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    Abstract 

The decomposition of agile epics into user stories manually complicates sprint planning. If epics 

are poorly understood, they contribute to the threats regarding the sprint's completion. 

Performing the decomposition manual is laborious and complex and wastes resources in 

extensive projects. Natural language processing techniques present viable techniques that can 

automate the reduction of agile epics.  

This study explored and attempted to automate the decomposition of epics to their finest 

granularities, user stories and tasks using natural language processing (NLP). To decompose 

epics, we extracted and learned the essential parts of the linguistic structure of epics using NLP. 

The automation of agile epics refinement liberates the product owners from repetitive tasks and 

focuses more on managerial roles. The results of the decomposed epics were assigned to the 

task assignment model that uses the Hungarian algorithm to form sprints where team members 

were allocated tasks to attain a minimum time frame to complete the sprint. 

Furthermore, we then present our solution as a smart agile project management tool (SAPMT) 

that integrates the NLP techniques and Hungarian algorithm to assist project managers in the 

aspects of epic agile requirements decomposition and tasks assigned. The use of NLP has 

presented significant results in the generation of user stories and tasks from epics. The algorithm 

obtained an average accuracy of 89.25%, Precision of 100%, the recall of 77.25%, and the F1 

Measure of 87%. The tool SAPMT was implemented using a python framework called Flask and 

presented a robust graphical user interface. 
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1. CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction  

As technology advanced, there is an exponential increase in the modelling or automation of business 

processes in a smart way to support complex decision making as to increase production and quality. This 

disruptive change is brought by the rise of artificial intelligence (AI) and big data technologies in the field 

of academic research and software industries at large. The introduction of AI in software engineering and 

project management have been used to support critical decision making in the field of requirements 

engineering (Wang, 1997; Lin et al., 2015).  

 

Due to the gradual increase of user requirements in the rapidly changing environment, there is a need to 

adapt to the flexible technology that can support decision making and manage these requirements. The 

influx of requirements places substantial pressure on the product owner (PO). If not managed well, the 

backlog can be valueless to the customers. Accordingly, advanced, and scalable solutions such as NLP 

are required to enhance the functionality of agile project management (APM) tools. These techniques 

were identified as viable solutions over human intelligence because they are consistent, reliable and 

efficient and does not exhibit mood swings like human beings (Nayak and Dutta, 2018).  

 

Agile development has revolutionised the software development process and has been prominent ever 

since its inception among practitioners and researchers. The rapid development of agile has captured 

researcher’s attention in the past decades due to the ability to accommodate the change in requirements 

along project’s schedule without affecting the project schedule and cost (Sharma and Hasteer, 2017).  

Scrum is an agile methodology which is the most prominent framework due to its ability to divide the 

project into small manageable modules (Diebold et al., 2015; Sharma and Hasteer, 2017; Khabbazian et 

al., 2018; Ralph, Sedano and Péraire, 2019). Therefore, this thesis has adopted the Scrum framework to 

manage the agile projects within the following activities: grooming product backlog (PB) and task 

assignment. 

 

Managing projects with Scrum methodology is an indispensable part of agile software development 

(ASD) domain. However, there is still a room for improvement when it comes to requirements elicitation 

process and task assignment models. Over the last decade, USs are selected as the representation of 

user requirements in agile software development (ASD.) They are described as the semi-structured and 

concise representation of user requirements transcribed using natural language (NL) (Kassab, 2015). 

These stories are transcribed concisely to enable the fast progression of software development while 
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maximising the business value. Being concise ascribe to the flexibility and adoption of this notation in a 

dynamic environment such as agile software development where just enough documentation is 

mandatory.  

 

The widely practiced USs template by practitioners is given as follows: As < actor >, I want to < action > 

so that < business value or reason > which is easy to comprehend and employ. Albeit easy to use, there 

are few complications. Some stories are large enough to fit the sprint and this brings about adverse 

implications on the projects; most stories become partially complete during their development and 

prolong the project’s timeframe. These large stories are referred to as epics. To address this challenge, 

the preliminary rule of thumb is to decompose or refine these stories using manual efforts. Decomposing 

is the reduction of an epic or large story into small manageable stories.  

 

The accuracy of the sprint planning lies in the heart of the user story’s complexity and inherent risk. Small 

USs give the development team the confidence to select them over epics during sprint planning because 

there are no unanticipated emergent details. Additionally, USs bring about adequate architecture, and 

their efforts are easy to estimates. Furthermore, decomposed stories have a higher probability of being 

completed on time during their execution than the larger stories. Consequently, they have the potential 

to provide effective sprints. Therefore, the decomposing of USs play a vital role in sprint planning.  

However, it is still a challenge to automate the refinement of epics in an agile environment especially in 

the context of Scrum methodology.  

 

This thesis addresses the problems associated with the decomposition of epics while using manual efforts 

by introducing an automated NLP solution. The solution fine-tune the large USs to their finest granularity 

state namely tasks. These tasks are then saved into the databases and act as the input for tasks 

assignment model called the Hungarian algorithm.   

 

1.1.1 Overview of Scrum  

The primary Scrum process is initiated by collecting requirements from various users who are appointed 

to have meeting sessions with the PO. PO is accountable for creating PB based on the USs’ importance. 

PB is a list of tasks that need to be implemented. Refinery of product backlog items (PBI) is accomplished 

by the team comprised of Scrum master, PO, and DT.  High valued USs are selected from the PB to the 

sprint backlog where tasks are executed within the period of 1-4 weeks. The end products are tested 

before reaching the clients to ensure that all requirements have been compensated. Error! Reference 

source not found. depicts the scrum process.  
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Figure 1.1:An overview of the Scrum process 

1.1.2 Scrum artefacts  

There are three available scrum artefacts being PB, sprint backlog, and burndown charts. However, this 

thesis will exclude the burndown charts. 

 Product backlog: represents itself as the initial Scrum artefact practised by agile methodologies 

to capture the elicited requirements epics or USs from users in an orderly and prioritised fashion. 

A well-recognised representation of USs is transcended to communicate the requirements in agile 

projects. The typical notation used to present stories entails three attributes: persona, the action, 

and business value (Vinet and Zhedanov, 2011). These USs can be in the form of functional or 

non-functional requirements. Stories are transcribed in the form of NL and estimated by using 

either story points or ideal time. 

 Sprint backlog: it’s the second artefact of Scrum where the selection of qualifying PBIs from the 

definition of the ready domain are fit to sprint backlog to formulate the next sprint. These PBI often 

comes in the form of USs and the entire process is governed by the DT. 
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1.1.3  Planning  

To meet the intense demands and rapid development of projects, the delivery of the product must also 

be quick. The expedition of development places substantial risk to the project being developed. The 

development of projects with numerous requirements like the internet of things (IoT) applications 

demands the agile framework to deliver what the customer or stakeholders need on time and within the 

budget. Having requirements which are large can hinder the success of the sprint.  Therefore, there is a 

need to identify the most important requirements that align with the next sprint goal via project planning. 

Planning in Agile is dedicated to managing limited resources. In Scrum, initial planning is occurring at 

sprint 0. 

 

Sprint planning has a positive influence to foster product quality. The implemented tasks that have value 

to the next sprints are identified by the PO. PO works hand in hand with the customers. Therefore, the 

sprint consequently reflects customers’ desire because they have a say on what needs to be implemented 

next. The customer’s level of satisfaction and trust to the team is tremendous as he or she fully involved 

in the sprint planning. Furthermore, sprint backlogs are ordered sequentially concerning the priority 

values  (Liu et al., 2019). 
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1.2 Background to the problem  

Initially, sprint planning is an iterative task carried amongst the agile team SM, DT, and PO. Most work 

here is completed by SM and other team members have no-input. The meeting would spend hours trying 

to figure out what to deliver on the next sprint. Here, the PO’s responsibility is to specify or assign what 

needs to be delivered by identifying epic with high importance or business values with high priority. This 

method is laborious and its labour intensive. Sometimes POs are hesitant to spend hours with the team 

doing sprint planning (Kniberg, 2015). This causes serious problems because scope and priority are 

defined by the PO (Kniberg, 2015)  inherently causing the sprint to suffer. The new developments of agile 

planning were born and thanks to the advancements of technology which aid in the acceleration of 

automation of agile processes and project management tools. 

 

There has been a prior success of sprint planning techniques and tools in the existing literature that 

automated the processes (García, Cancelas and Soler-Flores, 2014, 2015; Choetkiertikul et al., 2016; 

Ramirez-noriega et al., 2016; Perkusich et al., 2017; Khabbazian et al., 2018; Ahmed et al., 2019). Since 

our research focuses on requirements decomposition, the literature on chapter 2 infers that the use of 

traditional methods like vertical, horizontal splice are still used in Agile methodologies when referring to 

the US refinement (Taibi et al., 2017).  

 

The development of sprint planning tools that can advocate in decision making on aspects such as 

automated agile artefacts generation have gained popularity in the field of academics as to assist the 

agile teams to have the seamless workflow while increasing production. Although there are more 

sophisticated tools like Azure from Microsoft and Jira, these tools do not offer services such as the 

decomposition of USs. But they rather support requirements management, task assignments, prioritise 

tasks etc.  

 

This thesis builds on the dissertation by Pereira (2018) and extended the functionality of their tool by 

introducing two tasks being (1) The decomposition of USs to tasks and task assignment to developers 

by applying Hungarian algorithm. The implementation of their design was divided into two segments, first 

pipeline and second pipeline. This was done to enhance the software performance in terms of speed and 

reliability. We have also adopted this segmentation approach in our study to enhance the tool’s 

performance.  Moreover, we translated Pereira, (2018) dissertation’s implementation from java to python 

language. The rationality to select python was due to its extensive use in AI applications, variety of 

libraries available online and it’s easy to use and comprehend.    
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1.3 Problem statement  

In the centric world of technology where processes are automated, the decomposition of epics into USs 

is accomplished using human skills. Performing a task manually is laborious and waste resources. For 

extensive projects where requirements are numerous, this places substantial pressure on the PO, the 

PO may provide low-quality requirements. The decomposition of epics requires good communication 

skills and expertise. In start-up companies with a lack of professionals, the complexity of USs may be 

measured inaccurately. 

    

Due to lack of project requirement resources, inexperience system architects and mainly inadequate 

practice of applied agile techniques project are still subjected to failure (Taherdoost and 

Keshavarzsaleh,2015). A large sum of money, estimated to be 322 billion USD, was wasted as a result 

of bad software engineering techniques (Klotins, Unterkalmsteiner and Gorschek, 2016). According to 

current software engineering literature, the causes of disappointments are usually project environment, 

ambiguous requirements, and a lack of a complete set of right agile methodologies (Taherdoost and 

Keshavarzsaleh, 2015). According to Mohagheghi and Jorgensen (2017), software development with 

agile methodology and fixed scope had a poor success rate of 58% whereas agile approach with flexible 

scope had an 87% success rate. 

 

Due to the lack of tools that automates the refinement of epics and task assignment model, sprint planning 

tools are still prone to ambiguous requirements documentation. Furthermore, the present software 

products on the market are technologically basic, expensive, and unfit to address 4th Industrial 

Revolution challenges such as scalability. Furthermore, the repositories of these tools do not capture the 

insights from preceding similar projects, therefore tasks are repeated. According to MIHALACHE (2017), 

these tools offer poor PB management. 
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1.4 Aim and Objectives  

Aim: The aim is to design and implement an intelligent tool for IoT application requirements specification 

into stories for the Scrum team.  

1.5 Objectives 

1. To groom PB with AI techniques  

2. To assign stories / tasks to developers by using optimisation algorithm  

      

1.6 Context of research       

This research thesis falls within the discipline of modern software engineering and applications of artificial 

intelligence in APM with Scrum. Modern software engineering is taking new direction especially in the 

automation of business processes and model their solutions in the very adaptive manner.  For instance, 

automation of processes such as requirements elicitation with software agents (AI), software testing, etc.  

 

1.7 Research Questions  

1.7.1 Main Research Questions. 

1. How can NLP be used to decompose agile epic stories into manageable stories and tasks? 

2. What is an effective technique used to assign tasks to developers in an agile environment? 

1.7.2 Sub Research Questions 

1. What are distinguishable linguistic features that an Agile epic must allow decomposed into small 

manageable stories?  

2. To what degree can NLP be used to decompose epics in terms of accuracy and performance?  

 

1.8 Delineation  

 As outlined in section 1, the main goal of this research is to design and develop an intelligent tool for 

IoT application requirements in an agile environment. Therefore, this thesis was populated with 

suitable AI technologies from NLP and Hungarian algorithms were embedded within the web 

technologies like Flask framework (python micro-framework used for web development) 

 While generating the USs, this thesis excluded the text written in passive mode. 

 There are various sources of information that can be utilised for USs, task generation and task 

assignment. USs can be generated from SRS specification written in NL, However, in this thesis, USs 

are generated from a text which composed of requirements with large functionality written in English 

language only. Moreover, the developed tool was implemented only in python programming language.  

 Acceptance criteria (AC) for the generated stories will not be part of this thesis. 
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 The agile framework called is Scrum was used for case studies. Any alternative agile techniques like 

Extreme Programming (XP), Large Scaled Scrum (LeSS) and traditional methodologies were not part 

of this research.  

 The research was contacted at the premises of Cape Peninsula University of Technology (CPUT) 

which is in South Africa, Cape Town. 

1.9 Contributions  

This thesis presents a smart project management tool that advocates in decision support during the initial 

sprint planning which is sprint 0. It is a web-based tool that was intended to provide two functionalities, 

(1) groom the PB by reducing the size of complex requirements and (2) assign the decomposed tasks to 

developers. 

 Address the deficiency of Agile requirements decomposition in project management tools 

 Proposed a novel based grooming backlog method to lessen the PO’s duties 

 Contributed to the knowledge in the APM sector as the results produce the publication of a journal 

paper. 

1.10 Methodology  

This section emphasises the description of technologies used to accomplish the developed tool and how 

these techniques were incorporated into the Scrum process to device the enhanced Scrum methodology.  

To be more specific, we integrated NLP techniques with the Hungarian algorithm where NLP is 

accountable for the decomposition of Agile epics while Hungarian addresses the task assignment 

problem.  The output of the NLP pipeline acts as the input to the Hungarian algorithm where the 

Hungarian’s results generate iterations or sprints. 

   

Furthermore, the description of data used to validate the developed tool and the origin data used will be 

detailed into this chapter. The author generated the dataset comprised of epic requirements based on 

automated teller machine (ATM) and E-commerce case studies  as an additional dataset to the one 

adapted from (Pereira, 2018).  

 

We ultimately describe how Hungarian can attain minimum task assignment by demonstrating its 

functionality through mathematical formulas and flowchart.  
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1.11 The organisation of the dissertation  

This thesis is organised as follows: Chapter 2: presents a comprehensive literature review of how to 

design a suitable APM tool based on the objectives outlined in section 1.5. Furthermore, it also discussed 

the efficiency of applied techniques in relation to the outlined objectives. Moreover, we conclude this 

chapter by identifying the existing research gap. 

   

Chapter 3: presents the description of the methodology that compelled this work to design the architecture 

in chapter 4. Here all interoperability between components in different phases of Scrum is maintained to 

construct the proposed Scrum process. Furthermore, the decomposition of epics into small manageable 

stories using NLP was briefly outlined. More information under this section regarding how NLP was used 

to automate the grooming process will be discussed in more detail in chapter 4. Moreover, identify the 

structure of the template suitable for the automatic generation of the USs. We end this chapter with a 

detailed description of the Hungarian algorithm. 

 
Chapter 4: illustrates the implementation of the proposed methodology and conducts experiments to 

verify and validate the proposed tool. 

 

Chapter 5: analyses and discuss the results obtained in chapter 4 with the relevant literature. 

 

Chapter 6:  concludes the thesis. In this chapter, results are compiled, and conclusions are drawn. This  

led to limitations and recommendations.  
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2. CHAPTER TWO  

LITERATURE REVIEW 

2.1 Introduction  

It is imperative to review the state-of-art for every application development. This chapter contains the 

review of academic sources used to address the automation of requirements refinement and task 

assignment. Different scholarly papers were collected, analysed, and extracted insights to address the 

mentioned problems. We first start by describing ASD, epics, USs, techniques utilised to generate Agile 

artefacts, and lastly, approaches that accommodates task assignment in an Agile environment are 

discussed.  

  

2.1 Agile Software development  

ASD is an iterative and stochastic development method that anticipates fluctuations in requirements. ASD 

has revolutionised the software development process and has been prominent ever since its inception 

among practitioners and researchers. The rapid development of agile has captured researchers' attention 

in the past decades due to its ability to accommodate a change in requirements along the project lifetime 

without affecting the project schedule and cost (Sharma and Hasteer, 2017). The inception of Agile in the 

industry was by popularised Agile manifesto held in the year 2001. Agile manifesto vouched for 

collaboration between team members as this would build a tacit knowledge among team members, 

advocate for succinct requirement documentation, room for change over the proposed project schedule 

and the involvement of customers on the project developed (Beck et al., 2001).  

Agile development methodologies attempt to provide numerous opportunities to evaluate the direction of 

a project through development. The project must be organised into iterations or cycles called Sprints 

where the DT demonstrates a shippable product increment (PI) to the customer for review before 

deployment. On each iteration, the DT validates that the product implemented meet customers' 

expectations before deployment. The DT engage in activities such as analysis, development and testing 

concerning validation of the product. 

Various frameworks that support agility has been in practice ever since the fall of traditional methodology 

where iterations are done after the completion of the project (Dimitrijević, Jovanovic and Devedžić, 2015). 

Consequently, agile frameworks such as extreme programming (XP), Kanban, and Scrum have gained 

popularity. However, Scrum has shown to be the most prominent one amongst the three due to its ability 

to divide the project into small manageable modules (Diebold et al., 2015; Sharma and Hasteer, 2017; 

Khabbazian et al., 2018; Ralph, Sedano and Péraire, 2019). Therefore, our case study is going to rely 

on Scum methodology. 
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In practice, the Scrum team often selects small stories from the PB to implement. Small USs give the DT 

the confidence to choose them over epics during sprint planning because there are no unanticipated 

emergent details, and their efforts are easy to estimate. Therefore, the accuracy of the sprint planning 

lies in the heart of the US’s complexity and inherent risk. Furthermore, decomposed stories have a higher 

probability of being completed on time during their execution than the larger stories. 

2.2 Epics  

Massive USs are sometimes referred to as epics (Dimitrijević, Jovanovic and Devedžić, 2015; Ali, Shaikh and Ali, 

2016). Usually, this type of stories consists of two or more action verbs based on their analysed linguistic structures. 

For example, consider the following epic in Figure 2.1: 

 The Administrator can reset the user password, update the user's details, and deactivate user 

accounts that are not functional within 3 months.  

 

Figure 2.1:Analysed linguistic structure of an epic requirement 

From the analysed text, we extracted three action verbs through their POS tag VERB. The list of action 

verbs is, reset, update, and deactivate.  

These stories are massive to handle on a single sprint, so they are moved on to the next sprint to avoid 

overfitting.  Overfitting is when the US is too large and cannot be coupled with other USs very well due 

to its capacity. It is crucial to note that USs should not be too small or too big in terms of estimates.  If the 

estimations of the user's story points are too small, say 0.3, there is a possibility of facing 

micromanagement. Moreover, a 60 points story stands a chance or high risk of ending up being a partially 

complete sprint (Ali, Shaikh and Ali, 2016). There are two methods of splitting USs into a manageable 

task: horizontal and vertical slice. A more recent study suggested that the utilization of predictive analysis 

can be deployed on managing USs (Dam et al., 2018). 

2.3 User stories  
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In agile methodology, requirements elicitations are stated as USs. USs are the representation of software 

requirements specification captured in a concise to avoid ambiguity. They are written in natural language. 

Over the last decade, USs have been ruled as the representation of user requirements in ASD. They are 

described as the semi-structured and concise representation of user requirements transcribed using NL 

(Kassab, 2015). These stories are transcribed concisely to enable the fast progression of software 

development while maximising business value. Being concise ascribe to the flexibility and adoption of 

this notation in a dynamic environment such as ASD where less documentation is required but rather 

focus on the implementation. 

Albeit easy to use, there are few complications. Some stories are large enough to fit the sprint and this 

brings negative repercussions on the projects; partially complete tasks and schedule overrun. These 

large stories are referred to as epics. Therefore, decomposing them is essential for proper sprint planning. 

Decomposing is reducing stories into small manageable stories. 

 The widely embraced USs template by practitioners is given as follows: As < actor/user >, I want to < 

functionally/goal > so that < business value or reason > which is easy to comprehend and employ (Cohn, 

2004).  

 As a user/role (i.e., Customer, Administrator)  

 I want functionality /Goal (i.e., Pay using ATM card) 

 So that / what reason (i.e., I can receive discount next time I buy) 

The last part of a US is the reason. This is an optional clause that describes why the implementation of 

the story is important to the user. As it is optional, not every US has it added nor needs it; however, it is 

a good practise to add it to avoid vague goal. 

2.3.1 Quality criterion  

As suggested by Wake (2003) properly written stories in Scrum must adhere to the INVEST criteria. 

INVEST is an acronym of (Independent, Negotiable, Valuable, Estimatable, Small, Testable). 

 Independent: The story should be loosely coupled with one another or independent.  Stories that parade 

a high degree of interdependency convolute estimating, prioritizing, and planning. When applying the 

independent criterion, the goal is not to eliminate all dependencies, but instead to write stories in a way 

that minimises dependencies. If the PB is fraught with lot of depended on stories, there are two common 

practices which can assist to resolve this issue. (1) combine similar story into one and (2) Split story into 

small manageable sizes (Cohn, 2004).  

 Negotiable: A good story is negotiable. It is not an explicit contract in 

which the development team follow as the future requirements document; rather, placeholders for the 

conversations between customer and the development team. This means that a good story possesses 
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an adaptive feature that allow room for improvement; over time additional information can be added such 

as test ideas etc.  

 Valuable: A good story must present a high return on investment (ROI) to the users and customers. They 

must be implemented in such a way that customers perceive them as important. However, developers 

may have input regarding the importance of stories, but agreements are reached after discussing them 

with the customers.  

 Estimatable: It is imperative for developers to be able to estimate the amount of works required to 

complete a story. The quality of estimation varies with team’s experience. If the team is well experienced 

with estimations, the more accurate are the estimates. This is influenced by the gained knowledge from 

prior stories with similar features. However, there are common barriers which could impede the estimation 

quality:  

1. Developer lacks domain knowledge.  

2. Developer lacks technical knowledge. 

3. The story is too big.  

 Small: Good stories are small. In ASD, it is advisable that the stories are small because they are easily 

estimable. Having small stories in PB attribute towards the success of sprint as there are no anticipated 

emergent details which can trigger risks.  A small story takes few days or hours to implement. This mean 

that if there are emergent risk associated with such story during its implementation, the team can resolve 

it on time. 

 Testable: A good US should be written in such a way that its functionality can be validated by passing its 

test cases. In ASD there are two approaches to test if the developed feature corresponds to what it was 

intended, (1) behaviour driven development (BDD) and (2) Test driven development (TDD). However, 

the widely practised method is TDD. In TDD, there is what is called acceptance criteria (AC).  AC is the 

spring of test cases, and they can also be described as the preconditions that must be accomplished to 

satisfy the PO on the functionalities that the team delivers after the Sprint. Recently, some of the software 

development companies practice the automation of testing through tools like Selenium etc.  

 

If a customer is not familiar with testing something, this may show that the story isn’t detailed enough, or 

that it doesn’t reflect something valuable to them, or that the customer just needs help in testing. 

  

  

 

2.4 Natural Language Processing  

NL is the language that humans use in daily bases to communicate to one another, it normally routes 

from different sources such as social media, newspapers etc. These sources are also available in diverse 
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array of languages besides English. Therefore, having different natural languages translates to different 

standards concerning the construction of phrases or sentences. 

 

NLP is subset of linguistics, information engineering and AI that concentrates on processing documented 

text written in variety of natural languages. Problems which are frequently tackled using NLP techniques 

are, information extraction, text generation, automatic text summarization, and automatic entity 

recognition. There are variety of tools available on the market that helps to accomplish those tasks. 

However, the tool that is currently dominating in NLP domain is Stanza. Stanza is the NLP library written 

in python language and supports variety of languages up to 66 (Qi et al., 2020). In the subsequent 

subsection, we discuss the most common nlp techniques applied when forming Agile requirements 

artefacts.  

 

2.4.1 Conference resolution  

This NLP process that can also be understood as natural language understanding (NLU) process as it 

possesses the ability to understand who is been talked about in the given sentence or text processed. It 

substitutes the pronouns with their relative subjects in each text. The subject mentions are referred to as 

antecedent (Customer, Administrator) while pronouns are referred to as anophera (his, her, their). 

Consider the text below as an example to determine the conference resolution (Sukthanker et al., 2020). 

The conference resolution results of the sentence are shown on Table 2.1. 

 “The bank administrator maintains customers information. But he cannot delete their transaction history.” 

Table 2.1:Conference resolution results 

Anophera Antecedent  

He The bank administrator  

Their customers 

 

After the processing is done, the modified text is returned as: 

 “The bank administrator maintains customers information. But The bank administrator cannot delete 

customers transaction history.” 

 

2.4.2 Chunking  

Definition: Separating a sentence into parts that have a discrete grammatical meaning. Examples of these 

meanings could be the noun phrase (‘the developers’) or verb group (‘have to develop’). Examples: The 

usage of chunking to identify noun and verb phrases by Mala and Uma (2006); identifying noun phrases 

and verb phrases using chunking by Arora et.al. (2015a); chunking as a pre-processing step for 

classification by Silberztein et al. (2018). 
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2.4.3 Lemmatization  

Definition: The words in the search string are morphologically analysed to derive the basis of the term, 

known as the lemma. By deleting the inflectional endings of nouns and verbs, the lemma is identified. 

Using this strategy, we can find words that are similar or linked to the search keyword. For example, the 

lemma "go" is found in the lexemes "go", "goes", "going", "went", and "gone". The lemma of the search 

phrase is used to identify and demarcate the activity in the USs. 

2.4.4 Named Entity Recognition (NER) 

Definition: It the machine learning process of recognising the named entity mentions from a given text or 

sentence. It can categorise tags as PERSON, MONEY DATE, LOCATION, etc. Consider the sentence in  

Figure 2.2, the highlighted text is identified as the output of NER elements using stanza library.  Table 2.2 

below explains the keyword highlighted from the output obtained in Figure 2.2.  

Examples: Consider the following code below that extracts NER features from a given text. The NER are 

highlighted by light blue, orange and green. 

 

Figure 2.2:NER sentence results 

Table 2.2:NER keywords meaning 

NER keyword Meaning 
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ORG Organisation 

GPE Geographical  

DATE Time  

 

 

2.4.5 Part-of-Speech (POS) tagging  

Definition: It is the process of tagging words with their representative syntactic part of speech tags within 

a sentence. It categorises the tags as verbs, adjective, direct object or etc. 

  

 

Table 2.3:Universal Part-of-Speech 

Tag  Meaning  Example  

CONJ Conjunction and, while, although  

NOUN Noun London, John,  

PRON Pronoun  He, she 

DET Determiner The, a  

VERB verb Cook, eat, walk, sleep 

ADV adverb Now, later, soon,  

ADJ adjective Tall, old, lovely  

 

There are different libraries used to determine the POS tags for the given text. NLTK, Spacy, Stanza, 

Stanford CoreNLP, etc. For demonstration purpose we will utilise spacy-stanza. Consider the text below 

as the input text to be processed: 

 Our Turkey was eaten by the dog. There is considerable range of expertise demonstrated by the spam 

senders.  
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Figure 2.3:POS tags for sentence. 

2.4.6 Sentence segmentation  

Definition: In NLP, sentence segmentation is the process of splitting a sentence from a given text with 

multiple sentences. 

2.4.7 Stemming 

Definition: Reducing a word to a base form: the stem. However, as opposed to lemmatization, stemming 

operates without context; so, if, for example, ‘better’ would be both stemmed and lemmatized, stemming 

would yield no output while lemmatization would return `good’. A categorization of NLP within 

requirements elicitation and analysis. 

Examples: Stemming as pre-processing for analysing use cases by (Bolloju, Schneider and Sugumaran, 

2012); stemming words to create keywords of a requirement by (Ninaus et al., 2014); stemming as pre-

processing for predicate generation by (Veerappa and Harrison, 2013). 

2.4.8 Syntactic parsing 

Definition: Recognizing a sentence or text and assigning a syntactic structure to it. This task includes 

both dependency-based and constituency-based parse trees. 

Examples: Constituent parse tree as pre-processing for the identification of candidate services in Bhat, 

Ye and Jacobsen (2014) creating a dependency-based parse tree to uncover dependencies between 

words in sentences by Biébow and Szulman (1993) using syntactic parsing as a way to evaluate well-

formedness of a US by (Lucassen et al., 2015). 

 

Scrum grooming process  

2.4.9 Grooming PB  

The definition of PB is explained in chapter 1 section 1.1.3. It is a list of requirements from customers 

that needs to be implemented and present the working product.  The contents of PB are called PBI and 

they are listed as epics, defects, updates, and features. 
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Refinement of PBI from PB is usually referred to as PB grooming. It is a technique utilized by PO in 

collaboration with development team to keep the PB clean and organized. However, involving the team 

leaders is optional. The involvement of the team leaders during grooming communicates a clear vision 

about the upcoming sprint to the team. Consequentely, the development teams can anticipate the next 

sprint intensions (Cobb, 2015). 

The PO and team members gather to distill the size, risk and assign priority values to USs based on their 

gained knowledge on previous backlogs. This is performed in sprint planning meeting where the next 

sprint is prepared. 

New developments may emerge from this meeting due to customers’ demands influenced by the demand 

on the market: adding new stories into PB, reassigning story points, and reducing the epics. This process 

affects the structure of PB. For instance, the decomposition of epics into small manageable stories cause 

the addition of new stories to the PB.  New items must adhere to the principles or guidelines that govern 

USs properties, INVEST model. INVEST is an acronym that states how the good USs should be 

structured: Independent, Negotiable, Valuable, Estimable, Small, and Testable  (Cohn, 2004). Moreover,  

there is a DEEP acronym used as a quality metric to identify good characteristics of PB. As outlined  by 

Meyer (2014),  DEEP stands for Detailed appropriately, Estimated, Emergent, Prioritized.  

The most critical goal of grooming is to maintain the PB in good order such that it is prepared for the 

upcoming sprint. It is normally refined during sprint planning; the development teams and PO spans about 

5 - 10 % of sprint doing grooming.Figure 2.4 shows activities involved in PB grooming;prioritisation, 

estimation using story point ,adding new PBI, deleting less important PBI, and refinement of large PBIs. 

 

Figure 2.4: tasks involved in PB grooming 
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Reassigning story points, adding new stories, and the decomposition of epics contributes to the continual 

grooming of PBI in the PB. For instance, a low prioritized story can be moved into the high-value USs in 

the PB due to the dependency with higher US. In most cases, customers only concentrate on products 

that bring business value. Therefore, the current research studies suggest the decomposition of epics 

into USs to fit the sprint. It is worth noting that adding new features causes PB scope creep due to high 

incoming requirements. 

We have discussed what grooming entails and how it is established. There are various activities involved 

in grooming: reprioritization, splitting USs, effort estimation, inserting new PBIs, etc. However, this thesis 

only concentrated on splitting epics into small manageable USs due to the scarcity of literature available 

in the academic world. We have also extended further to research about how USs are decomposed into 

tasks.   Therefore, it was important to reasech about the state of art on this field.  

  

2.4.9.1 Importance of grooming  

The review and refinery of business prioritization and resize of the PB are done in parallel with the 

implementation of the sprint. If the product grooming is not done, the next sprint will lack an appropriate 

PB ready for the PO and the team to agree on what the next sprint need to include. Instead, they may 

have to spend a day or two doing an evaluation which could delay the start of the upcoming sprint. 

 

2.5 Regular expressions 

Regular expressions (regexps) are essential tools in computer science regarding information extraction, 

text analysis and etc. In information extraction, a popoular example could be the extraction of a pattern 

from the String. For instance, it detemines the authentic format of emails issued by the users. The table 

below illustrates the information about RE and their meanings. RE are highly used with NLP 

technique like POS Tagging.  

 

Table 2.4:Regular expression meaning 

Character Regular-expression 

meaning 

. Any character, including 

whitespace or numeric 

? Zero or one of the preceding 

character 

* Zero or more of the preceding 

character 
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+ One or more of the 

preceding character 

^ Negation or complement` 

 

2.6 Split the user story in a manageable task using traditional approaches  

2.6.1 Horizontal and vertical slicing  

According to Taibi et al. (2017), the widely practiced decomposing technique within the boundaries of 

Agile is US mapping. It describes the decomposition of large USs from the user's perspective; It provides 

the highest level of requirements abstraction. In story mapping, large stories are coarse-grained from 

epics to stories until their constituent's tasks. For instance, "create registration form" and "create login 

page for the system" are good examples of high-level requirements. In addition, they further explored 

how different agile methodologies such (XP, Scrum, Scrum with Kanban) engage in the decomposition 

process. Their research results revealed that the utilization of traditional processes is still inherited in the 

agile process during the splitting of stories. Moreover, the most proficient method between the discussed 

methods is Scrum with kanban followed by XP.  The success of Scum with Kanban was due to the use 

of vertical slicing technique. Albeit its popularity among Agilist, story mapping is achieved by human 

expertise.  

Vertical slicing is the technique of decomposing of an epic by touching aspects of every layer such as 

from User Interface (UI) to database. It encourages to showcase the delivery of product increments 

frequently to the end-users such that they provide feedback and incorporates updates within the 

subsequent iteration. In study contacted by Ratner and Harvey (2011), four teams were deployed to study 

and determine how efficient is horizontal and vertical slicing in US decomposition. Vertical tends to have 

positive traits than horizontal slicing in terms of risk and completions of project. The utilization of horizontal 

technique parades no functionality to the end-users rather partially completed tasks which leads to 

reiterate and delivers ineffective sprints.  

There are other studies that worth noting, Lawrence proposed the strategy that decompose epics through 

the reprioritization and isolation of requirements. Here large story is chunked into small fragments and 

discard stories with lower importance or that has no importance. This technique was found to improve 

the isolation and decreases inter-dependencies between stories.  

2.7 Split the story using NLP 

The degree of automating requirements’ decomposition is scarce in agile software engineering in both 

academic world and enterprise environment. However, the contemporary state of art only provides the 

roadmap of possibilities of using NLP to address the challenges faced by manual techniques. Although 

NLP is deemed to be effective approach to transform and model requirements in different granularities, 
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it is still fraught with complications. Requirements are sometimes ambiguous and inconsistent. Thus, 

there is a room for improvement in requirement elicitation in the form of NL.  

The use of NLP techniques has modernized the refinery process of epics in ASD. NLP techniques are 

utilised to automate and augments human capabilities especially in the field of text analytics, language 

modelling and language translations. Consequently, having requirements predominately written in NL 

symbolize NLP as an effective candidate for US decomposition.  

The preliminary attempt which paved the way on the decomposition of requirements using NLP was 

recently shed to light by (Müter et al., 2019). They studied linguistic structure that characterize USs 

together with their corresponding sprint backlog items. To achieve this, they utilised the Stanford Part-of-

Speech (POS) tagger to determine the structure of the task labels. POS tagger is especially used in NLP 

to extract language structure such as verbs, adjectives, nouns etc. Their results revealed some useful 

insights that can be employed to form linguistic structure of tasks. Table 2.5 shows their analysed results.  

  

  

 

Table 2.5: Frequent linguistic structure from (Müter et al., 2019) 

Structure  Frequency % Example  

VB, NN(S), NN 130  8.17 create tender-settings component 

VB, NN(S), NN, 

NN(S) 

  67 4.18 Create Message DB tables 

NN, NN(S), IN, 

NN 

  25 1.57 Admin licences breadcrumbs 

VB, NN(S), IN, 

NN 

  21 1.32 Add filters for KO 

VB, NN, NN(S), 

NN(S), NN 

               

20 

1.26 Implement TenderPlan actions business 

logic 

VB, JJ, NN(S), 

NN 

               

18 

1.13 Create disqualified offers card 

VB, NN                 

27 

1.67 Create 

TenderProcessDefinitionLevelRule 

VB, NN(S), IN, 

NN, NN 

               

15 

0.94 Bind rules per section item 

VB, NN, NN, 

IN, NN, NN(S) 

               

13 

0.82 Create SQL script for AcceptedById items 
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NN, NN(S)                

10 

0.62 Update actions 

 

They went further and define task as the given equation 2:1. 

 

task =  verb, follow, {follow}. 2:1 

Where: 

follow = noun | conjunction | adjective | "to" | cardinal number. 

(Gunes and Aydemir, 2020) developed a goal-oriented NLP powered tool that generates and modify USs. 

To accomplish their objective, they presented the fundamental heuristics that combines the pieces of 

information distilled from USs by applying NLP techniques and stored in a Neo4j graph to view the 

relations between analyzed artefacts.   

 

2.8 State of art: generating Agile requirements artefacts  

There is a plethora of research papers that presented the automatic generation of Agile artefacts using 

NLP techniques. Applying NLP is not the new topic in the generation of Agile software artefacts. The 

structure of agile requirements makes NLP to be viable solution to generate them. This was due to the 

new NLP libraries which provides high accuracy as compared to the state of the art. Requirements are 

predominately written concisely using NLP to focus more on production. This section highlights the 

success of NLP in generation agile artefacts namely, USs and test cases. The rationality to select these 

two artefacts was that they are mostly used in every agile project developed, especially in Scrum context. 

 

(Azzazi, 2017) proposed a framework that transforms USs into use cases by exerting NLP techniques. 

To reach their goal, they studied the heuristics that can generate the use case from the US’s text by 

studying the linguistic features of US and how it relates to the linguistic structure of the use case. They 

divided the US’s information into two categories: (1) extraction of Noun from US of which the Noun is 

appended into a list referred to as “Actor List” and (2) extraction of the verb from the US and stored the 

acquired information into a list called “Use case “. This was feasible solution due to the relationship that 

the US shares with use case is <<extends>>, so this means the existence of use case is strongly 

dependent on the presence of US.  

 

(Robeer et al., 2016) amalgamated NLP heuristics to form an algorithm that automatically generates 

conceptual models from the USs. Their paper reported that they have acquired high precision and recall 
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greater than 80% on both metrics. A more similar paper to Robeer et al. (2016) was recently proposed 

by  (Tugce and Aydemir, 2020).  (Tugce and Aydemir, 2020) have presented goal-oriented models using 

the NLP pipeline which aided in automating the creation and visualisation of the generated models from 

USs. The results obtained from their paper were proclaimed to be so accurate that they were compared 

to models generated by human experts.  

2.8.1 Generating test cases using nlp  

Software testing is an integral part of the software process which verifies that the feature developed 

conforms to the standards it was meant to serve by detecting errors and defects at an early stage to 

avoid software failure like in (Garfinkel, 2005).  By observing its positive traits, it can also be used as a 

metric to measure the quality assurance (QA) of the developed software. Testing a developed feature 

triggers the generation of test cases. According to (Ansari, 2017), test case generation comes in three 

phases: coding, design and specification. The specification phase deals with deriving test cases from 

functional requirements.  Notwithstanding its importance, it consumes a lot of time to generate test cases 

especially in the context of extensive complex projects. Therefore, researchers had to come up with new 

approaches to automate the generation of test cases of which most of them harness the power of NLP 

techniques.   

 

(Verma, 2013) proposed the construction of test cases from software requirements specification (SRS) 

documentation expressed as NL with the help of NLP techniques. To accomplish their goal, they apply 

POS tags and syntactic relation parser which returns the relation between words in a graphical manner. 

The graph provision for better text analysis that leads to test case generation. In 2017, Ansari (2017) 

proposed a similar approach to the Verma (2013) by excavating test cases from SRS documentation 

using NLP. The noticeable difference was that the algorithm proposed by Ansari (2017) was built on 

keywords context from the functional requirement of the SRS documentation while Verma didn’t specify.  

 

A more recent study by Wang et al. (2020) presented the automated user acceptance test cases 

generation  from use case specification by utilising NLP approach. Their algorithm proclaimed to provide 

unlimited abstraction when it comes to writing the use cases unlike other approaches. The  systematic 

literature conducted by Raharjana, Siahaan and Fatichah (2021) provides a comprehensive work carried 

out in research concerning the applicability of NLP in USs. The study reported on creation of traceability 

matrix using NLP, generation of test cases from SRS, generating use cases from USs etc. 

 

There is also other noticeable work which contributed towards the generation of test cases besides using 

the NLP techniques. The test case generation from unified modelling language diagrams using a genetic 

algorithm. The algorithm is proclaimed to provide early defects detection and lessens the time consumed 
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while extracting test cases as compared to manually efforts. NLP was used to transform USs into use 

cases.   

 

There also classification machine learning approach that helped to identify if the story needs to be 

decomposed or not. The dataset used was numerical values with two classes, 1 and 0. The 1 indicates 

the need to decompose a story while 0 indicates no need to decompose the story.  

2.8.2 Applying deep neural network to generate trace links  

The use of deep neural networks (DNN) is slowly overcoming NLP in NL problems. This is due to the 

DNN being able to process data in a short time and return highly accurate results. Some of the flavours 

of neural networks possess memory to remember important features which can be exerted to excavate 

useful information such as understanding sentence semantics etc. The variety of DNN which can offer 

those features are the conversional recurrent neural networks (RNN) models namely; long short-term 

memory (LSTM), bidirectional LSTM (Bi-LSTM), gated recurrent unit (GRU) and Bi-GRU. (Guo, Cheng 

and Cleland-Huang, 2017) presented a semantically enhanced DNN architecture (Bi-GRU) to determine 

the trace links between software artefacts. The results reported on their papers has surpassed the state 

of arts. Determining trace links in agile is imperative for provision of defects and requirements 

management. 

 

2.8.3 Summary of applying NLP in requirement engineering  

Using NLP is deemed to stand as the pillar of automatically generating agile artefacts, especially in 

requirements elicitation, requirements testing, and requirements management. There is profound 

evidence that can attest to this statement based on the discussed theories applied in preceding sections. 

From the literature, one can infer that NLP provides substantial techniques that can obviate manual work 

carried by business analysts concerning the capturing of requirements from customers, generating USs 

and test cases.  

 

The use of DNN seems to provide accurate results which surpass the state of art in relation to 

requirements traceability. However, the major challenge with DNN is that it requires massive amount of 

data to train and its memory hungry. Triggered by this observation, this thesis has adopted the use of 

NLP techniques to generate USs and extended the functionality of the tool proposed by (Pereira, 2018). 

In contrast with Pereira (2018) our tool introduces two features namely (1) decomposition of USs to tasks 

and (2) assign the decomposed  tasks to the developers.  

 

2.9 Task assignment  

Task assignment is a paradigm of assigning tasks to workers to accomplish a certain goal.  The 

assignment process is mostly governed by criterion such as delivery time and resources spend. The task 
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assignment problem is regarded as an NP-complete problem (Salman, Ahmad and Al-Madani, 2002). 

Recently, the problems associated with task assignment are predominately resolved using 

Crowdsourcing and Hungarian algorithm especially in software development.  

 

2.9.1 Crowdsourcing for task assignment  

Crowdsourcing is the task assignment paradigm where tasks are allocated to dispersed workers across 

the globe. The paradigm aims to improve collaboration between developers globally rather than small 

group isolated developers (Begel, Bosch and Storey, 2013). This technique is currently studied in recent 

literature under the topics "spatial crowdsourcing and online task assignment". Crowdsourcing was 

adopted in software industries due to the potential to deliver rapid products at a low cost.  

 

In crowdsourcing, developers are assigned microtasks to complete and they receive incentives as 

rewards. Remote workers are under the spectrum defined by the requester and participants, or 

developers subscribe to the to-do list by the requester (i.e., the requester must be bonded by location 

with the worker). Sometimes tasks are allocated to workers by physically collecting them from the 

requester and receiving money once completed.  

 

However, some of the proposed crowdsourcing methods possess characteristics that can affect product 

quality adversely. There is no assurance that the participant developer subscribed to solve the task can 

implement the expected content as their expertise levels are sometimes unknown (Ho and Vaughan, 

2011). Furthermore, since developers come from different network communities; therefore, this diversity 

sometimes translates to workers not working together.  

2.9.1.1 Applying crowdsourcing in unknown competence levels of the developers  

Since traditional crowdsourcing was fraught with various challenges, including the unknown skill set, 

some of the researchers took it up for a challenge to learn the skillset that the developers possess by 

monitoring the developers’ performance and time developers take to complete the task. (Ho and 

Vaughan, 2011) explored the problem of assigning miscellaneous tasks to workers with various, unknown 

skill sets in crowdsourcing. Their proposed algorithm included two constraints: a fixed set of tasks and 

budged for each task with several iterations the worker must complete the task. They implemented a 

solution on the premise that their objective was to allocate tasks to workers such that they achieve 

maximum profit. To achieve this, the unknown worker’s competence level had to be known. This was 

discovered later by monitoring the performance of each worker as they accomplish the task to estimate 

their skills. Although their aim proclaimed to maximise profit, assigning tasks to participants with unknown 

competence levels poses a threat to the project’s schedule and quality assurance. 

 



 

 

 

38 

 

An adaptive crowdsourcing framework called SMARTCROWD is presented (Basu et al., 2015). This 

framework can address task optimisation through knowledge-intensive crowdsourcing (KI-C) which 

accounts for human aspects such as skillset, proposed income per requirements to be developed and 

the presence of workers inside the optimisation process. KI-C is a recent form of the crowd, which 

concentrates on knowledge development rather than traditional crowdsourcing whose optimisation 

concentrates on quality and cost. Basu et al., tooling presented an adaptive feature that can be efficient 

for APM. For instance, delegating tasks to the senior developer in the case the current developer who 

was involved in the implementation of certain tasks is absent. Observing the positive traits that this 

framework exerts, can diminish the development time and budget due to multiple developers who 

undertake a single task. 

 

A real-time spatial crowdsourcing task assignment where only developers from the same neighbourhood 

as the requester are eligible to participate in the task assignment was proposed (Tran et al., 2018). 

Algorithms under this domain often concentrate on maximising the number of tasks assigned to 

developers under a limited budget across the entire campaign. Being influenced by the complexity of 

classical crowdsourcing paradigms, they further proposed an online heuristic that exploits the spatial and 

temporal knowledge learnt over time. 

2.9.1.2 Online crowdsourcing  

The recent state of the art shows that there is a trend of online crown sourcing when it comes to (Miao et 

al., 2020) designed a probabilistic online tasks assignment suitable for mobile crowdsourcing. The 

technique is distinct from traditional crowdsourcing in the following perspective, tasks and workers appear 

in the platform dynamically and workers are only restrained to perfume spatial tasks with the limited 

number of tasks they can execute.  

 

Because crowdsourcing some of the workers are unreliable due to the small amount of money they 

receive, crowdsourcing decided to devise a strategy to ensure the reliability of workers. The common 

practice amongst crowdsourcers was to assign a single task to different workers and compare the best 

solution provided by combining the answers in some way as majority voting. To diminish the cost of 

assigning a single task to different workers, Karger (2011) proposed an iterative learning algorithm that 

possesses the ability to distinguish appropriate workers to execute a certain task and to infer correct 

answers from workers’ answers. Figure 2.5 shows the crowdsourcing process followed for task 

assignment. For the process to be successful, it starts from step 1 and end at step 6. 
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Figure 2.5: Crowdsourcing process (Shi et al., 2020) 

 

Since crowdsourcing is fraught with several complications concerning quality assurance and time spent 

by novice workers to deliver tasks, (Shi et al., 2020) saw an opportunity to impede this behaviour by 

proposing a new task recommendation model based on the Hungarian algorithm. This model can 

enhance the efficiency of crowdsourcing by lessening the time spent on tasks by novice developers as 

they will be assigned tasks that are equivalent to their expertise.  

 

2.9.2 Task assignment based on Hungarian 

 A novel based task assignment algorithm that harness the power of the Hungarian algorithm was 

proposed (Yu, 2019). Hungarian was utilised to resolve optimum matching when the bipartite graph 

structure is determined. The structure was dynamically attained by altering the bipartite graph structure 

through the collaborative candidate group replacement strategy. Other researchers addressed the 

Travelling Salesman Problem (TSP) with Hungarian due to reaching optimum solution (Mondal, Hossain 

and Saha, 2013).  

 

To address the problem of allocating competent developers to appropriate tasks as an unbalanced 

personnel assignment problem, Wang et al. (2017) proposed an algorithm which improved traditional 

Hungarian algorithm by applying three strategies; (a) assign tasks to developers with an exceptional skill 

set to accomplish a task, (b) create a cluster developer based on their optimal ranking, and (c) group 

developers based on for the optimal group assignment. An improved version of the Hungarian algorithm 

was proposed by (Mills-tettey and Stentz, 2007). 

 

A reinforced Hungarian algorithm (RHA) for task assignment in global software development was 

proposed (Wu et al., 2017). RHA consist of three key phases. First, RHA changes  𝑛 × 𝑚 cost matrix by 

adding (2𝑛 − 𝑚) virtual development tasks. Second, RHA executes the traditional HA on the two 𝑛 × 𝑚 

matrix to get optimal assignment results. Finally, RHA removes the virtual development sites to get the 

optimal assignment results.   
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2.10 Summary 

This chapter introduced ASD and its terminologies. Agile methodologies have captured researchers' 

attention in the past decades due to its ability to accommodate change in requirements along the project 

lifetime without affecting the project schedule and cost. We described and discussed requirements 

artefacts which are involved in Agile particularly user stories and epics. US are the representation of 

software requirements specification captured in a concise to avoid ambiguity. The most complex USs to 

work with are called epics due to their size. The rules that govern the properly written US were discussed. 

Later showed necessary NLP techniques which are used to extract essential information to generate 

agile artefacts. The literature showed that POS tagger is the most used NLP data extraction technique. 

POS tagger is especially used in NLP to extract language structure such as verbs, adjectives, nouns etc. 

In ASD, POS tagger extract information such as action verbs which are used to form part of US, use 

cases, test cases etc. 

 

Different task assignment models were discussed applicable in agile environment were discussed. The 

literature revealed that problems associated with task assignment are predominately resolved using 

Crowdsourcing and Hungarian algorithm especially in software development. We concluded the chapter 

by analysing the importance of applying AI in project management.
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2.11 Summary of literature 

 

Author/Date Aim/goal Concept 
Theoretical 

model 

Paradigm 
/ Method 

Context / 
Setting / 
Sample 

Findings Future 
Research 

(Raharjana et al., 
2021) 

to capture the current state-of-
the-art of NLP research on user 
stories. 

forward and 
backward 
snowballing 
 

systematic 
literature 
review 

Nlp in ASD  The generation of user stories 
from free text has not yet 
been much explored 

 
 Contextual knowledge is 

needed when processing user 
stories 

 
 Generating models/artifacts 

from a user story is widely 
performed by researchers.  

We hope that the ASD would also 
thrive in NLP and user story research. 
Research in broader aspects, such as 
management and requirement 

Taibi et al. 
(2017) 

To investigate the process 
through which user stories are 
refined into tasks 

 NLP  Study the 
backlog item 
of 1,593 
items 

 widely practiced decomposing 
technique within the 
boundaries of Agile is user 
story mapping 

 The guidelines are likely to 
need some amplification. 

 their impact on software 
development needs to be 
evaluated in vivo 

(Ratner & Harvey, 
2011) 

To determine how efficient is 
horizontal and vertical slicing in 
user story decomposition 

 Survey four teams  Vertical tends to have positive 
traits than horizontal slicing in 
terms of risk and completions 
of project. 

 horizontal technique parades 
no functionality to the end-
users rather partially 
completed tasks which leads 
to reiterate and delivers 
ineffective sprints. 

 

Automate the process 
 

(Pereira, 2018) To generate user stories from 
SRS 

 NLP  ASD  concise texts with the 
description of the software 
focused on the user 
perspective have the greatest 
result 

 

 enhancing the sentence 
splitting and the separation 
of a verb plus complement 
pairs 

 saving the information in a 
database before returning 
the list of user stories 
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(Ansari, 2017) generate test cases from the 
functional requirement given in 
conjunctive statement format 

 NLP  Due To maximum efforts and time 
consumed in developing test cases is 
being saved 

 automatically construct test 
cases from the functional 
requirement given in any 
form 

 predict that what test cases 
would prove to be more 
important in the future 

(Basu et al., 2015) To address task optimisation 
through knowledge-intensive 
crowdsourcing 

SMARTCROWD  Crowd 
sourcing 

•to integrating the human factor further 
into the task assignment process 
•To determine the peripheral methods 
on which KI-C optimisation is based 

 imperial study to validate 
the  

(Miao et al., 2020) proposed a real-time spatial 
crowdsourcing task assignment 
where only developers from the 
same neighbourhood as the 
requester are eligible to 
participate in the task 
assignment 

 Spatial crowd 
sourcing 

Online 
crowd 
sourcing 

 workers are only restrained to 
perfume spatial tasks with the 
limited number of tasks they 
can execute 

 Use approximation 
algorithm to lessen time 
complexity 

 change the worker 
assignment scheme in 
Algorithm 1 such that tasks 
with higher priorities are 
assigned to workers with 
higher probabilities. 

(Son et al., 2021) propose an approach based on 
multi-objective combinatorial 
optimization to do this 
automatically 

 Online crowd 
sourcing and 
Hungarian 
algorithm 

  improve the efficiency of 
crowdsourcing by lessening 
the time spent on tasks by 
novice developers 

 to refine the model to 
consider new goals and 
constraints in many 
situations. 



 

 

 

43 

 

 

2.12 Conclusion  

Agile methodologies are the future of software development with the integration of AI. Adopting AI brings 

lucrative results to the executives as it promotes quality development of products. On the other hand, 

Agile delivers value to customers in a short iterative manner and does not compromise project schedule 

and costs. The integration of AI and Agile is in demand to develop the tools that are truly intelligent to 

support project managers in the project planning activities. 

Improving project management activity such as estimates facilitate more effective control of time and 

budget.  

 

Based on the attained information from the literature, it is evident that to develop a scalable ubiquitous 

APM tool that supports traceability between requirements and PB management, AI is the right candidate. 

The gradual increase in requirements does not place a substantial thread to the system performance but 

increases its estimation accuracy while using AI. It is also worth noting that, the quantity and quality of 

data contributes towards the higher precision of trained AI solutions, especially in the field of deep 

learning. 

 

Most of APM tools focus on PB management and sprint planning. However, according to the author's 

knowledge, there is the scarcity of tools that incorporate agent-based technology in managing the PB 

with the inherent USs risks. Therefore, this thesis aimed to bridge the gap in the literature and implement 

the smart tool that will support the outlined objectives in 1.5 using AI. Less effort is devoted to 

decomposition of USs. The acquired literature leads to the development of a methodology that is 

described in chapter three.   
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3. CHAPTER THREE. 

RESEARCH METHODOLOGY 

3.1 Introduction  

 

Based on the analysed advantages and disadvantages of techniques found in the literature APM tools 

performance can be enhanced using AI techniques. (Dam et al., 2019) provided profound evidence that 

APM tools efficiency is in the hands of automated processes developed using AI. The premise for this 

thesis is to apply AI techniques to achieve the following objectives below: 

1. To groom PB with NLP 

2. To assign tasks to developers 

3.1.1 Aim  

Enable agile teams to spend more time delivering right solutions with reduced sprint planning time and 

effort. 

3.1.2 Input  

 PO’s responsibilities  

- Provide unstructured text file which comprised of requirements to be processed. 

 Developers: 

- provides proposed time frame for each task to be developed. 

3.1.3 Output  

 User stories  

 Tasks  

 Feasible tasks to fit sprint backlog   

3.2 Methodology 

NL and Hungarian algorithm were integrated to support in the automation of two activities involved in 

Scrum process (1) the grooming of the PB, and (2) task assignment for sprint planning. NLP was mainly 

utilised to address the following objectives: the decomposition of epic to USs, and USs to tasks. 

Hungarian algorithm attempted sprint planning problem by assigning task to developers. These 

techniques were interconnected to guarantee interoperability amongst each other. The integration of 

these techniques presented a smart agile project management (SAPMT) tool that advocates in decision 

making during the sprint planning phase in Scrum methodology until the release of the potential shippable 

product increment. The Figure 3.1 illustrate the enhanced Scrum process proposed.   
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3.3 Enhanced Scum process 

 

 

 

Figure 3.1:Proposed Scrum process 

 

1. The PO collects epic requirements from the customers and save them into PB. 

2. A pool of requirements is inserted into PB where refinery of large PBIs is decomposed using NLP (stanza) 

techniques proposed in chapter 4. After these requirements are decomposed into USs, they are normally 

assigned priority values using either MoSCoW or AHP. Most important PBI are moved to the top level in 

the PB called the definition of ready (DoR) for the next iteration. However, our work will only concentrate 

on the decomposition of epics using NLP.  

3. After the epics are decomposed, now we apply task assignment model to assign the decomposed task 

to developers.  

3.4 User story template  

To form a US using a text generative model, it is important to define the model this thesis followed for 

validation purposes. There is a limited number of templates proposed in the literature for US format. The 

template popularised by (Cohn, 2004) state that the US should follow the template, AS a <user role> I 

want to <goal> so that <benefit>.  The user role references the who part of the story while goal focusses 

on the what functionality does the story delivers and why focusses on the benefit part of the story (i.e., it 

answers what value will the story bring If implemented or show why it is essential to have such story in 

sprint). In most cases when automating the US generation from unstructured text using NLP, the last part 

of the US (benefit) is omitted(Lin et al., 2014; Gunes and Aydemir, 2020). Since the last part of the US 

template is optional, this thesis has omitted it. Thus, the template that this thesis use is as follows:  
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Template = As <user role> I want to be able to <goal>. This template has been used before to generate 

the USs from requirements specifications using NLP (Pereira, 2018).  

3.5 Dataset  

This Thesis have formulated its own dataset to validate the feasibility of applying the SAPMT in Agile 

processes (grooming and sprint planning). However, this thesis tried to bring the project to real life 

situations when constructing the data by using one of the prominent case studies in software engineering 

industry. The dataset used was relying on assumptions as these is not an empirical study, we therefore 

used ATM and Ecommerce in our case studies. ATM and Ecommerce have been studied for last two 

decades now, these systems have diverse requirements and there is always room for improvement 

concerning the proliferation of technology.  During the elicitation of both case studies, the requirements 

were written in an active voice for the system.  

 

Since the research falls under text generative models, we had to perform data transformation before 

using our dataset to enhance the performance of our tool. Data transformation was performed using 

python library named regular expression (regexp); It helps on the elimination of stop words and unwanted 

text from the dataset that reduces the accuracy of the tool. The rationality to choose this library was that 

it offers freedom to developers to express their creativity without limiting them and its fast. 

 

3.6 Attributes of the research  

3.6.1 Grooming PB with NLP  

3.6.1.1 Decomposing user stories into manageable stories.  

The decomposition of USs was performed prior to sprint planning due to the gathering of the necessary 

feedback from the stakeholders and the system’s customers. The PBIs in the definition of ready state 

were identified and examined. The stories which comprised of more than one action verbs on their 

analysed linguistic structure were referred to as epics. An epic is the US that constitute large functionality 

that cannot fit into a single sprint. Therefore, they need to be on their simplest granularity, tasks before 

inserted in the SB. To demonstrate how an epic was coarse-grained into manageable stories, consider 

an example in chapter 4 in section 4.4.2.2.  Spacy-stanza was used as the tool to process all the 

information needed to formulate the US from epics.  

 

3.6.2 Hungarian algorithm  

Hungarian algorithm is classical combinational optimisation task assignment model which dates back as 

1955 proposed by Harold Kuhn to find the minimum total cost of job assignment to each worker. To find 

the minimal total cost, the problem is addressed as the square matrix of the costs of workers executing 

tasks. Figure 3.2 Illustrated how the algorithm attain the minimal cost.  The algorithm solves the problem 

in a polynomial computational time complexity 𝑂(𝑛3) for any 𝑛 × 𝑛 assignment problem.  Figure 3.2 
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shows flowchart of Hungarian algorithm. The algorithm attain minimum cost can be mathematically 

described by equation 3:1. 

 

Figure 3.2:Hungerian algorithm flowchart 

Although Hungarian is a classical solution for task assignment, it is still applied to current models as the 

evaluation tool that measures their accuracy and performance of newly developed task assignment 

models.  
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 1

𝑛

𝑗=1

, 𝑖 = 1,2,3 … , 𝑛,  

                   ∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1 , 𝑖 = 1,2,3 … , 𝑛,  

                       𝑥𝑖𝑗 > 0,     𝑖, 𝑗 = 1,2,3 … , 𝑛        

 

3.7 Summary  

This chapter presented the core objectives of this thesis followed by an overview of automated Scrum 

process. The two objectives of designing this framework were identified and outlined as follows: the 

decomposition of epics and task assignment. Fulfilling these objectives will answer to the limitations of 

existing APM tools mentioned in problem statement. Both Hungarian algorithm and NLP techniques were 

integrated to form enhanced Scrum process. The integration of these approaches was seamlessly 

integrated and helped us to propose the enhanced Scrum process outlined in section 3.3. Among these 

subsystems, NLP model is responsible for generating USs from unstructured text file which comprised of 

epics and later transform this USs into tasks. The Hungarian was utilised to resolve task assignment. We 

concluded the chapter by discussing benefits of using Hungarian algorithm for task assignment model. 
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4. CHAPTER FOUR.  

SYSTEM ARCHITECTURE AND IMPLEMENTATION 

 

4.1 Introduction  

In reference to the boundary conditions that are associated to the complexity of the prevailing APM tools 

as identified in the problem statement, this chapter is about the description of the design, system 

architecture and implementation of the tool that is accountable of the mentioned requirements in problem 

statement.   

 

The architecture was designed in such a way that it accommodates scalability. Object oriented 

programming paradigm was adopted to provide flexibility and code reuse, while trained AI models were 

used to provide scalable solution and high accuracy. Furthermore, a web application was designed to 

provide heterogenous accessibility of the developed tool. That is, it can be accessible to any device that 

possess Internet or web browser. Etc., phone, laptop, and tablet.  

 

The tool was developed using micro-python framework, Flask, MySQL, and Tailwind CSS framework. 

Python was selected because it serves as the multipurpose programming language with large community 

support, and it also provides extensive documentation and tutorials.  

  

In the subsequent sections, we present the design approach, high-level system architecture, inputs 

expected for the system to function, drill down of system implementation, and expected output. Then, in 

section 4.11, we summaries the chapter. 

 

4.2 Design approach  

In this thesis, we’re proposing called SAPMT. The preliminary approach to achieve the implementation 

of this tool initially starts by designing a high-level architecture and model the system using activity 

diagrams.  

For the system to function, the PO issues unstructured text file which comprised of desired project’s 

documentation to the developed system as input. The input is processed using the Restful technologies 

from python Flask framework and regular expression for NL data cleaning. The system is a web-based 

application which entails the sublayers which are proficient to filter and process attributes which acts as 

inputs data for different pipelines on the system. 
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4.3 Design goals  

The goal was to design and implement a SAPMT for requirements engineering especially in the context 

of Scrum methodology that can automate the generation of Agile USs and tasks from epics. Later assign 

the decomposed tasks to available developers using Hungarian algorithm without taking away Scrum’s 

agility processes. We hypothesised that the generated artefacts could help project managers (PMs) and 

PO in sense that it can lessen the time spend on requirements elicitation. We tried to align our work with 

the Agile framework called Scrum. 

 

4.4 System architecture  

In this thesis, we have adopted some of the concepts from blackboard architecture due to its flexibility to 

integrated several algorithms and data representation into a coherent and flexible computational 

framework (Hayes-Roth, 1985). The Figure 4.1 illustrates the architecture of the proposed tool. The 

architecture is composed of system components, mainly dependent on NLP engine and web services 

and Hungarian model. This architecture deviates from a decision support system for sprint planning 

proposed by Khabbazian et al. (2018) by one element. Although our proposed architecture adapted their 

task assignment model, we enhance the architecture by adding new feature, NLP engine which is 

responsible for the decomposition of epics. 

 

 

Figure 4.1:Proposed high-level architecture 
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4.4.1 components of architecture. 

 Web application: presents results to the end user using RESTful web services. The web services are also 

used to send data to NLP pipelines where it’s processed to get an output. 

 NLP Engine 

1. Advanced NLP: return the generated Agile artefacts (USs and tasks). 

 Hungarian algorithm: assign tasks to competent developers. 

4.4.2 NLP engine 3 

The following diagram in Figure 4.2 illustrated high-level design of decomposing USs and tasks. The 

processes are divided into two pipelines to enhance the tool’s performance: first pipeline and second 

pipeline. The first pipeline carries the most common NLP functions which will be described in section 

4.4.2.1. 
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Figure 4.2:Outline the design process of decomposing epics 

Adapted from (Pereira, 2018) 
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4.4.2.1 First pipeline implementation 

 

There are of six processes executed in this stage: sentence segmentation, POS, NER, dependency 

graph generation, conference resolution and the replacement of the subject mentions with their pronouns 

(Pereira, 2018).  This thesis has adopted the use of new python NLP libraries called Stanza and Spacy-

Stanza. The first four tasks were resolved by utilizing spacy-stanza pipelines and annotations which 

returned the POS tag of words, lemma and dependency graph of text provided as an output. As 

mentioned in chapter 2, the dependency graph returns syntactic relationship between words in a 

sentence. The graph can consist of POS tags, root, etc. To visualize the dependencies, we imported 

displacy library from spacy1.  

 

The subsequent step resolved conference resolution between the sentences by utilizing Stanza 

CoreNLPClient interface annotators. This process simply replaces the pronouns by their correlated 

subject names or noun present in the Mentions. If similar subjects refer to the same pro/noun on the text 

given, the algorithm returns none, and continues with the output of the current dependency graph where 

the graph’s metadata acts as the input to the second pipeline. For demonstration purposes, we have 

illustrated the process of attaining the first output pipeline by using the text below. 

Sentence 1: 

 “The bank Administrator views customer profile. But he cannot delete transactions history”.  

 

After the text went through all processes from the first pipeline, the output comes as modified text below:  

Transformed sentence: 

 The bank Administrator views customer profile. But the bank administrator cannot delete transactions 

history.  

It is worth noting that the algorithm identified “The bank administrator” and “he” as the subjects in both 

sentences. However, the pronoun “he” refers to the same subject as “the bank administrator”, therefore 

the algorithm suggested to replace the pronouns its respective subjects. Therefore, this triggers the 

dependency graph to be updated and return the modified text. Figure 4.3 and Error! Reference source 

not found. shows the dependency graph after performing conference resolution. shows the 

programmatic output of the dependencies excavated from the sentence 1 while 4.4 shows the output of 

dependencies in a graphical form. 

                                                

1 https://spacy.io/ 
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Figure 4.3: programmatic dependency output

 

Figure 4.4:Dependency graph visualized by displacy 

4.4.2.2 Second pipeline implementation 4 

The second pipeline receives metadata from the first pipeline’s output and execute the most fundamental 

NL tasks to decompose the epics into USs. Having the input as dependency graph from the first pipeline, 

it permits us to perform text analysis and extract essential information to generate USs information.  For 

instance, to extract the user/actor of the US from dependency graph, we have implemented a function 

that facilitates extraction of the subject representatives of nouns and returns them as a list. This was 

accomplished by extracting a word with POS tags NOUN, PROPN and dependency token either nsubj, 

or nsubjpass, compound. The code illustrates how to extract the user/actor for the US generation. 

 

def subject_extraction (): 

    for sent in doc. sentences: # perform sentence segmentation  

        for word in sent. words: #  

            if 'nsubj' in word. deprel and word.pos == 'PRON, NOUN': # 
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                subject_words. append(word.text)   

    return subject_words 

 

The first line from the code performs the sentence segmentation while the second and third lines perform 

tokenization. The fourth line finds all the words that are subjects with active voice (nsubj) by using the 

dependency attribute deprel.  

 

The items from this list are retrived later to form part of the US’s information, user /actor. For instance, 

the template that this thesis followed is given as: 

 

Template: “As “+ <user/actor> + “I want to be able to “+ <phrase>.   

 

To generate the US, the algorithm starts by counting number of verbs as indicated in activity diagram in 

Figure 4.7. The processing is given in two categories, singe verb and multiple verbs. For each category, 

there are different steps to follow until the USs and tasks are generated.  

 

4.4.2.3 Algorithm for single verb sentences 4 

The process initiates by counting the number of verbs present in each sentence. Most of the algorithm 

steps followed is activity diagram in Figure 4.7 which are self-explanatory. After that, we determined the 

subject from the sentence using the dependency graph by finding the keyword key nsubj. The nsubj 

denotes that the sentence is in active voice and it’s a nominal subject, while nsubjpass denotes that the 

sentence it’s in passive mode. However, this thesis focusses mainly on text written in active mode. We 

therefore discard all text written in passive mode. 

For demonstration purpose we will continue with the first sentence from the first pipeline.  

 

 The bank Administrator views customer’s profile.  

 

Following the algorithm proposed by (Pereira, 2018), iterate through the entire dependency graph and 

count the number of verbs in each sentence by finding their POS tag with keyword VERB. It is worth 

noting that this research only implemented the USs that are in active mode. The activity diagram in Figure 

4.7 illustrates the algorithm that is utilised to attain USs and tasks. From the above text, ‘views’ was found 

as verb. Find the position of the identified verb and start the partial sentence generation from the index 

of the verb until end of the sentence. Save this information in a string variable called partial phrase.  The 

figure 4.5 shows the code snippet that this thesis has developed to identify the index of the verb and the 

generate partial sentence.  
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Figure 4.5:Code snipped for partial sentence generation 

The first line of the code finds tokens found in a sentence. The doc_sent[i] in this case indicates the 

specific sentence we are focusing on with single verb. Line 3 identifies the verb from the sentence by 

using POS tag VERB. After finding the position of the verb in a sentence, get the index of the verb by 

using keyword token.i. The next task was to determine the end of the sentence. As indicated from line 6, 

the end of sentence was found by using the keyword end with the sentence.  After finding the position of 

the verb and the end of the sentence, construct a partial sentence by starting the text generation from 

verb’s index to the end of the sentence. Store this information in a string called partial phrase.  Line 6 of 

the code performed exactly partial text generation and gives the output below.  

output:  

Partial phrase = views customer’s profile. 

 

The subsequent step followed was to eliminate the punctuation at the end of sentence. This thesis has 

used the power of regular expression (regex) for text processing to remove the punctuation from partial 

phrase. After that, replace the verb from partial phrase with its verb lemma. Figure 4.6 shows a code 

snippet that illustrates how to replace verb with its lemma. 

 

 

Figure 4.6:Replacing verb with its lemma 

The ultimate step left is now to collect the pieces of information that attribute towards the formation of US 

(subject and partial phrase].  Use this information to form US using template in section 1. 

From the template we get the following US when using sentence 1.  

Template = [subject/actor] I want to be able to [partial phrase] 

Subject: The bank Administrator  

Partial phrase: view customer’s profile. 

It is also imperative for the US formed to possess an object. This was extracted from partial phrase’s 

dependency graph by identify word with dependency keyword obj. If the object exists, utilise the US’s 

template to fill in the corresponding missing information to form US.  The results of US for above text 

were found as: 
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User story: As the bank Administrator I want to be able to view customer’s profile.  

 

 

Figure 4.7:Activity diagram decomposes user story and task 
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adopted from (Pereira, 2018) 

 

 

4.4.2.4 Algorithm for multiple verbs.  

In case the sentence is comprised of multiple verbs that are in active voice, use dependency graph to 

determine subject or compound from the sentence given.  Furthermore, utilise the dependency graph’s 

metadata to extract the presence of root nodes that are verbs from the entire sentence.  Save the index 

of each verb found from the input text.  Then, initialise the splitting process to form partial phrases. Spitting 

process was summarised by the following steps below: 

1. Get the root verbs and their index positions from the entire sentence. Save this information in a list 

2. Count three words before reaching the next root verb in the sentence and append this text to the root 

verb.  

3. Form partial sentences with the output of step 2.  

4. Verify the presence of an object (obj) from the partial sentences by searching through the dependency 

graph. We have illustrated this process by using code snippet in Figure 4.8. 

 

Figure 4.8: Determine the presence of object in generated phrase 

5. Refine all unnecessary conjunctions words that complicates the US to avoid ambiguity. 

6. From the partial sentence formed, replace the verb with its lemma.  

7. With the information from step 6, retrieve the subject fill in the US’s template with its corresponding text. 

Remember template = As [subject], I want to be able to [partial phrase].  

8. Use chunking to extract the tasks from obtained USs generated.   

9. Repeat all the steps until the entire text is processed.  

For illustration purposes, we have used the following. 

 The bank customer can withdraw money from ATM without card. The bank customer can also deposit 

money on the ATM, change PIN on ATM and transfer money from current account to saving account 

using the ATM. If money is deposited or withdrawn from account, customer receives SMS notification. 

Looking at the text provided, the subject of the sentence never changed, thus, conference resolution just 

continues using the bank customer as the subject through the entire text. Therefore, the output of the 

dependency graph that is fed to second pipeline for above sentence is given in Figure 4.9. 

The --> DET --> det 

bank --> NOUN --> compound 

customer --> NOUN --> nsubj 

can --> AUX --> aux 
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withdraw --> VERB --> root 

money --> NOUN --> obj 

from --> ADP --> case 

the --> DET --> det 

ATM --> NOUN --> obl 

without --> ADP --> case 

card --> NOUN --> obl 

. --> PUNCT --> punct 

The --> DET --> det 

bank --> NOUN --> compound 

Customer --> NOUN --> nsubj 

can --> AUX --> aux 

also --> ADV --> advmod 

deposit --> VERB --> root 

money --> NOUN --> obj 

on --> ADP --> case 

the --> DET --> det 

ATM --> NOUN --> obl 

, --> PUNCT --> punct 

change --> VERB --> conj 

PIN --> NOUN --> obj 

on --> ADP --> case 

ATM --> NOUN --> obl 

and --> CCONJ --> cc 

transfer --> VERB --> conj 

funds --> NOUN --> obj 

from --> ADP --> case 

the --> DET --> det 

current --> ADJ --> amod 

account --> NOUN --> obl 

to --> ADP --> case 

savings --> NOUN --> compound 

account --> NOUN --> nmod 

using --> VERB --> acl 

ATM --> NOUN --> obj 

. --> PUNCT --> punct 

If --> SCONJ --> mark 

money --> NOUN --> nsubj:pass 

is --> AUX --> aux:pass 

deposited --> VERB --> advcl 

or --> CCONJ --> cc 

withdrawn --> VERB --> conj 

from --> ADP --> case 

account --> NOUN --> obl 

, --> PUNCT --> punct 

customer --> NOUN --> nsubj 

receive --> VERB --> root 

SMS --> NOUN --> compound 

notification --> NOUN --> obj 

Figure 4.9:The output of the dependency graph 

The first sentence contains the single verb which is, withdraws. The verb was replaced with its lemma, 

withdraw. Following the algorithm in section 4.4.2.4., we got the output of the first sentence as: 

US: As the bank Customer, I want to be able to withdraw money from ATM without card.  

Task: withdraw money from the ATM without card.  
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The next sentence contains multiple verbs, deposit, change, transfer, deposited, withdrawn and lastly 

receive. We followed the steps outlined in section 4.4.2.4 to attain USs for different verbs. The output of 

the USs and tasks was given as below:  

US: As the bank Customer, I want to be able to deposit money on the ATM. 

Task: deposit money on the ATM 

US: As the bank customer, I want to change Pin on the ATM. 

Task: change PIN on ATM 

US: As the bank Customer, I want to be able to transfer money from current account to savings account 

using ATM 

Task: transfer money from current account to savings account using ATM. 

User story: As the bank Customer, I want to be able to receive SMS notification. 

 

4.4.3 Extracting tasks from user stories 

After the generation of USs is complete, we extracted useful insights from the decomposed USs to form 

tasks associated with those decomposed stories. To decompose USs to tasks, this thesis builds on the 

guidelines provided by an empirical study on how to formulate tasks from a given USs by applying NLP 

techniques (Müter et al., 2019). We have also distilled grammatical patterns that generate the task from 

the given US by using chunking technique through the aid of Spacy-stanza annotations and pipelines. To 

be more specific, verb phrase detection was the most effective chunking technique we employed. A verb 

phrase is a syntactic phrase which consist of at least one action verb. This verb can be trailed by other 

chunks, such as object phrases, noun phrase etc.  

 

The tasks were extracted by analysing partial phrases from the US information. This thesis determined 

the rules that govern the determination of tasks from their US linguistic structure linguistic task stricture.  

 Initial word should be verb a with dependency tag ‘root’ 

Therefore, the pattern of finding the tasks from US was given as: 

Pattern = ‘r(<VERB>? <OBJ>*<NN>+)’ 

For demonstration purpose, consider the formulated US at section Algorithm for single verb. 

The output of the task was found as: 

Task: view customer’s profile 

 

4.5 Tasks assignment to the developers. 

This section shows how the designer of this thesis has assigned the obtained tasks from the USs to the 

developers using Hungarian model. While using Hungarian, the number of tasks should be equal to the 

number of developers. We therefore count the number of tasks extracted from the USs and equate them 
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to the number of developers. Table 4.1 below shows the tasks that are available from SB waiting for task 

assignment model.  

 

Table 4.1:Task extracted from ATM text 

ID Tasks  

1.  withdraw money from ATM without card 

2.  deposit money on the ATM 

3.  change PIN on ATM 

4.  transfer money from current account to savings 

account using ATM 

 

 

Table 4.2:Available developers 

ID Developers  

1.  Thabo 

2.  George 

3.  Albert  

4.  Clyde 

 

Developers compete for task assignment by issuing their proposed delivery time to complete each task. 

This information is received secretly by the PO who model this information in a cost matrix format which 

is suitable for Hungarian algorithm to process it. The secrecy provides the transparency as developers 

would not base their opinions on their colleague’s decisions. From Table 4.1 and Table 4.2, the number 

of tasks equate to the number of developers, thus, each developer will implement a single task. Both 

tables were modelled as the cost matrix with the proposed time frame below. The aim was to find optimum 

sprint with less development cost while maximising value. 

 

Table 4.3:TO-DO Table (iteration 1) Hungarian 

TO-DO Task 0 Task 1 Task 2  Task 3 
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Thabo 3 6 4 2 

George 5 1 7 5 

Albert 2 4 3 6 

Clyde  4 2 4 5 

 

 

Table 4.4:After applying Hungarian algorithm 

TO-DO Task 0 Task 1 Task 2 Task 3 

Thabo 3 6 4 2 

George 5 1 7 5 

Albert 2 4 3 6 

Clyde 4 2 4 5 

 

Following the activity diagram in section 3.6.2, we obtained the results of the task assignment model as 

show in Table 4.5. The numbers highlighted in blue colour in Table 4.4 are results proposed by Hungarian 

algorithm. 

  

Table 4.5:Iteration 1 

 

 

 

 

We have used pseudo names for tasks obtained from Table 4.1. For example, Task 1 is mapped with 

withdraw money from ATM without card. However, the real tasks will be displayed during task assignment 

while using the system.  

 

4.6 Implementation details  

Iterations 
 

Iteration 1 

Task TT 

Thabo Task 3 2 

George Task 1 1 

Albert Task 0 2 

Clyde Task 2 4 

Total TT 9 
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4.6.1 Web application  

After considering different possibilities to present the tool, a web-based platform was selected as the 

potential solution. The rationality to select the web-based platform was the ability to provide 

heterogeneous accessibility to the developed tool. To attain this, we have adopted the Tailwind CSS 

framework (Tailwind, 2019) and presented our tool as a dashboard application that facilitates the 

communication between the development team to enhance their decision making. Figure 4 illustrates the 

implemented tool. The tool recently supports four project management actives, mentioned on the 

objectives.  

 

To guarantee seamless accessibility to the developed tool, we designed the application using responsive 

web design (RWD) principles. RWD states that way the users interacts with the developed system must 

be same regardless of the device used to access the system (H. Gillbert Miller, 2011).  The web 

application designed using these principles adopt the flexible layout by harnessing the power of cascades 

styles sheets (CSS3) media queries.  

 

It is crucial that the tool supports PO activities and the development team activities. The user interface 

currently supports the following PO activities: create, update, and delete task from the PB and to approves 

estimated requirements’ priorities made by AI model. Create option is utilised to generate new tasks, 

while update is used to edit the parameters of tasks and lastly, delete option is used to remove selected 

element from the Prioritised PB.  

 

Figure 4.10:The user interface of the developed tool 
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4.6.2 Database  

The database module is utilised to save information in a persistent and consistent way and has no distinct 

functionalities. The web application is interconnected to the database to perform the read and write 

functionalities. The database is a significant module of the SAPMT as it is where all the data issued by 

the users is stored.  

4.6.2.1 Model  

The SAMPT utilises a relational database as its storage system. There are currently numerous other 

alternatives, but relational database was preferred due to their extensive usage, and they permit the 

practical implementation of the models. It is not the scope of this thesis to explore alternative methods to 

store information. 

4.6.2.2 Database management system  

There is diverse array of database management system (DBMS) platforms that implement a relational 

model. Despite having different features, all those DMBS have common base; provide data abstraction 

in a tabular manner which is easy to use and understand. So, the rationality to select the DMBS was 

based on opensource, reliable technical support and popularity. To develop SAPMT, we utilised MySQL 

which is an open-source database which has the set of comprehensive advanced features, management 

tools and technical support to achieve the highest levels of MySQL scalability, security reliability and 

uptime. MySQL is the most popular opensource DBMS which is mostly integrated with web applications 

 

 

Figure 4.11:Database schema of developed tool 

4.7 Libraries used  
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To achieve the goal of this research, we have used different kinds of NLP libraries, Spacy-stanza, Stanza, 

Stanford CoreNLP. But the main library which offered diverse number of functionalities was Stanza. 

Stanza is the python NLP library which was renamed after its predecessor Stanford CoreNLP (written in 

java). During the writing of this thesis, the library currently supports diverse array of language up to 66 

official languages in the world (Qi et al., 2020). It is one of the best efficient NL libraries as compared to 

its competitors spacy and NLTK. The tool supports the functions like sentence segmentation, POS, 

Lemmatization, Name Entity Recognition (NER), sentence sentiments analysis etc. Additionally, it 

sources java packages to enhance its functionality: to resolve conference resolution on text, it accesses 

Stanford Server toolkit via Stanza CoreNLP interface which is written using native python. It also provides 

flexibility to allow developers to customise their annotators and pipelines. Lately Stanza was integrated 

with Spacy to provide visualisation of dependencies by using displacy.  

 

4.8 Inputs and outputs 

For the system to function, the input was given as a textual data in a form of a file. The file was be 

comprised of epic USs. 

4.8.1 Product Owners inputs  

The framework as it appears in the Figure 4.1:Proposed high-level architecture, it starts with the PO who 

is accountable for providing the detailed project documentation captured during. The documentation 

consists Agile epic requirements stated by the customer. This input was processed at different pipelines 

demonstrated on system architecture. The PO also participates in the entering information provided by 

the DT regarding task assignment. 

4.8.2 Developers’ inputs  

The registered developers provide their credentials to access system and view tasks assigned to them. 

These credentials are passed to authentication subsystem where they are going to be validated to log 

on the system. The tasks are assigned to individual development team members are resolved by 

Hungarian model. The certain developer will be given administrative rights to approve or change the 

proposed sprint velocity by the PO. The tasks from definition of ready are selected by the sprint planner 

implemented by Hungarian algorithm to provide less risky sprint with ROI.  

 

4.9 Task’s selection model  

The PO can start the Sprint planning as soon as there are present tasks on the SB such that tasks are 

assigned to developers by applying Hungarian algorithm. The task assignment model is divided into three 

subprocesses which are discussed on the subsequent sections.  

4.9.1 Process 1  

At this stage, the tool will check the presence of developers to equate them to equal number of tasks 

present on the SB. After equating process, results are sent to Hungarian algorithm as square matrix. 
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4.9.2 Hungarian algorithm  

The Hungarian algorithm will use the TO-DO-Table as a squire matrix to determine the shortest time cost 

and forward the results to the subsequent stage of the process (Khabbazian, 2018). 

4.9.3 Process 2.  

The output of the Hungarian algorithm will be processed to allocate the tasks for the developers. Under 

normal circumstances, the system will complete the allocation procedure for that task by copying the 

Hungarian algorithm result “Developer, Task, Time” to the Assigning-Table, submitting the iteration result 

in the Iterations-Table, and removing the Task from the TO-DO-Table. This is the progressive process, so 

the system will find available developers and return to work again from the first level of the processing 

(Process - 1) until the entire tasks have been allocated to developers. 

4.10 Output 

The output will be comprised of two table: (1) Iteration tables and (2) Task assignment table. Iteration 

tables will consist of attributes such as developers’ names, tasks they are bound to implement together 

with proposed total time (TT) which can be spent to implement such task. The second table is assignment 

table which will show all tasks that each developer has contributed towards its implementation. To 

encounter for sprint duration, the developers must work on the tasks assigned to them on iteration table. 

 

4.11 Summary  

We have presented the NLP and Hungarian based decision support system architecture to enhance the 

project managers and development team duties in the following activities, decomposition of epics and 

task assignment. The system consists of sprint planner which output the proposed Sprint in the form of 

iterations.  

We harnessed the ability of Blackbox architecture to integrate two different technologies, NLP, and the 

Hungarian algorithm. This resulted into the design of the proposed high-level architecture described in 

section 4.4. NLP was responsible for the decomposition of epics into user stories and task while 

Hungarian algorithms was used for task assignment. Furthermore, we presented an outline of the design 

process of decomposing epics; the algorithm was divided into two sub sections (1) single verb and 

multiple verbs. This was done to enhance algorithm’s performance. Both algorithms were discussed into 

more details, the complexity of multi verb’s algorithm is more complicated than single verbs.  The 

algorithm for multiple verbs is more complicated than single verbs. We further demonstrated how to 

extract the necessary information to decompose the USs. 

 

We further describe the technology used to design and implement the tool, in aspect of database and 

user interface design. MySQL was selected as the best solution for data storage while Tailwind CSS was 

used to design the user interface. We stated expected inputs for the systems to function. 
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5. CHAPTER FIVE 

EVALUATION OF THE DEVELOPED TOOL (SAMPT) 

 

5.1 Introduction  

In the previous chapter, we engaged in the description of system architecture and drill-down of how we 

have implemented the proposed tool that can help Agile teams efficiently use timeboxed sprints by 

applying minimal effort. These can enable Agile teams to spend more time delivering the right solutions 

with reduced sprint planning time and effort. Therefore, it is essential to evaluate the quality of the 

developed tool by executing case studies to conclude on the tool’s performance.  

 

To evaluate our solution, we started by discussing the methodology this thesis followed to validate the 

tool. Subsequently, give an example on how to attain the results from a given epic, assign the 

decomposed task to users using Hungarian algorithm, discuss results obtained and ultimately summarise 

the chapter.  

5.2 Methodology  

This chapter embarks on the validation of the developed tool and how it can be evaluated. To assess the 

validity of the SAPMT, we conducted a case study on ATM project and Ecommerce project. ATM is a bank 

machine which offer functionalities like withdrawals, deposit of money, change of PIN to the customers. 

Ecommerce is a web-based shopping platform that sells products to customers online. customers can 

purchase the products they like.  

We build on the hypothesis that the implemented tool should obtain similar results to the methodology 

we have adapted.  Therefore, this thesis has used IBM’s payroll requirement text to validate SAPMT.  

5.2.1 Example of evaluation  

Since we build on the hypothesis that the tool will attain identical results to the methodology adapted in 

(Pereira, 2018), this thesis adapted the payroll system requirement from IBM to validate the efficiency 

and accuracy of the tool. 

Input: Unstructured text from IBM  

 “The Payroll Administrator maintains employee information. The Payroll Administrator is responsible for 

adding new employees, deleting employees, and changing all employee’s information such as tittle, 

address, and payment classification (hourly, salaried, commissioned) as well as run administrative 

reports.” 

Following the algorithm in first pipeline, the system starts the processing from sentence 1 where it 

identified that the first sentence contains single verb, Therefore, single story and task were generated as 

follows: 
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US => As the Payroll administrator I want to be able to maintain employee information.  

Task => maintain employee information.  
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Figure 5.1:Graphical dependency output 
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After the text generation processes, USs and tasks were copied to the pandas. The table below shows 

all obtained USs from the IBM text.   

5.3 Extracted user stories and tasks  

This section shows results obtained after applying NLP for US and task generation. The tasks from text 

were send to the database as To-Do list. Each task possesses a unique identity (id) to avoid replication. 

For instance, the task “maintain employee information” hold position 1 from Table 4.1:Task extracted from 

ATM text, therefore it was assigned an id of 1. All the ids are auto incremental by 1 and all subsequent 

tasks followed that sequence. 

The results can be viewed on the Table 5.1.  Table 5.1 shows the generated user stories and tasks from 

IBM's payroll system text. 

 

Table 5.1:Generated user stories and tasks from IBM's payroll system text 

User story description Task 

As Payroll Administrator I want to be able to 

maintain employee information 

maintain employee information 

As Payroll Administrator I want to be able to add 

new employees 

add new employees 

As Payroll Administrator I want to be able to delete 

employees 

delete employees 

As Payroll Administrator I want to be able change 

all employee’s information such as tittle, address, 

and payment classification (hourly, 

change all employee’s 

information such as tittle, 

address, and payment 

classification (hourly, 

As Payroll Administrator I want to be able to run 

administrative reports 

run administrative reports 

 

5.4 Task assignment process  

5.4.1 Process 1  

The PO decides when to initiate task assignment process. The PO receives all tasks from the 

decomposition process as pandas’ data frame where all extracted tasks are sent to the database such 

that they can be viewed from the PB of the developed tool. Since Hungarian algorithm (HA) functions 

efficiently when assigned a square matrix (the number of tasks must be equal the number of developers 

available for implementation of tasks), the system will pick the total number of tasks equal to the 

developers. However, there are circumstances where number of tasks are less than the number of 

developers. Suppose there are 3 tasks with their unique identities (id) (id = 1, maintain employees’ 
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information, id = 2, add new employees, id = 3, delete employees) for simplicity purposes, we gave them 

pseudo names as follows, task 1, task 2, and task 3: 

 In case the number of tasks is less than the number of developers, the system present additional virtual 

task with zeros so that the matrix is squired  

5.4.2 Applying Hungarian algorithm 

The system consists of five developers who compete for each task. Each developer gives their proposed 

delivery time for each task and their answers are received by the PO who puts them in a cost matrix 

format such that Hungarian algorithm selects the best candidate to perform certain job. Table 5.2 shows 

the proposed delivery time recorded as cost matrix. Hungarian algorithm selects the optimal assignment 

for each iteration. The job of Hungarian is to retain the sprint or iteration at minimum development time 

with maximised quality. 

5.4.3 Process 2 

After Hungarian results are processed, each developer now knows what s/he will be focusing on 

concerning the next iteration.  The PO will be authorised to view the tasks assigned to each developer 

while the developers will only view assigned tasks to them. It is significant to eliminate assigned tasks 

from the PB as this will evade repeating tasks that are already assigned to developers. Therefore, SAPMT 

saved all assigned tasks to assignment table in database with attributes, task id, developer, and Total 

time (TT). TT refers to the time each developer proposes to complete that task. 

5.5 Sprint Iterations  

This section illustrates the detailed description of task assignment model. After the completion of 

Iterations, the PO will have access to view the resulted sprints assigned by the Hungarian algorithm. To 

accomplish this, the iteration must have registered developers who are willing to compete for task 

assignment by issuing their proposed time to complete a task. Since sprint planning is progressive 

process, it divided into subsections called iterations. This will give the DT to focus more on stories which 

are aligned to the defined goal. Table 5.2 shows the proposed time by different DT.  

5.5.1 Iteration 1 

5.5.1.1 Available developers  

- London  

- Mphaufele 

- Tau 

- Lehlohonolo  

- Shale  

 

Table 5.2:Square matrix for task assignment 

TO-DO Task 0 Task 1 Task 2 Task 3 Task 4 



 

 

 

72 

 

London 5 13 4 8 2 

Tau 4 1 7 2 6 

Mphaufele 6 9 8 5 9 

John 7 3 6 4 4 

Lehlohonolo 8 4 4 7 5 

 

 

Table 5.3:Hungarian results for iteration 1 

 Iterations 

 

Iteration 1 

Task TT 

London Task 4 2 

Tau Task 3 2 

Mphaufele Task 0 6 

John Task 1 3 

Lehlohonolo Task 2 4 

Total TT 17 

 

After Hungarian assign task to developers, results are populated to the assignment table with the 

following attributes (Developer’s name, Task, Total Time (TT). 

The web application retrieves the obtained results: 

 Each developer can view assigned tasks on their private dashboard after successfully login. To 

attain results, we have used the object relational mapper (ORM) which queries database in a 

high-level format.  

 If the task is implemented, they can change the status of the task by selecting either busy, idle, or 

completed.  This will help the PO and stakeholders to gauge the progress made regarding the 

project.  

  

  

  

 

5.6 Case studies  
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5.6.1 Case study 1: ATM   

 “The bank customer can withdraw money from the ATM without card. The Bank customer can also deposit 

money on the ATM, change PIN on the ATM and transfer funds from the current account to savings 

account on the ATM. The customer should be able to receive SMS notifications when money is withdrawn 

from the account.” 

 

From the ATM case study, there are 5 USs and task expected: 

Expect stories are from the following phrases: 

 Withdraw money on ATM 

 Deposit money on ATM 

 Change PIN on ATM 

 Transfer funds  

 Receive SMS notifications. 

 

To generate the stories, this thesis automatically identified indexes that has potential to generate the story 

from the given text. Table 5.4 shows the generated USs together with their corresponding tasks after 

applying our algorithm. First, the algorithm gives out indexes that will be used to form ranges that has 

potential to generate a story.  For instance, suppose the index’s output was given as a list with values 

[12,22,24,34]. To generate the first story, the range could be given as 12:22, while the second story could 

be from 22:24 and the rest will consecutively follow the same pattern. However, note that the last number 

on the list does not have a neighbouring number to produce a range. Therefore, to solve this challenge, 

we have used the pythonic way of determining the solution. Since 34 is at the end of the list, python 

programming gives the last element of array as value -1. Therefore, the last index could be given as 34: 

-1.  

 

Table 5.6 below shows the results of above input text where the second and third rows shows generated 

stories with their corresponding tasks. The results of applying the range can be observed at figure 6.6 

during production appendix 4.  
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Table 5.4:Decomposed epics results from ATM text 

Index 

range 

Generated user stories Tasks 

4:11 As the bank customer I want to be able to 

withdraw money from ATM without card 

Withdraw money from 

ATM without card 

16:22 

 

As the bank customer I want to be able to 

deposit money on the ATM 

Deposit money on the 

ATM 

22:27 As the bank customer I want to be able to 

change PIN on the ATM and 

Change PIN on the ATM 

and  

27:35 

 

 

As the bank customer I want to be able to 

transfer funds from the current account to 

savings account on the ATM 

Transfer funds from the 

current account to 

savings account on the 

ATM 

35:42 As the bank customer I want to be able to use 

the ATM if money is  

to use the ATM if money 

is 

49: -1 As the bank customer I want to be able to 

receive SMS notification 

Receive SMS notification 

 

5.6.1.1 Task assignment  

Since the output of Agile epics decomposition influences the sprint planning, for instance if the generated 

text does not the fit qualify criteria of the story especially the rule that specifies that the US should read 

like a sentence with no grammar mistakes there will be no tasks to process. Therefore, subsequent step 

was to apply task assignment model. We have used same developers from section 5.5.1.1 throughout 

the entire evaluation. 

5.6.1.2 Iteration  

5.6.1.3 Available tasks on the sprint backlog: 

1. Withdraw money from the ATM  

2. Deposit money on the ATM 

3. Change PIN on the ATM and  

4. Transfer funds from the current account to savings account on the ATM. 

5. to use the ATM if money is 

6. Receive SMS notification 

5.6.1.4 Available developers 

 London 
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 Tau 

 Mphaufele  

 John  

 Lehlohonolo 

 

Table 5.5 Hungarian matrix input 2 

TO-DO Task 5 Task 6 Task 7 Task 8 Task 9 

London 2 4 3 1 1 

Tau 5 7 6 3 4 

Mphaufele 6 8 7 4 9 

John 4 4 2 1 3 

Lehlohonolo 5 7 9 8 6 

 

The highlighted text in blue are the selected tasks after applying the Hungarian algorithm. The proposed 

minimum time was found to be 19. The results are indicated on Table 5.6: Iteration-Table (iteration 

2)below. Table 5.6 shows the results of iteration 

 

Table 5.6: Iteration-Table (iteration 2) 

Iterations 

 

Iteration 2 

Task TT 

London Task 9 1 

Tau Task 8 3 

Mphaufele Task 6 8 

John Task 7 2 

Lehlohonolo Task 5 5 

Total TT 19 

 

5.6.2 Case study 2: Ecommerce  

For this case study, suppose there is a company in Cape Town which is looking for the development of 

their Ecommerce websites and they specifies their requirements as: 

 Input text: 

“The customers should be able to view products sold online. If the customer decides to purchase the 

products online, add products to the bucket where s/he can continue with the purchasing process as the 
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guest or create account for shipping purposes. They must be able to pay with visa cards or cash on 

delivery (COD). The system should validate expired cards to avoid scammers.” 

 

Looking at the text provides above, there are 6 stories that could be extracted:  

Expected stories are from the following phrases: 

 View products sold online  

 Purchase the product online  

 Add products to the bucket 

 Create account for shipping purpose 

 Pay with visa card or cash on delivery (COD). 

 Validate cards to avoid scammers 

Table 5.7:Extracted user stories and tasks from Ecommerce text 

Index range Generated user stories Tasks 

6:8 As products I want to be able to view 

products. 

View products 

14:16 As products I want to be able to purchase 

the products online 

 

Purchase products 

online 

26: As products I want to be able to add 

products to the bucket where s he can 

Add products to the 

bucket where s he 

can 

41:50 As products I want to be able to create 

account for shipping purposes they must 

be able to 

create account for 

shipping purposes 

they must be able 

to 

65:69 As products I want to be able to validate 

expired cards to ‘] 

validate expired 

cards to ‘] 

 

 

 

 

5.6.2.1 Available tasks on the sprint backlog 

 View products 

 Purchase products online 

 Add products to the bucket where she can 

 create account for shipping purposes they must be able to 
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 validate expired cards to ‘] 

5.6.2.2 Available developers 

Since the number of tasks in sprint backlog are equal to the number of developers, we just continue with 

the assignment. Therefore, we use the same developers from section 5.6.1.4. 

 

Table 5.8:The Hungarian matrix input 3 

TO-DO Task 10 Task 11 Task 12 Task 13 Task 14  

London 3 4 4 5 2 

Tau 4 6 3 5 7 

Mphaufele 2 3 1 1 5 

John 6 7 4 8 4 

Lehlohonolo 1 4 9 7 6 

 

Table 5.9:Iteration-Table (iteration 3) 

Iterations 

 

Iteration 3 

Task TT 

London Task 11 4 

Tau Task 12 3 

Mphaufele Task 13 1 

John Task 14 4 

Lehlohonolo Task 10 1 

Total TT 13 

 

5.6.3 Case study 3 

Input text:  

The user of the application can track his/her performance when running or riding his/her bike via the 

GPS. His/her performance can be saved to his/her account and shared with other friends from his/her 

social networks. The user cannot delete any entries once they are saved to the account. The user can 

create a report with all the activities by date range, or by type (running or biking). 

 

The expected USs generated from this text of the second case study will be: 

• Track his/her performance 

• Save performance 
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• Share performance 

• Cannot delete any entries 

• Create a report 

 

Table 5.10:generated user stories and tasks from agile samurai textbook 

Index range Generated user stories Tasks 

6:8 As his I want to be able to track his her 

performance when' 

Track his her performance 

when 

14:16 As his I want to be able to ride his her bike via 

the GPS His her performance can be  

ride his her bike via the 

GPS His her performance 

can be 

26: As his I want to be able to delete any entries 

once they are 

delete any entries once 

they are 

41:50 As products I want to be able to have ability to Have ability to 

65:69 'As his I want to be able to create a report with 

all the activities by date range or by type ('] 

create a report with all the 

activities by date range or 

by type (' 

 

5.6.3.1 Available tasks on the sprint backlog 

 Track his her performance 

 ride his her bike via the GPS His her performance can be Add product to the bucket where she can  

 delete any entries once they are 

 have ability to 

 create a report with all the activities by date range or by type (' 

5.6.3.2 Available developers 

We apply the same rules defined in section 5.6.2.2 to determine the available developers. 

 

Table 5.11:Hungerian input 4 

TO-DO Task 15 Task 16 Task 17 Task 18 Task 19  

London 7 9 4 5 3 

Tau 10 6 7 9 6 

Mphaufele 5 3 4 2 5 

John 6 8 5 7 4 
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Lehlohonolo 1 4 5 3 6 

 

 

Table 5.12:Iteration-Table (iteration 4) 

Iterations 

 

Iteration 4 

Task TT 

London Task 19 3 

Tau Task 16 6 

Mphaufele Task 18 2 

John Task 17 5 

Lehlohonolo Task 15 1 

Total TT 17 

 

 

5.7 Output of iterations and task assignments 

Table 5.13 consist of all iterations after applying the Hungarian algorithm. The proposed iterations 

optimised to deliver high quality with loss cost. 

Table 5.13: Iterations-table 

 

 

Table 

5.14:Task assignment 

Developer’s name   Task name  Total TT 

London  Task 4 2 

London  Task 9 1 

London  Task 11 4 

London  Task 19 3 

Iterations 

 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Task TT 
Task TT 

Task TT Task  TT 

London Task 4 2 Task 9 1 Task 11 4 Task 19 3 

Tau Task 3 2 Task 8 3 Task 12 3 Task 16 6 

Mphaufele Task 0 6 Task 6 8 Task 13  1 Task 18 2 

John Task 1 3 Task 7  2 Task 14  4 Task 17 5 

Lehlohonolo Task 2 4 Task 5 5 Task 10 1 Task 15 1 

Total TT 17 Total TT 19 Total TT 13 Total TT 17 
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Tau Task 3 2 

Tau Task 8 3 

Tau Task 12 3 

Tau Task 16 6 

Mphaufele Task 0 6 

Mphaufele Task 6 8 

Mphaufele Task 13 1 

Mphaufele Task 18 2 

John Task 1 3 

John Task 7 2 

John Task 14 4 

John Task 17 5 

Lehlohonolo Task 2 4 

Lehlohonolo Task 5 5 

Lehlohonolo Task 10 1 

Lehlohonolo 

 

Task 15 1 

 

 

5.8 Results  

This section concentrates on the measure of how accurate and efficient the SAPMT in is (1) generating 

Agile artefacts (USs and tasks) from unstructured text using NLP techniques and assign the attained 

tasks from USs to available developers using Hungarian algorithm. This thesis harnessed power of the 

classical machine learning called confusion matrix metric in classification problems with known answers. 

Table 5.15 provides detailed descriptions about what was referred as a true positive, false positive, true 

negative, and false negative. Since the creating of US affects the presence of tasks, there was no need 

to access the feasibility of creating tasks from the generated stories as tasks strongly depends on the 

existence of USs.  

 

Table 5.15:Classification of sentences that will correctly create user story (Pereira, 2018) 

 

Sentences/partial phrase 

 

 

Should create 

User Story and Task 

 

Shouldn’t create User 

story and Task 

Creates a user story True Positive (TP)  

Correct results 

False positive (FP) 

Incorrect results 



 

 

 

81 

 

Doesn’t create a user 

story 

False Negative (FN)  

Incorrect results 

True Negative (TN)  

Correct results  

 

Where: 

 TP = The sentence or partial phrase processed by the SAPMT that generates a US, task and which really 

should create these artefacts. 

 

 FP = The sentence or partial phrase that after processed by the SAPMT generate an Agile US and task 

but shouldn’t do it.  

 

 

 TN = The sentence or partial processed by the US that doesn’t generates Agile US and task, and this is 

the expected behaviour. 

   

 FN =   When the sentence or partial phrase are processed by the SAPMT generates a story, but it 

shouldn’t.  

 

Then, above metrics are utilised to formulate the accuracy equation 5.1 to product  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

5:1 

 

 

 

Another imperative metrics that were computed are the Precision (P) and Recall (R) which attributed in 

the formation of F measure in equation 5:5. The precision rate is the percentage of selected items that 

are correct, and it’s computed by equation 5:2. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

5:2 

 

 

The Recall is the percentage of correct items that are selected, and it’s computed by Equation 5:3 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

5:3 
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𝐹 =  
1

𝛼𝑃
1 + (1. 𝛼)

1
𝑅

=  
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅
 

5:4 

 

 

 

Where:  

β = 1 

α = 0.5 

These constants (β and α) help to reduce Equation 5:4 to Equation 5:5 

 

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑃𝑅

𝑃 + 𝑅
 

5:5 
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Table 5.16:Case study results 

Case study  experiment TP FP TN FN Accuracy 
rate (%) 

Precision Recall F1 
Measure  

IBM payroll 
system  

1 5 0 1 1 85.6 100 83.3 90.7 

ATM  2 5 0 1 0 100 100 83.3 91 

Ecommerce  3 5 0 1 0 100 100 83.3 91 

Agile samurai 
book  

4 3 0 2 2 71.4 100 60 75 

 

The preceding Table 5.16 presented the results of the experiments performed on four use cases. It 

illustrates the performance of each case study when using the case study (IBM Payroll system, ATM, 

Ecommerce and agile samurai(book) respectively. The values of metrics A, P, R and F1 measure were 

determined. For all metrics used, the higher the value obtained better the results. The results of case 

study 5.6.3 have an F1 score of 75% reflecting is a huge gap as compared to case other studies. This 

was affected by the Lack of clarity and concise information attributed to the complication of processing it 

correctly.  

Table 5.14 below shows the general performance of the tool aggregated an average on the tested use 

cases. 

Table 5.17:Avarage performance of the tool 

Metrics Percentage % 

Accuracy 89.25 

Precision 100 

Recall 77.25 

F1 Measure  87% 

 

In comparison with the results obtained by Pereira, (2018), the results of experiment 1 were almost 

identical our results except the last US generated. The results slightly differ from our tool due to words 

like salaried and commissioned which were found to possess POS tag with VERB. This means that those 

words have potential to generate the USs. However, this raises false alarm and cause ambiguous results 

as indicated on appendix. This resulted into the Accuracy of 85.6, Precision of 100, Recall of 83.3 percent 

and lastly F1 measure of 90.7%. Moreover, one of the noticeable differences is the results of the 
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conference resolution. On case study 2, our tool presented the antecedent as products while (Pereira, 

2018) was his/ her.  

 

5.9 Discussions  

This section discusses the tool’s performance, threats to validity, limitations and challenges faced while 

conducting this study. The proposed tool in this study improves the generation of USs and tasks given 

the file which comprised of epic USs by automatically generating small manageable stories and tasks. 

Observing the results in Table 5.16, the tool has efficiently achieved its goals. The research questions, to 

what extend can NLP be utilised on USs and task generation provided the epics written in NL and how 

efficient can the automated solution replace the manual solutions were answered. The accuracy and 

precision degree of the SAPMT has shown an outstanding result that illustrated how NLP can be infused 

in US decomposition based on the evaluations made. The results obtained shows there is a promising 

similarity that could be exerted if the epics were decomposed by an expert. Based on these observations, 

we can argue that our tool cam be useful to start-up companies which lacks experienced personnel in 

requirements decomposition and task assignment.  

 

The best results were obtained when using case study 1,2,3 yielding F1 Score performance of 91%. 

Furthermore, the tool proposed in section 4.4 which implement the proposed approach has the potential 

to assist PO and project manager during the sprint planning.   

5.9.1 SAMPT performance  

On our first exploration, we observed poor performance on NLP while performing conference resolution 

process concerning the accuracy and processing time. There was a long delay as the algorithm tried to 

produce the expected results. This caused the laptop to overhead as we waited for the results. To address 

the delay issue, we enhance the performance of the NLP core server by increasing the RAM parameter 

on code from 4GB to 6GB and the performance was better.   

 

Upon the arrival of the results from conference resolution process, the results were occasionally not 

accurate. For example, in experiment 2, the customer was supposed to be replaced with was supposed 

to be the subject of the US throughout the entire text, however “product” was used instead.   

 

5.9.2 Lack of dataset  

There is lack of publicly available data sources that can be used by machine leaning, artificial intelligence 

and NLP techniques concerning the automated generation of Agile artefacts. The researchers are bound 

with the rules that compel them to conceal the information from companies they. this complicates the 

NLP algorithms to analyse and come with the standardize excavation of agile artefacts solution. 

 



 

 

 

85 

 

5.10 Threads to validity   

This section discusses the most relevant threats to validity for our evaluation. Text used to evaluate the 

tool was generated by the designer. Therefore, there are selective biases in data. This means that the 

evaluation results obtained in this study do not portray the generic results for other case studies. The 

validity of this study contests the veracity of constructing the USs and tasks given the file comprised of 

agile epics written in NL. This study followed aspects of veracity discussed by Runeson and Höst (2009) 

namely, construct validity, reliability. 

 

The construct validity focuses on the relation between theory and observation. This paradigm concerns 

whether the measurements studied characterise what the researcher envisioned to examine. 

Furthermore, the aspects of construction validity were considered during this project. This thesis 

concluded that not only the accuracy would provide the measurement of the approach's performance but 

also precision, recall and F1 score. 

 

Reliability concerns the ability to extend this study to which data and analysis are reliant on the 

researcher's interests. In reference with  Runeson and Höst (2009), reliability states that the results of 

the replicated study should reflect the same results as the original publication. However, there might be 

complications that could pose threats to reliability. The main reliability threat in this thesis is the technique 

used to excavate USs and tasks from the SRS consisting of Agile epics. Following section 4.4.2.4, there 

are linguistic features which are relevant concerning the formulation of USs and tasks but couldn’t be 

extracted. Furthermore, since the SRS consist of Agile epics which are written in NL, these specifications 

can be ambiguous due to spelling misstates.  If the keyword in the specification is misspelt, the precision, 

recall and F1 metrics are affected. Moreover, if the requirements are written in a different language 

besides English, the results may differ.   
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5.11 Conclusion 

The results presented in this chapter propose that succinctly written software documentations with the 

description of the software focused on the user perspective leads to higher accuracy as compared with 

long texts. The metrics results demonstrated texts with concise structure produces higher precision, recall  

and F1 Measure. Hungarian is a simple task assignment problem which optimise cost and it is still used 

in agile environment. 
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6. CHAPTER SIX. 

CONCLUSION AND RECCOMENDATION 

6.1 Introduction 

This thesis has presented a SAPMT that aids in decision support during PB grooming and sprint planning 

in Scrum. We proposed the integration of NLP techniques with Hungarian algorithm to attain cost effective 

tool that maximise the quality of the developed project. Based on the results obtained, this thesis conclude 

that NLP is adequate technique to automate Agile software artefacts’ generation. 

 

6.2 summary of findings 

The use of Scrum in ASD has gained popularity among the researchers. 81% of Agile practitioners 

choose it as the development framework. The generation or construction of agile artefacts is recently 

performed by NLP. NLP presents viable techniques which automate the text generation processes to 

minimise total time and development cost. Although NLP is widely used in the generation of Agile 

artefacts, it produces results that has not reach certain level maturity which can replace human 

intelligence. This is due to (1) lack of opensource dataset used to train NLP models and structure used 

to construct requirements. The accuracy of NLP lies in a succinctly written SRS.  

  

Hungarian algorithm is recently used to enhance the performance of task assignment algorithms.  

Although it is Classical, its applicable to address task assignments in ASD. 

 

6.3 Conclusion   

To conclude the results of the study we want to address the research questions and the aim set in the 

beginning of the research. The aim was to design and implement an intelligent tool for IoT application 

requirements specification into stories for the Scrum team. 

 

To address the specified research questions stated in section 1.6, we conducted evaluation experiments 

regarding How NLP can be used to decompose agile epics to manageable US and tasks. NLP provides 

rich text analysis techniques which help to generate user stories and tasks. To decompose epics, there 

are two aspects of US that needs to be extracted: (1) the who and (2) what aspects of the US. POS 

tagger is NLP technique which is used to extract action verb in a sentence to provide what aspect of US. 

For complex sentences with more than two action verbs, POS tagger is intertwined with dependency 

graph to distinguish verbs with dependency tag, root verb. All individual roots verbs are regarded as parts 
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which form what aspect of US. Discard all other verbs. To extract the who aspect of US, subject mention’s 

results are used in conjunction with conference resolution technique. The output of the two methods 

provides the answer as pronoun or noun. Activity diagram in section shows a detailed NLP techniques 

on how epics are decomposed into USs and tasks. Since the algorithm obtained 78% of recall, NLP is 

the trusted technique to decompose epic stories. Through further experiments and analysis of sentence 

structures that formulates Agile epics, this thesis infers that the linguistic feature of epics explicitly has 

two or more action verbs. Action verbs are easily identified by POS tagger. Although the results of 

automating the decomposition of epics using Nlp provides 90% of accuracy, they have not reached 

certain level of maturity that can be compared to human experts.    

 

To answer the research question what is an effective approach used to assign tasks to developers in an 

agile environment?, this thesis has extracted some insights from the literature review. There are two 

mostly used methods used task assignment models, Crowd sourcing and Hungarian algorithm. Although 

Hungarian algorithm is a classical task assignment algorithm, its usage is deemed as a powerful 

technique that is be adapted on ASD.  

 

6.4 Future research and Recommendations 

From table 5.14, we can infer that our tool produces 100% Precision. Despite these satisfying results our 

tool has generated, there is still room for improvement; some of the generated stories possess minor 

grammatical errors. It would be great to advance the tool with word sense ambiguity. If the words are 

misspelled, the system should be able to correct them. This would improve the accuracy of the tool. 

 

Our tool’s assessment has shown that there a stringent need to enhance the performance of the tool in 

(1) conference resolution stage in terms of accuracy and time spent to execute the results, add feature 

for generating USs with passive voice and (3) the complexity of automating text generation was intricate 

when large text is processed which attributes to complex automation of USs in multiple verbs and lastly 

introduce software agent with capabilities to capture requirements during requirements elicitation. 

 

In reference to conference resolution, the usage of Stanza with Stanford CoreNLP server could be 

swapped with NeuralCoref and observe the results. To enhance the tools performance, that indexes that 

generate USs should be automated thus improving scalability.   
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