

TOPSIDE FACILITIES' ABILITY TO HANDLE A NEW BLEND OF CRUDE OIL

by

SANDRO DUARTE CÉSAR

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Chemical Engineering

in the Faculty of Engineering and the Built Environment

at the

Cape Peninsula University of Technology

Supervisor: Dr. Debbie de Jager Co-Supervisor: Dr. Myalelo Nomnqa

> Bellville, South Africa August 2022

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific, or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University

I, **SANDRO CÉSAR**, declare that all the work in this thesis, save for the ones appropriately acknowledged, represents my own unaided work, apart from the normal guidance of my supervisors. This thesis represents my own opinions and not necessarily those of the Cape Peninsula University of Technology and its sponsors.

This thesis has not been submitted for any degree or examination in any other University.

(Signature)

Signed in Luanda, on this 26th day of August 2022

Angola is the second largest oil producing country in sub-Saharan Africa, producing around 1.4 million barrels of oil and 17.9 billion cubic feet of gas per day of production. The recovery of crude oil and natural gas from underground sources requires separation and stabilisation treatment of all the individual phases since both exist as a hydrocarbon-water mixture in the rock formation.

This study introduces an approach to the factorial design of an offshore topside process facility, considering the effect of an oil field fluids' composition and arrival temperature on the production facility's behaviour, which was not considered during the facility's original design phase. The objectives of this study were to: 1.) evaluate and perform verifications to confirm the suitability of the existing facility to meet the desired outlet conditions by processing fluid from the new Múcua field which has an arrival temperature of -7°C at the top of production riser-c (PR-c); 2.) evaluate the equipment handling capability past the total liquids design capacity by means of a detailed process train evaluation of each topside system with a clear identification of potential bottlenecks and its optimisation for debottlenecking; 3.) develop blowdown system verifications considering the recommended updated design cases and operating conditions.

A new fluid blend including fluid from the Múcua field through PR-c was used for the simulations of case studies A to F using Aspen Tech HYSYS, based on the PR-c alignment either to the high pressure (HP) separator (with gas lift) or to the Test separator (without gas lift), for the six operational scenarios with operating temperatures, -7, 5, 36 and 50°C, and operating pressures of 7 and 19 barg. Herein the relationship between these variables was investigated and the results compared with the original design specifications of the equipment for possible bottlenecks, which provided data for a governing case selection. An estimation of the safe production outcomes with the new fluids addition as a function of the pressure and temperature was therefore obtained.

From the simulations and MySEP evaluations, the gas flow rate at the intermediate pressure (IP) and low pressure (LP) separator was found to be greater than the original design for cases A, B, D and E, with a high liquid carryover in the gas stream and verifications on the separators' gas outlet pressure control valves (PCVs) providing evidence of their lack of adequacy for the full gas flow rate as per the original design. The main injection gas compressing system showed no major concerns to accommodate all six case studies, despite the slightly higher condensate flow rate for cases A, B and C at the 2nd stage scrubber than the design flow rate specification. The actual volumetric flow rate passing through the 1st stage flash gas compressor suction cooler for cases A, B, D and E was greater than the original design value,

therefore the flash gas compressor system was found unlikely to handle all the gas from cases A, B, D and E due to a relatively high pressure drop across the coolers. This led to a portion of the process gas being flared from the LP/IP separator, which is undesired as it poses environmental constraints and as such was found to be the major bottleneck. While there were no concerns found for the blowdown scenario and flare system, the gas dehydration and fuel gas, the produced water system and cooling medium system, the overall heating medium duty requirement was exceeded for cases D and E, therefore requiring a greater heating load for the crude oil heater to heat the incoming fluids to the operational temperature of 90°C needed to meet the product's true vapour pressure (TVP) specifications.

Case F was selected as the governing case based on the operating parameters and production figures prior to the introduction of the new field fluids into the system. From the outcomes of the simulation and evaluations with the Múcua fluid tie-in under Case F's configuration, it was found out that the water flow rate at the LP separator was greater than the original design and the existing line size was validated to be able to handle the increased flow rate. However, the pressure drop could be a problem since the water flow rate for the 2nd stage flash gas compression scrubber was found to be above the design case as well, the production flow rates would therefore need to be increased gradually and closely monitored to address this bottleneck.

From this study, it was concluded that in order to start-up the facility with the Múcua field fluid tied-in without major bottlenecks under case F configuration with a production expectancy of 81170 barrels of oil per day, 73.06 million standard cubic feet per day across the HP separator and a cargo of TVP \leq 14.7 psia at storage conditions: 1.) the crude oil heaters should be upgraded from 100 to 128 plates to have increased flexibility and less gases flashing in the cargo tanks; 2.) the heating medium temperature should be increased to the maximum capacity sustained by the exchangers Hydrogenated Nitrile Rubber (HNBR) gaskets; 3.) the crude oil coolers should be bypassed as the crude/crude exchangers are expected to cool the dead oil to \leq 50°C; 4.) the subsea chemical injection requirements should be revised to improve separation; 5.) monitor the Múcua fluids water cut and arrival temperatures; as well as 6.) monitor the flash gas compressor systems performance.

I would like to express my deepest gratitude to God for the gift of life and for permitting my dreams to come true in this lifetime. Thank you for allowing me to make mistakes, to learn, to grow up, for listening to my prayers and for enlightening me throughout my academic journey. I have not yet found out what I have done to deserve it all.

I would like to recognise the invaluable assistance of my supervisor Dr. Debbie de Jager, with many thanks for the useful comments, remarks, patient support and engagement through the learning process of this Master's Thesis. You serve as an example and teach silently through your humbleness.

Elielsa César, sou grato pelo seu companheirismo e compreensão pelas horas de ausência, mantendo o nosso lar operacional enquanto eu investia tempo neste trabalho.

Furthermore, I would like to thank Alexander Costa, my professional mentor whose expertise and excellence in technical quality was invaluable in formulating the research questions and methodology. It is whole-heartedly appreciated that your great advice and lessons proved monumental towards the success of this study, as you have provided me with the tools that I needed to choose the right direction and successfully complete my dissertation. I would also like to recognise the assistance of Stuart Roscoe and Mauro Mancinelli, since your insightful feedback in oil and gas production operations pushed me to sharpen my thinking and brought my work to a higher level.

I wish to thank Dr. Myalelo Nomnqa for accepting a last-minute request to co-supervise and Mrs. Elizma Alberts for her wise counsel, sympathetic ear, and support towards this goal.

For my mom Merciana Duarte, for the strength to continue through the valley of darkness always with a light of hope, and not giving up when things looked bleak.

> You decide how you view the world each day. Therefore, choose to make it inspiring, because to create something from nothing is one of the greatest feelings. It is Heaven.

Prince Roger Nelson O(+> (1958 - 2016)

TABLE OF CONTENTS

DECLAF	RATION.		i
ABSTRA	АСТ	i	i
ACKNO	WLEDGE	MENTSiv	/
DEDICA	TION		/
LIST OF	FIGURE	Si	K
LIST OF	TABLES	Sxi	i
LIST OF	ABBRE	VIATIONSxv	i
LIST OF	SYMBO	LSxvii	i
GLOSS	ARY	xi)	¢
1. CHA	APTER 1:		2
1.1.	Backgro	und to the Research Problem2	2
1.2.	Motivatio	on for the Research Problem2	2
1.3.	Stateme	nt of the Research Problem	3
1.4.	Researc	h Rationale	3
1.5.	Researc	h Questions	3
1.6.	Hypothe	sis	1
1.7.	Researc	h Aims and Objectives	1
1.8.	Significa	nce of the Research	1
1.9.	Delineati	on of the Study	5
2. CHA	PTER 2	LITERATURE REVIEW	7
2.1.	Introduct	ion	7
2.2.	Petroleu	m Reservoirs	7
2.2.	1. Clas	sification of Reservoirs and Fluid Systems	7
2.	2.1.1.	Dry Gas Reservoir)
2.	2.1.2.	Wet Gas Reservoir)
2.	2.1.3.	Gas Condensate Reservoir)
2.	2.1.4.	Volatile Oil Reservoir)
2.	2.1.5.	Black Oil Reservoir)
2.3.	Oil and C	Gas Separation10)
2.4.	Floating	Production Storage and Offloading (FPSO) Facilities10)
2.4.	1. Top	sides Operational Process11	I
2.	4.1.1.	Fluid Transfer System11	1

2.	.4.1.2.	Phase Separation	12
2.	.4.1.3.	Oil Stabilisation	13
2.	.4.1.4.	Gas Processing	13
	2.4.1.4.1	. Gas Dehydration	14
	2.4.1.4.2	2. Flare Relief System	15
2.	.4.1.5.	Produced Water Treatment	15
2.	.4.1.6.	Seawater Treatment	16
	2.4.1.6.1	. Filtration	16
	2.4.1.6.2	2. Wash Water Generation	17
2.5.	Process	Design Optimisation	18
3. CH/	APTER	3: TOPSIDES' DESIGN SPECIFICATIONS AND MÚCUA	TIE-IN
OVERVI	EW		22
3.1.	Introduct	tion	22
3.2.	Reservo	irs' Data	22
3.2.	1. Hyd	rocarbon Fluids' Arrival Conditions	25
3.3.	Product	s Specifications and Conditions	25
3.4.	Topsides	s Process Overview Systems	25
3.4.	1. Oil S	Separation and Treatment	26
3.4.	2. Gas	Processing	31
3.	.4.2.1.	Flash Gas Compression	31
3.	.4.2.2.	Main Injection Gas Compressor	36
3.	.4.2.3.	Gas Dehydration	39
3.	.4.2.4.	Fuel Gas	41
3.	.4.2.5.	Flare System	43
3.4.	3. Pro	duced Water Treatment	45
3.4.	4. Utili	ty Systems	48
3.	.4.4.1.	Wash Water	48
3.	.4.4.2.	Cooling and Heating Medium	50
3.5.	Múcua T	ie-In: A Process Overview	51
3.5.	1. Múc	cua Reservoir PVT Characterisation	51
4. CH/	APTER 4	: MATERIALS AND METHODS	55
4.1.	Introduc	tion	55
4.2.	Experim	ental Set-Up	55
4.3.	Blend Ca	ases and Criteria Definition	57
4.4.	HYSYS	Simulation Basis	60
4.5.	Simulation	on Validation and Governing Case Selection	60

5.	С⊦	IAPTE	ER 5	: RESULTS AND DISCUSSION	63
5	5.1.	Intro	oduc	tion	63
5	5.2.	Тор	side	Process Train Evaluation	63
	5.2	2.1.	ΗP	Separator	63
	5.2	2.2.	IP S	Separator	64
	5.2	2.3.	LP	Separator	67
	5.2	2.4.	Eleo	ctrostatic Treater	69
	5.2	2.5.	Tes	t Separator	70
	5.2	2.6.	Cru	de Oil Pumps	72
	5.2	2.7.	Cru	de Oil Heat Exchangers	73
	5.2	2.8.	Inje	ction Gas Compressors (IGC)	75
	5.2	2.9.	Flas	sh Gas Compressors (FGC)	81
	5.2	2.10.	G	as Dehydration	90
	5.2	2.11.	Ρ	roduced Water Flash Vessel	90
	5.2	2.12.	Ρ	roduced Water Cooler	91
	5.2	2.13.	U	tilities	91
	ţ	5.2.13	.1.	Cooling and Heating Medium	91
	ţ	5.2.13	.2.	Seawater	94
	ţ	5.2.13	.3.	Fuel Gas System	94
	5.2	2.14.	В	low down Scenario	97
	ţ	5.2.14	.1.	Impact of Low Temperature in the Piping and Flare Network	97
	ţ	5.2.14	.2.	Hydrate Formation inside Test Separator	98
	ţ	5.2.14	.3.	Ice Formation	98
	5.2	2.15.	F	lare System Capacity	99
5	5.3.	Gov	erni	ng Case Selection	100
5	.4.	Curi	rent	Operating Conditions with Múcua tie-in Simulation	101
6.	C⊦	IAPTE	ER 6	: CONCLUSION AND RECOMMENDATIONS	110
7.	С⊦	IAPTE	ER 7	: REFERENCES	114
AP	PEN	idix A	A: Pl	RODUCTION REPORT AND PROCESSING PARAMETERS	122
AP	PEN	IDIX E	3: H`	YSYS PROCESS SIMULATIONS SCREENSHOTS	123
AP	PEN	IDIX C): M	YSEP EVALUATION REPORTS	129
AP	PEN): LI	NE SIZING VALIDATION	141
AP	PEN	IDIX E	E: OI	L TRAIN PROCESS FLOW DIAGRAM	145
AP	PEN	IDIX F	: SE	ELECTED EQUIPMENT DATASHEET	146
AP	PEN	IDIX (9: R	AW RESULTS FROM HYSYS	165

LIST OF FIGURES

Figure 2.1: Typical P-T diagram for a multicomponent system	8
Figure 2.2: PT phase diagram for reservoir fluid separators	10
Figure 3.1: Block flow diagram of the oil processing train	27
Figure 3.2: Block flow diagram of the flash gas compression system	34
Figure 3.3: Block Flow Diagram of the vapour recovery unit system	35
Figure 3.4: Block flow diagram of the injection gas compression system	38
Figure 3.5: Block flow diagram of the gas dehydration system	40
Figure 3.6: Block flow diagram of the fuel gas system	42
Figure 3.7: Block flow diagram of the flare relief system	44
Figure 3.8: Block flow diagram of the produced water system	47
Figure 3.9: Block flow diagram of the seawater treatment system	49
Figure 4.1: Process flow diagram of the topside processing unit	56
Figure 5.1: HP separator inlet stream's oil phase volumetric flow rate	63
Figure 5.2: HP separator inlet stream's gas phase volumetric flow rate	64
Figure 5.3: HP separator inlet stream's water phase volumetric flow rate	64
Figure 5.4: IP separator inlet stream's oil phase volumetric flow rate	65
Figure 5.5: IP separator inlet stream's gas phase volumetric flow rate	65
Figure 5.6: IP separator inlet stream's water phase volumetric flow rate	66
Figure 5.7: LP separator inlet stream's oil phase volumetric flow rate	68
Figure 5.8: LP separator inlet stream's gas phase volumetric flow rate	68
Figure 5.9: LP separator inlet stream's water phase volumetric flow rate	68
Figure 5.10: Electrostatic treater inlet stream's oil phase volumetric flow rate	70
Figure 5.11: Electrostatic treater inlet stream's water phase volumetric flow rate	70
Figure 5.12: Test separator inlet stream's oil phase volumetric flow rate	71
Figure 5.13: Test separator inlet stream's gas phase volumetric flow rate	71
Figure 5.14: Test separator inlet stream's water phase volumetric flow rate	72
Figure 5.15: Crude oil pumps head assessment	72
Figure 5.16: Crude oil pumps power assessment	73
Figure 5.17: Crude oil heaters duties	74
Figure 5.18: Crude/Crude exchangers duties	74
Figure 5.19: Crude oil heaters duties	75
Figure 5.20: 1 st stage injection gas compressor cooler duties	75
Figure 5.21: 2 nd stage injection gas compressor cooler duties	76

Figure	5.22 :	3 rd stage injection gas compressor cooler duties	.76
Figure	5.23 :	Injection gas compressor discharge cooler duties	.76
Figure	5.24 :	1 st stage injection gas compressor suction scrubber oil phase	.77
Figure	5.25 :	1 st stage injection gas compressor suction scrubber gas phase	.77
Figure	5.26 :	1 st stage injection gas compressor suction scrubber water phase	.78
Figure	5.27 :	2 nd stage injection gas compressor suction scrubber oil phase	.78
Figure	5.28 :	2 nd stage injection gas compressor suction scrubber gas phase	.79
Figure	5.29 :	2 nd stage injection gas compressor suction scrubber water phase	.79
Figure	5.30 :	3 rd stage injection gas compressor suction scrubber gas phase	.80
Figure	5.31 :	1 st stage injection gas compressors volumetric flow	.80
Figure	5.32 :	2 nd stage injection gas compressors volumetric flow	.81
Figure	5.33 :	3 rd stage injection gas compressors volumetric flow	.81
Figure	5.34:	1st stage flash gas compressor cooler inlet flow rate	.82
Figure	5.35 :	2 nd stage flash gas compressor cooler inlet flow rate	.82
Figure	5.36 :	1 st stage flash gas compressor cooler duties	.83
Figure	5.37 :	2 nd stage flash gas compressor cooler duties	.83
Figure	5.38 :	1 st stage flash gas compressor suction scrubber oil phase	.87
Figure	5.39 :	1 st stage flash gas compressor suction scrubber gas phase	.87
Figure	5.40 :	1 st stage flash gas compressor suction scrubber water phase	.88
Figure	5.41 :	2 nd stage flash gas compressor suction scrubber oil phase	.88
Figure	5.42 :	2 nd stage flash gas compressor suction scrubber gas phase	.88
Figure	5.43 :	2 nd stage flash gas compressor suction scrubber water phase	.89
Figure	5.44 :	Gas dehydration scrubber gas phase	.90
Figure	5.45 :	Water dehydration scrubber water phase	.90
Figure	5.46 :	Produced water flash vessel volumetric flow rates	.91
Figure	5.47 :	Produced water cooler duties	.91
Figure	5.48 :	Total cooling medium exchangers duties	.92
Figure	5.49 :	Total heating medium exchangers duties	.92
Figure	5.50 :	Crude oil Reid vapour pressure simulation vs design	.93
Figure	5.51 :	Crude oil True vapour pressure simulation vs design	.93
Figure	5.52 :	Seawater cooling requirements	.94
Figure	5.53 :	Fuel gas scrubber oil phase	.95
Figure	5.54 :	Fuel gas scrubber gas phase	.95
Figure	5.55 :	Fuel gas Wobbe index normal operations	.95
Figure	5.56 :	Fuel gas pre-heater duties	.96
Figure	5.57 :	HP fuel gas superheater duties	.96
Figure	5.58 :	LP fuel gas superheater duties	.96
Figure	5.59 :	Test separator blowdown for case b and e HYSYS evaluation results	.98

Figure 5.60: Process flow diagram with flow rates – Actual + Múcua	108
Figure B.1: Simulation's inlet streams (Cases A, C, D and F)1	123
Figure B.2: Simulations (Cases A, C, D and F)1	124
Figure B.3: Simulation's inlet streams (Cases B and E)1	125
Figure B.4: Simulations (Cases B and E)1	126
Figure B.5: Flash gas compressor's cooler pressure drop simulation's (Cases B and E)1	127
Figure B.6: Simulation (Case_F with Mucua tie-in)1	128
Figure E.1: Oil process train flow diagram1	145

LIST OF TABLES

Table 2.1: Phases of hydrocarbon fluids treatment	11
Table 3.1: Reservoir properties	22
Table 3.2: Reservoir's fluid composition on a dry basis	23
Table 3.3: Product's specifications and conditions	25
Table 3.4: FPSO topsides' processing facility capacity	26
Table 3.5: Separators design basis	29
Table 3.6: Separator's design and operating parameters	30
Table 3.7: Heat exchangers design duties	30
Table 3.8: Crude oil pumps main design parameters	30
Table 3.9: Electrostatic treater design parameters	30
Table 3.10: FGC coolers' design duties and flow rates	32
Table 3.11: FGC scrubbers' design flow rates	32
Table 3.12: FGC drain pumps' design parameters	32
Table 3.13: FGC main design parameters	32
Table 3.14: IGC coolers' design duties	
Table 3.15: IGC scrubbers' design flow rates	
Table 3.16: IGC main design parameters	
Table 3.17: Triethylene glycol scrubbers' design duty and flow rates	
Table 3.18: Triethylene glycol contactors design parameters	
Table 3.19: Heat exchangers design duties	41
Table 3.20: Fuel gas scrubbers design flow rates	41
Table 3.21: HP and LP flare drums design flow rates	43
Table 3.22: Flare condensate pumps main design parameters	43
Table 3.23: Flare tip design specifications (adapted from Company, 2016c)	43
Table 3.24: Heat exchangers' design duties (adapted from Company, 2015c)	45
Table 3.25: Hydrocyclone design specifications (adapted from Company, 2015c)	45
Table 3.26: Induced gas flotation design specifications (adapted from Company, 2015)	5c)46
Table 3.27: Produced water flash vessel design specifications	46
Table 3.28: Seawater filters' design specifications	48
Table 3.29: Reverse osmosis membrane specifications	48
Table 3.30: Wash water heater specifications	48
Table 3.31: Cooling medium circulation pumps' specifications	50
Table 3.32: Cooling medium exchangers' specifications	50
Table 3.33: Heating medium circulation pumps' specifications	50
Table 3.34: Heating medium exchangers' specifications	51

Table 3.35: Múcua reservoir properties	51
Table 3.36: Múcua reservoir fluid composition on dry basis	52
Table 3.37: Fields and separators line-ups to production and gas lift risers	53
Table 4.1: Process flow diagram legend	57
Table 4.2: New blend definition (Company, 2019)	58
Table 4.3: Design cases for the new fluid blend	59
Table 4.4: Criteria for flow allocation of the cases for the tie-In Process	59
Table 5.1: FGC Train A performance based on pressure drop evaluation	85
Table 5.2: FGC Train B performance based on pressure drop evaluation	86
Table 5.3: Flare rates from IP and LP separator estimated by HYSYS	89
Table 5.4: TVP adjusted heating duty of crude oil exchangers for cases C and F	100
Table 5.5: Operating conditions of the plant on 29 March 2020 without Múcua tied-in	101
Table 5.6: Separators' evaluation (Actual and Múcua: Case F)	104
Table 5.7: Operating parameters of the oil train's equipment simulation results	104
Table 5.8: Oil train heat exchangers' duties (Actual and Múcua: Case_F)	105
Table 5.9: IGC and FGC coolers' duties (Actual and Múcua: Case F)	106
Table 5.10: IGC and FGC duties HYSYS evaluation (Actual and Múcua: Case F)	106
Table 5.11: IGC and FGC scrubbers (Actual and Múcua: Case F)	106
Table 5.12: Glycol and fuel gas scrubbers (Actual and Múcua: Case_F)	106
Table 5.13: Fuel gas heaters' (Actual and Múcua: Case_F)	107
Table 5.14: RVP and TVP prediction (Actual and Múcua: Case_F)	107
Table A.1: Production report and processing parameters	122
Table C.1: IGC 2nd stage scrubber MySEP evaluation	129
Table C.2: IP separator MySEP evaluation	132
Table C.3: LP separator MySEP evaluation	135
Table C.4: Test separator MySEP evaluation	138
Table D.1: Line sizing validation analysis results	141
Table F.1: HP separator datasheet	146
Table F.2: IP separator datasheet	146
Table F.3: LP separator datasheet	147
Table F.4: Electrostatic treater datasheet	147
Table F.5: Test separator datasheet	148
Table F.6: 100 plates crude oil heater datasheet	149
Table F.7: 128 plates crude oil heater datasheet	149

Table F.8: 1 st stage injection gas compressor datasheet	150
Table F.9: 2 nd stage injection gas compressor datasheet	151
Table F.10: 3 rd stage injection gas compressor datasheet	152
Table F.11: Injection gas compressor gas generator datasheet	153
Table F.12: 1 st and 2 nd stage flash gas compressors datasheet	154
Table F.13: Injection and flash gas compressors scrubber's datasheet	155
Table F.14: 1 st stage flash gas compressors coolers' datasheet	156
Table F.15: 2 nd stage flash gas compressors coolers' datasheet	157
Table F.16: Pressure control valve T71-PCV-003's datasheet	158
Table F.17: Pressure control valve T71-PCV-013's datasheet	159
Table F.18: Pressure control valve T71-PCV-010's datasheet	160
Table F.19: Pressure control valve T62-LCV-005's datasheet	161
Table F.20: Pressure control valve T62-LCV-007's datasheet	162
Table F.21: Pressure control valve T71-PCV-004's datasheet	163
Table F.22: Pressure control valve T71-LCV-511's datasheet	164
Table G.1: HP separator simulations vs. design	165
Table G.2: IP separator simulations vs. design	165
Table G.3: LP separator simulations vs. design	166
Table G.4: Electrostatic treater simulations vs. design	166
Table G.5: Test separator simulations vs. design	167
Table G.6: Crude oil pumps simulations vs. design	167
Table G.7: Oil train heat exchangers simulations vs. design	168
Table G.8: Injection gas compressor coolers simulations vs. design	168
Table G.9: 1 st stage injection gas compressor scrubbers' simulations vs. design	168
Table G.10: 2 nd stage injection Gas Compressor scrubbers' simulations vs. design	169
Table G.11: 3 rd stage injection Gas Compressor scrubbers' simulations vs. design	170
Table G.12: 3 rd stage injection Gas Compressor scrubbers' simulations vs. design	170
Table G.13: 1 st stage flash gas compressor coolers' simulations vs. design	170
Table G.14: 2 nd stage flash gas compressor coolers' simulations vs. design	171
Table G.15: 1 st and 2 nd stage FGC coolers' duties simulations vs. design	171
Table G.16: 1 st stage flash gas compressor scrubber's simulations vs. design	171
Table G.17: 2 nd stage flash gas compressor scrubber's simulations vs. design	172
Table G.18: Glycol scrubber's simulations vs. design	172
Table G.19: Produced water flash vessel simulations vs. design	173
Table G.20: Produced water cooler simulations vs. design	173
Table G.21: Cooling medium consumers duties simulations vs. design	174
Table G.22: Heating medium consumers duties simulations vs. design	174

Table G.23: New blend RVP and TVP simulations vs. design	174
Table G.24: Cooling duties for the seawater heat exchangers simulations vs. design	175
Table G.25: Fuel gas scrubber simulations vs. design	175
Table G.26: Fuel gas operating parameters simulations vs. design	176
Table G.27: Fuel gas heat exchangers simulation vs. design	176

LIST OF ABBREVIATIONS

- API American petroleum institute
- BDV Blow down valve
- **BOPD** Barrels of oil per day
- BLPD Barrels of liquid per day
- **BWPD** Barrels of water per day
- BS&W Basic sediment and water
- **EDR** Exchanger Design & Rating
- FGC Flash gas compressor
- FIT Flow induced turbulence
- **FPSO** Floating production storage and offloading
- HNBR Hydrogenated nitrile rubber
- HP High pressure
- IGC Injection gas compressor
- IGF Induced Gas Flotation
- IP Intermediate pressure
- LCV Level control valve
- LP Low pressure
- MM Million
- mlc Meters of liquid column
- OIW Oil in water
- PCV Pressure control valve
- PFD Process Flow Diagram
- PI Plant information
- ppm Parts per million
- PR Production riser
- **PVT** Pressure volume temperature
- ptb Pounds per thousand barrels

PW	Produced water
RVP	Reid vapour pressure
scfd	Standard cubic feet per day
scf/STB	Standard cubic foot per stock tank barrel
SS TVD	Subsea true vertical displacement
SW	Seawater
TEG	Tri-ethylene glycol
TR	Test riser
ТVР	True vapour pressure
VRU	Vapour recovery unit
WC	Water cut
WAG	Water alternating gas

WAT Wax appearance temperature

LIST OF SYMBOLS

Roman Symbol	Description	Unit
Cv	Valve flow coefficient at a pressure drop of 1 bar	m³/min
k-value	Gas load factor	m/s
M or Ma	Mach number	-
Р	Pressure	bar or Pa
P _c	Critical pressure for a component of interest	Pa
Q	Volumetric flow rate	m³/h
R	Gas constant	J/mol.K
Т	Absolute temperature	°C or K
T _c	Critical temperature for a component of interest	°C or K
υ	Velocity	m/s
V	Volume	m ³
V _m	molar volume	m³/mol

Greek Symbol

ΔP	Pressure drop	bar or Pa
ρ	Density	kg/m³
μ	Viscosity	cP
ω	Acentric factor for a component of interest	-

Formulaes

CH ₄	Nitrogen	
CO ₂	Carbon dioxide	
H₂S	Hydrogen sulphide	
N ₂	Nitrogen	

Bubble Point: Temperature at a certain pressure at which the first gas bubble evaporates from the oil solution in the reservoir (Glover, 2010).

Crude Oil: A naturally occurring, unrefined petroleum product composed of hydrocarbon deposits and other organic materials (Devold, 2013).

Cricondenbar: The highest pressure at which two phases can co-exist at equilibrium (Ahmed, 2010).

Cricondentherm: The highest temperature at which two phases can co-exist at equilibrium (Ahmed, 2010).

Critical Point: State of pressure and temperature at which all intensive properties of the gas and liquid phases are equal. The phases can no longer be distinguished (Ahmed, 2010).

Dew Point: Temperature at which the first drop of liquid condenses from the reservoir gas phase (Glover, 2010).

Factorial Design: Type of research methodology in which selected values of two or more independent variables are manipulated in all possible combinations so that their interactive effect upon the dependent variable may be studied (McBurney and White, 2007).

Floating production storage and offloading (FPSO): Typically, a reclaimed and modified tanker or large purpose-built hull moored to the seabed used for hydrocarbons extraction, phase separation and treatment (Leffler *et al.*, 2011).

Gas Flaring: Combustion of gases generated during oil and gas recovery processes (Devold, 2013).

Gas Injection: Process of injecting natural gas (miscible and immiscible) or nitrogen (immiscible) into the reservoir, to maintain pressure in the reservoir, create a gas cap and push oil to a producing well (Lyons *et al.*, 2015).

Gas Lift: An artificial lift method that uses an external source of high pressure gas to supplement gas formation to lift the well fluids (Bradley and Gipson, 1987).

Hydrocarbon: An organic compound composed entirely of hydrogen and carbon (Silberberg, 2004).

HYSYS: A chemical process simulator used to mathematically model processes from unit operations to full chemical plants and refineries (Moran, 2015).

MySEP: Computer software used for the design, evaluation and simulation of separators and scrubbers. It can predict separation efficiency and liquid/gas carry over in the gas/liquid, based on details of the separator such as length, width, type of inlet and outlet devices (Moran, 2015).

Natural Gas: A hydrocarbon gas mixture naturally occurring, composed primarily of methane, with a small percentage of carbon dioxide, nitrogen, hydrogen sulphide or helium (Lyons *et al.,* 2015)

OsiSoft Plant Information (PI) Process Book: A graphics package that allows users to create dynamic and interactive trends featuring real-time plant information (Moran, 2015).

Petroleum Reservoir: Is a subsurface pool of hydrocarbons contained in porous or fractured rock formations (Ahmed, 2007).

Produced Water: Water produced as a by-product during the extraction of oil and natural gas from reservoirs (Speight, 2014).

Pressure-Volume-Temperature (PVT): Phase and volumetric behaviour of petroleum reservoir fluids (Ahmed, 2007).

Riser: A pipe that connects an offshore floating structure to a subsea system either for production, injection and export, or for drilling, completion, and workover purposes (Bai and Bai, 2012).

Shut-in Pressure: Reservoir pressure measured when all the gas or oil outflow has been shut off (Ahmed, 2007).

Swivel: The heart of the subsea-to-topside fluid transfer system, ensuring that all fluids, controls and power are safely transferred from wells, flow lines, manifolds and risers to the rotating vessel and its processing plant under all environmental conditions (EI-Reedy, 2012).

Topside Facilities: Upper part of an offshore oil platform structure above the sea level and outside the splash zone, consisting of multiple modules, interconnected with piping, electrical and instrumentation systems to form a complete production facility composed of the oil/water/gas treatment, storage and export systems, utility and process support systems, as well as living quarters (Mitra, 2009).

Water Cut: The ratio of the water that is produced in a well compared to the volume of the total liquids produced (Speight, 2014).

Well: A boring in the earth designed to bring petroleum hydrocarbons to the surface (Mian, 1992).

CHAPTER 1 INTRODUCTION

1.1. Background to the Research Problem

According to Takacs (2015), the fluids mostly present in oil well production operations are water and hydrocarbons, which range from methane to very heavy and sophisticated compounds. During hydrocarbon extraction, as pressure and temperature change along the path from the well bottom to the surface, phase relations and physical parameters of the flowing fluids also change. Therefore, it is crucial to take into consideration all these changes when designing process equipment and determining optimum operating conditions (EI-Reedy, 2012; Stewart and Arnold, 2011).

The floating production storage and offloading (FPSO) facility used for the scope of this research, has been designed to accommodate fluids from Angola's Block 51/60 West Hub, which consists of the fields: Tamarindo, Maboque, Gajaja, Loengo and Ginguenga (Company, 2013). The field of study for this research is Múcua, which was not considered in the original design of the vessel and might present problems and plant upsets due to certain specific characteristics, such as the fluid's expected low arrival temperature.

1.2. Motivation for the Research Problem

Angola is the second largest oil producing country in Sub-Saharan Africa with an output of approximately 1.4 million barrels of oil and 17.9 billion standard cubic feet of gas per day of production. Due to a significant drop in oil prices and an extensive lack of foreign currencies in the market, very limited investment in exploration or production fields has occurred from 2014 to 2018, thus restricting the development and implementation of new technology for sustainable production, as well as environmental pollution alleviation in the country (Export.gov, 2019).

However, according to Angonoticias (2019), announcements of investments and discoveries are expected to boost oil production starting in 2020 and 2021. The country holds 9 billion barrels of proven oil resources and 11 trillion standard cubic feet of proven natural gas reserves, which represent great potential for further economic development (Africa Oil Week, 2019). Upon successful tie-in of the Múcua field into the FPSO processing system, the oil production rate is expected to increase by approximately 20 000 barrels of oil per day (Company, 2019).

Although optimisation and analytical technologies play a vital role in enabling the oil and gas industry to achieve its goals, limited research information has been published on optimisation

of production facilities addressing significant changes in the raw materials composition. Moreover, it is not common practice to tie into production facilities, well fluids with significantly different composition from the ones considered during the design, construction, and commissioning of such facilities (Furman *et al.*, 2017).

1.3. Statement of the Research Problem

The production facilities of the FPSO used for this study have not been designed with respect to the composition and properties of the fluids from the Múcua field (Company, 2019). The extent of the topsides facilities' ability to handle the new fluid blend, which includes Múcua's fluids, is unknown, as well as the bottlenecks for the facilities to efficiently accommodate the new blend and the expected increase in the liquid production throughput past the current design capabilities.

1.4. Research Rationale

Despite the efforts of water and gas injection to compensate for the loss of the reservoirs' natural pressure, because of fluid extraction, the best well configuration set up of the reservoirs in operation, has been able to provide a maximum average throughput of only 60 000 barrels of oil per day, which amounts to about 60% of the plant's design processing capacity for the oil stream (Company, 2019).

The debottleneck and process design evaluations for the Múcua tie-in are important not only from the perspective of increasing the production throughput, but because the expected additional flow rates may exceed the plant's design flow rate handling capacity. Therefore, a need exists for the operating parameters of each individual piece of equipment to be compared with its original design to identify and supersede potential bottlenecks, taking into account the maximum load that each can safely accommodate.

1.5. Research Questions

The following questions revolve on the development of this project to supersede the challenges expected to be encountered after Múcua tie-in takes place:

- Will the current FPSO's topside design be able to handle the new blend of crude oil smoothly?
- What will be the impact of the new blend's temperature and composition on the plant's ability to meet outlet conditions?

- Can the topside's process facilities be optimised for debottleneck?
- Will the topside facility have sufficient blowdown and relief capacity based on the anticipated composition and operating conditions?

1.6. Hypothesis

The debottleneck process design study accounting for the Múcua tie-in, would permit an updated overview of the equipment's handling capability to process the new blend of an FPSO designed for exploration in the active fields of Block 51/60. This would in turn contribute to an increase in certainty of the subsea configurations and topside equipment set-up for maximum safe production yields, as well as to the decision of operations timeframe extension for oil exploration within the Block 51/60.

1.7. Research Aims and Objectives

The aim of this research project is to conduct a factorial design study in order to determine: 1.) the topside facilities' ability to handle the new fluid blend composed of well fluids from the Múcua field; as well as 2.) the ability of the existing equipment to handle an increase past the total liquid designed capacity.

Therefore, the objectives of this research would be an evaluation of the sections summarised below:

- a. Process train evaluation for each system- including utilities such as fuel gas system, cooling and heating systems.
- b. Verification of the suitability of the existing facilities for the lowest fluid temperature of -7°C at the top of PR-c and the impact on the ability to meet the outlet conditions.
- c. Identification of potential bottlenecks.
- d. Optimisation of the topside process for debottlenecking.

1.8. Significance of the Research

The development of the Múcua field would maximize, where practical, the re-use of the facilities installed for the initial design phase (e.g., umbilical's, risers, manifolds, and flow lines), and will be timed to coincide with the capacities of the FPSO topside facilities amended by the FPSO specification. The success of this process study would translate into an optimised performance, as it will identify weaknesses in the current design and allow better alternatives

to be chosen prior to the desired changes being made, considering the new changed parameters of the raw materials.

1.9. Delineation of the Study

This study will not cover:

- The assessment of different techniques associated with oil extraction and processing.
- The post-treatment of crude oil produced water and gas past separation and stabilisation.
- An economic evaluation of the process changes, at either a pilot and/or industrial scale.
- Subsea treatment of the production fluids as wax crystal deposition, emulsion issues and pour point problems are not envisaged for the lowest temperatures expected (-7°C).
- Ice/hydrate formation scenario analysis.
- Seawater treatment, water and chemical injection systems and requirements as they are independent systems.
- Any deviations from the 0% water cut for the Múcua production fluids.

In summary, this chapter provides an overview on the background to the research problem; an explanation of the primary motivations for the study; the aims and objectives, relevance, as well as the delineation of the study conducted.

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Petroleum reservoir fluids are naturally occurring mixtures of oil, gas and water that exist at temperatures ranging from -20 to 150°C and high pressures ranging from 180 to 600 bar. Their compositions typically include many hydrocarbons and a few non-hydrocarbons, like nitrogen, carbon dioxide and hydrogen sulphide (Guo *et al,* 2008).

According to MacCain (1990), the physical properties of these mixtures depend primarily on composition and the pressure-vapour-temperature (PVT) conditions, as they determine how easily the hydrocarbons are going to flow from a well in their current state and allow process designers to select the most cost-effective extraction methods. Crude oil and natural gas are made up of many compounds with a wide range of molecular weights. The lighter and simpler compounds are recovered as natural gas after surface separation, while the heavier and more complex compounds are recovered from crude oil under storage tank conditions (Whitson and Brulé, 2000).

This chapter focuses on important insights in reservoir data, with characteristics of the well fluids being highlighted, including information relevant to its extraction, as well as the design and operation of the primary processing facilities of hydrocarbons.

2.2. Petroleum Reservoirs

The oil and gas industry is the largest industry in Angola, accounting for over one-third of the gross domestic product and more than 90% of the country's exports (World Bank, 2020; Export.gov, 2019). According to Whitson and Brulé (2000) and Ahmed (2007), accurate data such as pressure and temperature for the phase behaviour of the reservoir's fluids is required to improve oil and gas recovery. However, it is expensive to investigate the full range of phase behaviour that can occur during a recovery process or a separation chain as hydrocarbon fluids vary in quantity and quality from reservoir to reservoir (Guo *et al*, 2008).

2.2.1. Classification of Reservoirs and Fluid Systems

Petroleum reservoirs can be categorised as oil or gas reservoirs, depending on the composition of the reservoir's hydrocarbon mixture, the initial reservoir's pressure, temperature and the surface production's pressure and temperature (Ahmed, 2007). Furthermore, these broad classifications are subdivided based on the reservoir's pressure and

temperature with respect to the critical temperature and cricondentherm in the pressuretemperature (PT) diagram of the reservoir fluid, into five main types (Ahmed, 2010; MacCain, 1990):

- Dry gas
- Wet gas
- Gas condensate
- Volatile oil
- Black oil

Figure 2.1 represents a typical P-T diagram of a multicomponent system with a specific overall composition. According to Ahmed (2010), "these diagrams are used to classify reservoirs and the naturally occurring hydrocarbon systems, as well as to describe the phase behaviour of the reservoir fluids for separation purposes". Although a different hydrocarbon system would have a different phase diagram, the general configuration is similar (Glover, 2010).

Figure 2.1: Typical P-T diagram for a multicomponent system (adapted from Glover, 2010)

A bubble point curve and a dew point curve make up the two-phase region. The critical point is defined as the intersection of the bubble point curve and the dew point curve, at which point the properties of gas and liquid mixtures become identical (Gundersen, 2013). Regardless of temperature, the two phases cannot coexist above the cricondenbar and regardless of pressure, the two phases cannot coexist at the cricondentherm. Furthermore, if a fluid exists above the bubble point curve, it is classified as under saturated because it contains no free gas, whereas if it exists below the bubble point curve, it is classified as saturated because it contains free gas (Ahmed, 2010; Glover, 2010).

2.2.1.1. Dry Gas Reservoir

Aside from nitrogen and carbon dioxide, the hydrocarbon mixture is primarily composed of methane, which is present as a gas in both the reservoir and the surface facilities (Gundersen, 2013). Water is the only liquid associated with the gas from a dry gas reservoir, and the temperature in the phase diagram is higher than the critical temperature, and the surface conditions are outside the two-phase envelope (Ahmed, 2010; Glover, 2010; Whitson and Brulé, 2000).

2.2.1.2. Wet Gas Reservoir

Wet gas is mostly made up of light hydrocarbons like methane, ethane, propane, and butane. The temperature is above the critical temperature, and the production path in the P-T diagram (Figure 2.1) penetrates the two-phase envelope, resulting in the production of gas at the surface with a small amount of liquid (Ahmed, 2010; Glover, 2010; Guo *et al*, 2008).

2.2.1.3. Gas Condensate Reservoir

The fluids are initially in a vapour phase, which expands as pressure and temperature decrease. When the dew point line is reached, increasing amounts of liquids condensate from the vapour phase; however, if the temperature and pressure fall further, the condensed liquid may re-evaporate. The oil produced at the surface is the result of a vapour present in the reservoir (Ahmed, 2010; Glover, 2010; Guo *et al*, 2008).

2.2.1.4. Volatile Oil Reservoir

The liquid oil phase coexists with the vapour phase, which has gas condensate compositions. The production path causes minor additional condensation, and re-evaporation is possible. When compared to gas reservoir types, the fraction of gases decreases while the fraction of denser hydrocarbon liquids increases (Gundersen, 2013; Ahmed, 2010; Glover, 2010).

2.2.1.5. Black Oil Reservoir

The reservoir temperature is significantly lower than the system's critical temperature. As a result, the hydrocarbon in the reservoir exists at depth as a liquid. The production path begins with a pressure reduction with only minor expansion in the liquid phase, and once the bubble point line is reached, gas begins to emerge from solution, with a composition that changes very little along the production path (Gundersen, 2013; Ahmed, 2010; Glover, 2010).

2.3. Oil and Gas Separation

According to Whitson and Brulé (2000), "all reservoirs are predominantly isothermal because of their large thermal inertia". Figure 2.2 illustrates a PT diagram of an undersaturated reservoir fluid, including the production path to the surface. On production, the fluid pressure drops with a slight temperature reduction occurring as the fluid travels up the borehole. When the P-T characteristics of the gas and liquid are examined separately, it is clear that the P-T point representing the separator conditions falls on the dew point line of the gas separator diagram and on the bubble point line of the oil separator diagram. This simply means that the shape of the P-T diagram varies greatly for different mixtures of hydrocarbon gases and liquids, and it is critical to understand the phase envelope, because it can be used to classify and understand major hydrocarbon reservoirs (Glover, 2010; Ahmed, 2007).

Figure 2.2: PT phase diagram for reservoir fluid separators (adapted from Glover, 2010)

2.4. Floating Production Storage and Offloading (FPSO) Facilities

A floating production storage and offloading (FPSO) facility is a floating production facility that receives hydrocarbon fluids from a subsea reservoir via risers and flow lines and separates it into oil, gas, water, and impurities within the in-house topside production facilities (Minerals Management Services, 2001). According to Leffler *et al.* (2011), stabilised oil is stored in the facilities' tanks before being offloaded onto tankers for further refining in-land. Gas is used as fuel for in-house power generation, exported to shore via a pipeline or re-injected back to the

subsea reservoirs; while water is treated either for overboard discharge or re-injection back to the reservoirs as well (Lyons *et al.,* 2015).

Most FPSOs are ship-shaped and secured to the seabed via mooring systems, which can accommodate a wide range of water depth and environmental conditions for continuous operations in the same location for two decades or more (Randolph and Gourvenec, 2011; Paik and Thayamballi, 2007).

2.4.1. Topsides Operational Process

The function of the oil processing system and associated equipment is to stabilise live crude oil produced from subsea wells to meet storage and export specifications for basic sediment and water (BS&W), temperature, salinity, and vapour pressure. A conventional oil processing system can be split into six phases, as described in Table 2.1 (Lyons *et al.*, 2015):

Phase	Major Processes	Product
Fluid Transfer	Transfer of fluids from reservoirs to topside facilities	Hydrocarbon fluids
Separation	Three phases separation and heating	Crude oil, Produced Water, and natural gas
Oil stabilisation	Washing, coalescing, and cooling	Dead crude oil
Gas treatment	Cooling, scrubbing, gas compression, dehydration, and heating	Flare gas, fuel gas and Injection/Lift gas
Produced water treatment	Flashing, hydrocyclone, flotation and cooling	Free oil disposable water
Seawater treatment	Filtering and reverse osmosis	Fresh water for oil desalting

Table 2.1: Phases of hydrocarbon fluids treatment (adapted from Lyons et al., 2015)

2.4.1.1. Fluid Transfer System

On a conventional FPSO, the transfer of fluids and utilities between the topside and the subsea wells is facilitated by a turret system. The turret system comprises of a fluid and utilities transfer system connected to the subsea wells and manifolds by means of flexible risers (Bluewater.com 2020; El-Reedy, 2012). The swivel stack is the heart of the fluid transfer system. Its function is to transfer fluids and utilities from the fixed part to the rotating part of the turret (El-Reedy, 2012; Promor.com, 2020; Company, 2015a).

2.4.1.2. Phase Separation

The first and most critical stage of field-processing operations is the separation of well stream gas from the free liquids (Gou *et al.*, 2011). The hydrocarbon fluid system's phase separation occurs in stages within different pressure separator vessels, providing a working volume for crude oil, water and gas separation. Separators work on gravity and/or centrifugal segregation and are typically made of carbon steel. They have a large settling section with sufficient height or length to allow liquid droplets to settle out of the gas stream and adequate surge room for the slugs liquid (Guo *et al.*, 2011; Stewart and Arnold, 2008).

Based on the flow rates and physical properties, separators are designed to achieve the maximum liquid content in the gas based on removal of more than 98% of all liquid droplets, maximum water content in the crude outlet and maximum crude content in the water outlet. On entry into the separation vessel, the incoming product is subjected to a pressure drop, causing entrained gas to flash off, which is piped to the compression system for processing or vented to flare, in the case of excess gas (Guo *et al.*, 2011; Stewart and Arnold, 2008; Abdel-Aal *et al.*, 2003).

The separators are equipped with an internal weir in which the separation of the liquid and gas separation is achieved. Furthermore, in the weir, the oil and water emulsion is also separated. The oil and water emulsion, flowing under a natural pressure gradient into each vessel's reception section, separates to form an interface. The water produced is taken off under level control before the weir, whilst the oil flows over the weir into the outlet section of the vessel to be taken off under level control (Guo *et al.*, 2011; Stewart and Arnold, 2008).

To help achieve maximum separation performance, separators normally contain the following internal equipment (Stewart and Arnold, 2008; Company, 2013; Kirk Process, 2020):

- Cyclonic inlet device for primary gas/liquid separation and prevention of foaming which enhances the feed spin around.
- De-foaming pack for low gas flow where the efficiency of the inlet device may be lessened.
- Vane pack with wire mesh demister to coalesce the small liquid droplets in the gas.
- Coalescing plate packs to enhance liquid/liquid separation and to promote degassing.
- Calming baffles to distribute the fluids inside the vessel and dampen liquid movements.
- Weir for fluid segregation (i.e., water and crude oil).
- Mist eliminators to remove contaminants from process air emissions that might not settle out by gravity and evolve as droplets.
- Vortex breakers on the liquid outlets.

2.4.1.3. Oil Stabilisation

The salinity specification of the crude oil is achieved through crude oil washing by injection of hot fresh water to dilute the salt content of the oil, before it is fed to the electrostatic treater for dewatering (Speight, 2014). The water content specification of the crude is achieved by means of an electrostatic treater, which is a coalescer vessel with off takes fitted with deflection plates for efficient liquid dispersion (Schlumberger, 2020).

Manning and Thompson (1995) explain that the water-oil emulsion enters the treater and spills over a weir past the section, where separated gas, is driven to the top, and the remaining liquid then travels upward and spills over a weir into the surge section. The emulsion flows from the surge section to the treating section via a spreader, where the final separation of water and oil occurs in the bottom area of the vessel (between the baffle plates), aided by residence time and the electrostatic action of the electrodes. The surge section's primary function is to keep the vessel completely full of liquid with no gas on top, ensuring that no stabilised oil leaves the treating section, which has a flow spreader that ensures uniform liquid distribution. The emulsion from the spreader is directed toward the high voltage, alternating current electrical grids (i.e., electrodes), which are charged by the fitted transformers, while the upper grid is grounded (Manning and Thompson, 1995; Stewart and Arnold, 2008; Ambrosio, 2014).

When heated emulsion enters an electrostatic field, water droplets gain an electrical charge, causing them to elongate and polarise. This causes it to acquire a positive charge on one end and a negative charge on the other, but the alternating current on the lower electrical grid causes reverse polarity (Ambrosio, 2014). As a result, water droplets move and collide with each other with enough force to break the thin film that surrounds them. The water droplets then congregate into larger droplets and settle to the bottom of the treating section for removal, while the oil rises to the top (Stewart and Arnold, 2008).

2.4.1.4. Gas Processing

The main functions of this system are to receive the gas produced from the separators and compress it to be used as lift gas to aid oil production and to be re-injected into the reservoir to maintain pressure (Lyons *et al.*, 2015). Heat exchangers are provided to cool the incoming gas stream before it is routed to the actual compressor via suction scrubbers, which are installed for removing any entrained liquids from the gas stream prior to compression (Paik and Thayamballi, 2007; Leffler *et al.*, 2011).

Cooled gas on entering the scrubber passes through a vane inlet device, which facilitates good distribution of the gas within the scrubber. Such combination of cooling and expansion of gas causes entrained liquid droplets to form and collect as condensate in the bottom of the vessel. The liquid level in the scrubber is controlled by a vortex breaker and a level control valve. The gas leaves the top of the vessel via a vane pack through a wire mesh demister to flow to the compressor (Paik and Thayamballi, 2007; Company, 2013).

In the oil and gas industry, a typical gas compression train comprises of two-barrel type, vertically split compressors, in a tandem arrangement and driven via a speed increasing gearbox by a turbine. The compressors and gearboxes are connected by flexible, non-lubricated couplings and are equipped with a lubrication oil system, a seal gas system, a separation gas system, and all accessories necessary for safe and efficient operation (Crawford, 2016; Smirnov *et al., 2017*). Whenever it is required, a lower power compressor is also employed to boost the gas pressure from the intermediate and low-pressure separators so it can be fed to the injection gas compressors for subsequent disposal into the reservoir (Ohama *et al., 2006*).

2.4.1.4.1. Gas Dehydration

The purpose of the gas dehydration system is to prevent hydrates and minimise potential carbon dioxide corrosion rates in downstream facilities, as well as in the gas lift and injection systems, when the high pressure gas is cooled to seabed temperatures (Leffler *et al.,* 2011).

Multi cyclone scrubbers are provided to remove free liquid droplets from the incoming gas stream thereby reducing the required water to be absorbed by the downstream contactors. On entering the scrubber, the gas distribution system directs the gas stream downwards into the first separation chamber via the vane pack, which encourages a swirling motion (Lyons, 2015; Mohamad, 2009).

According to Mohammad (2009), in a typical scrubber used in a FPSO, the gas is fed to the bottom of the scrubber and rises upwards into the second separation chamber where the free liquids fall-out and naturally descend to the base of the scrubber, which acts as a reservoir. Within the second separation chamber, the gas continues to swirl which allows entrained liquids to fall out to the base of the scrubber. From the second separation chamber, the gas passes upwards into the third stage separation chamber, which incorporates an axial flow cyclone bundle, which acts as a mist eliminator by coalescing any entrained liquids. Any liquids collected in the third separation chamber naturally falls to the liquid reservoir via the centrally
located drainpipe and exits the scrubber via the vortex breaker (Lyons, 2015; Mohamad, 2009; Company, 2016b).

In the contactors, wet gas is exposed to lean glycol, which has an affinity for water and will absorb moisture from the gas thus, reducing the water dew point (Sulzer, 2008; Lyons, 2015; Mohamad, 2009). The contactor is a pressure vessel equipped with structured packing which provides a large surface area for gas/glycol contact. On entering the contactor, gas is evenly distributed over the cross-sectional area of the vessel and diverted downwards by the inlet deflector forcing any free liquids toward the base of the vessel. The gas reverses direction and flows upwards into the packed section of the vessel for counter-current contact with lean glycol. Before leaving the contactor, the dehydrated gas passes through a mesh pad, which removes any entrained glycol from the gas stream (Leffler *et al.*, 2011; Company, 2016b).

2.4.1.4.2. Flare Relief System

The function of the flare system is to dispose of hydrocarbon gas and liquids released from the process trains, and utilities and dispose of the vented gas by flaring in a safe area at a safe distance from the processing unit (Company, 2016c). A typical flare system provides a means for handling both high pressure (HP) and low pressure (LP) flare products and comprises of flare drums, condensate pumps, a flare ignition panel, sonic/pipe flare tips and a vertical flare stack (EI-Reedy, 2012).

Wet gas entering the flare drums from the collection headers, is subjected to a pressure drop that causes entrained liquids to condense and form a liquid level within the drums. A liquid collection boot at the bottom of each vessel incorporates an external heating jacket. The heating effect enhances the gas/liquid separation within the vessels, ensuring that all condensate leaving the drums has been freed of gas and stabilised prior to discharge to the cargo tanks. (Company, 2016c; Fang and Duan, 2014; El-Reedy, 2012).

2.4.1.5. Produced Water Treatment

Produced water recovered from the separators are processed in flash vessels, hydrocyclones and induced gas flotation (IGF) unit systems (Lyons *et al.*, 2015). The purpose of the flash vessel is to flash-off gas from water, while the purpose of the liquid/liquid de-oiling hydrocyclone and IGF system is to remove gas and oil from the produced water for overboard discharge via slop tanks. Within the slop tanks, a two-stage gravity and heat aided separation and skimming process is utilised, which results in water with the desired oil in water and total

suspended solids content at an acceptable temperature to be discharged overboard (Orszulik, 2007; Stewart and Arnold, 2008; Enhydra, 2020). According to Hyne (2014), the hydrocyclone consists of a pressure vessel complete with high-capacity liners operating in parallel inside the vessel with the flow distributed evenly between each liner.

The water from the high pressure separator enters at a tangent into the hydrocyclone liner, where its velocity is converted to tangential velocity in the inlet area, imparting a centripetal force on the fluids. Tangential velocity and centrifugal force increase as the fluid moves down the conical section, pushing the denser fluid (i.e., water) to the outside wall of the liner and exiting in the underflow. The less dense fluid (i.e., oil) is displaced towards the inner core of the cyclone and by maintaining the pressure of the overflow stream lower than the underflow stream, the central core flows in the opposite direction of the denser fluid and exits through the reject orifice at the upstream end of the hydrocyclone (Enhydra, 2020; Orszulik, 2007; Wyunasep.com, 2020).

By maintaining a pressure differential between the inlet stream to the outlet reject oil and between the inlet stream to the outlet clean water, the geometry of the hydrocyclone results in a thin hydrocarbon case flowing in the opposite direction of the cleaned water outlet and exiting from the swirl chamber side with the clean water exiting from the tail section of the hydrocyclone liner. Pressure ratio control is used to ensure that the reject pressure drop follows the water pressure drop (Enhydra, 2020; Orszulik, 2007).

Clean water enters the IGF vessel, through a tangential nozzle located slightly below the gas/liquid interface level, which is geometrically spaced to eliminate the effect of surge or slug flow (Stewart and Arnold, 2008). Gas bubbles are injected into the recycled water to ensure a constant supply of flotation gas and a low spin rate to provide enough centrifugal force for immediate oil/water separation. The gas is recycled from the flotation vessel's top to an eductor located downstream of the recycle pump. The flotation effect and centrifugal forces within the vessel bring the oil droplets to the surface, where they are concentrated for subsequent skimming (Robinson, 2013).

2.4.1.6. Seawater Treatment

2.4.1.6.1. Filtration

The function of the seawater treatment system is to treat raw chlorinated seawater to produce a freshwater stream with a reduced salt content for crude oil washing, for reservoir injection, as well as providing cooling to various topside consumers (Fang and Duan, 2014). Coarse filters remove particulates above 100 μ m from raw chlorinated seawater (Company, 2013). In a coarse filter vessel, water enters the vessel through an inlet nozzle and flows into the lower half of the filter body, upwards through the turntable and to the inside of the filter elements. Flowing from the inside to the outside of the filter elements, the water passes through the fine screens, which purify the flow by separating smaller particles from the water (Company, 2015b; Fang and Duan, 2014).

The multi-media filtration system consists of filtration vessels and air blowers. Within the filter vessels, various types of media are utilised in layers of varying heights as stated by Company (2013). On entering the media filter vessels, seawater flows over the filter beds and passes downwards through the layers of filter media until it reaches the collection system in the base of the vessel. Pollutants are trapped and accumulate in the filter media, while filtered seawater exits from the base of the vessel (Colt and Huguenin, 2002).

2.4.1.6.2. Wash Water Generation

Cartridge filters oversee the removal of any residual suspended solids to aid the downstream membranes. The filter's housing is cylindrical and has a diaphragm plate inside the shell, which separates the top dirty section from the bottom clean section. Filter cartridges are plugged into machined holes in the diaphragm plate so that incoming dirty water must pass through the filter cartridges from outside to inside, and then down the cartridge into the clean chamber below, while dirt is retained in the filter media. The filter feeds into the reverse osmosis plant for desalting (Colt and Huguenin, 2002; Lyons *et al.*, 2015; Fang and Duan, 2014; Company, 2015b).

Reverse osmosis is a pressurised process that uses a semi-permeable membrane to separate solutes from a solvent and has become the most promising desalination technique in most regions of the world (Asadollahi *et al.*, 2017). According to Warsinger *et al.* (2016), the major advantage of desalination using reverse osmosis treatment is the consistency of the produced water quality since it is more than 95% efficient in the removal of dissolved salts and organic material from the influent water.

The fundamental principle of reverse osmosis is that when two fluids with different concentrations of dissolved solids are exposed to each other, they will mix until the concentration is uniform. As a result, when two fluids are separated by a semi-permeable membrane, the fluid with the lower concentration of dissolved solids will move through the membrane into the fluid with the higher concentration, leaving the dissolved solids behind (Binnie *et al.,* 2002).

Natural osmosis happens, when seawater and fresh water are separated by a semi-permeable membrane and the freshwater flows towards the seawater through the membrane at a certain pressure defined as the osmotic pressure. Reverse osmosis is the opposite, where forced passage of seawater through a membrane is achieved by applying counter-pressure against the osmotic pressure (Aquanext, 2020; Maqbool *et al.*, 2019; Wilf and Bartels, 2005).

The spiral-wound membranes are the most used membrane type in reverse osmosis desalination plants. They are made in flat sheets that are sealed like envelopes around the permeate collector, which is backed with permeate spacer material. One end of the membrane envelope is connected to a central perforated tube. The envelopes are rolled up to form a spiral wound module, with mesh spacers packed between membrane envelopes to allow seawater to pass through (Buecker, 2016; Toray, 2020).

The membranes are enclosed in series in pressure vessels to which high pressure is applied to permeate water through the membranes. The total number of membranes, pressure vessels and the parallel arrangement of the pressure vessels depends on the permeate flow required and the applied pressure (Fluid Sep, 2020).

2.5. Process Design Optimisation

During a life cycle of hydrocarbons exploration, operating conditions of the wells and the feed stream composition to the topside process constantly change, thus there is a constant need for real-time optimisation of operating conditions and control strategies of the topside process, considering various change in natural occurring operating scenarios such as reservoir's change in temperature and loss of pressure, that might occur during these life cycles (Kim and Hwang, 2018; Bieker *et al.*, 2007).

According to Roobaert *et al.* (2012), projects developed adhering to best practice in areas such as process optimisation benefit from the application of systematic detailed design based on experience and proven results, namely improved quality, and consistency. During conceptual design optimisation, extensive process simulations of the processing plant are performed for each component, allowing reliable predictions of plant performance in the presence of transient variables, which are used for evaluating the impact of component failure, as well as the development of control and automation philosophies (Mikkelsen *et al.*, 2013).

Factorial designs are incredibly valuable as a preliminary study for process optimisation, permitting them to judge whether there is a connection between factors, while lessening the chance of test mistakes and perplexing factors. A factorial design is frequently used to comprehend the impact of at least two autonomous factors upon a single dependent variable

(Shuttleworth, 2009). According to Mukerjee and Wu (2006), factorial designs are a type of true experiment in which multiple controlled independent variables are manipulated to provide the main effects of two or more individual independent variables at the same time, as well as interactions among variables that may only be detected when the variables are examined together.

The types of factorial designs are the between-subject factorial designs, where each participant is only subjected to one of the study's conditions; the within-subject factorial designs, where each participant is subjected to all the study's conditions; and the mixed-factorial designs, which is used when the study has at least one between-subject factor and one within-subject factor (Shuttleworth, 2009; McBurney and White, 2007).

In Oil and Gas industry, topsides process simulation is usually performed using Aspen HYSYS under a simulation model developed using the Peng-Robinson Equation of State (Eq. 2.1), which expresses fluid properties in terms of the critical properties and acentric factor of each species involved (Tangsriwong *et al.*, 2020; Mondal *et al.*, 2015; Gutierrez *et al.*, 2014).

$$P = \frac{RT}{V_{\rm m} - b} - \frac{a \propto}{V_{\rm m}^2 + 2bV_{\rm m} - b^2}$$
(2.1)

Equations 2.2 to 2.4 are used to find the unknown variables in Equation 2.1.

$$a = \frac{0.45724R^2T_c^2}{P_c}$$
(2.2)

$$b = \frac{0.07780RT_c}{P_c}$$
(2.3)

$$\propto = (1 + (0.37464 + 1.54226\omega - 0.2699\omega^2))(1 - \left(\frac{T}{T_c}T_r\right)^{0.5}))^2$$
(2.4)

The Peng-Robinson Equation of State is commonly the suggested property bundle in HYSYS. Improvements to this condition of state, empower its precision for an assortment of frameworks over a wide scope of conditions. It thoroughly comprehends most single-stage, two-stage, and three-stage frameworks with a serious extent of productivity and unwavering quality. For pressure drops, conditions are predicted by Aspen Exchanger Design & Rating (EDR), based on the correlation between the volumetric flow rate and pressure drop as stated in Equation 2.5 (Tangsriwong *et al.*, 2020; Edwin *et al.*, 2017; Gutierrez *et al.*, 2014)

$$\frac{\Delta P_1}{\Delta P_2} = \frac{Q_1^2 \times \rho_1}{Q_2^2 \times \rho_2}$$
(2.5)

In summary, offshore oil and gas production has been done using similar systems and equipment everywhere in the world with the main objectives of maximising production with the lowest related cost. In this chapter, attention was given to the hydrocarbon reservoir classifications and the main details of the conventional physical processes, equipment and utilities employed in the phase separation and stabilization of each of the main components of the hydrocarbon mixture, namely oil, gas and water prior to storage or disposal. The following chapters will present an overview on the design characteristics of the facility used for the purpose of this study, the materials and methods selected for the investigation along with the packages used in Aspen for the simulation as well as in-depth discussions of the facility within the simulations and recommendations to be implemented in order to operate the facility within the appropriate design and safety parameters

CHAPTER 3

TOPSIDES' DESIGN SPECIFICATIONS AND MÚCUA TIE-IN OVERVIEW

CHAPTER 3: TOPSIDES' DESIGN SPECIFICATIONS AND MÚCUA TIE-IN OVERVIEW

3.1. Introduction

Oil is produced utilising various techniques depending on geography. The main endeavours started in the mid-twentieth century by means of high temperature water used to isolate bitumen from sand and from that point forward the procedure has developed into the complex strategies used today (CAPP, 2020).

This chapter provides information on Angola Block 51/06 reservoir's data and the key design parameters of the equipment installed in the FPSO for the hydrocarbon fluids processing to the desired specifications and on the main properties of the new reservoir to be tied-in to the FPSO for oil and gas exploration.

3.2. Reservoirs' Data

Block 51/60 covers an area of 3 000 km² in the Angolan offshore waters. It is located 350 km off the Luanda Province. Water depth ranges from 200 to more than 1 500 m. The field information for Angola Block 51/60 West Hub has been updated as follows (Company, 2013):

- Tamarindo and Ginguenga: Reservoirs located about 5 to 7 km west of the FPSO. Comprised of 7-off producers to the FPSO and an enhancing oil recovery system composed by 4-off water alternating gas (WAG)s and 1-off water injector.
- Maboque: Reservoir located 15 to18 km north east of the FPSO. 6-off production wells are tied back to the FPSO, and 5-off water injectors support the oil recovery.
- Loengo: Reservoir located 10 km south west of the FPSO. Tie back to Tamarindo subsea facilities of 2-off clustered producers and 2-off daisy chained water injectors.
- Gajaja: Reservoir located 16 km south east of the FPSO. Tie back to Maboque subsea facilities of 2-off producers and 1-off water injector.

Information about Block 51/60 reservoirs main properties, as well as the fluid composition on a dry basis is recorded in Tables 3.1 and Table 3.2, respectively.

Properties	Tamarindo	Ginguenga	Maboque	Loengo	Gajaja
Reservoir Pressure [bar]	293	286.1	204.8	394.4	305
Reservoir Temperature [°C]	76	70	62	101	95

Table 3.1: Reservoir properties (adapted from Company, 2013)

Properties		Tamarindo	Ginguenga	Maboque	Loengo	Gajaja
Depth [m SS TV	′D]	2801	2781	2047	4026	3105
Saturation Pressure	e [bar]	185	266.3	192.7	164.1	246.2
Stock Tank Oil Gravit	y [°API]	32.7	24.7	27.9	33.0	34
Average Gas-Oil Ratio [SCF/STB]		690	578	86	596.0	816
Saturated Live Oil Density [g/cm ³]		0.72	0.78	0.78	-	-
Saturated Live Oil Visc	osity [cP]	0.9	2.58	16.68	-	-
	@ 20°C	20	112	30	-	15.3
Dead Oil Viscosity [cP]	@ 30°C	12.1	61.1	19	-	8.7
	@ 40°C	8.2	32.2	12.5	-	4

Table 3.1 (continued): Reservoir properties (adapted from Company, 2013)

Table 3.2: Reservoir's fluid composition on a dry basis (adapted from Company, 2013)

Com		Reservoir's Fluid Composition on Dry Basis					
Con	nponent	Overall (Oil + Gas) [wt. %]					
Name	Molecular Weight [g/mol]	Tamarindo	Ginguenga	Maboque	Loengo	Gajaja	
C ₁	16.04	5.86	6.27	5.08	4.63	8.26	
C ₂	30.07	1.26	0.21	0.59	1.48	1.94	
C ₃	44.10	2.67	0.58	0.39	2.78	2.22	
i-C ₄	58.12	0.64	0.20	0.44	0.65	0.57	
n- C4	58.12	1.67	0.56	0.50	1.69	1.51	
i-C ₅	72.15	0.89	0.39	0.71	0.90	0.93	
n- C₅	72.15	1.08	0.48	0.63	1.02	1.13	
m-cyclo-C₅	70.1	-	0.43	-	0.77	1.13	
C_6	84.00	1.91	0.96	1.33	1.80	2.02	
Benzene	78.11	-	0.15	0.06	0.05	0.09	
Cyclo- C ₆	84.16	-	0.21	-	0.34	0.37	
m-Cyclo- C ₆	84.16	-	0.53	-	0.95	0.98	
C ₇	96.00	3.34	1.12	2.69	2.26	2.28	
Toluene	92.14	-	0.06	0.23	0.22	0.29	
C ₈	107.00	4.02	1.67	3.09	3.19	3.02	
C ₂ -Benzene	106.17	-	0.15	0.09	0.28	0.20	
mp-xylene	106.17	-	0.14	-	0.16	0.53	

		Reservoir's Fluid Composition on Dry Basis				;
Co	mponent		Overa	all (Oil + Gas)	[wt. %]	
Name	Molecular Weight [g/mol]	Name	Molecular Weight [g/mol]	Name	Molecular Weight [g/mol]	Name
o-xylene	106.17	-	0.14	0.18	0.36	0.16
C ₉	121.00	3.37	1.50	2.28	2.87	2.75
C ₁₀	134.00	3.58	2.30	3.06	4.07	3.65
C ₁₁	147.00	3.04	2.05	2.63	3.60	3.09
C ₁₂	161.00	2.88	2.09	2.54	3.52	2.88
C ₁₃	175.00	3.20	2.49	3.07	3.88	3.15
C ₁₄	190.00	2.77	2.26	2.97	3.53	2.81
C ₁₅	206.00	3.11	2.56	2.74	3.74	3.13
C ₁₆	222.00	2.66	2.24	2.44	3.27	2.74
C ₁₇	237.00	2.65	2.29	2.93	3.16	2.63
C ₁₈	251.00	2.83	2.50	2.48	3.02	2.73
C ₁₉	263.00	2.67	2.31	1.89	3.19	2.63
C ₂₀	275.00	2.26	1.99	2.05	2.66	2.30
C ₂₁	291.00	2.17	1.99	1.87	2.52	2.18
C ₂₂	305.00	2.10	1.84	1.82	2.49	2.05
C ₂₃	318.00	1.97	1.82	1.73	2.33	1.99
C ₂₄	331.00	1.85	1.73	1.63	2.21	1.84
C ₂₅	345.00	1.91	1.65	1.56	2.20	1.94
C ₂₆	359.00	1.63	1.69	1.52	1.93	1.52
C ₂₇	374.00	1.65	1.77	1.55	2.15	1.79
C ₂₈	388.00	1.65	1.72	1.54	1.97	1.61
C ₂₉	402.00	1.73	1.80	1.51	2.03	1.61
C ₃₁	430.00	-	1.61	1.33	1.90	1.50
C ₃₂	444.00	-	1.55	1.21	1.95	1.50
C ₃₃	458.00	-	1.48	1.12	1.61	1.19
C ₃₄	472.00	-	1.33	1.05	1.74	1.29
C ₃₅	486.00	-	1.33	1.00	1.75	1.22
Molecular We [g/mol]	eight: Overall	108.70	132.40	130.00	111.11	91.33
Molecular We	eight – Oil [g/mol]	210.60	274.51	250.30	201.71	193.65
Molecular We	eight – Gas [g/mol]	23.70	20.27	23.73	28.08	21.02
Mol % [Oil]		45.50	44.56	41.20	47.82	40.74
Mol % [Gas]		54.50	55.44	58.80	52.18	59.26

Table 3.2 (continued): Reservoir's fluid composition on a dry basis (adapted from Company, 2013)

3.2.1. Hydrocarbon Fluids' Arrival Conditions

The subsea production fluids' arrival pressure is 23 barg (i.e., top of riser) with minimum and maximum arrival temperatures of 36 and 63°C, respectively. The shut-in pressure at the production and test manifold is 200 barg. The equipment and piping system upstream of the Production and Test manifold was designed for 345 barg at 80°C (Company, 2013).

3.3. Product's Specifications and Conditions

Table 3.3 provides a summary of the stabilised crude oil, produced water, gas lift and injection specifications and conditions.

Stream	Parameter	Value
	BS&W [vol%]	≤ 0.5
	RVP at 37.8°C [psia]	≤ 10
Oil	TVP at 50°C [psia]	≤ 14.7
	Salt content [ptb]	≤ 35
	Maximum rundown temperature [°C]	50
	Free oil in water [ppm]	30
Water	Total suspended solids [ppm]	10
	Maximum discharge temperature [°C]	50
	Water content [lb/MMscfd]	1.5
	Gas lift/injection operating pressure at top of riser [barg]	289
Gas	Gas lift/injection operating temperature [°C]	65
	Design pressure [barg]	345
	Design temperature [°C]	80

Table 3.3: Product's specifications and conditions (Company, 2013)

3.4. Topsides Process Overview Systems

Table 3.4 highlights the current topside systems handling capacity for processing the hydrocarbons of the 5 reservoirs listed in section 3.2.

Parameter	Value
Oil Production [BOPD]	100 000
Maximum Liquids Production [BLPD]	125 000
Gas Lift [MMscfd]	70
Gas Production [MMscfd]	80
Total Gas Processing (Gas Production + Gas Lift) [MMscfd]	115
Gas Injection [MMscfd]	100
Produced Water Handling [BWPD]	100 000

Table 3.4: FPSO topsides' processing facility capacity (extracted from Company, 2013)

3.4.1. Oil Separation and Treatment

Figure 3.1 illustrates the oil processing train installed in the FPSO's Topside Facilities

Figure 3.1: Block flow diagram of the oil processing train (adapted from Company, 2016e)

The separators installed in the FPSO under evaluation in this study, are three-phase vessels constructed of carbon steel lined with 3 mm glass flake, designed for water carryover of 10 vol% from the high pressure (HP) to the intermediate pressure (IP) separator, 5 vol% from the IP to the low pressure (LP) separator, 1.5 vol% from the LP to the electrostatic treater and 0.5 vol% from the electrostatic treater. The HP separator operates at 19.0 barg, has an expected operating temperature range of 36 to 63°C and is designed with a slug handling capacity of 40.36 m³ between normal liquid level and high-level alarm. Gas from the HP separator flows to the 3-stage compression systems to acquire the required pressure for injection and oil lift purposes.

The crude oil leaving the HP separator is routed to the crude/crude heat exchangers (2 x 50%), to exchange heat with the hot stabilised crude oil from the electrostatic treater and the temperature is further increased to 90°C by means of a heating medium in the crude oil heaters (2 x 50%), prior to entering the IP separator. The produced water flows under level control to the produced water treatment units. The heated crude oil leaving the crude oil heaters commingles with the condensate from the flash gas compressors (FGC), injection gas compressors (IGC), blanket gas and fuel gas scrubbers and enters the IP separator at 7.0 barg at approximately 90°C. Gas from the IP separator is routed to the FGC system.

The crude oil from the IP separator flows under level control to the LP separator for crude stabilisation. Produced water from the IP separator flows under level control to the produced water flash vessel. The LP separator operating at 1.0 barg and 85°C stabilises the crude oil to the true vapour pressure (TVP) and Reid vapour pressure (RVP) specifications by removing volatile components from the crude to avoid flashing in the cargo tanks. The stabilised crude oil leaving the LP separator is pumped to the electrostatic treater by the crude oil pumps (2 x 100%), which pressurise the crude oil from 1 to 6 barg, through a mixing valve for the required reduction in water content. The produced water leaving the LP separator may be routed upstream or downstream of the produced water cooler (depending on the flow rate and cooling requirement) prior to disposal to the slops tank, while gas from the LP separator is routed to the FGC system.

The salinity specification of the stabilised crude oil is achieved by injecting ±85°C wash water at the discharge of the crude oil pump to dilute the salt content to 35 ptb. The mixing valve is required to facilitate salt removal from the crude product. Wash water at 6.0 barg is added upstream of the mixing valve at the rate of 70 m³/h. The mixing valve requires a 2.0 bar pressure drop. The electrostatic treater with an operating pressure and temperature of 4.0 barg and 85°C, respectively removes the remaining water in the crude oil pumped from

the LP separator to 0.5 vol% basic sediment and water (BS&W) using an electrostatic coalescing process.

A portion of the produced water from the electrostatic treater is recycled to the LP separator via a flow control valve to reduce the wash water consumption. This recycle stream has a reduced salinity compared to the raw produced water and acts to reduce the total salinity in the produced water carryover to the electrostatic treater.

The stabilised crude oil from the electrostatic treater is cooled by heat exchange with the crude oil from the HP separator in the crude/crude heat exchangers ($2 \times 50\%$), before it is cooled to a maximum rundown temperature of 50°C in the seawater cooled crude oil coolers ($2 \times 50\%$ duty). The stabilised crude oil is sent to the cargo tanks for storage. The produced water leaving the electrostatic treater may be routed upstream or downstream of the produced water cooler (depending on the flow rate and cooling requirement) prior to disposal to the slops tank.

Based on the flow rates and physical properties considered in the design basis (as shown in Table 3.5), the separators were designed to achieve the following separation specifications:

- Maximum liquid content in the gas of 0.1 Gal/MMscf, based on the removal of 98% of all liquid droplets equal to or larger than 10 microns
- Maximum water content in the crude outlet:
- $_{\odot}$ HP separator: 10% (v/v) based on the removal of all droplets of 500 μm and larger
- \circ IP separator: 5% (v/v) based on the removal of all droplets of 350 μ m and larger
- \circ LP separator: 1.5% (v/v) based on the removal of all droplets of 280 µm and larger
- Maximum crude content in the water outlet of 1000 ppm on removal of oil droplets of 180 µm and larger.

Parameters	Ma	Maximum Oil and Gas Case			Maximum Water Case			9
[m³/h]	HP	IP	LP	Test	HP	IP	LP	Test
Oil flow rate	710	729	702	173	175	722	701	170
Gas flow rate	7099	1366	4923	9776	5525	1217	3825	1078
Water flow rate	171.5	2	69	-	687	82	106	155

Table 3.5:	Separators	desian	basis	(adapted	from	Company.	2016a)
	ocparators	acoign	54515	lagapica		company,	20100)

Tables 3.6, 3.7, 3.8 and 3.9 provide brief design specifications of the main equipment used within the facility for oil separation and stabilisation, namely: separators, heat exchangers, pumps, and the electrostatic treater.

Parameter	HP Separator	IP Separator	LP Separator	Test Separator
Design Pressure [barg]	30	10	10	30
Design Temperature [°C]	-10 / 80	-10 / 110	-10 / 110	-10 / 80
Operating Pressure [barg]	19	7	1	6 - 19
Operating Temperature [°C]	36 to 63	90	85	-2 - 63

Table 3.6: Separator's design and operating parameters (adapted from Company, 2016a)

Table 3.7: Heat exchangers design duties (adapted from Company, 2016a)

Parameter	Crude/Crude Exchangers	Crude Oil Heaters	Crude Oil Coolers
Type of Exchanger	Plate and Gasket	Plate and Gasket	Plate and Gasket
Design Duty [kW]	5930	6077	3190

Table 3.8: Crude oil pumps main design parameters (adapted from Company, 2016a)

Parameter	Values
Type of Pump	Centrifugal
Design Capacity [m ³ /h]	730
Differential Head [m]	71.2
Power [kW]	151

Table 3.9: Electrostatic treater design parameters (adapted from Company, 2016a)

Parameter	Values
Oil Design Flow Rate [m ³ /h]	Max Oil Case: 702 / Max water case 701
Water Inlet Design Flow Rate [m ³ /h]	Max Oil Case: 70 / Max Water Case: 83
Oil Inlet Minimum Flow Rate [m ³ /h]	Turndown Case: 89
Water Inlet Minimum Flow Rate [m ³ /h]	Turndown Case: 9.9
Inlet Design Salt Content in Oil [mg/L]	211930
Max water-cut without short-circuiting [vol%]	± 30
Minimum wash water requirement [%]	7-8 (subject to salt content in the treater inlet)

3.4.2. Gas Processing

The gas compression system handles the gas streams from the HP Separator (19.0 barg), IP Separator (7.0 barg) and LP Separator (1.0 barg). The combined gas streams are compressed to the required gas lift and injection pressure of 289 barg at the top of the riser in five stages. The gas from the discharge of the second stage IGC (stage four) at about 144.4 barg is dehydrated to a water content of 1.5 lb/MMscf in a triethylene glycol gas dehydration system.

3.4.2.1. Flash Gas Compression

Flash gas compression (FGC) is provided to boost the pressure of the gas from the IP separator, LP separator and vapour recovery unit (VRU) to the injection gas compressor package suction pressure. The FGC trains (2 x 100%) comprise of an LP and an HP compressor (2 stages), driven by one high voltage variable frequency drive electric motor via a twin output gearbox. The compressors are rotary dry screw units with gas sealing provided by a seal oil system derived from the lubricating system.

Gas from the LP separator flows to the 1st stage suction cooler, where it is cooled to 45°C by heat exchange with a cooling medium before flowing to the 1st stage suction scrubbers, where the gas enters via an inlet deflector and condensate is removed via a vortex breaker and pumped back to the IP separator by a suction drain pump. The gas leaves the top of the vessel via a vane packed wire mesh demister to flow to the 1st stage FGC, where it is pressurised to 6 barg before it is discharged to the 2nd stage cooler. The discharged gas flowing to the 2nd stage FGC discharge.

Gas from the 1st stage compressor discharge and recycle gas are mixed with the gas from the IP separator, then directed to the 2nd stage FGC cooler. The commingled gas is cooled to 45°C by heat exchange with a cooling medium before flowing to the 2nd stage FGC scrubber. Cooled gas enters the suction scrubber via an inlet deflector (Train A) or half open pipe (Train B) where condensate is removed via a vortex breaker and pumped back to the IP separator via the 2nd stage drain pump. The gas leaves the top of the vessel via a vane packed wire mesh demister to flow to the 2nd stage FGC suction, for pressurisation to 19.3 barg before it is piped into the IGC System.

Tables 3.10, 3.11, 3.12 and 3.13 provide the design specifications of the FGC system

Parameter	1 st Stage Cooler	2 nd Stage Cooler
Type of Exchanger	Shell and Tube	Shell and Tube
Design Duty [kW]	1477	2193
Gas Design Flow Rate [kg/h]	14 745	28 495

Table 3.11: FGC scrubbers' design flow rates (adapted from Company, 2014a)

Parameter	1 st Stage Scrubber	2 nd Stage Scrubber
Design Gas Flow Rate [kg/h]	12 595	22 798
Design Oil Flow Rate [m ³ /h]	2.78	8.71
Design Water Flow Rate [m ³ /h]	1.69	0.8

Table 3.12: FGC drain pumps' design parameters (adapted from Company, 2014a)

Parameter	1 st Stage Pump	2 nd Stage Pump
Туре	Centrifugal	Centrifugal
Design Capacity [m ³ /h]	4.5	4.5
Differential Head [m]	108	55
Duty Absorbed [kW]	9.4	4.5

Table 3.13: FGC main design parameters (adapted from Company, 2014a)

Parameter	1 st Stage Compressor	2 nd Stage Compressor
Type of Compressor	Dry Screw	Dry Screw
Design Pressure [barg]	10	30
Design Temperature [°C]	-15 / 200	-15 / 200
Suction Pressure [barg]	0.45	6
Suction Temperature [°C]	45	45
Discharge Pressure [barg]	6	19.3
Discharge Temperature [°C]	123	113
Design Duty [kW]	720	935
Design Flow Rate [MMscfd]	6.7	12.5

Parameter	1 st Stage Compressor	2 nd Stage Compressor
Design Molecular Weight [kg/kmol]	48.76	36.65
Turndown Flow Rate [MMscfd]	4.45	8.27
Turndown Molecular Weight [kg/kmol]	27.72	22.89
Turndown Duty [kW]	512	671

Table 3.13 (continued): FGC main design parameters (adapted from Company, 2014a)

To prevent ingress of oxygen into the cargo tanks, a slight overpressure (0.039 to 0.059 bar) is maintained in the cargo system by hydrocarbon gas blanketing and vapor recovery. During cargo loading, vapors are emitted from the cargo tanks due to displacement and evaporation or boil off. These vapors are recovered by a VRU compressor and pressurised to the pressure required for entry into the FGC system, where further pressurisation takes place.

The VRU consists of a liquid ring compressor with a closed-loop seal water system. Cooling of the seal water is achieved by a plate type heat exchanger using water as the cooling medium. Gas at 0.04 to 0.15 barg is routed from the cargo tanks via the hydrocarbon gas header to the inlet of the VRU. Within the compressor, gas pressure is boosted to 1.35 barg and the stream is routed to a gas-liquid separator. From the separator, gas is routed to the flash gas compression FGC system via FGC suction cooler. The seal water from the separator flows under level control to the inlet of the heat exchanger where it is cooled by heat exchange with the cooling medium flowing counter-currently through the exchanger before the seal water is routed back to the liquid ring compressor as operating liquid.

The compressor has a capacity of 1 244 m³/h (1 MMscfd), a shaft power of 80 kW and runs at a speed of up to 1 190 rpm. The operating water temperature into the liquid ring compressor is designed to 45°C and the liquid temperature of the compressor discharge is estimated to be about 55°C (Company, 2013). A block flow diagram of the flash gas compressor and the vapor recovery unit systems is represented in Figure 3.2 and Figure 3.3, respectively.

Figure 3.2: Block flow diagram of the flash gas compression system (adapted from Company, 2016e)

Figure 3.3: Block Flow Diagram of the vapour recovery unit system (adapted from Company, 2016e)

3.4.2.2. Main Injection Gas Compressor

The injection gas compressor (IGC) packages (3 x 50%) are three-stage centrifugal driven by gas/liquid fuel turbines. Each compression stage is provided with a suction cooler and a suction scrubber, where the accumulated hydrocarbon condensate is removed by a pressure gradient for re-injection into the oil processing train.

The suction coolers cool the temperature of the incoming gas to approximately 45°C before it is routed to the proceeding compressor stage via suction scrubbers for entrained liquids removal from the gas stream. The LP/IP compressors (i.e., first and second stages) are of the barrel type, vertically split, and the centrifugal compressor pressurises the gas to 56 and 144.4 barg, respectively while the HP compressor (i.e., third stage) pressurises the gas to approximately 293 barg before routing the gas to the injection/lift riser via a Discharge Cooler, where a gas temperature of 65°C is achieved.

Tables 3.14, 3.15 and 3.16 provide the design specifications of the IGC System.

Parameter	1 st Stage Cooler	2 nd Stage Cooler	3 rd Stage Cooler	Final Discharge Cooler
Type of Exchanger	Shell and Tube	Shell and Tube	Shell and Tube	Shell and Tube
Design Duty [kW]	1127	4996	4986	3105

 Table 3.14: IGC coolers' design duties (adapted from Company, 2014b)

 Table 3.15: IGC scrubbers' design flow rates (adapted from Company, 2014b)

Parameter	1 st Stage Scrubber	2 nd Stage Scrubber	3 rd Stage Scrubber
Туре	2 stage with vane pack	2 stage with vane pack	Multi Cyclone
Design Gas Flow Rate [kg/h]	61037	61630	54221
Design Oil Flow Rate [m ³ /h]	1.1	2.6	-
Design Water Flow Rate [m ³ /h]	0.6	0.2	-

Table 3.16: IGC main design parameters	s (adapted from Company,	2014b)
--	--------------------------	--------

Parameter	1 st Stage Compressor	2 nd Stage Compressor	3 rd Stage Compressor
Type of Compressor	Centrifugal	Centrifugal	Centrifugal
Design Pressure [barg]	170	170	345

Parameter	1 st Stage Compressor	2 nd Stage Compressor	3 rd Stage Compressor
Design Temperature [°C]	-15 / 180	-15 / 180	-15 / 170
Suction Pressure [barg]	18	56	144.4
Suction Temperature [°C]	44	45	45
Discharge Pressure [barg]	56	144.4	293
Discharge Temperature [°C]	144	141	130
Maximum Speed [rpm]	14851	14851	14851
Duty Absorbed [kW]	3464	3387	2613
Gas Capacities (Each Train) [MMscfd]	57.5	57.5	50
Each Gas Turbine Power [MW]	13.4	13.4	13.4

Table 3.16 (continued): IGC main design parameters (adapted from Company, 2014b)

Figure 3.4 comprises of a block flow diagram of the injection gas compressor system installed in the Topside's section of the FPSO

•

Figure 3.4: Block flow diagram of the injection gas compression system (adapted from Company, 2016e)

3.4.2.3. Gas Dehydration

Gas dehydration is provided downstream of the 2^{nd} stage injection gas compressors and consists of 2 x 50% duty rated glycol scrubbers and 2 x 50% tri-ethylene (TEG) duty rated glycol contactors, which share a common TEG regeneration package. A side stream of the dehydrated gas is taken-off prior to third stage compression and is used as fuel gas.

Gas dehydration is required to maintain a sufficiently low water dew point to ensure that potential carbon dioxide corrosion rates in downstream facilities are minimised and hydrates do not form in the downstream facilities and by ensuring that the water dew point of the gas is lowered to below the minimum ambient seawater temperature of 4°C, the need for continuous methanol injection is avoided.

Table 3.17 represents the design parameters of the glycol scrubbers, while Table 3.18 represents the main design parameters of the TEG contactors and Figure 3.5 illustrates the TEG regeneration system by means of a block flow diagram.

Parameter	Values
Туре	Vertical Multi Cyclone
Design Gas Flow Rate [kg/h]	57.3
Turndown Gas Flow Rate [kg/h]	33.7

 Table 3.17: Triethylene glycol scrubbers' design duty and flow rates (Company, 2016b)

Table 3 18: Triethylene glycol	contactors design pa	arameters (Compa	ny 2016h)
Table 3.10. The invience give of	contactors design pa	arameters (Compa	iny, ∠0100)

Parameter	Values
Specification [lb/MMscfd]	< 1.5
Design Gas Flow Rate [MMscfd]	57.3
Turndown Gas Flow Rate [MMscfd]	33.7
Molecular Weight	20.3 – 23.62
Inlet Water Content	54.9 – 59.4

Figure 3.5: Block flow diagram of the gas dehydration system (adapted from Company, 2016e)

3.4.2.4. Fuel Gas

The normal fuel gas off-take is located downstream of the gas dehydration system at approximately 141.4 barg. The fuel gas is pre-heated and superheated by means of hot water, as the heating medium, before it is distributed to users. Condensate recovered in the fuel gas scrubber is sent to the IP separator. A line from the HP separator is provided to supply LP fuel gas to the steam boilers if the injection gas compressors are not available. The LP fuel gas is mainly used for the steam boilers with small amounts used as stripping gas, pilot gas and purge gas, while HP fuel gas is used at the turbine prime movers (i.e., power generation, gas compressors and water injection pumps).

Tables 3.19 and 3.20 show the design parameters of the main equipment of the fuel gas system and Figure 3.6 presents a block flow diagram of the overall fuel gas system employed in the FPSO.

Parameter	Fuel Gas Pre- Heater	LP Fuel Gas Superheater	HP Fuel Gas Superheater
Type of Exchanger	Multi Tube	Double Pipe	Double Pipe
Design Duty [kW]	369	104	157

 Table 3.19: Heat exchangers design duties (adapted from Company, 2014c)

Parameter	Value
Design Gas Flow Rate [kg/h]	22723
Design Oil Flow Rate [m ³ /h]	1.8
Design Water Flow Rate [m ³ /h]	-

Figure 3.6: Block flow diagram of the fuel gas system (adapted from Company, 2016e)

3.4.2.5. Flare System

The flare system is sized to handle the highest emergency relief rate, the continuous production flaring rate during start-up or production disruption, and the maximum topsides blowdown relief demand. The HP flare drum receives releases from the HP and test separators, IGC, gas dehydration, HP fuel gas system and the IGF unit, while the LP flare drum receives relief gas from process and utility systems. Flare pumps are provided to pump condensate that collects in the flare drums to the cargo tanks.

The HP flare tip contains six sonic gas discharge nozzles designed to provide a short smokeless frame and is fitted with two pilot burners. The LP flare tip is a pipe flare close coupled to the HP flare tip, fitted with a single pilot burner for ignition of the main flame. Main equipment design parameters are shown in Tables 3.21, 3.22 and 3.23. Figure 3.7 represents the flare relief system.

Table 3.21: HP and LP flare drums design flow rates (adapted from Company, 2016c)

Parameter	HP Flare Drum	LP Flare Drum
Gas Design Flow Rate [MMscfd]	175	44
Liquid Design Flow Rate [BLPD]	125000	25000

Table 3.22: Flare condensate pumps main design parameters (adapted from Company, 2016c)

Parameter	Value
Type of Pump	Centrifugal
Design Capacity [m ³ /h]	50
Differential Head [m]	29.7
Power [kW]	6.3

Table 3.23: Flare tip design specifications (adapted from Company, 2016c)

Parameter	Value
Design Capacity HP/LP [MMscfd]	175 / 96.5

Figure 3.7: Block flow diagram of the flare relief system (adapted from Company, 2016e)

3.4.3. Produced Water Treatment

Produced water from the HP separator is routed to the hydrocyclone, induced gas flotation unit and a seawater aided water cooler, which is designed to achieve the required oil-in-water (OIW) specification of 30 ppm, for direct discharge overboard or discharge to the slop tanks in case of off specification water. The reject oil from the hydrocyclone is routed to the slop tanks.

Produced water from the IP separator is routed to a flash vessel under level control so that the hydrocarbon gas is removed from the water. The gas from the flash vessel is directed to the LP flare and the water is routed to an LP water cooler to achieve a temperature of 50°C prior to discharge to the slops tank. In the slops tank, the water can settle by gravity separation to meet the overboard specifications of 30 ppm of free oil and 10 ppm of total dissolved solids. Produced water from the LP separator and electrostatic treater do not pass through the flash vessel and are routed either upstream or downstream of the LP water cooler, depending on the flow rates and cooling requirements. Design specifications of the equipment used in produced water treatment are listed in Tables 3.24, 3.25, 3.26 and 3.27 and an overall block diagram is illustrated in Figure 3.8.

Parameter	HP Produced Water Cooler	IP/LP Produced Water Cooler
Type of Exchanger	Plate and Gasket	Plate and Gasket
Design Duty [kW]	10696	6462
Design Flow Rate [m ³ /h]	665.6	165

 Table 3.24: Heat exchangers' design duties (adapted from Company, 2015c)

 Table 3.25:
 Hydrocyclone design specifications (adapted from Company, 2015c)

Parameter	Value
Minimum Design Flow Rate [m ³ /h]	212
Design Rejected Oil Flow Rate [m ³ /h]	1.6
Inlet Maximum OIW content [ppm]	2000
Design Capacity [m ³ /h]	667.2
Specification [ppm]	100

Table 3.26: Induced gas flotation design specifications (adapted from Company, 2015c)

Parameter	Value
Minimum Design Flow Rate [m ³ /h]	33
Design Capacity [m ³ /h]	665.6
Specification [ppm]	30 mg/I OIW content

Table 3.27: Produced water flash vessel design specifications (adapted from Company, 2015c)

Parameter	Value
Design Capacity [m ³ /h]	330
Design Gas Flow Rate [MMscfd]	0.5

Figure 3.8: Block flow diagram of the produced water system (adapted from Company, 2016e)

3.4.4. Utility Systems

3.4.4.1. Wash Water

Coarse filters (2 x 100%) are designed for a flow rate of 3 400 m³/h and removal of particulates down to 100 μ m and 3 x 50 % multi-media filters are provided for a total flow of 1 330 m³/h to remove at least 98% of particulates greater than 5 μ m from the seawater. The seawater feed temperature to the seawater reverse osmosis system should be as low as possible to achieve high membrane efficiency. As such, the water entering the fine filters is taken directly from the coarse filter's outlet. Fresh water is generated by means of reverse osmosis membranes and a heater ensures the wash water has a temperature of 85°C, which is required for crude washing to avoid cooling of the crude at the injection point. Design reference for the filtration and RO are listed in Tables 3.28, 3.29 and 3.30. A block flow diagram of the system is represented in Figure 3.9.

Table 3.28: Seawater filters' design specifications (adapted from Company, 2)	015b)
---	-------

Parameter	Coarse Filters	Multimedia Filters	Cartridge Filters
Capacity [m ³ /h]	3400	665	667
Specification	98% > 100 µ	95% > 5 µ	Element Rating: 5µ No of Elements: 276
Rated Power [kW]	0.37 [each motor]	21.3 [air blower]	-

Table 3.29: Reverse osmosis membrane specifications (adapted from Company, 2015b)

Parameter	Value
Туре	Reverse Osmosis
Outlet Capacity [m ³ /h]	80
Design Pressure [barg]	82.7
Design Temperature [°C]	0 to 80
Flow per Train [m ³ /h]	100
Number of Elements	6
Number of Pressure Vessels	13

Table 3.30: Wash water heater specifications (adapted from Company, 2015b)

Parameter	Value
Type of Exchanger	Plate and Gasket
Design Duty [kW]	6440

COOLERS

Figure 3.9: Block flow diagram of the seawater treatment system (adapted from Company, 2016e)

3.4.4.2. Cooling and Heating Medium

The cooling medium system is a closed loop inhibited fresh water cooling system with supply and return temperatures of 35° C and approximately 56° C, respectively. The cooling medium is cooled by indirect contact with seawater in the heat exchangers ($3 \times 50^{\circ}$), which is supplied from the outlet of the coarse filters and discharged overboard on exiting the exchangers. A tank is used as an expansion vessel and the circulation pumps are provided in a $3 \times 50^{\circ}$ configuration. Design specifications of the system are listed in Tables 3.31 and 3.32.

Table 3.31: Cooling medium circulation pumps' specifications (adapted from Company, 2016d)

Parameter	Value
Туре	Centrifugal
Design Capacity [m ³ /h]	740
Differential Head [mlc]	47.8
Design Duty [kW]	114.4

Table 3.32: Cooling medium exchangers' specifications (adapted from Company, 2016d)

Parameter	Value
Туре	Plate and Gasket
Design Duty [kW]	17653

The heating medium system is an inhibited freshwater heating system with heating medium supply and return temperatures of 130°C and approximately 87°C, respectively. Heating medium is supplied to the crude oil heaters, wash water heater, fuel gas preheater and super heaters, HP and LP flare drum boots. The design intent of the heating medium steam supply control is to provide the required heat to the heating medium fluid through exchangers (3 x 33%) by LP steam from the steam boilers supplied to the shell side of the exchangers. A tank is used as an expansion vessel and the circulation pumps are provided in 2 x 100% configuration. Design specifications of the system are listed in Tables 3.33 and 3.34.

Table 3.33: Heating medium circulation pumps' specifications (adapted from Company, 2014d)

Parameter	Value
Туре	Centrifugal
Design Capacity [m ³ /h]	385
Differential Head [mlc]	37.2
Power [kW]	49.5
Table 3.34: Heating medium exchangers' specifications (adapted from Company, 2014d)

Parameter	Value
Туре	Shell and Tube
Design Duty [kW]	6100

3.5. Múcua Tie-In: A Process Overview

The Múcua field is located in Block 51/06 approximately 180 km off the coast and about 20 km west from the FPSO under evaluation. The first well is to be drilled in a water depth of 1636 meters. This first phase, foresees a daily oil production of approximately 20 000 barrels of oil per day (BOPD), as one production well tie-back to the existing 4-slot Ginguenga's production manifold by means of one new rigid flow line of about 17 km. The produced fluids are to be routed to the existing floating production storage and offloading (FPSO) treatment facilities via the existing production riser, PR-c, either to the high pressure (HP) separator or to the Test separator.

3.5.1. Múcua Reservoir PVT Characterisation

There is a 0% water cut for the Múcua production fluids and the production fluids are to be adequately treated with chemical injection for any emulsion issues due to the low temperature envisaged upon extraction (Company, 2019). The new reservoir properties and its fluid's composition are shown in Table 3.35 and Table 3.36 respectively and the production and gas lift riser line-ups are shown in Table 3.37.

Properties	Value
Reservoir Pressure [bara]	309
Reservoir Temperature [°C]	89
Depth [m SS TVD]	3751
Saturation Pressure [bara]	212.98
Stock Tank Oil Gravity [°API]	29
Average Gas-Oil Ratio [scf/STB]	663
Saturated Live Oil Density [g/cm ³]	0.88

Table 3.35: Múcua reservoir properties (adapted from Company, 2019)

	Component	Reservoir's Fluid Composition on Dry Basis Overall (Oil + Gas) [wt, %]
Name	Molecular Weight [g/mol]	Múcua
C1	16.04	5.98
C ₂	30.07	0.83
C ₃	44.10	2.09
i-C ₄	58.12	0.59
n- C4	58.12	1.52
i-C ₅	72.15	0.83
n- C₅	72.15	0.97
m-cyclo-C₅	70.1	0.01
C ₆	84.00	1.60
Benzene	78.11	0.05
Cyclo- C ₆	84.16	-
m-Cyclo- C ₆	84.16	-
C ₇	96.00	2.82
Toluene	92.14	0.17
C ₈	107.00	3.14
C ₂ -Benzene	106.17	0.08
mp-xylene	106.17	0.21
o-xylene	106.17	0.14
C ₉	121.00	2.37
C ₁₀	134.00	2.95
C ₁₁	147.00	2.69
C ₁₂	161.00	2.77
C ₁₃	175.00	3.16
C ₁₄	190.00	2.73
C ₁₅	206.00	2.54
C ₁₆	222.00	2.22
C ₁₇	237.00	2.78
C ₁₈	251.00	2.26
C ₁₉	263.00	1.72
C ₂₀	275.00	1.80
C ₂₁	291.00	1.71
C ₂₂	305.00	1.64
C ₂₃	318.00	1.55
C ₂₄	331.00	1.46

Table 3.36: Múcua reservoir fluid composition on dry basis (adapted from Company, 2019)

	Component	Reservoir's Fluid Composition on Dry Basis Overall (Oil + Gas) [wt. %]					
Name	Molecular Weight [g/mol]	Мúсиа					
C ₂₅	345.00	1.39					
C ₂₆	359.00	1.36					
C ₂₇	374.00	1.36					
C ₂₈	388.00	1.36					
C ₂₉	402.00	1.34					
C ₃₀ (+)	416.00	1.30					
C ₃₁	430.00	1.20					
C ₃₂	444.00	1.17					
C ₃₃	458.00	1.05					
C ₃₄	472.00	0.97					
C ₃₅	486.00	0.94					
C _{36 (+)}	-	29.08					
Molecula	ar Weight: Overall [g/mol]	118.0					

Table 3.36 (continued): Múcua reservoir fluid composition on dry basis (adapted from Company,
2019)

Table 3.37: Fields and separators line-ups to production and gas lift risers

Riser's Description	Tamarindo	Ginguenga + Múcua	Maboque	Loengo	Gajaja
PR-a: HP Separator	Х				
PR-b: HP Separator	х			х	
PR-c: HP or Test Separator		Х			
PR-d: HP Separator			Х		Х
TR-a: Test Separator			х		
Gas Lift	GL1		GL3a	GL1	GL3a

Overall, in this section the FPSO under analysis has been described in detail from a design point of view. Raw crude oil properties have been highlighted and all the processes from subsea extraction up to the final products along with the design operational parameters and limitations of the equipment installed to produce 125 000 barrels of liquid per day have been thoroughly explained.

CHAPTER 4

MATERIALS AND METHODS

4.1. Introduction

There is a large range of possibilities to test hypotheses in research problems. Research results depend on how observations and interferences are made, the number, quantity of levels, as well as the type of independent variables. When dealing with only one independent variable, a single factor experimental design is normally used, but when having more than one independent variable with more than one level, a factorial design is used for scientific experiments (McBurney and White, 2007; Kerlinger, 2007).

In this research, six blend design cases were evaluated by means of Aspen Tech HYSYS simulations and the operating parameters for individual equipment were compared with the original design to identify potential bottlenecks, with a detailed study focusing only on a governing case.

This chapter highlights the process conditions and the main parameters considered for the factorial design cases used as basis for the Aspen Tech HYSYS simulations, discussion on the performance evaluation of separators and scrubbers using MySEP and the experimental set-up for the topside processing unit.

4.2. Experimental Set-Up

A summarised process flow diagram of the production unit under evaluation within the scope of this study is illustrated in Figure 4.1, with each unit operation described in Table 4.1.

Figure 4.1: Process flow diagram of the topside processing unit (adapted from Company, 2016e)

HYSYS Stream Number	Description
2	Treated water from HP Separator
14	Outlet Gas from IP Separator
54	Inlet Gas to 1 st Stage IGC Package
111	Inlet HC fluids to HP Separator
112	Outlet Oil from HP Separator
114	Outlet Gas from HP Separator
115	Outlet Water from HP Separator
122	Inlet Stream to IP Separator
123	Outlet Oil from IP Separator
124	Inlet Stream to LP Separator
126	Outlet Water from IP Separator
128	Outlet Water from LP Separator
131	Outlet Oil from LP Separator
132A	Inlet Stream to Electrostatic Treater
133	Outlet Gas from LP Separator
134	Outlet Oil from Electrostatic Treater
137	Outlet Water from Electrostatic Treater
218	Outlet Gas from 2 nd Stage IGC Discharge Cooler
223	Inlet Gas to 3 rd Stage IGC Package
221	Compressed Gas from IGC Packages
222A	Fuel Gas Outlet from TEG Contactors
233A	Inlet Gas to 2 nd Stage FGC Package
236	Outlet Gas from 2 nd Stage FGC Package
253	HP Fuel Gas to Consumers
254	LP Fuel Gas to Consumers
310	Inlet Wash Water U/S the Electrostatic Treater
Gas Lift	Gas Lift to Turret
Gas Injection	Gas Injection to Turret
Test Sep Inlet	Inlet HC fluids to Test Separator
Test Sep Vap.	Outlet Gas from Test Separator
Test Sep Liq.	Outlet Water from Test Separator
Test Sep Oil	Outlet Oil from Test Separator

Table 4.1: Process flow diagram legend

4.3. Blend Cases and Criteria Definition

A within-subject factorial design, in which the temperature of the HP separator, the pressure and temperatures of the Test separator are subjected to all the study's conditions, along with process simulations were used to study the effect of such temperatures and pressures of on the production of stabilised crude oil and natural gas. Two variables of pressure (i.e., 7 and 19 barg), which are the design operational pressure of Test separator (Company, 2019) and four variables of temperature (i.e. -7, 5, 36 and 50°C) which are the estimated arrival temperature of fluids to HP and Test separator's inlet depending on the subsea configuration (Company, 2019), were used to identify the significant effects and interactions of the topsides' processing equipment in the production of crude oil and natural gas from the new fluid blend incorporating fluid from the Múcua field.

The new blend composition listed in Table 4.2, was determined based on subsea studies and simulations for the most optimum subsea configuration to accommodate the desired flow rates (Company, 2019) and this was used as the basis of the plant's handling capacity stream for the topside study.

Flow Rate	Value				
Total Oil [BOPD]	100000				
Total Water [BWPD]	50000				
Total Liquid [BLPD]	150000				
Max Total Gas Process (Gas Lift + Associated Gas) [MMscfd]	113				
Gas Lift [MMscfd]	40				
Gas Injection [MMscfd]	100				
Fuel Gas (estimated based on operating consumption) [MMscfd]	10				
Field	% On Total Oil Rate				
Ginguenga	0				
Maboque	40				
Tamarindo	11				
Gajaja	20				
Loengo	9				
Múcua	20				

Table 4.2: New blend definition (Company, 2019)

Table 4.2 also indicates the intention of processing a total liquid flow rate of 150 000 barrels of liquid per day (BLPD). However, this flow rate exceeds the total liquid maximum production rate design of 125 000 BLPD as referenced in Table 3.4. Considering that the maximum liquid production of 125 000 BLPD is associated with an estimated minimum water cut of 20% based

on the current production profile, an evaluation is required before exceeding the current facilities designed maximum liquid production flow rate prior to incorporating the Múcua field fluid into the operation through the FPSO.

Tables 4.3 contains the operating pressures and temperatures of the HP and Test Separator's new fluid blend design for cases A to F cases that were used for the evaluation, which were chosen based on the operational design pressures of both separators and the arrival fluids estimated based on the line up configurations estimation as recorded in Table 4.4 (Company. 2019).

	HP S	eparator	Test Separator			
Design Cases	Pressure [barg]	Temperature [°C]	Pressure [barg]	Temperature [°C]		
New Blend Case A	19	50	19	5		
New Blend Case B	19	50	19	-7		
New Blend Case C	19	50	7	5		
New Blend Case D	19	36	19	5		
New Blend Case E	19	36	19	-7		
New Blend Case F	19	36	7	5		

Table 4.3: Design cases for the new fluid blend

The balance of the flow rates from the plant's configuration in Table 4.4 to reach the total flow rate indicated in Table 4.1 are meant to be sent to the HP Separator. For the gas lift, 40 MMscfd is the average total gas lift rate, out of which only 10 MMscfd is envisaged to be injected at TR-a, base. Therefore, depending on the riser's alignment, it may go either to the HP Separator or to the Test Separator. If Múcua (PR-c riser) is aligned to Test Separator, then no gas lift is envisaged to the Test Separator. This is summarised in Table 4.4. In addition, Table 4.4 shows the water cut considered for each stream case to the Test Separator. The balance to reach the total water flow rate of 50 000 barrels of water per day (BWPD) was considered for the streams routed to the HP separator.

Table 4.4: Criteria for flow allocation	of the cases for the tie-In Process
---	-------------------------------------

	Streams to Test Separator								
Design Cases	Riser alignment	BOPD	Reservoir fluids	WC	Gas lift [MMscfd]				
Case_A	TR-a	20 000	Maboque	40%	≥ 10				

	Streams to Test Separator										
Design Cases		POPD	Decenveir fluide	WC	Gas lift						
	Riser alignment	BOPD	Reservoir nuius	WC	[MMscfd]						
Case B	PR-c	20 000	Múcua	0%	0						
Case C	TR-a	20 000	Maboque	40%	≥ 10						
Case D	TR-a	20 000	Maboque	40%	≥ 10						
Case E	PR-c	20 000	Múcua	0%	0						
Case F	TR-a	20 000	Maboque	40%	≥ 10						

Table 4.4 (continued): Criteria for flow allocation of the cases for the tie-In Process

4.4. HYSYS Simulation Basis

The viscosity of the New Blend fluid with an arrival temperature range of 36 to 50°C to the HP separator is expected to be slightly higher than the original design. Additionally, a new correlation was developed for the Múcua fluid's arrival temperature of -7°C. To simulate this, when the Múcua line is routed to the Test separator, the total fluids from the test separator are routed to the intermediate pressure (IP) separator and not to the LP separator which is the case when the test separator is operating at 7 barg. No further impact is envisaged for the topside's operation due to the viscosity difference between the new blend and the original design blend, as it is negligible.

4.5. Simulation Validation and Governing Case Selection

The simulation was setup based on the original plant operational design information with the inlet well fluid stream being adjusted to match the new fluid blend. The gas lift flow rate, the produced water flow rate and separator allocation was adjusted accordingly for each case requirement based on the New Blend definition as per Table 4.2.

In addition:

- New hypothetical components were created based on the PVT characterization data in Table 4.2 and all streams were adjusted to stock tank conditions (i.e., 15.6°C and 1.013 bara / 14.7 psia).
- The hydrocarbon liquid volumetric flow rates were adjusted to match the provided new blend composition.
- The stream from each field to the HP separator was connected to the *MIX-OIL-New Blend* mixer to create the *New Blend* stream.
- The stream to the Test separator was defined from the *TR-a_Maboque* or *PR-c_Múcua*, which was used to define the stream to the Test Separator (Figure 4.1) via

TR-a_Maboque or *PR-c_Múcua* depending on the case. The *New Blend* stream was used to define the crude oil stream feeding into the HP separator (Figure 4.1). The arrival condition of temperature and pressure was adjusted to match the arrival conditions indicated in Table 4.3.

- The Well Water stream, TR-a_Maboque stream, PR-c_Múcua stream, Test Well Water (Dummy) stream and Gas Lift stream were adjusted to match the provided blend flow rate information (Table 4.4).
- The blanket gas was adjusted to 1 MMscfd at the inlet of the flash gas compressor (FGC) train.
- The fuel gas flow rate was defined as 10 MMscfd for the Múcua tie-In evaluation (Company, 2019). The original design fuel gas flow rate was 21 MMscfd (Company, 2013).
- The water carryover in oil from the Test separator was considered to be zero (assuming full separation efficiency).
- The rest of the parameters in the simulation were as per the original plant operational design.

The governing case study chosen for the production throughput simulation was considered on the basis that it was the closest to the operating conditions prior to the tie in, which was validated against the operating conditions retrieved from the OsiSoft plant information (PI) Process Book and the Daily Production Report dated 29 March 2020 listed in Table A.1 (Appendix A). An overview print screen for each analysed case showing the process simulation as an overall picture of the main processing equipment can be found in Tables B.1 to B.5 in Appendix B.

In summary, this section covered all the characteristics, basis, parameters, and stream identification used for the Aspen Tech HYSYS simulations, including all the assumptions made. The Peng-Robinson Equation of State was chosen as the property bundle to develop the model of dynamic simulation as it is the most suitable for hydrocarbon compounds (Tangsriwong *et al.*, 2020), except for the pressure drop within the FGC system, for which Aspen Exchanger Design & Rating was used as it is the most suitable package to estimate and monitor pressure drops within gas systems (Haydary, 2019).

CHAPTER 5 RESULTS AND DISCUSSION

5.1. Introduction

A whole process train evaluation for the new blend with Múcua tie-in, as well as the anticipated lower operating temperatures for the Test separator was conducted based on the Aspen Tech HYSYS simulations. The inlet streams conditions of the new blend were compared with the equipment's original design handling capacity and the potential bottlenecks were identified.

Overall, this chapter interprets and discusses the topside process evaluations acquired by HYSYS simulations, computer-based evaluations of separators using MySEP, line-sizing calculations, blowdown scenarios and the flare system.

5.2. Topside Process Train Evaluation

Six cases (i.e., Cases A to F) were investigated in this study as defined in Table 4.2. The results presented were obtained based on the information provided in Tables 4.3 and 4.4. Deviations from the assumptions made, such as 0% water cut for the Múcua production fluid were not covered by this work and therefore require re-evaluation of the facility to determine acceptability. Design verification checks were performed for the major topsides' equipment and discussions have summarised in the sub-sections 5.2.1 to 5.2.15.

5.2.1. HP Separator

Figure 5.1: HP separator inlet stream's oil phase volumetric flow rate

Figure 5.2: HP separator inlet stream's gas phase volumetric flow rate

Figure 5.3: HP separator inlet stream's water phase volumetric flow rate

Figure 5.1 to 5.3 presents the volumetric flow rate results for the assessment of the HP separator by Aspen Tech HYSYS. It was observed that the operating parameters for all six cases are within the design limit for the HP separator capacities (i.e., 7099.1 m³/h, 710.2 m³/h and 686.6 m³/h, respectively for the HP separator inlet stream's vapour, gas and water phase volumetric flow rates) and therefore, no concern was identified for this equipment and no further evaluation was conducted for this equipment.

5.2.2. IP Separator

It can be observed in Figures 5.4 and 5.5, that the original design oil phase volumetric flow of 729.3 m3/h through the IP separator is exceeded for cases A and B by 1.2%; and by 1.5% for cases D and E; while the gas flow rate simulated for cases A, B, D, E and F exceeded the

design volumetric gas flow rate of 1363.3 m3/h by 14%, 17%, 33%, 35% and 4% for cases A, B, D, E and F, respectively. Considering this, the adequacy of the separator to handle the increased gas and oil flow rates was further validated using the MySEP computer software program, for which the findings are recorded in Appendix C, Table C.2. Figure 5.6 represents the IP separator inlet stream's water phase volumetric flow rate, with none of the cases found to exceed the design value of 81.7 m³/h.

Figure 5.4: IP separator inlet stream's oil phase volumetric flow rate

Figure 5.5: IP separator inlet stream's gas phase volumetric flow rate

Figure 5.6: IP separator inlet stream's water phase volumetric flow rate

According to the results obtained from the MySEP evaluation, the new blend condition has resulted in a maximum gas load factor (K-value) of 0.36 m/s for the vane pack, which is higher than the manufacturer specification of 0.28 m/s and correlates to a greater liquid carry-over in the gas stream than the original design. However, the amount of liquid carry-over is negligible from a volumetric flow rate perspective (i.e., 0.068 m³/hr maximum for case E). In addition, the downstream flash gas compressor (FGC) 2nd stage cooler is a shell and tube design where the slightly higher liquid loading is expected not to have any detrimental effect on the cooler performance with respect to the fouling, as it is assumed that its design considers a fouling margin (Company, 2013). Considering that the downstream compressors have scrubbers to capture the liquid condensate, even with a higher liquid carry-over, the scrubber is designed to knock down the condensate and provide sufficient protection to the compressor (Company, 2013). This will be further enunciated in the FGC scrubber's evaluation in section 5.2.9.

The oil residence time was found to be less than the recommended value of 5 minutes (Appendix C, Table C.2). However, the separation efficiency is above 98.5% for all the cases. The maximum hydrocarbon liquid outlet velocity is 2.31 m/s for cases D and E, which is higher than the recommended value of 2.0 m/s. The maximum hydrocarbon liquid outlet velocity is only a consideration in relation to the convergence of flow towards the liquid outlet and for ensuring there is not too much additional distribution in the vessel (Company. 2019). Since the velocity constraint is exceeded at the hydrocarbon liquid outlet where the effect on liquid distribution is not a consideration (i.e., it is behind the weir), the higher velocity for the liquid outlet is not expected to be a concern.

The impact of the greater flow rate to the line sizing calculation is validated in Appendix D, Table D.1. Such evaluation concluded that the critical parameters (i.e., fluid velocity, flow induced turbulence, acoustically induced vibration, ρv^2 and Mach number) are all within the

design limit, but pressure drop could be an issue because of the higher gas flow rates. The oil line and produced water line were not validated since the flow rate was within the design limit as per Tables 5.4 and 5.6.

The adequacy of the pressure control valve (PCV) leading to the HP flare was validated for handling the high flow rate for case E only, as it presented the highest gas flow rate of all the cases. The IP separator features two PCVs, namely T71-PCV-003 and T71-PCV-013, as highlighted in the process flow diagram (PFD) in Appendix E, Figure E.1. The T71-PCV-013 has a much larger valve flow coefficient (Cv) of 962 compared to 141 for T71-PCV-003, which was originally designed to allow operation at a low operating pressure (Appendix F, Table F.16 and Table F.17). T71-PCV-013 is deemed able to accommodate all the cases based on its datasheet. According to its datasheet, T71-PCV-003 is sized for a maximum flow rate of 8986 Sm³/h (7.63 MMscfd) only. However, even though T71-PCV-003 is unable to allow flow to occur for any of the cases, when T71-PCV-013 is arranged for split range control with T71-PCV-003, it could then be considered as an acceptable combination.

The capacity of T71-PCV-010 at the outlet of the IP Separator going to the FGC was evaluated and found not able to allow flow for cases A, B, D, and E. The valve is sized for a maximum flow rate of 8986 Sm³/h as per its datasheet (Appendix F, Table F.18). In this case, the FGC system would be likely overwhelmed and would not be able to handle the new blend condition. Based on the results obtained and recorded in Appendix G, Table G.2, the oil side level control valve (LCV) T62-LCV-007 and produced water side T62-LCV-005 have flow rates lower than its design values of 759.7 and 80.0 m³/h respectively, therefore there is no concern for these two control valves.

5.2.3. LP Separator

From the results obtained during the LP separator simulation as represented in Figures 5.7 to 5.9, it was noted that the gas flow rate for cases A, B, D and E (i.e., 5907.5 m³/h, 5907.7 m³/h, 6173.6 m³/h and 6173.6 m³/h, respectively) exceeded the design gas flow rate of 4923.2 m³/h by 20% for both cases A and B and by 25% for cases D and E. The actual oil and water flow rates for cases A, B, D, E and F (i.e., 704.4 m³/h, 704.4 m³/h, 704.9 m³/h, 704.9 m³/h and 702.4 m³/h, respectively for the oil flow rates; and 105.8 m³/h, 105.8 m³/h, 105.9 m³/h and 105.9 m³/h, respectively for the water flow rates) exceeded the design volumetric oil and water flow rates of 702.3 m³/h and 105.6 m³/h, respectively by approximately 0.4% for all the cases, which could be considered negligible from a process design perspective.

Figure 5.7: LP separator inlet stream's oil phase volumetric flow rate

Figure 5.8: LP separator inlet stream's gas phase volumetric flow rate

Figure 5.9: LP separator inlet stream's water phase volumetric flow rate

The adequacy of the LP separator to handle increased gas, oil and water flow was further validated using the MySEP computer software program, from which findings are recorded in

Appendix C, Table C.3. The new blend condition has resulted in a maximum gas load factor of 0.361 m/s, which is higher than the manufacturer defined K-value of 0.278 m/s as per its datasheet in Appendix C, Table C.3. This correlates to a relatively greater liquid carry-over in the gas stream compared to the original design. The maximum liquid carry-over rate is 0.005 m³/h for cases A, B, D and E (Appendix C, Table C.3, and the impact to the downstream is inconsequential as the downstream scrubbers will be able to handle the liquids, the oil residence time, and the hydrocarbon liquid outlet velocity even though there is deviation from the required criteria. These deviations are justified to be not of concern as highlighted further in the FGC scrubber's evaluation in section 5.2.9.

Considering that the LP Separator has a relatively larger flow rate for gas for cases A, B, D and E (i.e., 5907.5 m³/h, 5907.7 m³/h, 6173.6 m³/h and 6173.6 m³/h) compared to the original design flow rate of 4923.2 m³/h, the impact to the line sizing calculation was validated and recorded in Appendix D, Table D.1. This evaluation yielded the conclusion that the existing line size can handle the increased flow rates and all the critical parameters are within the design limit, however pressure drop could be an issue due to the higher flow rates.

The adequacy of T71-PCV-004 leading to the LP flare was validated by means of comparison between its datasheet (Appendix F, Table F.21) and the actual flow rates obtained for the simulation, for handling the increased flow rate. Assessment shows that the gas flow rate is too high for cases A, B, D, and E, as the maximum gas flow rate per the manufacturer datasheet (Appendix F, Table F.21), is 8182 Sm³/h (6.95 MMscfd), while cases D and E flow rate of 6173.6 m³/h (10193 Sm³/h or 8.6 MMscfd), was predicted as recorded in Appendix G, Table G.3.

5.2.4. Electrostatic Treater

Figures 5.10 and 5.11 represents the assessment of the volumetric flow rate of the inlet stream to treater.

Figure 5.10: Electrostatic treater inlet stream's oil phase volumetric flow rate

Figure 5.11: Electrostatic treater inlet stream's water phase volumetric flow rate

The actual oil flow rates for cases A, B, D and E (i.e., 704.3 m³/h, 704.3 m³/h, 704.7 m³/h and 704.7 m³/h, respectively), exceed the design volumetric oil flow rate of 702.3 m³/h, of the electrostatic treater. However, for the cases D and E, the excess flow rate is around 0.34% above the design volumetric flow rate and this is assumed to be within the margin of what the electrostatic treater can accommodate.

5.2.5. Test Separator

From Figures 5.12 to 5.14, which are representations of the oil phase, gas phase and water phase volumetric flow rate results obtained from the Aspen Tech HYSYS simulation of the test separator's inlet stream, the actual gas flow rate for cases C and F (i.e., 2457.9 m³/h and 2460.9 m³/h, respectively) were found to be exceeding the design volumetric flow rate of

1902.0 m³/h for the test separator by 29%. This is due to the combination of the lower operating pressure of the test separator with the Maboque's fluids' temperature.

Figure 5.12: Test separator inlet stream's oil phase volumetric flow rate

Figure 5.13: Test separator inlet stream's gas phase volumetric flow rate

Figure 5.14: Test separator inlet stream's water phase volumetric flow rate

The new blend condition resulted in a maximum gas load factor for the vane pack (carry-over rate) of 0.116 m/s for cases C and F, obtained from MySEP evaluation (Appendix C, Table C.4), which is lower than the value defined by the manufacturer of 0.135 m/s, as per test separator's datasheet (Appendix F, Table F.5). It may be concluded that there are no concerns regarding the test separator. It is also worth noting that in the low pressure cases, the gas must be diverted to the flare, as there is no system installed to recover the gas when the test separator is operating below the injection gas compressor (IGC) suction pressure of 19 barg (Company, 2014b).

5.2.6. Crude Oil Pumps

Figure 5.15 and 5.16 shows the results for the head and power's assessment of the crude oil pumps by HYSYS.

Figure 5.15: Crude oil pumps head assessment

Figure 5.16: Crude oil pumps power assessment

It was found that the operating parameters for all six cases were within the design limit of 71.2 m head and 151 kW power for the crude oil pumps. Therefore, no concern was identified for this equipment and no further evaluation needed to be conducted.

5.2.7. Crude Oil Heat Exchangers

The required duty of the crude/crude exchangers, as well as the crude oil heaters for cases D and E exceeded the original design limit of 11860 kW and 12154 kW by 659/1177 kW and 1588/1970kW, respectively as represented in Figure 5.17 and 5.18. This is likely due to the lower operating temperatures of the test separator. Currently 100 plates are installed in each oil heater's frame, but according to the datasheet (Appendix F, Table F.6), each frame can be fitted with up to 128 plates, therefore a further evaluation was performed for the oil heater as recorded in Appendix F, Table F.7. By adding 28 plates to each frame, the duty is expected to increase from 6077 to 7080 kW for each crude exchanger, totalising 14160 kW when both are in operation.

Figure 5.17: Crude oil heaters duties

Figure 5.18: Crude/Crude exchangers duties

There were found no concerns in the assessment of the crude oil coolers as shown below in Figure 5.19.

Figure 5.19: Crude oil heaters duties

5.2.8. Injection Gas Compressors (IGC)

Figure 5.20, 5.21, 5.22 and 5.23 show the results for the assessment of the inlet to the injection gas compressors (IGC) suction coolers. It was found that the required duty for all six cases was within the design limit of 14 214 kW for the combined duty of the IGC coolers. No concern was identified for the coolers and therefore, no further evaluation was needed.

Figure 5.20: 1st stage injection gas compressor cooler duties

Figure 5.21: 2nd stage injection gas compressor cooler duties

Figure 5.22: 3rd stage injection gas compressor cooler duties

Figure 5.23: Injection gas compressor discharge cooler duties

It was noted that the operating parameters for all six cases were within the design limits of 1.1, 3741.0 and 0.6 m³/hr, respectively for the oil phase, gas phase and water phase of the IGC 1st stage suction scrubber as seen in Figures 5.24, 5.25 and 5.26. Therefore, no concern was identified, and no further evaluation was conducted.

Figure 5.24: 1st stage injection gas compressor suction scrubber oil phase

Figure 5.25: 1st stage injection gas compressor suction scrubber gas phase

Figure 5.26: 1st stage injection gas compressor suction scrubber water phase

For the 2nd stage suction scrubbers, as shown in Figures 5.27 to 5.29, the actual oil volumetric flow rate was higher than the original design of 2.6 m³/hr by 4% for case A (2.7 m³/hr), 0.1% for case B (2.6 m³/hr) and 19.2% for case C (3.1 m³/hr). MySEP evaluation led to the conclusion that there are no concerns. The adequacy of the existing LCV, T71-LCV-111/211/511, on the liquid outlet line was evaluated for the worst scenario namely case C and it was noted that the original design has a maximum volumetric flow rate of 5 m³/h (as per the LCV datasheet in Appendix F, Table F.22). Therefore, the design valve flow coefficient (Cv) will be able to cover the maximum required flow rate of 3.1 m³/h (case C), for this study (Appendix G, Table G10).

Figure 5.27: 2nd stage injection gas compressor suction scrubber oil phase

Figure 5.28: 2nd stage injection gas compressor suction scrubber gas phase

Figure 5.29: 2nd stage injection gas compressor suction scrubber water phase

Figure 5.30 shows the results for the assessment of the 3rd stage IGC suction scrubber. It was found that the operating parameters for all six cases were within the design limit of 359.0 m3/hr for the IGC 3rd stage suction scrubbers. No concern was therefore identified, and no further evaluation was conducted for this equipment.

Figure 5.30: 3rd stage injection gas compressor suction scrubber gas phase

From the Aspen Tech HYSYS simulation outcomes of the IGC for the new blend cases as represented in Figures 5.31, 5.32 and 5.33. It was observed in Figure 5.31 that cases A and B had the highest volumetric gas flow rate at the inlet to the 1st stage IGC system with 101.2 MMscfd (2 x 50.6 MMscfd). The design capacity of the IGC for the 1st and 2nd stages (refer to Figures 6.31 and 6.32) is 57.5 MMscfd per unit or 115 MMscfd with two units online. The IGC system should not have major concern in operating the new blend condition. The new blend generally has a relatively heavier molecular weight of 23 g/mol (Appendix G, Table G.12), compared to the original design of 20.3 g/mol (Appendix F, Table F.8), but is within the established allowable design ranges and therefore should not have an impact on the IGC performance. It was therefore concluded that there is no concern for the IGC to handle the new blend.

Figure 5.31: 1st stage injection gas compressors volumetric flow

Figure 5.32: 2nd stage injection gas compressors volumetric flow

Figure 5.33: 3rd stage injection gas compressors volumetric flow

5.2.9. Flash Gas Compressors (FGC)

Figures 5.34 and 5.35 shows the results for the assessment of the 1st and 2nd stage flash gas compressor (FGC) suction coolers inlet stream flow rates; and Figures 5.36 and 5.37 shows the results for the duty assessment of the 1st and 2nd stage FGC suction coolers via Aspen Tech HYSYS simulation.

It was noted that the actual volumetric flow rate passing through the 1st stage FGC suction cooler is greater than the original design value of 5404.0 m³/hr for cases A, B, D and E (i.e., 7171.9 m³/hr, 7172.1 m³/hr, 7475.7 m³/hr and 7459.9 m³/hr, respectively). A detailed pressure drop investigation across the 1st and 2nd stage suction cooler was therefore conducted to better assess the suitability of such equipment to handle the new Múcua fluid blend.

Figure 5.34: 1st stage flash gas compressor cooler inlet flow rate

Figure 5.35: 2nd stage flash gas compressor cooler inlet flow rate

The high flow rate is the main driver for the high duties observed for cases A, B, D and E in Figure 5.36. The 2 FGC trains (A and B) have different designs for the 1st and 2nd stage suction coolers (i.e., the coolers have different tube inner diameters), length and effective area therefore the pressure drop is different for the same operating conditions). The train A FGC coolers consists of old equipment, while the train B coolers are a newer design and have a relatively larger capacity.

Figure 5.36: 1st stage flash gas compressor cooler duties

Figure 5.37: 2nd stage flash gas compressor cooler duties

For the new operating conditions for the new Múcua fluid blend, where the gas flow rate is greater than the original design, the train A cooler resulted in a greater pressure drop compared to the train B cooler. Considering that the performance of the train A and B would be impacted significantly by the inlet pressure of the 1st and 2nd stage, the pressure drop across the cooler was investigated in detail via Aspen Tech HYSYS modelling. The evaluation was individually performed for the FGC train A and B by considering the design differences of the coolers between both trains.

Two detailed hydraulic calculations were setup in Aspen Tech HYSYS per the following actual isometrics: one from the gas outlet of the LP separator across the 1st suction cooler until the inlet of the 1st stage FGC inlet nozzle; and another hydraulic check from the gas outlet of the IP Separator to the 2nd stage FGC inlet nozzle. The intention of the hydraulic check was to predict the pressure drop of the gas flow from the IP separator and LP separator along the

process line and across the suction cooler. To predict the pressure, drop across the cooler, the original manufacturer provided pressure drop of 0.5 bar was used as a basis. The pressure drop for the new condition was predicted by Aspen Exchanger Design & Rating (EDR) to be 0.73bar and 0.58 bar for train A and B respectively based on the correlation between the volumetric flow rate and pressure drop as highlighted in Appendix B, Figure B.5.

The operating conditions at the 1st and 2nd stage inlet of the compressor were then generated through the detailed Aspen Tech HYSYS simulation and summarised in Table 5.1 for train A and Table 5.2 for train B.

Further details on the ability of the FGC Train A and Train B to accommodate the new conditions are needed to be conducted by the manufacturer using propriety calculations, which were not considered for the scope of this thesis. Thus, it is concluded that the new blend presented higher flow rates for cases A, B, D and E at the 1st stage inlet (i.e., > 6.9MMscfd) with high flow rates observed for all the cases at the 2nd stage inlet (i.e., > 13.0 MMscfd) and as such, any excess gas from the IP and LP separators would have to be flared due to the limitations of 13Mmscfd for the FGC.

		Case_A		Case_B		Case_C		Case_D		Case_E		Case_F		
Op	erating Data		1 st Stage	2 nd Stage										
Vapour Flow Rate	at inlet	MMSCFD	7.47	14.14	7.44	14.14	6.55	13.50	7.98	15.69	8.15	15.56	6.55	13.50
Vapour Mass Flow	at inlet	kg/h	18345.1	26544.0	18265.7	26429.3	14810.5	25089.2	19734.1	29560.1	20124.0	29153.2	14805.9	25073.1
				s		ONDITION	S							
Operating Pressure	at compressor flange	barg	-0.04	4.60	0.45	4.60	0.34	4.58	-0.15	4.60	-0.32	4.60	0.34	4.60
Operating Temperature	at compressor flange	°C	44.27	44.55	44.40	44.54	44.67	44.54	44.10	44.47	43.80	44.47	44.66	44.57
Actual Volume Flow	vapour	m³/h	9991.3	3147.2	9844.2	3143.2	6279.4	3014.5	12032.1	3487.6	15303.4	3459.2	6276.7	3004.0
Molecular Weight	vapour	kg/kmol	49.22	37.61	49.21	37.47	45.31	37.23	49.58	37.76	49.48	37.55	45.31	37.23
Mass Density	vapour	kg/m³	1.84	8.43	1.86	8.41	2.36	8.32	1.64	8.48	1.32	8.43	2.36	8.35
Cp/(Cp-R)	vapour	-	1.11	1.14	1.11	1.14	1.12	1.14	1.11	1.14	1.11	1.14	1.12	1.14
Compressibility Factor	vapour	-	0.98	0.95	0.98	0.95	0.98	0.95	0.99	0.95	0.99	0.95	0.98	0.95
				DIS	SCHARGE	CONDITIO	NS							
Operating Pressure	at compressor flange	barg	6	19	6	19	6	19	6	19	6	19	6	19
Operating Temperature	at compressor flange	°C	142.14	120.92	141.5	120.6	132.8	121.3	147.0	120.6	157.2	120.56	132.77	121.16
Actual Volume Flow	vapour	m³/h	1738.9	1044.17	1728.0	1041.4	1499.1	998.5	1880.5	1155.3	1975.8	1145.7	1498.6	997.7
Molecular Weight	vapour	kg/kmol	49.22	37.61	49.21	37.50	45.31	37.23	49.58	37.76	49.48	37.55	45.31	37.22
Mass Density	vapour	kg/m³	10.54	25.42	10.57	4.78	9.88	25.13	10.49	25.59	10.18	25.45	9.88	25.13
Cp/(Cp-R)	vapour	-	1.083	1.110	1.083	1.11	1.09	1.11	1.08	1.11	1.08	1.11	1.09	1.11
Compressibility Factor	vapour	-	0.95	0.90	0.95	0.90	0.95	0.90	0.95	0.90	0.95	0.90	0.95	0.90

 Table 5.1: FGC Train A performance based on pressure drop evaluation

Operating Data			Case_A		Case_B		Case_C		Case_D		Case_E		Case_F	
			1 st	2 nd										
			Stage											
Vapour Flow Rate	at inlet	MMSCFD	7.10	13.28	7.08	13.26	6.46	12.60	7.51	14.8	7.58	14.73	6.46	12.60
Vapour Mass Flow	at inlet	kg/h	17329.2	24823.4	17256.8	24696.2	14583.1	23297.3	18475.8	27871.7	18686.2	27568.6	14579.9	23292.9
SUCTION CONDITIONS														
Operating Pressure	at compressor flange	barg	0.33	4.99	0.33	5.00	0.53	5.00	0.28	5.00	0.15	4.99	0.53	5
Operating Temperature	at compressor flange	°C	44.58	44.60	44.6	44.60	44.70	44.65	44.52	44.53	44.45	44.53	44.73	44.65
Actual Volume Flow	vapour	m³/h	6834.9	2751.6	6781.8	2740.3	5413.2	2612.0	7522.0	3068.5	8422.6	3050.47	5411.9	2611.7
Molecular Weight	vapour	kg/kmol	48.89	37.47	48.87	37.32	45.25	37.05	49.30	37.66	49.42	37.50	45.24	37.04
Mass Density	vapour	kg/m³	2.54	9.02	2.54	9.01	2.69	8.92	2.46	9.08	2.22	9.04	2.69	8.92
Cp/(Cp-R)	vapour	-	1.11	2751.6	1.11	1.14	1.12	1.14	1.11	1.14	1.11	1.14	1.12	1.14
Compressibility Factor	vapour	-	0.98	0.94	0.98	0.94	0.98	0.95	0.98	0.94	0.98	0.94	0.98	0.95
DISCHARGE CONDITIONS														
Operating Pressure	at compressor flange	barg	6	19	6	19	6	19	6	19	6	19	6	19
Operating Temperature	at compressor flange	°C	114.86	117.2	114.5	116.8	113.8	117.5	115.9	116.8	119.7	116.8	113.8	117.5
Actual Volume Flow	vapour	m³/h	1526.5	968.4	1518.1	965.1	1398.0	920.9	1616.5	1078.7	1649.5	1070.8	1397.8	920.8
Molecular Weight	vapour	kg/kmol	48.89	37.47	48.87	37.32	45.25	37.05	49.30	37.66	49.42	37.50	45.24	37.04
Mass Density	vapour	kg/m³	11.35	25.63	11.37	25.59	10.43	25.30	11.43	25.84	11.33	25.74	10.43	25.30
Cp/(Cp-R)	vapour	-	1.08	1.11	1.09	1.11	1.10	1.11	1.09	1.11	1.09	1.11	1.10	1.11
Compressibility Factor	vapour	-	0.94	0.90	0.94	0.90	0.95	0.90	0.94	0.90	0.94	0.90	0.95	0.90

 Table 5.2: FGC Train B performance based on pressure drop evaluation
Figures 5.38 to 5.43 are graphical representations of the results for the volumetric flow rates for the oil phase, water phase and gas phase assessments of the 1st and 2nd stage FGC suction scrubbers.

Figure 5.38: 1st stage flash gas compressor suction scrubber oil phase

Figure 5.39: 1st stage flash gas compressor suction scrubber gas phase

Figure 5.40: 1st stage flash gas compressor suction scrubber water phase

Figure 5.41: 2nd stage flash gas compressor suction scrubber oil phase

Figure 5.42: 2nd stage flash gas compressor suction scrubber gas phase

Figure 5.43: 2nd stage flash gas compressor suction scrubber water phase

It was found that cases A, B, D and E exceeded the design volumetric flow rate of 5236.0 m³/hr and 2302.8 m³/hr for both the 1st and 2nd stage FGC scrubbers for the gas streams. In addition, the original design liquid flow rates for the oil of 2.8 m³/hr for the 1st stage and 8.7 m³/hr for the 2nd stage were also exceeded for these cases. With both stages operating beyond design, flaring would be expected at the LP and IP separator gas outlets. In summary, cases A, B, D and E will likely overwhelm the capacity of the FGC. Therefore, to produce the volume of oil specified (refer to Table 4.2), excess gas from the IP separator and LP separator would have to be flared.

Having gas flaring from the separators is not a safety concern but poses issues from environmental and/or regulatory perspectives. The approximate amount of flaring estimated by the Aspen Tech HYSYS simulation that will be needed at the separators is shown in Table 6.3.

	Cas	Case_A C		Case_B		Case_C		Case_D		Case_E		Case_F	
Simulation Case	LP Sep	IP Sep											
Flare Gas Rate [MMscfd]	0.845	1.215	0.800	1.286	0.000	1.077	1.325	2.696	1.399	2.586	0.000	1.077	

Table 5.3: Flare rates from IP and LP separator estimated by HYSYS

5.2.10. Gas Dehydration

As shown in Figure 5.44 and 5.45, the operating parameters for all cases are within the design limit for the gas dehydration system.

Figure 5.44: Gas dehydration scrubber gas phase

Figure 5.45: Water dehydration scrubber water phase

5.2.11. Produced Water Flash Vessel

The produced water treatment for the new Múcua fluid blend conditions is within the design limit of the produced water design rate of 100 000 BWPD (i.e., 662.5 m³/h). Therefore, it is expected that the produced water flash vessel in the produced water treatment system should be able to handle the new operating conditions. Figure 5.46 shows the results for the assessment of the produced water flash vessel by Aspen Tech HYSYS simulation.

Figure 5.46: Produced water flash vessel volumetric flow rates

5.2.12. Produced Water Cooler

Based on Figure 5.47, the produced water cooler was found to be within design limit (i.e., 6028 kW) for the new operating conditions, thus there is no concern for this vessel

Figure 5.47: Produced water cooler duties

5.2.13. Utilities

5.2.13.1. Cooling and Heating Medium

The cooling medium capacity is evaluated by comparing the overall duty of major cooling medium consumers with the system's original design. Figure 5.48 represents the cooling duty requirement for the major topsides heat exchangers, namely IGCs, FGCs and Crude Oil Coolers

Figure 5.48: Total cooling medium exchangers duties

The total cooling duty required by the major heat exchangers for cases A, B, C, D, E and F was found to be 26463 kW, 26665 kW, 21133 kW, 25996 kW, 26099 kW and 20573 kW, respectively which is less than the original design value of 32100 kW for these heat exchangers. Therefore, the existing cooling medium system is able to handle the overall cooling requirement for the new operating conditions. In addition, considering that there is no extra duty requirement for the existing cooling medium, the seawater requirement for the seawater/cooling medium heat exchanger will not impacted either.

The heating medium capacity was evaluated by comparing the overall duty of the major heat consumers with the original design value of 12774 kW. Figure 5.49 represents the heating duty requirement for the major topsides heat exchangers, namely the crude oil heaters and fuel gas heaters (i.e., the pre-heater, high pressure, and low pressure superheaters).

Figure 5.49: Total heating medium exchangers duties

The overall required heating medium capacity for cases D and E (i.e., 14016 kW and 14399 kW) exceeded the total design heating capacity of 12774 kW by 10% and 13%, respectively

due to the lower operating temperature of the test separator. The cases shown in Figure 5.49 considers 90°C outlet from the crude oil heaters. For cases C and F where the test separator liquid outlet is routed to the LP separator (in order to bypass the IP separator due to a lower operating pressure of 6 barg), the test separator liquid bypasses the crude oil heaters. In these cases, although the Reid vapour pressure (RVP) specification was met, the true vapour pressure (TVP) specification was not met in the Aspen Tech HYSYS simulation, as shown in Figures 5.50 and 5.51.

Figure 5.50: Crude oil Reid vapour pressure simulation vs design

Figure 5.51: Crude oil True vapour pressure simulation vs design

A higher crude oil heater outlet temperature of more than the normal 90°C was required for cases C and F to account for the test separator fluids bypassing the heater to achieve the design TVP.

5.2.13.2. Seawater

The required seawater cooling duty for the major heat exchangers using seawater as the cooling medium was within the design limit of 23105 kW as shown in Figure 6.52. Therefore, the requirement of the seawater duty is not impacted by the new operating conditions.

Figure 5.52: Seawater cooling requirements

5.2.13.3. Fuel Gas System

The fuel gas system operating conditions for the tie-in evaluation were within the design limit of the fuel gas system. The original design of the system is based on 21 MMscfd of the original blend. For the evaluation of the new blend, only 10 MMscfd was considered. Therefore, it is expected that the equipment in the fuel gas system should be able to handle the new blend.

All the operating parameters for the new blend and operating parameters for the Múcua tie-in were within the range of the fuel gas scrubber design as shown in Figures 5.53 and 5.54. The corrected Wobbe index for all the cases is shown in Figure 5.55 and is within the design limit of turbine, which is 37 - 49 MJ/Sm³ as defined by the Turbine manufacturer (Appendix F, Table F.11). Therefore, the operating conditions for the new fluid blend met the requirements of the fuel gas supply. In addition, the required duties for the fuel gas heat exchangers were within the design limit (Figure 5.56, 5.57 and 5.58) and as such, the capacities of fuel gas exchangers are not a concern.

Figure 5.54: Fuel gas scrubber gas phase

Figure 5.55: Fuel gas Wobbe index normal operations

Figure 5.57: HP fuel gas superheater duties

Figure 5.58: LP fuel gas superheater duties

5.2.14. Blow down Scenario

An evaluation was conducted for the low temperature operation of the test separator to determine the impact on the system. The blowdown from the test separator is mainly the depressurisation process through a blow down valve (BDV) tagged T62-BDV-022 (located in separate gas outlet stream of the test separator connected to the flare system), in the scenario of compressor trip. The blow down usually co-occurs with the blow down from the other production separator within a short period. In this study, the blowdown was evaluated for case B and E where the test separator operated at 19 barg (highest pressure) and -7 °C (lowest temperature).

The blow down rate from the major topsides blow down valves should remain approximately the same as the original design value of 175 MMscfd (Company, 2013), although the blowdown rates may be slightly different due to the compositional difference of the new fluid blend from the original design. Due to the low operating temperature of the test separator for cases B and E, the blow down rate from T62-BDV-022 was expected to be slightly greater than the original design value of 7.4 MMscfd at 63°C. However, considering that the original design for the HP flare header (full adiabatic blowdown of 175 MMscfd) includes a 10% margin of 17 MMscfd (Company, 2014e), the slightly different blow down rate from new operating condition will not be of concern.

5.2.14.1. Impact of Low Temperature in the Piping and Flare Network

During the blow down of the test separator through T62-BDV-022, extreme low temperature is expected to be seen downstream of the blow down valve. In addition, the contents of the test separator and the inside wall of the vessel may be subjected to temperature slightly lower than the initial temperature of the blow down due to the flashing hydrocarbon liquid which accounts for decreasing pressure inside the vessel during the blowdown process.

The low temperatures indicated in Figure 5.59 were evaluated with respect to the minimum design temperature of the material of construction of the test separator. The Aspen Tech HYSYS blow down evaluation indicated a temperature downstream of the blow down valve of -23°C. This is within the material design limit of -46°C (Company, 2014e). The vessel wall temperature from the Aspen Tech HYSYS evaluation was -8°C for the portion where liquid is in contact and -4°C for the portion where metal is in contact with the vapour. The vessel wall minimum design temperature is -10°C, which is close to the Aspen Tech HYSYS evaluation and should not be a concern as heat gain from the ambient conditions will increase the metal wall temperature. Hence this operating scenario is well within limits of the design conditions

as shown in Figure 6.59, which represents the dynamic simulation results from the Aspen Tech HYSYS evaluation of cases B and E.

Figure 5.59: Test separator blowdown for case b and e HYSYS evaluation results

During blowdown, as per the dynamic simulation result indicated in Figure 6.59, the fluid in the test separator may be exposed to temperatures as low as -8°C. However, Múcua wells are not injected with water and hence there is no risk of ice formation within the vessel.

5.2.14.2. Hydrate Formation inside Test Separator

In this study, the overall assumption is that hydrate formation is not a concern considering there is continuous low dosage hydrate inhibitor (LDHI) injected into the subsea structures. The downstream operating condition.

5.2.14.3. Ice Formation

With an operating temperature of -7°C in the test separator, the flaring/blow down of the test separator would generate a cold gas stream in the flare header (Company, 2019). When this cold gas stream encounters the wet streams from the HP separator, there is a concern of ice/hydrate formation in the flare header. Worst case scenario, the ice/hydrate accumulation may block the flare header partially or fully, compromising the safety integrity of the flare system. The ice/hydrate formation concern is minimal during the operation of cases A, C, D and F due to the operating temperature of the test separator of 5°C. The test separator blowdown will be short-term and usually co-occurring with the blow down HP and IP separators. The predicted warm streams from the HP and IP separators (Company, 2014e),

will be sufficient to warm up the cold stream from the test separator above the freezing point of water and out of the hydrate formation zone.

The concern for ice/hydrate formation is particularly applicable for Cases B and E. The ice formation in the flare header may happen due to the following factors:

- The presence of a cold stream on a continuous basis. During the operation of Case E, the test separator is continuously flaring cold gas into the flare header.
- The presence of a wet stream on a continuous basis. Most of the water content in the wet stream is coming from water saturation under the test separator operating conditions. The water carry-over (if any) also contributes, but in a small percentage to the overall water content. The mixing of the cold and wet streams generates a condition in the ice/hydrate formation envelope, which is dependent on the overall condition of the gas composition, dew point and temperature (Company, 2014e).

The scope of this report does not analyse in detail the scenarios of ice/hydrate formation (refer to section 1.9 in Chapter 1), since rigorous engineering evaluation needs to be conducted to justify and/or quantify a few scenarios of ice/hydrate formation. It was therefore concluded that the risk of the flare header being blocked by ice/hydrate formation is minimal, particularly when the cold test separator flare gas is mixed with the wet gas from the IP separator.

5.2.15. Flare System Capacity

The total topsides high pressure blow down is 175 MMscfd (Table 3.21). As per the discussion in section 5.2.14, the existing HP flare header capacity should be able to cover the blow down scenario for the new operating conditions considering the 10% design margin.

For the production flaring scenario, the debottleneck cases have a smaller gas production rate when compared to the original design (refer to Appendix G, Tables G.1 and G.2). For cases B and E, the gas production rate totalised 85.7 and 89.2 MMscfd, respectively (i.e., HP separator: 76.9 and 79.0 MMscfd and IP separator: 8.8 and 10.2 MMscfd, respectively for cases B and E); while for cases C and F it totalised 89 and 86.9 MMscfd, respectively (i.e. HP separator: 71.4 and 69.3 MMscfd, respectively for cases C and F, with 17.6 MMscfd for the test separator for both cases). Therefore, there was found to be no concern for the continuous, production flaring.

Like the HP flare header evaluation in section 5.2.14, the blowdown rate in the LP flare header will not significantly change when compared to the original design. Considering the 10%

margin that the original design features, the LP flare header capacity will have no issues under the new operating conditions.

5.3. Governing Case Selection

The options available for the topsides facility to allow the new fluid blend to obtain the true vapour pressure (TVP) specification with the bottleneck of crude oil heaters and the flash gas compressor (FGC) systems are very limited. From the Aspen Tech HYSYS simulations it was found that the FGC system was found to be unable to safely handle the flow rates for cases A, B, D and E; while for cases C and F, the gas flow rates were very close to the maximum design flow rate (Table 5.1 and 5.2). Increasing the pressures in the IP or LP separators would lead to less gases being routed to the FGC system and therefore cause more cargo manual venting requirements, which is undesirable, since it is normally an activity controlled by the operator in the cargo control room, which is prone to lack of proper control in case of distractions.

From the overall analysis the configurations and conditions for cases A, B, D and E faced challenges to safely process the oil and gas from the new fluid blend. Therefore, the test separator was found neither viable to be operating at 19 barg, nor able to process Múcua's production riser-c (PR-c) fluids.

Case C and case F presented the least bottlenecks and were found to be most ideal cases regarding configuration and conditions. For these cases, the test separator liquid outlet was routed directly to the LP separator due to the lower operating pressure of 6 barg, thus bypassing the crude oil heaters as well as the IP separator. In cases C and F, the TVP specification was not met in the Aspen Tech HYSYS simulation. However, in reality, a low temperature override controller is located upstream of the electrostatic treater to boost the output of the heaters to achieve a temperature of 90°C at the inlet to the treater (Company, 2016a). To account for this and obtain realistic duty requirements for cases C and F, the output temperature of the crude oil heaters was adjusted to achieve the TVP specifications in the Aspen Tech HYSYS simulations. The results are shown in Table 5.4.

Duty [kW]	Crude/Crude Exchangers	Crude Oil Heaters	Total Heating Load (Design Case)
Design Case	11860	12154	12774
Case C	7360	14551	14831
Case F	10490	16822	17101

Table 5.4: TVP adjusted heating duty of crude oil exchangers for cases C and F

The actual operating configuration of the heating medium exchangers is 3 x 33% (Company, 2014d), therefore the design duty of the heating medium exchangers is 3 x 6071 kW (Table 3.7), yielding 18213 kW, which is 1112 kW more than the required duty of 17101 kW, to meet the process heating requirements for case F. Thus, the heating medium system is not expected to be a bottleneck. Although the heating medium system exchangers can supply the required heating duty, the crude oil heaters containing 100 plates are not able to achieve the required amount of heating, which is surely a bottleneck (section 5.2.7).

The current operating pressure and temperature conditions of the test separator (i.e., 6 barg and 15°C), obtained from the OsiSoft plant information (PI) Process Book for 29 March 2020 as listed in Table A.1 (Appendix A), were used as the basis to select the governing case. The governing case was found to be case F over case C, because in the original design prior to the Múcua fluid tie-in the HP separator was operating at 19 barg and 52.3°C. Case C is based on these values (refer to Table 5.3 in Chapter 5), meaning that the temperature of the 20 000 BOPD from Maboque through test riser-a (TR-a) (refer to Table 5.4 in Chapter 5) would not have a visible effect on the HP separator operating temperature, which is unrealistic considering the additional flow rate of 20 000 BOPD, against the total production rate before the tie-in of 60 000 BOPD.

5.4. Current Operating Conditions with Múcua tie-in Simulation

The operating conditions listed in Table 5.5 were used to simulate the actual process parameters using the configurations and conditions of case F to predict the plant's behaviour for the Múcua fluid tie-in (i.e., New Fluid Blend). Some data was obtained from the OsiSoft PI Process Book and some from the production report (refer to Table A.1 in Appendix A). All the flow rates indicated are actual flow rates, except for the gas flow rates which are based on standard conditions.

HP Separator [PR-a, PR-b, PR-c and PR-d Risers]						
Oil stream outlet [BOPD]	47921.0					
Water stream outlet [BWPD]	30661.0					
Total Fluids Inlet [BLPD]	78582.0					
Gas Flow (incl. Gas Lift) [MMscfd]	63.84					
Operating Temperature [°C]	52.8					

Table 5.5: Operating conditions of the plant on 29 March 2020 without Múcua tied-in

HP Separator [PR-a, PR-	HP Separator [PR-a, PR-b, PR-c and PR-d Risers]						
Operating Pressure [barg]	19.0						
Gas Lift to HP Separator [MMscfd]	25.41						
Test Separate	or [TR-a Riser]						
Oil stream outlet [BOPD]	26337.0						
Water in Flow 40% WC [BWPD]	10534.8						
Water stream outlet [BWPD]	114.0						
Total Fluids Inlet [BLPD]	26451.0						
Water in oil outlet [BS&W 40 vol%]	10580.4						
Gas Flow (All flared) [MMscfd]	7.3						
Operating Temperature [°C]	15.0						
Operating Pressure [barg]	6.0						
Gas Lift to Test Separator [MMscfd]	0						
Gas Pro	ocessing						
IGC Train A 3rd Stage Discharge [MMscfd]	27.0						
IGC Train C 3rd Stage Discharge [MMscfd]	27.0						
Fuel Gas [MMscfd]	8.23						
Gas Lift [MMscfd]	25.41						
HP Flare [MMscfd]	16.85						
LP Flare [MMscfd]	4.34						
Gas Injection [Field]	20.65						
Gas Produced from Reservoir [MMscfd]	50.07						
Compressed Gas [MMscfd]	54.0						

In addition, the following assumptions were considered based on the operating information:

- Both crude oil heaters are in service (i.e., 2 x 50%).
- 2 x injection gas compressor (IGC) trains online (i.e. 2 x 50%).
- All liquids from the test separator are routed to the LP separator due to the low operating pressure of the test separator and there is not efficient water separation in the test separator due to the low temperature.
- The water cut from the HP Separator is assumed to be 10%.

- The Múcua fluids are considered to have a 0% water cut.
- There is no gas lift to the test separator.
- 60 000 BOPD are produced as per the daily operations report summary.
- The additional 20 000 BOPD from Múcua at -7 °C are routed to the HP separator.
- An 80 000 BOPD production target.

The simulations study with the above considerations resulted in the following main findings captured in Table 5.6.

Phase		HP separator		IP separator		LP separator		Test separator		Electrostat	Electrostatic treater	
	Parameter [units]	Actual + Múcua	Design Case	Actual+ Múcua	Design Case	Actual + Múcua	Design Case	Actual + Múcua	Design Case	Actual + Múcua	Design Case	
Vapour	Std Gas Flow [MMscfd]	73.06	107	7.2	7.6	2.51	6.9	7.24	29.0	-	-	
Oil	Actual Volume Flow [m ³ /h]	461.2	710.2	472	729.3	559.4	702.3	105.0	173.0	559.3	702.3	
Water	Actual Volume Flow [m ³ /h]	220.2	686.6	53.7	81.7	108.3	105.6	72.82	155.0	48.94	82.6	

Table 5.6: Separators' evaluation (Actual and Múcua: Case F)

Table 5.7: Operating parameters of the oil train's equipment simulation results (Actual and Múcua: Case F)

Parameter	HP separator	IP separator	LP separator	Test separator	Electrostatic treater	Crude/Crude Exchangers	Crude Oil Heaters	Crude Oil Coolers
Pressure [barg]	19	6	1	6	4	8.3	6	1.9
Temperature [°C]	43.9	97.3	66.9	15	67.1	58.9	98.4	50

The HP separator is expected to operate at 19 barg (Table 5.5), with the temperature expected to decrease from 52.8°C (Table 5.5) to 43.9°C (Table 5.7) due to the tie-in with Múcua. With the Múcua fluid tie-in the inlet flow rate of the light liquid is expected to be 461.2 m³/h (i.e., 69 620 BOPD) and the gas to be 47.65 MMscfd (plus the fixed gas lift flow rate of 25.41 MMscfd (Table 5.5), totalising 73.06 MMscfd as shown in Table 5.6.

The oil coming from the treater, is expected to heat the fluid from the HP separator from 43.9 to 58.9°C, in turn cooling the dead oil to 50°C in the crude/crude exchangers. While the crude oil heaters heat the fluid from 58.9 to 98.4°C considering the design duty of 12 142 kW (Table 5.8).; no further cooling of the dead crude oil will be required, since it has already been cooled to 50°C in the crude/crude exchangers.

Duty [kW]	Crude/Crude Exchanger	Crude Oil Heaters	Crude Oil Cooler
Design Case	11860	12154	6380
Actual + Múcua	4559	12142	0

Table 5.8: Oil train heat exchangers' duties (Actual and Múcua: Case_F)

The test separator is expected to operate at the conditions of 6 barg and 15°C, as well as the current design flow rate conditions, since the Múcua fluid will not be routed to it. Therefore, similar to the original design conditions 7.2 MMscfd of gas is expected to be flared (Table 5.6), while together the oil and water are routed to LP separator due to there being no liquid separation on account of the low temperature and operating pressure of 6 barg.

The IP separator is expected to operate at the original design operating pressure of 6 barg, at a temperature of 97.3°C based on this study. This temperature could be decreased; however, this would cause the TVP of the dead crude oil to increase in the cargo tanks. There is not expected to be any gas flaring necessary from the IP separator, since the test separator outlet fluids will bypass it. The LP separator is expected to also operate at the original design operating pressure of 1 barg, at a temperature of 66.9°C as recorded in Table 5.7, although the fluid flow rate is expected to exceed the water flow rate compared to the original design. Based on the simulation using case F as the governing case the treater is expected to operate at the original design.

The duties of the IGC and FGC systems are within the original design capacity, as shown in Tables 5.9 and 5.10. However, for the 2nd stage FGC scrubber, it was noticed that the water flow rate is above the original design as highlighted in Table 5.11. This may cause a bottleneck and must be monitored closely by increasing the production rates gradually during operation.

Coolers Duty [kW]	1 st Stage IGC	2 nd Stage IGC	3 rd Stage IGC	IGC Discharge	1 st Stage FGC	2 nd Stage FGC
Design Case	1127	4996	4986	3105	1479	2193
Actual + Múcua	273.5	3363	3399	1966	379.8	1603

Table 5.9: IGC and FGC coolers' duties (Actual and Múcua: Case F)

Table 5.10: IGC and FGC duties HYSYS evaluation (Actual and Múcua: Case F)

Compressor's Duty [kW]	1 st Stage IGC	2 nd Stage IGC	3 rd Stage IGC	1 st Stage FGC	2 nd Stage FGC
Design Case	3464	3387	2613	512	671
Actual + Múcua	2624	2123	1794	281.2	517.9

Table 5.11: IGC and FGC scrubbers (Actual and Múcua: Case F)

	Parameter	1 st Stag	ge IGC	2 nd Stag	ge IGC	3 rd Stage IGC	
Phase		Actual + Múcua	Design Case	Actual + Múcua	Design Case	Actual + Múcua	Design Case
Vapour	Std Gas Flow [MMSCFD]	40.81	57.0	40.5	57.0	36.22	50.0
Oil	Actual Volume Flow [m ³ /h]	0.1	1.1	1.2	2.6	-	-
Water	Actual Volume Flow [m ³ /h]	0.1	0.6	0.1	0.2	-	-
Dharas	Bananatan	1 st Stag	je FGC	2 nd Stag	je FGC		
Phase	Parameter	Actual + Múcua	Design Case	Actual + Múcua	Design Case		
Vapour	Std Gas Flow [MMSCFD]	3.0	6.3	8.2	11.0		
Oil	Actual Volume Flow [m ³ /h]	0.4	2.8	5.2	8.7		
Water	Actual Volume Flow [m ³ /h]	0.4	1.5	0.9	0.8		

The tri-ethylene glycol (TEG) contactors and the fuel gas systems are within the design capability with regards to the scrubbers' performance, as well as the heater's requirements as per the tabulated results in Tables 5.12 and 5.13.

		Glycol So	crubber	Fuel Gas Scrubber		
Phase	Parameter	Actual + Múcua	Design Case	Actual + Múcua	Design Case	
Vapour	Std Gas Flow [MMSCFD]	40.3	57.3	8.1	21.0	

Table 5.12: Glycol and fuel gas scrubbers (Actual and Múcua: Case_F)

		Glycol So	crubber	Fuel Gas Scrubber		
Phase	Parameter	Actual + Múcua	Design Case	Actual + Múcua	Design Case	
Oil	Actual Volume Flow [m ³ /h]	-	-	0.77	1.8	
Water	Actual Volume Flow [m ³ /h]	0.03	0.05	-	-	

Table 5.13: Fuel gas heaters' (Actual and Múcua: Case_F)

	Duty [kW]			
Heaters	Fuel Gas Pre- Heater	HP Fuel Gas Superheater	LP Fuel Gas Superheater	
Design Case	369	157	104	
Actual + Múcua	143.2	54.8	27.8	

Based on the Aspen Tech HYSYS simulation, it is expected that a standard ideal liquid volumetric flow rate of 81 170 BOPD (i.e., basic sediment and water (BS&W) of 0.5% and American petroleum institute (API) of 33.99) will be processed in the cargo tanks (Figure 5.60). At 50°C the TVP, based on the study, is 21.5 psia and Reid vapour pressure (RVP) 7.6 psia at 37.8°C as tabulated in Table 5.14.

Table 5.14: RVP and TVP prediction (Actual and Múcua: Case_F)

Parameters	Actual + Múcua	Design Case	
RVP at 37.8°C [psia]	7.6	≤ 10	
TVP at storage conditions at 50°C [psia]	21.48	≤ 14.7	

Based on this the TVP is off-specification and there is expected to be 0.4215 MMscfd of gas flashing in the cargo tanks constantly. This can be handled by the vapour recovery unit (VRU) which is designed for 1.0 MMscfd in order to keep the cargo tanks at 14.7 psia for storage conditions. Figure 5.60 represents a process flow diagram of the simulation case including the Múcua fluid tie-in under case F configuration with the flow rates for the oil, gas and water streams indicated.

This chapter interpreted and discussed: 1.) the topside process evaluations acquired by HYSYS simulations; 2.) the computer-based evaluations of separators using MySEP; 3.) linesizing calculations; 4.) blowdown scenarios; and 5.) the flare system.

Figure 5.60: Process flow diagram with flow rates - Actual + Múcua (Case F configuration) simulation results

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

An entire process train evaluation for the new fluid blend with Múcua tie-in, as well as the new lower operating temperature for the test separator was conducted; and there was found not to be any concerns for the high pressure (HP) and test separators ability to handle the new blend cases (i.e., cases A to F) if the production fluids are treated by chemical injection for emulsion and low temperature issues. The gas flow rate at the intermediate pressure (IP) and low pressure (LP) separators were found to be greater than the original design for cases A, B, D and E. In terms of separator's performance, there was a high liquid carry-over in the gas stream of the separators and verifications of the IP and LP separators gas outlet's pressure control valve (PCV) leading to the HP/LP flare and flash gas compressor (FGC) system concluded that they are not adequate for the full gas flow rate of these cases as per the original design.

The suction coolers of the injection gas compressor (IGC) system showed no concern in terms of the exchanger's performance based on the simulated duty requirements even though the condensate flow rate for cases A, B and C at the IGC 2nd stage scrubber is slightly higher than the design flow rate. There was no concern for the compressor to handle the new fluid blend as the flow rate and the duties were found to be lower than the cases used for rating the compressors and turbines.

The FGC Train A was found unlikely to handle all the gas in cases A, B, D and E due to the relatively high pressure drop across the coolers. Once the FGC system is overwhelmed, it is expected to have a portion of the process gas being flared from the LP and IP separators, which is undesirable. The FGC Train B was found to be able to handle more gas than Train A, however detailed original manufacturer analysis is required to determine the suitability of each FGC train to accommodate blend cases A, B, D and E. Per the results of the simulations, the actual volumetric flow rates passing through the 1st stage FGC suction cooler for cases A, B, D and E is greater than the original design value and such was found to be a major bottleneck.

No concerns were found for the blowdown scenario and flare system, the gas dehydration, cooling medium, fuel gas, and seawater, as well as the produced water system, even though for some cases the overboard water temperature may be lower than 50°C.

The design heating load for the new fluid blend was found to be adequate for cases A, B, C and F. The overall heating medium duty requirement was exceeded for cases D and E. This is primarily due to the lower operating temperature of the HP separator requiring a greater

heating load for the crude oil heater to heat the incoming fluids to the required operational temperature of 90°C and meet the temperature vapour pressure (TVP) specifications.

Case F was selected over case C as the governing case for the detailed study based on the operating parameters prior to the introduction of the new fluid blend. Based on the Aspen Tech HYSYS simulation results of the Múcua fluid tie-in under case F configurations and conditions, it was found that the heavy liquid (i.e., water) flow rate at the LP separator was greater than the original design. The impact to the line sizing was validated and it was found that the existing line size can handle the increased flow rate and is within the design limit, but pressure drop could be an issue. The water flow rate for the 2nd stage FGC scrubber was found to be above the original design. To address this bottleneck, the production flow rates would have to be monitored and increased gradually.

Therefore, for some flexibility in operation and as mitigations for the new fluid's addition, the following actions are proposed as recommendations:

- To upgrade the crude oil heaters from 100 to 128 plates to achieve the desired TVP specification, without needing to continuously vent 0.4827 MMscfd of gas flashing in the cargo tanks, as it would be flashed off in the IP/LP separator and result in the least amount of gases flashing in the cargo tanks.
- To increase the heating medium from the current temperature of 120 to 130°C.
- To send a gas warm stream from the IP separator to the flare header to keep the temperature of the flare main header above the freezing point for flaring from the test separator during low temperature (i.e., 5°C and below) and low pressures.
- Bypass the crude oil coolers since the dead oil is already cooled to 50°C in the crude/crude exchangers.
- To revise the subsea chemical injection requirements, such as hydrate inhibition, demulsification and wax inhibition in order to improve separation.
- To closely monitor the FGC 2nd stage scrubbers' liquid level and FGC system performance during start-up as the flow rates simulated are expected to pass the design for all the six cases.
- Closely monitor the Múcua fluids water cut and arrival temperatures since this research and all the recommendations are solely based on 0% water cut.
- To have the manufacturer of the FGC evaluate the maximum rated capacities as there is likely no further margin for its operation.

The study was performed for a standard ideal liquid volumetric flow rate of approximately 81 170 BOPD and considering 73.06 MMscfd of gas flowing at the HP separator gas outlet

line. In summary, with the above mitigations in place there is not expected to be any major bottlenecks for start-up.

Computer aided design is an essential part of industrial practice. There are several worldrenowned software tools of which Aspen HYSYS is one of them and its advantages are unquestionable particularly in the field of process outlet conditions for conventional oil and gas systems. However, there is still opportunity for development. With regard to the current study future investigation could be performed after the proposed changes are implemented so as to observe the real operating data against the data predicted for the governing case selected by means of simulations in order to have an exact account of the suitability of the simulation assumptions and parameters used, which should be adjusted, and the simulations run again if necessary.

CHAPTER 7 REFERENCES

Abdel-Aal, H., Aggour, M. & Fahim, M. 2003. *Petroleum and Gas Field Processing*. New York: Marcel Dekker.

Ahmed, T. 2007. *Equations of State and PVT Analysis applications for improved reservoir modelling*. Texas: Gulf Professional Publishing.

Ahmed, T. 2010. *Reservoir Engineering Handbook.* 4th edition. Texas: Gulf Professional Publishing.

Ambrosio, J. 2014. *Handbook on Oil Production Research. Energy Science, Engineering and Technology Series.* New York: Nova Science Publishers.

Asadollahi, M., Bastani, D. & Musavi, S. 2017. Enhancement of Surface Properties and Performance of Reverse Osmosis Membranes After Surface Modification: A Review. *Desalination.* 420: 330-383, 2017.

Bai, Y. & Bai, Q. 2012. Subsea Engineering Handbook. Texas: Gulf Professional Publishing.

Binnie, C., Kimber, M. & Smethhurst, G. 2002. *Basic Water Treatment*. 3rd edition. London: Thomas Telford Ltd.

Bieker, H., Slupphaug, O. and Johansen, T. 2007. Real-time production optimization of oil and gas production systems: A technology survey. *SPE Production & Operations*, *22*(04), pp.382-391.

Bradley, H. & Gipson, F. 1987. *Petroleum Engineering Handbook*. Texas: Society of Petroleum Engineers.

Buecker, B. 2016. *Reverse Osmosis Pre-Treatment: Techniques and Technology*. Kiewit Engineering and Design Co.

Colt, J. & Huguenin, J. 2002. *Design and Operating Guide for Aquaculture Seawater Systems*. 2nd edition. Amsterdam: Elsevier.

Company. 2013. Topsides Process Design Basis. Internal Report No. MTT92002. [Unpublished].

Company. 2014a. Flash Gas Compression System. Internal Report No. MYT94037. [Unpublished].

Company. 2014b. Injection Gas Compression System. Internal Report No. MYT94036. [Unpublished].

Company. 2014c. Fuel Gas System. Internal Report No. MYT94038. [Unpublished].

Company. 2014d. Heating Medium System. Internal Report No. MYT94045. [Unpublished].

Company. 2014e. FPSO Flare Relief and Blowdown Report. Internal Report No. RTT76051. [Unpublished].

Company. 2015a. Swivel and Ancillaries. Internal Report No. MYM94059. [Unpublished].

Company. 2015b. Seawater Treatment and Water Injection System. Internal Report No. MYT94039. [Unpublished].

Company. 2015c. Produced Water System. Internal Report No. MYT94035. [Unpublished].

Company. 2016a. Oil Process Train. Internal Report No. MYT94034. [Unpublished].

Company. 2016b. Gas Dehydration System. Internal Report No. MYT94041. [Unpublished].

Company. 2016c. HP and LP Flare System. Internal Report No. MYT94042. [Unpublished].

Company. 2016d. Cooling Medium System. Internal Report No. MYT94042. [Unpublished].

Company. 2016e. FPSO Process Overview Drawing. Internal Report No. MYT94055. [Unpublished].

Company. 2019. Múcua Tieback into FPSO – Offshore Query. Internal Report MBS-003-OQ. [Unpublished].

Crawford, J. 2016. Marine and Offshore Pumping and Piping Systems. London: Butterworths.

Devold, H. 2013. *Oil and Gas Production Handbook: An Introduction to Oil and Gas Production*. USA: Lulu.com.

Edwin, M., Abdulsalam, S. and Muhammad, I.M., 2017. Process simulation and optimization of crude oil stabilization scheme using Aspen-HYSYS software. *International Journal of Recent Trends in Engineering & Research*, *3*(05).

El-Reedy, M. 2012. *Offshore Structures: Design, Construction and Maintenance*. Texas: Gulf Professional Publishing.

Fang, H. & Duan, M. 2014. *Offshore Operation Facilities: Equipment and Procedures*. Texas: Gulf Professional Publishing.

Furman, K., El-Bakry, A. & Song, J. 2017. Optimization in the oil and gas industry. *Optimization and Engineering.* 18, 1–2.

Glover, P. 2010. Formation Evaluation MSc Course Notes. Leeds: University of Leeds [Course notes].

Gundersen, P. 2013. Compositional Simulations of Producing Oil-Gas Ratio Behaviour in Low Permeable Gas Condensate Reservoir. Master's Thesis, University of Stavanger, Norway

Guo, B., Sun, K. & Ghalambor, A. 2008. *Well Productivity Handbook*. Texas: Gulf Publishing Company.

Guo, B., Lyons, W. & Ghalambor, A. 2011. *Petroleum Production Engineering, A Computer-Assisted Approach*. Oxford: Golf Professional Publishing.

Gutierrez, J., Benítez, L., Martínez, J., Ruiz, L. & Erdmann, E. 2014. Thermodynamic Properties for the Simulation of Crude Oil Primary Refining. *International Journal of Engineering Research and Applications*. 4(4): 190-194.

Haydary, J., 2019. *Chemical process design and simulation: Aspen Plus and Aspen Hysys applications*. John Wiley & Sons.

Hyne, N. 2014. *Dictionary of Petroleum Exploration, Drilling & Production*. 2nd Edition. Tulsa: PennWell Books.

Kerlinger, F. 2007. *Foundation of Behavioural Research*. 10th edition. Delhi: Surjeet publications.

Kim, Z. & Hwang, S. 2018. Design Optimization and Dynamic Simulation of Topside Process at Offshore Platform. Proceedings of the 2018 Spring Meeting and 14th Global Congress on Process Safety, 23 April 2018. Florida: AIChe Academy.

Leffler, W., Pattarozzi, R. & Sterling, G. 2011. *Deepwater Petroleum Exploration & Production:* A Nontechnical Guide. Oklahoma: PennWell Books.

Lyons, W., Plisga, G. & Lorenz, M. 2015. *Standard Handbook of Petroleum and Natural Gas Engineering Book*. 3rd Edition. Texas: Gulf Professional Publishing.

MacCain, W. 1990. *The Properties of Petroleum Fluids*. 2nd Edition. Tulsa: PennWell Publishing Company.

Manning, F. & Thompson, R. 1995. *Oilfield Processing of Petroleum: Crude Oil*. Tulsa: PennWell Books.

Maqbool, N., Saleem, Z. & Jamal, Y. 2019. A Short Review on Reverse Osmosis Membranes: Fouling and Control. Open Access Journal of Waste Management & Xenobiotics. 2 (2): 122

McBurney, D. & White, T. 2007. Research Method 7. Delhi, Thomson Wadsworth.

Mian, M. 1992. *Petroleum Engineering Handbook for the Practicing Engineer*. Oklahoma: Publishing Company.

Mikkelsen, R., Verbeek, P. & Akdim, M. 2013. Development of a Compact Topside Processing Plant. Texas: Society of Petroleum Engineers.

Minerals Management Services. 2001. Proposed use of Floating Production, Storage, and Offloading Systems on the Gulf of Mexico outer Continental Shelf. New Orleans: MMS.

Mitra, N. 2009. Fundamentals of Floating Production Systems. Mumbai: Allied Publishers.

Mohamad, A. 2009. Natural Gas Dehydration Using Triethylene Glycol (TEG). UMP

Mondal, S.K., Uddin, M.R., Majumder, S. and Pokhrel, J. 2015. HYSYS Simulation of Chemical Process Equipments. *Chemical Engineering and Processing*, pp.1-7.

Moran, S. 2015. An Applied Guide to Process and Plant Design. Oxford: Butterworth-Heinemann.

Mukerjee, R. & Wu, C. 2006. A Modern Theory of Factorial Design. New York: Springer

Ohama, T., Kurioka, Y., Tanaka, H. & Koga, T. 2006. Process Gas Applications where API 619 Screw compressors replaced reciprocating and centrifugal compressors. Texas: Proceedings of the thirty-fifth turbomachinery symposium.

Orszulik, T. 2007. *Environmental Technology in the Oil Industry*. 2nd edition. Hampshire: Springer Science & Business Media.

Paik, J. & Thayamballit, A. 2007. *Ship-Shaped Offshore Installations: Design, Building, and Operation.* Cambridge: Cambridge University Press.

Randolph, M & Gourvenec, S. 2011. Offshore Geotechnical Engineering. Oxford: Spon Press.

Robinson, D. 2013. Oil and gas: Treatment and discharge of produced waters offshore. *Filtration* + *Separation Magazine*. 50(2): 20-23.

Roobaert, N., Campo, J., Newman, H. & Phillips, A. 2012. How best practices optimize topsides design. *Offshore Engineer Journal*. 37: 44-47

Silberberg, M. 2004. Chemistry: The Molecular Nature of Matter and Change. New York: McGraw-Hill Companies.

Smirnov, A., Chobenko, V., Shcherbakov, O., Ushakov, S., Parafiynyk, V & Sereda, R. 2017. The results of pre-design studies on the development of a new design of gas turbine compressor package of GPA-C-16 type. IOP Conference Series: Materials Science and Engineering. 233:120

Speight, J. 2014. *Handbook of Offshore Oil and Gas Operations.* 1st Edition. Texas: Gulf Professional Publishing.

Stewart, M & Arnold, K. 2008. *Gas-Liquid and Liquid-Liquid Separators*. Texas: Gulf Professional Publishing.

Stewart, M & Arnold, K. 2011. Surface Production Operations, Volume 1: Design of Oil Handling Systems and Facilities. Texas: Gulf Professional Publishing.

Takacs, G. 2015. *Sucker-Rod Pumping Handbook: Production Engineering Fundamentals and Long-Stroke Rod Pumping*. Texas: Gulf Professional Publishing.

Tangsriwong, K., Lapchit, P., Kittijungjit, T., Klamrassamee, T., Sukjai, Y. and Laoonual, Y. 2020, March. Modeling of chemical processes using commercial and open-source software: A comparison between Aspen Plus and DWSIM. In *IOP Conference Series: Earth and Environmental Science* (Vol. 463, No. 1, p. 012057). IOP Publishing.

Warsinger, D., Tow, E., Nayar, K., Maswadeh, L., Lienhard, V., John, H. 2016. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. *Water Research*. 106: 272–282.

Whitson, C. & Brulé, M. 2000. Phase Behavior. Texas: Society of Petroleum Engineers

Wilf, M. & Bartels, C. 2005. Optimization of seawater RO system design. *Desalination.* 173: 1-12.

Internet Sources

Africa Oil Week. 2019. Africa's leading oil and gas event. [Online] Available at: <u>https://www.africa-oilweek.com/Articles/country-profile-angola</u> [Accessed 26 Dec. 2019].

Angonotícias. 2019. Governo aumenta petróleo para recuperar investimento no Bloco 17. [Online] Available at: <u>http://www.angonoticias.com/Artigos/item/63036/governo-aumenta-petroleo-para%20recuperar-investimento-no-bloco-17</u> [Accessed 05 Dec. 2019].

Aquanext. 2020. The Principle of Desalination. [Online] Available at: http://www.aquanextinc.com/en/product/desalination02.html [Accessed 10 April 2020].

Bluewater.com. 2020. Mooring Systems [online] Available at: <u>https://www.bluewater.com/products-technology/mooring-systems/subsea-mooring-and-</u> <u>offloading-point-smop/</u> [Accessed 29 March 2020].

CAPP. 2020. Crude Oil Extraction and Drilling Methods. [Online] Available at: <u>https://www.capp.ca/oil/extraction/</u> [Accessed 8 August 2020].

Enhydra. 2020. LL15 De-oiling Hydrocyclone - Enhydra. [Online] Available at: <u>http://enhydra.co.uk/products/ll15-deoiling-hydrocyclone-2/</u> [Accessed 4 April 2020].

Export.gov. 2019. Angola - Oil and Gas. [Online] Available at: <u>https://www.export.gov/article?id=Angola-Oil-and-Gas</u> [Accessed 03 Jan. 2020].

Fluid Sep. 2020. Fluid Sep Technologies. [Online] Available at: <u>http://www.fluidsep.in/MembraneTecnology.html</u> [Accessed 10 April 2020].

Kirkprocess.com. 2020. K-SEP™ Separator Internals | Kirk Process. [Online] Available at: <u>http://www.kirkprocess.com/products/k-sep-separator-internals/</u> [Accessed 29 March 2020].

Promor.com.sg. 2020. PROMOR. [Online] Available at: <u>https://www.promor.com.sg/html/gallery.html</u> [Accessed 29 March 2020].

Schlumberger, 2020. BILECTRIC HF High-Frequency AC Desalter | Schlumberger. [Online] Available at: <u>https://www.slb.com/well-production/processing-and-separation/oil-</u> <u>treatment/bilectric-hf-high-frequency-ac-desalter</u> [Accessed 29 March 2020].

Shuttleworth, M. 2009. Factorial Design. [Online]. Available at: <u>https://explorable.com/factorial-design</u>. [Accessed 08 August 2020].

119

Toray. 2020. Features of Reverse Osmosis. Toray Reverse Osmosis Basics. Knowledge Base. [Online] Available at: <u>https://www.toraywater.com/knowledge/kno_001_02.html</u> [Accessed 14 April 2020].

WorldBank.2020.Overview.[Online]Availableat:https://www.worldbank.org/en/country/angola/overview[Accessed 2 September 2020].

Wyunasep.com. 2020. Wyunasep | Oil Water Separator. [Online] Available at: <u>https://wyunasep.com/how_it_works</u> [Accessed 4 April 2020].

APPENDICES

Vessel:			Report Date: 29-Mar-20					
Production								
Filename: NG Security Level Status: 1	A-2020-03-29.xls Normal							
Oil & Gas Production								
Oil Uptime	24 hrs 00 min:	100.0%	Gas Lift Uptime	24 hrs 00 min:	100.0%			
Oil Production Target	77,000 bbls	12,242 m ³	Gas Injection Uptime	24 hrs 00 min:	100.0%			
Oil meter to storage, Gross	60,739 bbls	9,657 m ³	Gas Produced	50.070 mmscf	1.4 MNm ³			
Oil meter to storage, NSV	60,545 bbls	9,626 m ³	Gas Lift	25.410 mmscf	0.7 MNm ³			
Oil Import	0 bbls	0 m³	Gas Injected	20.650 mmscf	0.6 MNm ³			
Offspec Crude	0 bbls	0 m ³	Gas Exported	0.000 mmscf	0.0 MNm ³			
Total onboard at 24:00hrs	863,753 bbls	137,325 m³	Gas Imported	0.000 mmscf	0.0 MNm ³			
Pigging Oil Volume	61,020 bbls	9,701 m³	Fuel Gas	8.230 mmscf	0.2 MNm ³			
GOR Calculated	827 scf/bbl		Gas Flared HP	16.850 mmscf	0.5 MNm ³			
Oil Shortfall	16,455 bbls	2,616 m ³	Gas Flared LP	4.340 mmscf	0.1 MNm ³			
Oil Shortfall Responsibility	Client		Gas Flared Max. Allowable	1.500 mmscf	0.0 MNm ³			
	1		Excess Flaring Responsibility	OPS				
Water Injection								
Water Injection Uptime	24 hrs 00 min:	100.0%	Water Inj Pump A Uptime	24 hrs 00 min:	100.0%			
Water Injection Target	51,759 bbls	8,229 m ³	Water Inj Pump B Uptime	24 hrs 00 min:	100.0%			
Water Injected	51,759 bbls	8,229 m ³		//				
Water Injection Shortfall	0 bbls	0 m³						
WI Shortfall Responsibility								
Produced Water								
Produced Water Overboard from Process	0 bbls	0 m³	Produced Water from process to slops	48,446 bbls	7,702 m ^a			
Avg ppm OIW from Process to Sea	45.0 ppm	OCM						
Oil Volume to Sea	0.00 bbls	0 m³						
Discharge Overboard Temp	50 Temp °C							

Table A.1: Production report and processing parameters

Figure B.1: Simulation's inlet streams (Cases A, C, D and F)

Figure B.2: Simulations (Cases A, C, D and F)

Figure B.3: Simulation's inlet streams (Cases B and E)

Figure B.4: Simulations (Cases B and E)

Figure B.5: Flash gas compressor's cooler pressure drop simulation's (Cases B and E)

Figure B.6: Simulation (Case_F with Mucua tie-in)

APPENDIX C: MYSEP EVALUATION REPORTS

INPUT DATA										
		Unit	s	Design_C	Case 1	Case_A	Case_C			
c.	Opera	ting Cor	nditior	ns						
Operating Pressure	Т	barg	1	52.7	0	57.00	57.00			
Operating Temperature		°C		45.0	0	45.00	45.00			
		Gas								
Gas Flow Rate		MMSC	FD	50		50	41			
Gas Molecular Weight		ka/kmol		23.3	3	23.09	23.22			
Gas Density		ka/m	3	55.4	4	62.19	63.08			
Compressibility Factor		-		0.85	4	0.814	0.807			
Gas Viscosity		cP		0.014	40	0.0139	0.0139			
Determine Gas Density By Gas Law	?	no								
Hydrocarbon Liquid										
HC Liquid Flow Rate		BOP	D	140	1	409	463			
HC Liquid Density		kg/m	3	506.0	00	543.72	530.44			
HC Liquid Viscosity		cP		0.11	1	0.13	0.12			
HC Liquid Surface Tension		dyne/	cm	11.0	0	8.37	7.98			
	Aqu	ueous Li	iquid							
Aqueous Liquid Flow Rate		BWP	D	22.0	0	24.00	19.00			
Aqueous Liquid Density		kg/m	3	994.(00	994.00	994.10			
Aqueous Liquid Viscosity		cP		0.60		0.59	0.59			
Aqueous Liquid Surface Tension		dyne/cm 68.82		2	68.57	68.60				
VE	S SEL	DE <mark>S</mark> IGN (OVERV	/IEW						
	U	Inits	Des	ign_Case	Case_	A Case_C	Max			
Mode	D	esign								
Vessel Orientation	V	ertical								
Separation Type	2-	Phase								
Vessel ID [mm]	1	1200								
Vessel Tan-Tan [mm]	2	2650								
Head Type	EI	liptical								
Body Flange		No								
	Gas	Side Sun	nmary	,						
Vessel K-Value		m/s		0.090	0.081	0.067	0.090			
Gas Velocity		m/s		0.257	0.227	0.183	0.257			
Inlet Section	r	mbar		12.00	10.00	7.00	12.00			
Mesh Agglomerator		nbar		1.00	1.00	1.00	1.00			
Cyclones	r	mbar		44.00	40.00	28.00	44.00			
Demisting # [none]	r	nbar		0.00	0.00	0.00	0.00			
Gas Outlet Nozzle		mbar mbar		5.00	4.00	3.00	5.00			
Gas Outlet d100	m	nicron		23.00	24.00	27.00	27.00			
Total Carryover	n	n3/hr		0.002	0.000	0.000	0.002			
	USG	MMSCF		0.19	0.05	0.02	0.19			
Vessel Separation Efficiency		%		99.98	99.99	100.00	100.00			

Table C.1: IGC 2nd stage scrubber MySEP evaluation

IN	LET PIPING AND	NOZZLES							
	Min. ID	N.B.	Actual I.D.						
	[mm]	[inch]	[mm]						
Inlet Piping	-	10.000	215.800						
Noz	zles								
Inlet	174.32	10.00	243.00						
Gas Outlet	170.48	10.00	243.00						
Liquid Outlet	40.83	2.00	51.00						
	Inlet Pipi	ng							
	Units	Design_Case	Case_A	Case_C	Max				
Max Droplet Size [Predicted]	micron	596.00	471.00	596.00	596.00				
Mist Fraction [Predicted]	%	22.140	13.730	6.390	22.140				
Mist Flow Rate	m³/hr	2.087	0.394	0.204	2.087				
Nozzles									
Inlet Velocity	m/s	6.33	5.55	4.48	6.33				
Inlet Momentum	kg/ms ²	2383	1961	1307	2383				
Gas Outlet Velocity	m/s	6.27	5.53	4.46	6.27				
Gas Outlet Momentum	kg/ms ²	2180	1901	1254	2180				
Liquid Outlet Velocity	m/s	1.28	0.39	0.43	1.28				
	LIQUID-LIQUID	SECTION							
	Units	Design_Case	Case_A	Case_C	Max				
Setp	points and Res	idence Time							
Level	Setpoint [mm]	Time [min]			Volume [m [®]]				
HHLL	800	0.72	2.36	2.13	0.11				
HLL	700	1.44	4.73	4.25	0.23				
NLL	500	1.44	4.73	4.25	0.23				
LLL	300	0.54	1.77	1.59	0.08				
	225	1.62	5.32	4.78	0.25				
	Degassi	ng							
Length	mm	800	800	800	-				

m/s

micron

0.002

35.00

Liquid Velocity

Mixture Degassing d100

Table C.1 (continued): IGC 2nd stage scrubber MySEP evaluation

0.002

35.00

0.001

21.00

0.001

20.00

	GAS-LIQUID S	ECTION									
	Units	Design_Case	Case_A	Case_C	Max						
	Inlet Devi	ce									
Туре	Vane Pack										
Length [mm]	850										
Removal d100 (predicted)	micron	0.00	0.00	0.00	0.00						
Mist Sep. Effic. (Predicted)	%	0.00	0.00	0.00	0.00						
Carryover Rate	m³/h	2.09	0.39	0.20	2.09						
Section Efficiency	%	77.86	86.27	93.61	93.61						
Gravity Separation Section											
Design Liquid Level [mm]	800										
Vessel K-Value	m/s	0.090	0.081	0.067	0.090						
Removal d100 (predicted)	micron	0.000	0.000	0.000	0.000						
Sep. Effic. (Predicted)	%	0.000	0.000	0.000	0.000						
Carryover Rate	m³/h	2.087	0.394	0.204	2.087						
Section Efficiency	%	0.00	0.00	0.00	0.00						
	Agglomera	ator									
Туре	Mesh										
Device Orientation	Horizontal										
Agglomerator Area [m ²]	0.97										
Diameter [mm]	1200										
Thickness [mm]	100										
Drainage Through Area [%]	14										
K-Value	m/s	0.105	0.095	0.078	0.105						
Gas Velocity	m/s	0.299	0.264	0.213	0.299						
Sep. Effic. (Predicted)	%	99.930	99.900	99.930	99.930						
Carryover Rate	m³/h	0.002	0.000	0.000	0.002						
Device Efficiency	%	99.93	99.90	99.93	99.93						
	Demisting Dev	vice # 1									
Туре	Cyclones										
Deck Orientation	Horizontal										
Number of Cyclones	13.00										
Assembly Length [mm]	500										
Cyclone Diameter [mm]	85										
Swirl Angle [°]	40										
Swirl Inside Diameter [mm]	43										
Separation Length [mm]	167										
Gas Flow / Cyclone	m³/h	80.568	70.997	57.267	80.568						
Liquid Flow / Cyclone	m³/h	0.000	0.000	0.000	0.000						
Gas pu²	kg/m ²	862.000	751.000	496.000	862.000						
Removal d100 (predicted)	micron	69.000	71.000	80.000	80.000						
Sep. Effic. (Predicted)	%	2.830	2.780	2.840	2.840						
Carryover Rate	m³/h	0.002	0.000	0.000	0.002						
Device Efficiency	%	2.83	2.78	2.84	2.84						

Table C.1 (continued): IGC 2nd stage scrubber MySEP evaluation

Table C.2: IP separator MySEP evaluation

		INPUT D	ATA					
	Units	Design_	Case	Case_A	Case_B	Case_D	Case_E	Case_F
		Operating Co	ndition	s				
Operating Pressure	barg	7.0	0	7.00	7.00	7.00	7.00	7.00
Operating Temperature	°C	90.0	0	88.71	88.69	88.73	88.73	89.01
		Gas						
Gas Flow Rate	MMSCF	D 8		9	9	10	10	8
Gas Molecular Weight	kg/km	ol 36.4	4	32.94	32.66	33.48	33.24	33.52
Gas Density	kg/m ³	10		9.11	9.03	9.27	9.21	9.29
Compressibility Factor	-	0.96	6	0.963	0.963	0.962	0.962	0.961
Gas Viscosity	сР	0.01	20	0.0125	0.0123	0.0123	0.0122	0.012
Determine Gas Density By Gas Law?	? no							
		Hydrocarbor	n Liquid	I				
HC Liquid Flow Rate	BOPD	11090)92	111381	111399	111745	111741	89353
HC Liquid Density	kg/m ³	822.	10	794.10	793.98	793.40	793.30	787.61
HC Liquid Viscosity	cP	6.3	0	2.22	2.22	2.19	2.19	1.95
HC Liquid Surface Tension	dyne/c	m 19.0	iquid	18.05	18.05	17.95	17.96	17.89
Agueoue Liquid Flow Pate	BW/DD	Aqueous		10219.00	10177.00	10222.00	10272.00	10177.00
Aqueous Liquid Flow Rate	ka/m ³	1061	.00	957.57	957.62	957.60	957.60	957.40
Aqueous Liquid Viscosity	cP	0.4	0	0.32	0.32	0.32	0.32	0.31
Aqueous Liquid Surface Tension	dyne/c	m 64.0	0	60.71	60.73	60.76	60.72	60.67
	VE	SSEL DESIGN	OVERVI	IEW				
	Units	Design_Case	Case_	A Case	_B Case_	D Case_E	Case_F	Max
Mode	Design							
Vessel Orientation	Horizontal							
Separation Type	3-Phase							
Vessel ID [mm]	3600							
Vessel Tan-Tan [mm]	10000							
Weir	Yes							
Split Flow	No							
Weit to Downstream Tan Distance [mm]	1000							
Boot	No							
	-	Gas Side Sur	nmary					
Vessel K-Value	m/s	0.018	0.020	0 0.020	0.024	0.024	0.019	0.024
Inlet Section	mbar	35.00	43.00	0 43.00	48.00	49.00	31.00	49.00
Distribution Baffles	mbar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Agglomerator [None]	mbar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Demisting #2 [None]	mbar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gas Outlet Nozzle	mbar	3.00	4.00	4.00	5.00	5.00	3.00	5.00
I otal Gas Outlet d100	mpar micron	44.00	53.00 36.00	0 54.00	0 63.00	64.00	40.00	64.00 40.00
Total Carryover	m³/hr	0.016	0.035	5 0.038	8 0.065	0.068	0.027	0.068
i otar carryover	USG/MMSCF	13.75	25.87	7 27.18	3 40.75	41.85	21.56	41.85
Vessel Separation Efficiency	%	100.00	100.0	0 100.0	0 99.99	99.99	100.00	100.00
		Liquid Side Su	immary		2 2 4 4 2	2.440	3.000	2.020
Water Removal d100	min micron	3.180	3.150	0 3.150	3.140	3.140 0 122.000	3.920	3.920
Water Residence Time	min	565.92	16.72	2 16.79	9 16.55	16.63	16.79	565.92
Oil Removal d100	micron	3.00	20.00	0 20.00	20.00	20.00	19.00	20.00

Table C.2 (co	ntinued): IP	separator	MySEP	evaluation
---------------	--------------	-----------	-------	------------

	IN	ILET PIPING ANI	NOZZLES									
	Min. ID	N.B.	Actual I.D.									
	[mm]	[inch]	[mm]									
Inlet Piping	-	14.000	333.340									
Nozz	les											
Inlet	396.17	16.00	396.40									
Gas Outlet	144.26	8.00	203.20									
Oil Outlet	361.81	16.00	337.00									
Water Outlet	109.97	6.00	152.40									
Inlet Piping												
	Units	Design_Case	Case_A	Case_B	Case_D	Case_E	Case_F	Max				
Max Droplet Size [Predicted]	micron	1984.00	1699.00	1664.00	1405.00	1384.00	1885.00	1984.00				
Mist Fraction [Predicted]	%	0.140	0.220	0.240	0.490	0.520	0.150	0.520				
Mist Flow Rate	m³/hr	1.015	1.795	1.931	3.944	4.169	0.967	4.169				
		Nozzle	s									
Inlet Velocity	m/s	4.72	5.32	5.38	5.90	5.96	4.68	5.96				
Inlet Momentum	kg/ms ²	6539	7959	8058	8899	8979	5733	8979				
Gas Outlet Velocity	m/s	11.70	13.34	13.59	15.54	15.76	12.17	15.76				
Gas Outlet Momentum	kg/ms ²	1370	1621	1669	2240	2286	1376	2286				
Oil Outlet Velocity	m/s	2.27	2.30	2.30	2.31	2.31	1.84	2.31				
Water Outlet Velocity	m/s	0.03	1.03	1.03	1.04	1.04	1.03	1.04				
LIQUID-LIQUID SECTION												
	Units	Design Case	Case A	Case B	Case D	Case E	Case F	Max				
			_			_	_					
	Set	ooints and Res	idence Tim	е								
	Setpoint	ooints and Res	idence Tim	e				Volume				
Level	Setj Setpoint [mm]	points and Res	idence Tim	e Time [r	nin]			Volume [m [®]]				
Level HHLL HI I	Setpoint [mm] 2600 2320	0.87	0.86	e Time [r 0.86 0.88	nin] 0.86 0.87	0.86	1.07	Volume [m ³] 10.60				
Level HHLL HLL NLL	Setpoint [mm] 2600 2320 2050	0.87 0.89 0.88	0.86 0.88 0.87	e Time [r 0.86 0.88 0.87	nin] 0.86 0.87 0.86	0.86 0.87 0.86	1.07 1.09 1.08	Volume [m ⁸] 10.60 10.79 10.65				
HHLL HHLL HLL NLL LLL	Setpoint [mm] 2600 2320 2050 1790 1530	0.87 0.89 0.88 0.88 0.88 0.88	0.86 0.88 0.87 0.86 0.89	e Time [r 0.86 0.88 0.87 0.86 0.89	nin] 0.86 0.87 0.86 0.86 0.89	0.86 0.87 0.86 0.86 0.89	1.07 1.09 1.08 1.08 1.11	Volume [m ^s] 10.60 10.79 10.65 10.64 10.95				
Level HHLL HLL NLL LLL LLL Top of Weir	Setpoint [mm] 2600 2320 2050 1790 1530 1400	0.87 0.89 0.88 0.88 0.90 345.65	0.86 0.88 0.87 0.86 0.89 10.21	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25	nin] 0.86 0.87 0.86 0.86 0.89 10.11	0.86 0.87 0.86 0.86 0.89 10.16	1.07 1.09 1.08 1.08 1.11 10.25	Volume [m ³] 10.60 10.79 10.65 10.64 10.95 11.52				
Level HHLL HLL NLL LLL LLL Top of Weir HIL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050	0.87 0.89 0.88 0.88 0.90 345.65 138.56 138.56	0.86 0.88 0.87 0.86 0.89 10.21 4.09	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11	nin] 0.86 0.87 0.86 0.86 0.89 10.11 4.05	0.86 0.87 0.86 0.86 0.89 10.16 4.07	1.07 1.09 1.08 1.08 1.11 10.25 4.11 4.11	Volume [m [*]] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 4.62				
Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL LIL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92	0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47	Volume [m³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90				
Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL LLL LLL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99	0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22	Volume [m ³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23				
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassi	idence Tim 0.86 0.88 0.87 0.88 0.89 10.21 4.09 5.08 3.45 8.18 mg	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22	Volume [m³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23				
Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL LIL LIL LLL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000	Volume [m ³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000				
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL LIL LIL LIL LIL LIL LIL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56,000	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56,000	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 9.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000	Volume [m [*]] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000				
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL LIL LIL LIL Degassing d100 Water Degasing d100	Setp Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00	0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 3.45 3.45 3.151 56.000 8.00 eparation	e Time [r 0.86 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL LLL Top of Weir HIL NIL LIL LIL LIL LIL LIL Degassing d100 Water Degasing d100	Setp Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron L 900	0.87 0.89 0.88 0.88 0.90 345.65 138.56 1772.01 116.92 276.99 Degassii 3151 92.000 2.00 2.00	idence Tim 0.86 0.88 0.87 0.88 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL Top of Weir HIL NIL LLL LLL LLL LLL Of User HIL LLL LLL LLL LLL LLL LLL LLL LLL LLL	Setpoint [mm] 2600 2320 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron L 900 3540	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 .iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.88 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL LLL LLL Top of Weir HIL NIL LIL LIL LIL LIL Design 0il-Water Level [mm] Separation Length 0il Layer [mm]	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron 1 900 3540 3151 1	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ³] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL LLL LLL HLL LLL LLL L	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron 900 3540 3151 Yes	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 .iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ³] 10.60 10.79 10.65 11.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL LLL LLL Top of Weir HIL LLL LLL LLL LLL LLL LLL Design 0il-Water Level [mm] Separation Length 0il Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm]	Setpoint [mm] 2600 2320 2050 17790 1530 1400 1050 900 700 550 mm micron micron 3151 Yes 10	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 2.00	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m [*]] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL NLL LLL Top of Weir HIL LLL LLL LLL LLL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*]	Setpoint [mm] 2600 2320 2050 1790 1530 1400 900 700 550 mm micron micron 900 3540 3151 Yes 10 45	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 2.00	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56,000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m [*]] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL LLL LLL Top of Weir HIL LLL LLL LLL LLL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [°] Plate Length [mm]	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 750 mm micron 000 3540 3151 Yes 10 45 1220 2052	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 2.00	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ^s] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL HLL LLL LLL Top of Weir HIL LLL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [°] Plate Length [mm] Top Elevation [mm]	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 750 mm micron micron 900 3540 3151 Yes 10 45 1220 2600 100	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 .iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 mg 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ⁹] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL HLL LLL LLL Top of Weir HIL LLL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron 900 3540 3151 Yes 10 45 1220 2600 100 min	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 2.00 iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 ng 3151 56.000 8.00 eparation	e Time [r 0.86 0.88 0.87 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3.01	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00	1.07 1.09 1.08 1.08 1.11 10.25 4.11 5.10 3.47 8.22 3151.000 47.000 8.00	Volume [m ⁹] 10.60 10.79 10.65 10.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00				
Level HHLL HLL HLL HLL LLL Top of Weir HIL LLL Top of Weir HIL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Velocity	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron 900 3540 3151 Yes 10 45 1220 2600 100 min mix	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 .iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 mg 3151 56.000 8.00 eparation eparation	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00 3.15 0.051	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3.151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00 8.00	1.07 1.09 1.08 1.08 1.11 5.10 3.47 8.22 3151.000 47.000 8.00 3.92 0.041	Volume [m ⁹] 10.60 10.79 10.65 11.62 5.73 3.90 9.23 3151.000 92.000 8.00 8.00				
Level HHLL HLL HLL HLL LLL Top of Weir HL LLL Top of Weir HL LLL LLL LLL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [°] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Removal d100 Oil Paynold of Number	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron 900 3540 3151 Yes 10 45 1220 2600 100 min m/s	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 .iquid -Liquid S 3.18 0.051 170.00 132.00	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 0.89 3.45 8.18 0.89 3.45 8.18 0.80 eparation 3.15 0.051 122.00	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00 8.00 3.15 0.051 123.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3151.000 56.000 8.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00 8.00 3.14 0.051 122.00	1.07 1.09 1.08 1.08 1.11 5.10 3.47 8.22 3151.000 47.000 8.00 3151.000 8.00	Volume [m ⁹] 10.60 10.79 10.65 11.62 5.73 3.90 9.23 3151.000 92.000 8.00 8.00 3151.000 92.000 8.00				
Level HHLL HLL HLL NLL LLL Top of Weir HL NIL LLL LLL LLL NIL LLL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [°] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Residence Time Oil Reynolds Number	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron micron 900 3540 3151 Yes 10 45 1220 2600 100 min m/s micron	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassin 3151 92.000 2.00 .iquid -Liquid S .iquid -Liquid S	idence Tim 0.86 0.88 0.87 0.86 0.89 10.21 4.09 5.08 3.45 8.18 0.89 3.45 8.18 0.89 3.45 8.18 0.80 eparation eparation 3.15 0.051 123.00 367.00 16.72	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00 8.00 3.15 0.051 123.00 36.7.00 16.79	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3151.000 56.000 8.00 3151.000 16.55	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00 8.00 3.14 0.051 122.00 373.00 16.63	1.07 1.09 1.08 1.08 1.11 5.10 3.47 8.22 3151.000 47.000 8.00 3151.000 47.000 8.00	Volume [m ⁹] 10.60 10.79 10.65 11.64 10.95 11.52 5.73 3.90 9.23 3151.000 92.000 8.00 8.00 3151.000 92.000 8.00				
Level HHLL HLL HLL HLL LLL LLL Top of Weir HL NIL LLL LLL LLL LLL Design Oil-Water Level [mm] Design Oil-Water Level [mm] Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Residence Time Water Residence Time Water Residence Time Water Residence Time	Setp [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 550 mm micron 900 3540 3151 Yes 10 45 1220 2600 100 min micron - micron - 100 min micron -	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 .iquid -Liquid S 3.18 0.051 170.00 132.00 565.92 0.000	idence Tim 0.86 0.88 0.87 0.89 10.21 4.09 5.08 3.45 8.18 0.9 3.151 56.000 8.00 eparation eparation 3.15 0.051 123.00 367.00 16.72 0.009	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00 3.15 0.051 123.00 36.7 0.051 123.00 36.7 0.009	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3151.000 56.000 8.00 3151.000 56.000 8.00 3151.000 56.000 8.00 3151.000 56.000 8.00 3.14 0.051 122.00 373.00 16.55 0.010	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00 8.00 3.14 0.051 122.00 373.00 16.63 0.009	1.07 1.09 1.08 1.08 1.11 5.10 3.47 8.22 3151.000 47.000 8.00 3.92 0.041 101.00 33.00 16.79 0.009	Volume [m ⁹] 10.60 10.79 10.65 11.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00 3151.000 92.000 8.00 3151.000 92.000 8.00				
Level HHLL HLL HLL HLL HLL ILL HLL LLL LLL LL	Setpoint [mm] 2600 2320 2050 1790 1530 1400 1050 900 700 550 mm micron 900 3540 3151 Yes 10 45 1220 2600 100 micron - min m/s micron	0.87 0.89 0.88 0.88 0.90 345.65 138.56 172.01 116.92 276.99 Degassii 3151 92.000 2.00 .iquid -Liquid S 3.18 0.051 170.00 132.00 565.92 0.000 3.00	idence Tim 0.86 0.88 0.87 0.89 10.21 4.09 5.08 3.45 8.18 0.87 3.15 0.000 8.00 eparation 3.15 0.051 123.00 367.00 16.72 0.009 20.00 573.00	e Time [r 0.86 0.88 0.87 0.86 0.89 10.25 4.11 5.10 3.47 8.22 3151 56.000 8.00 3.15 0.051 123.00 367.00 16.79 0.009 20.00 570.00	nin] 0.86 0.87 0.86 0.89 10.11 4.05 5.03 3.42 8.10 3151.000 56.000 8.00 3151.000 56.000 8.00 3151.000 56.000 8.00 3.14 0.051 122.00 373.00 16.55 0.010 20.00 579.00	0.86 0.87 0.86 0.89 10.16 4.07 5.05 3.44 8.14 3151.000 56.000 8.00 8.00 3.14 0.051 122.00 373.00 16.63 0.009 20.00 575.00	1.07 1.09 1.08 1.08 1.11 3.47 8.22 3151.000 47.000 8.00 3151.000 47.000 8.00 3.92 0.041 101.00 333.00 16.79 0.009 19.00 572.00	Volume [m ⁹] 10.60 10.79 10.65 11.64 10.95 11.52 4.62 5.73 3.90 9.23 3151.000 92.000 8.00 3151.000 92.000 8.00 3151.000 92.000 8.00 3.92 0.051 170.00 565.92 0.010 20.00 579.00				

Table C.2 (continued): IP separator MySEP evaluation

		GAS-LIQUID S	ECTION							
	Units	Design_Case	Case_A	Case_B	Case_D	Case_E	Case_F	Max		
		Inlet Devi	ce							
Туре	Inlet Cyclones									
Number of Tubes	2									
Tube ID [mm]	450									
Vortex Finder ID [mm]	318									
Swirl Angle [°]	45									
Separation Length [mm]	225									
Assembly Length [mm]	950									
Bottom Elevation [mm]	765									
Removal d100 [Predicted]	micron	157	153	150	140.0	139.0	157.0	157.0		
Mist Sep. Effic. [Predicted]	%	98.75	98.22	98.21	97.65	97.61	98.55	98.75		
Section Sep. Effic. [User Defined]	%	99.00	99.00	99.00	99.00	99.00	98.55	99.00		
Carryover Rate	m³/hr	7.31	8.06	8.05	8.09	8.08	9.56	9.56		
Section Efficiency	%	99.00	99.00	99.00	99.00	99.00	98.55	99.00		
Gravity Separation Section										
Design Liquid Level [mm]	2600									
Gas-Liquid Separation Length [mm]	5000									
Vapour Space Height [mm]	1000									
Vessel K-Value	m/s	0.018	0.020	0.020	0.024	0.024	0.019	0.024		
Removal d100 [Predicted]	micron	32.000	36.000	36.000	39.000	39.000	33.000	39.000		
Sep. Efficiency [Predicted]	%	99.70	99.34	99.28	98.51	98.41	99.61	99.70		
Carryover Rate	m³/hr	0.022	0.053	0.058	0.121	0.129	0.038	0.129		
Section Efficiency	%	99.70	99.34	99.28	98.51	98.41	99.61	99.70		
		Demisting De	vice # 1							
Туре	Vane Pack									
Deck Orientation	Vertical									
Max Allowable K-Value [m/s]	0.208									
Vane Pack Area [m ²]	0.152									
Bottom Elevation [mm]	3265									
Assembly Length [mm]	750									
Vane Spacing [mm]	20									
Bend Angle [°]	60									
K-Value	m/s	0.277	0.307	0.311	0.361	0.364	0.284	0.364		
Gas Velocity	m/s	2.497	2.846	2.900	3.316	3.362	2.597	3.362		
Gas ρν²	kg/m ²	62.00	74.00	76.00	102.00	104.00	63.00	104.00		
Removal d100 [Predicted]	micron	46.00	44.00	44.00	41.00	40.00	46.00	46.00		
Sep. Efficiency [Predicted]	%	26.37	33.94	35.28	46.23	47.56	28.36	47.56		
Carryover Rate	m³/hr	0.016	0.035	0.038	0.065	0.068	0.027	0.068		
Device Efficiency	%	26.37	33.94	35.28	46.23	47.56	28.36	47.56		

			INPUT I	DATA						
	Units		Design_Ca	se 1	Design_C	ase 2	Case_A	Case_B	Case_D	Case_E
			Operating C	ondit	ions					
Operating Pressure	barg		1.00		1.00		1.00	1.00	1.00	1.00
Operating Temperature	°C		82.00		85.00)	82.53	82.50	82.24	82.24
			Gas	;						
Gas Flow Rate	MMSCF	D	7		5		8	8	9	9
Gas Molecular Weight	ka/kma	-	44.51		42.11		45.51	45.46	45.81	45.76
Gae Density	ko/m ³		3.1		29		3.17	3.16	3.19	3 10
Compressibility Faster	Ky/III	_	0.070		2.3	,	0.070	0.079	0.079	0.079
Compressibility Factor	-	- 0.979			0.902	2	0.979	0.970	0.970	0.970
Gas Viscosity	СР		0.0100		0.01		0.0098	0.0120	0.0098	0.0098
Determine Gas Density By Gas Law?	, uo									
			Hydrocarbo	on Liq	uid					
HC Liquid Flow Rate	BOPD		106016		10582	0	106334	106334	106409	106406
HC Liquid Density	kg/m ³		834.70		828.8	9	807.90	807.90	807.88	807.87
HC Liquid Viscosity	сР		7.40		6.90		3.02	3.02	3.02	3.02
HC Liquid Surface Tension	dyne/cr	n	21.30		20.70)	20.08	20.08	20.07	20.07
			Aqueous	Liqui	d					
Aqueous Liquid Flow Rate	BWPD		10416.00)	15938.	00	15977.00	15978.00	15982.00	15982.00
Aqueous Liquid Density	kg/m ³		1065.20		1065.2	20	962.44	962.45	962.66	962.66
Aqueous Liquid Viscosity	cP		0.40		0.40		0.34	0.34	0.34	0.34
Aqueous Liquid Surface Tension	dyne/cr	n	66.00		66.00)	61.87	61.88	61.93	61.92
		VE	ESSEL DESIG		RVIEW					
	Units	Des	sign_Case 1	Desi	gn_Case 2	Case_	A Case_l	B Case_D	Case_E	Мах
Mode	Design									
Vessel Orientation	Horizontal									
Separation Type	3_Phase									
Vessel ID [mm]	3600									
Vessel Tan Tan [mm]	12000									
Head Type	Elliptical									
Weir	Yes									
Split Flow	No									
Weit to Downstream Tan Distance [mm]	1500									
Weit to Downstream Tan Distance [mm] Boot	1500 No									
Weit to Downstream Tan Distance [mm] Boot	1500 No		Gas Side Si	umma	iry					
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value	1500 No m/s		Gas Side Si	umma	0.027	0.045	0.045	0.047	0.047	0.047
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity	1500 No m/s m/s		Gas Side St 0.036 0.593	umma	1ry 0.027 0.460	0.045	0.045	0.047	0.047	0.047
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section	1500 No m/s m/s mbar		Gas Side Si 0.036 0.593 3.00	umma	0.027 0.460 3.00	0.045 0.711 4.00	0.045 0.711 4.00	0.047 0.745 4.00	0.047 0.743 4.00	0.047 0.745 4.00
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles	1500 No m/s m/s mbar mbar		Gas Side So 0.036 0.593 3.00 0.00 0.00	umma	0.027 0.460 3.00 0.00	0.045 0.711 4.00 0.00	0.045 0.711 4.00 0.00	0.047 0.745 4.00 0.00	0.047 0.743 4.00 0.00	0.047 0.745 4.00 0.00
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack	1500 No m/s mbar mbar mbar mbar mbar		Gas Side Si 0.036 0.593 3.00 0.00 0.00 6.00	umma	ry 0.027 0.460 3.00 0.00 4.00	0.045 0.711 4.00 0.00 9.00	0 0.045 0.711 4.00 0.00 9.00	0.047 0.745 4.00 0.00 0.00 10.00	0.047 0.743 4.00 0.00 10.00	0.047 0.745 4.00 0.00 10.00
Weit to Downstream Tan Distance [mm] Boot Uessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack Demisting #2 [None]	1500 No m/s mbar mbar mbar mbar mbar		Gas Side St 0.036 0.593 3.00 0.00 0.00 6.00 0.00	umma	ry 0.027 0.460 3.00 0.00 0.00 4.00 0.00	0.045 0.711 4.00 0.00 0.00 9.00 0.00	0.045 0.711 4.00 0.00 9.00 9.00 0.00	0.047 0.745 4.00 0.00 0.00 10.00 0.00	0.047 0.743 4.00 0.00 0.00 10.00 0.00	0.047 0.745 4.00 0.00 0.00 10.00
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack Demisting #2 [None] Gas Outlet Nozzle	1500 No m/s mbar mbar mbar mbar mbar mbar mbar		Gas Side St 0.036 0.593 3.00 0.00 0.00 6.00 0.00 2.00 2.00	umma	ry 0.027 0.460 3.00 0.00 4.00 0.00 1.00 1.00	0.045 0.711 4.00 0.00 9.00 0.00 1.000	0.045 0.711 4.00 0.00 9.00 0.00 1.00	0.047 0.745 4.00 0.00 10.00 10.00 0.00 3.00	0.047 0.743 4.00 0.00 10.00 10.00 3.00 47.00	0.047 0.745 4.00 0.00 10.00 10.00
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack Demisting #2 [None] Gas Outlet Nozzle Total Gas Outlet d100	1500 No m/s mbar mbar mbar mbar mbar mbar mbar mbar		Gas Side S 0.036 0.593 3.00 0.00 0.00 6.00 0.00 2.00 11.00 31.00	umma	ry 0.027 0.460 3.00 0.00 0.00 4.00 0.00 1.00 7.00 35.00	0.045 0.711 4.00 0.00 9.00 0.00 1.00 16.00 28.00	0.045 0.711 4.00 0.00 9.00 9.00 0.00 1.00 16.00 31.00	0.047 0.745 4.00 0.00 0.00 10.00 0.00 3.00 17.00 27.00	0.047 0.743 4.00 0.00 10.00 10.00 0.00 3.00 17.00 28.00	0.047 0.745 4.00 0.00 10.00 10.00 3.00 17.00 35.00
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack Demisting #2 [None] Gas Outlet Nozzle Total Gas Outlet d100	1500 No m/s mbar mbar mbar mbar mbar mbar mbar mbar		Gas Side Side 0.036 0.593 3.00 0.00 0.00 0.00 0.00 2.00 11.00 31.00 0.001 1	umma	0.027 0.460 3.00 0.00 4.00 1.00 7.00 35.00 0.000	0.045 0.711 4.00 0.00 9.00 0.00 1.00 1.00 28.00 0.004	0.045 0.711 4.00 0.00 9.00 9.00 0.00 1.00 16.00 31.00 0.005	0.047 0.745 4.00 0.00 0.00 10.00 0.00 3.00 17.00 27.00 0.005	0.047 0.743 4.00 0.00 10.00 10.00 0.00 3.00 17.00 28.00 0.005	0.047 0.745 4.00 0.00 10.00 3.00 17.00 35.00 0.005
Weit to Downstream Tan Distance [mm] Boot Vessel K-Value Gas Velocity Inlet Section Distribution Baffles Agglomerator [None] Vane Pack Demisting #2 [None] Gas Outlet Nozzle Total Gas Outlet d100 Total Carryover	1500 No m/s mbar mbar mbar mbar mbar mbar mbar mbar		Gas Side Side 0.036 0.593 3.00 0.00 0.00 0.00 0.00 0.00 2.00 11.00 31.00 0.001 0.001 0.62	umma	ry 0.027 0.460 3.00 0.00 0.00 4.00 0.00 1.00 7.00 35.00 0.000 0.09	0.045 0.711 4.00 0.00 9.00 0.00 1.00 16.00 28.00 0.004 2.81	0.045 0.711 4.00 0.00 9.00 0.00 1.00 16.00 31.00 0.005 4.08	0.047 0.745 4.00 0.00 10.00 0.00 3.00 17.00 27.00 0.005 3.94	0.047 0.743 4.00 0.00 0.00 10.00 0.00 3.00 17.00 28.00 0.005 3.85	0.047 0.745 4.00 0.00 10.00 3.00 17.00 35.00 0.005 4.08

Table C.3: LP separator MySEP evaluation

USG/MMSCF	0.62	0.09	2.81	4.08	3.94	3.85	4.08					
%	100.00	100.00	100.00	100.00	100.00	100.00	100.00					
Liquid Side Summary												
min	3.990	4.000	3.980	3.980	3.970	3.970	4.000					
micron	198.000	189.000	156.000	156.000	156.000	156.000	198.000					
min	19.00	12.42	12.39	12.39	12.38	12.38	19.00					
micron	21.00	26.00	29.00	29.00	29.00	29.00	29.00					
	USG/MMSCF % min micron min micron	USG/MMSCF 0.62 % 100.00 Liquid Side min 3.990 micron 198.000 min 19.00 micron 21.00	USG/MMSCF 0.62 0.09 % 100.00 100.00 Liquid Side Summary min 3.990 4.000 micron 198.000 189.000 min 19.00 12.42 micron 21.00 26.00	USG/MMSCF 0.62 0.09 2.81 % 100.00 100.00 100.00 Liquid Side Summary Summary 3.980 4.000 3.980 micron 198.000 189.000 156.000 156.000 min 19.00 12.42 12.39 micron 21.00 26.00 29.00	USG/MMSCF 0.62 0.09 2.81 4.08 % 100.00 100.00 100.00 100.00 Liquid Side Summary min 3.990 4.000 3.980 3.980 micron 198.000 189.000 156.000 156.000 min 19.00 12.42 12.39 12.39 micron 21.00 26.00 29.00 29.00	USG/MMSCF 0.62 0.09 2.81 4.08 3.94 % 100.00 100.00 100.00 100.00 100.00 Liquid Side Summary min 3.990 4.000 3.980 3.980 3.970 micron 198.000 189.000 156.000 156.000 156.000 min 19.00 2.42 12.39 12.38 12.38 micron 21.00 26.00 29.00 29.00 29.00	USG/MMSCF 0.62 0.09 2.81 4.08 3.94 3.85 % 100.00 100.00 100.00 100.00 100.00 100.00 Liquid Side Summary min 3.990 4.000 3.980 3.980 3.970 3.970 micron 198.000 189.000 156.000 156.000 156.000 156.000 156.000 min 19.00 12.42 12.39 12.38 12.38 12.38 micron 21.00 26.00 29.00 29.00 29.00 29.00					

Table C.3 (continued): LP separator MySEP evaluation

		INLET PIPING A	ND NOZZLES								
	Min. ID	N.B.	Actual I.D.								
	[mm]	[inch]	[mm]								
Inlet Piping	-	18.000	434.740								
	Nozzles										
Inlet	881.97	36.00	914.40								
Gas Outlet	203	14.00	337.00								
Oil Outlet	353.06	14.00	337.00								
Water Outlet	136.83	6.00	154.00								
		Inlet P	iping								
	Units	Design_Case 1	Design_Case 2	Case_A	Case_B	Case_D	Case_E	Max			
Max Droplet Size [Predicted]	micron	1206.00	1631.00	944.00	944.00	891.00	894.00	1631.00			
Mist Fraction [Predicted]	%	0.480	0.140	1.200	1.200	1.540	1.520	1.540			
Mist Flow Rate	m³/hr	3.701	1.168	9.759	9.740	12.476	12.303	12.476			
		Nozz	les								
Inlet Velocity	m/s	2.41	1.96	2.84	2.84	2.96	2.95	2.96			
Inlet Momentum	kg/ms ²	688	584	829	829	866	864	866			
Gas Outlet Velocity	m/s	15.33	11.91	18.40	18.40	19.27	19.23	19.27			
Gas Outlet Momentum	kg/ms ²	729	411	10/2	10/1	1185	11/8	1185			
Water Outlet Velocity	m/s	2.19	2.10	2.19	2.19	2.20	2.20	2.20			
water Outlet Velocity	10/5	1.05	1.57	1.50	1.50	1.00	1.00	1.50			
LIQUID-LIQUID SECTION											
	Units	Design_Case 1	Design_Case 2	Case_A	Case_B	Case_D	Case_E	Max			
		Setpoints and Re	sidence Time								
Level	Setpoint [mm]		Ті	me [min]				Volume [m ³]			
Level	Setpoint [mm] 2600	0.95	Ti 0.95	me [min] 0.94	0.94	0.94	0.94	Volume [m ^s] 11.09			
Level HHLL HLL	Setpoint [mm] 2600 2350	0.95	0.95 1.00	me [min]	0.94	0.94	0.94	Volume [m ^s] 11.09 11.68			
Level HHLL HLL NLL LLL	Setpoint [mm] 2600 2350 2100 1875	0.95 1.00 0.92 0.93	Ti 0.95 1.00 0.92 0.93	me [min] 0.94 1.00 0.92 0.92	0.94 1.00 0.92 0.92	0.94 0.99 0.92 0.92	0.94 0.99 0.92 0.92	Volume [m ³] 11.09 11.68 10.79 10.85			
Level HHLL HLL NLL LLL	Setpoint [mm] 2600 2350 2100 1875 1650	0.95 1.00 0.92 0.93 1.66	0.95 1.00 0.92 0.93 1.66	me [min] 0.94 1.00 0.92 0.92 1.66	0.94 1.00 0.92 0.92 1.66	0.94 0.99 0.92 0.92 1.66	0.94 0.99 0.92 0.92 1.66	Volume [m ⁸] 11.09 11.68 10.79 10.85 19.45			
Level HHLL HLL NLL LLL LLL Top of Weir HII	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050	0.95 1.00 0.92 0.93 1.66 11.57 4.64	0.95 1.00 0.92 0.93 1.66 7.56 3.03	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03	0.94 1.00 0.92 0.92 1.66 7.54 3.03	0.94 0.99 0.92 0.92 1.66 7.54 3.03	0.94 0.99 0.92 0.92 1.66 7.54 3.03	Volume [m ³] 11.09 11.68 10.79 10.85 19.45 13.31 5.34			
Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77	0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77	me [min] 0.94 1.00 0.92 1.66 7.55 3.03 3.76	0.94 1.00 0.92 1.66 7.54 3.03 3.76	0.94 0.99 0.92 1.66 7.54 3.03 3.76	0.94 0.99 0.92 1.66 7.54 3.03 3.76	Volume [m ³] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63			
Level HHLL HLL LLL LLL Top of Weir HIL NIL LLL	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92	0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56	me [min] 0.94 1.00 0.92 1.66 7.55 3.03 3.76 2.56	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56	Volume [m ³] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07	Volume [m ^e] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL LIL	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000			
Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL LIL LIL LIL LIL Coll Degassing d100 Water Degassing d100	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1055 900 700 550 mm micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 7391.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 7391.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL LLL LLL Top of Weir HIL NIL LIL LLL LLL COID Degassing d100 Water Degasing d100	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ^s] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL LLL LLL Coll Degassing d100 Water Degasing d100 Design Oil-Water Level [mm]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron 900	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL HLL LLL LLL Top of Weir HIL NIL LIL LLL LLL OID Degassing d100 Water Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron 900 7391	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LIL LIL LIL Constant MIL LIL Design d100 Water Degasing d100 Water Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron 900 7391 7391	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL TOP of Weir HIL LLL LLL LLL LLL DESIGN OF WEIR HIL OII Degassing d100 Water Degasing d100 Water Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 Yes	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL HLL HLL LLL LLL Top of Weir HIL NIL LLL Of the tempth Oil Degassing d100 Uater Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 Yes 10	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL CLLL Of Degassing d100 Water Degasing d100 Water Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*]	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 7391 Yes 10 45	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL HLL HLL LLL LLL LLL LLL LLL L	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron 900 7391 Yes 10 45 1000	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL LLL CLLL LLL CLLL LLL LLL CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC CLLLC C	Setpoint [mm] 2600 2350 2100 1875 1650 14400 1050 900 700 550 mm micron micron 900 7391 Yes 10 45 1000 2600	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL NLL LLL LLL Top of Weir HIL Top of Weir HIL LLL LLL Constant of the second secon	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 7391 Yes 10 45 1000 2600 100	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL HLL NLL LLL Top of Weir HIL Top of Weir HIL LLL LLL LLL LLL LLL LLL LLIL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 7391 Yes 10 45 1000 2600 100	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 6.07 7391 68.000 12.00 12.00	0.94 1.00 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 3.98 0.047	0.94 0.99 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00	Volume [m ⁹] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00			
Level HHLL HLL HLL HLL HLL LLL LLL LLL Top of Weir HIL Ittl Ittl Ittl Ittl Ittl Ittl Ittl It	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron 900 7391 7391 Yes 10 45 1000 2600 100 min m/s	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047 198.00	Ti 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation 4.00 0.047 189.00	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00 12.00 3.98 0.047 156.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 12.00 3.98 0.047 156.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	Volume [m ^a] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00 12.00			
Level HHLL HLL NLL LLL Top of Weir HIL Top of Weir HIL LLL LLL Constant of Weir HIL NIL LLL LLL LLIL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Removal d100 Oil Reynolds Number	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 7391 7391 Yes 10 45 1000 2600 100 min m/s micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047 198.00 105.00	A A	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 6.07 7391 68.000 12.00 12.00 3.98 0.047 156.00 251.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 12.00 3.98 0.047 156.00 251.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	Volume [m ^a] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00 12.00 4.00 0.047 198.00 251.00			
Level HHLL HLL HLL NLL LLL Top of Weir HIL Top of Weir HIL LLL LLL Constant of Weir HIL NIL LLL LLIL Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Removal d100 Oil Reynolds Number Water Residence Time	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 7391 Yes 10 45 1000 2600 min m/s micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047 198.00 105.00 19.00	A A	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00 12.00 3.98 0.047 156.00 251.00 12.39	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00 3.98 0.047 156.00 251.00 12.39	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 6.07 7391.000 68.000 12.00 12.00 3.97 0.047 156.00 251.00 12.38	Volume [m ^a] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00 12.00 12.00 4.00 0.047 198.00 251.00 19.00			
Level HHLL HLL NLL LLL Top of Weir HIL Top of Weir HIL NIL LLL LLL Constant of Weir HIL NIL LLL LLL Design 0il-Water Level [mm] Separation Length 0il Layer [mm] Separation Length Oil Layer [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Removal d100 Oil Removal d100	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 Yes 10 45 1000 2600 100 micron - micron - micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047 198.00 105.00 19.00 21.00	A Constraint 0.95 1.00 0.92 0.93 1.66 7.56 3.03 3.77 2.56 6.09 sing 7391 101.000 12.00 Separation 4.00 4.00 0.047 189.00 112.00 12.42 0.015 26.00 115	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00 12.00 3.98 0.047 156.00 251.00 12.39 0.015 29.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 12.00 3.98 0.047 156.00 251.00 12.39 0.015 29.00	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 12.00 3.97 0.047 156.00 251.00 12.38 0.015 29.00	Volume [m ^a] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00 12.00 12.00 4.00 0.047 198.00 251.00 19.00 0.015 29.00			
Level HHLL HLL NLL LLL Top of Weir HIL Top of Weir HIL LLL LLL LLL OII Degassing d100 Water Degasing d100 Water Degasing d100 Water Degasing d100 Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Plate Spacing [mm] Plate Angle [*] Plate Angle [*] Plate Length [mm] Top Elevation [mm] Open Area [%] Oil Residence Time Oil Velocity Water Removal d100 Oil Removal d100 Water Reynolds Number	Setpoint [mm] 2600 2350 2100 1875 1650 1400 1050 900 700 550 mm micron micron 900 7391 Yes 10 45 1000 2600 100 micron - micron	0.95 1.00 0.92 0.93 1.66 11.57 4.64 5.77 3.92 9.31 Degas 7391 104.000 10.00 Liquid -Liquid 3.99 0.047 198.00 105.00 19.00 0.010 21.00 513.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 12.42 0.015 26.00 785.00	me [min] 0.94 1.00 0.92 0.92 1.66 7.55 3.03 3.76 2.56 6.07 7391 68.000 12.00 12.00 3.98 0.047 156.00 251.00 12.39 0.015 29.00 836.00	0.94 1.00 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 12.00 3.98 0.047 156.00 251.00 251.00 12.39 0.015 29.00 836.00	0.94 0.99 0.92 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 7391.000 68.000 12.00 3.97 0.047 156.00 251.00 251.00 12.38 0.015 29.00 834.00	0.94 0.99 0.92 1.66 7.54 3.03 3.76 2.56 6.07 7391.000 68.000 12.00 68.000 12.00 12.00 3.97 0.047 156.00 251.00 251.00 251.00 251.00 834.00	Volume [m ^a] 11.09 11.68 10.79 10.85 19.45 13.31 5.34 6.63 4.51 10.71 7391.000 104.000 12.00 12.00 12.00 4.00 0.047 198.00 251.00 19.00 0.015 29.00 836.00			

Table C.3 (continued): LP separator MySEP evaluati	on
--	----

		GAS-LIQUID	SECTION								
	Units	Design_Case 1	Design_Case 2	Case_A	Case_B	Case_D	Case_E	Max			
		Inlet De	evice								
Туре	None										
Removal d100 [Predicted]	micron	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Mist Sep. Effic. [Predicted]	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Carryover Rate	m³/hr	3.70	1.17	9.76	9.74	12.48	12.30	12.48			
Section Efficiency	%	99.52	99.86	98.80	98.80	98.46	98.48	99.86			
Gravity Separation Section											
Design Liquid Level [mm]	2600										
Gas-Liquid Separation Length [mm]	8217										
Vapour Space Height [mm]	1000										
Vessel K-Value	m/s	0.036	0.027	0.045	0.045	0.047	0.047	0.047			
Removal d100 [Predicted]	micron	43.000	37.000	49.000	54.000	50.000	50.000	54.000			
Sep. Efficiency [Predicted]	%	99.91	99.98	99.68	99.57	99.58	99.59	99.98			
Carryover Rate	m³/hr	0.003	0.000	0.031	0.042	0.052	0.051	0.052			
Section Efficiency	%	99.91	99.98	99.68	99.57	99.58	99.59	99.98			
		Demisting I	Device # 1								
Туре	Vane Pack										
Deck Orientation	Vertical										
Max Allowable K-Value [m/s]	0.212										
Vane Pack Area [m ²]	0.3										
Bottom Elevation [mm]	3217										
Assembly Length [mm]	250										
Vane Spacing [mm]	20										
Bend Angle [°]	60										
K-Value	m/s	0.278	0.210	0.343	0.343	0.361	0.360	0.361			
Gas Velocity	m/s	4.559	3.541	5.471	5.470	5.730	5.716	5.730			
Gas ρν ²	kg/m ²	64.00	36.00	95.00	95.00	105.00	104.00	105.00			
Removal d100 [Predicted]	micron	31.00	35.00	28.00	31.00	27.00	28.00	35.00			
Sep. Efficiency [Predicted]	%	80.44	58.36	88.35	87.43	89.76	89.71	89.76			
Carryover Rate	m³/hr	0.001	0.000	0.004	0.005	0.005	0.005	0.005			
Device Efficiency	%	80.44	58.36	88.35	87.43	89.76	89.71	89.76			

	INFOLDATA			
	Units	Design_Case 1	Case_C	Case_F
Ot	perating Condit	tions		
Operating Pressure	barg	19.00	7.00	7.00
Operating Temperature	°C	62.00	5.00	5.00
	Gas			
Gas Flow Rate	MMSCFD	29	18	18
Gas Molecular Weight	kg/kmol	21.1	20.84	20.82
Gas Density	kg/m ³	15.9	7.46	7.45
Compressibility Factor	-	0.953	0.969	0.969
Gas Viscosity	сР	0.0130	0.01	0.01
Determine Gas Density By Gas Law?	no			
н	ydrocarbon Lie	quid		
HC Liquid Flow Rate	BOPD	26097	20356	20342
HC Liquid Density	kg/m ³	859.70	882.70	882.88
HC Liquid Viscosity	сР	24.00	17.95	18.03
HC Liquid Surface Tension	dyne/cm	22.00	23.97	23.99
	Aqueous Liqu	id		
Aqueous Liquid Flow Rate	BWPD	0.00	13345.00	13345.00
Aqueous Liquid Density	kg/m ³	1028.00	1023.00	1022.59
Aqueous Liquid Viscosity	сР	0.50	1.50	1.50
Aqueous Liquid Surface Tension	dyne/cm	68.10	75.51	75.51

VESSEL DESIGN OVERVIEW													
	Units	Design_Case 1	Case_C	Case_F	Max								
Mode	Design												
Vessel Orientation	Horizontal												
Separation Type	3-Phase												
Vessel ID [mm]	3600												
Vessel Tan-Tan [mm]	6000												
Head Type	Elliptical												
Weir	Yes												
Split Flow	No												
Weit to Downstream Tan Distance [mm]	1000												
Boot	No												
	Gas Side S	Summary											
Vessel K-Value	m/s	0.038	0.033	0.033	0.038								
Gas Velocity	m/s	0.277	0.355	0.355	0.355								
Inlet Section	mbar	2.00	4.00	4.00	4.00								
Distribution Baffles	mbar	0.00	0.00	0.00	0.00								
Agglomerator [None]	mbar	0.00	0.00	0.00	0.00								
Vane Pack	mbar	2.00	1.00	1.00	2.00								
Demisting #2 [None]	mbar	0.00	0.00	0.00	0.00								
Gas Outlet Nozzle	mbar	1.00	0.00	0.00	1.00								
Total	mbar	4.00	5.00	5.00	5.00								
Gas Outlet d100	micron	53.00	51.00	51.00	53.00								
Total Carpiovar	m³/hr	0.000	0.000	0.000	0.000								
Total Carryover	USG/MMSCF	0.00	0.00	0.00	0.00								
Vessel Separation Efficiency	%	100.00	100.00	100.00	100.00								
	Liquid Side	Summary											
Oil Residence Time	min	4.110	5.270	5.270	5.270								
Water Removal d100	micron	1568.000	1307.000	1312.000	1568.000								
Water Residence Time	min	0.00	4.58	4.58	4.58								
Oil Removal d100	micron	0.00	495.00	495.00	495.00								

	INLET PIPING	AND NOZZLES			
	Min. ID	N.B.	Actual I.D.		
	[mm]	[inch]	[mm]		
Inlet Piping	-	24.000	590.000		
No	ozzles				
Inlet	525.62	24.00	570.00		
Gas Outlet	168.8	16.00	406.40		
Oil Outlet	174.85	6.00	154.18		
Water Outlet	125.03	6.00	152.40		
	Inlet P	iping			
	Units	Design_Case 1	Case_C	Case_F	Max
Max Droplet Size [Predicted]	micron	2000.00	2000.00	2000.00	2000.00
Mist Fraction [Predicted]	%	0.010	0.010	0.010	0.010
Mist Flow Rate	m³/hr	0.014	0.016	0.017	0.017
	Nozz	les			
Inlet Velocity	m/s	2.27	2.91	2.92	2.92
Inlet Momentum	kg/ms ²	443	722	723	723
Gas Outlet Velocity	m/s	4.10	5.25	5.26	5.26
Gas Outlet Momentum	kg/ms ²	268	206	206	268
Oil Outlet Velocity	m/s	2.57	2.01	2.00	2.57
Water Outlet Velocity	m/s	0.00	1.35	1.35	1.35
	LIQUID-LIQU	ID SECTION			
	Units	Design_Case 1	Case_C	Case_F	Max
S	etpoints and R	esidence Time			
S Level	etpoints and R Setpoint [mm]	esidence Time T	[ime [min]		Volume [m [®]]
Se Level	etpoints and R Setpoint [mm] 2050	esidence Time	[ime [min]	1.81	Volume [m [*]] 4.07
S Level HHLL HLL NLL	etpoints and R Setpoint [mm] 2050 1850 1450	1.41 2.96 1.48	[ime [min] 1.81 3.80 1.90	1.81 3.80 1.90	Volume [m [*]] 4.07 8.53 4.28
Level HHLL HLL NLL LLL	etpoints and R Setpoint [mm] 2050 1850 1450 1250	1.41 1.41 2.96 1.48 0.89	Fime [min] 1.81 3.80 1.90 1.14	1.81 3.80 1.90 1.14	Volume [m ⁸] 4.07 8.53 4.28 2.56
Level HHLL HLL NLL LLL Top of Weir	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150	1.41 1.41 2.96 1.48 0.89 1.11 0.00	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68	1.81 3.80 1.90 1.14 1.43 2.68	Volume [m ⁸] 4.07 8.53 4.28 2.56 3.20 3.95
SI Level HHLL HLL NLL LLL LLL Top of Weir HIL	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900	1.41 2.96 1.48 0.89 1.11 0.00 0.00	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99	1.81 3.80 1.90 1.14 1.43 2.68 1.99	Volume [m ⁸] 4.07 8.53 4.28 2.56 3.20 3.95 2.93
Si Level HHLL HLL NLL LLL LLL Top of Weir HIL NIL	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62
S Level HHLL HLL HLL LLL LLL Top of Weir HIL NIL LLL LLL LLL ILL ILL ILL ILL ILL I	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66	Volume [m [°]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44
S Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL LLL LLL LLL LLL LLL LLL	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1050 1150 900 700 500 350 Degas	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44
Sa Level HHLL HLL NLL LLL Top of Weir HIL NIL LLL LLL LLL LLL	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm	esidence Time 1.41 2.96 1.48 0.89 1.11 0.00 0.0	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000
Si Level	etpoints and R Setpoint [mm] 2050 1850 1450 1450 1050 1050 1150 900 700 500 350 Degas mm micron	esidence Time 1.41 2.96 1.48 0.89 1.11 0.00 0.0	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000
S Level HHLL HLL HLL LLL Top of Weir HIL NIL LLL LLL CLL LLL LLL LLL L	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron	esidence Time 1.41 2.96 1.48 0.89 1.11 0.00 0.0	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m ³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Second Se	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid	esidence Time 1.41 2.96 1.48 0.89 1.11 0.00 0.0	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Second Se	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sing 1525 793.000 0.00 1 Separation	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m ³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Separation Length Oil Layer [mm]	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sing 1525 793.000 0.00 d Separation	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m ³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Separation Length Oil Layer [mm]	etpoints and R Setpoint [mm] 2050 1850 1450 1050 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1525 793.000 0.00 1 Separation	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Separation Length Oil Layer [mm] Design Oil-Water Level [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Oil Pasidence Time	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 d Separation	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m*] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00
Separation Length Oil Layer [mm] Design Oil-Water Level [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Oil Velocity	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No min m/s	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sing 1525 793.000 0.00 d Separation 4.11 0.023	Time [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00 5.27 0.018	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00	Volume [m [*]] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00 171.00
Separation Length Oil Layer [mm] Design Oil-Water Level [mm] Separation Length Water Layer [mm] Plate Pack Coalescer Oil Velocity Water Removal d100	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No min m/s micron	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sing 1525 793.000 0.00 d Separation 4.11 0.023 1568.00	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00 5.27 0.018 1307.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00 171.00	Volume [m³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00 171.00 5.27 0.023 1568.00
Separation Length Oil Layer [mm] Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Plate Pack Coalescer Oil Residence Time Oil Velocity Water Removal d100 Oil Reynolds Number	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No min m/s micron -	1.41 2.96 1.48 0.89 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sing 1525 793.000 0.00 4 Separation 4.11 0.023 1568.00 4334.00	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00 5.27 0.018 1307.00 4641.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00 171.00 5.27 0.018 1312.00 4618.00	Volume [m ³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00 171.00 5.27 0.023 1568.00 4641.00
Separation Length Oil Layer [mm] Design Oil-Water Level [mm] Separation Length Oil Layer [mm] Separation Length Oil Layer [mm] Oil Residence Time Oil Velocity Water Removal d100 Oil Residence Time	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No min m/s micron - min	4.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.000 0.00 4.11 0.023 1568.00 4334.00 0.000	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00 5.27 0.018 1307.00 4641.00 4.58 0.022	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00 171.00 5.27 0.018 1312.00 4618.00 4.58	Volume [m ³] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00 793.000 171.00 5.27 0.023 1568.00 4641.00 4.58
Separation Length Oil Residence Time Oil Residence Time Water Removal d100 Oil Responds Number Water Removal d100	etpoints and R Setpoint [mm] 2050 1850 1450 1250 1050 1150 900 700 500 350 Degas mm micron micron Liquid -Liquid 700 2004 1525 No min m/s micron	4.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.11 0.023 1568.00 4334.00 0.00 0.00	Fime [min] 1.81 3.80 1.90 1.14 1.42 2.68 1.99 1.78 1.15 1.66 1525 592.000 171.00 5.27 0.018 1307.00 4641.00 4.58 0.020 495.00	1.81 3.80 1.90 1.14 1.43 2.68 1.99 1.78 1.15 1.66 1525 593.000 171.00 171.00 5.27 0.018 1312.00 4618.00 4.58 0.020 495.00	Volume [m*] 4.07 8.53 4.28 2.56 3.20 3.95 2.93 2.62 1.70 2.44 1525.000 793.000 171.00 793.000 171.00 5.27 0.023 1568.00 4641.00 4.58 0.020

Table C.4 (continued): Test separator MySEP evaluation

	GAS-LIQUI				
	Units	Design_Case 1	Case_C	Case_F	Max
	Inlet D	evice			
Туре	None				
Removal d100 [Predicted]	micron	0.0	0.0	0.0	0.0
Mist Sep. Effic. [Predicted]	%	0.00	0.00	0.00	0.00
Carryover Rate	m³/hr	0.014	0.016	0.017	0.017
Section Efficiency	%	99.99	99.99	99.99	99.99
	Gravity Separa	ation Section			
Design Liquid Level [mm]	2050				
Gas-Liquid Separation Length [mm]	3941				
Vapour Space Height [mm]	950				
Vessel K-Value	m/s	0.038	0.033	0.033	0.038
Removal d100 [Predicted]	micron	53.000	50.000	50.000	53.000
Sep. Efficiency [Predicted]	%	99.97	99.98	99.98	99.98
Carryover Rate	m³/hr	0.000	0.000	0.000	0.000
Section Efficiency	%	99.97	99.98	99.98	99.98
	Demisting	Device # 1			
Туре	Vane Pack				
Deck Orientation	Vertical				
Max Allowable K-Value [m/s]	0.214				
Vane Pack Area [m ²]	0.542				
Bottom Elevation [mm]	2306				
Assembly Length [mm]	1060				
Vane Spacing [mm]	20				
Bend Angle [°]	60				
K-Value	m/s	0.135	0.116	0.116	0.135
Gas Velocity	m/s	0.982	1.257	1.259	1.259
Gas ρν²	kg/m ²	15.00	12.00	12.00	15.00
Removal d100 [Predicted]	micron	74.00	56.00	56.00	74.00
Sep. Efficiency [Predicted]	%	25.96	40.28	40.43	40.43
Carryover Rate	m³/hr	0.000	0.000	0.000	0.000
Device Efficiency	%	25.96	40.28	40.43	40.43

Table C.4 (continued): Test separator MySEP evaluation

APPENDIX D: LINE SIZING VALIDATION

Table D.1: Line sizing validation analysis results

				e							PROJECT NO.		HI39510									
						PROCESS	CALCULAT	ION SHEET	-		FACILITY		FPSO-N'AGO	AMO			-3					
					C A	00.004			NC													
					CA	L-PR-004 :	TWO-PHAS	E LINE SIZ	ING		CALCULATION N	10	CAL-PR-004				23. 					
				Software Tec	hnical Sheet: E	S49985-PEP	RPRPF999004	Rev.V2	Issue Date:	21-Nov-16	or LOOD THOM	10.	0/12/11/00/				2					
REV	0	LINE SPEC	FICATION	j					PROCESS D.	ATA					LINE	ΠΔΤΔ				N	CRIT	FRIA
		Ente of Ed		r	LIQ	UID		GAS/VAPOR			OPERATIN	G DATA										
	NOMINAL DIAMETER	SERVICE CODE	NUMBER	PIPE MATERIAL CLASS	ACTUAL VOLUME FLOWRATE	ACTUAL DENSITY	STANDARD FLOWRATE	ACTUAL DENSITY	Mol. Weight	OPERATING PRESSURE	OPERATING TEMPERATUR E	OPERATION MODE	CORROSION INHIBITOR INJECTION?	PIPE SCHEDULE	PIPE MATERIAL	INTERNAL DIAMETER	ROUGHNESS	ACTUAL VOLUME FLOWRATE	MIXTURE	ACTUAL VELOCITY	C-FACTOR	EROSIONAL VELOCITY
	inch		and the second	L. Laker	bpd	kg/m ³	MMscfd	kg/m ³	kg/kmol	barg	°C	2		-	e and	mm	mm	m³/h	kg/m ³	m/s	i dest	m/s
CASE A&C	24	PM	M611018	BD3A	126,640.0	814.1	72.02	17.5	21.3	19.79	49.7	Continuous	No	20	Duplex	590.9	0.03	5,204.6	145.9	5.27	300	24.84
CACER	24	DM	M011010	0024	125 600 0	075.5	04.70	47.0	24.6	10.00	40.75	Continuous	Ma		- Dupley	-	- 0.02	- E 020 E	142.4	-	200	
CASE D	24	FIN	WOITUTO	DUQA	135,000.0	020.0	01.70	17.0	21.0	19.00	49.75	Continuous	INO	20	Duplex	390.9	0.05	3,030.5	142.1	5.91	300	23.17
CASE D&F	24	PM	M611018	BD3A	126,060.0	823.0	70.00	17.6	20.7	19.44	35.59	Continuous	No	20	Duplex	590.9	0.03	4.943.2	153.6	5.01	300	24.20
														-	-	-	-	-	-	-	-	-
CASE E	24	PM	M611018	BD3A	135,470.0	834.3	79.76	17.6	21.0	19.21	35.74	Continuous	No	20	Duplex	590.9	0.03	5,638.2	147.6	5.71	300	24.69
														022		-	122	2	-	162	-	<u> </u>
														-		-	-			-		-
CASE A&C	24	DI	T621001	BD34	126 640 0	814.1	72.02	17.5	21.3	19.79	49.7	Continuous	No	20	Dupley	590.9	0.03	5 204 6	145.9	5 27	300	24.84
CASE AUC			1021001	DUUN	120,040.0	014.1	12.02	11.5	21.0	10.10	49.7	Contantaous	140		- Dupicx	-	0.00		-	5.21	-	-
CASE B	24	PL	T621001	BD3A	135,600.0	825.5	81.70	17.8	21.6	19.86	49.75	Continuous	No	20	Duplex	590.9	0.03	5,836.5	142.1	5.91	300	25.17
														-	-		-	-	-	-	-	-
CASE D&F	24	PL	T621001	BD3A	126,060.0	823.0	70.00	17.6	20.7	19.44	35.59	Continuous	No	20	Duplex	590.9	0.03	4,943.2	153.6	5.01	300	24.20
CACEE	24	DI	T604004	DD2A	125 470.0	024.2	70.70	47.0	24.0	40.24	25.74	Continuous	Ma	-	- Dunlau	-	-	-	- 447.6	-	- 200	-
CASEE	24	PL	1021001	DUJA	155,470.0	034.3	/9./0	17.0	21.0	19.21	.30.74	Conundous	INO	20	Duplex	290.9	0.05	5,030.2	147.0	5./1	300	24.09
Т	EST SEP INLE	Т														-	-	2				
									-			1		3.00	-	-		-	-	-	-	-
CASE A&D	16	PM	M611020	BD3A	34,220.0	877.9	16.04	18.8	19.8	19.3	4.79	Continuous	No	10	Duplex	393.7	0.03	1,069.1	201.0	2.44	300	21.16
														-		-	-	-		-	-	-
CASE B&E	16	PM	M611020	BD3A	21,120.0	824.0	8.59	18.2	18.0	19.5	-7.345	Continuous	No	10	Duplex	393.7	0.03	564.0	218.1	1.29	300	20.31
CASE CRE	16	DM	M611020	BD3A	33,600,0	883.0	17.61	7.5	20.8	7	4.526	Continuoue	No	- 10	- Dupley	303.7	0.03	2 670 4	80.6	6.09	300	33./1
CASE Car	10	F WI	10011020	DUJA	30,080.0	005.0	17.01	1.0	20.0	1	4.520	Conundous	140	-	- Duplex		0.05	2,070.4		0.03		
															2	1	1	2		(1)		-
																-				-	-	-
CASE A&D	16	PL	M611020	BD3A	34,220.0	877.9	16.04	18.8	19.8	19.3	4.79	Continuous	No	10	Duplex	393.7	0.03	1,069.1	201.0	2.44	300	21.16
0405 045	10		10044000	0000	01.100.0	004.0	0.50	10.0	40.0	10.5	7.045	0	No	-	-	-	-	-	-	-	-	-
CASE B&E	16	PL	M611020	BUJA	21,120.0	824.0	8.59	18.2	18.0	19.5	-7.345	Continuous	No	10	Duplex	393.7	0.03	564.0	218.1	1.29	300	20.31
CASE C&F	16	PL	M611020	BD3A	33,690.0	883.0	17.61	7.5	20.8	7	4.526	Continuous	No	10	Duplex	393.7	0.03	2,670.4	80.6	6.09	300	33.41

Table D.1 (continued): Line sizing validation analysis results

REV.		LINE SPEC	IFICATION					PROCES	SS DATA					LINE	DATA	A CALCULATION						CRIT	ERIA				
	NOMINAL DIAMETER	SERVICE CODE	NUMBER	PIPE MATERIAL CLASS	VOLUME	FLOWRATE	ACTUAL DENSITY	VISCOSITY	INLET PRESSURE	INLET TEMP.	MOL WEIGHT	C factor	PIPE SCHEDULE	PIPE MATERIAL	INTERNAL DIAMETER	ROUGHNESS	ACTUAL VOLUME FLOWRATE	MASS FLOWRATE	REYNOLDS NUMBER	FRIC	TION FACTO	R CALCULAT	TION	ACTUAL VELOCITY	ACTUAL P100	EROSIONAL VELOCITY LIMIT	NOISE VELOCITY LIMIT
TEST	Inch 12	80	7711133	BD3A	15.2	Units	18.2	0011	barg	*C	kg/kmol	300		Duniey	 311.1	0.03	m*/h 881.2	kg/h 16.002.3	1.653.853	0.012889	A5 8.955	B6 8,803	C6 8.808	m/s 3.22	0.004	70.40	m/s 50.31
GAS OUTLET				22011	10.2			0.011	15.0		15.50			-	-	-	-	-	-	-	-	-	-	-	-	-	-
(CASE A)			-	00014		10 to de		0.014			40.03	200		-		-	-			-	-	-	-		-	-	-
PCV OUTLET	10	BH	1762253	ALSE	16.2	MMscfd	1.8	0.010	14.1	4.0	19.65	165	40	CS	254.5	0.05	8.868.2	15,952.8	2,218,689	0.013047	8.465	8.406	8.407	48.44	0.009	122.98	60.00
			(Note 2)										-	-	-	-	-	-		-	-	-	-	-	-	-	-
TEOT	12		7711122	8034	9.6	March	19.7	0.029	19.7	.7.2	19.09	200		- Durbley	-	-	-	7 776 0	-	0.016308		-	-	- 1.62	-	-	-
GAS OUTLET	12		1711135	bush	0.0	MINICIU	10.7	0.025	10.7	-12	10.00			- United	-	-	-	-	-	-	-	-	-	-	-		45.72
(CASE B)													-	-	-				-	-	-	-	-	-		-	-
PCV INILET PCV OUTLET	10	BH	1712069	AL3E	8.6	MMscfd	18.7	0.029	18.7	-7.2	18.08	300	40	CS	254.5	0.03	416.8	8,529,6	352,823	0.015212	8.3/9	8.089	8.109	25.88	0.002	69.45 122.98	49.72
			(Note 2)										•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TEST	12	PG	T711133	BD3A	17.6	MMscfd	16.9	0.012	19.0	50.0	21.39	300	- 20	Duplex	311.1	0.03	1 1 10 9	18 774 2	1 749 479	0.012843	8 965	8 820	8.824	4.05	0.005	72.98	51.89
GAS OUTLET														-	-	-	-	-	-	-	-	-	-	-	-	-	-
(CASE C)	10		7712069	8034	17.6	Makeda	16.0	0.012	19.0	50.0	21.30	300	109	- Dupley	-	-	1 1 10 0	18 774 2	2 056 772	0.013010	9.975	- 8.764	- 8 767	-	-	- 72.08	-
PCV OUTLET	10	BH	T762253	AL3E	17.6	MMscfd	1.8	0.010	1.0	4.8	19.83	165	40	ČS	254.5	0.05	9,669.4	17,405.0	2,419,140	0.014114	8.472	8.417	8.417	52.82	0.139	122.98	60.00
			(Note 2)										-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TEST	12	PG	T711133	BD3A	16.2	MMscfd	18.2	0.011	18.7	4.8	19.83	300	20	Duplex	311.1	0.03	880.1	15,982.5	1,629,590	0.012901	8.952	8.799	8.804	3.22	0.004	70.40	50.31
GAS OUTLET	-													-	-	-	-	-	-	-	-	-		-	•	-	-
PCVINLET	10	PG	T712069	BD3A	16.2	MMscfd	18.2	0.011	18.7	4.8	19.83	300	105	Duplex	264.6	0.03	880.1	15,982.5	1,915,824	0.013057	8.866	8.748	8.751	4.45	0.009	70.40	50.31
PCV OUTLET	10	BH	T762253 (Moto 2)	AL3E	16.2	MMscfd	1.8	0.010	1.0	4.8	19.83	165	40	CS	254.5	0.05	8,879.2	15,982.5	2,221,435	0.014149	8.466	8.406	8.407	48.50	0.118	122.98	60.00
			(Note 2)																								
TEST	12	PG	T711133	BD3A	8.6	MMscfd	17.4	0.011	18.7	-7.2	18.08	300	20	Duplex	311.1	0.03	446.4	7,776.9	803,748	0.013663	8.775	8.544	8.556	1.63	0.001	71.88	51.21
(CASE E)						-										-	-	-	-	-		-				-	-
PCV INLET	10	PG	T712069	BD3A	8.6	MMscfd	17.4	0.011	18.7	-7.2	18.08	300	10S	Duplex	264.6	0.03	446.4	7,776.9	944,925	0.013693	8.726	8.538	8.546	2.25	0.002	71.88	51.21
PCV OUTLET	10	BH	T762253 (Note 2)	AL3E	8.6	MMscfd	1.8	0.010	1.0	4.8	19.83	165	40	<u>cs</u>	254.5	0.05	4,738.7	8,529.6	1,185,543	0.014511	8.398	8.299	8.301	25.88	0.034	122.98	60.00
																	-	-									-
GAS OUTLET	12	PG	1711133	BD3A	17.7	MMscfd	7.1	0.011	6.7	4.8	20.82	300	20	Duplex	311.1	0.03	2,569.1	18,305.0	1,891,841	0.012782	8.979	8.841	8.845	9.39	0.013	112.39	60.00
(CASE F)														-	-	-	-	-	-	-	-	-		-		-	-
PCV INLET	10	PG	T712069	BD3A	17.7	MMscfd	7.1	0.011	6.7	4.8	20.82	300	105	Duplex	264.6	0.03	2,569.1	18,305.0	2,224,139	0.012960	8.887	8.781	8.784	12.98	0.029	112.39	60.00
POVODILLI	10	0.1	(Note 2)	~~~~	17.4	MINISCIU	1.0	0.010	1.0	4.0	15.00	100	-		-	-	-		-	-	-	-	-		-	-	-
HD.	16		7711001	8024	71.5	1.0.4 code	16.6	0.012	10.7	40.5	21.29	200	- 10	- Duplay	- 202.7	-	-	-	-	-	-	-	-		-	- 73.69	-
GAS OUTLET	10	PG	1711001	DUGA	/1.0	MINISCIU	10.0	0.012	10.7	49.0	21.30	300		- Duplex			4,590.0	76,201.2	5,704,500	-	9.200	9.215	9.210	10.49		/3.00	
(CASE A)	15		7714004	8034	74.5	Liberta	15.5	0.010	10.7	40.5	01.20	200		- Dumlaw	-	-	4505.0	75 004 0		0.011773	-	-	-	10.40	-		-
PCV OUTLET	14	BH	1762030	AL3E	71.6	MMscfd	1.8	0.012	1.0	49.5	19.83	165	30	CS	336.5	0.05	39,264.9	70,676.8	7,427,584	0.013118	8.758	8.731	8.731	122.61	0.527	122.98	60.00
			(Note 2)										-	•	-	-	-	-	-	-	•	-	•	-	•	-	-
HP	16	PG	T711001	BD3A	79.0	MMscfd	16.6	0.013	18.7	49.4	21.48	300	10	- Duplex	393.7	0.03	5079.9	84.529.0	6.074.882	0.011751	9.293	9.224	9.225	11.59	0.033	73.54	52.23
GAS OUTLET														-	-	-	-	-	-	-		-		-		-	-
(CASE B) PCV INLET	16	PG.	7711001	BD3A	79.0	MMscfd	16.6	0.013	18.7	49.4	21.48	300	10	- Duplex	393.7	0.03	5079.9	84.529.0	6.074.882	0.011751	9.293	9.224	9 225	11.59	0.033	73.54	52.23
PCV OUTLET	14	BH	T762030	AL3E	79.0	MMscfd	1.8	0.010	1.0	4.8	19.83	165	30	CS	336.5	0.05	43,353.2	78,035.8	8,200,967	0.013101	8.761	8.736	8.737	135.38	0.642	122.98	60.00
			(Note 2)																								-
HP	16	PG	T711001	BD3A	76.1	MMscfd	16.6	0.010	18.7	49.4	21.39	300	10	Duplex	393.7	0.03	4,884.8	81,087.0	7,284,393	0.011694	9.306	9.247	9.248	11.15	0.031	73.63	52.29
(CASE C)														-	-	-	-	-	-	-	-	-		-		-	-
PCV INLET	16	PG	T711001	BD3A	76.1	MMscfd	16.6	0.010	18.7	49.4	21.39	300	10	Duplex	393.7	0.03	4,884.8	81,087.0	7,284,393	0.011694	9.306	9.247	9.248	11.15	0.031	73.63	52.29
POVIOUTLET	14	BH	(Note 2)	AL3E	76.1	MMscfd	16.6	0.010	1.0	4.8	19.83	165	30	CS ·	336.5	0.05	4,528.5	75,173.2	7,900,126	0.013108	8.760	8.734	8.734	14.14	0.065	40.50	52.29
			(· ·	-	-	-	-	-	-	-	-	-	•	-	•	-	-
HP GAS OUTLET	16	PG	T711001	BD3A	69.5	MMscfd	16.9	0.012	18.7	35.4	20.74	300	10	Duplex	393.7	0.03	4,248.7	71,802.2	5,375,252	0.011795	9.283	9.207	9.208	9.69	0.024	72.98	51.89
(CASE D)													-	-	-	-	-	-				-	•	-	•	-	-
PCV INLET	16	PG BH	T711001 T752030	BD3A AL3E	69.5	MMscfd MMscfd	16.9	0.012	18.7	35.4	20.74	300	10	CS	393.7	0.03	4,248.7	71,802.2	5,375,252	0.011795	9.283	9.207	9.208	9.69	0.024	72.98	51.89
			(Note 2)												-	-	-	-	-	-	-	-	-	-	-	-	-
HD	15		7711001	BD34	75.0	Maketti	17.0	0.012	18.7	35.5	20.88	300	10	- Dupley	- 303.7	-	4 705 8	80.014.8	5 000 064	0.011755		- 0.222	- 0.223	10.74	- 0.029	- 72.76	- 51.75
GAS OUTLET				0000	10.5	minioud		0.012	10.7		20.00			-	-	-		-		-	-	-	-	-	-	-	-
(CASE E) PCV INLET	16	PG	T711001	BD3A	76.9	MMsdtd	17.0	0.012	18.7	35.5	20.88	300	10	Dupley	393.7	0.03	4706.8	80 014 8	5 990 064	0.011755	9.292	9 222	9 223	10.74	0.029	72.76	51.75
PCV OUTLET	14	BH	1762030	AL3E	76.9	MMscfd	1.8	0.010	1.0	4.8	19.83	165	30	CS	336.5	0.05	42,217.3	75,991.1	7,986,081	0.013106	8.761	8.735	8.735	131.83	0.609	122.98	60.00
			(Note 2)											-		-	-	-	-	-				-		-	-
HP	16	PG	T711001	BD3A	69.3	MMscfd	16.9	0.012	18.7	35.4	20.73	300	10	Duplex	393.7	0.03	4,235.6	71,581.7	5,358,745	0.011796	9.283	9.206	9.207	9.66	0.024	72.98	51.89
GAS OUTLET													•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCV INLET	16	PG	T711001	BD3A	69.3	MMscfd	16.9	0.012	18.7	35.4	20.73	300	10	Duplex	393.7	0.03	4,235.6	71,581.7	5,358,745	0.011796	9.283	9.206	9.207	9.66	0.024	72.98	51.89
PCV OUTLET	14	BH	T762030	AL3E	69.3	MMscfd	1.8	0.010	1.0	4.8	19.83	165	30	ĊS	336.5	0.05	38,030.1	68,454.2	7,194,013	0.013124	8.757	8.729	8.729	118.76	0.495	122.98	60.00
			(Note 2)											-	-	-	-	-	-	-	-	-		-	•	-	-

Table D.1 (continued): Line sizing validation analysis results

REV.		LINE SPE	CIFICATION					PROCE	SS DATA					LINE	DATA	CALCULATION CRI					ERIA						
	NOMINAL DIAMETER	SERVICE	NUMBER	PIPE MATERIAL CLASS	VOLUME	FLOWRATE	ACTUAL DENSITY	VISCOSITY	INLET PRESSURE	INLET TEMP.	MOL. WEIGHT	C factor	PIPE SCHEDULE	PIPE MATERIAL	INTERNAL DIAMETER	ROUGHNESS	ACTUAL VOLUME FLOWRATE	MASS FLOWRATE	REYNOLDS NUMBER	FRI	CTION FACTO	OR CALCULAT	NON	ACTUAL VELOCITY	ACTUAL ΔP100	EROSIONAL VELOCITY LIMIT	NOISE VELOCITY LIMIT
	Inch	•	-	•	-	Units	kg/m²	сP	barg	•C	kg/kmol	•	-	•	mm	mm	m²/h	kg/h	•	1	As	Bs	Cs	m/s	bar/100m	m/s	m/s
			IP SEPARATO	R									•	•	•	-	-	-	-	•	•	•	•	•	-	-	-
NOTE1						10 look					20.01		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IP sep	12	PG	1711004	AD3A	8.7	MMSCID	8.7	0.012	0.0	00.5	32.94	300	105	Duplex	314.7	0.03	1,629.7	14,193.3	1,329,440	0.013068	8.91/	8.741	0./48	5.82	0.006	101.66	60.00
PCV met	0	PG BI	T711004	AD3A	0./	MMscitt	0./	0.012	0.0	84.6	33,61	300	105	Duplex	211.0	0.03	6 206 5	14,195.5	2,017,347	0.013474	0.700	8.617	8,610	12.00	0.040	107.81	60.00
CASE A	0		1711004	nuan	0.7	MINIBUIU	2.0	0.012	1.0	04.0	33.01	300			211.0		0,290.0	14,402.0	2,017,347	0.013402	0.700	0.017	0.019	49.70	0.101	197.01	-
								<u> </u>					•	•		•	-		-	•	-	•		•		•	-
IP sep	12	PG	T711004	AD3A	8.8	MMscfd	8.6	0.012	6.6	88.5	32.66	300	10S	Duplex	314.7	0.03	1,657.0	14,316.7	1,340,998	0.013060	8.919	8.744	8.751	5.92	0.006	102.06	60.00
PCV Inlet	8	PG	T711004	AD3A	8.8	MMscfd	8.6	0.012	6.6	88.5	32.66	300	10S	Duplex	211.6	0.03	1,657.0	14,316.7	1,994,320	0.013469	8.706	8.615	8.617	13.09	0.047	102.06	60.00
PCV Outlet	8	BL	T711004	AD3A	8.8	MMscfd	2.3	0.012	1.0	84.6	33.61	300	105	Duplex	211.6	0.03	6,405.7	14,733.1	2,052,330	0.013452	8.710	8.620	8.622	50.61	0.187	197.81	60.00
CASE B													•	· ·	•	•	-	-	-	•	-	•	•	•	•	•	-
ID con	10		7714004	4024	6.7	hillingth		0.010		00 7	20.05	200		- Dunlay	-	-	-	-	-	-	-		-	-	-	-	-
PCV Inlet	8	PG	7711004	AD3A	6.7	MMsciu	0.0	0.012	0.0	88.7	32.00	300	105	Duplex	211.6	0.03	1,274.8	10,963.6	1,020,920	0.013543	8.671	0.040	8.552	4.00	0.004	102.30	60.00
PCV Outlet	8	BL	T711004	AD3A	6.7	MMscfd	2.3	0.012	1.0	84.6	33.61	300	105	Duplex	211.6	0.03	4.877.1	11,217,3	1.562.570	0.013626	8.674	8.564	8.567	38.53	0.110	197.81	60.00
CASE C													-	•	-	•	-	-	-	•	-	•	•	-	•	•	-
													-	•	-	-	-	•	•	•	-	•	•	-	•		-
IP sep	12	PG	T711004	AD3A	10.1	MMscfd	8.8	0.012	6.6	88.5	33.48	300	10S	Duplex	314.7	0.03	1,912.2	16,827.6	1,576,180	0.012911	8.953	8.795	8.801	6.83	0.008	101.13	60.00
PCV Inlet	8	PG	T711004	AD3A	10.1	MMscfd	8.8	0.012	6.6	88.5	33.48	300	10S	Duplex	211.6	0.03	1,912.2	16,827.6	2,344,081	0.013380	8.724	8.644	8.645	15.11	0.064	101.13	60.00
CASE D	•		1711004	AD3A	10.1	MIMISCIO	2.5	0.012	1.0	04.0	33.01	300	105	Duplex	211.0	0.03	1,344.1	16,092.9	2,353,163	0.013376	0.725	0.044	0.040	50.03	0.245	197.01	60.00
Choc D				<u> </u>							<u> </u>	<u> </u>															
IP sep	12	PG	T711004	AD3A	10.2	MMscfd	8.8	0.012	6.6	88.5	33.24	300	10S	Duplex	314.7	0.03	1,924.9	16,938.7	1,586,594	0.012906	8.954	8.797	8.803	6.88	0.009	101.13	60.00
PCV Inlet	8	PG	T711004	AD3A	10.2	MMscfd	8.8	0.012	6.6	88.5	33.24	300	10S	Duplex	211.6	0.03	1,924.9	16,938.7	2,359,569	0.013377	8.725	8.645	8.646	15.21	0.064	101.13	60.00
PCV Outlet	8	BL	T711004	AD3A	10.2	MMscfd	2.3	0.012	1.0	84.6	33.61	300	105	Duplex	211.6	0.03	7,446.6	17,127.3	2,385,834	0.013371	8.726	8.647	8.648	58.83	0.252	197.81	60.00
CASE E													•	· ·	•	•	-	-	-	•	•	•	•	•	•	•	-
ID con	10	80	7714004	4024	7.0	March		0.010		00.0	22.52	200	400	- Dupley	-	-	1 400 0	12 100 0	1 035 550	-	-	9.745	9.704		0.005	101.12	-
PCV Inlet	8	PG	T711004	AD3A AD3A	7.9	MMscfd	8.8	0.012	6.6	88.8	33.52	300	105	Duplex	211.6	0.03	1,499.0	13,190.9	1,235,550	0.013141	8,696	8.599	8.601	11.84	0.005	101.13	60.00
PCV Outlet	8	BL	T711004	AD3A	7.9	MMscfd	2.3	0.012	1.0	84.6	33.61	300	105	Duplex	211.6	0.03	5,750.6	13,226,3	1.842.433	0.013517	8.697	8.599	8.601	45.43	0.152	197.81	60.00
CASE F													-	-	-	-	-	-	-	•	-	•	-	-	-	•	-
													•	•	•	•	-	-	-	•	•	•	•	•	-	-	-
			LP SEPARATO)R									•	· ·	•	•	-		•	•	-	•	•	•	•	•	-
1.D.con	10	80	7714007	4024		Marchi	2.0	0.010	0.0	82.4	45.51	200	400	- Duplox		-	6 366 0	10 500 4		0.010676	0.005	9 970	0.000		- 0.020	175.55	-
PCV Inlet	8	PG	T711007	AD3A	8.2	MMscfd	2.9	0.010	0.9	82.4	45.51	300	105	Duplex	211.6	0.03	6.366.2	18.589.4	3,170,822	0.013243	8.751	8.689	8.690	50.30	0.030	175.56	60.00
PCV Outlet	16	BL	T711007	AD3A	8.2	MMscfd	2.3	0.012	1.0	84.6	33.61	300	10S	Duplex	396.8	0.03	5,969.0	13,728.6	1,019,618	0.013050	8.984	8.742	8.754	13.41	0.007	197.81	60.00
CASE A													•	•	•	•	-	-	•	•	•	•	•	•	•	•	-
			-											-			-									-	
LP sep	12	PG	1711007	AD3A	8.2	MMSCTO	2.9	0.010	0.9	82.3	45.46	300	105	Duplex	314.7	0.03	6,403.1	18,569.0	2,087,150	0.012691	9.003	8.8/3	8.877	22.87	0.031	176.17	60.00
PCV met	16	PG BI	T711007	AD3A	0.2	MMscitt	2.9	0.010	1.0	84.6	40.40	300	105	Duplex	306.8	0.03	5,403.1	13,728,6	1,010,992	0.013252	8.084	8.742	8.754	13.41	0.232	1/0.1/	60.00
CASE B	10		1111007	- Aller	5.2	in Aburu	2.0	0.012	1.0	04.0	00.01			-	-	-	-	-	-	-	-		-		-		-
													•	•	•	•	-	•	•	•	-	•	•	•	-	•	-
LP sep	12	PG	T711007	AD3A	5.9	MMscfd	2.8	0.010	0.9	70.9	43.50	300	105	Duplex	314.7	0.03	4,565.9	12,784.6	1,436,983	0.012994	8.934	8.767	8.773	16.31	0.015	179.28	60.00
PCV Inlet	8	PG	T711007	AD3A	5.9	MMscfd	2.8	0.010	0.9	70.9	43.50	300	10S	Duplex	211.6	0.03	4,565.9	12,784.6	2,137,069	0.013429	8.714	8.628	8.629	36.07	0.116	179.28	60.00
PCV Outlet	16	BL	T711007	AD3A	5.9	MMscfd	2.3	0.012	1.0	84.6	33.61	300	10S	Duplex	396.8	0.03	4,294.7	9,877.9	733,628	0.013507	8.869	8.589	8.605	9.65	0.004	197.81	60.00
CHSE C								-					<u> </u>	<u> </u>	+ :	<u> </u>		+ :		<u> </u>							
LP sep	12	PG	T711007	AD3A	8.6	MMscfrl	2.9	0.010	0.9	82.1	45.81	300	105	Duplex	314.7	0.03	6.767.1	19.624.7	2.205.815	0.012653	9.011	8.887	8.890	24.17	0.034	176.17	60.00
PCV Inlet	8	PG	T711007	AD3A	8.6	MMscfd	2.9	0.010	0.9	82.1	45.81	300	10S	Duplex	211.6	0.03	6,767.1	19,624.7	3,280,470	0.013230	8.754	8.693	8.694	53.46	0.259	176.17	60.00
PCV Outlet	16	BL	T711007	AD3A	8.6	MMscfd	2.3	0.010	1.0	84.6	33.61	300	105	Duplex	396.8	0.03	6,260.1	14,398.3	1,283,227	0.012778	9.052	8.837	8.847	14.06	0.007	197.81	60.00
CASE D														•	-	-	-		•	•	-		•		-	•	-
1.D.cor	10		774 4007	40.24		All leader	2.0	0.010	0.0	82.4	15.75	200	400	- Duplar:	214.7	-	6 750 8	10 502 2	-	0.010673	-	0.007	-	04.45	-	175.17	-
PCV Inlet	8	PG	T711007	AD3A AD3A	8.6	MMscfd	2.9	0.010	0.9	82.1	45.76	300	105	Duplex	211.6	0.03	6,759.8	19,003.3	3 276 889	0.012033	8.754	8.693	8.694	53.41	0.034	176.17	60.00
PCV Outlet	16	BL	T711007	AD3A	8.6	MMscfd	2.5	0.010	1.0	84.6	33.61	300	105	Duplex	396.8	0.03	6.260.1	14,398,3	1.283.227	0.012778	9.052	8.837	8.847	14.06	0.007	197.81	60.00
CASE E					0.0									-		-	-	-	-	-	-		-		-	-	-
													-	•	-	-	-	•	•	•	-	•	•	-	•		-
LP sep	12	PG	T711007	AD3A	6.2	MMscfd	2.9	0.010	0.9	70.8	43.87	300	10S	Duplex	314.7	0.03	4,672.0	13,548.9	1,522,894	0.012942	8.946	8.785	8.791	16.69	0.017	176.17	60.00
PCV Inlet	8	PG	T711007	AD3A	6.2	MMscfd	2.9	0.010	0.9	70.8	43.87	300	10S	Duplex	211.6	0.03	4,672.0	13,548.9	2,264,835	0.013398	8.721	8.638	8.639	36.91	0.125	176.17	60.00
CASE F	16	BL	1711007	AD3A	6.2	MMSCIO	2.3	0.012	1.0	84.6	33.61	300	105	Duplex	396.8	0.03	4,513.1	10,380.2	770,931	0.013433	8.887	8.613	8.629	10.14	0.004	197.81	60.00

Table D.1 (continued): Line sizing validation analysis results

REV.		LINE SPE	CIFICATION			PROCESS DATA				LINE DEFINITION					LINEDATA				CALCULATION								CRIT	ERIA
	nominal Diameter	SERVICE CODE	NUMBER	PIPE Material Class	ACTUAL Flow	VOLUME Irate	ACTUAL Density	VISCOSITY	PUMP TYPE	LINE Location	ROTATIONAL Speed	FLUID State	OPERATION MODE	FLUID TYPE	PIPE Schedule	PIPE Material	INTERNAL Diameter	ROUGHNESS	ACTUAL Volume Flowrate	reynolds Number	FRI	CTION FACT(OR CALCULAT	ION	ACTUAL Velocity	ACTUAL JP ₁₀₀	MATERIAL Velocity Limit	pump Velocity Limit
	inch	•	•	•	•	Units	kg/mª	сP	•	•	pm	•		•		•	mm	mm	m³/h	•	1	As	86	Cs	m/s	bar/100m	m/s	mis
A& B oli outi	12	PL	T621029	AC31	111,400.0	bpd	794.0	222						Liquids	STD	CS	304.7	0.05	738.0	306,462	0.015929	8.157	7.908	7.924	2.81	0.164	6.00	· •
uis of LCV-00															1.0		1.0	$\sim 10^{-1}$	1.0	1.	1.			1.	1.1	1.	1.0	. •
dis of LCV-00	18	PL	T621030	AC31	111,400.0	bpd	794.0	222						Liquids	STD	CS	437.9	0.05	738.0	213,155	0.016350	8.119	7.796	7.823	1.36	0.027	6.00	•
																•	1.1	1.1	1.1			•	•					•
CASEC	12	PL	T621029	AC31	589.9	bpd	788.4	2.19						Liquids	STD	CS	304.7	0.05	3,9	1,635	0.039145				0.01	0.000	6.00	
uis of LCV-00															•	•		· •	· •	•	•	•	•	•	•	•	•	•
dis of LCV-00	18	PL	T621030	AC31	589.9	bpd	788.4	2.19						Liquids	STD	CS	437.9	0.05	3.9	1,138	0.056255	•	•		0.01	0.000	6.00	•
																•	1.0	1.1	1.1			•	•		•	•	· •	
CASE D& E	12	PL	T621029	AC31	111,700.0	bpd	787.0	2.19						Liquids	STD	CS	304.7	0.05	740.0	309,034	0.015913	8.160	7.912	7.928	2.82	0.163	6.00	•
/S OF LCV-0	1														•	•		1.0	•		1.1	•	•	•	•	•	•	•
/S OF LCV-0	18	PL	T621030	AC31	111,700.0	bpd	787.0	2.19						Liquids	STD	CS	437.9	0.05	740.0	215,041	0.016328	8.124	7.801	7.828	1.36	0.027	6.00	•
															•	•		1.0	· •		· •	•	· •	•	•		•	•
CASE F	12	PL	T621029	AC31	87,350.0	bpd	787.0	1.95						Liquids	STD	CS	304.7	0.05	578.6	271,038	0.016176	8.105	7.846	7.864	2.20	0.101	6.00	•
/S OF LCV-0	1															•	1.1	1.0	1.1	1.	. •		1.		1.	1.0	1.0	
/S OF LCV-0	18	PL	T621030	AC31	87,350.0	bpd	787.0	1.95						Liquids	STD	CS	437.9	0.05	578.6	188,602	0.016666	8.049	7.720	7.748	1.07	0.017	6.00	•

APPENDIX E: OIL TRAIN PROCESS FLOW DIAGRAM

Figure E.1: Oil process train flow diagram

Operating Conditions			
Case	-	1	2
Pressure	bar(g)	19	19
Temperature	°C	62	63
Cas flawrata	kg/h	112875	86740
Gas nowrate	(a)m³/h	7099	5525
Gas density @P,T	kg/m³	15.9	15.7
Gas viscosity @P,T	cP	0.013	0.013
Gas compressibilty	-	0.9550	0.9557
Oil flowrate	(a)m³/h	710.2	175
Oil density @P,T	kg/m ³	859.7	839.8
Oil viscosity @P,T	cP	24	24
Oil surface tension	dyne/cm	22	20
Total water flowrate	(a)m³/h	171.5	687
Water density @P,T	kg/m ³	1092	1078
Water viscosity @P,T	cP	0.9	0.6
Water surface tension	dyne/cm	74	70
Foaming tendency	-		Yes
Waxing tendency	-		Yes

Table F.1: HP separator datasheet

Table F.2: IP separator datasheet

Operating Conditions			
Case	-	1	2
Pressure	bar(g)	7	7
Temperature	°C	90	89
Cas flowrate	kg/h	13663	10107
Gas nowrate	(a)m³/h	1366.3	1217.7
Gas density @P,T	kg/m ³	10.0	8.3
Gas viscosity @P,T	cP	0.012	0.013
Gas compressibilty	-	0.9510	0.9686
Oil flowrate	(a)m³/h	729.3	722.4
Oil density @P,T	kg/m ³	822.1	819.5
Oil viscosity @P,T	cP	6.3	7.1
Oil surface tension	dyne/cm	19	19
Total water flowrate	(a)m³/h	2	82
Water density @P,T	kg/m ³	1061	1064
Water viscosity @P,T	cP	0.4	0.4
Water surface tension	dyne/cm	64	64
Foaming tendency	-	Y	ſes
Waxing tendency	-	٢	ſes

Operating Conditions			
Case	-	1	2
Pressure	bar(g)	1	1
Temperature	°C	82	85
Cas flowrate	kg/h	15262	11091
Gas nowrate	(a)m³/h	4923	3824.5
Gas density @P,T	kg/m ³	3.1	2.9
Gas viscosity @P,T	cP	0.010	0.010
Gas compressibilty	-	0.9793	0.9819
Oil flowrate	(a)m³/h	702.3	701
Oil density @P,T	kg/m ³	834.7	828.9
Oil viscosity @P,T	cP	7.4	6.9
Oil surface tension	dyne/cm	21.3	20.7
Total water flowrate	(a)m³/h	69	106
Water density @P,T	kg/m ³	1065.2	1065.2
Water viscosity @P,T	cP	0.4	0.4
Water surface tension	dyne/cm	66	66
Foaming tendency	-	Y	ſes
Waxing tendency	-	Y	ſes

Table F.3: LP separator datasheet

Table F.4: Electrostatic treater datasheet

Operating Conditions			
Case	-	1	2
Pressure	bar(g)	4	4
Temperature	°C	83	85
Cas flowrate	kg/h	-	-
Gas nowrate	(a)m³/h	-	-
Gas density @P,T	kg/m ³	-	-
Gas viscosity @P,T	cP	-	-
Gas compressibilty	-	-	-
Oil flowrate	(a)m ³ /h	702	701
Oil density @P,T	kg/m ³	834.8	828.9
Oil viscosity @P,T	cP	6.5	7.0
Oil surface tension	dyne/cm	21	21
Total water flowrate	(a)m³/h	70	83
Water density @P,T	kg/m ³	1065	1065
Water viscosity @P,T	cP	0.4	0.4
Water surface tension	dyne/cm	65	66
Foaming tendency	-		No [*]
Waxing tendency	-		Yes

Operating Conditions					
Case	-	1	2	3	4
Pressure	bar(g)	19	19	3	3
Temperature	°C	62	63	58	60
Cas flaurate	kg/h	30241	16920	33239	17615
Gas nowrate	(a)m ³ /h	1902	1078	9776	5505
Gas density @P,T	kg/m ³	15.9	15.7	3.4	3.2
Gas viscosity @P,T	cP	0.013	0.013	0.012	0.012
Gas compressibilty	-	0.9551	0.9559	0.9882	0.9897
Oil flowrate	(a)m ³ /h	173	17	172	17
Oil density @P,T	kg/m ³	859.7	839.8	877.1	856.9
Oil viscosity @P,T	cP	24	24	24	24
Oil surface tension	dyne/cm	22	20	25	23
Total water flowrate	(a)m³/h	-	155	-	154
Water density @P,T	kg/m ³	-	1078	-	1080
Water viscosity @P,T	сР	-	0.6	-	0.6
Water surface tension	dyne/cm	-	70	-	70
Foaming tendency	-		Y	es	
Waxing tendency	-		Ye	es	

Table F.5: Test separator datasheet

Fluid Mass flow rate Fluid Condensed/Vapourized Inlet temperature Outlet temperature (vapor/liquid) Operating pressure (In/Out) Pressure drop (Perm/Calculate) Velocity Connection (In/Out)	kg/h kg/h °C °C bara kPa m/s	Heating medium 128089 0.000 130.0 89.7 / /13.3 0.775/0.751	Crude 336228 2442 63.6 90.0 10.3/8.13 /222 3.73/5.64
Heat Exchanged Heat transfer area O.H.T.C service O.H.T.C clean Duty Margin MTD	kW m² W/(m²*K) W/(m²*K) % K	6077 147.0 1276 1604 25.7 32.4	
Relative directions of fluids No. of plates No. of effective plates Number of passes Extension capacity		Countercurrent 100 98 1 28	1
Plate material/ Thickness Sealing material Connection material Connection standard Nozzle orientation		TI / 0.85 mm HNBR GLUED Titanium 10" S1 -> S2	HNBR GLUED Titanium 10" S4 <- S3

Table F.7: 128 plates crude oil heater datasheet

Fluid Density Specific heat capacity Thermal conductivity Viscosity inlet Viscosity outlet	kg/m³ kJ/(kg*K) W/(m*K) cP cP	Hot side Heating Medium 944.4 4.24 0.688 0.214 0.265	Cold side Crude Oil 2 359 (average) Pro Forma 0.072 (average) 4.30 1.23
Mass flow rate	kg/h	250000	240300
Inlet temperature	°C	130.0	64.4
Outlet temperature	°C	106.0	105.0
Pressure drop	kPa	28.8	112
Heat Exchanged	kW	7080 (Please check)
L.M.T.D.	K	32.6	

Due to the higher heat load and the higher crude outlet temperature the plate pack must be extended from 100 plates to 128 plates. (full capacity for current frame size)

Also the capacity of Heating Medium is increased from 128.000 to 250.000 kg/h.

Relative directions of fluids	Countercurrent	
Number of plates	128	
Number of passes	1	1
Extension capacity	0	
Plate material / thickness	TI / 0.85 mm	

Table F.8: 1st stage injection gas compressor datasheet

	CLEN		11-11-10-0010 - 80	uur - ne -	JOB NO.	VC5708/9: HE2	824248/9 ITEN	INO. A-T7	110; A-T7120; A	-T7140
	SIEM	IENS			PURCHASE OF	RDER NO. 01.3	9510.0018 / 001	9		
	Siemens No	ederland N.V.			INQUIRY NO.					
F	CENT	RIFUGAL AND	AXIAL COMPRESSO	R	REVISION NO.	05	DAT	E 20-02-201	4	
	DA	TA SHEET (API	617-7TH Chapter 2)		PAGE 1	a OF	7 BY	GP/PM	-	
		SI UNIT	S (1-1.6.5)							
1	APPLICABLE TO:	() PROPOSAL	Purchase	0	As built					
	FOR	SBM Offshore/ENI			UNIT	r	K-T7111,2	,3; K-T7121,2,3;	K-T7141,2,3	
3	SITE	N'goma FPSO			SER	IAL NO.	VC5708 /	VC5709 / VC571	0 NC5756/VC5	757/VC5758
4	SERVICE	Associated gas			NO.	REQUIRED	3 off 50%	trains		
1	MANUFACTURER	Siemens Nederland N	N.V.		DRIV	/ER TYPE (1-3.1	.1) GT (SGT4	00)		
6	MODEL	STC-SV (06-8-B) / (0	6-8-A)		DRIV	ER ITEM NO.	KT-T7110	/20/40		
1	7									
8	8 INFORMATION TO BE COMPLETED: O BY PURCHASER D BY MANUFACTURER A MUTUAL AGREEMENT (PRIOR TO PURCHASE)									
()			OPERATI	NG CONDITIONS					
10)	(ALL DATA O	N PER UNIT BASIS)							
11	SPECIFIED OF	PERATING CASE				Max 1			Max 2	
11;	CASING TYPE				Ba	rrel	Barrel	Ba	rrel	Barrel
11	SECTION				1st stage	2nd stage	3rd stage	1st stage	2nd stage	3rd stage
12		D (ALSO SEE PAGE)							
16	GAS PROPER	(TIES (1-2.1.1.4) (1.01225 DAD: 0.15.89		IC::::16/8/15 8/11	87722	87805	50050	87877	87804	50875
1/		(1.01323 BAR & 13.01 W (WET)	G WEI)	[Sm m@15.00] [ka/b]	58387	58231	50518	81355	61100	52055
18	BYPASS FLO	W. (WET)		[%]	0	0	0	0	0	0
16	INLET CONDI	TIONS		1.4	_	-	-	-	-	-
17	• PRESSURE			[barg] (note 6)	17,80	54,70	142,20	17,80	54,34	141,26
18		RE		[°C]	43,8	44,8	47,8	43,8	44,8	47,8
19	RELATIVE HU	MIDITY	(NOTE 8)	[%]	100,0	100,0	0,0	100,0	100,0	0,0
20		WEIGHT		0	20,32	20,33	20,33	21,36	21,38	21,38
2	Cp/Cv (K1)	(NOTE 1,7)	[-]	1.297	1.441	1.836	1.300	1.445	1.854
22		BILITY (Z1)	(NOTE 1,7)	[-]	0,956	0,877	0,797	0,955	0,876	0,790
23				[m*/h]	3849	1192	369	3844	1197	367
24		CONDITION 5		[harn] (note 8)	58.04	144.40	202.01	55.89	142 48	203.00
26		RE		[Parg] (note 0)	144	141	130	144	141	130.4
27	Cp/Cv (K2)	(NOTE 1,7)	6	1,271	1,391	1,556	1,273	1,394	1,565
28		BILITY (Z2)	(NOTE 1,7)	6	0,962	0,951	1,036	0,961	0,948	1,030
29	GAS kW REQ	UIRED		[kW]	3464	3387	2551	3463	3381	2554
30	TRAIN BRAKE	kW REQUIRED		[kW]	69	33	2613	69	23	2615
3	BRAKE kW RE	EQUIRED AT DRIVER	INCL 2,6 % GEAR LOSSES	[kW]		9794			9786	
32	2 SPEED			[rpm]		13740			13482	
33		TURNDOWN [%] See performance curves								
34		HEAD		[kJ/kg]	158,8	129,4	96,3	150,2	122,9	91,8
30				[%]	/4,3	61,8 VEC	53,0 VEC	73,8	61,8 NO	52,9 NO
20			CONDITION (%)		1E0	163	163	NU	NU	NU
31	O EXPECTED OPERATION AT EACH CONDITION (%)									

Table F.9: 2nd stage injection gas compressor datasheet

Γ	SIEMENS	r - 01.39510.0010 - AK	861 - 86 -	JOB NO. PURCHASE OF	VC5708/9; HE2 RDER NO. 01.3	824248/9 TTEN	<mark>2014 - 10-22</mark> NVO. ⁴ - 10-22 N	17110; A-T7120;	A-T7140
	Siemens Nederland N	1.V.		INQUIRY NO.			-		
F	CENTRIFUGAL A	AND AXIAL COMPRESSO	R	REVISION NO.	05	DAT	E 20-02-201	4	
	DATA SHEET	(API 617-7TH Chapter 2)		PAGE 1	b OF	7 BY	GP/PM		
	SLU	INITS (1-1.6.5)							
1	1 APPLICABLE TO: O PROPO	SAL 🕘 Purchase	0	As built					
2	2 FOR SBM Offshore/	ENI			г	K-T7111,2	2,3; K-T7121,2,3	; K-T7141,2,3	
3	3 SITE N'goma FPSO			SER	IAL NO.	VC5708 /	VC5709 / VC57	10 /VC5756/VC5	757/VC5758
4	4 SERVICE Associated gas	5		NO.	REQUIRED	3 off 50%	trains		
5	5 MANUFACTURER Siemens Nede	rland N.V.		DRIV	/ER TYPE (1-3.1	.1) GT (SGT4	00)		
6	8 MODEL STC-SV (08-8-	B) / (06-6-A)		DRIV	/ER ITEM NO.	KT-T7110	/20/40		
7	7								
8	B INFORMATION TO BE COMPLETE	ED: O BY PURCHASER	L BY MA		Δ	MUTUAL AGRE	EMENT (PRIOF	R TO PURCHAS	E)
	9		OPERATIN	GCONDITIONS	•				
10		ATA ON PER UNIT BASIS)			L MW Carol			L MW Care?	
11:	a CASING TYPE			Ba	rrel	Barrel	Ba	arrel	Barrel
11	b SECTION			1st stage	2nd stage	3rd stage	1st stage	2nd stage	3rd stage
12	2 O GAS HANDLED (ALSO SEE P	AGE)							
13	3 🛆 GAS PROPERTIES (1-2.1.1.4)								
14	4 • Standard flow (1.01325 BAR &	15.6°C WET)	[Sm³/h@15.6C]	58196	58225	40462	63305	63310	54438
1	5 • WEIGHT FLOW, (WET)		[kg/h]	43592	43545	30209	50282	50228	43110
10	BYPASS FLOW, (WET)		[%]	0	0	0	0	0	0
10			[hara] (note 6)	17.90	57.02	142.08	17.90	57 17	146.00
18			[barg] (note o)	34.7	44.9	47.8	34.9	44.9	47.8
19	RELATIVE HUMIDITY	(NOTE 8)	[%]	100,0	100,0	0,0	100,0	100,0	0,0
20	MOLECULAR WEIGHT		0	17,69	17,69	17,68	18,76	18,75	18,76
21	1 Cp/Cv (K1)	(NOTE 1,7)	[·]	1.340	1.448	1,734	1,319	1,444	1,786
22	COMPRESSIBILITY (Z1)	(NOTE 1,7)	[·]	0,966	0,916	0,868	0,959	0,894	0,833
23	3 INLET VOLUME, (WET)		[m³/h]	3242	1028	273	3502	1089	347
24	DISCHARGE CONDITIONS		[hard] (note B)	50.27	148.18	202.00	50.51	140.00	202.00
26			[barg] (note o) [°C]	154	140,10	285,00	143	140,20	134
27	7 Cp/Cv (K2)	(NOTE 1,7)	[]	1,299	1,387	1,497	1,286	1,389	1,536
28	COMPRESSIBILITY (Z2)	(NOTE 1,7)	•	0,980	0,987	1,073	0,969	0,970	1,053
28	GAS kW REQUIRED		[kW]	3137	3037	2009	3303	3211	2368
30	TRAIN BRAKE KW REQUIRED)	[kW]	62	261	2076	65	598	2432
31	BRAKE KW REQUIRED AT DR	RIVER INCL 2,6 % GEAR LOSSES	[kW]		8554			9264	
32			[rpm]	Constant	14384			14020	
33			[%] [k]/ke]	see performant	te curves	118.0	177.0	141.5	104.2
35			[%]	74.0	61.0	49.6	74.8	61.5	52.7
36	CERTIFIED POINT		1 1 1	NO	NO	NO	NO	NO	NO
37	O EXPECTED OPERATION AT E	EACH CONDITION (%)							

Table F.10: 3rd stage injection gas compressor datasheet

	SIEM	ENS	91.39510.8010 - AK	881 - 86 -	JOB NO. PURCHASE OF	VC5708/9; HE2 RDER NO. 01.3	2824248/9 TTEN 9510.0018 / 001	200.4 10 12 NO.4 10 12 9	17110; A-T7120;	A-T7140
	Siemens Ne	derland N.V.			INQUIRY NO.					
	CENT	RIFUGAL AND	AXIAL COMPRESSO	R	REVISION NO.	05	DAT	E 20-02-201	4	
	DAT	TA SHEET (API	617-7TH Chapter 2)		PAGE	1c OF	7 BY	GP/PM		
		SI UNITS	(1-1.6.5)							
1	APPLICABLE TO:	PROPOSAL	O Purchase	0	As built					
2	FOR	SBM Offshore/ENI			UNI	т	K-T7111,2	,3; K-T7121,2,3	; K-T7141,2,3	
3	SITE	N'goma FPSO			SER	IAL NO.	VC5708 /	VC5709 / VC57	10 /VC5756/VC5	757/VC5758
4	SERVICE	Associated gas			NO.	REQUIRED	3 off 50%	trains		
5	MANUFACTURER	Siemens Nederland N	.V.		DRI	VER TYPE (1-3.	1.1) GT (SGT4	00)		
6	MODEL	STC-SV (06-8-B) / (06	-6-A)		DRI	VER ITEM NO.	KT-T7110	/20/40		
7										
8	8 INFORMATION TO BE COMPLETED: O BY PURCHASER 🗌 BY MANUFACTURER 🛆 MUTUAL AGREEMENT (PRIOR TO PURCHASE)									
8				OPERATIN	G CONDITIONS	i				
10		(ALL DATA ON	I PER UNIT BASIS)							
11	SPECIFIED OF	PERATING CASE				TD			SRC1	
11a	CASING TYPE				Ba	arrel	Barrel	Ba	arrel	Barrel
110			1		1st stage	2nd stage	3rd stage	1st stage	2nd stage	3rd stage
12		TIES (1-2 1 1 4))							
14	 Standard flow (1.01325 BAR & 15.6°C	WET)	[Sm³/h@15.6C]	55043	53801	35080	49294	48890	33575
15	WEIGHT FLOW	V. (WET)		[ka/h]	43867	42812	27863.1	51267.4	48874.5	33509.9
16	BYPASS FLOW	V, (WET)		[%]	44	40	19	20	23	9
16	INLET CONDIT	IONS				•	•			
17	PRESSURE			[barg] (note 6)	17,80	56,14	142,82	17,80	54,65	139,91
18	TEMPERATUR	E		[°C]	36,4	44,9	47.80	40.30	44.80	47.80
19	RELATIVE HUI	MIDITY	(NOTE 8)	[%]	100,0	100,0	0,0	100.0	100.0	0,0
20	MOLECULAR	WEIGHT		0	18,81	18,81	18.81	24.53	23.63	23.64
21	Cp/Cv (K1)	UTV (74)	(NOTE 1,7)	0	1,320	1,441	1.771	1.279	1.490	2.064
22		E (WET)	(NOTE 1,7)	[•] (0,960	0,898	0,836	0,929	0,818	0,706
23		CONDITIONS		(m m)	3000	840	230	2080	003	108
25		onomono a		[baro] (note 6)	57.48	145.02	293.00	55,99	142.11	293.00
26	TEMPERATUR	E		[°C]	146	147	149	127	128	126,7
27	Cp/Cv (K2)		(NOTE 1,7)	0	1,286	1,385	1,495	1,273	1,439	1,604
28	COMPRESSIB	ILITY (Z2)	(NOTE 1,7)	[-]	0,971	0,971	1,064	0,922	0,892	0,999
29	GAS kW REQU	JIRED		[kW]	2883	2772	1783	2369	2256	1523
30	TRAIN BRAKE	kW REQUIRED		[kW]	5	736	1845	46	387	1571
31	BRAKE kW RE	QUIRED AT DRIVER I	NCL 2,6 % GEAR LOSSES	[kW]		7778			6421	
32	SPEED			[rpm]		13708			11545	
33				[%]	See performan	ce curves		100.0	100.0	70.0
34				[KJ/Kġ] [%]	1/5,0	141,2	110,1	123,3	100,6	18,2
38		INT		[/0]	NO NO	NO	NO NO	NO	NO	NO
37	O EXPECTED OF	PERATION AT FACH C	ONDITION (%)							
°									I	l

	ATURES (Gas Generator)			
2 SPEEDS: Gas Generator 3 Max CONT 14300 RPM TRIP 15000 RPM	COMPRESSOR ROTOR BLADES 17.4 DH & EV 448E			
	COMPRESSOR ROTOR BLADES 17.4 PH & PS070 410DD			
5 EIRST CRITICAL SPEEDS (DAMPED)	SUART BS070 820 MM0 BLADEAVANE COATING Sermetal 5200 DP			
8 SECOND OPITICAL 6072 PEM 20d Bounce MODE				
	STAGE NOZZLES BLADES DISCS			
8 FOURTH CRITICAL RPM MODE	1 INCO 939 CM 1861 C INCO 718			
	2 INCO 939 CM 1861 C INCO 718			
11 O TRAIN TORSIONAL ANALYSIS REQUIRED (2.7.4.5)				
13 FIRST CRITICAL RPM				
14 SECOND CRITICAL RPM				
15 THIRD CRITICAL RPM				
16 FOURTH CRITICAL RPM	COMBUSTORS Haynes 230			
17 VIBRATION: (4.7.4.5) (7.2.3o)	COMPRESSOR CASING BS 2789 Gr420/12			
18 ALLOWABLE TEST LEVEL: SHAFT 41.0 MICRONS P/P	COMBUSTOR CASING BS 2789 Gr420/12			
19 CASE 9 mm/SEC	TURBINE CASING B\$ 2789 Gr420/12			
20 ROTATION, VIEWED FROM DRIVE END CW CCW	GAUGE BOARDS AND CONTROL PANELS			
21 AIR COMPRESSOR:				
22 STAGES 11 MAX. TIP SPEED 427 m/s	GAUGE BOARDS			
23 TYPE Axial RATIO 16.7:1	LOCATION None, all indication on VDU			
24 CASING SPLIT (2.2.3) AXIAL O RADIAL	CONTROL CONSOLES (5.4.5.1.1) O ON-SKID O OFF SKID LOCAL			
25 ROTOR SOLID BUILT UP	OFF SKID REMOTE			
26 TURBINE:	WEATHER PROTECTION REQUIRED O YES • NO			
27 STAGES 2 MAX. TIP SPEED 496 m/s	SPECIFICATION JB 72 IP66 (on skid), UCP IP54 (control room)			
28 CASING SPLIT (4.2.3) 🖸 AXIAL 🗨 RADIAL	O ANNUNCIATOR REQUIRED (5.4.4.8.5)			
29 ROTOR SOLID BUILT UP	VISUAL DISPLAY UNIT (VDU) KEYBOARD			
30 COMBUSTORS: (4.3.2)				
32 GAS LIQUID DUAL FUEL				
33 MAX. ALLOW TEMP. VARIATION 90 °C	CONTROL SYSTEMS			
34 APPLICABLE PLANE	TYPE (5.4.1.5)			
35 FUEL NOZZLES PER COMBUSTOR 1 Pilot + 1 Main	O MECH O PNEU O HYDRA O ELECTRIC O ELECTRONIC			
36 WOBBE INDEX NO. REQD (4.3.7) MIN/MAX 37 - 49 MJ/m ³	MICROPROCESSOR BASED O COMBINED			

Table F.11: Injection gas compressor gas generator datasheet

C GM	Î O			PROCESS ROTARY SCR	DATA SHE	ET		-	DOC. NO. STT71003 TAG NO. K-T7131/32 (TRAIN A) K-T7151/52 (TRAIN B) SHEET 02 (07		AIN A) (AIN B)
	19	N				LODON		ŀ	QUANTITY	2 x 100%	
PROJECT			ANGOLA BLOCK 15/06 We	st Hub Development Pro	ject.	PI	REPARED	CMY	CMY	PSG	
LOCATIO	N		Offshore Angola			C	HECKED	WLL	WLL	WLL.	
FACILITY			361203-XIKOMBA-FPSO	1		A	PPROVED	WLL	GWE	GWE	
CLIENT		2000	Eni Angola S.p.A.		1.2	D	ATE	10-Mar-11	18-Jul-11	24-Nov-11	
PROJECT	NO.		HI39510			R	EVISION	C1	A1	A2	
REV.		GENERAL D	ATA		UNITS						
	1	Name			-		Flas	h Gas Compre	ssor (Train A 8	B)	
A2	2	P&ID No.		in the second second	-	222 C		DT171011	/12/74/79		
	3	Fluid Handles			- 1			Hydrocar	ton gas		
2	4	Operation	. (a	ontinuous / intermittent)		ST 85		Contin	NOUS		
	5	Туре			-	Tw	/o (2)-slage va	riable speed dr	y screw compr	assor (Note 1, 2)	
	6	Driver	Driver					Electric	Motor (2/	00 LW }	
1 3	7	Liquid Entrainment (yes / no			-			No (N	ote 3)		
	8	Hazardous S	ervice	(yes / no)	-			Y	19		
	9	Corrosive Se	vice (yes - type	of corrostve agent / no)	-			Yes	CO.		
	10										
	11	DESIGN DAT	A						-		
	12	Compressor	Stage		barg		1st State			2nd Sterre	
	13	Design Press	ure		bare	A AND A A A A A A A A A A A A A A A A A	10			20. 22	
	14	Design Terra	erature	(min_l max)	5		-15/200			15/300	
	15	Settle-cut Pr	POSIND	(nar stars)	harn		101100			-137 200 .	
	16	Sallia-out Pr	Acture	(marall)	ham		as (non i)	670	and do	8.8 (Hold 1)	
	1 17	Design Mars	in	(overal)	Dairy N			5.7 (7	1010 1)		
└──		Design Harg						(No	(0 4)		
1		sisteringincie			years			-	5		
A2	20	OPERATING	DATA			Max. Gas Case 1 Max. G (Note 5, 6, 7) (Ha) (Not		Max. Ga (Hig) (Note	365 Case 2 Turndown Case gh CO2) (Note 5) te 5, 6, 7)		
	2	Compressor	Stage		-	1st Stage	2nd Stage	1st Stage	2nd Stag	1st Stage	2nd Stage
A2	2	2 Vapor Flow	ale	(@ Iniel)	MMscid	6.7	12.5	5.1	10.	0.3	0.6
A2	2	3 Vapor Mass	Flow	(@ inlet)	kg/h	16,410	22,798	12,613	19,29	404	694
	2	Recycle	Flow		MMsetd	0	0	0.44	0	4.15	262
	2	SUCTION C	ONDITIONS							1	
č	2	6 Operating P	ressure	(@ compressor flange)	barg	0.45	5.36	0.4	5.3	0.45	5.36
A2	2	7 Operating T	emperature	(@ compressor flange)	ť	44.9	44.6	44.	44	7 44.5	44.5
A2	2	8 Actual Volu	me Flow	(vapor)	difmA.	5,937	2,427	4.71	2.14	2 262	124
A2	2	9 Molecular V	/eight	(vapor)	kg/kgmole	48.76	36.65	47.3	2 35.4	8 27.75	22.80
A2	3	0 Mass Densi	ly .	(vapor)	kg/m ^a	2.8	9.4	2	7 9	0 1/	50
A2	3	1 Cp/(Cp-R)		(vapor)		1,105	1.135	1.11	1 14	6 120	1 216
A2	1,	2 Compressit	ity Factor	fyspor		0.9763	0.940	0.978	7 0.945	0.0001	0.0010
	1 3	3		(-			0.5012
-		DISCHARG	E CONDITIONS (Note 8)							<u> </u>	+
A2		5 Operating I	ressure	(E) compressor (lance)	ham	60	10.1				-
A2		6 Operating	emerature .	(C) compression manger	1 10	122 4000	112 440.0	120	13/2/ 13/	195	1 19.2
42	÷	T Mare Deer	h	rest countriesson manife.	-	123 1145	7/3 1103	1-20 122.0	12/ 1012	103 4489	170 159.3
42	÷	Co //Co in		(vapor	- Agente	11.2	25.5	10.7	Z3.9	52	13.2
42	$\pm i$	Comment	Nilk Forter	(vapor		1,067	1.111	1.091	1.120	1.159	1.193
	+	in Compression	Care L 11	(vapor	Late	A 4 4 5	0.8988	0.9455	0.918	0.9909	0.9816
	÷	COMPTEN	507 7pee.d		PPM	4015	0262	4042	5485	3483	47.26
	+	PERFORM	ANGE			(100.7%)	(100.7%)	(88,2%	(88,2%	(76%)	(76 %)
A2	÷	42 Estimated	Gas Power		RW	615*	803	491	71	29	• 44
-	-	43 Adiabatic 8	Ticiency		. %	6/ 45	64 + + + + + + + + + + + + + + + + + + +	1 60 8	62 -8	57 65	59 66
	+	44 Certified P	oint	(yes / no	-	Yes	Ye	s)	40	40 N	0 N
-	-	45 BHP	required		1 KW	720	935	612	802	5/2	671
-	-	46 NOTES / H	IOLD								
A2		47 Refer to S	neet 07 of 07		Active Content		0.52				
-		48 ×1 Comp	\$ \$1 Compressor nated speed will not be change			al process ;	sas certifi	ied condi	tron as	Follows.	
		49	ist spage compresso	r speed : 4583	rpm @ 1	100 % Rate	od speed.				
	T	50	. , -	4615	Mpm @ 1	00.7% No	mal caepo	for myles	f process of	certified .	andition
		51 2	ad stage compressor	speed: 6219	Fpm @ 1	00 %. Rate	ed spied.				ACCESSION AND A DESCRIPTION
	T	52		6262	Hom @ 1	00.7% Nor	mal speed	for revie	ed process a	as certified	condition
1		53			1				proving 9	ar an interest	- Martinetta
		54 \$2 0	talsa pressure is com	pressor casing desig	M pressure	. It is not	a design	pressure	of operat	int conditie	on for
		55					- m			flara (and dela
_	1	58 * To be	completed / confirmed by W	SNDOD						1 40/1 /10	alles de lestes

Table F.12: 1st and 2nd stage flash gas compressors datasheet

Operating Conditions						
Vessel Tag No.	-	V-T7141	V-T7142	V-T7143	V-T	7151
Case	-	1	1	1	1	2
Pressure	bar(g)	18	57	138	0.55	0.55
Temperature	°C	44	45	48	45	45
Cas flowrate	kg/h	61037	61630	54221	16410	12595
Gas nowrate	(a)m³/h	3745	1113	359	5551	5236
Gas density @P,T	kg/m ³	16.3	55.4	151.1	3.0	2.4
Gas viscosity @P,T	cP	0.01	0.01	0.02	0.01	0.01
Gas compressibilty	-	0.94	0.84	0.73	0.97	0.98
Oil flowrate	(a)m ³ /h	1.1	2.6	-	2.78	-
Oil density @P,T	kg/m ³	669	555	-	696	-
Oil viscosity @P,T	cP	0.28	0.14	-	0.34	-
Heavy Liquid flowrate	(a)m³/h	0.6	0.2	0.13	1.69	-
Heavy Liquid density	kg/m ³	994	994	1100	992	-
Heavy Liquid viscosity	cP	0.6	0.6	20.0	0.6	-
Foaming tendency	-	Yes	Yes	No	Yes	-
Waxing tendency	-	No	No	No	No	-

Table F.13: Injection and flash gas compressors scrubber's datasheet

Vessel Tag No.	-	V-T7152	V-T2	2701	
Case	-	1	1	2	
Pressure	bar(g)	5.7	0.14-0.25	0.14-0.25	
Temperature	°C	45	50	50	
Cae flournate	kg/h	22798	17530 ⁽¹⁾	10661 ⁽¹⁾	
Gas nowrate	(a)m ³ /h	2297	9226 ⁽¹⁾	8884 ⁽¹⁾	
Gas density @P,T	kg/m ³	9.9	1.9	1.2	
Gas viscosity @P,T	cP	0.01	0.01	0.01	
Gas compressibilty	-	0.94	0.99	1.00	
Oil flowrate	(a)m³/h	8.71	0.2(1)	0	
Oil density @P,T	kg/m ³	627	741	795	
Oil viscosity @P,T	cP	0.21	0.55	1.73	
Heavy Liquid flowrate	(a)m ³ /h	0.8	0.93(1)	-	
Heavy Liquid density	kg/m ³	992	988	-	
Heavy Liquid viscosity	cP	0.6	0.5	-	
Foaming tendency	-	Yes	No	No	
Waxing tendency	-	No	No	No	

8	Service of Unit FGC Suction Coole	E-T7151						
9	Size 675.000 x 4699.94 n	nm Type BFU	Horz. Connected In	1 Parallel 1 Series				
10	Surf/Unit (Gross/Eff) 181.93 / 179.89 m2	2 Shell/Unit	1 Surf/Shell (Gro	ss/Eff) 181.93 / 179.89 m2				
11		PERFORMANCE	OF ONE UNIT					
12	Fluid Allocation Shell Side Tube Side							
13	Fluid Name	Water		Liquid Hydrocarbon				
14	Fluid Quantity, Total kg/hr	4672	20.3	147	745.1			
15	Vapor (In/Out)			14745.1	11469.0			
16	Liquid	46720.3	46720.3	1	1763.1			
17	Steam			1				
18	Water	46720.3	46720.3	1	1513			
19	Noncondensables							
20	Temperature (In/Out) C	35.00	62.20	84.70	45.00			
21	Specific Gravity	0.9947	0.9827		0.8072			
22	Viscosity mN-s/m2	0.7192	0.4514	0.0100	0.0090 V/L 0.4376			
23	Molecular Weight, Vapor							
24	Molecular Weight, Noncondensables							
25	Specific Heat kJ/kg-C	4.1776	4.1826	1.9100	1.7600 V/L 3.147			
26	Thermal Conductivity W/m-C	0.6225	0.6533	0.0200	0.0200 V/L 0.260			
27	Latent Heat kJ/kg			2336.90	692.742			
28	Inlet Pressure kPa	186	186.333					
29	Velocity m/s	0.3	27	21	1.84			
30	Pressure Drop, Allow/Calc kPa	50.001	23.963	30.000	20.593			
31	Fouling Resistance (min) m2-K/W	0250	0.000150					
32	Heat Exchanged W 1476581		MTD (Corrected)	16.3 C				
33	Transfer Rate, Service 502.4	7 W/m2-K Clean	762.76 W/m2-k	Actual	573.89 W/m2-K			
34	CONSTRUCTION OF ONE SHELL Sketch (Bundle/Nozzle Orientation)							
35		Shell Side	Tube Side					
36	Design/Test Pressure kPaG	1000.02 / FV	1000.02 / FV					
37	Design Temperature C	-20 / 200.00	-20 / 200.00					
38	No Passes per Shell	2	2	┨╰╘╤┉╤┷┷┷┷┷				
39	Corrosion Allowance mm	1.5	0		i			
40	Connections In mm	1 @ 202.718 150# RF	1 @ 254.509 150# RF					
41	Size & Out mm	1 @ 202.718 150# RF	1 @ 254.509 150# RF	1				
42	Rating Intermediate	@	<u>@</u>					
43	Tube No. 309U OD 19.050 mm	Thk(Avg) 1.651 mm	Length 4.700	m Pitch 23.812 r	nm Layout 60			
44	Tube Type Plain		Material 316	STAINLESS STEEL (17 C	R, 12 NI)			
45	IS Shell ID 675.000 mm OD mm Shell Cover							
46	Channel or Bonnet	Channel Cove	r					
47	Tubesheet-Stationary	ating						
48	Floating Head Cover Impingement Plate None							
49	Baffles-Cross Type SINGLE-SEG. %Cut (Diam) 20.00 Spacing(c/c) 298.000 Inlet 450.000 mm							
50	Baffles-Long Seal Type							
51	Supports-Tube U-Bend Type							
52	Bypass Seal Arrangement Tube-Tubesheet Joint							
53	Expansion Joint Type							
54	Rho-V2-Inlet Nozzle 162.61 kg/m-s2 Bundle Entrance 267.24 Bundle Exit 270.50 kg/m-s2							
55	Gaskets-Shell Side Tube Side							
56	-Floating Head							
57	Code Requirements ASME VIII Div.1 TEMA Class R							
58	Weight/Shell 4471.14 Filled with Water 6546.01 Bundle 2375.16 kg							
59	Remarks: 1. 2 nos. 2" 150# WNRF vent	and drain nozzles on shel	lside.					
1.00	1							

Table F.14: 1st stage flash gas compressors coolers' datasheet

8	Service of Unit FGC Interstage Cooler Train B Item No. E-T7152								
9	Size 680.	.000 x 5399.93 m	m Type BFU Horz. Connected In			1 Parallel 1 Series			
10	Surf/Unit (Gross/Eff) 24	5.07 / 242.44 m2	Shell/Unit	1	Surf/Shell (Gros	ss/Eff) 245.07 / 242.44 m2			
11			PERFORMANCE	OF ONE	UNIT				
12	Fluid Allocation	Fluid Allocation Shell Side Tube Side							
13	Fluid Name		Water			Blend 1			
14	Fluid Quantity, Total	kg/hr	6524	41.3		284	195.2		
15	Vapor (In/Out)	2				28495.2	20336.1		
16	Liquid		65241.3	(65241.3		7364		
17	Steam		00241.0						
18	Water						795		
19	Noncondensables								
20	Temperature (In/Out)	С	35.00		63.90	107.60	45.00		
21	Specific Gravity		0.9935	(0.9809	101.00	0.6319		
22	Viscosity	mN-s/m2	0.7192	(0.4403	0.0110	0.0100 V/L 0.2067		
23	Molecular Weight Vapo	r							
24	Molecular Weight, Nonc	ondensables							
25	Specific Heat	kJ/kg-C	4 1801		4 1901	2 1200	1 9100 V/I 2 542		
26	Thermal Conductivity	W/m-C	0.6237	(0 6585	0.0300	0.0200 V/I 0.119		
27	Latent Heat	kJ/ka	0.0201			1549.05	391 144		
28	Inlet Pressure	kPa	651	340		701	340		
20	Velocity	m/s	04	11		11	88		
20	Pressure Dron Allow/Ca	alc kPa	100.002		36 748	30.000	20.080		
21	Fouling Resistance (min	anc kra n) m2_K/M/	0.000250		30.740	0.000150			
22	Hoat Exchanged W	2204224	0.000	MTD (C)	orrected)	16.9 C	0150		
32	Transfor Data, Sonvice	2201321	W/m2 K Cloop		17.04 W/m2 K		601.21 W/m2 K		
24	Transier Nale, Service			0	17.04 W/III2-K	Skotch (Bundlo/N	lozzle Orientation)		
25		CONSTRUCT	Sholl Sido	<u>т</u>	ubo Sido	Sketch (Bunule/	vozzie Orientation)		
30	Design/Test Pressure	kPaC	1000 02 / EV	1000.02		<u>↓</u> <u>†</u>			
27	Design/Test Flessure	C	20/200.00	20/200.00					
20	No Baccoo por Shall	C	-207200.00		201200.00				
20	Correction Allowance	0.00	4.5		2	. ↓ †			
39	Connections In		1.0 1 @ 202 710 150# DE	1 @ 254	U				
40	Size 8 Out		1 @ 202.710 150# RF	1 @ 254	509 150# RF	-			
41	Bating Inter	modiato	1 @ 202.110 130# KF	1@204	1.509 150# KF	-			
42	Tube No. 45511 OF	D 15 075 mm		<u>w</u>	Longth 5 400	Ditch 10.950 m	m Lovout 20		
43	Tube Tube Tube	D 15.675100	THK(Avg) 1.051 Him		Material 216 9				
44	Photo	90.000 mm	00		Shall Cover	TAINLESS STEEL (17 C	/K, 12 INI)		
40	is shell UD 080.000 mm UD 080.000 mm Shell Cover								
40	Tubochoot Stationary		ating						
41	Tubesheet-Stationary Tubesheet-Floating								
48	Hoading Head Cover Impingement Plate None Type CINCLE SEC								
49	Barries-Cross Type SINGLE-SEG. %Cut (Diam) 24.84 Spacing(c/c) 482.000 Inlet 482.000 mm								
50	Barries-Long Seal Type								
51	Supports-rube U-Bend Type								
52	Bypass Seal Arrangement I ube- I ubesneet Joint								
53	Experision Julin. Type Des V2 Inter Nozzla 247.40, ko/m s2 Bundle Estrense 404.66 Bundle Estrense 404.66 Dundle Es								
54	Kno-v2-iniet Nozzie 317.49 kg/m-s2 Bundle Entrance 401.66 Bundle Exit 406.79 kg/m-s2								
55	Gaskets-Shell Side								
56	-rioaung nead								
5/	Code Requirements ASME VIII DIV.1 IEMA Class R								
58	Veignt/Sneil 5558.55 Filled with Water 7825.41 Bundle 3238.53 kg								
59	Remarks: 1.2 nos. 2"1	50# WNRF vent a	and drain nozzies on shel	I SIDE					

Table F.15: 2nd stage flash gas compressors coolers' datasheet

								1-1 #- T74 DOV 000			
Customer : SBM 2012 Project : ENI						II Blk15/06-West Hub R4 Valve Tag # : T71-PCV-003					
vontrol valve opecification PO # . 001.39510.000525 REV 0 Proj Num : vontrol Pv : Social # : 740000.047 Outple ID : 0						UTo	Page #			rage # . 47	
repared By : Senal # : / 18880.04/ Quote ID : C						на	Han_WJVZ9689_2823 P&ID :			'&ID .	
Shal	JULAC Engineering Son Brid Kev/By : U.U/CH1an Altemate :						Line : Date / Versi 2012 11 26 (12 6202				
olla	Snan Alam, Malaysia Application :							51		Act Type/Mati	VI. Cylinder / Aluminum
election	2	Pipe Size, Up/Down	100	10000			52		Act. Sizo		
	2	Allow Noise/Add Attn	100 Turno 05/1	103			52		ALL OIZE Stroko/Spring	30 2.50 / Dual	
	3	Process Eluid	Type oo / Proc	707 20055 Gas			ctuator	54		Subke/Spring Eail/Air-To	2.507 Duai
	4	Process Fluid	0.00	0.00 / 10.00 bar (g) / -10.00 / 110.00 °C n Cond 2 Max Cond 4				55		Fall/All-10	close / Open
S S	0	Design Fress./ remp.	U.UU Min					50	-	Tubing Size/Mt	1/4" / 216 66
ž	7	Tomporatura (°C)			00.000	COIIU 4	٩	57		Fubing Size/iviu	1/4 / 310 33 Swagolak / 216 69
Ž	0	Inlot Proce (bar /a)) 7.00		7.000			50		Fitting Wig/Wit	Swagelok / 510 55
5	0	Outlet Press (bar (g)) 1.00	, 	1.000			50		Actuator O Dinga	Pupo N
l o	10	Lig Flow Pote (m ³ /h)	/ 1.50 0	,	1.000			60		Actuator O-Rings	Duna-IN
0	11	Gas Flow Rate (Sm ³ /r)	0 000	10	000 3909			61			
L L L	12	Viscosity (cP)	0.01	1	0.012			62		Model	Logix 2000 Series / MD
a a	12	Vanor Press (bar (a)) 0.00	+ 1	0.012			62		Model #	2211MD-29-D6-M-04-40-09-00
ő	1/	SG-MW	25.00	0	35.020			64		Diagnostic	3211MD-20-D0-W-04-40-03-00
8	15	Max Shutoff / Shutoff	Clase	10.000 bar /	Class IV			65		Comm/Signal	HAPT / A = 20 mA
8	10	Available Air Supply	Class	5 500 bar (a)	Cid55 IV		b	66		Comm/Signal	Stainless Steel / M20
Ĕ.	17	Valve Eurotion		5.500 bar (g)			Ğ	67		Piezo Temperatur	e Extended Piezo temp
\vdash	10	valve Function	Min	Cond 2	Max	Cond 4	Siti	60		Plezo Temperatur Shoft	Linear D Shaft
	10	Elow Cooff (Cv)	12.17		112.057	COIIU 4	6	60		Action	A Wow
ata	20	Flow Coell. (Ov)	12.17	0	00.000			70		Foodbook	4-way
12	20	Proceuro Dron (har)	5 50		5 500			70		Gaugas	
te	21	Cheke Drop (bar)	2.00		3.000			72		Gauges Dec Teg/Mounting	2 33-33 F3//DAR/NEA
	22	Noise [[c-IFC1] (dBA)	00.00	0	97.000			72		Model	1/1-P1-0037
<u>a</u>	23	Volvo Vol (macht	0.00		0.405			74		woder	
0	24	Dipo Vol (macht	0.00	7	0.490			75			
\vdash	20	Pipe Vei (madi#) 0.197					No.	76			
	20	Size/Pressure Class/Body Form 4.00 / CL 150 / Cast					p	77			
	28	Trim # - Cv / Charact	orietic	stic 3.50B Cv:141 / Equal Percent Suiding 1 Stage / D / / Guided Flow Under Durpley SS 22% Cr / Durpley SS 22% Cr			Posln	78			
	20	Stanee/Pass Size/Po	t Guidina					70			
	20	Elow Direction	Coulding					90			
	21	Body Matl / Bonnet M	lati					81			
	22	End Conn/Sch/Eace	o Face	Integral Elange / / ISA S75.09.01				82		Model/Otv	
	22	Elange Einish	UTACE	125 - 250 Pa				02		Cv-Kv/Do-on	
	24	Bonnet Type	ne Standard /				<u>e</u>	84		Volt/Watt	
	25	Trim Type	P/B PTEE /			2	85		Body/Housing Mtl		
ē.	36	Plug Matl / Facing				e e	86		Body/Flect Conn		
len -	37	Plug Stem Facing/Pil	Mall / Facing Duplex 55 22% Ci / /				S	87		Port Size/Mtg	
AS6	38	Seat Ring Matl / Faci	na	a Dupley SS 22% Cr /				88		Tan/Reset-Overrin	
2	20	Soft Seat/Pilot Plug	Plun Duplex 33 2270 Cl /					89		Air Filter/Mnting	1
, Š	40	Retainer Matl	Mati Dunley SS 22% Cr					90		Filter-Reg/Mnting	ASCO 342A8205GMB / Bracket
e	41	PB Design/Sleeve Mt	PB Design/Sleeve Mtl Duplex SS 22% Cr					91		Flow Booster	1
2	42	Guides Unner/Lower Duplex 22% & GL PTEE/Duplex 22% &				1 AV 22% & G	РТ	FEQ2		Booster Config	,
>	43	Packing Matl / Style /	Backing Matt / Style / Vac / Fire PTEF V-Ring / Single / /					02		Ouick Exhaust	1
	44	Packing Mau/Style/Vac/File FIFEV-Ring/Single//					S.	94		SunTube/Jctn Boy	
	45	Bonnet Port / Body D	nnet Port / Body Drain / Iows Type / Material /				Othe	95		Lockup	
	46	Bellows Type / Mater						96		Plate ID	
	47	Body Bolting/Bonnet	Flange Mati – Dunley SS 22% Cr / Dunley SS 22% Cr		SS 22% Cr		97		Plate Type		
	48	Gaskets	askets PTFF					98		Packaging	Standard
	49	Gland Flance Materia	and Flange Material Stainless Steel					90		Pwr Sup	orandara
	50	Gland Flance Bolting	Gland Flange Rolfing Stainless Steel				00		Wiring Copp. Two	2	
	00	Orang Franke Dolung Stalliess Steel				00	-	coming contract you	·		

Table F.16: Pressure control valve T71-PCV-003's datasheet
		`	ustomer : SB	M 2012		Project : EN	l Blk	15/06-W	/est Hub R4 🛛 🛛 🛛	alve Tag # : T71-PCV-013
Control	ntrol Valve Specification PO # : 001.39510.000525 REV 0 Proj Nu			Proj Num :	Num : Page # : 50					
repare	ed By	y: S	erial # : 7188	80.050		Quote ID : C	НТа	n_WJV	Z9689_2826 F	2&ID :
JOLA	CEr	ngineering Sdn Bhd R	ev/By : 0.0/C	HTan		Alternate :			L	ine :
Shah	Alan	n, Malaysia A	oplication :							ate / Ver : 2012-11-26 /12.6292
	1	Pipe Size, Up/Down	12.000	/ 12.000				51	Act. Type/Matl	VL-ES Cylinder / Carbon Steel
c	2	Pipe Sch, Up/Down	10S / 1	0S				52	Act. Size	150ES
ē	3	Allow Noise/Add Attn/Ty	pe 85/0/					53	Stroke/Spring	6.00 / Heavy Duty
e	4	Process Fluid	Proces	s Gas			þ	54	Fail/Air-To	Close / Open
Se	5	Design Press./Temp.	0.00 / 1	10.00 bar (g) /·	-10.00 / 110.0	0° 00	nat	55	Vol. Tank/Orient	1
e	6		Min	Cond 2	Max	Cond 4	PCt D	56	Tubing Size/Mtl	3/8" / 316 SS
0	7	Temperature (°C)	90.000		90.000			57	Fitting Mfg/Mtl	Swagelok / 316 SS
5	8	Inlet Press (bar (g))	2.000		2.000			58	Handwheel	-
ŧ	9	Outlet Press (bar (g))	0.500		0.500			59	Actuator O-Rings	Buna-N
8_	10	Lig Flow Rate (m ^{*/h})	0		0			60		
5	11	Gas Flow Rate (Sm ³ /h)	1770.00)	17697.000			61		
LL m	12	Viscosity (cP)	0.011		0.011			62	Model	Logix 3000 Series / MD
ata	13	Vapor Press (bar (a))	0.000		0.000			63	Model #	3211MD-28-D6-M-04-40-0S-00
s s	14	SG-MW	43.030		43.030			64	Diagnostic	Advanced
8 8	15	Max Shutoff / Shutoff C	ass	10.000 bar /	Class IV			65	Comm/Signal	HART / 4 - 20 mA
ĕ	16	Available Air Supply	1	5.500 bar (g)			ē	66	Housing/Conn	Stainless Steel / M20
٩	17	Valve Function		Throttling			tio	67	Piezo Temperature	e Extended Piezo temp
	18		Min	Cond 2	Max	Cond 4	osi	68	Shaft	Linear-D Shaft
m	19	Flow Coeff. (Cv)	78.734		703.179		٩	69	Action	4-Way
Gat	20	Est Stroke (Percent)	13.000		68.000			70	Feedback	None
p	21	Pressure Drop (bar)	1.500		1.500			71	Gauges	2 SS-SS PSI/BAR/KPA
ate	22	Choke Drop (bar)	1.144		1.475			72	Pos Tag/Mounting	T71-PY-013/
G	23	Noise [[c-IEC]] (dBA)	74.000		85.000			73	Model	
8	24	Valve Vel (mach#)	0.029		0.287			74		
Ŭ	25	Pipe Vel (mach#)	0.187					75		
	26	Valve Model / Body Typ	e I	Mark One / Glol	be / MegaStre	eam	ŝ	76	7	
	27	Size/Pressure Class/Bo	dy Form	0.00 / CL 150	/ Cast		2	77		
	28	Trim # - Cv / Characteri	stic 8	3.00A Cv:962	/ Equal P	ercent	s	78		
	29	Stages/Pass Size/Ret G	uiding	Stage / A / / C	Guided		6	79	7	
	30	Flow Direction	- 1	Flow Under				80		
	31	Body Matl / Bonnet Mat		Ouplex SS 22%	Cr / Duplex	SS 22% Cr		81		
	32	End Conn/Sch/Face to	ace	ntegral Flange	/ / ISA \$75.0	8.01		82	Model/Qty	
	33	Flange Finish		25 - 250 Ra				83	Cv-Kv/De-en	
	34	Bonnet Type	1	Standard /			bid	84	Volt/Watt	
≥	35	Trim Type	1	P/B PTFE /			ence	85	Body/Housing Mtl	
ę	36	Plug Matl / Facing	1	Ouplex SS 22%	Cr//		100	86	Body/Elect Conn	
Ser	37	Plug Stem Facing/Pilot	Spring	ri –				87	Port Size/Mtg	
As	38	Seat Ring Matl / Facing		Duplex SS 22%	Cr/			88	Tag/Reset-Overrid	le
ò	39	Soft Seat/Pilot Plug						89	Air Filter/Mnting	1
8	40	Retainer Matl	1	Duplex SS 22%	Cr			90	Filter-Reg/Mnting	ASCO 342A8205GMB / Bracket
9	41	PB Design/Sleeve Mtl	1	Duplex SS 22%	Cr			91	Flow Booster	Bifold VBP-12-11-V-02 / Bracket
0	42	Guides Upper/Lower		Duplex 22% & 0	GL PTFE/Dup	lex 22% & G	L PT	FE92	Booster Config	1 Top 1 Bottom
	43	Packing Matl / Style / Va	ac / Fire F	• TFE V-Rina / S	Sinale / /			93	Quick Exhaust	
	44	Packing - Live-Loaded					ers	94	SupTube/Jctn Box	3/4" By Others /
	45	Bonnet Port / Body Drai	n	I			둰	95	Lockup	
	46	Bellows Type / Material		I			Ŭ	96	Plate ID	
	47	Body Bolting/Bonnet Fla	inge Mati	Duplex SS 22%	Cr / Duplex	SS 22% Cr		97	Plate Type	
	48	Gaskets	-	PTFE				98	Packaging	Standard
	49	Gland Flange Material		Stainless Steel				99	Pwr. Sup.	
	50	Gland Flange Bolting		Stainless Steel				00	Wiring Conn. Type	

Table F.17: Pressure control valve T71-PCV-013's datasheet

	-	-	Customer : \$	BM 2012		Project : EN	I Blk	15/06-W	/est Hub R4 🛛 💧	/alve Tag # : T71-PCV-010
ontrol Va	rol Valve Specification PO # : 001.39510.000525 REV 0 Proj Nu ared By : Serial # : 718880.049 Quote			Proj Num :			F	2age # : 49		
repared	By:		Serial # : 71	880.049		Quote ID : C	НТа	n_WJV2	Z9689_2825 F	2&ID :
JOLAC	Engir	eering Sdn Bhd	Rev/By : 0.0	CHTan		Alternate :			L	ine :
Shah Ala	am, N	/alaysia	Application :				_		[ate / Ver : 2012-11-26 /12.6292
1	_	Pipe Size, Up/Down	8.00	0 / 8.000				51	Act. Type/Matl	VL Cylinder / Aluminum
c 2		Pipe Sch, Up/Down	10S	10S				52	Act. Size	100
₽ 3	_	Allow Noise/Add Attn/	Type 85/)/				53	Stroke/Spring	3.00 / Standard
		Process Fluid	Proc	ess Gas			Ę	54	Fail/Air-To	Close / Open
ဖ <u>ိ</u> 5		Design Press./Temp.	0.00	/ 10.00 bar (g) /	-10.00 / 110.	00 °C	tria	55	Vol. Tank/Orient	1
8 6			Min	Cond 2	Cond 3	Cond 4	Å.	56	Tubing Size/Mtl	1/4" / 316 SS
s 7	_	Temperature (°C)	90.00	0	90.000			57	Fitting Mfg/Mtl	Swagelok / 316 SS
<u>a</u> 8		Inlet Press (bar (g)	7.00)	7.000			58	Handwheel	
Ē 9		Outlet Press (bar (g)	6.50)	6.500			59	Actuator O-Rings	Buna-N
8_1	0	Lig Flow Rate (m ^{*/h})	0		0			60	_	
5 1 [°]	1	Gas Flow Rate (Sm ³ /h)	297.0	00	8986.000			61		
u 12	2	Viscosity (cP)	0.01	1	0.012			62	Model	Logix 3000 Series / MD
ğ 1	3	Vapor Press (bar (a))	0.00)	0.000			63	Model #	3211MD-28-D6-M-04-40-0S-00
g 14	4	SG-MW	35.92	0	35.920			64	Diagnostic	Advanced
ő <u>1</u>	5	Max Shutoff / Shutoff	Class	10.000 bar /	Class IV			65	Comm/Signal	HART / 4 - 20 mA
<u>2</u> 10	6	Available Air Supply		5.500 bar (g)			ē	66	Housing/Conn	Stainless Steel / M20
<u>م</u> 1	7	Valve Function		Throttling			je j	67	Piezo Temperatur	e Extended Piezo temp
18	8		Min	Cond 2	Cond 3	Cond 4	osi	68	Shaft	Linear-D Shaft
g 19	9	Flow Coeff. (Cv)	7.77	}	233.684		٩	69	Action	4-Way
8 2	0	Est Stroke (Percen	16.00	0	90.000			70	Feedback	None
p 2'	1	Pressure Drop (bar)	0.50)	0.500			71	Gauges	2 SS-SS PSI/BAR/KPA
ate 2	2	Choke Drop (bar)	4.95	7	4.508			72	Pos Tag/Mounting	T71-PY-010/
3 2	3	Noise [IEC] (dBA)	<70		<70			73	Model	
8 24	4	Valve Vel (mach#	0.00	2	0.074			74		
2	5	Pipe Vel (mach#	0.03	3			ι,	75		
20	6	Valve Model / Body T	/pe	Mark One / Glo	be / Standard	d l	ŝ	76		
2	7	Size/Pressure Class/E	Body Form	6.00 / CL 150 /	Cast		2	77		
28	8	Trim # - Cv / Characte	eristic	5.00 Cv:355.0) / Equal P	ercent	s	78		
29	9	Stages / Design		111			ď	79	7	
30	0	Flow Direction		Flow Over				80		
3	1	Body Matl / Bonnet M	atl	Duplex SS 22%	Cr / Duplex	SS 22% Cr		81		
3	2	End Conn/Sch/Face t	o Face	Integral Flange	/ / ISA \$75.0	08.01		82	Model/Qty	
3	3	Flange Finish		125 - 250 Ra				83	Cv-Kv/De-en	
34	4	Bonnet Type		Standard /			bid	84	Volt/Watt	
≥ 3	5	Trim Type / P/B Seal	Matl.	Unbalanced /			e D	85	Body/Housing Mtl	
윤 30	6	Plug Matl / Facing / S	em cover	Duplex SS 22%	6 Cr / /		100	86	Body/Elect Conn	
8 3	7	Stem Facing / Pilot Pl	ug/Spring	1i -			~	87	Port Size/Mtg	
× 3	8	Seat Ring Matl / Facir	q	Duplex SS 22%	6 Cr /			88	Tag/Reset-Overrig	le
÷ 3	9	Seat Style / Soft Mate	rial					89	Air Filter/Mnting	1
B 4	0	Retainer Matl		Duplex SS 22%	6 Cr			90	Filter-Reg/Mnting	ASCO 342A8205GMB / Bracket
9 4'	1	Sleeve Material						91	Flow Booster	1
1	2	Guides Upper/Lower		Duplex 22% & (GL PTFE/Du	olex 22% & G	LPT	FE92	Booster Config	
4	3	Packing Matl / Style /	Vac / Fire	PTFE V-Ring /	Single / /			93	Quick Exhaust	1
4	4	Packing - Live-Loade	1				e la	94	SupTube/Jctn Box	
4	5	Bonnet Port / Body D	ain	1			Æ	95	Lockup	
4	6	Bellows Type / Materi	al	1			ľ	96	Plate ID	
4	7	Body Boltina/Bonnet	lange Matl	Duplex SS 22%	Gr / Duplex	SS 22% Cr		97	Plate Type	
4	8	Gaskets		PTFE				98	Packaging	Standard
4	9	Gland Flange Materia		Stainless Steel				99	Pwr. Sup	
5	0	Gland Flange Bolting		Stainless Steel				00	Wiring Conn. Type	•
							_	_		

Table F.18: Pressure control valve T71-PCV-010's datasheet

		-		Custor	mer : SBM	2012		Project : EN	Blk1	15/06-W	/est Hub R4	Valve Tag # : T62-LCV-005
Contro	l Valv	/e S	specification	PO#:	: 001.3951().000525 RE	VO	Proj Num :				Page # : 31
repar	red By	y:		Serial	#:718880	.031		Quote ID : C	HTa	n_WJV	Z9689_2807	P&ID :
JOL/	AC Er	ngin	eering Sdn Bhd	Rev/B	y : 0.0/CHT	an		Alternate :				Line :
Shah	n Alar	n, N	Malaysia	Applic	ation :				_			Date / Ver : 2012-11-26 /12.6292
	1		Pipe Size, Up/Down	1	4.000 / 4.	000				51	Act. Type/Matl	VL Cylinder / Aluminum
c -	2		Pipe Sch, Up/Down		40/40					52	Act. Size	50
읉	3		Allow Noise/Add Att	tn/Type	85/0/					53	Stroke/Spring	2.00 / Standard
ě	4		Process Fluid		Produced	Water			Ę.	54	Fail/Air-To	Close / Open
Š.	5		Design Press./Temp	p.	0.00 / 10.	00 bar (g) /	0.00 / 110.00	°C	Ę.	55	Vol. Tank/Orient	1
Ş.	6				Min	Nor	Max	Cond 4	Ř	56	Tubing Size/Mtl	1/4" / 316 SS
S-	7	-	Temperature (°C)		80.000	80.000	84.000			57	Fitting Mfg/Mtl	Swagelok / 316 SS
2	8		Inlet Press (bar ((g))	7.100	2.000	7.100			58	Handwheel	Side Mnt/Cont Connect
E.	9		Outlet Press (bar ((g))	1.100	1.100	1.100			59	_Actuator O-Rings	Buna-N
ŏ	10	-	Lig Flow Rate (m ^{1/n}))	16.600	60.000	80.000			60	_	
ē	11	-	Gas Flow Rate (Sm ⁷)	/n)	0	0	0		_	61		
2	12	-	Viscosity (CP)	(-))	0.400	0.400	0.400			62	Model	Logix 3000 Series / MD
Da	13	-	Vapor Press (bar ((a))	0.450	0.450	0.450			63	Model #	3211MD-28-D6-M-04-40-0S-00
8	14	-	SG-MW	# Olara	0.940	0.940	0.940			64	Diagnostic	Advanced
8	15	-	Max Shutoff / Shuto	m Class	1	9.800 bar /	Class IV		5	65	Comm/Signal	HART / 4 - 20 MA
L L	16	-	Available Air Supply	/	5.5 Th	00 bar (g)			- E	65	Housing/Conn	Stainless Steel / M20
	1/		valve Function		Min	otuing	May	Cond 4	Sitio	60	Plezo remperatu	re Extended Plezo temp
	18	-	Flow Cooff (Cu)		7.507	70.000	26.524	Cond 4	Å	60	_ Snan	Linear-D Shait
ata	19	-	Flow Coell. (CV)	sent)	1.000	70.898	30.034			09	Acuon	4-way
Ő	20		Est Stroke (Pero	xenty	6.000	81.000	56.000			70	Feedback	
teo	21	-	Cheke Drop (bar)		6.000	0.900	6.444			72	Bac Tag/Mountin	2 33-33 F3I/DAR/KFA
	22	\vdash	Noice JICD (dBA)	,)	<70	<70	0.444			72	Pos rad/wounun Model	u 162-L1-0057
0	23		Valve Vel (m/s)	, ,	0.560	2.057	27/3			74	Model	
0	24		Pine Vel (m/s)		2 707	2.037	2.145			75	-	
H	26		Valve Model / Body	Type	Ma	rk One / Glo	he / CayCont	rol	š	76	-	
I I	20		Size/Pressure Class	s/Body Ec	orm 40	0/CL 150/	Cast		P	77	-	
I I	28		Trim # - Cy / Charac	cteristic	30	0A Cv:95	/ Foual Pe	ercent	- s	78	_	
	29	T	Stage	otoriotio	1.9	tage / / /	/ Equal (aroon.	å	79	-	
	30		Flow Direction		Flo	w Over				80	-	
	31		Body Matl / Bonnet	Matl	Ca	rbon Steel (V	VCB) / Carbo	n Steel		81		
11	32		End Conn/Sch/Face	e to Face	Inte	earal Flance	/ / ISA S75.0	08.01		82	Model/Qtv	
	33		Flance Finish		125	5 - 250 Ra				83	Cv-Kv/De-en	
	34		Bonnet Type		Sta	indard /			ē.	84	Volt/Watt	
≥	35		Trim Type		Un	balanced /			e D	85	Body/Housing Mt	1
đ	36		Plug Matl / Facing		316	6 SS / Full Co	ont. Alloy 6 /		00	86	Body/Elect Conn	
Sel	37		Plug Stem Facing		Allo	by 6, LGA / /			<i>"</i>	87	Port Size/Mtg	
As	38		Seat Ring Matl / Fac	cing	316	6 SS / Full Bo	ore Alloy 6			88	Tag/Reset-Overr	de
δ,	39		Soft Seat Material							89	Air Filter/Mnting	1
ы	40		Retainer Matl		316	5 SS				90	Filter-Reg/Mnting	ASCO 342A8205GMB / Bracket
§.	41		PB Design/Sleeve N	Viti						91	Flow Booster	1
S	42		Guides Upper/Lowe	er	316	5 SS & GL P	TFE/Alloy 6			92	Booster Config	
	43		Packing Matl / Style	e / Vac / F	Fire PT	FE V-Ring / \$	Single / /		ø	93	Quick Exhaust	Ι
	44		Packing - Live-Load	led					Je.	94	SupTube/Jctn Bo	x /
	45		Bonnet Port / Body I	Drain	1				8	95	Lockup	
	46		Bellows Type / Mate	erial						96	Plate ID	
	47	\square	Body Bolting/Bonne	et Flange	Matl B7	-2H PTFE(X)	/lan) Coated	Carbon Stee	I (W	CB9)7	Plate Type	
	48	\vdash	Gaskets		PT	FE				98	Packaging	Standard
	49	\vdash	Gland Flange Mater	nal	Sta	inless Steel	Distant.			99	Pwr. Sup.	
\vdash	50	-	Giand Flange Boltin	IQ	Ca	rbon Steel, Z	inc Plated			00	Winng Conn. Typ	e

Table F.19: Pressure control valve T62-LCV-005's datasheet

			-	Cust	omer : SBM	2012		Project : ENI	Blk	15/06-\	Vest Hub R4	Valve Tag # : T62-LCV-007
Contro	ntrol Valve Specification PO # : 001.39510.000525 RE pared By : Serial # : 718880.032		V 0	Proj Num :				Page # : 32				
repar	ed B	y:		Seria	al # : 718880	.032		Quote ID : C	нта	n_WJ\	/Z9689_2808	P&ID :
JOL	AC Er	ngin	eering Sdn Bhd	Rev/	/By : 0.0/CH1	fan		Alternate :				Line :
Shah	n Alar	n, N	lalaysia	Appl	ication :							Date / Ver : 2012-11-26 /12.6292
	1		Pipe Size, Up/Dow	vn	12.000 /	12.000				51	Act. Type/Matl	VL Cylinder / Aluminum
ç	2		Pipe Sch, Up/Dow	/n	20/20					52	Act. Size	200
읉	3		Allow Noise/Add A	Attn/Type	85/0/					53	Stroke/Spring	4.00 / Standard
ě	4		Process Fluid		Crude Oi				for	54	Fail/Air-To	Close / Open
Š	5		Design Press./Ten	np.	0.00 / 10	.00 bar (g) / -	-10.00 / 110.0	0° °C	tua	55	Vol. Tank/Orient	1
₽.	6				Min	Cond 2	Max	Cond 4	Å	56	Tubing Size/Mtl	3/8" / 316 SS
8	7		Temperature (°C)	87.000		89.000			57	Fitting Mfg/Mtl	Swagelok / 316 SS
ō	8		Inlet Press (bar	ar (g))	7.000		7.000			58	Handwheel	Side Mnt/Cont Connect
Ē	9		Outlet Press (bar	ar (g))	1.000		1.000			59	Actuator O-Ring	s Buna-N
l õ	10		Liq Flow Rate (m [*])	*/h)	72.100		759.700			60		
ō.	11		Gas Flow Rate (Sm	n³/h)	0		0			61		
m -	12		Viscosity (cP	"	14.600		16.200			62	Model	Logix 3000 Series / MD
a	13		Vapor Press (bar	ar (a))	7.970		7.980			63	Model #	3211MD-28-D6-M-04-40-0S-00
8	14		SG-MW		0.820		0.820			64	Diagnostic	Advanced
1 ő	15		Max Shutoff / Shut	toff Class	s 1	0.000 bar /	Class IV			65	Comm/Signal	HART / 4 - 20 mA
Į Ž	16		Available Air Supp	bly	5.5	00 bar(g)			e.	66	Housing/Conn	Stainless Steel / M20
-	17		Valve Function		Th	rottling			iti o	67	Piezo Temperat	ure Extended Piezo temp
	18				Min	Cond 2	Max	Cond 4	so	68	Shaft	Linear-D Shaft
<u>m</u>	19		Flow Coeff. (Cv	v)	129.147		838.663		۵.	69	Action	4-Way
۵	20		Est Stroke (Pe	ercent)	24.000		66.000			70	Feedback	None
8	21		Pressure Drop (ba	ar)	6.000		6.000			71	Gauges	2 SS-SS PSI/BAR/KPA
ate	22		Choke Drop (bar	ar)	0.343		0.904			72	Pos Tag/Mountin	na T62-LY-007 /
5	23		Noise [IEC] (dB	BA)						73	Model	
ů.	24		Valve Vel (m/s	/s)	Flashing		Flashing			74		
	25		Pipe Vel (m/s	/s)	Flashing				2	75		
	26		Valve Model / Bod	ly Type	Ma	rk One / Glob	be / Standard		٥,	76		
	27		Size/Pressure Clas	ss/Body F	Form 12.	00 / CL 150 /	Cast		2	77		
	28		Trim # - Cv / Chara	acteristic	9.5	0 Cv:1310	/ Equal Pe	ercent	S	78		
	29		Stages / Design		11	1			ď	79		
	30		Flow Direction		Flo	w Over				80		
	31		Body Matl / Bonne	et Matl	Ca	rbon Steel (W	VCB) / Carbo	n Steel		81		
	32		End Conn/Sch/Fac	ce to Fac	e Inte	egral Flange /	/ / ISA S75.0	8.01		82	Model/Qty	
	33		Flange Finish		12	5 - 250 Ra				83	Cv-Kv/De-en	
	34		Bonnet Type		Sta	andard /			bio	84	Volt/Watt	
≥	35		Trim Type / P/B Se	eal Matl.	Un	balanced /			u a	85	Body/Housing M	tl
Ē	36		Plug Matl / Facing	/ Stem c	over 31	5 SS / Full Co	ont. Alloy 6 /		ŝ	86	Body/Elect Conr	1
es se	37		Stem Facing / Pilo	ot Plug/Sp	oring All	oy 6, LGA / 7				87	Port Size/Mtg	
Å,	38		Seat Ring Matl / Fa	acing	31	6 SS / Full Bo	ore Alloy 6			88	Tag/Reset-Over	ride
φ,	39		Seat Style / Soft M	<i>N</i> aterial						89	Air Filter/Mnting	1
ы	40		Retainer Matl		31	5 SS				90	Filter-Reg/Mntin	g ASCO 342A8205GMB / Bracket
e e	41		Sleeve Material							91	Flow Booster	1
S a	42		Guides Upper/Low	ver	31	5 SS & GL P1	TFE/Alloy 6			92	Booster Config	
	43		Packing Matl / Styl	le / Vac /	Fire PT	FE V-Ring / S	Single / /		ø	93	Quick Exhaust	1
	44		Packing - Live-Loa	aded					e	94	SupTube/Jctn B	ox /
	45		Bonnet Port / Body	y Drain	1				8	95	Lockup	
	46		Bellows Type / Ma	aterial	1					96	Plate ID	
	47		Body Bolting/Bonn	net Flange	e Mati 🛛 B7	-2H PTFE(Xy	lan) Coated /	Carbon Stee	I (W	CB9)7	Plate Type	
	48		Gaskets		PT	FE				98	Packaging	Standard
	49		Gland Flange Mate	erial	Ca	rbon Steel				99	Pwr. Sup.	
	50		Gland Flange Bolti	ing	Ca	rbon Steel, Z	inc Plated			00	Wiring Conn. Ty	pe
	0.4		0 10 11 11	1.77	17					0.4		

Table F.20: Pressure control valve T62-LCV-007's datasheet

		1	-	Customer : S	BM 2012		Project : EN	ll Blk	15/06	-We	st Hub R4	/alve Tag # : T71-PCV-004
Contr	District : 05/02/07/2012 Project : 2012/07/2012 Project : 2012/07/2012 ntrol Valve Specification PO # : 001.39510.000525 REV 0 Proj Num pared By : Serial # : 718880.048 Quote ID :			Proj Num :				I	Page # : 48			
Prepa	red B	y:		Serial # : 718	3880.048		Quote ID : C	CHTa	n_W	JVZ9	689_2824	P&ID :
JOL	AC EI	ngin	eering Sdn Bhd	Rev/By : 0.0	CHTan		Alternate :				I	line :
Sha	h Alar	<u>m, N</u>	lalaysia	Application :				_		_		Date / Ver : 2012-11-26 /12.6292
	1		Pipe Size, Up/Down	8.00	0 / 16.000				51	-	Act. Type/Matl	VL-ES Cylinder / Carbon Steel
ç	2	-	Pipe Sch, Up/Down	20/3	20				52	-	Act. Size	100ES
e,	3	-	Allow Noise/Add Attn/	Гуре 85/0)/				53	-	Stroke/Spring	4.00 / Standard
ě	4	-	Process Fluid	Proc	ess Gas			to	54	-	Fail/Air-To	Open / Close
ő	5	-	Design Press./Temp.	0.00	/ 10.00 bar (g) /	-10.00 / 110.	00 °C	tus	55	-	Vol. Tank/Orient	1
2	6	-		Min	Cond 2	Max	Cond 4	Ř	56	-	Tubing Size/Mtl	3/8" / 316 SS
S S	7	-	Temperature (°C)	95.00	0	82.000			57	-	Fitting Mfg/Mtl	Swagelok / 316 SS
2	8	-	Inlet Press (bar (g))	1.00)	1.000			58	-	Handwheel	
Ę	9	+	Outlet Press (bar (g))	0.20)	0.200			59	-	Actuator O-Rings	Buna-N
Ŏ	10	+	Lig Flow Rate (m ^{-/n})	0		0			60	-		
Ē	11	-	Gas Flow Rate (Sm ² /n)	213./	0	8182.000		-	61	+		
2	12	+	VISCOSITY (CP)	0.01	2	0.010			62	-	Model	Logix 3000 Series / MD
Da	13	+	Vapor Press (bar (a))	0.00)	0.000			63	+	Model #	3211MD-28-D6-M-04-40-0S-00
8	14	-	SG-MW	44.10	U (0.000 has (44.100			04	-	Diagnostic	Advanced
8	15	+	Max Shuton / Shuton	Jass	10.000 bar /	Class IV		5	65	-	Comm/Signal	HART / 4 - 20 MA
L L L	16	+	Available Air Supply		5.500 bar (g)			Pue	66	-	Housing/Conn	Stainless Steel / M20
-	1/	+	valve Function	Min		Mari	Orand 4	sitio	0/	-	Piezo Temperatul	e Extended Plezo temp
	18	+	Flow One # (Cv)	Min		Max	Cond 4	Å	08	+	Shart	Linear-D Shart
ata	19	+	Flow Coeff. (CV)	11./5	8	453.151		-	69	-	Action	4-way
Ő	20		Est Stroke (Ferdeni Dragouro Drago (har)	13.00	0	92.000			70	-	Feedback	None
fed	21	+	Pressure Drop (bar)	0.80) 	0.800			71	+	Gauges	2 SS-SS PSI/BAR/KPA
	22	+	Choke Drop (Jar)	1.41.	5	1.227			72	+	Pos rad/Mounting	1 1/1-PY-004/
<u>a</u>	23		Volvo Vol (mach#)	0</td <td>7</td> <td>0.250</td> <td></td> <td></td> <td>74</td> <td>-</td> <td>woder</td> <td></td>	7	0.250			74	-	woder	
0	24	+	Valve vel (nach#) Dipo Vol (mach#)	0.00		0.209			74	+		
	20	+	Valve Model / Body Ty	0.07	Mark One / Glo	ho / MogaStr	oam	ð,	76	-	•	
	20	+	Size/Prossure Class/P	pe odv Form	8 00 / CL 150 /	De / Weyaou Cast	ealli	p	70	-		
	20		Trim # - Cv / Characte	ristic	6 25 Cv:615 () / Fousi P	orcont	-	78	+		
	20	Ħ	Stanes/Pass Size/Ret	Guiding	1 Stane / B / / 9	Standard	ercent	å	70	+	-	
	20		Flow Direction	Outding	Flow Under	otanuaru			80	+		
	21		Body Matl / Bonnet M:	atl	316 SS / 316 S	9			81	+		
	32		End Conn/Sch/Eace to	Face	Integral Flange	USA S75 (08 01		82		Model/Otv	
	22		Elange Finish	1 400	125 - 250 Ra	///0//0/0/			83	1	Cv-Kv/De-en	
	34		Bonnet Type		Standard /			<u>q</u>	84		Volt/Watt	
_	35		Trim Type		P/B PTFE /			ou o	85		Body/Housing Mtl	
l e	36		Plug Matl / Facing		316 SS / /			10×	86		Body/Elect Conn	
Ser	37		Plug Stem Facing/Pilo	t Spring	11			0,	87		Port Size/Mtg	
As	38		Seat Ring Matl / Facin	a	316 SS /				88		Tag/Reset-Overri	de
à	39		Soft Seat/Pilot Plug	-					89		Air Filter/Mnting	1
B	40		Retainer Matl		316 SS				90		Filter-Reg/Mnting	ASCO 342A8205GMB / Bracket
e e	41		PB Design/Sleeve Mtl		316 SS				91		Flow Booster	1
a	42		Guides Upper/Lower		316 SS & GL P	TFE/316 SS	& GL PTFE		92		Booster Config	
1	43		Packing Matl / Style /	/ac / Fire	PTFE V-Ring /	Single / /		m	93		Quick Exhaust	1
	44		Packing - Live-Loaded		-	-		e	94		SupTube/Jctn Bo	K /
	45		Bonnet Port / Body Dr	ain	1			통	95		Lockup	
	46		Bellows Type / Materia	al	1			ľ	96		Plate ID	
	47		Body Bolting/Bonnet F	lange Matl	B8M-8MA / 316	SS			97		Plate Type	
	48		Gaskets		PTFE				98		Packaging	Standard
1	49		Gland Flange Material		Stainless Steel				99		Pwr. Sup.	
	50		Gland Flange Bolting		Stainless Steel				00		Wiring Conn. Typ	e

Table F.21: Pressure control valve T71-PCV-004's datasheet

		<u> </u>	Customer : SBN	2012		Project : EN	l Blk	15/06-We	est Hub R4 🛛 🛛 🛛	alve Tag # : T71-LCV-511
Control	pared By : Serial # : 718880.042 Quot			Proj Num :			P	'age # : 42		
repare	ed By	/: 	Senal # : /1888	0.042		Quote ID : C	на	n_WJVZ	9689_2818 P	28ID :
JOLA	CEn	igineering Sdn Bhd	Rev/By : 0.0/CH	lan		Alternate :			L	
Shah	Alan	n, Malaysia	Application :				1	54		Date / Ver : 2012-11-26 /12.6292
	1	Pipe Size, Up/Down	2.00077	2.000				51	Act. Type/Mati	VL Cylinder / Aluminum
5	2	Pipe Scn, Up/Down	160/16	0				52	Act. Size	50
1.	3	Allow Noise/Add Attn	Type 85/0/					53	Stroke/Spring	./5/Dual
<u>0</u>	4	Process Fluid	Conden	sate			ato	54	Fail/Air-To	close / Open
٥ ٥	5	Design Press./Temp.	0.00/1	15.00 bar (g) /	-15.00 / 180	0.00°C	Ť	55	Vol. Tank/Orient	1
l ≥ –	6		Min	Cond 2	Max	Cond 4	Ă	56	Tubing Size/Mtl	1/4" / 316 SS
× −	(Temperature (°C)	45.000		45.000			5/	Fitting Mtg/Mti	Swagelok / 316 SS
2	8	Inlet Press (bar (g)) 57.000	-	57.000			58	Handwheel	Dura N
	9	Outlet Press (bar (g)	18.000	-	18.000			59	Actuator O-Rings	Buna-N
0-	10	Liq Flow Rate (m/n)	0.500		5.000			60	-	
P -	11	Gas Flow Rate (Smm)	0.400	-	0 400		-	01	Madal	Lexis 2000 Octor (MD
<u>m</u>	12	VISCOSITY (CP)	0.106	-	0.100			02	Model	Logix 3000 Series / MD
۵-	13	Vapor Press (bar (a)	58.010		58.010			03	_ Model #	3211MD-28-D6-M-04-40-05-00
8	14	SG-WW May Obudaff / Obudaff	0.490	45.000 her /	0.490			04	Diagnostic	Advanced
8 - S	15	Max Shuton / Shuton	Class	115.000 bar /	Class IV		5	00	Comm/Signal	HART / 4 - 20 MA
Ĕ –	10	Available Air Supply	5.	500 bar (g)			u de	67	Housing/Conn	Stainless Steel / M20
	1/	valve Function	Min	Cond 2	Max	Cand 4	sitio	0/	Piezo remperature	Extended Plezo temp
	18	Flow Occ# (Cv)	Min	Cond 2	Max	Cond 4	Ğ	08	Shart	Linear-D Shart
ata –	19	Flow Coeff. (CV)	0.188		1.207			09	Action	4-way
Ő-	20	Est Stroke (Feider	29.000		20,000			70	-Feedback	None
- te	21	Cheke Drop (bar)	39.000		39.000			70	Gauges	2 55-55 PSI/BAR/KPA
	22	Choke Drop (dar)	4.085	-	11.339			72	Pos rad/Mounting	1/1-LY-511/
	23	Valvo Vol (m/s)	Elaching	-	Eleching			74	INIOUEI	
0	24	Pine Vol (m/s)	Flashing		Flashing			75	-	
\vdash	20	Valvo Model / Body T	FidShillu	ark One / And	lo / Stondard	1	×.	76	-	
	20	Size/Proceure Class/	ype M Rody Form 1	an One / Ang	ie / Stanuaru / Cost		p	77	-	
	20	Trim # - Cv / Charact	prietic 2	1 Cv:2 0	/ Equal Por	cont	-	70	-	
	20	Stage / Design	-insuc .3	101.2.5	/ Equal Fel	Cent	ő	70	-	
	29	Elow Direction	,				-	00	-	
	21	Body Matl / Bonnet M	FI 24	000000000000000000000000000000000000000	2			0V 01	-	
	22	End Copp/Sch/Eaco t	au J o Faco D	TT//Vallak 9) tondard			02	Model/Otv	
	22	Eluconinochirace i	urace R	IJ / / Vallen C	nanuaru			02	Cy Ky/Do on	
	24	Bonnet Type	9	andard /			Ð	0.0 0.0	Volt/Watt	
	25	Trim Type / P/B Seal	Mati U	nhalancod /			2	85	Body/Housing Mtl	
वि	26	Plug Matt / Facing / S	tem cover 1	וו דע פפ אד ו	1		ele	86	Body/Elect Conn	
l be	37	Stem Facing / Pilot P	ua/Sprina /	1			S	87	Port Size/Mtg	
- SS	28	Seat Ring Matl / Facil	na 4/	/ IOC SS HT /				88	Tan/Reset-Overrid	6
2	30	Seat Style / Soft Mate	vial -	00001117			_	89	Air Filter/Mnting	1
8 -	40	Retainer Matl	4 icai 4	0 SS HT Nitri	ded			90	Filter-Rea/Mntina	ASCO 342A8205GMB / Bracket
e	41	Sleeve Material	-		aca			91	Flow Booster	Bifold VBP-12-11-V-02 / Bracket
20	42	Guides Upper/Lower	3	6 SS & Graph	nite/Allov 6			92	Booster Config	1 Bottom
> -	43	Packing Matl / Style /	Vac / Fire G	ranhite Rib-Br	aid / Single /	1		93	Ouick Exhaust	1
	44	Packing - Live-Loade	d	aprilia Filia Di			ers	94	SupTube/Jctn Box	3/4" By Others /
	45	Bonnet Port / Body D	rain /				Ę	95	Lockup	
	46	Bellows Type / Materi	al I				0	96	Plate ID	
	47	Body Boltina/Bonnet	Flange Mati B	3M-8MA / 316	SS			97	Plate Type	
	48	Gaskets	S	oiral Graphite	_			98	Packaging	Standard
	49	Gland Flange Materia	l S	ainless Steel				99	Pwr. Sup.	
	50	Gland Flange Bolting	S	ainless Steel				00	Wiring Conn. Type	
	0.4	0.175.17.14	17 17					0.4	0.1.5	0.111

Table F.22: Pressure control valve T71-LCV-511's datasheet

		HP Separator Inlet (Stream 111) Case_A Case_B Case_C Case_D Case_E Case_F Design 76345.6 84681.0 76217.5 71906.2 80163.9 71706.6 112875 71.6 79.0 71.4 69.5 76.9 69.3 107 4523.3 4999.3 4510.9 4181.5 4634.0 4169.1 7099. 21.4 21.5 21.4 20.7 20.9 20.7 21.5 16.9 16.9 16.9 17.2 17.3 17.2 15.9 0.012 0.013 0.012 0.012 0.012 0.012 0.012 468111.7 474052.8 468407.4 472106.6 478022.5 472475.2 610596 574.6 571 575.2 573.4 569.8 574.2 710.2 814.7 830.3 814.3 823.3 839.0 822.8 859.7 3.4 4.2 3.4 4.3 5.3 4.2 24.0 <tr< th=""></tr<>						
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	76345.6	84681.0	76217.5	71906.2	80163.9	71706.6	112875.0
Vapour	Std Gas Flow [MMscfd]	71.6	79.0	71.4	69.5	76.9	69.3	107
Vapour	Actual Gas Flow [m ³ /h]	4523.3	4999.3	4510.9	4181.5	4634.0	4169.1	7099.1
Vapour	Mol. Weight [kg/kmol]	21.4	21.5	21.4	20.7	20.9	20.7	21.5
Vapour	Mass Density [kg/m ³]	16.9	16.9	16.9	17.2	17.3	17.2	15.9
Vapour	Viscosity [cP]	0.012	0.013	0.012	0.012	0.012	0.012	0.013
Light Liquid	Mass Flow [kg/h]	468111.7	474052.8	468407.4	472106.6	478022.5	472475.2	610599.0
Light Liquid	Actual Volume Flow [m³/h]	574.6	571	575.2	573.4	569.8	574.2	710.2
Light Liquid	Mass Density [kg/m ³]	814.7	830.3	814.3	823.3	839.0	822.8	859.7
Light Liquid	Viscosity [cP]	3.4	4.2	3.4	4.3	5.3	4.2	24.0
Heavy Liquid	Mass Flow [kg/h]	239856.8	327266.5	239842.8	242740.3	331147.2	242726.0	740130.0
Heavy Liquid	Actual Volume Flow [m³/h]	242.5	330.8	242.4	242.7	331.2	242.7	686.6
Heavy Liquid	Mass Density [kg/m ³]	989.3	989.2	989.3	1000	1000	1000	1078.0

Table G.1: HP separator simulations vs. design

Table G.2: IP separator simulations vs. design

IP Separator Inlet (Stream 122)								
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	14213.6	14363.4	10581.4	16854.9	16970.1	13220	13663.0
Vapour	Std Gas Flow [MMscfd]	8.6	8.8	6.5	10.1	10.2	7.9	7.6
Vapour	Actual Gas Flow [m ³ /h]	1560.1	1590.0	1164.5	1817.7	1843.4	1423.7	1363.3
Vapour	Mol. Weight [kg/kmol]	32.9	32.7	32.8	33.5	33.2	33.5	35.9
Vapour	Mass Density [kg/m ³]	9.1	9.0	9.1	9.3	9.2	9.3	10.0
Vapour	Viscosity [cP]	0.012	0.012	0.012	0.012	0.012	0.012	0.013
Vapour	Mass Flow [kg/h]	585938.9	585929.8	465114.4	587305.4	587216.6	466201.5	599569.0
Light Liquid	Actual Volume Flow [m ³ /h]	737.8	738.0	589.9	740.3	740.2	591.9	729.3
Light Liquid	Mass Density [kg/m ³]	794.1	794.0	788.4	740.3	793.3	787.6	822.1
Light Liquid	Viscosity [cP]	2.2	2.2	2.0	2.2	2.2	1.9	7.1

	IP Separator Inlet (Stream 122)										
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design			
Light Liquid	Mass Flow [kg/h]	64817.6	64562.5	63902.3	65481.8	65169.8	64543.5	86971.0			
Heavy Liquid	Actual Volume Flow [m ³ /h]	67.7	67.4	66.7	68.4	68.1	67.4	81.7			
Heavy Liquid	Mass Density [kg/m ³]	957.6	957.6	957.4	957.6	957.6	957.4	1064.0			

Table G.2 (continued): IP separator simulations vs. design

Table G.3: LP separator simulations vs. design

		LP Sepa	arator Inlet (Stream 124)			
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	18706.0	18691.3	12883.7	19679.5	19679.5	13584.8	15262.0
Vapour	Std Gas Flow [MMscfd]	8.2	8.2	5.9	8.6	8.6	6.2	6.9
Vapour	Actual Gas Flow [m ³ /h]	5907.5	5907.7	4123.3	6173.6	6173.6	4307.7	4923.2
Vapour	Mol. Weight [kg/kmol]	45.5	45.5	43.5	45.8	45.8	43.9	44.1
Vapour	Mass Density [kg/m ³]	3.2	3.2	3.1	3.2	3.2	3.2	3.1
Vapour	Viscosity [cP]	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Light Liquid	Mass Flow [kg/h]	569086.3	569088.4	572035.7	569478.6	569451.4	572393.1	586242.0
Light Liquid	Actual Volume Flow [m ³ /h]	704.4	704.4	701.9	704.9	704.9	702.4	702.3
Light Liquid	Mass Density [kg/m ³]	807.9	807.9	815.0	807.9	807.9	814.9	834.7
Light Liquid	Viscosity [cP]	3.0	3.0	3.6	3.0	3.0	3.6	7.4
Heavy Liquid	Mass Flow [kg/h]	101862.3	101869.9	95622.6	101917.7	101919.1	95689.5	112464.0
Heavy Liquid	Actual Volume Flow [m ³ /h]	105.8	105.8	98.4	105.9	105.9	98.5	105.6
Heavy Liquid	Mass Density [kg/m ³]	962.4	962.5	971.7	962.7	962.7	971.7	1065.2

 Table G.4:
 Electrostatic treater simulations vs. design

	Electrostatic Treater Inlet (Stream 132A)											
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design				
Light Liquid	Mass Flow [kg/h]	569085.3	569087.7	572033.8	569477.6	569450.7	572391.2	586242. 0				
Light Liquid	Actual Volume Flow [m ³ /h]	704.3	704.3	701.7	704.7	704.7	702.3	702.3				
Light Liquid	Mass Density [kg/m ³]	808.0	808.0	815.2	808.1	808.0	815.1	834.8				
Light Liquid	Viscosity [cP]	3.0	3.0	3.6	3.0	3.0	3.6	6.5				

	EI	ectrostatic	Treater Inle	t (Stream 13	32A)			
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Heavy Liquid	Mass Flow [kg/h]	79469.9	79469.9	79565.4	79481.6	79480.9	79576.6	87942.0
Heavy Liquid	Actual Volume Flow [m ³ /h]	82.6	82.6	81.9	82.6	82.6	81.9	82.6
Heavy Liquid	Mass Density [kg/m ³]	962.4	962.4	971.6	962.6	962.6	971.7	1065.0

Table G.4 (continued): Electrostatic treater simulations vs. design

	Test Separator Inlet (Stream Test Sep Inlet)									
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design		
Vapour	Mass Flow [kg/h]	15997.5	7789.0	18325.7	16016.6	7789.0	18330.6	30241.0		
Vapour	Std Gas Flow [MMscfd]	16.2	8.6	17.6	16.2	8.6	17.6	29.0		
Vapour	Actual Gas Flow [m ³ /h]	865.5	439.4	2457.9	866.6	439.4	2460.9	1902.0		
Vapour	Mol. Weight [kg/kmol]	19.8	18.1	20.8	19.8	18.1	20.8	21.1		
Vapour	Mass Density [kg/m ³]	18.5	17.7	7.5	18.5	17.7	7.4	15.9		
Vapour	Viscosity [cP]	0.011	0.011	0.011	0.011	0.011	0.011	0.013		
Light Liquid	Mass Flow [kg/h]	121162.6	115192.1	119032.0	121101.1	115192.1	118971.3	148728.1		
Light Liquid	Actual Volume Flow [m ³ /h]	137.9	139.8	134.8	137.8	139.8	134.8	173.0		
Light Liquid	Mass Density [kg/m ³]	878.8	824.0	882.7	878.9	824.0	882.9	859.7		
Light Liquid	Viscosity [cP]	14.0	7.3	17.9	14.1	7.3	18.0	24.0		
Heavy Liquid	Mass Flow [kg/h]	90529.3	-	90397.3	90529.9	-	90397.2	167090.0		
Heavy Liquid	Actual Volume Flow [m ³ /h]	88.5	-	88.4	88.5	-	88.4	155.0		
Heavy Liquid	Mass Density [kg/m ³]	1023.2	-	1022.6	1023.2	-	1022.6	1078.0		

Table G.5: Test separator simulations vs. design

Table G.6: Crude oil pumps simulations vs. design

Crude Oil Pumps								
Parameter	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design	
Flow Rate [m ³ /h]	717.1	717.1	714.5	717.5	717.5	715.0	730	
Head [m]	62.9	62.9	62.3	62.9	62.9	62.4	71.2	
Power [kW]	132.8	132.8	132.3	132.9	132.9	132.4	151	
Density [kg/m ³]	810.6	810.6	817.8	810.6	810.6	817.7	845	

Oil Train Heat Exchangers' Duties							
Duty [kW]	Crude/Crude Exchanger	Crude Oil Heater	Crude Oil Cooler				
Design Case	11860	12154	6380				
Case_A	9673	11281	1272				
Case_B	10206	11693	729				
Case_C	4990	10030	2100				
Case_D	12355	13742	0				
Case_E	12873	14124	0				
Case_F	8105	12075	0				

Table G.7: Oil train heat exchangers simulations vs. design

Table G.8: Injection gas compressor coolers simulations vs. design

IGC Suction Coolers' Duties							
Duty [kW]	1 st Stage Cooler	2 nd Stage Cooler	3 rd Stage Cooler	IGC Discharge Cooler			
Design Case	1127	4996	4986	3105			
Case_A	401	4190	4235	2413			
Case_B	489	4195	4235	2413			
Case_C	529	3445	3471	1881			
Case_D	114	4118	4219	2419			
Case_E	157	4123	4219	2420			
Case_F	222	3376	3454	1886			

Table G.9: 1st stage injection gas compressor scrubbers' simulations vs. design

	1 st Stage IGC Suction Scrubbers (Stream 212)							
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	59107.8	59120.7	48775.1	57482.4	57685.9	47868.5	61037.0
Vapour	Std Gas Flow [MMSCFD]	50.6	50.6	41.3	50.0	50.1	41.0	58.0
Vapour	Actual Gas Flow [m ³ /h]	3223.1	3224.5	2621.0	3211.5	3221.8	2605.1	3741.0
Vapour	Molecular Weight [kg/kmol]	23.4	23.4	23.7	23.0	23.1	23.4	21.2
Vapour	Mass Density [kg/m ³]	18.3	18.3	18.6	17.9	18.0	18.4	16.3
Vapour	Viscosity [cP]	0.012	0.012	0.012	0.012	0.012	0.012	0.010

	1 st Stage IGC Suction Scrubbers (Stream 212)							
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Light Liquid	Mass Flow [kg/h]	298.9	349.7	498.0	1.7	3.9	86.3	708.0
Light Liquid	Actual Volume Flow [m ³ /h]	0.5	0.5	0.8	0.0	0.0	0.1	1.1
Light Liquid	Mass Density [kg/m ³]	662.4	661.3	653.0	717.5	709.0	663.5	669.0
Light Liquid	Viscosity [cP]	0.3	0.27	0.25	0.50	0.45	0.27	15.0
Heavy Liquid	Mass Flow [kg/h]	238.0	258.7	231.0	137.5	145.6	130.3	563.0
Heavy Liquid	Actual Volume Flow [m ³ /h]	0.2	0.3	0.2	0.1	0.1	0.1	0.6
Heavy Liquid	Mass Density [kg/m ³]	994.5	994.4	994.8	993.6	993.8	994.9	994.0

Table G.9 (continued): 1st stage injection Gas Compressor scrubbers' simulations vs. design

Table G.10: 2nd stage injection Gas Compressor scrubbers' simulations vs. design

2 nd Stage IGC Suction Scrubbers (Stream 215)								
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	57511.6	57564.6	47052.8	57173.7	57207.3	46714.1	61630.0
Vapour	Std Gas Flow [MMSCFD]	49.9	49.9	40.6	49.8	49.8	40.5	57.0
Vapour	Actual Gas Flow [m ³ /h]	924.7	924.7	745.9	925.3	925.4	746.3	1112.0
Vapour	Molecular Weight [kg/kmol]	23.1	23.1	23.2	23.0	23.0	23.1	21.2
Vapour	Mass Density [kg/m ³]	62.2	62.2	63.1	61.8	61.8	62.6	55.4
Vapour	Viscosity [cP]	0.014	0.014	0.014	0.014	0.014	0.014	0.010
Light Liquid	Mass Flow [kg/h]	1473.6	1431.4	1625.2	174.2	346.4	1059.0	1431.0
Light Liquid	Actual Volume Flow [m ³ /h]	2.7	2.6	3.1	0.3	0.6	2.0	2.6
Light Liquid	Mass Density [kg/m ³]	543.7	543.9	530.4	554.9	553.0	538.1	555.0
Light Liquid	Viscosity [cP]	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Heavy Liquid	Mass Flow [kg/h]	160.5	162.5	128.4	172.3	170.0	126.4	194.0
Heavy Liquid	Actual Volume Flow [m ³ /h]	0.2	0.2	0.1	0.2	0.2	0.1	0.2
Heavy Liquid	Mass Density [kg/m ³]	994.2	994.2	994.1	994.2	994.2	994.1	994.0

3 rd Stage IGC Suction Scrubbers (Stream 223)								
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	51651.3	51700.0	41177.9	51337.6	51368.9	40869.2	54221.0
Vapour	Std Gas Flow [MMSCFD]	44.8	44.8	35.5	44.7	44.7	35.4	50.0
Vapour	Actual Gas Flow [m ³ /h]	297.0	297.1	232.1	297.7	297.7	232.7	359.0
Vapour	Molecular Weight [kg/kmol]	23.1	23.1	23.2	23.0	23.0	23.1	21.2
Vapour	Mass Density [kg/m ³]	173.9	174.0	177.4	172.5	172.5	175.7	151.1
Vapour	Viscosity [cP]	0.021	0.021	0.021	0.021	0.021	0.021	0.020

Table G.11: 3rd stage injection Gas Compressor scrubbers' simulations vs. design

Table G.12: 3rd stage injection Gas Compressor scrubbers' simulations vs. design

Injection Gas Compressors (Stream 214, 217 and 220)													
			DUTY [kW]			Volur	Volumetric Flow Std [MMSCFD]			ecular W [kg/kmol	eight]	Remarks	
		1 st Stage	2 nd Stage	3 rd Stage	TOTAL	1 st Stage	2 nd Stage	3 rd Stage	1 st Stage	2 nd Stage	3 rd Stage	Nomano	
	Maximum	3464	3387	2613	9546	57.4	57.4	49.9	20.32	20.33	20.33	0% Bypass Flow	
DESIGN CRITERIA	LMN Case 1	3181	3080	2076	8337	49.3	49.3	34.3	17.69	17.69	17.68	Only one compression train in operation 0% Bypass flow	
	Turndown Case 1	2924	2812	1845	7581	46.7	45.6	29.7	18.81	18.81	18.81	44% Bypass flow stage 1 40% Bypass flow stage 2 19% Bypass flow stage 3	
	Turndown Case 2	2401	2286	1571	6258	41.8	41.4	28.5	24.53	23.63	23.64	20% Bypass flow stage 1 23% Bypass flow stage 2 9% Bypass flow stage 3	
Cas	se_A	3235	2607	2204	8047	50.6	49.9	44.8	23.4	23.1	23.1	-	
Cas	se_B	3237	2608	2204	8049	50.6	49.9	44.8	23.4	23.1	23.1	-	
Cas	se_C	2623	2100	1727	6449	41.3	40.6	35.5	23.7	23.2	23.2	-	
Cas	se_D	3231	2610	2208	8049	50.0	49.8	44.7	23.0	23.0	23.0	-	
Cas	se_E	3231	2611	2208	8049	50.1	49.8	44.7	23.1	23.0	23.0	-	
Cas	se_F	2612	2102	1729	6443	41.0	40.5	35.4	23.4	23.1	23.1	-	

Table G.13: 1st stage flash gas compressor coolers' simulations vs. design

	1 st Stage FGC Suction Coolers (Stream 20)							
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	20836.2	20821.4	15013.9	21876.5	21809.7	15115.0	14745.0
Vapour	Std Gas Flow [MMSCFD]	9.2	9.2	6.9	9.6	9.6	6.9	6.915
Vapour	Actual Gas Flow [m ³ /h]	7171.9	7172.1	5241.3	7475.7	7459.9	5340.6	5404.0

	2 nd Stage FGC Suction Coolers (Stream 233A)							
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	30819.1	30959.3	24178.3	34380.9	34436.1	27481.7	28495.0
Vapour	Std Gas Flow [MMSCFD]	15.4	15.5	12.4	17.1	17.3	13.1	13.4
Vapour	Actual Gas Flow [m ³ /h]	3280.3	3314.8	2683.0	3645.3	3670.9	3832.4	2843

Table G.14: 2nd stage flash gas compressor coolers' simulations vs. design

Table G.15: 1st and 2nd stage flash gas compressor coolers' duties simulations vs. design

1 st and 2 nd Stage FGC Suction Coolers' Duties								
Duty [kW]	1 st Stage Cooler	2 nd Stage Cooler						
Design Case	1479	2193						
Case_A	1837	2148						
Case_B	1836	2163						
Case_C	795	1685						
Case_D	1896	2360						
Case_E	1893	2368						
Case_F	819	1878						

Table G.16: 1st stage flash gas compressor scrubber's simulations vs. design

	1 st stag	je FGC Suc	tion Scrub	bers (Strea	m 231)			
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	16605.6	16595.9	13596.9	17526.0	17466.0	14261.6	12595.0
Vapour	Std Gas Flow [MMSCFD]	6.7	6.7	5.9	7.0	7.0	6.2	6.3
Vapour	Actual Gas Flow [m ³ /h]	5528.3	5531.5	4904.9	5796.0	5782.7	5103.3	5236.0
Vapour	Molecular Weight [kg/kmol]	49.5	49.5	45.9	49.8	49.8	46.2	40.1
Vapour	Mass Density [kg/m ³]	3.0	3.0	2.8	3.0	3.0	2.8	2.4
Vapour	Viscosity [cP]	0.009	0.009	0.009	0.009	0.009	0.009	0.010
Light Liquid	Mass Flow [kg/h]	2424.6	2421.9	632.3	2491.9	2488.6	646.9	1934.9
Light Liquid	Actual Volume Flow [m ³ /h]	3.5	3.5	0.9	3.6	3.6	0.9	2.8
Light Liquid	Mass Density [kg/m ³]	693.0	693.0	704.1	692.7	692.7	703.8	696.0
Light Liquid	Viscosity [cP]	0.34	0.34	0.38	0.34	0.34	0.38	0.3

	1 st stage FGC Suction Scrubbers (Stream 231)									
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design		
Heavy Liquid	Mass Flow [kg/h]	1806.0	1803.6	784.6	1858.5	1855.1	806.4	1532.0		
Heavy Liquid	Actual Volume Flow [m ³ /h]	1.8	1.8	0.8	1.9	1.9	0.8	1.5		
Heavy Liquid	Mass Density [kg/m ³]	992.1	992.1	992.1	992.1	992.1	992.1	992.0		

Table G.16 (continued): 1st stage flash gas compressor scrubber's simulations vs. design

Table G.17: 2nd stage flash gas compressor scrubber's simulations vs. design

	2 nd Stag	ge FGC Su	ction Scrul	obers (Strea	ım 234)			
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design
Vapour	Mass Flow [kg/h]	23677.7	23792.5	19280.7	26627.0	26685.3	22094.8	22798.0
Vapour	Std Gas Flow [MMSCFD]	12.7	12.9	10.5	14.2	14.3	12.0	11.0
Vapour	Actual Gas Flow [m ³ /h]	2341.9	2370.5	1940.1	2618.4	2640.9	2209.8	2302.8
Vapour	Molecular Weight [kg/kmol]	37.4	37.1	36.8	37.6	37.3	37.0	36.6
Vapour	Mass Density [kg/m ³]	10.1	10.0	9.9	10.2	10.1	10.0	9.9
Vapour	Viscosity [cP]	0.011	0.010	0.011	0.010	0.010	0.010	0.010
Light Liquid	Mass Flow [kg/h]	6278.1	6293.6	4211.6	6781.7	6770.6	4593.4	5461.2
Light Liquid	Actual Volume Flow [m ³ /h]	10.0	10.1	6.7	10.8	10.8	7.3	8.7
Light Liquid	Mass Density [kg/m ³]	625.5	625.3	632.1	625.4	625.4	632.2	627.0
Light Liquid	Viscosity [cP]	0.21	0.21	0.22	0.21	0.21	0.22	0.2
Heavy Liquid	Mass Flow [kg/h]	863.3	873.3	686.0	972.2	980.2	793.5	793.6
Heavy Liquid	Actual Volume Flow [m ³ /h]	0.9	0.9	0.7	1.0	1.0	0.8	0.8
Heavy Liquid	Mass Density [kg/m ³]	992.3	992.3	992.3	992.3	992.3	992.3	992.0

Table G.18: Glycol scrubber's simulations vs. design

	Glycol scrubber (Stream 218)										
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design			
Vapour	Mass Flow [kg/h]	57473.4	57526.8	47021.5	57135.9	57169.5	46683.4	58186.0			
Vapour	Std Gas Flow [MMSCFD]	49.9	49.9	40.6	49.8	49.8	40.5	57.3			
Vapour	Actual Gas Flow [m ³ /h]	320.7	320.7	257.1	321.5	321.6	257.8	402.4			
Vapour	Molecular Weight [kg/kmol]	23.1	23.1	23.2	23.0	23.0	23.1	20.3			
Vapour	Mass Density [kg/m ³]	179.2	179.4	182.9	177.7	177.8	181.1	144.6			
Vapour	Viscosity [cP]	0.021	0.021	0.022	0.021	0.021	0.021	0.019			

	Glycol scrubber (Stream 218)									
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E C	Case_F	Design		
Light Liquid	Mass Flow [kg/h]	-	-	-	-	-	-	-		
Light Liquid	Actual Volume Flow [m ³ /h]	-	-	-	-	-	-	-		
Light Liquid	Mass Density [kg/m ³]	-	-	-	-	-	-	-		
Light Liquid	Viscosity [cP]	-	-	-	-	-	-	-		
Heavy Liquid	Mass Flow [kg/h]	37.9	37.8	30.9	9 37.	8 37.8	30.9	45.6		
Heavy Liquid	Actual Volume Flow [m ³ /h]	0.04	0.04	0.0	3 0.0	4 0.04	0.03	0.05		
Heavy Liquid	Mass Density [kg/m ³]	997.0	997.0	0 996	9 997	.0 997.0	996.9	996.7		

Table G.18 (continued): Glycol scrubber's simulations vs. design

Table G.19: Produced water flash vessel simulations vs. design

	Produced Water Flash Vessel (Stream 311)								
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design	
Light Liquid	Mass Flow [kg/h]	-	-	-	-	-	-	3050.5	
Light Liquid	Actual Volume Flow [m ³ /h]	-	-	-	-	-	-	3.6	
Light Liquid	Mass Density [kg/m ³]	-	-	-	-	-	-	845.0	
Light Liquid	Viscosity [cP]	-	-	-	-	-	-	7.3 / 5.9	
Heavy Liquid	Mass Flow [kg/h]	118948.5	28160.6	125211.9	119491.7	28654.4	125764.0	384104.0	
Heavy Liquid	Actual Volume Flow [m ³ /h]	118.1	29.4	124.6	118.6	29.9	125.2	361.0	
Heavy Liquid	Mass Density [kg/m ³]	1007.4	957.3	1004.8	997.0	957.2	1004.6	1064.0	

Table G.20: Produced water cooler simulations vs. design

Due due e d'Meter	
Produced water	Cooler' Duties
Duty [kW]	Value
Design Case	6028
Case_A	360
Case_B	5183
Case_C	0
Case_D	353
Case_E	5179
Case_F	0

		С	ooling Mediu	m Consumers Di	uties		
Duty [kW]	IGC 1 st Stage Cooler	IGC 2 nd Stage Cooler	IGC 3 rd Stage Cooler	IGC Discharge Cooler	FGC 1 st Stage Cooler	FGC 2 nd Stage Cooler	Total Cooling Load (Design)
Design Case	1127	4996	4986	3105	1479	2193	32100
Case_A	401	4190	4235	2413	1837	2148	26463
Case_B	489	4195	4235	2413	1836	2163	26665
Case_C	529	3445	3471	1881	795	1685	21133
Case_D	114	4118	4219	2419	1896	2360	25996
Case_E	157	4123	4219	2420	1893	2368	26099
Case_F	222	3376	3454	1886	819	1878	20573

Table G.21: Cooling medium consumers duties simulations vs. design

Table G.22: Heating medium consumers duties simulations vs. design

		Heating Medium (Consumers Duties	5	
Duty [kW]	Crude Oil Heater	Fuel Gas Pre- Heater	HP Fuel Gas Superheater	LP Fuel Gas Superheater	Total Heating Load (Design Case)
Design Case	12142	369	157	104	12774
Case_A	11281	176	66	34	11556
Case_B	11693	176	66	34	11969
Case_C	10030	180	66	34	10311
Case_D	13742	175	66	34	14016
Case_E	14124	175	66	34	14399
Case_F	12075	179	66	34	12354

Table G.23: New blend Reid vapour pressure and true vapour pressure simulations vs. design

New Blend RVP and TVP										
Parameter	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design			
RVP at 37.8°C [psia]	5.61	5.63	7.30	5.72	5.73	7.42	≤ 10			
TVP at 50°C [psia]	14.19	14.20	19.38	14.22	14.22	19.34	≤ 14.7			

	Cooling Duties for th	e Major Seawate	r Heat Exchangers	
Duty [kW]	Produced Water Cooler	Crude Oil Cooler	HP Separator PW Cooler	Total Cooling Load (Design)
Design Case	6028	6380	10697	23105
Case_A	360	1272	0	1632
Case_B	5183	729	13	5924
Case_C	0	2100	0	2100
Case_D	353	0	0	353
Case_E	5179	0	0	5179
Case_F	0	0	0	0

Table G.24: Cooling duties for the major seawater heat exchangers simulations vs. design

Table G.25: Fuel gas scrubber simulations vs. design

		Fue	Gas Scru	ubber (Str	eam 252)				
Phase	Parameters	Case_A	Case_B	Case_C	Case_D	Case_E	Case_F	Design Normal Case	Design Start-Up Case
Vapour	Mass Flow [kg/h]	10858.6	10874.1	10840.9	10868.9	10876.2	10839.0	22723.0	18646.0
Vapour	Std Gas Flow [MMSCFD]	9.8	9.8	9.7	9.8	9.8	9.8	21.0	18.0
Vapour	Actual Gas Flow [m ³ /h]	394.1	394.1	390.9	394.4	394.5	391.5	893.0	1211.0
Vapour	Molecular Weight [kg/kmol]	22.3	22.3	22.3	22.3	22.3	22.3	20.9	20.8
Vapour	Mass Density [kg/m ³]	27.6	27.6	27.7	27.6	27.6	27.7	25.5	15.4
Vapour	Viscosity [cP]	0.012	0.012	0.012	0.012	0.012	0.012	0.010	0.010
Light Liquid	Mass Flow [kg/h]	669.0	665.2	752.6	609.7	610.1	696.0	1107.0	0.3
Light Liquid	Actual Volume Flow [m ³ /h]	1.1	1.1	1.3	1.0	1.0	1.2	1.8	0.0003
Light Liquid	Mass Density [kg/m ³]	591.4	591.0	583.5	592.1	592.4	585.8	601.0	860.0
Light Liquid	Viscosity [cP]	0.18	0.18	0.17	0.18	0.18	0.17	0.2	8.4
Heavy Liquid	Mass Flow [kg/h]	-	-	-	-	-	-	-	-
Heavy Liquid	Actual Volume Flow [m ³ /h]	-	-	-	-	-	-	-	-
Heavy Liquid	Mass Density [kg/m ³]	-	-	-	-	-	-	-	-

Fuel Gas Operating Parameters (Stream 253 and 253-2) Fuel Gas – Normal – sourced from outlet of TEG contactor										
										Parameter
Molecular Weight [kg/kmol]	22.3	22.3	22.3	22.3	22.3	22.3	17.8	22.5		
LHV [MJ/Sm ³]	41.8	41.8	42.8	41.8	42.7	42.7	33.3	45.6		
HHV [MJ/Sm ³]	46.1	46.0	47.1	46.0	47.0	47.0	-	-		
Wobbe Index (Simulation) [MJ/Sm ³]	52.5	52.4	53.6	52.4	53.5	53.5	-	-		
Gas Temperature [°C]	37.1	37.0	36.8	36.7	36.6	36.6	-	-		
Wobbe Index (Corrected at T°C) [MJ/Sm ³]	46.0	45.9	47.0	46.0	46.9	46.9	40.90	49.80	37 - 49	
Fuel Gas – Start-Up – Sourced from Hp separator										
Molecular Weight [kg/kmol]	21.4	21.5	21.4	20.7	20.9	20.7	20.8	21.8		
LHV [MJ/Sm ³]	40.7	39.7	41.0	39.6	38.7	39.9	35.0	41.6		
HHV [MJ/Sm ³]	44.9	43.8	45.2	43.7	42.7	44.0	-	-		
Wobbe Index (Simulation) [MJ/Sm ³]	52.1	50.8	52.5	51.6	50.3	51.9	-	-		
Gas Temperature [°C]	69.4	69.5	69.4	55.4	55.5	55.4	-	-		
Wobbe Index (Corrected at T°C) [MJ/Sm ³]	43.4	42.3	43.7	43.8	42.7	44.1	36.30	44.10	37 - 49	

Table G.26: Fuel gas operating parameters simulations vs. design

Table G.27: Fuel gas heat exchangers simulation vs. design

Fuel Gas Heat Exchangers Duties										
Duty [kW]	Fuel Gas Pre-Heater	HP Fuel Gas Superheater	LP Fuel Gas Superheater							
Design Case	369	157	106							
Case_A	176	66	34							
Case_B	176	66	34							
Case_C	180	66	34							
Case_D	175	66	34							
Case_E	175	66	34							
Case_F	175	66	34							