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ABSTRACT 
A Hybrid Power System (HPS) is a power generation system consisting of renewable and non-renewable 

means of energy generation, and an energy storage scheme. It is considered as a more suitable alternative 

energy generation for sustainable development in off-grid and grid-connected applications. However, the 

optimal design of the components making up the HPS is very essential in reducing not only the total cost 

and environmental effects of the system, but to also improve its reliability. Most of the existing solution 

methods were found to be time-consuming, unable to handle a large number of control variables and suffer 

from slow convergence speed; leading to system designs with low-quality optimal solutions. Thus, there is 

need to develop an HPS model with a fast run time and high speed of convergence, that is reliable and cost-

effective. This work, therefore, aims to design an optimal off-grid hybrid solar bifacial PV-wind-battery-

split Genset power system model using Giza Pyramids Construction (GPC) Algorithm as an optimization 

technique. 

Individual component of the proposed HPS is modeled in Simulink using their respective mathematical 

equations. In order to increase the share of renewable energy in the optimal system design, a bifacial PV, 

which has the ability to generate more additional energy compared to the conventional monofacial PV was 

used as the solar generator component. The performance of the bifacial PV module is evaluated by 

determining the most appropriate orientation state capable of producing more additional energy. A multi-

objective optimization solution method was employed to find the optimal design of the proposed HPS using 

the GPC algorithm. The proposed approach was applied to study four case studies including (split genset 

only, wind/battery/split genset, bifacial PV/battery/split genset and Bifacial PV/wind/battery/split genset) 

to meet the load requirement of a remote community located in northern part of Nigeria using real time 

meteorological data of the area. The performance evaluation of the GPC algorithm was done by comparing 

its solution with those obtained using Firefly Algorithm (FA) and Whale Optimization Algorithm (WOA) 

techniques respectively using Life Cycle Cost (LCC) and Total Environmental Pollution (TEP) as 

performance metrics. To further illustrate the performance of the GPC algorithm, a comprehensive 

comparison based on numerical analysis is carried among the reported optimization algorithms. 

Simulation results showed that the optimal design of the proposed HPS consisting of Bifacial 

PV/wind/battery/split genset is the most practical energy solution to meet the energy requirement of the 

studied area, as all the three algorithms predicted the lowest values of LCC and TEP for the optimal 

configuration as compared to using the split genset only with LCC and TEP values of $1,830,752.40 and 

3,241,987.00 kg respectively. The LCC and TEP obtained using the proposed algorithm, WOA and FA 

techniques are $803,599.09 and 1,265,933.58 kg, $799,243.58 and 1,188,139.91 kg and $836,135.65 and 

1,469,829.44 kg respectively; which corresponds to 56.10 % and 60.95 %, 56.34 % and 63.35 % and 54.32 



  

iv 
 

% and 54.66 % reduction as compared to the split genset only configuration. The results also showed that 

GPC algorithm converges faster than the two other optimization algorithm and has a simulation run time 

of 9.78 minutes as compared to 10.59 and 12.28 minutes recorded for both WOA and FA techniques 

respectively. Moreover, the results of numerical analysis carried out on the fitness score of the objective 

function over 20 runs showed that the GPC algorithm has a standard deviation and efficiency of 1.0096 and 

96.28 % as compared to 3.4915 and 87.09; and 07142 and 97.36 estimated for both WOA and FA techniques 

respectively.  

Generally, the results demonstrate the robustness and efficient performance of the GPC algorithm as 

compared to WOA and FA techniques in solving optimal design problem of HPS. The significant reduction 

in the values of LCC and TEP of the proposed approach is expected to enhance wider acceptability of HPS 

consisting of both renewable and non-renewable energy sources among policy makers, decision makers, 

government agencies and power system engineers for sustainable development and a safer environment. 

Keywords 

Giza Pyramids Constructions, Hybrid Power System, Bifacial PV, Split Genset, Renewable Energy, 
Battery Energy System, Optimization, Simulation 
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CHAPTER ONE 
INTRODUCTION 

1.1 Background of the study 

In the last two centuries, the availability of Fossil Fuel (FF) has played a significant role in the development 

of modern civilization. Fossil fuels were majorly used as the source of energy generation, and the amount 

of energy availability of any nation is a direct indication of its development (Babatunde et al., 2020). 

However, the rise in primary energy consumption, which is as a result of the continuous increase in 

population growth and industrial revolution both in developed and developing countries, may lead to an 

unsustainable situation in the near future owing to the limited availability of FF (Tito et al., 2013). From 

the early 1970s oil crisis to the present, the gradual depletion of traditional energy sources and the concerns 

of global warming contribute to the need for alternative energy generation sources (Nair et al., 2017; Pan 

et al., 2009; Zhou et al., 2010). A viable alternative has pointed in the direction of Renewable Energy (RE) 

sources (Zhou et al., 2010). 

Renewable energy as defined by Adebanji et al., (2017) is any energy generated from RE sources (solar, 

wind, hydro and biomass) that can reproduce itself through natural or biological process. Solar Photovoltaic 

(PV) module and wind turbines are the most prominent RE technologies, both of which produce zero 

pollution and have a source that is free and abundance in nature (Koutroulis et al., 2006). Solar PV 

technology in particular, has become a promising option to global energy production with more than 650 

GWp of accumulated installed capacity as of 2020. The most recent of this technology is the solar bifacial 

PV module. These types of modules are designed to collect sunlight using both the front and back sides for 

energy production. Since their inception, studies have shown that these modules have a higher energy output 

potential when compared to their monofacial PV counterparts (Janssen et al., 2015). 

Nair et al., (2017) and Nehrir et al., (2011) stated that the main drawbacks of each of these RE technologies 

are the unpredictable nature of their sources, as well as their dependence on irregular weather and climatic 

conditions. Consequently, they are unable to match the load requirements as at when required. It should 

also be noted that over-reliance on a single technology generally results in over-sizing of the system, thereby 

increasing the investment cost (Hassan et al., 2016). However, considering the complementary nature of 

their sources, most of the drawbacks can be addressed by overcoming the weakness of one by the strength 

of the other (Nair et al., 2017). Combining these two types of RE technologies with a back-up, such as 

diesel generator and energy storage systems or fuel cells will help create an economically viable system 

capable of improving the power supply reliability (Yuan et al., 2018). 
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A system which brings together diverse electrical energy generation sources, storage and consumption 

technologies in a single system, and  subsequently improves the overall benefits as compared to a system 

depending on one single energy source is referred to as Hybrid Power System (HPS) (Babatunde et al., 

2020). Formerly, this type of system was designed as a combination of conventional, non-renewable energy 

generation such as diesel generator and Battery Energy Storage System (BESS). However, the recent 

deployment of RE technologies has widened their definition to include systems whose energy generation 

is mainly based on RE source Therefore, a more suitable definition of HPS is the integration of several 

types of energy generation equipment such as traditional electrical energy generators, energy storage system 

and RE technologies (Atia & Yamada, 2016; Pan et al., 2009). 

The integration of HPS continue to grow in capacity from small, standalone system of a few kilowatt, 

typically designed for low voltage DC and AC applications to larger megawatt systems expanding to 

medium voltage grid-connected systems (Zhou et al., 2010). However, the most important feature of the 

HPS design is to efficiently generate energy at any point in time by optimally utilizing the available RE 

sources and storing the excess energy for later use as demanded (Babatunde et al., 2020). Nevertheless, as 

more energy sources and system components are incorporated into the system design; the proper selection 

of the HPS components and sizes, optimal allocation of the energy resources, battery life cycle as well as 

the optimal operation control strategy becomes imperative in achieving the overall efficiency of the system 

(Sawle et al., 2016a). 

The optimal operation of HPS requires the optimization of its performance, taking into consideration its 

technical and economic constraints. Optimization of HPS looks into the process of selecting the best 

components and its sizing with appropriate operation strategy to provide efficient, reliable and cost effective 

alternative energy for use in both urban and isolated areas (Babatunde et al., 2020; Tito et al., 2013). This 

optimization complexity arises for several reasons such as the high number of variables involved in system 

design, conflicting objective such as cost, reliability, environmental pollution, supply/demand management, 

grid limitations, among others. Also, the non-linearity, non-convexities and mixed type variables often 

limits the possibility of using conventional and commercially available optimization software and 

techniques to properly address this problem (Sawle et al., 2016a; Zhou et al., 2010). 

In the past few years, researchers are harnessing intelligence techniques most especially the heuristic and 

meta-heuristics algorithms such as (Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm 

Optimization (PSO) and many others) for the optimal design of HPS such that there is an overall 

improvement on system cost, environmental effects and reliability. These techniques have shown their 
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capability in terms of simulation run time, convergence speed and accuracy in solving various optimization 

problems. (Babatunde et al., 2020; Bandaru & Deb, 2016).  

In this study, Giza Pyramids Construction (GPC), a novel meta-heuristic optimization technique was used 

to find the optimal design of a stand-alone HPS comprising of solar bifacial PV, wind turbines, split  diesel 

generator set and BESS. The objectives considered in the optimization are minimization of the system life 

cycle cost and total environmental pollution; the reliability of the HPS design was measured using the loss 

of power supply probability which was included as constraints during the optimization process. The choice 

of GPC optimization algorithm is due to its ability to handle high-dimensional problems, converge at shorter 

run time and produce efficient solutions in solving many optimization problems (Harifi, Mohammadzadeh, 

et al., 2020). In order to demonstrate the robustness of the GPC, The result obtained using the GPC 

algorithm were compared with those obtained using Firefly Algorithm (FA) and Whale Optimization 

Algorithm (WOA). The proposed HPS design model can be used as a temporary or long-term solution for 

electrification of rural areas, critical infrastructure, educational institutions and many other areas where the 

need for economically viable, environmentally friendly and reliable power solution is required. 

1.2   Problem statement 

Renewable energy technologies are becoming more popular due to the recent breakthroughs in the 

deployment of the technology (Zhou et al., 2010). The combination of different types of RE technologies 

coupled with energy storage units such as batteries and diesel generator as back-up; provide a stand-alone 

energy system which serves as a realistic alternative to traditional power system generation. This type of 

system is usually referred to as HPS (Babatunde et al., 2020). 

Existing studies have shown a significant development in the design, analysis and implementation of HPS. 

The sizing of each RE technology is mostly important in the consideration of the investment cost, operation 

and maintenance costs and the reliability of supply of the energy demanded (Vishakha et al., 2020). In many 

of the HPS design available in literatures, the traditional monofacial PV module was used; even though 

they are cheaper as compared to the proposed bifacial PV modules in this study, they are only able to 

generate energy using the front side only despite occupying the same land size area. Besides, bifacial PV 

modules have the potential to compensate for the extra cost and have longer life span as compared to their 

monofacial counterparts (Pelaez, Deline, Greenberg, et al., 2019). In addition, split diesel generator set was 

used as opposed to a large-sized diesel generator used in many HPS system design available literature. The 

split diesel generator set is expected to further reduce the environmental pollution and dump energy in the 

system (Ogunjuyigbe et al., 2016). 
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Moreover, the optimal and economical sizing of the entire system can be done via several optimization 

techniques such as the commercially available optimization approach, conventional and intelligence-based 

optimization techniques (Babatunde et al., 2020; Zhou et al., 2010). Although, the problem of cost 

optimization and reliability of HPS containing a large combination of components has been addressed by 

various researchers; in most cases, conventional optimization and commercially available optimization 

methods were used, resulting in higher calculation inefficiency, high run time, slow convergence and 

computational burden (Sawle et al., 2016a). Computational drawbacks of existing numerical methods in 

the context of optimization problems have thus compelled researchers to repose their trust in computational 

intelligence-based techniques (Babatunde et al., 2020). While, speed is seen to have improved to a certain 

extent using intelligent methods, the possibility of trapping into local optimum is still present due to the 

high number of control variables in the design of HPS (Sawle et al., 2016a). 

In this study, a recent computational intelligence-based technique Giza Pyramids Constriction (GPC) was 

applied to optimize an off-grid solar bifacial PV-wind-battery-split generator set system. The choice of 

GPC is due to its ability to handle large number of control variables which is peculiar to most HPS design 

and subsequently attaining global optimal solution in less run time and fast convergence speed when 

compared with other intelligence-based optimization techniques (Harifi, Mohammadzadeh, et al., 2020). 

1.3.  Research Questions 

This study provides adequate answers to the following research questions.  

1. What are the techno-economic benefits and environment effect of two or more RE source such as 

solar and wind in the optimal design of HPS?  

2. What is the influence of the additional energy yield of a bifacial solar PV on the optimal design of 

the HPS?  

3. What is the effect of using a GPC optimization algorithm in the optimal design of the proposed 

HPS in terms of run time, convergence speed and quality of the solution? 

4. What effects do other meta-heuristics optimization techniques have on the optimal design of HPS 

based on the minimization of an encoded objective function, convergence speed and run time, 

system cost and total environmental pollution as compared to the use of GPC algorithm? 

1.4   Research aim and objectives 

This section describes the main aim of the study as well as stepwise objectives used in achieving the aim 

of the research. 
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1.4.1 Aim 

The aim of this study is to develop an optimal design and to evaluate the performance of a solar bifacial 
PV-wind-battery-split genset hybrid power system 

1.4.2 Objectives 

The specific objectives of this research are to;  

i. conduct the feasibility study of the proposed site for integration of the solar bifacial PV-wind-

battery-split genset hybrid power system and analyze the available renewable energy sources taking 

into consideration the solar radiation, wind speed and load demand pattern.  

ii. carry out the mathematical modeling of the various components of the proposed HPS such as solar 

bifacial PV, wing turbine generator, split generator set, energy storage system and converter in 

SIMULINK environment.   

iii. formulate a cost-efficient and environmentally friendly off-grid solar bifacial PV-wind-battery-

split genset hybrid power system model and optimize it using Giza Pyramids Constriction (GPC) 

optimization algorithm.   

iv. implement objective (iii) in MATLAB/SIMULINK using total life cycle cost of system and total 

environmental pollution as performance metrics. 

v. evaluate the performance of the developed model in (iii) by comparing its results with that of other 

intelligent-based optimization algorithms namely Whale Optimization Algorithm (WOA) and 

Firefly Algorithm (FA). 

1.5  Significance of the research 

Hybrid Power System (HPS) has become an important research area due to the continuous increase in global 

energy demand and the need for safer environment. It is therefore important to harness the potential of two 

or more RE sources and energy storage system in the design of HPS, with a back-up such as diesel generator 

for the electrification of isolated locations, extremely remote areas, critical facilities such as military base 

and hospitals, among others. However, the optimal design of the components making up the HPS is a very 

complex task as it involves the proper combination of large number of components. Hence, there is need to 

design a HPS model that is not only capable appropriate component selections, but also reliable, cost-

effective and able to meet the load demand of proposed location while maintaining system integrity. 

Optimal design of an off-grid hybrid solar PV-wind-battery power system with split diesel generator set as 

back-up will not only help in reducing the life cycle cost of the system as well as total environmental 

pollution, it will also improve system reliability and ensure uninterrupted supply of power.  
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1.6  Scope of the study 

The scope of the study is to design of an off-grid Hybrid Power System (HPS) comprising solar bifacial PV 

system, wind turbine (WT) generator, energy storage system and split diesel generator set. Other RE sources 

such as biomass, hydro, among others were not considered in this study. 

1.7  Hypothesis 

The hypothesis is based on the reviewed investigations on HPS system configuration types, as well as 

design methods and techniques applied in the referenced papers to solve the problem of optimal design of 

HPS consisting of solar and wind energies, diesel generators and energy storage system. Most of the 

reviewed papers investigated the optimal design of the conventional monofacial solar PV and a single 

generator set in their system configuration. The introduction of solar bifacial PV to replace the conventional 

monofacial PV is a new concept in the design of the HPS. It is hypothesized that the additional energy yield 

produced from the rear side of the bifacial PV will help lower the total cost of the system and cost of energy. 

Similarly, the use of a split generator set in system configuration of the HPS is another new concept which 

is expected to help improve system reliability and reduce carbon emission for safer environment. Most of 

the literatures reviewed on HPS employed a large single generator in the design of the HPS. 

In terms of design methodologies, many of the reviewed papers investigated applied several methods to 

solve the design optimization problem of HPS, each optimization method has its own advantages and 

disadvantages according to the quality of the solution, accuracy, reliability, run time and convergence 

speed. Most existing studies make use of the commercially available optimization software such as Hybrid 

Optimization of Multiple Energy Resources (HOMER), Hybrid Optimization by Genetic Algorithm 

(HOGA) and many others. In some literatures, the conventional optimization methods such as Linear 

Programming (LP), graphical construction technique, among others were also used in the optimal design 

of the HPS. However, the use of commercially available and conventional optimization software were 

found to be time consuming, suffer from slow convergence speed and are liable to get trapped in local 

optimal solutions. This is mainly due to the high number of design variables involved in the optimization 

problem. 

In the last decade, meta-heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Tabu Search (TS) and many others have also been applied in the optimal design of HPS. A 

noticeable feature common to these optimization algorithm when compared to conventional techniques is 

in the speed of convergence and reduction in run time. However, their inability to efficiently handle the 

high number of variables involved in system design has led to discrepancies in the quality of their solutions. 

Hence, for the purpose of this study, a novel intelligent algorithm namely Giza Pyramids Constriction 



  

7 
 

(GPC) optimization technique was used to develop a model for the optimal design of HPS. The developed 

model using GPC was aimed at producing optimal solutions in terms of total life cycle cost and total 

environmental pollution of the system, and improved system reliability in less run time and fast 

convergence speed. 

1.8 Thesis Layout 

The background of the study, awareness of the problem, research questions, aim and objectives, 

significance of the study, scope of the study, hypothesis and layout of the thesis are all discussed in Chapter 

One. A review of the literature studies similar to this research is presented in Chapter two. It discusses the 

various renewable energy sources and technologies along with their current status and potential. A brief 

discussion of hybrid power system types, mode of connections and the various components of the proposed 

system are also described in this chapter. Moreover, the various methodologies used in the optimal design 

of hybrid power system consisting of renewable energy sources are also briefly summarized. In addition, 

the proposed optimization techniques are also presented towards the end of this chapter. The mathematical 

modeling of the various components used in the design of the proposed HPS are presented in chapter three. 

The energy flow algorithm and flowchart of the system design is also presented in this chapter. Chapter 

Four covers the developed optimization problem, as well as the implementation procedure of the proposed 

optimization algorithms. Simulation results and discussion are covered in Chapter Five of this study; while 

Chapter Six summarizes the conclusions drawn from this study, contributions to knowledge, and 

recommended future work based on the result of this study. 
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CHAPTER TWO 
LITERATURE REVIEW 

2.1 Status quo of conventional energy generation 

Generally, energy is regarded as one of the basic need for human existence, as it is required in almost every 

phase of our daily lives. Over the years, the majority of the energy required across the globe are generated 

using traditional methods such as fossil fuels and coal (IRENA, 2013). In a recent report by REN21, (2012), 

81 % of the total global energy are generated using fossil fuels. Some well developed countries have also 

generated their energy using nuclear sources, about 2.8 % of the global energy generation are generated 

using nuclear power, while hydropower contributes about 3.4 % to the energy generation mix. Despite the 

huge amount of energy generation, more than a billion of the world population are still living without 

sustainable energy supply. As such, the demand for energy will continue to grow as the years pass by, and 

further attempt to close the supply-demand energy gap across the globe using traditional energy generation 

sources will lead to their complete depletion (Larsson, 2009). The projected availability of conventional 

energy generation sources is depicted in Figure 2.1. 

As shown in figure 2.1, oil, which is the major byproduct of fossil fuel is expected to have been exhausted 

before the end of 21st century. (HTE, 2012). Hence, as a result of the current global fear over complete 

depletion of fossil fuelled power generation sources, their negative environmental impacts and the 

anticipated increase in the price of fossil fuel; the need for alternative energy generating options becomes 

imperative (Nehrir et al., 2011). The use of diesel and gas powered generators has been the major option 

for mini-grid electrification purpose both in rural and urban areas. However, factors such as high 

maintenance and lifecycle cost due to their daily fuel consumption, high carbon emissions, fluctuating price 

and limited availability of diesel fuel have all contributed to a push for a more promising option which is 

economically viable, as well as guarantees sustainability and reliability (Babatunde et al., 2020). As such, 

the attention of world leaders, policy makers and researchers have been drown towards the use of renewable 

resources as a viable alternative for energy generation (Ellabban et al., 2014). 

2.2 Renewable energy resources 

Renewable Energy (RE) resources is projected to play a significant role in meeting the future energy 

demand in both developed and developing nations in the world (Edenhofer et al., 2011). As the need to curb 

the adverse environmental effect of energy generation using non-renewable energy sources continue to 

intensify, the development and utilization of renewable sources must be given a high priority. RE resources 

are naturally occurring resources that are unlimitedly available in our environment. Typical examples of 

RE resources include hydro, wind, solar, tidal waves, geothermal, biomass and biogas (Alrikabi, 2014a).  
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Figure 2.1: Projected availability of conventional energy sources (HTE, 2012) 
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The source of most RE resources originated from the sun; the only exceptions are tidal and geothermal 

resources. Every form of RE resources have the ability to generate electrical energy, mechanical energy, 

thermal energy, as well as produce fuels that can be utilized as multiple energy needs (Edenhofer et al., 

2011) 

RE resources has always been around us for a long period of time, and has been used to generate energy in 

many parts of the world. For example, energy generation using hydro has been in existence for a long time; 

however, it is only suitable for locations with a large volume of constant water flow and therefore limiting 

its usage. On the other hand, solar and wind resources have more presence in almost every part of the world 

than hydro; and could be explored to meet the present and future energy demand across the globe (Frp et 

al., 2021). It has been projected that the share of energy generation in the world using solar and wind 

resources by the year 2050, would amount to 452 billion kWh and 1,839 billion kWh respectively as 

depicted in Figure 2.2. (IEO, 2013). Theoretically, RE resources have the potential to generate the present 

and future global energy demand; however, the main task is how to maximize this potential in the delivery 

of various energy services in an economical and environmentally friendly manner (Larsson, 2009). A brief 

description of some common RE resources are subsequently presented. 

2.2.1 Biomass 

Biomass is a form of RE resource that can be found in food and fibre production, forest products, as well 

as waste and residue management. It is majorly used in developing counties in a low efficient form such as 

wood, straws, dung and other manures that are used in cooking, lighting and space heating (Alrikabi, 2014b; 

Edenhofer et al., 2011). This form of biomass has been reported to be environmentally unfriendly due to 

the release of carbon dioxide in the atmosphere which is harmful to health and living conditions of its users. 

In recent times, biomass has been used in high efficiency form such as liquid biofuels, biodiesels and 

methane to generate heat, electricity and transportation of fuels. It also exists in solid form such as chips, 

pellets, used woods and many others. Generally, energy production using biomass can be unsustainable as 

it causes serious social and environmental concern; However, its huge potential in most developing nations 

cannot be overemphasized; and it is projected that the global biomass harvest should achieve a 150 EJ/yr 

of bioenergy by the middle of the current century (Edenhofer et al., 2011). 

2.2.2 Hydropower 

Hydropower is a RE resource that has been in use for over 2000 years, it uses the energy of a flowing water 

to generate electrical energy. They are mostly used to generate centralized electricity, but can also be used 

as mini and micro hydro to provide electricity in remote and islanded areas. Some of the main advantage  
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Figure 2.2: Projected share of solar and wind energy generation (IEO, 2013) 

 

 

 

 

 

 

 

 

 

 

 



  

12 
 

of energy generating using hydro resource include its non-exhaustible and non-polluting nature, as well as 

its low operational costs. However, setting up a hydro power plant is capital intensive and have negative 

impacts on ecological lives (Holt & Pengelly, 2008). Presently, hydropower resource has the potential to 

generate 3,721 GW of electrical power globally. However, the potential of this resource has not been fully 

explored despite its wide acceptance in electricity generation (Fullerton et al., 2008). Africa has the most 

undeveloped capacity with only about 8 % of hydro potential being currently utilized. In Europe, the use of 

hydropower resource is more pronounced with about 53 % of the total global capacity installed across the 

continent. Despite the huge technical potential of the resource in Asia and Latin America, their development 

is still at the infancy stage. Globally, it is projected that the generation capacity of hydro resource could rise 

as much as 4.05 TWh by 2050 (Edenhofer et al., 2011). 

2.2.3 Geothermal  

This type of RE resource are made from thermal energy beneath the earth surface, and are usually found in 

both rock and trapped steam or liquid water. It is considered a family of the RE resources because the tapped 

heat in the active reservoir is constantly restored via the process of natural heat production, conduction and 

convection. (Alrikabi, 2014)The process of extracting the geothermal fluids is a reversible one, thereby 

making it possible for the fluids to be replenished via natural revitalization and by re-injecting the cold 

fluids back to the reservoir. They find wide applications in the generation of electrical energy using thermal 

power plants. They are also used for domestic and agriculture purposes, where the need for heat and 

combined heat and power are required. Energy generation using geothermal resource are environmentally 

friendly and have little or zero impact on climate change. It has been reported that the amount of electrical 

energy that can be generated using geothermal resources is in the range of 118 EJ to 146 EJ per year at a 

depth of 3000 meters to 318 EJ to 1,109 EJ per year at a depth of 10,000 meters (Edenhofer et al., 2011). 

2.2.4 Ocean energy 

Ocean energy is regarded as one of the RE resource with the potential to meet the present human energy 

demanded across the globe (Holt & Pengelly, 2008). The energy is harvested by harnessing the chemical 

and heat potential of the water in the ocean. It exists in six different forms namely wave energy, tidal range 

tidal currents, ocean currents, ocean thermal energy conversion and salinity gradients, which is also referred 

to as osmotic power (Edenhofer et al., 2011). Some of the many advantages of this type of energy resource 

is their ability to lower carbon emission and low environmental impact. Even though the development of 

various technologies used in converting the resource to energy is very slow, it is understood that they have 

low investment cost which could impact the cost of electricity generated using their sources (Holt & 

Pengelly, 2008). The projected potential of ocean energy resource across the globe is estimated to be 77,731 
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TWh per year. Efforts are being made to implement certain government policies that will accelerate the 

potential deployment of their technology in many parts of the world (Edenhofer et al., 2011). 

2.2.5 Solar energy 

Solar RE resource is obtained through the sun’s radiation reaching the earth. The rotation of the earth around 

the sun in an elliptical manner results in variation of extraterrestrial radiation. The amount of this 

extraterrestrial radiation reaching the earth varies from one location to another, and it is determined by 

several factors such as climatic condition, time of the day and the amount of water vapor present in the 

atmosphere (Edenhofer et al., 2011; Holt & Pengelly, 2008). In order to maximize the solar radiation 

reaching the earth surface at a specific location, it is important to analyze the characteristics of solar 

radiation before implementation. The amount of solar radiation received on a square meter of the earth 

surface is referred to as solar insolation. The solar insolation outside the earth’s atmosphere is estimated at 

1.37 kW/m2, while the solar insolation within the atmosphere is assumed to be 1.0 kW/m2 (Edenhofer et 

al., 2011; Fullerton et al., 2008). In a report by (IRENA, 2013), the amount of radiation obtained from the 

sun is more than enough to meet the entire energy needs in the world. The projected energy generation 

using the sun stands at 49,837 EJ per year (Edenhofer et al., 2011). 

Solar resource has been used extensively in various applications such as solar water heaters, solar dryers, 

solar cookers, solar thermal refrigerators, water pumping system, solar powered receivers, 

telecommunications repeater stations and electricity generation both in urban and rural locations. Some of 

the merits of using this resource for energy generation include its non-polluting and inexhaustible nature. 

The major drawback is the intermittent nature due to varying climatic conditions (Holt & Pengelly, 2008). 

2.2.6 Wind energy 

Majority of the RE resources available are byproducts of the sun; one of such is the wind resource. Wind 

is simply defined as the movement of air in space, this movement is usually caused by the displacement 

resulting from the heating of some parts of the earth by the sun. Wind is one of the oldest RE resource 

available, it was firstly used about 5000 years ago to sails ship in the Nile River; other early application 

areas include crushing of grains, pumping of water and charging of batteries for used as source of 

power(Fullerton et al., 2008; Holt & Pengelly, 2008). However, due to the discovery of fossil fuels which 

was found to be quite economical and more reliable as at then, the interest in the resource suddenly cooled 

off. It was reintroduced into the power generation discussion because of the oil crisis in 1970. Since its re-

introduction, wind resource has been used as grid-connected electricity production and remote 

electrifications in many parts of the world (Larsson, 2009; Martins et al., 2019). 
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Various government funded programs on research and development have been highlighted to improve the 

technologies used in harnessing the energy from the wind. In 2021, global wind capacity increased from 

500,000 MW in 2016 to 1,100,000 MW globally; while the projected amount of energy that can be 

harvested from wind resource stands at 125,000 TWh per year, which is far above the global energy 

demanded as at 2021 (Edenhofer et al., 2011). The main advantage of generating energy using wind 

resource is the guarantee of a healthy environment due to reduction in the level of harmful gases into the 

atmosphere. In a report by International Energy Agency (IEA), the yearly reduction in environmental 

pollution is expected to rise from 863 million tons in 2020 to 1447 million tons by the year 2030 at the 

current rate of utilizing the resource (Alrikabi, 2014). 

2.3 Renewable energy technologies 

The need to transit from traditional fossil fuel based sources of energy generation to RE resources form 

requires the development of appropriate technologies. Renewable Energy Technologies (RET) are 

technologies used in the conversion of available RE resources into useful energy. For example, photovoltaic 

(PV) modules are required to convert the energy of the sun for use as electricity for both residential and 

commercial purposes. It should be noted that the competitiveness of RE resources depend on the availability 

and cost of conversion technologies (IRENA, 2013). Various RET have been developed over the years, 

some of them include cooking stoves, hydrothermal reservoirs, enhanced geothermal systems, hydropower 

turbines, tidal energy turbines, wind turbines, solar collector, concentrated solar plate and PV modules 

(Edenhofer et al., 2011). The two most deployed RET across the globe are wind turbines and PV modules; 

and are both considered in this study. A detailed description of these two technologies are subsequently 

presented. 

2.3.1 Wind turbine technology 

Wind turbines are one of the most deployed RET across the globe, and are very effective in converting the 

kinetic energy from the wind into useful mechanical power. If the mechanical power is used directly for 

pumping of water and crushing of grains, it is referred to as windmill; however, if the mechanical power is 

converted into electrical power, it is referred to as wind turbine generator with rated capacity ranging from 

less than 100kW, but can be built into a large wind farm rated at 5MW or more (IRENA, 2016; Yaramasu 

et al., 2015). Power is generated in the turbine when the kinetic energy of the wind exceeds the minimum 

value (cut-in speed). The higher the wind speed, the higher the power generated by the turbine; a point is 

reached when the turbine stops generating power due to the presence of control mechanisms, this point is 

known as cut-off speed.  The power output of the turbine depends mainly on the wind speed, wind direction, 

air density, wind turbine dimensions, and wind turbine aerodynamics (Olabi et al., 2021). The power output 

of the wind turbine for various wind speed is presented in Table 2.1. 
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Table 2.1: Power output for various wind speed 
Wind Speed Power Output of Wind Turbine 

Below cut-in speed 0oP ; where oP  is the power output of the 

turbine 

Between cut-in speed and rated speed 
Maco PP  ; where MacP is max. extractable power 

from the wind turbine 

Between rated and cut-out speed 
ratedo PP  ; where ratedP  is the rated output of the 

wind plant 

Above cut-out speed 0oP  

Source: (Olabi et al., 2021) 
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Some of the basic components of a wind turbine are tower, rotor, turbine blades, nacelle, and the turbine 

rotor control structure, which is also known as yawing mechanism as shown in Figure 2.3. The main 

components of the turbine is the tower as it provides the necessary support to the gear box and the electric 

generator which are located in the nacelle. The driven train connecting the aerodynamic rotor with electrical 

output terminals is also an essential components of the wind turbine (TeacherGeek.com, 2006). 

Traditionally, there are three major types of Wind Turbine Generators (WTGs) that may be considered for 

various wind turbine system. They include Direct Current (DC), Alternating Current (AC) synchronous, 

and Alternating Current (AC) asynchronous generators. Theoretically, each of the generators may be run at 

a fixed or variable speed. However, due to the fluctuation in wind power output, it is desirable to run the 

WTG at variable speed, which lowers physical stress on the turbine blades and drive train and enhances 

system aerodynamic efficiency and torque transient behaviors (Cao et al., 2012; Reinemann & Heinzen, 

2014). 

Another important component is the yawing mechanism, it is basically used to direct the turbine rotor 

towards the direction of wind flow in order to maximize the kinetic energy from the wind. The kinetic 

energy of the wind speed produces a torque which is converted into electrical power via the gear box and 

the electrical generator. Some of the obvious characteristics of a modern wind turbines include (Cao et al., 

2012; Kim et al., 2010).; 

i. dependability 

ii. noise and pollution free  

iii. economically viable 

iv. competitive in business terms  

Generally, there are two generations of wind turbines that are commercially available; the first generation 

wind turbines are the vertical axis wind turbine which include the Darrieus and Savonius wind turbines. 

The second generation of wind turbines are the horizontal axis wind turbine; the Swift Wind turbine falls 

under this category (Olabi et al., 2021; L. Wang et al., 2009). A brief discussion of the two existing 

generations of wind turbines are subsequently presented.  

2.3.1.1 Vertical axis wind turbines 

The two most common types of vertical axis wind turbines are the Darrieus and Savonius. This type of 

turbine does not make use of the yawning mechanism when generating electricity. This property can be 

attributed to the construction of the blades in such a way that it is able to capture the direction of wind speed 

in any direction. The Darrieus wind turbines use the airfoil concept to turn its blades along a vertical axis, 

thus allowing for an infinite rotation speed (Olabi et al., 2021). 
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Figure 2.3: Basic Components of Different Wind Turbine Types (TeacherGeek.com, 2006) 
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Noise and structural instability are two major demerits associated with this type of turbine, but their low 

maintenance cost and minimal environmental impacts makes them suitable for residential and commercial 

purposes. A more recent design of the Darrieus wind turbine, shown in Figure 2.4 showed that they have a 

more helical shape which is necessary to improve structural stability, reduce wear and tear, as well as noise 

pollution (Chandrashekhar et al., 2019). 

Unlike the Darrieus wind turbines, the design of Savonius wind turbines are less complicated. The main 

concept behind its operation is the use of drag force produced by the wind speed to turn the rotor; this 

simply means that speed of rotation is mainly dependent on the maximum speed of the wind. They are 

mainly used in home projects to power small amount of load. They are small and quiet, which makes it 

perfect for residential purposes (Tywoniuk and Skorupka, 2018). Many of the vertical axis wind turbines 

are majorly used for onshore purposes such as small-scale electricity generation, pumping of water, 

grinding of grains, among others (crystals12, 2012). Generally, it has been reported that vertical axis 

turbines technology are fast becoming popular and various designs continue to emerge for any type of area 

where sufficient amount of wind resource is experienced. And as the need for cleaner energy continue to 

be a top priority, vertical axis wind turbines will continue to dominate the market for residential and 

commercial purposes either through purchase or by self-operated designs (IRENA, 2016). 

2.3.1.2 Horizontal axis wind turbines 

The Horizontal Axis Wind Turbine (HAWT) is the most common wind turbine technology used in various 

applications. The most popular ones for electricity generation are the horizontal axis turbines with three 

blades. In addition to being parallel to the ground, the axis of blade rotation is parallel to the wind flow. It 

consists of the tower structure which holds the nacelle. The nacelle is a compartment where the gearbox 

and the electrical generator are located (Olabi et al., 2021; L. Wang et al., 2009). They are majorly use in 

offshore application for electricity generation, but can also be operated on a small scale design to supply 

electricity to remote location with sufficient wind speed. Small scale horizontal axis wind turbines, such as 

swift wind turbine uses a tail vane to direct the nacelle and rotor towards the direction of the wind. However, 

when they are implemented on a large scale, the nacelle and rotor are directed in and out of the wind 

direction with the help of a yawning mechanism, pitch control or a stall (X. Yang & Bai, 2010). A wider 

classification of the horizontal axis wind turbines showing their various application is presented in Table 

2.2. 

The tower of horizontal axis wind turbine are usually built to be very tall because of the need to capture 

high speed wind currents, which is the most important factor for power production. Another factor that  
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Figure 2.4: Typical Vertical Axis Wind Turbine (WED, 2015) 
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Table 2.2: Various types of horizontal axis wind turbines 
HAWT Types Features Applications 

Swift Smaller turbine blades, easy to 
set up and less noisy. 

They can be used majorly to 
generate electrical energy in 

cities and urban areas. 

Eclectic Turbine blades have the ability 
to generate power at low wind 

speed and low weight. 

They can also be used to 
generate electrical in urban areas 
by tying it to building structures 

Fortis Montana Zero noise during operation They are majorly used to 
generate electricity for domestic 

purposes due to their reduced 
size 

Scirocco Equipped with two-rotor turbine 
blade for efficient operation and 

can generate power at low 
speed. 

They are used by utilities to 
provide cheap and reliable 

electrical energy 

Tulipo Can generate power at low wind 
speed and are also less noisy. 

They are also used by utilities to 
generate large amount of 

electrical energy at low speed 
areas. 

Source: (X. Yang & Bai, 2010) 
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determines the power produced by a horizontal axis wind turbine is the size of the cross-sectional area. This 

is the main reason why the rotor of the turbine is usually large. Horizontal axis wind turbines have been 

reported to have low cut-in-speed and relatively higher power co-efficient, and are therefore more stable 

and more suitable for electricity generation as compared to their vertical axis counterparts (crystals12, 

2012). Moreover, the rotor of horizontal axis wind turbine is flexible as it can be operated either in the 

upwind or downwind of the tower. Another important feature of this type of turbine is the absence of pitch 

regulation, as the generator is located at ground level. The main problem associated with this type of turbine 

is their dependence on an external mechanism to start the rotor (Olabi et al., 2021). 

Although, the most common type of horizontal axis wind turbines is the triple-bladed type, they also exist 

as a single-bladed, twin-bladed and multi-bladed types. The tip speed ratio of a horizontal axis wind turbine 

depends solely on the number of blades; several studies have shown that horizontal axis wind turbine with 

two or three blades have high tip speed ratio and is therefore considered in this study (Tywoniuk and 

Skorupka, 2018). It should be noted that horizontal axis wind turbines with more than 20 blades are only 

appropriate for pumping of water and cannot be used for the production of electrical energy because of the 

high degree of aerodynamic losses (Cao et al., 2012; Kim et al., 2010). An array of triple-bladed horizontal 

axis wind turbine plant is depicted in Figure 2.5. 

2.3.2 Photovoltaic technology 

Solar cells are made of semiconductors, which have weakly bonded electrons occupying a band of energy 

called the valence band. A semiconductor is described as silicon combined with phosphorous to make 

negative type silicon and boron to make positive type silicon, which can be combined to produce an electric 

field. A typical silicon cell is composed of a thin wafer consisting of an ultra-thin layer of phosphorus-

doped (N-type) silicon on top of a thicker layer of boron-doped (P-type) silicon (Gray, 2011). An electrical 

field is created near the top surface of the cell where these two materials are in contact, called the P-N 

junction. When an energy beyond the band gap energy is applied to a valence electron, the bonds are broken 

and the electron is liberated to a new energy band called the conduction band where it is able to conduct 

electricity as depicted in Figure 2.6 (Oliveti et al., 2014). In simple terms, a solar cell is a P-N junction that 

absorbs light in form of radiation from the sun and releases electrons and holes, thus creating a voltage in 

the cell. An assembly of a number of solar cells in a single framework to generate direct current electricity 

using the energy from the sun is referred to as Photovoltaic (PV) module (Gray, 2011; Oliveti et al., 2014). 

A single solar cell can only generate a minimum amount of electrical power; in order to generate more 

power, a number of cells are interconnected together to form modules. When more electrical power is to be 

generated, the modules can also be connected to form an array of different sizes (Eteiba et al., 2013).  
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Figure 2.5: A three-bladed horizontal axis wind turbine plant (EE, 2021) 
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Figure 2.6: A simple model of the solar cell (Oliveti et al., 2014) 
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A single PV module is made of 33 to 36 silicon cells which are connected in string to a terminal box for 

interconnection purpose. The assembled cells are encapsulated between a transparent window and a 

reflective backing to shield them from weather and accidental damage; the edge of the PV module is sealed 

against moisture ingress and protected using a metal frame. A clamp is usually attached to the module to 

act as a supporting structure during installation (Balaraju & Chengaiah, 2020). A pictorial representation 

of a solar PV cell, module and array is as shown in Figure 2.7. 

Solar cells are made majorly from three types of semiconductor materials; the first generation of solar PV 

cell is the crystalline silicon and at the moment, it is the main technology used commercially with more 

than 95 % share of global PV technology market (Bright, 2008). It has been produced in various forms, 

including single-crystalline, multi-crystalline, and amorphous. The second generation is polycrystalline thin 

films, with different grades of copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film 

silicon. Lastly, the single crystalline thin-film, which focuses majorly on cells made using gallium arsenide 

has also been used in producing solar cells (B.Eteiba et al., 2013; Bright, 2008). There are many other types 

of semiconductor materials that are also undergoing intense research in the production of solar cells in order 

to improve their efficiency, and reduce cost of PV technologies (Okere & Tariq Iqbal, 2021). Some of the 

many advantages of the PV technology in the production of electricity as given by Oliveti et al., (2014) are 

as follows. 

i. It is clean and non-polluting  

ii. They do not cause noise pollution as compared to wind turbines  

iii. They require very little maintenance  

iv. They require no fuel costs as they are abundant and free in nature  

v. They have long life span. 

Solar PV technology has been used extensively for various applications. Other than the obvious usage for 

electricity production for both residential and commercial purposes, they are also very useful in powering 

space vehicles such as satellites and telescopes; recently, they have also been used as a source of power to 

electric vehicles in many developed countries. As the global usage of PV technology continue to rise, it is 

only wise to improve on its current technology to meet the global demand. Improvements in PV technology 

will not only improve the efficiency, it will also help in reducing the cost, which in turn will further improve 

the cost of energy supplied using PV systems. Several emerging PV technologies which have the potential 

to displace the dominant single-faced silicon crystalline PV modules have been developed. A brief 

description of the various emerging PV technologies are subsequently presented. 
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Figure 2.7: Pictorial representation of PV cell, module and array (Balaraju & Chengaiah, 2020) 
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2.3.2.1 Passive Emitter and Rear Cell (PERC) PV technology 

Okere & Tariq Iqbal, (2021) reported that the PERC modules are gradually being introduced into the PV 

market due to its improved efficiency as compared to the traditional Aluminum Back Surface Field (AL-

BSF) multi-crystalline solar PV modules. The improved efficiency of the PERC modules is mainly 

attributed to the reduction in the recombination process and reflectivity of the back side of the module. 

The design of the PERC module consist of a dielectric layer; a combination of aluminum oxide and silicon 

nitride which separates the screen-printed aluminum layer and the silicon surface. This setup enables the 

PERC modules to absorb more radiation and subsequently produce more electricity as compared to the 

traditional crystalline silicon modules. Moreover, the loss of energy experience in traditional PV module 

design is not peculiar to PERC modules due to the design layout (Deng et al., 2015). The presence of the 

dielectric layer makes it possible for the PERC modules to absorb more light using its back side, and 

prevents the aluminum surface from interacting with the silicon surface. As a result, it reduces the back side 

recombination and improve its reflectivity, which leads to increased efficiency and improved performance 

regardless of the intensity of the radiation. It has been reported that PERC modules have the ability to 

produce a bifacial gain of up to 8 % (Okere & Tariq Iqbal, 2021).  

2.3.2.2 Half-cell PV technology 

The modules of half-cell PV technology consists of solar cell that are much more than the traditional PV 

technology. Generally, the modules consists of 120 to 144 half cells as compared to the 66 and 72 half cells 

used in the design of the conventional modules. The main reason for the increased in the number of solar 

cells is to improve the performance and life span of the technology. Some of the advantages of using a half-

cell solar modules include reduced resistive losses since the current in a cell depends majorly on the cell 

area (Okere & Tariq Iqbal, 2021). Moreover, it also offer an improved electrical energy production due to 

the presence of two half cells which are capable of producing more energy than a single full cell; a 3 % 

energy gain has been reported for half-cell modules in literatures. Half-cell module also helps eliminate the 

issues related with hot spot; in addition to that, it offer better utilization of the land size area, responds faster 

to the effect of shadow due to the flexible interconnections of the cells and it offer enormous economic 

advantages (Mesquita et al., 2019; Okere & Tariq Iqbal, 2021). 

2.3.2.3 Hetero-junction with thin layer (HIT) PV technology 

Another important emerging PV technology is the Herero-junction with thin Layer (HIT) PV technology; 

basically, HIT PV is a hybrid of crystalline and non-crystalline silicon solar cell in a single module. Thus 

HIT technology combines the high efficiency and high stability of crystalline silicon with the minimal 

temperature and low cost of non-crystalline silicon in a single module. The resulting combination has been 
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reported to produce 27 % efficiency which is presently the highest of all PV modules commercially 

available (Mesquita et al., 2019; Okere & Tariq Iqbal, 2021). 

2.3.2.4 Bifacial PV Technology 

Bifacial PV module is a promising technology which allows solar cells to absorb light from the front and 

rear side simultaneously as shown in Figure 2.8a. Despite the increase in cost resulting from modifying the 

solar cell and module structure, bifacial solar modules produce more power compared to their mono-facial 

counterparts (Mesquita et al., 2019). Bifacial solar cell’s front design is usually the same as the conventional 

mono-facial solar cell. However, the rear side structure varies, the main difference is observed in the surface 

rear contact. In a conventional mono-facial solar cell, an aluminum rear contact covers the entire backside 

of the module. However, in bifacial solar cells, a finger grid is used to allow the light onto the backside of 

the surface of the cell (Sun et al., 2018). A typical bifacial solar cell and module showing the front and rear 

side is depicted in Figure 2.8b. 

Recently, bifacial PV module has gained much attention in the PV industry as it accounts for about 20 % 

of the total market share, however, the usage of bifacial cells continues to rise. As at 2021, bifacial cells 

account for about 28 % of the total global cells used in production of PV technologies. This fact further 

establish the huge improvement made in the modification of existing solar cells to increase energy 

production (Mesquita et al., 2019; Okere & Tariq Iqbal, 2021). As reported by Fajuke & Raji, (2022), the 

additional power output from a bifacial PV module could be as high as 45 % depending on various factors 

such as mounting surface, mounting angle and mounting orientation. The most important of these factors 

is the albedo of the mounting surface as it determines the amount of the energy gain using bifacial PV 

modules. In simple terms, the albedo of a mounting surface is defined as the ratio of the reflected light to 

the direct incident radiation of the sun (Okere & Tariq Iqbal, 2021). The albedo values of some popular 

mounting surface is presented in Table 2.3. 

Bifacial PV modules and systems have a strong potential to surpass mono-facial ones as there are many 

conditions where the total amount of incident light on both sides could lead to higher energy generation 

than the conventional mono-facial module installed with an optimum tilt angle (Graefenhain et al., 2017; 

Russell et al., 2017). Hence, it is of great interest to researchers, utility companies and decision makers to 

understand this technology; and how much more power output is to be expected out of it with respect to 

economic implications (Arifin et al., 2021). 
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Figure 2.8a: Basic operation principle of bifacial PV module (Oliveti et al., 2014) 

 

 

 

 

 

 
Figure 2.8b: Typical bifacial PV cell and module (Mesquita et al., 2019) 
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Table 2.3: Sample albedo co-efficient value of selected surfaces 
SURFACE TYPE ALBEDO CO-EFFICIENT (%) 

Ocean ice (50-70) 

New concrete with white portland cement, (70-80) 

New concrete (traditional), (40-55) 

Aged concrete (20-30) 

Desert sand 40 

Fresh snow (80-90) 

White acrylic paint 80 

galvanized steel 24 

Soil (Dark/Wet) 5 

Soil (Light/Grey) 40 

Green grass 25 

Bare soil 17 

white paper sheet (60-70) 

polished aluminum (65-75) 

Mirror (72-85) 

Water, (3-100) 

Source: (Sun et al., 2018) 
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2.4 Hybrid power system 
In general terms, a hybrid system is defined as a combination of two or more systems with different 

characteristics, inputs and dynamics that uses the strengths of one sub-system to overcome the weakness of 

the other in order to improve its own overall efficiency (Heemels et al., 2011). The concept of hybrid system 

in power system refers to a combination of two or more power generating systems (renewable or non-

renewable) in a single system to provide electrical energy to a specified location; this resulting combination 

is popularly known as Hybrid Power System (HPS) (Lassalle et al., 2022). The major goal of hybridization 

of energy systems is to compensate for the numerous downside exhibited by one system with the merits of 

the other. Typical HPS includes a conventional generator powered by either gas, or diesel, for example, and 

a RE generator which could include solar PV, wind turbine, small-hydro and energy storage system such 

as battery unit if required, as shown in Figure 2.9 (A. Raji & Kahn, 2012; Sawle et al., 2016a).  

HPS consisting of solar PV, wind turbine and small-hydro systems have been found to be cost-effective on 

a lifetime basis for providing power to the many remote areas where the cost for large scale expansion of 

electrical grids is difficult, and critical facilities where an economical, uninterrupted and reliable supply of 

electrical energy is required (A. K. Raji & Luta, 2019; Sengupta et al., 2012). HPS consisting of clean 

energy sources such as solar and wind as main energy sources are environmentally friendly and can be 

easily maintained. The main components of the HPS proposed in this study consists of solar bifacial (PV) 

generator, wind turbine generator, battery bank and split diesel generator set (genset) as back-up.  

There are majorly two categories of HPS as reviewed in various literatures; the first category of HPS is 

based on system operation while the second category describes the basic connection of the system (Ammari 

et al., 2021). A brief description of the two categories are presented in the following sub-sections.  

2.4.1 Hybrid power system operation 

Hybrid power system can either be operated as a grid-connected or standalone system. A grid-

connected HPS is described as a self-contained power system that is connected to the power grid, which 

functions as a storage unit with an infinite capacity, eliminating the need for a battery storage (Abaye, 2018; 

Syafaruddin & Zinger, 2020). The main purpose of a grid-connected system is to meet local load demand, 

with surplus energy being sent into the grid. On the other hand, a standalone HPS is a self-sustaining power 

system which is designed to operate independently. This type of system are suitable for remote 

electrification and critical facilities where grid extension is not feasible. (Ibrahim et al., 2011; Shi et al., 

2017). For better performance of a standalone HPS, individual solar PV or wind turbine combination require 

an energy storage system to store any excess energy during peak period of the RE generators, and a diesel 

generator set as backup. The resulting configuration will help enhance the efficiency of the system for 
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Figure 2.9: Typical hybrid power system configuration (Babatunde et al., 2020) 
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improved operation, better reliability and reduction in life cycle cost of the system (Bourennani et al., 2015). 

2.4.2 Hybrid power system connections  
There are three typical ways in which the components of HPS can be connected, and they include Direct 

Current (DC), Alternating Current (AC) and DC-AC coupled connections. The three connections are named 

based on the type of bus-bar connecting the various energy generating sources of the system to the load 

(Babatunde et al., 2020; Nehrir et al., 2011). The various categories of HPS connections are subsequently 

discussed. 

2.4.2.1 DC coupled hybrid power system connection 

The DC coupled HPS connection is also referred to as a series HPS configuration, this type of connection 

has all the components of the system including the energy storage unit and electrical energy generating 

devices are connected to a DC bus. All the devices output are converted into DC and then connected to the 

main DC bus. The DC bus is then connected to a DC or an AC load via DC/AC inverter depending on the 

need of the final consumer as shown in Figure 2.10 (Babatunde et al., 2020; del Moral & Egido, 2012). The 

DC coupled HPS are simple, easy to implement and produce stable energy output. However, the main 

shortcoming of this connection type is its low overall efficiency and limited overall DC/AC inverter 

capacity (del Moral & Egido, 2012; Tahir & Khaliq, 2018). 

2.4.2.2 AC coupled hybrid power system connection 

The AC coupled HPS is also referred to as parallel HPS configuration. In AC coupled HPS connection, all 

system components including the energy storage and electrical energy generating devices are connected to 

an AC bus (Babatunde et al., 2020). Each device output is directly inverted to AC voltage via the DC/AC 

inverter and then connected to the AC bus as shown in Figure 2.11. The AC coupled HPS has a better 

performance when compared to DC coupled HPS in terms of overall system efficiency. In this type of 

configuration, each generator can supply the load independently from other generators (Babatunde et al., 

2020; Nehrir et al., 2011). The main advantage of this connection is their ability to manage smaller power, 

improved overall system efficiency and better overall system stability. Their main drawback is its 

complicated control system, which is required to maintain optimum synchronization among system 

components (del Moral & Egido, 2012). 

2.4.2.3 DC-AC coupled hybrid power system connection 

The DC-AC coupled HPS connection utilizes both AC and DC bus bar it is also known as alternative 

parallel configuration. In a DC-AC couples HPS connection, all electrical energy generating components 

which supply AC such as the wind turbine generator and diesel generator are connected to an AC bus and  
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Figure 2.10: DC-coupled HPS connection (Babatunde et al., 2020) 
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Figure 2.11: AC-coupled HPS connection (Babatunde et al., 2020) 
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DC components such as solar PV generator and energy storage system are connected to a DC bus as shown 

in Figure 2.12. Both AC/DC converter and DC/AC inverter are used between the two buses, which depend 

entirely on the design and system requirements (Nehrir et al., 2011). The main advantage of this type of 

connection is its minimal conversion losses due to the direct connection of AC and DC loads to their 

respective buses. Moreover, this type of connections offers higher efficiency and lower system cost. 

However, control and energy management is much more complex when compared to both DC and AC 

coupled connections (del Moral & Egido, 2012; Tahir & Khaliq, 2018). 

2.4.3 Hybrid power system control schemes 

The main purpose of the control scheme in HPS configuration is to monitor, regulate and control the endless 

interaction among the various energy sources and the consumer load. Failure to provide the necessary 

control scheme will have negative effect on the overall efficiency of the system. An effective control 

scheme will not only improve the reliability of the HPS, it will also help in reducing the cost implication of 

the entire HPS configuration (Nehrir et al., 2011). The control scheme in a HPS are classified into three 

main categories namely the centralized control scheme, distributed control scheme and hybrid control 

scheme. For each category, each of the energy generating sources is equipped with a localized controller to 

regulate its optimal operation and then connected to a central bus (Babatunde et al., 2020). A brief 

description of the individual category is presented in the following sub-sections. 

2.4.3.1 Centralized control scheme 

The centralized control scheme is arranged in such a way that each of the energy generating components 

are equipped with a local controller which are interconnected to a master controller. The master controller 

controls the activities of all other controllers in this scheme; it collects all the information received by the 

local controller from the various energy generating components and uses it to make accurate decisions for 

efficient operation of the system (Babatunde et al., 2020). In other words, the master controllers monitors 

and control the interaction among the various energy generating components in the system. The centralized 

control scheme has been reported to be very efficient and reliable, however, it involves a lot of mathematical 

computation and the failure of one of the sub-controller may lead to complete breakdown in the scheme 

(Babatunde et al., 2020; Nehrir et al., 2011). 

2.4.3.2 Distributed control scheme 

As compared to the centralized control scheme, the arrangement of in a distributed control scheme does not 

involve the utilization of a master controller (Nehrir et al., 2011). Energy coordination is done via the 

interaction among the various sub-controller of the energy generating components. Even though distribution 

control scheme have been reported to have minimal computational complexity and does not suffer from  
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Figure 2.12: AC-DC coupled HPS connection (Babatunde et al., 2020) 
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issues related with single point failure, the complexity that arises via interaction of the sub-controllers may 

result to instability of the HPS. 

2.4.3.3 Hybrid control scheme 

The hybrid control scheme is a combination of the centralized and distributed control schemes. Energy 

generating components with similar characteristics within the HPS configuration are connected to a single 

sub-controller; the output of each sub-controllers are subsequently connected to a master controller resulting 

to an arrangement similar to the distributed control scheme (Babatunde et al., 2020; Nehrir et al., 2011). 

The master controllers are then made to communicate within themselves to make informed decisions on 

the control, regulation and monitoring of the various energy generating sources of the HPS. This type of 

control scheme is reported to be the most efficient of the three HPS control schemes currently available. It 

is reliable, effective and has minima computational complexity (Babatunde et al., 2020). 

2.5 Description of the major components of the proposed HPS   

The description of the major power generating components of the proposed HPS is presented in this section; 

power generating components are responsible for the energy conversion process taking place in the system. 

These components include solar bifacial PV system, wind turbine generators, energy storage system, split 

generator set and power converters. The primary source of energy are the solar and wind energy 

components, the storage system and the split generator set are included in the configuration as a back-up. 

The appropriate sizing of these components is significant to the efficient and reliable operation of the HPS. 

A detailed description of each of the components used in this study is subsequently presented. 

2.5.1 Bifacial PV component 

The basic operation principle of generating energy using bifacial PV module is quite similar to energy 

generation using traditional mono-facial PV modules which has been described in sub-section 2.3.2 of this 

study. However, a bifacial PV module can produce more energy using its front and back side due to the 

presence of the back electrode which is absent in mono-facial modules (Fajuke & Raji, 2022; Okere & 

Tariq Iqbal, 2021). Generally, many of the commercially available bifacial PV modules are made using 

mono-crystalline silicon materials. As research continue to intensify towards improved PV technology, 

hetero-junction with intrinsic thin layers, Passivated Emitter and Rear Cell Technology (PERC), Passivated 

Emitter and Rear Totally diffused (PERT) and Passivated Emitter and Rear Locally diffused (PERL) have 

all been used in the design of recent bifacial PV module in order to improve its efficiency (Mesquita et al., 

2019; Okere & Tariq Iqbal, 2021). 

A typical bifacial PV module has a glass covering on both the front and back side which protects the solar 

cell in the module from corrosion and early degradation. Generally, the power rating of PV panel depends 
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on the number of cells and the size of the module (Kopecek & Libal, 2021). A bifacial PV module is 

equipped with solar cells at both the front and rear side, thus increasing its power rating. The interconnection 

of the bifacial PV modules forms an array which is capable of generating more power at a constant voltage. 

Interconnecting these array of modules to generate electrical power subsequently results in what is known 

as a bifacial PV system (Wang et al., 2015). The performance of bifacial PV system depends on the spatial 

distribution of the incident irradiance on the back side of the module, which is strongly affected by several 

conditions such as albedo of the ground surface, module elevation, azimuth, tilt angle, size of the system, 

and the distance between module rows (Russell et al., 2017; Solarworld, 2015). The diverse effects of these 

conditions on the additional energy of a bifacial PV system are as follow. 

1. Albedo 

The albedo, otherwise known as the ground reflectance, is one of the most important conditions that decide 

the extra energy gain of bifacial PV modules. It is a property of a non-luminous surface that describes the 

capacity to reflect part of the solar radiation received. Mathematically, it is expressed as the ratio between 

the reflected radiation and the incident radiation on a surface. Increasing the albedo of the surface of the 

PV plant increases the amount of the reflected radiation on the back side of the module and subsequently, 

the system’s overall performance (Russell et al., 2017). 

2. Mounting Elevation 

Unlike mono-facial PV systems, performance of bifacial systems design depends on the height of the 

modules above the ground. The module height (elevation) is simply defined as the distance between the 

bottom of the lowest part of the module and the installation surface. The module height is of great 

importance to the extra energy yield of the bifacial module. A bifacial module installed close to the surface 

will be affected by self-shadowing (Wang et al., 2015). However, an increase in the height of the modules 

over the ground leads to an increase in the clearance of the ground and subsequently leads to an increase in 

the backside irradiance. It is also of great importance to be aware of the fact that due to higher wind loads, 

high module mounting structures are also more expensive and mechanically more challenging. Therefore, 

determining the optimal height of the modules is also a compromise between finding the height in which 

the modules are far enough from its own shadow (Fajuke & Raji, 2022; Moehlecke et al., 2014). 

Moreover, it is worth noting that for surfaces with high values of albedos, bifacial gain increases with the 

height. However, the trend has a saturating effect; this occurrence is due to the fact that for certain heights 

the self-shadowing on backside irradiance is diminished and increasing the height does not increase the 

performance (Solarworld, 2015; Wang et al., 2015). 
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3. Bifaciality of the module 

Another important condition is the bifaciality of the module. In addition to the front side power, a new 

important parameter is added to the bifacial modules. The transparent and active back sides of bifacial PV 

modules enable an extra energy yield, also known as the “energy gain”. Mathematically, the bifaciality, B  

of the module is expressed as the ratio of the back side power ( mppP ) to the power generated from the light 

captured from the front side at Standard Test Conditions (STC) (Ganilha, 2017). 

4. Azimuth 

In order to fully understand the concept of azimuth angle, it is important to understand the ideal of module 

orientation. Optimal orientation of bifacial modules is an important condition to be considered in the design 

of bifacial PV systems. When analyzing the orientation of the modules two orientations state must be 

confined (Ganilha, 2017). The first orientation state is the vertical east-west-facing bifacial modules and 

the second is horizontal north-south-facing bifacial modules. It has been reported that vertical east-west-

facing modules suffers less from self-shading and can produce more power than horizontal south-north-

facing modules (Fajuke & Raji, 2022) Hence, the vertical east-west module orientation is majorly 

considered for simulation purpose in this study. 

5. Size of the System 

Since PV systems are hardly installed singularly or involving one-row modules and they are rather installed 

in a field with neighboring modules and several module rows, simulations and experiments with stand-

alone modules or single module rows are insufficient to enable an accurate prediction of the extra energy 

yield of a bifacial module PV system. It has been stated that the higher the number of modules, the bigger 

the impact on the bifacial gain and hence the system’s overall performance (Razongles et al., 2016). 

However, it is also expected that with a higher number of adjacent modules, a saturation point in which 

bifacial gain is no longer negatively affected is achieved. This means, that up to a certain number of modules 

self-shading does not increase further. Therefore, when considering the design of a bifacial PV system, it 

is very important to consider the size of the system during simulations (Pelaez, Deline, Greenberg, et al., 

2019; Razongles et al., 2016). 

6. Tilt Angle 

This describes the mounting angle of the module, This parameter varies from site to site, but generally, 3 

to 12 degrees more than the mono-facial tilt angle have been reported to be quite effective. It should be 

noted that an increase in the tilting angle will slightly decrease the temperature of the mounting surface. 

Moreover, the optimal tilt angle also depends on many other factors such as the size of the system, location 

of the plant and the time of the year (Fajuke & Raji, 2022; Salloom et al., 2018). 
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7. Pitch 
This is known as the distance separating each module in a bifacial PV system setup. In the design of bifacial 

PV systems, beside considering allowable amount of module front side shading by other modules, also the 

blocking of the ground-reflected irradiance by the shadowing produced by neighboring module rows has to 

be taken into consideration. Hence, finding the optimum distance between two modules makes it possible 

to reach a compromise between minimizing the shading losses from both front and rear sides of a module 

as well as maximizing the number of rows installed for a finite available land surface (Ganilha, 2017) 

Generally, PV systems including mono-facial and bifacial PV systems are installed in different orientations. 

The most popular installation option for both commercial mono-facial and bifacial PV systems is the fixed-

tilt orientation. In this configuration, PV arrays are tilted at a fixed angle and are installed with their front 

sides facing the equator (south facing for north hemisphere sites and north facing for south hemisphere 

sites) (Solarworld, 2015). The tilt angle is usually chosen to maximize the annual energy yield of the system. 

However, many others installation option have been researched to maximize the energy production of 

bifacial PV systems (Pelaez et al., 2019; Salloom et al., 2018). The three main configurations of a bifacial 

PV system are subsequently presented  

2.5.1.1 Vertical bifacial PV systems 

Although the main advantage of bifacial PV system design is the additional energy yield, there are also 

applications that are impossible to carry out with the use of mono-facial modules. Vertical mounting bifacial 

PV systems, typically in an east-west orientation, is one of the most considered installation option for 

bifacial PV modules. Vertical bifacial PV systems present particular benefits such as no sticking snow in 

snow-rich regions and minimized soiling and sand deposition for desert locations (Louw & Rix, 2019; 

Pelaez et al., 2019). Moreover, this type of installation avoids the maximum power generation peak at noon 

and instead contributes to a more consistent energy production throughout the day. Thus, improving the 

alignment between electricity production and demand. However, vertically installed bifacial PV systems 

suffer from very pronounced shading and therefore, the energy yield will heavily depend on the specific 

lay-out of the PV system (Pelaez et al., 2019) 

2.5.1.2 Horizontal floating bifacial PV systems  

The main reason for floating PV is attributed to the large size of land required for ground-mounted PV 

systems; in many areas of the world land is scarce or there simply is not enough usable land to supply 

renewable energy locally (M. Alam et al., 2021). A clear advantage is the potentially large scale of projects; 

as long as the original function of the water surface is not compromised, large patches of water are 

potentially available for bifacial PV installation. Another advantage is the additional cooling effect thanks 

to the temperature inertia of the water mass. Besides from those advantages, bifacial modules add an extra 
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and significant advantage which is the bifacial gain (Deline et al., 2017). In general, water is regarded as a 

material that has a very low albedo of below 10 % and as such, the bifacial gain of the installed bifacial PV 

system is not fully utilized. The albedo of the mounting surface is a very important factor when considering 

the additional energy yield of bifacial PV systems (Pelaez et al., 2019). 

2.5.1.3 Horizontal single-axis tracked bifacial systems 

During the last few years, Horizontal Single-axis Tracking (HSAT) has become a very important 

technology in regions close to the equator with the goal of maximizing the energy yield as well as to reduce 

the electricity generation costs. And even though bifacial systems in combination with tracking have 

thought to be incompatible, recently studies reveal that the combination of tracking with bifacial modules 

makes very much sense and lead to very high-power generations. Another demerit of this type of installation 

method is the huge cost of building a tracker (Kopecek & Libal, 2021; Pelaez et al., 2019).  

2.5.2 Wind turbine component 
The continuous growth in wind turbine technology has led to an increase in wind power generation into the 

energy generation mix. Wind turbine generators are designed to capture the kinetic energy present in wind 

and convert it to electrical energy. The power output of a wind turbine generator depends majorly on the 

interaction between the wind turbine rotor and the wind; however, the mean power output is determined by 

the mean wind speed (Sateesh Kumar et al., 2020). Horizontal Axis Wind Turbine (HAWT) is the most 

dominant wind turbine technology used in various wind power plant for commercial purposes and are 

usually rated between 500 kW to 5 MW (Chaar et al., 2011). Wind energy as reported by Reinemann and 

Heinzen, (2014) is critical to the development of a low-carbon, environmentally friendly economy. The 

energy from the wind was originally used in the late 19th century to create electricity, but did not gain 

momentum because of the dominance of steam turbine power generation in those days (Cao et al., 2012; 

Kim et al., 2010). 

The HAWT consists majorly of a blade and hub rotor assembly which are used to extract power from the 

wind, a gear train which is used to step up the kinetic energy of the wind from low values available at the 

rotor shaft to higher values required to drive the generator; and an induction generator which converts the 

mechanical power into useful electrical power (Davis et al., 2021). An induction machine is used as a 

generating unit in the wind turbine generator because of their asynchronous nature which is capable of 

coping with the varying wind speeds in the atmosphere, lowering physical stress on the turbine blades and 

drive train and enhances the system aerodynamic efficiency and torque transient behaviors (Sateesh Kumar 

et al., 2020). 
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Based on the energy conversion process in wind turbine technology, wind turbine generators are categorized 

into four major types; The fixed speed wind turbine generators which uses the squirrel-cage induction 

machines, variable speed wind turbine generator which uses the wound rotor induction machine, Double-

Fed Induction Generator (DFIG) wind turbine which also uses the wound rotor induction machine and the 

full converter wind turbine generator which uses both induction machine and permanent magnet  (Cao et 

al., 2012; Reinemann & Heinzen, 2014; WESL, 2016). A brief description of the different categories of 

wind turbine generators are presented in the following sub-sections. 

2.5.2.1 Fixed-speed wind turbine generator 

The first generation of wind turbines were designed to operate at fixed speed, such that the kinetic energy 

of the wind have zero effect on the speed of the turbine blades. As a result, they are not equipped with 

blade-pitching capability; however, the main parameters that influences the speed of the turbine blades are 

the gear ratio and generator design. Many of the fixed speed wind turbines employ a squirrel-cage induction 

generator (SCIG) which converts the mechanical energy of the generator to electrical energy (Bhaskar & 

Jimoh, 2016).  Although, fixed speed wind turbine generator have been reported to be relatively robust and 

reliable, the resulting power output captured from the wind is very low and requires an external reactive 

power compensation for efficient operation. A typical fixed speed wind turbine generator is made of turbine 

rotor and blade assembly, shaft and gearbox, the SCIG, as well as the control system as shown in Figure 

2.13a. They are mostly used in domestic applications due to their relatively low cost (Bhaskar & Jimoh, 

2016; M. Singh & Santoso, 2012). 

2.5.2.2 Variable-speed wind turbine generator 

Unlike the fixed-speed wind turbines generators, the variable speed wind turbine generator can be operated 

over a wide range of wind speed and can extract the maximum power output from the wind regardless of 

the wind speed range. This type of turbine have the ability to generate power, even at higher wind speeds 

due to the presence of a variable resistor, that controls the range of the wind speeds which has been reported 

to vary between zero to ten percent above synchronous speed (Bhaskar & Jimoh, 2016). The 

electromechanical conversion of the variable-speed turbine generator is provided by a Wound Rotor 

Induction Generator (WRIG). The soft starting method in in the configuration of the variable-speed wind 

turbine generator helps to minimize the input current and thus eliminate the need for reactive power 

compensation. However, the turbine has its own inherent limitations such as limited usage of speed range, 

poor control of active and reactive power and power losses due to hear in the rotor circuit (M. Singh & 

Santoso, 2012). The setup of a typical variable-speed wind turbine generator is as shown in Figure 2.13b. 
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Figure 2.13a: Fixed-speed wind turbine generator (Bhaskar & Jimoh, 2016) 

 

 

 

 

Figure 2.13a: Variable-speed wind turbine generator (Bhaskar & Jimoh, 2016) 
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2.5.2.3 Double-Fed Induction Generator (DFIG) wind turbines 

The construction of a Double-Fed Induction Generator (DFIG) wind turbine is akin to that of the variable-

speed wind turbine generator, the only difference is the inclusion of the partial scale power converter which 

is connected between the rotor, through the stator and the main grid. This arrangement helps to extract and 

regulate the maximum mechanical power from the wind resource (Bhaskar & Jimoh, 2016; M. Singh & 

Santoso, 2012). It is essentially made up of turbine blades and hub assembly which are linked to the 

generator shaft via a gearbox and a partial scale converter as depicted in Figure 2.14a. The main function 

of the gearbox is to increase the angular speed and communicate with the induction generator during the 

electromechanical conversion process (WESL, 2016). It should be noted that the power converter in a DFIG 

wind turbine only regulate the power in the rotor circuit; therefore, its rating does not necessarily have to 

correspond to the rated output of the generator (Aliprantis & Lafayette, 2014). 

Reactive power compensation in DFIG wind turbines is provided by flux-vector control of the rotor 

currents, which also helps in maximizing the extractable wind power and reduce mechanical stress on the 

turbine blades. Similar to the variable-speed wind turbine, the electromechanical conversion is performed 

by a wound-rotor induction generator (Bhaskar & Jimoh, 2016). The real and reactive power are controlled 

by controlling the current passing through the rotor circuit using a control system which is capable of 

extracting the maximum possible power from the wind and control the power output of the generator. The 

vector control, which is also known as field-oriented control approach has been reported to be the most 

reliable control method (Babu & Divya, 2017; M. Singh & Santoso, 2012). 

Some of the advantages of the DFIG turbines are their cost-effectiveness and provision of a simple blade-

pitching capability, which provides independent control of active and reactive power. The DFIG turbines 

have also been reported to offer some advantages over emerging wind turbine technologies such as the full 

converter wind turbine; the full-converter turbine generator makes use of a full AC-DC-AC power converter 

for the stator, thus implying that the rating of the converter has to match the entire power output of the 

generator, which subsequently increases the cost when compared to the DFIG turbines (Bhaskar & Jimoh, 

2016; M. Singh & Santoso, 2012). Therefore, in this study, the DFIG turbine is considered for simulation 

purposes.  

2.5.2.4 Full converter wind turbine generator 

The full converter wind turbine (FCWT) generators are recent wind turbine technologies, which have been 

deployed in many parts of the world. Some of the contributing factors behind the increasing deployment of 

this type of turbine include the absence rotor windings and slip rings which minimizes excitation losses and 

size of the generating unit and frequent maintenance. They are constructed with a full scale power converter  
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Figure 2.14a: Double-Fed Induction Generator (DFIG) wind turbines (Bhaskar & Jimoh, 2016) 

 

 

 

 

Figure 2.14b: Full converter wind turbine generator (Bhaskar & Jimoh, 2016) 
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which is capable of handling the power flowing through the rotor and the generator (Aliprantis & Lafayette, 

2014). Hence, the only path for power flow from the turbine generator to the grid is through the full scale 

converter system. The electromechanical conversion in FCWT can be provided by any of wound rotor 

synchronous generator (WRSG), WRIG and Permanent Magnet Synchronous Generator (PMSG) as 

depicted in Figure 2.14b (Bhaskar & Jimoh, 2016). 

The main strengths of the FCWT over other turbines are improved fault response, high capability in 

extracting the maximum power from the wind and constant supply of reactive power compensation to the 

grid. However, they have also been reported to uneconomical due to the cost implication of the power 

converter. Many of the FCWT are used in offshore wind power plants (M. Singh & Santoso, 2012). 

2.5.3 Split diesel generator set 

A Diesel Generator (DG) as described by Mobarra et al., (2022) is referred to as a diesel engine combined 

with an electrical generator (an alternator) to generate electrical energy. It essentially consists of diesel 

engine, governor, excitation and a synchronous generator as depicted in Figure 2.15. The basic operation 

principle of a DG set is based on two important components, the diesel engine and the generator, usually a 

synchronous generator which is mostly used for many industry standard DG set. The diesel engine a prime 

mover with constant speed and an output frequency of 50 Hz or 60 Hz (Benhamed et al., 2016). There are 

various categories of diesel engines; generally, they are categorized in accordance with the number of 

strokes, method of cooling, intake of air, number of cylinders, arrangement of cylinder and the rotational 

speed (Knudsen, 2017). A brief description of each category is presented as follow. 

1. Classification according to the number of strokes: The two main types of diesel engine under this 

category are the four strokes and two strokes engines.  

2. Classification according to the cooling way: Water-cooled and air-cooled engines fall under this 

category. However, water cool engines finds wide application. 

3. Classification according to the air admission way: The non-supercharging (naturally aspirated) and 

supercharging engines the main family of this category.  

4. Classification according to the cylinder number: The members of this category include horizontal 

bar, parallel bars and multi-cylinder diesel engines.  

5. Classification according to the cylinder arrangement: there are in- line type: V type, horizontal 

type and opposite type diesel engines fall under this category.  

6. Classification according to the rotation speed: The rotating speed of a diesel engine can be at low 

speed, medium speed or at high speed. Low speed engines fall between 150 to 450 rpm, Medium 

. 
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Figure 2.15: A typical structure of a DG set (SP, 2017) 
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speed engines ranges from 600 to 1200 rpm and finally, high speed engines are between 1500 to 

1800 rpm for medium and small size machines. 

The most common type of prime mover in a DG set is a four stroke cycle engine. The upward or downward 

movement of the piston, which is connected to the crankshaft inside the engine cylinder converts the linear 

motion into rotational movement required to generate the needed mechanical energy by the alternator (NRC 

- E111 - Chapter 9, 2011). As the rotor rotate around the field excitation windings in the synchronous 

generator, it becomes an electromagnet which is capable of inducing an alternating voltage in the stator 

windings. The induced voltage subsequently leads to the production of electrical output of the DG set. An 

efficiency of up to 90 % has been reported for most synchronous generator (Mobarra et al., 2022). 

An Automatic Voltage Regulator (AVR) is usually installed to regulate the generated output voltage. For 

synchronous generators the frequency of the generated voltage is usually relative to the angular velocity of 

the engine crankshaft. Nevertheless, an Automatic Controller (AC) unit is usually required for advanced 

controls such as active and reactive regulation and automatic mains failure response (Theubou et al., 2012). 

Some of the many advantages of using a DG set include low installation cost, short delivery periods and 

installation period, high efficiency, increased efficient plant performance at varying loads, suitable for 

different type of fuels such as low sulphur heavy stock and heavy fuel oil in case of large capacities, 

minimum cooling water requirements and short start up time (Knudsen, 2017).  

Diesel generator set has been used extensively in various applications such as communicate base system to 

ensure a stable and reliable power supply. It has also been used in many homes and industries as a standby 

power supply during the period of blackouts and can also be used as portable power source for mobile work 

scene. Moreover, it has been used as a back-up, non-renewable source in many HPS configurations to 

augment the intermittent nature of RE sources. In such case, it is usually used as back-up energy source 

when the power supplied from the main energy generating source is unable to meet the load demand. 

(Girma, 2013). 

In its application to various HPS configuration, a single large sized DG unit is majorly used; however, the 

power obtained from a single large sized generator will amount to waste of the resource if it is not efficiently 

utilized or not completely used up by the load, which is the case for many HPS configurations. Therefore, 

operating multiple units of diesel generators might be more practical in this type of system configuration to 

serve the load demand during different periods (Ayodele et al., 2017). The schematic diagram illustrating 

the setup of a single large sized generator and a split genset supplying a load are depicted in Figure 2.16a 

and 2.16b respectively. 
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Figure 2.16a: Block diagram of large-sized single DG system (Ayodele et al., 2017) 

 

 

 

 

Figure 2.16b: Block diagram of split genset system (Ayodele et al., 2017) 
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During the operation of a single large sized generator, it produces maximum power independent of the load 

demand. As a result, fuel is used at the rate of power production, with a corresponding rise in the amount 

of dangerous gas emissions, which can be both economically and environmentally unfriendly in the 

operation of the proposed HPS; thereby contradicting one of the main goals of the HPS design, (Ayodele 

et al., 2017; Theubou et al., 2012). Based on these economic and environmental issues, the HPS model 

designed in this study uses a small sized split diesel generator set rather than the usual single large sized 

diesel generator used in many HPS configurations. The introduction of a split diesel generator set in the 

optimal design of HPS has been reported to lower the life cycle cost of the system, net fuel consumption 

and hazardous gas emission, subsequently leading to a more stable, reliable and efficient system (Ayodele 

et al., 2017). 

2.5.4 Energy storage technology 

Energy Storage Technology (EST) plays a significant role in the reliable operation of HPS consisting of 

intermittent RE sources such as solar and wind. An energy storage technology is simply defined as a scheme 

that can take in energy in a charging process and retain this energy for some finite time and later release the 

stored energy in a discharging process when required (Behabtu et al., 2020). Energy storage scheme is one 

of the most important components when considering the design of HPS. They store the excess energy 

produced by either of the two RE sources during their peak period and made available to the load as at when 

required; and in doing so, helps prevent energy wastage and subsequently, a reduction in cost of electrical 

energy (S. Ali & Jang, 2020). Some of the major advantages of EST include increased penetration of RE 

resources, enhanced flexible operation of mini and micro grids, increased reliability and improved overall 

efficiency of power system behavior (Aneke & Wang, 2016). 

Energy storage technologies have been classified in various categories, the first of which is based on their 

area of applications and requirement and the second is based on the form of energy (Achkari & Fadar, 2018; 

Kiehbadroudinezhad et al., 2022). Since the focus of this study is solely on the design of an energy system, 

the second category is of more priority than the other. The three main classes of EST under this category 

are mechanical, electromechanical and electrical energy storage technologies, among the three classes of 

EST available, electromechanical storage scheme has received the highest attention for many power system 

applications (AL Shaqsi et al., 2020; Aneke & Wang, 2016). A broad view of the various members of each 

of the EST categories are presented in Table 2.4.  

Some of the EST involve the conversion of energy from one form to another while others don’t. Generally, 

many practical EST involve the conversion of energy from one form to the other which subsequently leads  
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Table 2.4: Broad view of various energy storage technologies 
Energy Storage Technologies 

Mechanical Electromechanical Electrical 

Pump Hydro (PHS) Secondary Batteries (lead Acid, 

nickel cadmium, sodium 

sulphur, lithium ion) 

Double Layer Capacitor (DLC) 

Compressed air (CAES) Flow Batteries (Redox/Hybrid 

flow) 

Superconducting Magnetic Coil 

(SMES) 

Flywheel (FES) Hydrogen (Electrolyzer and 

Fuel Cell) 

Sensible Heat Storage (Molten 

salt) 

Source: (Kiehbadroudinezhad et al., 2022) 
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to energy loss (H. Chen et al., 2009). Hence, different schemes have different efficiencies; the two 

fundamental characteristics of energy storage schemes as stated in the work of Behabtu et al., (2020) are;  

i. The power rating of the scheme: This is also known as the discharge capacity and it is referred to 

as the maximum amount of power that can be drawn from the scheme during discharge when 

configured properly.  

ii. The Energy rating of the scheme: This is also known as the storage capacity and it is referred to as 

the amount of energy that can be stored in the scheme. It is usually specified in kWh   or Ah , but 

both have the same inference.  

A brief description of some popular EST highlighting their principle of operations, areas of applications, as 

well as the merits and demerits are presented in the following sub-sections. 

2.5.4.1 Flywheel 

The design of a flywheel storage technology consists of a central shaft, which holds the rotating part and a 

flywheel together. Energy is store in a flywheel via the acceleration of the rotor at high speeds, this 

maintaining the energy in the device in form of kinetic energy. The stored energy is discharged through a 

reversal process of the storing the energy such that the motor now act as a generator (Aneke & Wang, 2016). 

During the discharge process, the rotor gradually reduces its rotating speed until it eventually come to a 

halt. The amount of energy stored in a flywheel device depends majorly on the rotation speed of the rotor; 

hence it is usually desirable to design the device with high rotor speed. In recent years, eighty to ninety 

percent efficiency have been reported for flywheel technology due to the recent advances in energy storage 

technologies (Kiehbadroudinezhad et al., 2022). 

Some of the many advantages of using this type of storage technology include fast dynamic response, long 

lifespan, minimal maintenance cost and environmentally friendly. However, they are very costly when 

compared to battery storage device and also suffer energy losses when they are placed on standby. Owing 

to their many advantages, flywheel technology are majorly used in application where there is need for 

power quality enhancement such as Uninterruptable Power Supply (UPS), they are also used to power 

electric vehicle and reduce frequency variation in power system applications (Achkari & Fadar, 2018; 

Aneke & Wang, 2016). 

2.5.4.2 Super-capacitor energy storage  

As the name implies, a super-capacitor is made of two parallel capacitor plates of opposing charge, which 

are separated by a dielectric insulator. The dielectric insulator is usually made of a thin film polymers, while 

carbon nanotube are used as electrodes. The interaction between the two opposing charges induces an 

electric field where energy can be stored. The amount of energy stored in a super-capacitor is a function of 
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the voltage across the two capacitor plates or the value of capacitance of the two plates; the higher the 

capacitance, the higher the induced electric field and subsequently, the higher the energy stored in the device 

(AL Shaqsi et al., 2020; Aneke & Wang, 2016).  

The main selling point of a super-capacitor storage device is its fast rate of charge and discharge, others 

include high long life span, minimal degradation, among others. Nonetheless, their low energy storage 

density often leads to high investment cost for large scale applications. In addition to that, they are heavy 

and weigh more than conventional battery storage system. Although, super-capacitor have been reported to 

have low energy storage density, yet, they have been used extensively in various applications such as hybrid 

cars, cellular phones, as well as load levelling tasks (Achkari & Fadar, 2018; Aneke & Wang, 2016). 

2.5.4.3 Pumped hydro energy storage 

The major components of a pumped hydro energy storage scheme are motor/generator, a reversible pump-

turbine and two large water reservoirs at higher and lower elevations. Energy is stored in the device through 

the movement water from the region of lower water elevation to higher water elevation during low load 

period. The stored energy is then discharged at peak period by using the water in the higher reservoir to 

drive a hydroelectric generator that generates the required electrical energy. The process continue to repeat 

itself through the entire life cycle of the device (Achkari & Fadar, 2018).  

Pumped hydro energy technology is an efficient scheme in storing excess energy on a large scale basis, 

with about 65% to 80 % efficiency reported in many studies. Some of the many advantages of the scheme 

include fast startup time, longer lifespan, ability to store large amount of energy, among others. The main 

drawback is their overdependence on weather and geological condition, as well as its high investment cost 

(Aneke & Wang, 2016). In a report by the Electric Power Research Institute (EPRI) in 2010, pumped hydro 

energy storage are by far the most deployed EST for large scale applications with over 90 GW 90GW of 

pumped storage implemented in various power plants across the world. 

2.5.4.4 Concentrated solar power (CSP) energy storage 

The operation of a concentrated solar power (CSP) system is similar to that of PV technology where the 

energy from the sun is converted into heat. The heat is subsequently moved to the heat exchanger, which 

heats the molten salt in the hot tank used to produce electrical energy during the discharge process. 

However, unlike PV technologies, the CSP storage schemes are capable of storing the heat for a short period 

before they are used to produce the required energy (Aneke & Wang, 2016). During off peak period of the 

sun, the CSP scheme can be combined with thermal storage so it can continue to generate required energy. 

CSP storage device are capable of storing energy between 10 kW and 200 MW. An efficiency of 60 % to 

70 % has been reported for CSP storage scheme and can rise up to 90 % during heat cycle. The storage and 
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back-up ability of the CSP scheme are worth mentioning as they contribute to the efficient operation of a 

power grid; some of which include reduction in energy losses during the discharge process, as well as low 

initial and maintenance cost (Aneke & Wang, 2016; H. Chen et al., 2009). 

2.5.4.5 Hydrogen fuel cells 

Hydrogen fuel cell is one of the most important member of the hydrogen energy storage technology (HEST) 

with less than 20 MW capacity. The assembly of a fuel cell include two electrodes that are separated by an 

electrolyte, which is decomposed into hydrogen and oxygen (Aneke & Wang, 2016). The hydrogen is 

passed over the negative electrode while the oxygen is passed over the positive electrode, thus resulting in 

the formation of hydrogen ions and electrons at the anode. If an external circuit is connected to the setup, 

electrons begin to move from the anode towards the positive electrode and electrical energy is generated. 

More electrolyte are produced through the migration of the hydrogen ions from the positive electrode to the 

negative electrode. The major contributing factor to the energy produced in hydrogen fuel cell include the 

operating temperature, the type of fuel cell and the catalyst (Achkari & Fadar, 2018; Aneke & Wang, 2016). 

Hydrogen fuel cell are very flexible and reliable as they do not cause any type of pollution and have no 

moving parts. However, they experience high energy losses due to the numerous energy conversion process 

taking place in the setup. In addition, they have very low efficiency and high investment cost (Achkari & 

Fadar, 2018). 

2.5.4.6 Battery energy storage 

Battery energy storage (BES) scheme usually includes an array of different electrochemical technologies. 

The two main categories of BES technology are primary BES, which are discarded after use and secondary 

BES, which can be recharged after its usage. Some example of secondary BES device used for energy 

storage include lead Acid, nickel cadmium, sodium sulphur, lithium ion, to mention but a few. They are 

considered as the most popular EST for power system applications (Atia & Yamada, 2016; Tito et al., 

2013). They are very versatile and can be used for both power and energy applications depending on the 

specific technology. BES are by far the easiest to scale down for portable applications as can be seen with 

lithium Ion batteries on virtually all portable electronic gadgets today. However, for large scape 

applications, lead acid, nickel cadmium and sodium sulphide have been used extensively for various power 

system applications due to their relative cost (Aneke & Wang, 2016; Behabtu et al., 2020). 

The BES scheme, regardless of battery type is essentially made up of an anode, electrolyte, and a cathode, 

the movement of charge and discharge electrons from the anode to the cathode and vice versa via an 

electrolyte initiates the charging and discharging of the battery. BES scheme are very easy to produce, 

maintain and recycle, have high energy density and fast response time. The main drawback is that they are 
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very expensive, heavy and bulky, have moderate lifespan and minimal environmental concerns (Aneke & 

Wang, 2016; Siddique et al., 2016). Some of the major applications of BES scheme include electric power 

grid, hybrid electric vehicles, marine and submarine missions, aerospace operation, portable electronics 

systems and wireless communication base stations (Abaye, 2018; Achkari & Fadar, 2018). An overview of 

some common BES technologies that are commonly used in power system applications is as follow. 

I. Sodium Sulphur battery 

One of the most commercially used BES scheme for storing electrical energy is the Sodium sulphide (NaS). 

NaS battery consists of sulphur in the molten state at the positive electrode and molten sodium at the 

negative electrode separated by a solid beta alumina ceramic electrolyte. It discharges through the oxidation 

of the sodium at the sodium/beta alumina interface, leading to the formation of Na+. The Na+ passes 

through the electrolyte to combine with the reduced sulphur at the positive electrode, resulting in the 

formation of a compound known as sodium pentasulphide (Na2S5). The reverse process is used at the 

charging stage (Aneke & Wang, 2016). 

Some of the important features of the NaS battery are high energy density, improved energy efficiency, 

long lifespan, high storage capacity, fast response time, to mention a few. The major drawbacks of this type 

of BES scheme are high investment cost, high operational temperature requirement and high operational 

hazard due to the use of metallic sodium which is combustible if exposed to water. NaS batteries have been 

used in various applications to provide support for utility distribution grid, integration of wind energy 

system and integrated grid services. It is economical with low maintenance cost (Chen et al., 2009; 

Kiehbadroudinezhad et al., 2022). 

II. Nickel‐Cadmium battery 

Another important member of the BES technology is the Nickel-Cadmium (NiCd). Similar to the 

construction of all members of the BES scheme, it is made of nickel oxyhdroxide at the positive electrode 

and metallic cadmium at the negative electrode with an aqueous potassium hydroxide as the electrolyte 

(Behabtu et al., 2020). The battery is discharged through the combination of the nickel oxyhdroxide and 

water at the positive electrode, resulting in the production of nickel hydroxide and a hydroxide ion, while 

the chemical reaction taking place at the negative electrode leads to the formation of a cadmium hydroxide. 

The chemical reaction taking place inside the NiCd battery is a reversible process used in charging and 

discharging the battery (Aneke & Wang, 2016). 

NiCd batteries have faster responses (within milliseconds), longer lifespan, than other batteries and they 

can be operated over a wide range of temperature. However, they also have inherent weakness such as 

issues of memory effects, energy loss and significant environmental concerns. Areas of applications include 
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domestic purposes such as remote control and rechargeable lamps; transportation purpose such as the 

aircraft and diesel engine starters, and finally, they are also used as secondary energy device for many solar 

generating systems (Chen et al., 2009; Kiehbadroudinezhad et al., 2022). 

III. Lead Acid battery 

The lead acid PbO2 battery is the most matured of all types of BES scheme, and has been used extensively 

for domestic and commercial purposes. It consists essentially of lead-dioxide at the positive electrode, 

metallic lead at the negative electrode, with tetraoxosulphate (VI) acid as an electrolyte. The charging and 

discharging process of the battery is a result of the oxidation and reduction taking place at the positive and 

negative electrode respectively. Most of the PB02 batteries have a rated voltage of 2 V, energy density of 

about 30 Wh/kg and power density of around 150 W/kg (Aneke & Wang, 2016; Kiehbadroudinezhad et al., 

2022). 

Even though lead battery have been reported to have very low self-discharge rate, this drawback is 

overcome by their numerous advantages such as low cost, reliability, maturity level in technology, extended 

life span, fast response time, high energy efficiency (85 to 90%), as well as low maintenance and investment 

cost. Although, their commercial usage has been reduced significantly due to the development of more 

efficient batteries, they still find wide applications as storage device for electric power grids, starting the 

engine of automobiles, among others (Aneke & Wang, 2016; Behabtu et al., 2020). 

IV. Lithium Ion battery 

Lithium Ion (Li-ion) battery is an emerging BES technology with the potential to replace most of the 

existing batteries due to its high efficiency and reliability. The major components of the Lithium ion battery 

are the positive/negative electrodes and an electrolyte (Aneke & Wang, 2016). Lithium cobalt oxide is 

placed at the positive electrode, while a carbon material is used as the negative electrode. The electrolyte is 

made of a thin sheet of micro-perforated plastic, which acts as a divider between the positive and negative 

electrodes. The entire components is enclosed in an outer case made of metal material (Aneke & Wang, 

2016; Kiehbadroudinezhad et al., 2022). 

The battery is charged through an external power source by supplying a higher voltage to at the negative 

electrode, thereby triggering the flow of current in the reverse direction. As a result, lithium ions moves 

from the positive electrode to the negative electrode as illustrated in Figure 2.17. The reverse process is 

used to discharge the battery to supply power to an external load as at when required. Lithium-Ion battery 

has many advantages over other types of secondary BES devices; some of which include high energy 

density, high cell voltage, low maintenance cost, high efficiency, high life span and many other (Aneke & 

Wang, 2016). Due to the numerous advantages, lithium battery has become the focal point of many HPS  
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Figure 2.17: Operation mechanism of Li-ion battery (Aneke & Wang, 2016) 
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consisting of renewable and non-renewable energy sources and is simulated in this study. The only 

drawback is the high capital cost (Chen et al., 2009; Kiehbadroudinezhad et al., 2022). A comparison of 

some common secondary BES devices is presented in Table 2.5. 

2.5.5 Power converter 

The configuration of any HPS consisting of different energy sources usually comprise a power converter; 

a power converter is used to convert the input power to the required output power using basic switching 

electronic devices (Bordry & Aguglia, 2015; Roy et al., 2022). Over the years, the conversion of electrical 

power from one form to another was usually done using electromechanical converters. However, due to the 

advancement made in the power electronics industry, semiconductor materials were used in the design of 

power converters. An ideal power converter is able to control power flow between two sources (sending 

and receiving) with zero losses as illustrated in Figure 2.18. It consists of linear elements such as 

semiconductor devices and electronic switches which are used in the commutation mode and non-linear 

elements such as capacitors and transformers which are used as an intermediate energy storage and 

current/voltage filters (Bordry & Aguglia, 2015). 

The current output of the energy generating sources in a HPS differs from one component to the other. In 

the case of the PV systems, a Direct Current (DC) is usually generated, while in the case of the wind energy 

system, the current could either be a DC or an Alternating current (AC) depending on the generator type. 

Moreover, the split DG set and BES scheme produce AC and DC respectively. Power converters are 

required to convert the AC component of the current to DC and vice-versa depending on the consumer load. 

Based on the method of conversion, power converters are classified into two categories namely a rectifier 

and an inverter (Bordry & Aguglia, 2015; Rehman et al., 2020).  

The rectifier is used to transform the AC component from the wind energy system and split genset to DC 

component, while the inverter does the reverse for both PV system and BES scheme. In some HPS 

configurations, a bi-directional converter has also been used to; a bi-directional converter perform the 

functions of both the rectifier and the inverter. Power converters have used extensively for various 

applications such as information processing, telecommunication, transportation, and power utilities (Bordry 

& Aguglia, 2015; Zinoviev, 2008). 
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Table 2.5: Characteristics of various battery energy storage technologies 
BES 

Technology 
Energy Density 

(Wh/kg) 
Discharge 
duration 

Response time Efficiency (%) Lifetime 

 
Lead-acid 
batteries 

 
30-40 

 
3-4 % 

 
¼ cycle 

 
70-92 

 
3-12 years 

 
Nickel-cadmium 

batteries 

 
40-60 

 
20 % 

 
N/A 

 
70-90 

 
15-20 years 

 
Sodium-sulphur 

batteries 

 
30-80 

 
30 % 

 
N/A 

 
75-86 

 
5 years 

 
Vanadium redox 

flow batteries 

 
50-70 

 
40 % 

 
N/A 

 
70-85 

 
10 years 

 
Zinc-bromine 
flow batteries 

 

 
40-70 

 
35 % 

 
¼ cycle 

 
75 

 
2000 cycles 

 
Lithium Ion 

Batteries 

 
150-250 

 
5-10 % 

 
¼ cycle 

 
99 

 
1200-10000 

cycles 
Source: (Aneke & Wang, 2016; Kiehbadroudinezhad et al., 2022) 
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Figure 2.18: Arrangement of a typical power converter (Bordry & Aguglia, 2015) 
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2.5.6 Charge controller 

Battery energy storage (BES) scheme form a large part of the capital investment of many HPS. It is therefore 

reasonable to preserve the lifespan of the BES scheme used in the configuration of the system in order 

ensure the life cycle cost of the system is minimal (Marcel et al., 2021). The most common approach used 

to ensure that the BES remains within the maximum and minimum boundaries of State of Charge (SOC), 

given in the manufacturer’s datasheet is by using a charge controller. A controller is a switch which connects 

and disconnects the main energy generating sources and the load demand from the battery in accordance 

with the battery’s SOC, Depth of Discharge (DOD) and temperature (Bhikabhai, 2005; Dodo et al., 2020). 

Charge regulators are broadly classified into three main categories namely shunt or series regulators, linear 

or switching regulators and the manual or automatic Regulators. A shunt regulator is one in which the 

energy source is continually operated at full available power and excess power is dumped in a dummy load. 

The regulator is installed in parallel with the source and the battery. In wind and hydropower systems they 

can also act as a load to prevent over speeding of the generator. On the contrary, a series regulator is 

connected between the charge source and the battery. Some series regulators may switch the source to an 

alternative system such as water pumping or auxiliary battery bank. A linear regulator continuously adjusts 

the charge supplied to the battery at any given moment to maintain the optimum voltage (Bhikabhai, 2005). 

2.6 Hybrid power system design techniques 

The focus of this study is the optimal design of a hybrid power system consisting of Bifacial PV panels, 

wind turbines, storage system and a split diesel generator for off grid applications. The optimal design of 

any hybrid power systems consisting of renewable and non-renewable energy sources involves the 

appropriate combination of the various energy generating components of the system, as well as their optimal 

energy capacities that satisfy the design objectives (Mohammed et al., 2019). Objectives may take the form 

of the total cost of the, system, cost of energy, environmental concerns, reliability, among others. The main 

aim of HPS design is to achieve a balance between components sizing, cost and reliability of the system 

(Kharrich et al., 2021).  

Various techniques have been applied in many studies for the design of HPS, the use of Conventional 

techniques such as graphical construction technique, iterative technique and probabilistic approach are well 

documented (Kalantari et al., 2018). Moreover, commercially available, HPS simulation software such as 

Hybrid Optimization Model for Electric Renewables (HOMER), Hybrid Optimization by Genetic 

Algorithms (HOGA), Hybrid Power System Simulation (HYBRID2), and many others have also been used 

in the design of HPS (Babatunde et al., 2020). In the last decade, artificial intelligence techniques such as 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Tabu Search (TS), Artificial Bee Colony 
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(ABC), among others have also been applied to find the optimal design of HPS for various configurations 

and applications (Babatunde et al., 2020; Vishakha et al., 2020). Each of these techniques has their inherent 

merits and demerits when applied to the optimal design of HPS A brief overview of these techniques are 

subsequently presented. 

2.6.1 Conventional optimization techniques 

The conventional or classical approaches are otherwise known as deterministic or analytical approach 

optimization methods. Examples are Dynamic Programming (DP), Linear Programming (LP), Quadratic 

Programming (QP), iterative approach, graphical construction technique and many others. Many of these 

conventional techniques are employed most especially when the search space is non-linear. They have been 

applied to solve the optimal design problem of HPS in many research studies, but the obtained results are 

sub-optimal. (Sawle et al., 2016a; Tito et al., 2013; Vishakha et al., 2020). However, despite the scholarly 

advancements that have been made in classical approaches in terms of run time and mathematical 

computations, yet classical approach presents some limitations in its implementation. The identified 

limitations among others include (Babatunde et al., 2020; Sawle et al., 2016a); 

i. Poor convergence. 

ii. Inability to handle non-continuous function  

iii. The solution is highly computationally expensive. 

iv. Finding only a single optimized solution in a single simulation run and the treatments of 

operational constraints are somehow tedious.  

Most deterministic optimization methods are viewed as local search methods because they are known for 

producing the same set of solutions even if the algorithm starts under the same initial conditions (Babatunde 

et al., 2020; Bandaru & Deb, 2016). Some common classical approach that have been implemented in the 

design of HPS are briefly discussed in the following sub-sections. 

2.6.1.1 Graphical construction method 

The graphical construction method is implemented using a set of graphs plotted using the variables of the 

system components. The plot is then review to check for points of intersections, which is subsequently used 

to determine the most feasible solution to the design problem (Abaye, 2018; Zhou et al., 2010). 

2.6.1.2 Probabilistic approach 

Just as the name implies, the probabilistic approach is majorly based on prediction of a feasible solution 

using statistical tools. The variables in the tools are made of randomly collected data over a period of time, 

the collected data are processed into a statistical tool which is used to predict the most feasible solution of 

the HPS design problem (Abaye, 2018; Kalantari et al., 2018). 
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2.6.1.3 Iterative approach 

Iterative approach involves the application of a stepwise mathematical or computational process aimed at 

achieving a solution closer to the approximated value of a problem. At each iteration, a solution is obtained 

which is used in the estimation of subsequent solutions (Kalantari et al., 2018). The process continue to 

repeat itself until it terminates when an appropriate solution has been attained. Iterative approach is 

classified into three main categories viz hill climbing, dynamic programming and linear programming. Hill 

climbing is considered a local search iterative procedure, which begins with a pre-defined solution to a 

problem; and then try to obtain an approximate solution by altering one of the component of the solution at 

each iteration (Nabipour-Afrouzi et al., 2018). 

The most feasible solutions in a dynamic programming are obtained by breaking down a complex problem 

into various categories and obtaining a solution to each category; each smaller solutions then recombines 

as the most feasible solution. Finally, the solutions in linear programming are obtained using by modeling 

the system using a set of linear equations and running a simulation to obtain the most feasible solution 

(Kalantari et al., 2018; Nabipour-Afrouzi et al., 2018; Zhou et al., 2010). 

2.6.2 Commercial optimization software tools 

Simulation programs are the most common tools for gauging the performance of hybrid power systems. By 

using computer simulation, it is feasible to find an optimal configuration by comparing the performance 

and energy production cost of various system configurations (Mira et al., 2017). Several software tools are 

commercially available for designing HPS. The most popular among these software tools are Hybrid 

Optimization Model for Electric Renewables (HOMER), Hybrid Power System Simulation Model 

(HYBRID2), Hybrid Optimization by Genetic Algorithms (HOGA) and Transient Energy System 

Simulation Program (TRNSYS) (Babatunde et al., 2020). 

The main drawbacks of these software is their high simulation time, complex user interface and slow 

convergence speed (Hassan et al., 2016). HOMER has been extensively used in many research studies 

involving HPS design because the user interface is less complex and offers the flexibility of optimizing the 

system based on economic and environmental analysis. However, the simulation process is time consuming, 

just as is the case for many of the commercially available optimization software (Babatunde et al., 2020; 

Sawle et al., 2016a). A brief overview of some commonly used software tools in the design of HPS are 

subsequently presented. 

2.6.2.1 Hybrid Optimization Model for Electric Renewable (HOMER)  

This was developed by National Renewable Energy Laboratory (NREL), USA. It is the most widely used 

optimization software for most HPS configurations. The software can simulate a wide variety of mini and 
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micro power system configurations. The simulation is carried out in an hour interval, during which all of 

the parameters (load demand, the power output of the generating components, as well as the power output 

of the system) remain constant (Babatunde et al., 2020). 

Two types of dispatch strategies are available in HOMER software. The first type is the load following 

strategy, where the conventional generator set is used to supply the exact amount of power required by the 

load whenever there is deficiency in the power supplied by the RE generators. The second type of strategy 

is known as the cycle charging strategy. In the cycle charging strategy, the generator set is usually optional; 

and if it is included in the design is made to run at full power and any excess power is used to charge the 

storage system (Sawle et al., 2016). The type of dispatch strategy employed depends on the type of 

components used in the system configuration. A system with both storage system and diesel generator set 

used as back up to the renewable generator, the software automatically selects the appropriate dispatch 

strategy for optimum system configuration. (Энергии & Sleptsov, 2017). 

Three basic tasks can be performed using HOMER software via simulation, optimization, and sensitivity 

analysis. Simulation is used to evaluate the performance of the system with respect to a particular 

configuration. It describes the operational relationship among the different energy generating sources and 

select determine the appropriate operating strategy for the exact system configuration. At the simulation 

stage, the technical and economic viability of the system can be determined (Sawle et al., 2016). The 

economic viability is measured using a metric known as the Net Present Cost. This single value includes 

all costs and revenues that occur within the project lifetime, with future cash flows discounted to the present 

(Babatunde et al., 2020). Sensitivity analysis evaluated the impact of future varying component cost on the 

system, while optimization determines the most appropriate system configuration taking into consideration 

several variables such as number of the generating components, cost of the components and the capacity of 

energy generated (Sawle et al., 2016; Zhou et al., 2010). 

Hybrid Optimization Model for Electric Renewables software has been used extensively in numerous 

studies for the design of HPS consisting of several RE generators and for validation purposes and results 

have been quite promising (Kiehbadroudinezhad et al., 2022). Although, simulations can take a long time, 

depending on the number of variables used; its operation is simple and straightforward. The main advantage 

using the software is due to its easy user interface and its ability to obtain the most suitable system 

configuration capable of serving the load at lowest life cycle cost. However, the core disadvantages of the 

simulation approach is that it is mainly an economical model and the algorithms and calculations are not 

visible or accessible, thus making it difficult to implement design constraints (Alam & Mehar, 2021; 

Энергии & Sleptsov, 2017). 
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2.6.2.2 Hybrid Power System Simulation Model (HYBRID2) 

The software was developed by the Renewable Energy Research Laboratory (RERL) at the University of 

Massachusetts. The hybrid systems may include three types of electrical loads, multiple wind turbines of 

different types, photovoltaic generators, multiple diesel generators, battery storage, and four types of power 

converters (Sawle et al., 2016). Other components, such as, fuel cells or electrolyzers, can also be modeled 

using the software. It has been reported that the simulation process using HYBRID2 can be very precise, 

as it can define time intervals from ten minutes to one hour. In addition to that, the software has been found 

to have high possibilities of selecting the most appropriate control strategies for system configuration. 

Nevertheless, its inability to optimize the system makes it difficult to evaluate the economic viability the 

generated system configuration (Babatunde et al., 2020; Энергии & Sleptsov, 2017). The developers of the 

software suggest the optimization of the system design using HOMER software before improving the 

design using HYBRID2. However, unlike HOMER, HYBRID2 can only simulate one configuration at a 

time (Энергии & Sleptsov, 2017). 

2.6.2.3 Hybrid Optimization by Genetic Algorithm (HOGA)  

Hybrid Optimization by Genetic Algorithm (HOGA) is another popular member of the HPS simulation 

software tools. The program was developed by José L. Bernal-Agustín and Rodolfo Dufo-López of the 

Electric Engineering Department of the University of Zaragoza in Spain. The optimization process in the 

software is done using genetic algorithm, and can be the design problem can be formulated as single-

objective or multi-objective problem (Alam & Mehar, 2021; Энергии & Sleptsov, 2017). Components of 

the HPS such as photovoltaic generator, battery energy storage scheme, wind turbines, hydraulic turbine, 

AC generator, fuel cells, electrolyzer, hydrogen tank, rectifier, and inverter can be selected for system 

configuration. The HOGA software permits the addition of either AC or DC load, as well as hydrogen 

loads. Similar to both HOMER and HYBRID2, the simulation is carried out using 1-hour intervals, during 

which all of the parameters remained constant. However, the economic viability and control strategies in 

HOGA are optimized using Genetic Algorithm. (Babatunde et al., 2020; Sawle et al., 2016). 

2.6.2.4 Transient Energy System Simulation Program (TRNSYS)  

The energy system simulation software was developed as a result of the collaboration between University 

of Wisconsin and the University of Colorado, USA in 1975. The program codes were written using 

FORTRAN, and it was primarily developed to simulate thermal system. However, as the years progressed, 

the software was improved upon to become a hybrid system simulator, including photovoltaic, thermal 

solar and other system components (Энергии & Sleptsov, 2017). The standard TRNSYS library includes 

many of the components commonly found in thermal and electrical renewable energy systems. The 

simulation is carried out with great precision, allowing the viewing of graphics with great detail and  
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precision. However, it does not permit the optimization of the HPS configuration (Sawle et al., 2016). A 

comparison of some popular optimization software tools that are commercially available is presented in 

Table 2.6.  

2.6.3 Artificial Intelligence (AI) optimization techniques 

The use of machine learning to efficiently perform different tasks, in a way that goes beyond human 

reasoning is described using the term “Artificial Intelligence” (AI). This type of optimization technique, 

also know stochastic approach has been used over the years to solve various engineering optimization 

problems. (A. Alam & Mehar, 2021; Nabipour-Afrouzi et al., 2018). AI techniques are classified as 

heuristic or meta-heuristic optimization technique; heuristics techniques are able to obtain the optimal 

solution in a realistic amount of time, but they are easily trapped in local optimal solution. On the other 

hand, meta-heuristic techniques have inbuilt characteristics, that can be used to attain a balance between 

randomization and local search to obtain global optimal solution in minimal amount of time, thus making 

them suitable for varieties of optimization problems (Babatunde et al., 2020; Bouaouda & Sayouti, 2022). 

They have been applied to solve many optimization problems where quality and efficient solution are 

required. Unlike the conventional optimization techniques, AI techniques are able to handle the complex, 

non-linear, multi-dimensional, mixed variables, discontinuous and conflicting objectives common to most 

optimization problems with minimal fuss. With AI techniques, optimal solution can be obtained using a set 

of predefined rules centered on the inspiration behind the development of a particular optimization 

technique (Elmanakhly et al., 2021). Examples include GA, PSO, ABC, TS, Cuckoo Search Algorithm 

(CSA), Bacterial Foraging (BF), Whale Optimization Algorithm (WOA), Pattern Search (PS), Evolution 

Programming (EP), Firefly Algorithm (FA), Differential Evolution (DE), Harmony Search Algorithm 

(HSA), Ant Colony Optimization (ACO), Hopfield Neural Network (HNN), Political Optimizer (PO), to 

mention but a few (Bandaru & Deb, 2016; Bouaouda & Sayouti, 2022).  

Many studies on optimal design of HPS have reported that these techniques are capable of producing 

efficient, reliable and quality solutions. In some studies, a combination of two AI techniques known as 

hybrid optimization technique has also been explored for the optimal design of HPS in order to improve 

the quality of the solution obtained. Some of the reported advantages of using AI as an optimization 

technique are listed as follow. (Bandaru & Deb, 2016; Harifi et al., 2020; Sawle et al., 2016). 

i. Faster convergence rate. 

ii. Ease of implementation 

iii. Ability to attain global solution within shortest time possible. 

iv. Efficient capabilities for handling complex system. 
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Table 2.6: Comparison of some common commercial simulation software tools 
Simulation Software Merits Demerits 

HOMER i. The interface is user 
friendly 

ii. Good presentation of 
results 

i. Inability to import time 
series data 

ii. Non-adjustable design 
constraints 

HOGA i. Ability to implement 
more than one design 
objective. 

ii. It permits the addition 
of high number of 
design variables 

i. Does not permit the 
evaluation of sensitivity 
analysis 

ii. Does not allow the 
selection of higher load 
profile range 

HYBRID2 i. It allows the addition of 
many electrical loads 

ii. It utilizes a 
comprehensive dispatch 
strategy 

i. The simulation run time 
is too long 

ii. It can only simulate one 
system configuration at 
a time 

RETscreen i. It has the widest 
database for renewable 
energy resources 

ii. It is designed with an 
inbuilt Microsoft excel. 

i. Inability to import time 
series data 

ii. Limitation in the 
number of input data for 
system configuration 

TRNSYS i. It has a flexible user 
interface 

ii. The simulation results 
are precise and well 
presented 

i. It has a limited number 
of components that can 
be simulated 

ii. Does not allow the 
optimization of system 
configuration 

Source: (Babatunde et al., 2020; Sawle et al., 2016) 
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However, the most common drawback peculiar to majority of the AI techniques is the time taken to achieve 

convergence and level of complexity (Bouaouda & Sayouti, 2022). Table 2.7 highlights the merits and 

demerits of some common member of AI techniques that have been applied in the optimal design of HPS; 

while an overview of the three AI techniques considered for the optimal design of the proposed HPS model 

in this study are subsequently presented.  

2.6.3.1  Firefly algorithm 

Firefly Algorithm (FA) is one of the most popular nature inspired optimization algorithm, which has been 

applied to many complex optimization problems. The algorithm, which is inspired by the flashing activities 

among a group of fireflies was developed by Yang and Deb in the year 2008. A firefly is commonly known 

as a winged beetle with the capability to produce flashing light during the night (Yang, 2014). The flashing 

light is produced at the bottom abdomen through a chemical process known as bioluminescence. The 

flashing light is an important trait of fireflies as it is used to draw the attention of neighboring fireflies and 

to alert them of any impending danger (Johari et al., 2013; Wang & Chu, 2019). 

Firefly Algorithm belongs to the family of swarm intelligence optimization techniques that emulate the 

basic features of living things such bats, birds, bees and others. Other members of the family include PSO, 

ABC and CSA, to mention but a few (Ali et al., 2014). FA has been reported in many studies as a very 

efficient optimization algorithm, and it is capable of outperforming other swarm intelligence based 

techniques, as well as evolutionary algorithms based on its performances using various benchmarks in 

different optimization problems which include digital image compression, feature selection, engineering 

design problems, and many others (Altherwi, 2020; Sulaiman et al., 2012). It was established that the 

algorithm is robust enough to handle high dimension, non-linear, multimodal design problems with minimal 

fuss. It was also reported that the algorithm can outperform other swarm intelligence based optimization 

techniques in terms of optimal solution and simulation run time (Yang & He, 2013). 

The algorithm is modeled based on the global interaction among the fireflies using individual flashing light, 

which varies from one firefly to the other. A firefly with a brighter flashing light will attract another firefly 

with less bright flashing light. Hence, the attractiveness of a firefly is a function of the flashing light, which 

is responsible for the sub-division among the fireflies  (Yang & He, 2013). The algorithm uses this feature 

to search for global and local optimal solution simultaneously. New solutions are generated via random 

walk and attraction of the fireflies; that is, in the absence of any other fireflies with a brighter flashing light 

relative to the brightest firefly in the sub-divisions, the brightest firefly will move randomly (Qi et al., 2017; 

Yang & He, 2013).  
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Table 2.7: Comparison of common AI techniques 
Artificial Intelligence 

Techniques 
Strengths Weaknesses 

Genetic Algorithm (GA) It is capable of providing 
multiple optimal solutions 

It requires minimal details to 
process optimal solutions. 

It can be time consuming due to 
the many mathematical 
computation required 

It suffers from issues of slow 
convergence rate 

Particle Swarm optimization 
(PSO) 

It is easy to implement due to 
the limited number of control 

parameters 

It is computationally efficient 

It is easily trapped in location 
solutions 

It has slow convergence rate 

Artificial Bee Colony (ABC) It is easy to implement for 
optimization purposes 

It has efficient exploration 
capability 

It is unable to handle multi-
dimensional problems due to 

poor exploitation ability 

Harmony Search Algorithm 
(HSA) 

It has high efficiency in 
searching global solutions. 

It has considerable simulation 
run time 

It exhibits issues of premature 
convergence 

It can become unstable during 
the optimization process 

Biography Based Optimization 
(BBO) 

It has reasonable simulation run 
time 

It Can be easily modified to suit 
all types of optimization 

problems. 

The conventional BBO is unable 
to handle complex problems due 

to poor exploitation ability 

It is also difficult to identify the 
global solutions from each 

generation 

Mine Blast Optimization (MBO) It can generate quality optimal 
solution if the control 

parameters are properly adjusted 

 

 

 

It involves a lot of mathematical 
computation 

It has too many control 
parameters 
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Table 2.7 contd. 
Brain Storm Optimization 

(BSO) 
It is easy to implement and can 
be very effective in generating 

quality solutions 

It is very flexible 

Unsuitable for multi-objective 
optimization problems. 

Issues of slow convergence in 
the presence of many 
optimization variables 

Grey Wolf Optimizer (GWO) It has the ability to generate 
optimal solution in lesser time. 

It is very easy to implement and 
realize. 

It has a very slow convergence 

It generates sub-optimal 
solutions. 

Moth Flame Optimization 
(MFO) 

It has very few control 
parameters 

It is very easy to implement 

It has low convergence speed 

It is easily trapped in sub-
optimal solutions. 

Flower Pollination Optimization 
(FPO) 

It has high efficiency due to its 
ability to search for optimal 

solution in larger search space 
medium. 

 

It is difficult to obtain quality 
solutions when used to solve 
multi-objective optimization 

problems 

It suffers from premature 
convergence 

Source: (Jarraya & Bouri, 2012; Z. Wang et al., 2021) 
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In a bid to simplify the operation of the algorithm, three basic rules were specified by the developer and are 

listed as follow (Yang, 2014). 

i. All fireflies in the swarm are unisex in nature; that is, irrespective of their sex, each firefly in the 

swarm will attract the other.  

ii. The level of attraction of an individual firefly depends solely on the brightness level of its flashing 

light and the distance separating it from another firefly. However, two fireflies of the same flashing 

light intensity will experience random walk.  

iii. Finally, the brightness of each firefly in the swarm is evaluated using the formulated objective 

function.  

Firefly Algorithm can be used solve optimization problems with there is need to maximize or minimize a 

specified objective function. For maximization of an objective function, the brightness of individual firefly 

is computed directly using the formulated objective function. On the contrary, for minimization of an 

objective function, the brightness is estimated using an inverted value of the formulated objective function. 

In its application to any optimization problem, an initial population of fireflies is distributed randomly in 

the search space, whose dimension represents the number of variables to be optimized (Yang & He, 2013). 

Moreover, the initial position of individual firefly represents a possible solution to the optimization 

problem. A fitness value is attached to each of the firefly positioned in the search space by evaluating the 

formulated objective function. The intensity of the flashing light of each firefly is relative to its fitness 

value; hence, a bright firefly will be attracted towards a brighter firefly. In other words, a brighter firefly 

will exhibit a higher degree of attraction and subsequently, the faster the velocity of attraction (Yang, 2009; 

Yang & He, 2013).  

However, the attractiveness between two fireflies depends solely on the distance separating them. In each 

iterative step, the algorithm evaluates the brightness and attractiveness of each firefly using the formulated 

objective function and positions of all the fireflies are adjusted until the best possible position is achieved. 

The firefly located at the best possible position represents the optimal solution to the optimization problem 

(Ali et al., 2014; Johari et al., 2013). The two most important parameters used in developing the FA 

optimization technique are highlighted as follow. 

1) Attractiveness 

The attractiveness,   of a firefly is measured using the degree of its brightness. In simple terms, the 

attractiveness of a firefly is a function of its brightness, which is usually determined using the value of the 



  

72 
 

objective function,  xf . Consider a firefly i , located at position p  on the search space, the brightness b  

of such firefly is related to the objective function using expression (2.1) (Yang & He, 2013) 

b     xf               2.1 

Expression (2.1) is only valid for optimization problems where the objective function has to be maximized. 

In case of minimization of the objective function considered in this study, the brightness of a firefly is given 

using expression (2.2) (Yang & He, 2013). 

b    
 xf
1

             2.2 

Nonetheless, attractiveness is a relative parameter as it depends on the perception of other fireflies. 

Therefore, it is a function of the distance ijr between firefly i , located at ip  and firefly, j  located at jp . 

Another factor which affects the attractiveness of a firefly in given search space medium is the light 

intensity, which decreases with an increasing distance from its source and rate of light absorption in a given 

search medium (Yang & He, 2013). 

Consider a given medium with a fixed light absorption coefficient ‘γ’, the light intensity L  is a function of 

the distance, r  separating any two fireflies and it is expressed using equation (2.3) (Yang & He, 2013). 

      reLL  0                          2.3 

Where 0L  represents the initial light intensity of the firefly. 

Since the light intensity of a firefly is a function of its attractiveness, which varies with its distance, the 

attractiveness of a firefly is thus expressed using equation (2.4) as follow (Yang & He, 2013). 

 re   0              2.4 

where 0  is a parameter that denotes the attractiveness of a firefly at its starting position ( 0r ). 

The distance r  between any two fireflies at different positions in the search medium as given by Yang & 

He, (2013) is expressed using equation (2.5). 

  


d

k kjkijiij ppppr
1

2
,,             2.5 

where kip , denotes the thk component of the spatial coordinate between the positions of the two fireflies 

and d  represents the total number of distance covered. Assuming 2d , substituting the value of d  in 

equation (2.5), the distance between any two fireflies is simplified as given in equation (2.6) (Yang & He, 

2013). 

   22,2,
2

1,1, jijiij ppppr              2.6 
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1) Movement of fireflies 

Once a firefly i with a lesser light intensity and located at position pi, identifies another firefly j with a 

brighter light intensity and located at position, jp , it is attracted to firefly j  and tries to move towards it.   

The mathematical expression describing this movement as given by Yang (2014) is presented using 

equation (2.7).  

  





ijii ppepp ij
2

0             2.7 

The second term of equation (2.7) is used to describe the attractiveness of a firefly relative to the perception 

of an adjacent firefly, while the third term is used to express the random movement of a firefly in the 

absence of any brighter firefly. Where  represents the randomization parameter and represents a vector 

of random number which are generated using Gaussian method and are uniformly distributed over the 

search medium (Farahani et al., 2011). The flowchart of FA is as shown in Figure 2.19. 

2.6.3.2  Whale optimization algorithm (WOA) 

The algorithm was developed in 2016 by Mirjalili. It was employed to solve 29 mathematical optimization 

problems and was found to have strong potential in searching both local and global solutions. It is inspired 

based on the predatory behavior of humpback whales; this special specie animals are regarded as the biggest 

mammal in the world (Mirjalili & Lewis, 2016). Some of the many traits of the humpback whales include 

their intelligence and emotional nature. They have some common cells located in strategic parts of their 

brain, this cell is similar to the spindle cells human being. The size of these cells in whales are twice that of 

human being, and it is basically responsible for their strong intelligence quotient. These cells are used to 

judge, learn, think, experience emotions and interact socially among themselves. These types of animals 

are usually found alone or in groups, but on many occasions, they usually co-exist in groups (Mirjalili & 

Lewis, 2016; Pham et al., 2020). 

Humpback whales feed on krill and small fish herds, the method used in scouting for their food is the basis 

behind the development of the algorithm for solving most optimization problems. The search process is 

divided into two phases namely the exploitation and the exploration phase. At the exploration phase, they 

exhibit a foraging behavior known as bubble net feeding method when searching for their food (prey) as 

illustrated in Figure 2.20a (Mirjalili & Lewis, 2016; Diab et al., 2019). The humpback whales exploit their 

prey close to the surface of the water by creating a distinctive bubbles along a circle or 9'-shaped path as 

shown in Figure 2.20b. Using this tactics, they form a circle around the target prey who can no longer 

escape. The whales closest to the target prey are all possible solution to the optimization problem, while a 

particular whale that attacks the prey first is the optimal solution to the optimization problem (Mirjalili & 

Lewis, 2016). 
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Figure 2.19: Flowchart of firefly algorithm (Kaabeche et al., 2017) 
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Figure 2.20a: Bubble-net foraging behavior of humpback whales (Mirjalili & Lewis, 2016) 

 

 

 

Figure 2.20b: 9-shaped position updating behavior of humpback whales (Mirjalili & Lewis, 2016) 
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When applied to solve optimization problems, the first thing the algorithm does is to identify the position 

of the prey as the objective function of the problem. The target prey is then encircled by the number of 

whales, also known as search agents in the population. The position of this prey is assumed to be the 

possible best solution as it is close to the optimum (Diab et al., 2019). Therefore, each of the whale in the 

population will continually adjust its position to match that of the target prey. The whale with the same 

position as the target prey after the entire search process is chosen as the optimal solution to the optimization 

problem (Mirjalili & Lewis, 2016; Z. Yang, 2020). Expression (2.8) and (2.9) as given by Mirjalili & Lewis, 

(2016) are used to mathematically describe the search behavior of the search agents (whales). 

                tXtXCD  *.


          (2.8) 

                    DAtXtX .1 *


              (2.9) 

where t  represents the present iteration, A and C are coefficient vectors, *X is the position vector of the 

current best solution obtained so far, X is the position vector of the previous best solution, | | is the absolute 

value, also known as an element-by-element multiplication. It should be noted that *X should be updated 

in each iteration to check for better solutions. The vectors A andC according to Mirjalili & Lewis, (2016) 

are estimated using equations (2.9) and (2.10). 

asaA  .2          (2.9) 

sC .2               (2.10) 

The constant a  should be linearly reduced from ‘2’ to ‘0’ until maximum iteration is reached; the value 

should be adjusted for both exploration and exploitation phases, s  is a random vector in the range [0, 1]. 

The position ( YX , ) of any search agent is usually updated based on the position of the possible best 

solution ( ** ,YX ) in the search space. The position of the whales are updated spirally by initially 

calculating the distance between the whale located at ( YX , ) and the target prey located at ( ** ,YX ) 

(Mirjalili & Lewis, 2016). As described earlier, the movement of the whales towards their target prey is 

usually a helix-shaped movement and it is described using equation (2.11) (Mohammed et al., 2019). 

                           tXleDtX hl *2cos..1


             (2.11) 

where    tXtXD


 *  is an expression that specifies the distance of the thi  whale to the prey (possible 

best solution), h  is a constant used to define the shape of the logarithmic spiral and l  is a random number 

ranging from [-1, 1]. As the search agent swim around their prey by creating a shrinking circle along a 

spiral-shaped path. This attribute is modeled by assuming that there is a 50 % chance that the whale will 
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pick either the shrinking encircling mechanism or the spiral model for position updating. This behavior as 

described by Mirjalili & Lewis, (2016)  is modeled mathematically using equation (2.12). 

 
 

   










tXleD

DAtX
tX

hl *

*

2cos..

.
1 





    5.0n          (2.12) 

where n  is a random number in the range [0, 1]. 

The same approach is used during the exploration phase. The position of the prey is searched by varying 

the vector, A . This search procedure is performed randomly relative to the position of other whales in the 

population. For this reason, the variation of the vector, A  during the exploration phase is usually varied 

between values greater than 1 or less than -1. This is done to alter the position of the search agent from a 

reference whale (Mirjalili & Lewis, 2016; H. M. Mohammed et al., 2019). In addition, position updating 

during the exploration phase is done via a random selection of a search agent as compared to chosen the 

best search agent during exploitation phase (Mirjalili & Lewis, 2016). The algorithm uses this trait when 

performing a global search. The mathematical model of this attribute as expressed by Mirjalili & Lewis, 

(2016) is given in equation (2.13) and (2.14). 

    XXCD rand


          (2.13) 

       DAXtX rand


.1                                 (2.14) 

where randX  is a random position or a whale chosen from the entire population size.  

The algorithm usually begins with a set of random solutions and at each iteration, the position of each search 

agent in the population are updated relative to a randomly chosen search agent (whale) which acts as a 

reference whale or according to the best solution obtained so far. A random search agent is chosen only 

when | A | > 1, while the best solution is selected when | A |< 1 for updating the position of the search agents 

(H. M. Mohammed et al., 2019) Finally, the algorithm is ended when the termination condition is met; 

usually, when the maximum number of iterations or when convergence is achieved. Although, the algorithm 

has been reported to suffer from issues of slow convergence which arises due to many random parameters; 

however, it offers some advantages which makes it suitable for multi-dimensional optimization problem 

such as the optimal design of HPS (Mirjalili & Lewis, 2016; Diab et al., 2019). Some of the advantages of 

WOA are listed as follow (Mirjalili & Lewis, 2016; Pham et al., 2020). 

i. Its ease of implementation with basic mathematical and logic operations to handle non-linear 

algebraic equations 
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i. Its ability to bypass local optimal solution due to the balance provided between exploitation and 

exploration phases. 

The flowchart of the WOA technique is depicted in Figure 2.21. 

2.6.3.3 Giza pyramid construction optimization algorithm 

The Giza Pyramids Construction (GPC) optimization algorithm is inspired by the ideology and inspiration 

of ancient times. It was developed by Harifi et al., (2020) in the year 2020. It is considered the first ancient-

inspired meta-heuristic optimization algorithm. In the ancient past, there were numerous technological 

limitations, but various man-made structures that existed in the olden days showed that these technological 

limitations can be overcome by some sort of optimization procedure that exist at that time.  

A careful look at how some of the existing structures and artifacts as at that time, were built despite the lack 

of sophisticated technologies relative to the advent of new technologies that are in existence right now begs 

the issue as to how the optimization methods were implemented in the construction of these structures and 

artifacts (Harifi, et al., 2020; Hawass, 1998). 

One of the most significant contribution of such optimization methods is the construction of the three 

pyramids in Egypt. Several theories have been put forward about the method used in the construction of the 

pyramids; however, none of these theories are proven or approved. It is a general belief that the stones of 

these pyramids were removed from mines, shipped and then placed in place, such that ramps were used to 

mount them at higher levels. This same belief was not shared by the Greeks, as they believe that slaves 

were exploited in the construction of the pyramids (Rigby, 2016; Harifi et al., 2020). 

On the contrary, recent findings suggest that the pyramids were built by skilled workers ranging from 

fourteen to forty thousand people, and were built for a period of approximately 20 years. The number of 

blocks used in the largest pyramid stands at two million pieces. An advanced approach to project and 

construction management was also employed during their construction; a testament to the complexity and 

logistical requirements of this extraordinary project. The pyramid stands today as an awesome testimony to 

the skill and sheer determination of the ancient race that built it (Harifi et al., 2020; Hawass, 1998). 

As stated earlier, the workers are skillful workers led by an expert agent. This expert agent is a foreman 

called Pharaoh’s special agent. Each of the workers is expected to maintain an initial position and carry 

stone blocks as directed by the expert agent. In order to make the process a competitive one, a worker who 

does his work efficiently will receive a sublime rank as a reward. The best rank is related to Pharaoh’s 

special agent. Moreover, energy is lost by each worker during the process of transporting the stones. During 
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Figure 2.21: Flowchart of Whale Optimization Algorithm (Zaki Diab et al., 2019) 
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this process, power is lost be each worker and when a worker losses too much power, he is substituted by 

a new energetic worker. In addition to competing for sublime rank, there is another motivational 

competition among workers, which is the experience and expertise gained over a period of time (Harifi et 

al., 2020). 

During the pyramid construction process, stone blocks which are scattered by agents such as miners around 

the construction site are carried by the workers from where they are scattered and moved closer to the 

pyramid installation site. Ramps are then used to carry the stone blocks an initial location to a final location 

close to the pyramid. The distance traveled to push the stone from a starting position to the location of the 

pyramid construction site is determined by the employees' abilities (Harifi et al., 2020). 

Therefore, if numerous stone blocks are spread throughout the construction site, workers are required to 

move the blocks from their original position to the final place near the pyramid using ramps. Each block's 

starting position and costs are given. The slope of the ramp and its friction affect the displacement of the 

stone blocks (Dukes et al., 2021). The employees are continuously shifting their position to obtain the 

optimum position for controlling the movement of the stone blocks. Due to the different characteristics of 

the work force, it is possible to substitute a worker from a certain group to balance the strength of workers 

in another group to move the stone blocks.  Consequently, some of the workers' positions will thus be 

replaced by the others. This replacement creates a change in the system which results in power balance in 

moving the stone blocks (Rigby, 2016; Harifi et al., 2020). 

In its application to optimization problems, the following assumptions guide the GPC optimization 

algorithm in achieving an optimal solution (Harifi et al., 2020). 

1. The pyramids were built by using a straight-on ramp.  

2. It is also assumed that only one ramp was used throughout the construction process.  

3. In the algorithm, the angle the ramp makes with the horizontal surface is less than 15 degree and 

can be varied. (Archaeologists believe the angle was between 8 and 12 degrees). 

4. In its application to an optimization problem, the optimal solutions are derived from the resultant 

effect of the position of the worker and stone blocks.  

5. The effect of frictional force is considered in the displacement of the stone blocks, but negligible 

for the workers. 

During the construction process, which is similar to the optimization process of the algorithm, the 

displacement of the workers from an initial position to a new position is an important stage in the 

optimization process. If a worker applies a force to the stone block, it begins to move at an initial velocity, 
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however, the force of friction forces the stone block to halt after a period of time. As a result, the worker 

applies additional force to the stone block, causing it to move again at new velocity. In each iteration, the 

initial velocity is considered a random number, because each time the worker attempts to move the stone 

block, the applied force depends on the amount of energy consumed by the worker (Harifi et al., 2020). 

The fundamental principle of the algorithm is that the workers responsible for the movement of the stone 

blocks will continue to adjust their movement in order to displace the stone block from its current position. 

The continuous adjustments of the workers leads to further movement of the stone block towards the 

installation site and subsequently, new positions are acquired by the stone blocks, which is relative to the 

movement of the workers encouraging (Harifi et al., 2020; Kharrich et al., 2021; Kumar, 2021). The most 

suitable position of the worker in moving the stone block closer to its final location is considered the optimal 

solution to the optimization problem. An important feature of the GPC algorithm is its ability to fully and 

intelligently utilize the available information of the population size to orient the search and optimization 

process (Harifi et al., 2021; Kumar, 2021; Nssibi et al., 2021) 

The algorithm is modeled mathematically based on the motion of the worker/stone on a ramp, which can 

be akin to the movement of an object on an inclined plane as depicted in Figure 2.22. The distance traveled 

by the stone block from an initial position to a new position as described by Harifi et al., (2021) can be 

estimated using equation (2.15) to (2.19). Equation (2.15) is used to describe the frictional force acting on 

the stone block during its movement from one position to the other on the ramp. Equation (2.16) is obtained 

using Newton second law of motion, while equation (2.17) is obtained by substituting equation (2.15) into 

equation (2.16). The displacement of the stone block from one location to the other on the ramp is derived 

from equation (2.17) at steady state acceleration and expressed using equation (2.18) (Harifi et al., 2021). 

     cosmgf ff                  2.15 

mzfmg f  sin             2.16 

  cossin fgz             2.17 

  cossin2

2
0

f
s g

u
D


            2.18 

where ff  is the frictional force, f  is the co-efficient of the frictional force which is usually set between 

its minimum and maximum values,   is the angle that the ramp makes with the horizontal axis, g  is the  
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Figure 2.22: Position of the workers and stone block on the ramp (Harifi et al., 2020) 
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acceleration due to gravity, which is usually set at 9.8, m  and z  are the mass and acceleration of the stone 

block respectively, 0u  is the initial velocity of the stone block which is determined randomly in the range 

of [0,1] and sD  is the displacement value of the stone block. 

Since the displacement of the stone block is dependent on the continuous adjustment of the workers, the 

movement of the workers can be estimated using equation (2.18), albeit in the absence of frictional force,

ff , as friction does not affect the movement of the workers along the ramp. Hence, the displacement of 

the workers as described by Harifi et al., (2020) and Nssibi et al., (2021) is expressed using equation (2.19).  

sin2

2
0

g
u

Dw             2.19 

New position of the workers, as well as the stone block along the ramp can be determined once the 

displacement of the stone block in equation (2.18) and the movement of the workers given in equation 

(2.19) are estimated. The new position corresponds to new solution at every iteration step and it is expressed 

using equation (2.20) (Harifi et al., 2021). 

  iwsoldnew DDPP            2.20 

where newP  represents the new position, oldP  represents the current position and i  represents a 

randomization parameter which is generated using Gaussian method. 

The final computational stage of the algorithm is the investigation of substituting a tired worker among the 

group of workers pushing the stone block towards the installation site. This is achieved by applying the 

principle of uniform crossover operator and is described mathematically by Harifi et al., (2021) using 

equation (2.21). 






;k

k
k




   

otherwise
ifrand 5.0)1,0( 

           2.21 

where k  represents the primary solutions, k  represents the generated solutions and k  represents the 

new solutions after substituting tired workers.  

The GPC optimization algorithm has been applied to different optimization problems including the optimal 

design of HPS, and the results have been very encouraging (Harifi et al., 2020; Kharrich et al., 2021; Kumar, 

2021). Some of the main strengths of the algorithm over other existing optimization algorithms are as 

follow.  
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1. The ability to retain previous information, a feature that is not present in most meta-heuristic 

algorithm.  

2. High speed of convergence, ease of implementation, low number of control parameters and absence 

of premature convergence. 

3. Increase in the balance between exploration and exploitation stage. 

4. Ability to handle high dimensional, multi-modal and non-linear functions.  

5. Special control parameters are not required.  

6. Ability to find the global optimal without even considering initial values.  

7. Ability to change from multiplicative to the accumulative mode when finding the global solution 

(optimum position of the workers).  

8. The ability to easily convert from continuous mode to the integer or discrete binary form.  

9. The ability to find an optimal solution in a non-linear constrained optimization problem with 

penalty function.  

10. It does not get trapped in local optimum as the members of the population (solution) representing 

the workers are closer to each other.  

11. Increase in the population only leads to a linear increase in the run time as compared to other 

population based algorithm where an increase in population leads to an exponential increase in their 

run time.  

The main drawback is that it cannot be applied to some combinatorial problems such as Traveling Salesman 

Problem (TSP) unless it is developed; and just like every other meta-heuristic algorithms, an increase in the 

population size may result in high run time and the possibility of obtaining sub-optimal solutions. Therefore, 

the initial population of workers must be carefully chosen when applying the algorithm to various 

optimization problems (Harifi, Mohammadzadeh, et al., 2020). The algorithm is modelled mathematically 

as follow. The flowchart of the proposed GPC optimization algorithm is as shown in Figure 2.23. 

2.7 Hybrid power system design criteria  

The main aim of applying an optimization technique in the design of HPS consisting of renewable and non-

renewable energy sources is to address the issues of minimizing or maximizing certain design criteria that 

are used to evaluate the performance of the system. This criteria are regarded as pointers that assists the 

designers, policy and decision makers, as well as government agencies to make informed decisions with 

respect to reliability, feasibility and viability of the system (Lassalle et al., 2022). More than one criteria 

may be used in evaluating the performance of the system; in such case, the design problem is usually 

formulated as a multi-objective optimization problem, thereby prompting the need to achieve a balance 

among the various conflicting criteria used in the design of HPS (Babatunde et al., 2020). Several design  
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Figure 2.23: Flowchart of the proposed Giza Pyramids Construction (GPC) algorithm (Harifi et al., 2020) 
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ccriteria have appeared in most literatures to evaluate the performance of HPS, The three main 

classifications of HPS design criteria are economic, environmental and technical criteria 

(Kiehbadroudinezhad et al., 2022). A brief discussion on each of these classifications are subsequently 

presented.  

2.7.1 Economic criteria 

In order to properly optimize the design of HPS, the economic criteria must be modeled and analyzed 

appropriately to produce cost-effective solutions. They are considered the most important criteria as they 

are used to evaluate the financial implication of the HPS. Some of the criteria under this category include 

Levelized Cost of Electricity (LCOE), Life Cycle Cost (LCC), Net Present Cost (NPC), Annual Cost of 

System (ACS), to mention but a few (Kiehbadroudinezhad et al., 2022; Palej et al., 2019). A brief 

description of some popular economic criteria are presented in the following sub-sections.  

2.7.1.1 Levelized Cost of Electricity 

The Levelized Cost of Electricity (LCOE), which is also referred to as levelized cost of energy is a suitable 

metric for measuring the overall cost effectiveness of the designed HPS. It is a measure of the average 

income per unit of energy generated by the HPS to repay the total investment cost on the system during its 

entire lifecycle (Kiehbadroudinezhad et al., 2022; Sawle et al., 2016). It represents the ratio of the overall 

cost in terms of initial investment capital, operation and maintenance cost (fixed and variable), discounted 

negative cash flows, taxes, lifecycle or major replacement costs to the actual quantity of energy delivered 

by the HPS (Lassalle et al., 2022). It is calculated according to Rehman et al., (2020) using expression 

(2.22). 

nergyLifeCycleE
batesLifeCycleostLifeCycleC

LCOE  

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         2.22  

The LCOE is considered an important economic criteria because it is able to hybridize both fixed and 

variable costs as a single tool to measure the performance of the HPS. Nevertheless, the hybridization may 

lead to ambiguity when analyzing the results (Kiehbadroudinezhad et al., 2022). 

2.7.1.2 Annual cost of system 

The Annual Cost of System (ACS) is another important economic criteria that has been used to gauge the 

financial performance of HPS. It essentially comprises of the capital cost, replacement cost and 

maintenance of the system over the period of one year. The major drawback of the ACS criteria is the need 

to estimate the discount rate and capital cost for each of the energy generating component separately 

(Kiehbadroudinezhad et al., 2022). Generally, the ACS of any HPS configuration can be estimated 

according to Maheshwari & Ramakumar, (2017) using equation (2.23). 
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amcarcaccHPS CCCACS               2.23 

where accC , arcC  and amcC  account for the annualized capital cost, annualized replacement cost and annual 

maintenance cost of the system respectively. 

It should be noted that the annualized capital cost of each of the energy generating sub-system also takes 

into account the installation cost. 

2.7.1.2 Life Cycle Cost 

One of the most important economic criteria that has also been used in evaluating the performance of HPS 

is the Life Cycle Cost (LCC) of the system. The LCC, which is also referred to as Net Present Cost (NPC) 

in HOMER software, estimates the total cost of the system throughout the entire lifetime of the project. It 

takes into account the whole financial implication of the project during its lifecycle. Financial implication 

may include the initial capital cost of the system, the operation and maintenance cost, the replacement cost 

and all discounted costs (Kiehbadroudinezhad et al., 2022; Sawle et al., 2016). The main advantage of using 

this type of economic criteria is that it is able to give a detailed financial representation of the system taking 

into consideration the total cost incurred over the specified period of operation. However, the information 

required to accurately estimate the operation and maintenance costs are not readily available in most 

database and predictive tools (Kiehbadroudinezhad et al., 2022). LCC can be estimated mathematically 

using expression (2.24) as given by Kharrich et al., (2021).  

 dgcccc FROMCLCC            2.24 

where cC  is the initial capital cost of the system, cOM  is the operation and maintenance cost, cR  is the 

replacement cost and  dgcF  is the fuel cost of the DG set. 

The LCC is one of the objective considered in this study because of the need to give a detailed financial 

implication of the proposed HPS. 

2.7.2 Environmental criteria  

Since the main aim of introducing RE sources into the power generation mix is to reduce the emission of 

harmful gases produced by non-renewable energy source into the atmosphere; environmental criteria is 

used to investigate the impact of the system on the environment. It is considered as an important design 

criteria as it helps determine the level of carbon emission and the penetration of the RE sources. The two 

most common environmental criteria used in many studies involving HPS design is the minimization of 

carbon oxide and the maximization of RE resources penetration (Arifin et al., 2021; Lassalle et al., 2022). 
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2.7.3 Technical criteria 

Technical design criteria is used to evaluate the performance of the HPS under various operating conditions 

that are unrelated to both economic and environmental criteria. This criteria helps determine the capacities 

and operational details of the various sub-system of the HPS. It can be introduced into the design model as 

either a constraints or in form of control and energy management (Kiehbadroudinezhad et al., 2022). The 

two major performance criteria that fall under this category are renewable energy fraction and system 

reliability. System reliability is an important metrics to the design as it is used to gauge the integrity of the 

system while renewable energy fraction is used to measure the penetration of RE resources (Lassalle et al., 

2022). Some common criteria used in measuring the reliability of HPS are Loss of Power Supply Probability 

(LPSP), Loss of Load Probability (LOLP), Expected Energy Not Served (EENS), among others 

(Kiehbadroudinezhad et al., 2022). The two most common criteria used in many literatures are briefly 

discussed in the following sub-sections. 

2.7.3.1 Loss of power supply probability 

Loss of Power Supply Probability (LPSP) is the probability that an insufficient power supply occur when 

the system is unable to meet the load demand (A. Alam & Mehar, 2021). It has been used in many studies 

to evaluate the performance of HPS with respect to its integrity and reliability. LPSP must be monitored as 

a key constraint in ensuring that power supplied by the system is able to meet the load at all time 

(Kiehbadroudinezhad et al., 2022). For the purpose of this study, the LPSP was treated as one of the most 

important constraints in the proposed HPS. It is usually determined once the power capacity of each of the 

energy generation sources has been modeled. Its mathematical representation as described by 

Kiehbadroudinezhad et al., (2022) is given in equation (2.25). 
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where N  is the number of hours,  iL tP represent the power required by the load at a given time step on 

hour i ,  iHPS tP  represents the power generated from the HPS at given time step on hour i .  

2.7.3.2 Loss of Load Probability 

Loss of Load is defined as the inability of the HPS to meet the daily peak load demand. This scenario 

usually occurs whenever the consumer load exceeds the available power generated by the system. The 

overall probability that there will be a shortage of power (loss of power) is referred to as Loss of Load 

Probability (LOLP) which is expressed in terms of days per year, hours per day or percentage of time (Esan 

et al., 2019; Kiehbadroudinezhad et al., 2022) The LOLP as described by Kiehbadroudinezhad et al., (2022) 

is calculated using equation (2.26). 
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Where HPSP  is the power supplied by the HPS at hour t ,  tPD  is the power required by the load at hour 

t  and n  is total number of hours.  

2.8 Review of related works 
An approach for optimal design, simulation and analysis of hybrid PV/wind system based on discrete 

optimization technique is presented by (Badejani et al., 2007). The total capacities of the RE sources are 

computed with respect to the annual power demand. The performance of the system was evaluated under 

different environmental condition of the PV system and blade angle pitch control of the wind turbine. A 

single objective optimization problem based on cost function is formulated and solved using the proposed 

approach. System simulation and energy balance estimated for a period of three years were used to 

compensate for any error in the design process. Simulation results showed that the proposed approach 

optimized the cost of the system with significant reduction in the overall cost of the system.  

Suryoatmojo et al., (2009) performed an optimal design of an integrated system involving wind-PV-diesel-

battery system for isolated island with 2CO  emission evaluation using GA. The proposed system was design 

for the hybrid power generation in East Nusa Tenggara, Indonesia. Mathematical modeling of the various 

components of the system was carried out using MATLAB/Simulink and the objective function was 

minimized using GA. Simulation results showed that the proposed system was able to minimize the total 

annual cost of the system and reduce carbon emission into the atmosphere. 

Wang and Singh, (2009) designed a hybrid power generation system including wind power and solar power 

on the basis of cost, reliability, and emission criteria using a Modified Particle Swarm Optimization 

algorithm (MOPSO). A set of tradeoff solutions were obtained using the multi-criteria meta-heuristic 

method. Moreover, in one of the designs, system uncertainties, such as equipment failures and stochastic 

generation/load variations were also considered by conducting adequacy evaluation based on probabilistic 

methods. Numerical simulations were used to illustrate the applicability and validity of the developed 

MOPSO based optimization procedure, and some sensitivity studies were also carried out. Simulation 

results showed that the developed model was very effective in the optimum design of the system at low 

cost and low carbon emission. 

Ardakani et al., (2010) designed a grid connected wind/photovoltaic/battery power system for a region in 

North-west Iran using Particle Swarm Optimization with the aim of reducing the annualized cost of system 

(ACS) for an operation period of 20 years. The problem was formulated as a single objective optimization 
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problem taking into consideration the technical, economic and reliability constraints of the system. PSO 

technique was used to obtain the optimal sizing of the system components that minimizes the annualized 

cost of the system. Simulation results showed that the hybrid system is the most feasible for the 

electrification of the region as it gives the best value of ACS over its entire lifespan. 

Saif et al., (2010) presented the capacity design problem of a PV-Wind-Diesel-Battery HPS using LP. The 

model was formulated with the aim of minimizing total cost and carbon emissions. A multi objective 

optimization approach was employed for this purpose taking into consideration the various constraints of 

the system design. Model inputs were extracted from real time environmental and technical data. The 

proposed approach was applied on a case study which entails designing a HPS for a city of 50,000 residents. 

Simulations results showed an increase in the reliability of the proposed system and a reduction in the 

amount of carbon emission. 

Bansal et al., (2011) presented an artificial intelligence based optimization of a stand-alone hybrid system 

consisting of solar and wind energy resources. An optimization problem which focuses on the reduction of 

net present cost of the system was formulated and optimized using Meta Particle Swarm Optimization 

(MPSO). The system was simulated for a period of 25 years using MATLAB software. Simulation results 

showed that the global optimal searching ability of the proposed algorithm is significantly improved, as it 

avoids the possibility of getting trapped in local optimal solution.  

Hassanzadehfard, Moghaddas-Tafreshi and Hakimi, (2011) considered the optimal sizing and operation 

strategy of micro-grid systems consisting of wind turbines, PV arrays, fuel cells, battery banks, reformers 

and DC/AC converters for a northwestern region of Iran using PSO. The problem was formulated as a 

nonlinear integer minimization problem which minimizes the sum of the total capital, operational and 

maintenance and replacement costs of the Distributed Energy Resources (DERs). Additionally, some basic 

notions of reliability were considered for the proposed micro-grid system and the effect of reliability on the 

total cost of the system were evaluated. Simulation results showed that the proposed methodology provides 

excellent convergence and feasible optimum solution for sizing of islanded micro-grid system using PSO. 

The technical and economic analysis of a wind/solar hybrid system using HOMER software is presented 

by Zhang et al., (2011). Individual components of the hybrid system was modeled, simulated and optimized 

using HOMER software with the aim of finding the optimum economic performance of the system. The 

optimal results was analyzed for different system configurations. The results of analysis showed that wind 

speed greatly influence the overall cost of the system.  
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The optimal design and power management selection of hybrid renewable energy system comprising of 

solar PV generator, wind turbine, battery storage, fuel cell, electrolyzer, hydrogen tanks and diesel 

generators using hybrid differential evolution and fuzzy logic technique was presented by Abedi et al., 

(2012). The uncertainties in solar and wind resources were modeled using Weibull and Beta probability, a 

multi-objective optimization problem to minimize the overall cost of the system, unmet load and fuel 

emission under various optimization constraints was developed and optimized using hybrid different 

evolution-fuzzy technique. Simulation of the hybrid system was done using MATLAB. The results 

demonstrated the efficacy and capability of the proposed optimization algorithm for hybrid energy system 

design. 

Bilal et al., (2012) proposed a methodology for designing a stand-alone hybrid PV/wind/diesel/battery 

system for the community of Gandon located in north-west of Senegal; with the aim of minimizing the 

Levelized Cost of Energy (LCE) and carbon emission using Genetic Algorithm. An assessment of the 

community was done to determine the weather condition and load profile of the area. Mathematical 

modeling of the considered components were done using Simulink, while a multi-objective optimization 

model was developed and written as a script code in MATLAB. Genetic algorithm was applied to determine 

the optimal system configuration with the least LCOE and carbon emission, and results were presented as 

an optimal pareto front. Simulation results showed that for the optimal system configuration, an increase in 

LCOE corresponds to a decrease in carbon emission and vice-versa. 

The optimal design of hybrid renewable energy system for electrification of a remote village in Egypt using 

homer Pro software is presented by Helal et al., (2012). The components of the hybrid system was modeled, 

simulated and optimized using HOMER software. The optimization process considered every possible 

system configuration and searches for the system with the least total Net Present Cost as the optimal system 

design. Simulation results showed that the PV-wind-battery system is the most feasible system 

configuration as it gives the least NPC. 

A hybrid Simulated Annealing (SA) and Tabu Search (TS) method for the solution of a Small Autonomous 

Power System (SAPS) optimal sizing problem was proposed by Katsigiannis, Georgilakis and Karapidakis, 

(2012). The objective function was formulated such that the SAPS cost of energy is minimized.  

Mathematical modeling of the various components of the SAPS such as wind, PV, diesel generator, battery 

size and converter rating was carried out using MATLAB/Simulink. The performance of the proposed 

hybrid optimization methodology was studied for a large number of alternative scenarios via sensitivity 

analysis. The proposed method was successfully applied to Chania region, Greece. The results showed that 
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the proposed hybrid SA-TS improves the obtained solutions, in terms of quality and convergence as 

compared to the solutions provided by individual SA or individual TS methods. 

Yadav et al., (2012) presented the optimal design of a wind-diesel hybrid power system for the 

electrification of an isolated region using HOMER. The components of the system were modeled, optimized 

and simulated using HOMER software, with the objective to minimize the cost of the system and carbon 

emission. The results of the hybrid system were compared with those obtained using diesel generator only 

to meet the load demand of the region. Simulation results showed that the proposed hybrid wind-diesel 

system can be economical and environmentally friendly if properly sized as compared to using the diesel 

generator only. 

Zhang, Barakat and Yassine, (2012) focused on the development of a methodology for sizing and 

optimization of four hybrid systems (PV/wind/diesel/battery, PV/wind/diesel, PV/diesel/battery and 

wind/diesel/battery) in the city of Le Havre, France using Direct Search Algorithm (DSA). Collection of 

hourly environment data such as solar radiation, wind speed and ambient temperature for a period of 5-year 

was carried out. Mathematical modeling of the various components of the hybrid system was performed 

using SIMULINK. The developed model was optimized using direct search algorithm and simulated in 

MATLAB. The results showed that the use of long term data is very helpful when calculating the 

performance of hybrid systems. The results also showed that the combination of the hybrid PV/wind/diesel 

with battery system is the most cost effective type of hybrid system. 

Moreover, a method  for the optimization of  power generated from a Hybrid Renewable Energy Systems 

(HRES) using PSO) to minimize the Levelized Cost of Energy (LCOE) was presented by Amer, Namaane 

and M’Sirdi, (2013). The problem was defined and objective function was introduced taking into 

consideration the fitness values sensitivity in particle swarm process. The algorithm structure was built 

using MATLAB software. Simulation results showed that the proposed PSO algorithm was found to very 

competitive in terms of energy cost and carbon emission reduction. 

Mahmud, (2013) designed a hybrid power generation system consisting of solar PV, wind turbine battery 

and diesel generator system for a remote island in Bangladesh using HOMER software. Feasibility study 

of the Island was examined to determine the solar and wind resources, as well as the load consumption of 

the Island. The various components of the system are modeled and simulated in HOMER with the aim of 

reducing the cost of fuel and minimize the emission of harmful gases in the environment. Simulation results 

showed that the PV-diesel-wind-battery configuration is the most feasible for implementation.  
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Mohamed and Khatib, (2013) presented the optimization of a micro grid that consists of photovoltaic (PV) 

array, wind turbine, diesel generator and storage battery based on iterative simulation method. The 

mathematical models for the system components and meteorological variables, such as solar energy, 

temperature and wind speed, were employed for design purpose and model using MATLAB/Simulink.  The 

approach was applied to Kuala Terengganu, Malaysia. The results were validated by comparing the 

proposed optimization method with the method in the HOMER software. The results showed that the 

proposed method provides more accurate results compared with the method used in the HOMER software. 

An approach to determine the optimal capacities of the components of a hybrid system consisting of PV 

system, diesel generator and battery bank based on iterative technique is presented by An et al., (2014). 

Individual component of the hybrid system is modeled in Simulink, A constrained optimization problem 

based on the minimization of annual cost of system (ACS) with zero unmet loads was formulated. The 

number of PV panels, the capacity of the battery and diesel generator are considered as the decision 

variables in the optimization problem. The hybrid system was simulated using MATLAB to evaluate its 

performance. Simulation results showed that the proposed approach is able to find the optimal solution to 

the design problem, albeit a high simulation run time 

Unit sizing optimization of hybrid energy system consisting of renewable and non-renewable energy 

sources using Genetic Algorithm is presented by Arun et al., (2014). An objective function with the aim of 

minimizing the cost of energy under various system constraints is formulated and solved using the proposed 

algorithm. HOMER pro software was also used to optimize the same hybrid system and the results are 

compared to illustrate the performance of the proposed method. Simulation results showed that the proposed 

approach gives a better COE results with respect to HOMER pro software. 

The optimal design of hybrid renewable energy system using differential evolution technique is investigated 

by Delgado & Dominguez-Navarro, (2014). A multi-objective optimization problem based on the overall 

cost of the system and the penetration of the renewable sources was formulated and solved using DE. A 

universal generating function was used at the optimization stage to minimize computational time of the 

proposed algorithm. The results of simulation are compared with those obtained using Monte Carlo 

simulation. The results showed that the proposed method generate adequate results in a short period of time 

as compared to those obtained using Monte Carlo approach. 

A methodology for the optimal sizing of hybrid, stand-alone PV-WG system to supply a residential 

household using GA is presented by Tégani et al., (2014). The method, based on differential flatness 

approach was applied for optimal sizing design and strategy control of the hybrid stand-alone system. The 

problem was formulated such that the total system cost for a 20 year round is minimized subject to the 
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constraint that the load energy requirements are completely covered. Simulation was carried out using 

MATLAB/Simulink software tool. The results were compared with conventional optimization methods 

such as dynamic programming and gradient techniques. Simulation results showed that the proposed 

approach has the aptitude to attain the global optimum with relative computational simplicity. 

Clark, Cronje and Wyk, (2015) presented the optimal economic design of a hybrid energy system for a 

small university using convex optimization approach. Simulation model of a grid connected 

PV/Wind/diesel hybrid system was implemented using Simulink in Mathworks. An interior point convex 

solver was then used to design an optimal PV/wind/diesel system with lowest overall cost to determine the 

viability of the proposed approach. The results were compared with those obtained using existing HOMER 

software package. Simulation results showed that the solution obtained from the proposed approach agree 

with that of HOMER software which is based on slow discrete combinatorial optimization. 

The optimal design of a hybrid system consisting of wind turbine, photovoltaic generator, diesel generator 

and battery bank using particle swarm optimization is presented by Mandal et al., (2015) A multi-objective 

optimization problem based on minimization of Life cycle cost and cost of energy was formulated and 

optimized using the improve particle swarm optimization. The performance of the proposed approach was 

illustrated by comparing its results with those obtained using iterative technique used for the same purpose. 

The results showed that the proposed method produces superior solutions in terms of convergence 

characteristics and simulation run time with respect to the iterative technique.  

Mekhamer et al., (2015) introduced an approach for the optimal sizing of a grid-connected hybrid power 

generation system using Ant Lion Optimizer and Grey Wolf Optimizer. The problem was formulated as a 

single objective optimization problem that minimizes the Total Annual Cost of the system considering 

various equality and non-equality constraints. The proposed algorithm is applied to solve the resulting 

optimization problem. The performance of the proposed algorithms was demonstrated by comparing their 

results with those obtained using Cuckoo Search Algorithm and Flow Pollination Algorithm (FPA). All 

simulation was executed using MATLAB software. Simulation results showed that the proposed ALO and 

GWO generate a more reliable results as compared to CSA and FPA. 

The optimal design of the hybrid power generation system using was obtained by Mekhamer et al., (2015) 

using Cuckoo Search (CS) and Firefly Algorithm (FA). A feasibility study of the proposed area was 

conducted for weather condition and load data. Objective functions based on the two optimization 

techniques proposed were formulated and implemented using MATLAB. The optimization results were 

compared with that of PSO applied to the same case study. Simulation results showed that the proposed 
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techniques are better, powerful and are recommended for use in the optimal solution for hybrid power 

generation systems. 

Tan et al., (2015) proposed the design of a micro-grid distributed power consisting of wind turbine, 

photovoltaic, batter and diesel generator system for the electrification of an islanded area using HOMER 

pro software. The aim of the design is to minimize the overall costs of the micro-grid. Each components of 

the system was modeled and optimized in model to verify the feasibility of the micro-grid; the optimization 

was also done for different battery technology and the results of the various configurations obtained were 

compared with one another. The results showed that the micro-grid system with Lithium ion battery gives 

the least overall cost as compared to other system configurations.  

A general approach based on multi-objective combinatorial model for optimizing hybrid PV-wind-diesel-

battery system configuration using evolutionary algorithm was presented by Wang, Zhang and Zhang, 

(2015). The problem was modeled as a multi-objective combinatorial model where the four objectives are 

the minimization of the life-time system cost, life-time emission of 2CO  and 2SO  and maximization of the 

system output power. The multi-objective evolutionary algorithm based on decomposition approach was 

employed to obtain a set of Pareto optimal solutions to the problem. Simulations were done using 

MATLAB/Simulink. Simulation results showed that the developed model provides convenience especially 

for non-expert users when selecting suitable components in the design of HRES. 

Kamjoo et al., (2016) presented the use of Non-dominated Sorting Genetic Algorithm (NSGA-II) for the 

design of a standalone Hybrid Renewable Energy Systems (HRES) comprising of wind turbine, PV panel 

and battery bank. The problem was formulated as a multi-objective problem for minimizing system cost 

and maximizing reliability. A Chance Constrained Programming (CCP) method was used to address the 

uncertainties in renewable resources such as wind speed and solar irradiance. The proposed method was 

validated on a case study and the results obtained were compared with the conventional method of 

incorporating uncertainties using Monte Carlo simulation. The results showed that the proposed method 

yields conservative results in lower reliability values and better results in high reliability values. 

Kushida & Abe, (2016) presented the optimal design of a grid connected hybrid PV-diesel power system 

for a residential area in Japan using linear programming technique. The annual load curves of the customers 

was used in addition to the hourly solar irradiation of the area to simulate the proposed hybrid system. An 

optimization problem based on minimization of system cost is formulated and solved using linear 

programming technique. Simulation results showed that the hybrid system is capable of supplying multiple 

customers and subsequently reducing the overall cost of the system. However, the approach was found to 

be time consuming. 
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Mallikarjuna et al., (2016) conducted a study on the reliability constrained optimization of an off-grid 

hybrid system consisting of solar PV, wind turbine and hydro resources using Cuckoo Search Algorithm 

(CSA). Individual model for wind speed, solar irradiation, water availability and load profile based on semi-

Markov function is formulated, the Fast Fourier Transform (FFT) analysis was used to combine each of the 

energy generation model with the load model. A multi-objective optimization problem with the goal of 

optimally sizing the components and minimizing the overall cost of the system is formulated and optimized 

using the proposed technique. All analysis were carried out using MATLAB software and the results of 

simulation are compared with those obtained using GA and PSO algorithm. Simulation results showed that 

the proposed approach gives the best results in terms of cost minimization and optimal system combination 

as compared to GA and PSO techniques. 

A genetic algorithm based multi-objective design of a grid independent PV/Wind/Split-Diesel/Battery 

hybrid energy for the electrification of a residential home in Nigeria is presented by Ogunjuyigbe et al., 

(2016). Feasibility assessment of the residential home was conducted to determine the hourly load profile, 

as well as solar and wind resource potential of the area. An optimization model to minimize the Life Cycle 

Cost, carbon emission and dump energy was developed and optimized using Genetic Algorithm. Five 

different scenario of the hybrid system was simulated using the proposed algorithm to determine the most 

feasible configuration that satisfy the set objectives. Simulation results showed that optimal configuration 

comprising of the PV/Wind/Split-Diesel/Battery is the most feasible scenario when compared to other 

scenarios in terms of LCC, carbon emission and dump energy. The results also demonstrated the efficiency 

of using split diesel generator over a single large sized generator. 

Okinda et al., (2016) reported on the findings of examining the problems of optimal sizing of a hybrid wind 

and solar renewable energy power generation system using genetic algorithm. A target site was first 

identified and meteorological data collected. Components of the system were then mathematically modeled 

from which an objective function was developed. A parallel multi-deme implementation of genetic 

algorithm was then used to optimize the system. Multiple scenarios were prepared and simulated to obtain 

an optimal configuration of the hybrid power system. The results showed that wind and solar have 

complementary regimes and can thus be hybridized to minimize the LCOE. The result also showed that the 

least cost configuration didn’t necessary maximize on the utilization of the abundant resource. 

A multi-objective design of hybrid wind-photovoltaic-storage system using Artificial Bee Colony was 

proposed by Shayeghi et al., (2016).  A multi-objective optimization problem considering annual cost of 

the overall system and carbon emissions was formulated and solved using ABC algorithm. A fuzzy making 

method was used to obtain the best solution from the set of pareto-optimal solution obtained. The proposed 
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method was applied to a remote location in north-western Iran using long meteorological data of the area. 

Simulation results demonstrate the efficiency of the proposed method in yielding the optimal combination 

of system components and also ensure maximum economic and environmental profits. 

A Teaching Learning based Optimization (TLBO) technique is applied by Deb et al., (2017) to the optimal 

design of a hybrid power system consisting of PV panels, wind turbine and diesel generator. The problem 

was formulated as a multi-objective optimization considering the minimization of overall cost of system 

and carbon emission, and improving reliability. The teaching learning based optimization technique was 

used to solve the resulting optimization problem. The system was simulated for a period of ten years using 

MATLAB software. Simulation results showed that the TLBO is capable of producing quality optimal 

solution. Nevertheless, the approach was found to be time consuming as it involves too many control 

parameters during the optimization process.  

He et al., (2017) presented a hybrid energy system based on the renewable resources in a certain area using 

HOMER software.  The paper implemented economic analysis and also considered the capacity shortage 

effect of the hybrid system. Mathematical modeling of individual components was carried out based on the 

available capacity. Simulations were carried out using HOMER software.  The results showed that the 

capacity of the battery changed mostly when the reality of the system declined. The results also showed 

that the economic performance improved significantly with the Cost of Electricity (COE). 

Huang et al., (2017) proposed the optimal design of a stand-alone micro-grid using Mixed Integer Linear 

Programming (MILP) model to meet the energy demand of an isolated island. The developed optimization 

model considered the initial investment cost, maintenance and replacement cost, fuel cost, environmental 

management cost and power shortage penalty cost. The utilization rate of RE sources, single and total loss 

of power supply probability and dump energy production are considered as constraints in the optimization 

problem. The resulting optimization problem was solved using the proposed approach. Simulation results 

demonstrate the ability of the proposed approach in obtaining optimal solution hybrid power system design 

problems. However, the method was found to be time consuming and computationally exhaustive.  

Kaabeche et al., (2017) proposed a PV/wind hybrid optimization method using Firefly Algorithm (FA) 

under Load Dissatisfaction Rate (LDR) criteria and the Electricity Cost (EC) indicator conditions for power 

reliability and system cost. The various components of the hybrid system were modeled in Simulink 

environment; an objective function to minimize the cost of energy considering reliability constraints was 

formulated and implemented using MATLAB. The developed model was applied to supply the energy 

required by a group of households located in Bouzareah, Algeria. The effectiveness of the proposed 

optimization technique was evaluated by comparing its performance with other popular optimization 
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algorithms such as Accelerated Particle Swarm Optimization (APSO) algorithm, Generalized Evolutionary 

Walk Algorithm (GEWA) and Bat Algorithm (BA). Simulation results showed that proposed algorithm 

produces the most promising solution in terms of energy cost when compared with the other optimization 

algorithm. The results also showed that the hybrid PV/Wind/Battery system is more economically feasible 

compared to either standalone wind or PV system only. 

Another methodology for optimization of Smart Integrated Renewable Energy Systems (SIRES) to 

minimize ACS and maximize reliability for remote and rural areas using GA was described by Maheshwari 

and Ramakumar, (2017). A hypothetical rural area with a population of 700 was considered and basic 

energy requirements for this area were estimated. Availability of resources and weather conditions were 

analyzed. System components, ACS and system reliability were modeled. A flowchart for implementation 

of GA was developed and the optimal number of system components and minimum ACS for target 

reliability was obtained. The results showed that the proposed approach was able to reduce Greenhouse Gas 

(GHG) and improved the overall efficiency as compared to other current approaches to rural development. 

Mbodji et al., (2017) developed a computerized methodology based on numerical analysis for the Optimal 

Design of an Off-Grid Hybrid Solar Photovoltaic-Diesel System for Electrification of a Fishing Village in 

Morocco. The load profile of the village was evaluated using a power balance, while the optimal capacity 

of the PV system was determined based on the evaluated load. The PV system was sized and the cost benefit 

analysis based on quoted system costs for a period of 9 years was performed to determine the economic 

viability of the proposed system. Simulation results showed that the proposed system design significantly 

minimize carbon emission, with a relative reduction in overall cost of the system. However, the approach 

was found to be time consuming. 

An approach based on HOMER software for the design of a micro-grid hybrid system to meet the energy 

demand of a remote locations is presented by Singh & Tiwari, (2017). The off-grid system consists 

renewable sources such as solar and wind with battery storage system as backup. Individual components of 

the micro-grid was modeled and optimized using HOMER. The model was implemented on a case study 

of a typical building in India, comprising of over 100 houses. The most feasible combination of system 

components was studied and analyzed. Simulation results showed that the hybrid solar-wind-battery system 

is the most economical of all the system combination considered to meet the energy demand of the location. 

Ahamad et al., (2018) presented the optimal design of a grid-connected integrated power system, consisting 

of PV, wind turbine and a battery for the electrification of an isolated load using HOMER software. The 

various components of the system were modeled and correspondingly, the performance of the proposed 

system was analyzed based on its net present cost of the system. The software was also used to optimize 
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the system and sensitivity analysis was then carried out to determine the response of the system to change 

in components prices. Simulation results showed that the implementation of micro-grid technologies is an 

effective solution in meeting the energy demand of the isolated load. 

A multi-objective optimal design of a grid-connected Hybrid Power Generation Systems (HPGSs) using 

whale optimization algorithm and sine-cosine algorithm was proposed by Algabalawy et al., (2018). The 

components of the HPGS considered include PB modules, wind turbines, battery banks, and has turbines. 

The components were modeled for power generation in Simulink, an optimization model to minimize total 

annual cost of the system and carbon emission was developed and optimized using the two proposed 

algorithm. The obtained results of the proposed model were compared with those obtained using cuckoo 

search and firefly algorithms to show the robustness of the proposed optimization algorithms. 

Khalilnejad et al., (2018) presented the optimal design of a hybrid power system consisting of wind turbine, 

PV panels and an Electrolyzer using Imperialist Competitive Algorithm (ICA). The various components of 

the hybrid system was modeled in Simulink and an optimization problem with the objective of minimizing 

the dump energy and maximizing the penetration of the RE sources and Electrolyzer is formulated and 

implemented using MATLAB. The meteorological data of a remote location in Miami was used to simulate 

the hybrid system. Simulation results showed that the optimal system comprises of PV-wind-Electrolyzer, 

with the Electrolyzer having a higher percentage of penetration. 

Bossoufi et al., (2019) proposed the design of a stand-alone hybrid PV-wind-battery energy system using 

genetic algorithm. The meteorological and load data were collected and assessed for the particular location. 

Major components of the system and optimization objectives were modeled and an optimal configuration 

was put in place using a dynamic model of a controlled elitist genetic algorithm for multi-objective 

optimization. Simulations were carried out using MATLAB/Simulink. The results showed a significant 

reduction in the life cycle cost of the proposed hybrid energy system. Diemuodeke et al., (2019) presented 

the optimal design of Hybrid Energy System (HES) consisting of PV modules, wind turbine, energy storage 

and diesel generator using HOMER software and TOPSIS multi-criteria decision-making algorithm for the 

electrification of six different location in Nigeria. Feasibility assessment of the locations were carried out 

to determine the amount of solar and wind resources, as well as the load demand for the selected location. 

Each of the components were optimally chosen by HOMER software considering the reduction in Cost of 

Energy (COE) and minimization of carbon emission.  

A novel approach for the assessment of the generation reliability of a hybrid mini-grid system for a typical 

Nigerian community in Kwara State, based on the optimal solution obtained using HOMER software was 

presented by Esan et al., (2019). The proposed hybrid mini-grid system comprises of solar PV, diesel 
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generator and battery storage system. Each components of the hybrid mini-grid system was modeled using 

HOMER software, while the Capacity Outage Probability Table (COPT) was used in validating the 

reliability of the simulation results obtained. The results showed that there is a significant increase in the 

reliability and feasibility of the proposed hybrid mini-grid system based on the proposed approach.  

Hlal et al., (2019) presented a methodology to size Standalone Hybrid Renewable Energy System (SHRES) 

which combines solar PV, wind turbines (WT) and Battery Energy Storage (BES) for application in rural 

areas in Malaysia using (NSGA-II). NSGAII was employed to plot the Pareto front to present the trade-off 

between the reliability and cost. The optimization was conducted to facilitate the selection of the best 

configuration across numbers of PV modules, wind turbines and batteries to minimize LPSP and COE. 

Furthermore, charging/discharging of BES on an hourly basis was investigated to mitigate the intermittency 

of solar PV/WT output for minimizing energy losses. The results show that the NSGAII optimization of 

the model is able to determine the best techno-economic sizing for the suggested location. 

The optimization of the power generated by a hybrid renewable energy system which consists of Wind 

turbine, Tidal turbine, PV module and battery using particle swarm optimization was proposed by 

Mohammed, Amirat and Benbouzid, (2019). The system was designed to satisfy the load demand of a 

stand-alone area in Brittany. The problem was defined as an economic problem taking into consideration 

the optimal sizing of the system, high reliability, planning expansion for future development and state of 

charge of the battery. The total net present cost was introduced as the objective function to represent the 

minimum fitness value in the particle swarm process. The optimization was carried out using MATLAB 

software tool. Simulation results showed that the proposed method achieve optimal solution and a reduction 

in the overall cost with high speed and accuracy.  

A framework for the optimal design of a hybrid photovoltaic wind-battery system based on the 

minimization of total net present cost and loss of load probability for the city of Ahvaz, Iran using Grey 

wolf optimizer is presented by Naderipour et al., (2019). The number of PV panels, wind turbines and 

batteries are considered the decision variables in the optimization problem which was formulated to 

minimize the TNPC and LLOP. The resulting optimization problem was optimized using Grey Wolf 

Optimizer technique; the performance of the proposed algorithm was demonstrated by comparing its results 

with that of PSO technique used for the same purpose. Simulation results showed that the proposed 

algorithm is superior to PSO technique in terms of the optimal solution produced.  

A novel methodology based on Satin Bower Bird Optimization (SBBO) to obtain the optimal sizing and 

power management of hybrid photovoltaic/wind/battery power system was presented by Ranjith Kumar 

and Surya Kalavathi, (2019).  Long term information of the solar irradiation, wind speed and load profile 
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of the selected site were obtained and used for system modeling. The optimization problem was formulated 

to minimize system cost and maximize energy availability. The HPS was simulated using MATLAB. 

Simulation results showed that the proposed approach gives better performance under all operating 

conditions and power management strategy was also achieved.  

Zaki Diab et al., (2019) proposed a simulation model for the operation of a PV/wind/diesel hybrid micro-

grid system with battery bank storage for the electrification of Abu-Monqar village located in western desert 

using Whale Optimization Algorithm (WOA), Water Cycle Algorithm (WCA), Moth-Flame Optimizer 

(MFO), and Hybrid Particle Swarm-Gravitational Search Algorithm (PSOGSA). The main goal of the study 

is to meet the load demand of the proposed location with the minimum cost of energy and ensure high 

reliability of the power supply. The optimal sizing of the system components was carried out using real-

time meteorological data of the location. An optimization problem was developed to minimize the cost of 

energy and increase the reliability and efficiency of the system using loss of power supply probability. The 

optimization algorithms were applied to obtain the optimal system configuration and determine the 

capability of each optimization algorithm based on the solution obtained using statistical analysis. 

Simulation results showed that based on statistical analysis, the WOA produces the most promising 

performance as compared to other optimization algorithms.  

Fioriti et al., (2020) presented an approach for optimal design of hybrid system using a two-stage procedure 

to minimize the computation requirements of the system. An optimization model was initially developed 

using a priority-list strategy; and the results of the optimization model are used to refine the second-stage 

optimization model based on rolling horizon strategy. Simulation results showed that the proposed approach 

was able to reduce the computational time of system design, as well as negligible reduction in the optimal 

results as compared to standard iterative approaches.  

Ali & Jang, (2020) presented the optimum design of a small hybrid renewable energy system comprising 

basically of solar and wind generator as primary energy sources for the electrification of a remote island in 

South Korea using HOMER pro software. Feasibility assessment of the island was done to determine the 

potential of solar and wind resources, while the hybrid system was modeled using real electricity 

consumption for a year. The optimum configuration of the proposed hybrid renewable energy system was 

achieved by modeling two different types of energy storage systems: battery and pumped hydro storage. 

The levelized cost of energy and net present cost for each configuration were determined to evaluate the 

most suitable configuration for the electrification of the Island. The results showed that the configuration 

with the pumped hydro storage system is more feasible compared to that of the battery storage system. 
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Optimal component sizing of an isolated PV-wind-battery micro-grid for a remote location in India using 

probabilistic approach and Genetic algorithm is presented by Das, (2020). The deterministic approach was 

used to determine the values of various energy sources with variation in the load demand based on different 

time scales. A multi-objective optimization problem based on the minimization of life cycle cost and 

environmental pollution, and increasing system reliability was formulated and solved using GA technique. 

Simulation results showed that the proposed approach can be used for the optimal selection of hybrid system 

components with available time scaled energy sources and load data. Nonetheless, the method was 

computationally cumbersome and time consuming. 

The optimal sizing of a hybrid system consisting of solar PV, wind turbine, battery and fuel cell to meet the 

energy demand of a location in Kenya based on Monte-Carlo approach is investigated by Fioriti et al., 

(2020). The hourly uncertainties of the load demand and renewable sources are modeled based on the 

Monte-Carlo technique. An optimization problem based on the minimization of the net present cost of the 

system was formulated and optimized using the proposed method. Sensitivity analysis was carried out on 

the system design to evaluate its performance with variations in components costs. Simulation results 

showed that an increase in the number of scenarios of the stochastic approach improves the accuracy of the 

optimal solution. However, the approach was found to be time consuming. 

Optimum configuration of hybrid PV/DIESEL/WIND power generation system to supply the energy 

demand of a research hospital in Kenya using HOMER software was determined by Dursun, Dursun and  

Aykut, (2020). Numerous HRESs in different configurations of wind turbine, PV panel, diesel generator 

and battery bank were considered. Moreover, a sensitivity analysis was also performed taking into 

considerations variations in three important parameters, namely wind speed, diesel price and also solar 

irradiation. Simulation was carried out using HOMER software and the optimum design was compared 

with other combination of HRESs. The result clearly showed that the Wind/Diesel/Battery HRES is eco-

friendlier than other HRESs combination. 

The optimal sizing of hybrid renewable energy system using a Discrete Multi-objective Grey Wolf 

Optimizer (DMGWO) for rural telecoms towers is presented by Kaur et al., (2020). The components (solar 

PV, wind turbine, diesel generator and battery system) of the hybrid system are modeled in Simulink; the 

uncertainty in the renewable sources and the load of the telecom tower is modeled using probability 

distribution function. A multi-objective optimization problem based on cost of energy, excess energy 

generation and loss of power supply probability is developed and solved using the proposed algorithm. The 

Euclidean distance approach was adopted to obtain the optimal solution from the optimal parent front 

solution obtained using the DMGWO algorithm. Simulation results showed that the developed algorithm 
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predicted the optimal configuration with corresponding reduction in the cost of energy and excess energy 

generation. 

The optimal design of a hybrid micro-grid consisting of solar PV, wind turbine, diesel generator and battery 

system using multi-objective particle swarm optimization (MOPSO) for a case study in Rabat and Baghdad 

in Morocco is presented by Kharrich et al., (2020). An objective function which focuses on the minimization 

of the Net Present Cost of the system is formulated and solved using the proposed algorithm, taking into 

consideration system constraints such as loss of power supply probability and energy balance. The results 

proved that the optimal system configuration is the most feasible economically for the electrification of the 

selected locations. 

Mahdi et al., (2020) developed a sizing optimization model of a stand-alone hybrid photovoltaic/wind 

turbine/battery system using Ant lion optimizer for the electrification of a remote location comprising of 

10 different buildings in Kerman, Iran. The Feasibility study of the proposed location was carried out to 

determine the potential of the considered RE resources. Thereafter, the mathematical modeling of the 

various energy generating components was performed in Simulink. An optimization model with an 

objective to minimize the total investment cost of the system was developed and optimized using the 

proposed algorithm. The results obtained were compared with those obtained using particle swarm 

optimization, harmony search, firefly algorithm and differential evolution algorithm for the same purpose 

to test the effectiveness of the proposed algorithm. 

Oladigbolu et al., (2020) examined the potential application of hybrid an optimal configuration of solar 

PV/hydro/diesel/battery system using HOMER software tool for the electrification of a remote community 

in Nigeria. The potential of the RE resources in the proposed area was assessed and noted. Four different 

configuration of the hybrid system were considered with the objectives of minimizing the NPC, COE and 

carbon emission. The various configurations were simulated and analyzed using HOMER software, 

simulation results showed that there was a significant reduction in carbon emission with the optimal system 

configuration. 

Sultan et al., (2020) solved the optimization problem of optimal configuration of a hybrid system consisting 

solar PV, wind turbine and hydroelectric pumped storage system using a recent Metaphor-less Rao 

Optimization algorithm. Feasibility assessment of the proposed location was conducted to determine the 

real-time meteorological data of the area. An optimization problem based on the minimization of the cost 

of energy is formulated and solved using the proposed algorithm. Moreover, statistical analysis was used 

to validate the accuracy of the proposed technique. Simulation results showed that the proposed algorithm 

is generate competitive solutions with respect to other recent optimization techniques. 
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A study on the optimization of cost and carbon emission function of a hybrid energy system comprising of 

solar PV, wind turbine, battery storage and diesel generator for Aguni Island in Japan using a multi-

objective e-constraint and mixed integer linear programming methods is proposed by Akter et al., (2021). 

The mathematical modeling of the individual components was done in MATLAB, while a multi-objective 

optimization model to minimize the cost of energy and carbon emission was developed and optimized using 

the e-constraint and mixed linear programming techniques. The optimal solution from the set of solutions 

obtained using these techniques was obtained using fuzzy satisfying method.  Simulation results showed 

the applicability of the proposed approach for optimal design of hybrid renewable energy system. 

The optimum sizing of a standalone micro-grid system consisting of photovoltaic modules, wind turbines 

diesel generator and battery banks using Particle Swarm Optimization and Genetic Algorithm for the 

electrification of a small village in eastern Ethiopia is presented by Ashagire et al., (2021). The weather 

data of the area was obtained from the necessary authorities to analyze the potential of RE sources. An 

optimization problem with the aim of minimizing the levelized cost of energy was formulated, GA and PSO 

was used to solve the problem in several runs taking into consideration the optimization constraints. 

Simulation results showed that the PSO technique outperform the GA technique in terms of LCOE and RE 

penetration.  

Elbaz & Tahir Guneser, (2021) introduced an optimization technique, named Bat algorithm for the optimal 

design of a stand-alone hybrid photovoltaic diesel-battery system for the electrification of a small village 

in southern Libya. The algorithm was used to minimize the annual cost of system subject to controlled 

electricity restriction and optimal numbers of system components. To demonstrate the effectiveness of the 

proposed technique, grey wolf search algorithm and particle swarm optimization were used for the same 

purpose and the results compared. Simulations were carried out using MATLAB software. The results 

indicated that the proposed method was able to determine the optimal size of the system at the lowest cost 

as compared to Grey Wolf optimizer and Particle Swarm Optimization algorithm.  

Hu et al., (2021) investigated the optimal design of a hybrid renewable energy system with equipment type 

consideration using a two-step optimization approach. Minimization of the total annual cost of the system 

is formulated as a single objective optimization problem, the resulting optimization problem is solved using 

the proposed two step approach. A group of pareto sets were generated after the optimization process and 

the optimal solution was selected based on the least score of the objective function. Simulation results 

proved that the proposed method is able to give an optimal system configuration at the least annual cost. 

The design and optimization of an off-grid hybrid micro-grid system for the electrification of Barishal and 

Chattogram divisions in Bangladesh based on different load dispatch strategies is presented by Ishraque et 
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al., (2021). The hybrid microgrid s consists of wind turbine, storage unit, diesel generator and the load 

profile of the locations. Each of the components was modeled using HOMER with the aim of minimizing 

the net present cost, levelized cost of energy, operating cost and carbon emission rate, considering five 

different dispatch strategies. The power system performance and feasibility of the micro-grid was done 

using MATLAB software. Simulation results showed that the Load following dispatch strategy gives the 

best results for the proposed micro-grid. 

Kharrich et al., (2021a) proposed the optimal design of hybrid microgrid to feed the electricity demand of 

an isolated area in Dakhla, Morroco using Equilibrium Optimizer (EO).The hybrid microgrid system 

consists of photovoltaic (PV), wind turbine (WT), battery and diesel generator taking into considerations 

several constraints such as the reliability, availability and renewable energy fraction. The impact of wind 

speed, solar radiation, interest rate, and cost of diesel fuel on the NPC as well as LCOE were analyzed. 

Similarly, the influence of size variation on LPSP was also analyzed. Simulations were carried out using 

MATLAB. The optimization results obtained were compared with those obtained by other recent meta-

heuristics optimization algorithms such as Harris Hawks Optimizer (HHO), Artificial Electric Field 

Algorithm (AEFA), Grey Wolf Optimizer (GWO) and Sooty Tern Optimization Algorithm (STOA). The 

results showed that the EO provided a reduction in the NPC, LCOE, and LPSP; and has fast convergence 

characteristics when compared with the other optimization algorithms. 

The optimal design of hybrid micro-grid using Giza Pyramid Construction optimization algorithm for the 

electrification of Yanbu region in Saudi Arabia was presented by Kharrich et al., (2021b). The microgrid 

consists of PV modules, wind turbine and biomass. Different technology used in generating the energy were 

modeled in Simulink, an optimization model to minimize NPC and LCOE of the system was developed and 

optimized using the GPC algorithm. The effectiveness of the GPC algorithm was demonstrated by 

comparing the results obtained with those obtained using artificial electric field and grey wolf optimizer 

techniques.  

Nguyen and Boström, (2021) Presented an optimal design of hybrid wind turbine/PV/battery energy system 

for a household application in the arctic region of Tromso, Norway using multi-objective optimization 

approach namely, Particle Swarm Optimization (PSO). Input data for the optimal component sizing of the 

Hybrid Renewable Energy System (HRES) were measured across the arctic region. Mathematical modeling 

of the individual components of the HRES as well as the load model was carried out in Simulink. The multi-

objective PSO program was written and run using MATLAB software. Optimization results showed that 

the feasibility of the HRES for a single family housed demand in the region at a reasonable cost. 
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An approach on the optimal design of Hybrid Renewable Energy System (HRES) for a village in Shinyanga 

region of Tanzania, using an iterative technique was proposed by Marcel et al., (2021). The HRES consists 

of solar PV, wind turbine and Battery Energy Storage (BES). The project lifetime was fixed for 25 years 

and the technique was used to determine the ACS and LCOE of the system that will meet the energy demand 

of the village and charge the BES system for a whole year. The autonomy days of BES was set at 3 days, 

while the maximum depth of discharge was set at 50 %. Simulation was results showed that LCOE obtained 

for the optimized system is cheaper compared to the grid-connected power supply in Tanzania.   

An approach to optimize a hybrid micro-grid consisting of PV generator, wind turbine, Diesel generator 

and battery bank using Particle Swarm Optimization was presented by Priya et al., (2021). The hourly data 

of solar irradiation, ambient temperature, wind speed as well as the power generated using each of the 

energy generating sources for one year were modeled in Simulink. An optimization model to minimize the 

total investment and installation cost under the constraint of LPSP. Simulation was carried out using 

MATLAB to determine the robustness of the developed model and to obtain the optimal system 

configuration.  

Rashid et al., (2021) developed a hybrid energy system consisting of biomass energy, solar PV, wind 

turbine, with battery and diesel generator as backups for the electrification of a remote village named Kukri 

Mukri Island in Bangladesh using Genetic Algorithm and HOMER software. Components modeling was 

carried out using MATLAB while the optimal sizing and analysis of techno-economic aspects for different 

system configurations was simulated using HOMER pro software. An optimization model for components 

sizing was developed with the aim of minimizing the Net Present Cost and Levelized Cost of Energy. The 

model was simulated and optimized using Genetic Algorithm. Simulation results of the HOMER pro 

software were compared with those obtained using GA. The results showed that the optimal system 

configuration consisting of all the five components considered gives the best LCOE. The results also 

showed that the optimal solution obtained using GA gives a better solution in terms of sustainability and 

cost effectiveness as compared to those obtained using HOMER software.  

A hybrid Harris Hawks Optimizer-Arithmetic Optimization Algorithm (HHO-AOA) for sizing and design 

of an autonomous micro-grid was proposed by Cetinbas et al., (2022). The proposed approach was aimed 

at improving the solution diversity obtained using individual algorithm. The approach was implemented on 

a hybrid system consisting of photovoltaic system, wind turbine system, battery energy storage, diesel 

generators and a commercial type load with loss of power supply probability and cost of energy as the main 

objectives. Statistical analysis based on Friedman ranking test and Wilcoxon signed-rank test were 

performed to illustrate the performance of the proposed hybrid method. All simulation was done using 
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MATLAB. The results showed that the proposed HHO-AOA generate the most feasible solution when 

compared to using each of the algorithm individually. 

The feasibility of a wind-solar hybrid system for on and off grid application using HOMER software was 

investigated by Coban et al., (2022). The hybrid system was designed to supply the load demand of a remote 

location in Somalia. The various components of the system was modeled, optimized and simulated in 

HOMER software using solar and wind resources of the area. The techno-economic performance of the 

system was investigated based on the performance of the system in meeting a sampled load demand of the 

location. Simulation results showed that on-grid solar and wind hybrid system is the most economically 

feasible of all the system configurations considered. 

El Boujdaini et al., (2022) designed a hybrid renewable energy system for remote homes located in 

Morocco, Spain and Algeria using Particle Swarm Optimization algorithm for a period of 20 years. The 

hybrid system consists majorly of solar PV, wind turbine, battery and diesel generator. The feasibility 

assessment of the studied areas was carried out to determine their weather data and load profiles; all system 

components were modeled in Simulink. The proposed algorithm was used to obtain a system configuration 

with minimum cost of energy and excess energy, increase renewable fraction and reliability. Optimization 

was done under varying and fixed load demand and all simulations was carried out using MATLAB. 

Simulation results showed that the optimal system configuration consisting the four components of the 

system produce the least cost of energy. The results also showed that the there was a significant increase in 

the cost of energy under varying load condition as compared to the fixed load demand.  

The optimal design of HRES using Particle Swarm Optimization (PSO), hybrid Particle Swarm 

Optimization-Grey Wolf Optimization (PSOGWO), hybrid Grey-Wolf Optimization-Cuckoo Search 

(GWOCS) and Sine-Cosine Algorithm (SCA) for the electrification of a multimedia center in Makenene, 

Cameroon was presented by Hermann et al., (2022). Mathematical modeling of the various components of 

the HRES were carried out using SIMULINK; an optimization model was developed with the aim of 

minimizing the Cost of Energy, NPC, and Total Greenhouse gasses emission. Seven different 

configurations of the HPS were considered and simulated using MATLAB. The results showed that the 

GWOCS optimized HRES gives the best value of NPC, COE and TGE. 

The optimal sizing and simulation of a standalone hybrid energy system consisting of solar PV, wind 

turbine, gas engine and battery system for a coastal area in Delta State Nigeria was proposed by Kenu et 

al., (2022). The system components was modeled and simulated based on a funding model using HOMER 

software. The main objective of the proposed model is to lower the cost of electricity and ensure efficient 
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usage of the system. Simulation results showed that the system configuration with lowest cost consist of 

solar PV, wind, gas engine the battery system with respect to other configurations reported in the study. 

Mahmoud et al., (2022) investigated the application of Salp Swarm Algorithm (SSA), Grey Wolf Optimizer 

(GWO), and Improved Grey Wolf Optimizer (IGWO) for the optimal configuration of hybrid power system 

consisting of PV panels, wind turbines, battery storage system and diesel generators (DGs) as backup. A 

complete model for the management of the hybrid system was firstly developed in Simulink, subsequently, 

an optimization model with the objective to reduce the cost of energy and loss of power supply probability 

was developed using MATLAB. The optimization techniques were applied to obtain the optimal system 

configuration and to compare their performance stability. Simulation results showed that each of the 

optimization techniques minimize the cost of energy and loss of power supply probability, with the IGWO 

technique proving to be the most effective technique among them.  

Mohammad-Alikhani et al., (2022) proposed a two-stage multi-objective particle swarm optimization 

algorithm for the optimal configuration of a hybrid power system comprising of PV arrays, wind turbines, 

tidal generator, battery banks, flywheels, fuel cells and electrolyzers. A multi-objective problem based on 

the minimization of levelized cost of electricity and carbon emission was formulated, the problem was 

solved using a two stage swarm approach. Initially, a first set of swarm was applied to determine which of 

the system components needs to be optimized, while the second set of swarm was used to optimize the 

selected components using real annual data in hourly time intervals of the load. Simulation results showed 

that the proposed approach reduces the susceptibility of the solution to multiple runs with respect to 

conventional techniques and gives a better optimized power system design.  

An investigation on optimization of hybrid renewable energy system for the electrification of a covid-19 

based vaccine facility in remote areas of south Africa using HOMER pro software was conducted by Leholo 

et al., (2022). The hybrid system comprises of PV panels, wind turbine and battery storage as back up. Each 

of these components is modeled, optimized and simulated using HOMER software and the results of 

simulation in terms of optimal cost and reduction in greenhouse gas emission are compared with that of 

using a diesel generator set to meet the demand of the proposed location. A sensitivity analysis was also 

conducted to determine the effect of varying wind turbine hub height on the overall performance of the 

hybrid system. The results showed that the proposed hybrid system outperform the diesel generator set. The 

results also showed that with an increase in the hub height of the wind turbine, a significant reduction in 

the overall cost of the system was observed.  
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2.9 Research gap 
A critical look at the reviewed literatures on the optimal design of HPS so far showed that most of the work 

done has been designed to simulate and/or optimize the conventional monofacial PV and wind energy RE 

sources so as to obtain the best design for a particular location. A bifacial PV module is proposed in this 

design; the additional energy yield produced from the rear side of the module is expected to benefit the 

system economically. In addition to that, most reviewed literatures only focus on the use a single large sized 

generator set as back up to the HPS configuration and there is high probability that the reliability of the 

system design will be reduced as a result,  which could result in corresponding increase in the amount of 

carbon emission into the atmosphere. Finally, it was also find that the optimal design of HPS comprising 

of large number of components is a complex task that requires an optimization algorithm capable of 

handling a large number of control variables present in this type of optimization problem.  

Therefore, the main focus of this study is to develop an optimization model capable of finding the optimal 

design of hybrid HPS consisting of solar bifacial PV, wind energy, split generator set and battery energy 

storage system at the least life cycle cost, minimum carbon emission and guaranteed reliability. A novel 

meta-heuristic optimization algorithm, Giza pyramids construction (GPC) was employed to obtain the 

optimal design of the proposed HPS. The results obtained using the GPC technique were compared with 

those obtained using FA and WOA techniques to verify the suitability and effectiveness of the algorithm in 

solving high-dimensional, combinatorial optimization problem. The choice of the GPC optimization 

algorithm is mainly due to its ability to handle large number of control variables which is a peculiar feature 

of most HPS designs found in literatures, and fast convergence speed. In order to guarantee that the optimal 

HPS design is feasible for implementation, the individual components of the HPS were modeled using the 

database of commercially available.  
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CHAPTER THREE 

SYSTEM MODELING 

3.1 Mathematical model of system components 

This chapter presents the various mathematical notation used in modeling each of the components of the 

proposed HPS. The main components of the proposed HPS modeled in this study are bifacial PV module, 

wind turbine, split diesel generator, battery and the power converter as shown in Figure 3.1. Hence, accurate 

model of each of the sub-system of the proposed Hybrid Power System (HPS) must be generated in 

Simulink using their respective mathematical notations (Jha et al., 2018). This section describes the various 

mathematical models of the energy generating components of the HPS that have been used in literatures to 

analyze HPS consisting of renewable and non-renewable energy sources. 

3.1.1 Mathematical model of solar bifacial PV component 

Bifacial PV systems have been reported in many studies to have great potential for energy generation. A 

bifacial gain of up to 46% has been reported in some studies involving experimental and simulation 

solutions. This gain is attributed to the ability of the PV module to receive solar energy using both its front 

and back surfaces (Fajuke & Raji, 2022; Pelaez, Deline, Greenberg, et al., 2019; Pike et al., 2021). However, 

the modeling of such system is more challenging and requires considering parameters that are not applicable 

to conventional mono-facial PV systems. Therefore, methods used for mono-facial PV modeling are no 

longer valid and more precise models have been developed to estimate the extra energy yield of the bifacial 

modules (Hansen et al., 2017). 

In order to properly estimate the total energy output of the bifacial PV system, four important procedures 

are considered. The first step is to model the irradiance hitting the both sides of the module; and thereafter, 

modeling the electrical output of the bifacial cell, which is usually done by either implementing the one-

diode or two-diode method. The temperature effect of the module is modeled in the third step and finally, 

the total energy yield of the bifacial module can be estimated  (Janssen et al., 2015). A detailed description 

of each of the steps are subsequently presented.  

3.1.1.1 Irradiance model 

The first and most difficult step in modeling the energy output of a bifacial PV module is to model the 

irradiance reaching the front and the back side of the module. Accurate modeling of the front and the back 

side irradiances will determine the power output of the bifacial PV system. In addition to that, other factors 

that influence the power output of the bifacial PV system include orientation, mounting height, albedo, tilt 

angle and temperature (J. A. Louw & Rix, 2019; Onno et al., 2020; Pelaez, Deline, Greenberg, et al., 2019).  
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Figure 3.1: Configuration of the proposed hybrid power system 
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However, for the purpose of this study, the vertical east-west orientation of the PV bifacial module was 

considered for simulation purposes. It has been reported in various studies that this type of orientation is 

capable of producing more energy output as compared to the horizontal north-south orientation, and also 

eliminates the need for complex geometric consideration when developing Simulink models (Baumann et 

al., 2018; Fajuke & Raji, 2022; Pike et al., 2021). 

Generally, the irradiance reaching the front side of the module as described by Jäger et al., (2020) is 

modeled using equation (3.1).  

     albdiffdirf GGGG               3.1 

where dirG , diffG  and albG  are the direct, diffuse and ground albedo irradiances respectively. 

For mono-facial modules, the diffuse and albedo irradiance are considered negligible, however, they are 

the main components that contributes to the energy output of a bifacial module due to the presence of the 

back side irradiance (Pike et al., 2021). Modeling the back side of a bifacial PV module can be quite 

challenging and various approaches have been used in literatures to accurately predict the amount of 

irradiance reaching the back side of the module. The three most common approach that have are well 

documented in literatures include empirical method, view factor model and the ray tracing model (Carvalho 

Ganilha, 2017; Hansen et al., 2017; J. A. Louw & Rix, 2019). Table 3.1 presents the comparison of the 

three most common approach available, while a brief description of each of these models are presented as 

follow.  

I. Empirical method 

Empirical methods are simply described as mathematical models that were developed based on the results 

observed from various experiments. These methods are also known as black box equation, and are used to 

describe the observations obtained from an experimental setup (Johnson et al., 2012; J. P. Singh et al., 

2014). The main problem associated with empirical models is their overdependence on experimental setups, 

which could results in displacement of important variables at the model development stage and 

subsequently lead to low accuracy. Nevertheless, this model also has several advantages which include 

simplification in mathematical expressions, clarity in the behavior of the system under experimentation and 

ease of implementation for computational simulation. Prism solar, solar world and Bsolar are some of the 

companies that have developed empirical models to estimate the rear side irradiance of bifacial PV modules 

(Bsolar, 2020).  
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Table 3.1: Comparison of approaches used in modeling back side irradiance of bifacial PV 
Models Merits Demerits 

Empirical Simple mathematical expression 

Provide a general about module 

behavior 

Easy to implement in 

computational simulation 

Experimental dependent, and 

does not fit all different 

possibilities 

Inadequate information on the 

working principle of the system 

Could miss important 

parameters in the formulation of 

the module 

View Factor Easy to implement in simulation 

Brings comprehension on the 

reflected irradiance. 

Suitable for single 

configurations 

Does not take into consideration 

the scattering or diffuse effect 

The geometry becomes complex 

when there are more complex 

configuration 

The model has to be estimated 

for each cell 

Ray Tracing More realistic estimation 

Better solution for self-shadow 

effects 

Suitable for complex figurations 

It is very demanding 

computationally 

It is considered too complex for 

a single module 

It is also difficult to implement 

for simulation purposes 

Source: (Hansen et al., 2017; Johnson et al., 2012) 
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I. Ray tracing technique 

Ray tracing is a model that uses a 3-D modeling software to calculate the irradiance on a given plane such 

as the bifacial PV module. It accounts for both reflected and refracted radiations using electromagnetic 

waves or rays, which are transmitted in such a way that the light is followed from the source toward the 

subject; this method of transmitting waves or rays  is commonly referred to as the forward ray tracing. On 

the other hand, when the transmitted waves are such that the light is from the subject to the source, it is 

referred to as the backward or reverse ray tracing (Hansen et al., 2017; J. A. Louw & Rix, 2019; Pelaez, 

Deline, Greenberg, et al., 2019). The Monte Carlo approach, which employs hundreds to thousands of rays 

to calculate the irradiance of the geometrical measurements for all weather conditions and mounting 

orientation is often employed in the model design (Hansen et al., 2016). 

Ray tracing approach has been found to be very effective when modeling the irradiance of a bifacial PV 

module due to its ability to consider many other factors such as mounting height, distance separating two 

modules, characteristics of the module glass and other optical effects that determine the amount of 

irradiance hitting the back side of the module (J. Louw & Rix, 2020). Unlike the other modeling approaches, 

the ray tracing technique is capable of accurately modeling the shading patterns on the ground and accounts 

for direct and diffuse shading on both front and backside of the module (Hansen et al., 2016). The main 

drawback of this technique is the complexity in mathematical computation, the difficulty in implementation 

and the large amount of time it takes to run an annual simulation as compared to the other models. (Carvalho 

Ganilha, 2017). 

II. View factor model 

The second type of approach used in modeling the rear side irradiance of a bifacial module, which has been 

applied in many literatures is known as the view factor or the configuration factor model (Ademola & Qiu, 

2020; M. Alam et al., 2021; Hansen et al., 2016). It calculates the amount of radiation scattered or reflected 

from both surfaces using geometrical notations. Basically, it is based on radiation transfer calculations of 

the amount of radiation leaving a surface ( A ) that strikes on the receiving surface ( B ). The main inputs 

required to determine the back side irradiance hitting the surface of the plane are the meteorological data, 

location details of the plane,  ,  module tilt angle, i , angle of incidence, and solar zenith angle s (M. 

Alam et al., 2021). 

The irradiance reaching the opposite side of the module, bG  is the sum of irradiances from beam and 

circumsolar diffuse, isotropic diffuse, ground reflected illumination from isotropic diffuse and ground 

reflected from beam and circumsolar diffuse as given in equation (3.2) to (3.6) (Janssen et al., 2015). 
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where beamG  is the reflected (beam) irradiance due to the beam and is given as sDNI cos ; DNI is the 

direct nominal irradiance from the sun, diffG  is the diffuse irradiance and it is given as albGG  ; where 

dirG  is the global solar radiation directly to the earth, c  is the albedo coefficient of the mounting surface, 

iA  is the anisotropy index which describes how much of the atmospheric radiation is due to the reflected 

(beam) radiation on a horizontal surface, bR  is the geometric factor which is given as the beam radiation 

from a tilted surface to beam radiation to the horizontal surface and vF  is the view factor due to shading 

effect.  

The values of iA  and bR  are assumed to be negligible for this study since the vertical east-west orientation 

is considered for simulation purpose. However, when considering horizontal north-south orientations, they 

are to be taken into consideration. In order to account for the shading effect which is produced as a result 

of the position of the sun, the view factor, vF   must be determined. Considering two surfaces X  and Y, the 

view factor as described by M. Alam et al., (2021 and Hansen et al., (2016) is estimated using the fraction 

of the radiation received by surface Y, representing the module emitted from surface X (reflected surface) 

and it is given in equation (3.7) 

  dAdB
s

XY
Y

F YXv   2
21 coscos1




              3.7 

where A is the area of the shadow portion due to the panel on the mounting surface, B is the area of the 

back side of the module, 1  is the incident angle due to the shadow portion on the surface measured to the 

sky, 2  is the incident angle of the module measured to the ground and S is the distance between the center 

of the module to the center of the shadow area.  
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The approach is developed at the Institute of Semiconductor Electronics RWTH and ISC Konstanz, and it 

is the most commonly used approach in many literatures as it estimates the rear side irradiance using the 

basic principle of heat transfer and takes the effect of shading into consideration (Janssen et al., 2015). 

Other popular view factor models available are PVSyst, NREL Bifacial VF and the models developed at 

both Purdue University and University of Geneva. The models developed in Purdue University and 

University of Geneva also use similar approach to estimate the rear side irradiance of bifacial modules. 

However, PVSyst applies the basic principle of mono-facial module in calculating the power output of the 

front side of the module; and then adds the energy generated from the rear side to determine the total power 

output of the bifacial PV module (PVSyst, 2017). 

The view factor model has been applied in many literatures due to its ease of implementation in 

computational simulation, ability to give a detail description of the reflected radiation and its suitability for 

individual configurations when implementing a large scale PV power system. However, when considering 

a large bifacial PV system in horizontal south-north orientation, the geometrical calculations can be quite 

challenging. In addition to that, the model fails to give a clear description of the effects of diffused radiation 

(Carvalho Ganilha, 2017; Hansen et al., 2016). 

3.1.1.2 Electrical model 

Once the front and back side irradiances have been calculated, it is possible to model the electro-thermal 

model to determine the power output of the bifacial PV module. The sum of these irradiances was used to 

estimate the power output of the bifacial PV sub-system of the HPS proposed in this study. Once the total 

irradiance hitting the module has been estimated, the bifacial PV cell can be modelled using the 

conventional single-diode modeling applied in modeling traditional mono-facial PV cells (Ademola & Qiu, 

2020; Carvalho Ganilha, 2017). This is attributed to the fact that the behavior of a solar cell is similar to 

that of an ideal diode which is connected to a series and shunt resistance. However, for locations with low 

solar radiation, the double-diode model described in the work of Janssen et al., (2015) can be employed. 

The equivalent circuit of a solar cell is as shown in Figure 3.2a. 

The expression that describes the relationship between the voltage (V) and the current (I) of an ideal diode 

is obtained from Kirchhoff’s current law and is given in equation (3.8) cells (Ademola & Qiu, 2020; 

Carvalho Ganilha, 2017). 
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Figure 3.2a: Equivalent circuit of a solar cell 
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Figure 3.2b: Equivalent circuit representation of bifacial solar cell 
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Where phI  is the current generated due to the irradiance, 0I  is the diode reverse saturation current, TV  is 

the thermal voltage which is a function of temperature, fi  is the ideality factor, sR  and shR  are the series 

and shunt resistances of the diode respectively.  

In order to properly understand the electrical characteristics of a bifacial cell, it is usually represented as 

two mono-facial cells which are connected in parallel as depicted in Figure 3.2b. Applying the same 

principle of KCL to the equivalent circuit of Figure 3.1b, the I-V characteristics of a bifacial at cell level is 

given by equation (3.9) (Ademola & Qiu, 2020; Carvalho Ganilha, 2017). 
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It is a known fact that the photon generated current of the two diodes connected in parallel to each other are 

dependent on the irradiance from the front and back sides of the module, and hence can be estimated using 

equations (3.10) and (3.11) as follow. 
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I              3.10 
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I              3.11 

where fphI   and bphI   are the current generated as a result of the front and back side irradiances 

respectively. 

Thus, the V-I characteristics of a bifacial PV at the module level is estimated using equation (3.12) as 

follows (Ademola & Qiu, 2020; Carvalho Ganilha, 2017). 
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where sN  is the number of cells connected in series for a single bifacial PV module.  

The power output of the module as defined by Kadeval, (2021) is simply obtained as the product of the 

voltage and current obtained at short circuit current and open circuit voltage respectively  

3.1.1.3 Effect of temperature on bifacial PV system 

The temperature effect on a bifacial PV model is considered and expressed as an energy balance, which 

states that the rate at which the module transfers heat into the ambient surroundings is equal to the sum of 

the front and rear irradiance of the module. This expression is related to both the reflection and the electrical 
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efficiency of the module. Mathematically, the energy balance as described in the work of Janssen et al., 

(2015) is given in equation (3.13)  

        biftotalbifambbifbif GTT   1           3.13 

where bif  is the heat conductivity of the module, bif  is the reflectance coefficient of the module, bif  

is the module efficiency, bifT  is the temperature of the module and ambT  is the ambient temperature.   

3.1.1.4 Power output of bifacial PV system 

The total generated power output by a single bifacial PV module at time t  is estimated using equation 

(3.14) while the total capacity of the bifacial PV system required in the HPS is determined according to the 

load requirement of the location and it is given in equation (3.15). 

            
  biftavbfbifbif GGAP            3.14 

              
cfINVBES

L
BPV T

P
P





                3.15 

where bifP  and  bifA  are the power output and the area of the module respectively, LP  is the load demand 

of the location, INV  and BES  are the efficiencies of the inverter and battery storage system respectively 

while cfT  is the temperature coefficient factor. 

The number of bifacial modules mN  required is estimated using equation (3.16) as follow. 

              
mpp

BPV
m P

P
N             3.16 

3.1.2 Mathematical model of wind turbine component 

Wind speed is one of the most important variables in the modeling of a wind energy conversion system. It 

is the main input that determines the amount of electrical power that can be generated using wind turbines. 

Consequently, the simulation’s accuracy of a wind energy system depends on the representation of wind 

speed. However, the fluctuating characteristic of the wind requires an accurate understanding of the 

dynamic behavior of the wind speed for proper system modeling (Singh & Santoso, 2012). Two approaches 

can be used in this regard; the first approach is to consider measurements of long duration on an actual wind 

site and the second is representing the wind characteristic by an analytical model. The first solution is 

obviously more precise and is suitable for simulation purposes, since past wind speed can be obtained from 

different meteorological databases (Kalmikov, 2017; Olabi et al., 2021). The various steps involved in  



  

120 
 

 

modeling the electrical power output of the wind conversion system are discussed in the following 

subsequent sections. 

3.1.2.1 Wind turbine modeling 

The output power or torque of a wind turbine is determined by several variables, among which are turbine 

speed, rotor blade tilt, rotor blade pitch angle, size and shape of turbine, area of turbine, rotor geometry and 

wind speed as shown in Figure 3.3. The relationship between the output power and the various variables 

constitute the mathematical model of the wind turbine (Aliprantis & Lafayette, 2014; Masters, 2005; Olabi 

et al., 2021). 

The fundamental principle of the dynamic power of wind is evaluated using Newton’s second law of 

motion. It is a well-known fact that under constant acceleration ac , the kinetic energy kE of an object having 

mass om  and velocity 0v  is equal to work done ,dW  in displacing that object from rest to distance ,s  

under a force sF ; mathematical, this expression is represented as sdk FWE  . The force required to 

displace the object its initial position as given by Newton is further simplifying as follow (Kalmikov, 2017; 

Manyonge et al., 2012; Sarkar et al., 2015). 

aos cmF             3.17                                                      

Hence, the kinetic energy of the object can then be expressed as; 

           scmE aok             3.18 

Applying the basic principle of the kinetic energy of solid motion, where the initial velocity of the object is 

considered as inu . Therefore, the initial velocity can be estimated using scvu aoin 222  . If the value of 

the initial velocity is assumed to be zero, which is usually the case; the expression of the constant 

acceleration ac  becomes 
s

vo

2

2

. This expression is substituted in equation (3.18) to obtain the kinetic energy 

of the moving object as follows (Manyonge et al., 2012). 

       2

2
1

oOk vmE             3.19 

In the case of expression (3.19), it is assumed that the mass of the solid is constant, which is not true for the 

motion of air. Considering wind as a fluid will definitely results in changes in the density and velocity and 

subsequently leads to change in mass of air in motion. Thus, it is assumed that the density of air does not 

vary considerably even with variation in altitude or temperature and the kinetic energy law in equation  
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Figure 3.3: Typical horizontal wind turbine (Masters, 2005) 
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(3.19) is employed. Hence, the kinetic energy in (joules) in air of mass am  moving with velocity wv (wind) 

can be computed using equation (3.19) (Manyonge et al., 2012).The power wP  in wind which is generally 

described as the rate of change of kinetic energy is mathematically expressed using equation (3.20) 

(Manyonge et al., 2012; Sarkar et al., 2015). 

2

2
1

w
a

w v
dt

dm
dt
dEP                   3.20 

According to Manyonge et al., (2012), the mass flow rate
dt
dm  is given as wAv ; where A  is the area 

through which the wind is moving and   is the density of air in 3/22.1 mkg . Substituting the given mass 

flow rate in equation (3.20), the power in the wind thus becomes; 

   3

2
1

ww AvP             3.21 

The actual mechanical power  wmP  extracted by the turbine blades as described by Manyonge et al., (2012) 

is the difference between the upstream and downstream wind powers. This expression is given in equation 

(3.22) as follows (Manyonge et al., 2012). 

            22

2
1

duwwm vvAvP              3.22 

Where uv  and dv  are the upstream and downstream wind velocities at the entrance and exit of the rotor 

blade. 

Comparing equation (3.22) with the mass flow rate expression results in equation (3.23) (Manyonge et al., 

2012). 
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The variable wv  is the average of the velocities at the entry and exit of turbine blades. Substituting equation 

(3.23) into equation (3.22), the mechanical power of the wind is computed as follows (Manyonge et al., 

2012). 
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Expression (3.24) can be further simplified to obtain equation (3.25). 
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The expression pC  is used to describe the turbine power coefficient or the turbine coefficient of 

performance and can be computed using expression (3.26) or (3.27) as follow (Manyonge et al., 2012; Y. 

Zhang et al., 2019). 
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It should however be noted that the turbine power coefficient or coefficient of performance depends largely 

on the blade tip speed ratio sv  and the blade pitch angle, p . The blade tip speed ratio is expressed as the 

ratio of the turbine’s angular velocity to the wind speed (Olabi et al., 2021). 

However, In order to properly realize a model that follows the typical characteristics of a practical turbine, 

the following assumptions are implemented (Aliprantis & Lafayette, 2014). 

i. If the wind speed range is below the cut-in speed for the turbine, then the output power is assumed 

to be zero. 

ii. If the wind speed range is between the cut-in speed and the rated speed for the turbine, then the 

power output is the maximum extractable from the wind based on the pC  and wind speed relation 

for the turbine. 

iii. If the wind speed range is between rated and the cut-out speed for the turbine, then the power 

generated is the rated output of the plant. 

iv. If the wind speed range is above the cut-out speed, then the power generated is zero. 
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Based on the above assumptions, the mechanical power output of the turbine is given  
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where; 

rP  is the rated power output of the wind turbine 

 up vC  is the coefficient of performance of the turbine 

uv  is the prevailing incident wind speed adjusted to mass height 

inv  is the cut-in speed of the wind turbine 

rv is the rated speed of the turbine 

outv  is the cut-off/out speed of the turbine. 

3.1.2.2 Wind generator modeling 

The permanent magnet synchronous generator (PMSG) was used in converting the mechanical power of 

the turbine into useful electrical power. The PMSG has been used in various HPS applications comprising 

of wind energy system due to its low cost, high starting torque, absence of separate field excitation and 

limited number of control parameters (Wang et al., 2009; Yaramasu et al., 2015). The model of the PMSG 

which is readily available in Mathworks was included as part of the wind energy conversion system. 

Nevertheless, the equivalent circuit of the PMSG shown in Figure 3.4 was used to model the electrical side 

of the generator as follow.  

In accordance with Kirchhoff’s voltage law, the output voltage of the generate oV  is given by Sharaf et al., 

(2007) as; 

                   
dt

dI
LRIKV a

aaaammo             3.29 

Where oV  is the output voltage of the generator, mK  is the torque constant, m  is the motor speed and aI

, aR  and aaL  are the current, resistance and inductance of the armature respectively. 

The electromechanical torque developed by the generator on the mechanical side is a function of the 

armature current aI  and is computed using equation (3.30) (Sharaf et al., 2007). 
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Figure 3.4: Equivalent circuit of PMSG (Sharaf et al., 2007) 
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          ame IKT             3.30 

This torque produces the angular velocity, which is a function of the inertia mJ  and frictional force mB  of 

the machine and the load. The Inertial mJ  as described by Sharaf et al., (2007) is estimated using equation 

(3.31). 

            mmLe
m

m BTT
dt

d
J 


           3.31 

Hence, the electrical power output produced by the generator in time t  using the mechanical power of a 

single wind turbine is given in equation (3.32) (Harrouz et al., 2019). 

            WTGTwmwE PP               3.32 

where T  is the efficiency of the wind turbine and WTG  is the efficiency of the generator. 

The total electrical power generated by the wind energy system in time t  is estimated according to 

Ogunjuyigbe et al., (2016) using equation (3.33). 

             WTGwwmwT APtP             3.33 

where  wTP is the total electrical power output of the wind generator and wA  is the swept area of the wind 

turbines.  

Thus, the number of wind turbines required by the proposed HPS is given using equation (3.34) 

(Ogunjuyigbe et al., 2016). 

 wT

fL
T P

SP
N


             3.34 

where TN  is the number of wind turbines, fS is the safety factor and LP  is the load power required at the 

location. 

3.1.3 Mathematical model of diesel generator unit 

An efficient model of the diesel generator unit can significantly improve the analysis stage prior to the 

optimal design of the HPS, as well as its control, identification, performance prediction and diagnosis 

processes (Benhamed et al., 2016). A diesel generator set comprises a prime mover (diesel engine and 

governor), a synchronous electrical generator and the automatic voltage regulator (AVR). The diesel engine 

converts the chemical energy from the fuel into useful mechanical power which is used to drive the 

generator. The speed governor insures a constant speed operation, while the AVR stabilizes the generated 

voltage for various loads conditions (Theubou et al., 2012). 
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Generally, the mathematical models for the DG set are classified into two groups depending on the design 

approach. When considering small time-steps (seconds) it is necessary to consider the dynamic effects of 

the engine, and with bigger time steps (hours) a linear or quadratic equation describes the performance with 

enough accuracy (Belyaev & Gerasimov, 2020). Therefore, since a time step of 1 hour is common in most 

literatures for techno-economic performance analysis, the linear model is considered in this study 

simulation purpose. The most common model used to describe the fuel consumption versus electrical power 

output of diesel generators is given in equation (3.35) (Bilal et al., 2012). 

   ffceffdg EP             3.35 

where dgP is the electric power generated by the DG from fuel, ceff  is the conversion efficiency and ffE

is the total energy content of oil which is approximately proportional to the volume of oil.  

However, from control point of view, a diesel engine may be considered as speed-feedback system. The 

model of the fuel actuator system is usually represented as a first order phase-lag network, which is 

characterized by gain 2K  and the time constant 2  as depicted in Figure 3.5a. The output of the actuator 

is the transfer function equation described by Luo et al., (2011) is given in equation (3.36). 

 
 

 sI
KK

s
2

23

1 
            3.36 

where   s  is the fuel flow rate, 3K  is current driver constant and   sI  is the input current.  

The fuel flow  s  rate is then converted into mechanical torque sT  after a pure time delay 1  and engine 

torque constant, 1K  as represented in Figure 3.5b. The transfer function equation of Figure 3.5b as 

described by Luo et al., (2011) is given in equation (3.37)  

      s
s eKsT 1

1


            3.37 

The differential equations for the diesel engine and speed regulation are as given in equation (3.38) and 

(3.39) respectively (Chen, 2010; Galiullin & Valiev, 2017). 

  



ref

c k
dt

dP 1
            3.38 

















 B
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c

B m
R

kPK
dt

dm



2

2
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Figure 3.5a: The actuator model  (Luo et al., 2011) 
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Figure 3.5b: Diesel engine model  (Luo et al., 2011) 
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Where cP is the compression ratio, 1k  is the governor summing loop amplification factor, dR  is the diesel 

engine permanent speed droop, ref  is the engine speed and Bm  is the engine fuel consumption rate. 

The PMSG model in Mathworks was also used to model the generator side of the DG unit. The generator 

converts the mechanical torque sT  to the electrical power delivered by the generator. Hence, the power 

generated by the DG unit in time t  is computed using equation (3.40) (Bilal et al., 2012). 

              dgnomdg PP             3.40 

where dgP , nomP  and  dg  represent the power output, the nominal power and the efficiency of the DG 

unit respectively. 

Since a number of small sized DG set is considered in this study as compared to using a single large sized 

DG unit common with most HPS applications, it is important to model the total power output of the split 

genset system. The main reason for using a split DG set in this study is to be able to match the variations 

in load during the period of power deficit from other generating sources. Subsequently, this will result to 

low fuel consumption, low carbon emission and improved overall reliability of the HPS. The total power 

output of the DG set system is modeled in accordance with the model developed in the work of Ayodele et 

al., (2017). A typical configuration of the split genset considered in this study is depicted in Figure 3.6.  

Each of the DG unit in the configuration is equipped with a control switch wS which is assigned binary 

digit 0 and 1 to control the power output of the split DG set. The possible arrangements of the DG units 

required to supply a load at any time t is determined using Boolean logic conditions. Hence, for n  number 

of switches, the number of possible configurations of the DG set is computed using “ 12 n ”. For the 

purpose of this study, three split DG units were considered in the configuration of the DG set; using the 

Boolean logic combination rule, the DG set can supply the load in seven different configurations. Hence, 

the total power output from the DG set at any time t  is expressed as (Ayodele et al., 2017);  

       nomwnomwnomwsdg PSPSPStP 332211                       3.41 

3.1.4 Mathematical model of battery storage device 

The Battery Energy Storage (BES) is an important sub-system of the HPS. It is commonly used as backup 

energy sources due to the intermittent nature of the RE generating sources. Several studies have reported 

on the use of lead acid batteries for different HPS designs due to their reasonable, however, for the purpose 

of this study, the lithium ion battery was used due to its high efficiency and reliability (Kiehbadroudinezhad 

& Merabet, 2022).  
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Figure 3.6: Split genset model (Ayodele et al., 2017) 
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The Lithium ion battery used in this study is modeled based on controlled voltage source connected in series 

with a constant resistance as depicted in Figure 3.7. The model was modeled by shepherd in 1969; it was 

adopted due to its simplicity and the availability of model variables, which are easily specified in the 

manufacturer’s datasheet (Tremblay & Dessaint, 2009). Basically, the shepherd model represents 

accurately the voltage dynamics when there is variation in the current and also consider the open circuit 

voltage relative to the state of charge (SOC) of the battery As a result, a non-linear term, referred to as 

polarization resistance was introduced to the discharge model equation for better accuracy. The polarization 

resistance as described by shepherd is given in equation (3.42), while the voltage of the BES during 

discharge period is modeled using equation (3.43) (Hinz, 2019; Tremblay & Dessaint, 2009). 

       









 it

itQ
QKRpol            3.42 

   itBAi
itQ

QKRiit
itQ

QKEDODV tvBES 





  exp0        3.43 

Where 0E  represents the battery constant voltage, K  is used to describe the polarization constant, Q  

represents the maximum battery capacity, it   idt  represents the main charge of the battery, R  represents 

the internal resistance, i  is a term describing the battery current, i  represents the current dynamics of the 

battery at low frequency, vA  describes the voltage drop of the battery during the exponential zone period 

and tB  represents the time constant during the exponential zone.  

On the other hand, during the charge period, the voltage of the BES will rise rapidly and hence, there is a 

corresponding change in the polarization resistance as given in equation (3.44) (Hinz, 2019; Tremblay & 

Dessaint, 2009). 

        









it
QKRpol            3.44 

The polarization resistance term described in equation (3.44) will continue to increase until the battery is 

fully charged, that is, when the current is equal to zero. However, this may not be achievable in real life 

applications, hence, in his experiment, shepherd assume that only 90 % of the battery capacity is fully 

charged and the remaining 10 % was shifted towards the polarization resistance. Therefore, the new 

polarization resistance as expressed by shepherd is given in equation (3.45) (Hinz, 2019; Tremblay & 

Dessaint, 2009). 

    
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          3.45 
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Figure 3.7: Equivalent circuit of lithium ion battery model (Hinz, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 



  

133 
 

Hence, voltage of the BES during the charging cycle using the RE either of the RE generating sources is 

given in equation (3.46) (Hinz, 2019; Tremblay & Dessaint, 2009). 

          itBAi
Qit

QKRiit
itQ

QKESOCV tvBES 





  exp
1.00        3.46 

At full charge, the voltage of the BES is computed using equation (3.47) as follows. 

    vfullBES AiREV  0           3.47 

At the end of the discharge period, the reverse voltage of the BES as described by shepherd is computed by 

replacing the time constant tB  with an approximate term, 














exp

3
Q

 using equation (3.48) while the nominal 

voltage of the battery is computed using equation (3.49) as follow (Hinz, 2019; Tremblay & Dessaint, 

2009). 

             
















 exp

exp
exp

exp
0exp

3exp Q
Q

ARiiQ
QQ

QKEV vBES        3.48 

            
















 nomvnom

nom
nomBES Q

Q
ARiiQ

QQ
QKEV

exp
0

3exp        3.49 

The capacity of the BES system required in the proposed HPS is largely dependent on the autonomy days. 

The BES autonomy days is defined as the total number of days the BES system is able to supply the load 

without being recharged. A period of five days have been used in many literatures HPS design and was also 

used in this study. Hence the nominal capacity of the BES system in this study is computed using equation 

(3.50) (Adebanji et al., 2020; Ogunjuyigbe et al., 2016). 

INVBESBES

dL
BES DODV

AP
C

 




max

.           3.50 

where BESC  is the nominal capacity of the BES, BESV is the voltage of the BES at maximum permissible 

depth of discharge and dA  is the battery autonomy days. 

The SOC of the BES system at any time t  is thus expressed using equation (3.51) as follows (Abedi et al., 

2012). 

    100
.

1 
BES

BESBES

C
P

tSOCtSOC


          3.51 
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 tSOC  and  1tSOC  represent the state of charge of the BES in time step t  and 1t , the positive and 

negative signs indicates the charging and discharging mode of the BES  respectively and BESP  is the power 

charged or discharged from the battery at any time t . 

3.1.5 Mathematical model of power converter system 

The configuration of many HPS designs usually contains a bi-directional converter which consists of both 

rectifier and inverter (Aditi & Pandey, 2016). The inverter converts the DC power components from the 

DC bus to the AC form at the desired load voltage and frequency while the rectifier converts the AC 

components from the AC bus back to the DC form used in charging the battery. The bidirectional inverter 

is modeled in two modes namely the rectifier mode and the inverter mode (Bissey et al., 2018; Rashid et 

al., 2021). 

In the rectifier mode, the power output of the bi-directional converter at any time t is modeled as follows 

(Rashid et al., 2021).  

   tPtP INVinrecoutrec             3.52 

However, when the converter is operated in the inverter mode, the power output of the bi-directional 

converter is computed using equation (3.53) (Rashid et al., 2021). 

   tPtP INVininvoutinv             3.53 

where outrecP   and inrecP   are the output and input power of the bidirectional converter in the rectifier mode 

respectively, while outinvP   and ininvP   are the output and input power of the bidirectional converter in the 

inverter mode respectively. 

3.2 Power dispatch strategy of the proposed HPS  

The power output of the wind turbine generator was estimated equation (3.33), taking the average hourly 

wind speed as input. Also, the power output of the bifacial PV panel system was estimated at an hourly 

basis according to equation (3.15), using the estimated average hourly front and back irradiances as inputs. 

The total hourly generated power from the renewable energy sources is added together and compared with 

the hourly load demand. The battery energy storage is operated only when there is excess or insufficient 

output power from the renewable sources. When the power generated from the renewable energy sources 

are in excess compared to the power demanded by the load, the excess power is used to charge the battery 

until it reaches its maximum state of charge maxsoc , however, when there is shortage of power from the 

renewable energy sources, the battery is discharged to meet the deficit until it reaches its maximum depth 

of discharge maxDOD . The split genset is operated when there is shortage of power from the renewable 
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sources and the battery energy storage is at maximum depth of discharge, and unable to deliver power to 

the load. The comparator model in Figure 3.6 is usually used to check for the amount of deficit power in 

order to determine which of the DG unit has to be turned on. The first DG unit is then turned on to serve 

the load; however, if the power demanded by the load is greater than the capacity of the first DG unit, the 

second DG unit is operated in parallel with the first to supply power to the load, if the power demanded by 

the load is still unmet, the split genset is operated at its rated capacity. The stepwise procedure of the 

dispatch strategy is outlined as follows. 

Step 1 Calculate the power generated by the Bifacial PV and wind turbine systems at time t  using 

equation (3.15) and (3.33) respectively, and calculate the total power generated from the 

renewable energy sources using      tPtPtP WTGBPVREs   and evaluate the power 

required by the load in one hour step.  

Step 2 Compare the total power generated by the renewable sources and battery state of charge 

with the power required by the load at every hour. 

Step 3 Check if   INVLREs tPP   and   max1 soctsoc  ; supply power to the load and 

charge the battery. 

Step 4  Check if   INVLREs tPP   and   max1 soctsoc  ; supply power to the load, stop 

charging the battery and update the battery state of charge.  

Step 5  Check if    INVLREs tPP  ; supply power to the load only.  

Step 6 Check if    INVLREs tPP   and   max1 DODtDOD  ; supply power to the load  by 

discharging the battery to meet the power shortage. The power supplied by the battery at 

this step is calculated using the expression,       tPtPtP REsINVLBES   . 

Step 7 Check If   INVLREs tPP   and   maxDODtDOD  ; stop discharging the battery, 

update the battery depth of discharge and evaluate the power deficit. 

Step 8 Check if   INVLREs tPP   and   maxDODtDOD  , supply the power deficit using 

by switch on DG unit 1   
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Step 9 Check if   INVLREs tPP  ,   maxDODtDOD  and  1dgINVL PP  , supply the 

power deficit using DG units 1 and 2. 

Step 10 Check if   INVLREs tPP  ,   maxDODtDOD   and  21 dgdgINVL PPP  , 

supply the load using the rated capacity of the split genset and dump any excess energy.  

The flowchart of the power dispatch strategy described above is as shown in Figure 3.8.  

3.3 Summary 

The mathematical expression of each components of the proposed HPS is presented in this chapter. It begins 

by presenting the various techniques used in modeling the irradiance reaching both the front and back side 

of the bifacial PV module. This is preceded by the mathematical modeling of the wind turbine power output, 

diesel generator set, battery storage scheme and the converter system. The step by step procedure of the 

power dispatch strategy of the HPS concludes the chapter. 
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Figure 3.8: Flowchart of the power dispatch strategy for the proposed HPS 
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CHAPTER FOUR 

DESIGN METHODOLOGY  

4.1 Research approach 

This study is focused on the optimal design of HPS consisting of bifacial PV, wind turbine, battery energy 

storage and split gensets. A multi-objective optimization solution method was employed to find the optimal 

design of the proposed off-grid HPS that guarantees reliable and continuous supply of electrical power at 

the least Life Cycle Cost and total environmental pollution. The proposed HPS consists of bifacial PV, wind 

turbine, battery system and split genset. Mathematical modeling of the individual components of the 

proposed HPS was carried out using Simulink software; in order to properly evaluate the performance of 

the bifacial PV, two orientation states namely vertical east-west and horizontal north-south are considered 

during the simulation process. For the vertical east-west orientation, the bifacial module was assumed to be 

installed with the front side facing the direction of the sun and the irradiance reaching the back side were 

estimated using the mathematical model of expression (3.20). On the other hand, for the horizontal north-

south orientation, the module was assumed to be tilted at an optimized angle of twenty degrees, and the 

irradiance reaching the back side is also estimated in accordance with expression (3.28). Each of the 

component models is then integrated together in a single HPS model.  

An optimization problem based on Life Cycle Cost (LCC) and Total Environmental Pollution (TEP) is 

developed and optimized using Giza Pyramid Construction (GPC) algorithm, Firefly Algorithm (FA) and 

Whale Optimization Algorithm (WOA) techniques. Optimization of the system is achieved not only by 

selecting an appropriate system configuration, but also by implementing a suitable dispatch strategy to 

control the flow of power in each of the energy generating sources. The proposed model is applied to a 

remote village in northern part of Nigeria in order to demonstrate the effectiveness of the proposed 

algorithms in terms of simulation run time, convergence speed and quality of solution. All simulation are 

done using MATLAB (R2021a) to check for the most feasible solution after the application of each 

optimization technique. The block diagram of Figure 4.1 shows the basic steps in achieving the optimal 

system design. 

4.2 Problem formulation 

The design process of any optimization problem includes defining the objective function(s), identifying the 

decision variables and defining the constraints. The ability to understand the link among these three 

elements is significant to achieving an optimal solution to a problem. Generally, a multi-objective 

optimization problem as described by Bouaouda & Sayouti, (2022)) is formulated in accordance with 

equation (4.1) to (4.4). 
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Figure 4.1: Framework of the system design 
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   Minimize       To xfxfxF ...,.........1              4.1 

subject to; 

       ,0xhi   ,,........,1 mi               4.2 

       ,0xg j   ,,........,1 kj              4.3 

         UL xxx                4.4 

Where  01 ............ ff  represent all the specified objective functions, x  denotes the vector of all the 

decision variables,  mhh .........1  is used to denote the equality constraints and  kgg ..........1  represent the 

inequality constraints, while Lx  and Ux  are the lower and upper limits on the decision variables 

respectively. A weighted sum method was employed to convert the multi-objective function to a single 

function F , where the pareto optimal solutions of the original multi-objective problem is defined as; 

Minimize       2211 , xfxfxF                 4.5    

Applying the weighted sum method to equation (4.5), the single objective function is thus expressed using 

equation (4.6) as follows;  

          2211 fwfwxF              4.6 

where 1w  and 2w  represent the importance of the two objective functions 1f  and 2f  respectively, such 

that; 

      121  ww     for 0, 21 ww             4.7 

The optimal design of the proposed HPS was aimed at minimizing two objective functions, the LCC and 

TEP of the system with respect to the decision variables and subject to the associated equality and inequality 

constraints. The objective functions, decision variables, as well as the design constraints are presented in 

the following sub-sections.  

4.2.1 Objective function 

The objective functions considered in this study are the LCC and TEP of the system, 1f  is used to denote 

the LCC, while the TEP is denoted by 2f . A detail evaluation of the two objective functions are presented 

as follows.   
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4.2.1.1 Life cycle cost (LCC) 

The life cycle cost of the system is used to describe the total amount spent on the system during its entire 

lifespan. The total amount spent include the initial capital cost, operation and maintenance cost, replacement  

 cost and fuel cost of the split genset. The LCC is described mathematically as follows. 

 sdgcccc FROMICLCCf 1            4.8 

where cIC  is the initial capital cost, cOM  is the operation and maintenance cost, cR  is the replacement 

cost and  sdgcF  is the fuel cost of the split genset. 

The initial capital cost is the sum of the capital cost of all the components of the system and is given in 

equation (4.9) as; 

321... dgdgdgBESBESWTGWTGbifbifc CCCCCCNCCNCCNCCIC           4.9 

Where bifCC  is the capital cost of one bifacial PV module, bifN  is the number of bifacial PV modules 

required by the system, WTGCC  is the capital cost of a wind turbine generator, WTGN  is the number of wind 

turbines, BESCC  is the capital cost of a single battery, BESN  is the number of batteries selected, 1dgCC  , 

2dgCC  and 3dgCC  are the capital costs of the DG units 1, 2 and 3 respectively. 

Moreover, the operation and maintenance cost of the proposed HPS is the sum of the individual components 

of the system and it is expressed as; 

)()()()( sdgcBEScWTGcBPVcc OMOMOMOMOM         4.10 

The operation and maintenance costs individual components are estimated using equations (4.11) 

to (4.14) as follow. 
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where  bifannC ,  WTGannC ,  BESannC , and  sdgannC are the annual operation and maintenance costs of the 

bifacial PV system, wind turbine, battery system and the split genset respectively, N  is the project lifetime 
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which is set to 30 years based on the lifespan of the bifacial PV module, rf  is the inflation rate, ri  is the 

interest rate and ohN  is the number of hours the split genset was operated during the project lifetime. 

The replacement cost is considered for the split genset and the battery energy storage system only. The 

replacement cost of these two components is estimated using equation (4.15) as follows.  
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         4.15  

where uC  is the cost of a single component to be replaced, rN  is the number of times the components 

must be replaced, iN  is the number of components to be replaced and  nomC  is the nominal capacity of the 

component to be replaced. 

The total fuel cost of the split genset is also estimated using equation (4.16) as follows.  
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         4.16 

The annual fuel cost,  fannC , annual fuel consumption of the split genset,  tFsdg  and the annual fuel 

consumption of each DG unit dgF  are estimated using equations (4.17) to (4.19) respectively. 

    sdgcfann FfC                    4.17 

  321 dgdgdgsdg FFFtF            4.18 

     rgdggdg PbPaF             4.19 

Where cf  is the fuel cost, 1dgF , 2dgF  and 3dgF  are the annual fuel consumption of the DG unit 1, 2 and 3, 

dgP  and rP  are the output power and rated power of each DG unit, while ga  and gb  represent the 

coefficient of fuel consumption can be found in the manufacturer’s datasheet. 

4.2.1.2 Total environmental pollution (TEP) 

The total environmental pollution (TEP) represents an objective function used to describe the emission of 

harmful gases into the environment throughout the entire lifespan of the system and denoted as 2f . The 

main component responsible for the emission of these gases is the split genset system. During the operation 

of the split genset, gases such as 2CO , 2SO  and xNO  are emitted into the atmosphere, the accumulation 

of these gases are included in the TEP objective and is estimated using equation 4.20 as follows.  
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           



N

t
sdgx tPNOSOCOTEPf

1
222          4.20 

Where 2CO , 2SO  and xNO  are the emission factors of gases  2CO , 2SO  and xNO  respectively 

and  tPsdg  represents the split genset output power at time t  

4.2.2 Design constraints 

The objective functions under consideration are subjected to the following equality and inequality 

constraints. Equality constraints are the type of constraints that must be obeyed by system at all time during 

the optimization process while inequality constraints are constraints that can either be obeyed or sidestepped 

by the system. The various equality and inequality constraints considered in the design process of the 

proposed HPS are presented as follow.   

4.2.2.1 Equality constraints 

1. The power balance relation 

At any instant t , the total power delivered by the proposed HPS must be greater than or equal to the total 

power required by the load at the specified location as expressed in equation (4.21). 

        0 tPtPtPtP LsdgBESREs                       4.21 

4.2.2.2 Inequality constraints  

1. The Reliability Objective Constraint  

The reliability objective considered is referred to as the Loss of Power Supply Probability (LPSP). The 

LPSP is a criteria used in literatures to measure the portion of the load at a specific location that the system 

is unable to supply at any point in time. For standalone applications, the value of the LPSP should be around 

0.01. Hence the LPSP of the proposed HPS is considered an inequality constraints which must be satisfied 

at all time and it is adopted from the work of Bhandari et al., (2015) and given in equation (4.22). 

           01.0LPSP            4.22 

The value of the LPSP is determined using equation (4.23) as follows.  
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LPSP min          4.23 

2. The constraint on number of system components 

The minimum and maximum number of components in the proposed HPS is also considered as an 

inequality constraint and it is expressed as; 

    maxmin ccc NNN             4.24 
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where cN  represents the Number of components, c required by the system,  mincN  and  maxcN  represent 

the minimum and maximum number of components required by the proposed HPS. For the purpose of this 

study, the system is designed to select a minimum of one (1) component, while the maximum number of 

components is estimated according to the peak power demand of the specific location using equation (4.25). 

      

 minc

peakL
c P

P
N              4.25 

where  peakLP  is the daily peak power required by the load and  mincP  is the minimum power output that 

can be generated from a single component. 

3. The battery energy storage capacity constraint  

Some limits should be considered during charging and discharging of the planned battery energy storage 

(BES) as the state of charge (SOC) of the batteries (should not exceed the capacity of the storage batteries 

but to overdo the minimum permissible storage level. Hence, the BES capacity is constrained using equation 

(4.26), while the SOC of the battery is constrained using equation (4.27). 

   (max))((min) BEScapBESBES PPP                        4.26 

           maxmin soctsocsoc             4.27 

4. The constraints on split genset 

In order to avoid collapse and damages to each generating unit, the hourly generation of each generating 

unit was bounded between the minimum and maximum generation as given in equation (4.28). 

           maxmin dgdgdg PtPP                         4.28 

5. Non-negativity constraints 

Since electrical power can only flow in one direction, all the energy generating components are expected 

to be non-negative and are constrained using equation (4.29). 

cc PP max,1             4.29 

where cP  is the power generated by each of the components and cmacP ,  is the maximum power output of 

the components. 

4.2.3 Design  variables 

The decision variables in any optimization problem are quantities that can be controlled by the decision-

maker. Their optimal values must be determined to achieve an optimal solution to the problem. In this 

study, four decision variables that are considered are presented as follows;  

i. the number of bifacial PV modules ( bifN ) 



  

145 
 

ii. the number of wind turbines ( WTGN ) 

iii. the number of batteries ( BESN ) 

iv. the rated capacity of each DG unit ( rP ) 

4.3 Implementation of Optimization Algorithm 

The optimal design of any HPS is a complex problem due to the various differing objectives such as cost, 

reliability, environmental pollution and many others. Hence, the concept of multi-objective solution method 

is well documented in solving problems with differing objectives. Nevertheless, the main issue associated 

with this kind of solution methodology is the issue of convergence and simulation run time. Thus, an 

optimization algorithm with the ability to produce quality solution at a faster convergence rate and minimal 

simulation run time is usually required. In this study, the implementation of the various optimization 

algorithms is discussed in this section. Three optimization techniques are applied to the optimization 

problem developed in section 4.2 to obtain the optimal system design with the least life cycle cost and total 

environmental pollution for a period of 30 years; and their performance were compared with one another.  

However, it is important to state that for most complex system designs such as the proposed HPS considered 

in this study, the mathematical modeling of the system described in chapter three (3) of this study plays a 

significant role in producing the optimal solution to the optimization problem. Therefore, the system is first 

simulated using the various mathematical models of the sub-systems described in sections 3.1 to 3.4 to 

accommodate uncertainties and gives true representation of the proposed HPS. Thereafter, the three 

optimization techniques are then applied to search for the most appropriate representation of the system and 

produce the optimal solution in a reasonable simulation run time. In order to properly evaluate the 

performance of the optimization algorithms, equal number of population size and number of iterations are 

selected for each algorithm. The implementation procedure of each of the optimization algorithms 

considered in this study is subsequently presented. 

4.3.1 Implementation of Firefly Algorithm 

For the optimal design of the proposed HPS, Firefly Algorithm (FA) is one of the optimization algorithms 

employed to obtain a system design that minimizes the life cycle cost and total environmental pollution 

produced by the system. FA is a meta-heuristic, nature-inspired optimization algorithm which is based on 

the social flashing behavior of fireflies. It has been applied to solve many engineering optimization 

problems due to its ability to achieve global optimum solution in limited simulation run time and its fast 

convergence speed.  
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The objective function, which also determines the fitness/light intensity of a firefly, the design constraints, 

design variables, components are all defined in the firefly algorithm. At the inception stage, a population 

of fireflies ( pf ) is generated and distributed evenly in a search medium according to expression (4.30) as 

follows.  

    Np ffffff .........,,, ,4321            4.30 

where N  represents the number of fireflies in the population.  

Moreover, other basic parameters of the firefly algorithm such as such as the randomness factor ( ), the 

initial attractiveness of a firefly ( 0 ), the light absorption coefficient of medium (  ) and light intensity (

L ) are also initialized. The design variables which represent the capacity of each sub-systems of the 

proposed HPS are defined in a vector named firefly as described using expression (4.31) as follows.  

   332211 .,.,.,,, hPhPhPPNPNPNf dgdgdgBESBESwEWTGbifbifi          4.31 

where if  is the ith  firefly, 1dgP , 2dgP  and 3dgP  are the selected capacities of the DG units 1, 2 and 3 

respectively during the entire lifespan of the system and 1h , 2h  and 3h  are hours of operation of each DG 

units during the entire lifespan of the system. 

In other words, each firefly represents a potential configuration of the proposed HPS. For every possible 

configuration, the light intensity (fitness value) of each firefly is simulated to check its feasibility based on 

the objective function of equation (4.5) subject to the various design constraints presented in section 4.2.2 

of this study. At the simulation stage, the mathematical expression of the various components of the 

proposed HPS described in section 3.1 is used to predict their output in each time period (one hour) based 

on the weather data of the proposed location. The simulation is run for 30 years to evaluate the performance 

of each firefly in the population. The simulation process simultaneously estimates the life cycle cost and 

the total environmental pollution for each possible configuration. 

At the optimization stage, each firefly is evaluated based on its light intensity (fitness value). The algorithm 

is run for 50 iterations, and in each iteration, the fitness value of one firefly is compared to another firefly 

in the search medium. Each of the firefly is made to fly in the search medium according to the number of 

the design variables. The movement of a firefly with a less fitness value is adjusted towards a firefly with 

a higher fitness value using equation (2.7). The process is repeated for each iteration until there is no firefly 

with a higher fitness value in the population or maximum number of iterations has been reached.  The firefly 

with the best fitness value (the least life cycle cost and total environmental pollution) represents the optimal 

design of the proposed HPS. The flowchart of the optimization process is depicted in Figure 4.2. 
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Figure 4.2: Flowchart of Firefly Algorithm for optimal design of the proposed HPS 
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4.3.2 Implementation of Whale Optimization Algorithm  

The optimal design of the proposed HPS was also carried out using Whale Optimization Algorithm (WOA). 

The algorithm was also implemented to obtain a system design with the least life cycle cost and total 

environmental pollution. Whale optimization algorithm is known for its intelligence capability when 

solving multi-dimensional optimization problems as it is inspired by the intelligent movement of humpback 

whales when hunting for their prey.  

In the implementation of the WOA technique, the objective function of equation (4.5) determines the target 

prey, which is assumed as the whale with the best fitness value in the population.  Hence, the objective 

function along with the design constraints and design variables are all defined in the algorithm. At the 

inception stage, a number of humpback whales ( pW ) is generated according to expression (4.32).  

     Np WWWWWW .........,,, ,4321            4.32 

where N represents the number of whales in the population.  

The basic parameters of the WOA technique such as such as the coefficient vectors ( A ) and (C ), 

movement probability ( mp ) and randomization number ( l ) are all initialized. The design variables which 

represent the capacity of each sub-systems of the proposed HPS are defined in a vector named whale as 

described using expression (4.33) as follows.  

  332211 .,.,.,,, hPhPhPPNPNPNW dgdgdgBESBESwEWTGbifbifi          4.33 

where iW  represents the ith  whale in the population.  

Basically, each humpback whale denotes a possible combination of the design variables. Hence, for every 

possible combination, the fitness of each whale is simulated to check its feasibility based on the objective 

function of equation (4.5) subject to the various design constraints presented in section 4.2.2 of this study. 

At the simulation stage, the mathematical expression of the various components of the proposed HPS 

described in section 3.1 is obviously used to predict their output in each time period (one hour) based on 

the weather data of the proposed location. The simulation is also run for 30 years to evaluate the 

performance of each whale in the population. The simulation process simultaneously estimates the life cycle 

cost and the total environmental pollution of for every possible combination of the design variables. 

At the optimization stage, the fitness value of each whale also referred to as search agent is evaluated based 

on the encoded objective function. At each iteration, the algorithm undergo three basic steps. The first step 

is to randomly search for the whale with the best fitness value within the population and identify it as the 

target prey using expression (2.9). The target prey in this study is denoted using equation (4.34) as follows. 
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  332211 .,.,.,,, hPhPhPPNPNPNW dgdgdgBESBESwEWTGbifbifi         4.34 

Once the target prey has been identified, the next step is for other search agents in the population to encircle 

the target prey using expression (2.11). The final step of the algorithm is to attack the prey using the bubble-

net attacking method described in expression (2.12). During the attacking process, the movement 

probability ( mp ) is used to decide either to encircle the target prey using the shrinking or spiral method. 

The position of each search agents in the population is then updated relative to the position of the target 

prey using expression (2.11). In order to obtain the optimal solution, the target prey is randomly selected in 

the population at every iteration using expression (2.14) until the maximum number of iteration is reached 

or convergence is achieved. The search agent with the same position as the target prey represents the optimal 

design of the proposed HPS. That is, the system design with the least life cycle cost and total environmental 

pollution. The flowchart of the optimization process is depicted in Figure 4.3. 

4.3.3 Implementation of Giza Pyramid Construction Algorithm 

The optimal design of the proposed HPS was also done using a recently introduced meta-heuristic 

optimization technique known as Giza Pyramid Construction (GPC) algorithm. The algorithm was applied 

to obtain a system design or configuration with the least life cycle cost and total environmental pollution. 

In its application to series of optimization problems including the optimal design of hybrid power system, 

GPC has been reported to have efficient capability in dealing with complex and multi-dimensional 

optimization problems such as the optimal design of the HPS proposed in this study.  

In a similar way to other optimization algorithms proposed in this study, the objective function, the design 

constraints, design variables, are all defined in the algorithm. At the initialization stage, a population of 

workers or stone blocks denoted using pG , is randomly generated and distributed evenly in a search 

medium according to expression (4.35) as follows.  

     Np GGGGGG .........,,, ,4321            4.35 

where N  represents the number of workers or stone blocks in the population.  

In addition to that, the basic parameters of the GPC algorithm such as such as the gravity ( g ), ramp angle 

( ), frictional force ( ff ), co-efficient of frictional force ( f ), as well as the substitution probability ( k

) were all set at the inception stage. The design variables which represent the capacity of each sub-systems 

of the proposed system are defined in a vector named worker or stone block as described using expression  
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Figure 4.3: Flowchart of Whale Optimization Algorithm for optimal design of the proposed HPS 
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(4.36) as follows. 

  332211 .,.,.,,, hPhPhPPNPNPNG dgdgdgBESBESwEWTGbifbifi          4.36 

where iG  is the ith  worker or stone block in the population.  

According to expression (4.36), every worker or stone block in the population represents a possible 

configuration of the proposed HPS. The stone block or worker with the best fitness value (least life cycle 

cost and total environmental pollution) is the optimal solution to the optimization problem. Subsequently, 

the fitness value of each worker or stone block in the population is simulated to check its feasibility based 

on the objective function of equation (4.5) subject to the various design constraints described in section 

4.2.2 of this study. At the simulation stage, the mathematical expression of the various components of the 

proposed HPS described in section 3.1 is also used to predict their output in each time period (one hour) 

based on the weather data of the proposed location. The simulation is also run for 30 years to evaluate the 

performance of the stone blocks or workers in the population. The simulation process simultaneously 

estimates the life cycle cost and the total environmental pollution for each worker or stone block and sends 

it to the optimization module for evaluation. 

At the optimization stage, individual worker or stone block is evaluated based on its fitness value. The 

fitness value of individual stone block or worker in the search space is estimated and the worker or stone 

block with the best fitness value is set as a as Pharaoh’s agent in the search space and saved in an external 

module. The selected Pharaoh’s agent guides the worker in updating their movement in order to displace 

the stone block. Each of the worker in the population continues to adjust their movement until there is a 

displacement in the stone block. In relation to the optimal design process, each worker is made to search 

for the optimal system design in accordance with the number of design variables. 

At the updating stage, the amount of stone block displacement or the amount of worker’s movement is 

calculated using expressions (2.18) or (2.19) respectively. Hence, new positions of each stone block or 

workers are estimated using expression (2.20). Furthermore, the probability of substituting a tired worker 

among the population during the search process is investigated using equation (2.21). Finally, new fitness 

value is calculated for each worker and compared with the fitness of the current Pharaoh’s agent in the 

external module. Once a worker with a fitness value that dominates the current Pharaoh’s agent in the 

external module is identified, it is set as new Pharaoh’s agent. The process is repeated for each iteration 

until there is no worker with a better fitness value than the current Pharaoh’s agent or maximum number of 

iterations has been reached. The current Pharaoh’s agent with the best fitness value (the least life cycle cost  
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and total environmental pollution) represents the optimal design of the proposed HPS. The flowchart of the 

optimization process is depicted in Figure 4.4. 

4.4 Performance metrics 

In addition to evaluating the performance of the optimization algorithms using the set optimization 

objectives (life cycle cost and total environmental pollution), the quality of the generated solutions using 

each of the proposed optimization techniques were numerically measured using their respective worst and 

best fitness score. The mean, median and standard deviation of the fitness score of each technique are 

obtained at each iteration of the optimization process, this numerical analysis is important to properly 

evaluate the performance of the optimization algorithms and determine the most efficient technique for the 

optimal design of the proposed HPS. 

While the mean and median were estimated using basic statistical expressions, the standard deviation and 

efficiency of each of the reported optimization techniques are estimated using equation (4.37) and (4.38) 

respectively. 
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where dS  represent the standard deviation,  bvF , represents the best fitness value/score,  wvF  represents 
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vF  represents the mean fitness value/score and rn  represents the number of 
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Figure 4.4: Flowchart of Giza Pyramid Construction for optimal design of the proposed HPS 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Results of feasibility assessment of the studied area  

The results of the feasibility assessment of the studied area for the implementation of the proposed HPS 

model is presented and discussed in this section. It provides basic information such as the hourly load 

demand data, as well as solar and wind resources of the area used in evaluating the performance of the 

proposed optimization algorithms. These information are necessary in making unbiased decision on the 

viability of the energy generating system.  

5.1.1 Load demand of the studied area 

A remote community located in the northern part of Nigeria is selected as the studied area for 

implementation of the proposed HPS model. The community, named Bara is located at ( '04128 N, '03739
E), Kirfi Local Government area of Bauchi state, Nigeria, and has a population of over 500 residents. The 

feasibility assessment of the area was done to determine the hourly load demand of the community; this 

information was obtained via a survey conducted among some of the residents in the community for a 

period of three days. The hourly energy usage profile of the community for one day period is depicted in 

Figure 5.1, with an average hourly demand of 17.29 hkw / . Based on the information contained in Figure 

5.1, the hourly peak load demand of the area occurred around 10:00 pm when most of the residents are back 

in their respective houses. It decreases slightly until midnight when it reaches the minimum load demand. 

It remains almost constant for up to six hours when most of the residents are asleep and rises steadily in the 

early mornings when the residents are awake, until it reaches its peak value again in the evening. 

5.1.2 Solar resource data of the studied area 

The hourly solar resource data of the community for a period of one year is obtained from an existing 

database of the Power Data Access Viewer of National Aeronautic and Space Administration (NASA). 

Based on the existing data database, the average hourly temperature of the selected village is 21.14 C0 , 

and the average hourly horizontal solar irradiance is 246 daymW // 2 . The direct horizontal solar 

irradiance was used as inputs to estimate the irradiance reaching the back side of the module. The hourly 

solar irradiance reaching the front side of the module, temperature and clearness index of the studied area 

for a period of two days are depicted in Figures 5.2, 5.3a and 5.3b respectively. It can be deduced from 

Figure 5.2a that the peak solar irradiance occurred from 11:00 pm to 1:00 pm in the afternoon, which can 

be regarded as the peak sunshine hours. However, during the early mornings and late evenings, the solar 

irradiances at these periods are observed to be at their minimum value due to the intermittent nature of the 

solar energy resources. 
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Figure 5.1: Hourly load profile of the studied area 
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Figure 5.2: Hourly solar irradiance of the studied area 
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Figure 5.3a: Hourly temperature of the studied area 

 

 

Figure 5.3b: Hourly clearness index of the studied area 
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5.1.3 Wind resource data of the studied area 

Similar to the solar resource data, the hourly wind resource data of the community for a period of one year 

was also obtained from an existing database of the Power Data Access Viewer of NASA. Based on the 

existing data database, the hourly wind speed of the studied area for a period of two days is as shown in 

Figure 5.4.  It can be observed from Figure 5.4 that the studied area is moderately blessed with wind energy 

resources. The maximum wind speed of the area was observed at the early hours of the morning, while the 

minimum wind speed occur at the hourly hours of the evening. The average hourly wind speed of the 

community at a height of 30 m above the ground is 4.7 1ms . However, for simulation purposes, the cut in 

speed was set at 3.4 1ms  while the cut-out speed was set at 20 1ms .  

5.2 Simulation results of major system components 

The output waveforms results obtained from the simulation models of bifacial module and wind turbine 

generator discussed in chapter three (3) of this study are presented in this section. The solar irradiance and 

wind speed data of the studied area is used in simulating the performance of the bifacial module and wind 

turbine generator for a period of forty-eight (48) hours; the corresponding power output waveforms 

obtained for each component are subsequently presented. 

5.2.1 Power output of bifacial PV module 

The power output produced by each of the orientation states of the bifacial PV module are presented in this 

sub-section. The estimated irradiance reaching the front and back side of the module for both orientation 

states is used in simulating the power produced by each orientation states. 

The power output waveform obtained for the front and back sides of the module for the horizontal north-

south orientation state is as depicted in Figure 5.5. From the result of Figure 5.5, it was observed that an 

increase in the value of the solar irradiance reaching the front and back sides of the module leads to a 

corresponding increase in the magnitude of the power output and vice versa.. The maximum power 

generated from the front side of the module is approximately 250 W, while the maximum power generated 

from the back side of the module is approximately 50 W. Consequently, the total power output waveform 

of a single bifacial PV module in the horizontal north-south orientation state is depicted in Figure 5.5b. It 

can be deduced from the plot of Figure 5.5b that the total maximum power extractable from a single bifacial 

module in horizontal north-south orientation state is approximately 300 W. 

  

 



  

159 
 

 

 

 

 

 

 

 

Figure 5.4: Hourly wind speed of the studied area  
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Time (Hour) 
Figure 5.5a: Hourly power output of the front and back side of bifacial PV in horizontal north-south 

orientation state 

 

Time (Hour) 
Figure 5.5b: Hourly total output power of a bifacial PV in horizontal north-south orientation state 
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For the vertical east-west orientation, the power output waveform obtained from the front and back sides 

of the module is as depicted in Figure 5.6. From the result of Figure 5.6a, the maximum power output 

observed for the front side of the module is approximately 250 W, while the maximum power out from the 

back side of the module is approximately 75 W.  It was observed that the maximum power output produced 

from the back side of the module for vertical east-west orientation state is 33.33 % more than the maximum 

power produced from the back side of the module for horizontal north-south orientation state. The total 

power output waveform of a single bifacial PV module in the horizontal north-south orientation state is 

depicted in Figure 5.6b. It can be deduced from the plot of Figure 5.6b that the total maximum power 

extractable from a single bifacial module in the vertical east-west orientation state is approximately 330 W.  

5.2.2 Power output of wind turbine generator 

The power output waveform for a single wind turbine generator for a period of forty-eight (48) hours is 

depicted in Figure 5.7. It was observed that the power output produced by the wind turbine fluctuates 

throughout the day due to the intermittent nature of the resources at the studied area. The maximum and 

minimum power outputs for the first day is approximately 275 W and 40 W respectively; while the 

maximum and minimum power output for the second day is approximately 450 W and 60 W respectively.   

5.3 Simulation results of optimal system design 

Simulation results of optimal system design, as well as the different combination of energy generating 

sources considered to meet the energy demand of the studied area are presented and discussed in this 

section. The techno-economic specifications of each of the sub-system of the proposed HPS, which also 

serve as part of the input data used for system design and optimization are presented in Table 5.1 to Table 

5.5, while the parameters of the optimization algorithms are given in Table 5.6a to Table 5.6c. In order to 

demonstrate the viability of the proposed HPS for electrification of the studied area in terms of LCC and 

TEP, the optimal design of the system is carried out for three different hybrid configurations using each of 

the proposed optimization techniques; and the results are compared with a system configuration of three 

(3) split genset only. The optimal design of the system was carried out for each orientation state of the 

bifacial module. The various combination of energy systems considered are categorized under four (4) case 

studies as follow.  

i. Case one: Three split genset only  

ii. Case two: Hybrid Wind turbine/Battery/split genset 

iii. Case three: Hybrid Bifacial PV/Battery/split genset  

iv. Case four: Hybrid Bifacial PV/wind turbine/Battery/split genset  

In each case, the LCC and TEP of each of the various combination are noted for comparison. 
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Figure 5.6a: Hourly power output of the front and back side of bifacial PV in the vertical-east west 

orientation state 
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Figure 5.6b: Hourly total output power of a bifacial PV in the vertical east-west orientation state 
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Figure 5.7: Hourly power output of the wind turbine 
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Table 5.1: Techno-economic specification of the bifacial PV module 
Parameters Values Unit 

Model PERC JKM385M-72H-BDVP N/A 
Maximum power 385 Watts 

Maximum power current 9.56 A 
Maximum power voltage 40.3 V 

Module efficiency 18.81 % 
Module temperature 45 C0  
Module dimension 2031100830 mm  

Temperature co-efficient 0.35 C0%  
Bifaciality factor 75 % 

Initial cost 500 US Dollars 
Annual O & M 1 % 

Interest rate 9 % 
Inflation rate 6 % 

Lifecycle 30 Years 
 
Table 5.2: Techno-economic specifications of the wind turbine 

Parameters Values Unit 
Model SI-172625 N/A 

Rated power 500 Watts 
Rated voltage 24 V 
Rotor diameter 1.44 m 

Cut-in wind speed 2.5 m/s 
Rated wind speed 10 m/s 

Cut-out wind speed 30 m/s 
Hub height 12 meters 
Efficiency 96 % 

Initial cost/unit 500 US Dollars 
Annual O & M/unit 3 % 

Interest rate 9 % 
Inflation rate 6 % 

Lifecycle 25 Years 
 

 

 

 

 

 



  

165 
 

Table 5.3: Techno-economic specifications of the battery storage system 
Parameters Values Unit 

Model KJ24360 N/A 
Size of a single battery 360 Ah 

Autonomy days 3 Days 
Depth of discharge (DOD) 80 % 

Minimum state of charge (soc) 20 % 
Battery efficiency 90 % 
Inverter efficiency 80 % 

Battery voltage 24 V 
Initial cost/unit 300 US Dollars 

Annual O & M cost 3 % 
Replacement cost/unit 300 US Dollars 

Interest rate 9 % 
Inflation rate 6 % 

Lifecycle 10 Years 
 

Table 5.4: Techno-economic specifications of each of the DG unit 
Parameters Values Unit 

Model K20U-IV-SDMO N/A 
Rated Power of each DG unit 20 kVA 

Rated voltage 220 V 
Initial Cost/kW 500 US Dollars 

Annual O & M/kW 40 US Dollars 
Replacement cost/kW 500 % 

Fuel Cost/litre 1.5 US Dollars 
Interest rate 9 % 
Inflation rate 6 % 

Lifecycle 10 Years 
Power Factor 0.85 N/A 

 

Table 5.5: Emission factors of harmful gases 
Gases Emission rate (g/kWh) 

2CO  697 

2SO  0.5 

xNO  0.22 
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Table 5.6a: Optimization Parameters of Firefly Algorithm 
S/N Parameter Value 

1 Maximum Iteration 20 

2 Number of Fireflies 50 

3 Light absorption coefficient  100 

4 Randomness factor 100 

5 Initial attractiveness 50 

6 Light Intensity 30 

 

 

 

Table 5.6b: Optimization Parameters of Whale Optimization Algorithm 
S/N Parameter Value 

1 Maximum Iteration 20 

2 Number of Search Agents 50 

3 Coefficient Vector A 100 

4 Coefficient Vector C 100 

5 Movement Probability 0.5 

6 Randomness Parameter 10 

 
 
 
 
 
Table 5.6c: Optimization Parameters of Giza Pyramid Construction 

S/N Parameter Value 
1 Maximum Iteration 20 

2 Number of stone blocks or workers 50 

3 Acceleration due to gravity 100 

4 Ramp angle 100 

5 Substitution probability 0.5 

6 Frictional force 6 

7 Co-efficient of frictional force 10 
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5.3.1 Case one: Three split genset only   

For case study one, a system configuration of three split genset only is used to supply the energy demand 

of the studied area for a period of 30 years. The split genset is sized to supply 120 % of the village’s hourly 

peak energy requirement, with each DG unit contributing 40 % of the total capacity of the split genset. The 

operational behavior of the system for a period of 48 hours and ten (10) days is as shown in Figures 5.8a 

and 5.8b respectively. It can be inferred from Figure 5.8a that each DG unit in the split genset configuration 

is operated based on the hourly energy requirement of the area. Moreover, the performance in terms of LCC 

and TEP are presented in Table 5.7, a LCC of $1,830,752.40 and TEP of 3,241,987 kg are recorded for the 

entire lifespan of the system. The high emission value indicates the environmental implications of using 

diesel generator only in meeting the energy requirement of the area. 

5.3.2 Case two: Hybrid Wind turbine/Battery/split genset 

For Case study two, three energy generating sources comprising of wind turbine generator, battery energy 

system and the split genset are considered to meet the energy demand of the studied area for a period of 30 

years. The optimal design of the hybrid system is done using each of the proposed optimization techniques. 

The performance of the system in terms of the evaluated values of LCC and TEP of each optimization 

techniques are noted for comparison. The optimal design results of each optimization techniques are 

presented in the following sub-sub-sections. 

5.3.2.1 Optimal design result using Firefly Algorithm (FA) 

Firefly Algorithm (FA) is implemented to determine the most appropriate components combination of the 

system configuration; a combination of 97 wind turbines and 21 batteries, in addition with the operational 

hours of the split genset are selected by the algorithm to meet the energy demand of the studied area. The 

operational behavior of the system for a period of forty-eight (48) hours and ten (10) days is depicted in 

Figures 5.9a and 5.9b respectively. It can be inferred from Figure 5.9a that the SOC of the battery increases 

slightly in accordance with an increase in the hourly power output of the wind turbine between the hours 

of 12:00 midnight and 1:00pm until it reaches its peak value at 2:00 pm. It decreases gradually from 2:00 

pm until 4:00 pm when it reaches it minimum DOD. At this period, the split genset is switched on to cover 

the deficit in energy. The performance in terms of LCC and TEP are presented in Table 5.8a. A LCC of 

$1,518,636.76 and TEP of 2,564,611.03 kg were recorded for the hybrid system using FA. The high values 

of LCC and TEP for the configuration indicates a high commitment of the split genset during the lifespan 

of the system 

 

 



  

168 
 

 

Duration (hours) 

Figure 5.8a: System behavior of three split genset configuration for a period of 48 hours 
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Figure 5.8b: System behavior of three split genset configuration for a period of 10 days 
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Table 5.7: Performance of three split genset configuration 
Particulars System Configuration 

Three Split Genset Only 

DG unit 1 DG unit 2 DG unit 3 

Hours of Operation 262,800 197,100 65,700 

LCC $1,830,752.40 

TEP 3,241,987.00 kg 
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Duration (hours) 

Figure 5.9a: System behavior of wind/battery/split genset configuration using FA for a period of 48 hours 

 

Duration (hours) 

Figure 5.9b: System behavior of wind/battery/split genset configuration using FA for a period of 10 days 
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Table 5.8a: Performance of the hybrid wind/battery/split genset system using FA 
Particulars System Configuration 

Hybrid Wind Turbine/Battery/Split Genset 
Components Wind Turbine Battery Split Genset 

Number of 
Components 

97 21 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 251156 135107 55844 

LCC $1,518,636.76 
TEP 2,564,611.03 kg 

 

Table 5.8b: Performance of the hybrid wind/battery/split genset system using WOA 
Particulars System Configuration 

Hybrid Wind Turbine/Battery/Split Genset 
Components Wind Turbine Battery Split Genset 

Number of 
components 

122 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 237903 127852 53452 

LCC $1,468,379.89 
TEP 2,431,264.13 kg 

 

Table 5.8c: Performance of the hybrid wind/battery/split genset system using GPC technique 
Particulars System Configuration 

Hybrid Wind Turbine/Battery/Split Genset 
Components Wind Turbine Battery Split Genset 

Number of 
Components 

111 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 244859 130997 54679 

LCC $1,495,747.57 
TEP 2,490,797.21 kg 

 

 

 



  

172 
 

5.3.2.2 Optimal design result using Whale Optimization Algorithm (WOA) 

Whale Optimization Algorithm (WOA) is also implemented to determine the most appropriate components 

combination of the system configuration for case study two. A combination of 122 wind turbines and 32 

batteries, in addition with the operational hours of the split genset are selected by the algorithm to meet the 

energy demand of the studied area. The operational behavior of the system for a period of forty-eight (48) 

hours and ten (10) days is depicted in Figures 5.10a and 5.10b respectively. It can be inferred from Figure 

5.10a that there is an increase in the SOC of the battery due to an increase in the power output of the wind 

turbine, it increases betwthe hours of 1:00 am and 1:00 pm until it reaches its peak value at 2:00 pm. It 

decreases gradually from 2:00 pm until 8:00 pm when it reaches it minimum DOD. At this period, the split 

genset is switched on to cover the deficit in energy. The performance in terms of LCC and TEP are presented 

in Table 5.8b. A LCC of $1,468,379.89 and TEP of 2,431,264.13 kg are also recorded for the hybrid system 

using WOA. The corresponding reduction in the values of LCC and TEP as compared to that of FA 

technique indicates a decrease in the hourly commitment of the split genset during the lifespan of the 

system. 

5.3.2.3 Optimal design result using Giza Pyramid Construction (GPC) Algorithm 

The GPC technique is also implemented to determine the most appropriate components combination of the 

system configuration for case study two. A combination of 111 wind turbines and 32 batteries, in addition 

with the operational hours of the split genset are selected by the algorithm to meet the energy demand of 

the studied area. The operational behavior of the system for a period of forty-eight (48) hours and ten (10) 

days is depicted in Figures 5.11a and 5.11b respectively. It can be seen from Figure 5.11a that there is an 

increase in the SOC of the battery due to an increase in the power output of the wind turbine, it increases 

betwthe hours of 1:00 am and 1:00 pm until it reaches its peak value at 2:00 pm. It decreases gradually from 

2:00 pm until 6:00 pm when it reaches it minimum DOD. At this period, the split genset is switched on to 

cover the deficit in energy. The performance in terms of LCC and TEP are presented in Table 5.8c. A LCC 

of $1,495,747.57 and TEP of 2,490,797.21 kg are as well recorded for the hybrid system using GPC. Similar 

to WOA technique, the corresponding reduction in the values of LCC and TEP as compared to that of FA 

technique indicates a decrease in the commitment of the split genset during the lifespan of the system. 

5.3.3 Case three: Hybrid Bifacial PV/Battery/split genset 

For Case study three, three energy generating sources comprising of bifacial PV module, battery energy 

system and the split genset are considered to meet the energy demand of the studied area for a period of 30 

years. In order to evaluate the performance of the bifacial PV on optimal system design, the two  



  

173 
 

 

Duration (hours) 

Figure 5.10a: System behavior of wind/battery/split genset configuration using WOA for a period of 48 
hours 
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Figure 5.10b: System behavior of wind/battery/split genset configuration using WOA for a period of 10 
days 
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Figure 5.11a: System behavior of wind/battery/split genset configuration using GPC for a period of 48 
hours 

 

Duration (hours) 

Figure 5.11b: System behavior of Wind/battery/split genset configuration using GPC for a period of 10 
days 
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orientation states are considered in the optimization process. The optimal design of the hybrid system is 

also carried out using each of the proposed optimization techniques. The performance of the system in terms 

of the evaluated values of LCC and TEP of each optimization techniques are noted for comparison. The 

optimal design results of each optimization techniques are presented in the following sub-sections. 

5.3.3.1 Optimal design results using Firefly Algorithm (FA) 

Firefly Algorithm (FA) is implemented to determine the most appropriate components combination of the 

system configuration for each orientation states. For vertical east-west orientation state, a combination of 

152 bifacial PV modules and 29 batteries, in addition with the operational hours of the split genset are 

selected by the algorithm to meet the energy demand of the studied area. The operational behavior of the 

system for a period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.12a and 5.12b 

respectively. It can be inferred from Figure 5.12a that there is an increase in the SOC of the battery between 

the hours of 9:00 am and 1:00 pm. The increase in the SOC of the battery can be attributed to daytime 

period when there is abundance of solar radiation. It reaches its peak value at 2:00 pm, and decreases 

gradually from that period until 8:00 pm when it reaches its minimum DOD. At this period, the split genset 

is switched on to cover the deficit in energy.  

The performance in terms of LCC and TEP are presented in Table 5.9a. A LCC of $859,936.15 and TEP 

of 1,326,259.09 kg are recorded for the hybrid system using FA. It is observed that there was a significant 

drop in the values of LCC and TEP for this configuration as compared to the wind turbine/battery/split 

genset configuration. This reduction can be attributed to lesser commitment of the split genset during the 

lifespan of the system. 

Moreover, the algorithm is also implemented for the horizontal north-south orientation state; a combination 

of 161 bifacial PV modules and 31 batteries, in addition with the operational hours of the split genset are 

selected to meet the energy demand of the studied area. The operational behavior of the system for a period 

of forty-eight (48) hours and ten (10) days is depicted in Figures 5.13a and 5.13b respectively. The 

operational behavior of the system for the horizontal north-south orientation is quite similar to that of the 

vertical east-west orientation. The only difference is the increase in the number of bifacial PV modules and 

battery units selected by the algorithm. The performance in terms of LCC and TEP are presented in Table 

5.9b. A LCC of $879,568.94 and TEP of 1,346,022.01 kg are recorded for the hybrid system using FA. It 

is observed that there is a slight increase in the values of LCC and TEP obtained for the horizontal north-

south orientation state as compared to the vertical east-west orientation state. The increment may be 

attributed to the difference in the additional energy produced by the module for both orientation states. 
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Duration (hours)  

Figure 5.12a: System behavior of bifacial PV/battery/split genset configuration using FA for a period of 
48 hours for vertical east-west orientation state 

 

Duration (hours)   

Figure 5.12b: System behavior of bifacial PV/battery/split genset configuration using FA for a period of 
10 days for vertical east-west orientation state 
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Table 5.9a: Performance of the hybrid bifacial PV/battery/split genset system using FA for vertical east 
west orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
Components 

152 29 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 113819 65234 26560 

LCC $859,936.15 
TEP 1,326,259.09 kg 

 

Table 5.9b: Table 5.3a: Performance of the hybrid bifacial PV/battery/split genset system using FA for 
horizontal north-south orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
components 

161 31 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 113819 68645 29367 

LCC $879,568.94 
TEP 1,346,022.01 kg 
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Duration (hours) 

Figure 5.13a: System behavior of bifacial PV/battery/split genset configuration using FA for a period of 
48 hours for horizontal north-south orientation state 

 

Duration (hours)  

Figure 5.13b: System behavior of bifacial PV/battery/split genset configuration using FA for a period of 
10 days for horizontal north-south orientation state 
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5.3.3.2 Optimal design results using Whale Optimization Algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is also implemented to determine the most appropriate 

components combination of the system configuration for each orientation states. For vertical east-west 

orientation state, a combination of 160 bifacial PV modules and 30 batteries, in addition with the operational 

hours of the split genset are selected by the algorithm to meet the energy demand of the studied area. The 

operational behavior of the system for a period of forty-eight (48) hours and ten (10) days is depicted in 

Figures 5.14a and 5.14b respectively. It can be inferred from Figure 5.14a that there is an increase in the 

SOC of the battery between the hours of 7:00 am and 2:00 pm. The increase in the SOC of the battery can 

be attributed to daytime period when there is abundance of solar radiation. It reaches its peak value at 3:00 

pm, and decreases gradually from that period until 8:00 pm when it reaches its minimum DOD. At this 

period, the split genset is switched on to cover the deficit in energy.  

The performance in terms of LCC and TEP are presented in Table 5.10a. A LCC of $831,253.17 and TEP 

of 1,215,065.23 kg are recorded for the hybrid system using WOA. It was observed that there was a further 

reduction in the values of LCC and TEP as compared to those obtained using FA technique. This is because 

the WOA technique selected more bifacial PV modules, leading to more power output from the bifacial PV 

system and a corresponding reduction in the commitment hours of the split genset during the lifespan of 

the system. 

Similarly, the algorithm is also implemented for the horizontal north-south orientation state; a combination 

of 167 bifacial PV modules and 32 batteries, in addition with the operational hours of the split genset are 

selected to meet the energy demand of the studied area. The operational behavior of the system for a period 

of forty-eight (48) hours and ten (10) days is depicted in Figures 5.15a and 5.15b respectively. The 

operational behavior of the system for the horizontal north-south orientation is quite similar to that of the 

vertical east-west orientation. The only difference is the increase in the number of bifacial PV modules and 

battery units selected by the WOA algorithm. The performance in terms of LCC and TEP are also presented 

in Table 5.10b. A LCC of $846,101.39 and TEP of 1,278,536.47 kg are recorded for the hybrid system 

using WOA. It is also observed that there is a slight increase in the values of LCC and TEP obtained for the 

horizontal north-south orientation state as compared to the vertical east-west orientation state. The 

increment may be attributed to the difference in the additional energy produced by the module for both 

orientation states. 
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Duration (hours) 

Figure 5.14a: System behavior of bifacial PV/battery/split genset configuration using WOA for a period 
of 48 hours for vertical east-west orientation state 

 

Duration (hours) 

Figure 5.14b: System behavior of bifacial PV/battery/split genset configuration using WOA for a period 
of 10 days for vertical east-west orientation state 

0 50 100 150 200 250 
0 

1 

2 

3 

4 

5 

6 
10 4 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 
10 4 System behaviour 

BPv 
DGs 3 

Eload 
SOC 



  

181 
 

Table 5.10a: Performance of the hybrid bifacial PV/battery/split genset system using WOA for vertical 
east west orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
components 

160 30 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 108842 63220 25320 

LCC $831,253.17 
TEP 1,215,065.23 kg 

 

Table 5.10b: Performance of the hybrid bifacial PV/battery/split genset system using WOA for horizontal 
north-south orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
components 

167 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 108842 65060 27441 

LCC $846,101.39 
TEP 1,278,536.47 kg 
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Duration (hours) 

Figure 5.15a: System behavior of bifacial PV/battery/split genset configuration using WOA for a period 
of 48 hours for horizontal north-south orientation state 

 

Duration (hours) 

Figure 5.15b: System behavior of bifacial PV/battery/split genset configuration using WOA for a period 
of 10 days for horizontal north-south orientation state 
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5.3.3.3 Optimal design results using Giza Pyramid Construction (GPC) Algorithm 

Giza Pyramid Constriction (GPC) algorithm is also used to determine the most appropriate components 

combination of case study three for each orientation states. For vertical east-west orientation state, a 

combination of 159 bifacial PV modules and 31 batteries, in addition with the operational hours of the split 

genset are selected by the algorithm to meet the energy demand of the studied area. The operational behavior 

of the system for a period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.16a and 5.16b 

respectively. The operational behavior for case study three (3) using GPC algorithm is quite similar to that 

of WOA algorithm. However, the performance in terms of LCC and TEP presented in Table 5.11a are 

slightly different. A LCC of $842,253.17 and TEP of 1,225,619.08 kg are recorded for the hybrid system 

using GPC. These values are only slightly higher than those obtained using the WOA algorithm. 

Moreover, the algorithm is also implemented for the horizontal north-south orientation state; a combination 

of 165 bifacial modules and 29 batteries, in addition with the operational hours of the split genset were 

selected to meet the energy demand of the studied area. The operational behavior of the system for a period 

of forty-eight (48) hours and ten (10) days is depicted in Figures 5.17a and 5.17b respectively. The 

operational behavior of the system for the horizontal north-south orientation is also quite similar to that of 

the vertical east-west orientation. The only difference is the increase in the number of bifacial PV modules 

and battery units selected by the GPC algorithm. The performance in terms of LCC and TEP are presented 

in Table 5.11b. A LCC of $867,545.91 and TEP of 1,299,700.43 kg are recorded for the hybrid system 

using GPC. A slight increase in the values of LCC and TEP obtained for the horizontal north-south 

orientation state as compared to the vertical east-west orientation is also observed. 

5.3.4 Case four: Proposed Bifacial PV//Wind/Battery/split genset configuration 

The results of optimal design of the proposed HPS is presented in this sub-section. The system configuration 

comprising of all the energy generating sources (bifacial bifacial PV module, wind turbine, battery energy 

system and the split genset) are considered to meet the energy demand of the studied area for a period of 

30 years. The performance of the bifacial PV module on the optimal system design is also evaluated for the 

two orientation states of the system configuration. The optimal design of the proposed HPS is done using 

each of the proposed optimization techniques, and the performance of the system in terms of LCC and TEP 

for each optimization techniques are noted for comparison. The optimal design results of each optimization 

techniques are subsequently presented. 

5.3.4.1 Optimal design results of the proposed HPS using Firefly Algorithm (FA) 

Firefly Algorithm (FA) is implemented to determine the most appropriate components combination of the 

system configuration for the two orientation states of the bifacial PV module. For the vertical east-west  
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Duration (hours) 

Figure 5.16a: System behavior of bifacial PV/battery/split genset configuration using GPC for a period of 
48 hours for vertical east-west orientation state 

 

Duration (hours) 

Figure 5.16b: System behavior of bifacial PV/battery/split genset configuration using GPC for a period of 
10 days for vertical east-west orientation state 
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Table 5.11a: Performance of the hybrid bifacial PV/battery/split genset system using GPC algorithm for 
vertical east west orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
components 

159 31 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 111895 65201 26142 

LCC $842,253.17 
TEP 1,225,619.08 kg 

 

Table 5.11b: Performance of the hybrid bifacial PV/battery/split genset system using GPC algorithm for 
horizontal north-south orientation state 

Particulars System Configuration 
Hybrid Bifacial PV/Battery/Split Genset 

Components Bifacial PV Battery Split Genset 

Number of 
components 

165 29 DG unit 1 DG unit 2 DG unit 3 

Hours of 
Operation 

N/A N/A 111895 67561 29123 

LCC $867,545.91 
TEP 1,299,700.43 kg 
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Figure 5.17a: System behavior of bifacial PV/battery/split genset configuration using GPC for a period of 
48 hours for horizontal north-south orientation state 

 

Duration (hours) 

Figure 5.17b: System behavior of bifacial PV/battery/split genset configuration using GPC for a period of 
10 days for horizontal north-south orientation state 
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orientation state, a combination of 125 bifacial PV modules, 23 wind turbines and 25 batteries; in addition 

with the operational hours of the split genset are selected by the algorithm to meet the energy demand of 

the studied area. The operational behavior of the system for a period of forty-eight (48) hours and ten (10) 

days is depicted in Figures 5.18a and 5.18b respectively. It can be seen from Figure 5.18a that the SOC of 

the battery start to increase from 6:30 am in the morning due to the excess energy contributed from the two 

renewable sources. It reaches its maximum value at about 3:00 pm and decreases from that period until 

about 9:00 pm. It remains constant from 9:00 pm to around 8:00 am; this period corresponds to late evenings 

and early mornings when there is neither enough solar radiation nor wind speed to generate power to meet 

the load demand or charge the battery. The energy deficit during this period is covered by the split genset.  

The performance in terms of LCC and TEP are presented in Table 5.12a. From the results of Table 5.12a, 

it can be seen that the proposed HPS recorded the least values of LCC and TEP ($836,135.65 and 

1,469,829.44 kg) as compared to other system configurations considered in this study. This reduction can 

be attributed to lesser commitment of the split genset during the lifespan of the system as more energy is 

made available to the system from the two renewable energy sources.  

The algorithm is also implemented for the horizontal north-south orientation state; a combination of 142 

bifacial PV modules and 12 wind turbines, 26 batteries, in addition with the operational hours of the split 

genset are selected to meet the energy demand of the studied area. The operational behavior of the system 

for a period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.19a and 5.19b respectively. 

The operational behavior of the system for the horizontal north-south orientation is quite similar to that of 

the vertical east-west orientation. The main difference is in the number of components selected by the 

algorithm, which may be due to a reduction in the power output of the bifacial PV system. The performance 

in terms of the LCC and TEP are also presented in Table 5.12b. A LCC of $840,804.82 and TEP of 

1,471,239.30 kg are recorded for the system in the horizontal north south orientation state, which is higher 

than the values obtained for the vertical east-west orientation state. This may be attributed to an increase in 

the hourly commitment of the split genset to meet the deficit energy 

5.3.4.2 Optimal design results of the proposed HPS using Whale Optimization Algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is also implemented to determine the most appropriate 

components combination of the system configuration for each orientation states orientation states of the 

bifacial PV module. For vertical east-west orientation state, a combination of 147 bifacial PV modules, 26 

wind turbines and 32 batteries; in addition with the operational hours of the split genset are selected by  
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Duration (hours) 

Figure 5.18a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using FA for 
a period of 48 hours for vertical east-west orientation state 

 

Duration (hours) 

Figure 5.18b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using FA for 
a period of 10 days for vertical east-west orientation state 

0 50 100 150 200 250 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 
10 4 

0 

5 

10 

15 
10 4 System behaviour 

BPv 
Wind 

DGs 3 
Eload 
SOC 



  

189 
 

 

Duration (hours) 

Figure 5.19a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using FA for 
a period of 48 hours for horizontal north-south orientation state 

 

Duration (hours) 

Figure 5.19b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using FA for 
a period of 10 days for horizontal north-south orientation state 
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Table 5.12a: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using FA for 
vertical east west orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

125 23 25 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 129554 74710 33772 

LCC $836,135.65 

TEP 1,469,829.44 kg 

 

Table 5.12b: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using FA for 
horizontal north-south orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

142 12 26 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 126752 76107 33463 

LCC $840,804.82 

TEP 1,471,239.30 kg 
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the algorithm to meet the energy demand of the studied area. The operational behavior of the system for a 

period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.20a and 5.20b respectively. It can 

be seen from Figure 5.20a that the SOC of the battery start to increase from 7:00 am in the morning due to 

the excess energy contributed from the two renewable sources. It reaches its maximum value at about 3:00 

pm and remains constant till about 4:00 pm. It starts to decrease from 3:30 pm until about 9:00 pm. It 

remains constant from 9:00 pm to about 7:00 am; this period corresponds to late evenings and early 

mornings when there is neither enough solar radiation nor wind speed to generate power to supply the load 

or charge the battery. The energy deficit during this period is covered by the split genset.  

The performance in terms of LCC and TEP are presented in Table 5.13a. A LCC of $799,243.58 and TEP 

of 1,188,139.91 kg are recorded for the hybrid system using WOA. It is observed that the values of the LCC 

and TEP obtained using WOA technique were further reduced as compared to those obtained using FA 

technique. This reduction can be attributed to an even allocation of renewable energy sources and battery 

system, which corresponds to a lesser commitment of the split genset during the lifespan of the system. 

Moreover, the algorithm was is implemented for the horizontal north-south orientation state; a combination 

of 156 bifacial PV modules, 30 wind turbines and 32 batteries; in addition with the operational hours of the 

split genset are selected to meet the energy demand of the studied area. The operational behavior of the 

system for a period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.21a and 5.22b 

respectively. The operational behavior of the system for the horizontal north-south orientation is quite 

similar to that of the vertical east-west orientation. The main difference is in the number of components 

selected by the algorithm, which may be due to a reduction in the power output of the bifacial PV system. 

The performance in terms of LCC and TEP are presented in Table 5.13b. A LCC of $811,863.39 and TEP 

of 1,198,919.95 kg are recorded for the hybrid system in the horizontal north south orientation state, which 

is higher than the values obtained for the vertical east-west orientation state. This may be attributed to an 

increase in the hourly commitment of the split genset to cover the deficit energy 

5.3.4.3 Optimal design results of the proposed HPS using Giza Pyramid Construction (GPC) 

Giza Pyramid Constriction (GPC) algorithm is also used to determine the most appropriate components 

combination of case study three for each orientation states of the bifacial PV module. For vertical east-west 

orientation state, a combination of 127 bifacial PV modules, 37 wind turbines and 32 batteries; in addition 

with the operational hours of the split genset were selected by the algorithm to meet the energy demand of  
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Duration (hours) 

Figure 5.20a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using WOA 
for a period of 48 hours for vertical east-west orientation state 

 

Duration (hours) 

Figure 5.20b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using WOA 
for a period of 10 days for vertical east-west orientation state 
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Table 5.13a: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using WOA 
for vertical east west orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

147 26 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 107632 59310 25692 

LCC $799,243.58 

TEP 1,188,139.91 kg 

 

Table 5.13b: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using WOA 
for horizontal north-south orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

156 30 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 109280 59189 26108 

LCC $811,863.39 

TEP 1,198,919.95 kg 
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Duration (hours) 

Figure 5.21a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using WOA 
for a period of 48 hours for horizontal north-south orientation state 

 

Duration (hours) 

Figure 5.21b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using WOA 
for a period of 10 days for horizontal north-south orientation state 
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the studied area. The operational behavior of the system for a period of forty-eight (48) hours and ten (10) 

days is depicted in Figures 5.22a and 5.22b respectively. It can be seen from Figure 5.22a that the SOC of 

the battery start to increase from 7:00 am in the morning due to the excess energy contributed from the two 

renewable sources. It reaches its maximum value at about 3:00 pm and remains constant till about 4:00 pm. 

It starts to decrease from 3:30 pm until about 10:00 pm. It remains constant from 9:00 pm till about 6:30 

am; this period corresponds to late evenings and early mornings when there is neither enough solar radiation 

nor wind speed to generate power to supply the load or charge the battery. The energy deficit during this 

period is covered by the split genset.  

The performance in terms of LCC and TEP are presented in Table 5.14a. A LCC of $803,599.09 and TEP 

of 1,265,933.58 kg are recorded for the hybrid system using GPC. It was observed that the values of the 

LCC and TEP obtained using GPC technique are close to those obtained using WOA technique. Thus, 

illustrating the ability of the algorithm to evenly allocate the components of the system in meeting the 

energy demand of the studied area.  

Moreover, the algorithm is also implemented for the horizontal north-south orientation state; a combination 

of 147 bifacial PV modules, 40 wind turbines and 32 batteries; in addition with the operational hours of the 

split genset are selected to meet the energy demand of the studied area. The operational behavior of the 

system for a period of forty-eight (48) hours and ten (10) days is depicted in Figures 5.23a and 5.23b 

respectively. The operational behavior of the system for the horizontal north-south orientation is also very 

similar to that of the vertical east-west orientation. The main difference is in the number of components 

selected by the algorithm, which may be due to a reduction in the power output of the bifacial PV system. 

The performance in terms of LCC and TEP are presented in Table 5.14b. A LCC of $833,991.90 and TEP 

of 1,237,614.39 kg are recorded for the hybrid system in the horizontal north-south orientation state, which 

are higher than the values obtained for the vertical east-west orientation state. This may be attributed to an 

increase in the hourly commitment of the split genset to cover the deficit energy.  

Generally, it is observed that an increase in the hourly commitment of the split genset corresponds to an 

increase in the values of the LCC and TEP for all system configurations; which is due to the high operation 

and maintenance cost of the split genset. 

5.4 Performance comparison of different system configuration 

The performance comparison of various system configuration/case studies is presented in this section. A 

summary of the results obtained for both orientation states of the bifacial PV module are presented in Table 

5.15a and 5.15b respectively. However, for comparison purposes, the results obtained using the vertical 

east-west orientation of the module is used to demonstrate the feasibility of the proposed HPS, since it 
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Duration (hours) 

Figure 5.22a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using GPC 
algorithm for a period of 48 hours for vertical east-west orientation state 

 

Duration (hours) 

Figure 5.22b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using GPC 
algorithm for a period of 10 days for vertical east-west orientation state 
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Table 5.14a: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using GPC 
for vertical east west orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

127 37 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 114181 60848 27116 

LCC $803,599.09 

TEP 1,265,933.58 kg 

 

Table 5.14b: Performance of the hybrid bifacial PV/wind turbine/battery/split genset system using GPC 
for horizontal north-south orientation state 

Particulars System Configuration 

 Hybrid Bifacial PV/Wind Turbine/Battery/Split Genset 

Components Bifacial PV Wind 

Turbine 

Battery Split Genset 

Number of 

components 

147 40 32 DG unit 1 DG unit 2 DG unit 3 

Hours of 

Operation 

N/A N/A N/A 114313 60932 27481 

LCC $833,991.90 

TEP 1,237,614.39 kg 
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Figure 5.23a: System behavior of bifacial PV/wind turbine/battery/split genset configuration using GPC 
algorithm for a period of 48 hours for horizontal north-south orientation state 

 

Duration (hours) 

Figure 5.23b: System behavior of bifacial PV/wind turbine/battery/split genset configuration using GPC 
algorithm for a period of 10 days for horizontal north-south orientation state 
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Table 5.15a: Comparison of various system configurations for vertical east-west orientation state 
System 

Configuration 
Algorithm No of 

Bpv 
No of 
WT 

No of 
Batt 

No of 
DG 

units 

LCC (US$) TEP (kg) 

Split Genset Only N/A N/A N/A N/A 3 1,830,752.40 3,241,987.00 
Wind/Battery/Splt 

Genset 
FA N/A 97 21 3 1,518,636.76 2,564,611.03 

 WOA N/A 122 32 3 1,468,379.89 2,431,264.13 
 GPC N/A 111 32 3 1,495,747.57 2,490,797.21 

Bifacial 
PV/Battery/Split 

Genset 

FA 152  29 3 859,936.15 1,326,259.09 

 WOA 160 N/A 30 3 831,253.17 1,215,065.23 
 GPC 159 N/A 31 3 842,253.17 1,225,619.08 

Optimal system 
configuration 

FA 125 23 25 3 836,135.65 1,469,829.44 

 WOA 147 26 32 3 799,243.58 1,188,139.91 
 GPC 127 37 32 3 803,599.09 1,265,933.58 

 

Table 5.15b: Comparison of various system configurations for horizontal north-south orientation 
System 

Configuration 
Algorithm No of 

Bpv 
No of 
WT 

No of 
Batt 

No of 
DG 

units 

LCC(US$) TEP (kg) 

Split Genset Only N/A N/A N/A N/A 3 1,830,752.40 3,241,987.00 
Wind/Battery/Splt 

Genset 
FA N/A 97 21 3 1,518,636.76 2,564,611.03 

 WOA N/A 122 32 3 1,468,379.89 2,431,264.13 
 GPC N/A 111 32 3 1,495,747.57 2,490,797.21 

Bifacial 
PV/Battery/Split 

Genset 

FA 161 N/A 31 3 879,568.94 1,346,022.01 

 WOA 167 N/A 32 3 846,101.39 1,278,536.47 
 GPC 165 N/A 29 3 867,545.91 1,299,700.43 

Optimal system 
configuration 

FA 142 12 26 3 840,804.82 1,471,239.30 

 WOA 156 30 32 3 811,863.39 1,198,919.95 
 GPC 147 40 32 3 833,991.90 1,237,614.39 
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generates more additional energy as compared to the horizontal north-south orientation state. The 

comparison is done using the LCC and TEP recorded for each system configuration using each of the 

optimization algorithms.  

From the results of Table 5.15a, it is observed that the LCC and TEP of the proposed optimal system 

configuration using FA technique are considerably low ($836,135.65 and 1,469,829.44 kg) as compared to 

the other system configurations considered in this study, which include bifacial PV/Battery/split genset 

($859,936.15 and 1,326,259.09 kg), Wind/Battery/split genset ($1,518,636.76 and 2,564,611.03 kg) and 

three split genset only ($1,830,752.40 and 3,241,987.00 kg). In addition, the percentage reduction in terms 

of LCC and TEP of each of the optimized system configurations are evaluated and compared with the LCC 

and TEP of using a three split genset configuration only. A 54.33 % and 54.66 % reduction in LCC and 

TEP respectively are obtained for the proposed system configuration, as compared to 53.03 % and 59.09 

%, and 17.04 % and 20.89 % obtained for both bifacial PV/Battery/split genset and Wind/Battery/split 

genset configurations respectively. 

Similarly, the LCC and TEP of the proposed optimal system configuration using WOA technique are 

significantly low ($799,243.58 and 1,188,139.91 kg) as compared to the other system configurations 

considered in this study, which include bifacial PV/Battery/split genset ($831,253.17 and 1,215,065.23 kg), 

Wind/Battery/split genset ($1,468,379.89 and 2,431,264.13 kg) and three split genset only ($1,830,752.40 

and 3,241,987.00 kg). Moreover, the percentage reduction in terms of LCC and TEP of each of the 

optimized system configurations are also evaluated and compared with the LCC and TEP of using a three 

split genset configuration only. A 56.34 % and 63.35 % reduction in LCC and TEP respectively are obtained 

for the proposed system configuration, as compared to 54.59 % and 62.52 % and 19.79 % and 25.00 % 

obtained for both bifacial PV/Battery/split genset and Wind/Battery/split genset configurations 

respectively. 

Correspondingly, the LCC and TEP of the proposed optimal system configuration using GPC technique are 

also significantly low ($803,599.09 and 1,265,933.58 kg) as compared to the other system configurations 

considered in this study, which include bifacial PV/Battery/split genset ($842,253.17and 1,225,619.08 kg), 

Wind/Battery/split genset ($1,495,747.57 and 2,490,797.21 kg) and three split genset only ($1,830,752.40) 

and 3,241,987.00 kg). Moreover, the percentage reduction in terms of LCC and TEP of each of the 

optimized system configurations are also evaluated and compared with the LCC and TEP of using a three 

split genset configuration only. 56.10 % and 60.95 % reduction in LCC and TEP respectively are obtained 

for the proposed system configuration, as compared to 53.99 % and 62.19 % and 18.30 % and 23.17 %  
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obtained for both bifacial PV/Battery/split genset and Wind/Battery/split genset configurations 

respectively. 

Although, the bifacial PV/Battery/split genset configuration proves to be the most environmentally friendly 

as it gives the lowest value of TEP as compared to other optimized system configuration, the LCC is slightly 

higher than the optimal system configuration. On the other hand, it is observed that there is a higher 

percentage reduction in values of both the LCC and TEP for the optimal system configuration using each 

of the optimization techniques. This high reduction can be attributed to the corresponding reduction in 

capital cost, operation and maintenance cost and replacement cost of the proposed HPS, which is due to the 

uniformity in resource allocation as compared to other configuration of energy systems designed to meet 

the load requirement of the studied area. The plot of Figures 5.24a and 5.24b show the respective LCC and 

TEP comparison of the various system configuration using each of the optimization algorithms.  

5.5 Performance comparison of the optimization algorithms 

The performance comparison of each of the optimization algorithms in the optimal design of the proposed 

bifacial PV/Wind turbine/Battery/Split genset is presented in this section. The comparison was is done 

using the simulation results obtained for the vertical east-west orientation state of the bifacial module. 

Simulation results of optimal design of the proposed HPS in terms of LCC and TEP using each of the 

optimization algorithms are presented in Table 5.16.  

From the results of Table 5.16, it can be observed that the WOA technique predicts the least LCC and TEP 

of the proposed HPS configuration. The algorithm selected a combination of 147 bifacial PV modules, 26 

wind turbines, 32 battery units and 192,634 operational hours of the split genset to attain a LCC of 

$799,243.58 and TEP of 1,188,139.91 kg. Nevertheless, the LCC and TEP predicted by the GPC technique 

is not too far behind, as the algorithm selected a combination of 127 bifacial PV modules, 37 wind turbines, 

32 battery units and 202,145 operational hours of the split genset to attain a LCC of $803,599.09 and TEP 

of 1,265,933.58 kg. On the contrary, the FA technique predicts the highest LCC and TEP; the algorithm 

selected a combination 125 bifacial PV modules, 23 wind turbines, 25 battery units and 238,036 operational 

hours of the split genset to achieve a LCC of $836,135.65 and TEP of 1,469,829.44 kg. The comparison in 

terms of the LCC and TEP obtained using each of the optimization algorithm is clearly depicted in Figures 

5.25a and 5.25b respectively. 

Furthermore, the performance comparison of each of the optimization algorithm was also done based on 

statistical analysis of the simulation results obtained after implementing each of the algorithms over twenty 

(20) iterations. Simulation results of optimal design of the proposed HPS in terms of the best objective 
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Figure 5.24a: Comparison of the LCC for various system configurations 

 

 

Figure 5.24b: Comparison of the TEP for various system configurations 
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Table 5.16: Performance comparison of the optimization techniques in terms of optimal solution 
System 

Configuration 

Algorithm No of 

Bpv 

No of 

WT 

No of 

Batt 

No of 

DG 

units 

LCC(US$) TEP (kg) 

Optimal 

system 

configuration 

FA 125 23 25 3 836,135.65 1,469,829.44 

WOA 147 26 32 3 799,243.58 1,188,139.91 

GPC 127 37 32 3 803,599.09 1,265,933.58 
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Figure 5.25a: Performance comparison of optimization algorithm in terms of LCC 

 

 

 
 

Figure 5.25b: Performance comparison of optimization algorithm in terms of TEP 
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score, worst objective score, mean score, median score, standard deviation, efficiency and simulation run 

time using each of the optimization algorithms are presented in Table 5.17. 

From the results of Table 5.17, it can be seen that that FA technique, despite its high value of efficiency has 

a high simulation run time. On the other hand, the WOA technique has the lowest efficiency but with a 

reasonable simulation run time as compared to the FA technique. However, the GPC technique has a 

considerable efficiency and the lowest simulation run time in reaching the optimal solution. In addition to 

that, the minimum values of standard deviation obtained for both FA and GPC techniques indicate their 

high stability in reaching the optimal solution as compared to WOA technique. Nevertheless, the quality of 

the optimal solution obtained using the FA technique is much lower than that of the GPC technique. The 

comparison of the simulation run time and efficiency of each of the proposed optimization techniques is 

depicted in Figure 5.26a and 5.26b, while their convergence characteristics comparison plot is depicted in 

Figure 5.27. It can be inferred from the Figure 5.27 that the GPC technique converges faster, followed by 

the FA and WOA techniques respectively. 

Generally, the results showed that despite the high efficiency and stability of the FA technique, the quality 

of its optimal solution in terms of LCC and TEP are below par when compared to both WOA and GPC 

techniques. On the contrary, the WOA technique, which gives the best quality solution in terms of the LCC 

and TEP lags behind in terms of efficiency, stability, simulation run time and convergence speed as 

compared to the GPC technique. The GPC technique however, produces considerably quality solution in 

terms of LCC and TEP, has reasonable efficiency and stability, lowest simulation run time and converges 

faster than both FA and WOA techniques. Thus confirming the robustness and suitability of the proposed 

GPC algorithm in the optimal design of bifacial PV/wind turbine/battery/split genset hybrid power system 

for the electrification of remote locations, critical facilities, among others. 
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Table 5.17: Performance comparison of the optimization techniques based on statistical analysis 
Optimization 

technique 

Worst 

score 

Best 

score 

Mean 

score 

Median 

score 

Standard 

deviation 

Efficiency 

(%) 

Simulation 

run time 

(minutes) 

FA 541125 526841 528983.6 526841 0.7142 97.36 12.28 

WOA 541125 471295 475688 471295 3.4915 87.09 10.59 

GPC 541125 520933 523292 541125 1.0096 96.28 9.78 
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Figure 5.26a: Performance comparison of optimization algorithms in terms of efficiency 

 

 

 

Figure 5.26b: Performance comparison of optimization algorithms in terms of simulation run time 
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Figure 5.27: Comparison of convergence characteristics curve of the optimization algorithms 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

The optimal design of a hybrid power system consisting of bifacial PV, wind turbine, battery energy storage 

and split genset using Giza Pyramid Construction optimization algorithm is presented in this study. The 

main objective of the design is to simultaneously minimize the Life Cycle Cost and Total Environmental 

Pollution of the system. A multi-objective solution method is employed to find the appropriate components 

combination of off-grid HPS that guarantees reliable and continuous supply of electrical energy. 

Simulink models of each components of the HPS are developed in Simulink environment using their 

respective mathematical expressions; each of the model is integrated together to generate a single HPS 

model so as to give a true representation of the hybrid system. The performance of the bifacial PV module 

in the system is evaluated by estimating the additional energy yield for both orientation states. Generally, 

it was observed that the vertical east-west orientation state yielded more additional energy compared to the 

horizontal north-south state. Hence, the viability of the proposed HPS design is evaluated based on the 

vertical east-west orientation state of the module.  

An optimization problem based on Life Cycle Cost (LCC) and Total Environmental Pollution (TEP) was 

developed and optimized using Giza Pyramid Construction (GPC) algorithm, Firefly Algorithm (FA) and 

Whale Optimization Algorithm (WOA) techniques. The proposed method was applied to a remote village 

in northern part of Nigeria using hourly solar irradiance, hourly wind speed and hourly energy requirement 

of the area as inputs to the algorithm. The performance of the proposed HPS was demonstrated by 

comparing its results with three other system configurations designed to meet the load requirement of the 

location. Each of the system configurations is simulated for a period of 30 years and the results in terms of 

LCC and TEP are documented. From an optimization perspective, the performance of the optimization 

algorithms in terms of quality of the optimal solutions, simulation run time and convergence speed after 20 

iterations are also noted for comparison. Moreover, statistical analysis was used to evaluate the performance 

of the proposed optimization algorithm and its results were compared with the two other algorithms reported 

in this study.  

The optimization results showed that the proposed system configuration is the most feasible in terms of 

LCC and TEP. The results also showed that the WOA technique gives the best value of the objective 

function representing the least LCC value of $799,243.58 and TEP value of 1,188,139.91 kg. The GPC 

technique predicted a competitive LCC value of $803, 599.09 and TEP of 1,265,933.58 kg.  However, the 

values of LCC and TEP obtained using FA technique are much higher than those predicted using WOA and 
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GPC techniques, the algorithm predicted the highest LCC value of $836,135.65 and TEP value of 

1,469,829.44 kg. It should however be noted that the values of LCC and TEP predicted by the three 

optimization techniques illustrate that the proposed hybrid system configuration is more feasible when 

compared to other system configurations considered in this study to meet the energy requirement of the 

studied location.  

The optimization results also showed that the GPC algorithm has the least simulation run time and 

converges faster than both the WOA and FA techniques. In addition to that, by comparing the results of 

statistical analysis of the proposed algorithm with the two other optimization algorithms; it can be 

concluded that the standard deviation of 1.0096 and efficiency of 96.28 obtained for the proposed algorithm 

are much better than those obtained for WOA technique, and quite competitive with those obtained using 

FA technique. Thereby demonstrating the accuracy and stability, in addition to the fast simulation run time 

and convergence speed of the proposed algorithm in solving multi-dimensional optimization problems such 

as the optimal design of HPS consisting of renewable and non-renewable energy sources. 

6.2 Contributions to knowledge 
This study has made the following contributions to knowledge in the field of hybrid renewable energy 

system.  

1. The result of this study have made it possible to identify the most appropriate orientation state of 

the bifacial PV module capable of generating more additional energy; identifying the right 

orientation of the module during installation will help improve the total power output that can be 

extracted from a bifacial PV system and subsequently increasing the share of renewable energy in 

the system. 

2. The result of this study has also demonstrated the effectiveness of the Giza Pyramid Construction 

optimization algorithm as compared to FA and WOA algorithms in solving optimal design 

problems of hybrid power system consisting of renewable and non-renewable energy sources. An 

optimization model based on the proposed algorithm has been developed. The model, which is 

capable of accepting input variables and returning an optimal solution in terms of life cycle cost 

and total environmental pollution can be used by government agencies, decision makers and energy 

solution companies to optimally size and analyze the components of HPS before implementation. 

6.3 Recommendations 

The following recommendations are suggested for future research. 

1. It is recommended that the amount of the additional energy contributed by the back side of a bifacial 

module under different albedo values for both orientation states should be investigated and 

incorporated into the optimal design of hybrid power system.  
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2. Future work on the inclusion of other types of renewable energy sources such as biomass, 

geothermal, fuel cell, ocean wave and small hydro should also be conducted.  

3. The response of the developed HPS under small and large signal disturbances can be investigated 

to determine its impact on existing grid.  

4. Different optimization methods such as Political Optimizer, Equilibrium Optimizer, Corona virus 

algorithm and many other recent optimization algorithms should be applied to the optimal design 

of HPS consisting of bifacial PV modules, wind turbine, split genset, as well as battery system, and 

the results should be compared with the proposed algorithm used in this study for the same purpose.  
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Appendix A: Matlab codes 

General functions 

function Positions=initialization(SearchAgents_no,dim,ub,lb) 

  
Boundary_no= size(ub,2); % numnber of boundaries 

  
% If the boundaries of all variables are equal and user enter a signle 
% number for both ub and lb 
if Boundary_no==1 
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb; 
end 

  
% If each variable has a different lb and ub 
if Boundary_no>1 
    for i=1:dim 
        ub_i=ub(i); 
        lb_i=lb(i); 
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i; 
    end 
end 

 

function Mbatt= battery_capacity(Eren) 
Ad=3; 
eff_batt=0.9; 
eff_inv=0.8; 
DoD=0.8; 
Vs=24; 
Mbatt=((Ad*Eren)/(eff_batt*eff_inv*DoD*Vs)); 

 

  function avail_batt= battery_module 
batt_capacity=250; 
DOD=0.6; 
Vs=12;  
batt_effi=0.9;  
inv_effi=0.9;   
avail_batt=batt_capacity*batt_effi*inv_effi*DOD*Vs;  
    end 

 

%load demand 
function [El,peak_El]=load_demand 
%E=[350,350,350,350,350,560,560,530,530,530,430,330,330,330,330,330,330,400,4

00,400,530,530,350,350]; 
E=[10 10 10 10 10 12 13 13 15 16 16 15 16 17 18 20 23 24 26 30 32 35 15 9]; 
El=E*1000;  
for ii=1:14 
El=[El, El]; 
end 
peak_El=max(El);  
end 
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%load profile plot 
close all 
clear all 

  
[wind_speed,solar_irradiance]=speed_irradiance_data; 
H=solar_irradiance; 
v=wind_speed; 
for mm=1:4 
    H=[H;H]; 
    v=[v;v]; 
end 
h=solar_irradiance; 
V=wind_speed; 
for mn=1:4 
    h=[h;h]; 
    V=[V;V]; 
end 
% Hh=irradiance_data0; 
Hh=[H;h]; 
vV=[v;V]; 
% vV=v; 
%initialize soc 
% soc=zeros(1,(365*24*n)); 
for t=2:2410 
Ppv=pvmodule(Hh(t-1));   
PPv(t-1)=Ppv*1.20;  
PPv_main(t-1)=Ppv*1; 
PPv_back(t-1)=Ppv*0.20; 
Pwind(t-1)=wt_module(vV(t-1)); 
end 
tt=1:48; 
figure 
plot(tt, PPv(tt)); 
title('Bifacial PV Power profile') 
ylabel('power (watt)') 
xlabel('Time (Hour)') 
grid on 
figure 
plot(tt, Pwind(tt)); 
title('Wind Power profile') 
ylabel('power (watt)') 
xlabel('Time (Hour)') 
grid on 
figure 
plot(tt, PPv_main(tt)); 
hold on 
plot(tt, PPv_back(tt)); 
hold off 
title('Back and Front output of Bifacial PV') 
ylabel('power (watt)') 
xlabel('Time (Hour)') 
grid on 
legend('Front output','Back output') 
ttt=0:47; 
dg_out=[42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 

42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 

42 42 42 42 42 42 42 42 42].*1000; 
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plot(ttt, dg_out(tt)); 
ylim([0 45000]) 
title('DG Output Power profile') 
ylabel('power (watt)') 
xlabel('Time (Hour)') 
grid on 

 

 

    function avail_pv= pvmodule(Ht) 
%Apv=(0.0254*78.15)*(0.0254*38.98); % A=lxb %1inch=0.0254m, LxBxH= 

78.15*38.98*1.81 
Apv=(2031*1008)/1000000; 
pv_effi=0.1881;  
eff_inv=0.8; 
eff_batt=0.9; 
%Ht=0.622*5.630*1000;  solar irradiance 
avail_pv= Apv*Ht*pv_effi*eff_inv*eff_batt;   
    end 

 

 

function Crep= Replacement_cost(N_hr,n,Cint) 
Nrep=(n*365*24)/N_hr; 
Nrep=round(Nrep); 
%Egen is the capacity of the generator 
kd=8; 
fo=4; 
if Nrep<1 
    Crep_coeff=0; 
else 
for Ni=1:Nrep 
    Crep_coeff(Ni)=((1+fo)/(1+kd))^(Ni/(Nrep+1)); 
end   
end 
Crep=Cint*(sum(Crep_coeff)); 

 
function 

[Cinit,Crep,Cmaint,fuel_cost,LCC,Eco2,T_Dump,Hgen1,Hgen2,Hgen3,Egen,Ewind,EPv

,soc,El]=Results(x) 

  
x=round(x); 
x1=x(1); 
x2=x(2); 
x3=x(3); 
x4=x(4); 
x5=x(5); 
x6=x(6); 

  
[El,El_peak]=load_demand;  
n=30; 
Egen1=0.40*El_peak;   
Egen2=0.40*El_peak; 
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Egen3=0.40*El_peak; 
Hgen1=0; Hgen2=0; Hgen3=0;  
Eco2=0; %initialize Eco2 
f=0;   
Dump=0;   
E_sup_DG1=0; E_sup_DG2=0; E_sup_DG3=0;  
Cunit_pv=500; 
Cunit_wind=500; 
Cunit_gen1=0.3*Egen1; % in $ 
Cunit_gen2=0.3*Egen2;  % in $ 
Cunit_gen3=0.3*Egen3;  % in $ 
Cunit_battery=300; 
Cfuel_per_l=1.5; 

  
eff_inv=0.8;    
eff_batt=0.9;   
batt_Ah=360;    
Vs=24;      
s_dis_r=0.01;    
CB=batt_Ah*Vs*eff_batt*x6;  
soc=0.5*CB; 
DoD=0.8;  
soc_min=(1-DoD)*CB; 
soc_max=CB; 

  
%load input data 
[wind_speed,solar_irradiance]=speed_irradiance_data; 
H=solar_irradiance; 
v=wind_speed; 

  
for mm=1:8 
    H=[H;H]; 
    v=[v;v]; 
end 
h=solar_irradiance; 
V=wind_speed; 
for mn=1:8 
    h=[h;h]; 
    V=[V;V]; 
end 
Hh=[H;h]; 
vV=[v;V]; 
num_year_h=((365*24*n)+1); 
for t=2:num_year_h 
Ppv=pvmodule(Hh(t-1));   
Ppv=Ppv*1.20;  
EPv(t-1)=Ppv*x1; 
Pwind=wt_module(vV(t-1));  
Ewind(t-1)=Pwind*x2; 
Eren=Ppv*x1+Pwind*x2; 
%soc(t)=soc(t-1); 
Edx=Eren-(El(t-1)/eff_inv); 
if Edx>0     %i.e if their is excess energy 
    if soc(t-1)<soc_max 
        %for charging 
         soc(t)=soc(t-1)*(1-s_dis_r)+(Eren-(El(t-1)/eff_inv))*eff_batt;  
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    else 
        Dump(t)=abs(Edx); 
        soc(t)=soc(t-1); 
    end 
elseif Edx<0  %i.e if their is deficit energy 
    if soc(t-1)>soc_min  
        %for discharging 
        soc(t)=soc(t-1)*(1-s_dis_r)-((El(t-1)/eff_inv)-Eren);   
    else 
        %Generator selection scheme  
        if abs(Edx)<(x3*Egen1) 
            s1=1; s2=0; s3=0; 
        elseif abs(Edx)<((x3*Egen1)+(x4*Egen2)) 

           
            s1=1; s2=1; s3=0; 
        else 
            s1=1; 
            s2=1; 
            s3=1; 
        end 
        Egen(t-1)=s1*Egen1*x3+s2*Egen2*x4+s3*Egen3*x5; 

  
        if s1==1 
            E_sup_DG1(t-1)= ((abs(Edx))/1000);  
            f1(t-1)= E_sup_DG1(t-1)*0.145;  
            Hgen1=Hgen1+1;     
        else 
            f1(t-1)=0; 
        end 
        if s2==1 
            E_sup_DG2(t-1)= (((abs(Edx))-Egen1)/1000);  
            f2(t-1)= E_sup_DG2(t-1)*0.145;  
            Hgen2=Hgen2+1;      
            else 
            f2(t-1)=0; 
        end 
        if s3==1   
            E_sup_DG3(t-1)= (((abs(Edx))-(Egen1+Egen2))/1000);   
            f3(t-1)= E_sup_DG3(t-1)*0.145;  
            Hgen3=Hgen3+1;     
            else 
            f3(t-1)=0; 
        end 
        f(t-1)= f1(t-1)+f2(t-1)+f3(t-1);   
        Seco2=2.7; %kg/l 
        Eco2(t-1)=Seco2*f(t-1);        

         
        soc(t)=soc(t-1)*(1-s_dis_r); 
    end 
end 
end 
Eco2=sum(Eco2); 
fuel=sum(f); 
fuel_cost=fuel*Cfuel_per_l; 
% Total intial cost 
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Cinit=x1*Cunit_pv+x2*Cunit_wind+x3*Cunit_gen1+x4*Cunit_gen2+x5*Cunit_gen3+x6*

Cunit_battery; 

  
N_year_wind=25*365*24;  
N_year_batt=10*365*24;  
n_gen=10*365*24;  
if Hgen1>n_gen 

  
Crep_gen1=Replacement_cost(Hgen1,n,Cunit_gen1); 
else  
Crep_gen1=0; 
end 
if Hgen2>n_gen 
Crep_gen2=Replacement_cost(Hgen2,n,Cunit_gen2); 
else  
Crep_gen2=0; 
end 
if Hgen3>n_gen 

  
Crep_gen3=Replacement_cost(Hgen3,n,Cunit_gen3); 
else  
Crep_gen3=0; 
end 

  
Crep_wind=0;  
Crep_batt=Replacement_cost(N_year_batt,n,Cunit_battery); 
Crep=Crep_wind*x2+Crep_batt*x6+Crep_gen1*x3+Crep_gen2*x4+Crep_gen3*x5;  

  
fo=4; 
kd=8; 
Com_pv=0.01*Cunit_pv*x1*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);  
Com_wind=0.03*Cunit_wind*x2*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);  
Com_gen1=0.05*Cunit_gen1*x3*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);  
Com_gen2=0.05*Cunit_gen2*x4*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);  
Com_gen3=0.05*Cunit_gen3*x5*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);  
Com_batt=0.03*Cunit_battery*x6*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n);   
Cmaint=Com_pv+Com_wind+Com_gen1+Com_gen2+Com_gen3+Com_batt;   
T_Dump=sum(Dump); 

  
LCC=Cinit+Crep+Cmaint+fuel_cost; 

 

function Pwind_out=wt_module(v) 

%v=6; %m/s 
v_rated=10; %m/s 
vc_in=2.5; % cut in speed m/s 
vc_off=30;  % cut out speed m/s 
pwt_rated=500; %watt 
r=1.44; %m 
eff_wt=0.96; %efficiency of wind turbine 
if v<vc_in || v>vc_off 
    pwt_watt=0; 
elseif v>=vc_in && v<=v_rated 
    pwt_watt=pwt_rated*((v-vc_in)/(v_rated-vc_in)); 
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elseif v>=v_rated && v<=vc_off 
    pwt_watt=pwt_rated; 
end 
Aw=(22/7)*(r^2); %area= pie*r^2 
% Pwind_out=pwt_watt*Aw*eff_wt; 
Pwind_out=pwt_watt*eff_wt; 

 

Firefly 

% ======================================================== %  
% Files of the Matlab programs included in the book:       % 
% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,  % 
% Second Edition, Luniver Press, (2010).   www.luniver.com % 
%programmer: Engr. Convenience 
%Date:23-10-2021 
%Code version: Improved Version 
%Improved in MATLAB R2021a  
% ======================================================== %     

  
% -------------------------------------------------------- % 

  

  
function fa_ndim 
% parameters [n N_iteration alpha betamin gamma] 
para=[50 20 0.5 0.2 1]; 

  
help fa_ndim.m 
tic 
% Simple bounds/limits for d-dimensional problems 

  
        %the primary source 
        batt_rated=360;   %battery capacity in AH 
       SF=1.5; %safety factor 
       rated_pv=385; %watt 
       rated_wind=500; %watt 
       [~,peak_El]=load_demand; 
       u_pv=peak_El*SF/rated_pv; 
       u_wind=peak_El*SF/rated_wind; 
       u_batt=(battery_capacity(peak_El))/batt_rated; 
        Lb=[1 1 1 1 1 1]; 
        Ub=[round(u_pv*SF) round(u_wind*SF) 1 1 1 round(u_batt*SF)]; 
        %ub=[5000 5000 1 1 1 1000] 

   

  
% Initial random guess 
%load position 
load Positions 
uo=Positions; 
u0=uo(1,:); 
[u,fval,fitbest]=ffa_mincon(@cost,u0,Lb,Ub,para); 

  
% Display results 
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bestojb=fval; 
Best_pos = u; 
[Cinit,Crep,Cmaint,fuel_cost,LCC,Eco2,T_Dump,Hgen1,Hgen2,Hgen3,Egen,Ewind,EPv

,soc,El]=Results(Best_pos); 
toc 
fprintf('______________________________________________\n') 
fprintf('----------Simulation Results------------------\n') 
fprintf('PV Modules:           %6d \n',round(Best_pos(1))) 
fprintf('Wind Turbine Modules: %6d \n',round(Best_pos(2))) 
fprintf('Battery Modules:      %6d \n',round(Best_pos(6))) 
fprintf('DG Set1 Module:       %6d \n',round(Best_pos(3))) 
fprintf('Hour of operation of DG1:       %6d \n',round(Hgen1)) 
fprintf('DG Set2 Module:       %6d \n',round(Best_pos(4))) 
fprintf('Hour of operation of DG2:       %6d \n',round(Hgen2)) 
fprintf('DG Set3 Module:       %6d \n',round(Best_pos(5))) 
fprintf('Hour of operation of DG3:       %6d \n',round(Hgen3)) 
fprintf('Initial Capital cost:     %8.2f $ \n',Cinit) 
fprintf('Replacement cost:         %8.2f $ \n',Crep) 
fprintf('OP and Maintenance cost:  %8.2f $ \n',Cmaint) 
fprintf('Fuel cost:                %8.2f $ \n',fuel_cost) 
fprintf('Life cycle cost:          %8.2f $ \n',LCC) 
fprintf('Total CO2 Emission:            %8.2f kg \n',Eco2) 
fprintf('Dump Energy:              %8.2f Watt \n',T_Dump) 
fprintf('______________________________________________\n') 
figure; 
%plot(BestCost,'LineWidth',2); 
semilogy(fitbest,'LineWidth',2); 
xlabel('Iteration'); 
ylabel('Best Cost'); 
grid on; 
figure 
%plot hourly output of the hps for 48hrs 
TT=1:48; 
yyaxis left 
plot(TT,EPv(TT),'--g','LineWidth',2) 
hold on 
plot(TT,Ewind(TT),'-.c','LineWidth',2) 
plot(TT,Egen(TT),'--m','LineWidth',2) 
stairs(TT,El(TT),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(TT,soc(TT),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 
%plot hourly output of the hps for 10day 
figure 
T=1:240; 
yyaxis left 
plot(T,EPv(T),'--g','LineWidth',2) 
hold on 
plot(T,Ewind(T),'-.c','LineWidth',2) 
plot(T,Egen(T),'--m','LineWidth',2) 
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stairs(T,El(T),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(T,soc(T),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 

  
%%% Put your own cost/objective function here --------%%% 
%% Cost or Objective function 
 function z=cost(x) 
x=round(x); 
x1=x(1); 
x2=x(2); 
x3=x(3); 
x4=x(4); 
x5=x(5); 
x6=x(6); 

  
[El,El_peak]=load_demand;  
n=30;  
Egen1=0.40*El_peak;   
Egen2=0.40*El_peak; 
Egen3=0.40*El_peak; 
Hgen1=0; Hgen2=0; Hgen3=0;  
Eco2=0;  
f=0;  
Dump=0;   
E_sup_DG1=0; E_sup_DG2=0; E_sup_DG3=0;  

  
Cunit_pv=500; 
Cunit_wind=500; 
Cunit_gen1=0.3*Egen1; %  
Cunit_gen2=0.3*Egen2;  
Cunit_gen3=0.3*Egen3;   
Cunit_battery=300; 
Cfuel_per_l=1.5; 

  
eff_inv=0.8;    
eff_batt=0.9;   
batt_Ah=360;    
Vs=24;      
s_dis_r=0.01;    
CB=batt_Ah*Vs*eff_batt*x6;  
soc=0.5*CB; 
DoD=0.8;  
soc_min=(1-DoD)*CB; 
soc_max=CB; 

  
[wind_speed,solar_irradiance]=speed_irradiance_data; 
H=solar_irradiance; 
v=wind_speed; 
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for mm=1:8 
    H=[H;H]; 
    v=[v;v]; 
end 
h=solar_irradiance; 
V=wind_speed; 
for mn=1:8 
    h=[h;h]; 
    V=[V;V]; 
end 
Hh=[H;h]; 
vV=[v;V]; 
%initialize soc 
% soc=zeros(1,(365*24*n)); 
for t=2:365*24*n 
Ppv=pvmodule(Hh(t-1));   
Ppv=Ppv*1.30;  
Pwind=wt_module(vV(t-1)); %loaded wind speed data is accessed here 
Eren=Ppv*x1+Pwind*x2; 

  
Edx=Eren-(El(t-1)/eff_inv); 
if Edx>0     %i.e if their is excess energy 
    if soc(t-1)<soc_max 
        %for charging 
         soc(t)=soc(t-1)*(1-s_dis_r)+(Eren-(El(t-1)/eff_inv))*eff_batt;  
    else 
        Dump(t)=abs(Edx); 
        soc(t)=soc(t-1); 
    end 
elseif Edx<0  
    if soc(t-1)>soc_min   
        %for discharging 
        soc(t)=soc(t-1)*(1-s_dis_r)-((El(t-1)/eff_inv)-Eren);   
    else 
        %Generator  
        if abs(Edx)<(x3*Egen1) 
            s1=1; s2=0; s3=0; 
        elseif abs(Edx)<((x3*Egen1)+(x4*Egen2)) 

           
            s1=1; s2=1; s3=0; 
        else 
            s1=1; 
            s2=1; 
            s3=1; 
        end 
        Egen(t-1)=s1*Egen1*x3+s2*Egen2*x4+s3*Egen3*x5; 

         

      
        if s1==1 
            E_sup_DG1(t-1)= ((abs(Edx))/1000);  
            f1(t-1)= E_sup_DG1(t-1)*0.145;  
            Hgen1=Hgen1+1;     
        else 
            f1(t-1)=0; 
        end 
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        if s2==1 
            E_sup_DG2(t-1)= (((abs(Edx))-Egen1)/1000);  
            f2(t-1)= E_sup_DG2(t-1)*0.145;  
            Hgen2=Hgen2+1;     
            else 
            f2(t-1)=0; 
        end 
        if s3==1   
            E_sup_DG3(t-1)= (((abs(Edx))-(Egen1+Egen2))/1000);   
            f3(t-1)= E_sup_DG3(t-1)*0.145;  
            Hgen3=Hgen3+1;      
            else 
            f3(t-1)=0; 
        end 
        f(t-1)= f1(t-1)+f2(t-1)+f3(t-1);  
        Seco2=2.7; %kg/l 
        Eco2(t-1)=Seco2*f(t-1);     

         
        soc(t)=soc(t-1)*(1-s_dis_r); 
    end 
end 
end 
Eco2=sum(Eco2);  
fuel=sum(f);     
fuel_cost=fuel*Cfuel_per_l;  

  
Cinit=x1*Cunit_pv+x2*Cunit_wind+x3*Cunit_gen1+x4*Cunit_gen2+x5*Cunit_gen3+x6*

Cunit_battery; 

  
%Replacement cost 
N_year_wind=25*365*24; %  
N_year_batt=10*365*24;  
n_gen=10*365*24;  
if Hgen1>n_gen  %to estimate for replacement cost 
Crep_gen1=Replacement_cost(Hgen1,n,Cunit_gen1); 
else  
Crep_gen1=0; 
end 
if Hgen2>n_gen 
Crep_gen2=Replacement_cost(Hgen2,n,Cunit_gen2); 
else  
Crep_gen2=0; 
end 
if Hgen3>n_gen 
%N_year_gen3=round(Hgen3/n_gen); 
Crep_gen3=Replacement_cost(Hgen3,n,Cunit_gen3); 
else  
Crep_gen3=0; 
end 
Crep_wind=Replacement_cost(N_year_wind,n,Cunit_wind); 
Crep_batt=Replacement_cost(N_year_batt,n,Cunit_battery); 
Crep=Crep_wind*x2+Crep_batt*x6+Crep_gen1*x3+Crep_gen2*x4+Crep_gen3*x5;  

  
%Operation and maintenance cost 
fo=6; 
kd=9; 
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Com_pv=0.01*Cunit_pv*x1*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number of 

year considered, 1% of intial PV cost is used for its first year op&m cost 
Com_wind=0.03*Cunit_wind*x2*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 3% of intial wind turbine cost is used for its first year 

op&m cost 
Com_gen1=0.05*Cunit_gen1*x3*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_gen2=0.05*Cunit_gen2*x4*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_gen3=0.05*Cunit_gen3*x5*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_batt=0.03*Cunit_battery*x6*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); 

%n=number of year considered, 1% of intial battery cost is used for its first 

year op&m cost  
Cmaint=Com_pv+Com_wind+Com_gen1+Com_gen2+Com_gen3+Com_batt;   
T_Dump=sum(Dump); 
%life cycle cost 
LCC=Cinit+Crep+Cmaint+fuel_cost; 

  
w1=0.5; w2=0.3; w3=0.2;   
%if Etotal > El_peak && Etotal < (El_peak*1.20)     %constraints 
ECO2=Eco2*0.15; %converting co2 to money using penalty factor 
%C_T_Dump=T_Dump* %converting dump energy to money using cost of electricity 

(COE) 
z=w1*LCC+w2*ECO2+w3*T_Dump; 
%else 
%obj= inf; 
%%% End of the part to be modified -------------------%%% 

  
%%% --------------------------------------------------%%% 
%%% Do not modify the following codes unless you want %%% 
%%% to improve its performance etc                    %%% 
% ------------------------------------------------------- 
% ===Start of the Firefly Algorithm Implementation ====== 
%         Lb = lower bounds/limits 
%         Ub = upper bounds/limits 
%   para == optional (to control the Firefly algorithm) 
% Outputs: nbest   = the best solution found so far 
%          fbest   = the best objective value 
%      NumEval = number of evaluations: n*MaxGeneration 
% Optional: 
% The alpha can be reduced (as to reduce the randomness) 
% --------------------------------------------------------- 

  
% Start FA 
function [nbest,fbest,fitbest]... 
           =ffa_mincon(fhandle,u0, Lb, Ub, para) 
% Check input parameters (otherwise set as default values) 
if nargin<5, para=[20 500 0.25 0.20 1]; end 
if nargin<4, Ub=[]; end 
if nargin<3, Lb=[]; end 
if nargin<2 
disp('Usuage: FA_mincon(@cost,u0,Lb,Ub,para)'); 
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end 

  
% n=number of fireflies 
% MaxGeneration=number of pseudo time steps 
% ------------------------------------------------ 
% alpha=0.25;      % Randomness 0--1 (highly random) 
% betamn=0.20;     % minimum value of beta 
% gamma=1;         % Absorption coefficient 
% ------------------------------------------------ 
n=para(1);  MaxGeneration=para(2); 
alpha=para(3); betamin=para(4); gamma=para(5); 

  
% Total number of function evaluations 
NumEval=n*MaxGeneration; 

  
% Check if the upper bound & lower bound are the same size 
if length(Lb) ~=length(Ub) 
    disp('Simple bounds/limits are improper!'); 
    return 
end 

  
% Calcualte dimension 
d=length(u0); 

  
% Initial values of an array 
zn=ones(n,1)*10^100; 
% ------------------------------------------------ 
% generating the initial locations of n fireflies 
[ns,Lightn]=init_ffa(n,d,Lb,Ub,u0); 

  
% Iterations or pseudo time marching 
for k=1:MaxGeneration     %%%%% start iterations 

  
% This line of reducing alpha is optional 
 alpha=alpha_new(alpha,MaxGeneration); 

  
% Evaluate new solutions (for all n fireflies) 
for i=1:n 
   zn(i)=fhandle(ns(i,:)); 
   Lightn(i)=zn(i); 
end 

  
% Ranking fireflies by their light intensity/objectives 
[Lightn,Index]=sort(zn); 
ns_tmp=ns; 
for i=1:n 
 ns(i,:)=ns_tmp(Index(i),:); 
end 

  
%% Find the current best 
nso=ns; Lighto=Lightn; 
nbest=ns(1,:); Lightbest=Lightn(1); 

  
% For output only 
fbest=Lightbest; 



  

244 
 

  
% Move all fireflies to the better locations 
[ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,nbest,... 
      Lightbest,alpha,betamin,gamma,Lb,Ub); 
% Show Iteration Information 
    disp(['It:' num2str(k) ', Cost => ' num2str(fbest)]); 
    fitbest(k)=fbest; 
end   %%%%% end of iterations 

  
% ------------------------------------------------------- 
% ----- All the subfunctions are listed here ------------ 
% The initial locations of n fireflies 
function [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0) 
  % if there are bounds/limits, 
% if length(Lb)>0 
%    for i=1:n 
%    ns(i,:)=Lb+(Ub-Lb).*rand(1,d); 
%    end 
% else 
%    % generate solutions around the random guess 
%    for i=1:n, 
%    ns(i,:)=u0+randn(1,d); 
%    end 
% end 
%load position 
load Positions 
ns=Positions; 

  
% initial value before function evaluations 
Lightn=ones(n,1)*10^100; 

  
% Move all fireflies toward brighter ones 
function [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,... 
             nbest,Lightbest,alpha,betamin,gamma,Lb,Ub) 
% Scaling of the system 
scale=abs(Ub-Lb); 

  
% Updating fireflies 
for i=1:n 
% The attractiveness parameter beta=exp(-gamma*r) 
   for j=1:n 
      r=sqrt(sum((ns(i,:)-ns(j,:)).^2)); 
      % Update moves 
       if Lightn(i)>Lighto(j), % Brighter and more attractive 
   beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin; 
   tmpf=alpha.*(rand(1,d)-0.5).*scale; 
   ns(i,:)=ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf; 
      end 
   end % end for j 

  
end % end for i 

  
% Check if the updated solutions/locations are within limits 
[ns]=findlimits(n,ns,Lb,Ub); 
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% This function is optional, as it is not in the original FA 
% The idea to reduce randomness is to increase the convergence, 
% however, if you reduce randomness too quickly, then premature 
% convergence can occur. So use with care. 
function alpha=alpha_new(alpha,NGen) 
% alpha_n=alpha_0(1-delta)^NGen=10^(-4); 
% alpha_0=0.9 
delta=1-(10^(-4)/0.9)^(1/NGen); 
alpha=(1-delta)*alpha; 

  
% Make sure the fireflies are within the bounds/limits 
function [ns]=findlimits(n,ns,Lb,Ub) 
for i=1:n 
     % Apply the lower bound 
  ns_tmp=ns(i,:); 
  I=ns_tmp<Lb; 
  ns_tmp(I)=Lb(I); 

  
  % Apply the upper bounds 
  J=ns_tmp>Ub; 
  ns_tmp(J)=Ub(J); 
  % Update this new move 
  ns(i,:)=ns_tmp; 
end 

  
%% ==== End of Firefly Algorithm implementation ====== 

  

 

GPC 

%% Giza Pyramids Construction (GPC) Algorithm 
%programmer: Engr. Convenience 
%Date:23-10-2021 
%Code version: Improved Version 
%Improved in MATLAB R2020a  
% 
% Paper  : Giza Pyramids Construction: an ancient-inspired metaheuristic 

algorithm for optimization 
% DOI    : http://dx.doi.org/10.1007/s12065-020-00451-3 

  
clc; 
clear; 
close all; 

  
%% Problem Definition 
tic 
CostFunction=@(x) Sphere(x);        % Cost Function 
 batt_rated=360;   %battery capacity in AH 
       SF=1.5; %safety factor 
       rated_pv=385; %watt 
       rated_wind=500; %watt 
       [~,peak_El]=load_demand; 
       u_pv=peak_El*SF/rated_pv; 
       u_wind=peak_El*SF/rated_wind; 
       u_batt=(battery_capacity(peak_El))/batt_rated; 
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        VarMin=[1 1 1 1 1 1];    % Decision Variables Lower Bound 
        VarMax=[round(u_pv*SF) round(u_wind*SF) 1 1 1 round(u_batt*SF)];             

% Decision Variables Upper Bound 

        
nVar=6;                  % Number of Decision Variables 

  
VarSize=[1 nVar];         % Decision Variables Matrix Size 

  
%% Giza Pyramids Construction (GPC) Parameters 

  
MaxIteration=20;   % Maximum Number of Iterations (Days of work) 

  
nPop=50;             % Number of workers 

  
G = 9.8;             % Gravity 
Tetha = 14;          % Angle of Ramp 
MuMin = 1;           % Minimum Friction  
MuMax = 10;          % Maximum Friction 
pSS= 0.5;            % Substitution Probability 

  
%% Initialization 
% Empty Stones Structure 
stone.Position=[]; 
stone.Cost=[]; 
%load position 
load Positions 
% Initialize Population Array 
pop=repmat(stone,nPop,1); 

  
% Initialize Best Solution Ever Found 
best_worker.Cost=inf; 

  
% Create Initial Stones 
for i=1:nPop 
   pop(i).Position=Positions(i,:); 
   pop(i).Cost=CostFunction(pop(i).Position); 
   if pop(i).Cost<=best_worker.Cost 
       best_worker=pop(i);          % as Pharaoh's special agent 
   end 
end 

  
% Array to Hold Best Cost Values 
BestCost=zeros(MaxIteration,1); 

  
%% Giza Pyramids Construction (GPC) Algorithm Main Loop 
for it=1:MaxIteration 
    newpop=repmat(stone,nPop,1); 

     
    for i=1:nPop 
        newpop(i).Cost = inf; 

        
        V0= rand(1,1);                          % Initial Velocity                                       
        Mu= MuMin+(MuMax-MuMin)*rand(1,1);      % Friction 

  



  

247 
 

        d = (V0^2)/((2*G)*(sind(Tetha)+(Mu*cosd(Tetha))));                  % 

Stone Destination 
        x = (V0^2)/((2*G)*(sind(Tetha)));                                   % 

Worker Movement 
        epsilon=unifrnd(-((VarMax-VarMin)/2),((VarMax-VarMin)/2),VarSize);  % 

Epsilon 
        newsol.Position = (pop(i).Position+d).*(x*epsilon);                 % 

Position of Stone and Worker 
      % newsol.Position = (pop(i).Position+d)+(x*epsilon);                  % 

Note: In some cases or some problems use this instead of the previous line to 

get better results 

  
        newsol.Position=max(newsol.Position,VarMin); 
        newsol.Position=min(newsol.Position,VarMax); 

         
        % Substitution 
        z=zeros(size(pop(i).Position)); 
        k0=randi([1 numel(pop(i).Position)]); 
        for k=1:numel(pop(i).Position) 
            if k==k0 || rand<=pSS 
                z(k)=newsol.Position(k); 
            else 
                z(k)=pop(i).Position(k); 
            end 
        end 

         
        newsol.Position=z; 
        newsol.Cost=CostFunction(newsol.Position); 

         
        if newsol.Cost <= newpop(i).Cost 
           newpop(i) = newsol; 
           if newpop(i).Cost<=best_worker.Cost 
               best_worker=newpop(i); 
           end 
        end 

     
    end 

       
    % Merge 
    pop=[pop  
         newpop];  %#ok 

     
    % Sort 
    [~, SortOrder]=sort([pop.Cost]); 
    pop=pop(SortOrder); 

     
    % Truncate 
    pop=pop(1:nPop); 

  
    % Store Best Cost Ever Found 
    BestCost(it)=pop(1).Cost; 

     
    % Show Iteration Information 
    disp(['It:' num2str(it) ', Cost => ' num2str(BestCost(it))]); 
end 



  

248 
 

  
%% Results 
Best_pos=best_worker.Position; 
xx=round(Best_pos); 
[Cinit,Crep,Cmaint,fuel_cost,LCC,Eco2,T_Dump,Hgen1,Hgen2,Hgen3,Egen,Ewind,EPv

,soc,El]=Results(Best_pos); 
toc 
fprintf('______________________________________________\n') 
fprintf('----------Simulation Results------------------\n') 
fprintf('PV Modules:           %6d \n',round(Best_pos(1))) 
fprintf('Wind Turbine Modules: %6d \n',round(Best_pos(2))) 
fprintf('Battery Modules:      %6d \n',round(Best_pos(6))) 
fprintf('DG Set1 Module:       %6d \n',round(Best_pos(3))) 
fprintf('Hour of operation of DG1:       %6d \n',round(Hgen1)) 
fprintf('DG Set2 Module:       %6d \n',round(Best_pos(4))) 
fprintf('Hour of operation of DG2:       %6d \n',round(Hgen2)) 
fprintf('DG Set3 Module:       %6d \n',round(Best_pos(5))) 
fprintf('Hour of operation of DG3:       %6d \n',round(Hgen3)) 
fprintf('Initial Capital cost:     %8.2f $ \n',Cinit) 
fprintf('Replacement cost:         %8.2f $ \n',Crep) 
fprintf('OP and Maintenance cost:  %8.2f $ \n',Cmaint) 
fprintf('Fuel cost:                %8.2f $ \n',fuel_cost) 
fprintf('Life cycle cost:          %8.2f $ \n',LCC) 
fprintf('Total CO2 Emission:            %8.2f kg \n',Eco2) 
fprintf('Dump Energy:              %8.2f Watt \n',T_Dump) 
fprintf('______________________________________________\n') 

  

  
figure; 
%plot(BestCost,'LineWidth',2); 
semilogy(BestCost,'LineWidth',2); 
xlabel('Iteration'); 
ylabel('Best Cost'); 
grid on; 
figure 
%plot hourly output of the hps for 48hrs 
TT=1:48; 
yyaxis left 
plot(TT,EPv(TT),'--g','LineWidth',2) 
hold on 
plot(TT,Ewind(TT),'-.c','LineWidth',2) 
plot(TT,Egen(TT),'--m','LineWidth',2) 
stairs(TT,El(TT),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(TT,soc(TT),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 
%plot hourly output of the hps for 10day 
figure 
T=1:240; 
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yyaxis left 
plot(T,EPv(T),'--g','LineWidth',2) 
hold on 
plot(T,Ewind(T),'-.c','LineWidth',2) 
plot(T,Egen(T),'--m','LineWidth',2) 
stairs(T,El(T),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(T,soc(T),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 

 

Sphere 

function obj=Sphere(x) 
x=round(x); 
x1=x(1); 
x2=x(2); 
x3=x(3); 
x4=x(4); 
x5=x(5); 
x6=x(6); 

  
[El,El_peak]=load_demand;  
n=30;  
Egen1=0.40*El_peak;   
Egen2=0.40*El_peak; 
Egen3=0.40*El_peak; 
Hgen1=0; Hgen2=0; Hgen3=0;  
Eco2=0;  
f=0;  
Dump=0;   
E_sup_DG1=0; E_sup_DG2=0; E_sup_DG3=0;  

  
Cunit_pv=500; 
Cunit_wind=500; 
Cunit_gen1=0.3*Egen1; %  
Cunit_gen2=0.3*Egen2;  
Cunit_gen3=0.3*Egen3;   
Cunit_battery=300; 
Cfuel_per_l=1.5; 

  
eff_inv=0.8;    
eff_batt=0.9;   
batt_Ah=360;    
Vs=24;      
s_dis_r=0.01;    
CB=batt_Ah*Vs*eff_batt*x6;  
soc=0.5*CB; 
DoD=0.8;  
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soc_min=(1-DoD)*CB; 
soc_max=CB; 

  
[wind_speed,solar_irradiance]=speed_irradiance_data; 
H=solar_irradiance; 
v=wind_speed; 

  
for mm=1:8 
    H=[H;H]; 
    v=[v;v]; 
end 
h=solar_irradiance; 
V=wind_speed; 
for mn=1:8 
    h=[h;h]; 
    V=[V;V]; 
end 
Hh=[H;h]; 
vV=[v;V]; 
%initialize soc 
% soc=zeros(1,(365*24*n)); 
for t=2:365*24*n 
Ppv=pvmodule(Hh(t-1));   
Ppv=Ppv*1.30;  
Pwind=wt_module(vV(t-1)); %loaded wind speed data is accessed here 
Eren=Ppv*x1+Pwind*x2; 

  
Edx=Eren-(El(t-1)/eff_inv); 
if Edx>0     %i.e if their is excess energy 
    if soc(t-1)<soc_max 
        %for charging 
         soc(t)=soc(t-1)*(1-s_dis_r)+(Eren-(El(t-1)/eff_inv))*eff_batt;  
    else 
        Dump(t)=abs(Edx); 
        soc(t)=soc(t-1); 
    end 
elseif Edx<0  
    if soc(t-1)>soc_min   
        %for discharging 
        soc(t)=soc(t-1)*(1-s_dis_r)-((El(t-1)/eff_inv)-Eren);   
    else 
        %Generator  
        if abs(Edx)<(x3*Egen1) 
            s1=1; s2=0; s3=0; 
        elseif abs(Edx)<((x3*Egen1)+(x4*Egen2)) 

           
            s1=1; s2=1; s3=0; 
        else 
            s1=1; 
            s2=1; 
            s3=1; 
        end 
        Egen(t-1)=s1*Egen1*x3+s2*Egen2*x4+s3*Egen3*x5; 

         

      
        if s1==1 
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            E_sup_DG1(t-1)= ((abs(Edx))/1000);  
            f1(t-1)= E_sup_DG1(t-1)*0.145;  
            Hgen1=Hgen1+1;     
        else 
            f1(t-1)=0; 
        end 
        if s2==1 
            E_sup_DG2(t-1)= (((abs(Edx))-Egen1)/1000);  
            f2(t-1)= E_sup_DG2(t-1)*0.145;  
            Hgen2=Hgen2+1;     
            else 
            f2(t-1)=0; 
        end 
        if s3==1   
            E_sup_DG3(t-1)= (((abs(Edx))-(Egen1+Egen2))/1000);   
            f3(t-1)= E_sup_DG3(t-1)*0.145;  
            Hgen3=Hgen3+1;      
            else 
            f3(t-1)=0; 
        end 
        f(t-1)= f1(t-1)+f2(t-1)+f3(t-1);  
        Seco2=2.7; %kg/l 
        Eco2(t-1)=Seco2*f(t-1);     

         
        soc(t)=soc(t-1)*(1-s_dis_r); 
    end 
end 
end 
Eco2=sum(Eco2);  
fuel=sum(f);     
fuel_cost=fuel*Cfuel_per_l;  

  
Cinit=x1*Cunit_pv+x2*Cunit_wind+x3*Cunit_gen1+x4*Cunit_gen2+x5*Cunit_gen3+x6*

Cunit_battery; 

  
%Replacement cost 
N_year_wind=25*365*24; %  
N_year_batt=10*365*24;  
n_gen=10*365*24;  
if Hgen1>n_gen  %to estimate for replacement cost 
Crep_gen1=Replacement_cost(Hgen1,n,Cunit_gen1); 
else  
Crep_gen1=0; 
end 
if Hgen2>n_gen 
Crep_gen2=Replacement_cost(Hgen2,n,Cunit_gen2); 
else  
Crep_gen2=0; 
end 
if Hgen3>n_gen 
%N_year_gen3=round(Hgen3/n_gen); 
Crep_gen3=Replacement_cost(Hgen3,n,Cunit_gen3); 
else  
Crep_gen3=0; 
end 
Crep_wind=Replacement_cost(N_year_wind,n,Cunit_wind); 
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Crep_batt=Replacement_cost(N_year_batt,n,Cunit_battery); 
Crep=Crep_wind*x2+Crep_batt*x6+Crep_gen1*x3+Crep_gen2*x4+Crep_gen3*x5;  

  
%Operation and maintenance cost 
fo=6; 
kd=9; 
Com_pv=0.01*Cunit_pv*x1*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number of 

year considered, 1% of intial PV cost is used for its first year op&m cost 
Com_wind=0.03*Cunit_wind*x2*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 3% of intial wind turbine cost is used for its first year 

op&m cost 
Com_gen1=0.05*Cunit_gen1*x3*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_gen2=0.05*Cunit_gen2*x4*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_gen3=0.05*Cunit_gen3*x5*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); %n=number 

of year considered, 5% of intial generator cost is used for its first year 

op&m cost 
Com_batt=0.03*Cunit_battery*x6*((1+fo)/(kd-fo))*(1-((1+fo)/(1+kd))^n); 

%n=number of year considered, 1% of intial battery cost is used for its first 

year op&m cost  
Cmaint=Com_pv+Com_wind+Com_gen1+Com_gen2+Com_gen3+Com_batt;   
T_Dump=sum(Dump); 
%life cycle cost 
LCC=Cinit+Crep+Cmaint+fuel_cost; 

  
w1=0.5; w2=0.3; w3=0.2;   
%if Etotal > El_peak && Etotal < (El_peak*1.20)     %constraints 
ECO2=Eco2*0.15; %converting co2 to money using penalty factor 
%C_T_Dump=T_Dump* %converting dump energy to money using cost of electricity 

(COE) 
x=w1*LCC+w2*ECO2+w3*T_Dump; 

 

WOA 

 
% The Whale Optimization Algorithm 
function 

[Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,u

b,dim,fobj) 

  
% initialize position vector and score for the leader 
Leader_pos=zeros(1,dim); 
Leader_score=inf; %change this to -inf for maximization problems 

  
%Initialize the positions of search agents 
Positions=initialization(SearchAgents_no,dim,ub,lb); 

  
Convergence_curve=zeros(1,Max_iter); 

  
t=0;% Loop counter 
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% Main loop 
while t<Max_iter 
    for i=1:size(Positions,1) 

         
        % Return back the search agents that go beyond the boundaries of the 

search space 
        Flag4ub=Positions(i,:)>ub; 
        Flag4lb=Positions(i,:)<lb; 
        

Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb

; 
        % Calculate objective function for each search agent 
        fitness=fobj(Positions(i,:)); 

         
        % Update the leader 
        if fitness<Leader_score % Change this to > for maximization problem 
            Leader_score=fitness; % Update alpha 
            Leader_pos=Positions(i,:); 
        end 

         
    end 

     
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) 

     
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) 
    a2=-1+t*((-1)/Max_iter); 

     
    % Update the Position of search agents  
    for i=1:size(Positions,1) 
        r1=rand(); % r1 is a random number in [0,1] 
        r2=rand(); % r2 is a random number in [0,1] 

         
        A=2*a*r1-a;  % Eq. (2.3) in the paper 
        C=2*r2;      % Eq. (2.4) in the paper 

         

         
        b=1;               %  parameters in Eq. (2.5) 
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5) 

         
        p = rand();        % p in Eq. (2.6) 

         
        for j=1:size(Positions,2) 

             
            if p<0.5    
                if abs(A)>=1 
                    rand_leader_index = floor(SearchAgents_no*rand()+1); 
                    X_rand = Positions(rand_leader_index, :); 
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) 
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8) 

                     
                elseif abs(A)<1 
                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1) 
                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2) 
                end 
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            elseif p>=0.5 

               
                distance2Leader=abs(Leader_pos(j)-Positions(i,j)); 
                % Eq. (2.5) 
                

Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); 

                 
            end 

             
        end 
    end 
    t=t+1; 
    Convergence_curve(t)=Leader_score; 
    [t Leader_score] 
end 

  

  
% To run WOA: 

[Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,di

m,fobj) 
%__________________________________________ 

  
clear all  
clc 
close all 
SearchAgents_no=50; % Number of search agents 

  
Function_name='F1'; % Name of the test function that can be from F1 to F23 

(Table 1,2,3 in the paper) 

  
Max_iteration=2; % Maximum numbef of iterations 

  
% Load details of the selected benchmark function 
[lb,ub,dim,fobj]=Get_Functions_details(Function_name); 

  
[Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,di

m,fobj); 

  
xx=round(Best_pos); 
[Cinit,Crep,Cmaint,fuel_cost,LCC,Eco2,T_Dump,Hgen1,Hgen2,Hgen3,Egen,Ewind,EPv

,soc,El]=Results(Best_pos); 
%% Results 
fprintf('______________________________________________\n') 
fprintf('----------Simulation Results------------------\n') 
fprintf('PV Modules:           %6d \n',round(Best_pos(1))) 
fprintf('Wind Turbine Modules: %6d \n',round(Best_pos(2))) 
fprintf('Battery Modules:      %6d \n',round(Best_pos(6))) 
fprintf('DG Set1 Module:       %6d \n',round(Best_pos(3))) 
fprintf('Hour of operation of DG1:       %6d \n',round(Hgen1)) 
fprintf('DG Set2 Module:       %6d \n',round(Best_pos(4))) 
fprintf('Hour of operation of DG2:       %6d \n',round(Hgen2)) 
fprintf('DG Set3 Module:       %6d \n',round(Best_pos(5))) 
fprintf('Hour of operation of DG3:       %6d \n',round(Hgen3)) 
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fprintf('Initial Capital cost:     %8.2f $ \n',Cinit) 
fprintf('Replacement cost:         %8.2f $ \n',Crep) 
fprintf('OP and Maintenance cost:  %8.2f $ \n',Cmaint) 
fprintf('Fuel cost:                %8.2f $ \n',fuel_cost) 
fprintf('Life cycle cost:          %8.2f $ \n',LCC) 
fprintf('Total CO2 Emission:            %8.2f kg \n',Eco2) 
fprintf('Dump Energy:              %8.2f Watt \n',T_Dump) 
fprintf('______________________________________________\n') 

  
figure 
figure('Position',[269   240   660   290]) 
%Draw objective space 
semilogy(WOA_cg_curve,'Color','r') 
title('Objective space') 
xlabel('Iteration'); 
ylabel('Best score obtained so far'); 

  
axis tight 
grid on 
box on 
legend('WOA') 
figure 
%plot hourly output of the hps for 48hrs 
TT=1:48; 
yyaxis left 
plot(TT,EPv(TT),'--g','LineWidth',2) 
hold on 
plot(TT,Ewind(TT),'-.c','LineWidth',2) 
plot(TT,Egen(TT),'--m','LineWidth',2) 
stairs(TT,El(TT),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(TT,soc(TT),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 
%plot hourly output of the hps for 10day 
figure 
T=1:240; 
yyaxis left 
plot(T,EPv(T),'--g','LineWidth',2) 
hold on 
plot(T,Ewind(T),'-.c','LineWidth',2) 
plot(T,Egen(T),'--m','LineWidth',2) 
stairs(T,El(T),'-r','LineWidth',2) 
hold off 
ylabel('Output Power (Watt)') 
xlabel('Duration (Hr)') 
yyaxis right 
plot(T,soc(T),':b','LineWidth',2) 
ylabel('State of Charge') 
title('System behaviour') 
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legend('BPv','Wind','3DGs','Eload','SOC') 
grid on 
grid minor 
display(['The best optimal value of the objective funciton found by WOA is : 

', num2str(Best_score)]); 

 

 


