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ABSTRACT 

 

The utilization and management of energy currently is a focus area in 

embedded systems design. Most embedded systems devices operate with 

limited power budget, or they are battery-powered devices. Software has a 

notable influence on the global system energy consumption. The evaluation of 

software energy consumption of application software is vital for lowering the 

energy consumption to extend the life span of these embedded systems. Two 

approaches were used. This thesis examined the effect of nesting loop 

structures (For and While) in C language on energy consumption during the 

computation of these structures on the STM32F303RE microcontroller (MCU).  

In the first approach, the average energy consumption per each level of For 

loop was about 109.2 mJ from level 0 to level 2, and then the increase per each 

level was 5.25 mJ from level 2 to level 5.  The average energy consumption per 

each level of While loop was about 78.9mJ from level 0 to level 2, and the 

average energy consumption was about 9.6 mJ from level 2 to level 5. The first 

approach demonstrated that the STM32F303 RE executing the While loop 

consumes about 62.41 mJ less per each level than executing the For loop 

structure.  

The second approach indicated an exponential increase from 7.39 nJ to 408.98 

J when executing the For loop structure. The energy consumption increased 

proportionally while executing the While loop structure. This implies an increase 

of 0.362 mJ per each level for the While loop. The second approach also 

demonstrated that the STM32F303RE consumes about 81.80 J less executing 

the While loop structure than executing the For loop structure.  

The second approach also demonstrated an increase in the execution time in 

relation to the levels in the nesting fashion. The results demonstrated that the 

nesting loop structures increase the energy consumption in the MCU. The 

execution time to execute 40000 iterations in the While loop at 8 MHz increases 

by 25 ms from level 0 to level 2 per each nesting levels and 35 ms from level 2 
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to level 5 per each nesting levels of the While loop and the execution time to 

execute 40000 iterations in the For loop at 8 MHz increases by 10 times per 

each nesting levels of the For loop.  

Furthermore, it is observed that the nesting levels of a For loop structures 

present a higher power consumption than the nesting level of While loop 

structures. The methodology used to achieve this research was discussed and 

the outcomes were addressed, including the work to be conducted in the future 

as well. 
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CHAPTER 1   

INTRODUCTION 

1.1 OVERVIEW 

Embedded systems refer to a specific type of computer that executes some 

specific predefined programs. They include a specific processor that executes a 

specific software application. (V. Tiwari, S. Malik and A. Wolfe, 1994)  The 

tremendous growth in computer technology and the internet of things have led 

to their development. They are predominantly used because of their promising 

features like low cost, high speed, or ease of control. These embedded systems 

find their application in smart transport systems, aerospace, smart home, smart 

grid, medical applications, and providing and monitoring healthy environments 

and structural integrity in buildings. 

The relevance of the technology is found in the capacity of embedded systems 

to provide functionality within the commercial sphere through clear and efficient 

communication operationally, made possible by maximal high-level, optimized, 

reliable computer performance. (P. Ruberg, K. Lass and P. Ellervee, 2015) 

Numerous new embedded spheres have emerged in sensor networks and 

mobile devices over the past years specifically. They operate under various 

physical requirements such as time constraints, voltage levels or extreme 

temperatures. Power consumption has emerged as a critical consideration in 

the design process as batteries are utilized as the sole source to generate 

power. (P. Ruberg, K. Lass and P. Ellervee, 2015), (Attakorn Lueangvilai, 

Christina Robertson, and Christopher J. Martinez, 2012)  

During computation, the performance of the system varies rapidly and broadly 

in relation to the work output. In other words, the more intense the performance, 

the greater the power influence. 

This thesis aims to present the idea of optimizing a C software program for 

reducing the energy consumed due to software execution during active 

computation in the STM32F303RE MCU of the Nucleo-64 board to diminish the 

global energy consumption of the embedded systems in order to improve their 
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durability and portability. The optimization is done by evaluating the levels of 

nesting of the For and While loop structures commonly used in embedded 

system applications. 

1.2 PROBLEM STATEMENT. 

1.2.1 What is the problem? 

Embedded systems, unlike a general-purpose computer, execute predefined 

tasks under very specific requirements and constraints. Due to their application 

allocated to a given task, embedded systems can be optimized in lessening the 

dimensions and the value of the product. (Majid Sarrafzadeh, 2006) Current 

techniques of embedded system design have been developed to seek new 

improvements for maximum reliability. (Juan Castillo, 2004) One of the most 

common solutions is platform-based design. These platforms include standard 

and specific hardware devices run by software applications processed via 

microcontrollers. The software design in these platforms comprises in excess of 

80% of the expenditure of creative energy in the development of the design 

system. (Juan Castillo, 2004) 

Energy efficiency can be achieved in numerous ways with the invention of 

specific fit-for-purpose hardware in the past years, as well as through the 

structure of the software and the nature of its interface with the relevant 

hardware.  Despite focused study and research into the problem a universal 

recipe to program energy-aware software has not resulted. (T. Rauber and G. 

Rünger, 2018)  

The recurring execution of the software conducts the activities of hardware 

which is also responsible for the energy consumption of the systems. The 

resultant energy consumption is a progressively significant non-functional 

property of program codes and a crucial component in the development of 

varied structural designs. Furthermore, these systems must meet not only the 

functional requirement but also the timing requirements. The correct behaviour 

of these systems also depends on their timeliness on the accuracy of 

computation while energy consumption is low. (Juan Castillo, 2004) 

The research addresses the issue of energy consumption caused by the 

execution of software in an embedded system. 
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1.2.2 Why is energy consumption a problem? 

In many embedded system designs, power(energy) consumption is one of the 

most significant constraints as most of these systems are primarily designed for 

mobile applications with a restricted power budget or limited lifetime battery. 

(Juan Castillo, 2004) Reducing the energy consumption at the software level 

will assist these systems to improve their battery life span, portability, and 

durability as a result 

1.2.3 How would the problem be solved? 

The research addresses the optimization of the energy consumption due to the 

execution of embedded software application by evaluating the nesting level of 

For and While loop executed by the STM32F303RE microcontroller unit (MCU) 

and suggest adopting an optimal loop structure so that the consumption of 

energy due to computation is minimized, thus decreasing the overall energy 

consumption of the embedded systems. The study will evaluate the impact of 

nested loops on energy consumption and derive a technique to optimize the 

energy consumption suitable for embedded systems. The technique will help 

embedded systems developers to develop software applications which are 

energy-aware. 

1.3 AIM OF RESEARCH. 

This research aims to come up with a development technique to diminish the 

energy consumption of the MCU due to the computation of an application. 

1.4 RESEARCH OBJECTIVES. 

The above aim will be achieved by fulfilling the research objectives below: 

 To set up an MCU platform for running nesting loops. 

 Implementation of the nesting loops in STM32F303 RE MCU. 

 Evaluate the energy consumption of STM32F303RE MCU when running 

the nesting loops. 

 Determine the correlation between Energy Utilization and nesting level of 

loops. 
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1.5 RESEARCH QUESTIONS. 

The following research questions will be addressed: 

 What is an embedded system, and what are the sources of energy 

consumption? 

 What are the existing techniques to reduce the energy consumption of a 

processing unit at the software level? 

 How to measure the energy consumption of the processing unit? 

 What benefits are there in reducing the processing unit’s energy 

consumption? 

1.6 SIGNIFICANCE AND CONTRIBUTIONS OF THE RESEARCH. 

As stated earlier, the study will evaluate the impact of nested loops on energy 

consumption and derive a technique to optimize the energy consumption 

suitable for embedded systems. The technique will help embedded systems 

developers to develop software applications which are energy-aware. The work 

done in this research will contribute to decreasing the energy consumed by the 

processing unit when running an application. The lower energy consumption in 

processing applications implies a concomitant decrease in the total 

consumption of energy of the embedded systems. This decrease in 

consumption of energy will guarantee the durability and portability of the 

embedded systems due to the improved battery life of mobile devices. 

1.7 RESEARCH DELINEATION. 

The research investigates the power(energy) consumption in MCU of 

embedded systems due to software execution of nesting loops only. Therefore, 

it will not investigate the overall energy consumption of the whole embedded 

systems. 

1.8 RESEARCH METHODOLOGY. 

This study employs the following research tools and approaches to ensure 

efficiency and reliability in the intended outcomes:  

Literature review: reliable internet sites, journals and books provide the 

sources for a review of the techniques relating to reducing energy consumption 

at the software level. 
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Implementation: different levels of loops are implemented on STM32F303RE 

MCU. Then the energy consumption will be evaluated as the MCU executes 

these loops. In order to measure energy consumption, two different approaches 

will be used. 

In the first approach, the average current consumption is measured using a 

Fluke Desktop multimeter set as an ammeter, and the execution time is 

measured using a stopwatch as this execution time is the duration of operation 

of the embedded systems. 

In the second approach, the average current consumption is measured using 

the shunt resistor and the oscilloscope TDS3024 B, and the execution time is 

measured using the oscilloscope to determine the time taken by the MCU to 

execute the loops. 

In both approaches, the MCU is powered by the external power supply. 

 

1.9 THESIS OUTLINE. 

Chapter 1 presents an overview of the thesis, the problem statement, the aim, 

the research objectives, the research questions, the significance of the 

research, the delineation of the research, and the methodology. 

Chapter 2 provides a background on embedded systems, real-time systems, 

ARM microcontrollers, loops and nesting loops in C language, measurements 

methods of energy consumption, and the work done at the software level to 

reduce energy consumption. 

Chapter 3 addresses the experiment methodology to be followed in order to 

carry out the research. 

Chapter 4 presents and discusses the obtained results. 

Chapter 5 provides a summary of the study with conclusions and 

recommendations for further research and investigation. 
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CHAPTER 2   

LITERATURE REVIEW 

2.1 INTRODUCTION. 

This chapter engage in a comprehensive survey of the publications which 

address the issue of stepping down the consumption of energy in embedded 

systems at the level of the software, focusing on the benefits of stepping down 

the overall system's energy consumption, the background on loop structures in 

C, the description of embedded and real-time systems, and the Nucleo-64 

STM32F303RE board. Measurement’s methodology of energy consumption on 

the MCU will also be discussed.  

2.2 SOURCES OF ENERGY CONSUMPTION IN MCU. 

According to Chen et al. (Mittal, 2014), the energy (power) consumption of 

embedded systems microprocessors originates from Dynamic Power due to 

switching activity and leakage current. In Complementary Metal Oxide 

Semiconductor (CMOS) technology, the dynamic power consumption is 

significant due to the increased processing cores on a chip.  

In addition, intensive resource applications such as multimedia processing are 

currently executed by embedded processors. These intensive applications were 

initially designed for general-purpose processors.  Current embedded 

processors use many complex features like multi-level caches and multi-cores 

to meet these performance requirements. This scenario has impacted the 

design of embedded systems to be optimized for higher performance with lower 

power consumption. (Mittal, 2014) 

2.3 RELATED WORK - TECHNIQUES TO REDUCE ENERGY CONSUMPTION. 

Several options exist to reduce the energy consumption in a microcontroller 

system. These approaches are convenient for some architectures and design 

targets. (Attakorn Lueangvilai, Christina Robertson, and Christopher J. 

Martinez, 2012)In addition, there exist several research papers on optimizing 

hardware platforms, but not as many for software power optimization. 

First, Tiwari and Wolfe (V. Tiwari, S. Malik and A. Wolfe, 1994) described a 

power analysis technique for embedded software. Their research aimed to 
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produce a methodology and certify an instruction level power for any given 

processor. They hypothesized that by measuring the current drawn by the 

processor as it repetitively processes some or short instructions sequences, it is 

feasible to acquire the necessary data to calculate the power cost of a program. 

(Attakorn Lueangvilai, Christina Robertson, and Christopher J. Martinez, 2012)  

Their methodology is established on an instruction level model that measures 

the energy cost of single instructions and the several inter-instruction’s effects. 

The authors, in their work, split up the assembly or machine program into 

blocks and evaluate the amount of consumption of these basic blocks and then 

compute the overall cost of energy consumption by summing up all the cost or 

the basic blocks. Tiwari et al. (V. Tiwari, S. Malik and A. Wolfe, 1994) also 

claimed that the methodology can be useful in verifying if an embedded design 

meets its energy constraints, and it can also be used as a guide for the design 

of embedded software. 

Russel and Jacome (J. T. Russell and M. F. Jacome, 1998) applied an easier 

model. The authors discovered that numerous items such as condition codes 

and registers were irrelevant and were thus dispensable in the experimentation. 

Furthermore, it was discovered that immediate values within instructions had a 

massive impact and needed to randomize the values to achieve actual 

measurement. Finally, it was concluded that, for the individual instructions, the 

average energy was approximately equal. (Attakorn Lueangvilai, Christina 

Robertson, and Christopher J. Martinez, 2012)  

Utilising run time, average power, and frequency, the authors were able to 

accurately determine the utilization of power by the programme. 

The work studied by Tiwari et al. (V. Tiwari, S. Malik and A. Wolfe, 1994) and by 

Russel et Jacome (J. T. Russell and M. F. Jacome, 1998) established the basis 

for all power (energy consumption) measurements and power estimators. 

(Attakorn Lueangvilai, Christina Robertson, and Christopher J. Martinez, 2012) 

Dalal and Ravikumar (V. Dalal and C. P. Ravikumar, 2001), in their paper:” 

Software Power Optimizations in An Embedded System”, analysed the energy 

consumption due to software by adopting some optimization techniques like 

loop unrolling, loop blocking. The authors were able to confirm that energy 
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consumption was effectively reduced through the utilization of source of code 

level software optimization techniques.   

Chang et al. (C. Chang, S. Muftic and D. J. Nagel, 2007) conducted the study to 

determine the energy consumption of running algorithms of RC5, the data 

encryption standard with cypher block chaining.  

They exhibited the capacity of the measurement system to determine energy 

consumption by the processor while running the algorithms. The energy 

consumption of the algorithm was obtained by means of the voltages drop 

measured across a shunt resistor circuit. These voltages were then helpful to 

compute the current from Ohm’s law. This obtained current was then used 

along with the supply voltage to compute the power consumption during the 

cryptographic algorithm. 

Guimaraes et al. (G. Guimaraes; E. Souto; D. Sadok; J. Kelner, 2005), after 

determining the energy consumption measurements for the processor before 

including the cryptographic algorithms, the authors noted that the energy 

consumption would rise with the added and execution and transmission time 

because of the cryptographic processes. Therefore, to determine the execution 

time interval of the algorithms, an oscilloscope was used by observing the 

logical state in a General-Purpose Input/Output (GPIO) pin. 

Pritt et al. (P. Ruberg, K. Lass and P. Ellervee, 2015) introduced an energy 

consumption estimation method for microcontrollers. Their approach made use 

of C programs only with no lower-level abstraction. Their method is founded on 

measuring the energy consumption per each C instruction program. The 

authors in their experiments used the PIC32MX460F512L MCU.  Their work is 

founded on the fact that the total energy is obtained by adding the sum of C 

instructions.  

The energy consumption of each instruction is measured in a loop to calculate 

the average and then utilized on the benchmark program to compute the energy 

estimation. It is important to note that the authors only used the microcontroller 

core without considering the Analog to Digital Converter (ADC), watchdog, 

timers, and dynamic scaling. 
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The work done by Rauber and Rünger (T. Rauber and G. Rünger, 2018) 

presented loop transformations to optimize the performance and energy 

behaviour. The authors demonstrated that loop transformations significantly 

influence energy consumption and performance, which differs for the different 

factors such as processor architecture chosen, parallelism in terms of the 

number of threads, application to be solved, and size of the application data. In 

addition, Rauber and Rünger noticed that an increased number of threads 

decreases the execution time.  

Wu et al.in (Chi Ta Wu, Ang-Chih Hsieh and Ting Ting Hwang, 2006)  observed 

that small programme loops consume a significant percentage of the execution 

time of a number of embedded applications. Their experiments demonstrate 

that dynamic instruction counts account for 70% to 80% of such loops. 

Furthermore, the energy consumed by the on-chip instruction cache can 

contain as high as 27% of the Central Processing Unit (CPU) energy. 

Therefore, a small loop buffer was recommended to store the regularly retrieved 

instructions to save access to the large instruction cache.  

This will reduce the power as the total number of cycles to execute the 

instructions is constant, the energy is then reduced. They proposed a stack-

based controller to perform instruction buffering. Their scheme deals with the 

nested-loop and if-then-else structures.  

The outcomes show the energy consumption using this technique improves the 

energy consumption up to 36% and up to 25% improvement compared to 

instruction buffering with inner-most loop only. 

Lehlogonolo and Ledwaba (Lehlogonolo P. I. Ledwaba, 2018), in their paper, 

“Performance Costs of Cryptography in Securing New-Generation Internet of 

Energy Endpoint Devices”, also evaluated the energy consumption of the 

Cryptography algorithm with the Cortex M microcontrollers. Their work 

discovered the Cortex M4 as the best suitable general-purpose processor for 

executing cryptographic services. As a result, they could run the algorithm with 

no diminution of their memory resources and disproportionate power (energy) 

consumption. (Lehlogonolo P. I. Ledwaba, 2018) 

The works done by authors in (P. Ruberg, K. Lass and P. Ellervee, 2015), (T. 

Rauber and G. Rünger, 2018) and (Chi Ta Wu, Ang-Chih Hsieh and Ting Ting 
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Hwang, 2006) as the rest of the works do not evaluate the energy consumption 

consumed by the MCU with respect to the levels of loops in nesting fashion. 

This lays an opportunity for research in this area.  

Loops are common in numerous real-time applications. These kinds of 

applications are detected in image processing and the field of digital processing 

as well. For instance, an image is represented as a two-dimensional array 

where each cell of the array stores one pixel of the image. The image is 

processed, then transformed to do some processing on the array using “for 

loops” to access the elements of the array. (Chabini and Wolf , 2003)   

Another illustration of loop intensive real application is multimedia applications. 

Multimedia applications require a high processor speed. As some of them are 

mobile applications, decreasing the power consumption is necessary to 

increase the battery life. Extending the life of the battery has become a product 

differentiator in the market. Therefore, loops are considered as computational-

and-data intensive applications. (Chabini and Wolf , 2003) 

2.4 BENEFITS OF REDUCING THE ENERGY CONSUMPTION. 

Reducing the power consumption for embedded systems is critical and offer the 

benefits below: 

2.4.1 Limited Size and Battery. 

As stated earlier, energy supply on battery-powered mobile embedded systems 

is a critical constraint. Furthermore, power consumption generates heat which is 

not desired in applications of mobile embedded systems. Moreover, resulting 

from the comparatively small sizes of the devices, management of heat transfer 

is limited. Decreasing the energy (power) consumption offers the usage of 

smaller power supplies and reduces the heat transfer, lowering cost, mass, size 

and area of the systems. Another benefit is that reducing power consumption 

leads to a simpler system design. (Mittal, 2014) 

2.4.2 Ensuring Longevity. 

The failure rates of the device are increased close to a factor of 2 due to a 

temperature increase of 15℃. The power dissipation causes a harmful impact 

on the reliability of the embedded systems, which is vital for mission-critical 
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systems and devices used for medical purposes. This implies that reducing 

energy consumption prolongs the longevity of the system. (Mittal, 2014) 

2.4.3 Addressing inefficiency resulting from the over-provisioning of 

resources in embedded systems. 

Idle intervals in these systems increase for diverse causes as pessimistic 

estimates of worst-case execution time and inherent slack due to relaxed 

deadlines. Notwithstanding this, the designers need to accommodate resources 

to meet the worst-case performance requirement, which causes energy loss. 

Therefore, dynamic energy consumption reduction techniques make use of 

runtime adaption to trade performance over saving energy. Additionally, 

embedded systems generally find their usage in well-defined applications; static 

techniques can be used for per application tuning of resources. (Mittal, 2014) 

2.4.4 Power Challenges Posed by CMOS Scaling. 

The development in CMOS technology has exponentially grown the on-chip 

transistor speeds and densities. These advancements led to a technology-

imposed utilization wall which prevents the portion of the chip that can be 

concurrently necessary at full speed within the available power. Hence, 

nowadays, the performance of processors is mainly limited by energy efficiency. 

It has been reported that if this scenario is not addressed, power constraints 

could impede future performance scaling. (Mittal, 2014) 

2.4.5 Trends in Usage Pattern. 

Recently, portable computing devices have become the key platform for web 

browsing, imaging, and video streaming. These tendencies have led the 

embedded systems to be used globally. The large-user embedded systems 

consume higher power consumption, while a mobile system has low power 

consumption than a server in the data centre. (Mittal, 2014) 

2.4.6 Enabling Green Computing. 

Information and Communication Technology (ICT) has contributed around 3% 

to the overall carbon footprint. Therefore, reducing energy consumption in 

embedded systems also present the advantage of achieving green computing. 

(Mittal, 2014) 
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2.5 LOOPS AND NESTING LOOPS IN C. 

The majority of the program involves repetition or looping. A looping is defined 

as a set of instructions that the computer implements continually while the 

condition stays true. (Paul Deitel, Harvey Deitel, 2010)  

Two kinds of the loop could be addressed. (Paul Deitel, Harvey Deitel, 2010): 

 Counter-controlled repetition is also referred to as definite repetition 

since the number of times the loop will be executed is determined in 

advance. A control variable is needed to count the number of 

repetitions. This control variable is incremented (often by 1) each time 

the group of instructions is executed. When the control variable 

reaches the correct number of repetitions to be executed, the loop 

terminates, and the computer continues executing with the statement 

after the repetition. (Paul Deitel, Harvey Deitel, 2010) 

 A counter-controlled repetition necessitates the following: the name of 

a control variable (or loop counter), the initial value of the control 

variable, and the increment (or decrement) by which the control 

variable is altered every moment in the loop as well as the condition 

that tests for the final value of the control variable. (Paul Deitel, Harvey 

Deitel, 2010) Figure 1 below depicts the general structure of a counter-

controlled repetition.

 

 

Figure 1: General structure of a counter-controlled loop. 

 



13 

 

Sentinel-controlled repetition is also known as indefinite repetition, as the 

number of times the loop will be executed is unknown. This type of loop is used 

when the number of repetitions is unknown in advance and contains statements 

that acquire data whenever the loop is executed. The sentinel value indicates 

“end of data”. The sentinel is entered after all regular data items have been 

provided to the program. Therefore, sentinels must be different from regular 

data items. (Paul Deitel, Harvey Deitel, 2010) 

There are three sorts of repetition or looping structures in C languages: For, 

While, and Do…while loops. (Paul Deitel, Harvey Deitel, 2010) 

2.5.1.1  For loop. 

The For loop is a highly flexible version of the conventional For statement in 

other high-order languages. The typical main goal of a For statement is to 

process a loop a defined number of times. The For loop in C can handle any 

number of counters and have multiple conditions to exit the loop. (Siegesmund, 

2014) 

The For loop general expression and its application for illustration as well as the 

flowchart is depicted below in Figure 2 and Figure 3, respectively (Siegesmund, 

2014) 

   

Figure 2: General expression of For loop. 
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Figure 3: Flow chart of For loop. 

 

The loop evaluates the start expression only once prior to the beginning of the 

loop. The outcome of the start expression is disregarded. The test expression is 

assessed at the top of every loop, and if found not equal to 0, the loop is 

implemented. Alternatively, the statement ends. (Siegesmund, 2014) 

The loop expression is assessed at the bottom of the loop, and the outcome is 

unnoticed. (Siegesmund, 2014) 

2.5.1.2 While loop. 

The While loop repeats the code until the condition is false. (Siegesmund, 

2014)  

The general expression of the while loop and its flowchart is depicted in Figure 

4 and Figure 5, respectively below (Siegesmund, 2014): 

 

                                          

Figure 4: While loop structure. 

 

 



15 

 

  

Figure 5: Flowchart of While loop. 

 

In this instance, the loop is processed as below (Siegesmund, 2014): 

 The condition is first evaluated. (Siegesmund, 2014) 

 If the testing condition is met (true), the statements within the loop are 

processed, and the execution loops back. (Siegesmund, 2014) 

 If the result of the condition is false, the while loop ends, and the 

execution goes to the statement after the while loop if available. 

(Siegesmund, 2014) 

 The statement after the While loop may not be executed while this (while 

loop) condition remains true. (Siegesmund, 2014) 

2.5.1.3 Do while loop. 

Unlike the while loop in which the statements may never be processed if the 

condition is initially not true, the do while loop is applied when the instructions 

are always computed at least once before testing the condition. (Siegesmund, 

2014)  

The general expression of the do while loop and its flowchart are depicted in 

Figure 6 and Figure 7 respectively below (Siegesmund, 2014): 

 

 

Figure 6: Do while loop structure. 
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Figure 7: Flowchart of Do while loop. 

 

In the Do while loop (Siegesmund, 2014): 

 The statements are processed first. (Siegesmund, 2014) 

 The condition is verified. (Siegesmund, 2014) 

 If the condition is met (true), the processing goes back to the loop and 

instructions are processed again. (Siegesmund, 2014) 

 If the condition is not true, the do while statement ends, and the 

processing jumps to the instructions after this loop. (Siegesmund, 2014) 

 The statements in braces will be executed at least once. (Siegesmund, 

2014) 

2.5.1.4 Nesting loops. 

The C language allows the use of statements within a statement, and there is 

no limitation in the number of levels (nesting) that can be done. (Siegesmund, 

2014) 

The statements could be conditionals or loops. Nesting statements could be 

complex and confusing to read to the human reader; identification is used for 

the human reader to identify where the branches of conditions and loops are 

located (Siegesmund, 2014). Generally, indentation change occurs when the 

instruction forms the new condition or loop. (Siegesmund, 2014) 

Below is an example of nesting loops depicted in Figure 8. (Horton, 2013) 
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Figure 8: Nesting loops. 

 

The inner loop dictated by the variable j is executed once for each iteration of 

the outer loop regulated by the variable, i.e., the innermost k is executed once 

for every iteration of the loop dictated by j. In this instance, the body of the 

innermost loop is computed 6000 times. (Horton, 2013) Nested loops are critical 

since numerous embedded codes of image and video processing domains 

manipulate large arrays using many nested loops. (J. Ramanujam, Jinpyo 

Hong, M. Kandemir, A. Narayan and A. Agarwal, 2006) 

2.6 EMBEDDED SYSTEMS. 

2.6.1 System description. 

Embedded systems operate around a microcontroller or a microprocessor that 

is embedded within them to undertake the control. (Wilmshurst, 2009) Figure 9 

depicts a block diagram of common embedded systems. (Sutter, 2002) 

 

Figure 9: Block diagram of Embedded Systems. 
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Every embedded system utilized some sort of non-volatile storage such as flash 

memory, Erasable Programmable Read-Only Memory (EPROM), Read-Only 

Memory (ROM) and include a sort of Random-Access Memory (RAM). The 

majority of these systems contain channels to be used to communicate with a 

development host (Ethernet port, Joint Test Action Group (JTAG) port or a 

serial port). (Sutter, 2002) 

An example of such a system is the domestic fridge, as illustrated in Figure 10 

below (Wilmshurst, 2009): 

 

                                                    

 

             Figure 10: Domestic fridge. 

 

A domestic refrigerator, as shown above, is functional when maintaining a 

steady, consistent internal low temperature.  This is possible preserving the 

temperature at a level as set by the operator of the refrigerator by means of 

sensors which evaluate and adjust the temperature accordingly.  The 

temperature is lowered by activating a compressor when it is detected that the 

temperature is rising above the required setting. One or more sensors are 

necessary for temperature measurement and wherever signal conditioning, and 

data acquisition circuitry is required. The data processing compares the output 

of the sensor indicating the actual temperature in relation to the required 

temperature and activates the process to achieve the desired outcome. 

(Wilmshurst, 2009) 
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The control of the compressor is facilitated via an electronic interface that 

transmits a low-level input control signal to the required electrical drive that will 

activate the compressor, resulting in its switching on or off, depending on the 

desired outcome—to decrease or increase the temperature in relation to the 

setting of the thermostat. (Wilmshurst, 2009) 

A conventional electronic circuit can activate the control processor can be or, 

alternatively, via a small, embedded computer. The embedded computer can 

simplify the control process previously outlined. Furthermore, the embedded 

computer employs a digital signal to facilitate the processing power. Other 

benefits are the easier incorporation of additional advanced control features, 

intelligent displays, and more efficient control mechanisms  (Wilmshurst, 2009). 

Moreover, once an embedded computer is available, it is able to network with 

other computers which are embedded or not. This facilitates a smaller 

submodule   interacting with a larger system, with information-sharing between 

the systems, as in domestic products such as refrigerators and more 

sophisticated items. (Wilmshurst, 2009) 

While figure 10 is specific to the refrigerator, it conceptualises the operation of 

an embedded system. This process is committed to computing internal 

variables, resulting in messaging that maintains the system's performance. This 

may include human or networked interaction. In general, consumer or operator 

is clueless about the presence of a computer inside the fridge. (Wilmshurst, 

2009) 

2.6.2 Real-time Embedded systems. 

Systems that respond to external events timeously can be described as real-

time systems. Such a system provides a guaranteed response time 

synchronously or asynchronously. The response to the external action involves 

recognising the time that the event occurs, the execution of the required 

computation as per the event, and the result of the required outcomes within a 

limited time. Such time comprises either the time of completion or both 

commencement and cessation of the event. (Qing Li, Caroline Yao, 2003)  
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A simpler method of conceptualising real-time and embedded systems is by 

picturing two overlapping circles, illustrated in Figure 11 below (Qing Li, 

Caroline Yao, 2003).  

       

Figure 11: Connection between real-time systems and embedded systems. 

 

The illustration shows that some embedded systems do not have real-time 

behaviours, and also, not all real-time systems are embedded. Nevertheless, 

the aforementioned systems are reciprocally exclusive. (Qing Li, Caroline Yao, 

2003) 

The intersecting region leads to combined systems referred to as real-time 

embedded systems. (Qing Li, Caroline Yao, 2003) 

2.6.2.1 Real-time Systems. 

The environment of real-time systems generates external events, which are 

sensed by a single or multiple elements of the real-time system. The output of 

the real-time system is subsequently fed into the environment utilizing a single 

or many elements. A single view of the real-time system is indicated in Figure 

12 below. (Qing Li, Caroline Yao, 2003) 
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Figure 12: Overview of Real-time System. 

 

The diagram above can be decomposed into a typical real-time system 

structure. A real-time system's standard structure consists of a control system 

and at least one controlled system. Different methods are used by the 

controlling system to communicate with the controlled system (Qing Li, Caroline 

Yao, 2003): 

Firstly, the communication can be periodic, implying that the controlling system 

instantiates this communication to the controlled system. This means that the 

communication is evident and happens at set intervals. (Qing Li, Caroline Yao, 

2003) 

Secondly, It is possible for the controlling system and the controlled system to 

communicate on an ad hoc basis. This communication starts from the controlled 

system to the controlling system unobtrusively, defined by arbitrary external 

events occurring in the ambit of the controlled system. (Qing Li, Caroline Yao, 

2003) 

Lastly, this iteration may be a hybrid of the two. In other words, the controlling 

system must compute and respond to events and information generated by the 

controlled system within a specific time frame. (Qing Li, Caroline Yao, 2003) 

Figure 13 illustrates the image of the common structure of a real-time system. 
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Figure 13: Common structure of a Real-time system. 

 

2.6.2.2 Characteristics of Real-time systems. 

Real-time systems exhibit two crucial features. These two features are that real-

time systems have to generate correct computational responses named as 

functional or logical correctness. It is also necessary that these computations be 

complete within a prescribed time known as timing correctness. In some real-

time systems, timing accuracy is at least as important as logical accuracy; there 

is a trade-off between the logical accuracy and the timing accuracy.  

The functional correctness is often forfeited for timing correctness. (Qing Li, 

Caroline Yao, 2003) Real-time systems are aware of the controlled system's 

environment and the applications that run on it, just like embedded systems. As 

a result, because their response time to a perceived event is limited, several 

real-time systems are considered as deterministic. (Qing Li, Caroline Yao, 

2003) 

The required actions performed in response to an event is named as a priori. A 

deterministic real-time system requires that each component exhibit 

deterministic behaviour in order to influence the system's overall determinism. 

As a result, a deterministic real-time system is less adaptable to changes in the 

environment. As a result of this situation, the system is less robust. The levels 
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of robustness and determinism must be balanced, and the methods for doing so 

vary depending on the system.  (Qing Li, Caroline Yao, 2003) 

2.6.2.3 Real-Time Operating System. 

A real-time operating system (RTOS) is essential for many embedded systems 

nowadays as RTOS offers a software platform on which applications are built. 

However, not all embedded systems applications are based on RTOS. While 

some embedded systems have simple hardware with a limited amount of 

software application code with no RTOS requirement, many embedded systems 

run software applications ranging in size from medium to large, which needs 

some scheduling on the other hand. Hence the need for RTOS for such 

systems. (Qing Li, Caroline Yao, 2003) 

An RTOS defines software that provides scheduling for timely execution, 

system resource management, and providing a consistent foundation for 

developing application code. Application code designed on an RTOS can be 

different from a simple application such as a digital stopwatch to a more 

complex aircraft navigation application. A suitable RTOS should therefore be 

scalable so that various sets of requirements for different applications are met. 

(Qing Li, Caroline Yao, 2003) For instance, an RTOS is made up entirely of a 

kernel, which is the primary supervisory software that provides applications with 

the bare minimum of logic, scheduling, and resource management algorithms.  

An RTOS always include a kernel and can combine various components 

comprising the kernel, a file system, networking protocol stacks and other 

modules necessary for a specific application as depicted in Figure 14 below 

(Qing Li, Caroline Yao, 2003): 
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Figure 14: High-level view of RTOS, its Kernel and other modules. 

 

In order to meet application requirements, most RTOSes can scale up or down. 

The majority of RTOS kernels include the following modules (Qing Li, Caroline 

Yao, 2003): 

Scheduler: included in every kernel and follows a set of algorithms that defines 

which task and when to execute. Among the scheduling algorithms, there are 

round-robin and pre-emptive scheduling. (Qing Li, Caroline Yao, 2003) 

Objects: specifies specific kernel constructs that aid developers in developing 

applications for real-time embedded systems. Tasks, semaphores, and 

message queues are all examples of kernel objects. (Qing Li, Caroline Yao, 

2003) 

Services: all operations performed by the kernel on an object or operations like 

timing interrupt handling and resource management. (Qing Li, Caroline Yao, 

2003) 

Figure 15 illustrates the different modules of the kernel as found in some 

kernels as not all RTOS conforms precisely with the objects, scheduling 

algorithms and services as described below (Qing Li, Caroline Yao, 2003): 
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Figure 15: Common modules of Kernel. 

 

A.  The Scheduler. 

Every kernel has a scheduler at its core that provides the algorithms needed to 

designate the tasks to be performed and when they should be completed. In 

order to understand the scheduling operation, Li and Yao suggest that the 

points below need to be discussed:  

 “Schedulable entities 

 Multitasking. 

 Context switching. 

 Dispatcher. 

 Scheduling algorithms” (Qing Li, Caroline Yao, 2003). 

 

A.1.  Schedulable entities. 

A schedulable entity is a kernel object that can compete for execution tiles on a 

specific system using a predefined scheduling algorithm. Within most kernels, 

tasks and processes are examples of schedulable entities in the majority of 

kernels. (Qing Li, Caroline Yao, 2003) 

A task is defined as  
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an independent thread of execution that contains a [series] of 

schedulable instructions. Some kernels provide [a different] type of 

schedulable object called process. Processes are similar to tasks in that 

they can compete for CPU execution time [independently]. Processes, 

[on the other hand,] differ from tasks in that they [offer enhanced] 

memory protection features at the expense of performance and 

memory overhead. (Qing Li, Caroline Yao, 2003)  

Message queues and semaphores cannot be classified as schedulable entities. 

They are the “inter-task communication objects required for synchronization and 

communication”. (Qing Li, Caroline Yao, 2003) 

A.2.  Multitasking. 

Multitasking is the aptitude of the Operating System (OS) to manage various 

activities within a predefined time. A real-time Kernel can possess numerous 

tasks that require scheduling in order to be executed. Figure 16 below 

illustrates the scenario of multitasking. (Qing Li, Caroline Yao, 2003) 

   

Figure 16: Scenario of multitasking. 

 

The scenario described above indicates that the kernel runs multiple tasks in a 

manner that numerous paths (threads) of execution appearing to be running 

concurrently, while the kernel is interleaving execution chronologically, 

depending on a predefined scheduling policy. The scheduler guarantees that 
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the suitable task is executed at the appropriate time. (Qing Li, Caroline Yao, 

2003)  

A crucial point to consider is that tasks are scheduled using the kernel's 

scheduling algorithm. Meanwhile, Interrupt Service Routine (ISR) is fired to run 

due to hardware interrupts and their defined priorities. The number of tasks to 

schedule is directly proportional to the CPU performance requirements; as the 

number of tasks to schedule rises, the CPU performance requirements also 

arise. This is caused by the increased switching activities between contexts of 

the various threads of execution. (Qing Li, Caroline Yao, 2003) 

A.3.  Context switch. 

The context is the state of the CPU registers required each time the task is 

scheduled to be implemented. Every task owns its own context. A context 

switch happens at the instance the scheduler changes from one task to 

another. (Qing Li, Caroline Yao, 2003) 

When a new task is created, the kernel also creates and maintains a related 

Task Control Block (TCB). A TCB refers to system data structures utilized by 

the kernel in order to maintain the specific task information. TCBs includes all 

information that the kernel needs to be aware of for a specific task. The task 

context is highly dynamic every time the task is running. (Qing Li, Caroline Yao, 

2003) 

TCB maintains the dynamic context. On the other hand, a task context is frozen 

within the TCB when the task is not running, and it is restored at the next 

instance the task runs. (Qing Li, Caroline Yao, 2003) A typical context switch 

scenario is illustrated in Figure 16. 

At the instance the Kernel’s scheduler indicates that it has to stop the executing 

task1 and begin executing task 2, the following steps need to be taken (Qing Li, 

Caroline Yao, 2003): 

 Firstly, The Kernel saves the context information of task1 within its TCB. 

(Qing Li, Caroline Yao, 2003) 

 Secondly, task2’s context information is loaded from its TCB, which is 

now the current thread of execution. (Qing Li, Caroline Yao, 2003) 
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 Thirdly, task 1’s context is frozen while task 2 runs. However, once the 

scheduler needs to execute task 1 again, task 1 resumes where it left off 

nearly before the context switch. The time for the scheduler to shift from 

one task to another is known as the context switch time. This context 

switching time is negligible as opposed to the majority of operations 

performed by a task. (Qing Li, Caroline Yao, 2003) 

However, the frequent existence of context switching in the application's design 

can suffer unsolicited performance overhead. Hence, applications need to be 

designed with limited context switching. Each time an application makes a 

system call, the scheduler determines whether the switch contexts are needed. 

If the scheduler determines that a context switch is necessary, it depends on 

the associated module named dispatcher to make the switch occur. (Qing Li, 

Caroline Yao, 2003) 

A.4.  The dispatcher. 

The dispatcher is a scheduler component that switches contexts and alters the 

execution flow. When an RTOS is running, the execution flow, also known as 

the control flow, passes through one of three regions: an application task, the 

kernel, or an ISR. (Qing Li, Caroline Yao, 2003)  

When a task or ISR makes a system call, the control flow is routed through the 

kernel to one of the kernel's system routines. When the user's application exits 

the kernel, the dispatcher is responsible for passing control to one of the tasks 

available in the user's application. The task may not be the same as the one 

that made the system call. This is accomplished through the scheduling policy, 

which specifies the next task to be carried out. (Qing Li, Caroline Yao, 2003) 

The dispatcher, however, actually handles context switching and passing 

execution control. Based on the kernel's entry and dispatching can occur in a 

variety of ways. When a task makes system calls, the dispatcher has the option 

of exiting the kernel at the end of each system call. In this instance, the 

dispatcher is useful on a call-by-call basis because it can coordinate task state 

transitions caused by any of the system calls. (one or more tasks are ready to 

run, for instance). (Qing Li, Caroline Yao, 2003) 
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On the contrary, If an ISR issues system calls, the dispatcher is ignored until 

the ISR has completed its execution. This is factual even though some 

resources have become available, typically starting a context switch between 

tasks. This prevents the context switches to occur as the ISR must be complete 

without interruption from tasks. At the end of the ISR execution, the kernel exits 

via the dispatcher to dispatch the correct task. (Qing Li, Caroline Yao, 2003) 

A.5.  Scheduling algorithms. 

As previously stated, the scheduler determines the next task to run by 

employing a scheduling algorithm (scheduling policy). Nowadays, most kernels 

support two widely used scheduling policies: pre-emptive priority-based 

scheduling and round-robin scheduling. These scheduling algorithms are 

typically predefined by the RTOS manufacturer. Nevertheless, software 

developers can generate and define their own scheduling policies in some 

cases.. (Qing Li, Caroline Yao, 2003) 

A.5.1.  Pre-emptive Priority-Based Scheduling. 

The pre-emptive priority-based scheduling is used in most real-time kernels by 

default.  Figure 17 below illustrates the priority-based scheduling (Qing Li, 

Caroline Yao, 2003): 

 

 

Figure 17: Pre-emptive Priority Based Scheduling. 
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In this scheduling policy, the task that needs to be run is the one that has the 

highest priority amongst all other tasks available for running in the system. 

Real-time kernels typically support up to 256 priority levels, with 0 being the 

most important and 255 being the least important. Other kernels have the 

priorities in reverse order, whereas 255 is the highest and 0 is the lowest. 

Irrespective, the principles remain the same. With the pre-emptive priority-

based scheduler, each task is prioritised, and the highest priority takes 

precedence to run first. 

 A task with a priority greater than the current one is ready to be executed; the 

kernel directly saves the current task’s context in its TCB and switches to a 

greater priority task. (Qing Li, Caroline Yao, 2003) As illustrated in Figure 17, 

task 1 is pre-empted by the greater priority task 2, which is in turn pre-empted 

by task 3. Upon completing task 3, task 2 resumes and similarly, when task 2 

ends, task 1 resumes execution.  

Although tasks are prioritised when they are created, the priority of a task can 

be dynamically changed using kernel-provided calls. This possibility of changing 

task priorities dynamically enables embedded applications the flexibility to 

respond to external events as they occur, creating a true real-time, responsive 

system. Nevertheless, the mismanagement of this feature can cause 

inversions, deadlock, and possible system failure. (Qing Li, Caroline Yao, 2003) 

A.5.2.  Round-Robin Scheduling. 

Round-robin scheduling gives every task a similar slice of the CPU execution 

time. As a result, pure round-robin scheduling cannot satisfy real-time system 

requirements since, in real-time systems, tasks execute work changing degrees 

of importance. Instead, (Qing Li, Caroline Yao, 2003) pre-emptive priority-based 

scheduling can be improved with round-robin scheduling which utilizes time 

slicing (repartition) to accomplish an equal share of the CPU for tasks having 

identical priority as shown in figure 18 below (Qing Li, Caroline Yao, 2003): 
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Figure 18: Round Robin scheduling. 

 

With time slicing, every task performs in an ongoing round-robin scheduling 

cycle for a set period or time slice. The time-slicing for each task is tracked by a 

run-time counter which increments on each clock tick. When the task time slice 

ends, the counter is reset, and the task is moved at the tail of the cycle with 

their run-time reset to 0. In this instance, a round-robin cycle is preceded by a 

higher-priority task; its run-time count is saved and returned when the 

interrupted task is again available for processing. In the figure, task 1 is 

preceded by task 4 as it has a higher priority and restart where it was 

interrupted upon the completion of task4. (Qing Li, Caroline Yao, 2003) 

B.  Objects. 

Kernel objects are particular constructs that are the building for application 

development for real-time embedded systems. The most familiar RTOS kernel 

objects are (Qing Li, Caroline Yao, 2003): 

Tasks: are parallel and independent threads of execution that can run for CPU 

execution time. (Qing Li, Caroline Yao, 2003) 

Semaphores: are tokens similar to objects which can be increased or 

decreased by tasks for synchronization or mutual exclusion. (Qing Li, Caroline 

Yao, 2003) 

Message queues: are buffer like data structures useful for synchronization, 

mutual exclusion, and data communication by exchanging messages between 

tasks. Software designers designing real-time embedded applications can 
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associate these basic kernel objects with resolving common real-time design 

issues such as concurrency, activity synchronization and data communication. 

(Qing Li, Caroline Yao, 2003) 

C.  Services. 

With objects, many kernels offer services that assist software designers to 

design and develop applications for real-time embedded systems. These 

services include sets of API calls that can be used to perform operations on 

kernel objects or can be utilized in general to ease timer management, interrupt 

handling, device Input/Output (I/O) and memory management. (Qing Li, 

Caroline Yao, 2003) 

Also, additional services might be provided; these services are the most 

common in RTOS kernels. (Qing Li, Caroline Yao, 2003) 

2.6.2.4 Characteristics of the RTOS. 

The application requirements determine the underlying RTOS of an application. 

Reliability, predictability, performance, compactness, and scalability are the 

main characteristics of an RTOS. However, the RTOS attribute of an application 

requirement is dependent on the kind of application being developed. (Qing Li, 

Caroline Yao, 2003) 

A.  Reliability 

Embedded systems need to be reliable. Depending on the application, the 

system requires to operate for a long time with no human intervention. Various 

levels of reliability are required. For instance, a digital solar-powered calculator 

might self-reset if there is insufficient light, but the calculator remains 

acceptable. On the contrary, a telecom switch cannot self-reset while operating 

without experiencing highly related costs for downtime. (Qing Li, Caroline Yao, 

2003) 

Hence for these applications, different levels of reliability are required. Even 

though these various levels of reliability could be considered, a reliable system 

generally carries on providing service without failing. While the RTOS must be 

reliable, the system's reliability is not solely dependent on the RTOS. This 

reliability depends on the association of all elements in the system comprising 
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the hardware, RTOS, BSP and application, which determines the reliability of a 

system. (Qing Li, Caroline Yao, 2003) 

 

B.  Predictability. 

As numerous embedded systems are real-time systems, satisfying deadlines is 

the main point of guaranteeing proper operation. The required RTOS needs to 

be predictable in this case to some extent. The word deterministic identifies an 

RTOS with predictable performance, in which the end of OS calls happens at a 

predefined period. Simple benchmark programs written by developers can 

validate the determinism of an RTOS. The result depends on timed responses 

to particular RTOS calls. In a good deterministic RTOS, the difference between 

response times for every type of system call is negligible. (Qing Li, Caroline 

Yao, 2003) 

C.  Performance. 

Performance defines how fast an embedded system is obliged to perform in 

order to meet deadline constraints. In other words, meeting more deadlines with 

a shorter interval of time between them is faster than the system’s CPU is.  

Though the fundamental hardware influences the processing power, the 

software also contributes to system performance. (Qing Li, Caroline Yao, 2003) 

Generally, the performance of the processor is given by million instructions per 

second (MIPS). With the combination of hardware and software, the overall 

performance of a system is measured by throughput. Throughput is defined as 

the rate at which the system produces output related to the incoming inputs. It is 

also the quantity of data transferred over the time taken to transfer them. Data 

transfer throughput is expressed in multiples of bits per second (BPS). (Qing Li, 

Caroline Yao, 2003) 

Sometimes, a call-by-call basis is used by developers to measure RTOS 

performance. Written benchmarks produce timestamps when a system call 

starts and when it ends. Although this step might be helpful in the analysis 

stages of design, the actual performance testing is obtained at the 

measurement of the entire system performance. (Qing Li, Caroline Yao, 2003) 

D.  Compactness. 
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Application design constraints and cost constraints are useful to determine the 

compactness of an embedded system. A cell phone, for instance, clearly has to 

be small, portable, and cost-effective. The system memory is limited with these 

design criteria, leading to the application's size limitation and the OS. The 

RTOS has to be small and efficient in this embedded system, where there are 

size and cost constraints. In such cases, the RTOS memory footprint might be a 

crucial factor. The static and dynamic consumption of the RTOS and the 

running application ought to be understood by designers to meet the total 

system requirements. (Qing Li, Caroline Yao, 2003) 

E.  Scalability.  

Since RTOSes are useful in different embedded systems, they have to be apt to 

scale up or down to meet application particular needs. An RTOS should add or 

delete modular parts based on the required functionality, including file systems 

and protocol stacks. If an RTOS fails to scale up appropriately, developers 

might have to purchase or construct the missing pieces if a developer wants to 

incorporate an RTOS for designing a cell phone project and a base station 

project. The RTOS should be useful for both projects at a successful scale 

instead of two different RTOSes, saving considerable time and cost. (Qing Li, 

Caroline Yao, 2003) 

2.6.2.5 Tasks. 

Simple software applications are generally developed to run by sequence, one 

Instruction at once, in a pre-defined chain of instructions. However, this 

structure is unsuitable for real-time embedded applications that deal with 

numerous inputs and outputs within limited time constraints. Real-time 

embedded software applications need to be developed for concurrency. 

Developers need to split an application into small, schedulable, and sequential 

program units to achieve this concurrency. The concurrent design enables 

system multitasking to adhere to performance and time constraints for a real-

time system when correctly implemented. Most RTOS kernels offer tasks 

objects and task management services to ease concurrency design in an 

application. (Qing Li, Caroline Yao, 2003)  

A task is referred to as an autonomous thread of execution that can compete 

with other concurrent tasks for processor execution time, as described earlier 
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(Qing Li, Caroline Yao, 2003). A task is schedulable. It needs to be able to 

compete for execution time on a system depending on a scheduling policy. A 

task is defined by its specific set of parameters and supporting data structures. 

When created, each task has a related name, a unique ID, a priority (in case of 

pre-emptive scheduling policy), a TCB, a stack and a task routine. These sets 

of parameters are referred to as task objects. (Qing Li, Caroline Yao, 2003) 

Figure 19 below depicts an illustration of a task structure. 

 

 

  

Figure 19: Structure of a Task. 

 

At the start of the kernel, it produces its own set of system tasks and dedicates 

suitable priority for every system task from a set of reserved priority levels. The 

reserved priority level means the internal priorities used by the RTOS for its 

system tasks. An application should not use them for its tasks since running 

application tasks at such a level can influence the global system behaviour 

(performance). Many RTOSes do not enforce these reserved priorities. The 

kernel requires its system tasks and their reserved priority levels to function, 

and these priorities may not be changed. For instance, some illustrations of 

system tasks are (Qing Li, Caroline Yao, 2003): 
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Initialization or start-up task initializes the system, generates, and begin 

system tasks. (Qing Li, Caroline Yao, 2003) 

Idle task: makes use of processor idle cycles in the absence of other activity. 

(Qing Li, Caroline Yao, 2003) 

Logging task: records system messages. (Qing Li, Caroline Yao, 2003) 

Exception handling task holds exceptions. (Qing Li, Caroline Yao, 2003) 

Debug agent task enables debugging with a host debugger. (Qing Li, Caroline 

Yao, 2003) 

Other system tasks may be generated during the initialisation based on the 

other components inserted within the kernel. (Qing Li, Caroline Yao, 2003) 

The idle task generated at the kernel start-up is one system task that holds 

mention and may not be overlooked. It is set to the lowest priority, generally 

executing in an infinite loop and runs in the absence of a passing running task 

or at the inexistence of other tasks; this is for the sake of using idle processor 

cycles. The idle task is necessary as the processor runs instructions that the 

program counter register indicates when running. (Qing Li, Caroline Yao, 2003) 

Except the processor is suspended, the program counter has still to point to 

valid instructions even in the absence of a task or when no task can run. Hence 

the idle task guarantees that the processor program counter is always available 

in the absence of a running task. (Qing Li, Caroline Yao, 2003)  

In some instances, however, the kernel can enable a user-configured routine to 

operate in lieu of idle tasks to implement essential requirements for a specific 

application. An illustration of an essential requirement is power conservation. 

When no other tasks can run, the kernel can change control to the user-

supplied routine instead of the idle task. The user-supplied routine, in this case, 

performs like the idle task and initiates power conversation code instead, like 

system suspension, after a period of idle time. (Qing Li, Caroline Yao, 2003) 

After the kernel’s initialization and creation of all necessary tasks, the kernel 

goes to a predefined entry point (like a predefined function) that helps in effect 

as the beginning of the application. Other application tasks, including other 

kernel objects required by the application design, could be initialized and 

created by the developer from the entry point. (Qing Li, Caroline Yao, 2003)  
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As the developer creates new tasks, it is mandatory for the developer to assign 

each task name, priority, stack size, and a task routine. The kernel does the 

rest by assigning each task a single ID and creating a related TCB and task 

space in memory (Qing Li, Caroline Yao, 2003). 

2.6.2.6 Task states and scheduling. 

A system task or an application task, at any given time, they are available in 

one of the states, namely: ready, running or blocked. Each task moves from 

one state to another regarding the logic of simple Finite Simple Machine (FSM) 

as the real-time embedded system runs. Figure 20 below is the illustration of 

FSM for task execution states with brief details of state transitions. (Qing Li, 

Caroline Yao, 2003) 

 

Figure 20: FSM task execution states. 

 

In general, three primary states are mostly used in common pre-emptive 

scheduling kernels (Qing Li, Caroline Yao, 2003): 

 Ready state: the task is ready to run; however, it cannot run as a task 

with a higher priority is busy running. (Qing Li, Caroline Yao, 2003) 
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 Blocked state: the task has requested an unavailable resource or has 

requested for the occurrence of some event or has delayed itself for 

some time. (Qing Li, Caroline Yao, 2003) 

 Running state: the task has the highest priority and is being executed. 

(Qing Li, Caroline Yao, 2003) 

From the creation of a task to the time the task is deleted, the task runs through 

various states as a result of program execution and kernel scheduling. Even 

though the state changes automatically, many kernels offer a set of API calls 

that enable developers to track when the task moves to a changed state, as 

described in table 1 below. This is referred to as manual scheduling. (Qing Li, 

Caroline Yao, 2003) 

 

Table 1: Different states of task operation. 

 

 

Employing manual scheduling, developers can suspend and resume tasks 

within an application. This is probably crucial for debugging purposes or 

suspending a task with a high priority to allow a task that has a low priority to 

run, as described earlier. 

 A developer can opt to delay or block a task to enable manual scheduling to 

hold for an external event that does not include a related interrupt. The delay of 

a task enables the task to surrender the CPU and permits another task to 

execute. At the expiration of the delay, the task is sent back to the task-ready 

list, postal other ready tasks with its priority level. A delayed task expecting an 
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external condition can wake up after a set time to check if a particular condition 

or event has happened, referred to as polling. (Qing Li, Caroline Yao, 2003)  

A developer can opt to restart a task as opposed to resuming a suspended 

task. When restarting the task, the task starts as if its execution was not done 

previously. When suspended, the internal state owned by the task during this 

time is lost when a task is restarted. (Qing Li, Caroline Yao, 2003) 

On the contrary, when a task is resumed, it keeps the same internal state as 

before its suspension. Restarting a task is necessary while debugging or when 

reinitializing the task after a major fault. While debugging, a developer can 

restart a task to jump into its code again from the beginning to the end. In case 

of a major fault, the developer can restart a task and ensure the system runs 

without a complete reinitialization. (Qing Li, Caroline Yao, 2003) 

2.6.2.7 Embedded System resource’s criteria. 

Embedded systems ought to be resource-aware. The resources below need to 

be considered (Marwedel, 2018): 

Energy: embedded systems need electrical energy to process information. This 

electrical energy needed is referred to as the consumed energy. Electrical 

energy is converted into a different form of energy, generally thermal energy. 

The available power and energy (the integral of power over time) remain a 

decisive factor for embedded systems since energy is regarded as a crucial 

challenge (Marwedel, 2018). 

Run-time: embedded systems need to take advantage of the existing hardware 

architecture as much as possible. The ineffective usage of execution time, such 

as wasting processing cycles, need to be avoided. Hence, optimising execution 

time is needed at all levels, from algorithms to hardware execution (Marwedel, 

2018). 

Code size: generally, code needs to be stored on the system itself in some 

embedded systems. The storage capacity could be a tough challenge. This 

constraint is applicable for systems on chips, as these systems include all the 

information processing circuits on a single chip. If memory is inserted onto a 

chip, efficient usage is required as this could be implanted in a human body. 

Given the size and the communication constraints of these devices, the code 
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needs to be very compact. Nevertheless, the significance of this design 

achievement is relative when the loaded code becomes reasonable or when the 

memory densities exist. (Marwedel, 2018) 

Weight: all mobile systems must be light since the light weight is commonly a 

deciding factor for purchasing the device. (Marwedel, 2018) 

Cost: competitiveness in the market is vital for high volume embedded 

systems. Efficient usage of hardware components and software development 

budget is necessary. A low number of resources could be used for 

implementing the necessary functionality. (Marwedel, 2018)  

Given the resource awareness targes, software designs cannot be done 

separately from the fundamental hardware.  Hence, software and hardware 

have to be considered at the conception step. (Marwedel, 2018) 

2.6.3 MCU. 

Single-chip computers with at least a microprocessor and input/output module 

are microcontrollers. A Microcontroller is referred to as a single-chip computer. 

The term Micro implies that a device is small. The term controller means that 

the device is utilized in control applications. Microcontrollers are also referred to 

as embedded controllers since they are incorporated (or embedded) into 

devices they control (Ibrahim, 2014). 

Based on the complexity, additional components like timers, counters, interrupt 

control circuits, serial communication modules, ADC, digital signal processing 

modules are included in microcontrollers. A microcontroller ranges from a small 

single-chip incorporated (embedded) controller to an extensive computer 

system with a keyboard, monitor, printer, hard disk, etc. A microprocessor 

differs from a microcontroller in various manners.  

The principal difference is that a microprocessor needs several extra external 

support chips like memory and I/O circuits before being used as a digital 

controller. Meanwhile, a microcontroller comprises all these support chips on 

one chip, hence the name of a single-chip computer. Multiple chip 

microprocessor-based computer systems have a higher energy consumption 

than microcontroller-based systems as a result. Furthermore, the OS is another 

difference between microprocessors and microcontrollers.  
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Commonly, modern microprocessors would be found without Linux, MacOS or 

Windows OS, for instance. On the contrary, microcontrollers are unlikely to find 

their use with an OS at all. The program is to run directly on the hardware 

without extra support. If an OS is required, it is unlikely from that on a desktop 

computer. This is because microcontrollers are very frequently used in real-time 

systems where the necessity of responding to external events within a defined 

period (time) is needed. (Davies, 2008)   

In this case, an RTOS is utilized. The connection between a user’s software 

and an RTOS is not the same as between software and the OS on a desktop 

computer. For instance, when switching on a desktop computer, the operating 

system must be loaded first before doing anything on the desktop. Meanwhile, a 

microcontroller begins with the user’s software which starts the RTOS first, set 

its configurations and then execute the desired operations. An additional 

evident difference is that an RTOS may need a memory of a few hundred bytes 

and not megabytes. (Davies, 2008) 

A single-chip microcontroller system is more cost-effective than multiple chip-

based microprocessor systems. (Ibrahim, 2019) Microprocessors and 

microcontrollers function by processing a set of instructions (user programs) 

saved in the device's program memory and comprises instructions that can be 

read and executed by the microcontroller or microprocessor. (Ibrahim, 2019)  

The instructions from the program memory are retrieved one by one, decoded, 

and then carried out the necessary operations by the microcontroller. (Ibrahim, 

2014) Data is entered from external input modules (inputs), computed as 

needed and then output by an external module (outputs) under the control of a 

user program. (Ibrahim, 2019) In general, the assembly programming language 

of the target microcontroller has been used for programming microcontrollers. 

(Ibrahim, 2014) the assembly language is made of numerous mnemonics where 

each of them is an instruction to be processed by the microcontroller. (Ibrahim, 

2019)  

Regardless of the assembly language being very fast, it presents many 

drawbacks (Ibrahim, 2014) (Ibrahim, 2019).  Primarily, it is challenging to learn 

the assembly language due to its syntax. Then, there are different sets of 

assembly language instructions developed by various manufacturers of the 
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microcontrollers, which requires the programmer to learn different sets of 

language at each instance a different processor needs to be used. The same is 

true for the devices manufactured by the same manufacturers. (Ibrahim, 2019)  

 Finally, the maintenance of a program written in the assembly language is not 

easy. Even though some real-time applications are written in assembly 

language, nowadays, numerous applications are programmed employing High-

level language like BASIC, C, C++, C#, Visual BASIC, PASCAL, JAVA … 

(Ibrahim, 2019) 

These High-level languages are easier to learn than the assembly language as 

a benefit. Another benefit is that huge and complex applications can be simply 

and quickly developed by means of High-level languages as opposed to the 

assembly language. (Ibrahim, 2014), (Ibrahim, 2019) For instance, a piece of 

code in assembly language for multiplying two floating numbers can take more 

time and contain several mistakes. Meanwhile, the two numbers can easily be 

multiplied by High-level language. (Ibrahim, 2019) 

Another benefit, the maintenance of a program written in High-level languages 

is made easier (Ibrahim, 2019). High-level languages offer the advantage of 

having the same user program that can easily be taken to function on a different 

device with few or no modifications. (Ibrahim, 2019) Additionally, numerous 

built-in libraries that simplify the development of very large programs in short 

times are also supported by High-level languages. (Ibrahim, 2019)  

Also, the other advantage is that a program written in High-level language can 

be tested, which reduces the development time. (Ibrahim, 2019) Generally, a 

single chip is the only requirement to have an embedded system running. 

However, other components might be necessary to enable the MCU to interact 

with its environment in practical applications. (Davies, 2008) A typical example 

is shown below in Figure 21 (Ibrahim, 2010): 
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Figure 21: Temperature Data Logger System with a Keypad and LCD. 

 

2.6.3.1 Typical anatomy of MCU. 

The standard features found in different MCUs are listed below (Davies, 2008): 

Central Processing Unit: this unit includes (Davies, 2008): 

 Arithmetic Logic Unit (ALU): which computes. (Davies, 2008) 

 Registers required for the basic operation of the CPU, such as the 

program counter (Pc), stack pointer (SP), and status register (SR). 

(Davies, 2008) 

 Further registers to hold temporary results. (Davies, 2008) 

 Instruction decoder and other logic to control the CPU, handle resets, 

and interrupts, etc. (Davies, 2008) 

Memory for the program: this is a non-volatile memory, known as ROM; this 

stores the data where there is no power supply. (Davies, 2008) 

Memory for data: This is a volatile memory, referred to as RAM. (Davies, 

2008) 

Input and output ports: to enable the digital communication of the MCU with 

the outside environment. (Davies, 2008) 
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Address and data buses: allow the internal connection between subsystems 

to exchange data and instructions. (Davies, 2008) 

Clock: Maintain the entire system synchronized. The clock signal can be 

generated internally or externally from an external source or a crystal. Current 

MCUs allow a substantial selection of clocks. (Davies, 2008) 

Figure 22 below illustrates the anatomy of most MCUs (Davies, 2008). 

 

 

Figure 22: Anatomy of MCU. 

 

Most processors would likely have these features, even though their 

implementation may be significantly different. A huge difference between MCUs 

originates from the variety of peripherals available. Some time ago, these 

features required distinct pieces of equipment. However, with the growth of 

technology, the features could be contained on the same Printed Circuit Board 

(PCB) with the processor. Most of these peripherals are currently included on 

the same Integrated Circuit (IC) with the processor and a different classification. 

(Davies, 2008) 

2.6.3.2 Architecture of MCU. 

In general, two sorts of architecture are used in MCU: Von Neumann 

architecture and Harvard architecture. Most MCUs make use of the Von 

Neumann architecture. In this architecture, the same bus is used for memory 

space, and the instruction and data also utilize the same bus. In the Harvard 

architecture, however, the software code and data are located on distinct 
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buses. This enables the code and data to be retrieved concurrently and provide 

improved performance as a result. Figures 23 and 24 below illustrate the two 

common architectures for the MCU. (Ibrahim, 2010) 

 

Figure 23: Von Neumann Architecture. 

 

 

Figure 24: Harvard Architecture. 

 

2.6.3.3 Instruction set of MCU. 

Reduced Instruction Set Computer (RISC) and Complex Instruction Set 

Computer (CISC) are MCU instruction sets. For an 8-bit RISC MCU, data is 8 

bits wide while the instruction words are larger than 8 bits wide and can typically 

be 12,14 or 16 bits). Moreover, the instructions fill one word in the program 

memory allowing the instructions to be retrieved and computed in a single 

cycle. This results in improved performance. On the other hand, for a CISC 

MCU, the data and instructions are both 8 bits wide. Also, CISC MCU generally 

contains more than 200 instructions. The same bus contains the data and the 

code which prevent them from being fetched concurrently. (Ibrahim, 2010) 
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2.6.3.4 Bits MCU (8, 16,32). 

Deciding between the bits of MCUs is generally confusing. It is critical to notice 

that the number of bits simply means the size (width) of data handled by the 

CPU. The precision of mathematical computations carried out by the processor 

is restricted by the number of bits, even though emulating high-order 

mathematics in software or by the utilization of special hardware is feasible. 

(Ibrahim, 2015)  

8-bit MCUs have existed since the early days of MCU development. They are 

affordable, simple to use as they are in small package size, low speed, and 

necessary in most general-purpose control and data manipulation 

computations. For instance, it is very effective to design low-to medium-speed 

control systems such as fluid level control, temperature control or robotics 

applications with 8-bit MCUs. The low cost is more vital than the high speed. 

Furthermore, numerous industrial and commercial applications belong to this 

category and can simply be designed utilizing normal 8-bit MCUs. (Ibrahim, 

2015) 

In contrast, 16 and 32-bit MCUs are generally expensive but give higher speeds 

and higher precision in mathematical computations. These MCUs are generally 

cased in a bigger package such as 64 or 100 pins, for instance, and present 

much more features like larger data and program memories, more and faster 

Analog to Digital (A/D) channels, more timer/counter modules, more I/O ports, 

etc. 32-bit MCUs found their applications generally in high-speed, real-time, and 

digital signal processing applications which require high precision.  

These applications are digital image processing and digital audio processing, 

for example. Numerous consumer products like mobile phones and electronic 

games are designed on 32-bit MCUs as they need high-speed real-time 

computation, colour graphical displays, and touchscreen panels. Furthermore, 

additional high-speed applications such as image filtering, video capturing, 

video streaming, speech recognition, video editing, and speech processing 

necessitate high-speed 32-bit processors with more data and program 

memories. They also require high precision while executing the digital signal 

processing algorithms. (Ibrahim, 2015) 
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2.6.3.5 ARM MCUs. 

A.  History. 

ARM processor history is fascinating. In 1981, the British Broadcasting (BBC) 

called the computer industries to produce a computer for educational projects. 

Acorn Computers Ltd won, and they designed a home computer around the 8-

bit MCU 6502, which the firm MOS Technology manufactured. Though in 

nowadays standards, the 6502 was not a powerful microprocessor.it presented 

a high speed in the early days and became very popular in the 1980s. (Ibrahim, 

2019) 

Christopher Curry and Herman Hauser established Acorn Computers Ltd. 

Christopher worked closely with Clive Sinclair of Sinclair Radionics Ltd for more 

than ten years. Sinclair encountered some financial issues and founded another 

company named Sinclair Research Ltd where Christopher was one of the key 

people in Sinclair Research Ltd. (Ibrahim, 2019) 

After a disagreement with Sinclair, Christopher left the firm to start Acorn 

Computers Ltd with the Austrian physicist Herman Hauser. In the 1980s, IBM 

manufactured their first Personal Computer (PC), established on 16-bit 

microprocessor 8088. IBM became very famous in the PC industry with the 

primitive MSDOS OS, and many small competitors vanished. The 8-bits Acorn 

6502 was not powerful enough for graphics-based applications. (Ibrahim, 2019) 

Acorn decided that they required a new architecture with a higher speed 

processor and contemplated inventing their own processor. In 1990, Acorn 

realized that their future depended not on selling computers alone but on 

developing new computer architectures. So, in 1990 a new company called 

Advanced Reduced Instruction Set Computer (RISC) Machines (ARM) Ltd was 

founded by Acorn Computers Ltd. This new company was a joint venture with 

Apple Computer and VLSI technology. (Ibrahim, 2019) 

Apple invested cash, VLSI supplied the needed technology tools, and Acorn 

supplied experienced design engineers in this venture. By the end of the year, 

ARM turned into a £ 26.6 million company with a net income of £ 2.9 million. In 

1998, currently named ARM Holdings appeared on the London Stock Exchange 

and NASDAQ list. Many years later, ARM designed new processor 
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architectures and sold the intellectual property rights (licences)to the companies 

who desired to include ARM designs in their products. In the year 2016, ARM 

was bought by SoftBank for $ 31 billion. For over two decades, ARM has been 

designing 32-bits. (Ibrahim, 2019) 

ARM started also developing 64-bit designs in the last few years. ARM is a firm 

dedicated to designing processor architecture and does not produce and sell 

processor chips. ARM earns money by selling its license designs to chip 

manufacturers. The core ARM processors are used and integrated with their 

peripherals to end up in a whole microcontroller chip. Each chip manufactured 

by third-party companies gives royalty fees to ARM. Apple, Atmel, Cypress, 

Broadcom, Cypress Semiconductors, Analog Devices, Nvidia, NXP, Samsung 

Electronics, Freescale Semiconductors, Texas Instruments, Qualcomm, 

Renesas, for instance, use the ARM core processors. (Ibrahim, 2019) 

The concept of ARM became famous in mobile applications. In 2005, nearly 

98% of all mobile phones sold made use of at least one ARM processor. In 

2011, the 32-bit architecture was widely distributed and became the 

architecture of choice for mobile devices. In 2013, over 10 billion processors 

were produced. The ARM architecture presents the best MIPS to Watts ratio 

and the MIPS to US Dollard’s ratio in the industry. It also offers the smallest 

size of CPU. (Ibrahim, 2019) 

Over the years, many cores ranging from 32-bits to 64-bits, such as the ARMv1, 

ARMv2, ARMv8, etc., have been designed. Mobile devices mostly made use of 

the 32-bit ARMv7-A in mobile devices in 2011. Architectures like Cortex-A5, 

Cortex-A7, Cortex-A8 were also widely used. The licence fees are proportional 

to the cores' performance; the lower performing cores cost a lower license fee 

than higher performing cores. Lower performing cores use The ARMv6-M and 

ARMv7E-M, and the higher performing cores use the Cortex-A5, Cortex-A7 and 

Cortex-A8 (Ibrahim, 2019). 

 

B.  ARM processor architecture. 

Nowadays, most processors are known as RISC since they contain limited 

instructions sets, as described above. ARM processors are based on RISC 
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designs and are commonly used, specifically in mobile devices. RISC 

processors use few transistors and reduce the power consumption due to their 

more straightforward design. These processors offer high-speed processing as 

they execute one instruction per cycle. (Ibrahim, 2019) 

 However, more instructions are required for a given task. The instructions are 

retrieved from the memory and are processed using one cycle each at high 

speed. (Ibrahim, 2019)  

RISC-based processors designs enable many pipelining levels, whereas the 

next instructions are retrieved from the memory while the present instruction is 

being computing, resulting in higher throughput. (Ibrahim, 2019) 

With their more straightforward design, these RISC-based processors have low 

power consumption, critical for battery-powered mobile applications. thus, the 

ARM architecture is commonly used in mobile applications with very high-speed 

processing times and low power consumption. (Ibrahim, 2019) 

C.  Selection of ARM. 

The selection of an MCU for a specific task application lies on many factors like 

power consumption, cost, speed, size, number of digital and analogue input-

output ports, digital input-output current capacity, antilog port resolution and 

accuracy, program and data memory sizes, interrupt support, timer support, 

Universal Synchronous/Asynchronous Receiver/Transmitter (USART) support, 

bus support (USB, CAN, SPI and I2c), ease of system development 

(programming), operating voltage. (Ibrahim, 2019)  

As an illustration, to develop a battery-powered mobile device such as mobile 

phones or game consoles, the high-clock speed and long battery life are the 

principal criteria. However, a high-speed clock or low power consumption is not 

the main requirement for a liquid level control system. Generally, the power 

consumption is proportional to the power consumption, and this imposes a 

trade-off to be made in selecting an MCU for a given application. (Ibrahim, 

2019) 

 ARM-based processors are established on Thumb (an instruction set). This 

instruction set with clever designs gets 32-bit instructions and compresses to 

16-bits. Hence the hardware size is compacted (decreased), which reduces the 
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total cost and the power consumption. (Ibrahim, 2019) Additionally, the ARM 

processor uses multistage pipelined architecture that is simpler to learn, build 

and program.  (Ibrahim, 2019)  

ARM’s core architecture is strictly a processor and does not comprise graphics, 

input-output ports, serial communication, USB, wireless connectivity, or any 

other form of peripheral modules. Systems are built around ARM core by chip 

manufacturers. This implies the reason why different manufacturers present 

various sorts of ARM-based MCUs. (Ibrahim, 2019) 

D. ARM Family. 

Several 32-bit processors have been developed by ARM over the last two 

decades. ARM decided around 2003 to advance their market share as they 

developed new series of high-performing processors specifically for MCUs 

based applications like embedded control and monitoring applications. This led 

to the creation of the Cortex family of processors. This family is made of three 

processor families, which are: Cortex-M, Cortex-R, and Cortex-A. Figure 25 

below gives an overview of some of the ARM processor families. (Ibrahim, 

2019) 

 

 

Figure 25: ARM Processor Family. 
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1.  Cortex-M. 

The Cortex-M families are designed around the ARMv6-M architecture (Cortex-

M0 and Cortex-M0 +) and the ARMv7-M architecture (Cortex-M3 and Cortex-

M4). Their primary purpose is for the MCU market, presenting fast and 

deterministic interrupt responses, low cost, low power consumption, reasonably 

high performance, and ease of use. The Cortex-M3 and Cortex-M4 have 

identical architecture and the same instruction sets (Thumb 2). However, the 

Cortex-M4 differs from the Cortex-M3 as it presents Digital Signal Processing 

(DSP) capabilities and includes an optional Floating-Point Unit (FPU). With the 

DSP and FPU capabilities, the Cortex-M4 is an ideal processor for the Internet 

of Things and mobile applications. The Cortex-M0 or the Cortex-M0+ could be 

used for cost-sensitive and lower performance applications. (Ibrahim, 2019) 

The Cortex-M0 processor contains a small gate count (12k gates) with a power 

consumption of 12.5 μW/MHz only. The cortex-M0+ series has a power 

consumption of only 9.85 μW/MHz and is established on a subset of the Thumb 

2 instruction set. It presents a performance higher than the one of Cortex-M0 

and under that of the Cortex-M3 and Cortex-M4. Cortex-M7 series are high-

performance processors that can allow fast DSP and single or double precision 

floating point operations. Their applications are primarily found where higher 

performance than of the Cortex-M4 is needed. (Ibrahim, 2019) 
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Table 2 below gives a summary of the Cortex-M families. (Ibrahim, 2019) 

 

Table 2:  Summary of Cortex-M families. 

 

 

The Cortex-M0 and Cortex-M0+ are for low speed and low-power applications. 

The Cortex-M1 is enhanced for programmable gate array utilizations. The 

Cortex-M3 and Cortex-M4 (medium-power processors) found their usage in 

MCU applications, and the Cortex-M4 enables DSP and FPU arithmetic 

computations. The Cortex-M7 is a high-performance processor and found its 

applications where higher performance than the Cortex-M4 is necessary. 

(Ibrahim, 2019)  

Figure 26 below indicates a simple block diagram of the Cortex-M4 processor 

architecture. (Ibrahim, 2019) 

 



53 

 

 

Figure 26: Simple block diagram of Cortex-M4 processor. 

 

Next to the top left-hand side, a CPU contains the ALU, register banks, 

instruction decoder, DSP module and the memory interface. The DSP module 

is absent in the Cortex-M0 or Cortex-M3 processors. Also, the memory does 

not belong to the Cortex-core, and it is provided by the company manufacturing 

the processor. (Ibrahim, 2019) 

The nested vectored interrupt controller is comprised at the top side of the 

picture. These nested vectored interrupt controllers are external interrupt inputs 

that are necessary for interrupt-driven real-time applications. An FPU is 

included in the core for speeding the floating point during mathematical 

computations. The test and debug are represented at the bottom right side of 

the illustration. The bus matrix, memory protection unit, and peripheral 

interfaces are also situated at the bottom right side of the image. The core does 

not have the inputs-outputs ports. (Ibrahim, 2019) 

2. Cortex-R. 

The Cortex-R families offer real-time high-performance processors than the 

Cortex-M. Some processors in the Cortex-R families are designed to operate 

high-clock rates exceeding 1 GHz. These processors are found in hard-disk 

controllers, network devices, automotive applications and specialized in high-

speed MCU applications. (Ibrahim, 2019) 
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Cortex-R4 and Cortex-R5 are the primitive members of this family and operate 

at a clock speed of up to 600 MHz. The latest Cortex-R7 includes 11 stage 

pipelines for high-performance and can operate exceeding 1 GHz. Despite the 

high performance of Cortex-R processors, they present a complex architecture, 

and their processors have a high-power consumption which prevents their 

applications in wearable battery-powered devices. (Ibrahim, 2019) 

3.  Cortex-A. 

This family has the highest performance ARM processors designed for RTOS in 

mobile applications. These processors provide advanced features for OS like 

Linux and Android, for instance. Furthermore, the Cortex-A family supports 

advanced memory management with virtual memory. The Cortex-A5 to Cortex-

A17 processors were the first processors of this family. (Ibrahim, 2019) 

They were based on the ARMv7-A architecture. The Cortex-A50 and Cortex-

A72 series are the newest processors designed for low-power and high-

performance mobile applications. They also built with the ARMv8-A 

architecture, which presents 64-bits energy-efficient processing and offers more 

than 4 GB of physical memory. (Ibrahim, 2019) 

2.6.3.6 ARM core based MCU. 

Many ARM-core-based development boards exist; this section only considers 

the Cortex-M-based development boards used in MCU-based control and 

monitoring applications and are Mbed compatible. Figure 27 below illustrates 

the picture of an ARM-core (Cortex-M) MCU. (Ibrahim, 2019) 

 

Figure 27: ARM - Core (Cortex-M) MCU. 
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2.6.4 STM32 Family. 

The STM32 Nucleo boards consist of high-performance and low-cost 

development boards based on cutting-edge architecture of the 32-bit ARM 

Cortex-M. These boards are widely used by learners (students), hobbyists, and 

professional engineers at every levels. These boards can suit the famous 

Mbed, Arduino, ST-LINK, and ST Morpho, enabling users to familiarize 

themselves with the boards. Also, despite the additional hardware extension 

modules, The STM32 Nucleo family is compatible with many software tools 

development and Integrated Development Environments (IDEs) like debuggers, 

professional compilers, and in-circuit programming tools. (Ibrahim, 2019)  

This family contains over 30 various boards to satisfy the needs of the users. 

Generally, the Nucleo boards are in various sizes, namely Small (Nucleo-32), 

Short (Nucleo-64) and Long (Nucleo-144), where the numbers indicate the 

number of pins of the MCUs used on the boards. (Ibrahim, 2019). Furthermore, 

these three types are categorized into three groups which are: the ultra-low 

power (green colour), the mainstream (blue colour) and the high performance 

(magenta colour). (Ibrahim, 2019) 

The ultralow power boards are found on the STM32 L family and used for small 

power applications like watches and smart meters. NucleoL433RC-P, Nucleo-

L432KC, Nucleo-L031K6 and Nucleo-L011K4 are among the STM32 L family. 

The STM32 L family is subdivided into three groups: L0 based on ARM Cortex-

M0, L1 based on ARM Cortex-M3 and L4 based on ARM Cortex-M4. (Ibrahim, 

2019) 

The mainstream class consists of nearly around half of the STM32 Nucleo 

boards: Nucleo-F303RE, Nucleo-F042K6 and Nucleo-F303K8 are examples of 

this class. The mainstream is subdivided into three categories: F3 based on 

ARM Cortex-M4, F1 based on ARM Cortex-M3 and F0 based on ARM Cortex-

M0. (Ibrahim, 2019) 

The high-performance boards include huge memory sizes along with high-

speed MCUs. Nucleo-F722ZE, Nucleo-F401RE and Nucleo-F410RB are 

examples of high-performance boards. The high-performance category is also 
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subdivided into three categories: F2 based on ARM Cortex-M3, F4 based on 

ARM Cortex-M4 and F7 based on ARM Cortex-M7. (Ibrahim, 2019) 

Figure 28 below illustrates the STM32 Nucleo development boards. 

 

 

Figure 28: STM32 Nucleo development boards. 

 

A. Nucleo-32 Board Development. 

The Nucleo-32 board is nano compatible with many Arduinos nano shields 

utilized when using the board. The Nucleo-32 board contains the features below 

(Ibrahim, 2019): 

 32MHz Cortex M0+ microcontroller in 32-pin package. (Ibrahim, 2019) 

 32KB flash memory. (Ibrahim, 2019) 

 8KB RAM. (Ibrahim, 2019) 

 1KB EEPROM. (Ibrahim, 2019) 

 Real-time clock. (Ibrahim, 2019) 
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 Serial interfaces (USART, SPI, and I2C). (Ibrahim, 2019) 

 3 LEDs (USB communication, power, and user). (Ibrahim, 2019) 

 Push-button Reset. (Ibrahim, 2019) 

 Flexible power-supply options: ST-LINK USB VBUS or external sources. 

(Ibrahim, 2019) 

 Arduino Nano compatible expansion connector. (Ibrahim, 2019) 

 ST-LINK/V2-1 debugger/programmer with mass storage, virtual COM 

port, and debug port. (Ibrahim, 2019) 

 Support for IDE software (IAR, Keil, ARM Mbed, and GCC-based IDEs). 

(Ibrahim, 2019) 

Figure 29 illustrates a Nucleo-32 development board: 

 

 

Figure 29: Nucleo-32 development board. 

B. Nucleo-64 Development board. 

Figure 30 below illustrates a sample of a nucleo-64 development board, the 

Nucleo-F091RC. The board is referred to as a mainstream board with a 64-pin 

MCU. This board is compatible with Arduino Uno, and a considerable amount of 

Arduino Uno shields can be utilized with this board. The board includes the 

following features (Ibrahim, 2019): 

 1 User LED. (Ibrahim, 2019) 

 1 User push-button switch. (Ibrahim, 2019) 

 32.768 kHz crystal oscillator. (Ibrahim, 2019) 

 ST morpho connecter. (Ibrahim, 2019) 
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 Arduino Uno expansion socket. (Ibrahim, 2019) 

 Flexible power-supply options: ST-LINK USB VBUS or external sources. 

(Ibrahim, 2019) 

 ST-LINK/V2-1 debugger/programmer with mass storage, virtual COM 

port, and debug port. (Ibrahim, 2019) 

 Comprehensive free software libraries. (Ibrahim, 2019) 

 Support of a wide selection of IDE software such as IAR, Keil, ARM 

Mbed, and GCC-based IDEs. (Ibrahim, 2019) 

 

 

Figure 30: Nucleo-64 Development board. 

 

C.  Nucleo-144 Development Board. 

The Nucleo-144 board development board is a high-performance board 

containing a 144-pin MCU. The board includes the features below (Ibrahim, 

2019): 
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 Ethernet compliant with RJ45 connector. (Ibrahim, 2019) 

 ST morpho connector. (Ibrahim, 2019) 

 ST-LINK/V2-1 debugger/programmer with mass storage, virtual COM 

port, and debug port. (Ibrahim, 2019) 

 ST Zio connector. (Ibrahim, 2019) 

 Three user LEDs. (Ibrahim, 2019) 

 Two push-button switches. (Ibrahim, 2019) 

 32.768 kHz crystal oscillator. (Ibrahim, 2019) 

 Flexible power-supply options: ST-LINK USB VBUS or external source. 

(Ibrahim, 2019) 

 Comprehensive free software libraries. (Ibrahim, 2019) 

 Support of a wide choice of IDE software (IAR, Keil, ARM Mbed, and 

GCC-based IDEs). (Ibrahim, 2019) 

Figure 31 below illustrates a sample of a Nucleo-144 development board. 

(Ibrahim, 2019) 
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Figure 31: Nucleo-144 Development board. 

 

2.6.4.1 Selection of the Nucleo-64 STM32F303RE development board. 

The emphasis on ARM Cortex-M MCUs is justified since devices based on this 

core presents a useful set of features. These features allow students, hobbyists, 

and professionals to design medium to high complex real-time embedded 

systems using RTOS to develop solutions to have modules that are portable to 

other projects. (Amos, 2020) 

Among the ARM Cortex-M family, the ARM Cortex-M4 core presents DSP 

capabilities and comprise FPU. These capabilities enable the Cortex-M4 for the 

internet of things and mobile applications, as stated earlier. (Ibrahim, 2019) 

Furthermore, the Cortex-M4 core is designed to solve the digital signal control 

markets that require efficient and simple control and signal processing features. 

These high-efficiency features combined with the low power, low price and ease 
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of use to satisfy many fields like motor control, power management, industrial 

automation. (Arm, 2020) 

Since the thesis specifically addresses the energy consumption in real-time 

embedded systems, the Cortex-M4 has been opted for choosing the STM32 

development board. The STM32 mainstream development board offers a wide 

range of high-volume applications, which is cost-effective and performance 

balanced. 

Among this family, the STM32 Nucleo-64 board is an affordable and flexible 

way for experimenting with new designs and build prototypes based on a 

variety of combinations of performance and power consumption features 

offered by this family of boards (STMicroelectronics, 2020). 

The STM32F303RE Nucleo-64 board available at the time of this experiment 

belongs to the mainstream family. This board includes the STM32F303RE MCU 

based on an ARM-Cortex M4 core suitable for real-time applications with high 

performance at low power consumption. (Ibrahim, 2019), (STMicroelectronics, 

2020), (STMicroelectronics, 2020). 

2.6.4.2 Nucleo-64 STM32F303RE Development Board. 

The Nucleo-64 STM32F303RE is made of two sections: the ST-LINK section 

and the STM32F303RE MCU section. The ST-LINK section includes the micro-

USB port and the programming /debugging interface. In order to reduce the 

board size, the ST-LINK section of the PCB could be desired if necessary. In 

this case, the MCU section is powered by VIN, E5V and 3.3 V on the CN7 

connector of the ST Morpho or by VIN and 3.3 V connector CN6 (user manual). 

On the other hand, the MCU section includes the MCU, two pushbuttons, LEDs, 

Arduino, ST morpho connectors, power controller and the crystal. 

(STMicroelectronics, 2020) 

When the ST-Link is removed, the MCU can be programmed by connecting 

wires between the connector CN4 on the ST-LINK board and the Serial Wire 

Debug (SWD) signals present on the CN7 (ST Morpho connector). Figure 32 

below illustrates the two parts of the STM32F303RE Nucleo board, while figure 

33 depicts the physical Nucleo-64 STM32F303RE. (STMicroelectronics, 2020) 
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Figure 32: Nucleo-STM32F303RE. 

 

Figure 33: Nucleo-64 STM32F303RE. 
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The figures (Figure 34 and Figure 35) below describe the components in the top 

and bottom views of the Nucleo-64 STM32F303 RE board. (STMicroelectronics, 

2020) 

 

 

Figure 34: Top view of Nucleo-64 STM32F303RE. 
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Figure 35: Bottom view of Nucleo-64 STM32F303RE. 

A.  The power supply. 

The power supply of the Nucleo-64 STM32F303 RE is provided by the PC 

using a USB cable or by using an external source connected in VIN pin for 7-12 

V, E5V pin for 5 V or via +3.3 V pins on connectors CN6 or CN7.  An external 

DC power supply unit is necessary when the VIN, E5V or +3.3 V is used to 

supply power to the board. The power supply unit must comply with the EN-

60950-1: 2006+A11/2009 standard and ought to be Safety Extra Low Voltage 

(SELV) with limited power capability. (STMicroelectronics, 2020) 

B.  Power supply by USB. 

The ST-LINK/V2-1 supports USB power management. This allows the board to 

draw more than 100 mA current from the host PC. The ST-LINK USB connector 

CN1 (U5V or VBUS) can power all STM32 Nucleo-board and shield parts. 

Before the USB enumeration,  the host PC supplies 100 mA to the board. This 

causes only the ST-LINK part of the STM32 Nucleo board to be power supplied 

at that time. (STMicroelectronics, 2020) 
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The STM32 Nucleo-board needs to draw 300 mA of current from the host PC At 

the USB enumeration. If the host PC can provide the required current, the 

STM32 MCU is power supplied and the red LED (Light Emitting Diode) LD3 is 

switched ON. In this case, the STM32 Nucleo board and its shield draw a 

current not exceeding 300 mA. On the contrary, the red LD3 remains switched 

OFF as the STM32 MCU, and the MCU part are not power supplied. In this 

event, an external power supply is necessary. (STMicroelectronics, 2020)  

A jumper is mandatory to be connected between pins 1 and 2 of the JP5, as 

shown in Figure 36 below (STMicroelectronics, 2020): 

 

 

 

Figure 36: Jumper connection between 1 and 2 of JP5. 

 

JP1 is set as per the maximum current consumption of the board when supplied 

by USB (U5V). The jumper JP1 can be configured when the board is supplied 

by USB, and the maximum current consumption is not more than 100mA 

(including an eventual extension board or Arduino shield). In this instance, the 

USB enumeration will always be successful as a current not exceeding 100 mA 

is drawn from the host PC. (STMicroelectronics, 2020)Table 3 below 

summarizes the Jumper connections for powering the board via USB for jumper 

JP1. (STMicroelectronics, 2020) 

 

Table 3:JP1 connections for powering the board via USB. 
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C.  Power supply through external sources. 

An external power supply connected on VIN or E5V pins is necessary, whereas 

the current consumption of the board and extension boards surpasses the 

acceptable current on USB. In this case, using the USB for communication, 

programming or debugging only remains possible. However, it is compulsory to 

supply the board using VIN or E5V first and then connect the USB to the PC. 

This enhances the enumeration that occurs by the external power source. 

(STMicroelectronics, 2020)   

The user manual (STMicroelectronics, 2020) details the sequence power 

procedure to adhere to when using VIN or E5V as external power sources. 

(STMicroelectronics, 2020) 

The jumper’s configuration needed for powering the board by VIN or E5V is 

illustrated below (STMicroelectronics, 2020): 

 The Jumper JP5 needs to be on pin two and pin 3. (STMicroelectronics, 

2020) 

 The Jumper JP1 needs to be removed. (STMicroelectronics, 2020) 

Figure 37 below illustrates the jumper’s configuration of JP5. 

(STMicroelectronics, 2020) 

 

 

Figure 37: Connections between pins 2 and 3 of JP5. 

  

Table 4 below summarizes the jumper configurations when using VIN or E5V 

pins connectors. (STMicroelectronics, 2020) 

Table 4: Jumper configurations for using VIN or E5V pin connectors. 
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D.  Power supply through 3.3 V pin. 

When an extension board delivers a voltage of 3.3 V, the +3.3 V pin, pin 4 of 

connector CN6 or pin 12 and pin 16 of connector CN7 can be directly used. In 

this instance, the power supply is provided by the + 3.3; the ST-LINK is not 

supplied, disabling the programming and debug features. (STMicroelectronics, 

2020) 

The configurations for using + 3.3 V pin are given in Table 5 below 

(STMicroelectronics, 2020): 

 

 

Table 5: Pin connector for using +3.3V to supply the board. 

 

 

There are two different set-ups available for using the +3.3 V pin to provide 

power to the board: the ST-LINK is disconnected (PCB cut-off), or the solder 

bridge SB2 (3.3 V regulator) and SB12 (NRST) are OFF. (STMicroelectronics, 

2020) 
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E.  External power supply output. 

The Nucleo board can provide an output power supply for an Arduino shield or 

an extension board when supplied via the USB, Pins VIN or E5V, +5V (pin 5 of 

connector CN6 or pin 18 of connector CN18). This implies it is necessary to 

adhere to the maximum current rating of the power source provided above. 

(STMicroelectronics, 2020) Moreover, the +3.3 V can also provide power supply 

output. The maximum current capability of the regulator U4 (500 mA max) limits 

the output current. (STMicroelectronics, 2020) 

F.  LEDs. 

F.1.  LD1. 

The information regarding the ST-LINK communication status is given by the 

tricolour LED (green, orange, red) LD1 (COM). The colour red is the default 

colour, and the green colour shows that the communication between the PC 

and the ST-LINK/V2-1 is underway. The LED LD1 presents the status below 

(STMicroelectronics, 2020): 

 Slow blinking Red/Off: occurs at switch-ON prior to USB initialization. 

(STMicroelectronics, 2020) 

 Fast blinking Red/Off: occurs after the first successful communication 

between the PC and ST-LINK/V2-1 (enumeration). (STMicroelectronics, 

2020) 

 Red LED ON: occurs on the completion of the initialization between the 

PC and ST-LINK/V2-1. (STMicroelectronics, 2020) 

 Green LED ON: occurs subsequently a successful target communication 

initialization. (STMicroelectronics, 2020) 

 Blinking Red/Green: occurs when communication with a target is 

occurring. (STMicroelectronics, 2020) 

 Green ON: occurs at complete and successful communication. 

(STMicroelectronics, 2020) 

 Orange ON: occurs when communication fails. (STMicroelectronics, 

2020) 
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F.2.  User LD2. 

The green colour LED is a user LED which connects to Arduino signal D13 

(STM 32 pin 21, I/O PA5 on Pin 34, PB13) according to the STM32 target. The 

table below describes the states of the LED. When the I/O is High, the LED 

goes ON, and when the I/O is Low, the LED goes OFF. (STMicroelectronics, 

2020) 

F.3.  LD3 PWR. 

This LED shows the MCU part is power supplied and that the +5V is present. 

(STMicroelectronics, 2020) 

F.4.  Pushbuttons. 

The push-button B1 USER is a user button that connects to pin 2 (I/O PC13) of 

the STM32 MCU (STMicroelectronics, 2020), while the push-button B2 RESET 

connects to NRST and is needed to reset the STM32 MCU. These pushbuttons 

are covered by blue and black plastic hats that can be taken off if required. For 

instance, when an application or a shield is superposed on the Nucleo board to 

prevent pressure on the pushbuttons, which can cause the STM32 MCU to 

RESET at all times. (STMicroelectronics, 2020) 

F.5. Current measurement. 

The Jumper JP6 referred to IDD and is necessary for the current consumption 

of the MCU measurement. This measurement is performed by connecting an 

ammeter to the jumper pins in place of the jumper. By default, the jumper is 

connected to the pins to provide the board with a disabled current measurement 

at shipment. (Ibrahim, 2019) When the jumper is available, the STM 32 MCU 

receives power by default, and when the jumper is removed, an ammeter is 

required to be connected for the current consumption measurement of the STM 

32 MCU. The STM 32 MCU is powerless without the ammeter. 

(STMicroelectronics, 2020) 

F.6. The ST-LINK /V2-1. 

The ST-LINKV2-1 is a necessary tool for programming and debugging. This tool 

is integrated into the Nucleo boards and makes it to be compatible with Mbed. 

The ST-LINK/V2-1 supports only the Serial Wire Device for STM32 devices.  

The tool also supports the virtual COM port interface on USB, USB software re-
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numeration, mass storage interface on USB, and USB power management 

requests exceeding 100 mA power on USB.  However, the SWIM is not 

supported. Moreover, the minimum supported application voltage is set to 3 V. 

(Ibrahim, 2019)  

There are two separate ways available to use the ST-LINKV2-1 according to 

the jumper’s state. These states allow for programming(debugging) the onboard 

STM32 and programming (debugging) the MCU in an external application 

through a cable connected to SWD connector CN4. The table below illustrates 

the summary of the state of jumpers. (STMicroelectronics, 2020) 

 

Table 6: Jumper states summary. 

 

 

The configurations for connector CN2 for programming/debugging the onboard 

STM32 and the programming/debugging the board by an external application 

connecting a cable to SWD connector CN4 are depicted respectively in Figure 

38 and Figure 39 below (STMicroelectronics, 2020): 
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Figure 38: STM32 connection to program the onboard MCU. 

 

 

Figure 39: Using ST-LINK to program the MCU via an external application. 

 

F.7. Clock circuit of STM32F303RET6 MCU. 

The clock circuit is a vital part of the MCU. (Ibrahim, 2019) the selection of the 

system clock is made on start-up. Nevertheless, the internal RC 8 MHz 

oscillator is selected as a CPU clock on reset by default. An external 4 – 32 

MHz is also an option; the CPU is monitored for failure in the instance. If a 

failure is detected, the system changes back to the internal RC 8 MHz 

oscillator. When enabled, a software interrupt is produced. Likewise, the full 

interrupt management of the PLL clock entry is present when required, as in a 

case of the failure of an indirectly used external oscillator, for instance. 

(STMicroelectronics, 2016) 

Many prescalers are available to enable the configuration of the AHB 

frequency, the high-speed APB (APB2) and the low-speed APB (APB2) and the 

low-speed APB (APB1) domains. On the one hand, 72 MHz is the maximum 

frequency of the AHB and the high-speed APB domains, and on the other hand, 

36 MHz is the maximum allowed frequency of the low-speed APB domain. 

(STMicroelectronics, 2016)  

Figure 40 below depicts the clock tree of the STM32F303RET6. 

(STMicroelectronics, 2016) 
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Figure 40: Clock Tree of STM32F303RET6. 

 

2.7 MEASUREMENTS OF ENERGY CONSUMPTION. 

2.7.1 Power and energy measurements. 

In general, the power consumption of a device is the amount of energy 

consumed at a given moment, while the sum of the power consumption over 

time is the energy consumption (Haulin, 2018). As an example, the flash 

camera has a very high-power consumption when ON. However, the total 
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energy consumption is mild as the camera flash is ON for a very short while. 

(Haulin, 2018)  

The total energy consumption E of a device can be expressed mathematically 

by (Haulin, 2018): 

  

               𝐸 =  ∫ 𝑃(𝑡) 𝑑𝑡        

 (1) 

 

With E: Energy consumption  

                T: Execution time 

              P(t): the instantaneous power. 

In electrical devices, the power consumption P is proportional to the current 

consumption I and the voltage U given by Joule’s law below (Haulin, 2018): 

 

              𝑃 = 𝑈 . 𝐼         

 (2) 

 

On systems with constant supply voltage U, the power consumption depends 

solely on the current consumption I. This implies that reducing the current 

consumption will cause the power consumption to be reduced. (Haulin, 2018) 

Since an embedded system application often runs continually, the energy and 

the time would rise without limit. It is, therefore, more practical to use the mean 

(average) power P mean, as opposed to the total energy since, this P mean is a 

limited quantity given by (Haulin, 2018): 

 

          𝑃𝑚𝑒𝑎𝑛 =           

 (3) 
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 A physical measurement must be made so as to determine the power 

consumption for each instruction, a physical measurement needs to be made.  

Attakorn Lueangvilai, Christina Robertson, and Christopher J. Martinez, (2012), 

give the energy consumption as: 

 

           𝐸 = 𝑃 × 𝑇         

 (4) 

 

In Equation (4), P is referred to as the average power over the time period T. 

Thus, the time period of our measurement will be the clock frequency of the 

microcontroller. (Attakorn Lueangvilai, Christina Robertson, and Christopher J. 

Martinez, 2012) 

2.7.2 MCU energy consumption measurements. 

2.7.2.1 Power and Current consumption measurements. 

Power consumption measurements can be achieved in several different ways. 

(Haulin, 2018) The most common way to measure the power consumption of a 

device is to use a shunt resistor. (Haulin, 2018) For instance, in (Attakorn 

Lueangvilai, Christina Robertson, and Christopher J. Martinez, 2012), (C. 

Chang, S. Muftic and D. J. Nagel, 2007), (Lehlogonolo P. I. Ledwaba, 2018), 

the authors used this method in their work to establish the power consumption 

of the processing unit.  

This shunt resistor is connected in series with the device to convert the current 

into a voltage. The obtained voltage is then utilized to compute the current from 

Ohm’s law. the obtained current values and the supply voltage are used to 

compute the power, as stated earlier. (Haulin, 2018), (Lehlogonolo P. I. 

Ledwaba, 2018) The shunt resistor is commonly used as most engineers are 

familiar with and does not necessitate the use of advanced circuits. (Haulin, 

2018) 
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2.7.2.2  Execution time measurements. 

Many various methods are available in order to measure the execution time of a 

piece of code. However, not a single best technique exists. Instead, each 

technique is a trade-off between different attributes, such as resolution, 

accuracy, granularity, and difficulty. (Stewart, September 2006) Furthermore, 

the use of the methods depends on the hardware features such as digital output 

port, while other techniques necessitate specific software and measurement 

instrumentation tools to be available. (Stewart, September 2006)  

The hardware and tools are not always affordable, and their non-availability can 

render using a particular method impossible. However, contrastingly, access to 

the correct equipment can greatly facilitate obtaining the requisite 

measurements—a mitigating factor in investing in procuring the appropriate 

tools (Stewart, September 2006).  

According to the attributes mentioned above, these measurement methods are 

summarized (Stewart, September 2006) according to the attributes as 

mentioned above. Among these measurements’ methods, the stopwatch is 

easy to use and suitable for non-interactive programs. A stopwatch can 

measure the time of things like numerical code, which may take minutes or 

hours to execute and when the measurements only require to be approximate 

(to the nearest second). (Stewart, September 2006) 

This method simply requires using a chronograph feature or digital wristwatch 

(or other equivalent timing devices). The watch is started when the program 

starts, and when the program ends, the watch is stopped to read the time. 

(Stewart, September 2006) The oscilloscope and logic analyser are among the 

techniques used nowadays. (Andreas Ermedahl, Jakob Engblom, 2007)  

These methods consider the observable behaviour of a system in operation 

while not influencing the functioning of the system. For example, an 

oscilloscope involves adding a bit-flip on an externally accessible pin of the 

processor to the program segments of interest and observe the obtained 

waveform to determine the periodicity and thus the execution time. A logic 

analyser looks at the data or address bus of the system and can see when the 

instructions are being fetched. However, the logic analyser needs relevant 
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memory transactions to reach the bus, which is not necessarily the case with a 

cache system. (Andreas Ermedahl, Jakob Engblom, 2007) 
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CHAPTER 3   

EXPERIMENTAL METHODOLOGY 

3.1 INTRODUCTION. 

The two approaches used to measure the energy consumption at the MCU due 

to the computation of the loop structures (For and While) in a nesting fashion 

are described in this chapter. The main difference between the two approaches 

is the execution time concept. In the first approach, the execution time is the 

system's operation duration; meanwhile, on the second approach, the execution 

time is the time taken by the STM32F303RE MCU of the Nucleo-64 board to 

execute the different levels of loops. The different setups for these approaches 

are detailed below. 

3.2 FIRST APPROACH. 

3.2.1 Software. 

The microcontroller is programmed via the ST-Link using the USB cable, as 

shown in Figure 41.  

 

 

Figure 41: Programming of STM32F303RE MCU. 
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The software loaded in the STM32F303RE is an infinite loop. Then, the USB 

cable is unplugged. Since an embedded system runs the application endlessly, 

different levels of infinite For and While loops have been loaded on the MCU. 

As every code runs within an infinite loop, the initial code is generated and 

considered as the reference point. The initial code includes the command for 

setting the GPIO pin high to indicate the level of operation of the inner loop with 

a delay function to pause the MCU operation. Figure 42 depicts the initial code. 

 

 

Figure 42: Initial code. 

 

The MCU operates at 8 MHz for the different levels of loops programmed. In the 

software, the different levels of infinite loops of For and While structures have 

been implemented with the command for setting the GPIO pin high during the 

computation of the inner loop. Figure 43 and Figure 44 illustrate the For and 

While loops for different nesting levels, respectively as an illustration. 

 

 

Figure 43: For loop (nesting level 2). 
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Figure 44: While loop (nesting level 2). 

 

3.2.2 Execution time measurements. 

A stopwatch is used to measure the operation time of the MCU. The current 

consumption is measured at the interval of 1 minute for a period of 5 minutes 

from the time the power supply is ON. The stopwatch is started at the time the 

power is ON and stopped at 5 minutes. The picture of the stopwatch is depicted 

in Figure 45 below. 
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Figure 45: Stopwatch application 

 

3.2.3 Current and Energy Consumption. 

Using the FLUKE DESKTOP multimeter set as an ammeter, the current 

consumed by the MCU is measured as the application runs at an interval of 

each minute for a period of 5 minutes of operation. These measurements are 

recorded manually. Then the average currents for the 5 minutes are computed. 

The FLUKE DESKTOP set as an ammeter is depicted in Figure 46 below: 

 

 

Figure 46: Fluke Multimeter Desktop set as an ammeter. 
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 An external power source DELTA ELEKTRONICA SM52-30 is used to power 

the     

 MCU with a fixed 3.3 V as illustrated in Figure 47 below: 

 

 

Figure 47: Delta ELEKTRONICA SM52-30 power supply. 

 

The power supply is set to supply a voltage of 3.3 V and a current of 0.300 mA 

acceptable for the MCU powered by an external 3.3 V. Furthermore, before 

each measurement, the power supply was calibrated to provide the set voltage 

and current required as shown in the above pictures. Using equations (2) and 

(4), the average power and energy consumption are calculated respectively for 

every minute, and the power and energy consumption for 5 minutes is also 

determined. Figure 48 illustrates the setup to measure the energy consumed by 

the STM32F303RE MCU. 
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Figure 48: Energy Consumption measurement setup. 

 

3.3 SECOND APPROACH. 

3.3.1 Software. 

At the start, the microcontroller is programmed, then the USB is disconnected to 

eliminate the impact of circuit consumption of the ST-Link as previously. After 

that, the programmed software on the STM32F303RE is processed in an 

endless loop. As every code runs within an infinite loop, an initial code is 

considered the measurements' reference point. This initial code includes the 

command for setting the GPIO pin high and low with the delay function. The 

different levels of loops will then be implemented within the initial code. The 

picture in Figure 49 depicts the setup of the initial code. 
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Figure 49: Initial code. 

 

The 32-bit MCU runs at an 8 MHz internal clock frequency; this implies that 

each instruction is processed at 125 nanoseconds within the MCU as set in the 

program. 

In the code, loops include a fixed counter value. This number is chosen 

according to the maximum time of 20 milliseconds delay between the two states 

of the GPIO pin at level 1. Then 1 level of a loop (For or While respectively) is 

added up to 4 levels in nesting fashion. Finally, the inner loops' values are 

chosen to conveniently display the waveforms on the oscilloscope for the four 

different levels of nesting loops. Figure 50 and Figure 51 illustrate different 

nesting levels of for and while loops. 
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Figure 50: For-Level 1. 

 

Figure 51: While-level 2. 

 

The power supply needs to be set to provide a 3.3 V voltage and 300 mA 

current to supply the MCU for the measurements to be consistent. Therefore, 

the power supply needs to be set before taking each measurement. 
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3.3.2 Execution time measurements. 

The execution time measurements were performed by changing the selected 

GPIO pin and using a Tektronix TDS3024B oscilloscope to determine the 

waveform width time between the rising and falling edges of the nested loops 

being executed. The physical measurement setup is illustrated in Figure 52 

below. 

 

 

Figure 52: Setup. 

 Illustrations of the execution time measured by the oscilloscope using channel 

1 (CH1) and channel 2 (CH2) are shown in Figure 53, Figure 54, and Figure 55 

below: 
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Figure 53:For loop level 1 Execution time measurement. 

 

 

Figure 54: For Level 2 Execution time. 
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Figure 55: While level 4 Execution time measurements. 

 

The time to execute the running nested loops was measured with the 

oscilloscope, and the readings were manually recorded. The GPIO pin was set 

high at the beginning of the nested loops and was set low as the nested loops 

ended. The square wave was displayed at the oscilloscope, and the time 

between the rising and falling edge was measured manually in some by 

counting the number of divisions or by reading the width (pulse) of the obtained 

waveform given by the oscilloscope where possible to determine the time 

needed to execute the nested loops. The negative value simply means that the 

polarity is swapped around. This is intended to be as such so that the user can 

visualise the measurement signal. 

While CH1 in yellow measures the execution time of the loops as the execution 

starts and when the execution ends by reading the obtained pulse, CH2 in blue 

also indicates the supply voltage of the MCU during the time of execution 

displayed in CH1. The area indicated in CH1 and CH2 has the same duration. 
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3.3.3 Power and Energy consumption measurements. 

In order to determine the power (energy) consumed while the various levels of 

loops are being executed, the current consumption needed to be measured by 

inserting a 100-ohm shunt resistor in the current consumption line of the 

STM32F303RE development board by removing the IDD jumper of the board 

as shown in Figure 56 below: 

 

 

Figure 56: Shunt Resistor Set-up. 

 

 

 

 

 

 

 

 

 

 



89 

 

The resistor value has been measured by the Fluke desktop multimeter set as 

an Ohmmeter before the insertion in the circuit, as illustrated in Figure 57 

below: 

 

 

Figure 57: Shunt resistor measurements. 

 

The shunt resistor is 100 ohms with 1% tolerance; the resistor has been 

measured by the Fluke Desktop multimeter set as an Ohmmeter as per the 

above. Its value is 100.07 Ohm. (Since the decimal point is insignificant, the 

100 Ohm value is used for the current calculations). The measured voltage drop 

across the shunt resistor during execution was used in the Ohms law and 

power equation to determine the power consumed by the MCU seen during the 

execution of the levels of the loop. The available current consumed is activated 

by the removal of the IDD jumper. 

For the experiments, two channels of the oscilloscope TEKTRONIX TDS2024B 

was used. CH 1 in yellow was utilised to measure the voltage drop across the 

resistor Which waveform, while CH 2 in blue was utilised to monitor the 

supplied voltage of the MCU, as shown in Figure 54. In addition, the GPIO 

output pin driving an LED was used to physically see the LED's blinking as the 

pin toggles before and after execution of the level of loops to be tested. With the 

two waveforms displayed, the voltage drop was then matched with the supplied 

voltage during the execution of the level of loops, allowing the detection of the 
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portion of the MCU consumption that happened due to the processing of these 

loops.  

An external power source, DELTA ELEKTRONICA SM52-30 supplying 3.3 V, 

was chosen to supply the MCU only since the power supply via USB was 

removed after loading the codes in the target board. Figure 58 indicates the 

setup of the MCU with a shunt resistor, the power supply, and the oscilloscope. 

 

 

Figure 58: Measurement's setup. 

  

The average voltage across the shunt resistor was used to compute the MCU 

current consumption. Along with the supply voltage measured, the MCU current 

consumption was used to calculate the power and energy consumption of the 

MCU. 
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CHAPTER 4  

EXPERIMENTATION RESULTS 

In the first approach, the results of the initial code and five levels of For and 

While loops in nesting fashion are summarized in Table 7 and Table 8, 

respectively. 

 

Table 7: Results of For Loop measurements. 

 

 

Table 8: Results of While Loop measurements. 

 

 

The average current consumed by the MCU is the average of the current 

measured at each minutes for the 5 minutes of operation. As an illustration the 

averages of current when executing  a For loop of level 5 and While loop of 

level 5 are respectively obtained as below: 

Average Current = (9.03 mA + 8.935mA+ 8.832mA + 8.796mA + 8.815mA)/5  

        = 8.882 mA. 

Average Current = (8.98 mA + 8.883mA+ 8.787mA + 8.69mA + 8.698mA)/5  
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        = 8.808 mA. 

The average power consumption of the MCU is obtained using the average 

current consumed and the fixed voltage of 3.3V (MCU supply voltage)  in 

equation (2) to obtain the average power consumption. As an illustration, the 

averages of power when executing a For loop and While loop of level 5 are 

respectively obtained as below: 

Average Power = (3.3V) X (8.882 mA) 

       = 29.311 mW. 

Average Power = (3.3V) X (8.808 mA) 

       = 29.056 mW. 

The average energy consumption of the MCU is obtained by using average 

power consumption and the total time of operation (5 minutes) in equation (4) to 

obtain the average energy consumption. As an illustration, the averages of 

energy when executing a For loop and While loop of level 5 are respectively 

obtained as below: 

Average Energy = (29.311 mW) X  (300 s) 

         = 8793.3 mJ. 

Average Energy = (29.311 mW) X  (300 s) 

         = 8793.3 mJ. 

The obtained average current and average energy consumption of the MCU 

summarized in Table 7 for the For loops in the nesting fashion (from level 0 to 

level 5) are represented in graphs as shown in Figure 59 and Figure 60, 

respectively. 
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Figure 59: For- Average Current vs nesting levels of loops. 

 

In Figure 59, the image shows a steep rise of the current consumption 

concerning the nesting level of loops from level 0 to level 2; then, it later 

saturates from level 2 to level 5. From level 0 to level 2, there was an increase 

of about 0.110 mA (8.861 mA – 8.53 mA, divided by 3) per level. Then from 

level to level 5, there was an increase of 0.005 mA (8.882 mA – 8.861 mA, 

divided by 4) per each level.  

 

 

Figure 60: For - Average Energy vs nesting levels of loops. 
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In Figure 60, the representation of the average energy consumption of the 

STM32F303RE MCU with respect to the nesting level of loops is depicted. The 

graph shows a steep rise from level 0 to level 2 and a saturation from level 2 to 

level 5. From level 0 to level 2, there was an increase in energy consumption of 

about 109.2 mJ (8772.3 mJ – 8444.7 mJ, divided by 3 levels) per level. Then 

from level 2 to level 5, there was an increase in energy consumption of about 

5.25 mJ (8793.3 mJ – 8772.3 mJ, divided by 4 levels) per level. 

For the While loop, the obtained average current and average energy 

consumption of the STM32F303RE MCU summarized in table 8 for the While 

loops in the nesting fashion (from level 0 to level 5) are represented in graphs 

shown in Figure 61 and Figure 62 below, respectively. 

 

 

Figure 61: While - Average Current vs nesting levels of loops. 

 

In Figure 61, the image shows a proportional rise (steep rise) of the current 

consumption of STM32F303RE MCU concerning the nesting level of loops from 

level 0 and level 2. Then from level 2 to level 5, there was saturation. 

There was an increase in current consumption of about 0.080 mA (8.769 mA – 

8.53mA, divided by 3 levels) per level from level 0 to level 2 and an increase of 

about 0.01 mA (8.808 mA – 8.769 mA, divided by four levels) per each level 

from level 2 to level 5. 
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Figure 62: While - Average Energy vs nesting levels of loops. 

 

In Figure 62, the representation of the average energy consumption of the 

STM32F303RE MCU with respect to the nesting level of loops is depicted. The 

graph shows a steep rise in the energy consumption of about 78.9 mJ (8681.4 

mJ-8444.7 mJ, divided by three levels) per level from level 0 to level 2. Then 

there was an increase in energy consumption of about 9.6 mJ (8719.8 mJ - 

8681.4mJ, divided by 4 levels) from level 2 to level 5. 

Furthermore, a comparative evaluation of the energy consumption of the 

STM32F303 RE MCU executing the For and While loops in nesting fashion are 

depicted in Figure 63 below: 
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Figure 63: Energy Consumption comparison. 

 

In Figure 63, the average energy consumption of MCU for the While loop in 

green and the energy consumption of the For loop in red have the same level at 

level 0 since this is the initial code. 

 At level 1, the average energy consumption of the For loop is 8599.2 mJ, 

and the average energy consumption of the While loop is 8511.9 mJ. 

This presents a difference of 87.3 mJ (8599.2 mJ – 8511.9 mJ), which 

means the energy consumption of the STM32F303RE executing the 

While loop is lower than its energy consumption when executing the For 

loop.  

 At level 2, the average energy consumption of the For loop is 8772.3 mJ, 

and the average energy consumption of the While loop is 8681.4 mJ. 

This presents a difference of 90.9 mJ (8772.3 mJ – 8681.4 mJ), which 

means the energy consumption of the STM32F303RE executing the 

While loop is lower than its energy consumption when executing the For 

loop.  

 At level 3, the average energy consumption of the For loop is 8782.2 mJ, 

and the average energy consumption of the While loop is 8689.2 mJ. 

This presents a difference of 93 mJ (8782.2 mJ – 8689.2 mJ), which 

means the energy consumption of the STM32F303RE executing the 
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While loop is lower than its energy consumption when executing the For 

loop. 

 At level 4, the average energy consumption of the For loop is 8791.2 mJ, 

and the average energy consumption of the While loop is 8718 mJ. This 

presents a difference of 73.2 mJ (8791.2 mJ – 8718 mJ), which means 

the energy consumption of the STM32F303RE MCU executing the While 

loop is lower than its energy consumption when executing the For loop. 

 At level 5, the average energy consumption of the For loop is 8793.3 mJ, 

and the average energy consumption of the While loop is 8719.8 mJ. 

This presents a difference of 73.5 mJ (8793.3 mJ – 8719.8 mJ), which 

means the energy consumption of the STM32F303RE MCU executing 

the While loop is lower than its energy consumption when executing the 

For loop. 

This comparison indicates that the STM32F303RE MCU executing the While 

loops in nesting fashion has a lower energy consumption (about 62.41 mJ 

average) than executing the For loops in nesting fashion. 

In the 2nd approach, the execution time for the various levels has been 

measured to determine the duration (period) taken by the STM32F303RE MCU 

to execute the different loop structures. In addition, the effect of these loop 

structures on energy consumption is also determined. The obtained results are 

summarized in Table 9 and Table 10. 

 

Table 9: Results of For Loop measurements. 
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Table 10: Results of While loop measurements. 

 

 

The system was powered by an external supply at 3.3 V. The insertion of the 

shunt resistor creates a shunt voltage across the resistor (100 Ohm) which is 

measured with the oscilloscope. In addition, the STM32F303RE MCU supplied 

voltage is also measured by the oscilloscope. 

The average current is the average current consumed by the MCU is then 

determined using the shunt voltage and the resistor value according to Ohm's 

law.  

The average power is the average power consumed by the MCU during the 

execution time of the nesting level of loops. This average power is obtained 

using the MCU supply voltage and the average current consumption in equation 

(2). As an illustration, the Average Power of the STM32F303RE when executing 

the For loop level 4 and While loop level 4 are respectively calculated as below: 

Average Power = (2.60 V) X (7.15 mA) 

       =  18.59 mW. 

Average Power = (2.74 V) X (5.78 mA) 

        =  15.84 mW. 

The execution time is the time taken by the CPU when executing the level of 

loops. It is measured by the oscilloscope using the toggling pin. 

The average energy is the average energy consumed by the MCU during the 

time taken to execute the nesting loop level. This average energy is then 

obtained using the equation's average power and execution time (4). As an 

illustration, the Average Energy of the STM32F303RE when executing the For 

loop level 4 and While loop level 4 are respectively calculated as below: 

Average Energy = (18.59 mW) X (22 s) 
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         =  408.98 J. 

Average Energy = (15.84 mW) X (115 ms) 

         =  1.822 mJ. 

In this instance, the execution time is exponential to the number of levels for the 

For and While loops structure as per Figure 64 and Figure 65, respectively.  

 

Figure 64: For - Execution time vs nesting levels of loops. 

 

Figure 64 indicates that the execution time of the CPU increases exponentially 

with respect to the nesting level of loops. For example, with the same number of 

iterations, the graph shows that the STM32F303RE MCU takes about 20 ms to 

execute a For loop level 1 and takes about 2.2 s to execute For loop level 4. 

This implies that the execution time to execute 40000 iterations in the For loop 

at 8 MHz increases by ten times per nesting level of the For loop. This is due to 

the number of instructions to execute as the nesting level of For increases.  
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Figure 65: For Loop - Average Energy vs nesting levels of loops. 

 

In figure 65 indicates that energy consumption increases exponentially from 

7.39 nJ at the initial code. For example, the For loop level 1 causes an energy 

consumption of 314.6 nJ.  408.98 J when executing the For loop level 4. Since 

the energy consumption is a function of the execution time, the energy 

consumption also increases at about ten times per each level of nesting level of 

For loops. 

 

 

Figure 66: While Loop - Execution time vs nesting levels of loops. 
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Figure 66 indicates that the execution time of the CPU increases proportionally 

with respect to the nesting level of loops. For example, with the same number of 

iterations, the graph shows that the STM32F303RE MCU took about 20 ms to 

execute a While loop level 1 and takes about 115 ms to execute While loop 

level 4. This implies that the execution time to execute 40000 iterations in the 

While loop at 8 MHz increases by 25 from level 0 to level 2 and 35 ms per each 

nesting level of the While loop from level 2 to level 4.  

As in the first approach, the energy consumption increases with the number of 

nesting levels of the For loop and While loop structures, as shown in Figure 66 

and Figure 67, respectively. Again, this is due to the longer execution time of 

the nesting levels as the nesting level increases. 

 

 

Figure 67: While Loop - Average Energy consumption vs nesting levels of 

loops. 

 

In figure 67, the average energy consumption of the STM32F303RE MCU is 

7.39 nJ when executing the initial code and 1.822 mJ when the STM32F303RE 

MCU executes the While loop level 4. This is justified by the execution of time, 

which also increases as the nesting level increases. 

Furthermore, the results also indicate that the STM32F303RE MCU consumes 

more energy when executing the For-loop structures than running the While 

loop structures, as per Figure 68. 
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Figure 68: Energy Consumption comparison. 

 

The above graph indicates that the energy consumption of the STM32F303 RE 

MCU executing the While loop ranges from 7.39 nJ to 1.822 mJ. This implies an 

increase of energy consumption at an average of about 0.362 mJ per nesting 

level of the While loop. Meanwhile, the energy consumption of the STM32F303 

RE MCU executing the For loop ranges from 7.39 nJ to 408.98 J. This implies 

an increase of energy consumption at an average of about 81.80 J per nesting 

level of For Loop. 

For battery-powered embedded systems, the higher energy consumption of the 

MCU causes an embedded system's overall total energy consumption to 

increase. This causes the battery life of these systems to be reduced. 

While with the first approach, it is indicated that the current (Power and energy) 

consumption of MCU rises as the nesting level of the loop is increased. The 

second approach also shows that the current (power and energy) consumption 

of MCU rises. In the second approach, the nesting level of loops also increases 

the time taken by the processor to execute this loop (i.e., execution time). The 

rising of the current consumption of the MCU impacts the design of the 

embedded systems as these systems operate under a limited power budget or 

depend on batteries as the sole source of energy, as stated earlier.  
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Reducing the current consumption extends the battery life of these devices and 

increase their lifespan.  

Furthermore, these embedded systems are also designed as real-time systems 

where the tasks need to meet deadlines which are time constraints. Therefore, 

an increase in execution time can cause these real-time systems to fail to meet 

the time requirements when running. 

It is also observed that the For loop nesting levels has a higher power (energy) 

consumption than the While loop nesting levels. This is because the For loop 

structures begin by initializing the counter variable, testing the condition, 

executing the instructions, and incrementing the counter variable. This process 

is repeated until the condition is no longer valid. Meanwhile, the While loop only 

tests the condition before execution of the instructions within the loop. 

By reducing the number of loops in nesting fashion, the current (power and 

energy) consumption of MCU is also reduced. The execution time also is 

reduced. This approach allows the implementation of energy-aware systems, 

and it is appropriate to consider them in real-time systems. The work showed 

that the aim of this research was achieved as embedded systems developers 

should be mindful of the use of nesting loop structures for their applications 

where possible. 
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CHAPTER 5   

CONCLUSION AND FUTURE WORK. 

In conclusion, this work aimed to develop an energy-aware real-time application 

technique to reduce the energy consumption due to computation. The nesting 

loop structures (For and While) were executed by the Nucleo-64 

STM32F303RE MCU, which executed the different levels of loops. The energy 

consumption of the For loop and While loop structures in nesting fashion up to 5 

levels of loops have been measured in the first approach, then up to 4 levels in 

the second approach. The measurements were performed on the 

STM32F303RE MCU of the Nucleo – 64 board.  

The obtained results demonstrated that the energy consumption rises with the 

number of loops in nesting fashion. In the first approach, the average energy 

consumption per level of For loop was about 109.2 mJ from level 0 to level 2, 

and then the increase per level was 5.25 mJ from level 2 to level 5.  The 

average energy consumption per level of While loop was about 78.9mJ from 

level 0 to level 2, and the average energy consumption was about 9.6 mJ from 

level 2 to level 5. The first approach demonstrated that the STM32F303 RE 

executing the While loop consumes about 62.41 mJ less per level than 

executing the For loop structure.  

The second approach indicates an increase exponentially from 7.39 nJ to 

408.98 J when executing the For loop structure. The energy consumption 

increased proportionally while executing the While loop structure. This implies 

an increase of 0.362 mJ per level for the While loop. The second approach also 

demonstrated that the STM32F303RE consumes about 81.80 J less executing 

the While loop structure than executing the For loop structure. The second 

approach also indicated that the execution time increases with the number of 

levels in the nesting fashion. The execution time to execute 40000 iterations in 

the While loop at 8 MHz increases proportionally by 25 ms from level 0 to level 

2 and 35 ms from level 2 to level 4 per each nesting level of the While loop. The 

execution time to execute 40000 iterations in the For loop at 8 MHz increases 

by ten times per nesting level of the For loop. 
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Both experiments showed that the MCU consumes more energy executing the 

For loop structures than executing the While loop structures. As this work aimed 

to come out with a technique in order to develop energy-aware applications for 

embedded systems, these measurements indicate that by reducing the level of 

nesting loops where applicable will result in decreasing the energy consumption 

during computation as well. Therefore, embedded software developers must 

minimise the level of loops where possible and select the proper structure when 

developing applications. This will decrease the energy consumed by the MCU 

while executing these applications and the overall energy consumed by the 

embedded system. Furthermore, reducing the energy consumption extends the 

battery life span of mobile and battery-powered embedded devices.  

In future, this work can be extended for other C language structures such as Do 

while, if -Statement. The combination of the For loop and While loop structure 

can also be evaluated to see if optimal power consumption can be achieved. 

Additionally, different MCUs can be used for this work. Furthermore, more 

advanced measurement methods can also be used in the experiments. 

  



106 

 

REFERENCES 

Amos, B., 2020. Hands-On RTOS with Microcontrollers. s.l.:Packt. 

Andreas Ermedahl, Jakob Engblom, 2007. Execution Time Analysis for 

Embedded Real-Time Systems. [Online]  

Available at: 

https://www.academia.edu/24443794/Execution_Time_Analysis_for_Embedded

_Real-Time_Systems 

[Accessed 16 May 2021]. 

Arm, 2020. Arm Cortex-M4 Datasheet, s.l.: s.n. 

Attakorn Lueangvilai, Christina Robertson, and Christopher J. Martinez, 2012. A 

Dynamic Frequency Controlling Technique for Power Management in Existing 

Commercial Microcontrollers. Journal of Computing Science and Engineering, 

6(2), pp. 79-88. 

C. Chang, S. Muftic and D. J. Nagel, 2007. Measurement of Energy Costs of 

Security in Wireless Sensor Nodes. s.l., s.n., pp. 95-102. 

Chabini and Wolf , 2003. Minimizing Variables’ Lifetime in Loop-Intensive 

Applications. Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45212-6_8, 

s.n. 

Chakrabarty, V. S. a. K., n.d. Real-Time Task Scheduling for Energy-Aware 

Embedded Systems. Durham, s.n. 

Chi Ta Wu, Ang-Chih Hsieh and Ting Ting Hwang, 2006. Instruction buffering 

for nested loops in low-power design. s.l., s.n. 

Davies, J. H., 2008. MSP430 Microcontroller Basics. s.l.:Newnes. 

G. Guimaraes; E. Souto; D. Sadok; J. Kelner, 2005. Evaluation of security 

mechanisms in wireless sensor networks. s.l., s.n. 

Haulin, L., 2018. A state-based method to model and analyze the power 

consumption of embedded systems, s.l.: s.n. 

Horton, I., 2013. Chapter 4 - Loops. In: Beginning C, Fifth Edition. s.l.:Apress. © 

2013. Books24x7 



107 

 

http://library.books24x7.com.libproxy.cput.ac.za/toc.aspx?bookid=52439> 

(accessed May 16, 2021). 

Ibrahim, D., 2010. SD Card Projects Using the PIC Microcontroller. s.l.:Newnes. 

Ibrahim, D., 2014. Chapter 1 - Microcomputer Systems. In: Designing 

Embedded Systems with 32-Bit PIC Microcontrollers and MikroC.. s.l.:Elsevier 

Science & Technology. 

Ibrahim, D., 2015. PIC32 Microcontrollers and the Digilent chipKIT: Introductory 

to Advanced Projects.. s.l.:Newnes. 

Ibrahim, D., 2019. ARM-based microcontroller projects using mbed First edition. 

s.l.:Oxford, England ; Cambridge, Massachusetts : Newnes. 

J. Ramanujam, Jinpyo Hong, M. Kandemir, A. Narayan and A. Agarwal, 2006. 

Estimating and reducing the memory requirements of signal processing codes 

for embedded systems. IEEE Transactions on Signal Processing doi: 

10.1109/TSP.2005.855086, 54(1), pp. 286-294. 

J. T. Russell and M. F. Jacome, 1998. Software power estimation and 

optimization for high performance, 32-bit embedded processors. s.l., s.n. 

Juan Castillo, H. P. E. V. M. M., 2004. Energy Consumption Estimation 

Technique in Embedded Processors with Stable Power consumption based on 

Source-Code Operator Figures.  

Lehlogonolo P. I. Ledwaba, G. P. H. S. V. S. J. I., 2018. Performance Costs of 

Software Cryptography in Securing New-Generation Internet of Energy 

Endpoint Devices. IEEE Access, Volume 6, pp. 9303-9323. 

Majid Sarrafzadeh, F. D. R. J. T. M. A. N., 2006. Low power light-weight 

embedded systems. Tegemsee, s.n. 

Marwedel, P., 2018. Embedded System Design: Embedded Systems 

Foundations of Cyber-Physical Systems,and the Internet of Things Third 

Edition.. Dortmund: Springer. 

Mittal, S., 2014. A Survey of Techniques For Improving Energy Efficiency in 

Embedded Computer Systems. International Journal of Computer Aided 

Engineering and Technology, 6 (4)(10.1504/IJCAET.2014.065419ff. ffhal-

01101854f), pp. 440-459. 



108 

 

P. Ruberg, K. Lass and P. Ellervee, 2015. Microcontroller energy consumption 

estimation based on software analysis for embedded systems. s.l., s.n. 

Paul Deitel, Harvey Deitel, 2010. C HOW TO PROGRAM. Upper Saddle River, 

New Jersey 07458: Pearson Education, Inc. 

Qing Li, Caroline Yao, 2003. In: REAL-TIME CONCEPTS FOR EMBEDDED 

SYSTEMS. San Francisco: CMP Books. 

Qingchen Zhang, M. L. L. T. Y. ,. Z. C. ,. a. P. L., 2019. Energy-Efficient 

Scheduling for Real-Time Systems Based on Deep Q-Learning Model. IEEE 

TRANSACTIONS ON SUSTAINABLE COMPUTING, 4(1), pp. 132-138. 

Siegesmund, M., 2014. Chapter 6: Statements. In: Embedded C programming: 

Techniques and Applications of C and PIC MCUS. s.l.:Elsevier Science & 

Technology, 2014, pp. 73-94. 

Siegesmund, M., ProQuest Ebook Central, 

https://ebookcentral.proquest.com/lib/cput/detail.action?docID=1802024. 

Chapter 6: Statements. In: Embedded C programming: Techniques and 

Applications of C and PIC MCUS. s.l.:Elsevier Science & Technology, 2014, pp. 

73-94. 

Stewart, D. B., September 2006. Measuring Execution Time and Real-Time 

Performance. Boston, s.n. 

STMicroelectronics, 2016. Datasheet-STM32F303xD STM32F303xE, s.l.: s.n. 

STMicroelectronics, 2020. Data brief-STM32 Nucleo-64 boards, s.l.: s.n. 

STMicroelectronics, 2020. UM1724 User Manual, s.l.: s.n. 

Sutter, E., 2002. Embedded Systems Firmware Demystified. Kansas: CMP 

Books Lawrence. 

T. Rauber and G. Rünger, 2018. How do loop transformations affect the energy 

consumption of multi-threaded Runge-Kutta methods?. s.l., s.n. 

V. Dalal and C. P. Ravikumar, 2001. Software power optimizations in an 

embedded system. s.l., s.n. 



109 

 

V. Tiwari, S. Malik and A. Wolfe, 1994. Power analysis of embedded software: a 

first step towards software power minimization. IEEE Transactions on Very 

Large Scale Integration (VLSI) Systems, 2(4), pp. 437-445. 

Vishnu Swaminathan, K. C., n.d. Real-Time Task Scheduling for Energy-Aware 

Embedded Systems. Duke University. 

Vlad Radulescu, S. A. A. M. C., 2014. A Heuristic-Based Approach for 

Reducing the Power Consumption of Real-Time. s.l., s.n. 

Wilmshurst, T., 2009. Designing Embedded Systems with PIC Microcontrollers : 

Principles and Applications. s.l.:Elsevier Science & Technology. 

X. Zhou, B. Guo, Y. Shen and Q. Li, 2009. Design and Implementation of an 

Improved C Source-Code Level Program Energy Model. s.l., s.n. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 


