoT

Adapted from (Elfström, 2017)

Inherent resource constraints of IoT devices, heterogeneity, and scalability are

limiting factors for the deployment of IoT networks. According to (Ko et al.,

2011), The limiting factor to the development of smart home solutions lies in the

complexities and cost associated with the integration of intelligent devices. In

this regard, smart device-producing companies around the world are tackling

the interoperability challenges to ensure simple and seamless integration of new

devices to the existing communication infrastructure, mainly the internet

(Risteska Stojkoska & Trivodaliev, 2017). As the number of IoT devices with

communication-intensive architecture increases, Viswanath et al., (2016)

argued that standardization of software protocols is critical in enabling devices

from different manufactures and features to effectively communicate. To

support this vision, the Internet engineering task force (IETF) working groups

have recently undertaken the definition of regular protocols at a different level

of the network stack to simplify Internet solutions translation through the IoT

protocol stack (Haider, See, & Elmenreich, 2016). Figure 2.20 displays the

standard IoT protocol stack and the general Internet stack.

 39

Figure 2.20: Standard Internet and IoT protocol stack; in red are the ITEF standards
modified from (Haider, See and Elmenreich, 2016) and (Elfström, 2017)

 2.4.6.1. IoT protocol stack

The IoT protocol stack parallels the current OSI reference protocol layers to

define an internet communication structure for IoT devices targeting the different

limitations of smart devices and complexities of low-power private networks.

2.4.6.1.1. Network layer

The internet protocol (IP) stack is typically used in IoT networks to interconnect

smart things in HAN(s) as well as connecting to the Internet. IP is very complex

and demands a large amount of power and memory from the connecting

devices. The IoT protocol stack proposes non-IP networks, which consume less

power, and connect to the Internet using smart gateways (Sethi and Sarangi,

2017). IPv6 is considered the best protocol for communication in the IoT

because of its scalability and stability(Kalmeshwar and K S, 2017). IPv6 over

Low Power Wireless Personal Area Networks(6LoWPAN), is a very popular

standard for wireless communication enabling communication using IPv6 over

the IEEE 802.15.4 protocol(Haider, See and Elmenreich, 2016). Indeed,

6LoWPANdevices can communicate with all other IP-based devices on the

Internet via a gateway (WIFI or Ethernet), which also has protocol support for

conversion between IPv4 and IPv6 as today’s deployed Internet is mostly IPv4

(Sethi and Sarangi, 2017).

2.4.6.1.2. Transport layer

The transmission control protocol (TCP) is not suitable for communication in

resource-constrained and low-power environments as it has a large overhead

 40

because it is a connection-oriented protocol. The User Datagram Protocol

(UDP) is instead preferred because it is a connectionless protocol and has low

overhead(Kalmeshwar and K S, 2017).

2.4.6.1.3. Application layer

Inside the IoT protocol stack, the application layer ensures the formatting and

presentation of data. On the Internet, this layer is centered on HTTP which is

unsuitable for low-resource environments. indeed, HTTP is verbose and incurs

large parsing overheads (Sethi and Sarangi, 2017). Shown below is a division of

potential IoT standards and technologies applicable for HEMS.

1. Constrained Application Protocol – CoAP, a dedicated web transmission

protocol for low-resources devices and networks (Sahana et al., 2016). CoAP

is an alternative to HTTP and offers a request/response interface model

between use-case endpoints. it provisions integrated service and resource

finding and comprises important web notions (Viswanath, Yuen, Tushar, W. T.

Li, et al., 2016). However, unlike HTTP, CoAP provides multicast support as

well as using the EXI (Efficient XML Interchanges) binary data formatting is

much more efficient regarding space management than plain text HTML/XML

(Sahana et al., 2016). To effectively suit constrained-bandwidth communication

and constrained computational power device CoAP that is simpler and low-

latency as well as being connectionless compared to TCP uses the UDP

protocol (Lin and N. W. Bergmann, 2016). Being Stateless, CoAP is structured

around the clientserver architecture model. The model is based on the REST

architecture which assigns to each resource on a server a unique uniform

resource identifier (URI). Using GET, POST, PUT or DELETE methods, a client

can request a server to access a resource (see semantic in table 2.4 below)

(Madhoo et al., 2015). For security, CoAP employs Datagram Transport Layer

Security (UDP-based) as its security protocol (Lin and N. W.

Bergmann, 2016).

Table 2.4: Verbs in CoAP according to RFC 7252 adapted from(Soto, 2017)

Verb Description
GET Retrieves a representation of the resources identified by the URI.
POST Request that the representation enclosed in the request be processed. It

usually results in new resource being created or the target resource being

updated.
PUT Request that the resource identified by the request URI be updated or

created with enclosed representation.
DELETE Request that the resource identified by the request URI be deleted.

 41

2. Message queue telemetry transport: MQTT is a lightweight publish/subscribe

messaging protocol, intended for low-memory and low bandwidth,

unpredictable networks running over TCP. Subscription’s coordination and

authentication jobs used by clients are handled by brokers publishing or

subscribing to a topic (Viswanath, Yuen, Tushar, W. T. Li, et al., 2016). As a

lightweight protocol, MQTT is suitable for IoT applications. However, being

based on TCP, the range of IoT applications using MQTT is limited. Moreover,

its messaging content is text-based which increases its overhead (Sahadevan

et al., 2017).

3. RESTful HTTP: compared to protocol or standards, REST is an architectural

model (Piyare, 2013). RESTful uses the REST principles with its

implementation resting on the HTTP protocol. Therefore, HTTP implemented

on REST is light, has basic request presentation, and is easy to implement. As

stated by Viswanath et al., (2016), REST is suitable for asynchronous

communication, and end-users’ application which can leverage HTTPS to

enhance privacy.

2.4.6.1.4. Datalink layer

Local communication methods are needed for sensing and actuating devices

distributed at different deployment locations (Haider, See and Elmenreich,

2016b). According to Ahmad et al., (2016), the successful development of

IoTcentric HAN platforms relies on communication infrastructure ability to satisfy

the complex requirements of such networks. However, the complexity of IoT

HAN’s brings difficulties in selecting appropriate communication architecture

and mediums because many parameters and requirements should be

considered depending on the applications.

IEEE 802.15.4 specifies the physical layer and media access control for lowrate

wireless personal area networks (WPAN). It is the foundation for several higher-

level specifications there are three kinds of common network transmission

ways: wireless network (Wi-Fi, Bluetooth, etc.), wired network (Ethernet cable

or fibre cable), mobile communication network (CDMA, GSM) (Li et al., 2015).

In Table 4 are the various communication technologies appropriate to smart grid

applications in terms of data rate, coverage distance, and limitation (Haider, See

and Elmenreich, 2016).

 42

Table 2.5: Summary of standard IoT communications technologies.
adapted from (Haider, See and Elmenreich, 2016)

2.4.7. Middleware for IoT smart grid applications

For information fusion and ease the process of IoT application development,

middleware is highly emphasized and are becoming a widely employed

approach (Hu et al., 2016). According to Lin & Bergmann., (2016), a middleware

is a software layer that sits between the low-level layer of devices and the

highlevel application layer. It consists of a collection of enabling underlying

software allowing several processes to connect through a network. The authors

summarized the relationship as three visions of the IoT. That is, things-oriented,

semantic-oriented, and Internet-oriented. According to its three characteristics,

middleware in the IoT shall address internet and things issues, handle

semantics gap, context awareness, device discovery, manage devices

resources, scalability, big data, and privacy (Elfström, 2017). Via middleware,

different IoT communication models can be integrated for richer IoT

applications. However, devices in IoT networks are resource constrained. That

is, direct internet connections of all devices are unrealistic as such connections

are costly regarding computation power, bandwidth usage, and equipment cost

(Christen et al., 2014). This makes persistent internet connectivity on devices

challenging when trying to maintain device miniaturization in IoT networks. Due

to such difficulties, IoT solutions need to support different types of devices with

different resource limitations and capabilities. Figure 2.21 categorizes IoT

 43

devices based on cost, memory, communication as well as computational

power. To achieve this requirement, Razzaque et al., (2016), argued that an

ideal IoT middleware solution should be able to take advantage and adapt to

these different types of devices so to make the solution more efficient and

effective. Perera et al., (2014), further pointed to device granularity (as support

for lower-level categories) as essential for an ideal middleware. Indeed,

middleware solutions designed specifically for resource-constrained devices

are critical to enabling IoT in applications such as smart grid

Figure 2.21: Classification of IoT devices centered on computational abilities, cost, and

memory adapted from (Perera et al., 2014)

Different middleware solutions have emerged to tackle the challenges of IoT. Li

et al., (2015), classified middleware into three categories based on their design.

This includes event-based, cloud-oriented, and Service-oriented. A consensus

amongst research is that ideal IoT middleware should adopt the serviceoriented

architecture that allows developers to integrate and deploy various bundles of

IoT devices as services (A. H. H. Ngu M. Gutierrez and Sheng, 2016). Christen

et al., (2014), identify middleware within the IoT vision as ideal to achieve

scalability and supports the high level of interoperability through heterogeneity

abstraction. According to Li et al., (2015), the application of middleware

technology can satisfy the necessities for flexibility and reliability in data

transmission. Lin and N. Bergmann, (2016) argue that all layers (from lower-

level hardware to higher interface) of middleware should implement security and

privacy protection. According to Razzaque et al., (2016) IoT middleware must

provide device discovery and management, cloud connectivity (analytics and

storage), Ease-of-deployment, Programming abstraction, and Popularity. In

Sethi and Sarangi, (2017) an Ideal middleware offers an API for computation

tasks, data communication, management, and security and privacy. Figure 2.22

summarises the middleware role for successful IoT platform implementations. It

shows the interaction amongst the different middleware requirements, its device

layer, and different features and services at the application layer.

 44

Though many frameworks have large application instances, only a couple are

open source, service-based, device and communication protocol agnostic

support low-end MCU and being popular in smart home application with some

reported success. As the smart-grid initiative is evolving in a developing context,

a popular middleware must offer the benefit of extension and support as new

smart grid cases develop (Wang, et al., 2014). In this regard, a couple of

platforms within the competitive market stands out IoTivity released by the Open

Connectivity Foundation (OCF), AllJoyn developed by AllSeen Alliance.

Figure 2.22: Middleware requirements enabling interaction from IoT device to application

layer adapted from (Razzaque et al., 2016)

 2.4.7.1. Alljoyn

AllJoyn is a collaborative framework managed by AllSeen simplifying devices

and application discovery and secured D2D communication (Jerabandi and M

Kodabag, 2017). The AllSeen Alliance manages the AllJoyn open-source

project with software code using open standards to enable the interoperability

of IoT devices (Li et al., 2015). This middleware focuses on interoperability

amongst IoT devices regardless of the transport layer, manufacturer enabling

developers to write local/offline applications. Alljoyn embraces the

servicesoriented architecture and provides features such as Onboarding

Service to bring a new device onto WIFI network, Configuration Service,

 45

Notification Service (Jerabandi and M Kodabag, 2017). An AllJoyn network

involves AllJoyn Apps and AllJoyn Routers, where every App is connected to a

single Router. Figure 2.23 depicts a typical network illustrating the two versions

of the AllJoyn framework. The AllJoyn Standard Core Library (AJSCL) and

AllJoyn Thin Core Library (AJTCL), intended for resource-constrained

embedded devices (Larsson and Nimmermark, 2016). The main drawback of

the AJTCL is that it does not include a router daemon, so devices running the

thin client must utilize the router of an adjacent AJSCL device.

AJTCL devices, the hosting bus segment, and the routers that handled all

communication between all apps from a virtual bus are connecting using TCP

(Wang, et al., 2014). The framework is developed to run on various platforms

from Linux, Linux-based Android, iOS, Windows, and other lightweight real-time

OS (Jerabandi and M Kodabag, 2017). AllJoyn presently provisioned ethernet,

serial, PLC, and Wi-Fi. However, power-constrained wireless technologies, that

is Bluetooth Low Energy (BLE) or Zigbee are not yet supported (Larsson and

Nimmermark, 2016).

Figure 2.23: AllJoyn Network adopted from (Larsson and Nimmermark, 2016)

 2.4.7.2. IoTivity

IoTivity is an IoT communications framework that enables smooth peer-to-peer

connectivity amongst devices irrespective of the underlying OS or protocol

satisfying several requisites of the internet of things for framework. It enables

seamless device-to-device connectivity irrespective of OS or communication

protocol to satisfy various requirements of IoT(Le, 2017). The Open

Connectivity Foundation (OCF) develops specification criteria, interoperability

guidelines, and a certification program for these devices(Kang and Choo, 2017).

 46

Thus, IoTivity is a free reference implementation of the OCF specification

maintained by the Linux Foundation(Larsson and Nimmermark, 2016). Although

OCF intended to provision several vertical domains, so far it is primarily focusing

on smart home (Lee, Jeon and Kim, 2016).

Several communication technologies (WIFI, Ethernet, BLE, and NFC) are

supported by the Iotivity framework. The framework is available in many

languages and supports various hardware platforms and OS; that is, several

flavours of Linux, embedded Linux such as Tizen, Android, and Arduino(Lee,

Jeon and Kim, 2016). As depicted in Figure 2.4.7.2-1, the IoTivity reference

model provisioned both Rich and Lite devices. The service components are not

supported, and the API only supports C base development. The instances of

the lite devices are Arduino or ESP32 board(Jerabandi and M Kodabag, 2017).

Both devices use CBOR to format and provisioned server resources for

transport(Larsson and Nimmermark, 2016).

Figure 2.24: IoTivity Stack and architectures adapted from (Macieira, 2016)

The messaging model of IoTivity is structured around a resource-centered

RESTful architecture in which everything (sensor, or devices.) is presented as

resources using CRUDN (Create, Read, Update, Delete, Notify) model to

handle resources by using CoAP protocol (figure 2.25) (Lee, Jeon and Kim,

2016). Alshadi & Kinder (2017) and Coval et al., (2017) list the feature below as

essential building blocks of IoTivity:

 47

• Discovery: Collective technique for device discovery (IETF CoRE)

• Messaging: Support for resource-limited device by default (IETF CoAP)

also protocol translation using go-betweens

• Common Resource Model: Real-world objects defined as resources

• CRUDN: Request/Response mechanism using Create, Retrieve,

Update, Delete and Notify commands

• Device Management: Network communication settings and remote

feedback, reset, restart functions.

• ID & Addressing: For OCF entities (Clients, Servers, Devices,

Resources)

• Security: Basic security for the network, access control based on

resources, key management, etc.

Figure 2.25: Client/server CRUDN interactions: Create, Read, Update, Delete, Notify

Adopted from (Sun, 2017)

Being a CoAP oriented framework, most control in IoTivity is done mainly on the local

area network (although cloud extension can be used) via UDP base requests. In figure

2.26 below, client UDP multicast requests are routed through IP 224.0.1.187 on ports

5683 and 5684.

Figure 2.26: IoTivity client/server interaction adapted from (Maloor et al., 2015)

 48

However, IoT home-related applications require remote access to resources

and devices. IoTivity has lately released cloud services within its stack to extend

the accessibility of devices with authentication(Dang et al., 2017). Cloud

services accessibility requires protocol conversion. IoTivity provides this via

CoAP-HTTP proxy using the Java API or the more developer-centric NodeJS

API (Coval and Sun, 2017). The later one, a JavaScript API for OIC

(IoTivitynode) targets web development via a common RESTful architecture on

the CoAP-HTTP proxy, therefore facilitating cloud development (figure 2.27).

Figure 2.27: IoTivity-node concept (Macieira, 2016)

The IoTivity mainline stack is not compatible with lower category devices. It

generally induced a higher processing and memory requirement. However,

lower categories of device constraints have been vaguely defined because of

the overwhelming variety of constrained devices that could be connected to the

internet. To simplify these classifications, IETF has published an RFC 722

(Table 2.6) that uses three categories for resources restricted devices as

shown(Maloor, 2017)

Table 2.6: Classification of constrained devices. adapted from (Maloor, 2017)

 Name Data size (eg., RAM) Code size (e.g., Flash)

Class 0, C0 << 10 KiB << 100 KiB

Class 1, C1

Class 2, C2

~ 10 KiB ~ 100 KiB

~ 50 KiB ~ 250 KiB

 49

To cope with constrained devices, the OCF group released IoTivity-Lite (figure 2.28).

IoTivity-Lite is a small footprint implementation of the OCF specifications (C and Java

API) suitable for all device classes (~10 KiB RAM) over many OS including Windows,

Android, and some popular RTOSes (RIOT, ContikiOS, FreeRTOS) (Maloor, 2017).

Like the mainline implementation (IoTivity) IoTivity-Lite provides a RESTful design,

messaging using CRUDN operations over CoAP, CBOR for data formatting, and

DTLSbased security feature leveraging the mbedTLS library(Maloor, 2019). The

transport layer uses UDP over IP (WIFI and Ethernet) network with development

underway to extend it to Bluetooth.

Figure 2.28: IoTivity-Lite framework adapted from (Maloor, 2019)

2.4.8. Cloud technologies

The Internet world is built around computers, centralized software

infrastructures, or in the cloud (Wang et al., 2016). As stated by Asare-Bediako.,

(2019), the IoT vision is facilitated amongst other technologies by cloud

computing. The cloud terms networked computers that allocate computing

power, applications, and services to any computer or device on request (Da Xu

et al., 2014; Lee and Lee, 2015). In recent times the interaction between IoT

devices and the surrounding environment has expanded thus generating a huge

amount of data to be handled (Faruque and Vatanparvar, 2015). Moreover, the

resource-limited nature of IoT demands expensive hardware and software to

store the bulk amount of data (Lin and Bergmann, 2016). To avoid these

limitations, data communications in IoT leverage cloud-based computing

 50

infrastructures to accommodate Big Data requirements, provide protocols

translation, data abstraction, and processing (see Figure) (Beligianni,

Alamaniotis, and Fevgas, 2016). Initially, Cloud was used for the storage

functions (Sahadevan et al., 2017). Nowadays, cloud computing provides

development infrastructure, platform, software, and sensor network, as services

(Faruque and Vatanparvar, 2015). According to Hu et al., (2017), cloud services

are divided into three primary categories:

• Infrastructure-as-a-Service: IaaS offers extendable infrastructure, web

devices, and storage spaces to users as services on demand. Cloud

access is delivered through web service, API, command-line interfaces

(CLI), or graphical user interfaces (GUI) (Naveen. Ing. Danquah. Sidh.

& Abu-Siada., 2013).

• Platform-as-a-Service: PaaS offers to its users and customers a

platform where to create and run their applications. Using PaaS

platforms, developers can build and offer Web applications without

directly handling the software requirements (download, installation, and

configuration) needed. It ensures execution of users’ given task at

runtime(Jian et al., 2017)

• Software-as-a-Service: SaaS delivers several kinds of applications plus

interfaces for the end-users. A Subscription service usage offered by a

free software dealer is delivered over the network in SaaS. The main

advantage of this architecture is that an App can be developed and

deployed without the need to extend the enterprise data(Dlodlo et al.,

2015).

Lately, numerous research ventures have focused on combining Cloud

Computing and IoT to provide users improved services available anywhere at

the same time ensuring scalability and security(Vinh et al., 2015). As stated in

Risteska Stojkoska and Trivodaliev. (2017), the cloud “promises high reliability,

scalability, and autonomy” for future IoT applications. That is, Cloud-based

platforms support connectivity to the things making anything accessible in a time

and space agnostic manner favouring user-friendless using the customized

front end to access IoT and address the Big Data problems(Khatu et al., 2015).

Furthermore, the cloud is an enabler for ideal IoT middleware. it can be used to

extend and provide flexibility to IoT middleware deployment and to enable users

to get improved understandings from the data collected by sensing

devices(Sethi and Sarangi, 2017).

 51

Numerous IoT cloud suppliers are presently emerging into the market

leveraging appropriate and explicit IoT-based services(Ray, 2017). AWS, a

reliable and affordable service, is one such cloud platform. It offers an efficient

data storage mechanism, access to online servers anyplace worldwide

leveraging any other application services accessible on the Internet

(Sahadevan et al., 2017). Other studies have leveraged Google Cloud

infrastructure offering cloud service to IoT applications (Abdulrahman et al.,

2016). According to Naveen et al., (2013), the Google cloud platform allows

designers to build and deploy Apps on Google’s cloud infrastructure. It delivers

disseminated storage and computing services. Google app engine is a PaaS

providing software developers with a software developer kit (SDK) to develop

web applications freely. Furthermore, it enables bi-directional massaging

service between application servers and Android devices using the google cloud

messaging (GCM)(Abdulrahman et al., 2016). The authors also discussed,

google cloud datastore, a data storage service with a spread-out architecture

that varies from the standard relational database regarding the manner it holds

the non-relational data.

 2.4.8.1. The case for the smart grid applications

As depicted in Figure 2.29, the challenges, and prospects of developing the next

generation smart grids can be addressed partly by Cloud computing. For

instance, cloud architecture can be used in a smart grid to handle the bulk of

data processing (Big data problem) (Reka and Ramesh, 2016). Smart grid

solutions can beneficiate to a greater extent by incorporating technologies such

as cloud computing (Jose et al., 2016). Regarding smart homes, successful IoT

energy management and HA applications aside from using middleware and

gateways in local networks will need to incorporate the cloud as a unifying

framework (Lin and Bergmann, 2016). An energy management cloud can gather

consumption usage and then supports remote control and schedule the status

of home appliances (Lee and Lai, 2016). As stated by Wang et al., (2015), the

assimilation of WSN and the Cloud brings better flexibility, limitless resources,

huge computing power, and the capacity to quickly respond to the user. Indeed,

the cloud is proficient in monitoring, collecting, storing, abstracting, and

processing data from devices maintaining secured standards. By analyzing this

data, the cloud can prompt actions according to user-defined rules to achieve

complex Smart Home control (Lin & Bergmann, 2016). According to Kedar and

Somani. (2015), Cloud-based HEMS provide a daily demand forecast for the

 52

homeowners. Rathi et al., (2014), argued that process history such as real-time

energy consumption, load management, time-of-use, amongst others, can be

ported to a cloud database to manage the load and significantly contribute to

the energy balance in the residential premises (Rathi et al., 2014). That is, a

cloud platform effectively helps to analyze the state of several settings and

controls in the home controlling their state anytime anywhere (Dey, Roy, and

Das, 2016). As far as consumer behavior is concerned, cloud-based services

allow for smarter decision-making. These complex decisions can be provided

to things (or humans) allowing them to act and affect the environment (Coetzee

and Eksteen, 2012).

Figure 2.29: Typical IoT Smart home management model

adapted from (Risteska Stojkoska and Trivodaliev, 2017b)

2.4.9. Mobile Technologies

The emerging 3G/4G/5G mobile communication technology and the Internet of

Things yield the potential to effectively influence human existence (Liu et al.,

2017). In this regard, the smartphone is a very handy and user-friendly device

with a host of built-in communication and data processing features. Recently,

the increasing popularity of smartphones among people has nurtured an

increasing interest from researchers building smart IoT solutions (Sethi and

Sarangi, 2017). Indeed, leveraging data from private or public cloud services,

third-party services can be delivered to users via mobile App on smartphones

(Fan et al.,2010). Moreover, mobile devices can be combined with Cloud

solutions to offer users enhanced services that are accessible anywhere while

guaranteeing scalability and security (Vinh et al., 2015). As stated by Christen

et al (2014), Smartphone and mobile technologies are ubiquitous and easily

operable and have the potential to extend IoT in different application domains

 53

and contexts. Dlodlo et al (2015), supported this view stating that in developing

countries such as SA the high cell phone coverage offers the opportunity to

bring services to remote locations. A smartphone can play a significant role in

smart grid effort in managing residential load. According to Dey et al., (2016), a

smart home is an automated home that relies on home automation leveraging

amongst other mobile devices to control basic home functions and features

automatically through the internet.

From the end user’s point of view, Internet-based HA is very convenient, flexible,

and cheap (Pawar et al., 2016). In this regard, IoT-enabled web

applications/mobile App on smartphones offer HA front ends to any users from

any remote location (Korkmaz et al., 2015). Li et al (2015), summarised this

stating that the combination of smart home systems and mobile devices is

designed to help people take advantage of smartphones, tablet computers, and

other mobile devices without restrictions of time and space to operate the

equipment home. Mobile technology(smartphones) enhances IoT energy

management activities with data anytime and anywhere (Thiyagarajan and

Raveendra, 2015). Indeed, remote operation and data access are bringing the

granularity of IoT context information closer to end-user attention, therefore,

adding a new dimension to activity such as home energy management.

According to Viswanath et al., (2016), a personal smartphone running cloud

services can be leveraged in-home place to control and monitor appliance,

receive and Utility DRM incentives (e.g., dynamic pricing), and for the user to

send control commands (e.g., switch on/off plug) dedicated gateway. In HEMS,

this is typically done via an Android mobile app augmented with a cloud

messaging facility via push notifications.

Smartphones offer an extra level of sophistication in visualization tools. These

displays not only show the overall home raw and tabular consumption but a

disaggregated appliance level feedback (Liu et al., 2014). This type of feedback

is mainly useful as it uses intuitive visual user interfaces (UI) to give consumers

a deeper insight into their load. It enables users to learn more about their

appliances thus, enabling their instinctive control based on their consumption

profile (Risteska Stojkoska and Trivodaliev, 2017a). Via cloud technologies, the

smartphone can enhance the bidirectional relationship between humans and

objects providing a direct and effective platform for “human-in-the-loop” HEM

applications (Stankovic, 2014). As stated in Li et al., (2015), the consumer can

 54

fully master the real-time and historical information about their consumption by

accessing the IoT energy management platform through the web, Android (Li et

al., 2015). Consequently, such interaction will provide feedback that helps

engage consumer behaviour effectively.

 2.5. Chapter summary

In this chapter was discussed the status of the traditional grid, highlighting the

different challenges that these are facing in handling the increasing energy

demand within the existing grids, particularly from the residential sector. Then,

the literature on the smart grid vision focusing on IoT as an enabler for smart

grid penetration in residential load management was covered. A review was

performed regarding HEMS backbone (HAN) focusing on their architecture

software stacks, and devices management. In this regard, the current state of

the art in embedded design for IoT applications and the different

implementations of IoT middleware as possible solutions for IoT semantic gaps

are reviewed. Finally, a review of cloud computing and related technologies as

enablers for IoT-related interventions for energy management was carried out.

 55

 3. CHAPTER THREE

Related Works and Solution Specifications

 3.1. Introduction

This chapter builds on the literature review in the previous section to identify,

discuss and compare related works around IoT-enabled smart grid interventions

in the residential sector. In this regard, the research reviewed and compared

works focusing on the implementation of IoT-enabling technologies for smart

grid interventions in homes. For this purpose, the focus is on the

implementations of sensor and actuator networks (within HAN) managed via

middleware, augmented with BaaS cloud technologies extended over

smartphone technologies to develop and implement an interoperable, scalable,

affordable, and performant platform for smart grid DRM interventions in homes.

Therefore, in this section, the aim is to review and compare similar works so to

identify and define the specifications of the technological tools that will enable

us to develop and implement a platform suitable to this study context.

 3.2. Related Works

IoT is a novel ICT paradigm showing interest from various studies regarding IoT

platforms for HEM. Saga K N & Kusuma, (2019), designed and implemented a

home automation system that leverages IoT to control most household

appliances over an easily adaptable web interface. The planned system offers

great flexibility by using Wi-Fi technology to connect its spread-out sensing

devices to a home automation server. Such an implementation aimed at

decreasing the system deployment cost and facilitate future upgrades, and

reconfiguration.

Also, using a web browser interface from any local PC within the HAN via the

server IP or remotely using a PC or a mobile device connected to the internet

one can access the automation system. The authors argued that WIFI was

selected to increase the system security (via a secured WIFI connection) and

to improve system flexibility and scalability. Nevertheless, this works does not

handle the communication between devices on the local network, a single

server gateway to which home appliances sensors and actuators are

connected. This setup is archaic and incurs a scalability issue. Furthermore, the

need to connect to the home gateway via its IP requires private DNS which is

 56

restrictive in many contexts as this suggests a payable subscription to some

ISP. Here the cloud is used as SaaS to forward an email notification to users.

However, the non-real-time nature and textual format of email limit the depth of

feedback and analytics that can be done on consumption data. Moreover, this

work lacks a middleware to manage devices on the network, provide

interoperability and improve scalability which paramount factor in any effective

IoT-based HEM platform. Another noticeable issue here is that the

nonstandardized architecture will increase security concerns and increase

deployment and maintenance costs.

Kim et al., (2015), proposed an IoT-based DHAN for HEMS platform around ad

hoc P2P networks between the home appliance and Nomadic Agents (NA’s)

running on the user smartphone. The authors implemented a middleware

(OSGi) to manage and provide service within the HAN energy saving (sensing

and actuating) device (ESD) and the user smartphone working as a client or

dynamic gateway over Bluetooth. In their work, the authors proposed a platform

that aims to mitigate the static architecture of ZigBee based HAN composed of

several fixed GWs gateway ‘always on’ using ad hoc Bluetooth based networks

connecting a nomadic GW to a home appliance to transmit consumption data

to a central management server (CMS) that aggregate the consumption of

several households and provide analytics on user consumption. However, the

work presented here add a level of dependency to the HAN as the smartphone

become a network resource. this implies that the cell phone because a central

device needed to be on during critical communication session. In this regard,

smartphone power consumption becomes an important factor as wireless

communication and the different energy services (provided via the nomadic

agent) add additional load to an already application-intensive device. This may

incur discomfort to the user, which must be notified and constrained to maintain

an acceptable battery level. Although the use of smartphones is motivated by

their ability to support emerging wireless technologies, the range limitations and

signal interference of Bluetooth technologies in domestic places still required

some level of signal amplification and relays for effective communication and to

avoid data losses. Moreover, the lack of an emerging middleware but instead

an architectural dependant does not present any form of protocol integration for

interoperability which is a requirement for IoT platform for HEMS. Furthermore,

this works lacks the cloud interface that provides energy management

applications at anytime, anywhere monitoring and appliance control constituting

 57

a powerful motivator for HEMS efficacity and acceptance and cost of these

systems.

In Beligianni, Alamaniotis, & Fevgas, (2016), a software architecture for efficient

and secure energy management within the smart grid that leverages the recent

developments in Smart Grid, IoT and Fog and cloud computing to deliver energy

services load and price forecasting as well as handling the big data challenges

of IoT and latencies and cost of cloud infrastructure is proposed. At the heart of

their platform is the IoT gateway, design over a low-cost embedded

device(raspberry-PI) running the Eclipse Kura framework, a scalable free IoT

Edge framework built on Java/OSGi used as middleware to offer hardware

abstracting (protocol interoperability) via an API that gives access to the

hardware interfaces of IoT Gateways. Moreover, it connects the gateway to

cloud infrastructure (edge and cloud platform) via the Mosquito MQTT. This

enables the platform to push the stream of smart meter data to a message

broker at the edge for analytics and knowledge extraction and further, push the

aggregated data securely to the cloud preserving privacy. In accordance with

the current trend in an ideal IoT platform for energy management, this work,

make used of Gateway, cloud (over fog computing) infrastructure to provide

energy service to the consumer. However, less attention is given to the

management of HAN network devices as related to devising management,

discovery, and security. Furthermore, the middleware being used required a

higher category (see figure 2.3.6.5-1) embedded systems that can run the Java

Virtual machine (JVM). This has the drawback of mitigating the expected

miniaturization of IoT implementation, increase cost, and limit scalability.

Korkmaz et al., (2015), proposed a HA system leveraging emerging open

technologies providing a platform for multi-home automation via enabling

opensource cloud infrastructures and web applications running on user’s

Android smartphones as well as via a website. The focus of the authors was to

offer cost-effective home automation as a service via open-source cloud

services (GCM) and seamless integration to consumer life mainly using

ubiquitous mobile technologies. Although this work integrated IoT enabling

technologies (cloud services, smartphone for feedback, and remote

management), the system architecture used here is not participating in the

standardization effort for ideal IoT implementation. Moreover, the lack of

middleware to manage local devices on the HAN further heterogeneity and

scalability within this implementation. This is further highlighted in that the local

 58

hardware within the HAN, mainly consists of the i.MX53 card, a 1 GHz ARM

cortex-A8 processor, and its 1GB DDR3 main memory connect to the

appliances either via its wired or wireless interfaces. As shown in figure 2.3.6.5-

1, this hardware sits within the higher category of IoT devices, thus limiting

miniaturization and increasing deployment costs.

Lee and Lai, (2016), propose an energy management cloud platform to provide

energy management based on the Software-as-a-Service (SaaS) cloud model.

To enhance interoperability, the authors propose a universal smart energy

management gateway based on a free Internet of Things (IoT) framework

named IoTivity to monitor and manage IoTivity-compatible devices. In this work

the author used the IoTivity middleware to abstract from the monolithic, ad hoc

implementation that locks traditional HEMS to private protocol or mechanism

limited the choice and spectrum of possible devices to implement IoT HAN.

Therefore, the main goal of the author here was to tackle of ever so common

issue of interoperability and device management within IoT based HAN network

provided a completed architecture that handles the platform requirement for

data communication and management from appliances on the HAN to services

provided in the cloud for local or remote management of consumer load.

However, because IoTivity is CoAP based framework, the Authors proposed a

REST framework for bridging CoAP to HTPP to access their dedicated cloud

infrastructure. For further scalability and web interoperability as required for

ideal IoT, energy management platforms using popular open-source REST API

and cloud services facilitate grid service interfacing, reduce the cost of

technologies, therefore increasing the penetration of such platforms in homes.

Al Faruque & Vatanparvar, (2016), proposed a fog computing-based platform

for energy management focusing on interoperability, scalability, adaptability,

and local and remote monitoring while leveraging open-source

software/hardware featured to allow users to implement the energy

management with the customized control-as-services. The authors focused on

facilitating the deployment of their platform in residential places by mitigated the

cost associated with computing devices, software stack, and communication

devices. Thus, they focus on using popular, open-source hardware within their

HAN, in this regard, The Raspberry PI acting as a home gateway and TelsoB

mote running TinyOS and communicating over wireless Zigbee or Bluetooth or

wired Ethernet and serial have been used as network devices. To support

 59

device-to-device communication, security, and device management within their

heterogeneous platform, the Author used the Devices Profile for Web Services

(DPWS) middleware centered on SOAP-over-UDP, SOAP, WSDL, and XML

schema to abstract the management of HAN devices and provide web

connectivity. Through this platform, the authors proposed HEM as a service

(monitor, control) on Fog via the HEM control panel forwarding DR signal to a

local home gateway and provided a web page as front-end to users. Though

the Author advocated the use of a middleware within the local HAN, the use of

the home gateway for protocol translation complicated network architecture,

and the cost of hardware has such gateway are generally high-end devices

requiring more processing power thus consuming more power themselves.

Moreover, A Web interface is provided based on the local router DNS info. This

limits operation on the local network or increases the cost of implementation

when an ISP subscription is required for remote control operations.

Furthermore, the cloud is missing as fog only processed that on the edge. Fog

computing transfers the paradigm of cloud computing further to the edge of the

network. It is a platform that may also offer IoT with the ability of data

preprocessing while meeting real-time requirements. Fog needs to include

cloud for increase servicing in IoT platforms and increase acceptance of IoT

platform as remote, anytime anywhere monitoring control is made possible.

Sahana et al., (2016), proposed a sample implementation for home energy

management and control providing consumers with a web-based interface to

observe the power consumed by many appliances leveraging the internet to

control home appliances from anywhere in the world. this is achieved by

leveraging the Internet of Things protocol stack comprising emerging IETF open

standards-based such as 6LoWPAN, RPL, and CoAP to allows unified

integration of the appliances at home to the current internet infrastructure. In

this work, the author develops a HAN based on low-cost, popular hardware and

software technologies while proposing an architecture that offers interoperability

and scalability. The author used 6LowPAN wireless technologies to handle

communication within the HAN. To reduce the implementation cost of their HAN,

an embedded device has been used. The TI CC2538, an ARM Cortex-M3-

based MCU system with up to 32KB on-chip RAM and up to 512KB on-chip

flash running the contikiOS communicated via 6LOWPAN have been used to

sense and control home appliances. a BeagleBK, running Ubuntu 14.04 acts as

a gateway connecting the 6LoWPAN network to an Ethernet network. Although

 60

this work incorporated popular and studied IoT technologies, it still lacks the

enabling technologies to make it scale to different households and interface to

grid services outdistancing the security issue related to such a monolithic

implementation. According to the analysis of the existing smart home platform

above, it transpired that the platform for these systems is ad hoc or

close/monolithic. That is each system is on a single system without architecture

that embedded recognizes IoT enabling technologies from WSN to cloud-based

services accessible on user mobile devices.

To achieve the above demand, Li, Nie, Chen, Zhan, & Xu, (2015), proposes a

framework for energy management applications running on a home gateway

and energy service systems for multi-homes running on Azure cloud leveraging

dedicated 3rd party energy service providers. Each home is with a gateway

(Intel(R) Core (TM) i3-2100 CPU) powered with Microsoft Lab of Things

(HomeOS) middleware. Windows Azure cloud technology is used for data

management to realize multi-family management. For front-end requirements,

the Author provided an Android mobile terminal and Web using

publish/subscribe MQTT model and azure push notification. The MQTT

message middleware enables the realization of a reliable diffusion of data and

command across the sensing layer, transmission layer, and application service

layer in the third-party cloud. The authors aim to abstract away the limitation of

monolithic IoT platforms by providing an architecture that incorporates within

layers the different enabling technologies of IoT in the smart grid context. Using

the cloud as both SaaS and PaaS the author proposed a platform that scales

and fits a diversity of deployments. However, the use of the LoT middleware

requiring the Homes to increase the processing power, power consumption, and

cost for each home gateway. Being a gateway dedicated middleware, LoT

(HomeOS) limits the miniaturization of devices in the HAN increase the cost of

this implementation. The Use of MQTT instead of the more popular CoAP for

communication on HAN is another limitation for interoperability and scalability.

Viswanath et al., (2016), propose an IoT platform targeting residential

consumers leveraging smartphone and cloud technologies to offer Smart grid

empower energy management (DRM signal) and home automation as services.

In this regard, the authors proposed the IoT elements, protocols, and the testing

setup for IoT context together with the software designs that have been used

for consumers’ energy usage patterns feedback and control focusing on the

 61

response time and the ability of the platform to handle many users. To

accomplish this, the authors propose, a UHG responsible for the transmission

of collected data to the cloud via the network layer. This is accomplished using

the popular Raspberry pi computer, an IP-based system and runs in HTTP and

XMPP protocols, used as a translator to interact with other non-IP-based

devices in the system. Openfire server as a middleware on the Gateway to

provide uses pub-sub mechanism to push information to subscribers. To display

real-time information (e.g., Dynamic Pricing) and for the user to send control

command (e.g., switch on/off plug) to the UHG, native push to smartphone

devices through GCM was implemented in the testbed and using RESTFUL

HTTP periodic uploading of sensor node data is done from the gateway to the

cloud platform. XMPP is TCP-oriented which expensive for lower-end device

notwithstanding that it does not recommend with IETF standard for IoT.

Moreover, XMPP is a heavyweight protocol streaming XML (with less

interoperability than JSON) with a specification that has no complete

implementation yet. Openfire essentially lacks functionalities such as discovery,

provisioning, security which IoT middleware provides. Also, in this application

security and permission is solely on the cloud this All of this is provided by

middleware. Furthermore, Openfire is not supported on lower-end devices thus

increase the cost.

 3.3. Solution Specification

An energy management cloud platform is proposed to provide energy

management based on the Software-as-a-Service (SaaS) cloud model for

deploying energy services and BaaS for platform backend requirements. The

proposed architecture is based on standard open-source protocols, services,

and development tools. An overview of the proposed architecture is depicted in

Figure 3.2. A three-layer platform consisting of a HAN gathering consumption

data and controlling appliances, a home gateway (D2D and D2C connectivity),

cloud computing, data storage was proposed. This architecture further offers

services for both home gateway and consumer over the third party as well as a

smartphone App as user front-end for enhanced feedback. Additionally, the

cloud provides an interface to smart grid services as there are made available

by smart grid third parties.

 62

3.3.1. Software components

To guide the development of the testbed, a certain number of technologies

facilitating IoT application development and deployment in smart homes will be

adopted. Adopting state-of-the-art solutions, the wok targets open-source

software technology to alleviate the complexity of proprietary software and the

related cost.

 3.3.1.1. Middleware for the platform HAN management

As to focus on research goals, the IoTivity platform will handle local networks'

interoperability, scalability as well device management complexities using the

IoTivity framework. Therefore, IoTivity will handle resource discovery, device

management, protocol conversion, and security requirement for the platform.

IoTivity-Lite the OCF release for the constrained devices was recently released

primarily devices within category 3 (Figure 2.21). Therefore, an adaptation or

port needed to be developed to support lower category devices.

3.3.1.1.1. IoTivity-Lite arduino port

To sustain the goal of low cost within the platform, IoTivity-Lite framework was

ported to lower category (lower cost) devices (category 1&2). For this, the

popular Arduino MCU and the Espressif ESP32 Wi-Fi MCU were targetted.

However, the Port of the IoTivity framework, rely on OS running on the MCU.

Based on the literature review on RTOS and the state-of-art FreeRTOS and

ContikiOS were considered for being popular RTOS for low power, low-cost

MCU. ContikiOS was used on the Arduino MCU because of its low memory

footprint and simplicity in developing firmware that is seamless to IoTivity-Lite

integration which uses ContikiOS itself within its stack. The ESP32 MCU,

boasting a higher memory footprint of ~500Kbytes of RAM. In the case of the

ESP32, an adaption of the Initial IoTivity port based on the FreeRTOS OS was

used. Figure 3.1 below, shows the architecture for IoTivity-Lite Arduino port.

 63

Figure 3.1: Porting IoTivity-Lite to Arduino MCU adapted from (Maloor, 2019)

3.3.1.1.2. High-level devices management and cloud connectivity

The OCF IoTivity group avails a JavaScript port of the IoTivity stack running on

the Node engine or IoTivity-node for a high-level device. Using the IoT-rest-

APIserver, a NodeJS REST server for HTTP-based communication using

IoTivitynode as a client, a device-to-cloud interface was established with the

local CoAP devices offering those services or remote access on client App

(mobile or desktop app). Connecting is provided using the IoTivity-node

empowered IoT-rest-API-server on the gateway device (Raspberry PI).

3.3.1.1.3. Communication technologies for the proposed solution

In the HAN communication between IoTivity devices is around Wi-Fi primarily.

However, Ethernet is used for demonstration purposes as the Wi-Fi shield for

Arduino was not available. Wi-Fi and Ethernet are a communication technology

that is ubiquitous to residential places. Thus, leveraging ICT infrastructure in a

domestic environment, WSN can be simplified and made cost-effective. Wi-Fi

decreases the deployment cost and will increase the ability of upgrading, and

system reconfiguration, and high-end security mechanism. WIFI is selected as

being advantageous due to its higher bandwidth, large coverage, easy

expansion (M. Khan, Silva, & Han, 2016). Communication within HAN devices

on the application layer is handled by the middleware using CoAP over UDP.

RESTful HTTPS is used for cloud communication, publish, and subscribe via

Parse server Live Query mechanism over Back4App BaaS tools.

 64

 3.3.1.2. Cloud deployment for the proposed solution

In this work, the cloud is mainly used as Software-as-a-Service (SaaS), for

energy data storage and as an energy services provider for energy monitoring

and the management and control of appliances on the platform. Based on the

literature, design requirements, the open-source Parse Server was used. Parse

was used as a server to provide a RESTful API for a plethora of devices on the

different programming languages. Parse server is flexible and can be hosted

and migrated from one cloud platform to another. Though Google Cloud and

Amazon are the most popular in terms of cloud Hosting, there are not native

Parse server environments for pub-sub mechanisms which central to IoT

platforms for smart home applications. The back4App cloud platform was

chosen to provide computing, storage (mango DB), server management, Live

Query, cloud background Jobs and third-party login (i.e., Facebook), and mobile

push notification (mainly Android) all as BaaS for an IoT platform centered

around a mobile or web application.

 3.3.1.3. Mobile development for proposed solution

Smartphones are central to the front-end requirement of an ideal IoT platform

for the smart home. In the implementation, smartphone is used for energy

monitoring (enhanced feedback) and HA anytime and anywhere as well as to

display smart grid incentives when the case is made operational within the

South African context. In this regard, an Energy App for Android devices is

developed. the App is cloud-based using Parse server BaaS and provides both

energy monitoring and HA using Live Query and Android Push notifications

mechanism. Again, being a Backend server for mobile application parse was

thus used as the interface between the front-end and home cloud services.

Android development was performed on Android Studio using Parse Android

API and the Java programming language.

 3.4. Chapter Summary

In this chapter was covered the specifications that govern the architectural

designs and experimental work for the platform. The research went through the

rationale behind the selection of the different tools for the proposed solution as

the review in chapter 2. Moreover, it covered the new solutions that were

developed or adapted to satisfy the research objectives.

 65

Figure 3.1: Proposed System architecture

 65

 68

 4. CHAPTER FOUR

PLATFORM DESIGN AND DEPLOYMENT

 4.1. Introduction

This section describes the design and deployment of an experimental platform

for energy management. Leveraging this platform, an energy application on an

Android smartphone will be developed, tested for energy monitoring and HA.

Integrating cloud computing, pub-sub mechanism, and cloud Job, and the HAN

gateway in a home, a peak load management algorithm is implemented to

manage consumption in the residential place. The architecture for the

experimental platform followed by a rundown of its core components as well as

the case study implementing the different objectives for the research are

presented. The evaluation of the overall experimental platform according to

research questions and objectives will be based on a methodology, relying on

scenario testing and response time throughout the entire architectural layers.

Secondly, are presented the results from the different experimentations and

provided a throughout the discussion of observations made.

 4.2. Equipment for an experimental platform

The experimental platform leveraged open-source embedded devices with wide

support (development libraries) to facilitate an efficient design of the testbed.

The hardware is comprised of server device interfacing sensing devices (CT

and PT sensor) to provide consumption data in form of current and power

consumption of different appliances or groups of appliances. The system will be

composed of a single gateway device interfacing with the home router. This

simplifies the security aspect of the system. All devices on the HAN, are

selected based on their support for the IoTivity framework, flexibility in firmware

design, availability, and affordability.

Table 4.1: Device used for IoTivity network (HAN)

As shown in Table 4.1 above, The HAN uses Arduino mega 2560 and Arduino

 69

Due providing connectivity via Wi-Fi. However, for the reason of availability and

affordability, Ethernet was used in this implementation over the Wiznet W5500

shield. Nevertheless, Wi-Fi was used to provide connectivity for the ESP32. To

provide a sensing and actuating interface, design and manufacturing are carried

out for plug-play shields comprising current and voltage transformers. When

assembled to the Arduinos and ESP32 this constitutes the IoTivity-Lite powered

local server handling resources such as power and current information from

household appliances. IoT HAN around the Raspberry Pi takes advantage of a

large developer community and open-source software. The Raspberry Pi is well

supported by IoTivity for constrained and Rich devices making it ideal for

interfacing constrained device networks with the internet. Moreover, its small

size makes it non-invasive and cost-effective. The Raspberry Pi 3 as the

platform HAN’s gateway is used.

4.2.1. Platform motes shields

The HAN’s devices are augmented with motes designed and manufactured

(Altium designer) as plug-and-play shields. These shields provided the

sensing and actuating interface to existing home appliances via noninvasive

and safe electronics devices. The design was carried out as shown in figure

4.3 and figure 4.4. The completed manufactured and assembled motes are

shown in figure 4.5.

 4.2.1.1. Current and voltage sensors

An electric signal, either an analog voltage, electric current, or digitally encoded

output is generated proportional to the current that flows through a conductive

element for the current sensor. According to Blanco-Novoa et al., (2017), there

are mostly four types of current sensors, that is, Ohm’s law sensor, sensors

based on Faraday’s law sensors, magnetic field-based sensors, and

Faradayeffect sensors. For the testbed, the magnetic field-based sensor in the

Current Transformer (CT) as well as voltage transformer in the form of AC-AC

transformer, depending on availability will be used measurement. In this regard,

the current sensor from YHDC, a Chinese company heavily involved in electric

power equipment is selected. The SCT-013-030, an inductive, ferrite split-core

current transformer supporting a primary current of up to 30 amperes (RMS)

with a proportional output voltage of 1V (RMS) is provided. The sensor used

has an embedded burden resistor of 62 Ω outputting a voltage proportional to

the current. The sensor output the voltage with an error tolerance of 1% of the

 70

measured value and is equipped with an audio jack plug for interfacing.

According to Miron-Alexe, (2016), the SCT-013-030 is a robust and suitable

sensor for industrial and household applications not requiring a high grade of

accuracy.

Figure 4.1: Current Transformer (CT) adapted from (Miron-Alexe, 2016)

Figure 4.1 represents an SCT-013 split-core transformers with a clamp-on

mechanism, describing its physical characteristics and its electrical schematic.

On the electric schematic, Ip is the current through the primary winding and RL

is the embedded burden resistor whereas Vout is the output voltage of the CT

(1Vrms). The voltage transformer (figure 4.2) from Mascot rated 230-240 V AC

at 50 Hz outputting a 12 V/500 mA AC is used to measure the mains voltages

for power calculation. According to Wall, (2016), this transformer exhibits a

phase lead changing from 4° at the lower edge of the supply range up to 7½°

at the upper limit.

Figure 4.2: Mascot ac-ac 230V/12V 500 mA voltage transformer adapted

from (Wall, 2016)

Figure 4.3 depicts the schematic circuit for the sensing system. For voltage

measurement, the 12Vac signal from the transformer is conditioned for the

Arduino ADC and stepped down using the voltage divider (R7 and R8) which

limits the voltage at A1 to 1.091Vac (RMS). The voltage follower based on the

high impedance op-amps (LM358) is used to condition the before the ADC

input. The LM358 input for voltage reading using a DC offset that lifts the signal

reference to 2.5V via the voltage divider (R9 and R10). For voltage

measurement, the LM358, for the high impedance it offers at the ADC input,

thus increases stability and accuracy of the reading at A1. For current sensing,

 71

the LM358 simplifies interfacing with the MCU by eliminating the negative part

of the signal outputting a half-wave rectified signal (CT2).

Figure 4.3: Schematic defining the wring of the SCT-013 current sensor

Adapted from (Miron-Alexe, 2016) and (Sutisna et al., 2019)

The main advantage of this circuit is in the stability and accuracy of the current

reading. However, it was noted that the prior is only true for symmetrical ac

signal. Moreover, measuring low current is not ideal with this circuit. Since the

op-amp gain is 1, low voltage (μV) is directly read by the ADC which zeroes

such a low signal through the 10 bits ADC resolution on the Arduinos. To

counter that, a 2.5V DC offset was added to the current signal to obtain a full

wave rectified signal (CT1). The sampling graph for both the half-wave and

fullwave current sensing can be seen in figure 4.6. The voltage and current

reading from both the CT and AC-AC adapter is a sine wave whose root mean

square (RMS) value can be obtain from equation (4.1) (Serov, Serov and

Makarychev, 2019). Thus, the RMS is computed on each signal at instant t while

sampling the signal during an interval T. In Equation (4.1), t0 is the time instant

when sampling begins.

 𝑆𝑟𝑚𝑠 𝑑𝑡 (4.1)

Where 𝑆𝑟𝑚𝑠 can be either RMS current 𝐼𝑟𝑚𝑠 or RMS voltage𝑉𝑟𝑚𝑠. Since ADC are

used to convert analog signal into series of digital samples. The measurement

based on averaging the squares of the ADC input signal samples is the mostly

= √
1

𝑇
∫ 𝑠 2 (𝑡)

𝑡 0 + 𝑇

𝑡 0

 72

used. From this method, the RMS value is computed as in equation (4.2) after

discretization of equation (4.1)(Albu and Heydt, 2003).

 𝑆𝑟𝑚𝑠 𝑆𝑛
2 (4.2)

Where N represents the number of samples for the period T. based on work

from (Learn | OpenEnergyMonitor, 2021) related to resistive load, using both

instantaneous current and voltage, the real power and apparent power were

calculated using equations (4.3) and (4.4).

 𝑃𝑟𝑒𝑎𝑙 𝐼𝑛 × 𝑉𝑛 (4.3)

Where N is the number of samples over period T and 𝐼𝑛and 𝑉𝑛 the instantaneous

current and voltage.

𝑆 = 𝐼𝑟𝑚𝑠 × 𝑉𝑟𝑚𝑠 (4.4)

 4.2.1.2. Actuators

Relays provide actuation of appliances via the mote. According to, BlancoNovoa

et al., (2017), using a relay, appliances can safely be controlled via the electrical

insulation that can be created between a low-voltage circuit and higher voltage

circuit to which High current devices are connected. Among the different types

of models, considering the current rating of the appliances in the case study the

OMRON, G5LE-1-E 12VDC at 16A 250V AC relay is selected. This relay

tolerates a maximum switching power of 4 kVA and has a low-coil power

consumption(400mW) as well as a low price (around R35/units). Moreover, the

small form factor of this relay makes it suitable for small form PCB design thus

increasing the miniaturization of the motes.

The actuation circuit uses a 2N2222 NPN transistor to actuate the high-power

relay via a pulse signal from the MCU. A 470 μf capacitor is used to mitigate the

wear of the mechanical closing circuit by adding a time delay. A red led indicated

the status of the relay(on/off). See a complete schematic and PCB design as

well as the manufactured and assembled motes for the Arduino and ESP32

based shield in Appendix A.

= √
1

𝑁
∑

𝑁

𝑛 = 0

= √
1

𝑁
∑

𝑁

𝑛 = 0

 73

Figure 4.4: Schematic describing the actuation within the mote shield

The Final schematics used to design and manufacture the PCB(s) for the

sensing and actuating shields (Appendix B, figure B.1) are shown in Appendix

A, figure A.1 and A.2. The PCB were design on Altium designer 17 using the

two layers (top and bottom) method easing routing and enabling larger track

size for power lines. This structure enables isolation of current and voltage

signals from noise (High power relays) while allowing for faster and better heat

dissipation from active components. The Arduino based PCB shield were

physically cut out to stack up above an AVR or ARM board. All components are

DIP (through holes) as the component were to be mounted and soldered by the

researcher.

 4.3. Platform system integration

Before discussing the flow of information within the experimental platform, the

final makeup of the power sensing and actuation motes within the platform is

discussed.

4.3.1. Platform motes Hardware Integration

Figure 4.5 shows the different components of each type of motes used in the

experimental platform in the HAN. On the left is the Arduino-based mote

integrating the relays for actuation, the AC-AC adapter, and the Audio plug for

current and voltage measurement on the data acquisition shield. On the right is

the ESP32 based mote using an integrating Audio plug for current sensing. This

mote can control up to two appliances with a current rating of up to 20A AC.

 74

 Figure 4.5: Final assembly and main component for platform mote, left) Arduino based mote,

right) ESP32 based mote

4.3.2. Sensor Calibration and Signal conditioning

Before deploying the mote, a calibration process was followed to generate the

graphs in the figure below for the current signal read from the SCT-013 and a

voltage signal from the AC/AC adapter. The raw signal from the SCT-013 is

read as a sinusoidal half-wave (yellow line). The RMS value from equation (1)

is computed after calibrating the input using equation (4.5) used to compute the

conditioned current signal.

Figure 4.6: Voltage and current signal calibration and conditioning

The discretized ADC reading from the CT sensor signal is used to condition and

filter out the actual instant sample value. Based on works from (Learn |

OpenEnergyMonitor, 2021) equation (4.5) and (4.6) were formulated. Here,

counts represent the MCU ADC equivalent reading for the current signal,

𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠 is the counts equivalent to the DC offset (2.5V DC) that is subtracted

 75

to center the waveform around 0V. 𝑉𝑟𝑒𝑓 represent the MCU ADC reference

voltage. This value is measured for each type of MCU (4.984V for

Arduino AVR and ~3.3V for DUE and ESP32). 𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡𝑠 is the MCU ADC full

counts (1024 for AVR and 4098 for DUE and ESP32). 𝐴⁄𝑉 is the CT conversion

ratio (30 𝑎𝑚𝑝𝑠⁄𝑣𝑜𝑙𝑡). 𝐼𝑟𝑚𝑠 calculated from equation (4.1) is thus the CT primary

coil current. That is the connected appliance consumption.

𝑉𝑟𝑒𝑓

𝐼𝑚𝑎𝑖𝑛𝑠 = (𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠) × × 𝐴⁄𝑉 (4.5)

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡𝑠

The red curve in figure 4.6, represents the AC/AC adapter input at the MCU

ADC. As shown in this figure the sinusoidal full wave is centered about the DC

offset which read 512 counts (see grey curve). However, this value is initially

sampled by disconnecting the AC/AC adapter socket from the ADC interface

and stored as a constant 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠.

𝑉𝑟𝑒𝑓

𝑉𝑚𝑎𝑖𝑛𝑠 = (𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑠) × × 𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑛𝑠𝑡 (4.6)

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡

𝑉𝑔𝑎𝑖𝑛

𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑢𝑛𝑡 = 𝑉𝑚𝑎𝑖𝑛𝑑𝑒𝑓 × (4.7)

𝑉𝑐𝑎𝑙𝑖𝑏

The Voltage signal from the AC/AC step-down adapter is sampled and

converted to useful units based on equations (4.6) and (4.7). In (4.7), the ADC

counts are filtered by removing the DC offset (~ 2.5V or 512 ADC counts). to

convert the digital value to the analog voltage on the mains a calibration

constant 𝐶𝑎𝑙𝑖𝑏𝑐𝑜𝑢𝑛𝑡 is calculated in (4.8). 𝑉𝑚𝑎𝑖𝑛𝑑𝑒𝑓 or 230 Vac in South Africa. 𝑉𝑔𝑎𝑖𝑛

is the voltage divider gain (see figure 4.2.1-3)? 𝑉𝑐𝑎𝑙𝑖𝑏 is the output of the AC/AC

adapter (secondary coil voltage) measured using a digital multimeter to 14.6

Vac. The brown graph in figure 4.5 represents the 𝑉𝑚𝑎𝑖𝑛𝑠 centered around 0 V

after conditioning and the 𝑉𝑟𝑚𝑠 is calculated as 237.67 V.

4.3.3. Firmware development for Platform motes.

The firmware running on the HAN devices (Arduino and ESP32) is composed

of the IoTivity-Lite server code and the low-level sensing code interfacing to the

device’s ADC and GPIO registers to control the mote actuation devices. The

low-level code for interfacing to the sensing and actuating circuit implement

equation (4.1) to (4.8) to compute the power properties of related appliances.

 76

This code is used by the higher-level server code within the GET and PUT

methods. Figure 4.7 depicts the algorithm for the DAQ system. The power

properties for an appliance connected to either a mote based on the Arduino or

ESP32 MCU were computed based on the algorithm in Figure D-1 in Appendix

D. The algorithm samples the current and voltage for 25 cycles (at 50Hz) or

500ms to calculate the different root means square properties and accumulate

those to calculate the power consumption. The Arduino AVR use a 10bits ADC

setting while ARM and ESP32 boards used 12bits resolution.

The computed data is stored in a structure that will be made available for the

IoTivity server code. The code implementing this algorithm was developed in C

language and a complete listing can be seen in Appendix D. the IoTivity server

that runs on either MCU architecture listens to CRUDN from the user to monitor

and update the connected appliances. Figure 4.7 depicts the flow of operation

of the server code from initialization to servicing of resources requests within

the local HAN. See a complete listing of the IoTivity server code for Arduino and

ESP32 in Appendix C. Network configuration and cloud BaaS communication.

Network configuration and communication flow within the experimental platform

are presented in figure 4.13. The communication is layered around a HAN, a

gateway, a cloud BaaS. It leverages network (WIFI and Ethernet) infrastructure

in the residential place to provide wireless communication. All HAN devices

have statically assigned IP addresses on the private network 192.168.0.X

starting at 192.168.0.100 for the Raspberry PI gateway. When powered on, two

servers run on the gateway. First is the IoT-rest-API-server that provides a

REST API over HTTP or HTTPS access to devices on the IoTivity HAN.

Secondly, is the “main server” that initialized connectivity to the cloud BaaS.

However, the platform cloud interface first creates using the Back4App free plan

a BaaS App here “IoTivitySmartApp” (figure 4.9). this free plan offers file storage

up to 1GB and real-time database storage of up to 0.25 GB on a hosted Mango

DB (Back4App, 2017). The plan limit databases query to 10 requests/second

and allow 10K request per month limited the data throughput within the platform.

However, this is enough to demonstrate the capabilities proposed by this

solution. Thus, on the Back4App App is created the “Loads”, “SmartHomes”,

”DRM” classes to host the data for the energy cloud services the platform offers

(see figure 4.10 and 4.12). For this implementation extension to multiple smart

homes, the “owning” relationship mechanism implemented amongst the

different classes. This mechanism scales the system by enabling many owners

 77

in the “User” class to own a specific “smart home” that owns many different

appliances in the “Loads” class and a specific “DRM” service data. Moreover,

this method allows us not to create a class/table for each smart home context,

thus keeping all related data together, easing development and maintenance of

the platform.

Figure 4.7: Algorithm for IoTivity Server

 75

 80

 Figure 4.8: Platform App on Back4App BaaS

 Adapted from (Back4App, 2017)

After an app was created and the databases classes for a smart home context

define following a user login/signup process, the “main server” start a pub-sub

subscription to the related “smart home”, DRM and Loads resources on the

cloud platform using the Parse Server Live Query mechanism. This connection

is realized by authenticated the user and defining the “smart home” against the

username that was authenticated. This tool is part of the Back4App BaaS

services and is user-configurable by adding the classes (holding database

entries/objects) that will be part of the subscription services for the “main server”

running on each home gateway and the Energy App developed around the

Parse Android API working as a Parse Live Query client (see figure 4.10 below).

This tool enables each client endpoint to receive events on the entry in the

subscription list. Amongst other events emitted by the Live Query subscription

are the “create” and “update” events which are received in real-time by the

subscribed client along with meta-data regarding the specific entry that was

created/updated. The Parse Live Query mechanism is performant, secure, and

easy to use. It leverages the WebSocket technologies with its backend

requirements handle by the Back4App cloud infrastructure.

Using the Back4App App application ID, JavaScript Key (for gateway

serverclient), and its Master Key for authentication purposes, and the App

server URL, the parse Live Query mechanism is initialized. For the platform, the

gateway server requirements are implemented using the NodeJS API while the

Android API was leverage for the Energy App. An important feature of the Parse

server on the Back4App platform is the Cloud code functionality. Cloud Code

 81

enables an application developer to offset the application backend computing

to the cloud infrastructure. According to Back4App, (2017) this tool enables the

developer to run NodeJS functions directly on the Back4App cloud.

Figure 4.9: Back4App Parse Live Query Tool Configurations
Adapted from (Back4App, 2017)

The code is executed either via API or SDK call on the Energy App or gateway

server. The developer can upload JavaScript functions to the Back4App cloud

code server after deploying (figure 4.11). This step immediately makes the

Cloud Code Functions available to the IoT platform and can be used to

implement services for the platform connecting to third-party tools. See

Appendix A for the cloud code function “main.js” deployed on the platform.

Figure 4.10: Configuring and Uploading Cloud Code Functions

Once the cloud storage ad computing tools have been configured, the gateway

server initiates a login/signup sequence with the cloud user authentication

services. This process confirms the user and creates on the gateway side the

smart home identification based on the credentials username. From this step,

the Live Query mechanism is configured and initiate the server based on the

communication flow of figure 4.13. The gateway server providing the cloud

 82

interface connects to the Parse server and initiates a secure Live Query client

based on the Apps ID and JavaScript keys. This is followed by a subscription

open for the “SmartHomes”, “Loads”, and “DRM” classes resources for the

“create”, “update” events. Next, the gateway server initiates the local DBs

(monitor and Loads tables are created if not existing already) for offline storage

(MySQL DB engine). The offline and offline storage is synchronized with an

initial DB query to the parse server which returns the provisioned number of

loads. This process is two-fold.

First, the gateway server sends a DB query to get the number of known and

provisioned appliances and retrieved those from the local storage which is also

able to store newly discovered appliances. Secondly, a resource discovery from

the is sent to the IoT-rest-API-server which generates a multicast request on

the IoTivity COAP network to retrieve all resources. Subsequently, each

appliance in the local DB is updated after submitting GET requests for their

properties (state, power, and current). Lately, the remote DB appliance

properties are also updated. These initial steps aim to update the resource IDs

as those are reset after power failure. After initialization, an observation service

based on pub-sub to resources on the IoTivity network using the OBSERVE

mechanism is started and resources properties are regularly updated (although

an update threshold is added) considering that cloud transactions are expensive

for Free plan offer on Back4App. When a mobile client using the energy, App

participates in the platform information exchange, first, the App establishes a

connection to the cloud backend platform and starts a client subscription after

the client Is successfully login/signup as an authenticated user. Back4App BaaS

security features is implemented on the client and on the home gateway side to

provide a secured data communication in both ways. As depicted in figure 4.14,

all GET requests are submitted as Parse GET queries for each mobile client to

access the related homes databases. a PUT request is forwarded to the Parse

server on the cloud platform. As the gateway server is in Live Query mode,

those requests are received as update events on the resources (here

loads/appliances). The gateway server thus generates an HTTP POST request

to the IoT-rest-API-server which generates a CoAP POST (i.e.,

/apiI/oic/ktn/kettle?di=’’) with the new state (i.e., state: true/false) which thus turn

the corresponding appliance on/off. Using the Parse Live query

mechanism(observation), the smartphone App listens to updates on appliances'

 83

power properties from the gateway server’s observer service and updates the

App front-end.

 84

Figure 4.11: Platform databases structure and connections on Back4App BaaS

 85

Figure 4.12: Network configuration and communication in the Platform

 86

Figure 4.13: communication flow with Android smartphone App

 87

 4.4. Chapter Summary

In this chapter was described the equipment used for the case study addressing

the thesis research objectives. The focus was on the design of the motes used

as IoTivity resources servers in the HAN. Here was considered the mote’s

hardware and software requirements, mainly the IoTivity firmware based on the

developed Arduino port. The DAQ interface that gathers the CT and controls

the connected appliances, presenting the signal conditioning and conversion

equations was discussed. Having described the hardware, consideration was

given to the high-level software that interacts with the Back4App cloud service,

REST service, and discussed the backend interaction from the resource’s

server in the IoTivity HAN to the back4App cloud and the Smartphone Energy

App developed.

 88

 5. CHAPTER FIVE

CASE STUDY, RESULTS, AND DISCUSSION

 5.1. Introduction

To illustrate the value and performance of the platform, this chapter proposed

a case study deploying several scenarios demonstrating the ability of this

platform to handle certain applications about energy management. Lately, the

results are presented, and a thorough discussion is carried on the different

observations.

 5.2. Energy Monitoring

The objective here is to provide granular feedback at the appliance level

anytime and anywhere via an engaging graphical display on an Android

smartphone. The goal is to better understand the demand characteristic of the

home under consideration which will help to make smart decisions about

controlling its demand. Therefore, the work aims to build energy literacy in

residential places and demonstrate energy efficiency based on the IoT

“mindchanging” feedback. Furthermore, this can be used to bring consumer

visibility to phantom load from unmanageable appliances (i.e., TV, PC, phone

chargers, etc.). The performance is measured in the ability of the energy App

to provide users with appliance consumption and status information as well as

granular and overall energy consumption of a home in a near real-time manner.

 5.3. Home Automation

 In this experimental test, the IoTivity platform works as a home automation

service enabling users to control the status of their appliances via the energy

App by turning the appliance on/off anytime and anywhere to manually reduce

their energy usage. Performance is observed in the ability to change an

appliance status in a near real-time manner as well as updating the user

interface with the appliance’s new status.

 5.4. Demand Response Management

DRM algorithm for peak load management was implemented a as a service that

aims to demonstrate the impact of the IoTivity platform on residential load

efficiency. The research followed related works in the area of HEM to define the

experimental model. To demonstrate the performance of their IoT architecture

for residential load, Viswanath et al., (2016), implemented an experiment based

 89

on a maximum allowable peak threshold of 33KW. In their work, the DRM

control was notified each time the overall consumption was greater than

33.5KW. The author's algorithm control light bulbs at each house in peak time

by slotting a 24 hours’ time duration into 8640-time periods. That is their smart

grid simulation detected the total demand every 10 seconds. Al Faruque &

Vatanparvar, (2016), implemented smart transformer Control-as-a-service over

fog computing limiting the load of each home at 4KW. The authors, limiting the

maximum load of microgrid transformer alimenting a group of homes at 20KW.

The algorithm monitors the status of the power source and activates a DR signal

when overload by cycling all home and shedding load in a home that has

exceeded the 4KW thresholds. In both studies, the demonstrated DRM does

not consider user preferences. Rasheed et al., 2016, introduce three-level

priority scheduling for home appliances so users can switch on home

appliances subject to their satisfaction level and preferences. That is,

consumers willing to turn on appliances immediately could allocate it a higher

priority and vice versa. Peak load DRM depends on mathematical models. In

this case study, attention is given to regularly operated or fixed appliances and

develop an algorithm based on equations (5.1) to (5.4) adapting formulation

from (Hussain et al., 2018) and (Khan et al., 2019). Therefore, the experimental

DRM is the home automation system application relying on the IoT granular

feedback (from energy monitoring) to handle via a priority-based load shedding

program home appliances load. The experimentation focusses on

powerintensive appliances (70% of domestic consumption) with constant

consumption (resistive loads) and maximum rating and priority as shown in

Table 5.1.

Table 5.1: Appliances in the considered home with their typical priority level
Adapted from: (Qayyum et al., 2015)

Home Appliances Maximum Rating(W)
Priority

Morning Evening

Electric geyser 3000 High Low

Kettle 2200 Medium Medium

Toaster 950 High Low

Oven 2350 Low High

Stove 3000 Medium High

Iron 1800 Medium Low

 90

A load cycling (load reduction) system is implemented to shutdown appliances'

operation based on user-defined consumption thresholds or consumption

goals. Priority is introduced in this case study to dynamically limit the home

instant load. However, a default value of 5KW based on literature and the

appliance of table 5.1 will be used by the algorithm that will be implemented.

Figure 5.1 depicts the experimental platform and the data flow for this case

study.

5.4.1. Energy Consumption Model

A home Load primarily from resistive load appliances is considered. For the

case study model, let 𝐴𝑛ϵ {𝑎1, 𝑎2, 𝑎3, . . ., 𝑎𝑛}, such that 𝑎1, 𝑎2, 𝑎3, . . ., 𝑎𝑛

represents each appliance. The model considers 6 appliances (table 5.1). The

peak periods in the south African context are two. The morning peak is from 6

am to 9 am while the evening peak is from 6 pm to 9 pm. In the model each

peak period is slice into a horizon time slot series T ϵ {1, 2, 3, . . ., T}. since

each peak period span the same time length of Ʈ𝑝𝑒𝑎𝑘 (4 hours), considering that

each time slot is 15 min long, thus T is series of 16 elements. The total power

consumption during a peak period is expressed as Ϛ𝑨𝒏𝑻𝑳

 𝑇 𝐴𝑛

Ϛ𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜁(𝑡)) (5.1)
𝑡=1 𝑛=1

Where 𝜬𝒏(𝒕) is the power consumption for appliance 𝑎𝑛 at time slot t ϵ T. 𝜻(𝒕) ϵ

[0,1] is the operational state of appliances in time interval t ϵ T. Similarly, the

total cost per peak period of the 𝐴𝑛,

 𝑇 𝐴𝑛

£𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜀(𝑡) × 𝜁(𝑡)) (5.2)

𝑡=1 𝑛=1

Where 𝜀(𝑡) represent the cost of electricity at time t ϵ T.

Based on equation (1), the DRM algorithm for the case study is formulated as

below

 𝑇 𝐴𝑛

Ϛ𝐴𝑛𝑇𝐿 = ∑ (∑ 𝛲𝑛(𝑡) × 𝜁(𝑡)) ≤ 𝛾(𝑡) (5.3)

𝑡=1 𝑛=1

Where 𝛾(𝑡)is the home threshold? That is 𝛾(𝑡) is the maximum allowable peak

load at time t ϵ T. A dynamic value for 𝛾(𝑡) of 5 KW is used.

 91

5.4.2. DRM Algorithm implementation

Each home DRM run on the raspberry PI gateway. The DRM algorithm

implements equations (5.1) to (5.3) digitized within the algorithm, looping

through the list of appliances and calculated the total power consumption for

time slot t and storing that in power series 𝑃𝑛 (5.5) which is a list of б𝑛 elements

(5.4). At the exit of a peak period, the algorithm thus calculates the total power

consumption, the average peak power (5.6), and the maximum power consumption

(4.14) for each peak period.

 Ʈ𝑝𝑒𝑎𝑘 ×3600 б𝑛 = 900 (5.4)
б𝑛

𝑃𝑎𝑣𝑔 = ∑ 1 𝑃𝑝𝑒𝑎𝑘

(5.5) б𝑛

With 𝑃peak 𝜖 [𝑃1, 𝑃2,𝑃3, … , 𝑃𝑛] with n ≤ б𝑛, the max peak power is computed using

equation (4.14) below.

𝑃𝑚𝑎𝑥 = max(𝑃𝑝𝑒𝑎𝑘) (5.6)

𝑛≤б𝑛

The algorithm is implemented with an electricity price per unit considering a

household in the research context (here the city of Cape Town) with

consumption equal to or above 600 KWh/month municipality regulated unit at

278.46 c/kWh (City of Cape Town, 2019). Figure C.1 in Appendix C is the

pseudo-code for DRM firmware implemented after digitizing equation (4.8) to

(4.10) to maintain the household consumption at any instant t. At the end of

each peak period, the algorithm calculates the average power, average energy

cost as well as maximum power peak and maximum peak energy consumption.

This data is made available as statistical info to each smart home user. The

code was implemented in NodeJS and can be seen in Appendix D and E.

5.4.3. DRM Scenario Network communication

For the DRM scenario, the communication platform extends the model of figure

4.12. After the gateway server initialized the connection to the parse server

BaaS platform, it opens a client subscription to the “DRM” object related to the

user smart home and a listening event is activated on the object. The

smartphone Energy App activates/deactivates the DRM mode by setting its

status true/false. This event is forwarded via Live Query from the Back4App

server to the gateway server, which processes the event and load/unload the

DRM service. Moreover, an observer process is loaded at initialization by the

 92

gateway server to update the parse online objects with the latest appliance’s

status (see figure 4.13). This process is based on the IoT-rest-API-server and

IoTivity-Lite observe mechanism which will return updates on a resource whose

properties have changed (i.e., current or power).

Figure 5.1: Case study system architecture

 5.5. Results

In this section is presented the results from the experimental case study shown

in figure 5.2, focusing on the output from each scenario to establish the platform

efficiency and performance in realizing each required functionality. Using the

setup in the figure below, the experimentation tests the feedback and home

automation scenario within the platform. The response from the IoTivity-Lite

HAN server device is presented. That is, the Arduino and ESP32 slaves’

response to resources request. Then, the underlining software services

handling the smart home local and remote connectivity are discussed. In this

regard, are described the different initialization steps via curtailed logs of each

of the services running on the raspberry PI local home server. Secondly,

feedback results, that is real-time home consumption via enhance visualization

anytime anywhere using the energy App is exhibited. Thirdly, home automation

is demonstrated using the Energy App to turn home appliances on/off. Lastly,

 93

the DRM scenario conditions and assumptions are detailed, and the result of

the peak shaving algorithm are shown.

Figure 5.2: Experimental Platform used for Scenario’s testing

5.5.1. HAN device responses to GET/POST requests

The firmware on the HAN resource server runs the IoTivity-Lite core that was

ported to the AVR and ARM Arduino Arch. In figure 5.3 below are shown the

initialization logs for the devices, which request a local IP address within the

192.168.0.1 subnet, initializing the IoTivity core and starting a listening server

on IPv4 port 56789 for Arduino devices. The ESP32 slaves use both IPv4 and

IPv6 listening sockets as provided by the IoTivity-Lite stack.

Figure 5.3: Arduino slave initialization logs

The firmware loaded in all slaves allows these devices to serve the client with

resources data handling those as GET/POST requests. The IoT-rest-API-

server provisioned devices and resource on the IoTivity-Lite local network after

issuing a multicast request on the endpoint (localhost:8000/ioc/res). A client can

thus request local resources to issue HTTP requests to the REST server. In

figure 5.4, are logs of GET requests received from the slaves, followed by the

 94

IoTivityLite stack processing of the request and a response (74 bytes of

resource data) to the client on 192.168.0.111:59264.

Figure 5.4:HAN server GET response

A similar POST interaction is executed whenever the client request and update

an appliance status (On/Off). In figure 5.5, after updating the state of an

appliance from a POST request, the resource server sends a 39 bytes

acknowledgment response to the requesting client at 192.168.0.111:8000.

Figure 5.5: HAN server POST response

5.5.2. Smart home underlying services

The daemon services started at boot time are the IoT REST API server and the

main server service, the appliance observation service, and the DRM service.

Figure 5.6: JavaScript packages used for services development

The services are developed using Node JS with popular JavaScript libraries as

shown in figure 5.6 above. The source for these services is developed within 5 scripts

(see figure 5.7) and can be seen in Appendix E-F.

 95

Figure 5.7: Smart home services scripts

 5.5.2.1. IoT REST service

The gateway service uses the JavaScript IoTivity package named the IoT-

restAPI-server. Version 0.5.0 for backward compatibility is used. In the figure

below, is the logs from the IoT REST services that started the HTTP server on

the localhost (127.0.0.1) (raspberry pi) on port 8000. This service is started by

running a JS file (index.js) as shown in figure 5.8 below.

.

Figure 5.8: IoT REST server logs

 5.5.2.2. Parse gateway service

The Parse gateway service is the boot entry for the gateway services that

handle connectivity to the online parse cloud on Back4App, launching of the

resource observing, and the DRM daemon services. The service starts with an

authentication procedure to either login/signup for a new installation of the

system (new smart home system). This a basic securing feature to certify the

smart home user.

Figure 5.9: Sign up authentication

The Gateway service (main_server.js) starts by detecting a previous installation

(a registered parse user). It thus asks the user to sign up (figure 5.9 above) for

a first-time installation or to log in to authenticate the smart home (figure 5.10

below).

 96

Figure 5.10: Login authentication

After authentication, the server starts a subscription (Live Query clients) to the

Parse clouds on Back4App to listen to query updates on the loads, DRM, and

the related smart-home objects (figure 5.11). Following these steps, the service

connects to the local storage (MySQL database storing appliances properties

locally) as well the remote parse “Loads” object. This is also a synchronization

step to ensure both the local and remote storage are homogenous.

Figure 5.11: Live Query subscriptions

Next, the service issue resources discovery and retrieves each resource

property and thus update both the local MySQL storage and the remote Parse

corresponding objects as shown in figure 5.12.

Figure 5.12: Resources storage updates

 5.5.2.3. Observing service

Following the initialization step, the main service starts a child process to

observe for updates on the local appliances and push those to parse server on

Back4App. This process listens to changes on 6 appliances (figure 5.13 below).

Figure 5.13: Observing service logs

 97

 5.5.2.4. DRM service

The DRM service handles the last scenario of the case study, it implements the

algorithm for the 5 KW peak shaving scheme. The service is also started as a

child service from the main service based on activation from the user registered

via live query request on the DRM parse object. As shown in figure 5.14, the

DRM handles a list of 6 appliances as defined in table 5.4-1. The logs here,

show that the system is outside a peak period.

Figure 5.14: DRM service logs

5.5.3. Feedback via Energy App

Regarding the Energy monitoring scenario, the platform's ability to provide

space agnostic, real-time feedback is under evaluation.

Figure 5.15: Energy Monitoring on IotSmartApp

Using a Sony Xperia Z5 smartphone, the Energy feedback was tested on the

platform using the IotSmartApp as shown in figure 5.15 above. The energy

consumption is presented in engaging visual tools both graphic and textual with

compelling colours (red under the consumption curve). The evaluation shows

that feedback can be dispatch via the platform within ~3 seconds from HAN to

the Back4App clouds and the smartphone App.

 98

5.5.4. Home automation via Energy App

As for home automation, the platform ability to provide space agnostic on/off

control of the home appliance is evaluated. This Evolution is based on the setup

of figure 5.17 in which two appliances (kettle and Iron) are used to demonstrate

the system time and space agnostic on/off control via the platform.

 (a) (b) (c)

Figure 5.16: Home automation with IotSmartApp; (a) appliance is turn off; (b) appliance is turn

off; (c) appliance power consumption off

In figure 5.16 is presented feedback about home automation via the

IotSmartApp. This experimentation targets an iron-rated 1200W within the

tested setup. On (a) the iron is off, thus its state is false (the lamp is grey). In

this iron, consumptions share no part in the total house consumption as seen

on the pie-chart. On (b) the iron is turn on (lamp is yellow), the consumption

(power) at that instant was recorded as 1.16 KW which is also a graph on the

line chart below on the App screen. This is practically demonstrated in figure

5.3, where the Arduino server connected to the physical appliance control

circuit is activated (red light is on, kettle light is on for that instance). The pie

chart depicting the total consumption then registers the iron share at 34%. On

(C) the iron internal workings have turn power consumption off (KW) though the

user still has the appliance off (lamp off). This can is emphasized on the graph

that shows the iron consumptions falling to zero. This behaviour graphically

represented enhance the feedback and help user to understand the working of

their appliances. Finally, the interaction (on/off) from the user on IotSmartApp

to appliance connected to IoTivity server on HAN within the platform takes

about ~6s for bi-directional updates.

 99

5.5.5. DRM via Energy App

The DRM scenario was tested within the platform using an Energy App

developed for the purpose. In figure 5.17, configuration windows are proposed

to the user to manage the DRM algorithm threshold (using the knob), reset the

smart home's appliance IDs, and activate/de-activate (via the switch widgets)

the DRM service running on the home server.

Figure 5.17: DRM with Energy App

When the user activates the DRM service, both the new status and threshold

are passed to the listening home server via the Live Query mechanism. The

output of the algorithm for analysis was logged and plotted to appreciate the

benefit of the peak-saving algorithm that was implemented. For this scenario,

the maximum allowable peak demand to satisfy equation (4.10) is 5KW with a

10% positive margin (5.5KW. The experiment considered the morning peak

running from 7 am to 9 am (3 hours) (which differs from the evening peak period

by the difference of priority settings which are assumed as defined in table 5.1)

and sample the consumption at 10 min duration. However, a timeframe of 5 min

was used to simulate the peak period running the algorithm at 10 s then

normalizing the results that stored during the simulation and presented in table

5.2 below.

 100

Table 5.2: DRM Simulation results

Peak LoadDSM Peak LoTime duration Peak Cost c/KW
cost_dsm

 Threshold

 0 0 7:02:38 PM 0,166666667 R 0,00 R 0,28 R 0,00 5500

4946 3952 7:12:49 PM 0,166666667 R 0,23 R

0,28
 R

0,18

5500

 5126 4848 7:22:58 PM 0,166666667 R 0,24 R 0,28 R 0,22 5500

9090 7056 7:32:09 PM 0,166666667 R 0,42 R

0,28
 R

0,33

5500

 8964 4841 7:42:19 PM 0,166666667 R 0,42 R 0,28 R 0,22 5500

5595 5195 7:52:28 PM 0,166666667 R 0,26 R

0,28
 R

0,24

5500

 2868 2871 8:02:38 PM 0,166666667 R 0,13 R 0,28 R 0,13 5500

2807 2901 8:12:49 PM 0,166666667 R 0,13 R

0,28
 R

0,13

5500

 2946 2988 8:22:59 PM 0,166666667 R 0,14 R 0,28 R 0,14 5500

2822 2915 8:32:09 PM 0,166666667 R 0,13 R

0,28
 R

0,14

5500

 2920 2851 8:42:19 PM 0,166666667 R 0,14 R 0,28 R 0,13 5500

0 0 8:52:29 PM 0,166666667 R 0,00 R

0,28
 R

0,00

5500

The data from Table 5.2 is used to plot the total peak load dynamics during and outside

peak times, and the related consumption cost as shown in figure 5.18 below. The grey

and blue curve of the figure denote the load profile with and without the demand

management respectively whereas the brown and green curves represent the peak

cost of consumption with and without demand management.

 101

Figure 5.18: Peak load profiling through IoT platform

The Redline shows the maximum allowable demand threshold (about 5.5KW).

When the demand exceeds the peak limit, the DRM service controls the

appliances on the Table and turns some off according to the priority assigned.

The DRM load profile (brown curve) peak is lowered, and the valleys are filled

as expected of a peak shaving algorithm. The maximum peak is reduced from

~ 9KW (blue curve) on Default peak load to ~ 7KW on DRM profile this

represents a ~ 17% reduction of peak load. However, the DRM peak overshoots

the required threshold during the DRM operation. This is mainly because the

DRM service computes the total appliance consumption every 10s couple to

minor in code execution delays (internet latencies and underlying response to

resource request). Thus, if the demand increases or changes rapidly within the

sampling period, the DRM service gets the new demand with this delay and

generates the controlling signal only after that delay. Hence the total load

overshoots the peak limit. Nevertheless, the DRM load profile shows that the

demand promptly falls back below the peak limit after performing the peak

shaving algorithm.

 5.6. Results discussion

The overall results support the platform goals of providing energy monitoring,

home automation and DRM activities to customer locally or in remote location.

However, the requirement of low-cost and miniaturization present noticeable

performance issues in term of hardware memory constrained and response

time. That is Arduino AVR presenting low RAM are not able to handle all

essential requirements of the IoTivity stack (device and resource provisioning

as well DTLS security). A 512K SRAM external memory shield compatible with

 102

the AVR memory bus was added. Although this solution stabilized heap

allocations, the rather slow AVR CPU clock did little to increase its response

time.

 5.7. Chapter Summary

In this chapter was described the case study used to demonstrate the platform

effectiveness and performance according to research objectives. After defining

the requirements and objectives of each scenario, the results were presented

as evaluated within the platform. Being dependant on underlying services both

running on the home gateway, and on the cloud platform, this chapter mainly

present the different tools used to developed and deployed the backbone

services as well as the interaction between all services as they are run through

the raspberry PI and the Back4App cloud. Energy feedback and HA via the

Energy App running on Android (Sony Xperia Z5) was presented and

discussed. Lastly, the DRM algorithm implemented for peak shaving scenario

to demonstrate energy management through the platform was described. Then,

were presented and discussed the governing equations and the different

assumptions used to perform the simulation of appliance consumption. Then,

were presented the DRM peak shaving algorithm results graphically

highlighting its influence on consumption using the different tools proposed

within the platform.

 6. CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

 6.1. Conclusion

This project was conceived to participate in the growing research regarding the

modernization of the electric grid within the smart grid effort to better handle the

growing peak demand and traditional grid limitations in the residential sector.

Therefore, “Cloud-based IoT platform for Energy management applications” an

efficient and performant communication platform leveraging smart grid IoT

enabling was presented in this thesis to provide smart energy management

applications particularly in domestic places within the South African context. In

this thesis was addressed the semantic gaps of IoT regarding interoperability,

scalability as well as the cost and availability of technology issues as it pertains

to HEMS. The thesis focused on the architectural design and backend

requirements of an IoT platform around open source IoT technologies and

 103

developed a prototype full-stack system providing an experimental platform to

perform smart-grid-related interventions in homes.

 6.2. Meeting the research objectives

The objective defined for this thesis included:

1. Design and implement a responsive IoTivity-based HAN to handle IoT

semantic gaps (devices interoperability), thereby increasing the

miniaturizations of HAN devices and lowering cost,

2. Design IoTivity smart plugs for interfacing existing home appliances,

3. Optimize and scale the HAN using the cloud as BaaS to simplify the

platform backend requirements,

4. Develop an Android-based Energy management App leveraging the

cloud BaaS.

To reach these objectives, chapter 3 defined the specifications for the platform

and selecting the technological tools required. In chapter 4 described the

experimental setup developed to carry out the objectives. In chapter 5 was

defined the characteristic, configurations, and requirements of each

experimental scenario focusing on the DRM setup. Later in this chapter, the

experimental results were presented as carried out through the platform. Thus,

these objectives were addressed using the OCF IoTivity middleware which

effectively provided interoperability of devices (Arduino, ESP32, Raspberry PI)

and protocols (HTTP/S, CoAP), scalability as new motes could be plugged into

the design without disturbing the current activities. Experimentation showed

that WIFI and Ethernet devices could uniformly exchange data through the

IoTivity HAN. The IoTivity smart plug were effectively design and deployed with

sensing and actuating interfaces to any common household appliances

(although focus was place on resistive ones). For higher MCU resources

management and response time, two RTOS (Contiki RTOS and FreeRTOS)

were used and adapted. Though FreeRTOS is inherent to ESP32, Contiki was

chosen as being the basis for the IoTivity-Lite stack and lightweight for Arduino.

The IoTivity firmware correctly and effectively enabled the motes to operate as

HAN resources servers responding within latencies of ~3-5 second to CRUDN

request from both local and remote resources clients. Cloud connectivity via the

Back4App Parse BaaS clearly augment the performance and scalability of the

platform. The Parse subscription mechanism greatly reduced computation and

stack constraint allowing the local network architecture to focus solely on local

resource requests. This has the benefit of increasing the system overall

 104

response time. Energy management, that consumption monitoring appliance

operation control and DRM interventions was simplified in this work by providing

a two-way communication between consumers and their residential load via a

Mobile App. Through the engaging graphics and notifications supported by the

Back4App Parse subscription and query mechanism, consumer can in real-time

within a responsive interaction effectively engage their load.

 6.3. Contributions of this research

The smart grid concept is trending amongst researchers, leading Energy

Utilities to slowly deploy AMI technologies in the current constraining economic

and technological conditions within developing context. However, the stress on

the traditional grid and the yearly increasing residential load call for efficient

energy sustainability alternatives able to take advantage of the current

advances in technology while being scalable and interoperable to smart grid

future upgrades and investment. To accomplish this vision, the internet and its

related technology are regarded as suitable tools in the necessary transition

from the traditional to the smart grid. Therefore, this thesis strives to participate

in this transition to sustainable energy consumption by leveraging Internet

dependant technology in IoT, cloud technologies, embedded design, mobile

applications to provide a two-way Energy management platform that mitigate

the complexities of existing HEMS, the performance of HAN, implementation

cost favouring their increasing penetration in households through hardware

miniaturization. Thus, this work contributes to the current government and

utilities goals to bring energy consumption literacy, action tacking as well as

management of household consumption at the appliance levels to all parties.

these goals are made possible via a platform that incorporates the existing

appliances and residential connectivity facilities while being interoperable,

scalable, and cost-effective for higher penetration of the smart grid vision in the

residential sector.

 6.4. Recommendations

• Security can be increased in the platform using the IoTivity onboarding and

provisioning mechanism to authenticate the client that interfaces to the HAN

resource server. This capability was not fully implemented because of

software inconsistency with the IoT-rest-API-server. Thus, security was

mainly at the cloud interface isolating IoTivity LAN resource servers.

 105

• IoTivity Cloud, OCF has updated its IoTivity-Lite framework to add a cloud

interface to the IoTivity network. This facility can be used to remove the

need for IoT-rest-API-server reducing the development load and facilitates

maintenance.

• Higher-end embedded device for HAN servers able to handle multiple

clients while maintaining a fast response time was observed an issue with

AVR motes, and in some capacities with the DUE servers due its reduced

processing speed and constrained memory. A miniaturized higher memory

MCU running at faster clock would provide and smother response time.

• Providing complete Offline access to services on the platform. It is

necessary to offer the user with complete offline experience of the platform

in a developing context where internet connection may be intermittent. The

has some limited preparation for such, but the Energy App should still be

able to provide Energy services on the local network (users are at home).

• Wireless communication, here WIFI should be adapted to all HAN devices

for easier penetration and adaptation in residential places. Technology with

embedded wireless protocol should be used to optimize the HAN data

communication. The ESP32 device was adopted with appropriate

IoTivityLite network firmware modifications.

• Smart grid signals from the Energy utility can take advantage of this

platform. but the interface needs to be fully defined from the cloud interface

this can be a cloud Job that needs to monitor or listen via an API provided

by Utility to smart grid incentives and propagating these to home gateways.

 7. REFERENCES

Abdelsamea, M.H.A., Zorkany, M. and Abdelkader, N. (2016) “Real Time Operating Systems

for the Internet of Things, Vision, Architecture and Research Directions,” Proceedings - 2016

World Symposium on Computer Applications and Research, WSCAR 2016, (September

2018), pp. 72–77. doi:10.1109/WSCAR.2016.21.

Abdulrahman, T.A. et al. (2016) “Design, Specification and Implementation of a Distributed

Home Automation System,” Procedia Computer Science, 94(IoTNAT), pp. 473–478.

doi:10.1016/j.procs.2016.08.073.

Ahmad, M.W. et al. (2016) “Building energy metering and environmental monitoring - A

stateof-the-art review and directions for future research,” Energy and Buildings, 120, pp. 85–

102. doi:10.1016/j.enbuild.2016.03.059.

Albu, M. and Heydt, G.T. (2003) “On the use of RMS values in power quality assessment,”

IEEE Transactions on Power Delivery, 18(4). doi:10.1109/TPWRD.2003.817518.

Asare-Bediako, B. (2019) SMART energy homes and the smart grid : a framework for

intelligent energy management systems for residential customers. doi:10.6100/IR781632.

 106

Baccelli, E. et al. (2018) “RIOT: An Open Source Operating System for Low-End Embedded

Devices in the IoT,” IEEE Internet of Things Journal, 5(6), pp. 4428–4440.

doi:10.1109/JIOT.2018.2815038.

Beligianni, F. et al. (2016) “An internet of things architecture for preserving privacy of energy

consumption,” Mediterranean Conference on Power Generation, Transmission, Distribution

and Energy Conversion (MedPower 2016), pp. 107 (7 .)-107 (7 .). doi:10.1049/cp.2016.1096.

Coval, P. and Sun, Z. (2017) “IoTivity: From Devices to the Cloud,” in Free and Open Source

Software Developers’ European Meeting. Berlin: fosdem, pp. 1–28.

Dang, T.-B. et al. (2017) “On Evaluating IoTivity Cloud Platform,” Computational Science and

Its Applications -- ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6, 2017,

Proceedings, Part V. Edited by O. Gervasi et al., 10408, pp. 137–147. doi:10.1007/978-3319-

62404-4_10.

Department of Energy (2012) “A survey of energy-related behaviour and perceptions in

South Africa: The residential sector,” 1(1), p. 118. doi:ISBN: 978-1-920435-04-2.

Dlodlo, N. et al. (2015) “Research trends in existing technologies that are building blocks to

the internet of things,” Lecture Notes in Electrical Engineering, 313, pp. 539–548.

doi:10.1007/978-3-319-06773-5_72.

Dwivedi, A.K., Tiwari, M.K. and Vyas, O.P. (2009) “Operating Systems for Tiny Networked

Sensors : A Survey,” International Journal of Recent Trends in Engineering, 1(2), pp. 152–

157.

Elfström, K. (2017) Evaluation of IoTivity: A Middleware Architecture for the Internet of

Things. KTH ROYAL INSTITUTE OF TECHNOLOGY.

Gyrard, A. and Serrano, M. (2016) “Connected smart cities: Interoperability with SEG 3.0 for

the internet of things,” Proceedings - IEEE 30th International Conference on Advanced

Information Networking and Applications Workshops, WAINA 2016, (2), pp. 796–802.

doi:10.1109/WAINA.2016.151.

Haider, H.T., See, O.H. and Elmenreich, W. (2016) “A review of residential demand response

of smart grid,” Renewable and Sustainable Energy Reviews, 59, pp. 166–178.

doi:10.1016/j.rser.2016.01.016.

Human Sciences Research Council (2013) A survey of energy related behaviour and

perceptions in South Africa: the residential sector, Report Compiled for the Department of

Energy of South Africa.

Hussain, H.M. et al. (2018) “An efficient demand side management system with a new

optimized home energy management controller in smart grid,” Energies, 11(1), pp. 1–28.

doi:10.3390/en11010190.

Jerabandi, M. and M Kodabag, i M. (2017) “Internet of Things Based Technology for Smart

Home System : A Generic Framework,” International Journal on Recent and Innovation

Trends in Computing and Communication [Preprint].

Jian, M.-S. et al. (2017) “IOT base smart home appliances by using Cloud Intelligent Tetris

Switch,” 2017 19th International Conference on Advanced Communication Technology

(ICACT), pp. 589–592. doi:10.23919/ICACT.2017.7890158.

Kailas, A., Cecchi, V. and Mukherjee, A. (2012) “A Survey of Communications and

Networking Technologies for Energy Management in Buildings and Home Automation,” 2012.

doi:10.1155/2012/932181.

Kalmeshwar, M. and K S, Assoc.P.Dr.N.P. (2017) “Internet Of Things: Architecture,Issues

and Applications,” International Journal of Engineering Research and Applications, 07(06),

pp. 85–88. doi:10.9790/9622-0706048588.

Kang, B. and Choo, H. (2017) “An experimental study of a reliable IoT gateway,” ICT Express

[Preprint]. doi:10.1016/j.icte.2017.04.002.

Kavyashree, E. (2018) “6LoWPAN NETWORK USING CONTIKI OPERATING SYSTEM,”

Researchgate.Net, (June), pp. 300–310. doi:10.21467/proceedings.1.48.

 107

Khan, A. et al. (2019) “A priority-induced demand side management system to mitigate

rebound peaks using multiple knapsack,” Journal of Ambient Intelligence and Humanized

Computing, 10(4), pp. 1655–1678. doi:10.1007/s12652-018-0761-z.

Khatu, M. et al. (2015) “Implementation of Internet of Things for Home Automation,”

International Journal of Emerging Engineering Research and Technology, 3(2), pp. 7–11.

Larsson, A. and Nimmermark, E. (2016) Comparison of IoT frameworks for the smart home.

Le, D.-T. (2017) “On Evaluating IoTivity Cloud Platform,” in Lecture Notes in Computer

Science. doi:10.1007/978-3-319-62404-4. Learn | OpenEnergyMonitor (no date).

Available at: https://learn.openenergymonitor.org/electricity-monitoring/ac-power-

theory/arduino-maths (Accessed: November 8, 2021).

Lee, J.C., Jeon, J.H. and Kim, S.H. (2016) “Design and implementation of healthcare

resource model on IoTivity platform,” 2016 International Conference on Information and

Communication Technology Convergence, ICTC 2016, pp. 887–891.

doi:10.1109/ICTC.2016.7763322.

Lobaccaro, G., Carlucci, S. and Löfström, E. (2016) “A review of systems and technologies

for smart homes and smart grids,” Energies, 9(5), pp. 1–33. doi:10.3390/en9050348. Longe,

O.M. et al. (2017) “Consumer preference electricity usage plan for demand side

management in the smart grid,” SAIEE Africa Research Journal, 108(4), pp. 174–183.

Macieira, T. (2016) “IoTivity : The Open Connectivity Foundation and the IoT Challenge,” in

Embedded Linux Conference. Berlin.

Maloor, K. et al. (2015) “IoTivity Programmer ’ s Guide – Resource Encapsulation,” TIZEN

Development Summit, pp. 0–95.

Maloor, K. (2017) “IoTivity-Constrained:IoT for tiny devices,” in Open IoT Summit North.

Maloor, K. (2019) “Kishen Maloor , Intel,” in OCF EU Developer Training. Budapest. Minoli,

D., Sohraby, K. and Occhiogrosso, B. (2017) “IoT Considerations, Requirements, and

Architectures for Smart Buildings – Energy Optimization and Next Generation Building

Management Systems,” IEEE Internet of Things Journal, 4(1), pp. 1–1.

doi:10.1109/JIOT.2017.2647881.

Miron-Alexe, V. (2016) “Comparative study regarding measurements of different AC current

sensors,” 2016 International Symposium on Fundamentals of Electrical Engineering, ISFEE

2016 [Preprint], (June 2016). doi:10.1109/ISFEE.2016.7803152.

Paridah, M. t et al. (2016a) “Advanced Metering Infrastructure Based on Smart Meters in

Smart Grid,” Intech, i(tourism), p. 13. doi:http://dx.doi.org/10.5772/57353.

Paridah, M. t et al. (2016b) “We are IntechOpen , the world ’ s leading publisher of Open

Access books Built by scientists , for scientists TOP 1 %,” Intech, i(tourism), p. 13.

doi:http://dx.doi.org/10.5772/57353.

Perera, C. et al. (2014) “MOSDEN: An internet of things middleware for resource constrained

mobile devices,” Proceedings of the Annual Hawaii International Conference on System

Sciences, pp. 1053–1062. doi:10.1109/HICSS.2014.137.

Piyare, R. (2013) “Internet of Things : Ubiquitous Home Control and Monitoring System using

Android based Smart Phone,” international Journal of Internet of Things, 2(1), pp. 5–11.

doi:10.5923/j.ijit.20130201.02.

Qayyum, F.A. et al. (2015) “Appliance Scheduling Optimization in Smart Home Networks,”

Access, IEEE, 3, pp. 2176–2190. doi:10.1109/ACCESS.2015.2496117.

Ray, P.P. (2017) “A Survey of IoT Cloud Platforms,” Future Computing and Informatics

Journal, 1(1–2), pp. 35–46. doi:10.1016/j.fcij.2017.02.001.

Razzaque, M.A. et al. (2016) “Middleware for internet of things: A survey,” IEEE Internet of

Things Journal, 3(1), pp. 70–95. doi:10.1109/JIOT.2015.2498900.

Risteska Stojkoska, B.L. and Trivodaliev, K. V. (2017a) “A review of Internet of Things for

smart home: Challenges and solutions,” Journal of Cleaner Production, 140(January), pp.

1454–1464. doi:10.1016/j.jclepro.2016.10.006.

Risteska Stojkoska, B.L. and Trivodaliev, K. V. (2017b) “A review of Internet of Things for

smart home: Challenges and solutions,” (January). doi:10.1016/j.jclepro.2016.10.006.

Roussel, K., Song, Y.Q. and Zendra, O. (2015) “RIOT OS paves the way for implementation

 108

of high-performance MAC protocols,” SENSORNETS 2015 - 4th International Conference on

Sensor Networks, Proceedings, pp. 5–14.

Sahadevan, A. et al. (2017) “An Offline Online Strategy for IoT Using MQTT,” Proceedings -

4th IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2017

and 3rd IEEE International Conference of Scalable and Smart Cloud, SSC 2017, pp. 369–

373. doi:10.1109/CSCloud.2017.34.

Serov, A.N., Serov, N.A. and Makarychev, P.K. (2019) “Evaluation of the Effect of

Nonlinearity of the Successive Approximation ADC to the Measurement Error of RMS,” in

2018 International Symposium on Industrial Electronics, INDEL 2018 - Proceedings.

doi:10.1109/INDEL.2018.8637630.

Sethi, P. and Sarangi, S.R. (2017) “Internet of Things : Architectures , Protocols , and

Applications,” 2017.

Soto, V.E.A. (2017) PERFORMANCE EVALUATION OF SCALABLE AND DISTRIBUTED IOT

PLATFORMS FOR SMART REGIONS. Luleå University of Technology.

South Africa Connect (2013) Executive Summary National policy and constitutional context

Challenges of broadband.

South African Department of Energy (2013) “Draft 2012 Integrated Energy Planning Report -

Annexure A - Technical Report - Part 1 : Demand Modelling Report.”

South African Department of Energy (2016) Post-2015 National Energy Efficiency Strategy:

Comments invited.

Sun, Z. (2017) “GENIVI + OCF Cooperation,” in Samsung Open Source Group, pp. 1–35.

Sutisna et al. (2019) “Power analyzer based arduino-uno validation using Kyoritsu KEW 6315

and Hioki 328-20,” IOP Conference Series: Materials Science and Engineering, 550, p.

012024. doi:10.1088/1757-899x/550/1/012024.

Szablya., L. (2012) “Contributed Article Offered as an Exclusive to EnergyPulse Home

Energy Management with or without an Advanced Metering Infrastructure [Revised Draft •

3322 Words],” Electric Energy T&D Magazine, October, p. 14.

Vinh, T. Le et al. (2015) “Middleware to integrate mobile devices, sensors and cloud

computing,” Procedia Computer Science, 52(1), pp. 234–243.

doi:10.1016/j.procs.2015.05.061.

Zhang, Y. et al. (2015) “A Novel Multiobjective Optimization Algorithm for Home Energy

Management System in Smart Grid,” Hindawi, 2015, pp. 1–19.

 109

 8. APPENDIXES

 Appendix A. Motes DAQ Modules Circuit Diagram

Below is the circuit diagram for the AVR and ARM Arduino. The circuit is divided in three sections mainly, the control section (with relay

interface), the power and communication, and the CT sensor interface section

Figure A.1: Complete DAQ module for Arduino HAN resource servers

 110

Below is the circuit diagram for the ESP32 based HAN resource server which is composed of similar section as that of the Arduino based

DAQ modules.

Figure A.2: Complete DAQ Module for ESP32 HAN resource servers

 111

 Appendix B. DAQ Modules PCB layout

Altium Designer 2017 was used to design and Manufacture the PCB for the ESP32 and Arduino DAQ, the final designed files are show

in Figure B.1 below.

 (a) (b)

Figure B.1: PCB layout for HAN Resource Server DAQ module

 112

(a) ESP32 interfacing PCB; (b) Arduino (AVR&ARM) DAQ module

 113

 Appendix C. HAN Motes DAQ and DRM Firmware Pseudo-codes

Figure C.1: Algorithm for appliance power properties computation

 114

Figure C.2: Algorithm for DRM simulation scenario

 115

 Appendix D. DSM Peak Shaving source code

var apputils = require("./app_utils");

var request = require('request');

const fs = require('fs') ; var

peakCapacity = 5500 ; // 5 KW var

loadsRatings =
[
 {name:'kettle', upper:3000000, lower:1200000},
 {name:'geyser', upper:3000000, lower:2800000},
 {name:'toaster',upper:1800000, lower:800000},
 {name:'oven', upper:5000000, lower:3000000},
 {name:'stove', upper:3000000, lower:1200000},
 {name:'iron', upper:1200000, lower:1000000}
]; var Ecost = 278.46 // c/KWH var averagePeakDemand = 0.0;

//KW var monringPeakDuration = 10800 ; // 3 hours from 7am to

10am var eveningPeakDuration = 7200 ; // 2 hours from 6pm to

8pm
 var timeStep = 6000 // 50s

min var loadCount = 6;
 var peakActive = false; var eveningPeakActive = false; var

morningPeakActive = false; var peakType = false; // 0:

morning; 1: evening; 2: not in peak var Ppeak = []; var

PpeakCost = [];

var currentHours = 0; // time value
telling us about the current hours of the peak period var

morningPeakHourBegin = 7; // peak period start time : 7am

var morningPeakHourEnd = 9; // peak period start time : 7am
var eveningPeakHourBegin = 18;

hours
// peakperioad end time: 8pm or 18

var eveningPeakHourEnd = 21; // peakperioad end time: 8pm or 18
hours var run = false;

var loads = []; var

activeLoads = []; var

homeDemand = []; var

recycleLoads = []; var

n = 5; var stream =

null;

 if(msg != null) { var

appliances = msg.loads;

 if(appliances){

 console.log(` %s <%s:%d>:Starting the dsm process!` ,__file,

__func, __line);
 for(let i = 0; i < appliances.length; i++){

 loads.push(appliances[i]);

 } console.log(`%s <%s:%d>:dsm

process list length:

${loads.length}` ,__file, __func, __line);

 console.log(

'%s <%s:%d>: dsm loads '

process.on('message' , (msg) => {

 116

__line,

appliances);
 ,__file

,

__func,
 }
 if(msg.threshold) { peakCapacity = msg.threshold;

console.log(`%s <%s:%d>:threshold for smarthome: ${peakCapacity}

 var appliance = msg.appliance; if(appliance) {

var appInfo = apputils.find(appliance, loads);

if(appInfo.state){ loads[appInfo.pos].priority =

appliance.priority;

console.log(`
%s <%s:%d>:updating priorityt

${appliance.name}:${appliance.priority}`,__file, __func, __line);
 }
 if(!appliance.state) { console.log(`%s <%s:%d>:appliance

state: ${appliance.state}`,__file,
__func, __line);

if(recycleLoads.length > 0){

console.log(`
%s <%s:%d>:load to

recycler`
,__file, __func, __line,

recycleLoads);
 var appInfo = apputils.find(appliance, recycleLoads);

if(appInfo.state) {

 console.log(` %s <%s:%d>:size of recycler list:

${recycleLoads.length}`,__file, __func, __line);

 recycleLoads = remove(recycleLoads[appInfo.pos], recycleLoads);

 console.log(` %s <%s:%d>:size of recycler list:

${recycleLoads.length}` ,__file, __func, __line);

 }
 }

 }

 }
 }
});

 }; return new Promise(function(resolve, reject)

{ request.get(options, function(err, resp, body)

{ if (err) { reject(err);

} else {

 properties = JSON.parse(body)

'

 var location = properties.name.split('

)[0].toLowerCase();

load.location = location

W ̀ ,__file, __func, __line);
 }

function getProperties(url, load) {
 var options = {
 url: url,
 method: 'GET' ,
 headers: {
 'User - Agent' : 'request' ,
 'Content - Type' : 'application/json'
 }

 117

 load.state = properties.state

load.current = properties.current

load.power = properties.power

resolve(load);
 }
 })
 })
}
///

var getDemand = async function() { try { homeDemand = [];

for(let i = 0; i < loads.length; i++){ var load = { location:

loads[i].location, locationId: loads[i].locationId,

applianceId: loads[i].applianceId, name: loads[i].name,

 deviceId: loads[i].deviceId, state:

loads[i].state, current: loads[i].current, power:

loads[i].power
 }; load_url='http://localhost:8000/api/oic/'+

load.locationId + '/' + load.name +'?di='+ load.deviceId try {

var data = await getProperties(load_url, load)

homeDemand.push(data.power);

console.info(`
%s <%s:%d>:Load power

${data.name}:${data.power}`,__file, __func, __line);

var loadInfo = apputils.find(data, loads);
 if(loadInfo.state) { loads[loadInfo.pos].state =

data.state; loads[loadInfo.pos].current =

data.current; loads[loadInfo.pos].power = data.power;

for(let j = 0; j < loadsRatings.length; j++){ var

load = loads[loadInfo.pos]; var ratedLoad =

loadsRatings[j] if(load.name == ratedLoad.name){

if(load.state) { var appInfo =

apputils.find(load, activeLoads);

if(!appInfo.state) {

 activeLoads.push(load);
 } else {

activeLoads[appInfo.pos].state = load.state;
 }

console.log(`
%s <%s:%d>: Load ${loads[loadInfo.pos].name} is

on`,__file, __func, __line);
 } else {
 loads[loadInfo.pos].state = false;

console.log(`
%s <%s:%d>: Load ${loads[loadInfo.pos].name} is

off`,__file, __func, __line);
 }
 break;
 }
 }
 }
 } catch (err){

console.error(`
%s <%s:%d>:

${err}`
,__file, __func, __line);

 }
 } }

catch(err) {

 118

console.error(`
%s <%s:%d>:

${err}`
,__file, __func, __line);

 }
}
// time step demand var computeDemand =

async function(){ await getDemand();

var demand = 0.0; for(let i =0; i <

loads.length; i++){ var load =

loads[i]; console.error(`%s <%s:%d>:

Load state:

${load.name}:${load.state}` ,__file, __func, __line);

 demand += ((load.power / 1000.0) * load.state);
 }
 return demand;
} var main = async function(){ if(!stream) { stream =

fs.createWriteStream("append.txt", {flags:'a'});
 } var date = new

Date();

console.log(`%s

<%s:%d>:${date.getHours()}:${date.getMinutes()}` ,__file, __func, __line);

 var currentHour = date.getHours();
 if(currentHour >= morningPeakHourBegin && currentHour <=

morningPeakHourEnd) { peakActive = true;

morningPeakActive = true; peakType = 1;

console.log(`
%s <%s:%d>: Morning peak active` ,__file, __func, __line);

 } else if (currentHour >= eveningPeakHourBegin && currentHour <=
eveningPeakHourEnd) {

peakActive = true;

eveningPeakActive = true;

peakType = 0;

console.log(`
%s <%s:%d>:Evening peak

active`
,__file, __func,

__line);
 } else { peakActive

= false; morningPeakActive =

false; eveningPeakActive = false;

peakType = 2;

console.log(`
%s <%s:%d>:Not in either peak period` ,__file, __func,

__line);
 }

if(peakActive){

run(); } else {
 if(Ppeak.length > 0 && PpeakCost.length > 0){

console.warn(`
%s <%s:%d>:Computing Peak

parameters`
,__file,

__func, __line);
 var sumPower = 0;

var sumCost = 0; var

maxPower = Ppeak[0]; var

maxCost = PpeakCost[0];

var n; for (let i = 0; i

< Ppeak.length; i++){

var tempPower = Ppeak[i];

 119

if(tempPower > maxPower){

maxPower = tempPower;
 } var tempCost =

PpeakCost[i]; if (tempCost >

maxCost) { maxCost =

tempCost;
 } sumCost += tempCost;

sumPower += tempPower; n++;

} var avgPeakCost = sumCost /

n;

 var avgPeak = sumPower / n;

 console.warn(` %s <%s:%d>:Max Peak Load

${maxPower}: Maximum Cost ${maxCost} `,__file, __func, __line);

 console.warn(` %s <%s:%d>:Average peak power

${avgPeak} Average Peak Cost ${avgPeakCost}` ,__file, __func, __line);
 Ppeak.length = 0;

 }

 }
} var run = async

function(){

 console.warn(` %s <%s:%d>:in peak

period`
,__file, __func, __line);

 var demand = await computeDemand();

 stream.write(demand + " " +new Date().toISOString() + "\n");

 //stream.end();
 Ppeak.push(demand);

 PpeakCost.push((demand * 15 / 60 * 1000) * Ecost)

 console.warn(` %s
<%s:%d>:Running`

,__file, __func, __line);

 // Recycle Loads
 cycleLoads(demand);

 // or shed Loads

 shedLoads(demand);
}
// we can implement a critical shedding scheme that will
// shed high power low priority load first. function

getLoadToShed() {

 var sheddingLoad = activeLoads[0]; for

(let j = 0; j < activeLoads.length; j++){

 var load = activeLoads[j];

 if(sheddingLoad.priority == load.priority) { // we

will shed the load that consume most power of the two

 if(load.power > sheddingLoad.power) {

 sheddingLoad = load;

 }

 }

 else {

 if(sheddingLoad.priority > load.priority) {

 sheddingLoad = load

 }

 }

 120

 }

 console.log(` %s <%s:%d>:Load to shed:

${sheddingLoad.name}

 return

`,__file, __func, __line);

sheddingLoad;

} function setActiveLoads(){ // get

active loads for (let i = 0; i <

loads.length; i++){

 var load = loads[i];

 var loadInfo = apputils.find(load, activeLoads);

 if(!loadInfo.state) { if(load.state ==

true) { // get active loads

 activeLoads.push(load)

 }

 }

 }

 console.log(` %s <%s:%d>:Active load:

${activeLoads.length}`,__file, __func, __line);
}
var shedLoads = async function(demand){

 while(demand > peakCapacity){

 console.log(` %s <%s:%d>:Threshold

reached`
,__file, __func,

__line);

 var lowLoad = getLoadToShed();

 resetLoads(lowLoad);

 var appInfo = apputils.find(lowLoad, recycleLoads);

 if(!appInfo.state) {

 recycleLoads.push(lowLoad);

 }

 demand = await computeDemand();

 }
} var cycleLoads = async function(demand){ // remove load after

recyclyng while((demand < peakCapacity) && (recycleLoads.length >

0)){

 console.log(` %s <%s:%d>:load to recycle:

${recycleLoads.length}`,__file, __func, __line);
 setLoadPower(getLoadToRecycle())

 demand = await computeDemand();

 }
} function getLoadToRecycle()

{

 var lowest = 0

 var j = 0;

 var recycleLoad = recycleLoads[0]; for

(let i = 0; i < recycleLoads.length; i++){

 load = recycleLoads[i];

 if(recycleLoads.priority == load.priority){

 if(recycleLoads.power <= load.power) {

 recycleLoads = load;

 }

 }

 121

 else {

 if(recycleLoads.priority > load.priority) {

 recycleLoad = load;

 }
}

 }

 return recycleLoad;
} function remove(load,

loads){

 return loads.filter(item => item !== load) } function

updateLoadState(load) { var url='http://localhost:8000/api/oic/'+

load.locationId + '/' + load.name +'?di='+ load.deviceId;

 console.warn(`%s <%s:%d>: About to change appliance ${load.name}

at ${url} state`,__file, __func, __line);

 apputils.postResource(url, load).then(function(result){

process.send({ msg: "dsm load updated", load: load});

 }, (err) => {

 console.error(` %s <%s:%d>:

${err}`
,__file, __func,

__line);

 });
} function resetLoads(lowLoad){ console.log(`%s

<%s:%d>:Lowest priority load is:

${lowLoad.name}` ,__file, __func, __line);

 lowLoad.state = false;
 lowLoad.power = 0;

 updateLoadState(lowLoad); activeLoads =

remove(lowLoad, activeLoads);

} function

setLoadPower(lowLoad){

 var power = 0;

 for (let i = 0; i < loadsRatings.length; i++){

 load = loadsRatings[i];

 if(load.name == lowLoad.name){

 power = load.rating; console.log(`%s

<%s:%d>:Load power:

${load.rating}` ,__file, __func, __line);

 break;
 }

 }

 lowLoad.state = true; lowLoad.power

= power; updateLoadState(lowLoad);

 recycleLoads = remove(lowLoad, recycleLoads);
}
setInterval(() => {

main();
}, timeStep);

 Appendix E. Observing Service Source Code

 122

 help: false,

host: "localhost",

port: 8000, https:

false, obs: false
};

proto = require('http');

const okStatusCode = 200; // All right var

reqOptions = { host: options.host, port:

options.port, agent: new

proto.Agent({keepAlive: true}), headers: {
 Connection: "keep-alive", 'Content-

Type': 'application/json'
 }, ca: ca } var loads =

[]; var startObserving =

false;

 if(msg != null) { console.log(`%s <%s:%d>:Message

from Main process:

${msg.length}` ,__file, __func, __line);

 for(let i = 0; i < msg.length; i++){
 loads.push(msg[i]);

 }

 console.info(` %s <%s:%d>: Init Obrseving process with:
${loads.length} to observe`,__file, __func, __line);

if(!startObserving) {

 console.info(` %s <%s:%d>:

Observing.........`
,__file, __func,

__line)
 observeAppliances();

startObserving = true;
 }
 }
}); function

observeAppliances() {
 for(let i = 0; i < loads.length;

i++){
 var load = { location: loads[i].location,

locationId: loads[i].locationId, applianceId:

loads[i].applianceId, name: loads[i].name,

deviceId: loads[i].deviceId, state:

loads[i].state,
current: loads[i].current,

 power: loads[i].power

var request = require('request') ;
var apputils = require("./app_utils") ;
require('magic - globals') ;

var proto = null ;
var path = require('path') ;
var fs = require('fs') ;
var ca = null ;
var args = process.argv.slice(2) ;
var options = {

process.on('message' , (msg) => {

 123

 };
 retrieveResources(load,onResource, (options.obs = true));
 }
} function onResource(load, data) { var loadInfo =

apputils.find(load, loads); if(loadInfo.state) {

 if(Math.abs((loads[loadInfo.pos].current - data.current) /
1000.0) > 1.0) {

 loads[loadInfo.pos].power = data.power;

loads[loadInfo.pos].state = data.state;

loads[loadInfo.pos].current = data.current ;

process.send({ msg: "Load updated", load: loads[loadInfo.pos]});

 }

 }
} function retrieveResources(load, callback, observe) {

reqOptions.path = "/api/oic/" + load.locationId + "/" + load.name +
"?di=" + load.deviceId;

if (observe) {

 reqOptions.path += "&obs=1" ;

 }

 var json = "" ;
 resourceCallback = function(res) {

res.on(
'data' , function(data) {

 if (observe) {
 callback(load, JSON.parse(data));

console.info(`
%s <%s:%d>:

${data}`
,__file, __func, __line);

 }
 else {

json += data;
 }
 });

res.on(
'end' , function() {

 if (json)
 callback(load, JSON.parse(data));
 });

res.on(
'abort' , function() {

console.log(
 });

"event: abort"

);

 } var req = proto.request(reqOptions,

resourceCallback);

req.on(
'error' , function(e) {

console.log(
 });

"HTTP Request error: %s"

,

e.message);

 req.end();

 124

}

