N
N

‘ Cape Peninsula
University of Technology

THE DEVELOPMENT OF A NEW IEC 61850 STANDARD-BASED LOGICAL
NODE FOR MONITORING OF INDUSTRIAL PROCESS APPLICATIONS

by

Roderick Domingo

Thesis submitted in fulfilment of the requirements for the degree
Master of Engineering: Electrical Engineering

in the Faculty of Engineering and the Built Environment

at the Cape Peninsula University of Technology

Supervisor: Dr C. Kriger

Bellville campus
December 2021

DECLARATION

I, Roderick Domingo, declare that the contents of this dissertation/thesis represent my own
unaided work, and that the thesis has not previously been submitted for academic
examination towards any qualification. Furthermore, it represents my own opinions and not
necessarily those of the Cape Peninsula University of Technology.

€ 2 et zo March 2021

Signed Date

ABSTRACT

Communication has always been critical within the implementation of any real-time
application, whether it be in the field of power systems or industrial process condition
monitoring and control. Communication contributes to achieving synchronised process data
used for monitoring applications and control applications.

Electrical substations contain multi-functional devices known as Intelligent Electronic Devices
(IEDs), having communication capabilities used in the protection, monitoring and control
applications in the power system. IEDs are required to share information among themselves
to perform various functions. This becomes challenging in a multi-vendor environment where
vendors produce devices which have proprietary communication protocols resulting in a lack
of interoperability with another vendor's device as information cannot be distributed
throughout the system without costly protocol translators (or converters). The need for
standardized communication for the effective transfer of information throughout the power
system was identified by the International Electrotechnical Commission (IEC). This resulted
in the publication of the IEC 61850 standard for communications between devices within
substations initially, but later to devices found in the entire power system.

The IEC 61850 standard uses a standardized device, service and object model which
describes available data from various devices in the substation. The IEC 61850 standard
utilizes an abstract modelling approach in defining communications services and data
models which don’t form part of any specific protocol. These services are then mapped to
actual protocols within the application. The IEC 61850 standard uses an object-oriented
modelling approach. The logical node is the smallest element within the device model of the
IEC 61850 standard. The IEC 61850 device model is made up of multiple parts. What is
known as a Logical Node form one of the parts of the IEC 61850 device model.

Condition monitoring which is the process of monitoring a system or process in order to
detect underlying issues which may cause failures plays an important part in how the IEC
61850 standard is implemented.

This research work presents the development of a new Logical Node which conforms to the
IEC 61850 standard and used in a condition monitoring application where the obtained data
is communicated over an Ethernet communication network by publishing and subscribing to
GOOSE (Generic Object Orientated Substation Event) messages implemented between two
lightweight IED models developed on an embedded hardware platform. The required
knowledge to develop a device which conforms to the IEC 61850 standard almost always
resides in the vendors domain. Very little knowledge resides within the public domain due to
the challenges and difficulties associated with implementing of the standard.

Given the limited knowledge in the public domain and the myriad of integration challenges
within the sphere of the IEC 61850 standard, the thesis contributes by bringing this
knowledge to the user in the following ways:

1) Design, development and implementation of methods and real-time complex
algorithms in the application of the IEC 61850 standard on an embedded system
using open-source software.

2) Contributing to the advancement of the IEC 61850 standard in the domain of
condition monitoring with the design and development of a novel logical node for data
acquisition and distribution using GOOSE messages.

The design and implementation of this proposed research project supplements the
knowledge already gained by previous in-depth research studies conducted by universities
and other research institutions on applications of the IEC 61850 standard and presents the
possibility of new research prospects in the areas of process control and automation.

Keywords: Condition monitoring, IEDs, GOOSE message, IEC61850 standard, LN, RCM,
RTM, RTDL, Ethernet, IEC, Communication network.

ACKNOWLEDGEMENTS

| wish to thank:

My creator and heavenly Father, for bringing me to this point in my life because
without Him | would not have been able to accomplish anything.

My amazing parents Roger and Charmaine, for their patience, continuous
encouragement, and financial support during throughout this journey which has not
always been easy.

My beautiful girlfriend Courtney, for her unwavering support and continuous
encouragement during a time | did not always feel the need to press on, her support
kept me going.

My supervisor Doctor Carl Kriger, for his tremendous insight, wisdom, guidance, and
patience during his supervision of this work and for being an inspiration throughout
the years of my undergrad studies.

Mr Kegan Visagie, for his invaluable insight and advice regarding the C programming
implemented during the development of this research project.

Roderick Domingo

Bellville, December 2021

DEDICATION

This thesis is dedicated to my mother and father, who was never able to realise their dreams
due to childhood circumstances but worked hard and motivated me endlessly to ensure that |
could realise mine.

Vi

TABLE OF CONTENTS

DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS Y
DEDICATION Vi
TABLE OF CONTENTS Vii
LIST OF FIGURES Xi
LIST OF TABLES XV
GLOSSARY XVi
CHAPTER ONE 1
INTRODUCTION 1
1.1 Introduction 1
1.2 Awareness of the problem 6
1.3 Problem statement 7
1.4 Research Aim and Objectives 8
141 Aim 8
1.4.2 Objectives 8
1.4.3 Objectives: Theoretical Analysis 8
1.4.4 Objectives: Practical Implementation 9
1.5 Research Questions 9
1.6 Research Hypothesis 9
1.7 Delimitation of Research 10
1.7.1 Within scope 10
1.7.2 Beyond scope 10
1.8 Motivation for the Research Project 10
1.9 Assumptions 12
1.10 Contributions of the Research Project 12
1.11 Outline of the Thesis 12
1.12 Chapter Summary 14
CHAPTER TWO 15
LITERATURE REVIEW 15
CHAPTER THREE 59
OVERVIEW OF THE IEC 61850 STANDARD 59
3.1 Introduction 59
3.2 Introduction of the IEC 61850 standard 59
3.3 IEC 61850 standard overview 62
3.3.1 IEC 61850 standard conceptual modelling 63

Vii

3.3.2 IEC 61850 Data modelling 65

3.3.3 IEC 61850 Naming convention 70
3.34 Abstract Communication Service Interface 71
3.3.4.1 Information Model 73
3.3.4.2 Information Exchange 74
3.35 IEC 61850 Client-Server Architecture 76
3.3.6 IEC 61850 Publisher-Subscriber Architecture 77
3.3.7 IEC 61850 Data Communication 78
3.3.7.1 |EC 61850 GOOSE 79
3.3.7.1.1 IEC 61850 GOOSE Message Structure 82
3.3.8 Substation Configuration Language (SCL) 85
3.3.8 IEC 61850 Logical Nodes 86
3.4 Chapter Summary 88
CHAPTER FOUR 90

CASE STUDY PRACTICAL IMPLEMENTATION: SOFTWARE DEVELOPMENT AND SYSTEM

INTEGRATION 90
4.1 Introduction 90
4.2 Project Context 90
4.3 Hardware Platform Architecture 92
4.4 Case study 1 - simulation of GOOSE message between computer and Beaglebone 98
4.4.1 |EC 61850 embedded C library source code 99
4.5 Case study 2 — simulation of GOOSE message between two Beaglebone devices 106
45.1 Configuration of CCGR Logical Node in the ICD Designer software 108
45.1.1 Step 1: Define Header Information 109
4.5.1.2 Step 2: Communication settings configuration 110
4.5.1.3 Step 3: Adding the CCGR Logical Node to the Logical Device 111
4.5.1.4 Step 4: Configuring the CCGR Logical Node Data Types 112
4.5.1.5 Step 5: Adding the Dataset to LLNO 112
4.5.1.6 Step 6: Adding the Report Control Group to LLNO 114
4.5.1.7 Step 7: Adding the GSE Control Group to LLNO 116
4.5.1.8 Step 8: Export the CID file to ICD file 117
45.2 Configuration of the CCGR Logical Node in C Library 118
4.5.2.1 Java Runtime Installation 118
4.5.2.2 Converting .ICD file format to .c .h and .cfg 119
4.6 Case study 3 — Implementation of GOOSE message between two Beaglebone devices 123
4.6.1 Development of the new IPFC Logical Node in the ICD Designer software 127
4.6.1.1 Step 1: Define Header Information 128
4.6.1.2 Step 2: Communication settings configuration 129
4.6.1.3 Step 3: Configure the parameters of the new Logical Node 131
4.6.1.4 Step 4: Adding the new Logical Node to the Logical Device 133
4.6.1.5 Step 5: Configuring the IPFC Logical Node Data Types 134
4.6.1.6 Step 6: Adding the Dataset to LLNO 135
4.6.1.7 Step 7: Adding the Report Control Group to LLNO 136

viii

4.6.1.8 Step 8: Adding the GSE Control Group to LLNO 138

4.6.1.9 Step 9: Export the CID file to ICD file 140
4.6.2 Validation of the new IPFC Logical Node using XML Marker Software 140
4.6.3 Configuration of the IPFC Logical Node in the C Library 144
4.6.3.1 Converting .ICD file format to .c .h and .cfg 144
4.7 Chapter Summary 149
CHAPTER FIVE 150
CASE STUDY VALIDATION: ANALYSIS OF RESULTS 150
5.1 Introduction 150
5.2 Analysis of results — Case study 1 151
5.3 Analysis of results — Case study 2 157
5.4 Analysis of results — Case study 3 164
5.5 Conclusion 173
CHAPTER SIX 174
CONCLUSION AND FUTURE RESEARCH WORK 174
6.1 Introduction 174
6.1.1 Aim 175
6.1.2 Objectives: Theoretical Analysis 175
6.1.3 Objectives: Practical Implementation 176
6.2 Thesis Deliverables 177
6.2.1 Literature Review 177
6.2.2 Configuring of hardware devices for real-time communication over an Ethernet network 178
6.2.3 Development of IEC 61850 standard-based lightweight IEDs using the IEC61850 C code library
in the Linux Environment 178
6.2.4 Configuring of embedded hardware for monitoring of a temperature and humidity sensor 179
6.2.5 Development of an IEC 61850 standard-based Logical Node in the System Corp ICD Designer
software 179
6.2.6 Real-time implementation of the GOOSE communication protocol using the newly developed
logical node which is used in the condition monitoring system 180
6.3 Software Development 181
6.4 Application of the Developed Methods and Algorithms 181
6.4.1 Industrial Applications 181
6.4.2 Academic Applications 182
6.5 Future Work 182
6.6 Publications related to this thesis. 182
6.7 Conclusion 183
REFERENCES 184
APPENDICES 190
APPENDIX A: Installing Ubuntu on the computer 190
APPENDIX B: Ubuntu updates and additional installations on the computer 196
APPENDIX C: Installing Ubuntu on the Beaglebone 198
APPENDIX D: Configuring IEC 61850 embedded C library on Beaglebone 211

APPENDIX E: Computer GOOSE Publisher source code with GGIO LN
APPENDIX F: Beaglebone GOOSE Subscriber source code 1

APPENDIX G: Beaglebone GOOSE Publisher source code with CCGR LN
APPENDIX H: Beaglebone GOOSE Subscriber source code 2

APPENDIX I: Beaglebone GOOSE Publisher source code with IPFC LN
APPENDIX J: IPFC Logical Node in XML

216
219
221
223
225
228

LIST OF FIGURES

Figure 1.1: The Legacy and Smart Grid Concept

Figure 1.2:

Vendor-specific condition monitoring system

Figure 1.3: The IEC 61850 standard modelling approach

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
monitoring
Figure 2.6:
Figure 2.7:
Figure 2.8:

Framework of the condition monitoring concept

RCM mode of operation

RTM mode of operation

RTDL mode of operation

Expected rate of failure with the introduction of condition

Condition-based maintenance implementation process
Different condition monitoring data viewed remotely
Relation between the four components of the condition

monitoring system

Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:

systems

Figure 2.13:

systems

Figure 2.14:
Figure 2.15:
Figure 2.16:

Operation of AE condition monitoring system
Hardware layout of plant condition monitoring system
Hardware layout of granary condition monitoring system
IEC 61850 standard scope in substation condition monitoring

IEC 61850 standard concept in substation condition monitoring

Monitored parameters relating to power quality
The object model hierarchy used by IEDs
Publisher-subscriber communication service replacing

hardwired signals

Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:

SV publisher-subscriber communication service
IEC 61850-based substation communication layout
Communication architecture based on the IEC 61850 standard
GOOSE message implementation between IEDs
Legacy substation architecture
IEC 61850 conceptual modelling approach
An IEC 61850 device representation
Position information depicted as a tree
XCBR (circuit breaker) logical node class definition
Anatomy of an IEC 61850-8-1 Object Name
ACSI mapping to communication stacks/profiles
Conceptual model of ACSI
Basic conceptual class model of the ACSI
ACSI communication methods
Client and Server interactions
Client/Server interactions
IEC 61850 layered structure with OSI stack
IEC 61850 Communication model
Overview of IEC 61850 functionality and associated

communication profiles

Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:

Overview of the classes and services of the GOOSE model
GOOSE message transmission time

GOOSE control block class

GoosePdu as defined in the IEC 61850-8-1 standard
Virtualisation

Simple protection and measurement example

Xi

17
18
18
19
20

21
24
25

26
28
29
32

35
36
41

41
42
42
45
61
64
66
68
70
71
72
72
74
75
76
77
78
79
80

81
82
82
84
86
87

Figure 3.22:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:

Logical Node class diagram
Beaglebone Black Rev C key components
Beaglebone Black Rev C connectors LEDs and switches
Beaglebone Black Rev C pin layout
Physical setup of the case study
DEBUG_GOOSE_SUBSCRIBER set to 0
Adding new variables
Calling GooseReceiver function in the Main
parseGooseMessage function
parseGooseMessage function
Data using Logical Node GGIOL1 to be published over GOOSE
Data objects and common data classes of Logical Node GGIO1
GGIO (generic process I/0O) logical node class definition
GOOSE Subscriber source code
Physical setup of the case study
CCGR Logical Node
Flowchart detailing the steps for CCGR logical node

configuration

Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:
Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:

The New File template

The Header ID

Defining IP addresses and GSEGroup for the Access Point
Defining the ServerlED parameters

Adding the CCGR Logical Node

Selecting the CCGR Logical Node from the list

Configuring the Data Object parameters

Configuring the Data Object parameters

Adding Data Objects and Naming the Dataset

Adding Report Control Block

Report Control Block (Events) parameter configuration
Report Control Block (AnalogValues) parameter configuration
Adding GSE Control Block

GSE Control Block (Events) parameter configuration

GSE Control Block (AnalogValues) parameter configuration
Exporting project file from CID to ICD format

Creating .c and .h file from .ICD file

Creating .cfg file from .ICD file

Data using Logical Node CCGRO to be published over GOOSE
Data objects and common data classes of Logical Node CCGRO
GOOSE Subscriber source code

Physical setup of the case study

Flowchart detailing the steps for IPFC logical node development
The New File template

The Header ID

Defining IP addresses, MAC address and GSEGroup for the

Access Point

Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:

Defining the ServerlED parameters

Selecting manage customised logical nodes option
Customised Logical Node Manager

Customised Logical Node Manager

Customised Logical Node Manager

Adding the New Logical Node

Xii

88

93

94

95

99
100
100
101
101
102
103
104
105
105
106
108
109

109
110
110
111
111
112
112
113
113
114
115
115
116
117
117
118
120
121
122
122
123
125
128
129
129
130

130
131
131
132
133
133

Figure 4.49:
Figure 4.50:
Figure 4.51:
Figure 4.52:
Figure 4.53:
Figure 4.54:
Figure 4.55:
Figure 4.56:
Figure 4.57:
Figure 4.58:
Figure 4.59:
Figure 4.60:
Figure 4.61:
Figure 4.62:
Figure 4.63:
Figure 4.64:
Figure 4.65:
Figure 4.66:
Figure 4.67:
Figure 4.68:
Figure 4.69:

Selecting the IPFC Logical Node from the list

Setting the Data Object parameters

Adding the Data Set

Adding Data Objects and Naming the Dataset

Adding Report Control Block

Report Control Block (Events) parameter configuration
Report Control Block (AnalogValues) parameter configuration
Adding GSE Control Block

GSE Control Block (Events) parameter configuration

GSE Control Block (AnalogValues) parameter configuration
Exporting project file from CID to ICD format

XML Marker opening window

Header section in XML Marker

Communication section in XML Marker

IED section 1in XML Marker

IED section 2 in XML Marker

IED section 3 in XML Marker

Continuation of IED section 3 in XML Marker

Creating .c and .h file from .ICD file

Creating .cfg file from .ICD file

Data being used by the new IPFC Logical Node to be published

over GOOSE

Figure 4.70:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
device

Figure 5.8:

Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:

device

Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:

messages

Data objects and common data classes of Logical Node IPFC
Physical setup of the case study
Fixed portion of the GOOSE Message structure
Variable portion of the GOOSE Message structure
goosePdu portion of the GOOSE Message structure
Data portion of the GOOSE Message structure
User-defined data in source code from Appendix E
Details of GOOSE message subscribed to by the subscribing

Physical setup of the case study
Fixed portion of the GOOSE Message structure
Variable portion of the GOOSE Message structure
goosePdu portion of the GOOSE Message structure
Data portion of the GOOSE Message structure
User-defined data in source code from Appendix G
Details of GOOSE message subscribed to by the subscribing

Physical setup of the case study

Fixed portion of the GOOSE Message structure

Variable portion of the GOOSE Message structure

goosePdu portion of the GOOSE Message structure

Data portion of the GOOSE Message structure

User-defined data in source code from Appendix |

Data being published by the GOOSE Publishing IED

GOOSE Message being subscribed to by the Subscribing IED
GOOSE Inspector interface showing published GOOSE

Figure A A.1: Ubuntu installation boot screen
Figure A A.2: Ubuntu installation language prompt
Figure A A.3: Ubuntu installation keyboard layout selection

xii

134
135
135
136
136
137
138
138
139
139
140
141
141
142
142
142
142
143
145
146
147

148
152
152
153
154
155
156
157

159
159
160
161
162
163
163

166
166
167
168
169
170
170
171
172

190
191
191

Figure A A.4:
Figure A A.5:
Figure A A.6:
Figure A A.7:
Figure A A.8:
Figure A A.9:
Figure A B.1:
Figure A B.2:
Figure A B.3:
Figure A C.1:
Figure A C.2:
Figure A C.3:
Figure A C.4:
Figure A C.5:
Figure A C.6:
Figure A C.7:
Figure A C.8:
Figure A C.9:

Figure A C.10:
Figure A C.11:
Figure A C.12:
Figure A C.13:
Figure A C.13:
Figure A C.15:

Figure A D.1:
Figure A D.2:
Figure A D.3:
Figure A D.4:
Figure A D.5:

Ubuntu Installation updates and other software

Ubuntu installation type

Ubuntu installation storage configuration

Root partition configuration

Finalising the installation

Installation complete, system to be rebooted.

Repository updates

Make Utility installation

CMake Utility installation

Software image download

balenaEtcher home screen

Selecting OS image to be flashed

Begin flashing process

SSH connection to Beaglebone

Connected to Beaglebone as root user

Beaglebone network interface configuration

Computer network interface configuration

Setting up internet connection on the Beaglebone
Setting up internet connection on the Beaglebone
Beaglebone connection to the internet is established
Upgrading installed packages on the Beaglebone
Upgrading installed packages
Upgrading installed packages
System reboot prompt

Copying library files from computer to Beaglebone

IEC61850 library files copying to Beaglebone

Copying library files to root directory

Compiling the IEC61850 embedded c library

Configuring static IP address of the Beaglebone

Xiv

192
193
193
194
195
195
196
196
197
199
199
200
201
202
203
204
205
206
207
207
208
209
209
210
211
212
213
214
215

Table 2.1:
Table 2.2:
Table 2.3:
systems

Table 2.4:
Table 2.5:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 6.1:

LIST OF TABLES

Application of condition monitoring systems
Application of condition monitoring of industrial processes
Application of IEC 61850 standard-based condition monitoring

Current IEC 61850 standard-based communication applied
Application of IEC 61850 standard-based communication
Scope and Outline of the IEC 61850 standard

Logical node groups (IEC 61850-7-1)

List of Logical Node Groups (IEC 61850-7-4)

IEEE 802.1Q Tag Header Structure (IEC 61850-8-1)

SCL description file types (IEC 61850-6)

Beaglebone Black Rev C specifications

Beaglebone Black P8 Pinout

Beaglebone Black P9 Pinout

IPFC Class Diagram

Logical Data Names, Attributes, Value and Type

Summary of the software programmes developed in this research

XV

22
30
39

48
49
68
12
74
88
91
97
101
102
132
139
187

GLOSSARY

Abbreviations Definition/Explanation

IED Intelligent Electronic Device

SAS Substation Automation Systems

CDC Common Data Class

HMI Human Machine Interface

MMS Manufacturing Messaging Specification
GOOSE Generic Object-Oriented Substation Event
SMV Sampled Measured Values

SCSM Specific Communication Service Mapping
SCADA Supervisory Control and Data Acquisition
LAN Local Area Network

IEC International Electrotechnical Commission
CBM Condition Based Maintenance

Al Artificial Intelligence

CBM Condition Based Monitoring

RCM Remote Condition Monitoring

RTM Real Time Monitoring

RTDL Real Time Data Logging

BLE Bluetooth Low Energy

TCP Transmission Control Protocol

AP Access Point

SRAM Static Random Access Memory

EPS Electrical Power System

IT Instrument Transformer

CT Current Transformer

VT Voltage Transformer

JNI Java Native Interface

CMD Condition Monitoring Diagnosis

GIS Gas Insulated Switchgear

IM Induction Motor

MCSA Motor Current Signature Analysis

FT Fourier Transform

RSWPT Recursive Stationary Wavelet Packet Transform
MU Merging Unit

SA Situation Awareness

LoM Loss of Mains

GSM Global System for Mobile Communication
APN Access Point Name

SG Smart Grid

DN Distributed Network

XVi

CHAPTER ONE

INTRODUCTION

11 Introduction

South Africans have a newfound appreciation for the level of comfort and
convenience provided by a stable and secure power electricity supply. This in the
light of continued power outages as the electricity demand far outweighs the
generation as a result of ageing infrastructure and low maintenance scheduling
among many other factors. Electricity is produced from renewable and non-renewable
sources; the renewable sources include hydro, solar and wind. The non-renewable
sources are sources such as coal, natural gas, and oil are energy that is utilised
immediately upon generation as it cannot be stored feasibly (F. O. Igbinovia, et al.
2017).

With electricity dating as far back as the nineteenth century, the generation,
transmission, and distribution of electricity has evolved drastically. This evolution of
power has paved the way for the rapid advancement of technology. This rapid
advancement in technology has caused the electricity demand to increase due to the
role that technology plays in our daily lives. The sustainable production of electricity is
critical due to its impact on the economy, the government, businesses, and life in

general.

The modern-day electrical infrastructure is typically divided into three entities. The
first part is the generation of electricity, this is typically done at power plants (which
are usually located in remote areas) where renewable or non-renewable resources
are converted into electricity. The second part is transmission of the generated
electricity, which is done by transmission towers, also known as electricity pylons
which essentially transport electricity from where it is generated to where it will be
consumed. Before transmission takes place, the generated electricity is firstly stepped
up to a higher voltage level using step-up transformers in order to reduce
transmission losses over large distances. The third part is the distribution of the
electricity, which is done by electrical substations, that ensures management and
delivery of electricity to households and businesses in a safe manner. The
transmitted electricity is first stepped down using step-down transformers to a lower
voltage level before being distributed to consumers. Due to electricity posing a
danger if not managed properly, it is important to have safety precautions in place

where the state in which the infrastructure is, is always known by the party managing

it. This allows actions to be taken should anything go wrong. Being able to know the

state of the electrical infrastructure is where communication fits in.

Communication in power systems such as electrical substations are crucial. The
National Institute of Standards and Technology (NIST) put forward a concept of what
is known as a Smart Grid as illustrated in Figure 1.1. To achieve interoperability, the
Smart Grid is divided into various domains (seven to be exact) for data to be
interchanged and for calculated decision making. It can be seen in Figure 1.1 that in
the traditional legacy power system, electricity flows in only one direction, which starts
from the point of generation and ends with the off-taker but with the Smart Grid, the

potential exists for bi-directional power flow. (Dehalwar, et al. 2015).

|4—. Electrical Flows <----> saunammmuonnm]

. ﬂc—'

Flonewwle
Bulk o S '
Ge ti Transmission Distribution i Customers
neration % o
NV i e G et
ke R i i
:- -".:::' ::'a‘: ----- v ‘..-.
S ﬂ_.‘ ES - L
Cpa po”
W ..
. Operations
Markets Service Providers

Figure 1.1: The Legacy and Smart Grid Concept
(Adapted from Dehalwar, et.al. 2015)

Traditional substation automation systems did not provide the advanced functionality
it does today and was designed on the foundation of limited networking technology
which was made available to users. The rapid development in networking technology
has aided the cause for automated power systems within existing and new
substations. With switched Ethernet, TCP/IP and high-speed wide area networks
technologies, as well as high-performance computing made available at relatively
low-cost, possibilities were created that were not even considered with the initial

design of substation automation systems (MacKiewicz, 2006).

While innovation and advancements in technology are great in making everyday life
more comfortable and convenient, it results in the market being extremely
competitive. This is seen in our daily lives and the same applies to vendors supplying
equipment for electrical substation. The electrical substation market became
saturated and resulted in vendors creating devices having proprietary communication
protocols and functions. This inevitably leads to devices manufactured by various
vendors being unable to exchange information, resulting in a lack of interoperability

within the electrical substation environment (Kriger, 2019).

The IEC 61850 standard was created to address the issues that resulted in systems
being unable to interoperate in terms of the communication systems and the over-
reliance on vendor-specific equipment and protocols. This situation results in costly
protocol converters which are not always guaranteed to work. One of the benefits
offered by the IEC 61850 standard is the vast improvement in networking technology
utilised in substations. The newly introduced standard led to a competitive market due
to vendors competing to become the leading producers and suppliers of networking
equipment and protocols for the Substation Automation market which resulted in

projects being feasible in terms in operation and economics.

Condition monitoring is important, not only for Substation Automation Systems (SAS)
but also in various other sectors of engineering due to the substantial benefits.
Condition monitoring which has been defined as the process of monitoring variables
of a process to detect underlying issues before failure occurs. Condition monitoring is
an exceptional tool which can be used to enhance a device’s reliability. With condition
monitoring systems, financial and operational benefits can be realised (Fang, et.al.
2008).

Over the years the use of embedded-based devices with computation capabilities
have become more commonly used in condition monitoring systems. These devices
offer its users a range of benefits and have been proven to be more superior than
legacy mechanical or electromechanical devices. Although computerised devices do
offer superior capabilities in terms of how data is acquired and processed,
transferring, or communicating this data adds an additional layer of complexity. The
initial solutions were that vendors developed their own propriety protocols, which
quickly deemed mechanical and electromechanical monitoring devices obsolete
(Zainir and Muhamad, 2012).

Condition monitoring systems implemented in the substation arena quickly followed
suit by introducing embedded based devices. Communication between these devices
only consisted of vendor-specific protocols as implementing devices from different
vendors on the same communication network resulted in purchasing of additional
protocol converters due to the lack of interoperability. Figure 1.2 illustrates a vendor-
specific condition monitoring system, which shows data acquired from the field by
electronic devices which then transfers this data via a proprietary communication
protocol to the master unit. A Human Machine Interface (HMI) provides local data
monitoring and the Supervisory Control and Data Acquisition (SCADA) provides
remote data monitoring. The lack of interoperability created additional risk, cost and

complexity and forced utilities to stick to vendor specific solutions (Kirkman, 2007).

SCADA
Communication

Master
Unit

1L 1L

Switchgear

Figure 2.2: Vendor-specific condition monitoring system
(Adapted from Kirkman, 2007)

The IEC 61850 standard, which defines communication and data modelling for
electronic devices in the substation environment, was created and introduced to
correct issues that was caused by vendor specific solutions and its lack of
interoperability. The IEC 61850 standard takes an object-oriented approach by
modelling physical devices known as Intelligent Electronic Devices (IEDs) as a
software data model. The data modelled version of an IED is referred to as a Physical
Device, which contains a Logical Device. A Logical Device is made up of one more

Logical Nodes and Logical Nodes are made up of Data Objects. Data Objects contain

Data Attributes. The IEC 61850 standard modelling approach is illustrated in Figure
1.2 (Dehalwar, et al. 2015).

Figure 3.3: The IEC 61850 standard modelling approach
(Adapted from Dehalwar, et al. 2015)

The IEC 61850-90-3 Technical Report for Condition Monitoring addresses various
aspects regarding condition monitoring and communication systems for substation
automation systems. Included in the scope of the technical report is the definition the
modelling approach taken for the development of logical nhodes and communication
used in condition monitoring systems. Due to the significant and undeniable
advantages provided by IEC 61850 standard-based condition monitoring of power
systems within electrical substations, exploring the possibility of implementing the IEC
61850 standard for condition monitoring in domains other than just the electrical
substation by using a “lightweight” medium (hardware with a small financial and
system resource footprint), provided the motivation for this research and although the
IEC 61850-90-3 Technical Report for Condition Monitoring does address this area,
this research work would contribute invaluably by extending the reach of the IEC
61850 standard.

In Section 1.2 the awareness of the problem is discussed. In Section 1.3 the research
problem statement is defined. In Section 1.4 the aim and objectives for this research
is presented. Section 1.5 indicates the research questions this project will attempt to
answer. Section 1.6 presents the hypothesis for this research. In Section 1.7 the
delimitations of this research are discussed. In Section 1.8 the motivation for this

research is presented. Section 1.9 states the assumptions made in the research.

5

Section 1.10 presents the contributions made in this research. In Section 1.11 the
outline of the Thesis document and its chapters are provided. Section 1.12 presents

the conclusion to this chapter.

1.2 Awareness of the problem

Since its introduction, the IEC 61850 standard has become very popular due to the
fact that it provides its users with a solution to the past problems. Modern devices
which are IEC 61850 standard-based have become crucial in the substation
environment because it provides its users with a host of financial and technical
advantages:

o Reduced project cost due to using an Ethernet network cable instead of many
individual signal cables.

e Safer operations.

e Simple maintenance.

e Interoperability without requiring costly protocol converters (Arnold, et.al.
2015).

Since its introduction, the IEC 61850 standard has become very popular due to the
fact that it provides its users with a solution to the past problems of interoperability

with devices from different vendors.

Monitoring the condition in electrical systems is crucial. The numerous benefits which
include reduced maintenance and operational cost, increased operational lifespan of
equipment, enhanced safety of operators, minimizing accidents and an increase of a
systems efficiency. Using computers for measuring and analysing data provides
users with benefits such as saving time and improved safety. To make further
advances in condition monitoring, the development of software is now more crucial
since it is expected to make the monitoring system effective. Financial and safety
concerns ensures that high quality condition monitoring systems are supplied to users
(Zainir and Muhamad, 2012).

This research project seeks to expand the scope of IEC 61850 standard by
developing a new IEC61850 standard-based logical node used in the publishing of
and subscription to IEC 61850 standard-based GOOSE messages for implementation
within a condition monitoring system for domains other than just the electrical

substation, using a “lightweight” medium.

1.3 Problem statement

Intelligent Electronic Devices (IEDs) which conform to the IEC 61850 standard are
crucial within the modern substation automation environment due to the critical role
they play within the substation, as they are physical devices that implement a part of
the substation automation functionality. These IEDs are multifunction devices which
boast a whole host of functional capabilities such as monitoring, metering, protection,
and control. These IEDs communicate with one another via the GOOSE (Generic
Object-Oriented Substation Event) protocol, as defined in section 8-1 of the IEC
61850 standard.

In order to achieve interoperability, which is the ability of an electronic device
software to exchange information with another, communications are required to be
standardised. This is achieved by the approach taken in the IEC 61850 standard,
where |IEDs are modelled as logical nodes using an object-oriented approach (Yang,
et.al. 2011).

IEDs that are available in the market currently, do not yet support any of the condition
monitoring functionality specified in the IEC 61850-90-3 TR. The implementation of
an IEC 61850 standard-based condition monitoring system using a lightweight
medium within the industrial process automation domain can result in gaining all the
benefits offered by IEC 61850 standard-based condition monitoring as implemented

in substation automation systems.

The contribution in the area of condition monitoring within an IEC 61850 standard-
based environment, would necessitate the development of logical nodes as defined in
part 7 of the standard. Additionally, a suitable embedded platform would need to be

identified as a low-cost alternative to the current IED implementation.

14 Research Aim and Objectives

141 Aim

The aim of this research is to develop a new IEC 61850 standard-based logical node
to be used in the publishing of and subscription to GOOSE messages over an
Ethernet network between two newly developed lightweight IEC 61850 standard-
based IEDs which are used in a condition monitoring system.

1.4.2 Objectives
The main objective of this research is to develop algorithms and methods to be

implemented in a real-time IEC 61850 standard-based monitoring system.

The objectives can be divided into theoretical analysis and practical implementation,
which are further expanded on below.

1.4.3 Objectives: Theoretical Analysis

e To conduct a literature review on the existing approach to condition monitoring
in the various fields it is deployed.

e To conduct a literature review on the existing monitoring functions utilised
within the IEC 61850 standard.

e To conduct a literature review of the existing IEC 61850 standard-based
logical nodes in all domains of application.

e To conduct a literature review of the IEC 61850 standard-based GOOSE
(Generic Object-Oriented Substation Event) protocol.

e To formulate strategies in order to develop an in-depth understanding and
application of the IEC 61850 standard for real-time implementation.

e To examine and develop a detailed understanding of the source code
functionality implemented within the open-source IEC 61850 standard-based
embedded C library.

e To examine and develop a detailed understanding of the embedded hardware
platform chosen for implementation.

e To examine and develop a detailed understanding of the operating system
chosen for the project implementation.

e To formulate a strategy to develop a real-time temperature and humidity
condition monitoring system on the embedded hardware and operating

system chosen.

144

15

To examine and develop a detailed understanding of the ICD Designer and
XML Marker software tools used in the development process of the Logical
Node.

To formulate a strategy to integrate all the facets in terms of the various

hardware and software components of the project.

Objectives: Practical Implementation

To configure hardware devices for real-time communication over an Ethernet
network.

To develop IEC 61850 standard-based lightweight IEDs using the IEC61850 C
code library in the Linux Environment.

To design, configure and implement embedded hardware for monitoring of a
temperature and humidity sensor.

Development of a novel EC 61850 standard-based logical node to extend the
reach of the standard to other domains of application.

Real-time implementation on an embedded platform using the novel logical

node which is used in the condition monitoring system.

Research Questions

The research conducted within this thesis attempts to provide solutions to the

following research questions:

1.6

Can a new IEC 61850 standard-based logical node be developed for real-time
implementation within a condition monitoring system intended for the industrial
process automation domain?

Can the GOOSE communication protocol using the newly developed logical
node be implemented in real-time within a condition monitoring system
intended for the industrial process automation domain?

Can the GOOSE communication protocol using the newly developed logical
node be implemented within a condition monitoring system on a lightweight

embedded platform intended for the industrial process domain in real-time?

Research Hypothesis

The hypotheses for this research are as follows:

A new IEC 61850 standard-based logical node can be developed for real-time
implementation within a condition monitoring system intended for the industrial

process automation domain.

1.7
1.7.1

1.7.2

1.8

The GOOSE communication protocol using the newly developed logical node
can be implemented in real-time within a condition monitoring system intended
for the industrial process automation domain.

The GOOSE communication protocol using the newly developed logical node
can be implemented within a condition monitoring system on a lightweight

embedded platform intended for the industrial process domain in real-time?

Delimitation of Research

Within scope

Configuring and integrating of hardware and software components for real-
time implementation of GOOSE publishing and subscribing using a
preconfigured logical node between a computer and an embedded device.
Configuring and integrating of hardware and software components for real-
time implementation of GOOSE publishing and subscribing using a newly
configured Logical Node between two embedded devices.

Development of a new IEC 61850 standard-based logical node using required
software.

Development of a monitoring system on an embedded platform to monitor a
temperature and humidity sensor.

Configuring and integrating of hardware and software components for real-
time implementation of GOOSE publishing and subscribing using a newly
developed logical node between two embedded devices.

Integrating the condition monitoring system hardware and software
components with that of the GOOSE publishing and subscribing hardware and

software components

Beyond scope

Development of a condition monitoring system meant for any specific process.
Implementing GOOSE publishing and subscribing using the newly developed
Logical Node within a condition monitoring system meant for any specific

process.

Motivation for the Research Project

As of late, the fast development of industrial process automation has prompted the

requirement for progressive condition monitoring systems. In order to diminish losses

which occur due to down time caused as a result of failure of production equipment, it

10

is required to observe the health/condition of equipment in real-time in order to predict

maintenance and production decision-making (Elmaleeh, et.al. 2010).

Condition monitoring in general is crucial to the successful application of any process
within any environment. Condition monitoring of systems provide multiple benefits
and, in many instances, ensures for processes to be safely implemented within
certain domains of application. Condition monitoring is utilised broadly across the
instrumentation and control domain and is applied in processes such as water
treatment, oil and gas, food and beverage, to name just a few (Fu, et.al. 1998)
(Elazab, et.al. 2017).

Traditional condition monitoring systems used in modern day industrial process
automation still use vendor specific solutions which include propriety communication
protocols and do not offer the functionality and flexibility that IEC 61850 standard
based Intelligent Electronic Devices (IEDsS) used in Substation Automation Systems
(SAS) provide. These devices have been developed to offer its user a host of benefits
such as measuring, metering, and monitoring and automated control functions
including the ability to transmit data over high-speed communication networks which

are all based on standardised communication protocols (Jo, et.al. 2011).

The IEC 61850 standard has allowed for the introduction of IEDs. Due to the
versatility that these devices offer, they simplify the additional functionality, which is
required by users, apart from the standard automated functions such as monitoring,

measuring and control functions (Bi, et.al. 2013).

This research project is motivated by the need to expand the scope of IEC 61850
standard-based condition monitoring systems within the substation domain to other
domains such as the industrial process automation domain. This research project
addresses this need by the proposed development of a new Logical Node (LN)
implemented within a condition monitoring system and communication of its data with
the real-time implementation of the GOOSE Message communication protocol. The
research project will assist and contribute to the understanding of Condition
Monitoring, Logical Nodes and GOOSE Messaging by the development of a detailed
understanding of the IEC 61850 standard and the tools required in any particular

environment.

11

1.9 Assumptions
e |t is assumed that little to no condition monitoring systems with IEC 61850
standard-based logical nodes and GOOSE communication implemented on
embedded platforms in other domains exist.
e |tis assumed that a new logical node can be developed using the eXtensible

Markup Language (XML) within the available software platforms.

1.10 Contributions of the Research Project
The main contributions of this research are listed below:

1. A detailed literature review of past and current condition monitoring
fundamentals is conducted.

2. A detailed literature review of past and current condition monitoring
techniques implemented in various industrial process applications is
conducted.

3. A detailed literature review of condition monitoring functions supported by the
IEC 61850 standard-compliant devices is conducted.

4. A detailed literature review of IEC 61850 standard-based communication
systems is conducted.

5. Configuring of hardware devices for real-time communication over an Ethernet
network.

6. Development of IEC 61850 standard-based lightweight IEDs using the
IEC61850 C code library in the Linux Environment.

7. Configuring of embedded hardware for monitoring of a temperature and
humidity sensor.

8. Development of an IEC 61850 standard-based Logical Node in the System
Corp ICD Designer software.

9. Real-time implementation of the GOOSE communication protocol using the
newly developed logical node which is used in the condition monitoring

system.

1.11 Outline of the Thesis
This thesis is composed of six chapters which details the framework, methods,
software algorithms, hardware configuration, real-time implementation, and results of

the research project.

Chapter Two presents a thorough literature review of past and current developments,
technologies and methodologies used in the implementation of condition monitoring

systems in domains outside of the substation and within, as well as IEC 61850

12

standard-based condition monitoring and communication systems. The review
discusses the fundamentals of condition monitoring systems, industrial condition
monitoring systems, IEC 61850 standard-based condition monitoring systems as well
as IEC 61850 standard-based communication implemented in condition monitoring
systems. A discussion is then presented which compares various technologies and
monitoring techniques implemented within the literature, with the aim of identifying

shortcomings or possible expansion.

Chapter Three analyses and discusses an overview of the IEC 61850 standard with
particular emphasis on logical nodes and GOOSE messaging. The briefly discusses
earlier condition monitoring and communication in substations prior to the inception of
the IEC 61850 standard and discussion is presented on the data modelling
techniques, condition monitoring techniques as well as the communication protocols
detailed within the IEC 61850 standard.

Chapter Four presents the approach taken for practical implementation of this
research project. The chapter details the hardware platform, the hardware
configurations, the software tools used to develop the code and algorithms used

within the research project.

Chapter Five provides the results and findings of the implementation of the project.
The chapter details the procedure and tools used to validate all findings and data.
The chapter also presents an analysis and validation of the resulting data in order to

prove conformance to the IEC 61850 standard.
Chapter Six presents the deliverable for this research work. This also include

challenges encountered, future work, and publications emanating from this research.

The references and appendices follow this chapter.

13

1.12 Chapter Summary

This chapter presented the introduction to this research project including the aims
and objectives, questions this research attempts to answer, hypothesis and the
delimitation of the research. The problem statement and the motivation for the
research, as well as the assumptions of the research are discussed.

Chapter Two presents a comprehensive review of past work done pertaining to
condition monitoring and the IEC 61850 standard. The review looks at research
conducted from peer-reviewed conferences and journal publications which document
modelling, simulations and real-time implementation of condition monitoring systems
and the IEC 61850 standard.

14

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, a literature search and a literature review are conducted of the thesis
documents, standards and papers published by journals, conferences proceedings,
research work conducted by institutions, and a range of Internet sources in order to
review and identify the development and evolution of methods and algorithms which

are implemented and recommended for the solution of the research questions.

Chapter One provides the framework of this research work and highlights the
research aims and objectives amongst others. The focal points for the literature
review have been recognised and is expanded on in this chapter.

This chapter is organized as follows: Section 2.2 presents a literature review on all
groups of research which is critical to the successful development of this proposed
research project. Section 2.2.1 presents a review of literature published on condition
monitoring systems in general. Section 2.2.2 presents a review of literature published
on condition monitoring of industrial processes. Section 2.2.3 presents a review of
literature published on IEC 61850 standard-based condition monitoring systems.
Section 2.2.4 presents a review of literature published on IEC 61850 standard-based
communication. Section 2.3 discusses a comparative analysis of the papers

presented in Section 2.2. Section 2.4 presents the conclusion to the chapter.

2.2 Literature search
The literature search focuses on the crucial areas of research which has been
identified and is listed below:

e Condition monitoring systems;

¢ Condition monitoring of industrial processes;

e |EC 61850 standard-based condition monitoring systems;

e |EC 61850 standard-based communication.

The key phrases which are used to find the relevant literature related to the topics
mentioned above include:

e “Condition monitoring”, “Condition monitoring systems”

”

e “Process Condition monitoring”, “Plant condition monitoring”

LT

e “Condition monitoring in substation”, “l[EC 61850 condition monitoring”

e “Substation communication networks”, “IEC 61850 communication systems”.

15

2.2.1 Condition monitoring systems
This section presents the results of research publications of condition monitoring
systems. The domain of application is not considered to be relevant therefore a wide
range of varying systems and application domains is discussed, highlighting how
important condition monitoring is. This section has a particular focus on:

e The type monitoring implemented i.e., local, or remote.

e The application.

e The platform used for implementation of the system.

e The sensing technology used.

The literature reviewed with the keywords: “condition monitoring” and “condition

monitoring systems” spanned for a period of twenty years from 2001 up until 2021.

Condition monitoring generally refers to the process of monitoring the state of a
particular component used in a specific process. Condition monitoring of bearings
used in trains was implemented as early as 1939 in the United Kingdom. The type of
condition monitoring implemented was the use of “stink bombs” installed inside of the
crank axle which would give off a certain smell as the bearing temperature increased
beyond a threshold value. This was a crude but effective way of implementing
condition monitoring at the time. In this instance local monitoring is clearly
implemented due to the limited technological capabilities at the time. Earlier years of
implementation of condition monitoring allowed for a clear definition of the
fundamentals of a condition monitoring system as it can now be conceptualised as
illustrated in Figure 2.1: (1) identify the need: A decision has to be made on what
drives the motivation for implementing a condition monitoring system; (2) tools and
techniques: A decisions has to be made on what technologies and methods would be
appropriate; (3) deployment of tools and processes: expectations need to be
managed and clearly understood to ensure successful implementation and cost and
complexity also need to be considered; (4) data acquisition: the nature and level of
criticality of data need to be considered, data needs to be categorised into event
(what has occurred) or condition monitoring (what is currently occurring); (5) data
processing and decision making: raw data is turned into relevant information which
assist in the decision making process, deciding what steps to take based on this

relevant information (Groom, 2014).

16

Proposed Condition Monitoring Framework

What Tools Each stage must
learn from return of

experience and feed
back up the chain.

Data [/
Aquisition

Identify
Meed

[]EF"|1:P|.|'
Tools and

Processes

Decision
Making

Figure 2.1: Framework of the condition monitoring concept
(Adapted from Groom, 2014)

If catastrophic failure is to be avoided in any machine, implementation of a condition
monitoring system is required. This will ensure that components which are damaged

or worn can be detected and replaced (Bi¢cen and Aras, 2014).

(Morris, et.al. 2016) present condition monitoring techniques implemented in various
areas of railway systems. Managing railway systems assets is crucial due to the
significant role it plays in the daily lives of commuters. This created a strong
motivation for the implementation of developing devices with capabilities to operate in
multiple modes of operation seamlessly. Modes of operation implemented in devices

include:

e Remote Condition Monitoring (RCM) — In this mode of operation, information
is exchanged within predetermined time periods. Due to power consumption,
this mode is relatively limited. This condition monitoring is done remotely as
indicated by Figure 2.2. Sensors communicate via wireless 2.4 GHz signals

where a user can access monitoring data via a cloud-based storage.

17

Near field communication
o charge battery

¢ authenticate connection

WiFi/3G/Ethernet

Access point

L7 ' . 2.4 GHz

S -
NE S low power wireless

Sensor Sensor Sensor
node node node

Figure 2.2: RCM mode of operation
(Adapted from Morris, et.al. 2014)

I

Real-time Time Monitoring (RTM) — With this mode of operation, data is
transmitted to users with a high refresh rate, meaning data acquired is
extremely close to real-time. Figure 2.3 illustrates this type of condition
monitoring system is done remotely, indicating wireless communication

between sensors and a cloud-based storage of the data.

BLE
Communication between

: WiFi 3G
1 Upload data and
! configurations to cloud

]

1

: : 2.4 GHz low power wireless
* wake up sensor : ¢ : h"“-data“?damg_

. { ¢ sensor configuration
v_ v

[Sensor node J

Figure 2.3: RTM mode of operation
(Adapted from Morris, et.al. 2014)

Real-time Data Logging (RTDL) — This mode of operation allows for high
sampling rates which means the data acquired is accurate, however this mode
of operation requires data to be stored prior to transmission. Figure 2.4
illustrates a mode of operation which is remote, as indicated by wireless

sensors and cloud-based storage of data.

18

BLE
Communication between

Near field communication

L)
I i .. -
e charge battery : : 24 GHz low power wireless : WiFi3G
* wake up sensor ' (i live data updating | Upload data and
« authenticate connection | { ¢ sensor configuration configurations to cloud

A 4 \ 4

[Sensor node]

Figure 2.4: RTDL mode of operation
(Adapted from Morris, et.al. 2014)

(Seo, 2018) states that vibration condition monitoring methods have been
implemented to monitor the On-Load Tap Changer (OLTC), which has crucial role
within power transformers. This condition method is a remote monitoring technique
which utilises an algorithm with the ability to interpret vibration signals and comparing

waveforms of these signals.

(Shaw, 2008) discusses how condition monitoring is applied in different types of point
machines. This condition monitoring application is referred to as Points Condition
Monitoring (PCM). A point machine is responsible for managing railway turnouts and
therefore forms a crucial part of the railway system. The motivation for this
investigation is the rapid expansion of railway travel around the globe. Current point
machines include AC points machines and hydraulic point machines. Variables which
determine the type of point machine condition monitoring system include the
signalling control system used, the traction method used, the signalling control
system used as well as the type of point machine which the condition monitoring
system is being implemented for. Condition monitoring types can vary between
electromechanical system or a solid-state computerised system. Both of these are

remote methods of implementation.

(Fu, et.al. 2021) presents a novel welding condition monitoring method. The method
uses pressure signals from welding which is the result of combining discrete Fréchet
distance and signal coarsening methods. This novel methodology uses local
monitoring. Fréchet distance refers to measure of similarity between mathematical
graphs by considering the location and order of points within the curves of the graph
and signal coarsening also pertains to the measure of dimensions within mathematic

graphs.

19

(Chunlong, et.al. 2021) proposes a design for a condition monitoring system for
transmission lines which uses the method of monitoring vibration and energy
harvesting. The condition monitoring system operates in a remote monitoring mode
and the results recorded from experimentation with this system indicates that when
compared to existing applications of transmission line condition monitoring systems,

this new design is more reliable.

It is clear that with the implementation of condition monitoring results in increased
reliability in the systems and an increase in quality of processes in which it is
implemented. Catastrophic failure is reduced, as illustrated in Figure 2.5, which allows

for a reduction in operation and maintenance cost (Herkes, 2006). (Feng, et.al. 2019).

Implementation After
Befors period implementation

Failures

Time

Figure 2.5: Expected rate of failure with the introduction of condition monitoring
(Adapted from Herkes, 2006)

(Swift, et.al. 2011) states that condition monitoring is crucial if a high-risk process is to
be implemented safely and high-risk machinery is to be operated safely. Condition
monitoring allows for predictive maintenance to be implemented which can optimise
the way a plant or piece of equipment is operated. Maintenance which is based on
local or remote condition monitoring of a process or machine can be executed by

following the process which is illustrated in Figure 2.6:

e Data Acquisition — The first step in the process of implementing condition
monitoring for predictive maintenance is data acquisition, which involves the
process of gathering data which can indicate the state of a machine or
process.

e Data Analysis — The second step is analysing the data collected, analysis can

indicate the state of a specific component.

20

e Planning — The third step is to create and execute a plan of action based on
the results of the analysis which was conducted.
e Control — The fourth step is control, which monitoring the outcomes of the plan

which was executed.

3. Planning 2. Data Analysis

4 Control 1. Data Acquisition

Figure 2.6: Condition-based maintenance implementation process
(Adapted from Swift, et.al. 2011)

Various condition monitoring techniques and methods are implemented, locally and
remotely for various machines and processes. Condition monitoring is a multifaceted
process which serves more than one purpose of which safety and maintenance form

part of.

A summary of the publications reviewed in the general area of condition monitoring

systems are presented in Table 2.1.

21

Table 2.1: Application of condition monitoring systems

Paper

Application

Type
(Local/Remote)

Evaluation of methodology and

literature

Groom, 2014

Bearing
overheating

Local monitoring

Implemented in the year 1939, condition
monitoring system used “stink bombs” to
indicate change in state of monitored
component. Condition monitoring
implemented at the time was extremely
limited due to the available technology.
Condition monitoring is defined and the
importance of it is emphasised upon. A
discussion of is presented regarding the
increase of the amount of research based on
condition monitoring

Y. Bicen and
F. Aras, 2014

Industrial
systems

Local and remote
monitoring

Implemented mathematical algorithms to
develop an intelligent condition monitoring
system that can be implemented in various
systems to prevent system failure. The
system comprises of a Multi-Agent System
(MAS), which is essentially a software
algorithm which is used to model systems
which are complex and a Failure Sensitive
Matrix (FSM), which is an algorithm that
evaluates data used to detect faults.

Morris, et.al.
2016

Various areas of
railway
operations

Remote
monitoring

Wireless condition monitoring devices which
allow for three different ways of operation
due to existing technological advancements.
System can be implemented with various
sensing elements which monitoring different
variables. The literature presents an in-depth
discussion of the three methodologies which
are remote condition monitoring, real-time
monitoring, and real-time data logging.
Advantages, disadvantages, and the layout
of the methods are included in the
discussion.

Seo, 2018

On-Load Tap
Changer

Remote
monitoring

Vibration-based condition monitoring system
which monitors the On-Load Tap Changer
(OLTC) of a power transformer. The
condition monitoring system improves the
visibility of the mechanical operation of the
OLTC. The literature discusses current
methods and presents the new methodology
by implementing a case study. The layout is
of the case study is presented and the
results are discussed.

Shaw, 2008

Railway points
machines

Remote
monitoring

The literature details the various types of
existing monitoring implemented in point
machines. Condition monitoring system
types implemented typically varies between
electromechanical devices and solid-state
computerised systems. A summary is
presented on some of the various
measurement applications used within the
monitoring techniques detailed in the
literature.

22

Fu, et.al. 2021

Welding

Local monitoring

Condition monitoring system uses pressure
signals from welding which is the result of
combining Fréchet distance and signal
coarsening methodology. Current, pressure,
and speed all form part of the measured
variables. The literature discusses existing
monitoring methods used and its
shortcomings. The novel monitoring
technique is presented by an experimental
case study and the results of case study is
discussed.

Chunlong,
et.al. 2021

Transmission
lines

Remote
monitoring

Condition monitoring system that uses
vibration and energy harvesting to increase
reliability. The method implemented involves
the collecting kinetic energy, converting it
into electricity which is then stored to power
a sensor. The sensor will then monitor
vibrations on the transmission line.

Herkes, 2006

Railway

Local and remote
monitoring

Various types of condition monitoring
implemented in order to reduce rate of
system and process failure. The literature
discusses the fundamentals of a condition
monitoring system, the advantages of a
condition monitoring system and what should
be expected of a condition monitoring
system implemented correctly.

Feng, et.al.
2019

Wind Turbines

Remote
monitoring

Monitoring components of wind turbine
based on Long Short-Term Memory (LSTM)
using Supervisory Control and Data
Acquisition (SCADA). The monitoring
technique implements neural network
algorithms. The case study is presented
which discusses implementing the
aforementioned technique using data from a
commercial wind farm.

Swift, et.al.
2011

Industrial
machines

Local and remote
monitoring

Monitoring is implemented through a process
of four steps. The condition monitoring
system acquires data, users can then
analyse data and make decisions. Outcomes
of decisions made are then monitored.
Condition monitoring implemented within the
various aspects of railway systems such as
monitoring infrastructure and the way the
recorded data is communicated throughout
the process.

A comparative discussion of the results presented in this section are presented in
Section 2.3.1.

222

Condition monitoring of industrial processes

This section presents the results of research publications of condition monitoring

systems

implemented

in industrial

processes. The domain of application is

considered to be important as it indicates the trend of past to current applications.

Some of the factors considered are:

23

The type monitoring implemented i.e., local, or remote.

e The application.
e The platform used for implementation of the system.

¢ The sensing technology used.

The literature reviewed with the keywords: “Process condition monitoring”, “Plant
condition monitoring”, “Embedded condition monitoring” spans a period of twenty
years from 2001 up until 2021.

(Xu, et.al. 2011) presents the development of a condition monitoring system utilised
in the processing of minerals. The system has local and remote monitoring
capabilities by using wireless and wired sensing elements making full use of the
Internet of Things (IoT) technological advancements. The condition monitoring
system acquires, transmits, and processes data and all of this information is available
via a user interface. This new condition monitoring platform allows for remote
condition monitoring and stores data using a cloud-based system, straying away only
using control rooms but allows for site access to data being monitored. Figure 2.7
illustrates the various data of the mineral processing condition monitoring system

being monitored on a remote device rather than just in an on-site control room.

3 €am
can REEe QEERTRRit AU s
wzen ezme P 2R
T mmnaRsnan - - Seon .
:77 & e e R
B N e Y A
] L AL (AR AL
1 LowwON N
o are v 2re
ure en wr
o
-
Real-time status < Equipment operation
monitoring Alarm Statistics Sidiiis

wan Wit R

e o B R ERBEIS R

QLUQU ’i...

| U U | U TSR
U System for Mineral Separation
o ol
Fault diagnosis Main Ul Equipment Inspection

Figure 2.7: Different condition monitoring data viewed remotely
(Adapted from Xu, et.al. 2011

24

(Yang, et.al. 2019) presents the design of a remote condition monitoring system
which is used to monitor industrial drilling processes. The system is developed to
overcome existing problems within condition monitoring systems used in the domain.
These problems include inadequate data acquisition and the acquired data not being

fully utilised. The condition monitoring system is comprised of four components:

e Data acquisition
e Data storage
e Visualisation of drilling data

¢ Remote monitoring and control

The relation between these four components of the condition monitoring system is
illustrated in Figure 2.8, which show that the acquired data gets stored, and the
remote monitoring and control component of the system can access stored data and
all data on the storage platform gets saved as historical data which is available

should drilling information be required.

A t da‘a \,
Data s N Historical Visualization
. e, Dam _> fdrill-
acquisitionand | "= === === | . data 9 Ing
transmission Ope.ratlonal g information
guidance

Real-time data I\Optimization result

Remote monitoring
and decision-making

Figure 2.8: Relation between the four components of the condition monitoring system
(Adapted from Yang, et.al. 2019)

(Elmaleeh, et.al. 2010) states that due to the expedited growth of industrial
processing plants, condition monitoring techniques are required to match this growth
to ensure plant production is sustained by reducing costly equipment failure. Two
successful methods of application for condition monitoring system are considered to
be:
1. Vibration monitoring
This method is generally implemented in large mechanical machines

which have rotating parts and in referred to as vibration analysis. In this

25

method of application, frequencies found within vibration caused by
moving parts such as bearings are isolated and analysed. These

frequencies and their harmonics can indicate a fault and its location.

2. Acoustic Emission (AE) monitoring
This method entails monitoring the transient elastic waves generated from
the release of energy which occurs rapidly. The source of this rapid energy
release is typically found to be a component within a machine which is
under severe stress and strain. Deformities such as cracks caused by

impact can produce transient electric waves.

Figure 2.9 illustrates the operation of an AE-based condition monitoring system. It
can be seen that AE sensors are connected to plant machinery, it transmits data to a
preamplifier, with its output connected to an amplifier. The amplifier has its gain set to
60dB and the amplifier has its gain set to 13dB. The amplifiers amply the acoustic
signals and the amplified acoustic signal is sent to an oscilloscope which performs a

spectrum analysis and the output is then sent to a MATLAB and LabVIEW user

interface.

Process Pilot Plant: AE Sensor Amplifier

Motors + Pumps ‘ =1 Preamplifier p=— with
Plugged in

Filters

MatLAB
+LabVIEW ¥
[[Tektronix
— Digital Storage

N Oscilloscope

Figure 2.9: Operation of AE condition monitoring system
(Adapted from Elmaleeh, et.al. 2010)

(Swiszcz, et.al. 2008) indicates that during the development stage, most industrial
condition monitoring systems are developed using test bench data due to a lack of

real-time data and that this does not reflect what happens during real-time in the

26

various processes. The condition monitoring system is developed and presented
using real-time data from a wind turbine. Various parameters are monitored such as

temperature, position, wind speed, direction, voltage and current.

(Gulski, et.al. 2008) presents a novel condition monitoring approach in assessing the
condition of High Voltage (HV) cables. The condition monitoring system is not
implemented remotely and involves the application of signal processing and solid-

state materials.

(Costinas, et.al. 2011) states that predictive maintenance of wind power plants based
on condition monitoring systems are crucial to ensure that the investors asset, which
in this case is the wind power plant, remains profitable throughout its life cycle. The
condition monitoring system monitors wind turbines by implementing vibration and
acoustic monitoring techniques of moving parts. Monitoring of other various aspects
related to the wind turbine is also monitored, these include electrical effects,
lubrication oil quality, strain monitoring as well as power quality.

(Sheng, et.al. 2012) presents a condition monitoring system which is developed for
and applied in plant production. The condition monitoring system consists of two
components. The first component is a production control system and the second
component is a data acquisition system. An industrial control computer is used as the
controlling element and a PCI16ADT acquisition card is used for data acquisition from
field sensors as illustrated in Figure 2.10. It can also be seen that ARK-8520SCFI

conversion modules are used for communication.

27

Wiring terminal

IPC PCI-16ADT

Thermometer
Ammeter

Sensor
Current

ARK-8018DHI ARE ~8060DHI ARK-8060DHI

Figure 2.10: Hardware layout of plant condition monitoring system
(Adapted from Sheng, et.al. 2012)

The traditional method of condition monitoring implemented on induction motors is a
method know as Motor Current Signature Analysis (MCSA). Although widely utilised,
this method is based on the use of Fourier Transforms (FT). This method required a
large amount of memory resources dedicated to it, placing an immense computing
burden on the operating system. A technique known as Recursive Stationary Wavelet
Packet Transform (RSWPT) allows for shortcomings of previously proposed methods
to be avoided. This condition monitoring system is applied using an STM32F4
microcontroller which uses ARM processor. This condition monitoring method detects
faults in induction motors. This is done by reducing the processing resources required

by lowering the sample rate (Hmida and Braham, 2016).

(Liu, et.al. 2009) presents condition monitoring system used to monitor fire hazards.
The system monitors the fire alarm via RS232 communication. The fire alarm will be
enabled automatically in the event of a fire. The condition monitoring system is
implemented on an embedded platform using newly developed source code catered

to the application and has remote monitoring capabilities.

(Zzhang and Zhang, 2018) proposes a design for a condition monitoring system
implemented in an industrial scale granary. The condition monitoring system design

uses an STM32F103C8T6 processor and CAN bus communication. The condition of

28

process variables such as humidity and temperature are monitored. The hardware
layout of the proposed design is illustrated in Figure 2.11. It can be seen that field
sensors are connected to the microcontroller-based condition monitoring systems,
which transmit data via CAN bus communication to the server, where data can be

accessed by users.

@@é

I
|
I
I
Management I Client @ Client
I
layer !
I
I

H{

Host server Printer

%

CAN Bus

Data transmission
layer

@ STM32 microprocessor @
+ [L e e ! e o s e e o 1

| 1# 1 I N # I
| | | | |
Data acquisition: I l J i | . : : ;l l _ i | : :
layer : I W) - } || Y |
I 1 I : 1
: Sensors Actuators : ! Sensors & Actuators :
I

Figure 2.11: Hardware layout of granary condition monitoring system
(Adapted from Zhang and Zhang, 2018)

A summary of the publications reviewed in the application of condition monitoring

systems of industrial processes are presented in Table 2.2.

Table 2.2: Application of condition monitoring of industrial processes

Paper Application Type Evaluation of methodology and
(Local/Remote) literature
Xu, et.al. 2011 | Mineral Local and remote | The condition monitoring system is
processing monitoring implemented for use within a mineral

processing plant. The system acquires the
data and transmits the data for processing to
a cloud-based storage system. Data is
available on remote devices. The condition
monitoring implemented aims to move away
from legacy systems which require on-site
monitoring and this is achieved by
implementing Internet of Things (IoT)
technology.

29

Yang, et.al.
2019

Industrial drilling

Remote
monitoring

Real-time acquired data is transmitted to a
central storage point where the decision-
making process can access the required
data. Data can also be accessed for
historical information. The literature details
the system architecture and methodology
and concludes that part of the system allows
for remote monitoring and allows users to
access historical data remotely.

Elmaleeh,
et.al. 2010

Machines in
industrial plants

Local and remote
monitoring

Vibration and acoustic-based condition
monitoring implemented in order to
determine faulty machines parts before
system failure occurs. The condition
monitoring process is presented and
implemented by an experimental case study.
The results are discussed.

Swiszcz, et.al.

2008

Wind turbines

Remote
monitoring

Condition monitoring system is based on
real-time data acquisition from various
sensors installed which monitors specific
parameters during the operation of the wind
turbine. The parameters are monitored at a
sampling rate of 50Hz include rotor speed,
wind speed and temperature. Parameters
monitored at a sampling rate of 20kHz
include voltage, vibration and current.
Monitoring these parameters ensure a
system which comply in terms of safety and
accuracy.

Gulski, et.al.
2008

High Voltage
cables

Local monitoring

Condition of cables which are used in High
Voltage (HV) transmission. Condition
monitoring system uses signal processing
and solid-state materials. The literature
details the layout of the condition monitoring
system, the implementation and discusses
the findings.

Costinas,
et.al. 2011

Wind turbines

Remote
monitoring

Condition monitoring system mainly uses
vibration and acoustic techniques to monitor
moving parts to predict system failure.
Failures which occur in wind turbines include
broken cabling, broken bearings,
overheating and cracks within the
mechanical components.

Sheng, et.al.
2012

Industrial
production plant

Remote
monitoring

The condition monitoring system is used to
monitor production in an industrial plant.
Signal converters are used for the data
acquisition process as well as the
communication process. The RS-485 is used
as the communication protocol. The literature
discusses the layout of the condition
monitoring system and assesses how
communication protocols affect the efficiency
of the plant. The literature concludes that
software development and communication
technology allow for condition monitoring

and control to be implemented more
efficiently.

30

Hmida and

Braham, 2016

Induction motors

Local monitoring

Condition monitoring system is implemented
using an embedded platform. The algorithms
implemented on the hardware is based on a
term called a mathematical method referred
to as Recursive Stationary Wavelet Packet
Transform (RSWPT). The literature details
the procedure as well and the monitoring
and control philosophy.

Liu, et.al.
2009

Fire hazards

Remote
monitoring

An embedded based condition monitoring
which monitors a fire alarm system via
RS232. In the event of a fire, the condition
monitoring system will alert operators which
are based remotely. The literature suggests
that the system is designed to be accurate
and operate in a time-sensitive manner. The
system has been implemented in real-time
and has proven to be effective.

Zhang and

Zhang, 2018

Industrial
Granary

Remote
monitoring

The condition monitoring system is
implemented on an embedded platform,

which is connected to field-based sensors.
Data from sensor are communicated via
CAN bus to a server. An STM32 processor
and DHT11 sensing technology is used. A
DHT11 sensor is a singular sensor which is
used to measure temperature and humidity.

The comparative discussion of the results presented in this section are presented in
Section 2.3.2.

2.2.3

This section presents the results of research publications of condition monitoring

IEC 61850 standard-based condition monitoring systems

systems that are based on the IEC 61850 standard. The domain of application is
considered to be important as it indicates the trend of past technologies to current
technologies used in substation-based condition monitoring systems. This section
has a focus on the following factors:

e The type monitoring implemented i.e., local, or remote.

e The application.

e The software used for implementation of the system.

e The hardware used for implementation of the system.

The literature reviewed with the keywords: “Condition monitoring in substation”, “IEC
61850 condition monitoring” spanned for a period of twenty years from 2001 up until
2021.

(Jang, et.al. 2011) states that condition monitoring systems used in power systems
allow for early detection of faults before they occur. This is achieved by the data

acquisition of field sensors which monitors the equipment such as transformers,

31

transmission lines and Gas Insulated Switchgear (GIS) and issues warning messages
to control stations based locally and remotely. This process allows for maintenance to
be conducted before system failures occur. The IEC 61850 standard is a
communication standard which defines data modelling techniques and
communication protocols are used in electrical substation monitoring and control
systems. Part 7 of the IEC 61850 standard defines data attributes and data models of
logical nodes. In the implementation of a transmission line condition monitoring
system, software models of sensors such as line sensors (used for current and
temperature of transmission lines) and tension sensors (load cells used to measure
tension in a transmission line) are developed. Figure 2.12 illustrates the scope of the
IEC 61850 standard and Figure 2.13 illustrates the concept of the IEC 61850
standard as implemented in substation-based condition monitoring systems.

Figure 2.12 illustrates three parts of the IEC 61850 standard scope, sensors which
are based in the field and used measure data, logical nodes form part of the software
modelling implemented on hardware devices and asset management, which forms
part of the monitoring system and is typically in form of a Supervisory Control and
Data Acquisition (SCADA) system based in remote or local control rooms.

Asset Management System

Supervision LN

Management

Asset

— Measured Value
— Warning

— Alarm

— Warning Level
— Alarm Level

Substation

Transducer LN

— Sampled Value
— Sampling Rate
- Etc.

IEEE 1451 Sensors

Sensors

Figure 2.12: IEC 61850 standard scope in substation condition monitoring systems
(Adapted from Jang, et.al. 2011)

32

Figure 2.13 illustrates the flow of data. Data is acquired from sensors which are read
by control and monitoring devices such as Intelligent Electronic Devices (IEDs). Data
is then sent to monitoring and control interfaces such as SCADA systems. Utilities

then use this data to schedule maintenance and repairs.

Diagnosis / Fault/Event Cause Analysis & Diagnosis,
A"?'YS'S: Maintenance Schedule, System Configuration
Maintenance, and history

Schedule

L}

Supervising Supervising through Processed Data and
and Historical Data

Statistical

processing t

Da:’a Acquisition [Data Measuring, Acquisition and Manipulatioq
An

Manipulation.

Device. Sensing [Physical Sensor Device]

Figure 2.13: IEC 61850 standard concept in substation condition monitoring systems
(Adapted from Jang, et.al. 2011)

(Bosisio, et.al. 2019) proposes an IEC 61850 standard-based condition monitoring
and control system which is meant for electrical distribution networks. The system is
meant to improve the reliability of distribution networks by implementing automatic
back-feeding, selective fault detection as well as high-speed network reconfiguration.
The condition monitoring and control system is implemented using IEC 61850
standard-based data modelling techniques and IEDs which conform to the IEC 61850
standard. This is a real-time application where IEDs monitor and control electrical

feeders.

(Gaouda, et.al. 2018) proposes and validates the operation of an IEC 61850-standard
based Merging Unit (MU) which is an improvement on existing devices of the same
nature. The MU has asset management and self-healing capabilities and is
developed in such a way that deems it future-proof. The IEC 61850 standard-based

merging unit (MU) is tasked with providing synchronised sample values (SV) and

33

interface monitoring sensors such as current transformers and voltage transformers
with I1EDs.

(Apostolov, 2013) analyses monitoring and automation functionality of IEC 61850
standard-based protection relays, also referred to as IEDs as used in power systems.
IEDs operate based on monitoring and reporting capabilities, event reports, fault
records and waveform records. Some IEDs include fault records in event reports.
Protection functionality is represented by Logical Nodes (LNs) and event reports are
based on Report Control Blocks (RCBs) which use event data from LNs. RCBs and

LNs are configured in IEDs using specialised software.

(Apostolov, 2013) analyses IEC 61850 standard-based object modelling. Special
focus is placed on the functional hierarchy and the Substation Configuration
Language (SCL) and how it is used. Logical Nodes are software models which
represent devices with monitoring and protection functionality. Various logical nodes
are defined in the IEC 61850 standard each with special functionality and an in-depth
understanding is required of the IEC 61850 modelling principles in order to implement
these logical nodes in a condition monitoring system.

(Lloret, et.al. 2007) states that condition monitoring in Substation Automation
Systems (SAS) plays a crucial part in predictive maintenance applications and with
the introduction of the IEC 61850 standard, implementation of condition monitoring
and the tools associated with it is less challenging. The IEC 61850 standard
introduces logical nodes which are used to model real-life devices such as circuit
breakers which are found in electrical substations. Apart from maintenance
applications, IEDs used in substations also allow for monitoring of power quality.

Parameters monitored relating to power quality is illustrated in Figure 2.14.

34

Frequency

Sacks variation

Swells Flicker
" Harmonic
Noise distortion

Transients

Figure 2.14: Monitored parameters relating to power quality
(Adapted from Lloret, et.al. 2007)

(Mercurio, et.al. 2009) presents the implementation of a condition monitoring system
based on the IEC 61850 standard in an energy management application. The system
is monitored remotely via web services technology using a SCADA system. The web-
based condition monitoring system has been tested using simulated substation

variables of a typical power system.

Diagnosis based on condition monitoring of power systems is crucial if power systems
are to be deemed reliable. This kind of condition monitoring will aid in preventing
catastrophic failure of a power system and its infrastructure as it allows for faults to be
anticipated well ahead of them occurring. Companies who develop equipment that is
meant to be used in power systems and the condition monitoring of power systems
have to conform to the IEC 61850 standard which will allow for ease of
communication between network devices. This technical report focuses on the IEC
61850 standard from an application point of view (IEC TR 61850-90-3, 2016).

(Kim, et.al. 2012) discusses an IEC 61850 standard-based condition monitoring
system used in Gas Insulated Switchgear (GIS). Although GIS switchgear is highly
reliable with few instances of equipment failure recorded, it is still complex to monitor
its parameters. The condition monitoring system acquires data through temperature
and pressure sensors which enable it to implement control, measurement, and

protection functionality.

35

(Apostolov, et.al. 2003) discusses the use of IEC 61850 standard object models and
services in data exchange implemented in power systems. IEDs are microcontroller-
based devices and are used in condition monitoring of power system-based
applications such as electrical substation automation. The hierarchy of object models

used by IEDs are illustrated in Figure 2.15.

--.-;‘bn-l-l-

1 ll..l.‘l...ll []
: Logical : : logical :
: o 2U i 8
: Device : : Device :
CAA T R LA LR L]} CALAL AL AL ALY YY)
|¢o:‘:i'ooocn: -;:‘::-".-0'00-.:
: Logical : @ Logical :
: Node : : Node :

-
.o
-

:‘..a‘.\on--.$ r.:;h‘.lll\
Data : Data :==: Data :
I esscsananant

~ -~
qessasmasEsaN arEmsimsnsee

Data + Data :"5 Data
Attribute |3 Aftribute < 3 Attribute

Figure 2.15: The object model hierarchy used by IEDs
(Adapted from Apostolov, et.al. 2003)

(Duan and Zivanovic, 2013) demonstrates a novel condition monitoring and control
system which is based on the IEC 61850 standard. The condition monitoring system
is used for the application of motor protection in two factories. The condition
monitoring software is developed using MATLAB and is implemented using IEDs.
Real-time data transfer is implemented using Ethernet communication and remote or

local control rooms will have access to the condition monitoring data.

36

A summary of the publications reviewed in the application IEC 61850 standard-based

condition monitoring systems are presented in Table 2.3.

Table 2.3: Application of IEC 61850 standard-based condition monitoring systems

Paper Application Type Software Hardware Literature
(Local/Remote) used used Findings
Jang, et.al. | Gas Insulated | Local and remote | IEC 61850 Line sensors | The condition
2011 Switchgear monitoring standard- for monitoring
based object | temperature system technique
models and and current is implemented
SCADA as well as based on the IEC
system. Load cells. 61850-90-3
IED-based Technical Report.
monitoring Although other
system. applications may
differ, the same
technique can be
applied in terms
of data modelling.
Bosisio, Distribution Remote IEC 61850 IED-based The literature
et.al. 2019 | networks monitoring standard- monitoring presents a
based object | system using | condition
models are current and monitoring
used. voltage system used for
measuring substation
equipment. automation
based-

applications. The
case study which
is presented in
the literature
suggests that an
IEC 61850
standard-based
approach
improves system
capabilities.

37

Gaouda,
et.al. 2018

Power
systems

Local monitoring

IEC 61850
standard-
based sample
values.

Voltage and
current
transformers
with IEDs.

The research
paper discusses
the development
of a merging unit
for substation
condition
monitoring
applications. The
research paper
finds that the
merging unit
exceeds
expectations
when operating
on its on as well
as when
integrated into a
bigger system.

Apostolov,
2013

Power
systems

Local and remote
monitoring

IEC 61850
standard-
based logical
nodes and
Report
Control
Blocks.

Condition
monitoring
system uses
IEDs.

Condition
monitoring
devices which
conform to the
IEC 61850
standard can be
used in the
analysis of even-
based data. The
analysis of even-
based data will
improve the
efficiency and
quality of a power
system.

Apostolov,
2013

Protection in
Power
systems

Local and remote
monitoring

IEC 61850
standard-
based object
models.

IED-based
condition
monitoring
system.

Implementing IEC
61850 standard-
based condition
monitoring
methods required
an-depth
understanding all
aspects of the
IEC 61850
standard. The
most important
aspects of the
IEC 61850
standard include
data modelling
techniques as
well the hierarchy
of functions
implemented
within the
standard.

38

Lloret, Substation Local and remote | IEC 61850 Circuit The IEC 61850
et.al. 2007 | power quality | monitoring standard- breakers and | standard offers
based object IEDs are used | clear advantages
models are in the within substation
used. condition condition
monitoring monitoring
system. systems.
Although the IEC
61850 standard
applications are
intended to be
used for power
systems, a clear
possibility exists
to extend the
reach of the
standard to other
domain
applications.
Mercurio, Energy Remote IEC 61850 System is The IEC 61850
et.al. 2009 | management | monitoring standard- tested using standard provide
based object only data modelling
models are simulated methods which
used. substation are used for
variables and | monitoring and
data. control
applications
within power
systems. The IEC
61850 standard
makes it easier to
integrate devices
from different
manufacturers.
Kim, et.al. | Gas Insulated | Local monitoring IEC 61850 Pressure Conventional
2012 Switchgear standard- sensors, condition
based object | temperature monitoring
models. sensors. IED- | techniques result
based in high cost at
condition implementation
monitoring phase. The IEC
system. 61850 standard
increases
efficiency of
condition
monitoring
applications.
Apostolov, | Power Remote and local | IEC 61850 IED-based IEC 61850-based
et.al. 2003 | system monitoring standard- condition condition
applications based object | monitoring monitoring
models. system- devices can be
implemented
seamlessly into a
hierarchical
monitoring
structure. These
devices use

standardised
communication
which is defined
by the IEC 61850
standard.

39

Duan and
Zivanovic,
2013

Factory-
based motor
protection

Remote and local
monitoring

IEC 61850
standard-
based object

Motors and
IED-based
condition

The IEC 61850
standard has
allowed for

models and
MATLAB
software
scripts.

monitoring
system.

development of
an embedded-
based device for
condition
monitoring. The
condition
monitoring
systems using
these IEDs offer
real-time
monitoring and
communication
abilities.

The comparative discussion of the results presented in this section are presented in
Section 2.3.3.

2.2.4

This section presents the results of research publications of communication systems

I[EC 61850 standard-based communication

that are used in IEC 61850 standard-based condition monitoring systems. The
domain of application is considered to be significant as it indicates the trend of past to
current communication protocols and technologies used in substation-based
condition monitoring systems. This section has a focus on the following factors:

e The media used i.e., wireless or wired.

e The application.

e The communication protocol used.

The literature reviewed with the keywords: ““Substation communication networks”,

“IEC 61850 communication systems” spanned over a period of twenty years from
2001 up until 2021.

(Brunner, 2008) states that the IEC 61850 standard defines how communication
between devices used in condition monitoring of Substation Automation Systems
(SAS) should be implemented and with its introduction, the opportunity arises to
replace individual wired signals with a single communication cable as illustrated in
Figure 2.16. This will ensure that interoperability is achieved between devices from
various vendors. The IEC 61850 standard is broad and defines various aspects of the
implementation of SAS which will affect how systems need to be designed in order to

be compliant. One aspect of communication defined by the IEC 61850 standard is the

40

publisher-subscriber service and an example of the service is Generic Objected-
Oriented Substation Event (GOOSE) messages. GOOSE messages over an Ethernet
communication network are implemented using the device configuration illustrated in
Figure 2.16. Another example of the publisher-subscriber service is Sample Value
(SV) messages and this is implemented in the configuration illustrated in Figure 2.17.
The overall substation automation communication layout is shown by Figure 2.18. It is
clear that with complying to the IEC 61850 standard, a massive reduction in
hardwired signals is seen as devices which comply to the standard have Ethernet

communication capabilities.

. S N
| >

— ; — s
bk

Figure 2.16: Publisher-subscriber communication service replacing hardwired signals
(Adapted from Brunner, 2008)

Subscriber Publisher

Figure 2.17: SV publisher-subscriber communication service
(Adapted from Brunner, 2008)

41

| HMI, Station
controller

- Sierial communication }—

_Bay | Relayl [Reiay _ Bay | |Relay| |Relay

Controfler| | X1 || X2 Controller| | X1 || X2
= i EEn | l

{s«la%communlcatllon}—

Figure 2.18: IEC 61850-based substation communication layout
(Adapted from Brunner, 2008)

(Ledn, et.al. 2016) proposes models which are to be used for simulation of GOOSE
and SV messages in an IEC 61850 based system. Models are developed using
OMNet++/NET which is a tool used to simulate discrete events. The project
implementation is applied in what is considered to be a typical IEC 61850-based
communication architectural layout as illustrated in Figure 2.19. It can be seen from
Figure 2.18 that there are three levels within the communication system of a
substation. The three levels are Process Level, which is where all field sensors are
found, Bay Level, which is where IEDs which are used to monitor field-based sensors
and communicate with each other are found and Station Level, which is typically in

the form of a control room situated locally or remotely.

SCADA/HMI

Station Level -

e 1A

Station

Bay Level

‘Merge Unit
Process Level

Figure 2.19: Communication architecture based on the IEC 61850 standard
(Adapted from Leoén, et.al. 2016)

42

(Liang, et.al. 2017) proposes methods to develop an IEC 61850-based
communication protocol converter be used in power systems communication
networks. The protocol converter interfaces with existing IEC 61850-based
communication devices and the control room user interface such as a SCADA system

where operators can monitor and review all data and devices.

(Noran and Shukri, 2015) states that the IEC 61850 standard has two communication
services that are prominent and implement these services are implemented in
protection applications within the power system domain. The two communication

services are the client/server and the publisher/subscriber services.

(Apostolov, 2006) describes the various communication applications to be applied
with the substation which conforms to the IEC 61850 standard. Client/server,
publisher/subscriber, unicast and multicast communication all form part of the IEC
61850 standard-based communication applications. The IEC 61850 standard
provides a platform for novel communication applications based on the client/server
and publisher/subscriber communication services defined in the standard. (Apostolov,
2006) also concludes that communication need not only be implemented between
devices on the same function level of the power system and that implementation of
varying types of communications are required to conform to the standard.

(Apostolov, et.al. 2006) states that the IEC 61850 standard plays a significant role in
how substation automation various devices are developed. This allows for
communication implemented between devices to be done in a seamless fashion. Due
to IEC 61850 standard-based communication, the different parts of a Substation

Automation System can be integrated in a way that is easy and cost-effective.

(Apostolov, et.al. 2010) concludes that communication systems which are based on
the IEC 61850 standard are far superior to conventional methods which implement
hardwired signals. This is clear in the engineering and cost-saving benefits.
Engineering benefits includes a more optimised system by replacing a large amount
of hardwired signals with a single communication cable, which leads to reduction in

material and installation time, therefore reducing cost.

(Chen, et.al. 2010) presents the implementation of the design of an IEC 61850
standard-based proxy-server. The research work details the modelling used, the
configuration of the system, controlling of the system, the maintenance of the system

as well as the mapping of the IEC 61850 services. The proxy server is modelled as

43

an IED. The goal of the system is to add additional security measures preventing

unwanted access to devices on the communication network.

(Englert and Dawidczak, 2009) discusses the implementation of communication
between IEC 61850 standard-based substations and control centres. The paper
assesses applications of standardised IEC 61850 communication currently
implemented and what was learned from it. Table 2.4 presents a comparison of these
applications. (Englert and Dawidczak, 2009) concludes that communication based on
the IEC 61850 standard offers engineers and utilities a reduction in engineering cost

and simpler project implementation.

Table 2.4: Current IEC 61850 standard-based communication applied
(Adapted from Englert and Dawidczak, 2009)

Technology Protocol Media System
Levels
C|S|(B|P
[EC 61850 FO, X | x| x
wire
Ethernet IEC 60870-5-104 FQ, x | x| x
wire
Proprietary FO, X | x| x| x
Protocols wire
IEC 60870-5-101 | FO, X | x| x
wire
Serial Com- | IEC 60870-5-103 | FO, X | x
munication wire
Proprietary FO, X [x| x| x
Protocols wire
IEC 61850 Wireless X | x
Radio Com- | IEC 60870-5-104 | Wireless | x | x | x
unication | Proprietary Wireless X | x
Protocols

(Nguyen-Dinh, et.al. 2007) presents a study on IEC 61850 standard-based Generic

Object-Oriented Substation Event (GOOSE) messages. A single communication

44

cable which transmits GOOSE messages replaces individual signals which are
hardwired between Intelligent Electronic Devices (IEDs). GOOSE communication is
typically implemented to achieve monitoring and protection functionality in time-critical
applications. GOOSE message communication between IEDs is illustrated in Figure
2.20. It can be seen from Figure 2.20 that a singular IED can send GOOSE

messages to multiple IEDs connected to the same network.

Sending IED
GOOSE
e T-Fr————— | Ethernet
I | I
|
Receiving [ED Receiving IED

Receiving IED

Figure 2.20: GOOSE message implementation between IEDs
(Adapted from Nguyen-Dinh, et.al. 2007)

(Apostolov and Vandiver, 2007) conclude that conventional power systems are
required to be tested using hardwiring methods whereas IEC 61850 standard-based

power systems are to be tested using communication methods.

A summary of the publications reviewed in the application of IEC 61850 standard-

based communication are presented in Table 2.5.

45

Table 2.5: Application of IEC 61850 standard-based communication

Paper

Application

Media

Communication

Protocol

Literature
Findings

Brunner,
2008

Substation
Automation
System.

Wired connection

Peer-to-peer
GOOSE
messages and SV
messages.

The IEC 61850
standard will
lead to the
introduction of
new methods
and
technologies.
New software
tools and skills
are need for
successful
implementation
of the IEC
61850
standard.

Ledn, et.al.

2016

Protection
functions
Substation
Automation
System.

Wired connection

Peer-to-peer
GOOSE
messages.

Results and
findings of the
research work
are validated
through real-
time
implementation
and testing. It is
clear that IEC
61850
standard-based
communication
allow for
scalability.

Liang,
et.al. 2017

Protocol
converter
between the
substation
and remote-
based control
room.

Wireless
connection

Testing and
results indicate
that the IEC
61850
standard-based
communication
system saves
on
implementation
costs. The
system as a
whole is also
proven to
operate more
efficiently.

46

Noran and
Shukri,
2015

General
power
systems.

Wired connection

Client-Server and
Peer-to-peer
communication.

Communication
implemented
which is based
on the IEC
61850 standard
proved to be
versatile.
Although the
system
implements
communication
between IEDs
manufactured
by different
vendors, the
system still
proved to be
interoperable.

Apostolov,
2006

Substation
Automation
System.

Wired connection

Client-Server and
Peer-to-peer
communication.

The IEC 61850
standard-based
peer-to-peer
and
client/server
communication
models allow
for an
expansion in
applications.
The IEC 61850
standard-based
communication
offers
communication
between
devices based
on different
levels within
the substation.

Apostolov,
et.al. 2006

Substation
Automation
System.

IEC 61850
standard-based
communication
allows for
different
approaches to
be taken when
it comes to
recording of
waveforms.
Any abnormal
condition
recording can
be
implemented
with sample
rates being
around 256
samples/cycle.

a7

Apostolov,
2010

Process bus
in Substation
Automation
System.

Wired connection

Peer-to-peer
communication.

IEC 61850
standard-based
communication
allows for new
and
rejuvenated
approaches to
implementing
power system
condition
monitoring.
This is due to
the fact that the
IEC 61850
standard
supports
interoperability.

Chen, et.al.
2010

Digital
substations
and control
centre.

Wireless
connection

The application
of IEC 61850
standard-based
communication
allows for high
level of security
restrictions.
Communication
which is
interoperable
can be
implemented
using
communication
methodology of
the IEC 61850
standard.

Englert and
Dawidczak,
2009

Electrical
substation
control
centre.

Wired and
wireless
connections

Applying
communication
methods of the
IEC 61850
standard offer
utilities with
clear financial
and project
implementation
benefits. The
IEC 61850
standard offers
its users
interoperability
between
substation-
based devices.

48

Nguyen- Substation Wired connection | Peer-to-peer The MMS
Dinh, et.al. | Automation GOOSE EASE Tool is a
2007 System. messages. great software
tool used to
implement
communication
applications
based on the
IEC 61850
standard. The
findings from
the
experimental
case study
show the
benefits of IEC
61850
standard-based
GOOSE
communication.

The comparative discussion of the results presented in this section are presented in
Section 2.3.4.

2.3 Discussion of Literature Review Results
In this section a discussion is presented on the literature reviewed in the previous
sections. Section 2.3.1 presents a discussion on condition monitoring systems

discussed in Section 2.2.1.

2.3.1 Discussion of the results within the condition monitoring systems
environment

Condition monitoring is defined as the process of continued monitoring of a process,
system, or device in order to detect change which might indicate that a failure in
components used in the process, system or device may result in down-time or is a
safety hazard. This information is then used to prevent the failure from occurring

through maintenance or other intervention.

The literature reviewed suggests that in order to achieve condition monitoring, which
consists of data acquisition and data analysis, sensors are placed strategically in and
around the machines or devices required to be monitored. Having the data acquisition
aspect in place, the condition monitoring system provides users with this data which
can then be analysed. This analysis highlights the condition of the system being
monitored and the specific fault which is looming is then identified. Decisions are then
made regarding the type of maintenance required and this is then scheduled. The

literature reviewed refers to this as preventative maintenance. The literature review

49

indicates that despite the field or domain of application, condition monitoring is
required to be implemented in order to reduced unplanned downtime of a system or
process which result in unplanned cost. The condition monitoring systems in

discussed in Section 2.2.1 include:

e Crank axles in trains (Groom, 2014).

e Industrial systems (Bicen and Aras, 2014).

e Railway systems (Morris, et.al. 2016).

e On-Loan Tap Changers (OLTCs) in power transformers (Seo, 2018).
e Point machines in railways tracks (Shaw, 2008).

e Industrial Welding (Fu, et.al. 2021).

e Electrical transmission lines (Chunlong, et.al. 2021).

¢ Railway infrastructure (Herkes, 2006).

e Wind turbines (Feng, et.al. 2019).

e Railway infrastructure (Swift, et.al. 2011)

Table 2.1 presents a comparison of the literature reviewed in Section 2.2.1 regarding
condition monitoring systems in general. The table lists the authors of the literature,
the application of the condition monitoring system, whether the condition monitoring
system implements local or remote monitoring and a brief summary of the system
implementation. The application of various condition monitoring systems discussed in
Section 2.2.1 are diverse with differentiations in monitoring methods employed to

achieve success.

(Groom, 2014) discusses implementation of a condition monitoring system using
“stink bombs” to monitor the bearing temperature of a crank axle. The only advantage
which this application offers is that it will indicate when temperatures exceed pre-
determined values and a massive downside is the fact that this type of condition
monitoring offers no way of recording data. Condition monitoring applications
presented by (Morris, et.al. 2016) and (Chunlong, et.al. 2021) makes full use of the
technology available. In contrast to (Groom, 2014), condition monitoring presented by
(Morris, et.al. 2016) and (Chunlong, et.al. 2021) makes use of wireless data
acquisition and stores data via cloud-based services. The advantages of this methods
are that the tedious task of wiring individual signals is removed with the only two
glaring downside being high power usage of the system and potential loss of

connectivity.

50

(Fu, et.al. 2021) presents the implementation of Fréchet distance in a condition
monitoring system used for welding. The advantage of this method is that it provides
users with more accurate data when compared to convention condition monitoring.
(Seo, 2018) discusses a condition monitoring using vibration to monitor the OLTC
within a power transformer. Although the applications of the condition monitoring
discussed in (Fu, et.al. 2021) and (Seo, 2018) are very different, it is clear that they
agree with (Herkes, 2006), (Feng, et.al. 2019) and (Swift, et.al. 2011) that condition
monitoring is non-negotiable if catastrophic failure is to be avoided thus clearly

showing the financial benefits.

The literature reviewed here is important because it indicates how broadly used
condition monitoring systems are implemented. Despite the domain of application or
the application itself, condition monitoring system play a crucial for the various
discussed in this section.

The following section presents a discussion of the results of the literature reviewed
within condition monitoring systems of industrial processes as discussed in Section
2.2.2.

2.3.2 Discussion of the results within condition monitoring systems of
industrial processes

It is clear that condition monitoring plays a vital role in industrial environments and as
time has progressed, with different technologies becoming available, condition
monitoring has become more prevalent. Though there are numerous reasons to

implement a condition monitoring system, the most obvious reasons include:

e Increase system or process reliability.

e Mitigate danger factors, especially in high-risk environments.

e Reduce and/or prevent catastrophic failure.

e Safe cost through preventative maintenance.

e Extend asset lifecycle.

e Increase production rate.
Industries may vary regarding the processes implemented, but it is clear that the one
common factor is condition monitoring. The literature reviewed discusses the
condition monitoring systems implemented in industrial processes. Special focus is
placed on the domain of application, monitoring and communication methods

implemented as well as the data acquisition and communication technologies used.

51

The application domains of the condition monitoring systems discussed in the

literature review include:

e Mineral processing (Xu, et.al. 2011).

e Industrial drilling (Yang, et.al. 2019).

¢ Machines in industrial plants (Elmaleeh, et.al. 2010).
e Wind turbines (Swiszcz, et.al. 2008).

e High voltage cables (Gulski, et.al. 2008).

e Wind turbines (Costinas, et.al. 2011).

¢ Industrial production plants (Sheng, et.al. 2012).

¢ Induction motors (Hmida and Braham, 2016).

e Fire hazards (Liu, et.al. 2009).

e Industrial Granary (Zhang and Zhang, 2018).

The condition monitoring systems implemented in the various domains of application
are diverse and use different techniques to acquire data. Some of the methods used
for data acquisition include:

e Sensing technology for temperature, current, voltage, acoustic emission,
vibration etc. (Elmaleeh, et.al. 2010) (Costinas, et.al. 2011).

e Internet of Things (Xu, et.al. 2011).

e Neural networks (Feng, et.al. 2019).

o Wavelet pack transforms(Hmida and Braham, 2016).

e Amplitude analysis (Fu, et.al. 2021).

e Statistical techniques (Fu, et.al. 2021).

Table 2.2 presents a comparison of the literature reviewed in Section 2.2.2 regarding
condition monitoring systems implemented in industrial processes. Table 2.2 lists the
authors of the literature, the condition monitoring application, if monitoring is
implemented locally or remotely and a brief evaluation of the system methodology.
The application of the various condition monitoring systems which are implemented in
industrial processes discussed are diverse with variations in the monitoring

methodology employed to fulfil its purpose.
(Xu, et.al. 2011) discusses the implementation of an loT-based condition monitoring

system for use within a mineral processing plant and (Yang, et.al. 2019) discusses

remote condition monitoring system for industrial drilling. The clear advantages of this

52

type of remote condition monitoring systems are that data is easily available but

creates a huge security risks.

(Elmaleeh, et.al. 2010), (Costinas, et.al. 2011) and (Swiszcz, et.al. 2008) present
condition monitoring systems using vibration and acoustic monitoring techniques.
Both monitoring applications advantages of reduced unplanned breakdowns within
mechanical components. Detection of rotor imbalanced, worn bearings and bearing

misalignment all from part of vibration and acoustic monitoring.

Condition monitoring systems which implement proprietary protocols that integrate
multiple devices into a network for data information exchange. This allows for benefits
such as a more efficient way of data retrieval. This is evident in (Liu, et.al. 2009)
which implements a condition monitoring system of a fire alarm using the RS232
protocol, (Sheng, et.al. 2012) which implements condition monitoring within a
production plant using RS485 and (Zhang and Zhang, 2018) which implements
temperature and humidity monitoring in an industrial granary using CAN bus
communication. All three of these proprietary monitoring techniques require
expensive protocol converters if they were to be implemented in the same system

which is a significant disadvantage.

The literature reviewed in Section 2.2.2 is important because it paints a clear picture
of the monitoring technigues implemented, the technology used for data acquisition
communication across various industrial processes from earlier years to more recent

years.

The following section presents a discussion of the results of the literature reviewed
within IEC 61850 standard-based condition monitoring systems as discussed in
Section 2.2.3.

2.3.3 Discussion of the results within IEC 61850 standard-based condition
monitoring systems

During the time when electrical substation-based electromechanical relays used
hardwired analogue and digital signals, there was hardly any use for communication
infrastructure due to how information was being exchanged. With technology
advancing and with the introduction of high-speed computation devices, a need arose
for standardised information exchange to be implemented in a way that is efficient,

secure, and reliable.

53

The IEC 61850 standard was created to ensure that information exchange in the
substation environment occurred seamlessly, with the objective of interoperability
between devices within the substation being a high priority. Some of the other
objectives of the IEC 61850 standard, which includes future-proofing are discussed in
Section 2.2.3. The literature reviewed in Section 2.2.3 discusses the condition
monitoring implementation based on the IEC 61850 standard. This discussion
reviews the standardized monitoring approach taken by the standard in contrast to
monitoring methods implemented in industry which do not conform to the IEC 61850

standard.

Condition monitoring systems which conform to the IEC 61850 standard are generally
developed for implementation within the power system domain and these systems
use standardized data, communication services, data models with Substation
Configuration Language (SCL) based on eXtensible Markup Language (XML). Some
the applications of the IEC 61850 standard-based condition monitoring systems

include:

e Gas Insulated Switchgear (Jang, et.al. 2011).

e Electrical distribution networks (Bosisio, et.al. 2019).
e Power Systems (Gaouda, et.al. 2018).

e Substation Automation (Apostolov, 2013).

¢ Power system protection (Apostolov, 2013).

e Substation power quality (Lloret, et.al. 2007).

e Energy management (Mercurio, et.al. 2009).

e Gas Insulated Switchgear (Kim, et.al. 2012).

e Power systems (Apostolov, et.al. 2003).

e Motor protection in factories (Duan and Zivanovic, 2013).

Table 2.3 presents a comparison of the literature reviewed in Section 2.2.3 regarding
the implementation of IEC 61850 standard-based condition monitoring systems. The
authors of the literature, the monitoring application, whether monitoring is
implemented locally or remotely, the software methodology and the hardware
methodology are all tabulated in Table 2.3. The reviewed literature indicates that the
IEC 61850 standard provides a platform for the implementation of flexible condition

monitoring techniques which are standardised and future-proof.

(Jang, et.al. 2011) and (Kim, et.al. 2012) present IEC 61850-based condition

monitoring of gas insulated switchgear. Both approaches use temperature and

54

pressure sensors for data acquisition and implement data models defined within Part
7 of the IEC 61850 standard. These approaches make full use of the advantages

such as interoperability offered by the approach taken by the IEC 61850 standard.

(Bosisio, et.al. 2019) and (Gaouda, et.al. 2018) propose condition monitoring systems
which intended to be used in power systems. These condition monitoring application
use IEDs and the advantages of these approaches include increased reliability and

as systems which are futureproof.

(Apostolov, 2013) and (Apostolov, et.al. 2003) discusses the IEC 61850 standard-
based software models which included data attributes, data, logical nodes, logical
devices and servers used in relation to IEDs used in condition monitoring systems.
These software models offer unique reporting capabilities when specific events occur,
which do not exist in the conventional approach. This is confirmed by (Apostolov,
2013) which discusses functional hierarchy of the IEC 61850 standard and details
clear advantages which include more simplified engineering required.

The literature reviewed in Section 2.2.3 is important because it highlights the
effectiveness and the advantages of the IEC 61850 standard when condition
monitoring systems conform to it, due to object-orientated modelling approach taken
by the standard. The IEC 61850 standard provides guidelines which ensure condition

monitoring systems are optimised in terms of engineering and cost.

The following section presents a discussion of the results of the literature reviewed

within IEC 61850 standard-based communication as discussed in Section 2.2.4.

2.3.4 Discussion of the results within IEC 61850 standard-based communication
With the introduction of high-speed computerised technology within the substation
environment, challenges arose due to devices developed by various vendors lacking
the ability to communicate efficiently with one another. The need arose for
standardized communication between devices regardless of the brand. The IEC
61850 standard was created which resulted in devices which are interoperable and
able to communicate seamlessly with each other without the use of costly protocol

converters.

The IEC 61850 standard consists of various parts and each part defines different
aspects of the standard. Aspects of how the IEC 61850 standard handles data are

discussed in Section 2.2.3 of the literature review but Section 2.2.4 focuses on the

55

way devices communicate with each other. The literature reviewed in this Section
2.2.4 discusses how communication between devices which conforms to the IEC
61850 standard should be implemented. The various literature highlights the
communication services defined in the IEC 61850 standard, the differences between
the services and provides examples applied within the substation which entails

explanations and visual representations of these applied examples.

Table 2.5 presents a comparison of the literature reviewed in Section 2.2.4 regarding
the implementation of IEC 61850 standard-based communication. The authors of the
literature, the application, the media used in the communication system and the
protocol used are detailed in Table 2.5. The literature reviewed clearly indicates that
the standardized communication implemented based on the IEC 61850 standard is
far superior to conventional communication methods which rely on additional
communication protocol converters due to the inability of devices developed by

different vendors being able to communicate with one another.

(Apostolov, 2006) states that IEC 61850 communication approach is versatile in that
it allows for standardised communication between devices on the same level of the
substation as well as standardised communication between devices on a different

level.

The overall architectural layout of the IEC 61850 standard-based communication
systems implemented in the substation domain are identified and discussed. Inter-
device communication and communication between the 3 levels of the substation are
identified and discussed by (Ledn, et.al. 2016) and (Brunner, 2008). IEC 61850
standard-based systems use communication to exchange information between
devices instead of numerous individually wired analogue and digital signals. This
simplifies the installation approach and reduces the cost of installation due to less
material being required. (Apostolov, et.al. 2010) confirms and adds that installation

time is also reduced.

(Noran and Shukri, 2015), (Liang, et.al. 2017) discusses the approach taken for inter-
device communication as well as communication between the different levels within
the electrical substation. The advantages of the standardized approach taken by the
IEC 61850 standard include interoperability which result in no protocol converters are
required meaning utilities reduce implementation costs of communication systems.
This is confirmed by (Apostolov, et.al. 2006), which states that IEC 61850 standard

offers communication which is seamless.

56

(Apostolov, 2013) indicates that although the IEC 61850 standard provides a platform
for new applications, has a host of advantages which range from financial to
implementation, an in-depth understanding is required for the standard to be
implemented successfully. This is confirmed by (Brunner,2008) which states that the
IEC 61850 standard approach introduces new tools, methods and technologies which
will need to be mastered by engineers who wish to implement the standard. This

could be considered a downside to the IEC 61850 standard.

The literature reviewed in Section 2.2.4 is important because it identifies why it is
crucial for the IEC 61850 standard to be implemented when it comes to refurbishment
or erection of a new substation. The applications of IEC 61850 standard-based
communication in literature reviewed in this section proves that IEC 61850 simplifies

the engineering which in turn results in the reduction of installation cost.

The following section presents the summary to the chapter.

2.4 Chapter Summary

This chapter provides a comprehensive review on the past and current literature
within the areas of condition monitoring, condition monitoring of industrial processes,
IEC 61850 standard-based condition monitoring systems, IEC 61850 standard-based
communication. Also included in this chapter is a discussion of the results of the
reviewed literature in the areas of condition monitoring, condition monitoring of
industrial processes, IEC 61850 standard-based condition monitoring systems, IEC

61850 standard-based communication.

Based on the literature reviewed and the discussion of the literature reviewed, it is
clear that IEC 61850 standard-based condition monitoring techniques and
communication techniques offer clear advantages that conventional methods don't. It
is also clear that condition monitoring techniques are almost exclusively implemented
in the substation and power system arena. It will prove to be challenging and
expensive to extend the reach of the IEC 61850 standard to other domains of

applications as the knowledgebase resides with vendors.

The approach taken in this research work aims to contribute to the knowledge base
identified in the literature reviewed in this section by extending the domain of the IEC

61850 standard to domains outside of the power system environment.

57

Chapter Three presents an overview of the IEC 61850 standard with a particular
focus on logical nodes and GOOSE messaging. In this chapter a comprehensive
investigation is conducted to understands the workings of the standard in order to

complete the implantation of this research project.

58

CHAPTER THREE

OVERVIEW OF THE IEC 61850 STANDARD

3.1 Introduction

The IEC 61850 standard was promulgated to achieve interoperability in the
substation environment. Interoperability is when IEDs developed by opposing
vendors communicate with each other to operate and implement their own
functionality. The IEC 61850 standard is already implemented by numerous electrical
substations around the world (Yongli, et.al. 2009).

This chapter investigates how the IEC 61850 standard has achieved standardisation
within the substation automation environment. This is done by conduction a detailed
analysis of the tools used, methodology applied and the services which are specified
within the IEC 61850 standard. An overview of the IEC 61850 standard is provided
with a particular focus on the data modelling techniqgues and communication service
mappings. This also pays particular attention to the application of the IEC 61850
standard in the Substation Automation Systems environment focusing on the Logical
Node and Generic Object-Oriented Substation Event (GOOSE) message
implementation. The components which have been found to be crucial to the
understanding of the workings of the IEC 61850 standard have been identified and

elaborated upon in this chapter.

The chapter is broken down into the following sections: Section 3.2 looks at the
communication techniques which is used in legacy substation automation systems
within the substation environment. Section 3.3 provides a brief overview to the ten
parts of the IEC 61850 standard. Section 3.4 discusses the application of the IEC
61850 logical nodes and also the communication service mapping of data to GOOSE
messages. Section 3.5 provides a conclusion to this chapter showing the clear
advantages of using the IEC 61850 standard in modern-day substation automation

systems over legacy communication protocols and hardwired techniques.

3.2 Introduction of the IEC 61850 standard

Electrical substations have been designed and manufactured in order to operate
autonomously. The biggest transformation within electrical substations as time has
passed has been found to be the technology utilised within the electrical substations.
The earliest electrical substations utilised electromechanical devices for monitoring
and protection functions. Each of these electromechanical devices was electrically

connected to current transformers, and these connections could sometimes be made

59

by way of Alternating Current to Direct Current transducers. The power system
protective devices were in the form of relays. An individual relay would be providing a
specific protective function. That being said, electrical wiring played a massive part in
legacy electrical substations. RTUs (Remote Terminal Units) would provide the
central monitoring and control functionality and was a single access point between
the control centre and the substation. The RTU was basically made of
electromechanical switches which can also be referred to as relays, each relay having
a specific function. Some of the control functions included opening and closing
devices in the field and some of the monitoring functions included monitoring of circuit
breaker positions. Figure 3.1 shows the architecture of historical electrical substations
before 1992. Despite this being an earlier iteration of electrical substation automation,
autonomous control has always been present. It can be seen that the architecture
utilises electromechanical switching for monitoring and control purposes, which are
directly connected to sensors i.e., current transformers and voltage transformers
located in the field. Figure 3.1 shows that the implemented communication standard
is proprietary as evidenced by the dial-up modem device. The different levels of the
legacy substation architecture are illustrated in Figure 3.1, devices such as servers
used for monitoring and historical data storage which are typically found in a control
room form part of the Station Level (blue box), devices used for automatic monitoring
and control such as Programmable Logic Controllers (PLCs) and multi-purpose relays
form part of the Bay Level (red box) and sensors and switching devices which are
based in the field form part of the Process Level (yellow box) (Tatera and Smith,
2008).

60

WAN

Station Level

Legacy
Protocol

Dial Annuciator}

Meters

L 4 a Bay Level

E=—N ks

E/M Relay

l DZOCI
] E E Process Level
Equipment
\ Sensors

Dial
[Bial

ap

Figure 3.1: Legacy substation architecture
(Adapted from Tatera and Smith, 2008)

Electrical substations continued to evolve until eventually Intelligent Electronic
Devices (IEDs) were introduced. IEDs (Intelligent Electronic Device) are multi-
functional devices which have capabilities for the protection, monitoring and control of
a power system. These devices can communicate all data regarding protection,
monitoring and the control of the power system. These devices are produced by
various vendors, and this resulted in IEDs manufactured by different vendors unable
to exchange information between each other. This inability of IEDs from different
vendors to exchange data was as a result of proprietary communication protocols and
communication could not be achieved without the use of costly protocol translators
(or converters). Therefore, a need to introduce a new standardised communication

platform for IEDs used in the electrical substation arose.

The inception of the IEC 61850 standard, which is a communication standard for
devices within the substation arena, has allowed for the incorporation of numerous
IEDs (Intelligent Electronic Device) on an Ethernet network for fast and efficient
communication between each of the devices on the network due to standardisation.

This standardisation changes the way substation automation systems are designed

61

by reducing the intricacy and variation of system solutions. This new way of design
has substantial benefits, including reduced operational and maintenance cost
(Ozansoy, et.al. 2009).

The following section presents an overview of the IEC 61850 standard.

3.3 IEC 61850 standard overview

The IEC 61850 standard which was published in the year 2003, was intended to
remove intricacies related to substation automation systems. The reduction in
complexity of substation automation systems has a direct impact on the economics of
erecting these systems by lowering operational, maintenance and engineering costs
(Elgargouri, et.al. 2015).

The IEC 61850 standard consists of ten parts with some subsections. Each part of
the IEC 61850 standard defines different aspects with regards to data modelling and
the communication framework. The ten parts of the IEC 61850 standard (illustrated in
Table 3.1, highlights the scope of each of the sections and subsections of the
standard), specifies the substation automation system’s requirements and allows for a
framework which is futureproof and allows for flexibility and most importantly
interoperability. The main drivers behind the IEC 61850 standard are virtualisation,
which is the creation of a generic substation model with all required functions,
components and data communication methods which are abstract and define
information and the exchange thereof in a way that is independent of any fixed

protocol implementation (Mackiewicz, 2006).

62

Table 3.1: Scope and Outline of the IEC 61850 standard (Mackiewicz, 2006)

Part # | Title
| Introduction and Overview
2 Glossary of terms
3 General Requirements
4 System and Project Management
5 Communication Requirements for Functions and
Device Models
6 Configuration Description Language for
Communication in Electrical Substations Related to
1EDs
7 Basic Communication Structure for Substation and
Feeder Equipment
7.1 | - Principles and Models
7.2 | - Abstract Communication Service Interface
(ACSI)
7.3 | - Common Data Classes (CDC)
7.4 | - Compatible logical node classes and data classes
8 Specific Communication Service Mapping (SCSM)
8.1 | - Mappings to MMS(ISO/IEC 9506 — Part 1 and
Part 2) and to ISO/IEC 8802-3
9 Specific Communication Service Mapping (SCSM)
9.1 | - Sampled Values over Serial Unidirectional
Multidrop Point-to-Point Link
9.2 | - Sampled Values over ISO/IEC 8802-3
10 Conformance Testing

The following section presents the concept of the modelling done in the IEC 61850

standard and what it is meant to be achieved by the implementation thereof.

3.3.1 IEC 61850 standard conceptual modelling

The IEC 61850 standard makes use of an object-oriented approach and defines the
data model (which is in a hierarchical form) for the communication network and
physical objects within the substation such as measuring, control and protection
objects (Yongli, et.al. 2009).

Electrical substation automations systems are meant to perform functions which
monitor, control and protect the plant equipment used in field. These functions form
the foundation for the object-oriented physical and logical device information models
which have been defined in the IEC 61850 standard.

63

IEC 61850 standard-based models allow for the virtualisation of real devices, where
an entire physical substation is completely modelled as a virtual entity (Hammer and
Sivertsen, 2008). Modelling in the IEC 61850 standard is based on the Unified
Modelling Language (UML). The concept of virtualisation forms the first step in the
modelling approach taken by the standard. Figure 3.2 shows how the modelling
approach taken by the IEC 61850 standard is implemented. The main functions of a
substation which include protection, monitoring and controlling of the power plant
equipment, as highlighted by the yellow box on the right-hand side. Figure 3.2
illustrates these real-life functions being used as the components of the object-
oriented logical and physical device. A circuit breaker has its monitoring and
protection functions used to build the Logical Device (LD) as highlighted by the blue
box. The Logical Device contains the Logical Nodes (LNs). The Data from the Logical
Nodes can then be mapped to a communication protocol for communication on an
Ethernet network. Figure 3.2 also indicates that this can be done for any real device
located in the substation. This process is termed virtualisation. In Figure 3.2, an
example of a circuit breaker Logical Node (XCBR) is shown where the data attributes

include its position and mode of operation.

/ logical device (Bay)

IEC 61850-7-2 (Virtual World) ‘
Services ® (
=
| : . .
73
4
TCPIP
Network §
2
g
(S 72 2

SCSM : "
IEC 61850-8-1 cle
Real devices
3 in any
IEC 61850-7-4 logical T SURGRHG
node (circuit breaker) data (Position)

T 1

IEC 61850-6
51850 configuration file

Figure 3.2: IEC 61850 conceptual modelling approach
(Adapted from IEC 61850-7-1, 2004)

The IEC 61850 standard uses models that are abstract which defines the information
and how it is used in such a way that is it does not depend on a specific protocol

implementation. Virtualisation is a concept that provides aspects which are found

64

within real-life devices which are crucial when it comes to information exchange (IEC
61850-7-1).

Interoperability is achieved by the use of data models which are made up of logical
node classes and data classes, within the IEC 61850 standard. These specified data
models all have a certain naming convention which is also specified by the IEC 61850
standard. The standard allows for the expansion or addition of new models if the
need presents itself. This expansion is executed using the same virtualisation

process to ensure the newly added model is future-proof.

The Abstract Communication Service Interface (ACSI) is defined by the IEC 61850
standard as a conceptual interface. It does not define any specific data
communication messages; it defines how data is exchanged between devices which

makes up the substation automation system (IEC 61850-7-1).

3.3.2 IEC 61850 Data modelling

Data modelling within the IEC 61850 standard is implemented using an object-
oriented approach. Models prescribe communication between physical devices within
the substation arena. This approach supports the functions within the substation by
using data models which represent real-life physical substation devices and
processes (Ozansoy, et.al. 2009).

An objected-oriented approach means that a large system is divided up into
subsystems and layers. This allows for an easier understanding of a complicated
system due to it being divided into hierarchical elements which are smaller in size.
Looking at these elements individually significantly reduces the complexity and allows
for a system to be more comprehensible. Individual elements are therefore
interchangeable without hindering the system as a whole. These elements or objects
form the data attributes and operation services of the IEC 61850 standard (W. Huang,
2018).

The IEC 61850 standard defines substation functions as tasks which are executed by
the substation. These functions are shared onto numerous devices or an individual in
the form of IEDs, where the smallest function known as a logical node is used to
communicate with the remainder of the function. That being said, specific logical
nodes related to a specific function are found within the same logical device (which is

a virtualisation of the physical device as shown in Figure 3.3).

65

Most devices and functions specific to the substation domain are modelled within and
form part of the scope of Edition 1 of the IEC 61850 standard. Should a required
function or device not be readily available, the standard makes provision for these

functions or devices to be created through documented procedures.

The IEC 61850 standard device model is hierarchical starting with the physical
device. This physical device forms part of the communication network and is usually
defined by the network address assigned to it. Every physical device consists of an
individual or more than one logical device. This logical device model allows for an
individual physical device to take up the role of a gateway for one or more devices.
Every logical device consists of a single or numerous logical nodes, each of which is

made up of a predefined group of Data Classes, which each contains data.

PHYSICAL DEVICE (Network Address)

S S—

Figure 3.3: An IEC 61850 device representation
(Adapted from Gers, 2004)

Logical nodes are abstract data models, and they form the key elements upon which
the IEC 61850 standard object-oriented virtual model is based on. A logical node is
made up of Data Objects (DO), and each data object is made up of a certain amount
of Data Attributes (DA) as illustrated by Figure 3.3. Logical nodes allow for
virtualisation of the substation components into the required data model and plays a
key role in the IEC 61850 standard. This is also illustrated Figure 3.2.

The IEC 61850 standard defines an IED (Intelligent Electronic Device) as a server
device. The server device is meant to provide client services, such as the Generic

Object-Oriented Substation Event (GOOSE) messages. However some IEDs have

66

the ability to implement client functionality as well. In Edition 1 of the standard, the

client functionality is not fully considered.

The XCBR (Circuit Breaker) Logical Node (LN) is defined by the IEC 61850-7 part of
the standard. Part 7 of the IEC 61850 standard deals with logical node classes, data
classes as well as common data classes, therefore the process of virtualisation will
not be needed for functions which have been standardised already, such as the
circuit breaker.

The IEC 61850 standard defines over 91 logical node classes, which have been
grouped in terms of the substation and feeder functionality or application that they

provide. This is further shown in Table 3.2.

Table 3.2: The IEC 61850 standard groups of logical node (IEC 61850-7-1)

Logical Node Groups Number of Logical
Nodes
System logical nodes 3
Protection functions 28
Protection related functions 10
Supervisory control 5
Generic references 3
Interfacing and archiving 4
Automatic control 4
Metering and measurement 8
Sensors and monitoring 4
Switchgear 2
Instrument transformer 2
Power transformer 4
Further power system equipment 15

Using the XCBR (circuit breaker) logical node as an example, it can be seen that the
internal components of the logical node are structured in a hierarchical manner. Data
attributes are grouped in terms of their functional constraints, meaning binary
functions are grouped together and functions which provide measured values in the

form of FLOAT32 are grouped together. This is illustrated in Figure 3.4.

67

e oo oo
|XCBR|

m Data- Controls
Attributes
- Pos
— Control value “ctiVal” ™ [ittt
- Operate time
''''' Control number
- Status value “stval” «— ECIUEREITE
== Quality
== Time stamp status
------ Substit. enable
:" Substit. value subetitition
- Pulse configuration
== Control model configuration,
— SBO timeout description,
— SBO class and extension
= BlkOpn
]

Figure 3.4: Position information depicted as a tree
(Adapted from IEC 61850-7-1, 2004)

Logical nodes are essentially a named cluster of data and services which are
associated to a function related to the power system. Logical nodes exist for functions
such as automatic control, where these logical nhode names start with the letter “A”.
Some logical nodes exist for measurement functions and these logical node names
start with the letter “M”. Logical nodes for generic functions begin with the letter “G”,

as illustrated in Table 3.3 (Mackiewicz, 2006).

68

Table 3.3: List of Logical Node Groups (IEC 61850-7-4)

Group Indicator Logical node groups

A Automatic Control

C Supervisory control

G Generic Function References

I Interfacing and Archiving

L System Logical Nodes

M Metering and Measurement

P Protection Functions

R Protection Related Functions

s Sensors, Monitoring

T Instrument Transformer

X2 Switchgear

Yy Power Transformer and Related Functions

z9 Further (power system) Equipment

%) LNs of this group exist in dedicated IEDs if a process bus is used. Without a process bus, LNs of this group are the
1/0s in the hardwired IED one level higher (for example in a bay unit) representing the external device by its inputs
and outputs (process image - see Figure B.5 for example).

The logical node class is a grouping of data objects. The logical node class defined
by the IEC 61850 standard is essentially a template for the development of new
logical node. Some of the parameters are mandatory and others are optional,
meaning may be added at the developer’s discretion as the annotation suggests in
Figure 3.5. Figure 3.5 illustrates a logical node class definition of the XCBR (circuit
breaker) logical node as an example. The data attributes which the class consists of
is illustrated below. Data attributes are divided into 3 parts, those parts are Common
Logical Node Information, Controls, Metered Values and Status Information. The
name of the data attributes, the type of the data attributes as well as whether the data
attributes are mandatory or optional is indicated by an M or an O can be seen in
Figure 3.5.

69

XCBR class
Attribute Name | Attr. Type Explanation T| MIO
LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node Class M Mandat
Loc SPS Local operation (local means without substation automation M andatory
communication, hardwired direct control)
EEHealth INS External equipment health (o] Optional
EEName DPL External equipment name plate O 4
OpCnt INS Operation counter M
Controls
Pos DPC Switch position M
BlkOpn SPC Block opening M
BlkCls SPC Block closing M
ChaMotEna SPC Charger motor enabled (o]
Metared Values
SumSwARs [scr [sum of switched Amperes, resetabie [o
Status Information
(CBOpCap INS Circuit breaker operating capability M
POWCap INS Point On Wave switching capability 0
MaxOpCap INS Circuit breaker operating capability when fully charged (o]

Figure 3.5: XCBR (circuit breaker) logical node class definition
(Adapted from IEC 61850-7-4, 2004)

All logical nodes contain an individual or numerous data components which has a
specific name. These names are dependent on the functionality performed within the
substation. The circuit breaker logical node depicted in Figure 3.5 has Data-Objects
such as “Loc”, which determines if the operation is remote or local. Another example
of the XCBR Data-Objects is the “Pos”, which refer to the position of the circuit
breaker. These are the Data Objects of the logical nodes. (R. E. Mackiewicz, 2006).

The following section deals with the naming convention which the IEC 61850

standard prescribes.

3.3.3 IEC 61850 Naming convention

The naming convention adopted by the IEC 61850 standard for devices, logical
nodes, data objects and data attributes are very important, and this is attributed to the
fact that the naming convention eliminates ambiguity. The naming convention aides in

realising of the virtualisation concept.

The naming convention prescribed by the IEC 61850 standard is hierarchical. This is
illustrated by Figure 3.6. The first part of the naming convention is entirely up to the
developer and is entirely independent of the standard. The second part of the naming
convention refers to the logical node. As previously mentioned in Section 3.4.2, the
first letter of the logical node refers to the functionality group to which that node
belongs, and in the example illustrated in Figure 3.6, the logical node starts with “X”

which refers to switchgear. The third part which shows the instance number of the

70

logical node, meaning that there can be numerous logical nodes of the same kind.
The fourth part refers to the “status information” functional constraint of the logical
node, which is defined on page 48 in part 7-2 of the IEC 61850 standard. The fifth

and sixth part refers to the Data Object and Data Attribute of the logical node.

Relayl/XCBRISSTSLocSstVal

L) [T
Attribute
Data

Functional Constraint

— Logical Node

Logical Device

Figure 3.6: Anatomy of an IEC 61850-8-1 Object Name
(Adapted from Mackiewicz, 2006)

3.34 Abstract Communication Service Interface

The Abstract Communication Service Interface (ACSI) models of the IEC 61850 are
definitions which are abstract and describe common power system communication
functions found in IEDs which essentially describe interactions between client and
server devices on a communication network. While ACSI models are crucial to
achieving interoperability, they are still required to be operated over communication
protocols which can be practically implemented in a computing environment
(Ozansoy, et.al. 2009). Part 7-2 of the IEC 61850 standard describes the Abstract

Communication Service Interface (ACSI) in much greater detail.

Figure 3.7 shows the architecture of the IEC 61850 standard ACSI mapping to the
Open Systems Interconnect (OSI) model. It can be seen that an Abstract Layer of
Generalised Communication and a Specific Communication Service Mappings
(SCSM) layer is added. The SCSM layer (blue box) are added above the OSI model’s

layers (red box) illustrated in Figure 3.7.

71

Application
Process

Network independent Interface
(AACSI. Abstract Communication Service Interface)

SCMS | SCSM 1 SCSM 2 | SCSM n ' specific Interface
layer T f t <

e I | Al: 2 AL n

T AL 1 Application Layer
oSl 7-) . '
layer Layer 1to 6
stack i | i

Information models

Information exchange

Figure 3.7: ACSI mapping to communication stacks/profiles
(Adapted from IEC 61850-7-1, 2004)

Figure 3.8 shows the conceptual model of the Abstract Communication Service
Interface. The ACSI is made up of two parts, those two parts are the information
model and the information exchange model. The information model and information
exchange model are connected together but for description purposes are viewed
separately to an extent. Figure 3.8 also illustrates how information is exchanged
between real devices and virtual models. Data contained within information models

are communicated to real devices via service models.

ACSI basic information models Information models
(IEC 61850-7-2) (IEC 61850-7-4)
(IEC 61850-7-3)

~ < Specializations Compatible

LOGICAL-NODE LOGICAL-NODE
5 g - Compatible
DATA |<] Specializations DATA
o 1
T DATA i
services }
!

, Service models
LNservices [SS———— sther than in LN and DATAS
3 (for example DATA-SET,
Reporting, GOOSE)

Real device

ACSI information exchange (IEC 61850-7-2)

Figure 3.8: Conceptual model of ACSI
(Adapted from IEC 61850-7-2, 2004)

72

3.3.4.1 Information Model
The information model is the first sublayer of the Abstract Communication Service
Interface. The information model represents the elements which are used to virtualise

a physical device. These elements are as follows (Morris, et.al. 2016):

e Server (Number 6) — which is intended to represent the visible behaviour of
any given device where the ACSI models form part of the server.

e Logical Device (Number 8) — which is made up of the data consumed and
produced by Logical Nodes specific to a domain.

o Logical Node (Number 9) — which is made up of the data consumed and
produced by a functions applied in a specific domain, such as overcurrent
protection.

e Data (Number 10) — which provide the ability to identify data type attributes,
such as a switch’s along with timestamps and information regarding quality.

e Implementing condition monitoring devices used in real-time monitoring

applications and real-time data logging applications.
The structure of the information model is shown in Figure 3.9. Each of the elements

which make up the information models is further expanded on in part 7-2 of the IEC
61850 standard.

73

ObjectName
ObjectReference

1 “‘
LOGICAL-DEVICE

.

LOGICAL-NODE

('Y

1.
@ DATA

10| DataAttribute

Figure 3.9: Basic conceptual class model of the ACSI
(Adapted from IEC 61850-7-2, 2004)

3.3.4.2 Information Exchange

The information exchange is the second sublayer of the Abstract Communication
Service Interface. There are two communication service groups of the IEC 61850
standard which are shown in Figure 3.10. the first group utilises a client-server model
which can accommodate services such as remote switching and reporting. The
second group utilises a peer-to-peer model which is based on a Publisher/Subscriber
mechanism for Generic Substation Events (GSE) services which are meant to be
used for time critical applications. An example of a time critical application could be
transmission of data between IEDs used for protection functions where the data

transmission is required to be fast and reliable.

74

Physical Device ACSI Services Physical Device
ACSI Server
ACSI Client
Data |*] /O data
Data
Data |~ 1/ data
)l
| Application || Application
Physical Device
Multicast q ACSI Server
(peer-to-peer))
— /O data

subscriber —

Figure 3.10: ACSI communication methods
(Adapted from IEC 61850-7-1, 2004)

(Hammer and Sivertsen, 2008) suggests that the model used for data exchange
characterises the components required to configure a virtual device in order for it

communicate in the real world. These elements are as follows:

o Data-Set — used for grouping data attributes,

e Substitution — allows for process values to be replaced by a different value

e Setting Group Control Block — indicates how to change setting groups and
how values of setting groups are changed.

e Report Control and Log Control Blocks — indicates how logs and reports are
created which originate according to client-based configurations.

e GSE Control Block — allows for input/output data to be shared at a high speed.

e Sampled values transmission control block — high-speed transmission of
samples from sensing devices.

e Control — indicates which services are required to be controlled.

e Time synchronisation — allows for the system and device to have a time base.

e File transfer — determines the exchange data which include programs

Section 3.3.5 discuss the client/server communication within the IEC 61850 standard.

75

3.35 IEC 61850 Client-Server Architecture

The client-server communication model allows for IEDs to communicate with a
Supervisory Control and Data Acquisition (SCADA) system on an Ethernet
communication network, typically at a speed of 100Mbs (Megabits per second). The
Manufacturing Message Specification (MMS) is utilised by the IEC 61850 standard,
which allows for the client-server communication between IEDs and the SCADA
system to be implemented. With the client-server communication model, an IED
operates as the server, containing all data related to its function and waits to respond
to any requests. As the client, the SCADA system will commence the communication
by sending a request to take control or only read data contained by the IED. The IED
then replies to the SCADA system with the requested data or offers control of its

operations (Huang, 2018).

Figure 3.11 exhibits how the client and server interact. It shows how the client
requests data from the server via the communication network. Upon receiving the
client’'s request, the server then responds in an appropriate manner by taking the

required action (Park, et.al. 2012).

Client Server
1 2
C]ient Request Indication Ser'\"er

Sends — — Recieves
Request Indication
7 v
o 3
g" Server
S Takes
- Action
e
v
5 4
Client Confirm. Response Server
Recieves < — < — Sends
Confirmation Response

Figure 3.11: Client and Server interactions
(Adapted from Park, et.al. 2012)

Section 3.3.6 discuss publisher/subscriber communication within the IEC 61850

standard.

76

3.3.6 IEC 61850 Publisher-Subscriber Architecture

The publisher-subscriber communication model comes in the form of Generic Object-
Oriented Substation Event (GOOSE) communication. This communication model is
defined by the IEC 61850 standard to be a high-speed and high availability
performance model. GOOSE communication takes place between IEDs and is
therefore defined as a peer-to-peer communication model. It is implemented in the
IEC 61850 standard to replace binary and analogue input/output (1/0O) signals which
were hardwired between IEDS. In this communication model, IEDs transmit GOOSE
messages on the communication network, with all IEDs on the same network able to
see the message. Due to the application of this communication model, a high-priority
flag is assigned to every GOOSE message which allows for it be prioritised over other

messages on the Ethernet switch’s communication port (Huang, 2018).

The way it works is that one IED operates as the GOOSE publisher and another IED
operates as a GOOSE subscriber. While the publisher IED broadcasts to all IEDs on
the network, only the subscriber IED actually takes action by retrieving the message
in order to access the data. To ensure that IEDS receive GOOSE messages within 3
milliseconds of the occurrence of a substation event, the publisher IED increases the
rate at which messages are broadcasted non-linearly. Thereafter, the IED continues
to broadcast at a steady rate, which allows for the subscriber IED to detect a failure in

communication (Huang, 2018).

Figure 3.12 illustrates the operation of the publisher-subscriber communication

model.
Publisher Event Service Subscriber
1 |
Subscribe () Q“"Ff
Publisher Subscriber

2 Publish Unsubscribe (Q/ 2

Publisher Subscriber

3 Push event () > 3

Figure 3.12: Client and Server interactions
(Adapted from Ozansoy, 2006)

77

3.3.7 |EC 61850 Data Communication

The client-server and publisher-subscriber communication models have been
identified as the two information exchange systems within the IEC 61850 standard.
To implement these communication models, the IEC 61850 standard adopted a two-
layer communication structure which is deployed on top of the traditional 7-layer OSI
stack. Should a device want to transmit data to any location in the outside world, the
information to be transmitted is required to pass through these two additional layers

only.

Figure 3.13 illustrated the additional two-layer communication stack of the IEC 61850
standard implemented on top of the tradition OSI stack. From Figure 3.13 it can be
seen that the first layer (layer 9) is made up of two sub-layers which have been
identified as the information model and information exchange which have been
elaborated upon in Section 3.3.4. As the speed at which these messages are
transmitted is critical, the GOOSE messages and Sample Values uses a reduced OSI
stack, and the information does not pass through all seven layers, as illustrated in
Figure 3.13. The second layer (layer 8) refers to Specific Communication Services

Mapping (SCSM), which is illustrated in Figure 3.2 as well.

‘ Data Model (Data and servicas) ‘ ‘ Information Models (a) ‘
9 ACSI- This is
. specified b
["Clent-Senver |[[G00SE |[Sompld vaues] | Information Exchangs (&) | | SFCTeS Y
files
(IcD, CID....)
8 | Mapping]
N
7
E S pa—
g 81 mms
2 5[T | Timecriical services
'
i 3 TCP
2 P
O 2| Etneme Ink layer Wil profly lagging
= 1| Ethermet physical layer with 100 MBfs

Figure 3.13: IEC 61850 layered structure with OSI stack
(Adapted from ABB review, 2010)

The Specific Communication Services Mapping (SCSM) is a tool which allows for the
information models to be mapped to a communication protocol which is understood
by devices in a computing environment. In Figure 3.14 it can be seen that the

Sampled Values and GOOSE applications are mapped into an Ethernet data frame,

78

this allows for GOOSE and Sampled Values applications are ensured to be high-

speed due to the eliminating of additional layers in between (R. E. Mackiewicz, 2006).

= SA specific data model * Model according to state-of-the-art SA technology

evolves slowly
= Communication technology @el (Obiects,Se@
changes quickly / \

= Splitting of SA specific

data model from Client Server o Sampled

communication technology Communication Values
Abstract / ! - i !
Communication rf I T Mapping I
Service Interface /] X
(ACSD) /

/ MMS Real time
Elazigiitsnce e Communication
TCP
ISO/OST-Stack P
Hierarchical set of rules how
information is coded for Ethemnet Link Layer
o g Ethernet Physical Layer with Priority agging (100 Mbits)
technal
i * Stack selection according to the state-of-the-art

* Generic Object Oriented Communication technology

Substation Event

Figure 3.14: |EC 61850 Communication model
(Adapted from Elgargouri, et.al. 2015)

3.3.7.1 IEC 61850 GOOSE

The IEC 61850 standard defines the Generic Object-Oriented Substation Event
(GOOSE) message as a communication service which is of a peer-to-peer nature,
that is implemented between IEDs in the substation. As determined in Section 3.3.6,
it is a high-speed service due to how it is mapped. It is created to broadcast data
which is high-priority or time sensitive between IEDs which is related to any event
such as tripping caused by overcurrent or overvoltage. In Figure 3.15 it can be seen
that GOOSE messages are mapped directly into an Ethernet Frame, which means
that it only passes through two of the seven layers of the OSI stack, namely the Data

link layer and the Physical layer.

79

Generic

ISQ/IEC 8802-2 LLC

Object Generic
Sampled Oriented Core Substation
Values Substation Time ACSI Status
{Multicast) Event Sync Services Event
=== m—m———— y PrmTmsmmm———— y PmTmmmmm———— LI ittt ikl Femmmm————]
1 1] 1 1 1
sV GOOSE TimeSync MMS Protocal Suite GSSE
(SNTP)
[Type 4} (Type 1, 14] (Type 8} Mype 2, 3, 5] (Type 1, 14)
L} [) | I) [I) L] 1
1 [] [] [| 1 1
] 0 ' I [1
I [! 1 1
I [nt] 1,
; b ' '
|] H UDP/IP TCPRIIP 1SO CO GSSE
i i i T-Profile T-Profile T-Profile
1 i [l i
: ;i ; I l
1 [1
1 [i
[} [1
[]
P H

ISQ/IEC 8802-3 Ethertype

ISOAEC 8802-3

Figure 3.15: Overview of IEC 61850 functionality and associated communication profiles
(Adapted from R. E. Mackiewicz, 2006)

GOOSE messages are generally utilised to transmit time-critical data such as status
information, between two or numerous devices. GOOSE messages are multicast
messages which are published on a communication network. The application of the
publisher-subscriber methodology used in GOOSE messages is shown in Figure 3.16
where the GOOSE model with services related to in can be seen. The publisher
consists of the physical device which is made of the logical device, which contains an
individual or numerous logical nodes containing data. A change in state of the data
contained within a logical node results in the transmission or publishing of a GOOSE

message at an increased rate for a period of time.

80

ACS| ACSI

Subscriber Publisher
DATA
cf-attr
GetDataValue.req de.attr
GetDataVaI:Je.rsp st-attr
| Communication /*' mx-attr
| mapping Local issue
Local issue \ ,f specific / Fcb /
\ ", / T / paTA-sET |/ FCP
\ eception f rans- 1 FCDA
Pull.reg __* Buffer G mission |« ’ Member #1 /
' > Buffer i Member #2
Pull.rsp Fublish.req ember
NewData.ind Member #3
F 3
—
CommLoss.ind
Control -+ GOOSE MemberReference
Buffer control (= Functionally
constrained DATA
SetGSEControlValue.req z;:i:::;ii:::uy
< e ol i DATA-
SetGSEControlValue.rsp ATTRIBUTE)

Figure 3.16: Overview of the classes and services of the GOOSE model
(Adapted from IEC 61850-7-2, 2004)

Data contained within published GOOSE messages by an IED allows any IED which
subscribes to that message access to the data contained within the GOOSE
message as well as the status of the publishing IED. The time at which the most
recent change in status has occurred, allows for the subscribing IED to set a timer
relating to the event which caused the change in status. The period timed is the
maximum amount of time which the subscribing IED must wait before the following

message is transmitted. This timing information is referred to as the Time allowed To

Live (TTL) (Leon, et.al. 2016).

In order for the GOOSE message application to be reliable, GOOSE messages are
transmitted repeatedly. A new device which has just been connected to the network
will send current status data as an initial GOOSE message transmission. All devices
publishing GOOSE messages will send data between each other with an extended
cycle time even if no change in its status value has occurred, this is shown in Figure
3.17 (T0). Retransmission of GOOSE messages may be shortened by the occurrence
of an event. A change in the status value of an IED will cause GOOSE messages to
be published repeatedly with a reduced cycle time, as shown in Figure 3.17 (T1). The
duration of the cycle time will increase up until the prevent status has been reached,

as illustrated in Figure 3.17 (T2, T3 and T0).

81

Time of transmission

1 A) ~

-
-
’

B i s] '] ' .
s#% 7 [' \ ST
P .] ' ' ' \ ~
Zo P oo ' ¥ o
. ’ 85 o8 .8] \ -
2 o R IR) ' \ .
o ’ [' \ ~
e e I | \ ‘\
‘—” P : : H : \ \\~
-~ 4 [B | ' \ ~
«” » vyYy v X “a
| TO | (TO) 1T1 |T1 | T2 | T3 | T0 | -
| | 1 | | |
A
event

TO retransmission in stable conditions (no event for a long time).

(TO) retransmission in stable conditions may be shortened by an event.

T1 shortest retransmission time after the event.

T2, T3 retransmission times until achieving the stable conditions time.

Figure 3.17: GOOSE message transmission time
(Adapted from IEC 61850-8-1, 2004)

In order to implement GOOSE messaging practically, a GOOSE control block is
required to be configured. A GOOSE control block contains information which a set of
data needed for transmission and information required for the validation of a GOOSE
message by the subscribing device. The information included in the GOOSE control
block is the name of the control block, the control block reference and services which

enable the publishing of GOOSE messages. Figure 3.18 illustrates a GOOSE control

block class.
GsCB class
Attribute name Attribute type FC Value/value range/explanation

GsCBName ObjectName Instance name of an instance of GsCB
GsCBRef ObjectReference Path-name of an instance of GsCB
GsEna BOOLEAN GS Enabled (TRUE) | disabled (FALSE)
AppID VISIBLE STRING6S GS

DataLabel [1..n] VISIBLE STRING65 GS

LSentData [1..n] GSSEData GS Derived from GSSE message
Services

SendGSSEMessage

GetGsReference

GetGSSEDataOffset

GetGsCBValues

SetGsCBValues

Figure 3.18: GOOSE control block class
(Adapted from IEC 61850-7-2, 2004)

3.3.7.1.1 IEC 61850 GOOSE Message Structure
IEC 61850 standard-based GOOSE messages are mapped onto the ISO 8802-3

Ethernet frame and the Protocol Data Unit (PDU) is included in the payload section of

82

the Ethernet frame. The ISO 8802-3 Ethernet frame is made up of two main parts; a

fixed part which cannot be altered and part which contains variables which are user-

defined. The fixed part of the Ethernet frame is made up of smaller parts, these parts

are as follows:

Destination MAC address

This is the Media Access Control (MAC) address of device which GOOSE
messages are destined for. The MAC address value is given in hexadecimal
format and typically ranges between 01-0C-CD-01-00-00 and 01-0C-CD-01-
01-FF.

Source MAC address
This is the MAC address of the device which publishes the GOOSE

messages; hence it is referred to as the source.

VLAN Tag

GOOSE messages are tagged using the IEEE 802.1Q networking standard.
This allows for time critical messages to be separated from messages which
are low priority. The Tag Protocol Identifier (TPID) is set at 0x8100 for
identifying IEEE 802.1Q tagged messages. GOOSE messages are assigned a
default priority of 4 and a VLAN ID (VID) of 0. The tag header structure is
defined in Table 3.4.

Table 3.4: IEEE 802.1Q Tag Header Structure (IEC 61850-8-1)

Octets 8 716 5 4 13 1]12] 1
0

y TPID 0x8100

2 User priority CFl VID

3 Tel VID

Ethertype

The Ethertype is a two-octet field in the GOOSE Ethernet frame. The
Ethertype helps to indicate which data protocol is contained in the payload of
the Ethernet frame and it is utilised by the data link layer at the receiving end

to determine how the data contained in the payload is meant to be processed

83

The part of the GOOSE message which is user-defined is the GoosePdu. It is defined

in Part 8-1 of IEC61850 standard. The GoosePdu contains message identifiers and

the actual data which is encapsulated within the payload section of the ISO 8802-03

Ethernet frame. The GoosePdu is illustrated in Figure 3.19.

|IECGoosePdu ::= SEQUENCE {

gocbRef [0] IMPLICIT VISIBLE-STRING,
timeAllowedtoLive [1] IMPLICIT INTEGER,

datSet [2] IMPLICIT VISIBLE-STRING,

golD (3] IMPLICIT VISIBLE-STRING OPTIONAL,
t [4] IMPLICIT UtcTime,

stNum [5] IMPLICIT INTEGER,

sqNum [6] IMPLICIT INTEGER,

test [7] IMPLICIT BOOLEAN DEFAULT FALSE,
confRev 8] IMPLICIT INTEGER,

ndsCom [9] IMPLICIT BOOLEAN DEFAULT FALSE,
numDatSetEntries [10] IMPLICIT INTEGER,

allData [11] IMPLICIT SEQUENCE OF Data,
security [12] ANY OPTIONAL,

- reserved for digital signature

Figure 3.19: GoosePdu as defined in the IEC 61850-8-1 standard
(Adapted from IEC 61850-8-1, 2004)

The GoosePdu fields are discussed below:

gochRef
The gocbRef is a visible string identifier. It contains a reference to the GOOSE

control block which controls the publication of the GOOSE messages.

timeAllowedtoLive

Each GOOSE message which is published has a time which is in
milliseconds, for which any subscribing device has to wait until the next
GOOSE message is published. Should a GOOSE message not be received
by the subscribing device after this time has elapsed, the subscribing device

will proceed to assume that association to the publishing device has been lost.

t
This field contains the Universal Co-ordinated Time (UTC) timestamp, which
indicates the time at which a GOOSE message is generated, which is

encoded according to RFC-1305 network time protocol
stNum

This is an integer value, and it represents the state number of the subscribing

device’s state machine. This value is incremented each time an event occurs.

84

sgqNum

This is an integer value, and it represents the sequence number for each
GOOSE message which is retransmitted after an event occurs. Upon the
occurrence of an event, this value is incremented until the occurrence of

another event.

test

This is a Boolean flag which represents whether GOOSE messages published
are from an actual application which is valid or generated from a test
operation. This informs the subscribing device whether it can use the GOOSE
message for any of its operations or not.

confRev
This value represents the configuration revision number of the GOOSE control
block at the time of which the GOOSE message is published. This value can

alter when data elements within the dataset are changed.

ndsComm
This flag indicates whether the GOOSE publishing device is required to be

commissioned or not.

numDataSetEntries
This value represents the number of data objects entries in the dataset which

are required to be mapped into the GOOSE message.

DataSet
DataSets are an organised grouping of data objects or data attributes. This is
the user-defined data which are meant to be included within the GOOSE

message upon the occurrence of an event.

Substation Configuration Language (SCL)

The IEC 61850 standard defines the Substation Configuration Language (SCL) as a

tool used for information exchange. The SCL allows for the configuration as well as

the reconfiguration of a substation. The format of the SCL file is the eXtensible

Markup Language (XML) format. SCL files describe communication related

configurations within an IED. The different SLC file types and their functions can be

seen in Table 3.5

85

Table 3.5: SCL description file types (IEC 61850-6)

Extension Name Description
.ICD IED Capability Description Defines the capability of an IED.
.SSD System Specification Description Specification of the substation single line

diagrams and logical nodes required.

.SCD Substation Configuration Description Specification of the substation including IED
description.
.CID Configured IED Description Defines protocols, parameter values and data

structures utilised for the IED upon booting.

The |IED Capability Description (ICD) file which defines the functions or LNs
supported by the IED and the Configured IED Description (CID) file which is in
essence an ICD file with configured LNs and parameters are used in the practical

implementation of this research work in Chapter 4.

3.3.8 |IEC 61850 Logical Nodes

The IEC 61850 standard defines a Logical Node (LN) as a sub-function of a function
common to substation automation system. Logical nodes can be found in a physical
node, which communicate and exchange information with other existing logical
devices. Although logical nodes are virtual entities, they constitute devices found in
the real world; this is referred to as virtualisation and is illustrated by Figure 3.20

where a switch is modelled as a logical node (Ozansoy, et.al. 2009).

Virtual World Real World

Controller

Air-break switch

Figure 3.20: Virtualisation
(Adapted from Ozansoy, et.al. 2009)

Logical nodes are essentially virtual models of devices within the substation. They
have been designed to be independent of any given singular communication

convention, making them versatile and allows for them to use communication

86

protocols of varying types. All functions within the substation consists of instances of
various logical nodes. Figure 3.21 illustrates this fact by showing an example of a
substation function (in this case, protection for over-current) using XCBR, PIOC,
CSWI and TCTR logical nodes (Ozansoy, et.al. 2009).

circuit
breaker

K XCBR cswi

XCBR: circuit breaker
| PIOC: instantancous overcurrent device

CSWI: switch controller
PIOC
current \’ ‘
transforme K TCTR

TCTR: current transformer

Physical Device

Figure 3.21: Simple protection and measurement example
(Adapted from Ozansoy, et.al. 2009)

Figure 3.21 shows that if current measured by the CT (Current Transformer) TCTR
exceeds a predetermined value, the instantaneous overcurrent device PIOC will
detect this and will immediately signal the switch controller CSWI, which will then

cause the circuit breaker XCBR to change its operating state.

Logical nodes in the IEC 61850 have been categorised based on the following criteria
(Ozansoy, et.al. 2009):

e Common area of application.
e Description of functionality.
e Function number of device.

e Relation between functions of logical nodes.

A logical node of the IEC 61850 standard is defined as an object that has attributes
and operations. A class defines how an object operates and its properties. Each
object is an instantiation of a class. The class for each object is defined in part 7-2 of
the IEC 61850 standard. An example of a logical class can be seen in Figure 3.22. A
logical node class consists of a number of attributes, that give a description of the
characteristics of logical node objects. These attributes supply data containing
information which are required by functions as well as numerous data sets and

control blocks (Ozansoy, et.al. 2009).

87

LOGICAL_NODE

LNName: CosNaming::NameComponent
LNRef: char[1..255] ([255])

Data: DATA*

DataSet: DATA_SET"*
BufferedReportControlBlock BRCB_Class*
UnbufferedReportControlBlock URCB_Class*
LogControlBlock: LCB_Class”

+ 4+ + + + + +

+

GetLogicalNodeDirectory() : void
GetAllDatavalues() : void**

+

Figure 3.22: Logical Node class diagram
(Adapted from Ozansoy, et.al. 2009)

34 Chapter Summary

In this chapter an overview of the IEC 61850 standard is provided. Aspects of the
standard’s framework are discussed which aids in a better understanding of the core
functions related to the IEC 61850 standard and how it is implemented in substation
domain. In this chapter, the history of legacy Substation Automation Systems (SAS) is
highlighted which is followed by an introductory discussion of the IEC 61850
standard. The concept of the IEC 61850 standard, which includes the modelling
approach taken by the standard, the naming convention of the standard, the data
communication approach taken by the standard and the communication architectures

used by the standard are all elaborated upon in this chapter.

Some of the key drivers behind the IEC 61850 standard include:

e Providing and implementing the concept of virtualisation.

e Substation framework, which is scalable, flexible, and interoperable.
e Specification of processes and tools which are versatile.

e Easy and cost-effective maintenance.

e System architecture which allows for easy reconfiguration.

88

The abstract nature and the key drivers of the IEC 61850 standard which are listed
above ensure that one of the key aims of the standard, which is to remain future

proof, is achieved.
The various discussions of all the aspects surrounding the IEC 61850 provide for a
knowledge-base which supports the design and implementation of the

aforementioned research project.

The following chapter details the practical implementation of GOOSE messages

being exchanged between devices in an IEC 61850 standard-based system.

89

CHAPTER FOUR

CASE STUDY PRACTICAL IMPLEMENTATION: SOFTWARE DEVELOPMENT
AND SYSTEM INTEGRATION

4.1 Introduction

This chapter presents the practical implementation of the project. The details include
the embedded platform used, the architecture of the embedded platform, the
operating system of the embedded platform, the project architecture, the IEC 61850
firmware library and the various changes made to the library to achieve the
successful implementation of this project. In this chapter, the following sections are
detailed:

Section 4.2 — presents the context for the project. Section 4.3 — details the
architecture of the embedded hardware chosen for the practical implementation of the
project. Sections 4.4 and 4.5 respectively — presents detailed investigations of the
IEC 61850 standard embedded C library and its contents related to the publishing of
and the subscription to GOOSE messages using existing logical nodes contained
within the library. Included in the scope of these investigations is an existing IEC
61850 standard-based logical node configured using the ICD Designer platform
independently from the logical nodes contained within the library. These
investigations are presented in the form of case studies. The first case study
conducted in Section 4.4 is implemented with communication between a computer
and an embedded device on an Ethernet network and the second case study
conducted in Section 4.5 is implemented with communication between two embedded
devices on an Ethernet network. These cases will provide the required insight into the
IEC 61850 standard-defined Logical Nodes and GOOSE message service and will
provide the foundation upon which this research project is based. Section 4.6 -
presents a case study which includes the development of a new logical node which is
meant to extend the IEC 61850 standard into other domains with the GOOSE
message publication and subscription is then implemented using the newly

developed logical node. Section 4.7 — presents the conclusion to the chapter.

4.2 Project Context

The aim of this research is to develop a new IEC 61850 standard-based logical node
to be used in the publishing of and subscription to GOOSE Messages over an
Ethernet network between two newly developed lightweight IEC 61850 standard-
based IEDs which are used in a condition monitoring system. This is achieved by

making use of an embedded platform as presented in Section 4.3. The IEC 61850

90

standard provides for the transmission of GOOSE messages using Ethernet as a
medium. The standard initially allowed for communications between devices in
substations only but due to the availability of Ethernet in many other domains this has

made it possible to transmit GOOSE messages in other areas of application as well.

This project is an implementation of a lightweight version of the IEC 61850 standard
on an embedded platform and demonstrates all the critical functionality of the
standard, but it differs from the traditional way of how the standard is implemented.
This implementation of the IEC 61850 standard is done in a way that is inexpensive
and easily accessible via various open-source avenues. The project demonstrates
the communication of data from a newly developed logical node using GOOSE
messages over an Ethernet network between two devices. Traditionally this is done
using IEDs (Intelligent Electronic Device) in the electrical substation domain, but this
research shows that a lightweight version of an IED can be created using an
embedded device and the IEC 61850 C library and how the standard’s functionality
can still be obtained. This research allows for IEC 61850 standard-based condition
monitoring to be branched out into various other domains in a manner which is

versatile and cost effective.

As discussed in Chapter 3, logical nodes are data objects are of an abstract nature,
that form the main elements of the IEC61850 standard object-oriented virtual model
and is made up of standardized data and data attributes. As mentioned previously,
logical nodes are abstract data objects and they can represent various physical
components such as switches in the grid, sensors, communication interfaces, or it

can simply contain descriptions of devices.

Logical nodes play a crucial role in IEC61850 standard-based condition monitoring.
Condition monitoring is the monitoring of the parameters of a system to recognise
significant change in the system’s performance to identify failure or breakdown. There
are various techniques of condition monitoring which are implemented in Substation
Automation Systems (SAS) and in other industrial processes. All these techniques
have in common the fact that they require some sort of sensing element and a
communication platform to communicate data from the sensors. The following section
presents the hardware used in the research project; presenting the architecture of the

hardware and motivating why it was selected for this project.

91

4.3 Hardware Platform Architecture

The Beaglebone Black Rev C is chosen as the preferred embedded systems
hardware platform as it supports the IEC 61850 functionality as an Intelligent
Electronic Device (IED), is low-cost and supports the Ubuntu, Linux-based operating

system.

Table 4.1 shows the specifications of the Beaglebone Black Rev C:

Table 4.1: Beaglebone Black Rev C specifications

Specification Attributes

Processing * Processor: AM335x 1GHz ARM® Cortex-A8
¢ 512MB DDR3 RAM
* 4GB 8-bit eMMC on-board flash storage

* 3D graphics accelerator

+ NEON floating-point accelerator

¢ 2x PRU 32-bit microcontrollers

Connectivity ¢ USB client for power and communications
e USB host

e Ethernet

¢ HDMI

e 2x 46-pin headers

Software ¢ Debian
Compatibility ¢ Android
« Ubuntu

+ Cloud9 IDE on Node.js with BoneScript library

The key components of the Beaglebone Black Rev C are listed below and is

illustrated in Figure 4.1:

e AMM3358BZCZ100 is the Beaglebone’s processor.

e DDR3 is the Dual Data Rate RAM (Random Access Memory) of the
Beaglebone.

e TPS65217C provides power to the various components on the Beaglebone.

e Ethernet PHY is the physical interface to the Beaglebone’s network.

92

e eMMC is an on-board Memory Chip Controller and holds up to 4 gigabytes of
data.

o HDMI Framer provides control for an HDMI or DVI-D display with an adapter.

TPS65217C

AM3358BZCZ100
Processor

DDR3
Ethernet PHY

Figure 4.1: Beaglebone Black Rev C key components

The rest of components of the Beaglebone Black Rev C are listed below and is

illustrated in Figure 4.2:

e 5VDC is the main DC (Direct Current) input and accepts 5 Volts power.

e Power is the button that alerts the processor to initiate the power-down
sequence.

e Ethernet is the physical connection to a LAN (Local Area Network).

e Debug Serial Header is the serial port used to debugging.

e MicroSD is where the microSD card can be inserted.

e Boot switch is the button used to reset the processor.

e MicroHDMI is where an HDMI display can be connected to.

e USB Host can be connected to various USB interfaces.

e User LEDs are general LEDs which are available for use.

93

Battery

Conngectfions

Debug Serial

User LEDs

microHDMI

Figure 4.2: Beaglebone Black Rev C connectors LEDs and switches

Figure 4.3 presents the layout of the expansion headers, P8 and P9 of the
Beaglebone. These headers are physical connection pins to the board’s various
peripherals which can be programmed to provide the desired functionality. The
legend explains what each of the connection pins on the P8 and P9 headers are used
for by default. The “POWER/GROUND” pins provide power and ground for circuits
which are built by the user. The “AVAILABLE DIGITAL” pins can be programmed to
be used as either digital inputs or digital outputs. The “AVAILABLE PWM?” pins can be
configured with PWM (pulse width modulation) to generate signals to control motors
without taking up any extra CPU cycle. The “SHARED 12C BUS” pins can be used to
implement 12C communication. The “RECONFIGURABLE DIGITAL” pins are digital
pins can that be reconfigured by the user to suits an application but by default some
are used to communicate data to be displayed on an LCD (Liquid Crystal Display)
and some used for SPI (Serial Peripheral Interface) communication. The “ANALOG

INPUTS” pins are used for only analogue inputs.

94

=
-3
@
H

[' 2 I
[vooavs| 3 4 [MMCILDATZN
EEIVODIsV s ¢ NN
_ GPIO_66 7 8 GPIO_67
_ s Y GPIO_69 9 10 GPIO_68
UART4_RXD 11 12 GPIO_60 » GPIO. 45 11 12 GPIO 44

UART4_TXD 13 14
GPIO_48 15 16
SPIO_CSO 17 18 SPIO_D1
2N B2
GPIO_49 23 24 UARTI_TXD
GPIO_117 25 26 UARTI1_RXD

w
IS
)
0
o
N
o

GPIO_47 1S 16 GPIO_46
GPIO_27 17 18 GPIO_65
19 20

UMMCTicER] 21 22
EMMCIDATO] 25 26 GPIO 61

srio_t1s 27 2o NN [JECOLVSYNC| 27 25 [ECOLPCEKIN
BN 20 20 SRS [iLeo_HsWNE! 25 20 [LCDIAC BIAS.
[sPi_scik 31 32 NN e LCD_DATA14 31 32 LCD_DATAIS
I - >+ R [LCD.DATA13! 33 34 |LCD.DATATI
I - > LCD_DATA12 35 36 LCD_DATAIO
I -7 >c NN ... o cDicitaL | MIECDIDATAS) 37 38 [ECDUDATASIN
I o <o I | LCD_DATA6 | 39 40 LCD_DATA7 |

GPo._20 (Y N | LCD.DATA4 41 42 LCD_DATAS
[KRl 000 | LCD.DATAZ 43 44 |LCD.DATA3 |
EEEOERD)] <- o [EENDE | LCD_DATAO 45 46 LCD_DATAI

Figure 4.3: Beaglebone Black Rev C pin layout

Table 4.2 and 4.3 respectively presents the Beaglebone Black Pinout tables for the
P8 and P9 expansion headers and the various modes of operation for each pinout
respectively. Each of the pinouts can be programmed to operate in a specific mode
as listed in the tables. The column labelled PROC refers to the processor pin number.
The column labelled PIN indicates the number of the pin which is listed on the
expansion header. The columns labelled MODE indicate which mode setting each pin

can be configured to function in.

The following section presents the first case study, which details the simulation of

GOOSE messages between a computer and the Beaglebone embedded device.

95

Table 4.2: Beaglebone Black P8 Pinout

PROC

R9
T9
R8

NAME

GPIO1 6
GPIO1 7
GPIO1 2
GPIO1 3
TIMER4
TIMER7
TIMERS
TIMERS6
GPIO1 13
GPIO1_12

EHRPWM2B
GPIOO 26
GPIO1_15
GPIO1_14
GPIOO 27
GPIOZ 1

EHRPWMZA
GPIO1 31
GPIO1 30
GPIO1 5§
GPIO1 4
GPIO1 1
GPIO1 0
GPIO1 29
GPIO2 22
GPIO2 24
GPIO2 23
GPIO2 25

UARTS5_CTSN

UART5 RTSN

UART4 RTSN

UART3 RTSN

UART4 CTSN

UART3 CTSN

UART5_TXD

UARTS _RXD
GPIOZ 12
GPIO2 13
GPIO2_10
GPIO2_11
GPIO2 8
GPIO2 9
GPIO2 6
GPIO2 7

MODED MODE1 MODE2 MODE3 MODE4 MODES MODES6 MODET
GND

gpmc_adb mmc1_datf gpiol[6]
gpmc_ad7 mmc1_dat? gpiol[7]
gpme_ad2 mmc1_dat2 gpiol[2]
gpmc_ad3 mmc1 dat3 gpio1[3]
gpme_advn_ale timerd gpio2[2
gpmc_oen_ren timer? gpio2[3
gpme_beln_cle timerb gpio2[5
gpmc_wen timerb gpio2[4]
gpme_ad13 lcd datal8 mmc1 dath mmc2 datl eQEP2B in pri_prul_pru_r30_15 gpiol[13
gpme_ad12 Led datal9 mme1 datd Mmc2 datl Egep2a_in pri_prul_pru_r30_14 gpio1[12
gpmc_ad9 lcd_data22 mmc1_datl mmc2_dath ehrpwm2B gpio0[23
gpmc_ad10 lcd_data21 mmc1_dat2 mmc2_dat6 ehrpwm?2_tripzone_in gpio0[26]
gpme_ad15 lcd_datal6 mme1_dat? mmc2_dat3 eQEP2 strobe pri_prull_pru_r31_15 gpio1[15]
gpme_adi14 lcd datal7 mme1 datb mmc2 dat2 eQEP2 index pri_prud_pru_r31_14 gpio1[14]
gpmc_ad11 lcd_data20 mmc1_dat3 mmc2_dat? ehrpwm0_synco gpio0[27]
gpmc_clk_mux0 | led_memory clk gpme_wait1 mme2_clk mcasp0_fsr gpio2[1]
gpme_ad8 lcd _data23 mme1_dat0 mmc2_datd ehrpwm2A gpiol[22
gpme_csn2 gpmc_beln mmc1 cmd pri_prui_pru_r30_13 pri_pru1_pru_r31_13 gpiol1[31
gpmc_csnl gpmc_clk mmcl clk pri_prui_pru_r30_12 pri_prui_pru_r31_12 gpio1[30
gpmc_adh mmc1 dath gpiol[5]
gpme_ad4 mmc1_datd gpio1[4]
gpmc_ad1 mmc1_dat1 gpiol[1]
gpmc_ad0 mmc1_datl gpio1[0]
gpme_csn gpioi[29]
led vsync gpmc_al pri_prui_pru_r30_8 pri_prui_pru_r31_8 gpio2[22]
led_pclk gpmc_all pri_prui_pru_r30_10 pri_prui_pru_r31_10 gpio2[24]
lcd hsync gpmc_ad pri_prui_pru_r30_8 pri_prui_pru_r31_g gpio2[23]
led_ac_bias _en gpme_all gpio2[25]
lcd_datal4 gpmc_ald eQEP1 _index mcasp0_axrl uarts_rxd uarth_ctsn gpio0[10]
led_datalbs gpmc_alg eQEP1_strobe mcasp0_ahclkx mcasp0_axr3 uarts_risn gpio0[11]
led datal3 gpme_al7 eQEF1B in measpl_fsr mcaspl_axrd uartd_risn gpiol[9]
lcd datali gpmec_alb ehrpwm 1B measpl ahelkr mcaspl axr2 uart3d risn gpio2[17]
led_datal2 gpmc_alb eQEP1A_in mcasp0_aclkr mcasp0_axr2 uartd_ctsn gpio0[8]
led_data10 gpmc_ald ehrpwm 1A mcasp0_axrl uartd_ctsn gpio2[16]
led_data8 gpme_al2 ehrpwm1_tripzone_in mecaspl_aclkx uarts_txd uart?_ctsn gpio2[14]
led_data9 gpmc_al3 ehrpwm0_synco mecaspl_fsx uarts _rxd uart2_risn gpio2[15]
lcd datab gpmc_ab eQEP2 index pri_prui_pri_r30_6 pri_prui_pru_r31_§ gpio2[12]
lcd data7 gpmc_al e(QEP2 strobe prl_edio_data_out7 pri_prui_pru_r30_7 pri_prui_pru_r31_7 gpio2[13
lcd datad gpmc_ad eCQEP2A in pri_prui_pri_r30_4 pri_prui_pru_r31_4 gpio2[10
lcd datab gpmc_ah eQEP2B in pri_prui_pru_r30_5 pri_prui_pru_r31_5 gpio2[11
lcd data2 gpmc_a2 ehrpwm?Z_tripzone_in pri_prui_pri_r30_2 pri_prui_pru_r31_2 gpio2[8
lcd data3 gpmc_a3 ehrpwm{_synco pri_prui_pru_r30_3 pri_prui_pru_r31_3 gpio2[9
lcd datal gpmc_al ehrpwm2A pri_prui_pru_r30_0 pri_prui_pru_r31_0 gpio2[6
lcd_datal gpmc_al ehrpwm2B pri_prut_pru_r30_1 pri_prui_pru_r31_1 gpio2[7

96

Table 4.3: Beaglebone Black P9 Pinout

PROC

NAME

RESET_QUT

PWR_BUT

UART4_T

EHRPW

gpme_wait) mii2_crs gpme_csnd mii2_crs_dv mmc1_sded vartd_rxd_mux2 gpio0[30]
gpmc_beln mii2_col gpme_csnb mmc2_dat3 gpme_dir mcasp0_aclkr_mux3 gpio1[28]
gpmc_wpn mii2_rxer gpmc_csn5 rmii2_rxerr mmc2_sded uartd_txd_mux2 gpio0[31]
gpme_a2 mii2_txd3 rgmii2_td3 mmc2_dat1 gpmc_al8 ehrpwm1A_mux1 gpio1[18]
gpme_al gmii2_txen mii2_tctl mii2_txen gpmc_al6 ehrpwm1_tripzone_input gpio1[16]
gpme_a3 mii2_txd2 rgmii2_td2 mmc2_dat? gpme_ald ehrpwm1B_mux1 gpio1[19]
spi0_cs0 mmc2_sdwp 12C1_SCL ehrpwm0_synci gpioQ[5]
spi0_d1 mmc1_sdwp 12C1_SDA ehrpwm(_tripzone gpioQ[4]
uart1_rtsn timerS dcan0_rx 12C2_SCL spi1_cs1 gpio0[13]
uart1_ctsn timerf dean0_tx 12C2_SDA spi1_cs0 gpio0[12]
spi0_d0 vart2_txd 12C2_SCL ehrpwm0B EMU3_mux1 gpio0[3]
spil_sclk uart2_md 12C2_SDA ehrpwm0A EMU2_mux1 gpio0[2]
gpme_al gmii2_nedv rgmii2_rudv mmc2_datl gpme_al7 ehrpwm0_synco gpio1[17]
vart1_txd mme2_sdwp dean?_rx 12C1_SCL gpio0[15]
measp0_ahclkx eQEP0_strobe mcasp0_axrd mcasp1_axr1 EMU4_mux2 gpio3[21]
uart!_mxd mme1_sdwp decant_tx 12C1_SDA gpio0{14]
measpl_fsr eQEPOB in mcaspl_axrd mcasp1_fsx EMU2 mux2 gpio3[19]
mcasp0_ahclkr ehrpwm0_synci mcaspl_axr2 spi1 cs0 8CAP2 in PWM2 out gpio3[17]
mcasp0_fsx ehrpwm0B spi1_d0 mme1_sded_mux1 gpio3[15]
mecasp0_axr) ehrpwm0_tripzone spil di mmc2_sded_mux1 gpio316]
measp0 aclkx ehrpwm0A mmc0 sded mux1 gpio3[14

xdma_event_intr1

telkin

spil sclk

AINO
AIN1
clkout2

timer7_mux1

EMU3_mux0

gpo0{20]

measp0_axr

eQEPO_index

Mcasp1_axrQ

emu3

gpio3{20]

eCAPD_in_PWMO0_out

uartd_txd

spi1_csi

pri_ecap0_ecap_capin_apwm o

spil_sclk

mme0_sdwp

xdma_event_intr2

gpioQ[7]

GPIO3_18

Mcasp0_aclkr

eQEPOA_in

Mcaspo_axr2

Mcasp1_aclkx

GND

97

gpio3[18

4.4 Case study 1 — simulation of GOOSE message between computer and
Beaglebone

To successfully configure and program the Beaglebone for execution of the IEC
61850 functions using the embedded C library it is necessary to initiate a Secure
Socket Shell (SSH) communication session with the Beaglebone device. into the
Beaglebone device. This needs to be done from a PC running the Ubuntu operating
system. Running Ubuntu on the PC allows for the PC to operate as an IED and
operate in the same way that the Beaglebone board does. Therefore, it is imperative
to do a successful Ubuntu installation on the PC as this will allow for the setup shown
in Figure 4.4 to operate successfully. Appendix A lists the steps taken and breaks
down the process of installing the Ubuntu operating system in detail, covering
everything which is required from the start of the booting process to the end. Once
the operating system is rebooted after the installation is completed, various updates
and additional installations are required in order to configure the computer’s operating
system for use of the IEC 61850 standard embedded C library. Appendix B details

the various steps which are taken in order to achieve this.

As with the computer, the embedded device in the form of the Beaglebone Black rev
C required a similar process to install and configure the operating system for full use
of the IEC 61850 standard embedded C library. Appendix C lists the steps taken and
breaks down the process of installing the Ubuntu operating system in detail, covering
everything which is required from the start of the booting process to the end. As with
the PC, the Beaglebone operates as an IED, and it is imperative to have a fully
working operating system. Similar to the PC platform, the embedded platform is also
required to be configured in a way which allows for full use of the library and the steps
taken to achieve this are also detailed in Appendix C. Appendix D details the
configuration of the IEC 61850 embedded C library on the Beaglebone devices.

Upon the complete configuration of both the computer and Beaglebone devices as
per Appendices A through D, the hardware and software configuration of the case
study is then setup as shown in Figure 4.4, with the network configuration of the
devices which allow for peer-to-peer communication to take place. This case study
verifies whether IEC 61850 standard-based embedded C library operates practically

as is intended.

98

GOOSE Publisher
Ethernet Cable Eihisrnot bl
IEC 61850 IEC 61850 Embedded C
Embedded C library
library
Network Switch

Figure 4.4: Physical setup of the case study

The software algorithms responsible for GOOSE publication and subscription are
contained within the IEC 61850 embedded C library. The IEC 61850 library provides
server as well as client libraries for IEC 61850/MMS applications, IEC 61850/GOOSE
applications as well as IEC 61850-9-2/Sampled Values communication protocol
applications and are all written in C. As illustrated in Figure 4.4, both the computer
and Beaglebone device has the IEC 61850 library installed with the computer as the
publisher and the Beaglebone as the subscriber and both devices are connected to
the data network switch via Ethernet cables. The computer has the Wireshark
network protocol analyser software installed and running. The Wireshark software is
used to analyse and confirm various components of the GOOSE message frame
structure as specified by the IEC 61850-8-1 standard. The following section details
changes made to the IEC 61850 embedded C library source code.

4.4.1 IEC 61850 embedded C library source code

In order to use the IEC 61850 standard embedded C library for GOOSE message
publication and subscription on the Ethernet communication network using an
existing logical node, changes are required to be made to some of the .c files within
the library in order for the example code to fit the application shown in Figure 4.4. The
first change which needs to be made is in the snippet of code shown in Figure 4.5,

which comes from the goose_receiver.c file. The version of the library downloaded

99

24 #inclu
25
26 #inclu
27 #inclu
28 #inclu
29 #inclu
3
31 #inclu
32
33 #inclu
34 #inclu
35 #inclu
36
37 #inclu
38 #inclu
39

has the DEBUG_GOOSE_SUBSCRIBER set to 0. This needs to be changed from 0
to 1 as highlighted in the red box in Figure 4.5. This change will now ensure that the
DEBUG mode is active and will print the GOOSE message structure when the
GOOSE Subscriber subscribes to messages published by the GOOSE Publisher.

de "libiec61850_platform_imcludes.h"

de "stack_config.h"”

de "goose_subscriber.h”
de "hal_ethernet.h"

de "hal_thread.h"”

de "ber_decode.h"
de "mms_value.h”
de "mms_value_internal.h”

de “linked_list.h”

de "goose_recelver.h”
de “goose_receiver_internal.h”

48 #ifndef DEBUG_GOOSE_SUBSCRIBER

41[fdefine DEBUG GOOSE SUBSCRIBER ©

42 #endif
43
44 #defin
45
46 #defin

16

e ETH_BUFFER_LENGTH 1518

e ETH_P_GOOSE 8x88b8

Figure 4.5: DEBUG_GOOSE_SUBSCRIBER setto 0

After making changes to the goose_receiver.c file, the following changes is then
made. The variable “Buffsize” is then defined, having a value of 65025 bytes. Another
variable referred to as “gooseBuffer” is then defined as an unsigned integer. This can
be seen in Figure 4.6 with the comments in the code which also explain what these
variables are being used for. All these changes are made to the

goose_subscriber_example.c file.

17 #define Buffsize 65025; //The Buffer size in bytes of the Goose Message - RD

18

19 uint8_t gooseBuffer[Buffsize]; //RAM memory allocated to GOOSE Message - RD

20

Figure 4.6: Adding new variables

After adding the new variables, additional changes are then made to same file which
is the goose_subscriber_example.c file. The next change is to call the
GooseReceiver_handleMessage (self, gooseBuffer, Buffsize) function in the while
loop found in the main function. This is shown in Figure 4.7, which also shows the
comments which are added; this function is the handler that parses the GOOSE
Message. This function is written in the goose_receiver.c file. To parse something
means to make it understandable by analysing the parts from which it is made up of,
to convert information represented in one form into another form that is easier to work

with.

100

75

77
78
79
80
81
82
83

75
76
77
78
79
80
81
82
83

while (running) {
GooseReceiver_handleMessage(self, gooseBuffer, Buffsize); // The handler that parses the GOOSE Message - RD

Thread_sleep(1000);

Figure 4.7: Calling GooseReceiver function in the Main

The GooseReceiver_handleMessage message function found in the
goose_receiver.c file can be seen in Figure 4.8. This function calls another function
which is called parseGooseMessage(self, buffer, size). This function is also found in
the same goose_receiver.c file.

while (running) {
GooseReceiver_handleMessage(self, gooseBuffer, Buffsize); // The handler that parses the GOOSE Message - RD

Thread_sleep(1000);

Figure 4.8: parseGooseMessage function

Figure 4.9 depicts what the parseGooseMessage looks like which is essential to the
workings of this project. Looking at the first function argument self, it points to the
structure of type GooseReceiver which is elaborated on later. The second argument
is a pointer to a buffer of type uint8_t (which is a known as an unsigned integer) and it
points to the address of the data contained within the buffer. The third argument is the

number of bytes which the buffer consists of.

The source code from line 693 to 741, shows the variable bufPos which is defined as
an integer, is an index. An index is a numerical representation of an item’s position in
a sequence. The size of the index is defined as Buffsize in the
goose_subscriber_example.c. This means it is the position of the buffer and the
instance of the buffer is continuously monitored while the code executes. If the data is
valid an appID gets assigned to the message, and a check is then done to determine
if the buffer is big enough and to ensure that the data in the buffer does not get
overwritten. The lines of code from 693 to 741 is the condition checks to ensure and
these conditions are met before GOOSE message subscription can take place as

highlighted in the red box in Figure 4.9.

101

From line 743 to line 761, the is where the GOOSE payload gets processed. Once alll
condition checks have been met, a GOOSE message gets parsed as highlighted in

the green box in Figure 4.9.

690 static vold+

691 par age(iver self, uintg_t* buffer, int numbytes)
692 {

693 int bufPos;

694 bool subscriberFound = false;

695

696 Af (numbytes < 22)

697 return;

698
699 /* skip ethernet addresses */
700 bufPos = 12;

701 int headerLength = 14;

702
703 /* check for VLAN tag */

704 Af ((buffer[bufPos] == 0xi1) 8& (buffer[bufPos + 1) == 0x00)) {

705 bufPos += 4; /* skip VLAN tag */ //Incrementing buffos (bufPos=16)
706 headerLength += 4;

707

708

709 /* check for GOOSE Ethertype */
710 Af (buffer[bufPos++] 1= 0xa8)

m return;

712 if (buffer[bufPos++] != 0xbE)

713 return;

714

715 uint16_t appld;

716

77 appld = buffer[bufPos++] * 0x100; //Incrementing bufPos (bufPos=17)
718 appld += buffer[bufPos++]; //1ncrementing bufPos (bufPos=18)

720 uintié_t length;
721

722 length = buffer[bufPos++] * oxi00; //Incrementing bufPos (bufPos=19)
723 length += buffer[bufPoss+]; //Increnenting bufPos (bufPos=28)
724

725 /* skip reserved flelds */

726 bufPos += 4; //1ncrenenting bufPos (bufPos=24)
727

728 int apduLength = length - &;

729

730 Af (nunbytes < length + headeriLength) {

731 Lf (DEBUG_ COOSE MS{RIBER)

732 printf(¢ SUBSCRIBER: Invalld POU size\n");

733 return;

734

735

736 Af (DEBUG_GOOSE

737 printf(coos BER: GOOSE message:\nGOOSE_SUBSCRIBER: \n");
738 printf(C , appld)

739 printf(¢ , length);

740 printf(c th: %{\n", apduLength);

741 }

742

743 /* check Lf there s an interested subscriber */
744 LinkedList element = LinkedList_getNext(self->subscriberList);

745

746 while (element != nuLL) {

747 GooseSubscriber subscriber = (GooseSubscriber) LinkedList_getData(element);
748

749 Af (subscriber->appld == appld) {

750 subscriberfound = true;

751 break;

752 }

753

754 element = LinkedList_getNext(element);

755 }

756

757 if (subscriberFound)

758 parseGoosePayload(self, buffer + bufPos, apdulLength);

759 else {

760 Af (DEBUG_GOOSE_SUBSCRIBER)

761 printf("GOOSE_SUBSCRIBER: GOOSE message ignored due to unknown APPID value\n");
762 3}

Figure 4.9: parseGooseMessage function

This concludes the changes made to the existing C code in which will help
achieving the implementation of this case study. The changes to the C code allow for
the existing example code to allow for the application shown in Figure 4.4. The
source code for both the GOOSE Publisher and GOOSE Subscriber devices are
shown in Appendix E and Appendix F respectively.

Before implementing the publication and subscription of the GOOSE message, the
data and logical node which is used in the publication and subscription of the GOOSE

message first need to be identified. Figure 4.10 shows the data which is being

102

published and Figure 4.11 shows the logical node being used to publish this data.
The logical node is in a .c and .h file format due to the programming language of the
IEC 61850 library being C. The .c and .h files are generated from a .icd file using java
script algorithms in the Ubuntu operating system environment, this is however
expanded upon later in this section. The data which is published is basic operation
where a float value is incremented in increments of 0.1. This operation is found within
the main function of the GOOSE publisher source code file and can be seen in Figure
4.10. The data declaration is highlighted in the red box and the operation in the green
boxes. As mentioned in Section 4.1, the logical nodes used in this case study are
contained within the library. The black boxes show the instantiation of the logical

node which will contain the data to be published within the GOOSE message.

*server_example_goose.c

98 /* Start GOOSE publishing */

99 Iedserver_enableGoosePublishing(iedServer);

100

101 running = 1;

102

103 signal(STIGINT, sigint_handler);

104

165 float anInl = 0.f; //Analog input2 float decleration

106 float anIn2 = 0.f; f/Analog input2 float decleration

107

108 while (running) {

109

110 J//DATA FROM Logical NODE GGIO1 - DATA OBJECT AnInl\

111 TedServer_lockDataModel(iedServer);

112

113 IedServer_updateUTCTimeAttributeValue(iedServer, IEDMODEL_GenericIO GGIO1_AnIni_t, Hal_getTimeInMs());
114 IedServer_updateFloatAttributevValue(iedServer, IEDMODEL_GenericIO_GGIO1_AnInl_mag_f, anInl);
115

116 IedServer_unlockDataModel(iedServer);

117

118 anInl += 0.1;

119 printf("Analog_Input_1 %f\n",anInl);

120

121 //DATA FROM Logical NODE GGIO1 - DATA OBJECT AnIn2

122 IedServer_lockDataModel(iedServer);

123

124 IedServer_updateUTCTimeAttributevalue(iedServer, IEDMODEL_GenericIO_GGIO1_AnIn2_t, Hal_getTimeInMs());
125 TedServer_updateFloatAttributevalue(iedServer, IEDMODEL_GenericIO_GGIO1_AnIn2_mag_f, anIn2);
126

127 TedServer_unlockDataModel(iedServer);

128

129 anIn2 += 0.2;

1308 printf{"Analog Input 2 %f\n",anIn2);

sl

132 Thread_sleep(1800); }

alzE)

134 /* stop MMS server - close TCP server socket and all client sockets */

135 TedSarver stonfiedServer):

C~ Tabwidth:8 = Ln 110, Col 63 = INS

Figure 4.10: Data using Logical Node GGIO1 to be published over GOOSE

The red highlighted boxes in Figure 4.11 show the data objects and common data
classes of logical node Generic Input/Output 1 (GGIO1) used in the publication and
subscription of GOOSE. It can be seen these correspond with the instantiations
identified in Figure 4.10 with the black boxes.

103

static_model.h

190 #define IEDMODEL GenericIO GGIO1 Mod q [l&ledModel GenericIO GGIO1 Mod qf]

191 #define IEDMODEL_GenericIO_GGIO1_Mod_t (&iedModel_GenericIO_GGIO1_Mod_t)

192 #define IEDMODEL_GenericIO_GGIO1_Mod_ctlModel (&iedModel_GenericIO_GGIO1_Mod_ctlModel)
193 #define IEDMODEL_GenericIO_GGIO1 Beh (&iedModel GenericIO_GGIO1 Beh)

194 #define IEDMODEL_GenericIO_GGIO1_Beh_stval (&iedModel_GenericIO_GGIO1_Beh_stval)

195 #define IEDMODEL_GenericIO_GGIO1_Beh_q (&iedModel_GenericIO_GGIO1_Beh_q)

196 #define IEDMODEL_GenericIO_GGIO1 Beh_t (&iedModel GenericIO_GGIO1 Beh_t)

197 #define IEDMODEL_GenericIO_GGIO1_Health (&iedModel_GenericIO_GGIO1_Health)

198 #define IEDMODEL_GenericIO_GGIO1_Health_stVal (&iedModel_GenericIO_GGIO1_Health_stVal)
199 #define IEDMODEL GenericIO_GGIO1 Health_g (&iedModel GenericIO_GGIO1 Health_gq)

200 #define IEDMODEL_GenericIO_GGIO1_Health_t (&iedModel_GenericIO_GGIO1_Health_t)

201 #define IEDMODEL_GenericIO_GGIO1_NamPlt (&iedModel_GenericIO_GGIO1_NamPlt)

202 #define IEDMODEL_GenericIO_GGIO1_NamPlt_vendor (&iedModel GenericIO_GGIO1_NamPlt_vendor)
203 #define IEDMODEL_GenericIO_GGIO1_NamPlt_swRev (&iedModel_GenericIO_GGIO1_NamPlt_swRev)
204 #define IEDMODEL_GenericIO_GGIO1_NamPlt_d (&iedModel_GenericIO_GGIO1_NamPlt_d)

205 #define IEDMODEL_ GenericIO_GGIO1_AnInl (&iedModel GenericIO_GGIO1 AnInil)

206 #define TEDMODEL GenericIO GGIO1 AnInl mag (&iedModel GenericIO GGIO1 AnInl mag)
ZBTIFdefine TEDMODEL_GenericIO_GGIO1 AnInl mag_f (&iedModel GenericIO GGIO1 AnIni_mag f) |
208 #define TEDMODEL GenericIO GGIO1 AnInl g (&iedModel GenericIO GGIO1 AnInl g)
Zﬂslmfine TEDMODEL_GenericIO_GGIO1_AnInl_t (&iedModel_GenericIO_GGIO1_AnInl_t) |
210 #define IEDMODEL_GenericIO_GGIO1_AnIn2 (&ledModel_GenericIO_GGIOI_AnIn2)

211 #define IEDMODEL GenericIO GGIO1 AnIn2 mag (&iedModel GenericIO GGIO1 AnIn2 mag)
212[#define TEDMODEL_GenericIO_GGIO1_AnInZ_mag_f (&iedModel GenericIO_GGIO1_AnInZ_mag_f) |

213
214|#define IEDMODEL GenericIO GGIO1 AnIn2 t (&iedModel GenericlO GGIO1 AnIn2 t)

215 #define IEDMODEL_GenericIO_GGIO1_AnIn3 (&iedModel_GenericIO_GGIO1_AnIn3)

216 #define IEDMODEL_GenericIO_GGIO1_AnIn3_mag (&iedModel_GenericIO_GGIO1_AnIn3_mag)
217 #define IEDMODEL_GenericIO_GGIO1_AnIn3_mag f (&iedModel_GenericIO_GGIO1_AnIn3_mag_f)
218 #define IEDMODEL_GenericIO_GGIO1_AnIn3_q (&iedModel_GenericIO_GGIO1_AnIn3_q)

219 #define IEDMODEL_GenericIO_GGIO1_AnIn3_t (&iedModel_GenericIO_GGIO1_AnIn3_t)

220 #define IEDMODEL_GenericIO_GGIO1_AnIn4 (&iedModel GenericIO_GGIO1_AnInd)

221 #define IEDMODEL_GenericIO_GGIO1_AnInd_mag (&iedModel_GenericIO_GGIO1_AnIn4_mag)
222 #define IEDMODEL_GenericIO_GGIO1_AnInd_mag_f (&iedModel_GenericIO_GGIO1_AnIn4_mag_f)
223 #define IEDMODEL_GenericIO_GGIO1_AnIn4_gq (&iedModel_GenericIO_GGIO1_AnIn4_q)

224 #define IEDMODEL_GenericIO_GGIO1_AnInd_t (&iedModel_GenericIO_GGIO1_AnIn4d_t)

225 #define IEDMODEL_GenericIO_GGIO1_SPCS01 (&iedModel_GenericIO_GGIO1_SPCSO01)

226 #define IEDMODEL_GenericIO_GGIO1_SPCSO1_stval (&iedModel GenericIO_GGIO1_SPCSO1_stval)

C/ObjC Header ¥ Tab Width: 8 ~ Ln 190, Col 73 - INS

Figure 4.11: Data objects and common data classes of Logical Node GGIO1

The GGIO Logical Node (LN) class is defined in the IEC 61850 standard. Some of the
parameters are mandatory and others are optional, meaning may be added at the
user’s discretion as annotated in Figure 4.11. Figure 4.12 illustrates the GGIO Logical
Node class definition as defined in part 7-4 of the IEC 61850 standard. The GGIO
Logical Node’s Data Attributes (DA) are divided into 3 parts, those parts are Common
Logical Node Information, Controls, Metered Values and Status Information.
lllustrated in Figure 4.12 is the names of the data attributes, the type of the data
attributes as well as whether the data attributes are mandatory or optional (as
indicated by an M or an O). It can be seen from Figure 4.12 the Anin data attribute,
which is of type Measured Value is used in the C source code, which is illustrated in
Figure 4.10.

104

GGIO class

Attribute Name | Attr. Type Explanation T| M/IO
LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data

Common Logical Node Information

LN shall inherit all Mandatory Data from Common Logical Node Class M
EEHealth INS External equipment health (external sensor) 0
EEName DPL External equipment name plate 0
Loc SPS Local operation 0
OpCntRs INC Resetable operation counter (o]
Measured values
AnIn MV Analogue input | |O
Controls
SPCSO SPC Single point controllable status output 0
DPCSO DPC Double point controllable status output
1SCSO INC Integer status controllable status output 0
Status Information
Intln INS Integer status input
Alm SPS General single alarm
Ind SPS General indication (binary input)

Figure 4.12: GGIO (generic process I/0) logical node class definition
(Adapted from IEC 61850-7-4, 2004)

The main function shown in Figure 4.13 shows the section of the GOOSE subscriber
code which, when executed waits for a GOOSE message to be published on the
communication network which contains data from a specific logical node. When this
GOOSE message is published, it then receives and processes this data. This full

source code file can be seen in Appendix F.

goose_subscriber_example.c

46 rin S\N , PUTTEr);
a7}

48

49 int

50 main(int argc, char** argv)

51 (

52 GooseRecelver receiver = GooseRecelver_create();

53

54 if (argc > 1) {

55 printf("set interface id: %s\n", argv[1]);

56 GooseRecelver_setInterfaceld(receiver, argv[1]);

57 1

58 else {

59 printf("Using interface ethe\n");

60 GooseReceiver_setInterfaceld(receiver, "etho");

61

62

63 GooseSubscriber subscriber = GooseSubscriber_create("simplelOGenericI0O/LLNOSGOSgcbAnalogvalues”, NULL);
64

65 GooseSubscriber_setAppId(subscriber,

66

67 GooseSubscriber_setListener(subscriber, gooselistener, NULL);
68

69 GooseReceiver_addSubscriber(receiver, subscriber);

70

71 GooseReceiver_start(receiver);

72

73 if (GooseReceiver_isRunning(receiver)) {

74 signal(SIGINT, sigint_handler);

75

76 while (running) {

77

78 GooseReceilver_handleMessage(self, gooseBuffer, Buffsize); // The handler that parses the GOOSE Message - RD
79

80 Thread_sleep(1000);

81

82 }

83 1

C~ Tabwidth:8 ~ Ln 46, Col 20 = INS

Figure 4.13: GOOSE Subscriber source code

105

This concludes the first case study, and results of this case study are discussed in the
Chapter 5, where the structure and data of the GOOSE message which is published
and subscribed to is analysed. The next section presents Case Study 2, which
describes the configuration requirements for GOOSE message communication

exchange between the Beaglebone devices.

4.5 Case study 2 — simulation of GOOSE message between two Beaglebone
devices

The same process of installing the operating system, configuration of the device and
that of the installed IEC 61850 library shown in Appendix C and Appendix D have
been followed for the configuration of the second Beaglebone device. Upon the
complete configuration of the second Beaglebone device, the hardware and software
configuration of this case study is then set up as shown in Figure 4.14. In the
previous case study, GOOSE Publication and Subscription is implemented using a
logical node which preconfigured with the IEC 61850 standard-based embedded C
library. This case study verifies whether the IEC 61850 library operates correctly as

intended when using a newly configured IEC 61850 standard-based logical node.

GOOSE Publisher

Ethernet Cable

GOOSE Subscriber
Ethernet Cable

|EC 61850
IEC 61850 Embedded C
Embedded C

librai
library v

Network Switch

Ethernet Cable

Figure 4.14: Physical setup of the case study

106

Figure 4.14 illustrates two Beaglebone devices, one configured as the GOOSE
Publisher device (on the top left in the blue box) and the other as the GOOSE
subscribing device (in the top right (green box). Both devices contain the IEC 61850
standard embedded C library. These devices are both connected to a network switch
with Ethernet cables. Another device on the network is the computer which monitors
GOOSE data packets published on the network using the Wireshark software (bottom
purple box).

The publication and subscription of GOOSE messages in this case study is done
using a newly configured logical node from the existing list of logical nodes which are
defined in the IEC 61850-7-4 standard. In Chapter 3, logical node classes are
discussed, detailing data attributes and how to identify whether data attributes are
mandatory or optional. The logical node chosen for the implementation of this case
study is the CCGR logical node, from the control group of logical nodes. The CCGR
logical node is used to control the cooling equipment within the substation
environment. Figure 4.15 illustrates the CCGR Logical Node class definition as
defined in part 7-4 of the IEC 61850 standard. The CCGR Logical Node’s Data
Attributes (DA) are also divided into 3 parts, those parts are Common Logical Node
Information, Controls, Metered Values and Status Information. This clearly follows the
trend detailed in Chapter 3 relating to Logical Nodes. Figure 4.15 illustrates the
names of the data attributes, the type of the data attributes as well as whether the

data attributes are mandatory or optional (as indicated by an M or an O).

107

CCGR class
Attribute Name | Attr. Type Explanation T| MIO

LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Nade Information

LN shall inherit all Mandatory Data from Common Logical Node Class M
EEHealth INS External equipment health (o]
EEName DPL External equipment name plate o
OpTmh INS Operation time s}
Measured values
EnvTmp MV Temperature of environment 0]
QilTmpln MV Oil temperature cooler in 0
QilTmpOut MV Qil temperature cooler out 0]
QilMotA MV Qil circulation motor drive current 0
FanFlw MV Air flow in fan (o]
FanA MV Motor drive current fan |]O
Controls
CECtl SPC Control of complete cooling group (pumps and fans) o]
PmpCtiGen INC Control of all pumps e}
PmpCtl INC Control of a single pump 0
FanCtiGen INC Control of all fans o}
EanCtl INC Control of a single fan 0
Status Information
Auto SPS Automatic or manual e}
FanOvCur SPS Fan overcurrent trip o)
PmpOvCur SPS Pump overcurrent trip 0
PmpAlm SPS Loss of pump o]
Settings
OilTmpSet ASG |Set point for oil temperature | |O

Figure 4.15: CCGR Logical Node
(Adapted from IEC 61850-7-4, 2004)

For purposes of testing of the GOOSE Publisher/Subscriber source code of the IEC
61850 standard embedded C library, not all of the data objects and common data
classes are used in the configuration of this logical node. All that is required is a data
object which has a Measured Value (MV) common data class to demonstrate the
publishing of data which is in the form of a float value. The Data Object (DO) chosen
is the FanFlw DO (red box), which is described as the air flow in a fan as shown in
Figure 4.15.

4.5.1 Configuration of CCGR Logical Node in the ICD Designer software

This section provides the detailed procedure of the configuration of an existing IEC
61850 standard-based CCGR logical node within the ICD software environment. The
steps that used in the configuration of the CCGR logical node within the ICD Design

software are shown in the flowchart in Figure 4.16.

108

Y
Define the Add the Dataset
Stepl Header Step 5
. X Group to LLNO
information
Y Y
Configure the Add the Report
Step 2 communication Control Group Step 6
settings to LLNO
Y Y
Add the CCGR Logical Add the GSE
Step 3 Node to the Logical Control Group Step 7
Device section to LLNO
Y Y
Configure
Step 4 required data Export ICD file Step 8
types for CCGR

Figure 4.16: Flowchart detailing the steps for CCGR logical node configuration

4511 Step 1: Define Header Information
The first step after starting up the ICD Design software is to create a new file red (red
box) as shown in Figure 4.17. The format of the file is in the Configured IED

Description (CID) format.

~ SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

New (| Open ~ | Save | Save AS| Close |T00|S (2

Figure 4.17: The New File template

109

The next part defines the parameters which are required in the by the Header section.
Expand the Header section and enter “CNTRL” as the Header ID (red box in Figure
4.18). This is a user defined name and is used to identify the function of the logical

node, i.e., control. The Header information is very minimal.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

save | Save As| Close | Tools « | 2

New| Open *

¢ serseL

&~ COM Communication
o[l serverlED - TEMPLATE

Figure 4.18: The Header ID

45.1.2 Step 2: Communication settings configuration

The Communication (red box) section is where the IP address and GSEGroup are set
for the Access Point (AP). This section is accessed upon expanding the
Communication — SubNetwork — ConnectedAP — Address and GSEGroup segments

as shown in Figure 4.19.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

New] Open | save] save s close] Tooks - [7|

RDcoolingLN.cid
i | Detail

B | setscL
e fi =
Value 110.0.02 - ¢ oM Communication
: ubNetwork - subnetwork1 subnetwork1

Options b ¢ [l ConnectedAP - accessPoint1
: ?] Address

P P-IP-SUBNET 255.255.255.0
P P-IP-GATEWAY 10.0.0.1

P P-0SI-TSEL 0001

P P-0SI-PSEL 00000001

P P-0SI-SSEL 0001

7 6SE GSEGroup

1
4
01-0c-cd-01-00-01
1000

: P P -VLAN-PRIORITY

‘| P P-APPID

i P P -VLAN-PRIORITY

P P-APPID

4
4
01-0c-cd-01-00-01
1000

Figure 4.19: Defining IP addresses and GSEGroup for the Access Point

110

The ServerlED name is left as Template (red box). The parameters for the ServerlED
are setup according to the green box as illustrated in Figure 4.20:

e Configuration Version: 1

e Description: COOLING

e Manufacturer: SystemCORP Energy Pty Ltd

e Type: RTUType

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
New | Open - | save| save s close | Toas + | 7|

Nocid |

| [Detail

ServerlED |9 seuscL
| vame TEMPLATE | |E
Owner Roderick Domingo ©-COM Communication

Original SCL version rm_m |m.|g

Original SCL revision

Original SCL release

Engineering Right v

Config Version

Description ICOOLING :
Manufacturer iSystemCORP Energy Pty Ltd
_ Tipe RTUType)

© Services

Figure 4.20: Defining the ServerlED parameters

45.1.3 Step 3: Adding the CCGR Logical Node to the Logical Device
Expand the ServerlED — AccessPoint — Server — LDevice — Cooling. Right-click and
select Add Logical Node as illustrated in Figure 4.21 (red box). From the drop-down

menu, find the CCGR Logical Node (red box) as shown in Figure 4.22.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
New | Open | save] savens | clos | Toos -]

Ncid |

[Detail

. |
LDevice e sescL
Instance |Cnn||ng |

LDName ©-CoM C

¢ [serverlED - TEMPLATE COOLING
Options 7 [l AccessPoint - accessPoint1 accessPoint!

Description

¢ [LDevice -

LDevice

o Bl LNO - LLI Delete Logi = Logical node zero]

°' LN -LPHO Copy Logical Device Physical device information
o[l LN - CCGH paste | ogical Node Cooling group control

Add ical Node
Move Up

Move Down
Expand All
Collapse All
Reload Tree

Add Comment

Figure 4.21: Adding the CCGR Logical Node

111

Add Logical Node to LDevice ~ O X
The Template "61850 Edition 2* has been loaded prefc: |
Fiiter Node Types
; " Show All (237) l' Instances:
acstnois Iis I ccor Cooling group control - start: o= count 1=
ATCC lic tap changer controller &
CCGR AVCO Voitage control (= sl
b EiMod aabandiing
o [8en o Tenocking _
o [] Health CcPOW Point-on-wave switching
o I NamPit cswi Switch controller |
CSYN izer controller >
o [JopTmh =
o [] Envimp
o [] OilTmpin
o [] OilTmpOut
o [] OilMotA
o [FanFlw
o []FanA
o [] CEBI
o [Jcect
o [] PmpCtiGen =
eotopc e

Figure 4.22: Selecting the CCGR Logical Node from the list

45.1.4 Step 4: Configuring the CCGR Logical Node Data Types

Expand the CCGR Logical Node to show the view illustrated in Figure 4.23. The Data
Objects for the Data Attributes are shown in Figure 4.23. The most important Data
Object being for purposes of this case study is Fan Flw (red box). The Fan Flw Data
Object (of type Measured Value) has its Data Attribute “mag” (green box) set to
FLOAT 32. This Data Object is used to publish the simulated data using GOOSE.

I SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo —

Wew| Open - | save| save as | close | Tools + | 7|
ilﬂm‘.Ll.ﬂ
[]

Detail Optional
5 9 $CLSCL
s e
Functional Constraint |MX [o con
Basic Type Struct hd 9 [l serverlED - TEMPLATE (COOLING
¢ [AccessPoint - accessPointt accessPoint
Options
® Trigger Options | # ([LDevice - Cooling
Data Change] true. e I0 Lro - Lo Logical node zero Mandatory
Data Update [¥] true o[- LPHDO Physical device
Quality Change [false # [n-ccGro Cooling group control
Description B DatasetGroup
‘sAddr RCB ReportControlGroup
Value Kind | [+ 6 LogControlGroup
Count & InputsGroup
= Enumerted status Mandatory
“mag mag
Bk B0A-1 t
BADA-q a Mandatory
A DA-t t Mandatory
<8 DO - FanCtl (Controllable enumerated status. ‘Optional

Figure 4.23: Configuring the Data Object parameters

45.15 Step 5: Adding the Dataset to LLNO

Expand the view of LLNO and right-click on the DatasetGroup to select Add data (red
box) as illustrated in Figure 4.24. After doing this, the window illustrated in Figure
4.25 the appears. Select only the Data Objects from the CCGR Logical Node (red

box). Name the data set and then select Add Dataset to complete the process of

112

adding a data set. Two data sets are added and the names of the two datasets are

DataSet — AnalogValues and DataSet — Events

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
= e e e

RDcoolingLN.cid

DatasetGrou|
P ¢ seLSCL

|

Options o= COM C
¢ [l serverlED - TEMPLATE
? Wl AccessPoint - accessPoint1

¢ [LDevice - Cooling
¥ Ll LNO-LLNO

v Wi DatasetGrop

DatasetGi
Lt Add Data Set |
Expand All
o Collapse All
-l Reload Tree

SV SampledvalueControlGroup
weé LogControlGroup
& InputsGroup
$6 SettingGroup
D0 DO - Mod
© DO DO - Beh
° DO DO - Health
° B0 DO - NamPlt
o[l LN - LPHDO
oMl LN - CCGRO

Figure 4.24: Configuring the Data Object parameters

Add new data set. — O X
Include: (] @B server FCDA List
[v] ST - Status ¢][] cooling |Cooling/CCGROSSTSBENS
|Co0ling/CCGROSSTSFanCtis
Dn Dot o LJIE LN *[Cooling/CCGROSMXSFanFiws
MX - Measurands o][LpHDO :|Co0ling/CCGROSCF$FanCtis
SP - Setpoint (¢ _v/[M cCGRO i
o
SV - Substitution [I Ben
- . o [v] DO FanFiw
= o [90 Fanctl
[v] DC - Description

SG - Setting group
[v] SE - Setting group editable
[] EX - Extended definition

Dataset Nanfe:] li Add Dataset

Figure 4.25: Adding Data Objects and Naming the Dataset

113

45.1.6 Step 6: Adding the Report Control Group to LLNO

Expand the view of LNO — LLNO and right-click on the ReportControlGroup to select
Add Report Control Block (red box) as illustrated in Figure 4.26. Two report control
blocks are added, and this process needs to be done for both. After doing this, the
windows illustrated in Figure 4.27 and 4.28 then appears for each of the report control
blocks which will need to be configured, however, in this case Figures 4.26 and 4.27
show the configuration of each of the configured report control bocks already

completed.

[SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo - X
Mew | Open + | ave | save as | close | Tools - |2

7 [ServeriED - TEMPLATE COOLING
¢ [0l AccessPoint - accessPointt accessPoint1

Logical noge zero Mandatory

EventsRCE
AnalogValuesRCE

Controllable enumerated status Mandatory
Enumerated stalus Mandatory

Logical Node name plate Mandatory
Physical device information
Couling group control

Figure 4.26: Adding Report Control Block

Below are the parameter configuration inputs as per Figure 4.26 (red boxes) for the

Events report control block:

e Buffer Time: 50ms

e Buffered: false

e Configuration Version: 1
e Dataset: Events

e Integrity Period: 1000

e Name: EventsRCB

e Report ID: Events

e |ndexed: true

114

n SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demao - s
New| Open + | Save | Save s | Ciose | Toois + | 2|
RDcoolingLN.cid

ER o
o |#sescL
Buffertime (ms) 50 :
Buterea Cltaise T
ConfigRevision 1 & Bl ServerED - TEMPLATE oo
Data 5t Events I~f | | % B AccessPoint- accessPointi [pr——
Description
Integrity Period 000 # [l LDevice - Cooling
Hame EvenisRCE ; v I Lo - Lo Logical node zero Mandatory
ReportiD [Events : = P DatasetGrous
Indexed [¥] true. Py
Options 1 L) ReportControl - AnalogValuesRCB |analogvaluesRCB
¥ Options : * B GSEContolGroup
‘Sequence Number] true = $w SampleavalueControlGroup
Time Stamp. | ue : e LogControlGroup
Data SstName (e : & inputsGroup
Reason Code] true. 1 $G SeltingGroup
Data Reference [taise =8 D0 - oa re———
Buffer Overow W true. ; 08 00 -Ben stas Mandatory
Entry D |Craise] 00 DO - Health Enumerated status Mandatory
& Reference | true. E > B0 DO - NamPit Logical Mode name plate Mandatory
Segmentation (depreciat .. |] faise ; ML -LPHOO Physical device information
¢ Trigger Options 1 o[Ln-cocro Cooling group contiol
Data Change [raise
Data Update [raise
Included in Integrity Push |] true
Quality Change [false
General [¥] true. mE
¢ Report Enabled =

Figure 4.27: Report Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.27 (red boxes) for the
AnalogValues report control block:

e Buffer Time: 50ms

e Buffered: false

e Configuration Version: 1
e Dataset: AnalogValues

e Integrity Period: 1000

¢ Name: AnalogValuesRCB
e Report ID: AnalogValues

e Indexed: true

I SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo X
New | Open - | Save | Save As | Close | Tools - | 7|
ROcoolingLN.cid
ReportControl o [Detell Optional
| ¢ seLscL
B B [
P = ~ | || o
ConfgReveion 1 |+ M senveneD - TEMPLATE CooUNG
Datasel -1 ¢ [AccessPoint - accessPointt 3coessPointt
Description ;
Integrity Period 1000 4 [LDevice - Cooling
Hame finalogValussRCB £ ¢ I Lo -LLND Logical node zero Wandatory
Report 1D es i Qo
[noeed o true 7 RSB ReportContolGroup
L] ReportControl - EventsRC8 EventsRCE
‘Options E
m 4L E oG8 GSEControlGroup
per (¢l true = (\
Time Stamp e I Y)
Data Set Name] true. : F InputsGroup
Reason Code] true. Z 56
Data Reference [talse : =88 00 - Mod. Mandatory
Bufter Overflow ¥l trve 2 >0 00 -Beh Enumerated status Wandatory
Entry ID [talse > 88 DO - Health Wandatory
‘Configuration Refsrence | (] true = B0 DO - NamPIt Logical Node name plate Mandatory
‘Segmentation (deprecial. | [] false o[LN - LPHDO Physical devics information
¥ Trigger Options [N - ccaro Cooling group control
Data Change [taise
Data Update [taise
Included in Integrity Push | (7] true
Quality Change [taise
General Interrogation (i true WE
? Report Enabled =:

Figure 4.28: Report Control Block (AnalogValues) parameter configuration

115

45.1.7 Step 7: Adding the GSE Control Group to LLNO

Expand the view of LNO — LLNO and right-click on the GSEControlGroup to select
Add GSE Control Block (red box) as illustrated in Figure 4.29. Two GSE control
blocks are added, and this process needs to be done for both. After doing this, the
windows illustrated in Figure 4.30 and 4.31 then appears for each of the GSE control
blocks which will need to be configured. Figures 4.30 and 4.31 show the configuration
of each of the configured GSE control bocks already completed.

[systemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo - =] X
New | Open « | Save | Saveas | close | Toots + | 7|

Detail Optional

COOLING

accessPoint1

+ [LDevice - Cooling

Logical node zero Wandatory

¢ I Lho - LLNO

o0 DatasetGroup

- RCD ReportControiGroup

Wandatory

Enumerated status Mandatory
Enumerated status Mandatory

Logical Node name plate Mandatory

Physical device information

Cooling group control

o[LN - cooro

Figure 4.29: Adding GSE Control Block

Below are the parameter configuration inputs as per Figure 4.30 (red boxes) for the
Events GSE control block:

e Name: gcbEvents

e Goose ID: events

e Data Set: Events

e Configuration Revision: 2
e Type: GOOSE

116

[5ystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

Wew | Open + | save | Save s | Close | Tools » | 2/

% [l LDevice - Cooling

M wo-Lino

Logical node zero

Mandatory

o % DatasetGroup

| o k58 ReporiControlGroup

7 s csfcmmcmui
- gcsnalogvalues

W SampledValueCantrolGroup
wa L
F InputsGroup
$6 SeftingGroup
= B8 DO - Mod Mandatory
88 00-Beh Enumeraled stalus Mandatory
& B0 DO - Health Enumerated status Mandatory
o B0 DO - NamPIt Logical Node name plate Mandatory
o[LN - LPHDO Physical device information
o[LN - ceGRO Cooling group control

Figure 4.30: GSE Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.31 (red boxes) for the
AnalogValues GSE control block:

e Name: gcbAnalogValues

e Goose ID: anlog

e Data Set: AnalogValues

e Configuration Revision: 2

e Type: GOOSE

I8 systemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo - g X I
New| Open « | save| save as | close | Toais + [2]
RDcoolingLN.cid
Detail Optional
GSEControl I
Hame gconalogvalues
Goose 1D lanalog
Data Set 7 [l ServedED - TEUPLATE COOLING
¢ [} AccessPoint - accessPointi accessPointi
Config Revision # [LD#wce - Cooling
Descripton # I LNO - LLND Logical node zero Mandatory
> 8 DatasetGroup
©RG3 ReporiControlGroup

9 6

geoEvents

3 al oup
L8 LogControlGroup

Figure 4.31: GSE Control Block (AnalogValues) parameter configuration

45.1.8

& inputsGroup
$6 SetingGroup
=0 DO -Mod Controllable enumerated status. Mandatory
o8 DO - Beh Mandatory
B DO - Health Enumerated stalus Mandatory
= D8 DO - NamPit Logical Node name plate Mandatory
o[l LN - LPHDO Physical device informaion

o[LN - CCGRO

Cooling group cantrol

Step 8: Export the CID file to ICD file

The format of the configured project file is in the CID file format. The file is exported to
the IED Capability Description (ICD) format for use later by the IEC 61850 standard
embedded C library. To change the file format to CID, select the Tools option from the

menu and select Export ICD File as illustrated in Figure 4.32 (red box).

117

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

uew‘omn-

['see] sove s | cone] 10 < [7]

E Ncid | Quick Validate
Program Options Detail

SCL

Version

Ly

[2007 Template Customiser

Revision B Manage C i Logical Nodes
Release 4 Export DAID Template fIPLATE COOLING
Import DAID Template
Options Import DAs from WDX File

Figure 4.32: Exporting project file from CID to ICD format

The IEC 61850 standard-based CCGR Logical Node has now been configured and
exported to an ICD file which can be used by the IEC 61850 standard embedded C
library as well as other software tools.

4.5.2 Configuration of the CCGR Logical Node in C Library

When implementing logical nodes which are newly developed or configured that are
not local to the IEC 61850 embedded C library, the .ICD file has to be converted into
.c, .h and .cfg files.

To convert the .ICD file to a .c, .h and .cfg file, the newly created .ICD file is copied to
a USB drive and moved to the IEC61850 library directory, here it is moved into a
folder called “model_generator”, which is a subfolder of the “tools” folder. In order to
create the .c and .h files, JRE (Java Runtime Environment) 6 needs to be installed.
Java Runtime Environment is a software layer, the way it works is that it runs on top
of a computer's operating system, which in this case is Ubuntu. JRE provides the
class libraries and other resources which may be required by a specific Java

program.

4521 Java Runtime Installation
The steps listed below details the procedure implemented to install the Java Runtime
Environment (JRE).

1. In the terminal the following command is typed: “sudo apt update” and all

prompts are followed.

2. In the terminal the following command is typed: “sudo apt upgrade and all

prompts are followed.

118

3. In the terminal the following command is typed: “sudo add-apt-repository

ppa:linuxuprising/java” and all prompts are followed.

4, In the terminal the following command is typed: “sudo apt update” and all

prompts are followed.

5. In the terminal the following command is typed: “sudo apt install oracle-
javall-installer-local” and all prompts are followed. This script downloads the Java

archive from the official site and configures the system.

6. In the terminal the following command is typed: “sudo apt install oracle-
javall-installer” and all prompts are followed. This script sets Java 11 as the default

version of Java on the Ubuntu system.

7. In the terminal the following command is typed “java -version”.

In step 3, the Personal Package Archives (PPA) contains a package oracle-javall-
installer having the Java installation script. In step 5, the script downloaded the Java
archive from the official site and configured it on computer locally. Step 7 then just

allows to check that the correct version of Java is installed as required.

45.2.2 Converting .ICD file format to .c .h and .cfg
After completing the Java installation, the following steps are taken in order to create

the required configuration files:

1. The first step is to open the terminal and navigate to the “model_generator”
folder in the IEC61850 library.

2. In the terminal the following command is typed: “java -jar genmodel.jar
RDcoolingLN.icd” (green box). After doing this, a static_model.c and static_model.h
file is created (yellow box). These newly generated files are copied to the location of
the IEC61850 project directory. The static_model.c file defines the IED data model in
terms of its structure and it also contains values which are preconfigured by the SCL
file. The static_model.h file is included by the c code and defines abstract references
to resources that that can be used to access the data model. The .c and .h file is
generated from the .ICD file which was configured in the ICD Designer software and

copied over to the Ubuntu directory (blue box). This is illustrated by Figure 4.33.

119

et roderick@roderick-Lenovo-G50-80: ~/Running For PICS/RD Cooling/tools/model_generator Q

8 $| java -jar genmodel.jar RDcoolingLN.1icd
Select ICD File RDcoolingLN.icd
e data type templates ...
e IED section ...
e communication section ...
connectedAP accessPointl for IED TEMPLATE
report instance 01
report instance 01

inverter_with_report.icd sampleModel_with_dataset.icd
manifest-dynamic.mf . = . simpleI0_direct_control_goose.scd
genericI0.icd manifest-dyncCode.mf
manifest.mf " metrs . icd
complexModel.icd inverter3ph.icd manifest-modelviewer.mf

sl

Figure 4.33: Creating .c and .h file from .ICD file

3. In the terminal the following command is typed: “java -jar genconfig.jar
RDcoolingLN.icd RDcoolingLN.cfg (green box). This will generate the file
RDcoolingLN.cfg (yellow box). This is illustrated in Figure 4.34. The file format is in
plain text and contains the entire description of the data model as well as values
which are pre-set and short addresses which are optional. Handles access data
attributes during runtime, handles however are unknown when the application is
compiled. API calls requests handles, by using the short addresses or object

references of a specific data attribute.

120

~ roderick@roderick-Lenovo-G50-80: ~/Running for PICS/RD Cooling/tools/model_generator Q

$| java -jar genconfig.jar RDcoolingLN.icd RDcooling.cfg

Dynamic model generator

parse data type templates ...

parse IED section ...

parse communication section ...

Found connectedAP accessPointl for IED TEMPLATE

inverter_with_report.icd sampleModel_with_dataset.icd
-dynamic.mf simpleI0_direct_control_goose.scd
genericI0.icd -dyncCode.mf RDcoolingLN.1icd
o sampleModel_errors.icd static_model.c
complexModel.icd inverter3ph.icd sampleModel.icd static_model.h

sl

Figure 4.34: Creating .cfg file from .ICD file

Before implementing the publication and subscription of the GOOSE message, the
data and the newly configured logical node which is in the publication and
subscription of the GOOSE message first need to be identified. Figure 4.35 shows
the data which is being published and Figure 4.36 shows the newly configured logical
node which is being used to publish this data. As is the case in the previous case
study, the logical node is in a .c and .h file format due to the programming language
C. The .c and .h files are generated from a .icd file using java script algorithms in the
Ubuntu operating system environment, as detailed in Section 4.5.2. The data which is
published is a basic operation where a float value is incremented in increments of 0.1.
This operation is found within the main function of the GOOSE publisher source code
file and can be seen in Figure 4.33. The data declaration is highlighted in the red box
and the operation in the green box. The black box shows the instantiation of the
newly configured logical node which contains the data to be published contained

within the GOOSE message. The full source code can be found in Appendix G.

121

*server_example_goose.c

113

114 }

315

116 /* start GOOSE publishing */

117 IedServer_enableGoosePublishing(iedServer);

118

119 running = 1;

120

121 signal(SIcINT, sigint_handler);

122

123 float fanflw ; //Fan Flow Data float decleration
124

175

126 while (running) {

127

128 IedServer_lockDataModel(iedServer);

129

130

131 //NEW Logical Node

132 IedServer_updateUTCTimeAttributeValue(iedServer, IEDMODEL_Cooling_CCGRO_FanFlw_t, Hal_getTimeInMs());
133 Iedserver npdateFloatAttrihutevalus(iedServer TEDMODEI Cooling CCGRA FanFlw mag £ fanfluw):
134

alzi5

136 IedServer_unlockDataModel(iedServer);

137

138 fanflw += 1;

139

140 printf("Analog Input 1 %fAn", fanflw);

141

142

143 Thread_sleep(T

144

145 /¥ STop MMS Server - close TCP server socket and all client sockets */
146 IedServer_stop(iedServer);

147

148 /* Cleanup - free all resources */

149 Iedserver_destroy(iedServer);

150 } /* main() */
C > Tabwidth:8 ~ Ln 119, Col 21 =4 INS

Figure 4.35: Data using Logical Node CCGRO to be published over GOOSE

The red highlighted boxes in Figure 4.36 show the data objects and common data
classes of the newly configured logical node CCGRO used in the publication and
subscription of GOOSE. It can be seen these correspond with the instantiations
identified in Figure 4.35 with the black box.

static_model.h

Save

*server_example_goose.c static_model.h
B4 #UET LNE LCUMUULCL_CLOULLWNY_LLNU_NaMPLL_venaor &LegroueL_LooLwung_Loeno_nNarme LL_VENJoT]
85 #define IEDMODEL_Cooling_LLNG_NamPlt_swRev (&iedModel_Cooling_LLNO_NamPlt_swRev)
86 #define IEDMODEL_Cooling_LLN@_NamPlt_d (&iedModel_Cooling_LLN®_NamPlt_d)
87 #define IEDMODEL_Cooling_LLN@_NamPlt_configRev (&iedModel_Cooling_LLN®_NamPlt_configRev)
88 #define IEDMODEL_Cooling_LLN@_NamPlt_ldNs (&iedModel_Cooling_ LLNO®_NamPlt_1ldNs)
89 #define IEDMODEL_Cooling_LPHD® (&iedModel_Cooling_LPHDO)
90 #define IEDMODEL_Cooling_LPHDO_Beh (&iedMedel_Cooling_LPHDO_Beh)
91 #define IEDMODEL_Cooling_LPHD®_Beh_stval (&iedModel Cooling_LPHD@®_Beh_stVval)
92 #define IEDMODEL_Cooling_LPHDO_Beh_q (&iedModel_Cooling_LPHDO_Beh_q)
93 #define IEDMODEL_Cooling_LPHDO_Beh_t (&iedModel_Cooling_LPHD@_Beh_t)
94 #define IEDMODEL_Cooling_LPHDO_PhyNam (&iedModel_Cooling_LPHDO_PhyNam)
95 #define IEDMODEL_Cooling_LPHD®_PhyNam_vendor (&iedModel_Cooling_LPHD@_PhyNam_vendor)
96 #define IEDMODEL_Cooling_LPHD®_PhyHealth (&iedModel_cCooling_LPHD@_PhyHealth)
97 #define IEDMODEL_Cooling_LPHD®_PhyHealth_stVal (&iedModel_Cooling_LPHD®_PhyHealth_stval)
98 #define IEDMODEL_Cooling_LPHDO_PhyHealth_q (&iedModel_Cooling_LPHD@_PhyHealth_q)
99 #define IEDMODEL_Cooling_LPHDO®_PhyHealth_t (&iedModel_Cooling_LPHD®_PhyHealth_t)
100 #define IEDMODEL_Cooling_LPHDO_Proxy (&iedModel_Cooling_LPHDE@_Proxy)
101 #define IEDMODEL_Cooling_LPHD®_Proxy_stVal (&iedModel_Cooling_LPHD@_Proxy_stVal)
102 #define IEDMODEL_Cooling_LPHDO_Proxy_q (&iledModel_Cooling_LPHD®_Proxy_q)
103 #define IEDMODEL_Cooling_LPHDO_Proxy_t (&iedModel_Cooling_LPHDO®_Proxy_t)
104 #define IEDMODEL_Coocling_CCGRE (&iedModel_Coocling_CCGRO)
105 #define IEDMODEL_Cooling_CCGRO_Beh (&iedModel_cCooling_CCGRO_Beh)
106 #define IEDMODEL_Cooling_CCGRO_Beh_stval (&iedModel_Cooling CCGRO_Beh_stval)
107 #define IEDMODEL_Cooling_CCGRO_Beh_q (&iedModel_Cooling_CCGRE_Beh_q)
108 #define IEDMODEL_Cooling_CCGRO_Beh_t (&iedModel_Cooling_CCGRE@_Beh_t)
109 #define IEDMODEL_Cooling_CCGRO_FanFlw (&iledModel_Cooling_CCGR®_FanFlw)
110 #define IEDMODEL Cooling CCGRO FanFlw_mag (&iedModel Cooling CCGRO _FanFlw_mag)
111]#def'1ne IEDMODEL_Cooling_CCGRO_FanFlw_mag_f (&iledModel_Cooling_CCGRO_FanFlw_mag_f) |
112 #define TEDMODEL Cooling CCGR@ FanFlw g (&iedModel Cooling CCGRO FanFlw qg)
113|#defi.ne IEDMODEL_Cooling_CCGRO_FanFlw_t (&iedModel_Cooling_CCGRO_FanFlw_t) |
114 #define IEDMODEL_Cooling_CCGRO_FanCtl (&iledModel_Cooling_CCGRO_FanCtl)
115 #define IEDMODEL_Cooling_CCGRE_FanCtl_stVal (&iedModel_Cooling_CCGRO_FanCtl_stval)
116 #define IEDMODEL_Cooling_CCGR®_FanCtl_q (&iedModel_Cooling_CCGRO_FanCtl_q)
117 #define IEDMODEL_Cooling_CCGRO_FanCtl_t (&iledModel_Cooling_CCGRO_FanCtl_t)
118 #define IEDMODEL_Cooling_CCGRO_FanCtl_ctlModel (&iedModel_Cooling_CCGRE_FanCtl_ctlModel)
119

C/ObjCHeader ¥ Tabwidth:8 ~ Ln 84, Col 83 ¥ NS

Figure 4.36: Data objects and common data classes of Logical Node CCGRO

122

The main function shown in Figure 4.37 shows the section of the GOOSE subscriber
code which, when executed waits for a GOOSE message to be published on the
communication network which contains data from a specific logical node. When this
GOOSE message is published, it receives and processes this data. The full source

code file can be seen in Appendix H.

*goose_observer.c

65 main(int argc, char** argv)
66 {

67 GooseReceiver receiver = GooseReceiver_create();

68

69 if (argc > 1) {

70 printf("set interface id: %s\n", argv[1]);

71 GooseReceiver_setInterfaceld(receiver, argv[1]);
72 3}

73 else {

74 printf("Using interface etheo\n");

75 GooseReceiver_setInterfaceld(receiver, "etho");
76 3}

77

78 GooseSubscriber subscriber = GooseSubscriber_create("", NULL);
79 GooseSubscriber_setObserver(subscriber);

80 GooseSubscriber_setListener(subscriber, gooselistener, NULL);
81

82 GooseReceiver_addSubscriber(receiver, subscriber);
83

84 GooseReceilver_start(receiver);

85

86 if (GooseReceiver_isRunning(receiver)) {

87 signal(SICINT, sigint_handler);

88

89 while (running) {

90 Thread_sleep(100);

91 1

}
93 else {
94 printf("Failed to start GOOSE subscriber. Reason can be that the Ethernet interface doesn't exist or root permission are
required.\n");

97 GooseReceiver_stop(receiver);
98 GooseReceiver_destroy(receiver);
99 return 0;

100 }

C~ Tabwidth:8 v Ln 64, Col4 ~ INS

Figure 4.37: GOOSE Subscriber source code

This concludes the second case study, which presents the implementation of GOOSE
messages between two Beaglebone devices on an Ethernet network using a newly
configured logical node which is defined in the IEC 61850 standard. A computer
which contains the Wireshark data protocol analyser is connected to the network to
capture the GOOSE messages which are transmitted on the network. All the source
code implemented and discussed in this case study can be found in Appendix G and
Appendix H. The results of this case study are discussed and verified in Chapter 5,
where the structure and data contents of the GOOSE message which is published

and subscribed to is analysed.

46 Case study 3 - Implementation of GOOSE message between two
Beaglebone devices

This case study presents the publishing and subscription of GOOSE messages

exchanged between two Beaglebone embedded system devices configured as IEC

123

61850 standard-based IEDs. The GOOSE messages are implemented using a novel
logical node which is developed for use with temperature and humidity. The IEC
61850 standard has already been applied to various domains including the
Hydropower plants (IEC 61850-7-410), Distributed Energy Resources (IEC 61850-7-
420), and Wind Power Plants (IEC 61400-1) to name but a few. Although temperature
and humidity logical nodes can be found in these additions to the standard, the
development of this entirely novel logical node shows the mechanism and framework

of how the standard can be extended into other domains.

Since both Beaglebone devices have been configured as is presented in the previous
case studies, no further configuration is required for the implementation of this case
study. In this case study, an additional computer is connected to the Ethernet
communication network. This computer has the GOOSE Inspector software installed
and running. The GOOSE Inspector software is used to monitor IEC 61850
substation automation-based GOOSE protocol data packets on a computer network
and uses the host computer’'s network interface card. The software also has the
ability to decode the GOOSE protocol data packets transmitted over the network to
which the host computer is connected. This data can be filtered and stored for long
term records. The hardware and software configuration of this case study is setup as

shown in Figure 4.38.

124

- Temperature
GOOSE Publisher and Humidity

Sensing Device

0V - 1.8V analog input

GOOSE Subscriber

IEC 61850
IEC 61850 Embedded C
Embedded C

library
library

Ethernet Cable Ethernet Cable

MNetwork Switch

Ethernet Cable

N

|§| GOOSE Inspector

.

Ethernet Cable

Figure 4.38: Physical setup of the case study

Figure 4.38 illustrates two Beaglebone devices, one configured as the GOOSE
publishing device (top left blue box) and the other as the GOOSE subscribing device
(top right red box). Both devices have the IEC 61850 standard embedded C library
installed and running. These devices are both connected to a network switch with
Ethernet cables. The Beaglebone operating as the GOOSE publishing device has a
temperature and humidity sensor connected to two analogue input channels. The
temperature and humidity data from the sensor are contained within the GOOSE
messages using a newly developed logical node and are published on the Ethernet
communication network. There are two computers connected to the network which
are shown in the bottom right and left purple boxes respectively. The computers play
no part in the peer-to-peer communication process but are there solely to monitor and
validate the GOOSE data packets which are transmitted on the network. The one
computer runs the Wireshark software, and the second computer runs the GOOSE

Inspector software.

125

The publication and subscription of GOOSE messaging in this case study is done
using a novel logical node developed for use with temperature and humidity data. The
new logical node uses the object-oriented modelling approach as defined within the
IEC 61850 standard and discussed in Chapter 3. Table 4.4 shows the data objects
and common data classes for the new Logical Node. The new Logical Node is hamed
Industrial Process Functions (IPFC) which contains the analogue values from
commonly used variables in the industrial process automation domain. This novel
logical node is not defined in the IEC 61850 standard and although it is based on the
principles of existing logical nodes It does not belong to any of the IEC 61850 Logical
Node groups. The name Industrial Process Functions (IPFC) is chosen because the
field of application of this logical node is the industrial process automation domain.

As with the IEC 61850 standard-based CCGR Logical Node highlighted in Section
4.5, the IPFC Logical Node’s Data Attributes (DA) are also divided into 3 parts.
However, it differs slightly in that the three parts of this logical node are Common
Logical Node Information, Metered Values and instead of Status Information, this
logical node has Controls which is defined as optional and not implemented in this
work. Included in the Common Logical Node Information part are the mandatory data
attribute types LLNO and LPHD as defined in Section 5.3 of part 7-4 of the IEC 61850
standard. Included in the Metered Value part are mandatory data attributes the
temperature and humidity which are data obtained from sensors and form part of the
Measured Value (MV) Data Class. Included in the Controls part are the temperature
and humidity control which are used by the embedded C source code. This clearly
follows the trend detailed in Chapter 3 and Section 4.5 relating to IEC 61850
standard-based Logical Nodes. Table 4.4 shows the names of the data attributes, the
type of the data attributes as well as whether the data attributes are mandatory or

optional (as indicated by an M or an O).

126

Table 4.4: IPFC Class Diagram

IPFC Class

Attribute | Attr. Explanation T M/O

Name Type
LNName Shall be inherited from Logical-Node Class (see IEC 16850-7-2)

Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node Class M

Beh ENS | Behaviour M
Measured Values
Temp MV Temperature M
Hum MV Humidity M
Controls
TempCitl ENC | Temperature O
HumCitl ENC | Humidity (0]

This section presented the third case study. In this section the hardware and network
layout pertaining to the case study is discussed and the new Industrial Process
Functions (IPFC) Logical Node is presented. The following section presents the

development process of the new IPFC Logical Node.

4.6.1 Development of the new IPFC Logical Node in the ICD Designer software

This section provides the detailed procedure of the development of the novel Logical
Node defined in the previous section and the data class diagram as given in Table
4.3. The new logical node is developed using the Substation Configuration Language
(SCL) structure and requirements contained in part IEC 61850-6 of the standard. The
ICD Designer software is used as the software tool for development of the new logical
node. The steps that are used in the development of the IPFC logical node within the
ICD Design software are shown in the flowchart in Figure 4.39. It can be seen from
Figure 4.37 that the steps taken for this process is similar to the process detailed in
Section 4.5.1 but with a distinct difference. This difference being the addition of step
3. Step 3 is added because the IPFC is a novel logical node and is not among the

existing logical nodes contained in the library.

127

Step 1

Step 2

Step 3

Step 4

b

Define the
Header
information

h

Configure the
communication
settings

4

Develop the new
logical node with all
data objects

A 4

Add the new
logical node to
the IED section

A 4

Configure all data
types for the new
logical node

Add the Dataset
Group to LLNO

k4

Add the Report
Control Group
to LLNO

h 4

Add the GSE
Control Group
to LLNO

Export ICD file

Step 5

Step b

Step 7

Step 8

Step 9

A I A .

Figure 4.39: Flowchart detailing the steps for IPFC logical node development

4.6.1.1 Step 1: Define Header Information

The first step after starting up the ICD Design software is to create a new file red (red

box) as shown in Figure 4.40. The format of the file is in the CID format.

128

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

o] cp -

—

SMH SaweAs“ Close H Tools ~

? ‘

Figure 4.40: The New File template

The next part defines the parameters which are required in the by the Header section.
Expand the Header section and enter “TEMPMON” as the Header ID (red box in
Figure 4.41). This is a user-defined name and is used to identify the function of the

logical node, i.e., temperature monitoring. The Header information is very minimal.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
ew] Open « | save]| Save s Close | Toots «

Emtmpmmm |
Header 9 @ scL
D [rEmPuON] H Header

Revision 1 ©-COM Communication

Options

? ‘

Tool ID

Version 0

Figure 4.41: The Header ID

4.6.1.2 Step 2: Communication settings configuration

The Communication (red box) section is where the IP address, MAC address and
GSEGroup are set for the Access Point (AP). This section is accessed upon
expanding the Communication — SubNetwork — ConnectedAP - Address and

GSEGroup segments as shown in Figure 4.42.

129

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
Ilnw”qnn v

Save | Save As| close | Tools - | 7|

Detail

| ¢ seescL
: H Header

? SubNetwork - subnetwork1 subnetwork1
¢ Lld ConnectedAP - accessPoint1

¢ [Address
P P-IP 10.0.0.2
P P-IP-SUBNET 255.255255.0
P P - IP-GATEWAY 10.0.0.1
P P-0SI-TSEL 0001
P P-0SI-PSEL 00000001
P P-0SI-SSEL 0001
P P-0SI-AP-Title 1,1,9999,1

P P - 0Sl-AE-Qualifier

P 1

12
fc-69-47-18-93-55

P P-VLAN-PRIORITY 4

P P-MAC-Address 01-0C-CD-01-00-00
P P-APPID 1000

P 1

P P-VLAN-PRIORITY 4

P P-MAC-Address 01-0C-CD-01-00-00
P P-APPID 1000

Figure 4.42: Defining IP addresses, MAC address and GSEGroup for the Access Point

The ServerlED name is left as Template (red box). The parameters for the ServerlED
are setup according to the green box as illustrated in Figure 4.43:

e Configuration Version: 1

e Description: TEMPERATURE

e Manufacturer: SystemCORP Energy Pty Ltd

e Type: RTUType

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo
New | Open - | save | save s close Tools * | |

b

| Detail
ServerIED [sersee
| name TEMPLATE | IE H Header
Owner | o tow Communication

gl SCL version

Original SCL revision
Original SCL release

Engineering Right -

Config Version

Description TEMPLATE

Manufacturer iSystemCORP Energy Pty Ltd
_Tice TUTips J
© Senices

Figure 4.43: Defining the ServerlED parameters

130

4.6.1.3 Step 3: Configure the parameters of the new Logical Node

Select the tools and tab and then select the manage customised logical nodes option
from the drop-down menu (red box), as shown in Figure 4.44. After selecting from the
drop-down menu, the window shown in Figure 4.45 will then appear. Select the New

LN (red box) button. After selecting the New LN button, the window shown in Figure
4.46 will then appear.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

o om | e e s a1 - 1]
“ e
Program Options Detail
ServerIED Template Selector
Name [TEMPLAT
Owner Manage Customised Logical Nodes
Original SCL version Export DAID Template TEMPLATE
Original SCL revision Import DAID Template
Original SCL release Import DA from WDX File
Engineering Right ExportICD File
Options
Config Version
Description TEMPLATE
Manufacturer iSystemCORP Energy Pty Ltd
Type RTUType
© Services

Figure 4.44: Selecting manage customised logical nodes option

Customised Logical Node Manager - O X
Logical Nodes: [_] Show Standard Types. Fiter: | |
IPFC - Industrial Process Functions. LN Class:
Description: | |ﬂ
Update Logical Node
) o
ta Objects
DO Name:
DO Type: | cTS Control service tracking | |
Explanation: -
-
Update DO
Discard Changes and Exit Save Changes and Exit

Figure 4.45: Customised Logical Node Manager

131

Figure 4.46 shows the process of defining the logical node class as “IPFC” and the
description as “Industrial Process Functions” (red box). Then select Update Logical
Node button (blue box).

Customised Logical Node Manager = O X
Logical Nodes: [Z] Show Standard Types Filter: |
IPFC - Industrial Process Functions LNClass: [IPFC

Description: ’lndustrial Process Functions H

Update Logical Node]

Logical Node's Data Objects

NS - Beh - Behaviour DO Name:
-Temp - Temperature
NC - TempCtl - Temperature DO Type: I CTS Control service tracking]vl

- Hum - Humidity y
NC - HumCtl - Humidity Optional:

Explanation:

| Discard Changes and Exit | | save changes and Exit

Figure 4.46: Customised Logical Node Manager

The procedure (illustrated in Figure 4.47) below applies to adding all the new required
Data Objects as specified in Table 4.3:

e 1) Select New DO button (red box)

¢ 2) Name the new DO (green box)

e 3) Select the DO Type from the drop-down menu (blue box)

e 4) Select the Mandatory from the Optional drop-down menu (yellow box)

e 5) Add in the Explanation of the DO (black box)

e 6) Select Update DO button (orange box)

e 7) Select Save Changes and Exit (purple box)

132

Customised Logical Node Manager

Logical Nodes: [_] Show Standard Types Filter: |
IPFC - Industrial Process Functions LNClass: |IPFC
Description: ‘\ndustrial Process Functions ‘ ﬂ
| Update Logical Node |
Logical Node's Data Objects
ENS - Beh - Behaviour DO Name: I
-Temp - Temperature X
ENC - TempCtl - Temperature Do Tm-[[mv Measured value I~
- Hum - Humidity i -
ENC - HumCtl - Humidity Optional: | Mandatory | v
Explanation: {[Temperature e
]

o)

| Discard Changes and Exit |

l Save Changes and Exit I

Figure 4.47: Customised Logical Node Manager

4.6.1.4 Step 4: Adding the new Logical Node to the Logical Device

Expand the ServerlED — AccessPoint — Server — LDevice — Industrial Process. Right-
click and select Add Logical Node as illustrated in Figure 4.48 (red box). From the
drop-down menu, find the IPFC Logical Node (green box) as shown in Figure 4.49.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

[sere] savea] cose | Tous - |7]

Ilew‘own'

LDevice

Emstmﬂmuﬂ |

Detail

| e seLscL

Instance IndustrialProcess

H Header

LDName

©-COM Communication

% [serverlED - TEMPLATE

TEMPERATURE

? AccessPoint - accessPoint1

accessPoint1

Description

¢ @ server

¢ @ LDevice

T Delete Logical Device
o[l copy Logical Device
o[l Paste Logical Node
Add Logical Node
Move Up
Move Down

Logical node zero

Physical device information

Process Functions

Expand All
Collapse All
Reload Tree

Add Comment

Figure 4.48: Adding the New Logical Node

133

Add Logical Node to LDevice = 0 X

Prefix: \]

The Template “61850 Edition 2" has been loaded

Filter Node Types Show All (238) -
Logical Node Type ANCR Neutral current regulator v Start: | 0 Count| 1
HWCL Water control - - -
¥ ANCR IARC Archiving . |
o [] Health et Telecontrol interface
o [NamPit g:l‘l: Telemonilo:l::l m(er’ace.) = |
o [] LocKey .
o [Loc
o [] HiColPos
o [] LoColPos
o [] ColOpR
o [] ColOpL
o [] ColChgOp
o [] StFixCol
o [] StCicTun
o [] PotAlm -
Add Logical Node(s) Cancel “
Figure 4.49: Selecting the IPFC Logical Node from the list
4.6.1.5 Step 5: Configuring the IPFC Logical Node Data Types
Expand the IPFC Logical Node to show the view illustrated in Figure 4.50. The Data
Objects for the Data Attributes are shown in Figure 4.50. The settings for each Data
Attribute of the Data Objects are given according to Table 4.5. It can be seen that
both analogue Data Attributes, only the Mag (BDA-f) option is set to FLOAT32 data
type as per the last column.
Table 4.5: Logical Data Names, Attributes, Value and Type
DO Name Data Attributes Value Kind Basic Type
Beh stval, g, t Spec N/A
Temp Mag, g, t Set FLOAT32
TempCtl stval, q, t, ctiModel Set N/A
Hum Mag, g, t Set FLOAT32
HumCitl stval, q, t, ctiModel Set N/A

134

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

sowoven < 3] e s com o= 1

*;

Detail

LDevice

| ¢ seLacL

Instance hnousmalProcuss

H Header

LDName

©=COM C

? ServerleD - TEMPLATE TEMPERATURE
Options ¢ [l AccessPoint - accessPointt accessPoint!

Description

© LU LNO -LLNO

Logical node zero

o[LN - LPHDO

Physical device information

¢ &l LN-IPFCO

ial Process Functions

M DatasetGroup

RGS ReportControlGroup
LG LogControlGroup
& InputsGroup
©- D0 DO - Beh Enumerated status
© D6 DO - Temp Measured value
°'. DO - TempCtl Confrollable enumerated status
<D0 DO -Hum Measured value
- . DO - HumCHl Controllable enumerated status

Figure 4.50: Setting the Data Object parameters

4.6.1.6 Step 6: Adding the Dataset to LLNO

Expand the view of LLNO and right-click on the DatasetGroup to select Add data (red
box) as illustrated in Figure 4.51. Two data sets will be added, and this process
needs to be done for both. After doing this, the window illustrated in Figure 4.52 the
appears. Select only the Data Objects from the IPFC Logical Node (green box). The
names for the two added datasets will be DataSet — AnalogValues and DataSet —
Events. Select Add Dataset (orange box) to complete the process of adding data

sets.

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

Now| Open - | save| save s | Ciose Toos | 7]

4 Detail
| 2 seLscL
: H Header
o= oM C
? ServerlED - TEMPLATE TEMPERATURE
? AccessPoint - accessPoint1 accessPoint1

? LDevice - IndustrialProcess

7 &l LNO -LLNO Logical node zero

o & DataSet{ Add Data Set AnalogValues

> @ DataSet- | Eepang Al Events

©RGB ReportContrq collapse All

= GSE GSEControlG Reload Tree

SHv SampledValueControlGroup

LG LogControlGroup

E— InputsGroup

$6 SeitingGroup

Ld . DO - Mod Controllable enumerated status
L . DO -Beh Enumerated status
Ld . DO - Health Enumerated status
°-. DO - NamPIt Logical Node name plate
°' LN - LPHDO Physical device information

o [;l] LN - IPFCO

Industrial Process Functions

Figure 4.51: Adding the Data Set

135

7 Add new data set.
Include:

[v] ST - Status
|C0-Control
Fw(-l!easmands

*[¥] SP - Setpoint

[¥] SV - Substitution
;CF-Conﬁuumﬁon

] DC - Description

[¥] SG - Setting group

| 7] SE - Setting group editable

v} EX - Extended definition

= O

[3B server

o 1T Lino

o][LPHDO
o [v] DO Beh
o [v] DO Temp

o [¥] DO Hum
o [v] DO HumCtl

¢][4 IndustrialProcess

o [v] DO TempCti

FCDA List

|industrialProcess/iPFC0SSTSBehS

“|industrialProcessIPFC0STTempCHis

“|IndustrialProcessAPFC0$STSHUmMCHS

“|industrialProcessAPFCOSMX$Temp$

“|industrialProcessNPFCOSMX$HumS

“|industrialProcessNPFCOSCF$TempCti$

“[IndustrialProcess/PFCOSCF$HumCtis

Datasetlwne:[Analofvalues| | | AddDataset |

Figure 4.52: Adding Data Objects and Naming the Dataset

4.6.1.7 Step 7: Adding the Report Control Group to LLNO
Expand the view of LNO — LLNO and right-click on the ReportControlGroup to select

Add Report Control Block (red box) as illustrated in Figure 4.53. Two report control

blocks will be added, and this process needs to be done for both. After doing this, the

windows illustrated in Figure 4.54 and 4.55 then appears for each of the report control

blocks which will need to be configured, however, in this case Figures 4.54 and 4.55

show the configuration of each of the configured report control bocks already

completed

mlw-‘mlmulmlmﬂ-l't‘

m SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

)

* I

File

§ $€1SCL

Past

H Header

- 6W Communication

7 [l ServerlED - TEMPLATE

TEMPERATURE

¢ [AccessPoint - accessPaintt

¢ [LDevice - IndustnalProcess

accessPoint!

¢ I Lo -Lmo

Logical node zero Mandatory

o % DatasetGroup

EventsRCE

|AnalogvaluesRCE

—
o] EXPANG AN

Collapse All
Reload Tree

& InputsGroup

$ SemingGroup

08 DO - Mod

Controliable enumerated status Mandatory

o DO DO - Beh
o B8 DO - Healn

Enumerated status.
Enumerated stalus.

Mandatory
Mandatory

=8 DO - NamPil

Logical Hode name plate Mandalory

o[l LN - LPHDO

Physical device information

o[l LN - PFCO

Industrial Process Funcions

Figure 4.53: Adding Report Control Block

136

Below are the parameter configuration inputs as per Figure 4.52 (red boxes) for the

Events report control block:

e Buffer Time: 50ms

e Buffered: false

e Configuration Version: 1
e Dataset: Events

e Integrity Period: 1000

e Name: EventsRCB

e Report ID: Events

e Indexed: true

[systemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Dema - X
‘mlmv H s.nH s-n.l-lcb-lhul -||!‘
RDIndustrialProcessLN.cid
- Detail Ogtional
i 7 setscL
Buffertime (ms) |50 H Heager
Buffered [faise o 0w
Config Revision u ¢ [l ServeriED - TEMPLATE TEMPERATURE
Data Set Events I ¢ B AccessPoint - accessPointt e————
Description
Inkegrity Period [1000 % [l LDevice - industrialProcess
Hame [EventsRCE ¢ T LNo - LLho Logical node zer0 Mandatory
Repot ID Events o @f DatasetGrous
Indexed] true.
Options L] ReportControl - AnalogvaluesRCE
T Options I oG8 GSEControlGroup
Sequence Number] true. = S SampledvalueControlGroup
Time Stamp @ true 6 LagControlGroup
Data Set Name) true & inputsGroup
Reason Code o true $6 SeftingGroup
Data Reference | D raise < 00 DO - Mod Controllable enumerated status Mandatory
Bufter Overlow] true 8 DO - Beh Enumerated status Mangatory
Entry ID Sl taise = B0 DO - Health Enumerated status Mandatory
Configuration Reference |) tree > B8 00 - NamFt Logical Node name piate Mandatory
Segmentation (deprecial.. | [false M Ln-LPHOO Physical device information
¥ Trgger Options =M w-Prco industrial Process Functions
Data Change [taise
Data Update [faise

Included in Integrity Push IE true
Quality Change Euu

General] true

LT

? Report Enabled

Figure 4.54: Report Control Block (Events) parameter configuration

Below are the parameter configuration inputs as per Figure 4.53 (red boxes) for the
AnalogValues report control block:

e Buffer Time: 50ms

e Buffered: false

e Configuration Version: 1
e Dataset: AnalogValues

e Integrity Period: 1000

e Name: AnalogValuesRCB
e Report ID: AnalogValues

e |ndexed: true

137

ﬂ SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo - K

e Open - | save | save s cose Tous - | 7]
RDndustrialProcessiNcid |
= Detail

B Optional
ReportControl v EscL
Buffer time (ms) : H Header
o~ - o COw
Config Revision u % [l ServeriED - TEMPLATE TEMPERATURE
Data Set |Analogvaiues | =] ¢ [AccessPoint - accessPoint1 ‘accessPointt
Description
Integrity Petiod ad g # [l LDevice - IndustnalProcess
Name AnalogvaluesRCB ¢ I LNo-LLNO Logical node zero Mangatory
Report ID pnalogvalues B DatasetGrou
Indexed] true. ? RCH
L] ReportControl - EventsRCB EventsRCB
Options I
ons 4 - G GSEControlGroup
Sequence Number] true r e
Time Stamp H twe {Lu2e LogContalGroup J
Data Sat Name] true : InputsGroup
Reason Code (¥ true 3 S6 SefingGroup
Data Reference [taise 4 =00 DO - Mod Controllable enumerated status Mandatory
Buffer Overflow ¥ true 1 o B8 DO - Beh Enumerated status. Mandatory
Entry ID] taise D0 DO - Health status. Mandatory
Configuration Reference | (] true D8 DO -NamPHt Logical Node name plate Mandatory
Segmentaion (depreciat .| [faise =@ -LPHoo Prysical dewce informaton
¥ Trigger Options. o[LN-1PFCO Industrial Process Funclions
Data Change] faise
Data Update] taise
Included in Integrity Push |] true
Quality Change [ralse
General] true N
% Report Enabled v

Figure 4.55: Report Control Block (AnalogValues) parameter configuration

4.6.1.8 Step 8: Adding the GSE Control Group to LLNO

Expand the view of LNO — LLNO and right-click on the GSEControlGroup to select
Add GSE Control Block (red box) as illustrated in Figure 4.56. Two GSE control
blocks will be added, and this process needs to be done for both. After doing this, the
windows illustrated in Figure 4.57 and 4.58 then appears for each of the GSE control
blocks which will need to be configured, however, in this case Figures 4.57 and 4.58
show the configuration of each of the configured GSE control bocks already

completed.
[systemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo - X
New Open - | huLs-ou Close | Tools = | 2|

4 Detail Optional
| #sescL
H Header
| o e Communication
| 7 Il serverlED - TEMPLATE TEMPERATURE
] + [AccessPoint - accessPointt accessPoint
¢ [LDevice - IndustrialProcess
¢ I Lvo - Lo Logical node zero Mandatory
o 0% DatasetGroup
R4 ReportControlGroup
Add GSE Control Block geoEvents
GSE | Expand All gcbAnalogValuss
S Sail Collapse All
S Log Reload Tree
&
$6 SeftingGroup
=0 DO - Mod Controllable enumerated status Mandatory
o B DO - Beh status Manaatory
B0 DO - Health Enumerated status Mandatory
= B8 DO - NamPit Logical Node name plate Mandatory
o [l LN-LPHDO Physical device information
o[l LN-IPFCD Indusinial Process Fundlions.

Figure 4.56: Adding GSE Control Block

Figure 4.45 shows the parameter configuration inputs (red boxes) for the Events GSE

control block:

138

e Name: gcbEvents

e Goose ID: events

e Data Set: Events

e Configuration Revision: 2
e Type: GOOSE

n SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

[0pen - | save | save s cose| 1ot - [7]

RDIndustrialProcessLM.cid
Detail Optional
stcontrol v
Name lgebEvents H Header
Goose ID events o co ¢
Data Set Events ~l | o Bl serverED - TEMPLATE TEMPERATURE
[l AccessPoint - accessPointt accessPoint1
Options
Config Revision z ¢ [LDevice - IndustnalProcess
Descripton ¢ M Lvo-LLno Logical node zero Mandatory
Troe 008t =B DatasetGroup
- RC8 ReporiControiGroup
GEE CSEControlGiou
- gcoAnalogvaiues
WV SampledvalueControlGroup
L6 LogControlGroup
& InputsGroup
$6 SettingGroup
o8 DO - Mod Ci status Mandatory
B DO - Beh Enumerated status Mandatory
>0 DO - Health status Mandatory
o B8 DO - NamPIt Logical Node name plate Mandatory
o [l LN -LPHDO Physical device information
o[l Ln-1PFCo Industial Process Funclions.

Figure 4.57: GSE Control Block (Events) parameter configuration

Figure 4.45 shows the parameter configuration

AnalogValues GSE control block:

e Name: gcbAnalogValues

e Goose ID: anlog

o Data Set: AnalogValues

e Configuration Revision: 2
e Type: GOOSE

H SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

[0pen - | save | save s cuose| 1ot - [7]

inputs (red boxes) for the

Figure 4.58: GSE Control Block (AnalogValues) parameter configuration

Detail Optional
GSEControl B ocL
Name lgchénalogValues H Header
Goose ID fanalog o coM G
Data Set AnalogValues. hd 7 [ServenED - TEMPLATE TEMPERATURE
¢ [0 AccessPoint - accessPoint1 accessPointt
il
Config Revision z # [l LDevice - IndustialProcess
Descrioton ¢ M Lrio - Lo Logical node zero Manaatory
Tyos 3t o ¥ DatasetGroup
©RE8 ReporiControlGroup
G GSEControlGroup
gcoEvents
W SampledvalueControlGroup
106 LogControlGroup
$6 SetingGroup
o B0 DO - Mod Controllable enumerated status Mandatory
© B0 DO - Beh stalus Mandatory
o B8 DO - Health Enumerated status. Mandatory
o B9 DO - NamPit Logical Noge name plate Mandatory
o[LN-LPHDO Physical gevice informabon
o[l LN-IPFCO Industrial Process Funtions

139

4.6.1.9 Step 9: Export the CID file to ICD file

The format of the configured project file is in the CID file format. The file is exported to
the ICD file format for later use by the IEC 61850 standard embedded C library. To
change the file format to CID, select the Tools option from the menu and select
Export ICD File as illustrated in Figure 4.59 (red box).

SystemCORP - ICD Designer - 61850 Edition 2 Template - 200 Data Attribute Demo

llew| Open ~ H saveH SI\'EA:HCIose Tools ~ | ?‘

RDIndustrialProcessLN.cid ‘ Quick Validate
Program Options.

Detail
ScL plate Selector
Version 2007 plate C
Revision B Manage Customised Logical Nodes
Release 4 Export DAID Template PLATE TEMPERATURE
Import DAID Template
Options Import DAs from WDX File

Figure 4.59: Exporting project file from CID to ICD format

The new IPFC logical node is now developed and exported to an ICD file which can
used by the embedded C library and other software tools. The following section

presents the validation of the ICD file using an XML software tool named XML
Marker.

4.6.2 Validation of the new IPFC Logical Node using XML Marker Software

The newly developed logical node is validated in order to ensure that it conforms to
the IEC 61850 standard.

Open the RDIndustrialProcessLN.icd file in the XML Marker software and the window
illustrated in Figure 4.60 appears.

140

File Edit View Options Navigate Help

D@ bBocMisswn BpnsC|f

@4» SCL

<

‘& Tree View | (2 0 waming(s). 0 error(s)

Table Selection Browser
This Tre tion Browser s emph

1 <7xmi version="10" encoding="UTF-8>
2| <SCL xmins="hitp Iwww lec ch/B 18507200 /SCL" xmins xsd="hitp /mww.w3.0rg200 1/XMLSchema" xmins xsi="htip www.w3.0rg2001XI4L Schema-instance”
3| <Header id="TEMPMON' revision="1" version="0">

nication:

>

<P type=1P">10,00.2P>
<P type="TP-SUBNET >255.255.255 0</P>
<P ype="IP-GATEWAY>10.00.1</P>

- |

-

<SubNetwork name="subnetwork1” type="8-MMS™>
«ConnectedAP apName="accessPoint1" ledName="TEMPLATE™>
<Address>

5

6

7

8

9

10

" <P type="OSI-TSEL">0001</P>

12 <P type="OSI-PSEL>00000001<P>

13 <P type="OSI-SSEL">0001</P>

1" <P type="0SI-AP-Title™>1,1,9990,1</P>

15 <P type="OSI-AE-Qualifier>12</P>

16 <P type="MAC-Address™>1C-69-47-1e-93-55</P>
17 </Address>
18 <GSE coName="gcbEvents” Idinst="Temperature™>
19 ress>

20

<P type="VLAN-ID">1</P>

21 <P type="VLAN-PRIORITY>4</P>
% 22 <P type="MAC-Address">01-0C-CD-01-00-00</P>
23 <P type="APPID">1000</P>
24 </Address>
" 25 <IGSE>
x 26 <GSE coName="gcbAnalogValues Idinst="Temperature™>
27 <Address:
28 <P ype="VLAN-D>1</P>
29 <P type="VLAN-PRIORITY >4</P>
£’ <P type="MAC-Address">01-0C-CD-01-00-00</P>
3 <P type="APPID">1000</P>
2 </Address>
k) </GSE>
34 </ConnectedAP>
35 </SubNetwork>
36 /Communication:
37| <IED desc= URE" “SystemCORP Energy Pty LId" name="TEMPLATE" owner="Roderick Domingo” type="RTUType">
38 <Services namelength="564">
39 <ChentServices>
40 <DynAssociation/>
41 <GetDirectory/>
42 <GetDataObjectDefinition/>
4 <GatrRValoss v
< >

Tree Selection Browser

This Tree Selection Browset Is empty

Figure 4.60: XML Marker opening window

On the left-hand side of the window illustrated in Figure 4.60 the SCL tree is shown.

The SCL tree is expanded to show various sections.

As indicated in Figure 4.61, expand the SCL-Header section. Selecting the header
will highlight the Header id on the right-hand side of the window. The Header id is a

user-defined variable as given in Figure 4.41 in step 1 in Section 4.6.1.1 and

corresponds to the Header id highlighted in Figure 4.61.

File Edit View Options Navigate Help

LY Ty

mmw Q‘E'Hxnu.mm.mamr

B> SCL
B xmins = "hitp:iiwww.iec.chi61850/2003/SCL"

[release ="4"

[E version ="2007"

«» IED
«» DataTypeTemplates

[E xmins:xsd = “hitpiwww.w3.0rg/2001/XMLSchema”
[E xmins:xsi = "hitp:/mww.w3.0rg/200 1/XMLSchema-instance”

Header ID

[E xsi:schemalocation = "hitp:/www.iec.ch/61850/2003/SCL SCL.xsd™
[Header]

1 [<?xml version="1.0" encoding="UTF-8"7>

<SCL xmIns="http://www.iec.ch/61850/2003/SCL" xmins:xsd="http/www.w3.0rg/200 1/XMLSche
%mmwmlwfm&im'ﬂ
munication>

<SubNetwork name="subnetwork1” type="g-MMS™>
<ConnectedAP apName="accessPoint1” iedName="TEMPLATE >
<Address>
=P type=IP">10.0.0.2</P>
<P type="IP-SUBNET >255 255 .255.0</P>
=P type="IP-GATEWAY">10.0.0.1</P>
<P type="0SI-TSEL">0001</P>
<P type="0SI-PSEL">00000001</P>
<P type="0SI-SSEL">0001</P>
<P type="0SI-AP-Title">1,1,9999,1</P>

Figure 4.61: Header section in XML Marker

Figure 4.62 illustrates the communication section in the XML Marker software. The IP

address and the MAC address are confirmed in Figure 4.62 as it corresponds with the

IP and MAC address given by step 2 in Section 4.6.1.2.

141

File Edt View Options Navigate Help

DEHE & BB o« i a2 ® @ 5 4 B G| [xmoscioCommncaton
4 SCL

B xmins = "Titp iwww iec ch/ 1850/2007/SCL" 3

B xminsxsd = “hitp www. w3.0rg/200 1/XMLSchema™ |P address I @

5

1| <7xmi version="1.0" encoding="UTF-8"7>

B xminsxsi = "hitpwww. w3, 0rg/200 /XML Schema-instance™

= release ="¢4"

& revision ="8"

® version ="2007"

® xsi:schemaLocation = "hittp:/www.iec ch/81850/200/SCL SCLxsd"
<3 Header

D)

ﬁ: DataTypeTemplates
MAC
address
< >
‘g’ Troe View | 2 0 waming(s). 0 error(s)

Table Selection Browser x

|

"

2 <SCL xmins="hitp /www iec ch/§ 1850/200/SCL" xmins xsd="hitp Awww w3 0rg/200 1/XMLSchema™ xmins xsi="hitp iwww w3 0rg/200 1XML Schema-instance”
<Header id="TEMPMON revision="1" version="0">

Figure 4.62: Communication section in XML Marker

The names configured for the description, manufacturer, etc. in Figure 4.43 in Section
4.6.1.2 are confirmed by the red box in Figure 4.63 in the XML Marker software.

Figure 4.63: |IED section 1in XML Marker

The Data Object names created in step 3 of Section 4.6.1.3 as indicated by Figure

4.46 are confirmed in XML Marker by Figure 4.64 (red box).

55 —latadetname="Analogyalucs >

56 <FCDA daName="mag" doName="Temp" fc="MX" Idinst="IndustrialProcess” InClass="IPFC" Ininst="0"t>
57 <FCDA daMame="mag" doName="Hum" fc="MX" Idinst="IndustrialProcess” InClass="IPFC" Ininst="0"/>

58 =/DataSet=

59 =DataSet name="Events™>

60 <FCDA daName="stVal" doName="TempCtl" fc="ST" Idinst="IndustrialProcess” InClass="IPFC" Ininst="0"/>
61 <FCDA daMame="stVal" doName="HumCHl" fc="ST" Idinst="IndustrialProcess” InClass="IPFC" Ininst="0"/>

Figure 4.64: |ED section 2 in XML Marker

The Logical Node Class for the new IPFC Logical Node as configured in Figure 4.46

in step 3 in Section 4.6.1.3 is confirmed in XML Marker as illustrated by the red box in

Figure 4.65.
75 =1 NQ==
76 =L N desc="Physical device information” inst="0" InClass="LPHD" InType="LPHD_0" prefix=""/=
77 <LN desc="Industrial Process Functions” inst="0" InClass="IPFC" InType="IPFC_0" prefix=""/=

Figure 4.65: |ED section 3 in XML Marker

142

Figure 4.66 confirms the Data Type Templates, where the Data Object name, data
types and data attributes are confirmed for the new Logical Node IPFC, LPHD and
LLNO. Also illustrated in Figure 4.66 are the quality and time attributes for all the

created data objects. These can be verified by Table 4.4.

82 m Data class for

83 <Ulodo‘lype |d='|PFC 0" InClass="IPFC >t the new LN
84 <DO desc="Enumerated status” name="Beh" type="ENS_0"/>
85 <DO desc="Measured value” name="Temp" = Data Object

86 <D0 desc="Controllable enumerated status” name-’Tempcu' type="Ewc_TPFT

87 <D0 desc="Measured value” name="Hum" type="MV_ 0" ¢—__
88 <D0 desc="Controllable enumerated status” name:"HurnCﬂ" type="ENT ¥~

89 </LNodeType>|

90 [<LNodeType id="LPHD_0" InClass="LPHD #— Physical
91 <DO desc="Enumerated status” name="Beh" type="ENS_2"/> Device LN
92 <D0 desc="Device name plate” name="PhyNam" type="DPL_0"

93 <DO desc="Enumerated status” name="PhyHealth" type="ENS_1"/>

94 <DO desc="Single point status” name="Proxy” type="SPS_0"/>|
95 </LNodeType=
96 <LNodeType id="LLNO_0" InClass="LLN0 >4 LLNO
97 <DO desc="Controllable enumerated status” name="Mod" type="ENC_2"/>/
98 <DO desc="Enumerated status” name="Beh" type="ENS_4"/>
99 <DO desc="Enumerated status” name="Health" type="ENS_3"/>
100 <DO desc="Logical Node name plate” name="NamPIt" type="LPL_0",
101 </LNodeType>
102 <DOType cdc="ENC" desc="Controllable enumerated status” id="ENC_0">|
103 <DA bType="Enum" dchg="true" fc="ST" name="stval" type="HumCH"/>|
104 <DA bType="Quality” fc="ST" name="q" qchg="true"
105 <DA bType="Timestamp" fc="ST" name="t"/>|
106 <DA bType="Enum" fc="CF" name="ctiModel" type="CtiModelKind"/>|
107 | </DOType>|
108 | <DOType cdc="MV" desc="Measured value" id="MV_0">|
109 <DA bType="Struct” dchg="true" dupd="true" fc="MX" name="mag" type="mag_0"/>
110 <DA bType="Quality” fc="MX" name="q" qchg="true"/>|
111 <DA bType="Timestamp” fc="MX" name="1"/>|
112 </DOType>|
113 <DOType cdc="ENC" desc="Controllable enumerated status”™ id="ENC_1">|
114 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="TempCHi"/>
115 <DA bType="Quality” fc="ST" name="q" qchg="true"/>
116 <DA bType="Timestamp” fc="ST" name="1"
117 <DA bType="Enum” fc="CF" name="ctiModel" type="CtiModelKind"/>|
118 </DOType>|
119 <DOType cdc="ENS" desc="Enumerated status” id&="ENS_0">|
120 <DA bType="Enum” dchg="true" dupd="true” fc="ST" name="stVal" type="BehKind"/>|
121 <DA bType="Quality” fc="ST" name="q" qchg="true"/>
122 <DA bType="Timestamp" fc="ST" name="t"/>|

Figure 4.66: Continuation of IED section 3 in XML Marker

The parameters configured for LLNO and Physical Device Logical Node (LPHD) are

also indicated in Figure 4.66.

This concludes the validation of the newly developed IPFC Logical Node (LN) for

condition monitoring and the validation and confirmation of the structure of the SCL

143

file as defined in part 6 of the IEC 61850 standard. The following section presents the
configuration of the newly developed LN for use in the IEC 61850 standard
embedded C library.

4.6.3 Configuration of the IPFC Logical Node in the C Library
As discussed in Section 4.5.2, when implementing logical nodes which are newly
developed or configured that are not local to the IEC 61850 embedded C library, the

.ICD file has to be converted into .c, .h and .cfg files.

To convert the .ICD file to a .c, .h and .cfg file, the newly created .ICD file is copied to
a USB drive and moved to the IEC 61850 library directory. Here it is moved into a
folder called “model_generator”, which is a subfolder of the “tools” folder. In order to
create the .c and .h files, JRE (Java Runtime Environment) 6 needs to be installed
but since it has already been installed with the implementation of Case Study 2, the

process need not be executed again.

4.6.3.1 Converting .ICD file format to .c .h and .cfg

The following steps are taken in order to create the required configuration files, which
are identical to the steps implemented in Section 4.5.2.2. This process serves the
exact same purpose as the one implemented in Section 4.5.2.2, which is to convert
the files of a Logical Node external to the embedded C library, into a format which

can be used by the embedded C library:

1. The first step is to open the terminal and navigate to the “model_generator” folder
in the IEC61850 library.

2. In the terminal window the following command is typed: “java -jar genmodel.jar
RDIndustrialProcess.icd” (green box). After doing this, a static_ model.c and
static_model.h file is created (yellow box). These newly generated files are copied
to the location of the IEC61850 project directory. The static_model.c file defines
the IED data model in terms of its structure and it also contains values which are
preconfigured by the SCL file. The static_model.h file is included by the ¢ code
and defines abstract references to resources that that can be used to access the
data model. The .c and .h file is generated from the .ICD file which was configured
in the ICD Designer software and copied over to the Ubuntu directory (blue box).

This is illustrated in Figure 4.67.

144

I+

Select ICD File RDIndustrialProcessLN.icd

roderick@roderick-Lenovo-G50-80: ~/RD Industrial Process (copy)/tools/model_generator b = a X

s[java -jar genmodel.jar RDIndustrialProcessLN.icd

parse data type templates ...
parse IED section ...
parse communication section ...

Found connectedAP accessPointl for IED TEMPLATE
print report instance 01
print report instance 01

3.

$ 1s
inverter_with_report.icd simpleI0_direct_control_goose.scd
manifest-dynamic.mf RDIndustrialProcessLN.icd
genericIO.icd manifest-dyncCode.mf SalpLerode el Ul 5. ted static_model.c
manifest.mf sampleModel - icd static_model.h
complexModel.icd inverter3ph.icd manifest-modelviewer.mf sampleModel with_dataset.icd

%

Figure 4.67: Creating .c and .h file from .ICD file

In the terminal window the following command is typed: “java -jar genconfig.jar
RDIndustrialProcessLN.icd RDIndustrialProcessLN.cfg (green box). This will
generate the file RDIndustrialProcessLN.cfg (yellow box). This is illustrated in
Figure 4.68. The file format is in plain text and contains the entire description of
the data model as well as values which are pre-set and short addresses which are
optional. Handles access data attributes during runtime, handles however are
unknown when the application is compiled. API calls requests handles, by using

the short addresses or object references of a specific data attribute.

145

=1 roderick@roderick-Lenovo-G50-80: ~/RD Industrial Process (copy)/tools/model_generator

S java -jar genconfig.jar RDIndustrialProcessLN.icd RDIn

dustrialProcessLN.cfg

Dynamic model generator

parse data type templates ...

parse IED section ...

parse communication section ...

Found connectedAP accessPointl for IED TEMPLATE

inverter_with_report.icd sampleModel_with_dataset.icd
manifest-dynamic.mf N. simpleI0_direct_control_goose.scd
genericIO.icd manifest-dyncCode.mf RDIndustrialProce N. 1
manifest.nf sanpleModel_errors.icd static_model.c
complexModel.icd inverter3ph.icd manifest-modelviewer.mf sampleModel.icd static_model.h

) |

Figure 4.68: Creating .cfg file from .ICD file

Unlike Case Study 2, the data parsed in this case study is not simulated. The data is
read from a temperature and humidity sensing device. The Beaglebone which
operates as the Publishing IED, reads temperature and humidity from the sensor on
its OV to 1.8V analogue input as illustrated in Figure 4.38. Figure 4.69 shows the
temperature and humidity data which is being published as it is being read in real
time from the sensor connected to the analogue input of the Beaglebone. Figure 4.70
shows the newly developed logical node in the .c programming language which is
being used to publish the temperature and humidity data. The data declaration is
highlighted in the red box and the operation in the green boxes. The black boxes
show the instantiation of the newly developed IPFC logical node which will contain
the data to be published with the GOOSE message.

146

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
182

*server_example_goose.c

float reading;
float Temperature;
float Humidity;
reading = atof(ch);

IedServer_lockDataModel(iedServer);

//TEMPERATURE

TedServer_updateUTCTimeAttributevalue(iedServer, IEDMODEL_IndustrialProcess_IPFCO_Temp_t, Hal_getTimeInMs());

IedServer_updateFloatAttributevalue(iedServer, IEDMODEL_IndustrialProcess_IPFC®_Temp_mag_f, Temperature);

IedServer_unlockDataModel(iedServer);

|/ Temperature += 0.1;

Temperature = reading/12¢ 3;

printf("'Temperature in Degrees C %f\n",Temperature);

IedServer_lockDataModel(iedServer);

//HUMIDITY

IedServer_updateUTCTimeAttributevalue(iedServer, IEDMODEL_IndustrialProcess_IPFCO® Hum_t, Hal_getTimeInMs());

IedServer_updateFloatAttributevValue(iedServer, IEDMODEL_IndustrialProcess_IPFCO®_Hum_mag_f, Humidity);

IedServer_unlockDataModel(iedServer);

//Humidity += 0.1;

Humidity = reading/6e H

printf("Relative Humidity %F\n" ,Humidity);

Thread_sleep(1
[* ctnn MMS caruar . clnce TrP caruvar cnckat and all cliant coackete */

C ~ TabWidth:8 ~ Ln 159, Col 1

Figure 4.69: Data being used by the new IPFC Logical Node to be published over GOOSE

The red highlighted boxes in Figure 4.70 show the data objects and common data
classes of the newly developed IPFC logical node in the C programming language
which is used in the publication and subscription of GOOSE. It can be seen these
correspond with the instantiations identified in Figure 4.69 which are highlighted with

the black boxes.

147

INS

105 #define IEDMODEL:IndustrialProcesS:LPHDO:PhyNamivendor (&igdModelilndustrialﬁrocesgiLPHueiPhyNanivendor)

106 #define IEDMODEL_IndustrialProcess_LPHDO_PhyHealth (&iedModel_IndustrialProcess_LPHDO_PhyHealth)

107 #define IEDMODEL_IndustrialProcess_LPHDO_PhyHealth_stval (&iledModel_IndustrialProcess_LPHD®_PhyHealth_stval)
108 #define IEDMODEL_IndustrialProcess_LPHDO_PhyHealth_gq (&iedModel_IndustrialProcess_LPHDO_PhyHealth_q)

109 #define IEDMODEL_IndustrialProcess_LPHD®_PhyHealth_t (&iedModel_IndustrialProcess_LPHD®_PhyHealth_t)

110 #define IEDMODEL_IndustrialProcess_LPHDO_Proxy (&iedModel_IndustrialProcess_LPHD@_Proxy)

111 #define IEDMODEL_IndustrialProcess_LPHD®_Proxy_stVal (&iedModel_IndustrialProcess_LPHDO_Proxy_stVval)

112 #define IEDMODEL_IndustrialProcess_LPHDO_Proxy_q (&iedModel_IndustrialProcess_LPHDO_Proxy_q)

113 #define IEDMODEL_IndustrialProcess_LPHDO_Proxy_t (&iedModel_IndustrialProcess_LPHD® Proxy t)

114 #define IEDMODEL_IndustrialProcess_IPFCO (&iedModel_IndustrialProcess_IPFCO)
115 #define IEDMODEL_IndustrialProcess_IPFCO_Beh (&iedModel_IndustrialProcess_IPFCO_Beh)

116 #define IEDMODEL_IndustrialProcess_IPFCO_Beh_stVal (&iedModel_IndustrialProcess_IPFCO_Beh_stval)
117 #define IEDMODEL_IndustrialProcess_IPFCO_Beh_q (&iedModel_IndustrialProcess_IPFCO®_Beh_q)
118 #define IEDMODEL_IndustrialProcess_IPFCO_Beh_t (&iedModel_IndustrialProcess_IPFC@_Beh_t)

119 #define IEDMODEL_IndustrialProcess_IPFCO_Temp (&iedModel_IndustrialProcess_IPFCO_Temp)

120 #define TEDMODEL IndustrialProcess IPFCO_Temp_mag (&iedModel IndustrialProcess IPFC@_Temp_mag)

121f#define TEDMODEL IndustrialProcess IPFCO Temp mag f (&iedModel IndustrialProcess

1PFCO Temp mag f) |

122 £
123 i

0

e 6] P 0
124 #define IEDMODEL_IndustrialProcess_IPFCO_TempCtl (&iedModel_IndustrialProcess_IPFCO_TempCtl)

125 #define IEDMODEL_IndustrialProcess_IPFCO_TempCtl_stVal (&iedModel_IndustrialProcess_IPFCO TempCtl_stval)

126 #define IEDMODEL_IndustrialProcess_IPFCO_TempCtl_q (&iedModel_IndustrialProcess_IPFCO_TempCtl_q)

127 #define IEDMODEL_IndustrialProcess_IPFCO_TempCtl_t (&iedModel_IndustrialProcess_IPFCO_TempCtl_t)

128 #define IEDMODEL_IndustrialProcess_IPFCO_TempCtl_ctlModel (&iedModel_ IndustrialProcess_IPFCO_TempCtl_ctlModel)

129 #define IEDMODEL_IndustrialProcess_IPFCO_Hum (&iedModel_IndustrialProcess_IPFCO_Hum)

130 #define TEDMODEL IndustrialProcess IPFC® Hum mag (&iedModel IndustrialProcess IPFCO Hum mag)

13]] #define IEDMODEL_IndustrialProcess IPFCO _Hum_mag_f (&iedModel_IndustriaIPro(esS_IPF(O_HUN_mag_f)|

132 #define TEDMODEL IndustrialProcess IPFC8® Hum g (&iedModel IndustrialProcess IPFCO Hum qg)

13t #define IEDMODEL_IndustrialProcess IPFCO® Hum_t (&iedModel IndustrialProcess IPFCO Hum_t)

134 #define IEDMODEL_IndustrialProcess_IPFCO_HumCtl (&iedModel_IndustrialProcess_IPFCO_HumCtl)

135 #define IEDMODEL_IndustrialProcess_IPFCO_HumCtl_stVal (&iedModel_IndustrialProcess_IPFCO_HumCtl_stval)

136 #define IEDMODEL_IndustrialProcess_IPFCO_HumCtl_g (&iedModel IndustrialProcess_IPFC@_HumCtl_q)

137 #define IEDMODEL_IndustrialProcess_IPFCO_HumCtl_t (&iedModel IndustrialProcess_IPFCO_HumCtl_t)

138 #define IEDMODEL_IndustrialProcess_IPFCO_HumCtl_ctlModel (&iedModel_IndustrialProcess_IPFCO_HumCtl_ctlModel)

139
140 #endif /* STATIC_MODEL H_ */
141

C/objc Header ¥ Tab width: 8 «

Ln 104, Col 89

Figure 4.70: Data objects and common data classes of Logical Node IPFC

The GOOSE Subscriber source code used in Case Study 2 and Case Study 3 are

identical and have already been highlight in the Section 4.5 and will not be discussed

in this case study.

This concludes the third and final case study. All the source code implemented in this

case study can be found in Appendix I. The results of this case study are discussed

and verified in Chapter 5, where the structure and data contents of the GOOSE

message which is published and subscribed to is analysed.

148

4.7 Chapter Summary

This chapter presented the practical implementation of the research project. The
implementation is presented in the form of three case studies. The case studies
present detailed investigations of the IEC 61850 standard embedded C library and its
contents relating to GOOSE message publishing and subscribing using existing and
the creation of new logical nodes.

The first case study conducted in this chapter is implemented between a computer
and a Beaglebone Black embedded device on an Ethernet network. GOOSE
message publishing and subscribing is implemented between the two devices using
simulated data and a preconfigured GGIO Logical Node within the embedded C
library.

The second case study conducted in this chapter is implemented between two
Beaglebone Black embedded devices on an Ethernet network. GOOSE message
publishing and subscribing is implemented between the two devices using simulated
data and a newly developed CCGR Logical Node which is defined by the IEC 61850
Standard.

The third and final case study conducted in this chapter is implemented between two
Beaglebone Black embedded devices on an Ethernet network. GOOSE message
publishing and subscribing is implemented between the two devices using real time
temperature and humidity data which is fed into the publishing device’s analogue
input. GOOSE message publishing and subscribing is the implemented using a novel
Logical Node IPFC which is developed to expand the domain of implementation of
the IEC 61850 Standard. The mechanisms and framework for the development of the

novel logical node is detailed including validation with part 6 of the standard.
Chapter 5 presents a detailed discussion of the case study results with validation and

conformance testing of the implemented GOOSE message structures to the IEC
61850-8-1 standard.

149

CHAPTER FIVE

CASE STUDY VALIDATION: ANALYSIS OF RESULTS

5.1 Introduction

As previously discussed in Chapter Three, logical nodes are abstract data objects
which can represent a number of devices such as sensors, communication interfaces
and description of devices. Logical nodes form the key or main elements of what
makes up the IEC 61850 object-oriented virtual model. The object-oriented model of
the IEC 61850 standard is made up of data attributes and standardized data. Logical
nodes form the interfaces which are defined by the IEC 61850 standard. GOOSE
(Generic Object-Oriented Substation Event) messages are associated with the GSE
services defined by the IEC 61850 standard.

In its earlier years, communication systems which used Ethernet was solely based on
the 7-layer OSI stack. In high-speed applications, this is a problem due to the fact that
data is required to pass through all seven layers. The IEC 61850 standard provides
for the Generic Object-Oriented Substation Event (GOOSE) message which is based
on the Ethernet communication. The GOOSE messages are used in substation
communication networks for the fast and reliable transmission of data used in

protection applications using a reduced stack implementation.

Three case studies are conducted and presented in Chapter Four. This chapter
provides an analysis of the results from those case studies. The three case studies

are as follows:

e Case study 1 — GOOSE Message publication and subscription between a PC
and an embedded device, where the PC is configured as the Publishing
device and the embedded device as the Subscriber. The GOOSE messages
in this case study uses an existing logical node (GGIO) which is contained
within the IEC 61850 standard embedded C library.

e Case study 2 — GOOSE Message publication and subscription between two
Beaglebone devices, where the one device is configured as the Publishing
device and the other as the Subscribing device. The GOOSE messages in this
case study uses an existing configured logical node (CCGR) which is defined
by the IEC 61850 standard.

e Case study 3 — GOOSE Message publication and subscription between two
Beaglebone devices, where the one device is configured as the Publishing

device and the other as the Subscribing device. The GOOSE messages in this

150

case study uses a newly developed logical node (IPFC) which is configured
using the ICD Designer software. This is a novel logical hode which has not
been defined the IEC 61850 standard but is intended to expand the scope of

the standard to other domains of operation.

The results of the three case studies mentioned above have more than one point of
focus. The first point of focus is on the structure of the GOOSE message which is
published and subscribed to. Analysing the structure of the GOOSE message
confirms whether the GOOSE messages derived from the source code of the
embedded C library does indeed conform to part 8 of the IEC 61850 standard. The
second point of focus is on validating the data which is contained in the GOOSE

message structure.

The following section presents the analysis of the results from the experiment
conducted in Case study 1.

5.2 Analysis of results — Case study 1

Figure 5.2 illustrates the capture (using the Wireshark packet analyser) of the
GOOSE message published on the network setup illustrated in Figure 5.1. The first
portion of the GOOSE message structure has a fixed length, and its content cannot
be altered. The fixed portion of the GOOSE message consists of nhumerous parts.
The first part of the fixed portion of the GOOSE message is made up of the Header
information containing the preamble, the start of the frame and the Destination MAC
address (green box), the second part is made up of the Source MAC address (red
box), the third part is made up of the TPID (Tag Protocol Identifier) (yellow box), the
third part is made up of the TCI (Tag Control Information) (brown box), the fourth part
of is made up of the Ethertype (blue box), the fifth part is made up of the APPID
(Application Identifier) (purple box), the sixth part is made up of the length (orange
box), the seventh and eighth parts are reserved, reserved 1 and reserved 2
respectively and are identified by the pink boxes. The GOOSE message frame format
is defined in Part 8-1, on page 114 of the IEC 61850 standard.

The Destination address is a set of data which is sent across a computer network to
many users at the same time, also referred to as a multicast address. Both the
Destination and Source address are 6 bytes long. The TPID is a two-octet field in an
Ethernet frame which assigned for 802.1Q Ethernet encoded frames and is given by

0x8100. The TCI is made up of what is referred to as the CFl (Canonical Frame

151

Indicator) and optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for
GOOSE) is each made of 2 bytes each. The APPID (application identifier) is 2 bytes
in length. The purpose of the APPID is to select GOOSE Messages from a frame and
to identify its application association and is defined as such by Part 8-1 of the IEC
61850 standard.

GOOSE Publisher

‘ Ethernet Cable Ethemet Gabla

GOOSE Subscriber

IEC 61850 IEC 61850 Embedded C
Embedded C library
library

Network Switch

Figure 5.1: Physical setup of the case study

b Frame 42: 255 bytes on wire (2040 bits), 255 bytes captured (2040 bits) on interface eth®, id @
v Ethernet II, Src: LCFCHeFe_ae:2d:05 (68:77:28:ae:2d:05), Dst: Iec-Te57_01:00:81 (01:0c:cd:01:80:01)
¢ 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1
~ GOOSE
APPID: 0x1000 (4096)
Length: 237
Reserved 1: Gx8080 (0)
Reserved 2: @x@ep0 (@)
» goosePdu
Destination MAC address | | Source MAC address | TPID TCI
Ethertype ||- 550 o1 60 81 ﬂamm‘--./-.?(.--a-.-
oo G0 61 81 e2 80 29 73 h. ... - - -/a&58.).
Ge 65 72 69 63 49 4f R - N
APPID 24 67 63 62 41 Ge 61 6c f«.+ $ | $ %
3 8102 05 dc 82 23 73 69 .. a bk,
65 6Ge 65 72 69 63 49 4f 2f % | P |/
Length 61 6c 6F 67 56 61 6c 75 65 <<+, $ >K %7, %
6f &7 B4 08 61 3d d4 9f ea c-/=/%? .d- /=M.
@1 @@ 87 01 0O 88 @1 62 B89 :9-e--f- -g--h--i
Reserve 1 a2 18 a2 07 87 05 08 3e 4c .. -..5 5.0 .<
91 @3 613ddd4 9f ea Te f9 ..d--] /=M..=0
B8 3ecccccdB40303 00 -ssqgo-o....d-
ea 7e f9 0a a2 18 a2 07 87 j-/=M.. =955
Reserve 2 B3 @3 0D 00 91 08 GO @R OB -ooood e fes

az @7 B7 05 08 00 0O @O GO .- S5 g
B0 00 00 0O 00 O 60 60 (i S EE

Figure 5.2: Fixed portion of the GOOSE Message structure

152

The variable portion of the GOOSE Message structure is illustrated in Figure 5.3. This
portion of the GOOSE Message consists of the goosePdu (Protocol data unit) Length
right up until the end the of the frame. The variable portion of the GOOSE message
consists of more than one part. The first part of the variable portion of the GOOSE
message is made up of the goosePdu TAG (red box), the second part is made up of
the goosePdu LENGTH (green box) and the third part is made up of the goosePdu
DATA (the blue highlighted section). The values which are not highlighted are
referenced in a standard known as the Abstract Syntax Notation One, Basic Encoding
Rules (ASN.1/BER) standard, which is a standard for data networks and open system

configurations.

» Frame 42: 255 bytes on wire (204@ bits), 255 bytes captured (204@ bits) on interface ethe, id @
v Ethernet II, Src: LCFCHeFe_ae:2d:@5 (68:77:28:ae:2d:05), Dst: Iec-Tc57_81:00:01 (081:0c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1
~ GOOSE

APPID: ©x1000 (4096)

Length: 237

Reserved 1: 0x0008 (0)
Reserved 2: Gx0088 (0)

goosePdu

gocbRef: simpleI0GenericI0/LLN@FGOEgcbAnalogValues
timeAllowedtolive: 1500
datSet: simplelOGenericIO/LLN@FAnalogValues
goID: analog
t: Sep 12, 20821 10:21:19.915999948 UTC
sthNum: 5
sqNum: ©
test: False
confRev: 2
ndsCom: False
numDatSetEntries: 4
» allData: 4 items

goosePdu TAG goosePdu Length goosePdu DATA

BEOE
pele
peze
BE30
BE40e
BE50
elel]e]
BaTe
Bese
Bese
BEad
BELE
Beco
pede
Boed az ! 5
Dl e A 03 03 B0 8 ot RO 00 00 PO

Bl 68 17

Figure 5.3: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as
illustrated by Figure 5.4. The first part of the goosePdu is made up of the gocbRef
(green box), the second part is made up of the timeAllowedtoLive (red box), the third

part is made up of the dataSet (yellow box), the fourth part is made up of the golD

153

golD

(light blue box), the fifth part is made up of time (purple box), the sixth part is made up
of stNum (orange box), the seventh part is made up of sqNum (grey box), the eighth
part is made up of a test bit (pink box), the ninth part is made up of the configuration
revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue
with red outline box), the eleventh part is made up of humDataSetEntries (grey with
red outline box with) and the final part is made up of the data (yellow with red outline
box).

It can be seen that the goosePdu data is 226 bytes (00xe2) in length and the data set
of the GOOSE control block reference (gocbRef) is 41 bytes (00x29) in length. The
timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the
Logical Node O (LLNO) is 35 bytes (00x23) in length. The GOOSE ID (golD) is made
up of 6 bytes (00x07) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqNum), test bit,
configuration revision (confRev), needs commission (ndsCom), and number of data
set entries (numDataSetEntries) are all 1 byte each. The two bytes that are not
highlighted indicate the TAG and LENGTH while the highlighted portion is the DATA.

stNum

ndsCom

» Frame 42: 255 bytes on wire (2040 bits), 255 bytes captured (2040 bits) on interface eth@, id @
» Ethernet II, Src: LCFCHeFe_ae:2d:05 (68:f7:28:ae:2d:05), Dst: Tec-Tc57_01:00:01 (01:0c:cd:01:00:01)
» BO2.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1
~ GOOSE
APPID: @x1000 (4096)
Length: 237

Reserved 1: ox@008 (@)
Reserved 2: Ox@000 (@)
~ goosePdu

gocbRef: simplelOGenericI0/LLN8%G03gcbAnalogValues
timeAllowedtolive: 1500
datSet: simpleIOGenericIO/LLN@$AnalogValues
goID: analog
t: Sep 12, 2021 19:21:19.915999948 UTC
sthum: 5
sgNum: @
test: False
confRev: 2
ndsCom: False
numDatSetEntries: 4

» allData: 4 items

timeAllowedtoLive dataSet

gocbRef

81 oc cd %GG o1 68 f7
88 b8 10 0ONOO ed 0O 0O
9 6d 70 Gc 65 49 47 47
24 47 47
75 65 73
4f 47 65
41 Ge G1
g 61 Gc 6T
B5 86

Be BB 61
80 29 73
63 49 4f
Ge 61 6c
23 73 69
49 Af 2f

time

confRev

test bit

E:. &
numbDataSet |

Entries

o LG4l ab
C cd 84 B3 03 60 0O 91
Ba a2 18 a2 07 87 05 08
B2 91 08 61 3d d4 97 ea

sgNum

B5 08 00 GO 00

data

Figure 5.4: goosePdu portion of the GOOSE Message structure

154

Figure 5.5 illustrates the final portion of the GOOSE message structure which is the
user-defined data content. The user-defined data is simulated in the main function of
the C source code as illustrated by the green box in Figure 5.6. It can be seen that in
this instance the user-defined data attributes consists of three different items, namely
a data structure that consists of a floating-point value (the Wireshark capture of the
data is an unformatted value) which is 5 bytes in length (red box), a data bit-string
which is 3 bytes in length (yellow box), and UTC-time (Coordinated Universal Time)
which is 8 bytes in length (green box). According to Figure 4.10, in the GOOSE
Publisher source code, data is only transferred into two out of three items shown,
namely a float value and the time and date. This corresponds with the findings from
the Wireshark capture illustrated in Figure 5.4. The data portion for the GOOSE
message discussed in this case study is defined in part 7-2 on page 116 of the IEC
61850 standard. The data portion of the GOOSE message also follows the sequence
as is the case for the variable portion of the message with the TAG, followed by

LENGTH and finally the DATA components, as illustrated in Figure 5.3.

gocbRef: simplelOGenericIO/LLN@SGOSgcbAnalogValues
timeAllowedtolive: 1500
datSet: simplelOGenericIOSLLN@SAnalogValues
goID: analog
. Sep 12, 2821 10:21:19.9159995943 UTC
stNum: 5
sgNum: @
test: False
confRev: 2
ndsCom: False
numDatSetEntries: 4
~ allData: 4 items
= Data: structure (2)
- structure: 3 items
- Data: structure (2)
» structure: 1 item
- Data: floating-point (7)
floating-point: @83edcccecd
~ Data: bit-string (4)
Padding: 3
bit-string: OG0
- Data: utc-time (17)

utc-time: Sep 12, 2021 18:21:19.915999948 UTC
pEee Oc cd B1 B0 ©1 68 f7/ 28 ae 2d @5 81 @0 80 61 -, .7 (.--a .
0e10 b8 10 00 @0 ed G0 00 00 0O 61 81 e2 80 20 73 h.-.-..- -./aS.).
020 6d 70 6C 65 49 4F 47 65 6e 65 72 69 63 43 4F ._.%..|. .>.....|
Unformatted pE30 4c 4c 4e 30 24 47 4F 24 67 B3 62 41 Ge 61 Bc S<<t.$.| F....>/%
data 0840 67 56 61 6c 75 65 73 81 02 05 dc 82 23 73 69 7../%... a - .b#..
[Ese Be 65 72 69 63 49 4F 2Ff _.%..|.. >..... |4
0RED 6c 6F 67 56 61 GC 75 65 <<+.B.>/ ¥2../%..
Q76 73 B3 06 67 84 08 61 3d d4 9F ea .c-/>/%2 .d /=M., utc-time

Data
bitstring

CoDonono/foclEo oo o e

(celce l-ce Wcefce Wooe] [on o]
[cRcNcEoNaEo [

155

Figure 5.5: Data portion of the GOOSE Message structure

For each of the data items shown in Figure 5.5, it can be stated that the highlighted
portion corresponds to the length indicated just prior. i.e. 05 bytes for the unformatted
data (red box), 03 bytes for the data bit-string (yellow box) and 08 bytes for the UTC-
time (green box), Following the TAG, LENGTH and DATA format as defined by

ASN.1 BER.
98 /* Start GOOSE publishing */
99 IedServer_enableGoosePublishing(iedServer);
100
101 running = 1;
102
103 signal(SIGINT, sigint_handler);
104
105 float anInl = 0.f; //Analeg input2 float decleration
106 float anIn2 = 0.f; //Analog input2 float decleration
107
108 while (running) {
109
110 J//DATA FROM Logical NODE GGIO1 - DATA OBJECT AnIni|
111 TedServer_lockDataModel(iedServer);
112
113 TedServer_updateUTCTimeAttributevalue(iedServer, IEDMODEL_GenericIO_GGIO1_AnIni_t, Hal getTimeInMs());
114 IedServer_updateFloatAttributeValue(iedServer, IEDMODEL_GenericIO_GGIO1_AnInl_mag_f, anInl);
115
116 IedServer_unlockDataModel(iedServer);
117
118 anInl += 0.1;
119 printf("Analog_Input_1 %f\n",anInl);
120
121 J//DATA FROM Logical NODE GGIO1 - DATA OBJECT AnIn2
122 Iedserver_lockDataModel(iedServer);
123
124 IedServer_updateUTCTimeAttributevalue(iedServer, IEDMODEL_GenericIO_GGIO1_AnIn2_t, Hal_getTimeInMs());
125 IedServer_updateFloatAttributevValue(iedServer, IEDMODEL_GenericIO_GGIO1_AnIn2 _mag_f, anIn2);
126
127 IedServer_unlockDataModel(iledServer);
128
129 anln2 += 0.2;
130 printf("Analog_Input_2 %f\n",anIn2);
131
132 Thread_sleep(1006); I
133
134 /* stop MMS server - close TCP server socket and all client sockets */

12c

TadCarwvar c+anfliadCaruarh.

Figure 5.6: User-defined data in source code from Appendix E

Figure 5.7 illustrates the working of the GOOSE subscriber source code; the GOOSE
Subscriber source code is shown in Appendix F. When the GOOSE subscriber
source code is executed, it waits for a GOOSE message to be published on the
communication network which contains data from a specific logical node. When this
GOOSE message is published, it then receives and processes this data if the
publishing device has an APPID of 0x1000. The source code then prints to the screen
details related to the GOOSE message it had subscribed to. It can be seen that the
logical node used in the GOOSE message which the subscriber device subscribes to
is the simplelOGenericlO logical node (green box). This logical node is part of the C

library and is located within the examples folder and has already been configured.

156

GOOSE event:
appld: 4096
srcMac: 68:F7:28:AE:2D:05
dstMac: 01:0C:CD:01:08:01
gold: analog
goCbRef: (simplelOGenericIO/LLN®SGOSgcbAnalogValues
dataSet: |simplel0GenericIO/LLNOSAnalogValues

confRev: 2

ndsCom: false

simul: false

stNum: 5 sgNum: ©
timeTolLive: 1580
timestamp: 1631442079.916
message is valid

Figure 5.7: Details of GOOSE message subscribed to by the subscribing device

The results presented in this section, which is based on the simulation and
experimentation of case study 1 detailed in Chapter Four has yielded a GOOSE
message which conforms to the requirements of the GOOSE message service
defined in the IEC 61850 standard. Section 5.2 confirms that the simulated GOOSE
message does conform to the IEC 61850 standard and is identical to GOOSE
messages which are generated by industrial-grade IEDs. The following section

presents and discusses the results and findings of case study 2.

5.3 Analysis of results — Case study 2

In this case study, a new logical node is configured. The logical node chosen for the
implementation of this case study is the CCGR logical node, from the control group of
logical nodes. The CCGR logical node is used to control the cooling equipment within
the substation environment. In order to implement the Wireshark software to capture
GOOSE messages published from an external source (Beaglebone device),
additional configuration needs to be done. It is required to configure SSH settings of
the Publisher Beaglebone device to get Wireshark to log in and run the tcpdump
command which is a packet sniffing and packet analysing tool used by Linux-based
operating systems such as Ubuntu, in order for a user to troubleshoot connectivity

issues within the system.

Figure 5.9 illustrates the capture (using the Wireshark packet analyser) of the
GOOSE message published on the network setup illustrated in Figure 5.8. Similar to
the GOOSE message published in case study 1, the first portion of the GOOSE

message structure also has a fixed length, and its content also cannot be altered. The

157

fixed portion of this GOOSE message too consists of numerous parts. These parts

are detailed and identified below.

The first part of the fixed portion of the GOOSE message is made up of the Header
information containing the preamble, the start of the frame and the Destination MAC
address (green box), the second part is made up of the Source MAC address (red
box) which can be seen to be different to the breakdown shown in Section 5.2. The
Source MAC address in the previous case study identifies the computer used to
publish GOOSE, in this case it is the Beaglebone device. The third part is made up of
the TPID (Tag Protocol Identifier) (yellow box), the third part is made up of the TCI
(Tag Control Information) (brown box), the fourth part of is made up of the Ethertype
(blue box), the fifth part is made up of the APPID (Application Identifier) (purple box),
the sixth part is made up of the length (orange box), the seventh and eighth parts are
reserved, reserved 1 and reserved 2 respectively and are identified by the pink
boxes. The GOOSE message frame format is defined in Part 8-1, on page 114 of the
IEC 61850 standard.

The fixed part of the GOOSE message analysed in this case study is identical to the
fixed part of the GOOSE message analysed in case study 1. The Destination and
Source address are 6 bytes long. The TPID is a two-octet field in an Ethernet frame
which assigned for 802.1Q Ethernet encoded frames and is given by 0x8100. The
TCI is made up of what is referred to as the CFl (Canonical Frame Indicator) and
optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for GOOSE) is
each made of 2 bytes each. The APPID (application identifier) is 2 bytes in length. It
can be seen that the analysis of the fixed part of the GOOSE message yielded
identical results in terms the length of the data types of the GOOSE message even

though a new Logical Node has been configured and implemented in this case study.

158

GOOSE Publisher

GOOSE Subseriber

Ethernet Cable Ethernet Cable
IEC 61850 IEC 61850
Embedded C
Iémhedded C forary
library
|
Ethernet Cable

[

Figure 5.8: Physical setup of the case study

Frame 13: 155 bytes on wire (1240 bits), 155 bytes captured (1248 bits) on interface /tmp/wireshark_
Ethernet II, Src: TexasIns_67:4e:83 (74:e1:82:87:4e:83), Dst: Iec-Tc57_01:00:01 (81:6c:cd:01:00:01)
802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1

i vww

GOOSE
APPID: Ox1800 (4096)
Length: 137

Reserved 1: 0x0000 (@)
Reserved 2: 0x0000 (@)

v goosePdu
| Destination MAC address || Source MAC address | TPID TCI
Ethertype /
Bc cd 01 00 01 [ANelNNS2 B/ndenag 61 00 BENGE ... -.. bg+ca: .
80 B0 0O PO OO 61 Tf 80 27 54 45 h... i oML
6Cc 69 6e 67 2f 4c 4 (&<....? P%.>./<<
APPID 41 Ge 61 6c 6F 67 56 +.5.|%.. ..>/%?..
82 21 54 45 4d 50 4c /%...a - .b!..(&<
67 2f 4c 4c 4e 30 2477%. >./<<+.§
75 65 73 83 06 61 6e .>/%7../ %...c />
Length Ba 51 ad fb Ba 85 B1 /%?.d.-. -|.z.-e:
@2 89 01 00 8a 01 @1 . f..g-h i
B97a2 0T 87 05 08 cc ce 5ege? oL
Reserve 1
Reserve 2

Figure 5.9: Fixed portion of the GOOSE Message structure

159

The variable portion of the GOOSE Message structure is illustrated by Figure 5.10. It
is clear that upon face value, the variable portion of this GOOSE message is clearly
shorter than the GOOSE message in case study 1, this is once again due to different
user-defined data content being used. Similarly, to the GOOSE message analysed in
case study 1, this portion of the GOOSE Message too consists of the goosePdu
(Protocol data unit) Length right up until the end the of the frame even though the
frame is shorter in length. The variable portion of the GOOSE message consists of
more than one part. The first part of the variable portion of the GOOSE message is
made up of the goosePdu TAG (red box), the second part is made up of the
goosePdu LENGTH (green box) and the third part is made up of the goosePdu DATA
(the blue highlighted section).

» Frame 13: 155 bytes on wire (1240 bits), 155 bytes captured (1240 bits) on interface /tmp/wireshark_
» Ethernet II, Src: TexasIns_87:4e:83 (V4:e1:82:87:4e:83), Dst: Tec-Tc57_081:00:01 (01:8c:cd:01:00:01)
» BB2.10Q Virtual LAN, PRI: 4, DEI: @, ID: 1
~ GOOSE

APPID: @x100@ (4096)

Length: 137

Reserved 1: @x@008 (@)
Reserved 2. @x@000 (@)

goosePdu

gocbRef: TEMPLATECooling/LLN@EGO%gcbAnalogValues

timeAllowedtolive: 1508

datSet: TEMPLATECooling/LLN@EAnalogValues

goID: analog

t: Mar 30, 2821 11:87:22.318999946 UTC

stNum: 12

sqNum: 1

test: False

confRev: 2

ndsCom: False

numDatSetEntries: 1
» allData: 1 item goosePdu TAG goosePdu Length goosePdu DATA

o[t [eLe]
gol1e
(o] ulede A
pe3n [
pode
BE58
(olelste]
peTe
(a]ulz1e]
gege El

Figure 5.10: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as
illustrated by Figure 5.11. The first part of the goosePdu is made up of the gocbRef
(green box), the second part is made up of the timeAllowedtoLive (red box), the third
part is made up of the dataSet (yellow box), the fourth part is made up of the golD
(light blue box), the fifth part is made up of time (purple box), the sixth part is made up
of stNum (orange box), the seventh part is made up of sgNum (grey box), the eighth
part is made up of a test bit (pink box), the ninth part is made up of the configuration
revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue

with red outline box), the eleventh part is made up of nhumDataSetEntries (grey with

160

stNum

sgNum

test bit

golD

red outline box with) and the final part is made up of the data (yellow with red outline
box).

It can be seen that the goosePdu data is 127 bytes (00x7f) in length and the data set
of the GOOSE control block reference (gocbRef) is 39 bytes (00x27) in length. The
timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the
Logical Node 0 (LLNO) is 33 bytes (00x21) in length. The GOOSE ID (golD) is made
up of 6 bytes (00x06) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqgNum), test bit,
configuration revision (confRev), needs commission (ndsCom), and number of data

set entries (humDataSetEntries) are all 1 byte each.

» Frame 13: 155 bytes on wire (1240 bits), 155 bytes captured (1248 bits) on interface /tmp/wireshark_
» Ethernet II, Src: TexasIns_87:4e:83 (74:e1:82:87:4e:83), Dst: ITec-Tc57_61:00:081 (01:0c:cd:01:008:01)
» BO2.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1

~ GOOSE
APPID: 0x1000 (4096)
Length: 137

Reserved 1: 0x@008 (@)
Reserved 2: 0x0008 (@)
~ goosePdu
gochRef: TEMPLATECooling/LLNGEGOSgchbAnalogValues
timeAllowedtolive: 1508
datSet: TEMPLATECooling/LLN@EAnalogValues
goID: analog
t: Mar 3@, 2021 11:07:22.318999946 UTC
sthNum: 12
sgNum: 1 dataSet
test: False
confRev: 2
ndsCom: False timeAllowedtoLive
numDatSetEntries: 1
v allData: 1 item gochRef

t ndsCom

DOBE 01 Oc cd 01 0D @1 74 el A2 87 de 81 00 80 01
/10 BB b8 10 00 PO B9 ©O QO OO OB GL7T 8O 27 54 45
N 4d 50 4c 41 54 45 43 6F 67 GC A9 Ge 67 27 4c 4c
N 4e 30 24 47 4f 24 67 63 62 Ge 61 Gc 67 67 b6

time

DONE 6c 75 65 73 81 02 4d 50 4c
0o 41 45 43 6f 6f 6c 69 6e 67 2f 4c 4c de 38 T numDataSetEntries
A\ 41 6 c 6f 67 56 61 Gc 75 65 73 83 0GA =%
peTe] /%2
Bc
s confRev

Figure 5.11: goosePdu portion of the GOOSE Message structure

Figure 5.12 illustrates the final portion of the GOOSE message structure which is the
user-defined data content. The user-defined data is simulated in the main function of
the C source code as illustrated by the green box in Figure 5.13. It can be seen that
in this instance unlike the GOOSE message analysed in case study 1, the user-
defined data attributes consist of only one item, that item only being a data structure
that consists of a floating-point value which is similar to the floating-point value in
case study 1 is 5 bytes in length (red box). According to Figure 4.33, in the GOOSE

Publisher source code, one data item is identified, namely simulated fan flow. This

161

corresponds with the findings from the Wireshark capture illustrated in Figure 5.9. The
data portion for the GOOSE message discussed in this case study is defined in part
7-2 on page 116 of the IEC 61850 standard. The data portion analysed of the
GOOSE message in this case study, similarly to case study 1, also follows the
sequence as is the case for the variable portion of the message with the TAG (blue
box), followed by LENGTH (yellow box) and finally the DATA component, as
illustrated in Figure 5.10. The data is 5 bytes in length.

» Frame 13: 155 bytes on wire (1240 bits), 155 bytes captured (1240 bits) on interface /tmp/wireshark
» Ethernet II, Src: TexasIns_87:4e:83 (74:e1:82:87:4e:83), Dst: Iec-Tc57_01:00:01 (@1:@c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1
-

GOOSE
APPID: Gx1000 (4096)
Length: 137

Reserved 1: ox@000 (@)
Reserved 2: 8xB000 (@)
~ goosePdu
gocbRef: TEMPLATECooling/LLN@GOgcbAnalogValues
timeAllowedtolive: 1500
datSet: TEMPLATECooling/LLN@SAnalogValues
goID: analog
t: Mar 3@, 2021 11:87:22.318999946 UTC
SstNum: 12
sqNum: 1
test: False
confRev: 2
ndsCom: False
numDatSetEntries: 1
~ allData: 1 item
~ Data: structure (2)
- structure: 1 item
~ Data: floating-point (7)
floating-point: B83fBcccce

TAG | | LENGTH |

Oc cd 01 00 @1 74 el 82 87 “ovo.. bgtca
b& 10 00 0O 89 0O 0O hooode oM,
50 4c 41 54 45 43 67 (&=....? M.>. /<<
30 24 47 41 24 67 6c 6f 67 56 +.5.|%. =/%?

54 45 4d 50 4c /%...a -

2 2f 4c 4c 4e 30 24
6c 75 65 73 83 06 61 Ge
@6 6a 51 a9 fh Ga 85 O %r.d -
b1 p2 89 PL @08 vl @1 f-.g-h i,

97 ..

6c 75 65 73 81 @2
54 45 43 6f 6F
Ge 61 Gc 6f 6
6c 6T 67
86 01 01 87 01
09 a2 Q7 ‘87 05

Unformatted data

Figure 5.12: Data portion of the GOOSE Message structure

162

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Figure 5.14 illustrates the working of the GOOSE subscriber source code; the
GOOSE Subscriber source code is shown Appendix H. When the GOOSE subscriber
source code is executed, it waits for a GOOSE message to be published on the
communication network which contains data from a specific logical node. When this
GOOSE message is published, it receives and processes this data if the publishing

device has an APPID of 0x1000. The source code then prints to the screen details

r

node used in the GOOSE message which the subscriber device subscribes to is the

TEMPLATECooling logical node (green box). This is the newly configured logical

}

/* Start GOOSE publishing */
IedServer_enableGoosePublishing(iedServer);

running = 1;
signal(SICINT, sigint_handler);

float fanflw = f; [/Fan Flow Data float decleration

while (running) {
IedServer_lockDataModel(iedServer);
//NEW Logical Node
IedServer_updateUTCTimeAttributeValue(iedServer, IEDMODEL_Cooling_CCGRO_FanFlw_t, Hal_getTimeInMs());
IedServer_updateFloatAttributevalue(iedServer, IEDMODEL_Cooling_CCGRO_FanFlw_mag_f, fanflw);
IedServer_unlockDataModel(iedServer);
fanflw +=

printf(1 I t1 %f\n",fanflw);

Thread_sleep(1); 1

/* stop MMS server - close TCP server socket and all client sockets */
IedServer_stop(iedServer);

/* Cleanup - free all resources */

IedServer_destroy(iedServer);
Y /¥ main(y %/

Figure 5.13: User-defined data in source code from Appendix G

elated to the GOOSE message it had subscribed to. It can be seen that the logical

node, where the process is detailed in Section 4.5.1.

Figure 5.14: Details of GOOSE message subscribed to by the subscribing device

GOOSE event:
appId: 4096
srcMac: 6B:F7:28:AE:2D:05
dstMac: 01:0C:CD:01:00:01
goId: analo
gDCbREf'
dataSet:| TEMPLAT
confRev: 2
ndsCom: false
simul: false
stNum: 56 sgNum: @
timeTolLive: 1500
timestamp: 16319811260.151
message is valid
AllData: {{5.499997}}

163

The analysis conducted in this section confirms that the GOOSE message structure is
indeed of the format specified by the IEC 61850 standard and is identical to the
GOOSE message structure analysed in Case Study 1. It can be seen that the only
difference between the GOOSE message structures recorded in case study 1 and
case study 2 is the difference in the data contained in the published GOOSE
message structures of the two case studies. The data captured in the Wireshark
capture is a raw unformatted value. This is due to different logical nodes being used
to publish GOOSE in each of the case studies. This section discussed the results of
case study 2. The following section presents and discusses the results of case study
3.

5.4 Analysis of results — Case study 3

In this third and final case study, a novel logical node is developed which is meant to
extend the reach of the IEC 61850 standard from not only the substation
environment, but to the industrial process domain. The logical node developed for the
implementation of this case study is the IPFC (Industrial Process Functions) logical
node. The IPFC logical node is used to parse temperature and humidity data within
an industrial processing plant. This third and final case study is the culmination of the
research project as it builds on results and validation of the results of the previous two
case studies. This third and final case study uses real-time data instead of simulated
values like the two first case studies. The results of this case study determines
whether IEC 61850 standard algorithms and its workings is indeed viable to be
implemented on a lightweight embedded device and extended to domains other than
just the substation automation domain. Due to this, more than one validation
technique is employed. The first technigue is the Wireshark capture of the GOOSE
Messages published and subscribed to by the embedded devices which are
operating as IEDs. The second technique is the GOOSE Inspector software capture
of the GOOSE Messages published and subscribed to by the embedded devices
which are operating as IEDs. The Wireshark analysis is more aimed at validating the
structure of the GOOSE Messages rather than the data contents. The GOOSE
Inspector analysis is aimed at validating the data contents of the GOOSE Messages.
These monitoring packages are simultaneously running on two different monitoring
computers connected to the Ethernet network, as illustrated in Figure 5.15.
Employing these two techniques using different data protocol monitoring software
packages allows for in-depth scrutinising of the data and allow a suitable level of

validation to be met.

164

Figure 5.16 illustrates the Wireshark packet analyser capture of the GOOSE message
published on the network setup illustrated in Figure 5.15. Similar to the GOOSE
message published in case study 1 and case study 2, the first portion of the GOOSE
message structure also has a fixed length, and its content cannot be altered either.
The fixed portion of this GOOSE message too consists of numerous parts. These

parts are detailed and identified below.

Identical to the GOOSE message captures analysed in case study 1 and case study
2, the first part of the fixed portion of the GOOSE message is made up of the Header
information containing the preamble, the start of the frame and the Destination MAC
address (green box), the second part is made up of the Source MAC address (red
box) which can be seen to be different to the breakdown shown in Section 5.2 but
identical to the breakdown shown in Section 5.3. The Source MAC address in the
case study 1 identifies the computer used to publish GOOSE, in this case it is the
Beaglebone device. The third part is made up of the TPID (Tag Protocol Identifier)
(yellow box), the third part is made up of the TCI (Tag Control Information) (brown
box), the fourth part of is made up of the Ethertype (blue box), the fifth part is made
up of the APPID (Application Identifier) (purple box), the sixth part is made up of the
length (orange box), the seventh and eighth parts are reserved, reserved 1 and
reserved 2 respectively and are identified by the pink boxes. The GOOSE message
frame format is defined in Part 8-1, on page 114 of the IEC 61850 standard.

The fixed part of the GOOSE message analysed in this case study is identical to the
fixed part of the GOOSE messages analysed in case study 1 and in case study 2.
The Destination and Source address are 6 bytes long. The TPID is a two-octet field in
an Ethernet frame which assigned for 802.1Q Ethernet encoded frames and is given
by 0x8100. The TCI is made up of what is referred to as the CFl (Canonical Frame
Indicator) and optional VID (VLAN Identifier). Both the TCI and Ethertype (0x88b8 for
GOOSE) is each made of 2 bytes each. The APPID (application identifier) is 2 bytes
in length. It can be seen that the analysis of the fixed part of this GOOSE message
yielded identical results in terms the length of the data types of the GOOSE message
even though a novel Logical Node has been developed and implemented. This is

expected based on the outcomes of case study 1 and case study 2.

165

- Temperature
GOOSE Publisher and Humidity

Sensing Device

Qv - 1.8V analog input

IEC 61850
IEC 61850 Embedded C
Embedded C library
library
Ethernet Cable Ethernet Cable
Network Switch

Ethernet Cable

Ethernet Cable

@ GOQSE Inspector

Figure 5.15: Physical setup of the case study

¢ Frame 19: 185 bytes on wire (14808 bits), 185 bytes captured (1480 bits) on interface /tmp/wireshark
» Ethernet II, Src: TexasIns_87:4e:83 (74:el1:82:87:4e:83), Dst: Iec-Tch7_01:€0:81 (@1:@c:cd:01:0@:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: @
~ GOOSE
APPID: 0x1000 (4096)
Length: 167
Reserved 1: ox@080 (@)
Reserved 2: Ox2000 (0)
» goosePdu
Destination MAC address | | Source MAC address | TPID TCI
— //
#ATe1 g2 87 4e'8a 51 0o BEYGE@ - .- .. bgtca
B8 61 81 9c 80 31 54 h. ¥ A
64 75 73 74 72 69 61 .(&<.... 2...... /
APPID 2F 4c 4c de 30 24 4T 4F W&.7.... /<<+.§.|
6c 6f 67 56 61 6c 75 65 73 F....=/% ?..0%...
45 4d 50 4c 41 54 45 49 Ge a - .b+.. (&<....>
Length Gc 50 72 6F 63 65 73 73 2F % &P
e 61 Bc 6f 67 56 61 6c 75 65 <<t+.§.>/ %?../%..
6c 6Ff 67 84 @8 61 59 21 f4 6d .c-/>/K? .d /.14
Reserve 1 86 01 01 87 01 00 B8 01 P2 89 Ki-e f g h -1
12 a2 07 87 65 08 41 d3 d9 3d o8 +gr L LR=
53 c3 98 sg..C.
Reserve 2

Figure 5.16: Fixed portion of the GOOSE Message structure

166

The variable portion of the GOOSE Message structure is illustrated by Figure 5.17.
As expected, the variable portion of this GOOSE message is clearly shorter than the
GOOSE message in case study 1, this is due to a different logical node being used.
Similar to the GOOSE messages analysed in case study 1 and case study 2, this
portion of the GOOSE Message too consists of the goosePdu (Protocol data unit)
Length right up until the end the of the frame even though the frame is shorter in
length when compared to case study 1. The variable portion of the GOOSE message
consists of more than one part. The first part of the variable portion of the GOOSE
message is made up of the goosePdu TAG (red box), the second part is made up of
the goosePdu LENGTH (green box) and the third part is made up of the goosePdu
DATA (the blue highlighted section). The goosePdu LENGTH of this case study (9c)
is greater when compared to case study 2 (7f), this is due the amount of data
(temperature and humidity) being parsed in case study 3 is more than the data (Fan

Flow) in case study 2.

» Frame 19: 185 bytes on wire (1480 bits), 185 bytes captured (1480 bits) on interface /tmp/wireshark
» Ethernet II, Src: TexasIns_87:4e:83 (74:e1:82:87:4e:83), Dst: Tec-Tc57_91:00:01 (P1:6c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: @
~ GOOSE

APPID: Gx1088 (4096)

Length: 167

Reserved 1: @x0000 (@)

Reserved 2: @x0000 (@)

goosePdu

gocbRef: TEMPLATEIndustrialProcess/LLNPEGO%gcbAnalogValues
timeAllowedtolive: 1500

datSet: TEMPLATEIndustrialProcess/LLNB@SAnalogValues

goID: analog

t: Oct 3, 2021 ©3:22:28.428999960 UTC

stNum: &
sgMum: 1
test: False
confRev: 2
ndsCom: False goosePdu TAG
numDatSetEntries: 2 goosePdu Length goosePdu DATA

» allData: 2 items /

0000 01 Bc cd 01 00 01 74 el B2 87 4¥83 81‘6680 6o e
@E1E 88 b8 10 @0 6O a7 00 00 0O Be £

6 0) &
elekle] c i1 6c 75
BE50 [dc 54 45 4d 50 4c 41 54 45
OD60 (LS 7 6f 63 65

Figure 5.17: Variable portion of the GOOSE Message structure

The goosePdu portion of the GOOSE message consists of numerous parts as
illustrated by Figure 5.18. The first part of the goosePdu is made up of the gocbRef
(green box), the second part is made up of the timeAllowedtoLive (red box), the third
part is made up of the dataSet (yellow box), the fourth part is made up of the golD

(light blue box), the fifth part is made up of time (purple box), the sixth part is made up

167

of stNum (orange box), the seventh part is made up of sgNum (grey box), the eighth
part is made up of a test bit (pink box), the ninth part is made up of the configuration
revision (confRev) (brown box), the tenth part of is made up of ndsCom (light blue
with red outline box), the eleventh part is made up of humDataSetEntries (grey with
red outline box with) and the final part is made up of the data (yellow with red outline
box).

It can be seen that the goosePdu data is 156 bytes (00x9c) in length and the data set
of the GOOSE control block reference (gocbRef) is 29 bytes (00x1D) in length. The
timeAllowedtoLive is 2 bytes (00x02) in length and the data set (dataSet) of the
Logical Node 0 (LLNO) is 42 bytes (00x2A) in length. The GOOSE ID (golD) is made
up of 6 bytes (00x06) and time is 8 bytes (00x08) in length.

The length of status number (stNum), sequence number (sqNum), test bit,
configuration revision (confRev), needs commission (ndsCom), and number of data

set entries (humDataSetEntries) are all 1 byte each.

p Frame 19: 185 bytes on wire (1480 bits), 185 bytes captured (1480 bits) on interface /tmp/wireshark_
» Ethernet II, Src: TexasIns_87:4e:83 (74:e1:82:87:4e:83), Dst: Iec-TcH7_01:00:01 (01l:0c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: @
~ GOOSE
APPID: 8x1008 (4098)
Length: 167
Reserved 1: Ox0000 (@)
Reserved 2: 0xQ000 (0)
~ goosePdu
gocbRef: TEMPLATEIndustrialProcess/LLNOSGO%gcbAnalogValues
timeAllowedtolive: 1500
datSet: TEMPLATEIndustrialProcess/LLN@%AnalogValues
goID: analo
t: Oct 3, 2821 03:22:28.428999960 UTC
stNum: 6
sqNum: 1
test: False
confRev: 2
ndsCom: False

timeAllowedtoLive

dataSet

numDatSetEntries: 2
y allData: 2 items

gocbRef time sqNum

\ 01 @c cd 01 @8 @1 74/e1

82 87 4de 83%1 Be 80 60

golD 80 B0 61 Bl gc 80 31 54 b/ x - AE.... bi
e 64 75 73 T4 72 69 61 /(&S et Dnunnt. test bit
2f 4c 4c de 20 24 47 35/ g . ..
stNum 67 67 56 61 6c 75 65 75~5.. ..
4d 50 4c 41 54 (‘f fe
numDataSetbgé g confRev
Entries e
00
L data
ndsCom

Figure 5.18: goosePdu portion of the GOOSE Message structure

Figure 5.19 illustrates the final portion of the GOOSE message structure which is the
user defined data content. It can be seen that in this instance unlike the GOOSE
messages analysed in case study 1 and case study 2, the user-defined data
attributes consist of only two items, those two item being two data structures that
consists of floating-point values. The floating-point data items are 5 bytes in length,

which are highlighted in red and green. These two floating-point data values are

168

representations of the real-time temperature and humidity readings from the sensor
connected to the analogue inputs of the Beaglebone. The data is however not
formatted in Wireshark. The Wireshark analysis is more aimed at validating the
structure of the GOOSE message rather than the data contents. It can be seen from
Figure 4.60, in the GOOSE Publisher source code, 4 data items are identified,
namely temperature and humidity. This corresponds with the findings from the
Wireshark capture illustrated in Figure 5.19. The data portion for the GOOSE
message discussed in this case study is defined in part 7-2 on page 116 of the IEC
61850 standard. The data portion analysed of the GOOSE message in this case
study, similarly to Case Study 1, also follows the sequence as is the case for the
variable portion of the message with the TAG, followed by LENGTH and finally the
DATA components. As illustrated in Figure 5.17.

» Frame 19: 185 bytes on wire (1480 bits), 185 bytes captured (1480 bits) on interface /tmp/wireshark_
» Ethernet II, Src: TexasIns_87:4e:83 (74:e1:82:87:4e:83), Dst: Iec-Tc57_01:00:01 (01:0c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: @
~ GOOSE

APPID: 0x100@ (4896)

Length: 167

Reserved 1: @x@000 (0)
Reserved 2: @x@000 (@)
- goosePdu
gocbRef: TEMPLATEIndustrialProcess/LLNG@SGOSgcbAnalogValues
timeAllowedtolive: 1588
datSet: TEMPLATEIndustrialPrecess/LLN@$AnalogValues
goID: analog
t: Oct 3, 2021 03:22:28.428999960 UTC
StNum: 6
sqMum: 1
test: False
confRev: 2
ndsCom: False
numDatSetEntries:

2
+ allData: 2 items | TAG || LENGTH |
(2)

Unformatted
Humidity Data

/ Unformatted

Temperature Data
TAG || LENGTH |

~ Data: structure
~ structure: 1 item
+ Data: floating-podl
floating-point
~ Data: structure (2)

« structure: 1 item

(1)
0841d3dg3d

EEEE 01 Bc cd @1 G0 61 7 A
BEL0 B8 b8 00 0B a7 00 61 81 e
BE20 45 4d Ge 64 75 73 . - T
Be3e 6¢c 50 2f 4c 4c de 30 24 4417 .7 ..

Be4e 24 67
BE5E 81 02 .
CoED 64 75 73 74 A2 69/61 6c 50 T2Af 63480 1373 2 ...,
Be70 4c 4c de

GEED T3 83 66 ETL
Beoe d2 f1 6, Kie--f- -g--h -1
Boal 01 6o ceuce.es gL LR=
BebE a2 B7 '8F 05 08 42 53 c3 90 50 ..C .

Figure 5.19: Data portion of the GOOSE Message structure

Figure 5.21 illustrates the temperature and humidity data being published on the
Ethernet communication, as per the C source code illustrated in Figure 5.20. The
GOOSE Messages of the data are being published using the newly developed IPFC
logical node. The temperature data can clearly be seen as highlighted by the red box,
the yellow box with the length is clearly seen to be 5 bytes in length indicated by the

value preceding the highlighted portion. The humidity data can clearly be seen as

169

highlighted by the green box and its length is 5 bytes as highlighted by the yellow
box. The data values shown are raw analogue values and are yet to be processed.
The raw analogue input values range from 0 to 4094 and is a representation of the

analogue input voltage, which ranges from 0V to 1.8V

float reading:
float Temperature;
float Humidity:
reading = atof (ch);
IedServer_lockDataModel{iedServer);
/ /TEMPERATURE
IedServer updateUTCTimeAttributeValue (iedServer, IEDMODEL IndustrialProcess IPFCO_Temp t, Hal getTimeInMs());
IedServer updateFloatAttributeValue (iedServer, IEDMODEL IndustrialProcess_IPFCO_Temp mag f, Temperature);

Iedserver unlockDataModel (iedServer);

// Temperature += 0.1;
Temperature = reading/ H
printf("T n",Temperature} ;

IedServerilockDataModel{iedServer);

/ /HUMIDITY

IedServer updateUTCTimeAttributeValue (iedServer, IEDMODEL IndustrialProcess IPFCO_Hum t, Hal getTimeInMs()});
IedServer_ updateFloatAttributeValue(iedServer, IEDMODEL IndustrialProcess_IPFCO_Hum mag_f, Humidity);

Iedserver_unlockDataModel (iedServer) ;

//Humidity += 0.1;
Humidity = reading/ H
printf("Relative H v zf\n" ,Humidity) ;

ubuntu@arm: ~/RD Industrial Process/examples/server_example_goose

roderick-Lenovo-G50-8 ubuntu@arm: ~/RD Industrial Process/exam... @arm: ~/libiec61850-1.5/examples/

Relative Humidity 68.178787

4094

Temperature in Degrees 34.103027
Relative Humidity 68. 7

Temperature in Degrees .103027
Relative Humidity

4094

Temperature in Degrees 34.103027
Relative Humidity 68.178787

4094

Temperature in Degrees 34.103027
Relative Humidity 68.178787

4093

Temperature in Degrees 34.094696
Relative Humidity 68.162140

4093

Temperature in Degrees 34.094696
Relative Humidity 68.162140

4094

Temperature in Degrees 34.103027
Relative Humidity 68.178787

4094

Temperature in Degrees 34.163027
Relative Humidity 68. 1 7

4093

Temperature in Degrees 34.094696
Relative Humidity 68.162140

4093

Temperature in Degrees 34.094696
Relative Humidity 68.162140

4094

Temperature in Degrees 34.103027
Relative Humidity 68. 1 7

Figure 5.21: Data being published by the GOOSE Publishing IED

170

Figure 5.22 illustrates the operation of the GOOSE subscriber IED. When the
GOOSE subscriber source code is executed, it waits for a GOOSE message to be
published on the Ethernet network illustrated 4.36. It only subscribes to the GOOSE
message if the publishing device has an APPID of 0x1000. When the subscribing IED
subscribes to a GOOSE message, all the details pertaining to that GOOSE message
is printed to the screen. The application ID (red box) can be seen as 4096 (which is a
value of 0x1000 in hexadecimal). The source MAC address is identified by the green
box and the destination MAC address is identified by the yellow box. The golD is
identified by the blue box and the goCbRef, dataSet, confRev, ndsCom are all
highlight by the orange box. All these highlighted values correspond to the values
highlighted in the Wireshark capture. The temperature and humidity data which is
communicated within the GOOSE message structure (highlighted in yellow with green
outline) can be seen to correspond with the data being published in the publisher

IED’s window.

ubuntu@arm: ~/libiec61850-1.5/examples/goose_observer

roderick@roderick-Lenovo-G50-80: ~ ubuntu@arm: ~/RD Industrial Process/exam... ubuntu@arm: ~/libiec61850-1.5/examples/g...

GOOSE event:
appld: 4096

srcMac: 74:E1:82:87:4E:83
dstMac: 01:0C:CD:01:00:01
gold: analog
LB
t:

TEMPLATEIndustrialProcess/LLNO$SGOSgcbAnalogValues
TEMPLATEIndustrialProcess/LLN@$Analogvalues

simul: false

stNum: 4

sqNum: @

timeToLive: 1500
timestamp: 1633223534.378
message is_valid

AllData:

{{34.0946961, {68.162140})

GOOSE event:
appld: 4096
srcMac: 74:E1:82:87:4E:83
dstMac: 01:0C:CD:01:00:01
goId: analog

goCbRef:
dataset:
confRev:

TEMPLATEIndustrialProcess/LLN@$GOSgcbAnalogValues
TEMPLATEIndustrialProcess/LLN@SAnalogvalues
2

ndsCom: false
simul: false

stNum: 4

sqhum: 1

timeToLive: 1500
timestamp: 1633223534.378
message is valid

AllData:

{{34.094696},{68.162140}}

GOOSE event:
appId: 4096
srcMac: 74:E1:82:87:4E:83
dstMac: 01:0C:CD:01:00:01

Figure 5.22: GOOSE Message being subscribed to by the Subscribing IED

Figure 5.23 illustrates the GOOSE Message structure and its data contents as seen
within the GOOSE Inspector software, which as previously mentioned, is installed and
running on a separate computer connected to the Ethernet network, as indicated by
Figure 5.15. This GOOSE Inspector software is meant to verify the data parsed within
the GOOSE Message, since Wireshark is used to analyse and verify the structure of
the GOOSE message.

171

In order to analyse the GOOSE messages being published, start the GOOSE
Inspector software. Place a filter on the type of communication on the network to be
displayed by pressing F11 and selecting GOOSE. Only GOOSE messages are now
be displayed as indicated on the top window (red box) in Figure 5.23.

The bottom window in Figure 5.23 illustrates the GOOSE message structure of one of
the GOOSE messages which have been opened. The green box illustrates the
GOOSE message structure which once again correspond to the Wireshark analysis
as well as the information printed to the screen by the subscribing IED. The blue box
illustrates the temperature data contained within the published GOOSE message and
the purple box illustrates the humidity data contained within the published GOOSE
message. It can once again be seen that both sets of data corresponds to the data
shown in both the publishing and subscribing IED windows shown in Figure 5.21 and
Figure 5.22.

GOOSE Inspector Demo Loglgé - rdindustrialprocessin.icd - O X
‘Ele Mode View Sefings Fiter Help ‘. -] ‘-‘EIH 90009
File View, logical, all packets =
Thursday, 87 October 2021 Packet 77 of 95
77 18:24:27,828 d=0.000s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
78 18:24:27,830 d=0.002s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
79 18:24:28,330 d=0.500s $74:E1:82:87:4E:83 > $01:0C:CD:01:00:01 GOOSE
80 18:24:28,830 d=0.500s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
81 18:24:28,859 d=0.029s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
82 18:24:29,329 d=0.470s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
83 18:24:30,853 d=1.524s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
84 18:24:30,856 d=0.003s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE n
85 18:24:31,356 d=0.500s $74:E1:82:87:4E:83 > $01:0C:CD:01:00:01 GOOSE
86 18:24:31,857 d=0.501s $74:E1:82:87:4E:83 > $01:0C:(D:01:00:01 GOOSE
=]
Detailed View 77 18:24:27,828 Server GOOSE — O
77 18:24:27,828 d=0.000s Server GOOSE
£74:E1:82:87:4E:83 > §01:0C:CD:01:00:01
AppID 4096
GOOSE not defined in SCD File!
CB Reference : TEMPLATEIndustrialProcess/LLNO$GOSgcbAnalogvalues
TAL : 1500 ms)
DataSet Ref. : TEMPLATEIndustrialProcess/LLNOSAnalogValues
GOOSE ID : analog
UtcTime : 03.10.2021 61:©3:11,589 - LSU
Statusnumber : 119
Sequencenumber: 0
Test : No
Config Revis. : 2
Needs Commiss : No
No. of Elem. : 2
Object: 1
34.094696
Object: 2
68.178787

Figure 5.23: GOOSE Inspector interface showing published GOOSE messages

172

5.5 Conclusion

This chapter presented an in-depth analysis of the GOOSE message structure of
three case studies. In the first case study, GOOSE message publication and
subscription is implemented between a computer and an embedded device on an
Ethernet Local Area Network (LAN) using a preconfigured GGIO Logical Node (LN),
the GOOSE messages are then validated in order to confirm whether the GOOSE
message structure conforms to Part 8-1 of the IEC 61850 standard. In the second
case study, GOOSE message publication and subscription is implemented between
two embedded devices on an Ethernet LAN using a configured CCGR LN. The
GOOSE messages are then validated in order to confirm whether the GOOSE
message structure conforms to Part 8-1 of the IEC 61850 standard. In the third and
final case study, GOOSE message publication and subscription is implemented
between two embedded devices on an Ethernet LAN using a newly developed IPFC
LN. The GOOSE messages are then validated in order to confirm whether the
GOOSE message structure conforms to Part 8-1 of the IEC 61850 standard. Lastly
the data contained within all three case studies are validated as conforming to part 8-
1 of the IEC 61850 standard.

Based on the findings of the analysis and validation conducted in this chapter, the
GOOSE messages published and subscribed to in all three of the case studies does

indeed conform at Part 8-1 of the IEC 61850 standard.

The following chapter presents the conclusion to this research work and possible

future developments within this field of work.

173

CHAPTER SIX

CONCLUSION AND FUTURE RESEARCH WORK

6.1 Introduction

Condition monitoring plays a crucial role in various industries, ranging from the power
system domain to industrial processes such as mining, fuel and gas, food and
beverage as well as transport infrastructure such as railway systems. Condition
monitoring is the process of continuously monitoring process variables in order to
detect a change in the state of the variable. Condition monitoring serves many
purposes, such as preventative or predictive maintenance or even to ensure a
product being processed is done so correctly. The introduction of Ethernet allows for
communication applications in the condition monitoring space to provide real-time
data exchange and control. Condition monitoring which uses the Ethernet-based IEC
61850 communication standard provides the opportunity to widen the scope of the
application domain for the IEC 61850 communication standard. The aims and

objectives for the research work are detailed in Chapter One.

In this thesis, a detailed literature review of existing condition monitoring techniques
in both the industrial process automation and the electrical substation domain is
conducted. From the analysis of the literature review, a need for expanding IEC
61850 standard-based condition monitoring from the power system domain to the
industrial process automation domain is identified. This need allowed for the
development of two Intelligent Electronic Device (IED) models, a new Logical Node
(LN), and implementing GOOSE message publishing and subscribing on an Ethernet
network between these newly developed IEDs. The open-source IEC 61850 standard
embedded C library is used for the development of the IEDs and GOOSE
communication, the ICD Designer software is used to develop the new Logical Node,
and the XML Marker software is used to verify the new Logical Node. Three different
tests are performed in order to validate the structure of the GOOSE message to
ensure |IEC 61850 standard compliance in terms of accuracy, scalability,
configurability, and interoperability. In order to develop any IEC 61850 standard-
based system an intimate knowledge of the standard is required. A brief overview of
the IEC 61850 standard is presented including the modelling approach for the various

implemented systems.

This research has answered three main research questions, hamely:

174

A. Can a new IEC 61850 standard-based logical node be developed for real-time
implementation within a condition monitoring system meant for the industrial
process automation domain?

B. Can the GOOSE communication protocol using the newly developed logical
node be implemented in real-time within a condition monitoring system meant
for the industrial process automation domain?

C. Can the GOOSE communication protocol using the newly developed logical
node be implemented within a condition monitoring system on a lightweight

embedded platform meant for the industrial process domain in real-time?

In the answering of the above three research questions, the investigations conducted
in this thesis reveal, firstly, that a new IEC 61850 standard-based logical node can be
developed for real-time implementation within a condition monitoring system meant
for the industrial process automation domain. Secondly, the GOOSE communication
protocol using the newly developed logical node can be implemented in real-time
within a condition monitoring system meant for the industrial process automation
domain. Thirdly, the GOOSE communication protocol using the newly developed
logical node can be implemented within a condition monitoring system on a

lightweight embedded platform meant for the industrial process domain in real-time.

In this chapter, the deliverables and the conclusion of the thesis is presented. Section
6.1 details the aim and objectives of the research work as it is defined in Chapter
One. Section 6.2 presents the achieved deliverables and objectives. Section 6.3
presents a list of developed software algorithms. Section 6.4 discusses possible
areas of application in academia and industry. Section 6.5 proposes the future
directions of this research work. Section 6.6 details publications emerging from this

research work and Section 6.7 presents the conclusion to this research work.

6.1.1 Aim

The aim of this research is to develop a new IEC 61850 standard-based logical node
to be used in the publishing of and subscription to GOOSE Messages over an
Ethernet network between two newly developed lightweight IEC 61850 standard-

based IEDs which are used in a condition monitoring system.

6.1.2 Objectives: Theoretical Analysis
e To conduct a literature review on the existing approach to condition monitoring

in the various fields it is deployed.

175

6.1.3

To conduct a literature review on the existing monitoring functions utilised
within the IEC 61850 standard.

To conduct a literature review of the existing IEC 61850 standard-based
logical nodes in all domains of application.

To conduct a literature review of the IEC 61850 standard-based GOOSE
(Generic Object-Oriented Substation Event) protocol.

To formulate strategies in order to develop an in-depth understanding and
application of the IEC 61850 standard for real-time implementation.

To examine and develop a detailed understanding of the source code
functionality implemented within the open-source IEC 61850 standard-based
embedded C library.

To examine and develop a detailed understanding of the embedded hardware
platform chosen for implementation.

To examine and develop a detailed understanding of the operating system
chosen for the project implementation.

To formulate a strategy to develop a real-time temperature and humidity
condition monitoring system on the embedded hardware and operating
system chosen.

To examine and develop a detailed understanding of the ICD Designer and
XML Marker software tools used in the development process of the Logical
Node.

To formulate a strategy to integrate all the varying facets in terms of the

hardware and software components of the project.

Objectives: Practical Implementation

To configure hardware devices for real-time communication over an Ethernet
network.

To develop IEC 61850 standard-based lightweight IEDs using the IEC61850 C
code library in the Linux Environment.

To design, configure and implement embedded hardware for monitoring of a
temperature and humidity sensor.

Development of a novel EC 61850 standard-based logical node to extend the
reach of the standard to other domains of application.

Real-time implementation on an embedded platform using the novel logical

node which is used in the condition monitoring system.

176

6.2 Thesis Deliverables
The thesis deliverables are elaborated upon in the following sections.

6.2.1 Literature Review

A thorough literature review is conducted on condition monitoring systems
implemented and communication systems used in these condition monitoring
systems. A large group of relevant research papers on condition monitoring
techniques and communication systems used in various industrial domains as well
the electrical substation domain are identified, grouped, compared and analysed. The
evolution of techniques and methods used in condition monitoring and
communication protocols used are charted from the late 1980s up until the modern
day. Various papers are analysed and grouped to provide a clear picture of the state
of condition monitoring and communication protocols currently in place. The literature

review is divided into four parts which are highlighted below.

The first part of the review focuses on the fundamentals of condition monitoring, what
it means, the fields of implementation in industry and the various types of condition
monitoring applied in industry. The second part of the review focuses on the
implementation of condition monitoring in specific industries, the various monitoring
techniques implemented, the various types of communication mediums used in these
condition monitoring systems as well as the aim of implementing the various condition
monitoring systems across industrial processes. The third and fourth of parts of the
review respectively focuses on IEC 61850 standard-based condition monitoring with
emphasis placed on monitoring functions and communication methods used within
the Intelligent Electronic Devices (IEDs) found within electrical Substation Automation
Systems (SAS).

The literature review, and detailed comparative discussion indicates that all variations
of condition monitoring techniques implemented in the industrial process industries
are mostly propriety solutions which are costly. IEC 61850 standard-based condition
monitoring techniques implemented in the substation domain although interoperable,
are still costly and IEC 61850 standard-based condition monitoring techniques are
currently exclusive to the power system and substation domain. The literature review,
and detailed comparative discussion on these various parts can be found in Chapter

Two.

177

6.2.2 Configuring of hardware devices for real-time communication over an
Ethernet network

Real-time communication over an Ethernet Local Area Network (LAN) is achieved.
Three case studies are implemented, with each having a different communication
network configuration. The first case study’s communication network configuration
consists of a computer, an embedded device, and a network switch. Both the
computer and embedded device are connected to the same network switch with
Ethernet cables. Communication between the computer and the embedded device is
established via the network switch. The second case study’s communication network
configuration consists of a computer, two embedded devices and a network switch.
Both embedded devices and the computer are connected to the same network switch
with Ethernet cables. Communication between the computer and between the two
embedded devices are established via the network switch. The third case study’s
communication network configuration consists of two computers, two embedded
devices and a network switch. Both computers and both embedded devices are
connected to the same network switch with Ethernet cables. Communication between
all the devices on the communication network is established via the network switch.
The first step is two install the Linux-based Ubuntu operating system on each of the
embedded devices as well as on the computer. The Ubuntu operating systems on
each of the devices is updated, an Internet connection is established and the devices
are configured for communication on the Ethernet LAN. This is detailed in Chapter 4,

which discussed the practical implementation of the three case studies.

6.2.3 Development of IEC 61850 standard-based lightweight IEDs using the
IEC61850 C code library in the Linux Environment

A computer and two embedded devices are configured to operate as IEC 61850
standard-based IEDs. Communication between the configured IEDs is implemented
in three case studies. In the first case study, the computer and one of the embedded
devices are modelled as IEDs and communicate with one another, in the second and
third case study both embedded devices are modelled as IEDs and communicate
with one another. To achieve this, Ubuntu, which is a Linux-based operating system
is installed on the computer and the two embedded devices. The computer and each
of the embedded devices are configured to have access to the Internet, which allows
for the respective operating systems to be updated accordingly. The IEC 61850
standard-based embedded C library is then uploaded onto each of the embedded
devices and the relevant library source code files is then altered in such a way to
configure the computer and the embedded devices to operate as IEDs. The computer
and embedded devices are now lightweight versions of the industrial grade IEDs but

demonstrates the most important functionality of traditional IEDs. This implementation

178

is inexpensive and easily accessible via various open-source avenues. This is

discussed in detail in the three case studies conducted in Chapter 4.

6.2.4 Configuring of embedded hardware for monitoring of a temperature and
humidity sensor

One of the embedded devices is used to monitor temperature and humidity from an
analogue sensor. The source code is developed in the embedded C programming
sensor to read temperature and humidity data from the sensor on the 0-1.8V
analogue input of the embedded device. The data readings are then printed to the
screen displaying real-time data as conditions change. This data is communicated
and shared on the Ethernet communication network where all other devices
connected to the same network can access the data. An in-depth analysis is
conducted using the Wireshark software and GOOSE Inspector software to ensure
that the data being transmitted on the communication network and received by the
other devices on the network corresponds with the data being read by the
temperature and humidity sensor. The results from the data analysis indicates that

the received data is accurate and corresponds with initial readings from the sensor.

6.2.5 Development of an IEC 61850 standard-based Logical Node in the
System Corp ICD Designer software

One of the practical contributions is the development of a new logical node as defined
in Part 6 of the IEC 61850 standard as well as the Substation Configuration
Language (SCL) using the eXtensible Markup Language (XML) and conforming to the
XML Schema. The new logical node is developed using the XML within the ICD
Designer Software environment. After the development of the new logical node, it is
the exported to IED Configuration Description (ICD) file type. The newly developed
logical node which is of ICD file type is then validated using the XML Marker software
tool. The validation process includes confirming the structure as it is defined for the
Header section, Substation section, Communication section, IED section and the
Data Type Templates sections. The results for the development of the new logical
node are presented in Chapter Four. The results confirm that the ICD file of the newly
developed logical node conforms to the requirements of the SCL as defined in Part 6
of the IEC 61850 standard. With the results achieved indicating that the new logical
node conforms to requirements of the SCL as defined in Part 6 of the standard, the
new logical node will play a significant role in the expansion of the IEC 61850
standard-based condition monitoring functions from the electrical substation domain

to the industrial process domain.

179

6.2.6 Real-time implementation of the GOOSE communication protocol using
the newly developed logical node which is used in the condition monitoring
system

The final practical contribution is to integrate all the practical components into an
individual fully operational condition monitoring system with IEC 61850 standard-
based capabilities. An IED which monitors the temperature and humidity data from a
sensor publishes GOOSE messages using the newly developed logical node which
contains the temperature and humidity data over an Ethernet network where a
subscribing IED receives and processes this data by printing the GOOSE message
data to a screen. Data validation is done by analysing the GOOSE messages which
are published on the network using two computers connected on the same network.
The Wireshark and GOOSE Inspector software which are used for packet monitoring
and analysis are employed to validate and confirm the message structure and data
content of the GOOSE message. Conducting the analysis found that the GOOSE
messages does indeed conform to Part 8 of the IEC 61850 standard and that there
are no discrepancies between GOOSE messages being published and subscribed to.

The novelty of the contribution of this research lies in the real-time implementation of
a temperature and humidity (which are generally considered to be industrial process
variables) condition monitoring system in an IEC 61850 standard-based system which
is implemented on an embedded hardware platform, and the development of a new
logical node based on the IEC 61850 standard modelling approach and applied in

real-time.

Based on the above, it can be concluded that the thesis deliverables contribute to
opening and bringing the user closer to an understanding of the IEC 61850 standard

and requirements for the implementation of standard in two ways:

1. The design, development, and real-time application of two IEDs
implemented on an embedded platform within a temperature and humidity
condition monitoring system also implemented on the same hardware. The
test bed development process indicates that the IEC 61850 standard can
understood and applied in ways that are innovating.

2. Contributing to further extend the knowledgebase of the IEC 61850
standard through the development of a novel logical node for condition
monitoring, data acquisition and data distribution in the industrial process
domain using GOOSE messages. The process of creating the novel
logical node and its verification demonstrates the versatility of the IEC

61850 standard engineering tools used to build and integrate the various

180

software models and contributes to the extension of the IEC 61850 in a

clear and simple way.
Building and implementing the IEC 61850 compatible embedded system for condition
monitoring based on the new logical node extends the application of the IEC 61850

standard to new domains of application and contributes to new fields of research at

universities.

6.3 Software Development

Table 6.1: Summary of the software programmes developed in this research

Number File Name Application Description Appendix
1 server_pc_goose.c Computer GOOSE Publisher C source code with Appendix E
GGIO Logical Node
goose_bb_subscriberl.c | Beaglebone GOOSE Subscriber C source code 1 Appendix F
3 server_bb_ccgr_goose.c | Beaglebone GOOSE Publisher C source code with Appendix G
CCGR Logical Node
4 goose_bb_observer.c Beaglebone GOOSE Subscriber C source code 2 Appendix H
server_bb_ipfc_goose.c | Beaglebone GOOSE Publisher C source code with Appendix |
IPFC Logical Node
6 RDIndustrialProcessLN IPFC Logical Node in XML Appendix J

6.4 Application of the Developed Methods and Algorithms
The algorithms and methods developed in this research can be implemented in IEC
61850 standard-based condition monitoring and control systems for both academic

and industrial applications.

6.4.1 Industrial Applications

The algorithms and methods developed in this research can be implemented in IEC
61850 standard-based monitoring and control systems in utility power plants and
industrial process plants of various natures. Some of examples of these industrial

applications are listed below:

¢ Real-time monitoring and control of power systems.
e Real-time monitoring control of industrial plants in the food and beverage, fuel

and gas as well as the water treatment industry.

181

Real-time fault diagnosis.
Maintenance applications.

Application of the new logical node to develop new industrial-grade devices.

6.4.2 Academic Applications

The algorithms and methods developed in this research can be applied in an

academic institution to further the knowledge base of the IEC 61850 standard. Some

of examples of the academic applications are listed below:

6.5

6.6

Include IEC 61850 standard-based course work in undergraduate programs,
which will enable an in-depth understanding of the IEC 61850 standard and its
applications for prospective post-graduate students.

Increase the undertaking of IEC 61850 standard-based research in post-
graduate studies.

Use the developed source code and processes to further this research.

Use the research work as a basis for development of practical exercises for
the course-based Master’s in Smart Grid program at the university.

This research work can also be applied to practical exercises on the

undergraduate and Honour's embedded systems courses.

Future Work

The developed algorithm can be applied and implemented on a different
embedded architecture such as a Field Programmable Gate Array Logic
(FPGA) system. More refined and optimised prototypes can be developed.
Logical nodes can be developed for different applications other than a
temperature and humidity monitoring system as is in this case. This allows for

the reach of the IEC 61850 standard to expand to other industrial processes.

Publications related to this thesis.

Domingo R., Kriger C. “Validation of the GOOSE Message Structure in a
lightweight IEC 61850 Standard-Based Embedded Monitoring System”.
Submitted to the journal International Journal of Computers Communications
and Control.

Domingo R., Kriger C. “Development and application of a New IEC 61850
standard-based Logical Node in an industrial process condition monitoring
system”. In progress for submission to the journal European Journal of

Engineering Research and Science.

182

6.7 Conclusion

The deliverables which are proposed in this research project have all been achieved.
Areas of industrial and academic application are highlighted and discussed. The
direction of future research work is considered and proposed. Journal publications

emanating from this research work have been submitted for consideration.

183

REFERENCES

ABB review, 2010. Special Report IEC 61850. Technical journal. Zurich: ABB Group R&D
and ABB.

Amjadi S. and Kalam A., "IEC61850 GOOSE performance in real time and challenges faced
by power utilities,” 2015 IEEE Eindhoven PowerTech, 2015, pp. 1-6, doi:
10.1109/PTC.2015.7232254.

Amulya, Patil M., Bhide S.R. and Bhat S.S., "Experimenting with IEC 61850 and GOOSE
messaging,” 2017 4th International Conference on Power, Control & Embedded Systems
(ICPCES), 2017, pp. 1-6, doi: 10.1109/ICPCES.2017.8117641.

Apostolov A., "Communications in IEC 61850 Based Substation Automation Systems," 2006
Power Systems Conference: Advanced Metering, Protection, Control, Communication, and
Distributed Resources, 2006, pp. 51-56, doi: 10.1109/PSAMP.2006.285370.

Apostolov A., "Impact of IEC 61850 on the Protection Grading and Testing Process," 2008
IET 9th International Conference on Developments in Power System Protection (DPSP
2008), 2008, pp. 20-25, doi: 10.1049/cp:20080004.

Apostolov A. and Vandiver B., "Requirements for testing of power swing blocking functions in
protection IEDs," 2011 64th Annual Conference for Protective Relay Engineers, 2011, pp.
125-129, doi: 10.1109/CPRE.2011.6035611.

Apostolov A., "IEC 61850 9-2 Process Bus applications and benefits," 10th IET International
Conference on Developments in Power System Protection (DPSP 2010). Managing the
Change, 2010, pp. 1-5, doi: 10.1049/cp.2010.0353.

Apostolov A., Brunner C. and Clinard K., "Use of IEC 61850 object models for power system
quality/security data exchange," CIGRE/IEEE PES International Symposium Quality and
Security of Electric Power Delivery Systems, 2003. CIGRE/PES 2003., 2003, pp. 155-164,
doi: 10.1109/QSEPDS.2003.159813.

Apostolov A., "Protection operation analysis in Smart Grids," 22nd International Conference
and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1-5, doi:
10.1049/cp.2013.1220.

Apostolov A., "Integration of distributed energy resources in Smart Grids," 22nd International
Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1-5, doi:
10.1049/cp.2013.1205.

Apostolov A. and Vandiver B., "Testing requirements for IEC 61850 based devices," 2007
Power Systems Conference: Advanced Metering, Protection, Control, Communication, and
Distributed Resources, 2007, pp. 249-253, doi: 10.1109/PSAMP.2007.4740916.

Arnold T., Adewole A. C. and Tzoneva R., "Performance testing and assessment of multi-
vendor protection schemes using proprietary protocols and the IEC 61850 standard," 2015
International Conference on the Industrial and Commercial Use of Energy (ICUE), Cape
Town, 2015, pp. 284-290. doi: 10.1109/ICUE.2015.7280280

Bicen Y. and Aras F., "Intelligent condition monitoring platform combined with multi-agent
approach for complex systems,” 2014 |IEEE Workshop on Environmental, Energy, and
Structural Monitoring Systems Proceedings, 2014, pp. 1-4, doi:
10.1109/EESMS.2014.6923283.

184

Bosisio A., Berizzi A., Morotti A., Pegoiani A., Greco B. and lannarelli G., "IEC 61850-based
smart automation system logic to improve reliability indices in distribution networks," 2019
IEEE 8th International Conference on Advanced Power System Automation and Protection
(APAP), 2019, pp. 1219-1222, doi: 10.1109/APAP47170.2019.9224717.

Brunner C., "The Impact of IEC 61850 on Protection," 2008 IET 9th International Conference
on Developments in Power System Protection (DPSP 2008), 2008, pp. 14-19, doi:
10.1049/cp:20080003.

Chen C., Dai Z., Ding J., Huang H., Wang Y. and He M., "Application of IEC 61850 proxy in
seamless communication between digital substation and control centre,” CICED 2010
Proceedings, 2010, pp. 1-5.

Chunlong L., Hui H., Yun L., Hongjing L., Kuan Y. and Kewen L., "Research on Transmission
Line Vibration Condition Monitoring System and Energy Management Scheme Based on
Micro Energy Harvesting,” 2021 4th International Conference on Energy, Electrical and
Power Engineering (CEEPE), 2021, pp. 255-259, doi: 10.1109/CEEPE51765.2021.9475557.

Costinas S., Dobra R., Zoller C. and Zoller 1., "Wind power plant condition monitoring using
HP VEE Pro Software," 2011 10th International Conference on Environment and Electrical
Engineering, 2011, pp. 1-4, doi: 10.1109/EEEIC.2011.5874714.

Duan F. and Zivanovi¢ R., "Automated multi-motor condition monitoring based on IEC
61850," 2013 IEEE ECCE Asia Downunder, 2013, pp. 699-703, doi: 10.1109/ECCE-
Asia.2013.6579177.

Elazab E., Awad T., Elgamal H. and Elsouhily B., "A cloud based condition monitoring
system for industrial machinery with application to power plants,” 2017 Nineteenth
International Middle East Power Systems Conference (MEPCON), 2017, pp. 1400-1405, doi:
10.1109/MEPCON.2017.8301366.

Elgargouri A., Virrankoski R. and Elmusrati M., "IEC 61850 based smart grid security,” 2015
IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 2461-2465, doi:
10.1109/I1CIT.2015.7125460.

Elmaleeh M. A. A., Saad N. and Awan M., "Condition monitoring of industrial process plant
using acoustic emission techniques,"” 2010 International Conference on Intelligent and
Advanced Systems, 2010, pp. 1-6, doi: 10.1109/ICIAS.2010.5716110.

Englert.H and Dawidczak H., "I[EC 61850 substation to control center communication —
Status and practical experiences from projects," 2009 IEEE Bucharest PowerTech, 2009, pp.
1-6, doi: 10.1109/PTC.2009.5281942.

Fang J., Yu S. and Ding X., "Development and Application of Networked Manufacturing
Process Monitoring System,” 2008 International Symposium on Computational Intelligence
and Design, Wuhan, 2008, pp. 432-435. doi: 10.1109/ISCID.2008.16

Feng B., Zhang D., Si Y., Tian X. and Qian P., "A condition monitoring method of wind
turbines based on Long Short-Term Memory neural network,” 2019 25th International
Conference on Automation and Computing (ICAC), 2019, pp. 1-4, doi
10.23919/IConAC.2019.8895037.

Fu P., Hope A.D. and King G. A., "A neurofuzzy pattern recognition algorithm and its
application in tool condition monitoring process,” ICSP '98. 1998 Fourth International
Conference on Signal Processing (Cat. N0.98TH8344), 1998, pp. 1193-1196 vol.2, doi:
10.1109/1COSP.1998.770831.

185

Fu K., Ji H., Hao J. and Li H., "A novel approach of welding condition monitoring based on
pressure signal similarity comparison,” 2021 7th International Conference on Condition
Monitoring of Machinery in Non-Stationary Operations (CMMNO), 2021, pp. 32-35, doi:
10.1109/CMMNO53328.2021.9467554.

Fung F., Fung K. Y., Chan Y. T. and Wong M. K., "Remarkable benefit realization by
application of strategic management in power transformer condition monitoring and
diagnostic systems," 2008 International Conference on Condition Monitoring and Diagnosis,
2008, pp. 533-538, doi: 10.1109/CMD.2008.4580343.

Gaouda A. M. et al., "A Smart IEC 61850 Merging Unit for Impending Fault Detection in
Transformers," in IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1812-1821, May 2018,
doi: 10.1109/TSG.2016.2600680.

Gers J. M. and Holmes E. J., “Protection of Electricity Distribution Networks”, 2nd ed.
London: Institution of Engineering and Technology 2004.

Groom S. L., "Can we measure our way out of trouble? the truth behind condition
monitoring," 6th IET Conference on Railway Condition Monitoring (RCM 2014), 2014, pp. 1-
8, doi: 10.1049/cp.2014.1007.

Gulski E., Cichecki P., Smit J.J., Seitz P. P., Quak B. and de Vries F., "On-site condition
monitoring of HV power cables up to 150kV," 2008 International Conference on Condition
Monitoring and Diagnosis, 2008, pp. 1199-1202, doi: 10.1109/CMD.2008.4580503.

Herkes I. M. C., "Condition monitoring drives organizational change," 2006 IET International
Conference On Railway Condition Monitoring, 2006, pp. 7-12.

Hmida M. A. and Braham A., "ARM based RSWPT implementation for embedded condition
monitoring of induction motor," IECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, 2016, pp. 1464-1469, doi: 10.1109/IECON.2016.7794066.

Hammer, E. and Sivertsen, E., 2008. Analysis and implementation of the IEC 61850
standard. Thesis. Technical University of Denmark.

https://www.gegridsolutions.com/multilin/journals/issues/spring09/iec61850.pdf IEC 61850
Communication Networks and Systems In Substations_An Overview for Users — 2009

Huang W., "A Practical Guide of Troubleshooting IEC 61850 GOOSE Communication," 2018
IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2018, pp. 1-6,
doi: 10.1109/TDC.2018.8440522.

Huang W., "Learn IEC 61850 configuration in 30 minutes," 2018 71st Annual Conference for
Protective Relay Engineers (CPRE), 2018, pp. 1-5, doi: 10.1109/CPRE.2018.8349803.

Ighinovia F. O., Fandi G., Muller Z., Svec J. and Tlusty J., "Effect of improved electricity
product development on the business performance of a public electricity transmission
company,” 2017 IEEE PES PowerAfrica, 2017, pp. 46-51, doi:
10.1109/PowerAfrica.2017.7991198.

Jang H., Lee D., Yun S, Kim J., Ahn C. and Yang H., "Condition Monitoring and Diagnosis for

IEC 61850 Based Power Systems," 2011 International Conference on Information Science
and Applications, 2011, pp. 1-6, doi: 10.1109/ICISA.2011.5772341.

186

Jo Y. et al., "A software engine for HMI of IED based on IEC 61850," 2011 International
Conference on Advanced Power System Automation and Protection, 2011, pp. 1312-1316,
doi: 10.1109/APAP.2011.6180582.

Kim D., Kang D., Seo D. and Chang Y., "Development of GIS condition monitoring and
diagnosis system based on IEC61850," 2012 IEEE International Conference on Condition
Monitoring and Diagnosis, 2012, pp. 396-398, doi: 10.1109/CMD.2012.6416463.

Kirkman R., "Development in Substation Automation Systems,” 2007 International
Conference on Intelligent Systems Applications to Power Systems, Toki Messe, Niigata,
2007, pp.1-6. doi: 10.1109/ISAP.2007.4441690

Ledn H., Montez C., Stemmer M. and Vasques F., "Simulation models for IEC 61850
communication in electrical substations using GOOSE and SMV time-critical messages,"
2016 IEEE World Conference on Factory Communication Systems (WFCS), 2016, pp. 1-8,
doi: 10.1109/WFCS.2016.7496500.

Lloret P., Velasquez J.L., Molas-Balada L., Villafafila R., Sumper A. and Galceran-Arellano
S., "IEC 61850 as a flexible tool for electrical systems monitoring,” 2007 9th International
Conference on Electrical Power Quality and Utilisation, 2007, pp. 1-6, doi:
10.1109/EPQU.2007.4424193.

Liang Y., Liu H., Hu Y. and Zhang K., "Design and implementation of power communication
room monitoring system based on IEC 61850," 2017 3rd IEEE International Conference on
Computer and Communications (IccQ), 2017, pp. 2971-2975, doi:
10.1109/CompComm.2017.8323076.

Liu H., Zheng J. and Chen Y., "The Application of Multi-thread-based Embedded System in
the Fire Monitor,” 2009 Second International Symposium on Electronic Commerce and
Security, 2009, pp. 506-508, doi: 10.1109/ISECS.2009.167.

Mackiewicz R. E., "Overview of IEC 61850 and Benefits," 2006 IEEE PES Power Systems
Conference and Exposition, 2006, pp. 623-630, doi: 10.1109/PSCE.2006.296392.

Mercurio A., Di Giorgio A. and Cioci P., "Open-Source Implementation of Monitoring and
Controlling Services for EMS/SCADA Systems by Means of Web Services— IEC 61850 and
IEC 61970 Standards," in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1148-
1153, July 2009, doi: 10.1109/TPWRD.2008.2008461.

Morris E.P.C., Feng G. and Horler G.D., "Enabling the multiple use of condition monitoring
devices for real-time monitoring, real-time data logging and remote condition monitoring," 7th
IET Conference on Railway Condition Monitoring 2016 (RCM 2016), 2016, pp. 1-5, doi:
10.1049/cp.2016.1201.

Netto U.C., D. Castro Grillo D., Lonel I1.D. and Coury D.V., "A behaviour evaluation of
network traffic in a power substation concerning GOOSE messages," 2012 IEEE Power and
Energy Society General Meeting, 2012, pp. 1-5, doi: 10.1109/PESGM.2012.6345140.

Nguyen-Dinh N., Kim G. S. and Lee H. H., "A study on GOOSE communication based on
IEC 61850 using MMS ease lite," 2007 International Conference on Control, Automation and
Systems, 2007, pp. 1873-1877, doi: 10.1109/ICCAS.2007.4406651.

Ozansoy C. R., Zayegh A. and Kalam A., "The Application-View Model of the International

Standard IEC 61850," in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1132-
1139, July 2009, doi: 10.1109/TPWRD.2008.2005657.

187

Park j., In E., Ahn S., Jang C. and Chong J., "IEC 61850 Standard Based MMS
Communication Stack Design Using OOP," 2012 26th International Conference on Advanced
Information Networking and Applications Workshops, 2012, pp. 329-332, doi:
10.1109/WAINA.2012.101.

Qiang H., Xue-cheng Z. and Shi-min S., "ASN.1 Application In Parsing ISUP PDUs," 2006
International Symposium on Communications and Information Technologies, 2006, pp. 78-
81, doi: 10.1109/ISCIT.2006.339891.

Sehrawat D. and Gill N. S., "Smart Sensors: Analysis of Different Types of 10T Sensors,"
2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019,
pp. 523-528, doi: 10.1109/ICOEI.2019.8862778.

Senke N. et al., "Application of the IEC 61850 to communication in distribution automation
and building energy management systems - Evaluation of the applicability of standard
Logical Nodes and Data Objects," 2012 IEEE Third International Conference on Smart Grid
Communications (SmartGridComm), 2012, pp. 454-459, doi:
10.1109/SmartGridComm.2012.6486026.

Seo J., "A Practical Scheme for Vibration Signal Measurement-Based Power Transformer
on-Load Tap Changer Condition Monitoring,” 2018 Condition Monitoring and Diagnosis
(CMD), 2018, pp. 1-4, doi: 10.1109/CMD.2018.8535923.

Shaw D.C., "A universal approach to Points Condition Monitoring," 2008 4th IET International
Conference on Railway Condition Monitoring, 2008, pp. 1-6, doi: 10.1049/ic:20080315.

Sheng Z., Liu Z., Wang J. and Lu Y., "Development and application of condition monitoring
system for plant production,"” 2012 24th Chinese Control and Decision Conference (CCDC),
2012, pp. 2490-2493, doi: 10.1109/CCDC.2012.6244397.

Swift M., Aurisicchio G. and Pace P., "New practices for railway condition monitoring and
predictive analysis," 5th IET Conference on Railway Condition Monitoring and Non-
Destructive Testing (RCM 2011), 2011, pp. 1-6, doi: 10.1049/cp.2011.0578

Swiszcz G., Cruden A., Booth C. and Leithead W., "A data acquisition platform for the
development of a wind turbine condition monitoring system," 2008 International Conference
on Condition Monitoring and Diagnosis, 2008, pp. 1358-1361, doi:
10.1109/CMD.2008.4580521.

Tatera B.S. and Smith H.L., "The evolution of monitoring and controlling in electric power
substations," 2008 IEEE Power and Energy Society General Meeting - Conversion and
Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-5, doi:
10.1109/PES.2008.4596842.

Xu Q., Li Y. and Chu Y., "Research on Condition Monitoring Platform for Mineral Processing
Equipment Based on Industrial Cloud," 2018 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), 2018, pp. 1-2, doi: 10.1109/ICCE-China.2018.8448908.

Yang A., Zhang Z., Fan H., Chen L. and Wu M., "Design of Networked Condition Monitoring
System for Drilling Process,"” 2019 Chinese Control Conference (CCC), 2019, pp. 7083-7086,
doi: 10.23919/ChiCC.2019.8865348.

Yongli Z., Dewen W., Yan W. and Wenqing Z., "Study on interoperable exchange of IEC

61850 data model,” 2009 4th IEEE Conference on Industrial Electronics and Applications,
2009, pp. 2724-2728, doi: 10.1109/ICIEA.2009.5138698.

188

Zainir R. A. and Muhamad N. A., "Review on software development for time-domain high
voltage equipment condition monitoring,” 2012 IEEE International Conference on Condition
Monitoring and Diagnosis, Bali, 2012, pp.790-793. doi: 10.1109/CMD.2012.6416266

Zhang X. and Zhang J., "Design of Embedded Monitoring System for Large-Scale Grain

Granary," 2018 11th International Symposium on Computational Intelligence and Design
(ISCID), 2018, pp. 145-148, doi: 10.1109/ISCID.2018.00040.

189

APPENDICES

APPENDIX A: Installing Ubuntu on the computer

Ubuntu is a Linux-based open-source operating system. The operating system is a
software which manages a computer's hardware and software resources. The
operating system is important and required because it provides a platform for all the
required software and hardware implementations of this research work to be done in

a convenient and efficient manner.

e Step 1: Creating a bootable USB with Ubuntu 20.02

The first step in the installation process is to create a bootable USB with the Ubuntu
20.04 software. The USB is inserted into the PC after which it is rebooted. The boot
sequence is changed in the BIOS of the computer system where the USB is selected
as the primary boot device. Figure A A.1l displays the resulting screen after the

system boots from the USB.

ubuntu®

Figure A A.1: Ubuntu installation boot screen

e Step 2: Selecting the language of the user interface.

The installation process starts off with a language prompt. The language of the user

interface of the operating system is selected as shown in Figure A A.2.

190

Welcome

Espanol
Esperato

Cuskars

Francais
Caelige
Calego

talieno Try Ubuntu Install Ubuntu

Latwsk
You can try Ubuntu without making any changes 1o your computer, directly from

this CD.

Lietuviika
Magyar
Nederlands M If you're ready, you can install Ubuntu alongside (or instead of) your current
operating system. This shoulda’t take too lorny
NO localization (UTFE)
Norsk bokmd

NOrsk rnorss You may wish Lo read the release notes

Figure A A.2: Ubuntu installation language prompt

e Step 3: Selecting the preferred keyboard layout

Once the language of the operating system is selected, the keyboard layout prompt
appears, with various layouts to choose from. The English (US) option is chosen as

indicated in the highlighted orange rectangles in Figure A A.3.

Figure A A.3: Ubuntu installation keyboard layout selection

191

Step 4. Selecting the preferred installation packages

The following prompt in the installation process are updates and other software. At
this step, a normal or a minimal installation is to be chosen with a choice to install
system updates and third-party software. A normal installation is chosen as shown in
the highlighted section in Figure A A.4 to ensure that the operating system is not

limited but operating at its full capability.

Install

Updates and other software

What apps would you like to install to start with?

© Normal installation
Web browser, utiities, office software, games, and media players.
Minimal installation
Web browser and basic utiities

Other options

This saves time after installation

Install third-party software for graphics and Wi-Fi hardware and additional media formats

This software is subject to koense terms included with its documentation. Some s proprietary

Quit Back Continue

Figure A A.4: Ubuntu Installation updates and other software

Step 5: Selecting the installation type

The following prompt in the installation process is the installation type. The choice
here is on how the Ubuntu installation is to be done. There is an option to erase the
current operating system, which is Windows 10, or to install Ubuntu alongside
Windows and have the ability to choose between the two whenever the system boots.

This is shown in the highlighted section in Figure A A.5.

192

Sun 1031

Install

Installation type

This computer currently has Windows Boot Manager on it. What would you like to do?

© Install Ubuntu alongside Windows Boot Manager

Documents, music, and other personal files will be kept. You can choose which operating system you want each time the computer tarts up.

Erase disk and install Ubuntu
Warning: This will delete all your programs, documents, photos, music, and any other files in all operating systems.

You will (hoose a security key in the nest step

This will set up Logical Volume Management. & allows taking w

Something else

You can Create of resize partitions yourself, or choose mulkiple partitions for Ubunt

Quit Back Install Now

Figure A A.5: Ubuntu installation type

e Step 6: Configuring the system storage

This part of the installation is where the system storage is configured. The various
options to choose from can be seen as shown in Figure A A.6. The free space on the
hard drive is allocated to Ubuntu.

Installation type

free space W sdat (ntrs) B0 scaZ (fatd2) 8 sdad (unknown) Bl sdaa (nefs) free space

1 MB

1 nefs 523MB 3T3IMB

2 ef 103 MB 33 MB windows Boot Manager
16 MB e

Dwvice for boot loader imtallation

fdevivda VMware, VMware Virtusl S (107.4 Ga) -

Quit Back install How

Figure A A.6: Ubuntu installation storage configuration

193

Step 7: Configuring the root partition

The following step is to select the root partition size as indicated in the highlighted

orange rectangles in Figure A A.7.

free space W sdat (ntfs) W sda2 (fat32) W sdad (unknown) Bl sdad (ntfs) [free space

Logical

dev/sdad

free space

Figure A A.7: Root partition configuration

Step 8: Installing the configured operating system

Once all partitions are created and the system storage configuration is completed, the
Ubuntu installation can then be finalised by clicking the “Install Now” button as shown
in Figure A A.8. This ensures the operating system is installed according to all the

previous configuration steps completed.

194

Sun 11:11

Installation type

—
free space [sdat (ntfs) I sde2 (fat32) W sdal (unknown) W sded (ntfs) W sdas (extd) W sdes (Unux-swap) W sda? (extq)
Device Type Mountpoint Format? Size Jsed System
free space 1M8
[dev/sdat ntfs S23MB IT3Me
[dev/sda2 ef 103MB 33me windows Boot Manager
Jdev/sdal 16 MB unknown
[dev/sdad mfs 85756 MB 10965 MB
[dev/sdas exts [10000 M8 unknown
[dev/sdat swap 4095MB unknown
[dev/sdal extd [home 6875MB unknown
free space 1MB
New Partition Table eve:
Device for boot loader installation
[dev/sda VMware, VMware Virtual $ (107.4 GB) ./
Quit Back ratall Now

Figure A A.8: Finalising the installation

Step 9: Rebooting the system for installation to take effect

Once the installation is completed, the system is required to be rebooted for full use
as shown in Figure A A.9.

Figure A A.9: Installation complete, system to be rebooted.

195

APPENDIX B: Ubuntu updates and additional installations on the computer

The Ubuntu operating system receives regular updates with new versions of the
software being released almost every six months. Updates are important for security
reasons and allows for full use of all the upgraded technology which come with the

updates.

e Step 1. Repository Updates

After Ubuntu has been rebooted the system repositories needed to be updated. This
is done as follows. In the terminal, the following is typed: sudo apt-get install update,
then the “Enter” key, a prompt then appears with a request to enter a user password.
After entering the password, a “yes or no” request to continue prompt appears, “yes”

is then selected for the process to complete, as illustrated in Figure A B.1.

" roderick@roderick-Lenovo-G50-80: ~

:~$ sudo apt-get install update

[sudo] password for roderick:
Reading package lists... Done
Building dependency tree

Reading state information... Done

Figure A B.1: Repository updates.

e Step 2: Make Utility installation

In the terminal, the following is typed: sudo apt-get install make, then the “Enter” key,
a prompt then appears with a request to enter a user password. After entering the
password, “yes or no” request to continue prompt appears, “yes” is then selected for
the process to complete, as illustrated in Figure A B.2. The “Make” utility is used to
determine which pieces of a large program needs to be compiled and does so if the

user issues the “Make” command in the terminal.

M roderick@roderick-Lenovo-G50-80: ~ Q

:~$ sudo apt-get install make
[sudo] password for roderick:
Reading package lists... Done
Building dependency tree
Reading state information... Done
make is already the newest version (4.2.1-1.2).
make set to manually installed.
0 upgraded, 0 newly installed, © to remove and 237 not upgraded.

Figure A B.2: Make Utility installation.

196

e Step 3. CMake Utility installation

In the terminal, the following is typed: sudo apt-get install “CMake”, then the “Enter”
key, a prompt then appears with a request to enter a user password. After entering
the password, “yes or no” request to continue prompt appears, “yes” is then selected
for the process to complete, as illustrated in Figure A B.3. Users build a project by

using “CMake” to generate a build system for a native tool on their platform.

Figure A B.3: CMake Utility installation.

e Step 4: System reboot

Once all the previously mentioned updates and installation processes are completed,
the computer system then gets rebooted for all the new changes and updates to take

effect.

197

APPENDIX C: Installing Ubuntu on the Beaglebone

Ubuntu is a highly regarded operating system because of the fact that its open-source
and because of its versatility with the fact that it works with regular computers and
embedded devices. The operating system is important and required for full use of the
Beaglebone, which is an embedded-based device. The Ubuntu operating system will
manage the Beaglebone device’s hardware and software resources in an efficient

manner.

e Step 1: System drivers download and install

The first step that is required to be taken is to install the system drivers. This is done
by visiting the “http://beagleboard.org/getting-started” link. A full list of instructions is

found here.

e Step 2: Test basic functionality with webserver

The second step is to access the web server which runs on the Beaglebone Black.
The webserver gives the user access to some basic functionality of the board such as
toggling the on-board LEDs and the on-board push-button. To access the web server,
the Google Chrome web browser is used due to the Internet Explorer web browser

not being compatible.

e Step 3: Download image of latest software

The third step is to download an image of latest software. The latest software image
is downloaded from the “https://beagleboard.org/latest-images” link. This is seen in
Figure A C.1. Due to the size of the image, the download takes more or less 30

minutes to download.

198

Soo tho ' and tho y @ 10r hints on Ioading theso IMagos

Recommended Deblan Images

9.9 2019-08-0: 2B S I

“"Flasher”™ Deblan images

- l!.i!llllll[l 0.5 2018-10-07 4GEB eMMC 10T Flasher

Figure A C.1: Software image download.

Step 4: Download and install balenaEtcher

After downloading the required operating system image, the balenaEtcher program is
then downloaded and installed on the computer. Upon the first-time start-up of the

balenaEtcher program, the home screen is illustrated in Figure A C.2.

R e v get e) Ot e vy

." balenaEicher

Flash. Flawless.

Flash OS mages 10 SD cards & USH drives, safoly and sesily

Figure A C.2: balenaEtcher home screen.

Step 5: Flashing SD card with downloaded OS image - 1

199

After opening the balenaEtcher program, the SD card received with the Beaglebone
hardware is inserted into the computer. The following is then done: the “select image”
icon is selected, the download folder containing the operating system image is

navigated to and the actual image file is then selected as illustrated Figure A C.3.

[588-eMMC -Basher ubunts 18042 <ons.. 20WI024 2148

Figure A C.3: Selecting OS image to be flashed.
Step 6: Flashing SD card with downloaded OS image - 2

After selecting the OS image, the “select drive” icon is then selected, this allows for
the SD card which is inserted into the computer to be the destination to which the
image must be flashed to. The “Flash” icon is then selected, which will enable the
process of flashing the new OS image to the SD card in the computer to begin. This

illustrated in Figure A C.4.

200

BBB-eMMC-...0-2gb.img Generic 5...G 5D Card

Figure A C.4: Begin flashing process.

Step 7: Installing OS image from SD card on the Beaglebone

Once the flashing procedure is completed, the balenaEtcher software is then used to
verify that the software image is copied correctly to the SD card. The SD card is then
safely ejected from the computer. The SD card containing the newly copied Ubuntu
OS (Operating System) image is then inserted into the Beaglebone Black board. After
inserting the SD card in the board, pressing, and holding its boot button will cause it
to power up. Upon booting up, all four user LEDs light up and blink in a pattern which
indicated that the flashing procedure (the procedure of copying the software image
from the SD card to the Beaglebone Black’s on-board memory) has started. Once this
process is concluded, all four of the user LEDs then go into the off state and the
board is then powered down. Upon powering up the Beaglebone, it then boots from
its eMMC where the new operating system is installed. It is imperative to ensure that
the SD card is removed before powering up the Beaglebone to ensure the installation
process does not occur again. The Beaglebone now has the Ubuntu operating

system installed.

Step 8: Connecting to the Beaglebone via SSH communication

After installing Ubuntu on the Beaglebone Black, the following steps are taken to
install all the various updates which are required. To install the various required
updates, an Internet connection is required. Firstly, The Beaglebone is powered up
via the USB cable from the computer. In the terminal of the Ubuntu OS running on the
computer, the following command is typed: sudo ssh ubuntu@192.168.6.2, then the
“Enter” key. This done in order to SSH (Secure Shell) into the Beaglebone. SSH is a

201

network communication protocol that enables two computing devices to communicate
and share data. A prompt then appears with a request to enter a user password. After
entering the password, a “yes or no” request to continue prompt appears, “yes” is
then selected to continue. A second “yes or no” prompt appears and “yes” is again
selected to continue. Thereafter a prompt then appears with a request to enter a user
password as illustrated in Figure A C.5. After entering the password, (which is

temppwd) connection to the Beaglebone is then established.

o roderick@roderick-Lenovo-G50-80: ~

:~$ sudo ssh ubuntu@192.168.6.2
[sudo] password for roderick:
The authenticity of host '192.168.6.2 (192.168.6.2)' can't be established.
ECDSA key fingerprint is SHA256:bIsRbeIpSYGQ+QOBL2CckCHINMH+SeM1l75stKffijiek.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.6.2' (ECDSA) to the list of known hosts.
Ubuntu 18.04.2 LTS

rcn-ee.net console Ubuntu Image 2019-04-10
Support/FAQ: http://elinux.org/BeagleBoardubuntu

default username:password is [ubuntu:temppwd]

ubuntu@192.168.6.2's password: [

Figure A C.5: SSH connection to Beaglebone.

Step 9: Becoming Root user

In order to connect to the Internet within the Beagle development environment, it is
required to become a root user. This is done by entering the following command in
the terminal: sudo -i. Once entering this command, a prompt appears, once again
requesting a password. The password is entered, and root access is gained. After
becoming a root user, the terminal interface should appear as illustrated in Figure A
C.6.

202

root@arm: ~

:~S sudo -1i
[sudo] password for ubuntu:
root@arm:~# D

Figure A C.6: Connected to Beaglebone as root user.

Step 10: Accessing the Beaglebone network interface configuration.

In the root terminal the following command is typed: ifconfig; once entering this
command, access to the ifconfig utility user interface then appears. The ifconfig utility
is a system administration utility in the Ubuntu operating system and is used for
network interface configuration. The utility is a command-line interface tool and is also
used in the system start-up scripts. It is then required to identify the usbl
configuration. As illustrated in Figure A C.7, the IP address thereof, labelled “inet” is
192.168.6.2.

203

1 root@arm: ~

[sudo] password for ubuntu:
root@arm:~# ifconfig
ethe: flags=-28669<UP,BROADCAST,MULTICAST,DYNAMIC> mtu 1500
inet 192.168.8.122 netmask 255.255.255.0 broadcast 192.168.8.255
ether 74:e1:82:87:4e:83 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier © collisions ©
device interrupt 63

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 3133 bytes 191174 (191.1 KB)
RX errors © dropped © overruns © frame ©

TX packets 3133 bytes 191174 (191.1 KB)
TX errors © dropped 0 overruns © carrier @ collisions ©

usbO: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.7.2 netmask 255.255.255.252 broadcast 192.168.7.3
inet6 fe80::76e1:82ff:fe87:4e85 prefixlen 64 scopeid Ox20<link>
ether 74:e1:82:87:4e:85 txqueuelen 1000 (Ethernet)
RX packets 129 bytes 18980 (18.9 KB)
RX errors © dropped © overruns © frame ©
TX packets 103 bytes 18699 (18.6 KB)
TX errors © dropped © overruns © carrier © collisions ©

usb1: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.6.2 netmask 255.255.255.252 broadcast 192.168.6.3
inet6 fe80::76e1:82ff:fe87:4e88 prefixlen 64 scopeid 0x20<link>
ether 74:e1:82:87:4e:88 txqueuelen 1000 (Ethernet)
RX packets 242 bytes 30504 (30.5 KB)
RX errors © dropped © overruns 0 frame ©
TX packets 170 bytes 24940 (24.9 KB)

Figure A C.7: Beaglebone network interface configuration.

Step 11: Accessing the Computer network interface configuration.

In the terminal of the computer, the following command is typed: ifconfig, once
entering this command, access to the ifconfig utility user interface of the computer
then appears. The ifconfig utility of the Beaglebone and computer serves the same
purpose due to both devices having the same operating systems. It is then required
to identify the IP address of the computer, labelled “inet 192.168.6.1". As illustrated
Figure A C.8.

204

roderick@roderick-Lenovo-G50-80: ~

roderick@roderick-Lenovo-G50-80: ~

:~§ ifconfig
etho: flags=4099<UP,BROADCAST ,MULTICAST> mtu 1500
ether 68:f7:28:ae:2d:05 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (0.0 B)
RX errors © dropped 6 overruns 6 frame 0
TX packets © bytes 6 (0.0 B)
TX errors © dropped 0 overruns © carrier @ collisions ©

ethl: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.16 .1 netmask 255.255.255.252 broadcast 192.168.6.3
inet6 feso 75f:2b62:da3e:dabe prefixlen 64 scopeid 0x20<link>
ether 74:e1:82:87:4e:87 txqueuelen 1000 (Ethernet)
RX packets 332 bytes 43056 (43.0 KB)
RX errors © dropped 06 overruns © frame 0
TX packets 492 bytes 59752 (59.7 KB)
TX errors © dropped 0 overruns © carrier © collisions ©

eth2: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.7.1 netmask 255.255.255.252 broadcast 192.168.7.3
inet6 fes8O cb1:791d:f4ba:feef prefixlen 64 scopeid 0x20<link>
ether 74:e1:82:87:4e:84 txqueuelen 1000 (Ethernet)

RX packets 133 bytes 16605 (16.6 KB)

RX errors © dropped @ overruns 8 frame ©

TX packets 166 bytes 33452 (33.4 KB)

TX errors © dropped 0 overruns @ carrier © collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 1715 bytes 164126 (164.1 KB)
RX errors © dropped 6 overruns © frame 0
TX packets 1715 bytes 164126 (164.1 KB)
TX errors © dropped @ overruns @ carrier 8 collisions ©

wlan@: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1560
inet 192.168.8.106 netmask 255.255.255.0 broadcast 192.168.8.255
inet6 feB80::f928:e648:1faa:e554 prefixlen 64 scopeid 0x20<link>
ether 34:e6:ad:16:ec:b6 txqueuelen 1000 (Ethernet)
RX packets 37302 bytes 35721636 (35.7 MB)
RX errors © dropped @ overruns © frame ©
TX packets 19318 bytes 2534864 (2.5 MB)
TX errors © dropped 0 overruns © carrier 8 collisions ©

=S l

Figure A C.8: Computer network interface configuration.

Step 12.1: Setting up internet connection on Beaglebone.

In the terminal of the Beaglebone, the following command is entered: ifconfig usbl
192.168.6.2, thereatter, the following command is then entered: route add default gw
192.168.6.1. This is illustrated in Figure A C.9.

205

root@®arm: ~

Figure A C.9: Setting up internet connection on the Beaglebone.

e Step 12.2: Setting up internet connection on Beaglebone.

In the terminal of the computer, the following commands is entered in the order as
listed below:

o ifconfig eth2 192.168.6.1

o Iiptables --table nat --append POSTROUTING --out-interface wlan0 -j
MASQUERADE

o iptables --append FORWARD --in-interface eth2 -j ACCEPT

o echo 1 > /proc/sys/net/ipv4/ip_forward

e Step 12.3: Setting up internet connection on Beaglebone.

Upon entering the commands in the terminal of the computer as listed in step 12.2,
the following command is then entered in the terminal of the Beaglebone: echo

"nameserver 8.8.8.8" >> /etc/resolv.conf. as illustrated in Figure A C.10.

206

root@arm: ~

Figure A C.10: Setting up internet connection on the Beaglebone.

Step 13: Testing the Internet connection on Beaglebone.

Finally, all that is left to do is test if the Beaglebone can connect to the Internet. This
is done by typing the following command in the Beaglebone terminal: ping 8.8.8.8.
The 8.8.8.8 IP address is the primary DNS server for Google DNS. It is found that the
Beaglebone has a connection to the Internet. The results are illustrated in Figure A
C.11.

root@arm: ~

Figure A C.11: Beaglebone connection to the internet is established.

207

Step 14.1: Beaglebone updates and upgrades of installed packages.

After successfully establishing a connection between the Internet and the Beaglebone
board, all the required updates and additional installations can now be done. The
following command is entered in the terminal of the Beaglebone: apt-get update; this
command updates the list of available packages and their versions, but it does not
install or upgrade any packages. The following command is then entered in the
command in the Beaglebone terminal: apt-get upgrade. This command will install
newer versions of the existing packages. Upon updating the lists, the package
manager knows about available updates for the software already installed. Therefore,
it is imperative to first update and then upgrade thereafter. Due to doing an “update”
in the previous step, all that is left to do is an “upgrade”, as illustrated in Figure A
c.12.

root@arm: ~

Figure A C.12: Upgrading installed packages on the Beaglebone.

Step 14.2: Beaglebone updates and upgrades of installed packages.

Upon upgrading the installed packages, a prompt appeared requesting a yes or no
answer; yes needs to be selected in order for the process to continue, as illustrated in
Figure A C.13. The time taken for the process to compete may vary and is dependent

on the Internet connection.

208

root@arm: ~

Figure A C.13: Upgrading installed packages.

Step 14.3: Beaglebone updates and upgrades of installed packages.

Before the process concludes, a prompt appeared requesting a yes or no answer; no

is selected for the process to continue. This is illustrated in Figure A C.14.

root@arm: -

Figure A C.14: Upgrading installed packages.

209

Step 15: Configuring updates and upgrades.

In order for all new changes to take effect, the system is required to be rebooted.
Upon the conclusion of the upgrading of the installed packages, a yes or no prompt
appears requesting the system to be restarted; yes is selected. The prompt is

illustrated in Figure A C.15.

{ Configuring Libssli.i:arnhf }

There are services installed on your system which need to be restarted
when certain libraries, such as libpam, libc, and ibssl, are upgraded.
Since these restarts may cause Interruptions of service for the systen,
you will normally be prompted on each upgrade for the list of services
you wish to restart. You can choose this option to avold being
prompted; instead, all necessary restarts will be done for you
automatically so you can avold being asked questions on each ibrary
upgrade.

Restart services during package upgrades without asking?

<ves> f:No>

Figure A C.15: System reboot prompt.

210

APPENDIX D: Configuring IEC 61850 embedded C library on Beaglebone

This appendix details the steps taken to configure the IEC 61850 embedded C library
for full use with the Beaglebone embedded device. This configuration is required
because most of the source code files in the C library requires administrative

privileges to be used for security reasons.

e Step 1.1: Copying the Library to the Beaglebone

The first step that is required to be taken is to copy the folder containing the library
from the computer to the Beaglebone. This is done by entering the following
command in the terminal of the computer: scp -r [Source Folder (folder where the
IEC61850 library is stored)] ubuntu@192.168.8.122. This is illustrated in Figure A
D.1.

" root@roderick-Lenovo-G50-80: ~

:~$ sudo -1i

[sudo] password for roderick:
root@roderick-Lenovo-G50-80:~# scp -r /home/roderick/CPUT/MEng/'Source Code'/1lib
iec61850-1.5 ubuntu@192.168.8.122:l

Figure A D.1: Copying library files from computer to Beaglebone.

e Step 1.2: Copying the Library to the Beaglebone

Upon entering the command to copy the files from the computer to the Beaglebone
board, a prompt appears where the operating system of the Beaglebone requests a
user password to be entered. The password which is “temppwd” is then entered and

files will start copying as illustrated in Figure A D.2.

211

mailto:ubuntu@192.168.8.122

Ubuntu 18.04.2 LTS
rcn-ee.net console Ubuntu Image 2019-04-10
Support/FAQ: http://elinux.org/BeagleBoardUbuntu

default username:password is [ubuntu:temppwd]

ubuntu@192.168.6.2's password:
target_system.mk 100% 3846 142.
stack_includes.mk 100% 513 188.

100% 136 52.

o 100% 9544 429.
stack_config.h.cmake 100% 9410 686.
README . md 100% 8312 1 -
Findsqlite.cmake 100% 1536 81.
100% 190 T

100% 138 47.

beagle_demo.iid 100% 23KB 468.
static_model.c 100% 183KB 881.
beaglebone leds.h 100% 800 249.
beagle_demo.c 100% 11KB 605

Figure A D.2: IEC61850 library files copying to Beaglebone.

Step 1.3: Copying the Library to the Beaglebone

After the process of copying the IEC61850 library files from the computer platform to
the Beaglebone platform is completed, the root terminal of the computer is then
closed, thus concluding the first step of copying the IEC61850 library files from the

computer to the Beaglebone.

Step 2: Copying the Library to the Beaglebone root directory

Upon copying all the IEC61850 library files to the Beaglebone, it is then required to
copy these files to the Beaglebone’s root directory, since most of the operations
regarding the project will require root access. The following command is entered in
the Beaglebone’s root terminal: scp -r /home/ubuntu/libiec61850-1.5 /root. This is

illustrated in Figure A D.3.

212

[+ root@arm: ~

:~$ sudo -1i
[sudo] password for ubuntu:
root@arm:~# scp -r /home/ubuntu/libiec61850-1.5 /rootl

Figure A D.3: Copying library files to root directory.

Step 3: Compiling the library

Upon copying all the IEC61850 library files to the Beaglebone root directory, the
library is then compiled. This is done by navigating via the command terminal to the
location where the library files are stored on the Beaglebone and use the “make”
command. However, the version of the command which is geared towards embedded
devices with ARM processors is required to be used. The command is entered as
follows: Beaglebone root terminal: make TARGET=LINUX-ARM. The compilation

process then starts, as illustrated in Figure A D.4.

213

M~ root@arm: ~/libiec61850-1.5

:~$ sudo -1i
[sudo] password for ubuntu:
root@arm:~# 1s

root@arm:~# cd libiec61850-1.5/
root@arm:~/1ibiec61850-1.5# 1s

README.md
CHANGELOG COPYING Makefile
CMakeLists.txt
root@arm:~/1ibiec61850-1.5# make TARGET=LINUX-ARM
compiling acse.c
mkdir -p build-arm/src/mms/iso_acse/
arm-linux-gnueabihf-gcc -g -std=gnu99 -Wstrict-prototypes -Wuninitialized -Wsi
gn-compare -Wpointer-arith -Wnested-externs -Wmissing-declarations -Wshadow
-Wall -Wextra -c -Iconfig -Ihal/inc -Isrc/common/inc -Isrc/mms/iso_mms/asnic -Is
rc/mms/inc -Isrc/mms/inc_private -Isrc/goose -Isrc/sampled_values -Isrc/iec61850
/inc -Isrc/iec61850/inc_private -Isrc/logging -Isrc/tls -o build-arm/src/mms/iso
_acse/acse.o src/mms/iso_acse/acse.cC
compiling iso_presentation.c
mkdir -p build-arm/src/mms/iso_presentation/
arm-linux-gnueabihf-gcc -g -std=gnu99 -Wstrict-prototypes -Wuninitialized -Wsi
gn-compare -Wpointer-arith -Wnested-externs -Wmissing-declarations -Wshadow
-Wall -Wextra -c -Iconfig -Ihal/inc -Isrc/common/inc -Isrc/mms/iso_mms/asnlc -Is
rc/mms/inc -Isrc/mms/inc_private -Isrc/goose -Isrc/sampled_values -Isrc/iec61850

Figure A D.4: Compiling the IEC61850 embedded c library.

Step 4. Assigning new static IP addresses

After the compilation process is concluded, it is required to setup the static IP
addresses of both Beaglebone boards in order for communication on a localised
Ethernet network to take place. In order to do this, a new root terminal is opened on
the Beaglebone and in the new terminal it is required to navigate to the network folder
using the following command: cd /etc/network. Once in this folder, the network
interfaces are accessed in order to change the IP addresses, which are done by
entering the following command: nano interfaces. The ethO IP address is changed to
192.168.8.122 for the first Beaglebone board and for the second board, it is changed
#t0 192.168.8.123. Making these changes will ensure both boards can communicate

with each other via the local Ethernet network. This is illustrated in Figure A D.5.

214

[+1 root@arm: /etc/network Q = = O X

GNU nano 2.9.3 interfaces

iface usb0 inet static
address 192.168.7.2
netmask 255.255.255.252
network 192.168.7.0
gateway 192.168.7.1

auto etho

iface ethe inet static
address 192.168.8.122
netmask 255.255.255.0
gateway 192.168.8.1

g Get Help Qo Write Out @Y Where Is @M Cut Text @B Justify ad Cur Pos
@4 Exit g Read File @\ Replace &' Uncut Textigl] To Spell @Ml Go To Line

Figure A D.5: Configuring static IP address of the Beaglebone.

Step 5: Rebooting the Beaglebone devices

After making these changes, everything is then saved. Upon making this type of
changes to the Beaglebone board, it is always advised to restart the device, as this
will ensure that all changes are allowed to take effect. This is done by now rebooting

the Beaglebone device.

215

APPENDIX E: Computer GOOSE Publisher source code with GGIO LN

This appendix contains the source code which programs the computer to operate as a
GOOSE message publishing IED, using the GGIO Logical Node.

server pc_goose.cC

* This example demonstrates how to use GOOSE publishing, Reporting and
the

* control model.
*

*/

#include "iec61850 server.h"

#include "hal thread.h" /* for Thread sleep() */
#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include "static model.h"

/* import IEC 61850 device model created from SCL-File */
extern IedModel iedModel;

static int running = 0;
static IedServer iedServer = NULL;

void sigint handler(int signalId)
{
running = 0;

}

void
controlHandlerForBinaryOutput (void* parameter, MmsValue* value)

{
uint64 t timestamp = Hal getTimeInMs();

if (parameter == IEDMODEL GenericIO GGIOl SPCSO1) {
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSOl t, timestamp);
IedServer updateAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSOl stVval, value);
}

if (parameter == IEDMODEL GenericIO GGIOl SPCS02) {
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl SPCSO2 t, timestamp);
IedServer updateAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSO2 stval, value);
}

if (parameter == IEDMODEL GenericIO GGIOl SPCSO3) {
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSO3 t, timestamp);
IedServer updateAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSO3 stval, wvalue);

}
if (parameter == IEDMODEL GenericIO GGIOl SPCS04) {

IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl1l SPCSO4 t, timestamp);

216

IedServer updateAttributeValue (iedServer,
IEDMODEL GenericIO GGIOl SPCS0O4 stVal, value);
}
}

int main(int argc, char** argv) {
iedServer = IedServer create(&iedModel);

if (argc > 1) {
char* ethernetIfcID = argv[l];

printf("Using GOOSE interface: %s\n", ethernetIfcID);

/* set GOOSE interface for all GOOSE publishers (GCBs) */
IedServer setGooselnterfaceld(iedServer, ethernetIfcID);

}

if (argc > 2) {
char* ethernetIfcID = argv[2];

printf("Using GOOSE interface for GenericIO/LLNO.gcbAnalogValues:
$s\n'", ethernetIfcID);

/* set GOOSE interface for a particular GOOSE publisher (GCB) */
IedServer setGooselInterfaceldEx(iedServer, IEDMODEL GenericIO_ LLNO,
"gcbAnalogValues", ethernetIfcID);

}

/* MMS server will be instructed to start listening to client
connections. */
IedServer start(iedServer, 102);

IedServer setControlHandler (iedServer, IEDMODEL GenericIO GGIOl SPCSO1,
(ControlHandler) controlHandlerForBinaryOutput,
IEDMODEL GenericIO GGIOl SPCSO1) ;

IedServer setControlHandler (iedServer, IEDMODEL GenericIO GGIOl SPCSO2,
(ControlHandler) controlHandlerForBinaryOutput,
IEDMODEL GenericIO GGIOl SPCSO02) ;

IedServer setControlHandler (iedServer, IEDMODEL GenericIO GGIOl SPCSO3,
(ControlHandler) controlHandlerForBinaryOutput,
IEDMODEL GenericIO GGIOl SPCSO3);

IedServer setControlHandler (iedServer, IEDMODEL GenericIO GGIOl SPCSO4,
(ControlHandler) controlHandlerForBinaryOutput,
IEDMODEL GenericIO GGIOl1l SPCSO04) ;
if (!'IedServer isRunning(iedServer)) {
printf("Starting server failed! Exit.\n");
IedServer destroy(iedServer);
exit(-1);

}

/* Start GOOSE publishing */
IedServer enableGoosePublishing(iedServer);

running = 1;
signal (SIGINT, sigint handler);

float anInl = 0.f; //Analog input2 float decleration

217

float anIn2 = 0.f; //Analog input2?2 float decleration

while (running) {

//DATA FROM Logical NODE GGIOl - DATA OBJECT AnInl
IedServer lockDataModel (iedServer);

IedServer updateUTCTimeAttributeValue (iedServer,

IEDMODEL GenericIO GGIOl AnInl t, Hal getTimeInMs());
IedServer updateFloatAttributeValue (iedServer,

IEDMODEL GenericIO _GGIOl AnInl mag f, anInl);

IedServer unlockDataModel (iedServer);

anInl += 0.1;
printf("Analog Input 1 %f\n",anInl);

//DATA FROM Logical NODE GGIOl1l - DATA OBJECT AnIn2
IedServer lockDataModel (iedServer) ;

IedServer updateUTCTimeAttributeValue (iedServer,

IEDMODEL GenericIO GGIOl1l AnIn2 t, Hal getTimeInMs()):;
IedServer updateFloatAttributeValue (iedServer,

IEDMODEL GenericIO GGIOl AnIn2 mag f, anIn2);

IedServer unlockDataModel (iedServer) ;

o)

anIn2 += 0.2;
printf("Analog Input 2 %f\n",anIn2);

Thread sleep(1000); 1}

/* stop MMS server - close TCP server socket and all client sockets
IedServer stop(iedServer);

/* Cleanup - free all resources */
IedServer destroy(iedServer);
} /* main() */

218

*/

APPENDIX F: Beaglebone GOOSE Subscriber source code 1

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message subscribing IED.

/*
* goose_Dbb subscriber.c

*

* This is an example for a standalone GOOSE subscriber
*

* Has to be started as root in Linux.

*

/

#include "goose receiver.h"
#include "goose subscriber.h"
#include "hal thread.h"

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

#define Buffsize 65025; //The Buffer size in bytes of the Goose Message -
RD

uint8 t gooseBuffer[Buffsize]; //RAM memory allocated to GOOSE Message - RD
static int running = 1;

void sigint handler(int signalId)
{

running = 0;

}

void
gooselistener (GooseSubscriber subscriber, void* parameter)

{
printf ("GOOSE event:\n");
printf (" stNum: %u sgNum: %u\n'", GooseSubscriber getStNum(subscriber),
GooseSubscriber getSgNum(subscriber)) ;
printf(" timeToLive: %u\n",
GooseSubscriber getTimeAllowedToLive (subscriber));

uint64 t timestamp = GooseSubscriber getTimestamp (subscriber);

printf (" timestamp: %u.%u\n", (uint32 t) (timestamp / 1000),
(uint32 t) (timestamp % 1000));

MmsValue* values = GooseSubscriber getDataSetValues (subscriber);
char buffer[1024];
MmsValue printToBuffer (values, buffer, 1024);
printf("ss\n", buffer);
int
main(int argc, char** argv)
{

GooseReceiver receiver = GooseReceiver create();

if (argc > 1) {
printf("Set interface id: %s\n", argv[l]);

219

GooseReceiver setlInterfaceld(receiver, argv[l]);

}
else {

printf("Using interface ethO0\n");

GooseReceiver setlInterfaceld(receiver, "eth0");
}

GooseSubscriber subscriber =
GooseSubscriber create("simplelOGenericIO/LLNOSGOSgcbAnalogValues", NULL);

GooseSubscriber setAppld(subscriber, 1000);

GooseSubscriber setListener(subscriber, gooseListener, NULL);
GooseReceiver addSubscriber(receiver, subscriber);
GooseReceiver start(receiver);

if (GooseReceiver isRunning(receiver)) {
signal (SIGINT, sigint handler);

while (running) {

GooseReceiver handleMessage(self, gooseBuffer, Buffsize); //
The handler that parses the GOOSE Message - RD

Thread sleep(1000);
}
}
else {

printf("Failed to start GOOSE subscriber. Reason can be that the
Ethernet interface doesn't exist or root permission are required.\n");

}
GooseReceiver stop(receiver);

GooseReceiver destroy(receiver);

220

APPENDIX G: Beaglebone GOOSE Publisher source code with CCGR LN

This appendix contains the source code which programs the embedded device to operate as
a GOOSE message publishing IED, using the CCGR Logical Node.
/*

* server bb ccgr goose.c
*

* This example demonstrates how to use GOOSE publishing, Reporting and
the

* control model.
*

*/

#include "iec61850 server.h"

#include "hal thread.h" /* for Thread sleep() */
#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include "static model.h"

/* import IEC 61850 device model created from SCL-File */
extern IedModel iedModel;

static int running = 0;
static IedServer iedServer = NULL;

void sigint handler(int signallId)
{

running = 0;

}

void
controlHandlerForBinaryOutput (void* parameter, MmsValue* value)

{
uint64 t timestamp = Hal getTimeInMs () ;

/ /NEW
if (parameter == IEDMODEL Cooling CCGRO FanCtl) {
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL Cooling CCGRO_FanCtl t, timestamp);
IedServer updateAttributeValue (iedServer,
IEDMODEL Cooling CCGRO FanCtl stVval, value);
}

}
int main(int argc, char** argv) {
iedServer = IedServer create(&iedModel) ;

if (argc > 1) {
char* ethernetIfcID = argv[l];

printf("Using GOOSE interface: %s\n", ethernetIfcID);

/* set GOOSE interface for all GOOSE publishers (GCBs) */
IedServer setGooseInterfaceld(iedServer, ethernetIfcID);

221

if (argc > 2) {
char* ethernetIfcID = argv[2];

printf("Using GOOSE interface for Cooling/LLNO.gcbAnalogValues:
2s\n", ethernetIfcID);

/* set GOOSE interface for a particular GOOSE publisher (GCB) */
IedServer setGooselnterfaceldEx(iedServer, IEDMODEL Cooling LLNO,
"gcbAnalogValues", ethernetIfcID);
}

/* MMS server will be instructed to start listening to client
connections. */
IedServer start(iedServer, 102);

/ /NEW
IedServer setControlHandler (iedServer, IEDMODEL Cooling CCGRO_ FanCtl,
(ControlHandler) controlHandlerForBinaryOutput,
IEDMODEL Cooling CCGRO_FanCtl);

if ('IedServer isRunning(iedServer)) {
printf("Starting server failed! Exit.\n");
IedServer destroy(iedServer);
exit (-1);

}

/* Start GOOSE publishing */
IedServer enableGoosePublishing(iedServer);

running = 1;
signal (SIGINT, sigint handler);
float fanflw = 0.f;
while (running) {
IedServer lockDataModel (iedServer) ;
//NEW Logical Node
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL Cooling CCGRO FanFlw t, Hal getTimeInMs());
IedServer updateFloatAttributeValue (iedServer,
IEDMODEL Cooling CCGRO FanFlw mag f, fanflw);
IedServer unlockDataModel (iedServer) ;
fanflw += 0.1;
printf("Analog Input 1 $f\n",fanflw);
Thread sleep(1000); 1}

/* stop MMS server - close TCP server socket and all client sockets */
IedServer stop(iedServer);

/* Cleanup - free all resources */
IedServer destroy(iedServer);
} /* main() */

222

APPENDIX H: Beaglebone GOOSE Subscriber source code 2

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message subscribing IED.
/*

goose bb observer.c
This is an example for generic GOOSE observer

Has to be started as root in Linux.

/

b I R

#include "goose receiver.h"
#include "goose subscriber.h"
#include "hal thread.h"

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

static int running = 1;

void sigint handler(int signallId)
{
running = 0;

}

void
gooselistener (GooseSubscriber subscriber, void* parameter)
{
printf ("GOOSE event:\n");
printf (" vlanTag: %s\n'", GooseSubscriber isVlanSet (subscriber) ?
"found" : "NOT found");
if (GooseSubscriber isVlanSet (subscriber))
{
printf (" vlanId: Su\n", GooseSubscriber getVlanId(subscriber)):;
printf (" vlanPrio: %u\n",
GooseSubscriber getVlanPrio(subscriber));
}
printf (" appld: %d\n", GooseSubscriber getAppId(subscriber));
uint8 t macBuf[6];
GooseSubscriber getSrcMac (subscriber,macBuf) ;
printf (" srcMac: %$02X:%02X:%02X:%02X:%02X:%02X\n",
macBuf[0] ,macBuf[l] ,macBuf[?],macBuf[3],macBuf[4],macBuf[5])
GooseSubscriber getDstMac (subscriber,macBuf) ;
printf (" dstMac: %$02X:%02X:%02X:%02X:%02X:%02X\n",
macBuf[0] ,macBuf[1],macBuf[?],macBuf[3],macBuf[4],macBuf[5])
printf (" goId: %s\n", GooseSubscriber getGoId(subscriber));
printf (" goCbRef: %s\n'", GooseSubscriber getGoCbRef (subscriber)):;
printf (" dataSet: %s\n", GooseSubscriber getDataSet (subscriber));

printf (" confRev: %u\n", GooseSubscriber getConfRev(subscriber));

printf (" ndsCom: %s\n", GooseSubscriber needsCommission (subscriber) ?
"true" : "false");

printf (" simul: %s\n", GooseSubscriber isTest(subscriber) ? "true"
"false");

printf (" stNum: %u sgNum: %u\n'", GooseSubscriber getStNum(subscriber),

GooseSubscriber getSgNum(subscriber));
printf (" timeToLive: %Su\n",

GooseSubscriber getTimeAllowedToLive (subscriber)) ;

uint64 t timestamp = GooseSubscriber getTimestamp (subscriber);

223

printf (" timestamp: %u.%u\n", (uint32 t) (timestamp / 1000),

(uint32 t) (timestamp % 1000));
printf (" message is %s\n", GooseSubscriber isValid(subscriber) =2

"valid" : "INVALID");
MmsValue* values = GooseSubscriber getDataSetValues(subscriber);
char buffer[1024];
MmsValue printToBuffer(values, buffer, 1024);
printf (" AllData: %s\n", buffer);
int

main(int argc, char** argv)

{

GooseReceiver receiver = GooseReceiver create();

if (argc > 1) {
printf("Set interface id: %s\n", argv[l]);
GooseReceiver setlInterfaceld(receiver, argv[l]);

}
else {

printf("Using interface eth0\n");

GooseReceiver setlInterfaceld(receiver, "eth0");
}

GooseSubscriber subscriber = GooseSubscriber create("", NULL);
GooseSubscriber setObserver (subscriber) ;
GooseSubscriber setListener (subscriber, gooselistener, NULL);

GooseReceiver addSubscriber (receiver, subscriber);
GooseReceiver start(receiver);

if (GooseReceiver isRunning(receiver)) {
signal (SIGINT, sigint handler);

while (running) {
Thread sleep(100);
}
}

else {
printf("Failed to start GOOSE subscriber. Reason can be that the

Ethernet interface doesn't exist or root permission are required.\n");

}

GooseReceiver stop(receiver);

GooseReceiver destroy(receiver);
return 0O;

224

APPENDIX |I: Beaglebone GOOSE Publisher source code with IPFC LN

This appendix contains the source code which programs the embedded device to operate as

a GOOSE message publishing IED, using the IPFC Logical Node.
/*

* server bb ipfc goose.c

*

* This example demonstrates how to use GOOSE publishing, Reporting and
the

* control model.
*

*/

#include "iec61850 server.h"

#include "hal thread.h" /* for Thread sleep() */
#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h> //close ()

#include <fcntl.h> //define O WONLY and O RDONLY

#include "static model.h"

#define SYSFS ADC DIR "/sys/bus/iio/devices/iio:deviceO/in voltage4 raw"
#define MAX BUFF 64

/* import IEC 61850 device model created from SCL-File */
extern IedModel iedModel;

static int running = 0;
static IedServer iedServer = NULL;

void sigint handler(int signalId)
{

running = 0;

}

void
controlHandlerForBinaryOutput (void* parameter, MmsValue* value)

{
uint64 t timestamp = Hal getTimeInMs () ;

if (parameter == IEDMODEL IndustrialProcess IPFCO TempCtl) ({
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO TempCtl t, timestamp);
IedServer updateAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO TempCtl stVal, wvalue);
}
if (parameter == IEDMODEL IndustrialProcess IPFCO HumCtl) {
IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO HumCtl t, timestamp);
IedServer updateAttributeValue (iedServer,

IEDMODEL IndustrialProcess IPFCO HumCtl stVval, value);
}

}
int main(int argc, char** argv) ({

iedServer = IedServer create(&iedModel) ;

225

if (argc > 1) {
char* ethernetIfcID = argv[l];

printf ("Using GOOSE interface: %s\n", ethernetIfcID);

/* set GOOSE interface for all GOOSE publishers (GCBs) */
IedServer setGooselnterfaceld(iedServer, ethernetIfcID);

}

if (argc > 2) {
char* ethernetIfcID = argv[?];

printf ("Using GOOSE interface for Industrial
Process/LLNO.gcbAnalogValues: %s\n", ethernetIfcID);

/* set GOOSE interface for a particular GOOSE publisher (GCB) */
IedServer setGooselnterfaceldEx(iedServer,
IEDMODEL IndustrialProcess LLNO, "gcbAnalogValues", ethernetIfcID);

}

/* MMS server will be instructed to start listening to client
connections. */
IedServer start(iedServer, 102);

IedServer setControlHandler (iedServer,
IEDMODEL IndustrialProcess IPFCO TempCtl, (ControlHandler)
controlHandlerForBinaryOutput,
IEDMODEL IndustrialProcess IPFCO TempCtl) ;

IedServer setControlHandler (iedServer,
IEDMODEL IndustrialProcess IPFCO HumCtl, (ControlHandler)
controlHandlerForBinaryOutput,
IEDMODEL IndustrialProcess IPFCO HumCtl) ;

if (!'IedServer isRunning(iedServer)) {
printf("Starting server failed! Exit.\n");
IedServer destroy(iedServer);
exit(-1);

}

/* Start GOOSE publishing */
IedServer enableGoosePublishing(iedServer);

running = 1;

signal (SIGINT, sigint handler);

while (running) {

int fd;
char buf[MAX BUFF];
char ch[5]; //Update

ch[4] = 0; //Update

int 1i;

for(i = 0; 1 < 1; i++)
{

snprintf (buf, sizeof(buf), SYSFS ADC DIR);
fd = open(buf, O RDONLY) ;
read(fd,ch,4);

226

printf ("%s\n", ch);
close (fd) ;

usleep (1000) ;

}

float reading;
float Temperature;
float Humidity;

reading = atof(ch);

IedServer lockDataModel (iedServer) ;

//TEMPERATURE

IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO Temp t, Hal getTimeInMs());

IedServer updateFloatAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO Temp mag f, Temperature);

IedServer unlockDataModel (iedServer) ;

// Temperature += 0.1;
Temperature = reading/120.048;

printf("Temperature in Degrees C $f\n",Temperature) ;

IedServer lockDataModel (iedServer) ;

//HUMIDITY

IedServer updateUTCTimeAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO Hum t, Hal getTimeInMs());

IedServer updateFloatAttributeValue (iedServer,
IEDMODEL IndustrialProcess IPFCO Hum mag f, Humidity);

IedServer unlockDataModel (iedServer) ;

//Humidity += 0.1;
Humidity = reading/60.048;

printf("Relative Humidity Sf\n" ,Humidity) ;

Thread sleep(1000); 1}

/* stop MMS server - close TCP server socket and all client sockets
IedServer stop(iedServer);

/* Cleanup - free all resources */
IedServer destroy(iedServer);
} /* main() */

227

APPENDIX J: IPFC Logical Node in XML

This appendix contains the Substation Configuration Language file of the IPFC Logical Node

in eXtendsible Markup Language (XML) format.

<?xml version="1.0" encoding="UTF-8"?>
<SCL xmlns="http://www.iec.ch/61850/2003/SCL"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" release="4"
revision="B" version="2007"
xsi:schemalLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd">
<Header id="TEMPMON" revision="1" version="0"/>
<Communication>
<SubNetwork name="subnetworkl" type="8-MMS">
<ConnectedAP apName="accessPointl" iedName="TEMPLATE">
<Address>
<P type="IP">10.0.0.2</P>
<P type="IP-SUBNET">255.255.255.0</pP>
<P type="IP-GATEWAY">10.0.0.1</P>
<P type="OSI-TSEL">0001</P>
<P type="OSI-PSEL">00000001</P>
<P type="OSI-SSEL">0001</P>
<P type="OSI-AP-Title">1,1,9999,1</P>
<P type="OSI-AE-Qualifier">12</P>
<P type="MAC-Address">fc-69-47-1le-93-55</P>
</Address>
<GSE cbName="gcbEvents" ldInst="Temperature'">
<Address>
<P type="VLAN-ID">1</P>
<P type="VLAN-PRIORITY">4</P>
<P type="MAC-Address">01-0C-CD-01-00-00</P>
<P type="APPID">1000</P>
</Address>
</GSE>
<GSE cbName="gcbAnalogValues" ldInst="Temperature">
<Address>
<P type="VLAN-ID">1</P>
<P type="VLAN-PRIORITY">4</P>
<P type="MAC-Address">01-0C-CD-01-00-00</P>
<P type="APPID">1000</P>
</Address>
</GSE>
</ConnectedAP>
</SubNetwork>
</Communication>
<IED desc="TEMPERATURE" manufacturer="SystemCORP Energy Pty Ltd"
name="TEMPLATE" owner="Roderick Domingo" type="RTUType">
<Services nameLength="64">
<ClientServices/>
<DynAssociation/>
<GetDirectory/>
<GetDataObjectDefinition/>
<GetCBValues/>
<DataObjectDirectory/>
<GetDataSetValue/>
<SetDataSetValue/>
<DataSetDirectory/>
<ReadWrite/>
</Services>
<AccessPoint name="accessPointl" router="false">
<Server>
<Authentication/>

228

<LDevice inst="IndustrialProcess'">
<LNO desc="Logical node zero" inst="" 1nClass="LLNO"
InType="LLNO_0">
<DataSet name="AnalogValues'">
<FCDA daName="mag" doName="Temp" fc="MX"
1dInst="IndustrialProcess" 1nClass="IPFC" 1lnInst="0"/>
<FCDA daName="mag" doName="Hum" fc="MX"
1dInst="IndustrialProcess" 1nClass="IPFC" 1lnInst="0"/>
</DataSet>
<DataSet name="Events'>
<FCDA daName="stVal" doName="TempCtl" fc="ST"
1dInst="IndustrialProcess" 1nClass="IPFC" 1lnInst="0"/>
<FCDA daName="stVal" doName="HumCtl" fc="ST"
1dInst="IndustrialProcess" InClass="IPFC" InInst="0"/>
</DataSet>
<ReportControl bufTime="50" confRev="1" datSet="Events"
intgPd="1000" name="EventsRCB" rptID="Events">
<TrgOps period="true"/>
<OptFields configRef="true" dataSet="true"
reasonCode="true" segNum="true" timeStamp="true"/>
<RptEnabled max="1"/>
</ReportControl>
<ReportControl bufTime="50" confRev="1"
datSet="AnalogValues" intgPd="1000" name="AnalogValuesRCB"
rptID="AnalogValues">
<TrgOps period="true"/>
<OptFields configRef="true" dataSet="true"
reasonCode="true" segNum="true" timeStamp="true"/>
<RptEnabled max="1"/>
</ReportControl>
<GSEControl applD="events" confRev="2" datSet="Events"
name="gcbEvents" />
<GSEControl appID="analog" confRev="2"
datSet="AnalogValues" name="gcbAnalogValues"/>
</LNO>
<LN desc="Physical device information" inst="0"
InClass="LPHD" 1nType="LPHD 0" prefix=""/>
<LN desc="Industrial Process Functions" inst="0"
InClass="IPFC" 1nType="IPFC 0" prefix=""/>
</LDevice>
</Server>
</AccessPoint>
</IED>
<DataTypeTemplates>
<LNodeType 1d="IPFC_0" InClass="IPFC">
<DO desc="Enumerated status" name="Beh" type="ENS 0"/>
<DO desc="Measured value" name="Temp" type="MV_0"/>
<DO desc="Controllable enumerated status" name="TempCtl"
type="ENC_1"/>
<DO desc="Measured value" name="Hum" type="MV_0"/>
<DO desc="Controllable enumerated status" name="HumCtl"
type="ENC_0"/>
</LNodeType>
<LNodeType id="LPHD 0" I1nClass="LPHD">
<DO desc="Enumerated status" name="Beh" type="ENS 2"/>
<DO desc="Device name plate" name="PhyNam" type="DPL 0"/>
<DO desc="Enumerated status" name="PhyHealth" type="ENS_1"/>
<DO desc="Single point status" name="Proxy" type="SPS_0"/>
</LNodeType>
<LNodeType 1id="LLNO 0" I1nClass="LLNO">
<DO desc="Controllable enumerated status" name="Mod"
type="ENC_2"/>
<DO desc="Enumerated status" name="Beh" type="ENS_ 4"/>
<DO desc="Enumerated status" name="Health" type="ENS 3"/>

229

<DO desc="Logical Node name plate" name="NamPlt" type="LPL 0"/>
</LNodeType>
<DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_0">
<DA bType="Enum" dchg="true" fc="ST" name="stVal" type="HumCtl"/>
<DA bType="Quality" fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
<DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>
</DOType>
<DOType cdc="MV" desc="Measured value" id="MV_0">
<DA bType="Struct" dchg="true" dupd="true" fc="MX" name="mag"
type="mag 0"/>
<DA bType="Quality" fc="MX" name="q" gchg="true"/>
<DA bType="Timestamp" fc="MX" name="t"/>
</DOType>
<DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_1">
<DA bType="Enum" dchg="true" fc="ST" name="stVal" type="TempCtl"/>
<DA bType="Quality" fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
<DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>
</DOType>
<DOType cdc="ENS" desc="Enumerated status" id="ENS 0">
<DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"
type="BehKind" />
<DA bType="Quality" £fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
</DOType>
<DOType cdc="SPS" desc="Single point status" id="SPS_0">
<DA bType="BOOLEAN" dchg="true" fc="ST" name="stVval"/>
<DA bType="Quality" £fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
</DOType>
<DOType cdc="ENS" desc="Enumerated status" id="ENS_1">
<DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"
type="HealthKind" />
<DA bType="Quality" £fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
</DOType>
<DOType cdc="DPL" desc="Device name plate" id="DPL 0">
<DA bType="VisString255" fc="DC" name="vendor"/>
</DOType>
<DOType cdc="ENS" desc="Enumerated status" id="ENS_2">
<DA bType="Enum" dchg="true" dupd="true" fc="ST" name="stVal"
type="BehaviourModeKind" />
<DA bType="Quality" £fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
</DOType>
<DOType cdc="LPL" desc="Logical Node name plate" id="LPL 0">
<DA bType="VisString255" fc="DC" name="vendor"/>
<DA bType="VisString255" fc="DC" name="swRev'"/>
<DA bType="VisString255" fc="DC" name="d"/>
<DA bType="VisString255" fc="DC" name="configRev"/>
<DA bType="VisString255" fc="EX" name="1ldNs"/>
</DOType>
<DOType cdc="ENS" desc="Enumerated status" id="ENS_3">
<DA bType="Enum" dchg="true" fc="ST" name="stVal"
type="HealthKind" />
<DA bType="Quality" fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
</DOType>
<DOType cdc="ENS" desc="Enumerated status" id="ENS_4">
<DA bType="Enum" dchg="true" fc="ST" name="stVal"
type="BehaviourModeKind" />
<DA bType="Quality" fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>

230

</DOType>
<DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_2">
<DA bType="Enum" dchg="true" fc="ST" name="stVal"
type="BehaviourModeKind" />
<DA bType="Quality" fc="ST" name="q" gchg="true"/>
<DA bType="Timestamp" fc="ST" name="t"/>
<DA bType="Enum" fc="CF" name="ctlModel" type="CtlModelKind"/>
</DOType>
<DAType id="mag_0">
<BDA bType="FLOAT32" name="£"/>
</DAType>
<EnumType id="CtlModelKind">
<Enumval ord="0">status-only</Enumval>
<EnumVal ord="1">direct-with-normal-security</EnumvVal>
<EnumVal ord="2">sbo-with-normal-security</EnumVal>
<EnumVal ord="3">direct-with-enhanced-security</Enumval>
<EnumVal ord="4">sbo-with-enhanced-security</Enumval>
</EnumType>
<EnumType id="HumCtl">
<EnumVal ord="1">None</EnumVal>
</EnumType>
<EnumType id="TempCtl">
<EnumVal ord="1">None</EnumVal>
</EnumType>
<EnumType id="BehKind">
<EnumVal ord="1">on</EnumVal>
<EnumVal ord="2">blocked</EnumVal>
<EnumVal ord="3">test</Enumval>
<EnumVal ord="4">test/blocked</EnumVal>
<EnumVal ord="5">off</EnumvVal>
</EnumType>
<EnumType id="HealthKind">
<EnumVal ord="1">Ok</EnumVal>
<EnumVal ord="2">Warning</EnumVal>
<EnumVal ord="3">Alarm</EnumVal>
</EnumType>
<EnumType id="BehaviourModeKind">
<EnumVal ord="1">on</EnumVal>
<EnumVal ord="2">blocked</EnumVal>
<EnumVal ord="3">test</Enumval>
<EnumVal ord="4">test/blocked</EnumVal>
<EnumVal ord="5">o0ff</EnumvVal>
</EnumType>
</DataTypeTemplates>
</SCL>

231

