
THE DEVELOPMENT OF A NEW IEC 61850 STANDARD-BASED LOGICAL
NODE FOR MONITORING OF INDUSTRIAL PROCESS APPLICATIONS

by

Roderick Domingo

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Electrical Engineering

in the Faculty of Engineering and the Built Environment

at the Cape Peninsula University of Technology

Supervisor: Dr C. Kriger

Bellville campus
December 2021

ii

DECLARATION

I, Roderick Domingo, declare that the contents of this dissertation/thesis represent my own
unaided work, and that the thesis has not previously been submitted for academic
examination towards any qualification. Furthermore, it represents my own opinions and not
necessarily those of the Cape Peninsula University of Technology.

Signed Date

March 2021

 iii

ABSTRACT

Communication has always been critical within the implementation of any real-time
application, whether it be in the field of power systems or industrial process condition
monitoring and control. Communication contributes to achieving synchronised process data
used for monitoring applications and control applications.

Electrical substations contain multi-functional devices known as Intelligent Electronic Devices
(IEDs), having communication capabilities used in the protection, monitoring and control
applications in the power system. IEDs are required to share information among themselves
to perform various functions. This becomes challenging in a multi-vendor environment where
vendors produce devices which have proprietary communication protocols resulting in a lack
of interoperability with another vendor’s device as information cannot be distributed
throughout the system without costly protocol translators (or converters). The need for
standardized communication for the effective transfer of information throughout the power
system was identified by the International Electrotechnical Commission (IEC). This resulted
in the publication of the IEC 61850 standard for communications between devices within
substations initially, but later to devices found in the entire power system.

The IEC 61850 standard uses a standardized device, service and object model which
describes available data from various devices in the substation. The IEC 61850 standard
utilizes an abstract modelling approach in defining communications services and data
models which don’t form part of any specific protocol. These services are then mapped to
actual protocols within the application. The IEC 61850 standard uses an object-oriented
modelling approach. The logical node is the smallest element within the device model of the
IEC 61850 standard. The IEC 61850 device model is made up of multiple parts. What is
known as a Logical Node form one of the parts of the IEC 61850 device model.

Condition monitoring which is the process of monitoring a system or process in order to
detect underlying issues which may cause failures plays an important part in how the IEC
61850 standard is implemented.

This research work presents the development of a new Logical Node which conforms to the
IEC 61850 standard and used in a condition monitoring application where the obtained data
is communicated over an Ethernet communication network by publishing and subscribing to
GOOSE (Generic Object Orientated Substation Event) messages implemented between two
lightweight IED models developed on an embedded hardware platform. The required
knowledge to develop a device which conforms to the IEC 61850 standard almost always
resides in the vendors domain. Very little knowledge resides within the public domain due to
the challenges and difficulties associated with implementing of the standard.

Given the limited knowledge in the public domain and the myriad of integration challenges
within the sphere of the IEC 61850 standard, the thesis contributes by bringing this
knowledge to the user in the following ways:

1) Design, development and implementation of methods and real-time complex
algorithms in the application of the IEC 61850 standard on an embedded system
using open-source software.

2) Contributing to the advancement of the IEC 61850 standard in the domain of
condition monitoring with the design and development of a novel logical node for data
acquisition and distribution using GOOSE messages.

 iv

The design and implementation of this proposed research project supplements the
knowledge already gained by previous in-depth research studies conducted by universities
and other research institutions on applications of the IEC 61850 standard and presents the
possibility of new research prospects in the areas of process control and automation.

Keywords: Condition monitoring, IEDs, GOOSE message, IEC61850 standard, LN, RCM,
RTM, RTDL, Ethernet, IEC, Communication network.

 v

ACKNOWLEDGEMENTS

I wish to thank:

▪ My creator and heavenly Father, for bringing me to this point in my life because
without Him I would not have been able to accomplish anything.

▪ My amazing parents Roger and Charmaine, for their patience, continuous
encouragement, and financial support during throughout this journey which has not
always been easy.

▪ My beautiful girlfriend Courtney, for her unwavering support and continuous
encouragement during a time I did not always feel the need to press on, her support
kept me going.

▪ My supervisor Doctor Carl Kriger, for his tremendous insight, wisdom, guidance, and
patience during his supervision of this work and for being an inspiration throughout
the years of my undergrad studies.

▪ Mr Kegan Visagie, for his invaluable insight and advice regarding the C programming
implemented during the development of this research project.

Roderick Domingo

Bellville, December 2021

 vi

DEDICATION

This thesis is dedicated to my mother and father, who was never able to realise their dreams
due to childhood circumstances but worked hard and motivated me endlessly to ensure that I
could realise mine.

 vii

TABLE OF CONTENTS

DECLARATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS v

DEDICATION vi

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xv

GLOSSARY xvi

CHAPTER ONE 1

INTRODUCTION 1

1.1 Introduction 1

1.2 Awareness of the problem 6

1.3 Problem statement 7

1.4 Research Aim and Objectives 8

1.4.1 Aim 8

1.4.2 Objectives 8

1.4.3 Objectives: Theoretical Analysis 8

1.4.4 Objectives: Practical Implementation 9

1.5 Research Questions 9

1.6 Research Hypothesis 9

1.7 Delimitation of Research 10

1.7.1 Within scope 10

1.7.2 Beyond scope 10

1.8 Motivation for the Research Project 10

1.9 Assumptions 12

1.10 Contributions of the Research Project 12

1.11 Outline of the Thesis 12

1.12 Chapter Summary 14

CHAPTER TWO 15

LITERATURE REVIEW 15

CHAPTER THREE 59

OVERVIEW OF THE IEC 61850 STANDARD 59

3.1 Introduction 59

3.2 Introduction of the IEC 61850 standard 59

3.3 IEC 61850 standard overview 62

3.3.1 IEC 61850 standard conceptual modelling 63

 viii

3.3.2 IEC 61850 Data modelling 65

3.3.3 IEC 61850 Naming convention 70

3.3.4 Abstract Communication Service Interface 71

3.3.4.1 Information Model 73

3.3.4.2 Information Exchange 74

3.3.5 IEC 61850 Client-Server Architecture 76

3.3.6 IEC 61850 Publisher-Subscriber Architecture 77

3.3.7 IEC 61850 Data Communication 78

3.3.7.1 IEC 61850 GOOSE 79

3.3.7.1.1 IEC 61850 GOOSE Message Structure 82

3.3.8 Substation Configuration Language (SCL) 85

3.3.8 IEC 61850 Logical Nodes 86

3.4 Chapter Summary 88

CHAPTER FOUR 90

CASE STUDY PRACTICAL IMPLEMENTATION: SOFTWARE DEVELOPMENT AND SYSTEM

INTEGRATION 90

4.1 Introduction 90

4.2 Project Context 90

4.3 Hardware Platform Architecture 92

4.4 Case study 1 – simulation of GOOSE message between computer and Beaglebone 98

4.4.1 IEC 61850 embedded C library source code 99

4.5 Case study 2 – simulation of GOOSE message between two Beaglebone devices 106

4.5.1 Configuration of CCGR Logical Node in the ICD Designer software 108

4.5.1.1 Step 1: Define Header Information 109

4.5.1.2 Step 2: Communication settings configuration 110

4.5.1.3 Step 3: Adding the CCGR Logical Node to the Logical Device 111

4.5.1.4 Step 4: Configuring the CCGR Logical Node Data Types 112

4.5.1.5 Step 5: Adding the Dataset to LLN0 112

4.5.1.6 Step 6: Adding the Report Control Group to LLN0 114

4.5.1.7 Step 7: Adding the GSE Control Group to LLN0 116

4.5.1.8 Step 8: Export the CID file to ICD file 117

4.5.2 Configuration of the CCGR Logical Node in C Library 118

4.5.2.1 Java Runtime Installation 118

4.5.2.2 Converting .ICD file format to .c .h and .cfg 119

4.6 Case study 3 – Implementation of GOOSE message between two Beaglebone devices 123

4.6.1 Development of the new IPFC Logical Node in the ICD Designer software 127

4.6.1.1 Step 1: Define Header Information 128

4.6.1.2 Step 2: Communication settings configuration 129

4.6.1.3 Step 3: Configure the parameters of the new Logical Node 131

4.6.1.4 Step 4: Adding the new Logical Node to the Logical Device 133

4.6.1.5 Step 5: Configuring the IPFC Logical Node Data Types 134

4.6.1.6 Step 6: Adding the Dataset to LLN0 135

4.6.1.7 Step 7: Adding the Report Control Group to LLN0 136

 ix

4.6.1.8 Step 8: Adding the GSE Control Group to LLN0 138

4.6.1.9 Step 9: Export the CID file to ICD file 140

4.6.2 Validation of the new IPFC Logical Node using XML Marker Software 140

4.6.3 Configuration of the IPFC Logical Node in the C Library 144

4.6.3.1 Converting .ICD file format to .c .h and .cfg 144

4.7 Chapter Summary 149

CHAPTER FIVE 150

CASE STUDY VALIDATION: ANALYSIS OF RESULTS 150

5.1 Introduction 150

5.2 Analysis of results – Case study 1 151

5.3 Analysis of results – Case study 2 157

5.4 Analysis of results – Case study 3 164

5.5 Conclusion 173

CHAPTER SIX 174

CONCLUSION AND FUTURE RESEARCH WORK 174

6.1 Introduction 174

6.1.1 Aim 175

6.1.2 Objectives: Theoretical Analysis 175

6.1.3 Objectives: Practical Implementation 176

6.2 Thesis Deliverables 177

6.2.1 Literature Review 177

6.2.2 Configuring of hardware devices for real-time communication over an Ethernet network 178

6.2.3 Development of IEC 61850 standard-based lightweight IEDs using the IEC61850 C code library
in the Linux Environment 178

6.2.4 Configuring of embedded hardware for monitoring of a temperature and humidity sensor 179

6.2.5 Development of an IEC 61850 standard-based Logical Node in the System Corp ICD Designer
software 179

6.2.6 Real-time implementation of the GOOSE communication protocol using the newly developed
logical node which is used in the condition monitoring system 180

6.3 Software Development 181

6.4 Application of the Developed Methods and Algorithms 181

6.4.1 Industrial Applications 181

6.4.2 Academic Applications 182

6.5 Future Work 182

6.6 Publications related to this thesis. 182

6.7 Conclusion 183

REFERENCES 184

APPENDICES 190

APPENDIX A: Installing Ubuntu on the computer 190

APPENDIX B: Ubuntu updates and additional installations on the computer 196

APPENDIX C: Installing Ubuntu on the Beaglebone 198

APPENDIX D: Configuring IEC 61850 embedded C library on Beaglebone 211

 x

APPENDIX E: Computer GOOSE Publisher source code with GGIO LN 216

APPENDIX F: Beaglebone GOOSE Subscriber source code 1 219

APPENDIX G: Beaglebone GOOSE Publisher source code with CCGR LN 221

APPENDIX H: Beaglebone GOOSE Subscriber source code 2 223

APPENDIX I: Beaglebone GOOSE Publisher source code with IPFC LN 225

APPENDIX J: IPFC Logical Node in XML 228

 xi

LIST OF FIGURES

Figure 1.1: The Legacy and Smart Grid Concept 2
Figure 1.2: Vendor-specific condition monitoring system 4
Figure 1.3: The IEC 61850 standard modelling approach 5
Figure 2.1: Framework of the condition monitoring concept 17
Figure 2.2: RCM mode of operation 18
Figure 2.3: RTM mode of operation 18
Figure 2.4: RTDL mode of operation 19
Figure 2.5: Expected rate of failure with the introduction of condition
monitoring

20

Figure 2.6: Condition-based maintenance implementation process 21
Figure 2.7: Different condition monitoring data viewed remotely 24
Figure 2.8: Relation between the four components of the condition
monitoring system

25

Figure 2.9: Operation of AE condition monitoring system 26
Figure 2.10: Hardware layout of plant condition monitoring system 28
Figure 2.11: Hardware layout of granary condition monitoring system 29
Figure 2.12: IEC 61850 standard scope in substation condition monitoring
systems

32

Figure 2.13: IEC 61850 standard concept in substation condition monitoring
systems

33

Figure 2.14: Monitored parameters relating to power quality 35
Figure 2.15: The object model hierarchy used by IEDs 36
Figure 2.16: Publisher-subscriber communication service replacing
hardwired signals

41

Figure 2.17: SV publisher-subscriber communication service 41
Figure 2.18: IEC 61850-based substation communication layout 42
Figure 2.19: Communication architecture based on the IEC 61850 standard 42
Figure 2.20: GOOSE message implementation between IEDs 45
Figure 3.1: Legacy substation architecture 61
Figure 3.2: IEC 61850 conceptual modelling approach 64
Figure 3.3: An IEC 61850 device representation 66
Figure 3.4: Position information depicted as a tree 68
Figure 3.5: XCBR (circuit breaker) logical node class definition 70
Figure 3.6: Anatomy of an IEC 61850-8-1 Object Name 71
Figure 3.7: ACSI mapping to communication stacks/profiles 72
Figure 3.8: Conceptual model of ACSI 72
Figure 3.9: Basic conceptual class model of the ACSI 74
Figure 3.10: ACSI communication methods 75
Figure 3.11: Client and Server interactions 76
Figure 3.12: Client/Server interactions 77
Figure 3.13: IEC 61850 layered structure with OSI stack 78
Figure 3.14: IEC 61850 Communication model 79
Figure 3.15: Overview of IEC 61850 functionality and associated
communication profiles

80

Figure 3.16: Overview of the classes and services of the GOOSE model 81
Figure 3.17: GOOSE message transmission time 82
Figure 3.18: GOOSE control block class 82
Figure 3.19: GoosePdu as defined in the IEC 61850-8-1 standard 84
Figure 3.20: Virtualisation 86
Figure 3.21: Simple protection and measurement example 87

 xii

Figure 3.22: Logical Node class diagram 88
Figure 4.1: Beaglebone Black Rev C key components 93
Figure 4.2: Beaglebone Black Rev C connectors LEDs and switches 94
Figure 4.3: Beaglebone Black Rev C pin layout 95
Figure 4.4: Physical setup of the case study 99
Figure 4.5: DEBUG_GOOSE_SUBSCRIBER set to 0 100
Figure 4.6: Adding new variables 100
Figure 4.7: Calling GooseReceiver function in the Main 101
Figure 4.8: parseGooseMessage function 101
Figure 4.9: parseGooseMessage function 102
Figure 4.10: Data using Logical Node GGIO1 to be published over GOOSE 103
Figure 4.11: Data objects and common data classes of Logical Node GGIO1 104
Figure 4.12: GGIO (generic process I/O) logical node class definition 105
Figure 4.13: GOOSE Subscriber source code 105
Figure 4.14: Physical setup of the case study 106
Figure 4.15: CCGR Logical Node 108
Figure 4.16: Flowchart detailing the steps for CCGR logical node
configuration

109

Figure 4.17: The New File template 109
Figure 4.18: The Header ID 110
Figure 4.19: Defining IP addresses and GSEGroup for the Access Point 110
Figure 4.20: Defining the ServerIED parameters 111
Figure 4.21: Adding the CCGR Logical Node 111
Figure 4.22: Selecting the CCGR Logical Node from the list 112
Figure 4.23: Configuring the Data Object parameters 112
Figure 4.24: Configuring the Data Object parameters 113
Figure 4.25: Adding Data Objects and Naming the Dataset 113
Figure 4.26: Adding Report Control Block 114
Figure 4.27: Report Control Block (Events) parameter configuration 115
Figure 4.28: Report Control Block (AnalogValues) parameter configuration 115
Figure 4.29: Adding GSE Control Block 116
Figure 4.30: GSE Control Block (Events) parameter configuration 117
Figure 4.31: GSE Control Block (AnalogValues) parameter configuration 117
Figure 4.32: Exporting project file from CID to ICD format 118
Figure 4.33: Creating .c and .h file from .ICD file 120
Figure 4.34: Creating .cfg file from .ICD file 121
Figure 4.35: Data using Logical Node CCGR0 to be published over GOOSE 122
Figure 4.36: Data objects and common data classes of Logical Node CCGR0 122
Figure 4.37: GOOSE Subscriber source code 123
Figure 4.38: Physical setup of the case study 125
Figure 4.39: Flowchart detailing the steps for IPFC logical node development 128
Figure 4.40: The New File template 129
Figure 4.41: The Header ID 129
Figure 4.42: Defining IP addresses, MAC address and GSEGroup for the
Access Point

130

Figure 4.43: Defining the ServerIED parameters 130
Figure 4.44: Selecting manage customised logical nodes option 131
Figure 4.45: Customised Logical Node Manager 131
Figure 4.46: Customised Logical Node Manager 132
Figure 4.47: Customised Logical Node Manager 133
Figure 4.48: Adding the New Logical Node 133

 xiii

Figure 4.49: Selecting the IPFC Logical Node from the list 134
Figure 4.50: Setting the Data Object parameters 135
Figure 4.51: Adding the Data Set 135
Figure 4.52: Adding Data Objects and Naming the Dataset 136
Figure 4.53: Adding Report Control Block 136
Figure 4.54: Report Control Block (Events) parameter configuration 137
Figure 4.55: Report Control Block (AnalogValues) parameter configuration 138
Figure 4.56: Adding GSE Control Block 138
Figure 4.57: GSE Control Block (Events) parameter configuration 139
Figure 4.58: GSE Control Block (AnalogValues) parameter configuration 139
Figure 4.59: Exporting project file from CID to ICD format 140
Figure 4.60: XML Marker opening window 141
Figure 4.61: Header section in XML Marker 141
Figure 4.62: Communication section in XML Marker 142
Figure 4.63: IED section 1 in XML Marker 142
Figure 4.64: IED section 2 in XML Marker 142
Figure 4.65: IED section 3 in XML Marker 142
Figure 4.66: Continuation of IED section 3 in XML Marker 143
Figure 4.67: Creating .c and .h file from .ICD file 145
Figure 4.68: Creating .cfg file from .ICD file 146
Figure 4.69: Data being used by the new IPFC Logical Node to be published
over GOOSE

147

Figure 4.70: Data objects and common data classes of Logical Node IPFC 148
Figure 5.1: Physical setup of the case study 152
Figure 5.2: Fixed portion of the GOOSE Message structure 152
Figure 5.3: Variable portion of the GOOSE Message structure 153
Figure 5.4: goosePdu portion of the GOOSE Message structure 154
Figure 5.5: Data portion of the GOOSE Message structure 155
Figure 5.6: User-defined data in source code from Appendix E 156
Figure 5.7: Details of GOOSE message subscribed to by the subscribing
device

157

Figure 5.8: Physical setup of the case study 159
Figure 5.9: Fixed portion of the GOOSE Message structure 159
Figure 5.10: Variable portion of the GOOSE Message structure 160
Figure 5.11: goosePdu portion of the GOOSE Message structure 161
Figure 5.12: Data portion of the GOOSE Message structure 162
Figure 5.13: User-defined data in source code from Appendix G 163
Figure 5.14: Details of GOOSE message subscribed to by the subscribing
device

163

Figure 5.15: Physical setup of the case study 166
Figure 5.16: Fixed portion of the GOOSE Message structure 166
Figure 5.17: Variable portion of the GOOSE Message structure 167
Figure 5.18: goosePdu portion of the GOOSE Message structure 168
Figure 5.19: Data portion of the GOOSE Message structure 169
Figure 5.20: User-defined data in source code from Appendix I 170
Figure 5.21: Data being published by the GOOSE Publishing IED 170
Figure 5.22: GOOSE Message being subscribed to by the Subscribing IED 171
Figure 5.23: GOOSE Inspector interface showing published GOOSE
messages

172

Figure A A.1: Ubuntu installation boot screen 190
Figure A A.2: Ubuntu installation language prompt 191
Figure A A.3: Ubuntu installation keyboard layout selection 191

 xiv

Figure A A.4: Ubuntu Installation updates and other software 192
Figure A A.5: Ubuntu installation type 193
Figure A A.6: Ubuntu installation storage configuration 193
Figure A A.7: Root partition configuration 194
Figure A A.8: Finalising the installation 195
Figure A A.9: Installation complete, system to be rebooted. 195
Figure A B.1: Repository updates 196
Figure A B.2: Make Utility installation 196
Figure A B.3: CMake Utility installation 197
Figure A C.1: Software image download 199
Figure A C.2: balenaEtcher home screen 199
Figure A C.3: Selecting OS image to be flashed 200
Figure A C.4: Begin flashing process 201
Figure A C.5: SSH connection to Beaglebone 202
Figure A C.6: Connected to Beaglebone as root user 203
Figure A C.7: Beaglebone network interface configuration 204
Figure A C.8: Computer network interface configuration 205
Figure A C.9: Setting up internet connection on the Beaglebone 206
Figure A C.10: Setting up internet connection on the Beaglebone 207
Figure A C.11: Beaglebone connection to the internet is established 207
Figure A C.12: Upgrading installed packages on the Beaglebone 208
Figure A C.13: Upgrading installed packages 209
Figure A C.13: Upgrading installed packages 209
Figure A C.15: System reboot prompt 210
Figure A D.1: Copying library files from computer to Beaglebone 211
Figure A D.2: IEC61850 library files copying to Beaglebone 212
Figure A D.3: Copying library files to root directory 213
Figure A D.4: Compiling the IEC61850 embedded c library 214
Figure A D.5: Configuring static IP address of the Beaglebone 215

 xv

LIST OF TABLES

Table 2.1: Application of condition monitoring systems 22
Table 2.2: Application of condition monitoring of industrial processes 30
Table 2.3: Application of IEC 61850 standard-based condition monitoring
systems

39

Table 2.4: Current IEC 61850 standard-based communication applied 48
Table 2.5: Application of IEC 61850 standard-based communication 49
Table 3.1: Scope and Outline of the IEC 61850 standard 68
Table 3.2: Logical node groups (IEC 61850-7-1) 72
Table 3.3: List of Logical Node Groups (IEC 61850-7-4) 74
Table 3.4: IEEE 802.1Q Tag Header Structure (IEC 61850-8-1) 88
Table 3.5: SCL description file types (IEC 61850-6) 91
Table 4.1: Beaglebone Black Rev C specifications 97
Table 4.2: Beaglebone Black P8 Pinout 101
Table 4.3: Beaglebone Black P9 Pinout 102
Table 4.4: IPFC Class Diagram 132
Table 4.5: Logical Data Names, Attributes, Value and Type 139
Table 6.1: Summary of the software programmes developed in this research 187

 xvi

GLOSSARY

Abbreviations Definition/Explanation
IED Intelligent Electronic Device
SAS Substation Automation Systems
CDC Common Data Class
HMI Human Machine Interface
MMS Manufacturing Messaging Specification
GOOSE Generic Object-Oriented Substation Event
SMV Sampled Measured Values
SCSM Specific Communication Service Mapping
SCADA Supervisory Control and Data Acquisition
LAN Local Area Network
IEC International Electrotechnical Commission
CBM Condition Based Maintenance
AI Artificial Intelligence
CBM Condition Based Monitoring
RCM Remote Condition Monitoring
RTM Real Time Monitoring
RTDL Real Time Data Logging
BLE Bluetooth Low Energy
TCP Transmission Control Protocol
AP Access Point
SRAM Static Random Access Memory
EPS Electrical Power System
IT Instrument Transformer
CT Current Transformer
VT Voltage Transformer
JNI Java Native Interface
CMD Condition Monitoring Diagnosis
GIS Gas Insulated Switchgear
IM Induction Motor
MCSA Motor Current Signature Analysis
FT Fourier Transform
RSWPT Recursive Stationary Wavelet Packet Transform
MU Merging Unit
SA Situation Awareness
LoM Loss of Mains
GSM Global System for Mobile Communication
APN Access Point Name
SG Smart Grid
DN Distributed Network

 1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

South Africans have a newfound appreciation for the level of comfort and

convenience provided by a stable and secure power electricity supply. This in the

light of continued power outages as the electricity demand far outweighs the

generation as a result of ageing infrastructure and low maintenance scheduling

among many other factors. Electricity is produced from renewable and non-renewable

sources; the renewable sources include hydro, solar and wind. The non-renewable

sources are sources such as coal, natural gas, and oil are energy that is utilised

immediately upon generation as it cannot be stored feasibly (F. O. Igbinovia, et al.

2017).

With electricity dating as far back as the nineteenth century, the generation,

transmission, and distribution of electricity has evolved drastically. This evolution of

power has paved the way for the rapid advancement of technology. This rapid

advancement in technology has caused the electricity demand to increase due to the

role that technology plays in our daily lives. The sustainable production of electricity is

critical due to its impact on the economy, the government, businesses, and life in

general.

The modern-day electrical infrastructure is typically divided into three entities. The

first part is the generation of electricity, this is typically done at power plants (which

are usually located in remote areas) where renewable or non-renewable resources

are converted into electricity. The second part is transmission of the generated

electricity, which is done by transmission towers, also known as electricity pylons

which essentially transport electricity from where it is generated to where it will be

consumed. Before transmission takes place, the generated electricity is firstly stepped

up to a higher voltage level using step-up transformers in order to reduce

transmission losses over large distances. The third part is the distribution of the

electricity, which is done by electrical substations, that ensures management and

delivery of electricity to households and businesses in a safe manner. The

transmitted electricity is first stepped down using step-down transformers to a lower

voltage level before being distributed to consumers. Due to electricity posing a

danger if not managed properly, it is important to have safety precautions in place

where the state in which the infrastructure is, is always known by the party managing

 2

it. This allows actions to be taken should anything go wrong. Being able to know the

state of the electrical infrastructure is where communication fits in.

Communication in power systems such as electrical substations are crucial. The

National Institute of Standards and Technology (NIST) put forward a concept of what

is known as a Smart Grid as illustrated in Figure 1.1. To achieve interoperability, the

Smart Grid is divided into various domains (seven to be exact) for data to be

interchanged and for calculated decision making. It can be seen in Figure 1.1 that in

the traditional legacy power system, electricity flows in only one direction, which starts

from the point of generation and ends with the off-taker but with the Smart Grid, the

potential exists for bi-directional power flow. (Dehalwar, et al. 2015).

Figure 1.1: The Legacy and Smart Grid Concept
(Adapted from Dehalwar, et.al. 2015)

Traditional substation automation systems did not provide the advanced functionality

it does today and was designed on the foundation of limited networking technology

which was made available to users. The rapid development in networking technology

has aided the cause for automated power systems within existing and new

substations. With switched Ethernet, TCP/IP and high-speed wide area networks

technologies, as well as high-performance computing made available at relatively

low-cost, possibilities were created that were not even considered with the initial

design of substation automation systems (MacKiewicz, 2006).

 3

While innovation and advancements in technology are great in making everyday life

more comfortable and convenient, it results in the market being extremely

competitive. This is seen in our daily lives and the same applies to vendors supplying

equipment for electrical substation. The electrical substation market became

saturated and resulted in vendors creating devices having proprietary communication

protocols and functions. This inevitably leads to devices manufactured by various

vendors being unable to exchange information, resulting in a lack of interoperability

within the electrical substation environment (Kriger, 2019).

The IEC 61850 standard was created to address the issues that resulted in systems

being unable to interoperate in terms of the communication systems and the over-

reliance on vendor-specific equipment and protocols. This situation results in costly

protocol converters which are not always guaranteed to work. One of the benefits

offered by the IEC 61850 standard is the vast improvement in networking technology

utilised in substations. The newly introduced standard led to a competitive market due

to vendors competing to become the leading producers and suppliers of networking

equipment and protocols for the Substation Automation market which resulted in

projects being feasible in terms in operation and economics.

Condition monitoring is important, not only for Substation Automation Systems (SAS)

but also in various other sectors of engineering due to the substantial benefits.

Condition monitoring which has been defined as the process of monitoring variables

of a process to detect underlying issues before failure occurs. Condition monitoring is

an exceptional tool which can be used to enhance a device’s reliability. With condition

monitoring systems, financial and operational benefits can be realised (Fang, et.al.

2008).

Over the years the use of embedded-based devices with computation capabilities

have become more commonly used in condition monitoring systems. These devices

offer its users a range of benefits and have been proven to be more superior than

legacy mechanical or electromechanical devices. Although computerised devices do

offer superior capabilities in terms of how data is acquired and processed,

transferring, or communicating this data adds an additional layer of complexity. The

initial solutions were that vendors developed their own propriety protocols, which

quickly deemed mechanical and electromechanical monitoring devices obsolete

(Zainir and Muhamad, 2012).

 4

Condition monitoring systems implemented in the substation arena quickly followed

suit by introducing embedded based devices. Communication between these devices

only consisted of vendor-specific protocols as implementing devices from different

vendors on the same communication network resulted in purchasing of additional

protocol converters due to the lack of interoperability. Figure 1.2 illustrates a vendor-

specific condition monitoring system, which shows data acquired from the field by

electronic devices which then transfers this data via a proprietary communication

protocol to the master unit. A Human Machine Interface (HMI) provides local data

monitoring and the Supervisory Control and Data Acquisition (SCADA) provides

remote data monitoring. The lack of interoperability created additional risk, cost and

complexity and forced utilities to stick to vendor specific solutions (Kirkman, 2007).

Figure 2.2: Vendor-specific condition monitoring system
(Adapted from Kirkman, 2007)

The IEC 61850 standard, which defines communication and data modelling for

electronic devices in the substation environment, was created and introduced to

correct issues that was caused by vendor specific solutions and its lack of

interoperability. The IEC 61850 standard takes an object-oriented approach by

modelling physical devices known as Intelligent Electronic Devices (IEDs) as a

software data model. The data modelled version of an IED is referred to as a Physical

Device, which contains a Logical Device. A Logical Device is made up of one more

Logical Nodes and Logical Nodes are made up of Data Objects. Data Objects contain

 5

Data Attributes. The IEC 61850 standard modelling approach is illustrated in Figure

1.2 (Dehalwar, et al. 2015).

Figure 3.3: The IEC 61850 standard modelling approach
(Adapted from Dehalwar, et al. 2015)

The IEC 61850-90-3 Technical Report for Condition Monitoring addresses various

aspects regarding condition monitoring and communication systems for substation

automation systems. Included in the scope of the technical report is the definition the

modelling approach taken for the development of logical nodes and communication

used in condition monitoring systems. Due to the significant and undeniable

advantages provided by IEC 61850 standard-based condition monitoring of power

systems within electrical substations, exploring the possibility of implementing the IEC

61850 standard for condition monitoring in domains other than just the electrical

substation by using a “lightweight” medium (hardware with a small financial and

system resource footprint), provided the motivation for this research and although the

IEC 61850-90-3 Technical Report for Condition Monitoring does address this area,

this research work would contribute invaluably by extending the reach of the IEC

61850 standard.

In Section 1.2 the awareness of the problem is discussed. In Section 1.3 the research

problem statement is defined. In Section 1.4 the aim and objectives for this research

is presented. Section 1.5 indicates the research questions this project will attempt to

answer. Section 1.6 presents the hypothesis for this research. In Section 1.7 the

delimitations of this research are discussed. In Section 1.8 the motivation for this

research is presented. Section 1.9 states the assumptions made in the research.

 6

Section 1.10 presents the contributions made in this research. In Section 1.11 the

outline of the Thesis document and its chapters are provided. Section 1.12 presents

the conclusion to this chapter.

1.2 Awareness of the problem

Since its introduction, the IEC 61850 standard has become very popular due to the

fact that it provides its users with a solution to the past problems. Modern devices

which are IEC 61850 standard-based have become crucial in the substation

environment because it provides its users with a host of financial and technical

advantages:

• Reduced project cost due to using an Ethernet network cable instead of many
individual signal cables.

• Safer operations.

• Simple maintenance.

• Interoperability without requiring costly protocol converters (Arnold, et.al.
2015).

Since its introduction, the IEC 61850 standard has become very popular due to the

fact that it provides its users with a solution to the past problems of interoperability

with devices from different vendors.

Monitoring the condition in electrical systems is crucial. The numerous benefits which

include reduced maintenance and operational cost, increased operational lifespan of

equipment, enhanced safety of operators, minimizing accidents and an increase of a

systems efficiency. Using computers for measuring and analysing data provides

users with benefits such as saving time and improved safety. To make further

advances in condition monitoring, the development of software is now more crucial

since it is expected to make the monitoring system effective. Financial and safety

concerns ensures that high quality condition monitoring systems are supplied to users

(Zainir and Muhamad, 2012).

This research project seeks to expand the scope of IEC 61850 standard by

developing a new IEC61850 standard-based logical node used in the publishing of

and subscription to IEC 61850 standard-based GOOSE messages for implementation

within a condition monitoring system for domains other than just the electrical

substation, using a “lightweight” medium.

 7

1.3 Problem statement

Intelligent Electronic Devices (IEDs) which conform to the IEC 61850 standard are

crucial within the modern substation automation environment due to the critical role

they play within the substation, as they are physical devices that implement a part of

the substation automation functionality. These IEDs are multifunction devices which

boast a whole host of functional capabilities such as monitoring, metering, protection,

and control. These IEDs communicate with one another via the GOOSE (Generic

Object-Oriented Substation Event) protocol, as defined in section 8-1 of the IEC

61850 standard.

In order to achieve interoperability, which is the ability of an electronic device

software to exchange information with another, communications are required to be

standardised. This is achieved by the approach taken in the IEC 61850 standard,

where IEDs are modelled as logical nodes using an object-oriented approach (Yang,

et.al. 2011).

IEDs that are available in the market currently, do not yet support any of the condition

monitoring functionality specified in the IEC 61850-90-3 TR. The implementation of

an IEC 61850 standard-based condition monitoring system using a lightweight

medium within the industrial process automation domain can result in gaining all the

benefits offered by IEC 61850 standard-based condition monitoring as implemented

in substation automation systems.

The contribution in the area of condition monitoring within an IEC 61850 standard-

based environment, would necessitate the development of logical nodes as defined in

part 7 of the standard. Additionally, a suitable embedded platform would need to be

identified as a low-cost alternative to the current IED implementation.

 8

1.4 Research Aim and Objectives

1.4.1 Aim

The aim of this research is to develop a new IEC 61850 standard-based logical node

to be used in the publishing of and subscription to GOOSE messages over an

Ethernet network between two newly developed lightweight IEC 61850 standard-

based IEDs which are used in a condition monitoring system.

1.4.2 Objectives

The main objective of this research is to develop algorithms and methods to be

implemented in a real-time IEC 61850 standard-based monitoring system.

The objectives can be divided into theoretical analysis and practical implementation,

which are further expanded on below.

1.4.3 Objectives: Theoretical Analysis

• To conduct a literature review on the existing approach to condition monitoring

in the various fields it is deployed.

• To conduct a literature review on the existing monitoring functions utilised

within the IEC 61850 standard.

• To conduct a literature review of the existing IEC 61850 standard-based

logical nodes in all domains of application.

• To conduct a literature review of the IEC 61850 standard-based GOOSE

(Generic Object-Oriented Substation Event) protocol.

• To formulate strategies in order to develop an in-depth understanding and

application of the IEC 61850 standard for real-time implementation.

• To examine and develop a detailed understanding of the source code

functionality implemented within the open-source IEC 61850 standard-based

embedded C library.

• To examine and develop a detailed understanding of the embedded hardware

platform chosen for implementation.

• To examine and develop a detailed understanding of the operating system

chosen for the project implementation.

• To formulate a strategy to develop a real-time temperature and humidity

condition monitoring system on the embedded hardware and operating

system chosen.

 9

• To examine and develop a detailed understanding of the ICD Designer and

XML Marker software tools used in the development process of the Logical

Node.

• To formulate a strategy to integrate all the facets in terms of the various

hardware and software components of the project.

1.4.4 Objectives: Practical Implementation

• To configure hardware devices for real-time communication over an Ethernet

network.

• To develop IEC 61850 standard-based lightweight IEDs using the IEC61850 C

code library in the Linux Environment.

• To design, configure and implement embedded hardware for monitoring of a

temperature and humidity sensor.

• Development of a novel EC 61850 standard-based logical node to extend the

reach of the standard to other domains of application.

• Real-time implementation on an embedded platform using the novel logical

node which is used in the condition monitoring system.

1.5 Research Questions

The research conducted within this thesis attempts to provide solutions to the

following research questions:

• Can a new IEC 61850 standard-based logical node be developed for real-time

implementation within a condition monitoring system intended for the industrial

process automation domain?

• Can the GOOSE communication protocol using the newly developed logical

node be implemented in real-time within a condition monitoring system

intended for the industrial process automation domain?

• Can the GOOSE communication protocol using the newly developed logical

node be implemented within a condition monitoring system on a lightweight

embedded platform intended for the industrial process domain in real-time?

1.6 Research Hypothesis

The hypotheses for this research are as follows:

• A new IEC 61850 standard-based logical node can be developed for real-time

implementation within a condition monitoring system intended for the industrial

process automation domain.

 10

• The GOOSE communication protocol using the newly developed logical node

can be implemented in real-time within a condition monitoring system intended

for the industrial process automation domain.

• The GOOSE communication protocol using the newly developed logical node

can be implemented within a condition monitoring system on a lightweight

embedded platform intended for the industrial process domain in real-time?

1.7 Delimitation of Research

1.7.1 Within scope

• Configuring and integrating of hardware and software components for real-

time implementation of GOOSE publishing and subscribing using a

preconfigured logical node between a computer and an embedded device.

• Configuring and integrating of hardware and software components for real-

time implementation of GOOSE publishing and subscribing using a newly

configured Logical Node between two embedded devices.

• Development of a new IEC 61850 standard-based logical node using required

software.

• Development of a monitoring system on an embedded platform to monitor a

temperature and humidity sensor.

• Configuring and integrating of hardware and software components for real-

time implementation of GOOSE publishing and subscribing using a newly

developed logical node between two embedded devices.

• Integrating the condition monitoring system hardware and software

components with that of the GOOSE publishing and subscribing hardware and

software components

1.7.2 Beyond scope

• Development of a condition monitoring system meant for any specific process.

• Implementing GOOSE publishing and subscribing using the newly developed

Logical Node within a condition monitoring system meant for any specific

process.

1.8 Motivation for the Research Project

As of late, the fast development of industrial process automation has prompted the

requirement for progressive condition monitoring systems. In order to diminish losses

which occur due to down time caused as a result of failure of production equipment, it

 11

is required to observe the health/condition of equipment in real-time in order to predict

maintenance and production decision-making (Elmaleeh, et.al. 2010).

Condition monitoring in general is crucial to the successful application of any process

within any environment. Condition monitoring of systems provide multiple benefits

and, in many instances, ensures for processes to be safely implemented within

certain domains of application. Condition monitoring is utilised broadly across the

instrumentation and control domain and is applied in processes such as water

treatment, oil and gas, food and beverage, to name just a few (Fu, et.al. 1998)

(Elazab, et.al. 2017).

Traditional condition monitoring systems used in modern day industrial process

automation still use vendor specific solutions which include propriety communication

protocols and do not offer the functionality and flexibility that IEC 61850 standard

based Intelligent Electronic Devices (IEDs) used in Substation Automation Systems

(SAS) provide. These devices have been developed to offer its user a host of benefits

such as measuring, metering, and monitoring and automated control functions

including the ability to transmit data over high-speed communication networks which

are all based on standardised communication protocols (Jo, et.al. 2011).

The IEC 61850 standard has allowed for the introduction of IEDs. Due to the

versatility that these devices offer, they simplify the additional functionality, which is

required by users, apart from the standard automated functions such as monitoring,

measuring and control functions (Bi, et.al. 2013).

This research project is motivated by the need to expand the scope of IEC 61850

standard-based condition monitoring systems within the substation domain to other

domains such as the industrial process automation domain. This research project

addresses this need by the proposed development of a new Logical Node (LN)

implemented within a condition monitoring system and communication of its data with

the real-time implementation of the GOOSE Message communication protocol. The

research project will assist and contribute to the understanding of Condition

Monitoring, Logical Nodes and GOOSE Messaging by the development of a detailed

understanding of the IEC 61850 standard and the tools required in any particular

environment.

 12

1.9 Assumptions

• It is assumed that little to no condition monitoring systems with IEC 61850

standard-based logical nodes and GOOSE communication implemented on

embedded platforms in other domains exist.

• It is assumed that a new logical node can be developed using the eXtensible

Markup Language (XML) within the available software platforms.

1.10 Contributions of the Research Project

The main contributions of this research are listed below:

1. A detailed literature review of past and current condition monitoring

fundamentals is conducted.

2. A detailed literature review of past and current condition monitoring

techniques implemented in various industrial process applications is

conducted.

3. A detailed literature review of condition monitoring functions supported by the

IEC 61850 standard-compliant devices is conducted.

4. A detailed literature review of IEC 61850 standard-based communication

systems is conducted.

5. Configuring of hardware devices for real-time communication over an Ethernet

network.

6. Development of IEC 61850 standard-based lightweight IEDs using the

IEC61850 C code library in the Linux Environment.

7. Configuring of embedded hardware for monitoring of a temperature and

humidity sensor.

8. Development of an IEC 61850 standard-based Logical Node in the System

Corp ICD Designer software.

9. Real-time implementation of the GOOSE communication protocol using the

newly developed logical node which is used in the condition monitoring

system.

1.11 Outline of the Thesis

This thesis is composed of six chapters which details the framework, methods,

software algorithms, hardware configuration, real-time implementation, and results of

the research project.

Chapter Two presents a thorough literature review of past and current developments,

technologies and methodologies used in the implementation of condition monitoring

systems in domains outside of the substation and within, as well as IEC 61850

 13

standard-based condition monitoring and communication systems. The review

discusses the fundamentals of condition monitoring systems, industrial condition

monitoring systems, IEC 61850 standard-based condition monitoring systems as well

as IEC 61850 standard-based communication implemented in condition monitoring

systems. A discussion is then presented which compares various technologies and

monitoring techniques implemented within the literature, with the aim of identifying

shortcomings or possible expansion.

Chapter Three analyses and discusses an overview of the IEC 61850 standard with

particular emphasis on logical nodes and GOOSE messaging. The briefly discusses

earlier condition monitoring and communication in substations prior to the inception of

the IEC 61850 standard and discussion is presented on the data modelling

techniques, condition monitoring techniques as well as the communication protocols

detailed within the IEC 61850 standard.

Chapter Four presents the approach taken for practical implementation of this

research project. The chapter details the hardware platform, the hardware

configurations, the software tools used to develop the code and algorithms used

within the research project.

Chapter Five provides the results and findings of the implementation of the project.

The chapter details the procedure and tools used to validate all findings and data.

The chapter also presents an analysis and validation of the resulting data in order to

prove conformance to the IEC 61850 standard.

Chapter Six presents the deliverable for this research work. This also include

challenges encountered, future work, and publications emanating from this research.

The references and appendices follow this chapter.

 14

1.12 Chapter Summary

This chapter presented the introduction to this research project including the aims

and objectives, questions this research attempts to answer, hypothesis and the

delimitation of the research. The problem statement and the motivation for the

research, as well as the assumptions of the research are discussed.

Chapter Two presents a comprehensive review of past work done pertaining to

condition monitoring and the IEC 61850 standard. The review looks at research

conducted from peer-reviewed conferences and journal publications which document

modelling, simulations and real-time implementation of condition monitoring systems

and the IEC 61850 standard.

 15

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, a literature search and a literature review are conducted of the thesis

documents, standards and papers published by journals, conferences proceedings,

research work conducted by institutions, and a range of Internet sources in order to

review and identify the development and evolution of methods and algorithms which

are implemented and recommended for the solution of the research questions.

Chapter One provides the framework of this research work and highlights the

research aims and objectives amongst others. The focal points for the literature

review have been recognised and is expanded on in this chapter.

This chapter is organized as follows: Section 2.2 presents a literature review on all

groups of research which is critical to the successful development of this proposed

research project. Section 2.2.1 presents a review of literature published on condition

monitoring systems in general. Section 2.2.2 presents a review of literature published

on condition monitoring of industrial processes. Section 2.2.3 presents a review of

literature published on IEC 61850 standard-based condition monitoring systems.

Section 2.2.4 presents a review of literature published on IEC 61850 standard-based

communication. Section 2.3 discusses a comparative analysis of the papers

presented in Section 2.2. Section 2.4 presents the conclusion to the chapter.

2.2 Literature search

The literature search focuses on the crucial areas of research which has been

identified and is listed below:

• Condition monitoring systems;

• Condition monitoring of industrial processes;

• IEC 61850 standard-based condition monitoring systems;

• IEC 61850 standard-based communication.

The key phrases which are used to find the relevant literature related to the topics

mentioned above include:

• “Condition monitoring”, “Condition monitoring systems”

• “Process Condition monitoring”, “Plant condition monitoring”

• “Condition monitoring in substation”, “IEC 61850 condition monitoring”

• “Substation communication networks”, “IEC 61850 communication systems”.

 16

2.2.1 Condition monitoring systems

This section presents the results of research publications of condition monitoring

systems. The domain of application is not considered to be relevant therefore a wide

range of varying systems and application domains is discussed, highlighting how

important condition monitoring is. This section has a particular focus on:

• The type monitoring implemented i.e., local, or remote.

• The application.

• The platform used for implementation of the system.

• The sensing technology used.

The literature reviewed with the keywords: “condition monitoring” and “condition

monitoring systems” spanned for a period of twenty years from 2001 up until 2021.

Condition monitoring generally refers to the process of monitoring the state of a

particular component used in a specific process. Condition monitoring of bearings

used in trains was implemented as early as 1939 in the United Kingdom. The type of

condition monitoring implemented was the use of “stink bombs” installed inside of the

crank axle which would give off a certain smell as the bearing temperature increased

beyond a threshold value. This was a crude but effective way of implementing

condition monitoring at the time. In this instance local monitoring is clearly

implemented due to the limited technological capabilities at the time. Earlier years of

implementation of condition monitoring allowed for a clear definition of the

fundamentals of a condition monitoring system as it can now be conceptualised as

illustrated in Figure 2.1: (1) identify the need: A decision has to be made on what

drives the motivation for implementing a condition monitoring system; (2) tools and

techniques: A decisions has to be made on what technologies and methods would be

appropriate; (3) deployment of tools and processes: expectations need to be

managed and clearly understood to ensure successful implementation and cost and

complexity also need to be considered; (4) data acquisition: the nature and level of

criticality of data need to be considered, data needs to be categorised into event

(what has occurred) or condition monitoring (what is currently occurring); (5) data

processing and decision making: raw data is turned into relevant information which

assist in the decision making process, deciding what steps to take based on this

relevant information (Groom, 2014).

 17

Figure 2.1: Framework of the condition monitoring concept
(Adapted from Groom, 2014)

If catastrophic failure is to be avoided in any machine, implementation of a condition

monitoring system is required. This will ensure that components which are damaged

or worn can be detected and replaced (Biçen and Aras, 2014).

(Morris, et.al. 2016) present condition monitoring techniques implemented in various

areas of railway systems. Managing railway systems assets is crucial due to the

significant role it plays in the daily lives of commuters. This created a strong

motivation for the implementation of developing devices with capabilities to operate in

multiple modes of operation seamlessly. Modes of operation implemented in devices

include:

• Remote Condition Monitoring (RCM) – In this mode of operation, information

is exchanged within predetermined time periods. Due to power consumption,

this mode is relatively limited. This condition monitoring is done remotely as

indicated by Figure 2.2. Sensors communicate via wireless 2.4 GHz signals

where a user can access monitoring data via a cloud-based storage.

 18

Figure 2.2: RCM mode of operation
(Adapted from Morris, et.al. 2014)

• Real-time Time Monitoring (RTM) – With this mode of operation, data is

transmitted to users with a high refresh rate, meaning data acquired is

extremely close to real-time. Figure 2.3 illustrates this type of condition

monitoring system is done remotely, indicating wireless communication

between sensors and a cloud-based storage of the data.

Figure 2.3: RTM mode of operation
(Adapted from Morris, et.al. 2014)

• Real-time Data Logging (RTDL) – This mode of operation allows for high

sampling rates which means the data acquired is accurate, however this mode

of operation requires data to be stored prior to transmission. Figure 2.4

illustrates a mode of operation which is remote, as indicated by wireless

sensors and cloud-based storage of data.

 19

Figure 2.4: RTDL mode of operation
(Adapted from Morris, et.al. 2014)

(Seo, 2018) states that vibration condition monitoring methods have been

implemented to monitor the On-Load Tap Changer (OLTC), which has crucial role

within power transformers. This condition method is a remote monitoring technique

which utilises an algorithm with the ability to interpret vibration signals and comparing

waveforms of these signals.

(Shaw, 2008) discusses how condition monitoring is applied in different types of point

machines. This condition monitoring application is referred to as Points Condition

Monitoring (PCM). A point machine is responsible for managing railway turnouts and

therefore forms a crucial part of the railway system. The motivation for this

investigation is the rapid expansion of railway travel around the globe. Current point

machines include AC points machines and hydraulic point machines. Variables which

determine the type of point machine condition monitoring system include the

signalling control system used, the traction method used, the signalling control

system used as well as the type of point machine which the condition monitoring

system is being implemented for. Condition monitoring types can vary between

electromechanical system or a solid-state computerised system. Both of these are

remote methods of implementation.

(Fu, et.al. 2021) presents a novel welding condition monitoring method. The method

uses pressure signals from welding which is the result of combining discrete Fréchet

distance and signal coarsening methods. This novel methodology uses local

monitoring. Fréchet distance refers to measure of similarity between mathematical

graphs by considering the location and order of points within the curves of the graph

and signal coarsening also pertains to the measure of dimensions within mathematic

graphs.

 20

(Chunlong, et.al. 2021) proposes a design for a condition monitoring system for

transmission lines which uses the method of monitoring vibration and energy

harvesting. The condition monitoring system operates in a remote monitoring mode

and the results recorded from experimentation with this system indicates that when

compared to existing applications of transmission line condition monitoring systems,

this new design is more reliable.

It is clear that with the implementation of condition monitoring results in increased

reliability in the systems and an increase in quality of processes in which it is

implemented. Catastrophic failure is reduced, as illustrated in Figure 2.5, which allows

for a reduction in operation and maintenance cost (Herkes, 2006). (Feng, et.al. 2019).

Figure 2.5: Expected rate of failure with the introduction of condition monitoring
(Adapted from Herkes, 2006)

(Swift, et.al. 2011) states that condition monitoring is crucial if a high-risk process is to

be implemented safely and high-risk machinery is to be operated safely. Condition

monitoring allows for predictive maintenance to be implemented which can optimise

the way a plant or piece of equipment is operated. Maintenance which is based on

local or remote condition monitoring of a process or machine can be executed by

following the process which is illustrated in Figure 2.6:

• Data Acquisition – The first step in the process of implementing condition

monitoring for predictive maintenance is data acquisition, which involves the

process of gathering data which can indicate the state of a machine or

process.

• Data Analysis – The second step is analysing the data collected, analysis can

indicate the state of a specific component.

 21

• Planning – The third step is to create and execute a plan of action based on

the results of the analysis which was conducted.

• Control – The fourth step is control, which monitoring the outcomes of the plan

which was executed.

Figure 2.6: Condition-based maintenance implementation process
(Adapted from Swift, et.al. 2011)

Various condition monitoring techniques and methods are implemented, locally and

remotely for various machines and processes. Condition monitoring is a multifaceted

process which serves more than one purpose of which safety and maintenance form

part of.

A summary of the publications reviewed in the general area of condition monitoring

systems are presented in Table 2.1.

 22

Table 2.1: Application of condition monitoring systems

Paper Application Type

(Local/Remote)

Evaluation of methodology and

literature

Groom, 2014 Bearing
overheating

Local monitoring Implemented in the year 1939, condition
monitoring system used “stink bombs” to
indicate change in state of monitored
component. Condition monitoring
implemented at the time was extremely
limited due to the available technology.
Condition monitoring is defined and the
importance of it is emphasised upon. A
discussion of is presented regarding the
increase of the amount of research based on
condition monitoring

Y. Biçen and
F. Aras, 2014

Industrial
systems

Local and remote
monitoring

Implemented mathematical algorithms to
develop an intelligent condition monitoring
system that can be implemented in various
systems to prevent system failure. The
system comprises of a Multi-Agent System
(MAS), which is essentially a software
algorithm which is used to model systems
which are complex and a Failure Sensitive
Matrix (FSM), which is an algorithm that
evaluates data used to detect faults.

Morris, et.al.
2016

Various areas of
railway
operations

Remote
monitoring

Wireless condition monitoring devices which
allow for three different ways of operation
due to existing technological advancements.
System can be implemented with various
sensing elements which monitoring different
variables. The literature presents an in-depth
discussion of the three methodologies which
are remote condition monitoring, real-time
monitoring, and real-time data logging.
Advantages, disadvantages, and the layout
of the methods are included in the
discussion.

Seo, 2018 On-Load Tap
Changer

Remote
monitoring

Vibration-based condition monitoring system
which monitors the On-Load Tap Changer
(OLTC) of a power transformer. The
condition monitoring system improves the
visibility of the mechanical operation of the
OLTC. The literature discusses current
methods and presents the new methodology
by implementing a case study. The layout is
of the case study is presented and the
results are discussed.

Shaw, 2008 Railway points
machines

Remote
monitoring

The literature details the various types of
existing monitoring implemented in point
machines. Condition monitoring system
types implemented typically varies between
electromechanical devices and solid-state
computerised systems. A summary is
presented on some of the various
measurement applications used within the
monitoring techniques detailed in the
literature.

 23

Fu, et.al. 2021 Welding Local monitoring Condition monitoring system uses pressure
signals from welding which is the result of
combining Fréchet distance and signal
coarsening methodology. Current, pressure,
and speed all form part of the measured
variables. The literature discusses existing
monitoring methods used and its
shortcomings. The novel monitoring
technique is presented by an experimental
case study and the results of case study is
discussed.

Chunlong,
et.al. 2021

Transmission
lines

Remote
monitoring

Condition monitoring system that uses
vibration and energy harvesting to increase
reliability. The method implemented involves
the collecting kinetic energy, converting it
into electricity which is then stored to power
a sensor. The sensor will then monitor
vibrations on the transmission line.

Herkes, 2006 Railway Local and remote
monitoring

Various types of condition monitoring
implemented in order to reduce rate of
system and process failure. The literature
discusses the fundamentals of a condition
monitoring system, the advantages of a
condition monitoring system and what should
be expected of a condition monitoring
system implemented correctly.

Feng, et.al.
2019

Wind Turbines Remote
monitoring

Monitoring components of wind turbine
based on Long Short-Term Memory (LSTM)
using Supervisory Control and Data
Acquisition (SCADA). The monitoring
technique implements neural network
algorithms. The case study is presented
which discusses implementing the
aforementioned technique using data from a
commercial wind farm.

Swift, et.al.
2011

Industrial
machines

Local and remote
monitoring

Monitoring is implemented through a process
of four steps. The condition monitoring
system acquires data, users can then
analyse data and make decisions. Outcomes
of decisions made are then monitored.
Condition monitoring implemented within the
various aspects of railway systems such as
monitoring infrastructure and the way the
recorded data is communicated throughout
the process.

A comparative discussion of the results presented in this section are presented in

Section 2.3.1.

2.2.2 Condition monitoring of industrial processes

This section presents the results of research publications of condition monitoring

systems implemented in industrial processes. The domain of application is

considered to be important as it indicates the trend of past to current applications.

Some of the factors considered are:

• The type monitoring implemented i.e., local, or remote.

 24

• The application.

• The platform used for implementation of the system.

• The sensing technology used.

The literature reviewed with the keywords: “Process condition monitoring”, “Plant

condition monitoring”, “Embedded condition monitoring” spans a period of twenty

years from 2001 up until 2021.

(Xu, et.al. 2011) presents the development of a condition monitoring system utilised

in the processing of minerals. The system has local and remote monitoring

capabilities by using wireless and wired sensing elements making full use of the

Internet of Things (IoT) technological advancements. The condition monitoring

system acquires, transmits, and processes data and all of this information is available

via a user interface. This new condition monitoring platform allows for remote

condition monitoring and stores data using a cloud-based system, straying away only

using control rooms but allows for site access to data being monitored. Figure 2.7

illustrates the various data of the mineral processing condition monitoring system

being monitored on a remote device rather than just in an on-site control room.

Figure 2.7: Different condition monitoring data viewed remotely
(Adapted from Xu, et.al. 2011

 25

(Yang, et.al. 2019) presents the design of a remote condition monitoring system

which is used to monitor industrial drilling processes. The system is developed to

overcome existing problems within condition monitoring systems used in the domain.

These problems include inadequate data acquisition and the acquired data not being

fully utilised. The condition monitoring system is comprised of four components:

• Data acquisition

• Data storage

• Visualisation of drilling data

• Remote monitoring and control

The relation between these four components of the condition monitoring system is

illustrated in Figure 2.8, which show that the acquired data gets stored, and the

remote monitoring and control component of the system can access stored data and

all data on the storage platform gets saved as historical data which is available

should drilling information be required.

Figure 2.8: Relation between the four components of the condition monitoring system
(Adapted from Yang, et.al. 2019)

(Elmaleeh, et.al. 2010) states that due to the expedited growth of industrial

processing plants, condition monitoring techniques are required to match this growth

to ensure plant production is sustained by reducing costly equipment failure. Two

successful methods of application for condition monitoring system are considered to

be:

1. Vibration monitoring

This method is generally implemented in large mechanical machines

which have rotating parts and in referred to as vibration analysis. In this

 26

method of application, frequencies found within vibration caused by

moving parts such as bearings are isolated and analysed. These

frequencies and their harmonics can indicate a fault and its location.

2. Acoustic Emission (AE) monitoring

This method entails monitoring the transient elastic waves generated from

the release of energy which occurs rapidly. The source of this rapid energy

release is typically found to be a component within a machine which is

under severe stress and strain. Deformities such as cracks caused by

impact can produce transient electric waves.

Figure 2.9 illustrates the operation of an AE-based condition monitoring system. It

can be seen that AE sensors are connected to plant machinery, it transmits data to a

preamplifier, with its output connected to an amplifier. The amplifier has its gain set to

60dB and the amplifier has its gain set to 13dB. The amplifiers amply the acoustic

signals and the amplified acoustic signal is sent to an oscilloscope which performs a

spectrum analysis and the output is then sent to a MATLAB and LabVIEW user

interface.

Figure 2.9: Operation of AE condition monitoring system
(Adapted from Elmaleeh, et.al. 2010)

(Swiszcz, et.al. 2008) indicates that during the development stage, most industrial

condition monitoring systems are developed using test bench data due to a lack of

real-time data and that this does not reflect what happens during real-time in the

 27

various processes. The condition monitoring system is developed and presented

using real-time data from a wind turbine. Various parameters are monitored such as

temperature, position, wind speed, direction, voltage and current.

(Gulski, et.al. 2008) presents a novel condition monitoring approach in assessing the

condition of High Voltage (HV) cables. The condition monitoring system is not

implemented remotely and involves the application of signal processing and solid-

state materials.

(Costinas, et.al. 2011) states that predictive maintenance of wind power plants based

on condition monitoring systems are crucial to ensure that the investors asset, which

in this case is the wind power plant, remains profitable throughout its life cycle. The

condition monitoring system monitors wind turbines by implementing vibration and

acoustic monitoring techniques of moving parts. Monitoring of other various aspects

related to the wind turbine is also monitored, these include electrical effects,

lubrication oil quality, strain monitoring as well as power quality.

(Sheng, et.al. 2012) presents a condition monitoring system which is developed for

and applied in plant production. The condition monitoring system consists of two

components. The first component is a production control system and the second

component is a data acquisition system. An industrial control computer is used as the

controlling element and a PCI16ADT acquisition card is used for data acquisition from

field sensors as illustrated in Figure 2.10. It can also be seen that ARK-8520SCFI

conversion modules are used for communication.

 28

Figure 2.10: Hardware layout of plant condition monitoring system
(Adapted from Sheng, et.al. 2012)

The traditional method of condition monitoring implemented on induction motors is a

method know as Motor Current Signature Analysis (MCSA). Although widely utilised,

this method is based on the use of Fourier Transforms (FT). This method required a

large amount of memory resources dedicated to it, placing an immense computing

burden on the operating system. A technique known as Recursive Stationary Wavelet

Packet Transform (RSWPT) allows for shortcomings of previously proposed methods

to be avoided. This condition monitoring system is applied using an STM32F4

microcontroller which uses ARM processor. This condition monitoring method detects

faults in induction motors. This is done by reducing the processing resources required

by lowering the sample rate (Hmida and Braham, 2016).

(Liu, et.al. 2009) presents condition monitoring system used to monitor fire hazards.

The system monitors the fire alarm via RS232 communication. The fire alarm will be

enabled automatically in the event of a fire. The condition monitoring system is

implemented on an embedded platform using newly developed source code catered

to the application and has remote monitoring capabilities.

(Zhang and Zhang, 2018) proposes a design for a condition monitoring system

implemented in an industrial scale granary. The condition monitoring system design

uses an STM32F103C8T6 processor and CAN bus communication. The condition of

 29

process variables such as humidity and temperature are monitored. The hardware

layout of the proposed design is illustrated in Figure 2.11. It can be seen that field

sensors are connected to the microcontroller-based condition monitoring systems,

which transmit data via CAN bus communication to the server, where data can be

accessed by users.

Figure 2.11: Hardware layout of granary condition monitoring system
(Adapted from Zhang and Zhang, 2018)

A summary of the publications reviewed in the application of condition monitoring

systems of industrial processes are presented in Table 2.2.

Table 2.2: Application of condition monitoring of industrial processes

Paper Application Type

(Local/Remote)

Evaluation of methodology and

literature

Xu, et.al. 2011 Mineral
processing

Local and remote
monitoring

The condition monitoring system is
implemented for use within a mineral
processing plant. The system acquires the
data and transmits the data for processing to
a cloud-based storage system. Data is
available on remote devices. The condition
monitoring implemented aims to move away
from legacy systems which require on-site
monitoring and this is achieved by
implementing Internet of Things (IoT)
technology.

 30

Yang, et.al.
2019

Industrial drilling Remote
monitoring

Real-time acquired data is transmitted to a
central storage point where the decision-
making process can access the required
data. Data can also be accessed for
historical information. The literature details
the system architecture and methodology
and concludes that part of the system allows
for remote monitoring and allows users to
access historical data remotely.

Elmaleeh,
et.al. 2010

Machines in
industrial plants

Local and remote
monitoring

Vibration and acoustic-based condition
monitoring implemented in order to
determine faulty machines parts before
system failure occurs. The condition
monitoring process is presented and
implemented by an experimental case study.
The results are discussed.

Swiszcz, et.al.
2008

Wind turbines Remote
monitoring

Condition monitoring system is based on
real-time data acquisition from various
sensors installed which monitors specific
parameters during the operation of the wind
turbine. The parameters are monitored at a
sampling rate of 50Hz include rotor speed,
wind speed and temperature. Parameters
monitored at a sampling rate of 20kHz
include voltage, vibration and current.
Monitoring these parameters ensure a
system which comply in terms of safety and
accuracy.

Gulski, et.al.
2008

High Voltage
cables

Local monitoring Condition of cables which are used in High
Voltage (HV) transmission. Condition
monitoring system uses signal processing
and solid-state materials. The literature
details the layout of the condition monitoring
system, the implementation and discusses
the findings.

Costinas,
et.al. 2011

Wind turbines Remote
monitoring

Condition monitoring system mainly uses
vibration and acoustic techniques to monitor
moving parts to predict system failure.
Failures which occur in wind turbines include
broken cabling, broken bearings,
overheating and cracks within the
mechanical components.

Sheng, et.al.
2012

Industrial
production plant

Remote
monitoring

The condition monitoring system is used to
monitor production in an industrial plant.
Signal converters are used for the data
acquisition process as well as the
communication process. The RS-485 is used
as the communication protocol. The literature
discusses the layout of the condition
monitoring system and assesses how
communication protocols affect the efficiency
of the plant. The literature concludes that
software development and communication
technology allow for condition monitoring
and control to be implemented more
efficiently.

 31

Hmida and
Braham, 2016

Induction motors Local monitoring Condition monitoring system is implemented
using an embedded platform. The algorithms
implemented on the hardware is based on a
term called a mathematical method referred
to as Recursive Stationary Wavelet Packet
Transform (RSWPT). The literature details
the procedure as well and the monitoring
and control philosophy.

Liu, et.al.
2009

Fire hazards Remote
monitoring

An embedded based condition monitoring
which monitors a fire alarm system via
RS232. In the event of a fire, the condition
monitoring system will alert operators which
are based remotely. The literature suggests
that the system is designed to be accurate
and operate in a time-sensitive manner. The
system has been implemented in real-time
and has proven to be effective.

Zhang and
Zhang, 2018

Industrial
Granary

Remote
monitoring

The condition monitoring system is
implemented on an embedded platform,
which is connected to field-based sensors.
Data from sensor are communicated via
CAN bus to a server. An STM32 processor
and DHT11 sensing technology is used. A
DHT11 sensor is a singular sensor which is
used to measure temperature and humidity.

The comparative discussion of the results presented in this section are presented in

Section 2.3.2.

2.2.3 IEC 61850 standard-based condition monitoring systems

This section presents the results of research publications of condition monitoring

systems that are based on the IEC 61850 standard. The domain of application is

considered to be important as it indicates the trend of past technologies to current

technologies used in substation-based condition monitoring systems. This section

has a focus on the following factors:

• The type monitoring implemented i.e., local, or remote.

• The application.

• The software used for implementation of the system.

• The hardware used for implementation of the system.

The literature reviewed with the keywords: “Condition monitoring in substation”, “IEC

61850 condition monitoring” spanned for a period of twenty years from 2001 up until

2021.

(Jang, et.al. 2011) states that condition monitoring systems used in power systems

allow for early detection of faults before they occur. This is achieved by the data

acquisition of field sensors which monitors the equipment such as transformers,

 32

transmission lines and Gas Insulated Switchgear (GIS) and issues warning messages

to control stations based locally and remotely. This process allows for maintenance to

be conducted before system failures occur. The IEC 61850 standard is a

communication standard which defines data modelling techniques and

communication protocols are used in electrical substation monitoring and control

systems. Part 7 of the IEC 61850 standard defines data attributes and data models of

logical nodes. In the implementation of a transmission line condition monitoring

system, software models of sensors such as line sensors (used for current and

temperature of transmission lines) and tension sensors (load cells used to measure

tension in a transmission line) are developed. Figure 2.12 illustrates the scope of the

IEC 61850 standard and Figure 2.13 illustrates the concept of the IEC 61850

standard as implemented in substation-based condition monitoring systems.

Figure 2.12 illustrates three parts of the IEC 61850 standard scope, sensors which

are based in the field and used measure data, logical nodes form part of the software

modelling implemented on hardware devices and asset management, which forms

part of the monitoring system and is typically in form of a Supervisory Control and

Data Acquisition (SCADA) system based in remote or local control rooms.

Figure 2.12: IEC 61850 standard scope in substation condition monitoring systems
(Adapted from Jang, et.al. 2011)

 33

Figure 2.13 illustrates the flow of data. Data is acquired from sensors which are read

by control and monitoring devices such as Intelligent Electronic Devices (IEDs). Data

is then sent to monitoring and control interfaces such as SCADA systems. Utilities

then use this data to schedule maintenance and repairs.

Figure 2.13: IEC 61850 standard concept in substation condition monitoring systems
(Adapted from Jang, et.al. 2011)

(Bosisio, et.al. 2019) proposes an IEC 61850 standard-based condition monitoring

and control system which is meant for electrical distribution networks. The system is

meant to improve the reliability of distribution networks by implementing automatic

back-feeding, selective fault detection as well as high-speed network reconfiguration.

The condition monitoring and control system is implemented using IEC 61850

standard-based data modelling techniques and IEDs which conform to the IEC 61850

standard. This is a real-time application where IEDs monitor and control electrical

feeders.

(Gaouda, et.al. 2018) proposes and validates the operation of an IEC 61850-standard

based Merging Unit (MU) which is an improvement on existing devices of the same

nature. The MU has asset management and self-healing capabilities and is

developed in such a way that deems it future-proof. The IEC 61850 standard-based

merging unit (MU) is tasked with providing synchronised sample values (SV) and

 34

interface monitoring sensors such as current transformers and voltage transformers

with IEDs.

(Apostolov, 2013) analyses monitoring and automation functionality of IEC 61850

standard-based protection relays, also referred to as IEDs as used in power systems.

IEDs operate based on monitoring and reporting capabilities, event reports, fault

records and waveform records. Some IEDs include fault records in event reports.

Protection functionality is represented by Logical Nodes (LNs) and event reports are

based on Report Control Blocks (RCBs) which use event data from LNs. RCBs and

LNs are configured in IEDs using specialised software.

(Apostolov, 2013) analyses IEC 61850 standard-based object modelling. Special

focus is placed on the functional hierarchy and the Substation Configuration

Language (SCL) and how it is used. Logical Nodes are software models which

represent devices with monitoring and protection functionality. Various logical nodes

are defined in the IEC 61850 standard each with special functionality and an in-depth

understanding is required of the IEC 61850 modelling principles in order to implement

these logical nodes in a condition monitoring system.

(Lloret, et.al. 2007) states that condition monitoring in Substation Automation

Systems (SAS) plays a crucial part in predictive maintenance applications and with

the introduction of the IEC 61850 standard, implementation of condition monitoring

and the tools associated with it is less challenging. The IEC 61850 standard

introduces logical nodes which are used to model real-life devices such as circuit

breakers which are found in electrical substations. Apart from maintenance

applications, IEDs used in substations also allow for monitoring of power quality.

Parameters monitored relating to power quality is illustrated in Figure 2.14.

 35

Figure 2.14: Monitored parameters relating to power quality
(Adapted from Lloret, et.al. 2007)

(Mercurio, et.al. 2009) presents the implementation of a condition monitoring system

based on the IEC 61850 standard in an energy management application. The system

is monitored remotely via web services technology using a SCADA system. The web-

based condition monitoring system has been tested using simulated substation

variables of a typical power system.

Diagnosis based on condition monitoring of power systems is crucial if power systems

are to be deemed reliable. This kind of condition monitoring will aid in preventing

catastrophic failure of a power system and its infrastructure as it allows for faults to be

anticipated well ahead of them occurring. Companies who develop equipment that is

meant to be used in power systems and the condition monitoring of power systems

have to conform to the IEC 61850 standard which will allow for ease of

communication between network devices. This technical report focuses on the IEC

61850 standard from an application point of view (IEC TR 61850-90-3, 2016).

(Kim, et.al. 2012) discusses an IEC 61850 standard-based condition monitoring

system used in Gas Insulated Switchgear (GIS). Although GIS switchgear is highly

reliable with few instances of equipment failure recorded, it is still complex to monitor

its parameters. The condition monitoring system acquires data through temperature

and pressure sensors which enable it to implement control, measurement, and

protection functionality.

 36

(Apostolov, et.al. 2003) discusses the use of IEC 61850 standard object models and

services in data exchange implemented in power systems. IEDs are microcontroller-

based devices and are used in condition monitoring of power system-based

applications such as electrical substation automation. The hierarchy of object models

used by IEDs are illustrated in Figure 2.15.

Figure 2.15: The object model hierarchy used by IEDs
(Adapted from Apostolov, et.al. 2003)

(Duan and Zivanovic, 2013) demonstrates a novel condition monitoring and control

system which is based on the IEC 61850 standard. The condition monitoring system

is used for the application of motor protection in two factories. The condition

monitoring software is developed using MATLAB and is implemented using IEDs.

Real-time data transfer is implemented using Ethernet communication and remote or

local control rooms will have access to the condition monitoring data.

 37

A summary of the publications reviewed in the application IEC 61850 standard-based

condition monitoring systems are presented in Table 2.3.

Table 2.3: Application of IEC 61850 standard-based condition monitoring systems

Paper Application Type

(Local/Remote)

Software

used

Hardware

used

Literature

Findings

Jang, et.al.
2011

Gas Insulated
Switchgear

Local and remote
monitoring

IEC 61850
standard-
based object
models and
SCADA
system.

Line sensors
for
temperature
and current
as well as
Load cells.
IED-based
monitoring
system.

The condition
monitoring
system technique
is implemented
based on the IEC
61850-90-3
Technical Report.
Although other
applications may
differ, the same
technique can be
applied in terms
of data modelling.

Bosisio,
et.al. 2019

Distribution
networks

Remote
monitoring

IEC 61850
standard-
based object
models are
used.

IED-based
monitoring
system using
current and
voltage
measuring
equipment.

The literature
presents a
condition
monitoring
system used for
substation
automation
based-
applications. The
case study which
is presented in
the literature
suggests that an
IEC 61850
standard-based
approach
improves system
capabilities.

 38

Gaouda,
et.al. 2018

Power
systems

Local monitoring IEC 61850
standard-
based sample
values.

Voltage and
current
transformers
with IEDs.

The research
paper discusses
the development
of a merging unit
for substation
condition
monitoring
applications. The
research paper
finds that the
merging unit
exceeds
expectations
when operating
on its on as well
as when
integrated into a
bigger system.

Apostolov,
2013

Power
systems

Local and remote
monitoring

IEC 61850
standard-
based logical
nodes and
Report
Control
Blocks.

Condition
monitoring
system uses
IEDs.

Condition
monitoring
devices which
conform to the
IEC 61850
standard can be
used in the
analysis of even-
based data. The
analysis of even-
based data will
improve the
efficiency and
quality of a power
system.

Apostolov,
2013

Protection in
Power
systems

Local and remote
monitoring

IEC 61850
standard-
based object
models.

IED-based
condition
monitoring
system.

Implementing IEC
61850 standard-
based condition
monitoring
methods required
an-depth
understanding all
aspects of the
IEC 61850
standard. The
most important
aspects of the
IEC 61850
standard include
data modelling
techniques as
well the hierarchy
of functions
implemented
within the
standard.

 39

Lloret,
et.al. 2007

Substation
power quality

Local and remote
monitoring

IEC 61850
standard-
based object
models are
used.

Circuit
breakers and
IEDs are used
in the
condition
monitoring
system.

The IEC 61850
standard offers
clear advantages
within substation
condition
monitoring
systems.
Although the IEC
61850 standard
applications are
intended to be
used for power
systems, a clear
possibility exists
to extend the
reach of the
standard to other
domain
applications.

Mercurio,
et.al. 2009

Energy
management

Remote
monitoring

IEC 61850
standard-
based object
models are
used.

System is
tested using
only
simulated
substation
variables and
data.

The IEC 61850
standard provide
data modelling
methods which
are used for
monitoring and
control
applications
within power
systems. The IEC
61850 standard
makes it easier to
integrate devices
from different
manufacturers.

Kim, et.al.
2012

Gas Insulated
Switchgear

Local monitoring IEC 61850
standard-
based object
models.

Pressure
sensors,
temperature
sensors. IED-
based
condition
monitoring
system.

Conventional
condition
monitoring
techniques result
in high cost at
implementation
phase. The IEC
61850 standard
increases
efficiency of
condition
monitoring
applications.

Apostolov,
et.al. 2003

Power
system
applications

Remote and local
monitoring

IEC 61850
standard-
based object
models.

IED-based
condition
monitoring
system-

IEC 61850-based
condition
monitoring
devices can be
implemented
seamlessly into a
hierarchical
monitoring
structure. These
devices use
standardised
communication
which is defined
by the IEC 61850
standard.

 40

Duan and
Zivanovic,
2013

Factory-
based motor
protection

Remote and local
monitoring

IEC 61850
standard-
based object
models and
MATLAB
software
scripts.

Motors and
IED-based
condition
monitoring
system.

The IEC 61850
standard has
allowed for
development of
an embedded-
based device for
condition
monitoring. The
condition
monitoring
systems using
these IEDs offer
real-time
monitoring and
communication
abilities.

The comparative discussion of the results presented in this section are presented in

Section 2.3.3.

2.2.4 IEC 61850 standard-based communication

This section presents the results of research publications of communication systems

that are used in IEC 61850 standard-based condition monitoring systems. The

domain of application is considered to be significant as it indicates the trend of past to

current communication protocols and technologies used in substation-based

condition monitoring systems. This section has a focus on the following factors:

• The media used i.e., wireless or wired.

• The application.

• The communication protocol used.

The literature reviewed with the keywords: ““Substation communication networks”,

“IEC 61850 communication systems”” spanned over a period of twenty years from

2001 up until 2021.

(Brunner, 2008) states that the IEC 61850 standard defines how communication

between devices used in condition monitoring of Substation Automation Systems

(SAS) should be implemented and with its introduction, the opportunity arises to

replace individual wired signals with a single communication cable as illustrated in

Figure 2.16. This will ensure that interoperability is achieved between devices from

various vendors. The IEC 61850 standard is broad and defines various aspects of the

implementation of SAS which will affect how systems need to be designed in order to

be compliant. One aspect of communication defined by the IEC 61850 standard is the

 41

publisher-subscriber service and an example of the service is Generic Objected-

Oriented Substation Event (GOOSE) messages. GOOSE messages over an Ethernet

communication network are implemented using the device configuration illustrated in

Figure 2.16. Another example of the publisher-subscriber service is Sample Value

(SV) messages and this is implemented in the configuration illustrated in Figure 2.17.

The overall substation automation communication layout is shown by Figure 2.18. It is

clear that with complying to the IEC 61850 standard, a massive reduction in

hardwired signals is seen as devices which comply to the standard have Ethernet

communication capabilities.

Figure 2.16: Publisher-subscriber communication service replacing hardwired signals
(Adapted from Brunner, 2008)

Figure 2.17: SV publisher-subscriber communication service
(Adapted from Brunner, 2008)

 42

Figure 2.18: IEC 61850-based substation communication layout
(Adapted from Brunner, 2008)

(León, et.al. 2016) proposes models which are to be used for simulation of GOOSE

and SV messages in an IEC 61850 based system. Models are developed using

OMNet++/NET which is a tool used to simulate discrete events. The project

implementation is applied in what is considered to be a typical IEC 61850-based

communication architectural layout as illustrated in Figure 2.19. It can be seen from

Figure 2.18 that there are three levels within the communication system of a

substation. The three levels are Process Level, which is where all field sensors are

found, Bay Level, which is where IEDs which are used to monitor field-based sensors

and communicate with each other are found and Station Level, which is typically in

the form of a control room situated locally or remotely.

Figure 2.19: Communication architecture based on the IEC 61850 standard
(Adapted from León, et.al. 2016)

 43

(Liang, et.al. 2017) proposes methods to develop an IEC 61850-based

communication protocol converter be used in power systems communication

networks. The protocol converter interfaces with existing IEC 61850-based

communication devices and the control room user interface such as a SCADA system

where operators can monitor and review all data and devices.

(Noran and Shukri, 2015) states that the IEC 61850 standard has two communication

services that are prominent and implement these services are implemented in

protection applications within the power system domain. The two communication

services are the client/server and the publisher/subscriber services.

(Apostolov, 2006) describes the various communication applications to be applied

with the substation which conforms to the IEC 61850 standard. Client/server,

publisher/subscriber, unicast and multicast communication all form part of the IEC

61850 standard-based communication applications. The IEC 61850 standard

provides a platform for novel communication applications based on the client/server

and publisher/subscriber communication services defined in the standard. (Apostolov,

2006) also concludes that communication need not only be implemented between

devices on the same function level of the power system and that implementation of

varying types of communications are required to conform to the standard.

(Apostolov, et.al. 2006) states that the IEC 61850 standard plays a significant role in

how substation automation various devices are developed. This allows for

communication implemented between devices to be done in a seamless fashion. Due

to IEC 61850 standard-based communication, the different parts of a Substation

Automation System can be integrated in a way that is easy and cost-effective.

(Apostolov, et.al. 2010) concludes that communication systems which are based on

the IEC 61850 standard are far superior to conventional methods which implement

hardwired signals. This is clear in the engineering and cost-saving benefits.

Engineering benefits includes a more optimised system by replacing a large amount

of hardwired signals with a single communication cable, which leads to reduction in

material and installation time, therefore reducing cost.

(Chen, et.al. 2010) presents the implementation of the design of an IEC 61850

standard-based proxy-server. The research work details the modelling used, the

configuration of the system, controlling of the system, the maintenance of the system

as well as the mapping of the IEC 61850 services. The proxy server is modelled as

 44

an IED. The goal of the system is to add additional security measures preventing

unwanted access to devices on the communication network.

(Englert and Dawidczak, 2009) discusses the implementation of communication

between IEC 61850 standard-based substations and control centres. The paper

assesses applications of standardised IEC 61850 communication currently

implemented and what was learned from it. Table 2.4 presents a comparison of these

applications. (Englert and Dawidczak, 2009) concludes that communication based on

the IEC 61850 standard offers engineers and utilities a reduction in engineering cost

and simpler project implementation.

Table 2.4: Current IEC 61850 standard-based communication applied
 (Adapted from Englert and Dawidczak, 2009)

(Nguyen-Dinh, et.al. 2007) presents a study on IEC 61850 standard-based Generic

Object-Oriented Substation Event (GOOSE) messages. A single communication

 45

cable which transmits GOOSE messages replaces individual signals which are

hardwired between Intelligent Electronic Devices (IEDs). GOOSE communication is

typically implemented to achieve monitoring and protection functionality in time-critical

applications. GOOSE message communication between IEDs is illustrated in Figure

2.20. It can be seen from Figure 2.20 that a singular IED can send GOOSE

messages to multiple IEDs connected to the same network.

Figure 2.20: GOOSE message implementation between IEDs
(Adapted from Nguyen-Dinh, et.al. 2007)

(Apostolov and Vandiver, 2007) conclude that conventional power systems are

required to be tested using hardwiring methods whereas IEC 61850 standard-based

power systems are to be tested using communication methods.

A summary of the publications reviewed in the application of IEC 61850 standard-

based communication are presented in Table 2.5.

 46

Table 2.5: Application of IEC 61850 standard-based communication

Paper Application Media Communication

Protocol

Literature

Findings

Brunner,
2008

Substation
Automation
System.

Wired connection Peer-to-peer
GOOSE
messages and SV
messages.

The IEC 61850
standard will
lead to the
introduction of
new methods
and
technologies.
New software
tools and skills
are need for
successful
implementation
of the IEC
61850
standard.

León, et.al.
2016

Protection
functions
Substation
Automation
System.

Wired connection Peer-to-peer
GOOSE
messages.

Results and
findings of the
research work
are validated
through real-
time
implementation
and testing. It is
clear that IEC
61850
standard-based
communication
allow for
scalability.

Liang,
et.al. 2017

Protocol
converter
between the
substation
and remote-
based control
room.

Wireless
connection

 Testing and
results indicate
that the IEC
61850
standard-based
communication
system saves
on
implementation
costs. The
system as a
whole is also
proven to
operate more
efficiently.

 47

Noran and
Shukri,
2015

General
power
systems.

Wired connection Client-Server and
Peer-to-peer
communication.

Communication
implemented
which is based
on the IEC
61850 standard
proved to be
versatile.
Although the
system
implements
communication
between IEDs
manufactured
by different
vendors, the
system still
proved to be
interoperable.

Apostolov,
2006

Substation
Automation
System.

Wired connection Client-Server and
Peer-to-peer
communication.

The IEC 61850
standard-based
peer-to-peer
and
client/server
communication
models allow
for an
expansion in
applications.
The IEC 61850
standard-based
communication
offers
communication
between
devices based
on different
levels within
the substation.

Apostolov,
et.al. 2006

Substation
Automation
System.

 IEC 61850
standard-based
communication
allows for
different
approaches to
be taken when
it comes to
recording of
waveforms.
Any abnormal
condition
recording can
be
implemented
with sample
rates being
around 256
samples/cycle.

 48

Apostolov,
2010

Process bus
in Substation
Automation
System.

Wired connection Peer-to-peer
communication.

IEC 61850
standard-based
communication
allows for new
and
rejuvenated
approaches to
implementing
power system
condition
monitoring.
This is due to
the fact that the
IEC 61850
standard
supports
interoperability.

Chen, et.al.
2010

Digital
substations
and control
centre.

Wireless
connection

 The application
of IEC 61850
standard-based
communication
allows for high
level of security
restrictions.
Communication
which is
interoperable
can be
implemented
using
communication
methodology of
the IEC 61850
standard.

Englert and
Dawidczak,
2009

Electrical
substation
control
centre.

Wired and
wireless
connections

 Applying
communication
methods of the
IEC 61850
standard offer
utilities with
clear financial
and project
implementation
benefits. The
IEC 61850
standard offers
its users
interoperability
between
substation-
based devices.

 49

Nguyen-
Dinh, et.al.
2007

Substation
Automation
System.

Wired connection Peer-to-peer
GOOSE
messages.

The MMS
EASE Tool is a
great software
tool used to
implement
communication
applications
based on the
IEC 61850
standard. The
findings from
the
experimental
case study
show the
benefits of IEC
61850
standard-based
GOOSE
communication.

The comparative discussion of the results presented in this section are presented in

Section 2.3.4.

2.3 Discussion of Literature Review Results

In this section a discussion is presented on the literature reviewed in the previous

sections. Section 2.3.1 presents a discussion on condition monitoring systems

discussed in Section 2.2.1.

2.3.1 Discussion of the results within the condition monitoring systems

environment

Condition monitoring is defined as the process of continued monitoring of a process,

system, or device in order to detect change which might indicate that a failure in

components used in the process, system or device may result in down-time or is a

safety hazard. This information is then used to prevent the failure from occurring

through maintenance or other intervention.

The literature reviewed suggests that in order to achieve condition monitoring, which

consists of data acquisition and data analysis, sensors are placed strategically in and

around the machines or devices required to be monitored. Having the data acquisition

aspect in place, the condition monitoring system provides users with this data which

can then be analysed. This analysis highlights the condition of the system being

monitored and the specific fault which is looming is then identified. Decisions are then

made regarding the type of maintenance required and this is then scheduled. The

literature reviewed refers to this as preventative maintenance. The literature review

 50

indicates that despite the field or domain of application, condition monitoring is

required to be implemented in order to reduced unplanned downtime of a system or

process which result in unplanned cost. The condition monitoring systems in

discussed in Section 2.2.1 include:

• Crank axles in trains (Groom, 2014).

• Industrial systems (Biçen and Aras, 2014).

• Railway systems (Morris, et.al. 2016).

• On-Loan Tap Changers (OLTCs) in power transformers (Seo, 2018).

• Point machines in railways tracks (Shaw, 2008).

• Industrial Welding (Fu, et.al. 2021).

• Electrical transmission lines (Chunlong, et.al. 2021).

• Railway infrastructure (Herkes, 2006).

• Wind turbines (Feng, et.al. 2019).

• Railway infrastructure (Swift, et.al. 2011)

Table 2.1 presents a comparison of the literature reviewed in Section 2.2.1 regarding

condition monitoring systems in general. The table lists the authors of the literature,

the application of the condition monitoring system, whether the condition monitoring

system implements local or remote monitoring and a brief summary of the system

implementation. The application of various condition monitoring systems discussed in

Section 2.2.1 are diverse with differentiations in monitoring methods employed to

achieve success.

(Groom, 2014) discusses implementation of a condition monitoring system using

“stink bombs” to monitor the bearing temperature of a crank axle. The only advantage

which this application offers is that it will indicate when temperatures exceed pre-

determined values and a massive downside is the fact that this type of condition

monitoring offers no way of recording data. Condition monitoring applications

presented by (Morris, et.al. 2016) and (Chunlong, et.al. 2021) makes full use of the

technology available. In contrast to (Groom, 2014), condition monitoring presented by

(Morris, et.al. 2016) and (Chunlong, et.al. 2021) makes use of wireless data

acquisition and stores data via cloud-based services. The advantages of this methods

are that the tedious task of wiring individual signals is removed with the only two

glaring downside being high power usage of the system and potential loss of

connectivity.

 51

(Fu, et.al. 2021) presents the implementation of Fréchet distance in a condition

monitoring system used for welding. The advantage of this method is that it provides

users with more accurate data when compared to convention condition monitoring.

(Seo, 2018) discusses a condition monitoring using vibration to monitor the OLTC

within a power transformer. Although the applications of the condition monitoring

discussed in (Fu, et.al. 2021) and (Seo, 2018) are very different, it is clear that they

agree with (Herkes, 2006), (Feng, et.al. 2019) and (Swift, et.al. 2011) that condition

monitoring is non-negotiable if catastrophic failure is to be avoided thus clearly

showing the financial benefits.

The literature reviewed here is important because it indicates how broadly used

condition monitoring systems are implemented. Despite the domain of application or

the application itself, condition monitoring system play a crucial for the various

discussed in this section.

The following section presents a discussion of the results of the literature reviewed

within condition monitoring systems of industrial processes as discussed in Section

2.2.2.

2.3.2 Discussion of the results within condition monitoring systems of

industrial processes

It is clear that condition monitoring plays a vital role in industrial environments and as

time has progressed, with different technologies becoming available, condition

monitoring has become more prevalent. Though there are numerous reasons to

implement a condition monitoring system, the most obvious reasons include:

• Increase system or process reliability.

• Mitigate danger factors, especially in high-risk environments.

• Reduce and/or prevent catastrophic failure.

• Safe cost through preventative maintenance.

• Extend asset lifecycle.

• Increase production rate.

Industries may vary regarding the processes implemented, but it is clear that the one

common factor is condition monitoring. The literature reviewed discusses the

condition monitoring systems implemented in industrial processes. Special focus is

placed on the domain of application, monitoring and communication methods

implemented as well as the data acquisition and communication technologies used.

 52

The application domains of the condition monitoring systems discussed in the

literature review include:

• Mineral processing (Xu, et.al. 2011).

• Industrial drilling (Yang, et.al. 2019).

• Machines in industrial plants (Elmaleeh, et.al. 2010).

• Wind turbines (Swiszcz, et.al. 2008).

• High voltage cables (Gulski, et.al. 2008).

• Wind turbines (Costinas, et.al. 2011).

• Industrial production plants (Sheng, et.al. 2012).

• Induction motors (Hmida and Braham, 2016).

• Fire hazards (Liu, et.al. 2009).

• Industrial Granary (Zhang and Zhang, 2018).

The condition monitoring systems implemented in the various domains of application

are diverse and use different techniques to acquire data. Some of the methods used

for data acquisition include:

• Sensing technology for temperature, current, voltage, acoustic emission,

vibration etc. (Elmaleeh, et.al. 2010) (Costinas, et.al. 2011).

• Internet of Things (Xu, et.al. 2011).

• Neural networks (Feng, et.al. 2019).

• Wavelet pack transforms(Hmida and Braham, 2016).

• Amplitude analysis (Fu, et.al. 2021).

• Statistical techniques (Fu, et.al. 2021).

Table 2.2 presents a comparison of the literature reviewed in Section 2.2.2 regarding

condition monitoring systems implemented in industrial processes. Table 2.2 lists the

authors of the literature, the condition monitoring application, if monitoring is

implemented locally or remotely and a brief evaluation of the system methodology.

The application of the various condition monitoring systems which are implemented in

industrial processes discussed are diverse with variations in the monitoring

methodology employed to fulfil its purpose.

(Xu, et.al. 2011) discusses the implementation of an IoT-based condition monitoring

system for use within a mineral processing plant and (Yang, et.al. 2019) discusses

remote condition monitoring system for industrial drilling. The clear advantages of this

 53

type of remote condition monitoring systems are that data is easily available but

creates a huge security risks.

(Elmaleeh, et.al. 2010), (Costinas, et.al. 2011) and (Swiszcz, et.al. 2008) present

condition monitoring systems using vibration and acoustic monitoring techniques.

Both monitoring applications advantages of reduced unplanned breakdowns within

mechanical components. Detection of rotor imbalanced, worn bearings and bearing

misalignment all from part of vibration and acoustic monitoring.

Condition monitoring systems which implement proprietary protocols that integrate

multiple devices into a network for data information exchange. This allows for benefits

such as a more efficient way of data retrieval. This is evident in (Liu, et.al. 2009)

which implements a condition monitoring system of a fire alarm using the RS232

protocol, (Sheng, et.al. 2012) which implements condition monitoring within a

production plant using RS485 and (Zhang and Zhang, 2018) which implements

temperature and humidity monitoring in an industrial granary using CAN bus

communication. All three of these proprietary monitoring techniques require

expensive protocol converters if they were to be implemented in the same system

which is a significant disadvantage.

The literature reviewed in Section 2.2.2 is important because it paints a clear picture

of the monitoring techniques implemented, the technology used for data acquisition

communication across various industrial processes from earlier years to more recent

years.

The following section presents a discussion of the results of the literature reviewed

within IEC 61850 standard-based condition monitoring systems as discussed in

Section 2.2.3.

2.3.3 Discussion of the results within IEC 61850 standard-based condition

monitoring systems

During the time when electrical substation-based electromechanical relays used

hardwired analogue and digital signals, there was hardly any use for communication

infrastructure due to how information was being exchanged. With technology

advancing and with the introduction of high-speed computation devices, a need arose

for standardised information exchange to be implemented in a way that is efficient,

secure, and reliable.

 54

The IEC 61850 standard was created to ensure that information exchange in the

substation environment occurred seamlessly, with the objective of interoperability

between devices within the substation being a high priority. Some of the other

objectives of the IEC 61850 standard, which includes future-proofing are discussed in

Section 2.2.3. The literature reviewed in Section 2.2.3 discusses the condition

monitoring implementation based on the IEC 61850 standard. This discussion

reviews the standardized monitoring approach taken by the standard in contrast to

monitoring methods implemented in industry which do not conform to the IEC 61850

standard.

Condition monitoring systems which conform to the IEC 61850 standard are generally

developed for implementation within the power system domain and these systems

use standardized data, communication services, data models with Substation

Configuration Language (SCL) based on eXtensible Markup Language (XML). Some

the applications of the IEC 61850 standard-based condition monitoring systems

include:

• Gas Insulated Switchgear (Jang, et.al. 2011).

• Electrical distribution networks (Bosisio, et.al. 2019).

• Power Systems (Gaouda, et.al. 2018).

• Substation Automation (Apostolov, 2013).

• Power system protection (Apostolov, 2013).

• Substation power quality (Lloret, et.al. 2007).

• Energy management (Mercurio, et.al. 2009).

• Gas Insulated Switchgear (Kim, et.al. 2012).

• Power systems (Apostolov, et.al. 2003).

• Motor protection in factories (Duan and Zivanovic, 2013).

Table 2.3 presents a comparison of the literature reviewed in Section 2.2.3 regarding

the implementation of IEC 61850 standard-based condition monitoring systems. The

authors of the literature, the monitoring application, whether monitoring is

implemented locally or remotely, the software methodology and the hardware

methodology are all tabulated in Table 2.3. The reviewed literature indicates that the

IEC 61850 standard provides a platform for the implementation of flexible condition

monitoring techniques which are standardised and future-proof.

(Jang, et.al. 2011) and (Kim, et.al. 2012) present IEC 61850-based condition

monitoring of gas insulated switchgear. Both approaches use temperature and

 55

pressure sensors for data acquisition and implement data models defined within Part

7 of the IEC 61850 standard. These approaches make full use of the advantages

such as interoperability offered by the approach taken by the IEC 61850 standard.

(Bosisio, et.al. 2019) and (Gaouda, et.al. 2018) propose condition monitoring systems

which intended to be used in power systems. These condition monitoring application

use IEDs and the advantages of these approaches include increased reliability and

as systems which are futureproof.

(Apostolov, 2013) and (Apostolov, et.al. 2003) discusses the IEC 61850 standard-

based software models which included data attributes, data, logical nodes, logical

devices and servers used in relation to IEDs used in condition monitoring systems.

These software models offer unique reporting capabilities when specific events occur,

which do not exist in the conventional approach. This is confirmed by (Apostolov,

2013) which discusses functional hierarchy of the IEC 61850 standard and details

clear advantages which include more simplified engineering required.

The literature reviewed in Section 2.2.3 is important because it highlights the

effectiveness and the advantages of the IEC 61850 standard when condition

monitoring systems conform to it, due to object-orientated modelling approach taken

by the standard. The IEC 61850 standard provides guidelines which ensure condition

monitoring systems are optimised in terms of engineering and cost.

The following section presents a discussion of the results of the literature reviewed

within IEC 61850 standard-based communication as discussed in Section 2.2.4.

2.3.4 Discussion of the results within IEC 61850 standard-based communication

With the introduction of high-speed computerised technology within the substation

environment, challenges arose due to devices developed by various vendors lacking

the ability to communicate efficiently with one another. The need arose for

standardized communication between devices regardless of the brand. The IEC

61850 standard was created which resulted in devices which are interoperable and

able to communicate seamlessly with each other without the use of costly protocol

converters.

The IEC 61850 standard consists of various parts and each part defines different

aspects of the standard. Aspects of how the IEC 61850 standard handles data are

discussed in Section 2.2.3 of the literature review but Section 2.2.4 focuses on the

 56

way devices communicate with each other. The literature reviewed in this Section

2.2.4 discusses how communication between devices which conforms to the IEC

61850 standard should be implemented. The various literature highlights the

communication services defined in the IEC 61850 standard, the differences between

the services and provides examples applied within the substation which entails

explanations and visual representations of these applied examples.

Table 2.5 presents a comparison of the literature reviewed in Section 2.2.4 regarding

the implementation of IEC 61850 standard-based communication. The authors of the

literature, the application, the media used in the communication system and the

protocol used are detailed in Table 2.5. The literature reviewed clearly indicates that

the standardized communication implemented based on the IEC 61850 standard is

far superior to conventional communication methods which rely on additional

communication protocol converters due to the inability of devices developed by

different vendors being able to communicate with one another.

(Apostolov, 2006) states that IEC 61850 communication approach is versatile in that

it allows for standardised communication between devices on the same level of the

substation as well as standardised communication between devices on a different

level.

The overall architectural layout of the IEC 61850 standard-based communication

systems implemented in the substation domain are identified and discussed. Inter-

device communication and communication between the 3 levels of the substation are

identified and discussed by (León, et.al. 2016) and (Brunner, 2008). IEC 61850

standard-based systems use communication to exchange information between

devices instead of numerous individually wired analogue and digital signals. This

simplifies the installation approach and reduces the cost of installation due to less

material being required. (Apostolov, et.al. 2010) confirms and adds that installation

time is also reduced.

(Noran and Shukri, 2015), (Liang, et.al. 2017) discusses the approach taken for inter-

device communication as well as communication between the different levels within

the electrical substation. The advantages of the standardized approach taken by the

IEC 61850 standard include interoperability which result in no protocol converters are

required meaning utilities reduce implementation costs of communication systems.

This is confirmed by (Apostolov, et.al. 2006), which states that IEC 61850 standard

offers communication which is seamless.

 57

(Apostolov, 2013) indicates that although the IEC 61850 standard provides a platform

for new applications, has a host of advantages which range from financial to

implementation, an in-depth understanding is required for the standard to be

implemented successfully. This is confirmed by (Brunner,2008) which states that the

IEC 61850 standard approach introduces new tools, methods and technologies which

will need to be mastered by engineers who wish to implement the standard. This

could be considered a downside to the IEC 61850 standard.

The literature reviewed in Section 2.2.4 is important because it identifies why it is

crucial for the IEC 61850 standard to be implemented when it comes to refurbishment

or erection of a new substation. The applications of IEC 61850 standard-based

communication in literature reviewed in this section proves that IEC 61850 simplifies

the engineering which in turn results in the reduction of installation cost.

The following section presents the summary to the chapter.

2.4 Chapter Summary

This chapter provides a comprehensive review on the past and current literature

within the areas of condition monitoring, condition monitoring of industrial processes,

IEC 61850 standard-based condition monitoring systems, IEC 61850 standard-based

communication. Also included in this chapter is a discussion of the results of the

reviewed literature in the areas of condition monitoring, condition monitoring of

industrial processes, IEC 61850 standard-based condition monitoring systems, IEC

61850 standard-based communication.

Based on the literature reviewed and the discussion of the literature reviewed, it is

clear that IEC 61850 standard-based condition monitoring techniques and

communication techniques offer clear advantages that conventional methods don’t. It

is also clear that condition monitoring techniques are almost exclusively implemented

in the substation and power system arena. It will prove to be challenging and

expensive to extend the reach of the IEC 61850 standard to other domains of

applications as the knowledgebase resides with vendors.

The approach taken in this research work aims to contribute to the knowledge base

identified in the literature reviewed in this section by extending the domain of the IEC

61850 standard to domains outside of the power system environment.

 58

Chapter Three presents an overview of the IEC 61850 standard with a particular

focus on logical nodes and GOOSE messaging. In this chapter a comprehensive

investigation is conducted to understands the workings of the standard in order to

complete the implantation of this research project.

 59

CHAPTER THREE

OVERVIEW OF THE IEC 61850 STANDARD

3.1 Introduction

The IEC 61850 standard was promulgated to achieve interoperability in the

substation environment. Interoperability is when IEDs developed by opposing

vendors communicate with each other to operate and implement their own

functionality. The IEC 61850 standard is already implemented by numerous electrical

substations around the world (Yongli, et.al. 2009).

This chapter investigates how the IEC 61850 standard has achieved standardisation

within the substation automation environment. This is done by conduction a detailed

analysis of the tools used, methodology applied and the services which are specified

within the IEC 61850 standard. An overview of the IEC 61850 standard is provided

with a particular focus on the data modelling techniques and communication service

mappings. This also pays particular attention to the application of the IEC 61850

standard in the Substation Automation Systems environment focusing on the Logical

Node and Generic Object-Oriented Substation Event (GOOSE) message

implementation. The components which have been found to be crucial to the

understanding of the workings of the IEC 61850 standard have been identified and

elaborated upon in this chapter.

The chapter is broken down into the following sections: Section 3.2 looks at the

communication techniques which is used in legacy substation automation systems

within the substation environment. Section 3.3 provides a brief overview to the ten

parts of the IEC 61850 standard. Section 3.4 discusses the application of the IEC

61850 logical nodes and also the communication service mapping of data to GOOSE

messages. Section 3.5 provides a conclusion to this chapter showing the clear

advantages of using the IEC 61850 standard in modern-day substation automation

systems over legacy communication protocols and hardwired techniques.

3.2 Introduction of the IEC 61850 standard

Electrical substations have been designed and manufactured in order to operate

autonomously. The biggest transformation within electrical substations as time has

passed has been found to be the technology utilised within the electrical substations.

The earliest electrical substations utilised electromechanical devices for monitoring

and protection functions. Each of these electromechanical devices was electrically

connected to current transformers, and these connections could sometimes be made

 60

by way of Alternating Current to Direct Current transducers. The power system

protective devices were in the form of relays. An individual relay would be providing a

specific protective function. That being said, electrical wiring played a massive part in

legacy electrical substations. RTUs (Remote Terminal Units) would provide the

central monitoring and control functionality and was a single access point between

the control centre and the substation. The RTU was basically made of

electromechanical switches which can also be referred to as relays, each relay having

a specific function. Some of the control functions included opening and closing

devices in the field and some of the monitoring functions included monitoring of circuit

breaker positions. Figure 3.1 shows the architecture of historical electrical substations

before 1992. Despite this being an earlier iteration of electrical substation automation,

autonomous control has always been present. It can be seen that the architecture

utilises electromechanical switching for monitoring and control purposes, which are

directly connected to sensors i.e., current transformers and voltage transformers

located in the field. Figure 3.1 shows that the implemented communication standard

is proprietary as evidenced by the dial-up modem device. The different levels of the

legacy substation architecture are illustrated in Figure 3.1, devices such as servers

used for monitoring and historical data storage which are typically found in a control

room form part of the Station Level (blue box), devices used for automatic monitoring

and control such as Programmable Logic Controllers (PLCs) and multi-purpose relays

form part of the Bay Level (red box) and sensors and switching devices which are

based in the field form part of the Process Level (yellow box) (Tatera and Smith,

2008).

 61

Figure 3.1: Legacy substation architecture
(Adapted from Tatera and Smith, 2008)

Electrical substations continued to evolve until eventually Intelligent Electronic

Devices (IEDs) were introduced. IEDs (Intelligent Electronic Device) are multi-

functional devices which have capabilities for the protection, monitoring and control of

a power system. These devices can communicate all data regarding protection,

monitoring and the control of the power system. These devices are produced by

various vendors, and this resulted in IEDs manufactured by different vendors unable

to exchange information between each other. This inability of IEDs from different

vendors to exchange data was as a result of proprietary communication protocols and

communication could not be achieved without the use of costly protocol translators

(or converters). Therefore, a need to introduce a new standardised communication

platform for IEDs used in the electrical substation arose.

The inception of the IEC 61850 standard, which is a communication standard for

devices within the substation arena, has allowed for the incorporation of numerous

IEDs (Intelligent Electronic Device) on an Ethernet network for fast and efficient

communication between each of the devices on the network due to standardisation.

This standardisation changes the way substation automation systems are designed

Station Level

Bay Level

Process Level

 62

by reducing the intricacy and variation of system solutions. This new way of design

has substantial benefits, including reduced operational and maintenance cost

(Ozansoy, et.al. 2009).

The following section presents an overview of the IEC 61850 standard.

3.3 IEC 61850 standard overview

The IEC 61850 standard which was published in the year 2003, was intended to

remove intricacies related to substation automation systems. The reduction in

complexity of substation automation systems has a direct impact on the economics of

erecting these systems by lowering operational, maintenance and engineering costs

(Elgargouri, et.al. 2015).

The IEC 61850 standard consists of ten parts with some subsections. Each part of

the IEC 61850 standard defines different aspects with regards to data modelling and

the communication framework. The ten parts of the IEC 61850 standard (illustrated in

Table 3.1, highlights the scope of each of the sections and subsections of the

standard), specifies the substation automation system’s requirements and allows for a

framework which is futureproof and allows for flexibility and most importantly

interoperability. The main drivers behind the IEC 61850 standard are virtualisation,

which is the creation of a generic substation model with all required functions,

components and data communication methods which are abstract and define

information and the exchange thereof in a way that is independent of any fixed

protocol implementation (Mackiewicz, 2006).

 63

Table 3.1: Scope and Outline of the IEC 61850 standard (Mackiewicz, 2006)

The following section presents the concept of the modelling done in the IEC 61850

standard and what it is meant to be achieved by the implementation thereof.

3.3.1 IEC 61850 standard conceptual modelling

The IEC 61850 standard makes use of an object-oriented approach and defines the

data model (which is in a hierarchical form) for the communication network and

physical objects within the substation such as measuring, control and protection

objects (Yongli, et.al. 2009).

Electrical substation automations systems are meant to perform functions which

monitor, control and protect the plant equipment used in field. These functions form

the foundation for the object-oriented physical and logical device information models

which have been defined in the IEC 61850 standard.

 64

IEC 61850 standard-based models allow for the virtualisation of real devices, where

an entire physical substation is completely modelled as a virtual entity (Hammer and

Sivertsen, 2008). Modelling in the IEC 61850 standard is based on the Unified

Modelling Language (UML). The concept of virtualisation forms the first step in the

modelling approach taken by the standard. Figure 3.2 shows how the modelling

approach taken by the IEC 61850 standard is implemented. The main functions of a

substation which include protection, monitoring and controlling of the power plant

equipment, as highlighted by the yellow box on the right-hand side. Figure 3.2

illustrates these real-life functions being used as the components of the object-

oriented logical and physical device. A circuit breaker has its monitoring and

protection functions used to build the Logical Device (LD) as highlighted by the blue

box. The Logical Device contains the Logical Nodes (LNs). The Data from the Logical

Nodes can then be mapped to a communication protocol for communication on an

Ethernet network. Figure 3.2 also indicates that this can be done for any real device

located in the substation. This process is termed virtualisation. In Figure 3.2, an

example of a circuit breaker Logical Node (XCBR) is shown where the data attributes

include its position and mode of operation.

Figure 3.2: IEC 61850 conceptual modelling approach
(Adapted from IEC 61850-7-1, 2004)

The IEC 61850 standard uses models that are abstract which defines the information

and how it is used in such a way that is it does not depend on a specific protocol

implementation. Virtualisation is a concept that provides aspects which are found

 65

within real-life devices which are crucial when it comes to information exchange (IEC

61850-7-1).

Interoperability is achieved by the use of data models which are made up of logical

node classes and data classes, within the IEC 61850 standard. These specified data

models all have a certain naming convention which is also specified by the IEC 61850

standard. The standard allows for the expansion or addition of new models if the

need presents itself. This expansion is executed using the same virtualisation

process to ensure the newly added model is future-proof.

The Abstract Communication Service Interface (ACSI) is defined by the IEC 61850

standard as a conceptual interface. It does not define any specific data

communication messages; it defines how data is exchanged between devices which

makes up the substation automation system (IEC 61850-7-1).

3.3.2 IEC 61850 Data modelling

Data modelling within the IEC 61850 standard is implemented using an object-

oriented approach. Models prescribe communication between physical devices within

the substation arena. This approach supports the functions within the substation by

using data models which represent real-life physical substation devices and

processes (Ozansoy, et.al. 2009).

An objected-oriented approach means that a large system is divided up into

subsystems and layers. This allows for an easier understanding of a complicated

system due to it being divided into hierarchical elements which are smaller in size.

Looking at these elements individually significantly reduces the complexity and allows

for a system to be more comprehensible. Individual elements are therefore

interchangeable without hindering the system as a whole. These elements or objects

form the data attributes and operation services of the IEC 61850 standard (W. Huang,

2018).

The IEC 61850 standard defines substation functions as tasks which are executed by

the substation. These functions are shared onto numerous devices or an individual in

the form of IEDs, where the smallest function known as a logical node is used to

communicate with the remainder of the function. That being said, specific logical

nodes related to a specific function are found within the same logical device (which is

a virtualisation of the physical device as shown in Figure 3.3).

 66

Most devices and functions specific to the substation domain are modelled within and

form part of the scope of Edition 1 of the IEC 61850 standard. Should a required

function or device not be readily available, the standard makes provision for these

functions or devices to be created through documented procedures.

The IEC 61850 standard device model is hierarchical starting with the physical

device. This physical device forms part of the communication network and is usually

defined by the network address assigned to it. Every physical device consists of an

individual or more than one logical device. This logical device model allows for an

individual physical device to take up the role of a gateway for one or more devices.

Every logical device consists of a single or numerous logical nodes, each of which is

made up of a predefined group of Data Classes, which each contains data.

Figure 3.3: An IEC 61850 device representation
(Adapted from Gers, 2004)

Logical nodes are abstract data models, and they form the key elements upon which

the IEC 61850 standard object-oriented virtual model is based on. A logical node is

made up of Data Objects (DO), and each data object is made up of a certain amount

of Data Attributes (DA) as illustrated by Figure 3.3. Logical nodes allow for

virtualisation of the substation components into the required data model and plays a

key role in the IEC 61850 standard. This is also illustrated Figure 3.2.

The IEC 61850 standard defines an IED (Intelligent Electronic Device) as a server

device. The server device is meant to provide client services, such as the Generic

Object-Oriented Substation Event (GOOSE) messages. However some IEDs have

 67

the ability to implement client functionality as well. In Edition 1 of the standard, the

client functionality is not fully considered.

The XCBR (Circuit Breaker) Logical Node (LN) is defined by the IEC 61850-7 part of

the standard. Part 7 of the IEC 61850 standard deals with logical node classes, data

classes as well as common data classes, therefore the process of virtualisation will

not be needed for functions which have been standardised already, such as the

circuit breaker.

The IEC 61850 standard defines over 91 logical node classes, which have been

grouped in terms of the substation and feeder functionality or application that they

provide. This is further shown in Table 3.2.

Table 3.2: The IEC 61850 standard groups of logical node (IEC 61850-7-1)

Using the XCBR (circuit breaker) logical node as an example, it can be seen that the

internal components of the logical node are structured in a hierarchical manner. Data

attributes are grouped in terms of their functional constraints, meaning binary

functions are grouped together and functions which provide measured values in the

form of FLOAT32 are grouped together. This is illustrated in Figure 3.4.

 68

Figure 3.4: Position information depicted as a tree
(Adapted from IEC 61850-7-1, 2004)

Logical nodes are essentially a named cluster of data and services which are

associated to a function related to the power system. Logical nodes exist for functions

such as automatic control, where these logical node names start with the letter “A”.

Some logical nodes exist for measurement functions and these logical node names

start with the letter “M”. Logical nodes for generic functions begin with the letter “G”,

as illustrated in Table 3.3 (Mackiewicz, 2006).

 69

Table 3.3: List of Logical Node Groups (IEC 61850-7-4)

The logical node class is a grouping of data objects. The logical node class defined

by the IEC 61850 standard is essentially a template for the development of new

logical node. Some of the parameters are mandatory and others are optional,

meaning may be added at the developer’s discretion as the annotation suggests in

Figure 3.5. Figure 3.5 illustrates a logical node class definition of the XCBR (circuit

breaker) logical node as an example. The data attributes which the class consists of

is illustrated below. Data attributes are divided into 3 parts, those parts are Common

Logical Node Information, Controls, Metered Values and Status Information. The

name of the data attributes, the type of the data attributes as well as whether the data

attributes are mandatory or optional is indicated by an M or an O can be seen in

Figure 3.5.

 70

Figure 3.5: XCBR (circuit breaker) logical node class definition
(Adapted from IEC 61850-7-4, 2004)

All logical nodes contain an individual or numerous data components which has a

specific name. These names are dependent on the functionality performed within the

substation. The circuit breaker logical node depicted in Figure 3.5 has Data-Objects

such as “Loc”, which determines if the operation is remote or local. Another example

of the XCBR Data-Objects is the “Pos”, which refer to the position of the circuit

breaker. These are the Data Objects of the logical nodes. (R. E. Mackiewicz, 2006).

The following section deals with the naming convention which the IEC 61850

standard prescribes.

3.3.3 IEC 61850 Naming convention

The naming convention adopted by the IEC 61850 standard for devices, logical

nodes, data objects and data attributes are very important, and this is attributed to the

fact that the naming convention eliminates ambiguity. The naming convention aides in

realising of the virtualisation concept.

The naming convention prescribed by the IEC 61850 standard is hierarchical. This is

illustrated by Figure 3.6. The first part of the naming convention is entirely up to the

developer and is entirely independent of the standard. The second part of the naming

convention refers to the logical node. As previously mentioned in Section 3.4.2, the

first letter of the logical node refers to the functionality group to which that node

belongs, and in the example illustrated in Figure 3.6, the logical node starts with “X”

which refers to switchgear. The third part which shows the instance number of the

 71

logical node, meaning that there can be numerous logical nodes of the same kind.

The fourth part refers to the “status information” functional constraint of the logical

node, which is defined on page 48 in part 7-2 of the IEC 61850 standard. The fifth

and sixth part refers to the Data Object and Data Attribute of the logical node.

Figure 3.6: Anatomy of an IEC 61850-8-1 Object Name
(Adapted from Mackiewicz, 2006)

3.3.4 Abstract Communication Service Interface

The Abstract Communication Service Interface (ACSI) models of the IEC 61850 are

definitions which are abstract and describe common power system communication

functions found in IEDs which essentially describe interactions between client and

server devices on a communication network. While ACSI models are crucial to

achieving interoperability, they are still required to be operated over communication

protocols which can be practically implemented in a computing environment

(Ozansoy, et.al. 2009). Part 7-2 of the IEC 61850 standard describes the Abstract

Communication Service Interface (ACSI) in much greater detail.

Figure 3.7 shows the architecture of the IEC 61850 standard ACSI mapping to the

Open Systems Interconnect (OSI) model. It can be seen that an Abstract Layer of

Generalised Communication and a Specific Communication Service Mappings

(SCSM) layer is added. The SCSM layer (blue box) are added above the OSI model’s

layers (red box) illustrated in Figure 3.7.

 72

Figure 3.7: ACSI mapping to communication stacks/profiles
(Adapted from IEC 61850-7-1, 2004)

Figure 3.8 shows the conceptual model of the Abstract Communication Service

Interface. The ACSI is made up of two parts, those two parts are the information

model and the information exchange model. The information model and information

exchange model are connected together but for description purposes are viewed

separately to an extent. Figure 3.8 also illustrates how information is exchanged

between real devices and virtual models. Data contained within information models

are communicated to real devices via service models.

Figure 3.8: Conceptual model of ACSI
(Adapted from IEC 61850-7-2, 2004)

OSI 7-
layer
stack

SCMS
layer

 73

3.3.4.1 Information Model

The information model is the first sublayer of the Abstract Communication Service

Interface. The information model represents the elements which are used to virtualise

a physical device. These elements are as follows (Morris, et.al. 2016):

• Server (Number 6) – which is intended to represent the visible behaviour of

any given device where the ACSI models form part of the server.

• Logical Device (Number 8) – which is made up of the data consumed and

produced by Logical Nodes specific to a domain.

• Logical Node (Number 9) – which is made up of the data consumed and

produced by a functions applied in a specific domain, such as overcurrent

protection.

• Data (Number 10) – which provide the ability to identify data type attributes,

such as a switch’s along with timestamps and information regarding quality.

• Implementing condition monitoring devices used in real-time monitoring

applications and real-time data logging applications.

The structure of the information model is shown in Figure 3.9. Each of the elements

which make up the information models is further expanded on in part 7-2 of the IEC

61850 standard.

 74

Figure 3.9: Basic conceptual class model of the ACSI
(Adapted from IEC 61850-7-2, 2004)

3.3.4.2 Information Exchange

The information exchange is the second sublayer of the Abstract Communication

Service Interface. There are two communication service groups of the IEC 61850

standard which are shown in Figure 3.10. the first group utilises a client-server model

which can accommodate services such as remote switching and reporting. The

second group utilises a peer-to-peer model which is based on a Publisher/Subscriber

mechanism for Generic Substation Events (GSE) services which are meant to be

used for time critical applications. An example of a time critical application could be

transmission of data between IEDs used for protection functions where the data

transmission is required to be fast and reliable.

 75

Figure 3.10: ACSI communication methods
(Adapted from IEC 61850-7-1, 2004)

(Hammer and Sivertsen, 2008) suggests that the model used for data exchange

characterises the components required to configure a virtual device in order for it

communicate in the real world. These elements are as follows:

• Data-Set – used for grouping data attributes,

• Substitution – allows for process values to be replaced by a different value

• Setting Group Control Block – indicates how to change setting groups and

how values of setting groups are changed.

• Report Control and Log Control Blocks – indicates how logs and reports are

created which originate according to client-based configurations.

• GSE Control Block – allows for input/output data to be shared at a high speed.

• Sampled values transmission control block – high-speed transmission of

samples from sensing devices.

• Control – indicates which services are required to be controlled.

• Time synchronisation – allows for the system and device to have a time base.

• File transfer – determines the exchange data which include programs

Section 3.3.5 discuss the client/server communication within the IEC 61850 standard.

 76

3.3.5 IEC 61850 Client-Server Architecture

The client-server communication model allows for IEDs to communicate with a

Supervisory Control and Data Acquisition (SCADA) system on an Ethernet

communication network, typically at a speed of 100Mbs (Megabits per second). The

Manufacturing Message Specification (MMS) is utilised by the IEC 61850 standard,

which allows for the client-server communication between IEDs and the SCADA

system to be implemented. With the client-server communication model, an IED

operates as the server, containing all data related to its function and waits to respond

to any requests. As the client, the SCADA system will commence the communication

by sending a request to take control or only read data contained by the IED. The IED

then replies to the SCADA system with the requested data or offers control of its

operations (Huang, 2018).

Figure 3.11 exhibits how the client and server interact. It shows how the client

requests data from the server via the communication network. Upon receiving the

client’s request, the server then responds in an appropriate manner by taking the

required action (Park, et.al. 2012).

Figure 3.11: Client and Server interactions
(Adapted from Park, et.al. 2012)

Section 3.3.6 discuss publisher/subscriber communication within the IEC 61850

standard.

 77

3.3.6 IEC 61850 Publisher-Subscriber Architecture

The publisher-subscriber communication model comes in the form of Generic Object-

Oriented Substation Event (GOOSE) communication. This communication model is

defined by the IEC 61850 standard to be a high-speed and high availability

performance model. GOOSE communication takes place between IEDs and is

therefore defined as a peer-to-peer communication model. It is implemented in the

IEC 61850 standard to replace binary and analogue input/output (I/O) signals which

were hardwired between IEDS. In this communication model, IEDs transmit GOOSE

messages on the communication network, with all IEDs on the same network able to

see the message. Due to the application of this communication model, a high-priority

flag is assigned to every GOOSE message which allows for it be prioritised over other

messages on the Ethernet switch’s communication port (Huang, 2018).

The way it works is that one IED operates as the GOOSE publisher and another IED

operates as a GOOSE subscriber. While the publisher IED broadcasts to all IEDs on

the network, only the subscriber IED actually takes action by retrieving the message

in order to access the data. To ensure that IEDS receive GOOSE messages within 3

milliseconds of the occurrence of a substation event, the publisher IED increases the

rate at which messages are broadcasted non-linearly. Thereafter, the IED continues

to broadcast at a steady rate, which allows for the subscriber IED to detect a failure in

communication (Huang, 2018).

Figure 3.12 illustrates the operation of the publisher-subscriber communication

model.

Figure 3.12: Client and Server interactions
(Adapted from Ozansoy, 2006)

 78

3.3.7 IEC 61850 Data Communication

The client-server and publisher-subscriber communication models have been

identified as the two information exchange systems within the IEC 61850 standard.

To implement these communication models, the IEC 61850 standard adopted a two-

layer communication structure which is deployed on top of the traditional 7-layer OSI

stack. Should a device want to transmit data to any location in the outside world, the

information to be transmitted is required to pass through these two additional layers

only.

Figure 3.13 illustrated the additional two-layer communication stack of the IEC 61850

standard implemented on top of the tradition OSI stack. From Figure 3.13 it can be

seen that the first layer (layer 9) is made up of two sub-layers which have been

identified as the information model and information exchange which have been

elaborated upon in Section 3.3.4. As the speed at which these messages are

transmitted is critical, the GOOSE messages and Sample Values uses a reduced OSI

stack, and the information does not pass through all seven layers, as illustrated in

Figure 3.13. The second layer (layer 8) refers to Specific Communication Services

Mapping (SCSM), which is illustrated in Figure 3.2 as well.

Figure 3.13: IEC 61850 layered structure with OSI stack
(Adapted from ABB review, 2010)

The Specific Communication Services Mapping (SCSM) is a tool which allows for the

information models to be mapped to a communication protocol which is understood

by devices in a computing environment. In Figure 3.14 it can be seen that the

Sampled Values and GOOSE applications are mapped into an Ethernet data frame,

 79

this allows for GOOSE and Sampled Values applications are ensured to be high-

speed due to the eliminating of additional layers in between (R. E. Mackiewicz, 2006).

Figure 3.14: IEC 61850 Communication model
(Adapted from Elgargouri, et.al. 2015)

3.3.7.1 IEC 61850 GOOSE

The IEC 61850 standard defines the Generic Object-Oriented Substation Event

(GOOSE) message as a communication service which is of a peer-to-peer nature,

that is implemented between IEDs in the substation. As determined in Section 3.3.6,

it is a high-speed service due to how it is mapped. It is created to broadcast data

which is high-priority or time sensitive between IEDs which is related to any event

such as tripping caused by overcurrent or overvoltage. In Figure 3.15 it can be seen

that GOOSE messages are mapped directly into an Ethernet Frame, which means

that it only passes through two of the seven layers of the OSI stack, namely the Data

link layer and the Physical layer.

 80

Figure 3.15: Overview of IEC 61850 functionality and associated communication profiles
(Adapted from R. E. Mackiewicz, 2006)

GOOSE messages are generally utilised to transmit time-critical data such as status

information, between two or numerous devices. GOOSE messages are multicast

messages which are published on a communication network. The application of the

publisher-subscriber methodology used in GOOSE messages is shown in Figure 3.16

where the GOOSE model with services related to in can be seen. The publisher

consists of the physical device which is made of the logical device, which contains an

individual or numerous logical nodes containing data. A change in state of the data

contained within a logical node results in the transmission or publishing of a GOOSE

message at an increased rate for a period of time.

 81

Figure 3.16: Overview of the classes and services of the GOOSE model
(Adapted from IEC 61850-7-2, 2004)

Data contained within published GOOSE messages by an IED allows any IED which

subscribes to that message access to the data contained within the GOOSE

message as well as the status of the publishing IED. The time at which the most

recent change in status has occurred, allows for the subscribing IED to set a timer

relating to the event which caused the change in status. The period timed is the

maximum amount of time which the subscribing IED must wait before the following

message is transmitted. This timing information is referred to as the Time allowed To

Live (TTL) (León, et.al. 2016).

In order for the GOOSE message application to be reliable, GOOSE messages are

transmitted repeatedly. A new device which has just been connected to the network

will send current status data as an initial GOOSE message transmission. All devices

publishing GOOSE messages will send data between each other with an extended

cycle time even if no change in its status value has occurred, this is shown in Figure

3.17 (T0). Retransmission of GOOSE messages may be shortened by the occurrence

of an event. A change in the status value of an IED will cause GOOSE messages to

be published repeatedly with a reduced cycle time, as shown in Figure 3.17 (T1). The

duration of the cycle time will increase up until the prevent status has been reached,

as illustrated in Figure 3.17 (T2, T3 and T0).

 82

Figure 3.17: GOOSE message transmission time
(Adapted from IEC 61850-8-1, 2004)

In order to implement GOOSE messaging practically, a GOOSE control block is

required to be configured. A GOOSE control block contains information which a set of

data needed for transmission and information required for the validation of a GOOSE

message by the subscribing device. The information included in the GOOSE control

block is the name of the control block, the control block reference and services which

enable the publishing of GOOSE messages. Figure 3.18 illustrates a GOOSE control

block class.

Figure 3.18: GOOSE control block class
(Adapted from IEC 61850-7-2, 2004)

3.3.7.1.1 IEC 61850 GOOSE Message Structure

IEC 61850 standard-based GOOSE messages are mapped onto the ISO 8802-3

Ethernet frame and the Protocol Data Unit (PDU) is included in the payload section of

 83

the Ethernet frame. The ISO 8802-3 Ethernet frame is made up of two main parts; a

fixed part which cannot be altered and part which contains variables which are user-

defined. The fixed part of the Ethernet frame is made up of smaller parts, these parts

are as follows:

• Destination MAC address

This is the Media Access Control (MAC) address of device which GOOSE

messages are destined for. The MAC address value is given in hexadecimal

format and typically ranges between 01-0C-CD-01-00-00 and 01-0C-CD-01-

01-FF.

• Source MAC address

This is the MAC address of the device which publishes the GOOSE

messages; hence it is referred to as the source.

• VLAN Tag

GOOSE messages are tagged using the IEEE 802.1Q networking standard.

This allows for time critical messages to be separated from messages which

are low priority. The Tag Protocol Identifier (TPID) is set at 0x8100 for

identifying IEEE 802.1Q tagged messages. GOOSE messages are assigned a

default priority of 4 and a VLAN ID (VID) of 0. The tag header structure is

defined in Table 3.4.

 Table 3.4: IEEE 802.1Q Tag Header Structure (IEC 61850-8-1)

• Ethertype

The Ethertype is a two-octet field in the GOOSE Ethernet frame. The

Ethertype helps to indicate which data protocol is contained in the payload of

the Ethernet frame and it is utilised by the data link layer at the receiving end

to determine how the data contained in the payload is meant to be processed

 84

The part of the GOOSE message which is user-defined is the GoosePdu. It is defined

in Part 8-1 of IEC61850 standard. The GoosePdu contains message identifiers and

the actual data which is encapsulated within the payload section of the ISO 8802-03

Ethernet frame. The GoosePdu is illustrated in Figure 3.19.

Figure 3.19: GoosePdu as defined in the IEC 61850-8-1 standard
(Adapted from IEC 61850-8-1, 2004)

The GoosePdu fields are discussed below:

• gocbRef

The gocbRef is a visible string identifier. It contains a reference to the GOOSE

control block which controls the publication of the GOOSE messages.

• timeAllowedtoLive

Each GOOSE message which is published has a time which is in

milliseconds, for which any subscribing device has to wait until the next

GOOSE message is published. Should a GOOSE message not be received

by the subscribing device after this time has elapsed, the subscribing device

will proceed to assume that association to the publishing device has been lost.

• t

This field contains the Universal Co-ordinated Time (UTC) timestamp, which

indicates the time at which a GOOSE message is generated, which is

encoded according to RFC-1305 network time protocol

• stNum

This is an integer value, and it represents the state number of the subscribing

device’s state machine. This value is incremented each time an event occurs.

 85

• sqNum

This is an integer value, and it represents the sequence number for each

GOOSE message which is retransmitted after an event occurs. Upon the

occurrence of an event, this value is incremented until the occurrence of

another event.

• test

This is a Boolean flag which represents whether GOOSE messages published

are from an actual application which is valid or generated from a test

operation. This informs the subscribing device whether it can use the GOOSE

message for any of its operations or not.

• confRev

This value represents the configuration revision number of the GOOSE control

block at the time of which the GOOSE message is published. This value can

alter when data elements within the dataset are changed.

• ndsComm

This flag indicates whether the GOOSE publishing device is required to be

commissioned or not.

• numDataSetEntries

This value represents the number of data objects entries in the dataset which

are required to be mapped into the GOOSE message.

• DataSet

DataSets are an organised grouping of data objects or data attributes. This is

the user-defined data which are meant to be included within the GOOSE

message upon the occurrence of an event.

3.3.8 Substation Configuration Language (SCL)

The IEC 61850 standard defines the Substation Configuration Language (SCL) as a

tool used for information exchange. The SCL allows for the configuration as well as

the reconfiguration of a substation. The format of the SCL file is the eXtensible

Markup Language (XML) format. SCL files describe communication related

configurations within an IED. The different SLC file types and their functions can be

seen in Table 3.5

 86

Table 3.5: SCL description file types (IEC 61850-6)

The IED Capability Description (ICD) file which defines the functions or LNs

supported by the IED and the Configured IED Description (CID) file which is in

essence an ICD file with configured LNs and parameters are used in the practical

implementation of this research work in Chapter 4.

3.3.8 IEC 61850 Logical Nodes

The IEC 61850 standard defines a Logical Node (LN) as a sub-function of a function

common to substation automation system. Logical nodes can be found in a physical

node, which communicate and exchange information with other existing logical

devices. Although logical nodes are virtual entities, they constitute devices found in

the real world; this is referred to as virtualisation and is illustrated by Figure 3.20

where a switch is modelled as a logical node (Ozansoy, et.al. 2009).

Figure 3.20: Virtualisation
(Adapted from Ozansoy, et.al. 2009)

Logical nodes are essentially virtual models of devices within the substation. They

have been designed to be independent of any given singular communication

convention, making them versatile and allows for them to use communication

Extension Name Description

.ICD IED Capability Description Defines the capability of an IED.

.SSD System Specification Description Specification of the substation single line

diagrams and logical nodes required.

.SCD Substation Configuration Description Specification of the substation including IED

description.

.CID Configured IED Description Defines protocols, parameter values and data

structures utilised for the IED upon booting.

 87

protocols of varying types. All functions within the substation consists of instances of

various logical nodes. Figure 3.21 illustrates this fact by showing an example of a

substation function (in this case, protection for over-current) using XCBR, PIOC,

CSWI and TCTR logical nodes (Ozansoy, et.al. 2009).

Figure 3.21: Simple protection and measurement example
(Adapted from Ozansoy, et.al. 2009)

Figure 3.21 shows that if current measured by the CT (Current Transformer) TCTR

exceeds a predetermined value, the instantaneous overcurrent device PIOC will

detect this and will immediately signal the switch controller CSWI, which will then

cause the circuit breaker XCBR to change its operating state.

Logical nodes in the IEC 61850 have been categorised based on the following criteria

(Ozansoy, et.al. 2009):

• Common area of application.

• Description of functionality.

• Function number of device.

• Relation between functions of logical nodes.

A logical node of the IEC 61850 standard is defined as an object that has attributes

and operations. A class defines how an object operates and its properties. Each

object is an instantiation of a class. The class for each object is defined in part 7-2 of

the IEC 61850 standard. An example of a logical class can be seen in Figure 3.22. A

logical node class consists of a number of attributes, that give a description of the

characteristics of logical node objects. These attributes supply data containing

information which are required by functions as well as numerous data sets and

control blocks (Ozansoy, et.al. 2009).

 88

Figure 3.22: Logical Node class diagram
(Adapted from Ozansoy, et.al. 2009)

3.4 Chapter Summary

In this chapter an overview of the IEC 61850 standard is provided. Aspects of the

standard’s framework are discussed which aids in a better understanding of the core

functions related to the IEC 61850 standard and how it is implemented in substation

domain. In this chapter, the history of legacy Substation Automation Systems (SAS) is

highlighted which is followed by an introductory discussion of the IEC 61850

standard. The concept of the IEC 61850 standard, which includes the modelling

approach taken by the standard, the naming convention of the standard, the data

communication approach taken by the standard and the communication architectures

used by the standard are all elaborated upon in this chapter.

Some of the key drivers behind the IEC 61850 standard include:

• Providing and implementing the concept of virtualisation.

• Substation framework, which is scalable, flexible, and interoperable.

• Specification of processes and tools which are versatile.

• Easy and cost-effective maintenance.

• System architecture which allows for easy reconfiguration.

 89

The abstract nature and the key drivers of the IEC 61850 standard which are listed

above ensure that one of the key aims of the standard, which is to remain future

proof, is achieved.

The various discussions of all the aspects surrounding the IEC 61850 provide for a

knowledge-base which supports the design and implementation of the

aforementioned research project.

The following chapter details the practical implementation of GOOSE messages

being exchanged between devices in an IEC 61850 standard-based system.

 90

CHAPTER FOUR

CASE STUDY PRACTICAL IMPLEMENTATION: SOFTWARE DEVELOPMENT
AND SYSTEM INTEGRATION

4.1 Introduction

This chapter presents the practical implementation of the project. The details include

the embedded platform used, the architecture of the embedded platform, the

operating system of the embedded platform, the project architecture, the IEC 61850

firmware library and the various changes made to the library to achieve the

successful implementation of this project. In this chapter, the following sections are

detailed:

Section 4.2 – presents the context for the project. Section 4.3 – details the

architecture of the embedded hardware chosen for the practical implementation of the

project. Sections 4.4 and 4.5 respectively – presents detailed investigations of the

IEC 61850 standard embedded C library and its contents related to the publishing of

and the subscription to GOOSE messages using existing logical nodes contained

within the library. Included in the scope of these investigations is an existing IEC

61850 standard-based logical node configured using the ICD Designer platform

independently from the logical nodes contained within the library. These

investigations are presented in the form of case studies. The first case study

conducted in Section 4.4 is implemented with communication between a computer

and an embedded device on an Ethernet network and the second case study

conducted in Section 4.5 is implemented with communication between two embedded

devices on an Ethernet network. These cases will provide the required insight into the

IEC 61850 standard-defined Logical Nodes and GOOSE message service and will

provide the foundation upon which this research project is based. Section 4.6 -

presents a case study which includes the development of a new logical node which is

meant to extend the IEC 61850 standard into other domains with the GOOSE

message publication and subscription is then implemented using the newly

developed logical node. Section 4.7 – presents the conclusion to the chapter.

4.2 Project Context

The aim of this research is to develop a new IEC 61850 standard-based logical node

to be used in the publishing of and subscription to GOOSE Messages over an

Ethernet network between two newly developed lightweight IEC 61850 standard-

based IEDs which are used in a condition monitoring system. This is achieved by

making use of an embedded platform as presented in Section 4.3. The IEC 61850

 91

standard provides for the transmission of GOOSE messages using Ethernet as a

medium. The standard initially allowed for communications between devices in

substations only but due to the availability of Ethernet in many other domains this has

made it possible to transmit GOOSE messages in other areas of application as well.

This project is an implementation of a lightweight version of the IEC 61850 standard

on an embedded platform and demonstrates all the critical functionality of the

standard, but it differs from the traditional way of how the standard is implemented.

This implementation of the IEC 61850 standard is done in a way that is inexpensive

and easily accessible via various open-source avenues. The project demonstrates

the communication of data from a newly developed logical node using GOOSE

messages over an Ethernet network between two devices. Traditionally this is done

using IEDs (Intelligent Electronic Device) in the electrical substation domain, but this

research shows that a lightweight version of an IED can be created using an

embedded device and the IEC 61850 C library and how the standard’s functionality

can still be obtained. This research allows for IEC 61850 standard-based condition

monitoring to be branched out into various other domains in a manner which is

versatile and cost effective.

As discussed in Chapter 3, logical nodes are data objects are of an abstract nature,

that form the main elements of the IEC61850 standard object-oriented virtual model

and is made up of standardized data and data attributes. As mentioned previously,

logical nodes are abstract data objects and they can represent various physical

components such as switches in the grid, sensors, communication interfaces, or it

can simply contain descriptions of devices.

Logical nodes play a crucial role in IEC61850 standard-based condition monitoring.

Condition monitoring is the monitoring of the parameters of a system to recognise

significant change in the system’s performance to identify failure or breakdown. There

are various techniques of condition monitoring which are implemented in Substation

Automation Systems (SAS) and in other industrial processes. All these techniques

have in common the fact that they require some sort of sensing element and a

communication platform to communicate data from the sensors. The following section

presents the hardware used in the research project; presenting the architecture of the

hardware and motivating why it was selected for this project.

 92

4.3 Hardware Platform Architecture

The Beaglebone Black Rev C is chosen as the preferred embedded systems

hardware platform as it supports the IEC 61850 functionality as an Intelligent

Electronic Device (IED), is low-cost and supports the Ubuntu, Linux-based operating

system.

Table 4.1 shows the specifications of the Beaglebone Black Rev C:

Table 4.1: Beaglebone Black Rev C specifications

The key components of the Beaglebone Black Rev C are listed below and is

illustrated in Figure 4.1:

• AMM3358BZCZ100 is the Beaglebone’s processor.

• DDR3 is the Dual Data Rate RAM (Random Access Memory) of the

Beaglebone.

• TPS65217C provides power to the various components on the Beaglebone.

• Ethernet PHY is the physical interface to the Beaglebone’s network.

 93

• eMMC is an on-board Memory Chip Controller and holds up to 4 gigabytes of

data.

• HDMI Framer provides control for an HDMI or DVI-D display with an adapter.

Figure 4.1: Beaglebone Black Rev C key components

The rest of components of the Beaglebone Black Rev C are listed below and is

illustrated in Figure 4.2:

• 5VDC is the main DC (Direct Current) input and accepts 5 Volts power.

• Power is the button that alerts the processor to initiate the power-down

sequence.

• Ethernet is the physical connection to a LAN (Local Area Network).

• Debug Serial Header is the serial port used to debugging.

• MicroSD is where the microSD card can be inserted.

• Boot switch is the button used to reset the processor.

• MicroHDMI is where an HDMI display can be connected to.

• USB Host can be connected to various USB interfaces.

• User LEDs are general LEDs which are available for use.

 94

Figure 4.2: Beaglebone Black Rev C connectors LEDs and switches

Figure 4.3 presents the layout of the expansion headers, P8 and P9 of the

Beaglebone. These headers are physical connection pins to the board’s various

peripherals which can be programmed to provide the desired functionality. The

legend explains what each of the connection pins on the P8 and P9 headers are used

for by default. The “POWER/GROUND” pins provide power and ground for circuits

which are built by the user. The “AVAILABLE DIGITAL” pins can be programmed to

be used as either digital inputs or digital outputs. The “AVAILABLE PWM” pins can be

configured with PWM (pulse width modulation) to generate signals to control motors

without taking up any extra CPU cycle. The “SHARED I2C BUS” pins can be used to

implement I2C communication. The “RECONFIGURABLE DIGITAL” pins are digital

pins can that be reconfigured by the user to suits an application but by default some

are used to communicate data to be displayed on an LCD (Liquid Crystal Display)

and some used for SPI (Serial Peripheral Interface) communication. The “ANALOG

INPUTS” pins are used for only analogue inputs.

 95

Figure 4.3: Beaglebone Black Rev C pin layout

Table 4.2 and 4.3 respectively presents the Beaglebone Black Pinout tables for the

P8 and P9 expansion headers and the various modes of operation for each pinout

respectively. Each of the pinouts can be programmed to operate in a specific mode

as listed in the tables. The column labelled PROC refers to the processor pin number.

The column labelled PIN indicates the number of the pin which is listed on the

expansion header. The columns labelled MODE indicate which mode setting each pin

can be configured to function in.

The following section presents the first case study, which details the simulation of

GOOSE messages between a computer and the Beaglebone embedded device.

 96

Table 4.2: Beaglebone Black P8 Pinout

 97

Table 4.3: Beaglebone Black P9 Pinout

 98

4.4 Case study 1 – simulation of GOOSE message between computer and
Beaglebone

To successfully configure and program the Beaglebone for execution of the IEC

61850 functions using the embedded C library it is necessary to initiate a Secure

Socket Shell (SSH) communication session with the Beaglebone device. into the

Beaglebone device. This needs to be done from a PC running the Ubuntu operating

system. Running Ubuntu on the PC allows for the PC to operate as an IED and

operate in the same way that the Beaglebone board does. Therefore, it is imperative

to do a successful Ubuntu installation on the PC as this will allow for the setup shown

in Figure 4.4 to operate successfully. Appendix A lists the steps taken and breaks

down the process of installing the Ubuntu operating system in detail, covering

everything which is required from the start of the booting process to the end. Once

the operating system is rebooted after the installation is completed, various updates

and additional installations are required in order to configure the computer’s operating

system for use of the IEC 61850 standard embedded C library. Appendix B details

the various steps which are taken in order to achieve this.

As with the computer, the embedded device in the form of the Beaglebone Black rev

C required a similar process to install and configure the operating system for full use

of the IEC 61850 standard embedded C library. Appendix C lists the steps taken and

breaks down the process of installing the Ubuntu operating system in detail, covering

everything which is required from the start of the booting process to the end. As with

the PC, the Beaglebone operates as an IED, and it is imperative to have a fully

working operating system. Similar to the PC platform, the embedded platform is also

required to be configured in a way which allows for full use of the library and the steps

taken to achieve this are also detailed in Appendix C. Appendix D details the

configuration of the IEC 61850 embedded C library on the Beaglebone devices.

Upon the complete configuration of both the computer and Beaglebone devices as

per Appendices A through D, the hardware and software configuration of the case

study is then setup as shown in Figure 4.4, with the network configuration of the

devices which allow for peer-to-peer communication to take place. This case study

verifies whether IEC 61850 standard-based embedded C library operates practically

as is intended.

 99

Figure 4.4: Physical setup of the case study

The software algorithms responsible for GOOSE publication and subscription are

contained within the IEC 61850 embedded C library. The IEC 61850 library provides

server as well as client libraries for IEC 61850/MMS applications, IEC 61850/GOOSE

applications as well as IEC 61850-9-2/Sampled Values communication protocol

applications and are all written in C. As illustrated in Figure 4.4, both the computer

and Beaglebone device has the IEC 61850 library installed with the computer as the

publisher and the Beaglebone as the subscriber and both devices are connected to

the data network switch via Ethernet cables. The computer has the Wireshark

network protocol analyser software installed and running. The Wireshark software is

used to analyse and confirm various components of the GOOSE message frame

structure as specified by the IEC 61850-8-1 standard. The following section details

changes made to the IEC 61850 embedded C library source code.

4.4.1 IEC 61850 embedded C library source code

In order to use the IEC 61850 standard embedded C library for GOOSE message

publication and subscription on the Ethernet communication network using an

existing logical node, changes are required to be made to some of the .c files within

the library in order for the example code to fit the application shown in Figure 4.4. The

first change which needs to be made is in the snippet of code shown in Figure 4.5,

which comes from the goose_receiver.c file. The version of the library downloaded

 100

has the DEBUG_GOOSE_SUBSCRIBER set to 0. This needs to be changed from 0

to 1 as highlighted in the red box in Figure 4.5. This change will now ensure that the

DEBUG mode is active and will print the GOOSE message structure when the

GOOSE Subscriber subscribes to messages published by the GOOSE Publisher.

Figure 4.5: DEBUG_GOOSE_SUBSCRIBER set to 0

After making changes to the goose_receiver.c file, the following changes is then

made. The variable “Buffsize” is then defined, having a value of 65025 bytes. Another

variable referred to as “gooseBuffer” is then defined as an unsigned integer. This can

be seen in Figure 4.6 with the comments in the code which also explain what these

variables are being used for. All these changes are made to the

goose_subscriber_example.c file.

Figure 4.6: Adding new variables

After adding the new variables, additional changes are then made to same file which

is the goose_subscriber_example.c file. The next change is to call the

GooseReceiver_handleMessage (self, gooseBuffer, Buffsize) function in the while

loop found in the main function. This is shown in Figure 4.7, which also shows the

comments which are added; this function is the handler that parses the GOOSE

Message. This function is written in the goose_receiver.c file. To parse something

means to make it understandable by analysing the parts from which it is made up of,

to convert information represented in one form into another form that is easier to work

with.

 101

Figure 4.7: Calling GooseReceiver function in the Main

The GooseReceiver_handleMessage message function found in the

goose_receiver.c file can be seen in Figure 4.8. This function calls another function

which is called parseGooseMessage(self, buffer, size). This function is also found in

the same goose_receiver.c file.

Figure 4.8: parseGooseMessage function

Figure 4.9 depicts what the parseGooseMessage looks like which is essential to the

workings of this project. Looking at the first function argument self, it points to the

structure of type GooseReceiver which is elaborated on later. The second argument

is a pointer to a buffer of type uint8_t (which is a known as an unsigned integer) and it

points to the address of the data contained within the buffer. The third argument is the

number of bytes which the buffer consists of.

The source code from line 693 to 741, shows the variable bufPos which is defined as

an integer, is an index. An index is a numerical representation of an item’s position in

a sequence. The size of the index is defined as Buffsize in the

goose_subscriber_example.c. This means it is the position of the buffer and the

instance of the buffer is continuously monitored while the code executes. If the data is

valid an appID gets assigned to the message, and a check is then done to determine

if the buffer is big enough and to ensure that the data in the buffer does not get

overwritten. The lines of code from 693 to 741 is the condition checks to ensure and

these conditions are met before GOOSE message subscription can take place as

highlighted in the red box in Figure 4.9.

 102

From line 743 to line 761, the is where the GOOSE payload gets processed. Once all

condition checks have been met, a GOOSE message gets parsed as highlighted in

the green box in Figure 4.9.

Figure 4.9: parseGooseMessage function

This concludes the changes made to the existing C code in which will help in

achieving the implementation of this case study. The changes to the C code allow for

the existing example code to allow for the application shown in Figure 4.4. The

source code for both the GOOSE Publisher and GOOSE Subscriber devices are

shown in Appendix E and Appendix F respectively.

Before implementing the publication and subscription of the GOOSE message, the

data and logical node which is used in the publication and subscription of the GOOSE

message first need to be identified. Figure 4.10 shows the data which is being

 103

published and Figure 4.11 shows the logical node being used to publish this data.

The logical node is in a .c and .h file format due to the programming language of the

IEC 61850 library being C. The .c and .h files are generated from a .icd file using java

script algorithms in the Ubuntu operating system environment, this is however

expanded upon later in this section. The data which is published is basic operation

where a float value is incremented in increments of 0.1. This operation is found within

the main function of the GOOSE publisher source code file and can be seen in Figure

4.10. The data declaration is highlighted in the red box and the operation in the green

boxes. As mentioned in Section 4.1, the logical nodes used in this case study are

contained within the library. The black boxes show the instantiation of the logical

node which will contain the data to be published within the GOOSE message.

Figure 4.10: Data using Logical Node GGIO1 to be published over GOOSE

The red highlighted boxes in Figure 4.11 show the data objects and common data

classes of logical node Generic Input/Output 1 (GGIO1) used in the publication and

subscription of GOOSE. It can be seen these correspond with the instantiations

identified in Figure 4.10 with the black boxes.

 104

Figure 4.11: Data objects and common data classes of Logical Node GGIO1

The GGIO Logical Node (LN) class is defined in the IEC 61850 standard. Some of the

parameters are mandatory and others are optional, meaning may be added at the

user’s discretion as annotated in Figure 4.11. Figure 4.12 illustrates the GGIO Logical

Node class definition as defined in part 7-4 of the IEC 61850 standard. The GGIO

Logical Node’s Data Attributes (DA) are divided into 3 parts, those parts are Common

Logical Node Information, Controls, Metered Values and Status Information.

Illustrated in Figure 4.12 is the names of the data attributes, the type of the data

attributes as well as whether the data attributes are mandatory or optional (as

indicated by an M or an O). It can be seen from Figure 4.12 the AnIn data attribute,

which is of type Measured Value is used in the C source code, which is illustrated in

Figure 4.10.

 105

Figure 4.12: GGIO (generic process I/O) logical node class definition
(Adapted from IEC 61850-7-4, 2004)

The main function shown in Figure 4.13 shows the section of the GOOSE subscriber

code which, when executed waits for a GOOSE message to be published on the

communication network which contains data from a specific logical node. When this

GOOSE message is published, it then receives and processes this data. This full

source code file can be seen in Appendix F.

Figure 4.13: GOOSE Subscriber source code

 106

This concludes the first case study, and results of this case study are discussed in the

Chapter 5, where the structure and data of the GOOSE message which is published

and subscribed to is analysed. The next section presents Case Study 2, which

describes the configuration requirements for GOOSE message communication

exchange between the Beaglebone devices.

4.5 Case study 2 – simulation of GOOSE message between two Beaglebone
devices

The same process of installing the operating system, configuration of the device and

that of the installed IEC 61850 library shown in Appendix C and Appendix D have

been followed for the configuration of the second Beaglebone device. Upon the

complete configuration of the second Beaglebone device, the hardware and software

configuration of this case study is then set up as shown in Figure 4.14. In the

previous case study, GOOSE Publication and Subscription is implemented using a

logical node which preconfigured with the IEC 61850 standard-based embedded C

library. This case study verifies whether the IEC 61850 library operates correctly as

intended when using a newly configured IEC 61850 standard-based logical node.

Figure 4.14: Physical setup of the case study

 107

Figure 4.14 illustrates two Beaglebone devices, one configured as the GOOSE

Publisher device (on the top left in the blue box) and the other as the GOOSE

subscribing device (in the top right (green box). Both devices contain the IEC 61850

standard embedded C library. These devices are both connected to a network switch

with Ethernet cables. Another device on the network is the computer which monitors

GOOSE data packets published on the network using the Wireshark software (bottom

purple box).

The publication and subscription of GOOSE messages in this case study is done

using a newly configured logical node from the existing list of logical nodes which are

defined in the IEC 61850-7-4 standard. In Chapter 3, logical node classes are

discussed, detailing data attributes and how to identify whether data attributes are

mandatory or optional. The logical node chosen for the implementation of this case

study is the CCGR logical node, from the control group of logical nodes. The CCGR

logical node is used to control the cooling equipment within the substation

environment. Figure 4.15 illustrates the CCGR Logical Node class definition as

defined in part 7-4 of the IEC 61850 standard. The CCGR Logical Node’s Data

Attributes (DA) are also divided into 3 parts, those parts are Common Logical Node

Information, Controls, Metered Values and Status Information. This clearly follows the

trend detailed in Chapter 3 relating to Logical Nodes. Figure 4.15 illustrates the

names of the data attributes, the type of the data attributes as well as whether the

data attributes are mandatory or optional (as indicated by an M or an O).

 108

Figure 4.15: CCGR Logical Node
(Adapted from IEC 61850-7-4, 2004)

For purposes of testing of the GOOSE Publisher/Subscriber source code of the IEC

61850 standard embedded C library, not all of the data objects and common data

classes are used in the configuration of this logical node. All that is required is a data

object which has a Measured Value (MV) common data class to demonstrate the

publishing of data which is in the form of a float value. The Data Object (DO) chosen

is the FanFlw DO (red box), which is described as the air flow in a fan as shown in

Figure 4.15.

4.5.1 Configuration of CCGR Logical Node in the ICD Designer software

This section provides the detailed procedure of the configuration of an existing IEC

61850 standard-based CCGR logical node within the ICD software environment. The

steps that used in the configuration of the CCGR logical node within the ICD Design

software are shown in the flowchart in Figure 4.16.

 109

Figure 4.16: Flowchart detailing the steps for CCGR logical node configuration

4.5.1.1 Step 1: Define Header Information

The first step after starting up the ICD Design software is to create a new file red (red

box) as shown in Figure 4.17. The format of the file is in the Configured IED

Description (CID) format.

Figure 4.17: The New File template

 110

The next part defines the parameters which are required in the by the Header section.

Expand the Header section and enter “CNTRL” as the Header ID (red box in Figure

4.18). This is a user defined name and is used to identify the function of the logical

node, i.e., control. The Header information is very minimal.

Figure 4.18: The Header ID

4.5.1.2 Step 2: Communication settings configuration

The Communication (red box) section is where the IP address and GSEGroup are set

for the Access Point (AP). This section is accessed upon expanding the

Communication – SubNetwork – ConnectedAP – Address and GSEGroup segments

as shown in Figure 4.19.

Figure 4.19: Defining IP addresses and GSEGroup for the Access Point

 111

The ServerIED name is left as Template (red box). The parameters for the ServerIED

are setup according to the green box as illustrated in Figure 4.20:

• Configuration Version: 1

• Description: COOLING

• Manufacturer: SystemCORP Energy Pty Ltd

• Type: RTUType

Figure 4.20: Defining the ServerIED parameters

4.5.1.3 Step 3: Adding the CCGR Logical Node to the Logical Device

Expand the ServerIED – AccessPoint – Server – LDevice – Cooling. Right-click and

select Add Logical Node as illustrated in Figure 4.21 (red box). From the drop-down

menu, find the CCGR Logical Node (red box) as shown in Figure 4.22.

Figure 4.21: Adding the CCGR Logical Node

 112

Figure 4.22: Selecting the CCGR Logical Node from the list

4.5.1.4 Step 4: Configuring the CCGR Logical Node Data Types

Expand the CCGR Logical Node to show the view illustrated in Figure 4.23. The Data

Objects for the Data Attributes are shown in Figure 4.23. The most important Data

Object being for purposes of this case study is Fan Flw (red box). The Fan Flw Data

Object (of type Measured Value) has its Data Attribute “mag” (green box) set to

FLOAT 32. This Data Object is used to publish the simulated data using GOOSE.

Figure 4.23: Configuring the Data Object parameters

4.5.1.5 Step 5: Adding the Dataset to LLN0

Expand the view of LLN0 and right-click on the DatasetGroup to select Add data (red

box) as illustrated in Figure 4.24. After doing this, the window illustrated in Figure

4.25 the appears. Select only the Data Objects from the CCGR Logical Node (red

box). Name the data set and then select Add Dataset to complete the process of

 113

adding a data set. Two data sets are added and the names of the two datasets are

DataSet – AnalogValues and DataSet – Events

Figure 4.24: Configuring the Data Object parameters

Figure 4.25: Adding Data Objects and Naming the Dataset

 114

4.5.1.6 Step 6: Adding the Report Control Group to LLN0

Expand the view of LN0 – LLN0 and right-click on the ReportControlGroup to select

Add Report Control Block (red box) as illustrated in Figure 4.26. Two report control

blocks are added, and this process needs to be done for both. After doing this, the

windows illustrated in Figure 4.27 and 4.28 then appears for each of the report control

blocks which will need to be configured, however, in this case Figures 4.26 and 4.27

show the configuration of each of the configured report control bocks already

completed.

Figure 4.26: Adding Report Control Block

Below are the parameter configuration inputs as per Figure 4.26 (red boxes) for the

Events report control block:

• Buffer Time: 50ms

• Buffered: false

• Configuration Version: 1

• Dataset: Events

• Integrity Period: 1000

• Name: EventsRCB

• Report ID: Events

• Indexed: true

 115

Figure 4.27: Report Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.27 (red boxes) for the

AnalogValues report control block:

• Buffer Time: 50ms

• Buffered: false

• Configuration Version: 1

• Dataset: AnalogValues

• Integrity Period: 1000

• Name: AnalogValuesRCB

• Report ID: AnalogValues

• Indexed: true

Figure 4.28: Report Control Block (AnalogValues) parameter configuration

 116

4.5.1.7 Step 7: Adding the GSE Control Group to LLN0

Expand the view of LN0 – LLN0 and right-click on the GSEControlGroup to select

Add GSE Control Block (red box) as illustrated in Figure 4.29. Two GSE control

blocks are added, and this process needs to be done for both. After doing this, the

windows illustrated in Figure 4.30 and 4.31 then appears for each of the GSE control

blocks which will need to be configured. Figures 4.30 and 4.31 show the configuration

of each of the configured GSE control bocks already completed.

Figure 4.29: Adding GSE Control Block

Below are the parameter configuration inputs as per Figure 4.30 (red boxes) for the

Events GSE control block:

• Name: gcbEvents

• Goose ID: events

• Data Set: Events

• Configuration Revision: 2

• Type: GOOSE

 117

Figure 4.30: GSE Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.31 (red boxes) for the

AnalogValues GSE control block:

• Name: gcbAnalogValues

• Goose ID: anlog

• Data Set: AnalogValues

• Configuration Revision: 2

• Type: GOOSE

Figure 4.31: GSE Control Block (AnalogValues) parameter configuration

4.5.1.8 Step 8: Export the CID file to ICD file

The format of the configured project file is in the CID file format. The file is exported to

the IED Capability Description (ICD) format for use later by the IEC 61850 standard

embedded C library. To change the file format to CID, select the Tools option from the

menu and select Export ICD File as illustrated in Figure 4.32 (red box).

 118

Figure 4.32: Exporting project file from CID to ICD format

The IEC 61850 standard-based CCGR Logical Node has now been configured and

exported to an ICD file which can be used by the IEC 61850 standard embedded C

library as well as other software tools.

4.5.2 Configuration of the CCGR Logical Node in C Library

When implementing logical nodes which are newly developed or configured that are

not local to the IEC 61850 embedded C library, the .ICD file has to be converted into

.c, .h and .cfg files.

To convert the .ICD file to a .c, .h and .cfg file, the newly created .ICD file is copied to

a USB drive and moved to the IEC61850 library directory, here it is moved into a

folder called “model_generator”, which is a subfolder of the “tools” folder. In order to

create the .c and .h files, JRE (Java Runtime Environment) 6 needs to be installed.

Java Runtime Environment is a software layer, the way it works is that it runs on top

of a computer's operating system, which in this case is Ubuntu. JRE provides the

class libraries and other resources which may be required by a specific Java

program.

4.5.2.1 Java Runtime Installation

The steps listed below details the procedure implemented to install the Java Runtime

Environment (JRE).

1. In the terminal the following command is typed: “sudo apt update” and all

prompts are followed.

2. In the terminal the following command is typed: “sudo apt upgrade and all

prompts are followed.

 119

3. In the terminal the following command is typed: “sudo add-apt-repository

ppa:linuxuprising/java” and all prompts are followed.

4. In the terminal the following command is typed: “sudo apt update” and all

prompts are followed.

5. In the terminal the following command is typed: “sudo apt install oracle-

java11-installer-local” and all prompts are followed. This script downloads the Java

archive from the official site and configures the system.

6. In the terminal the following command is typed: “sudo apt install oracle-

java11-installer” and all prompts are followed. This script sets Java 11 as the default

version of Java on the Ubuntu system.

7. In the terminal the following command is typed “java -version”.

In step 3, the Personal Package Archives (PPA) contains a package oracle-java11-

installer having the Java installation script. In step 5, the script downloaded the Java

archive from the official site and configured it on computer locally. Step 7 then just

allows to check that the correct version of Java is installed as required.

4.5.2.2 Converting .ICD file format to .c .h and .cfg

After completing the Java installation, the following steps are taken in order to create

the required configuration files:

1. The first step is to open the terminal and navigate to the “model_generator”

folder in the IEC61850 library.

2. In the terminal the following command is typed: “java -jar genmodel.jar

RDcoolingLN.icd” (green box). After doing this, a static_model.c and static_model.h

file is created (yellow box). These newly generated files are copied to the location of

the IEC61850 project directory. The static_model.c file defines the IED data model in

terms of its structure and it also contains values which are preconfigured by the SCL

file. The static_model.h file is included by the c code and defines abstract references

to resources that that can be used to access the data model. The .c and .h file is

generated from the .ICD file which was configured in the ICD Designer software and

copied over to the Ubuntu directory (blue box). This is illustrated by Figure 4.33.

 120

Figure 4.33: Creating .c and .h file from .ICD file

3. In the terminal the following command is typed: “java -jar genconfig.jar

RDcoolingLN.icd RDcoolingLN.cfg (green box). This will generate the file

RDcoolingLN.cfg (yellow box). This is illustrated in Figure 4.34. The file format is in

plain text and contains the entire description of the data model as well as values

which are pre-set and short addresses which are optional. Handles access data

attributes during runtime, handles however are unknown when the application is

compiled. API calls requests handles, by using the short addresses or object

references of a specific data attribute.

 121

Figure 4.34: Creating .cfg file from .ICD file

Before implementing the publication and subscription of the GOOSE message, the

data and the newly configured logical node which is in the publication and

subscription of the GOOSE message first need to be identified. Figure 4.35 shows

the data which is being published and Figure 4.36 shows the newly configured logical

node which is being used to publish this data. As is the case in the previous case

study, the logical node is in a .c and .h file format due to the programming language

C. The .c and .h files are generated from a .icd file using java script algorithms in the

Ubuntu operating system environment, as detailed in Section 4.5.2. The data which is

published is a basic operation where a float value is incremented in increments of 0.1.

This operation is found within the main function of the GOOSE publisher source code

file and can be seen in Figure 4.33. The data declaration is highlighted in the red box

and the operation in the green box. The black box shows the instantiation of the

newly configured logical node which contains the data to be published contained

within the GOOSE message. The full source code can be found in Appendix G.

 122

Figure 4.35: Data using Logical Node CCGR0 to be published over GOOSE

The red highlighted boxes in Figure 4.36 show the data objects and common data

classes of the newly configured logical node CCGR0 used in the publication and

subscription of GOOSE. It can be seen these correspond with the instantiations

identified in Figure 4.35 with the black box.

Figure 4.36: Data objects and common data classes of Logical Node CCGR0

 123

The main function shown in Figure 4.37 shows the section of the GOOSE subscriber

code which, when executed waits for a GOOSE message to be published on the

communication network which contains data from a specific logical node. When this

GOOSE message is published, it receives and processes this data. The full source

code file can be seen in Appendix H.

Figure 4.37: GOOSE Subscriber source code

This concludes the second case study, which presents the implementation of GOOSE

messages between two Beaglebone devices on an Ethernet network using a newly

configured logical node which is defined in the IEC 61850 standard. A computer

which contains the Wireshark data protocol analyser is connected to the network to

capture the GOOSE messages which are transmitted on the network. All the source

code implemented and discussed in this case study can be found in Appendix G and

Appendix H. The results of this case study are discussed and verified in Chapter 5,

where the structure and data contents of the GOOSE message which is published

and subscribed to is analysed.

4.6 Case study 3 – Implementation of GOOSE message between two
Beaglebone devices

This case study presents the publishing and subscription of GOOSE messages

exchanged between two Beaglebone embedded system devices configured as IEC

 124

61850 standard-based IEDs. The GOOSE messages are implemented using a novel

logical node which is developed for use with temperature and humidity. The IEC

61850 standard has already been applied to various domains including the

Hydropower plants (IEC 61850-7-410), Distributed Energy Resources (IEC 61850-7-

420), and Wind Power Plants (IEC 61400-1) to name but a few. Although temperature

and humidity logical nodes can be found in these additions to the standard, the

development of this entirely novel logical node shows the mechanism and framework

of how the standard can be extended into other domains.

Since both Beaglebone devices have been configured as is presented in the previous

case studies, no further configuration is required for the implementation of this case

study. In this case study, an additional computer is connected to the Ethernet

communication network. This computer has the GOOSE Inspector software installed

and running. The GOOSE Inspector software is used to monitor IEC 61850

substation automation-based GOOSE protocol data packets on a computer network

and uses the host computer’s network interface card. The software also has the

ability to decode the GOOSE protocol data packets transmitted over the network to

which the host computer is connected. This data can be filtered and stored for long

term records. The hardware and software configuration of this case study is setup as

shown in Figure 4.38.

 125

Figure 4.38: Physical setup of the case study

Figure 4.38 illustrates two Beaglebone devices, one configured as the GOOSE

publishing device (top left blue box) and the other as the GOOSE subscribing device

(top right red box). Both devices have the IEC 61850 standard embedded C library

installed and running. These devices are both connected to a network switch with

Ethernet cables. The Beaglebone operating as the GOOSE publishing device has a

temperature and humidity sensor connected to two analogue input channels. The

temperature and humidity data from the sensor are contained within the GOOSE

messages using a newly developed logical node and are published on the Ethernet

communication network. There are two computers connected to the network which

are shown in the bottom right and left purple boxes respectively. The computers play

no part in the peer-to-peer communication process but are there solely to monitor and

validate the GOOSE data packets which are transmitted on the network. The one

computer runs the Wireshark software, and the second computer runs the GOOSE

Inspector software.

 126

The publication and subscription of GOOSE messaging in this case study is done

using a novel logical node developed for use with temperature and humidity data. The

new logical node uses the object-oriented modelling approach as defined within the

IEC 61850 standard and discussed in Chapter 3. Table 4.4 shows the data objects

and common data classes for the new Logical Node. The new Logical Node is named

Industrial Process Functions (IPFC) which contains the analogue values from

commonly used variables in the industrial process automation domain. This novel

logical node is not defined in the IEC 61850 standard and although it is based on the

principles of existing logical nodes It does not belong to any of the IEC 61850 Logical

Node groups. The name Industrial Process Functions (IPFC) is chosen because the

field of application of this logical node is the industrial process automation domain.

As with the IEC 61850 standard-based CCGR Logical Node highlighted in Section

4.5, the IPFC Logical Node’s Data Attributes (DA) are also divided into 3 parts.

However, it differs slightly in that the three parts of this logical node are Common

Logical Node Information, Metered Values and instead of Status Information, this

logical node has Controls which is defined as optional and not implemented in this

work. Included in the Common Logical Node Information part are the mandatory data

attribute types LLN0 and LPHD as defined in Section 5.3 of part 7-4 of the IEC 61850

standard. Included in the Metered Value part are mandatory data attributes the

temperature and humidity which are data obtained from sensors and form part of the

Measured Value (MV) Data Class. Included in the Controls part are the temperature

and humidity control which are used by the embedded C source code. This clearly

follows the trend detailed in Chapter 3 and Section 4.5 relating to IEC 61850

standard-based Logical Nodes. Table 4.4 shows the names of the data attributes, the

type of the data attributes as well as whether the data attributes are mandatory or

optional (as indicated by an M or an O).

 127

Table 4.4: IPFC Class Diagram

This section presented the third case study. In this section the hardware and network

layout pertaining to the case study is discussed and the new Industrial Process

Functions (IPFC) Logical Node is presented. The following section presents the

development process of the new IPFC Logical Node.

4.6.1 Development of the new IPFC Logical Node in the ICD Designer software

This section provides the detailed procedure of the development of the novel Logical

Node defined in the previous section and the data class diagram as given in Table

4.3. The new logical node is developed using the Substation Configuration Language

(SCL) structure and requirements contained in part IEC 61850-6 of the standard. The

ICD Designer software is used as the software tool for development of the new logical

node. The steps that are used in the development of the IPFC logical node within the

ICD Design software are shown in the flowchart in Figure 4.39. It can be seen from

Figure 4.37 that the steps taken for this process is similar to the process detailed in

Section 4.5.1 but with a distinct difference. This difference being the addition of step

3. Step 3 is added because the IPFC is a novel logical node and is not among the

existing logical nodes contained in the library.

IPFC Class

Attribute

Name

Attr.

Type

Explanation T M/O

LNName Shall be inherited from Logical-Node Class (see IEC 16850-7-2)

Data

Common Logical Node Information

 LN shall inherit all Mandatory Data from Common Logical Node Class M

Beh ENS Behaviour M

Measured Values

Temp MV Temperature M

Hum MV Humidity M

Controls

TempCtl ENC Temperature O

HumCtl ENC Humidity O

 128

Figure 4.39: Flowchart detailing the steps for IPFC logical node development

4.6.1.1 Step 1: Define Header Information

The first step after starting up the ICD Design software is to create a new file red (red

box) as shown in Figure 4.40. The format of the file is in the CID format.

 129

Figure 4.40: The New File template

The next part defines the parameters which are required in the by the Header section.

Expand the Header section and enter “TEMPMON” as the Header ID (red box in

Figure 4.41). This is a user-defined name and is used to identify the function of the

logical node, i.e., temperature monitoring. The Header information is very minimal.

Figure 4.41: The Header ID

4.6.1.2 Step 2: Communication settings configuration

The Communication (red box) section is where the IP address, MAC address and

GSEGroup are set for the Access Point (AP). This section is accessed upon

expanding the Communication – SubNetwork – ConnectedAP – Address and

GSEGroup segments as shown in Figure 4.42.

 130

Figure 4.42: Defining IP addresses, MAC address and GSEGroup for the Access Point

The ServerIED name is left as Template (red box). The parameters for the ServerIED

are setup according to the green box as illustrated in Figure 4.43:

• Configuration Version: 1

• Description: TEMPERATURE

• Manufacturer: SystemCORP Energy Pty Ltd

• Type: RTUType

Figure 4.43: Defining the ServerIED parameters

 131

4.6.1.3 Step 3: Configure the parameters of the new Logical Node

Select the tools and tab and then select the manage customised logical nodes option

from the drop-down menu (red box), as shown in Figure 4.44. After selecting from the

drop-down menu, the window shown in Figure 4.45 will then appear. Select the New

LN (red box) button. After selecting the New LN button, the window shown in Figure

4.46 will then appear.

Figure 4.44: Selecting manage customised logical nodes option

Figure 4.45: Customised Logical Node Manager

 132

Figure 4.46 shows the process of defining the logical node class as “IPFC” and the

description as “Industrial Process Functions” (red box). Then select Update Logical

Node button (blue box).

Figure 4.46: Customised Logical Node Manager

The procedure (illustrated in Figure 4.47) below applies to adding all the new required

Data Objects as specified in Table 4.3:

• 1) Select New DO button (red box)

• 2) Name the new DO (green box)

• 3) Select the DO Type from the drop-down menu (blue box)

• 4) Select the Mandatory from the Optional drop-down menu (yellow box)

• 5) Add in the Explanation of the DO (black box)

• 6) Select Update DO button (orange box)

• 7) Select Save Changes and Exit (purple box)

 133

Figure 4.47: Customised Logical Node Manager

4.6.1.4 Step 4: Adding the new Logical Node to the Logical Device

Expand the ServerIED – AccessPoint – Server – LDevice – Industrial Process. Right-

click and select Add Logical Node as illustrated in Figure 4.48 (red box). From the

drop-down menu, find the IPFC Logical Node (green box) as shown in Figure 4.49.

Figure 4.48: Adding the New Logical Node

 134

Figure 4.49: Selecting the IPFC Logical Node from the list

4.6.1.5 Step 5: Configuring the IPFC Logical Node Data Types

Expand the IPFC Logical Node to show the view illustrated in Figure 4.50. The Data

Objects for the Data Attributes are shown in Figure 4.50. The settings for each Data

Attribute of the Data Objects are given according to Table 4.5. It can be seen that

both analogue Data Attributes, only the Mag (BDA-f) option is set to FLOAT32 data

type as per the last column.

Table 4.5: Logical Data Names, Attributes, Value and Type

DO Name Data Attributes Value Kind Basic Type

Beh stVal, q, t Spec N/A

Temp Mag, q, t Set FLOAT32

TempCtl stVal, q, t, ctlModel Set N/A

Hum Mag, q, t Set FLOAT32

HumCtl stVal, q, t, ctlModel Set N/A

 135

Figure 4.50: Setting the Data Object parameters

4.6.1.6 Step 6: Adding the Dataset to LLN0

Expand the view of LLN0 and right-click on the DatasetGroup to select Add data (red

box) as illustrated in Figure 4.51. Two data sets will be added, and this process

needs to be done for both. After doing this, the window illustrated in Figure 4.52 the

appears. Select only the Data Objects from the IPFC Logical Node (green box). The

names for the two added datasets will be DataSet – AnalogValues and DataSet –

Events. Select Add Dataset (orange box) to complete the process of adding data

sets.

Figure 4.51: Adding the Data Set

 136

Figure 4.52: Adding Data Objects and Naming the Dataset

4.6.1.7 Step 7: Adding the Report Control Group to LLN0

Expand the view of LN0 – LLN0 and right-click on the ReportControlGroup to select

Add Report Control Block (red box) as illustrated in Figure 4.53. Two report control

blocks will be added, and this process needs to be done for both. After doing this, the

windows illustrated in Figure 4.54 and 4.55 then appears for each of the report control

blocks which will need to be configured, however, in this case Figures 4.54 and 4.55

show the configuration of each of the configured report control bocks already

completed.

Figure 4.53: Adding Report Control Block

 137

Below are the parameter configuration inputs as per Figure 4.52 (red boxes) for the

Events report control block:

• Buffer Time: 50ms

• Buffered: false

• Configuration Version: 1

• Dataset: Events

• Integrity Period: 1000

• Name: EventsRCB

• Report ID: Events

• Indexed: true

Figure 4.54: Report Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.53 (red boxes) for the

AnalogValues report control block:

• Buffer Time: 50ms

• Buffered: false

• Configuration Version: 1

• Dataset: AnalogValues

• Integrity Period: 1000

• Name: AnalogValuesRCB

• Report ID: AnalogValues

• Indexed: true

 138

Figure 4.55: Report Control Block (AnalogValues) parameter configuration

4.6.1.8 Step 8: Adding the GSE Control Group to LLN0

Expand the view of LN0 – LLN0 and right-click on the GSEControlGroup to select

Add GSE Control Block (red box) as illustrated in Figure 4.56. Two GSE control

blocks will be added, and this process needs to be done for both. After doing this, the

windows illustrated in Figure 4.57 and 4.58 then appears for each of the GSE control

blocks which will need to be configured, however, in this case Figures 4.57 and 4.58

show the configuration of each of the configured GSE control bocks already

completed.

Figure 4.56: Adding GSE Control Block

Figure 4.45 shows the parameter configuration inputs (red boxes) for the Events GSE

control block:

 139

• Name: gcbEvents

• Goose ID: events

• Data Set: Events

• Configuration Revision: 2

• Type: GOOSE

Figure 4.57: GSE Control Block (Events) parameter configuration

Figure 4.45 shows the parameter configuration inputs (red boxes) for the

AnalogValues GSE control block:

• Name: gcbAnalogValues

• Goose ID: anlog

• Data Set: AnalogValues

• Configuration Revision: 2

• Type: GOOSE

Figure 4.58: GSE Control Block (AnalogValues) parameter configuration

 140

4.6.1.9 Step 9: Export the CID file to ICD file

The format of the configured project file is in the CID file format. The file is exported to

the ICD file format for later use by the IEC 61850 standard embedded C library. To

change the file format to CID, select the Tools option from the menu and select

Export ICD File as illustrated in Figure 4.59 (red box).

Figure 4.59: Exporting project file from CID to ICD format

The new IPFC logical node is now developed and exported to an ICD file which can

used by the embedded C library and other software tools. The following section

presents the validation of the ICD file using an XML software tool named XML

Marker.

4.6.2 Validation of the new IPFC Logical Node using XML Marker Software

The newly developed logical node is validated in order to ensure that it conforms to

the IEC 61850 standard.

Open the RDIndustrialProcessLN.icd file in the XML Marker software and the window

illustrated in Figure 4.60 appears.

 141

Figure 4.60: XML Marker opening window

On the left-hand side of the window illustrated in Figure 4.60 the SCL tree is shown.

The SCL tree is expanded to show various sections.

As indicated in Figure 4.61, expand the SCL-Header section. Selecting the header

will highlight the Header id on the right-hand side of the window. The Header id is a

user-defined variable as given in Figure 4.41 in step 1 in Section 4.6.1.1 and

corresponds to the Header id highlighted in Figure 4.61.

Figure 4.61: Header section in XML Marker

Figure 4.62 illustrates the communication section in the XML Marker software. The IP

address and the MAC address are confirmed in Figure 4.62 as it corresponds with the

IP and MAC address given by step 2 in Section 4.6.1.2.

Header ID

 142

Figure 4.62: Communication section in XML Marker

The names configured for the description, manufacturer, etc. in Figure 4.43 in Section

4.6.1.2 are confirmed by the red box in Figure 4.63 in the XML Marker software.

Figure 4.63: IED section 1 in XML Marker

The Data Object names created in step 3 of Section 4.6.1.3 as indicated by Figure

4.46 are confirmed in XML Marker by Figure 4.64 (red box).

Figure 4.64: IED section 2 in XML Marker

The Logical Node Class for the new IPFC Logical Node as configured in Figure 4.46

in step 3 in Section 4.6.1.3 is confirmed in XML Marker as illustrated by the red box in

Figure 4.65.

Figure 4.65: IED section 3 in XML Marker

IP address

MAC
address

 143

Figure 4.66 confirms the Data Type Templates, where the Data Object name, data

types and data attributes are confirmed for the new Logical Node IPFC, LPHD and

LLN0. Also illustrated in Figure 4.66 are the quality and time attributes for all the

created data objects. These can be verified by Table 4.4.

Figure 4.66: Continuation of IED section 3 in XML Marker

The parameters configured for LLN0 and Physical Device Logical Node (LPHD) are

also indicated in Figure 4.66.

This concludes the validation of the newly developed IPFC Logical Node (LN) for

condition monitoring and the validation and confirmation of the structure of the SCL

Data class for
the new LN

Data Object

Data Type

Physical
Device LN

LLN0

 144

file as defined in part 6 of the IEC 61850 standard. The following section presents the

configuration of the newly developed LN for use in the IEC 61850 standard

embedded C library.

4.6.3 Configuration of the IPFC Logical Node in the C Library

As discussed in Section 4.5.2, when implementing logical nodes which are newly

developed or configured that are not local to the IEC 61850 embedded C library, the

.ICD file has to be converted into .c, .h and .cfg files.

To convert the .ICD file to a .c, .h and .cfg file, the newly created .ICD file is copied to

a USB drive and moved to the IEC 61850 library directory. Here it is moved into a

folder called “model_generator”, which is a subfolder of the “tools” folder. In order to

create the .c and .h files, JRE (Java Runtime Environment) 6 needs to be installed

but since it has already been installed with the implementation of Case Study 2, the

process need not be executed again.

4.6.3.1 Converting .ICD file format to .c .h and .cfg

The following steps are taken in order to create the required configuration files, which

are identical to the steps implemented in Section 4.5.2.2. This process serves the

exact same purpose as the one implemented in Section 4.5.2.2, which is to convert

the files of a Logical Node external to the embedded C library, into a format which

can be used by the embedded C library:

1. The first step is to open the terminal and navigate to the “model_generator” folder

in the IEC61850 library.

2. In the terminal window the following command is typed: “java -jar genmodel.jar

RDIndustrialProcess.icd” (green box). After doing this, a static_model.c and

static_model.h file is created (yellow box). These newly generated files are copied

to the location of the IEC61850 project directory. The static_model.c file defines

the IED data model in terms of its structure and it also contains values which are

preconfigured by the SCL file. The static_model.h file is included by the c code

and defines abstract references to resources that that can be used to access the

data model. The .c and .h file is generated from the .ICD file which was configured

in the ICD Designer software and copied over to the Ubuntu directory (blue box).

This is illustrated in Figure 4.67.

 145

Figure 4.67: Creating .c and .h file from .ICD file

3. In the terminal window the following command is typed: “java -jar genconfig.jar

RDIndustrialProcessLN.icd RDIndustrialProcessLN.cfg (green box). This will

generate the file RDIndustrialProcessLN.cfg (yellow box). This is illustrated in

Figure 4.68. The file format is in plain text and contains the entire description of

the data model as well as values which are pre-set and short addresses which are

optional. Handles access data attributes during runtime, handles however are

unknown when the application is compiled. API calls requests handles, by using

the short addresses or object references of a specific data attribute.

 146

Figure 4.68: Creating .cfg file from .ICD file

Unlike Case Study 2, the data parsed in this case study is not simulated. The data is

read from a temperature and humidity sensing device. The Beaglebone which

operates as the Publishing IED, reads temperature and humidity from the sensor on

its 0V to 1.8V analogue input as illustrated in Figure 4.38. Figure 4.69 shows the

temperature and humidity data which is being published as it is being read in real

time from the sensor connected to the analogue input of the Beaglebone. Figure 4.70

shows the newly developed logical node in the .c programming language which is

being used to publish the temperature and humidity data. The data declaration is

highlighted in the red box and the operation in the green boxes. The black boxes

show the instantiation of the newly developed IPFC logical node which will contain

the data to be published with the GOOSE message.

 147

Figure 4.69: Data being used by the new IPFC Logical Node to be published over GOOSE

The red highlighted boxes in Figure 4.70 show the data objects and common data

classes of the newly developed IPFC logical node in the C programming language

which is used in the publication and subscription of GOOSE. It can be seen these

correspond with the instantiations identified in Figure 4.69 which are highlighted with

the black boxes.

 148

Figure 4.70: Data objects and common data classes of Logical Node IPFC

The GOOSE Subscriber source code used in Case Study 2 and Case Study 3 are

identical and have already been highlight in the Section 4.5 and will not be discussed

in this case study.

This concludes the third and final case study. All the source code implemented in this

case study can be found in Appendix I. The results of this case study are discussed

and verified in Chapter 5, where the structure and data contents of the GOOSE

message which is published and subscribed to is analysed.

 149

4.7 Chapter Summary

This chapter presented the practical implementation of the research project. The

implementation is presented in the form of three case studies. The case studies

present detailed investigations of the IEC 61850 standard embedded C library and its

contents relating to GOOSE message publishing and subscribing using existing and

the creation of new logical nodes.

The first case study conducted in this chapter is implemented between a computer

and a Beaglebone Black embedded device on an Ethernet network. GOOSE

message publishing and subscribing is implemented between the two devices using

simulated data and a preconfigured GGIO Logical Node within the embedded C

library.

The second case study conducted in this chapter is implemented between two

Beaglebone Black embedded devices on an Ethernet network. GOOSE message

publishing and subscribing is implemented between the two devices using simulated

data and a newly developed CCGR Logical Node which is defined by the IEC 61850

Standard.

The third and final case study conducted in this chapter is implemented between two

Beaglebone Black embedded devices on an Ethernet network. GOOSE message

publishing and subscribing is implemented between the two devices using real time

temperature and humidity data which is fed into the publishing device’s analogue

input. GOOSE message publishing and subscribing is the implemented using a novel

Logical Node IPFC which is developed to expand the domain of implementation of

the IEC 61850 Standard. The mechanisms and framework for the development of the

novel logical node is detailed including validation with part 6 of the standard.

Chapter 5 presents a detailed discussion of the case study results with validation and

conformance testing of the implemented GOOSE message structures to the IEC

61850-8-1 standard.

 150

CHAPTER FIVE

CASE STUDY VALIDATION: ANALYSIS OF RESULTS

5.1 Introduction

As previously discussed in Chapter Three, logical nodes are abstract data objects

which can represent a number of devices such as sensors, communication interfaces

and description of devices. Logical nodes form the key or main elements of what

makes up the IEC 61850 object-oriented virtual model. The object-oriented model of

the IEC 61850 standard is made up of data attributes and standardized data. Logical

nodes form the interfaces which are defined by the IEC 61850 standard. GOOSE

(Generic Object-Oriented Substation Event) messages are associated with the GSE

services defined by the IEC 61850 standard.

In its earlier years, communication systems which used Ethernet was solely based on

the 7-layer OSI stack. In high-speed applications, this is a problem due to the fact that

data is required to pass through all seven layers. The IEC 61850 standard provides

for the Generic Object-Oriented Substation Event (GOOSE) message which is based

on the Ethernet communication. The GOOSE messages are used in substation

communication networks for the fast and reliable transmission of data used in

protection applications using a reduced stack implementation.

Three case studies are conducted and presented in Chapter Four. This chapter

provides an analysis of the results from those case studies. The three case studies

are as follows:

• Case study 1 – GOOSE Message publication and subscription between a PC

and an embedded device, where the PC is configured as the Publishing

device and the embedded device as the Subscriber. The GOOSE messages

in this case study uses an existing logical node (GGIO) which is contained

within the IEC 61850 standard embedded C library.

• Case study 2 – GOOSE Message publication and subscription between two

Beaglebone devices, where the one device is configured as the Publishing

device and the other as the Subscribing device. The GOOSE messages in this

case study uses an existing configured logical node (CCGR) which is defined

by the IEC 61850 standard.

• Case study 3 – GOOSE Message publication and subscription between two

Beaglebone devices, where the one device is configured as the Publishing

device and the other as the Subscribing device. The GOOSE messages in this

 151

case study uses a newly developed logical node (IPFC) which is configured

using the ICD Designer software. This is a novel logical node which has not

been defined the IEC 61850 standard but is intended to expand the scope of

the standard to other domains of operation.

The results of the three case studies mentioned above have more than one point of

focus. The first point of focus is on the structure of the GOOSE message which is

published and subscribed to. Analysing the structure of the GOOSE message

confirms whether the GOOSE messages derived from the source code of the

embedded C library does indeed conform to part 8 of the IEC 61850 standard. The

second point of focus is on validating the data which is contained in the GOOSE

message structure.

The following section presents the analysis of the results from the experiment

conducted in Case study 1.

5.2 Analysis of results – Case study 1

Figure 5.2 illustrates the capture (using the Wireshark packet analyser) of the

GOOSE message published on the network setup illustrated in Figure 5.1. The first

portion of the GOOSE message structure has a fixed length, and its content cannot

be altered. The fixed portion of the GOOSE message consists of numerous parts.

The first part of the fixed portion of the GOOSE message is made up of the Header

information containing the preamble, the start of the frame and the Destination MAC

address (green box), the second part is made up of the Source MAC address (red

box), the third part is made up of the TPID (Tag Protocol Identifier) (yellow box), the

third part is made up of the TCI (Tag Control Information) (brown box), the fourth part

of is made up of the Ethertype (blue box), the fifth part is made up of the APPID

(Application Identifier) (purple box), the sixth part is made up of the length (orange

box), the seventh and eighth parts are reserved, reserved 1 and reserved 2

respectively and are identified by the pink boxes. The GOOSE message frame format

is defined in Part 8-1, on page 114 of the IEC 61850 standard.

The Destination address is a set of data which is sent across a computer network to

many users at the same time, also referred to as a multicast address. Both the

Destination and Source address are 6 bytes long. The TPID is a two-octet field in an

Ethernet frame which assigned for 802.1Q Ethernet encoded frames and is given by

0x8100. The TCI is made up of what is referred to as the CFI (Canonical Frame

 152

Indicator) and optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for

GOOSE) is each made of 2 bytes each. The APPID (application identifier) is 2 bytes

in length. The purpose of the APPID is to select GOOSE Messages from a frame and

to identify its application association and is defined as such by Part 8-1 of the IEC

61850 standard.

Figure 5.1: Physical setup of the case study

Figure 5.2: Fixed portion of the GOOSE Message structure

Destination MAC address Source MAC address TPID TCI

Ethertype

APPID

Length

Reserve 1

Reserve 2

 153

The variable portion of the GOOSE Message structure is illustrated in Figure 5.3. This

portion of the GOOSE Message consists of the goosePdu (Protocol data unit) Length

right up until the end the of the frame. The variable portion of the GOOSE message

consists of more than one part. The first part of the variable portion of the GOOSE

message is made up of the goosePdu TAG (red box), the second part is made up of

the goosePdu LENGTH (green box) and the third part is made up of the goosePdu

DATA (the blue highlighted section). The values which are not highlighted are

referenced in a standard known as the Abstract Syntax Notation One, Basic Encoding

Rules (ASN.1/BER) standard, which is a standard for data networks and open system

configurations.

Figure 5.3: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as

illustrated by Figure 5.4. The first part of the goosePdu is made up of the gocbRef

(green box), the second part is made up of the timeAllowedtoLive (red box), the third

part is made up of the dataSet (yellow box), the fourth part is made up of the goID

goosePdu TAG goosePdu Length goosePdu DATA

 154

(light blue box), the fifth part is made up of time (purple box), the sixth part is made up

of stNum (orange box), the seventh part is made up of sqNum (grey box), the eighth

part is made up of a test bit (pink box), the ninth part is made up of the configuration

revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue

with red outline box), the eleventh part is made up of numDataSetEntries (grey with

red outline box with) and the final part is made up of the data (yellow with red outline

box).

It can be seen that the goosePdu data is 226 bytes (00xe2) in length and the data set

of the GOOSE control block reference (gocbRef) is 41 bytes (00x29) in length. The

timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the

Logical Node 0 (LLN0) is 35 bytes (00x23) in length. The GOOSE ID (goID) is made

up of 6 bytes (00x07) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqNum), test bit,

configuration revision (confRev), needs commission (ndsCom), and number of data

set entries (numDataSetEntries) are all 1 byte each. The two bytes that are not

highlighted indicate the TAG and LENGTH while the highlighted portion is the DATA.

Figure 5.4: goosePdu portion of the GOOSE Message structure

gocbRef timeAllowedtoLive dataSet

time

goID

stNum

sqNum

test bit

confRev

ndsCom

numDataSet
Entries

data

 155

Figure 5.5 illustrates the final portion of the GOOSE message structure which is the

user-defined data content. The user-defined data is simulated in the main function of

the C source code as illustrated by the green box in Figure 5.6. It can be seen that in

this instance the user-defined data attributes consists of three different items, namely

a data structure that consists of a floating-point value (the Wireshark capture of the

data is an unformatted value) which is 5 bytes in length (red box), a data bit-string

which is 3 bytes in length (yellow box), and UTC-time (Coordinated Universal Time)

which is 8 bytes in length (green box). According to Figure 4.10, in the GOOSE

Publisher source code, data is only transferred into two out of three items shown,

namely a float value and the time and date. This corresponds with the findings from

the Wireshark capture illustrated in Figure 5.4. The data portion for the GOOSE

message discussed in this case study is defined in part 7-2 on page 116 of the IEC

61850 standard. The data portion of the GOOSE message also follows the sequence

as is the case for the variable portion of the message with the TAG, followed by

LENGTH and finally the DATA components, as illustrated in Figure 5.3.

Figure 5.5: Data portion of the GOOSE Message structure

Unformatted
data

Data
bitstring

utc-time

 156

For each of the data items shown in Figure 5.5, it can be stated that the highlighted

portion corresponds to the length indicated just prior. i.e. 05 bytes for the unformatted

data (red box), 03 bytes for the data bit-string (yellow box) and 08 bytes for the UTC-

time (green box), Following the TAG, LENGTH and DATA format as defined by

ASN.1 BER.

Figure 5.6: User-defined data in source code from Appendix E

Figure 5.7 illustrates the working of the GOOSE subscriber source code; the GOOSE

Subscriber source code is shown in Appendix F. When the GOOSE subscriber

source code is executed, it waits for a GOOSE message to be published on the

communication network which contains data from a specific logical node. When this

GOOSE message is published, it then receives and processes this data if the

publishing device has an APPID of 0x1000. The source code then prints to the screen

details related to the GOOSE message it had subscribed to. It can be seen that the

logical node used in the GOOSE message which the subscriber device subscribes to

is the simpleIOGenericIO logical node (green box). This logical node is part of the C

library and is located within the examples folder and has already been configured.

 157

Figure 5.7: Details of GOOSE message subscribed to by the subscribing device

The results presented in this section, which is based on the simulation and

experimentation of case study 1 detailed in Chapter Four has yielded a GOOSE

message which conforms to the requirements of the GOOSE message service

defined in the IEC 61850 standard. Section 5.2 confirms that the simulated GOOSE

message does conform to the IEC 61850 standard and is identical to GOOSE

messages which are generated by industrial-grade IEDs. The following section

presents and discusses the results and findings of case study 2.

5.3 Analysis of results – Case study 2

In this case study, a new logical node is configured. The logical node chosen for the

implementation of this case study is the CCGR logical node, from the control group of

logical nodes. The CCGR logical node is used to control the cooling equipment within

the substation environment. In order to implement the Wireshark software to capture

GOOSE messages published from an external source (Beaglebone device),

additional configuration needs to be done. It is required to configure SSH settings of

the Publisher Beaglebone device to get Wireshark to log in and run the tcpdump

command which is a packet sniffing and packet analysing tool used by Linux-based

operating systems such as Ubuntu, in order for a user to troubleshoot connectivity

issues within the system.

Figure 5.9 illustrates the capture (using the Wireshark packet analyser) of the

GOOSE message published on the network setup illustrated in Figure 5.8. Similar to

the GOOSE message published in case study 1, the first portion of the GOOSE

message structure also has a fixed length, and its content also cannot be altered. The

 158

fixed portion of this GOOSE message too consists of numerous parts. These parts

are detailed and identified below.

The first part of the fixed portion of the GOOSE message is made up of the Header

information containing the preamble, the start of the frame and the Destination MAC

address (green box), the second part is made up of the Source MAC address (red

box) which can be seen to be different to the breakdown shown in Section 5.2. The

Source MAC address in the previous case study identifies the computer used to

publish GOOSE, in this case it is the Beaglebone device. The third part is made up of

the TPID (Tag Protocol Identifier) (yellow box), the third part is made up of the TCI

(Tag Control Information) (brown box), the fourth part of is made up of the Ethertype

(blue box), the fifth part is made up of the APPID (Application Identifier) (purple box),

the sixth part is made up of the length (orange box), the seventh and eighth parts are

reserved, reserved 1 and reserved 2 respectively and are identified by the pink

boxes. The GOOSE message frame format is defined in Part 8-1, on page 114 of the

IEC 61850 standard.

The fixed part of the GOOSE message analysed in this case study is identical to the

fixed part of the GOOSE message analysed in case study 1. The Destination and

Source address are 6 bytes long. The TPID is a two-octet field in an Ethernet frame

which assigned for 802.1Q Ethernet encoded frames and is given by 0x8100. The

TCI is made up of what is referred to as the CFI (Canonical Frame Indicator) and

optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for GOOSE) is

each made of 2 bytes each. The APPID (application identifier) is 2 bytes in length. It

can be seen that the analysis of the fixed part of the GOOSE message yielded

identical results in terms the length of the data types of the GOOSE message even

though a new Logical Node has been configured and implemented in this case study.

 159

Figure 5.8: Physical setup of the case study

Figure 5.9: Fixed portion of the GOOSE Message structure

Destination MAC address Source MAC address TPID TCI

Ethertype

APPID

Length

Reserve 1

Reserve 2

 160

The variable portion of the GOOSE Message structure is illustrated by Figure 5.10. It

is clear that upon face value, the variable portion of this GOOSE message is clearly

shorter than the GOOSE message in case study 1, this is once again due to different

user-defined data content being used. Similarly, to the GOOSE message analysed in

case study 1, this portion of the GOOSE Message too consists of the goosePdu

(Protocol data unit) Length right up until the end the of the frame even though the

frame is shorter in length. The variable portion of the GOOSE message consists of

more than one part. The first part of the variable portion of the GOOSE message is

made up of the goosePdu TAG (red box), the second part is made up of the

goosePdu LENGTH (green box) and the third part is made up of the goosePdu DATA

(the blue highlighted section).

Figure 5.10: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as

illustrated by Figure 5.11. The first part of the goosePdu is made up of the gocbRef

(green box), the second part is made up of the timeAllowedtoLive (red box), the third

part is made up of the dataSet (yellow box), the fourth part is made up of the goID

(light blue box), the fifth part is made up of time (purple box), the sixth part is made up

of stNum (orange box), the seventh part is made up of sqNum (grey box), the eighth

part is made up of a test bit (pink box), the ninth part is made up of the configuration

revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue

with red outline box), the eleventh part is made up of numDataSetEntries (grey with

goosePdu TAG goosePdu Length goosePdu DATA

 161

red outline box with) and the final part is made up of the data (yellow with red outline

box).

It can be seen that the goosePdu data is 127 bytes (00x7f) in length and the data set

of the GOOSE control block reference (gocbRef) is 39 bytes (00x27) in length. The

timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the

Logical Node 0 (LLN0) is 33 bytes (00x21) in length. The GOOSE ID (goID) is made

up of 6 bytes (00x06) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqNum), test bit,

configuration revision (confRev), needs commission (ndsCom), and number of data

set entries (numDataSetEntries) are all 1 byte each.

Figure 5.11: goosePdu portion of the GOOSE Message structure

Figure 5.12 illustrates the final portion of the GOOSE message structure which is the

user-defined data content. The user-defined data is simulated in the main function of

the C source code as illustrated by the green box in Figure 5.13. It can be seen that

in this instance unlike the GOOSE message analysed in case study 1, the user-

defined data attributes consist of only one item, that item only being a data structure

that consists of a floating-point value which is similar to the floating-point value in

case study 1 is 5 bytes in length (red box). According to Figure 4.33, in the GOOSE

Publisher source code, one data item is identified, namely simulated fan flow. This

gocbRef

timeAllowedtoLive

dataSet

goID

stNum

confRev

test bit time

data

ndsCom sqNum

numDataSetEntries

 162

corresponds with the findings from the Wireshark capture illustrated in Figure 5.9. The

data portion for the GOOSE message discussed in this case study is defined in part

7-2 on page 116 of the IEC 61850 standard. The data portion analysed of the

GOOSE message in this case study, similarly to case study 1, also follows the

sequence as is the case for the variable portion of the message with the TAG (blue

box), followed by LENGTH (yellow box) and finally the DATA component, as

illustrated in Figure 5.10. The data is 5 bytes in length.

Figure 5.12: Data portion of the GOOSE Message structure

Unformatted data

TAG LENGTH

 163

Figure 5.13: User-defined data in source code from Appendix G

Figure 5.14 illustrates the working of the GOOSE subscriber source code; the

GOOSE Subscriber source code is shown Appendix H. When the GOOSE subscriber

source code is executed, it waits for a GOOSE message to be published on the

communication network which contains data from a specific logical node. When this

GOOSE message is published, it receives and processes this data if the publishing

device has an APPID of 0x1000. The source code then prints to the screen details

related to the GOOSE message it had subscribed to. It can be seen that the logical

node used in the GOOSE message which the subscriber device subscribes to is the

TEMPLATECooling logical node (green box). This is the newly configured logical

node, where the process is detailed in Section 4.5.1.

Figure 5.14: Details of GOOSE message subscribed to by the subscribing device

 164

The analysis conducted in this section confirms that the GOOSE message structure is

indeed of the format specified by the IEC 61850 standard and is identical to the

GOOSE message structure analysed in Case Study 1. It can be seen that the only

difference between the GOOSE message structures recorded in case study 1 and

case study 2 is the difference in the data contained in the published GOOSE

message structures of the two case studies. The data captured in the Wireshark

capture is a raw unformatted value. This is due to different logical nodes being used

to publish GOOSE in each of the case studies. This section discussed the results of

case study 2. The following section presents and discusses the results of case study

3.

5.4 Analysis of results – Case study 3

In this third and final case study, a novel logical node is developed which is meant to

extend the reach of the IEC 61850 standard from not only the substation

environment, but to the industrial process domain. The logical node developed for the

implementation of this case study is the IPFC (Industrial Process Functions) logical

node. The IPFC logical node is used to parse temperature and humidity data within

an industrial processing plant. This third and final case study is the culmination of the

research project as it builds on results and validation of the results of the previous two

case studies. This third and final case study uses real-time data instead of simulated

values like the two first case studies. The results of this case study determines

whether IEC 61850 standard algorithms and its workings is indeed viable to be

implemented on a lightweight embedded device and extended to domains other than

just the substation automation domain. Due to this, more than one validation

technique is employed. The first technique is the Wireshark capture of the GOOSE

Messages published and subscribed to by the embedded devices which are

operating as IEDs. The second technique is the GOOSE Inspector software capture

of the GOOSE Messages published and subscribed to by the embedded devices

which are operating as IEDs. The Wireshark analysis is more aimed at validating the

structure of the GOOSE Messages rather than the data contents. The GOOSE

Inspector analysis is aimed at validating the data contents of the GOOSE Messages.

These monitoring packages are simultaneously running on two different monitoring

computers connected to the Ethernet network, as illustrated in Figure 5.15.

Employing these two techniques using different data protocol monitoring software

packages allows for in-depth scrutinising of the data and allow a suitable level of

validation to be met.

 165

Figure 5.16 illustrates the Wireshark packet analyser capture of the GOOSE message

published on the network setup illustrated in Figure 5.15. Similar to the GOOSE

message published in case study 1 and case study 2, the first portion of the GOOSE

message structure also has a fixed length, and its content cannot be altered either.

The fixed portion of this GOOSE message too consists of numerous parts. These

parts are detailed and identified below.

Identical to the GOOSE message captures analysed in case study 1 and case study

2, the first part of the fixed portion of the GOOSE message is made up of the Header

information containing the preamble, the start of the frame and the Destination MAC

address (green box), the second part is made up of the Source MAC address (red

box) which can be seen to be different to the breakdown shown in Section 5.2 but

identical to the breakdown shown in Section 5.3. The Source MAC address in the

case study 1 identifies the computer used to publish GOOSE, in this case it is the

Beaglebone device. The third part is made up of the TPID (Tag Protocol Identifier)

(yellow box), the third part is made up of the TCI (Tag Control Information) (brown

box), the fourth part of is made up of the Ethertype (blue box), the fifth part is made

up of the APPID (Application Identifier) (purple box), the sixth part is made up of the

length (orange box), the seventh and eighth parts are reserved, reserved 1 and

reserved 2 respectively and are identified by the pink boxes. The GOOSE message

frame format is defined in Part 8-1, on page 114 of the IEC 61850 standard.

The fixed part of the GOOSE message analysed in this case study is identical to the

fixed part of the GOOSE messages analysed in case study 1 and in case study 2.

The Destination and Source address are 6 bytes long. The TPID is a two-octet field in

an Ethernet frame which assigned for 802.1Q Ethernet encoded frames and is given

by 0x8100. The TCI is made up of what is referred to as the CFI (Canonical Frame

Indicator) and optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for

GOOSE) is each made of 2 bytes each. The APPID (application identifier) is 2 bytes

in length. It can be seen that the analysis of the fixed part of this GOOSE message

yielded identical results in terms the length of the data types of the GOOSE message

even though a novel Logical Node has been developed and implemented. This is

expected based on the outcomes of case study 1 and case study 2.

 166

Figure 5.15: Physical setup of the case study

Figure 5.16: Fixed portion of the GOOSE Message structure

Destination MAC address Source MAC address TPID TCI

Ethertype

APPID

Length

Reserve 1

Reserve 2

 167

The variable portion of the GOOSE Message structure is illustrated by Figure 5.17.

As expected, the variable portion of this GOOSE message is clearly shorter than the

GOOSE message in case study 1, this is due to a different logical node being used.

Similar to the GOOSE messages analysed in case study 1 and case study 2, this

portion of the GOOSE Message too consists of the goosePdu (Protocol data unit)

Length right up until the end the of the frame even though the frame is shorter in

length when compared to case study 1. The variable portion of the GOOSE message

consists of more than one part. The first part of the variable portion of the GOOSE

message is made up of the goosePdu TAG (red box), the second part is made up of

the goosePdu LENGTH (green box) and the third part is made up of the goosePdu

DATA (the blue highlighted section). The goosePdu LENGTH of this case study (9c)

is greater when compared to case study 2 (7f), this is due the amount of data

(temperature and humidity) being parsed in case study 3 is more than the data (Fan

Flow) in case study 2.

Figure 5.17: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as

illustrated by Figure 5.18. The first part of the goosePdu is made up of the gocbRef

(green box), the second part is made up of the timeAllowedtoLive (red box), the third

part is made up of the dataSet (yellow box), the fourth part is made up of the goID

(light blue box), the fifth part is made up of time (purple box), the sixth part is made up

goosePdu TAG
goosePdu Length goosePdu DATA

 168

of stNum (orange box), the seventh part is made up of sqNum (grey box), the eighth

part is made up of a test bit (pink box), the ninth part is made up of the configuration

revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue

with red outline box), the eleventh part is made up of numDataSetEntries (grey with

red outline box with) and the final part is made up of the data (yellow with red outline

box).

It can be seen that the goosePdu data is 156 bytes (00x9c) in length and the data set

of the GOOSE control block reference (gocbRef) is 29 bytes (00x1D) in length. The

timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the

Logical Node 0 (LLN0) is 42 bytes (00x2A) in length. The GOOSE ID (goID) is made

up of 6 bytes (00x06) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqNum), test bit,

configuration revision (confRev), needs commission (ndsCom), and number of data

set entries (numDataSetEntries) are all 1 byte each.

Figure 5.18: goosePdu portion of the GOOSE Message structure

Figure 5.19 illustrates the final portion of the GOOSE message structure which is the

user defined data content. It can be seen that in this instance unlike the GOOSE

messages analysed in case study 1 and case study 2, the user-defined data

attributes consist of only two items, those two item being two data structures that

consists of floating-point values. The floating-point data items are 5 bytes in length,

which are highlighted in red and green. These two floating-point data values are

gocbRef

timeAllowedtoLive

dataSet

goID

time

stNum

sqNum

test bit

confRev numDataSet
Entries

ndsCom

data

 169

representations of the real-time temperature and humidity readings from the sensor

connected to the analogue inputs of the Beaglebone. The data is however not

formatted in Wireshark. The Wireshark analysis is more aimed at validating the

structure of the GOOSE message rather than the data contents. It can be seen from

Figure 4.60, in the GOOSE Publisher source code, 4 data items are identified,

namely temperature and humidity. This corresponds with the findings from the

Wireshark capture illustrated in Figure 5.19. The data portion for the GOOSE

message discussed in this case study is defined in part 7-2 on page 116 of the IEC

61850 standard. The data portion analysed of the GOOSE message in this case

study, similarly to Case Study 1, also follows the sequence as is the case for the

variable portion of the message with the TAG, followed by LENGTH and finally the

DATA components. As illustrated in Figure 5.17.

Figure 5.19: Data portion of the GOOSE Message structure

Figure 5.21 illustrates the temperature and humidity data being published on the

Ethernet communication, as per the C source code illustrated in Figure 5.20. The

GOOSE Messages of the data are being published using the newly developed IPFC

logical node. The temperature data can clearly be seen as highlighted by the red box,

the yellow box with the length is clearly seen to be 5 bytes in length indicated by the

value preceding the highlighted portion. The humidity data can clearly be seen as

Unformatted
Humidity Data

Unformatted
Temperature Data

TAG LENGTH

TAG LENGTH

 170

highlighted by the green box and its length is 5 bytes as highlighted by the yellow

box. The data values shown are raw analogue values and are yet to be processed.

The raw analogue input values range from 0 to 4094 and is a representation of the

analogue input voltage, which ranges from 0V to 1.8V

Figure 5.20: User-defined data in source code from Appendix I

Figure 5.21: Data being published by the GOOSE Publishing IED

 171

Figure 5.22 illustrates the operation of the GOOSE subscriber IED. When the

GOOSE subscriber source code is executed, it waits for a GOOSE message to be

published on the Ethernet network illustrated 4.36. It only subscribes to the GOOSE

message if the publishing device has an APPID of 0x1000. When the subscribing IED

subscribes to a GOOSE message, all the details pertaining to that GOOSE message

is printed to the screen. The application ID (red box) can be seen as 4096 (which is a

value of 0x1000 in hexadecimal). The source MAC address is identified by the green

box and the destination MAC address is identified by the yellow box. The goID is

identified by the blue box and the goCbRef, dataSet, confRev, ndsCom are all

highlight by the orange box. All these highlighted values correspond to the values

highlighted in the Wireshark capture. The temperature and humidity data which is

communicated within the GOOSE message structure (highlighted in yellow with green

outline) can be seen to correspond with the data being published in the publisher

IED’s window.

Figure 5.22: GOOSE Message being subscribed to by the Subscribing IED

Figure 5.23 illustrates the GOOSE Message structure and its data contents as seen

within the GOOSE Inspector software, which as previously mentioned, is installed and

running on a separate computer connected to the Ethernet network, as indicated by

Figure 5.15. This GOOSE Inspector software is meant to verify the data parsed within

the GOOSE Message, since Wireshark is used to analyse and verify the structure of

the GOOSE message.

 172

In order to analyse the GOOSE messages being published, start the GOOSE

Inspector software. Place a filter on the type of communication on the network to be

displayed by pressing F11 and selecting GOOSE. Only GOOSE messages are now

be displayed as indicated on the top window (red box) in Figure 5.23.

The bottom window in Figure 5.23 illustrates the GOOSE message structure of one of

the GOOSE messages which have been opened. The green box illustrates the

GOOSE message structure which once again correspond to the Wireshark analysis

as well as the information printed to the screen by the subscribing IED. The blue box

illustrates the temperature data contained within the published GOOSE message and

the purple box illustrates the humidity data contained within the published GOOSE

message. It can once again be seen that both sets of data corresponds to the data

shown in both the publishing and subscribing IED windows shown in Figure 5.21 and

Figure 5.22.

Figure 5.23: GOOSE Inspector interface showing published GOOSE messages

 173

5.5 Conclusion

This chapter presented an in-depth analysis of the GOOSE message structure of

three case studies. In the first case study, GOOSE message publication and

subscription is implemented between a computer and an embedded device on an

Ethernet Local Area Network (LAN) using a preconfigured GGIO Logical Node (LN),

the GOOSE messages are then validated in order to confirm whether the GOOSE

message structure conforms to Part 8-1 of the IEC 61850 standard. In the second

case study, GOOSE message publication and subscription is implemented between

two embedded devices on an Ethernet LAN using a configured CCGR LN. The

GOOSE messages are then validated in order to confirm whether the GOOSE

message structure conforms to Part 8-1 of the IEC 61850 standard. In the third and

final case study, GOOSE message publication and subscription is implemented

between two embedded devices on an Ethernet LAN using a newly developed IPFC

LN. The GOOSE messages are then validated in order to confirm whether the

GOOSE message structure conforms to Part 8-1 of the IEC 61850 standard. Lastly

the data contained within all three case studies are validated as conforming to part 8-

1 of the IEC 61850 standard.

Based on the findings of the analysis and validation conducted in this chapter, the

GOOSE messages published and subscribed to in all three of the case studies does

indeed conform at Part 8-1 of the IEC 61850 standard.

The following chapter presents the conclusion to this research work and possible

future developments within this field of work.

 174

CHAPTER SIX

CONCLUSION AND FUTURE RESEARCH WORK

6.1 Introduction

Condition monitoring plays a crucial role in various industries, ranging from the power

system domain to industrial processes such as mining, fuel and gas, food and

beverage as well as transport infrastructure such as railway systems. Condition

monitoring is the process of continuously monitoring process variables in order to

detect a change in the state of the variable. Condition monitoring serves many

purposes, such as preventative or predictive maintenance or even to ensure a

product being processed is done so correctly. The introduction of Ethernet allows for

communication applications in the condition monitoring space to provide real-time

data exchange and control. Condition monitoring which uses the Ethernet-based IEC

61850 communication standard provides the opportunity to widen the scope of the

application domain for the IEC 61850 communication standard. The aims and

objectives for the research work are detailed in Chapter One.

In this thesis, a detailed literature review of existing condition monitoring techniques

in both the industrial process automation and the electrical substation domain is

conducted. From the analysis of the literature review, a need for expanding IEC

61850 standard-based condition monitoring from the power system domain to the

industrial process automation domain is identified. This need allowed for the

development of two Intelligent Electronic Device (IED) models, a new Logical Node

(LN), and implementing GOOSE message publishing and subscribing on an Ethernet

network between these newly developed IEDs. The open-source IEC 61850 standard

embedded C library is used for the development of the IEDs and GOOSE

communication, the ICD Designer software is used to develop the new Logical Node,

and the XML Marker software is used to verify the new Logical Node. Three different

tests are performed in order to validate the structure of the GOOSE message to

ensure IEC 61850 standard compliance in terms of accuracy, scalability,

configurability, and interoperability. In order to develop any IEC 61850 standard-

based system an intimate knowledge of the standard is required. A brief overview of

the IEC 61850 standard is presented including the modelling approach for the various

implemented systems.

This research has answered three main research questions, namely:

 175

A. Can a new IEC 61850 standard-based logical node be developed for real-time

implementation within a condition monitoring system meant for the industrial

process automation domain?

B. Can the GOOSE communication protocol using the newly developed logical

node be implemented in real-time within a condition monitoring system meant

for the industrial process automation domain?

C. Can the GOOSE communication protocol using the newly developed logical

node be implemented within a condition monitoring system on a lightweight

embedded platform meant for the industrial process domain in real-time?

In the answering of the above three research questions, the investigations conducted

in this thesis reveal, firstly, that a new IEC 61850 standard-based logical node can be

developed for real-time implementation within a condition monitoring system meant

for the industrial process automation domain. Secondly, the GOOSE communication

protocol using the newly developed logical node can be implemented in real-time

within a condition monitoring system meant for the industrial process automation

domain. Thirdly, the GOOSE communication protocol using the newly developed

logical node can be implemented within a condition monitoring system on a

lightweight embedded platform meant for the industrial process domain in real-time.

In this chapter, the deliverables and the conclusion of the thesis is presented. Section

6.1 details the aim and objectives of the research work as it is defined in Chapter

One. Section 6.2 presents the achieved deliverables and objectives. Section 6.3

presents a list of developed software algorithms. Section 6.4 discusses possible

areas of application in academia and industry. Section 6.5 proposes the future

directions of this research work. Section 6.6 details publications emerging from this

research work and Section 6.7 presents the conclusion to this research work.

6.1.1 Aim

The aim of this research is to develop a new IEC 61850 standard-based logical node

to be used in the publishing of and subscription to GOOSE Messages over an

Ethernet network between two newly developed lightweight IEC 61850 standard-

based IEDs which are used in a condition monitoring system.

6.1.2 Objectives: Theoretical Analysis

• To conduct a literature review on the existing approach to condition monitoring

in the various fields it is deployed.

 176

• To conduct a literature review on the existing monitoring functions utilised

within the IEC 61850 standard.

• To conduct a literature review of the existing IEC 61850 standard-based

logical nodes in all domains of application.

• To conduct a literature review of the IEC 61850 standard-based GOOSE

(Generic Object-Oriented Substation Event) protocol.

• To formulate strategies in order to develop an in-depth understanding and

application of the IEC 61850 standard for real-time implementation.

• To examine and develop a detailed understanding of the source code

functionality implemented within the open-source IEC 61850 standard-based

embedded C library.

• To examine and develop a detailed understanding of the embedded hardware

platform chosen for implementation.

• To examine and develop a detailed understanding of the operating system

chosen for the project implementation.

• To formulate a strategy to develop a real-time temperature and humidity

condition monitoring system on the embedded hardware and operating

system chosen.

• To examine and develop a detailed understanding of the ICD Designer and

XML Marker software tools used in the development process of the Logical

Node.

• To formulate a strategy to integrate all the varying facets in terms of the

hardware and software components of the project.

6.1.3 Objectives: Practical Implementation

• To configure hardware devices for real-time communication over an Ethernet

network.

• To develop IEC 61850 standard-based lightweight IEDs using the IEC61850 C

code library in the Linux Environment.

• To design, configure and implement embedded hardware for monitoring of a

temperature and humidity sensor.

• Development of a novel EC 61850 standard-based logical node to extend the

reach of the standard to other domains of application.

• Real-time implementation on an embedded platform using the novel logical

node which is used in the condition monitoring system.

 177

6.2 Thesis Deliverables

The thesis deliverables are elaborated upon in the following sections.

6.2.1 Literature Review

A thorough literature review is conducted on condition monitoring systems

implemented and communication systems used in these condition monitoring

systems. A large group of relevant research papers on condition monitoring

techniques and communication systems used in various industrial domains as well

the electrical substation domain are identified, grouped, compared and analysed. The

evolution of techniques and methods used in condition monitoring and

communication protocols used are charted from the late 1980s up until the modern

day. Various papers are analysed and grouped to provide a clear picture of the state

of condition monitoring and communication protocols currently in place. The literature

review is divided into four parts which are highlighted below.

The first part of the review focuses on the fundamentals of condition monitoring, what

it means, the fields of implementation in industry and the various types of condition

monitoring applied in industry. The second part of the review focuses on the

implementation of condition monitoring in specific industries, the various monitoring

techniques implemented, the various types of communication mediums used in these

condition monitoring systems as well as the aim of implementing the various condition

monitoring systems across industrial processes. The third and fourth of parts of the

review respectively focuses on IEC 61850 standard-based condition monitoring with

emphasis placed on monitoring functions and communication methods used within

the Intelligent Electronic Devices (IEDs) found within electrical Substation Automation

Systems (SAS).

The literature review, and detailed comparative discussion indicates that all variations

of condition monitoring techniques implemented in the industrial process industries

are mostly propriety solutions which are costly. IEC 61850 standard-based condition

monitoring techniques implemented in the substation domain although interoperable,

are still costly and IEC 61850 standard-based condition monitoring techniques are

currently exclusive to the power system and substation domain. The literature review,

and detailed comparative discussion on these various parts can be found in Chapter

Two.

 178

6.2.2 Configuring of hardware devices for real-time communication over an
Ethernet network

Real-time communication over an Ethernet Local Area Network (LAN) is achieved.

Three case studies are implemented, with each having a different communication

network configuration. The first case study’s communication network configuration

consists of a computer, an embedded device, and a network switch. Both the

computer and embedded device are connected to the same network switch with

Ethernet cables. Communication between the computer and the embedded device is

established via the network switch. The second case study’s communication network

configuration consists of a computer, two embedded devices and a network switch.

Both embedded devices and the computer are connected to the same network switch

with Ethernet cables. Communication between the computer and between the two

embedded devices are established via the network switch. The third case study’s

communication network configuration consists of two computers, two embedded

devices and a network switch. Both computers and both embedded devices are

connected to the same network switch with Ethernet cables. Communication between

all the devices on the communication network is established via the network switch.

The first step is two install the Linux-based Ubuntu operating system on each of the

embedded devices as well as on the computer. The Ubuntu operating systems on

each of the devices is updated, an Internet connection is established and the devices

are configured for communication on the Ethernet LAN. This is detailed in Chapter 4,

which discussed the practical implementation of the three case studies.

6.2.3 Development of IEC 61850 standard-based lightweight IEDs using the
IEC61850 C code library in the Linux Environment

A computer and two embedded devices are configured to operate as IEC 61850

standard-based IEDs. Communication between the configured IEDs is implemented

in three case studies. In the first case study, the computer and one of the embedded

devices are modelled as IEDs and communicate with one another, in the second and

third case study both embedded devices are modelled as IEDs and communicate

with one another. To achieve this, Ubuntu, which is a Linux-based operating system

is installed on the computer and the two embedded devices. The computer and each

of the embedded devices are configured to have access to the Internet, which allows

for the respective operating systems to be updated accordingly. The IEC 61850

standard-based embedded C library is then uploaded onto each of the embedded

devices and the relevant library source code files is then altered in such a way to

configure the computer and the embedded devices to operate as IEDs. The computer

and embedded devices are now lightweight versions of the industrial grade IEDs but

demonstrates the most important functionality of traditional IEDs. This implementation

 179

is inexpensive and easily accessible via various open-source avenues. This is

discussed in detail in the three case studies conducted in Chapter 4.

6.2.4 Configuring of embedded hardware for monitoring of a temperature and
humidity sensor

One of the embedded devices is used to monitor temperature and humidity from an

analogue sensor. The source code is developed in the embedded C programming

sensor to read temperature and humidity data from the sensor on the 0-1.8V

analogue input of the embedded device. The data readings are then printed to the

screen displaying real-time data as conditions change. This data is communicated

and shared on the Ethernet communication network where all other devices

connected to the same network can access the data. An in-depth analysis is

conducted using the Wireshark software and GOOSE Inspector software to ensure

that the data being transmitted on the communication network and received by the

other devices on the network corresponds with the data being read by the

temperature and humidity sensor. The results from the data analysis indicates that

the received data is accurate and corresponds with initial readings from the sensor.

6.2.5 Development of an IEC 61850 standard-based Logical Node in the
System Corp ICD Designer software

One of the practical contributions is the development of a new logical node as defined

in Part 6 of the IEC 61850 standard as well as the Substation Configuration

Language (SCL) using the eXtensible Markup Language (XML) and conforming to the

XML Schema. The new logical node is developed using the XML within the ICD

Designer Software environment. After the development of the new logical node, it is

the exported to IED Configuration Description (ICD) file type. The newly developed

logical node which is of ICD file type is then validated using the XML Marker software

tool. The validation process includes confirming the structure as it is defined for the

Header section, Substation section, Communication section, IED section and the

Data Type Templates sections. The results for the development of the new logical

node are presented in Chapter Four. The results confirm that the ICD file of the newly

developed logical node conforms to the requirements of the SCL as defined in Part 6

of the IEC 61850 standard. With the results achieved indicating that the new logical

node conforms to requirements of the SCL as defined in Part 6 of the standard, the

new logical node will play a significant role in the expansion of the IEC 61850

standard-based condition monitoring functions from the electrical substation domain

to the industrial process domain.

 180

6.2.6 Real-time implementation of the GOOSE communication protocol using
the newly developed logical node which is used in the condition monitoring
system

The final practical contribution is to integrate all the practical components into an

individual fully operational condition monitoring system with IEC 61850 standard-

based capabilities. An IED which monitors the temperature and humidity data from a

sensor publishes GOOSE messages using the newly developed logical node which

contains the temperature and humidity data over an Ethernet network where a

subscribing IED receives and processes this data by printing the GOOSE message

data to a screen. Data validation is done by analysing the GOOSE messages which

are published on the network using two computers connected on the same network.

The Wireshark and GOOSE Inspector software which are used for packet monitoring

and analysis are employed to validate and confirm the message structure and data

content of the GOOSE message. Conducting the analysis found that the GOOSE

messages does indeed conform to Part 8 of the IEC 61850 standard and that there

are no discrepancies between GOOSE messages being published and subscribed to.

The novelty of the contribution of this research lies in the real-time implementation of

a temperature and humidity (which are generally considered to be industrial process

variables) condition monitoring system in an IEC 61850 standard-based system which

is implemented on an embedded hardware platform, and the development of a new

logical node based on the IEC 61850 standard modelling approach and applied in

real-time.

Based on the above, it can be concluded that the thesis deliverables contribute to

opening and bringing the user closer to an understanding of the IEC 61850 standard

and requirements for the implementation of standard in two ways:

1. The design, development, and real-time application of two IEDs

implemented on an embedded platform within a temperature and humidity

condition monitoring system also implemented on the same hardware. The

test bed development process indicates that the IEC 61850 standard can

understood and applied in ways that are innovating.

2. Contributing to further extend the knowledgebase of the IEC 61850

standard through the development of a novel logical node for condition

monitoring, data acquisition and data distribution in the industrial process

domain using GOOSE messages. The process of creating the novel

logical node and its verification demonstrates the versatility of the IEC

61850 standard engineering tools used to build and integrate the various

 181

software models and contributes to the extension of the IEC 61850 in a

clear and simple way.

Building and implementing the IEC 61850 compatible embedded system for condition

monitoring based on the new logical node extends the application of the IEC 61850

standard to new domains of application and contributes to new fields of research at

universities.

6.3 Software Development

Table 6.1: Summary of the software programmes developed in this research

6.4 Application of the Developed Methods and Algorithms

The algorithms and methods developed in this research can be implemented in IEC

61850 standard-based condition monitoring and control systems for both academic

and industrial applications.

6.4.1 Industrial Applications

The algorithms and methods developed in this research can be implemented in IEC

61850 standard-based monitoring and control systems in utility power plants and

industrial process plants of various natures. Some of examples of these industrial

applications are listed below:

• Real-time monitoring and control of power systems.

• Real-time monitoring control of industrial plants in the food and beverage, fuel

and gas as well as the water treatment industry.

Number File Name Application Description Appendix

1 server_pc_goose.c Computer GOOSE Publisher C source code with

GGIO Logical Node

Appendix E

2 goose_bb_subscriber1.c Beaglebone GOOSE Subscriber C source code 1 Appendix F

3 server_bb_ccgr_goose.c Beaglebone GOOSE Publisher C source code with

CCGR Logical Node

Appendix G

4 goose_bb_observer.c Beaglebone GOOSE Subscriber C source code 2 Appendix H

5 server_bb_ipfc_goose.c Beaglebone GOOSE Publisher C source code with

IPFC Logical Node

Appendix I

6 RDIndustrialProcessLN IPFC Logical Node in XML Appendix J

 182

• Real-time fault diagnosis.

• Maintenance applications.

• Application of the new logical node to develop new industrial-grade devices.

6.4.2 Academic Applications

The algorithms and methods developed in this research can be applied in an

academic institution to further the knowledge base of the IEC 61850 standard. Some

of examples of the academic applications are listed below:

• Include IEC 61850 standard-based course work in undergraduate programs,

which will enable an in-depth understanding of the IEC 61850 standard and its

applications for prospective post-graduate students.

• Increase the undertaking of IEC 61850 standard-based research in post-

graduate studies.

• Use the developed source code and processes to further this research.

• Use the research work as a basis for development of practical exercises for

the course-based Master’s in Smart Grid program at the university.

• This research work can also be applied to practical exercises on the

undergraduate and Honour’s embedded systems courses.

6.5 Future Work

• The developed algorithm can be applied and implemented on a different

embedded architecture such as a Field Programmable Gate Array Logic

(FPGA) system. More refined and optimised prototypes can be developed.

• Logical nodes can be developed for different applications other than a

temperature and humidity monitoring system as is in this case. This allows for

the reach of the IEC 61850 standard to expand to other industrial processes.

6.6 Publications related to this thesis.

• Domingo R., Kriger C. “Validation of the GOOSE Message Structure in a

lightweight IEC 61850 Standard-Based Embedded Monitoring System”.

Submitted to the journal International Journal of Computers Communications

and Control.

• Domingo R., Kriger C. “Development and application of a New IEC 61850

standard-based Logical Node in an industrial process condition monitoring

system”. In progress for submission to the journal European Journal of

Engineering Research and Science.

 183

6.7 Conclusion

The deliverables which are proposed in this research project have all been achieved.

Areas of industrial and academic application are highlighted and discussed. The

direction of future research work is considered and proposed. Journal publications

emanating from this research work have been submitted for consideration.

 184

REFERENCES

ABB review, 2010. Special Report IEC 61850. Technical journal. Zürich: ABB Group R&D
and ABB.

Amjadi S. and Kalam A., "IEC61850 GOOSE performance in real time and challenges faced
by power utilities," 2015 IEEE Eindhoven PowerTech, 2015, pp. 1-6, doi:
10.1109/PTC.2015.7232254.

Amulya, Patil M., Bhide S.R. and Bhat S.S., "Experimenting with IEC 61850 and GOOSE
messaging," 2017 4th International Conference on Power, Control & Embedded Systems
(ICPCES), 2017, pp. 1-6, doi: 10.1109/ICPCES.2017.8117641.

Apostolov A., "Communications in IEC 61850 Based Substation Automation Systems," 2006
Power Systems Conference: Advanced Metering, Protection, Control, Communication, and
Distributed Resources, 2006, pp. 51-56, doi: 10.1109/PSAMP.2006.285370.

Apostolov A., "Impact of IEC 61850 on the Protection Grading and Testing Process," 2008
IET 9th International Conference on Developments in Power System Protection (DPSP
2008), 2008, pp. 20-25, doi: 10.1049/cp:20080004.

Apostolov A. and Vandiver B., "Requirements for testing of power swing blocking functions in
protection IEDs," 2011 64th Annual Conference for Protective Relay Engineers, 2011, pp.
125-129, doi: 10.1109/CPRE.2011.6035611.

Apostolov A., "IEC 61850 9-2 Process Bus applications and benefits," 10th IET International
Conference on Developments in Power System Protection (DPSP 2010). Managing the
Change, 2010, pp. 1-5, doi: 10.1049/cp.2010.0353.

Apostolov A., Brunner C. and Clinard K., "Use of IEC 61850 object models for power system
quality/security data exchange," CIGRE/IEEE PES International Symposium Quality and
Security of Electric Power Delivery Systems, 2003. CIGRE/PES 2003., 2003, pp. 155-164,
doi: 10.1109/QSEPDS.2003.159813.

Apostolov A., "Protection operation analysis in Smart Grids," 22nd International Conference
and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1-5, doi:
10.1049/cp.2013.1220.

Apostolov A., "Integration of distributed energy resources in Smart Grids," 22nd International
Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1-5, doi:
10.1049/cp.2013.1205.

Apostolov A. and Vandiver B., "Testing requirements for IEC 61850 based devices," 2007
Power Systems Conference: Advanced Metering, Protection, Control, Communication, and
Distributed Resources, 2007, pp. 249-253, doi: 10.1109/PSAMP.2007.4740916.

Arnold T., Adewole A. C. and Tzoneva R., "Performance testing and assessment of multi-
vendor protection schemes using proprietary protocols and the IEC 61850 standard," 2015
International Conference on the Industrial and Commercial Use of Energy (ICUE), Cape
Town, 2015, pp. 284-290. doi: 10.1109/ICUE.2015.7280280

Biçen Y. and Aras F., "Intelligent condition monitoring platform combined with multi-agent
approach for complex systems," 2014 IEEE Workshop on Environmental, Energy, and
Structural Monitoring Systems Proceedings, 2014, pp. 1-4, doi:
10.1109/EESMS.2014.6923283.

 185

Bosisio A., Berizzi A., Morotti A., Pegoiani A., Greco B. and Iannarelli G., "IEC 61850-based
smart automation system logic to improve reliability indices in distribution networks," 2019
IEEE 8th International Conference on Advanced Power System Automation and Protection
(APAP), 2019, pp. 1219-1222, doi: 10.1109/APAP47170.2019.9224717.

Brunner C., "The Impact of IEC 61850 on Protection," 2008 IET 9th International Conference
on Developments in Power System Protection (DPSP 2008), 2008, pp. 14-19, doi:
10.1049/cp:20080003.

Chen C., Dai Z., Ding J., Huang H., Wang Y. and He M., "Application of IEC 61850 proxy in
seamless communication between digital substation and control centre," CICED 2010
Proceedings, 2010, pp. 1-5.

Chunlong L., Hui H., Yun L., Hongjing L., Kuan Y. and Kewen L., "Research on Transmission
Line Vibration Condition Monitoring System and Energy Management Scheme Based on
Micro Energy Harvesting," 2021 4th International Conference on Energy, Electrical and
Power Engineering (CEEPE), 2021, pp. 255-259, doi: 10.1109/CEEPE51765.2021.9475557.

Costinas S., Dobra R., Zoller C. and Zoller I., "Wind power plant condition monitoring using
HP VEE Pro Software," 2011 10th International Conference on Environment and Electrical
Engineering, 2011, pp. 1-4, doi: 10.1109/EEEIC.2011.5874714.

Duan F. and Živanović R., "Automated multi-motor condition monitoring based on IEC
61850," 2013 IEEE ECCE Asia Downunder, 2013, pp. 699-703, doi: 10.1109/ECCE-
Asia.2013.6579177.

Elazab E., Awad T., Elgamal H. and Elsouhily B., "A cloud based condition monitoring
system for industrial machinery with application to power plants," 2017 Nineteenth
International Middle East Power Systems Conference (MEPCON), 2017, pp. 1400-1405, doi:
10.1109/MEPCON.2017.8301366.

Elgargouri A., Virrankoski R. and Elmusrati M., "IEC 61850 based smart grid security," 2015
IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 2461-2465, doi:
10.1109/ICIT.2015.7125460.

Elmaleeh M. A. A., Saad N. and Awan M., "Condition monitoring of industrial process plant
using acoustic emission techniques," 2010 International Conference on Intelligent and
Advanced Systems, 2010, pp. 1-6, doi: 10.1109/ICIAS.2010.5716110.

Englert.H and Dawidczak H., "IEC 61850 substation to control center communication —
Status and practical experiences from projects," 2009 IEEE Bucharest PowerTech, 2009, pp.
1-6, doi: 10.1109/PTC.2009.5281942.

Fang J., Yu S. and Ding X., "Development and Application of Networked Manufacturing
Process Monitoring System," 2008 International Symposium on Computational Intelligence
and Design, Wuhan, 2008, pp. 432-435. doi: 10.1109/ISCID.2008.16

Feng B., Zhang D., Si Y., Tian X. and Qian P., "A condition monitoring method of wind
turbines based on Long Short-Term Memory neural network," 2019 25th International
Conference on Automation and Computing (ICAC), 2019, pp. 1-4, doi:
10.23919/IConAC.2019.8895037.

Fu P., Hope A.D. and King G. A., "A neurofuzzy pattern recognition algorithm and its
application in tool condition monitoring process," ICSP '98. 1998 Fourth International
Conference on Signal Processing (Cat. No.98TH8344), 1998, pp. 1193-1196 vol.2, doi:
10.1109/ICOSP.1998.770831.

 186

Fu K., Ji H., Hao J. and Li H., "A novel approach of welding condition monitoring based on
pressure signal similarity comparison," 2021 7th International Conference on Condition
Monitoring of Machinery in Non-Stationary Operations (CMMNO), 2021, pp. 32-35, doi:
10.1109/CMMNO53328.2021.9467554.

Fung F., Fung K. Y., Chan Y. T. and Wong M. K., "Remarkable benefit realization by
application of strategic management in power transformer condition monitoring and
diagnostic systems," 2008 International Conference on Condition Monitoring and Diagnosis,
2008, pp. 533-538, doi: 10.1109/CMD.2008.4580343.

Gaouda A. M. et al., "A Smart IEC 61850 Merging Unit for Impending Fault Detection in
Transformers," in IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1812-1821, May 2018,
doi: 10.1109/TSG.2016.2600680.

Gers J. M. and Holmes E. J., “Protection of Electricity Distribution Networks”, 2nd ed.
London: Institution of Engineering and Technology 2004.

Groom S. L., "Can we measure our way out of trouble? the truth behind condition
monitoring," 6th IET Conference on Railway Condition Monitoring (RCM 2014), 2014, pp. 1-
8, doi: 10.1049/cp.2014.1007.

Gulski E., Cichecki P., Smit J.J., Seitz P. P., Quak B. and de Vries F., "On-site condition
monitoring of HV power cables up to 150kV," 2008 International Conference on Condition
Monitoring and Diagnosis, 2008, pp. 1199-1202, doi: 10.1109/CMD.2008.4580503.

Herkes I. M. C., "Condition monitoring drives organizational change," 2006 IET International
Conference On Railway Condition Monitoring, 2006, pp. 7-12.

Hmida M. A. and Braham A., "ARM based RSWPT implementation for embedded condition
monitoring of induction motor," IECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, 2016, pp. 1464-1469, doi: 10.1109/IECON.2016.7794066.

Hammer, E. and Sivertsen, E., 2008. Analysis and implementation of the IEC 61850
standard. Thesis. Technical University of Denmark.

https://www.gegridsolutions.com/multilin/journals/issues/spring09/iec61850.pdf IEC 61850
Communication Networks and Systems In Substations_An Overview for Users – 2009

Huang W., "A Practical Guide of Troubleshooting IEC 61850 GOOSE Communication," 2018
IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2018, pp. 1-6,
doi: 10.1109/TDC.2018.8440522.

Huang W., "Learn IEC 61850 configuration in 30 minutes," 2018 71st Annual Conference for
Protective Relay Engineers (CPRE), 2018, pp. 1-5, doi: 10.1109/CPRE.2018.8349803.

Igbinovia F. O., Fandi G., Muller Z., Svec J. and Tlusty J., "Effect of improved electricity
product development on the business performance of a public electricity transmission
company," 2017 IEEE PES PowerAfrica, 2017, pp. 46-51, doi:
10.1109/PowerAfrica.2017.7991198.

Jang H., Lee D., Yun S, Kim J., Ahn C. and Yang H., "Condition Monitoring and Diagnosis for
IEC 61850 Based Power Systems," 2011 International Conference on Information Science
and Applications, 2011, pp. 1-6, doi: 10.1109/ICISA.2011.5772341.

 187

Jo Y. et al., "A software engine for HMI of IED based on IEC 61850," 2011 International
Conference on Advanced Power System Automation and Protection, 2011, pp. 1312-1316,
doi: 10.1109/APAP.2011.6180582.

Kim D., Kang D., Seo D. and Chang Y., "Development of GIS condition monitoring and
diagnosis system based on IEC61850," 2012 IEEE International Conference on Condition
Monitoring and Diagnosis, 2012, pp. 396-398, doi: 10.1109/CMD.2012.6416463.

Kirkman R., "Development in Substation Automation Systems," 2007 International
Conference on Intelligent Systems Applications to Power Systems, Toki Messe, Niigata,
2007, pp.1-6. doi: 10.1109/ISAP.2007.4441690

León H., Montez C., Stemmer M. and Vasques F., "Simulation models for IEC 61850
communication in electrical substations using GOOSE and SMV time-critical messages,"
2016 IEEE World Conference on Factory Communication Systems (WFCS), 2016, pp. 1-8,
doi: 10.1109/WFCS.2016.7496500.

Lloret P., Velasquez J.L., Molas-Balada L., Villafafila R., Sumper A. and Galceran-Arellano
S., "IEC 61850 as a flexible tool for electrical systems monitoring," 2007 9th International
Conference on Electrical Power Quality and Utilisation, 2007, pp. 1-6, doi:
10.1109/EPQU.2007.4424193.

Liang Y., Liu H., Hu Y. and Zhang K., "Design and implementation of power communication
room monitoring system based on IEC 61850," 2017 3rd IEEE International Conference on
Computer and Communications (ICCC), 2017, pp. 2971-2975, doi:
10.1109/CompComm.2017.8323076.

Liu H., Zheng J. and Chen Y., "The Application of Multi-thread-based Embedded System in
the Fire Monitor," 2009 Second International Symposium on Electronic Commerce and
Security, 2009, pp. 506-508, doi: 10.1109/ISECS.2009.167.

Mackiewicz R. E., "Overview of IEC 61850 and Benefits," 2006 IEEE PES Power Systems
Conference and Exposition, 2006, pp. 623-630, doi: 10.1109/PSCE.2006.296392.

Mercurio A., Di Giorgio A. and Cioci P., "Open-Source Implementation of Monitoring and
Controlling Services for EMS/SCADA Systems by Means of Web Services— IEC 61850 and
IEC 61970 Standards," in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1148-
1153, July 2009, doi: 10.1109/TPWRD.2008.2008461.

Morris E.P.C., Feng G. and Horler G.D., "Enabling the multiple use of condition monitoring
devices for real-time monitoring, real-time data logging and remote condition monitoring," 7th
IET Conference on Railway Condition Monitoring 2016 (RCM 2016), 2016, pp. 1-5, doi:
10.1049/cp.2016.1201.

Netto U.C., D. Castro Grillo D., Lonel I.D. and Coury D.V., "A behaviour evaluation of
network traffic in a power substation concerning GOOSE messages," 2012 IEEE Power and
Energy Society General Meeting, 2012, pp. 1-5, doi: 10.1109/PESGM.2012.6345140.

Nguyen-Dinh N., Kim G. S. and Lee H. H., "A study on GOOSE communication based on
IEC 61850 using MMS ease lite," 2007 International Conference on Control, Automation and
Systems, 2007, pp. 1873-1877, doi: 10.1109/ICCAS.2007.4406651.

Ozansoy C. R., Zayegh A. and Kalam A., "The Application-View Model of the International
Standard IEC 61850," in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1132-
1139, July 2009, doi: 10.1109/TPWRD.2008.2005657.

 188

Park j., In E., Ahn S., Jang C. and Chong J., "IEC 61850 Standard Based MMS
Communication Stack Design Using OOP," 2012 26th International Conference on Advanced
Information Networking and Applications Workshops, 2012, pp. 329-332, doi:
10.1109/WAINA.2012.101.

Qiang H., Xue-cheng Z. and Shi-min S., "ASN.1 Application In Parsing ISUP PDUs," 2006
International Symposium on Communications and Information Technologies, 2006, pp. 78-
81, doi: 10.1109/ISCIT.2006.339891.
Sehrawat D. and Gill N. S., "Smart Sensors: Analysis of Different Types of IoT Sensors,"
2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019,
pp. 523-528, doi: 10.1109/ICOEI.2019.8862778.

Senke N. et al., "Application of the IEC 61850 to communication in distribution automation
and building energy management systems - Evaluation of the applicability of standard
Logical Nodes and Data Objects," 2012 IEEE Third International Conference on Smart Grid
Communications (SmartGridComm), 2012, pp. 454-459, doi:
10.1109/SmartGridComm.2012.6486026.

Seo J., "A Practical Scheme for Vibration Signal Measurement-Based Power Transformer
on-Load Tap Changer Condition Monitoring," 2018 Condition Monitoring and Diagnosis
(CMD), 2018, pp. 1-4, doi: 10.1109/CMD.2018.8535923.

Shaw D.C., "A universal approach to Points Condition Monitoring," 2008 4th IET International
Conference on Railway Condition Monitoring, 2008, pp. 1-6, doi: 10.1049/ic:20080315.

Sheng Z., Liu Z., Wang J. and Lu Y., "Development and application of condition monitoring
system for plant production," 2012 24th Chinese Control and Decision Conference (CCDC),
2012, pp. 2490-2493, doi: 10.1109/CCDC.2012.6244397.

Swift M., Aurisicchio G. and Pace P., "New practices for railway condition monitoring and
predictive analysis," 5th IET Conference on Railway Condition Monitoring and Non-
Destructive Testing (RCM 2011), 2011, pp. 1-6, doi: 10.1049/cp.2011.0578

Swiszcz G., Cruden A., Booth C. and Leithead W., "A data acquisition platform for the
development of a wind turbine condition monitoring system," 2008 International Conference
on Condition Monitoring and Diagnosis, 2008, pp. 1358-1361, doi:
10.1109/CMD.2008.4580521.

Tatera B.S. and Smith H.L., "The evolution of monitoring and controlling in electric power
substations," 2008 IEEE Power and Energy Society General Meeting - Conversion and
Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-5, doi:
10.1109/PES.2008.4596842.

Xu Q., Li Y. and Chu Y., "Research on Condition Monitoring Platform for Mineral Processing
Equipment Based on Industrial Cloud," 2018 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), 2018, pp. 1-2, doi: 10.1109/ICCE-China.2018.8448908.

Yang A., Zhang Z., Fan H., Chen L. and Wu M., "Design of Networked Condition Monitoring
System for Drilling Process," 2019 Chinese Control Conference (CCC), 2019, pp. 7083-7086,
doi: 10.23919/ChiCC.2019.8865348.

Yongli Z., Dewen W., Yan W. and Wenqing Z., "Study on interoperable exchange of IEC
61850 data model," 2009 4th IEEE Conference on Industrial Electronics and Applications,
2009, pp. 2724-2728, doi: 10.1109/ICIEA.2009.5138698.

 189

Zainir R. A. and Muhamad N. A., "Review on software development for time-domain high
voltage equipment condition monitoring," 2012 IEEE International Conference on Condition
Monitoring and Diagnosis, Bali, 2012, pp.790-793. doi: 10.1109/CMD.2012.6416266

Zhang X. and Zhang J., "Design of Embedded Monitoring System for Large-Scale Grain
Granary," 2018 11th International Symposium on Computational Intelligence and Design
(ISCID), 2018, pp. 145-148, doi: 10.1109/ISCID.2018.00040.

 190

APPENDICES

APPENDIX A: Installing Ubuntu on the computer

Ubuntu is a Linux-based open-source operating system. The operating system is a

software which manages a computer’s hardware and software resources. The

operating system is important and required because it provides a platform for all the

required software and hardware implementations of this research work to be done in

a convenient and efficient manner.

• Step 1: Creating a bootable USB with Ubuntu 20.02

The first step in the installation process is to create a bootable USB with the Ubuntu

20.04 software. The USB is inserted into the PC after which it is rebooted. The boot

sequence is changed in the BIOS of the computer system where the USB is selected

as the primary boot device. Figure A A.1 displays the resulting screen after the

system boots from the USB.

Figure A A.1: Ubuntu installation boot screen

• Step 2: Selecting the language of the user interface.

The installation process starts off with a language prompt. The language of the user

interface of the operating system is selected as shown in Figure A A.2.

 191

Figure A A.2: Ubuntu installation language prompt

• Step 3: Selecting the preferred keyboard layout

Once the language of the operating system is selected, the keyboard layout prompt

appears, with various layouts to choose from. The English (US) option is chosen as

indicated in the highlighted orange rectangles in Figure A A.3.

Figure A A.3: Ubuntu installation keyboard layout selection

 192

• Step 4: Selecting the preferred installation packages

The following prompt in the installation process are updates and other software. At

this step, a normal or a minimal installation is to be chosen with a choice to install

system updates and third-party software. A normal installation is chosen as shown in

the highlighted section in Figure A A.4 to ensure that the operating system is not

limited but operating at its full capability.

Figure A A.4: Ubuntu Installation updates and other software

• Step 5: Selecting the installation type

The following prompt in the installation process is the installation type. The choice

here is on how the Ubuntu installation is to be done. There is an option to erase the

current operating system, which is Windows 10, or to install Ubuntu alongside

Windows and have the ability to choose between the two whenever the system boots.

This is shown in the highlighted section in Figure A A.5.

 193

Figure A A.5: Ubuntu installation type

• Step 6: Configuring the system storage

This part of the installation is where the system storage is configured. The various

options to choose from can be seen as shown in Figure A A.6. The free space on the

hard drive is allocated to Ubuntu.

Figure A A.6: Ubuntu installation storage configuration

 194

• Step 7: Configuring the root partition

The following step is to select the root partition size as indicated in the highlighted

orange rectangles in Figure A A.7.

Figure A A.7: Root partition configuration

• Step 8: Installing the configured operating system

Once all partitions are created and the system storage configuration is completed, the

Ubuntu installation can then be finalised by clicking the “Install Now” button as shown

in Figure A A.8. This ensures the operating system is installed according to all the

previous configuration steps completed.

 195

Figure A A.8: Finalising the installation

• Step 9: Rebooting the system for installation to take effect

Once the installation is completed, the system is required to be rebooted for full use

as shown in Figure A A.9.

Figure A A.9: Installation complete, system to be rebooted.

 196

APPENDIX B: Ubuntu updates and additional installations on the computer

The Ubuntu operating system receives regular updates with new versions of the

software being released almost every six months. Updates are important for security

reasons and allows for full use of all the upgraded technology which come with the

updates.

• Step 1: Repository Updates

After Ubuntu has been rebooted the system repositories needed to be updated. This

is done as follows. In the terminal, the following is typed: sudo apt-get install update,

then the “Enter” key, a prompt then appears with a request to enter a user password.

After entering the password, a “yes or no” request to continue prompt appears, “yes”

is then selected for the process to complete, as illustrated in Figure A B.1.

Figure A B.1: Repository updates.

• Step 2: Make Utility installation

In the terminal, the following is typed: sudo apt-get install make, then the “Enter” key,

a prompt then appears with a request to enter a user password. After entering the

password, “yes or no” request to continue prompt appears, “yes” is then selected for

the process to complete, as illustrated in Figure A B.2. The “Make” utility is used to

determine which pieces of a large program needs to be compiled and does so if the

user issues the “Make” command in the terminal.

Figure A B.2: Make Utility installation.

 197

• Step 3: CMake Utility installation

In the terminal, the following is typed: sudo apt-get install “CMake”, then the “Enter”

key, a prompt then appears with a request to enter a user password. After entering

the password, “yes or no” request to continue prompt appears, “yes” is then selected

for the process to complete, as illustrated in Figure A B.3. Users build a project by

using “CMake” to generate a build system for a native tool on their platform.

Figure A B.3: CMake Utility installation.

• Step 4: System reboot

Once all the previously mentioned updates and installation processes are completed,

the computer system then gets rebooted for all the new changes and updates to take

effect.

 198

APPENDIX C: Installing Ubuntu on the Beaglebone

Ubuntu is a highly regarded operating system because of the fact that its open-source

and because of its versatility with the fact that it works with regular computers and

embedded devices. The operating system is important and required for full use of the

Beaglebone, which is an embedded-based device. The Ubuntu operating system will

manage the Beaglebone device’s hardware and software resources in an efficient

manner.

• Step 1: System drivers download and install

The first step that is required to be taken is to install the system drivers. This is done

by visiting the “http://beagleboard.org/getting-started” link. A full list of instructions is

found here.

• Step 2: Test basic functionality with webserver

The second step is to access the web server which runs on the Beaglebone Black.

The webserver gives the user access to some basic functionality of the board such as

toggling the on-board LEDs and the on-board push-button. To access the web server,

the Google Chrome web browser is used due to the Internet Explorer web browser

not being compatible.

• Step 3: Download image of latest software

The third step is to download an image of latest software. The latest software image

is downloaded from the “https://beagleboard.org/latest-images” link. This is seen in

Figure A C.1. Due to the size of the image, the download takes more or less 30

minutes to download.

 199

Figure A C.1: Software image download.

• Step 4: Download and install balenaEtcher

After downloading the required operating system image, the balenaEtcher program is

then downloaded and installed on the computer. Upon the first-time start-up of the

balenaEtcher program, the home screen is illustrated in Figure A C.2.

Figure A C.2: balenaEtcher home screen.

• Step 5: Flashing SD card with downloaded OS image - 1

 200

After opening the balenaEtcher program, the SD card received with the Beaglebone

hardware is inserted into the computer. The following is then done: the “select image”

icon is selected, the download folder containing the operating system image is

navigated to and the actual image file is then selected as illustrated Figure A C.3.

Figure A C.3: Selecting OS image to be flashed.

• Step 6: Flashing SD card with downloaded OS image - 2

After selecting the OS image, the “select drive” icon is then selected, this allows for

the SD card which is inserted into the computer to be the destination to which the

image must be flashed to. The “Flash” icon is then selected, which will enable the

process of flashing the new OS image to the SD card in the computer to begin. This

illustrated in Figure A C.4.

 201

Figure A C.4: Begin flashing process.

• Step 7: Installing OS image from SD card on the Beaglebone

Once the flashing procedure is completed, the balenaEtcher software is then used to

verify that the software image is copied correctly to the SD card. The SD card is then

safely ejected from the computer. The SD card containing the newly copied Ubuntu

OS (Operating System) image is then inserted into the Beaglebone Black board. After

inserting the SD card in the board, pressing, and holding its boot button will cause it

to power up. Upon booting up, all four user LEDs light up and blink in a pattern which

indicated that the flashing procedure (the procedure of copying the software image

from the SD card to the Beaglebone Black’s on-board memory) has started. Once this

process is concluded, all four of the user LEDs then go into the off state and the

board is then powered down. Upon powering up the Beaglebone, it then boots from

its eMMC where the new operating system is installed. It is imperative to ensure that

the SD card is removed before powering up the Beaglebone to ensure the installation

process does not occur again. The Beaglebone now has the Ubuntu operating

system installed.

• Step 8: Connecting to the Beaglebone via SSH communication

After installing Ubuntu on the Beaglebone Black, the following steps are taken to

install all the various updates which are required. To install the various required

updates, an Internet connection is required. Firstly, The Beaglebone is powered up

via the USB cable from the computer. In the terminal of the Ubuntu OS running on the

computer, the following command is typed: sudo ssh ubuntu@192.168.6.2, then the

“Enter” key. This done in order to SSH (Secure Shell) into the Beaglebone. SSH is a

 202

network communication protocol that enables two computing devices to communicate

and share data. A prompt then appears with a request to enter a user password. After

entering the password, a “yes or no” request to continue prompt appears, “yes” is

then selected to continue. A second “yes or no” prompt appears and “yes” is again

selected to continue. Thereafter a prompt then appears with a request to enter a user

password as illustrated in Figure A C.5. After entering the password, (which is

temppwd) connection to the Beaglebone is then established.

Figure A C.5: SSH connection to Beaglebone.

• Step 9: Becoming Root user

In order to connect to the Internet within the Beagle development environment, it is

required to become a root user. This is done by entering the following command in

the terminal: sudo -i. Once entering this command, a prompt appears, once again

requesting a password. The password is entered, and root access is gained. After

becoming a root user, the terminal interface should appear as illustrated in Figure A

C.6.

 203

Figure A C.6: Connected to Beaglebone as root user.

• Step 10: Accessing the Beaglebone network interface configuration.

In the root terminal the following command is typed: ifconfig; once entering this

command, access to the ifconfig utility user interface then appears. The ifconfig utility

is a system administration utility in the Ubuntu operating system and is used for

network interface configuration. The utility is a command-line interface tool and is also

used in the system start-up scripts. It is then required to identify the usb1

configuration. As illustrated in Figure A C.7, the IP address thereof, labelled “inet” is

192.168.6.2.

 204

Figure A C.7: Beaglebone network interface configuration.

• Step 11: Accessing the Computer network interface configuration.

In the terminal of the computer, the following command is typed: ifconfig, once

entering this command, access to the ifconfig utility user interface of the computer

then appears. The ifconfig utility of the Beaglebone and computer serves the same

purpose due to both devices having the same operating systems. It is then required

to identify the IP address of the computer, labelled “inet 192.168.6.1”. As illustrated

Figure A C.8.

 205

Figure A C.8: Computer network interface configuration.

• Step 12.1: Setting up internet connection on Beaglebone.

In the terminal of the Beaglebone, the following command is entered: ifconfig usb1

192.168.6.2, thereafter, the following command is then entered: route add default gw

192.168.6.1. This is illustrated in Figure A C.9.

 206

Figure A C.9: Setting up internet connection on the Beaglebone.

• Step 12.2: Setting up internet connection on Beaglebone.

In the terminal of the computer, the following commands is entered in the order as

listed below:

o ifconfig eth2 192.168.6.1
o iptables --table nat --append POSTROUTING --out-interface wlan0 -j

MASQUERADE
o iptables --append FORWARD --in-interface eth2 -j ACCEPT
o echo 1 > /proc/sys/net/ipv4/ip_forward

• Step 12.3: Setting up internet connection on Beaglebone.

Upon entering the commands in the terminal of the computer as listed in step 12.2,

the following command is then entered in the terminal of the Beaglebone: echo

"nameserver 8.8.8.8" >> /etc/resolv.conf. as illustrated in Figure A C.10.

 207

Figure A C.10: Setting up internet connection on the Beaglebone.

• Step 13: Testing the Internet connection on Beaglebone.

Finally, all that is left to do is test if the Beaglebone can connect to the Internet. This

is done by typing the following command in the Beaglebone terminal: ping 8.8.8.8.

The 8.8.8.8 IP address is the primary DNS server for Google DNS. It is found that the

Beaglebone has a connection to the Internet. The results are illustrated in Figure A

C.11.

Figure A C.11: Beaglebone connection to the internet is established.

 208

• Step 14.1: Beaglebone updates and upgrades of installed packages.

After successfully establishing a connection between the Internet and the Beaglebone

board, all the required updates and additional installations can now be done. The

following command is entered in the terminal of the Beaglebone: apt-get update; this

command updates the list of available packages and their versions, but it does not

install or upgrade any packages. The following command is then entered in the

command in the Beaglebone terminal: apt-get upgrade. This command will install

newer versions of the existing packages. Upon updating the lists, the package

manager knows about available updates for the software already installed. Therefore,

it is imperative to first update and then upgrade thereafter. Due to doing an “update”

in the previous step, all that is left to do is an “upgrade”, as illustrated in Figure A

C.12.

Figure A C.12: Upgrading installed packages on the Beaglebone.

• Step 14.2: Beaglebone updates and upgrades of installed packages.

Upon upgrading the installed packages, a prompt appeared requesting a yes or no

answer; yes needs to be selected in order for the process to continue, as illustrated in

Figure A C.13. The time taken for the process to compete may vary and is dependent

on the Internet connection.

 209

Figure A C.13: Upgrading installed packages.

• Step 14.3: Beaglebone updates and upgrades of installed packages.

Before the process concludes, a prompt appeared requesting a yes or no answer; no

is selected for the process to continue. This is illustrated in Figure A C.14.

Figure A C.14: Upgrading installed packages.

 210

• Step 15: Configuring updates and upgrades.

In order for all new changes to take effect, the system is required to be rebooted.

Upon the conclusion of the upgrading of the installed packages, a yes or no prompt

appears requesting the system to be restarted; yes is selected. The prompt is

illustrated in Figure A C.15.

Figure A C.15: System reboot prompt.

 211

APPENDIX D: Configuring IEC 61850 embedded C library on Beaglebone

This appendix details the steps taken to configure the IEC 61850 embedded C library

for full use with the Beaglebone embedded device. This configuration is required

because most of the source code files in the C library requires administrative

privileges to be used for security reasons.

• Step 1.1: Copying the Library to the Beaglebone

The first step that is required to be taken is to copy the folder containing the library

from the computer to the Beaglebone. This is done by entering the following

command in the terminal of the computer: scp -r [Source Folder (folder where the

IEC61850 library is stored)] ubuntu@192.168.8.122. This is illustrated in Figure A

D.1.

Figure A D.1: Copying library files from computer to Beaglebone.

• Step 1.2: Copying the Library to the Beaglebone

Upon entering the command to copy the files from the computer to the Beaglebone

board, a prompt appears where the operating system of the Beaglebone requests a

user password to be entered. The password which is “temppwd” is then entered and

files will start copying as illustrated in Figure A D.2.

mailto:ubuntu@192.168.8.122

 212

Figure A D.2: IEC61850 library files copying to Beaglebone.

• Step 1.3: Copying the Library to the Beaglebone

After the process of copying the IEC61850 library files from the computer platform to

the Beaglebone platform is completed, the root terminal of the computer is then

closed, thus concluding the first step of copying the IEC61850 library files from the

computer to the Beaglebone.

• Step 2: Copying the Library to the Beaglebone root directory

Upon copying all the IEC61850 library files to the Beaglebone, it is then required to

copy these files to the Beaglebone’s root directory, since most of the operations

regarding the project will require root access. The following command is entered in

the Beaglebone’s root terminal: scp -r /home/ubuntu/libiec61850-1.5 /root. This is

illustrated in Figure A D.3.

 213

Figure A D.3: Copying library files to root directory.

• Step 3: Compiling the library

Upon copying all the IEC61850 library files to the Beaglebone root directory, the

library is then compiled. This is done by navigating via the command terminal to the

location where the library files are stored on the Beaglebone and use the “make”

command. However, the version of the command which is geared towards embedded

devices with ARM processors is required to be used. The command is entered as

follows: Beaglebone root terminal: make TARGET=LINUX-ARM. The compilation

process then starts, as illustrated in Figure A D.4.

 214

Figure A D.4: Compiling the IEC61850 embedded c library.

• Step 4: Assigning new static IP addresses

After the compilation process is concluded, it is required to setup the static IP

addresses of both Beaglebone boards in order for communication on a localised

Ethernet network to take place. In order to do this, a new root terminal is opened on

the Beaglebone and in the new terminal it is required to navigate to the network folder

using the following command: cd /etc/network. Once in this folder, the network

interfaces are accessed in order to change the IP addresses, which are done by

entering the following command: nano interfaces. The eth0 IP address is changed to

192.168.8.122 for the first Beaglebone board and for the second board, it is changed

it to 192.168.8.123. Making these changes will ensure both boards can communicate

with each other via the local Ethernet network. This is illustrated in Figure A D.5.

 215

Figure A D.5: Configuring static IP address of the Beaglebone.

• Step 5: Rebooting the Beaglebone devices

After making these changes, everything is then saved. Upon making this type of

changes to the Beaglebone board, it is always advised to restart the device, as this

will ensure that all changes are allowed to take effect. This is done by now rebooting

the Beaglebone device.

 216

APPENDIX E: Computer GOOSE Publisher source code with GGIO LN

This appendix contains the source code which programs the computer to operate as a

GOOSE message publishing IED, using the GGIO Logical Node.

/*

 * server_pc_goose.c

 *

 * This example demonstrates how to use GOOSE publishing, Reporting and

the

 * control model.

 *

 */

#include "iec61850_server.h"

#include "hal_thread.h" /* for Thread_sleep() */

#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include "static_model.h"

/* import IEC 61850 device model created from SCL-File */

extern IedModel iedModel;

static int running = 0;

static IedServer iedServer = NULL;

void sigint_handler(int signalId)

{

 running = 0;

}

void

controlHandlerForBinaryOutput(void* parameter, MmsValue* value)

{

 uint64_t timestamp = Hal_getTimeInMs();

 if (parameter == IEDMODEL_GenericIO_GGIO1_SPCSO1) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO1_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO1_stVal, value);

 }

 if (parameter == IEDMODEL_GenericIO_GGIO1_SPCSO2) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO2_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO2_stVal, value);

 }

 if (parameter == IEDMODEL_GenericIO_GGIO1_SPCSO3) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO3_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO3_stVal, value);

 }

 if (parameter == IEDMODEL_GenericIO_GGIO1_SPCSO4) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO4_t, timestamp);

 217

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_SPCSO4_stVal, value);

 }

}

int main(int argc, char** argv) {

 iedServer = IedServer_create(&iedModel);

 if (argc > 1) {

 char* ethernetIfcID = argv[1];

 printf("Using GOOSE interface: %s\n", ethernetIfcID);

 /* set GOOSE interface for all GOOSE publishers (GCBs) */

 IedServer_setGooseInterfaceId(iedServer, ethernetIfcID);

 }

 if (argc > 2) {

 char* ethernetIfcID = argv[2];

 printf("Using GOOSE interface for GenericIO/LLN0.gcbAnalogValues:

%s\n", ethernetIfcID);

 /* set GOOSE interface for a particular GOOSE publisher (GCB) */

 IedServer_setGooseInterfaceIdEx(iedServer, IEDMODEL_GenericIO_LLN0,

"gcbAnalogValues", ethernetIfcID);

 }

 /* MMS server will be instructed to start listening to client

connections. */

 IedServer_start(iedServer, 102);

 IedServer_setControlHandler(iedServer, IEDMODEL_GenericIO_GGIO1_SPCSO1,

(ControlHandler) controlHandlerForBinaryOutput,

 IEDMODEL_GenericIO_GGIO1_SPCSO1);

 IedServer_setControlHandler(iedServer, IEDMODEL_GenericIO_GGIO1_SPCSO2,

(ControlHandler) controlHandlerForBinaryOutput,

 IEDMODEL_GenericIO_GGIO1_SPCSO2);

 IedServer_setControlHandler(iedServer, IEDMODEL_GenericIO_GGIO1_SPCSO3,

(ControlHandler) controlHandlerForBinaryOutput,

 IEDMODEL_GenericIO_GGIO1_SPCSO3);

 IedServer_setControlHandler(iedServer, IEDMODEL_GenericIO_GGIO1_SPCSO4,

(ControlHandler) controlHandlerForBinaryOutput,

 IEDMODEL_GenericIO_GGIO1_SPCSO4);

 if (!IedServer_isRunning(iedServer)) {

 printf("Starting server failed! Exit.\n");

 IedServer_destroy(iedServer);

 exit(-1);

 }

 /* Start GOOSE publishing */

 IedServer_enableGoosePublishing(iedServer);

 running = 1;

 signal(SIGINT, sigint_handler);

 float anIn1 = 0.f; //Analog input2 float decleration

 218

 float anIn2 = 0.f; //Analog input2 float decleration

 while (running) {

 //DATA FROM Logical NODE GGIO1 - DATA OBJECT AnIn1

 IedServer_lockDataModel(iedServer);

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_AnIn1_t, Hal_getTimeInMs());

 IedServer_updateFloatAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_AnIn1_mag_f, anIn1);

 IedServer_unlockDataModel(iedServer);

 anIn1 += 0.1;

 printf("Analog_Input_1 %f\n",anIn1);

 //DATA FROM Logical NODE GGIO1 - DATA OBJECT AnIn2

 IedServer_lockDataModel(iedServer);

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_AnIn2_t, Hal_getTimeInMs());

 IedServer_updateFloatAttributeValue(iedServer,

IEDMODEL_GenericIO_GGIO1_AnIn2_mag_f, anIn2);

 IedServer_unlockDataModel(iedServer);

 anIn2 += 0.2;

 printf("Analog_Input_2 %f\n",anIn2);

 Thread_sleep(1000); }

 /* stop MMS server - close TCP server socket and all client sockets */

 IedServer_stop(iedServer);

 /* Cleanup - free all resources */

 IedServer_destroy(iedServer);

} /* main() */

 219

APPENDIX F: Beaglebone GOOSE Subscriber source code 1

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message subscribing IED.

/*

 * goose_bb_subscriber.c

 *

 * This is an example for a standalone GOOSE subscriber

 *

 * Has to be started as root in Linux.

 */

#include "goose_receiver.h"

#include "goose_subscriber.h"

#include "hal_thread.h"

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

#define Buffsize 65025; //The Buffer size in bytes of the Goose Message -

RD

uint8_t gooseBuffer[Buffsize]; //RAM memory allocated to GOOSE Message - RD

static int running = 1;

void sigint_handler(int signalId)

{

 running = 0;

}

void

gooseListener(GooseSubscriber subscriber, void* parameter)

{

 printf("GOOSE event:\n");

 printf(" stNum: %u sqNum: %u\n", GooseSubscriber_getStNum(subscriber),

 GooseSubscriber_getSqNum(subscriber));

 printf(" timeToLive: %u\n",

GooseSubscriber_getTimeAllowedToLive(subscriber));

 uint64_t timestamp = GooseSubscriber_getTimestamp(subscriber);

 printf(" timestamp: %u.%u\n", (uint32_t) (timestamp / 1000),

(uint32_t) (timestamp % 1000));

 MmsValue* values = GooseSubscriber_getDataSetValues(subscriber);

 char buffer[1024];

 MmsValue_printToBuffer(values, buffer, 1024);

 printf("%s\n", buffer);

}

int

main(int argc, char** argv)

{

 GooseReceiver receiver = GooseReceiver_create();

 if (argc > 1) {

 printf("Set interface id: %s\n", argv[1]);

 220

 GooseReceiver_setInterfaceId(receiver, argv[1]);

 }

 else {

 printf("Using interface eth0\n");

 GooseReceiver_setInterfaceId(receiver, "eth0");

 }

 GooseSubscriber subscriber =

GooseSubscriber_create("simpleIOGenericIO/LLN0GOgcbAnalogValues", NULL);

 GooseSubscriber_setAppId(subscriber, 1000);

 GooseSubscriber_setListener(subscriber, gooseListener, NULL);

 GooseReceiver_addSubscriber(receiver, subscriber);

 GooseReceiver_start(receiver);

 if (GooseReceiver_isRunning(receiver)) {

 signal(SIGINT, sigint_handler);

 while (running) {

 GooseReceiver_handleMessage(self, gooseBuffer, Buffsize); //

The handler that parses the GOOSE Message - RD

 Thread_sleep(1000);

 }

 }

 else {

 printf("Failed to start GOOSE subscriber. Reason can be that the

Ethernet interface doesn't exist or root permission are required.\n");

 }

 GooseReceiver_stop(receiver);

 GooseReceiver_destroy(receiver);

}

 221

APPENDIX G: Beaglebone GOOSE Publisher source code with CCGR LN

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message publishing IED, using the CCGR Logical Node.

/*

 * server_bb_ccgr_goose.c

 *

 * This example demonstrates how to use GOOSE publishing, Reporting and

the

 * control model.

 *

 */

#include "iec61850_server.h"

#include "hal_thread.h" /* for Thread_sleep() */

#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include "static_model.h"

/* import IEC 61850 device model created from SCL-File */

extern IedModel iedModel;

static int running = 0;

static IedServer iedServer = NULL;

void sigint_handler(int signalId)

{

 running = 0;

}

void

controlHandlerForBinaryOutput(void* parameter, MmsValue* value)

{

 uint64_t timestamp = Hal_getTimeInMs();

 //NEW

 if (parameter == IEDMODEL_Cooling_CCGR0_FanCtl) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_Cooling_CCGR0_FanCtl_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_Cooling_CCGR0_FanCtl_stVal, value);

 }

}

int main(int argc, char** argv) {

 iedServer = IedServer_create(&iedModel);

 if (argc > 1) {

 char* ethernetIfcID = argv[1];

 printf("Using GOOSE interface: %s\n", ethernetIfcID);

 /* set GOOSE interface for all GOOSE publishers (GCBs) */

 IedServer_setGooseInterfaceId(iedServer, ethernetIfcID);

 }

 222

 if (argc > 2) {

 char* ethernetIfcID = argv[2];

 printf("Using GOOSE interface for Cooling/LLN0.gcbAnalogValues:

%s\n", ethernetIfcID);

 /* set GOOSE interface for a particular GOOSE publisher (GCB) */

 IedServer_setGooseInterfaceIdEx(iedServer, IEDMODEL_Cooling_LLN0,

"gcbAnalogValues", ethernetIfcID);

 }

 /* MMS server will be instructed to start listening to client

connections. */

 IedServer_start(iedServer, 102);

 //NEW

 IedServer_setControlHandler(iedServer, IEDMODEL_Cooling_CCGR0_FanCtl,

(ControlHandler) controlHandlerForBinaryOutput,

 IEDMODEL_Cooling_CCGR0_FanCtl);

 if (!IedServer_isRunning(iedServer)) {

 printf("Starting server failed! Exit.\n");

 IedServer_destroy(iedServer);

 exit(-1);

 }

 /* Start GOOSE publishing */

 IedServer_enableGoosePublishing(iedServer);

 running = 1;

 signal(SIGINT, sigint_handler);

 float fanflw = 0.f;

 while (running) {

 IedServer_lockDataModel(iedServer);

 //NEW Logical Node

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_Cooling_CCGR0_FanFlw_t, Hal_getTimeInMs());

 IedServer_updateFloatAttributeValue(iedServer,

IEDMODEL_Cooling_CCGR0_FanFlw_mag_f, fanflw);

 IedServer_unlockDataModel(iedServer);

 fanflw += 0.1;

 printf("Analog_Input_1 %f\n",fanflw);

 Thread_sleep(1000); }

 /* stop MMS server - close TCP server socket and all client sockets */

 IedServer_stop(iedServer);

 /* Cleanup - free all resources */

 IedServer_destroy(iedServer);

} /* main() */

 223

APPENDIX H: Beaglebone GOOSE Subscriber source code 2

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message subscribing IED.

/*

 * goose_bb_observer.c

 *

 * This is an example for generic GOOSE observer

 *

 * Has to be started as root in Linux.

 */

#include "goose_receiver.h"

#include "goose_subscriber.h"

#include "hal_thread.h"

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

static int running = 1;

void sigint_handler(int signalId)

{

 running = 0;

}

void

gooseListener(GooseSubscriber subscriber, void* parameter)

{

 printf("GOOSE event:\n");

 printf(" vlanTag: %s\n", GooseSubscriber_isVlanSet(subscriber) ?

"found" : "NOT found");

 if (GooseSubscriber_isVlanSet(subscriber))

 {

 printf(" vlanId: %u\n", GooseSubscriber_getVlanId(subscriber));

 printf(" vlanPrio: %u\n",

GooseSubscriber_getVlanPrio(subscriber));

 }

 printf(" appId: %d\n", GooseSubscriber_getAppId(subscriber));

 uint8_t macBuf[6];

 GooseSubscriber_getSrcMac(subscriber,macBuf);

 printf(" srcMac: %02X:%02X:%02X:%02X:%02X:%02X\n",

macBuf[0],macBuf[1],macBuf[2],macBuf[3],macBuf[4],macBuf[5]);

 GooseSubscriber_getDstMac(subscriber,macBuf);

 printf(" dstMac: %02X:%02X:%02X:%02X:%02X:%02X\n",

macBuf[0],macBuf[1],macBuf[2],macBuf[3],macBuf[4],macBuf[5]);

 printf(" goId: %s\n", GooseSubscriber_getGoId(subscriber));

 printf(" goCbRef: %s\n", GooseSubscriber_getGoCbRef(subscriber));

 printf(" dataSet: %s\n", GooseSubscriber_getDataSet(subscriber));

 printf(" confRev: %u\n", GooseSubscriber_getConfRev(subscriber));

 printf(" ndsCom: %s\n", GooseSubscriber_needsCommission(subscriber) ?

"true" : "false");

 printf(" simul: %s\n", GooseSubscriber_isTest(subscriber) ? "true" :

"false");

 printf(" stNum: %u sqNum: %u\n", GooseSubscriber_getStNum(subscriber),

 GooseSubscriber_getSqNum(subscriber));

 printf(" timeToLive: %u\n",

GooseSubscriber_getTimeAllowedToLive(subscriber));

 uint64_t timestamp = GooseSubscriber_getTimestamp(subscriber);

 224

 printf(" timestamp: %u.%u\n", (uint32_t) (timestamp / 1000),

(uint32_t) (timestamp % 1000));

 printf(" message is %s\n", GooseSubscriber_isValid(subscriber) ?

"valid" : "INVALID");

 MmsValue* values = GooseSubscriber_getDataSetValues(subscriber);

 char buffer[1024];

 MmsValue_printToBuffer(values, buffer, 1024);

 printf(" AllData: %s\n", buffer);

}

int

main(int argc, char** argv)

{

 GooseReceiver receiver = GooseReceiver_create();

 if (argc > 1) {

 printf("Set interface id: %s\n", argv[1]);

 GooseReceiver_setInterfaceId(receiver, argv[1]);

 }

 else {

 printf("Using interface eth0\n");

 GooseReceiver_setInterfaceId(receiver, "eth0");

 }

 GooseSubscriber subscriber = GooseSubscriber_create("", NULL);

 GooseSubscriber_setObserver(subscriber);

 GooseSubscriber_setListener(subscriber, gooseListener, NULL);

 GooseReceiver_addSubscriber(receiver, subscriber);

 GooseReceiver_start(receiver);

 if (GooseReceiver_isRunning(receiver)) {

 signal(SIGINT, sigint_handler);

 while (running) {

 Thread_sleep(100);

 }

 }

 else {

 printf("Failed to start GOOSE subscriber. Reason can be that the

Ethernet interface doesn't exist or root permission are required.\n");

 }

 GooseReceiver_stop(receiver);

 GooseReceiver_destroy(receiver);

 return 0;

}

 225

APPENDIX I: Beaglebone GOOSE Publisher source code with IPFC LN

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message publishing IED, using the IPFC Logical Node.

/*

 * server_bb_ipfc_goose.c

 *

 * This example demonstrates how to use GOOSE publishing, Reporting and

the

 * control model.

 *

 */

#include "iec61850_server.h"

#include "hal_thread.h" /* for Thread_sleep() */

#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h> //close()

#include <fcntl.h> //define O_WONLY and O_RDONLY

#include "static_model.h"

#define SYSFS_ADC_DIR "/sys/bus/iio/devices/iio:device0/in_voltage4_raw"

#define MAX_BUFF 64

/* import IEC 61850 device model created from SCL-File */

extern IedModel iedModel;

static int running = 0;

static IedServer iedServer = NULL;

void sigint_handler(int signalId)

{

 running = 0;

}

void

controlHandlerForBinaryOutput(void* parameter, MmsValue* value)

{

 uint64_t timestamp = Hal_getTimeInMs();

 if (parameter == IEDMODEL_IndustrialProcess_IPFC0_TempCtl) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_TempCtl_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_TempCtl_stVal, value);

 }

 if (parameter == IEDMODEL_IndustrialProcess_IPFC0_HumCtl) {

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_HumCtl_t, timestamp);

 IedServer_updateAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_HumCtl_stVal, value);

 }

}

int main(int argc, char** argv) {

 iedServer = IedServer_create(&iedModel);

 226

 if (argc > 1) {

 char* ethernetIfcID = argv[1];

 printf("Using GOOSE interface: %s\n", ethernetIfcID);

 /* set GOOSE interface for all GOOSE publishers (GCBs) */

 IedServer_setGooseInterfaceId(iedServer, ethernetIfcID);

 }

 if (argc > 2) {

 char* ethernetIfcID = argv[2];

 printf("Using GOOSE interface for Industrial

Process/LLN0.gcbAnalogValues: %s\n", ethernetIfcID);

 /* set GOOSE interface for a particular GOOSE publisher (GCB) */

 IedServer_setGooseInterfaceIdEx(iedServer,

IEDMODEL_IndustrialProcess_LLN0, "gcbAnalogValues", ethernetIfcID);

 }

 /* MMS server will be instructed to start listening to client

connections. */

 IedServer_start(iedServer, 102);

 IedServer_setControlHandler(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_TempCtl, (ControlHandler)

controlHandlerForBinaryOutput,

 IEDMODEL_IndustrialProcess_IPFC0_TempCtl);

 IedServer_setControlHandler(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_HumCtl, (ControlHandler)

controlHandlerForBinaryOutput,

 IEDMODEL_IndustrialProcess_IPFC0_HumCtl);

 if (!IedServer_isRunning(iedServer)) {

 printf("Starting server failed! Exit.\n");

 IedServer_destroy(iedServer);

 exit(-1);

 }

 /* Start GOOSE publishing */

 IedServer_enableGoosePublishing(iedServer);

 running = 1;

 signal(SIGINT, sigint_handler);

 while (running) {

 int fd;

 char buf[MAX_BUFF];

 char ch[5]; //Update

 ch[4] = 0; //Update

 int i;

 for(i = 0; i < 1; i++)

 {

 snprintf(buf, sizeof(buf), SYSFS_ADC_DIR);

 fd = open(buf, O_RDONLY);

 read(fd,ch,4);

 227

 printf("%s\n", ch);

 close(fd);

 usleep(1000);

 }

 float reading;

 float Temperature;

 float Humidity;

 reading = atof(ch);

 IedServer_lockDataModel(iedServer);

 //TEMPERATURE

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_Temp_t, Hal_getTimeInMs());

 IedServer_updateFloatAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_Temp_mag_f, Temperature);

 IedServer_unlockDataModel(iedServer);

 // Temperature += 0.1;

 Temperature = reading/120.048;

 printf("Temperature in Degrees C %f\n",Temperature);

 IedServer_lockDataModel(iedServer);

 //HUMIDITY

 IedServer_updateUTCTimeAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_Hum_t, Hal_getTimeInMs());

 IedServer_updateFloatAttributeValue(iedServer,

IEDMODEL_IndustrialProcess_IPFC0_Hum_mag_f, Humidity);

 IedServer_unlockDataModel(iedServer);

 //Humidity += 0.1;

 Humidity = reading/60.048;

 printf("Relative Humidity %f\n",Humidity);

 Thread_sleep(1000); }

 /* stop MMS server - close TCP server socket and all client sockets */

 IedServer_stop(iedServer);

 /* Cleanup - free all resources */

 IedServer_destroy(iedServer);

} /* main() */

 228

APPENDIX J: IPFC Logical Node in XML

This appendix contains the Substation Configuration Language file of the IPFC Logical Node

in eXtendsible Markup Language (XML) format.

<?xml version="1.0" encoding="UTF-8"?>

<SCL xmlns="http://www.iec.ch/61850/2003/SCL"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" release="4"

revision="B" version="2007"

xsi:schemaLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd">

 <Header id="TEMPMON" revision="1" version="0"/>

 <Communication>

 <SubNetwork name="subnetwork1" type="8-MMS">

 <ConnectedAP apName="accessPoint1" iedName="TEMPLATE">

 <Address>

 <P type="IP">10.0.0.2</P>

 <P type="IP-SUBNET">255.255.255.0</P>

 <P type="IP-GATEWAY">10.0.0.1</P>

 <P type="OSI-TSEL">0001</P>

 <P type="OSI-PSEL">00000001</P>

 <P type="OSI-SSEL">0001</P>

 <P type="OSI-AP-Title">1,1,9999,1</P>

 <P type="OSI-AE-Qualifier">12</P>

 <P type="MAC-Address">fc-69-47-1e-93-55</P>

 </Address>

 <GSE cbName="gcbEvents" ldInst="Temperature">

 <Address>

 <P type="VLAN-ID">1</P>

 <P type="VLAN-PRIORITY">4</P>

 <P type="MAC-Address">01-0C-CD-01-00-00</P>

 <P type="APPID">1000</P>

 </Address>

 </GSE>

 <GSE cbName="gcbAnalogValues" ldInst="Temperature">

 <Address>

 <P type="VLAN-ID">1</P>

 <P type="VLAN-PRIORITY">4</P>

 <P type="MAC-Address">01-0C-CD-01-00-00</P>

 <P type="APPID">1000</P>

 </Address>

 </GSE>

 </ConnectedAP>

 </SubNetwork>

 </Communication>

 <IED desc="TEMPERATURE" manufacturer="SystemCORP Energy Pty Ltd"

name="TEMPLATE" owner="Roderick Domingo" type="RTUType">

 <Services nameLength="64">

 <ClientServices/>

 <DynAssociation/>

 <GetDirectory/>

 <GetDataObjectDefinition/>

 <GetCBValues/>

 <DataObjectDirectory/>

 <GetDataSetValue/>

 <SetDataSetValue/>

 <DataSetDirectory/>

 <ReadWrite/>

 </Services>

 <AccessPoint name="accessPoint1" router="false">

 <Server>

 <Authentication/>

 229

 <LDevice inst="IndustrialProcess">

 <LN0 desc="Logical node zero" inst="" lnClass="LLN0"

lnType="LLN0_0">

 <DataSet name="AnalogValues">

 <FCDA daName="mag" doName="Temp" fc="MX"

ldInst="IndustrialProcess" lnClass="IPFC" lnInst="0"/>

 <FCDA daName="mag" doName="Hum" fc="MX"

ldInst="IndustrialProcess" lnClass="IPFC" lnInst="0"/>

 </DataSet>

 <DataSet name="Events">

 <FCDA daName="stVal" doName="TempCtl" fc="ST"

ldInst="IndustrialProcess" lnClass="IPFC" lnInst="0"/>

 <FCDA daName="stVal" doName="HumCtl" fc="ST"

ldInst="IndustrialProcess" lnClass="IPFC" lnInst="0"/>

 </DataSet>

 <ReportControl bufTime="50" confRev="1" datSet="Events"

intgPd="1000" name="EventsRCB" rptID="Events">

 <TrgOps period="true"/>

 <OptFields configRef="true" dataSet="true"

reasonCode="true" seqNum="true" timeStamp="true"/>

 <RptEnabled max="1"/>

 </ReportControl>

 <ReportControl bufTime="50" confRev="1"

datSet="AnalogValues" intgPd="1000" name="AnalogValuesRCB"

rptID="AnalogValues">

 <TrgOps period="true"/>

 <OptFields configRef="true" dataSet="true"

reasonCode="true" seqNum="true" timeStamp="true"/>

 <RptEnabled max="1"/>

 </ReportControl>

 <GSEControl appID="events" confRev="2" datSet="Events"

name="gcbEvents"/>

 <GSEControl appID="analog" confRev="2"

datSet="AnalogValues" name="gcbAnalogValues"/>

 </LN0>

 <LN desc="Physical device information" inst="0"

lnClass="LPHD" lnType="LPHD_0" prefix=""/>

 <LN desc="Industrial Process Functions" inst="0"

lnClass="IPFC" lnType="IPFC_0" prefix=""/>

 </LDevice>

 </Server>

 </AccessPoint>

 </IED>

 <DataTypeTemplates>

 <LNodeType id="IPFC_0" lnClass="IPFC">

 <DO desc="Enumerated status" name="Beh" type="ENS_0"/>

 <DO desc="Measured value" name="Temp" type="MV_0"/>

 <DO desc="Controllable enumerated status" name="TempCtl"

type="ENC_1"/>

 <DO desc="Measured value" name="Hum" type="MV_0"/>

 <DO desc="Controllable enumerated status" name="HumCtl"

type="ENC_0"/>

 </LNodeType>

 <LNodeType id="LPHD_0" lnClass="LPHD">

 <DO desc="Enumerated status" name="Beh" type="ENS_2"/>

 <DO desc="Device name plate" name="PhyNam" type="DPL_0"/>

 <DO desc="Enumerated status" name="PhyHealth" type="ENS_1"/>

 <DO desc="Single point status" name="Proxy" type="SPS_0"/>

 </LNodeType>

 <LNodeType id="LLN0_0" lnClass="LLN0">

 <DO desc="Controllable enumerated status" name="Mod"

type="ENC_2"/>

 <DO desc="Enumerated status" name="Beh" type="ENS_4"/>

 <DO desc="Enumerated status" name="Health" type="ENS_3"/>

 230

 <DO desc="Logical Node name plate" name="NamPlt" type="LPL_0"/>

 </LNodeType>

 <DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_0">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="HumCtl"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>

 </DOType>

 <DOType cdc="MV" desc="Measured value" id="MV_0">

 <DA bType="Struct" dchg="true" dupd="true" fc="MX" name="mag"

type="mag_0"/>

 <DA bType="Quality" fc="MX" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="MX" name="t"/>

 </DOType>

 <DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_1">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="TempCtl"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_0">

 <DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"

type="BehKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="SPS" desc="Single point status" id="SPS_0">

 <DA bType="BOOLEAN" dchg="true" fc="ST" name="stVal"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_1">

 <DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"

type="HealthKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="DPL" desc="Device name plate" id="DPL_0">

 <DA bType="VisString255" fc="DC" name="vendor"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_2">

 <DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"

type="BehaviourModeKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="LPL" desc="Logical Node name plate" id="LPL_0">

 <DA bType="VisString255" fc="DC" name="vendor"/>

 <DA bType="VisString255" fc="DC" name="swRev"/>

 <DA bType="VisString255" fc="DC" name="d"/>

 <DA bType="VisString255" fc="DC" name="configRev"/>

 <DA bType="VisString255" fc="EX" name="ldNs"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_3">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal"

type="HealthKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_4">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal"

type="BehaviourModeKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 231

 </DOType>

 <DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_2">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal"

type="BehaviourModeKind"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>

 </DOType>

 <DAType id="mag_0">

 <BDA bType="FLOAT32" name="f"/>

 </DAType>

 <EnumType id="CtlModelKind">

 <EnumVal ord="0">status-only</EnumVal>

 <EnumVal ord="1">direct-with-normal-security</EnumVal>

 <EnumVal ord="2">sbo-with-normal-security</EnumVal>

 <EnumVal ord="3">direct-with-enhanced-security</EnumVal>

 <EnumVal ord="4">sbo-with-enhanced-security</EnumVal>

 </EnumType>

 <EnumType id="HumCtl">

 <EnumVal ord="1">None</EnumVal>

 </EnumType>

 <EnumType id="TempCtl">

 <EnumVal ord="1">None</EnumVal>

 </EnumType>

 <EnumType id="BehKind">

 <EnumVal ord="1">on</EnumVal>

 <EnumVal ord="2">blocked</EnumVal>

 <EnumVal ord="3">test</EnumVal>

 <EnumVal ord="4">test/blocked</EnumVal>

 <EnumVal ord="5">off</EnumVal>

 </EnumType>

 <EnumType id="HealthKind">

 <EnumVal ord="1">Ok</EnumVal>

 <EnumVal ord="2">Warning</EnumVal>

 <EnumVal ord="3">Alarm</EnumVal>

 </EnumType>

 <EnumType id="BehaviourModeKind">

 <EnumVal ord="1">on</EnumVal>

 <EnumVal ord="2">blocked</EnumVal>

 <EnumVal ord="3">test</EnumVal>

 <EnumVal ord="4">test/blocked</EnumVal>

 <EnumVal ord="5">off</EnumVal>

 </EnumType>

 </DataTypeTemplates>

</SCL>

