

i

DESIGN AND IMPLEMENTATION OF AN INTELLIGENT REQUIREMENTS ENGINEERING
TOOL FOR INTERNET OF THINGS APPLICATIONS IN AN AGILE ENVIRONMENT

by

BOKANG SEITLHEKO Student no 217167845

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Electrical engineering

in the Faculty of Engineering and build environment

at the Cape Peninsula University of Technology

Supervisor: Dr L. Mwansa

Bellville

December 2021

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific, or technical
journals), or (as a monograph), unless permission has been obtained from the University

ii

DECLARATION

I, Bokang Seitlheko, declare that the contents of this thesis represent my own unaided work, and that
the thesis has not previously been submitted for academic examination towards any qualification.
Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University
of Technology.

 16 February 2022

Signed Date

iii

 Abstract

The decomposition of agile epics into user stories manually complicates sprint planning. If epics

are poorly understood, they contribute to the threats regarding the sprint's completion.

Performing the decomposition manual is laborious and complex and wastes resources in

extensive projects. Natural language processing techniques present viable techniques that can

automate the reduction of agile epics.

This study explored and attempted to automate the decomposition of epics to their finest

granularities, user stories and tasks using natural language processing (NLP). To decompose

epics, we extracted and learned the essential parts of the linguistic structure of epics using NLP.

The automation of agile epics refinement liberates the product owners from repetitive tasks and

focuses more on managerial roles. The results of the decomposed epics were assigned to the

task assignment model that uses the Hungarian algorithm to form sprints where team members

were allocated tasks to attain a minimum time frame to complete the sprint.

Furthermore, we then present our solution as a smart agile project management tool (SAPMT)

that integrates the NLP techniques and Hungarian algorithm to assist project managers in the

aspects of epic agile requirements decomposition and tasks assigned. The use of NLP has

presented significant results in the generation of user stories and tasks from epics. The algorithm

obtained an average accuracy of 89.25%, Precision of 100%, the recall of 77.25%, and the F1

Measure of 87%. The tool SAPMT was implemented using a python framework called Flask and

presented a robust graphical user interface.

iv

ACKNOWLEDGEMENTS

I wish to thank:

 God above all.

 Dr L. Mwansa, my supervisor, for marvellous supervision and continuous suggestions through
the entire thesis, and for granting me the opportunity to work on this project. Furthermore, he
profoundly shaped the way I approach questions.

 My family for giving me the support and words of encouragement to complete this work.

The financial assistance of the Lesotho government sponsor National Manpower Development
Secretariat (NMDS) and CPUT bursary towards this research are acknowledged. Opinions expressed
in this thesis and the conclusions arrived at, are those of the author, and are not necessarily to be
attributed to both sponsors.

v

DEDICATION

I dedicate this thesis work to my brother who is no longer with us, Sekoati Seitlheko who has always
believed in my ability to be successful in the academic world. You’re gone but your belief in me has

aroused my tenacity to complete this work.

vi

Table of Contents

DECLARATION .. II

ACKNOWLEDGEMENTS .. IV

LIST OF FIGURES ..X

LIST OF TABLES ...X

TERMS AND CONCEPTS ..XII

ABBREVIATIONS ..XII

1. CHAPTER 1 .. 13

1.1 INTRODUCTION ... 13

1.1.1 Overview of Scrum ... 14

1.1.2 Scrum artefacts ... 15

1.1.3 Planning .. 16

1.2 BACKGROUND TO THE PROBLEM .. 17

1.3 PROBLEM STATEMENT ... 18

1.4 AIM AND OBJECTIVES ... 19

1.5 OBJECTIVES ... 19

1.6 CONTEXT OF RESEARCH ... 19

1.7 RESEARCH QUESTIONS .. 19

1.7.1 Main Research Questions. .. 19

1.7.2 Sub Research Questions ... 19

1.8 DELINEATION ... 19

1.9 CONTRIBUTIONS ... 20

1.10 METHODOLOGY ... 20

1.11 THE ORGANISATION OF THE DISSERTATION ... 21

2. CHAPTER TWO .. 22

2.1 INTRODUCTION ... 22

2.1 AGILE SOFTWARE DEVELOPMENT ... 22

2.2 EPICS ... 23

2.3 USER STORIES ... 23

2.3.1 Quality criterion... 24

2.4 NATURAL LANGUAGE PROCESSING ... 25

vii

2.4.1 Conference resolution .. 26

2.4.2 Chunking ... 26

2.4.3 Lemmatization .. 27

2.4.4 Named Entity Recognition (NER) .. 27

2.4.5 Part-of-Speech (POS) tagging ... 28

2.4.6 Sentence segmentation .. 29

2.4.7 Stemming .. 29

2.4.8 Syntactic parsing ... 29

SCRUM GROOMING PROCESS ... 29

2.4.9 Grooming PB ... 29

2.5 REGULAR EXPRESSIONS ... 31

2.6 SPLIT THE USER STORY IN A MANAGEABLE TASK USING TRADITIONAL APPROACHES .. 32

2.6.1 Horizontal and vertical slicing .. 32

2.7 SPLIT THE STORY USING NLP .. 32

2.8 STATE OF ART: GENERATING AGILE REQUIREMENTS ARTEFACTS .. 34

2.8.1 Generating test cases using nlp .. 35

2.8.2 Applying deep neural network to generate trace links .. 36

2.8.3 Summary of applying NLP in requirement engineering ... 36

2.9 TASK ASSIGNMENT... 36

2.9.1 Crowdsourcing for task assignment.. 37

2.9.2 Task assignment based on Hungarian .. 39

2.10 SUMMARY .. 40

2.11 CONCLUSION ... 43

3. CHAPTER THREE. .. 44

3.1 INTRODUCTION ... 44

3.1.1 Aim ... 44

3.1.2 Input ... 44

3.1.3 Output... 44

3.2 METHODOLOGY .. 44

3.3 ENHANCED SCUM PROCESS .. 45

3.4 USER STORY TEMPLATE ... 45

3.5 DATASET ... 46

3.6 ATTRIBUTES OF THE RESEARCH .. 46

3.6.1 Grooming PB with NLP ... 46

3.6.2 Hungarian algorithm ... 46

3.7 SUMMARY ... 48

viii

4. CHAPTER FOUR. .. 49

4.1 INTRODUCTION ... 49

4.2 DESIGN APPROACH .. 49

4.3 DESIGN GOALS .. 50

4.4 SYSTEM ARCHITECTURE ... 50

4.4.1 components of architecture. .. 51

4.4.2 NLP engine 3 ... 51

4.4.3 Extracting tasks from user stories... 60

4.5 TASKS ASSIGNMENT TO THE DEVELOPERS. .. 60

4.6 IMPLEMENTATION DETAILS ... 62

4.6.1 Web application .. 63

4.6.2 Database ... 64

4.7 LIBRARIES USED .. 64

4.8 INPUTS AND OUTPUTS .. 65

4.8.1 Product Owners inputs... 65

4.8.2 Developers’ inputs ... 65

4.9 TASK’S SELECTION MODEL.. 65

4.9.1 Process 1 ... 65

4.9.2 Hungarian algorithm ... 66

4.9.3 Process 2. .. 66

4.10 OUTPUT ... 66

4.11 SUMMARY .. 66

5. CHAPTER FIVE ... 67

5.1 INTRODUCTION ... 67

5.2 METHODOLOGY .. 67

5.2.1 Example of evaluation ... 67

Input ... 67

5.3 EXTRACTED USER STORIES AND TASKS .. 70

5.4 TASK ASSIGNMENT PROCESS ... 70

5.4.1 Process 1 ... 70

5.4.2 Applying Hungarian algorithm ... 71

5.4.3 Process 2 ... 71

5.5 SPRINT ITERATIONS .. 71

5.5.1 Iteration 1 ... 71

5.6 CASE STUDIES ... 72

5.6.1 Case study 1: ATM ... 73

ix

5.6.2 Case study 2: Ecommerce ... 75

5.6.3 Case study 3 .. 77

5.7 OUTPUT OF ITERATIONS AND TASK ASSIGNMENTS ... 79

5.8 RESULTS .. 80

5.9 DISCUSSIONS.. 84

5.9.1 SAMPT performance .. 84

5.9.2 Lack of dataset .. 84

5.10 THREADS TO VALIDITY .. 85

5.11 CONCLUSION ... 86

6. CHAPTER SIX. .. 87

6.1 INTRODUCTION ... 87

6.2 SUMMARY OF FINDINGS .. 87

6.3 CONCLUSION.. 87

6.4 FUTURE RESEARCH AND RECOMMENDATIONS ... 88

BIBLIOGRAPHY .. 89

7. APPENDICES ... 94

7.1 APENDIX A .. 94

APENDIXB .. 98

x

LIST OF FIGURES

Figure 1.1:An overview of the Scrum process... 15

Figure 2.1:Analysed linguistic structure of an epic requirement .. 23

Figure 2.2:NER sentence results .. 27

Figure 2.3:POS tags for sentence... 29

Figure 2.4: tasks involved in PB grooming .. 30

Figure 2.5: Crowdsourcing process (Shi et al., 2020) ... 39

Figure 3.1:Proposed Scrum process .. 45

Figure 3.2:Hungerian algorithm flowchart .. 47

Figure 4.1:Proposed high-level architecture ... 50

Figure 4.2:Outline the design process of decomposing epics ... 52

Figure 4.3: programmatic dependency output .. 54

Figure 4.4:Dependency graph visualized by displacy ... 54

Figure 4.5:Code snipped for partial sentence generation .. 56

Figure 4.6:Replacing verb with its lemma ... 56

Figure 4.7:Activity diagram decomposes user story and task ... 57

Figure 4.8: Determine the presence of object in generated phrase ... 58

Figure 4.9:The output of the dependency graph ... 59

Figure 4.10:The user interface of the developed tool .. 63

Figure 4.11:Database schema of developed tool .. 64

Figure 5.1:Graphical dependency output .. 69

LIST OF TABLES

Table 2.1:Conference resolution results .. 26

Table 2.2:NER keywords meaning .. 27

Table 2.3:Universal Part-of-Speech .. 28

Table 2.4:Regular expression meaning ... 31

Table 2.5: Frequent linguistic structure from (Müter et al., 2019) .. 33

Table 4.1:Task extracted from ATM text .. 61

Table 4.2:Available developers ... 61

Table 4.3:TO-DO Table (iteration 1) Hungarian ... 61

Table 4.4:After applying Hungarian algorithm ... 62

Table 4.5:Iteration 1 .. 62

Table 5.1:Generated user stories and tasks from IBM's payroll system text 70

Table 5.2:Square matrix for task assignment .. 71

xi

Table 5.3:Hungarian results for iteration 1 .. 72

Table 5.4:Decomposed epics results from ATM text.. 74

Table 5.5 Hungarian matrix input 2 ... 75

Table 5.6: Iteration-Table (iteration 2) ... 75

Table 5.7:Extracted user stories and tasks from Ecommerce text ... 76

Table 5.8:The Hungarian matrix input 3 .. 77

Table 5.9:Iteration-Table (iteration 3) .. 77

Table 5.10:generated user stories and tasks from agile samurai textbook 78

Table 5.11:Hungerian input 4 .. 78

Table 5.12:Iteration-Table (iteration 4) .. 79

Table 5.13: Iterations-table ... 79

Table 5.14:Task assignment ... 79

Table 5.15:Classification of sentences that will correctly create user story (Pereira, 2018) 80

Table 5.16:Case study results ... 83

Table 5.17:Avarage performance of the tool ... 83

Table 7.1:Saved stories and tasks .. 95

xii

Terms and concepts

 AI

 APM

ASD

CPUT

IoT

LSTM

IR

NLP

PB

PO

RNN

SM

USs

US

Artificial Intelligence

Agile Project management

Agile Software Development

Cape Peninsula University of Technology

Internet of Things

Long Short-Term Memory

Information Extraction

Natural Language Processing

PB

Product Owner

Recurrent Neural network

Scrum Master

User Stories

User story

Abbreviations

Greek letters

Symbol Meaning

α Alpha

β Beta

13

1. CHAPTER 1

INTRODUCTION

1.1 Introduction

As technology advanced, there is an exponential increase in the modelling or automation of business

processes in a smart way to support complex decision making as to increase production and quality. This

disruptive change is brought by the rise of artificial intelligence (AI) and big data technologies in the field

of academic research and software industries at large. The introduction of AI in software engineering and

project management have been used to support critical decision making in the field of requirements

engineering (Wang, 1997; Lin et al., 2015).

Due to the gradual increase of user requirements in the rapidly changing environment, there is a need to

adapt to the flexible technology that can support decision making and manage these requirements. The

influx of requirements places substantial pressure on the product owner (PO). If not managed well, the

backlog can be valueless to the customers. Accordingly, advanced, and scalable solutions such as NLP

are required to enhance the functionality of agile project management (APM) tools. These techniques

were identified as viable solutions over human intelligence because they are consistent, reliable and

efficient and does not exhibit mood swings like human beings (Nayak and Dutta, 2018).

Agile development has revolutionised the software development process and has been prominent ever

since its inception among practitioners and researchers. The rapid development of agile has captured

researcher’s attention in the past decades due to the ability to accommodate the change in requirements

along project’s schedule without affecting the project schedule and cost (Sharma and Hasteer, 2017).

Scrum is an agile methodology which is the most prominent framework due to its ability to divide the

project into small manageable modules (Diebold et al., 2015; Sharma and Hasteer, 2017; Khabbazian et

al., 2018; Ralph, Sedano and Péraire, 2019). Therefore, this thesis has adopted the Scrum framework to

manage the agile projects within the following activities: grooming product backlog (PB) and task

assignment.

Managing projects with Scrum methodology is an indispensable part of agile software development

(ASD) domain. However, there is still a room for improvement when it comes to requirements elicitation

process and task assignment models. Over the last decade, USs are selected as the representation of

user requirements in agile software development (ASD.) They are described as the semi-structured and

concise representation of user requirements transcribed using natural language (NL) (Kassab, 2015).

These stories are transcribed concisely to enable the fast progression of software development while

14

maximising the business value. Being concise ascribe to the flexibility and adoption of this notation in a

dynamic environment such as agile software development where just enough documentation is

mandatory.

The widely practiced USs template by practitioners is given as follows: As < actor >, I want to < action >

so that < business value or reason > which is easy to comprehend and employ. Albeit easy to use, there

are few complications. Some stories are large enough to fit the sprint and this brings about adverse

implications on the projects; most stories become partially complete during their development and

prolong the project’s timeframe. These large stories are referred to as epics. To address this challenge,

the preliminary rule of thumb is to decompose or refine these stories using manual efforts. Decomposing

is the reduction of an epic or large story into small manageable stories.

The accuracy of the sprint planning lies in the heart of the user story’s complexity and inherent risk. Small

USs give the development team the confidence to select them over epics during sprint planning because

there are no unanticipated emergent details. Additionally, USs bring about adequate architecture, and

their efforts are easy to estimates. Furthermore, decomposed stories have a higher probability of being

completed on time during their execution than the larger stories. Consequently, they have the potential

to provide effective sprints. Therefore, the decomposing of USs play a vital role in sprint planning.

However, it is still a challenge to automate the refinement of epics in an agile environment especially in

the context of Scrum methodology.

This thesis addresses the problems associated with the decomposition of epics while using manual efforts

by introducing an automated NLP solution. The solution fine-tune the large USs to their finest granularity

state namely tasks. These tasks are then saved into the databases and act as the input for tasks

assignment model called the Hungarian algorithm.

1.1.1 Overview of Scrum

The primary Scrum process is initiated by collecting requirements from various users who are appointed

to have meeting sessions with the PO. PO is accountable for creating PB based on the USs’ importance.

PB is a list of tasks that need to be implemented. Refinery of product backlog items (PBI) is accomplished

by the team comprised of Scrum master, PO, and DT. High valued USs are selected from the PB to the

sprint backlog where tasks are executed within the period of 1-4 weeks. The end products are tested

before reaching the clients to ensure that all requirements have been compensated. Error! Reference

source not found. depicts the scrum process.

15

Figure 1.1:An overview of the Scrum process

1.1.2 Scrum artefacts

There are three available scrum artefacts being PB, sprint backlog, and burndown charts. However, this

thesis will exclude the burndown charts.

 Product backlog: represents itself as the initial Scrum artefact practised by agile methodologies

to capture the elicited requirements epics or USs from users in an orderly and prioritised fashion.

A well-recognised representation of USs is transcended to communicate the requirements in agile

projects. The typical notation used to present stories entails three attributes: persona, the action,

and business value (Vinet and Zhedanov, 2011). These USs can be in the form of functional or

non-functional requirements. Stories are transcribed in the form of NL and estimated by using

either story points or ideal time.

 Sprint backlog: it’s the second artefact of Scrum where the selection of qualifying PBIs from the

definition of the ready domain are fit to sprint backlog to formulate the next sprint. These PBI often

comes in the form of USs and the entire process is governed by the DT.

16

1.1.3 Planning

To meet the intense demands and rapid development of projects, the delivery of the product must also

be quick. The expedition of development places substantial risk to the project being developed. The

development of projects with numerous requirements like the internet of things (IoT) applications

demands the agile framework to deliver what the customer or stakeholders need on time and within the

budget. Having requirements which are large can hinder the success of the sprint. Therefore, there is a

need to identify the most important requirements that align with the next sprint goal via project planning.

Planning in Agile is dedicated to managing limited resources. In Scrum, initial planning is occurring at

sprint 0.

Sprint planning has a positive influence to foster product quality. The implemented tasks that have value

to the next sprints are identified by the PO. PO works hand in hand with the customers. Therefore, the

sprint consequently reflects customers’ desire because they have a say on what needs to be implemented

next. The customer’s level of satisfaction and trust to the team is tremendous as he or she fully involved

in the sprint planning. Furthermore, sprint backlogs are ordered sequentially concerning the priority

values (Liu et al., 2019).

17

1.2 Background to the problem

Initially, sprint planning is an iterative task carried amongst the agile team SM, DT, and PO. Most work

here is completed by SM and other team members have no-input. The meeting would spend hours trying

to figure out what to deliver on the next sprint. Here, the PO’s responsibility is to specify or assign what

needs to be delivered by identifying epic with high importance or business values with high priority. This

method is laborious and its labour intensive. Sometimes POs are hesitant to spend hours with the team

doing sprint planning (Kniberg, 2015). This causes serious problems because scope and priority are

defined by the PO (Kniberg, 2015) inherently causing the sprint to suffer. The new developments of agile

planning were born and thanks to the advancements of technology which aid in the acceleration of

automation of agile processes and project management tools.

There has been a prior success of sprint planning techniques and tools in the existing literature that

automated the processes (García, Cancelas and Soler-Flores, 2014, 2015; Choetkiertikul et al., 2016;

Ramirez-noriega et al., 2016; Perkusich et al., 2017; Khabbazian et al., 2018; Ahmed et al., 2019). Since

our research focuses on requirements decomposition, the literature on chapter 2 infers that the use of

traditional methods like vertical, horizontal splice are still used in Agile methodologies when referring to

the US refinement (Taibi et al., 2017).

The development of sprint planning tools that can advocate in decision making on aspects such as

automated agile artefacts generation have gained popularity in the field of academics as to assist the

agile teams to have the seamless workflow while increasing production. Although there are more

sophisticated tools like Azure from Microsoft and Jira, these tools do not offer services such as the

decomposition of USs. But they rather support requirements management, task assignments, prioritise

tasks etc.

This thesis builds on the dissertation by Pereira (2018) and extended the functionality of their tool by

introducing two tasks being (1) The decomposition of USs to tasks and task assignment to developers

by applying Hungarian algorithm. The implementation of their design was divided into two segments, first

pipeline and second pipeline. This was done to enhance the software performance in terms of speed and

reliability. We have also adopted this segmentation approach in our study to enhance the tool’s

performance. Moreover, we translated Pereira, (2018) dissertation’s implementation from java to python

language. The rationality to select python was due to its extensive use in AI applications, variety of

libraries available online and it’s easy to use and comprehend.

18

1.3 Problem statement

In the centric world of technology where processes are automated, the decomposition of epics into USs

is accomplished using human skills. Performing a task manually is laborious and waste resources. For

extensive projects where requirements are numerous, this places substantial pressure on the PO, the

PO may provide low-quality requirements. The decomposition of epics requires good communication

skills and expertise. In start-up companies with a lack of professionals, the complexity of USs may be

measured inaccurately.

Due to lack of project requirement resources, inexperience system architects and mainly inadequate

practice of applied agile techniques project are still subjected to failure (Taherdoost and

Keshavarzsaleh,2015). A large sum of money, estimated to be 322 billion USD, was wasted as a result

of bad software engineering techniques (Klotins, Unterkalmsteiner and Gorschek, 2016). According to

current software engineering literature, the causes of disappointments are usually project environment,

ambiguous requirements, and a lack of a complete set of right agile methodologies (Taherdoost and

Keshavarzsaleh, 2015). According to Mohagheghi and Jorgensen (2017), software development with

agile methodology and fixed scope had a poor success rate of 58% whereas agile approach with flexible

scope had an 87% success rate.

Due to the lack of tools that automates the refinement of epics and task assignment model, sprint planning

tools are still prone to ambiguous requirements documentation. Furthermore, the present software

products on the market are technologically basic, expensive, and unfit to address 4th Industrial

Revolution challenges such as scalability. Furthermore, the repositories of these tools do not capture the

insights from preceding similar projects, therefore tasks are repeated. According to MIHALACHE (2017),

these tools offer poor PB management.

19

1.4 Aim and Objectives

Aim: The aim is to design and implement an intelligent tool for IoT application requirements specification

into stories for the Scrum team.

1.5 Objectives

1. To groom PB with AI techniques

2. To assign stories / tasks to developers by using optimisation algorithm

1.6 Context of research

This research thesis falls within the discipline of modern software engineering and applications of artificial

intelligence in APM with Scrum. Modern software engineering is taking new direction especially in the

automation of business processes and model their solutions in the very adaptive manner. For instance,

automation of processes such as requirements elicitation with software agents (AI), software testing, etc.

1.7 Research Questions

1.7.1 Main Research Questions.

1. How can NLP be used to decompose agile epic stories into manageable stories and tasks?

2. What is an effective technique used to assign tasks to developers in an agile environment?

1.7.2 Sub Research Questions

1. What are distinguishable linguistic features that an Agile epic must allow decomposed into small

manageable stories?

2. To what degree can NLP be used to decompose epics in terms of accuracy and performance?

1.8 Delineation

 As outlined in section 1, the main goal of this research is to design and develop an intelligent tool for

IoT application requirements in an agile environment. Therefore, this thesis was populated with

suitable AI technologies from NLP and Hungarian algorithms were embedded within the web

technologies like Flask framework (python micro-framework used for web development)

 While generating the USs, this thesis excluded the text written in passive mode.

 There are various sources of information that can be utilised for USs, task generation and task

assignment. USs can be generated from SRS specification written in NL, However, in this thesis, USs

are generated from a text which composed of requirements with large functionality written in English

language only. Moreover, the developed tool was implemented only in python programming language.

 Acceptance criteria (AC) for the generated stories will not be part of this thesis.

20

 The agile framework called is Scrum was used for case studies. Any alternative agile techniques like

Extreme Programming (XP), Large Scaled Scrum (LeSS) and traditional methodologies were not part

of this research.

 The research was contacted at the premises of Cape Peninsula University of Technology (CPUT)

which is in South Africa, Cape Town.

1.9 Contributions

This thesis presents a smart project management tool that advocates in decision support during the initial

sprint planning which is sprint 0. It is a web-based tool that was intended to provide two functionalities,

(1) groom the PB by reducing the size of complex requirements and (2) assign the decomposed tasks to

developers.

 Address the deficiency of Agile requirements decomposition in project management tools

 Proposed a novel based grooming backlog method to lessen the PO’s duties

 Contributed to the knowledge in the APM sector as the results produce the publication of a journal

paper.

1.10 Methodology

This section emphasises the description of technologies used to accomplish the developed tool and how

these techniques were incorporated into the Scrum process to device the enhanced Scrum methodology.

To be more specific, we integrated NLP techniques with the Hungarian algorithm where NLP is

accountable for the decomposition of Agile epics while Hungarian addresses the task assignment

problem. The output of the NLP pipeline acts as the input to the Hungarian algorithm where the

Hungarian’s results generate iterations or sprints.

Furthermore, the description of data used to validate the developed tool and the origin data used will be

detailed into this chapter. The author generated the dataset comprised of epic requirements based on

automated teller machine (ATM) and E-commerce case studies as an additional dataset to the one

adapted from (Pereira, 2018).

We ultimately describe how Hungarian can attain minimum task assignment by demonstrating its

functionality through mathematical formulas and flowchart.

21

1.11 The organisation of the dissertation

This thesis is organised as follows: Chapter 2: presents a comprehensive literature review of how to

design a suitable APM tool based on the objectives outlined in section 1.5. Furthermore, it also discussed

the efficiency of applied techniques in relation to the outlined objectives. Moreover, we conclude this

chapter by identifying the existing research gap.

Chapter 3: presents the description of the methodology that compelled this work to design the architecture

in chapter 4. Here all interoperability between components in different phases of Scrum is maintained to

construct the proposed Scrum process. Furthermore, the decomposition of epics into small manageable

stories using NLP was briefly outlined. More information under this section regarding how NLP was used

to automate the grooming process will be discussed in more detail in chapter 4. Moreover, identify the

structure of the template suitable for the automatic generation of the USs. We end this chapter with a

detailed description of the Hungarian algorithm.

Chapter 4: illustrates the implementation of the proposed methodology and conducts experiments to

verify and validate the proposed tool.

Chapter 5: analyses and discuss the results obtained in chapter 4 with the relevant literature.

Chapter 6: concludes the thesis. In this chapter, results are compiled, and conclusions are drawn. This

led to limitations and recommendations.

22

2. CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

It is imperative to review the state-of-art for every application development. This chapter contains the

review of academic sources used to address the automation of requirements refinement and task

assignment. Different scholarly papers were collected, analysed, and extracted insights to address the

mentioned problems. We first start by describing ASD, epics, USs, techniques utilised to generate Agile

artefacts, and lastly, approaches that accommodates task assignment in an Agile environment are

discussed.

2.1 Agile Software development

ASD is an iterative and stochastic development method that anticipates fluctuations in requirements. ASD

has revolutionised the software development process and has been prominent ever since its inception

among practitioners and researchers. The rapid development of agile has captured researchers' attention

in the past decades due to its ability to accommodate a change in requirements along the project lifetime

without affecting the project schedule and cost (Sharma and Hasteer, 2017). The inception of Agile in the

industry was by popularised Agile manifesto held in the year 2001. Agile manifesto vouched for

collaboration between team members as this would build a tacit knowledge among team members,

advocate for succinct requirement documentation, room for change over the proposed project schedule

and the involvement of customers on the project developed (Beck et al., 2001).

Agile development methodologies attempt to provide numerous opportunities to evaluate the direction of

a project through development. The project must be organised into iterations or cycles called Sprints

where the DT demonstrates a shippable product increment (PI) to the customer for review before

deployment. On each iteration, the DT validates that the product implemented meet customers'

expectations before deployment. The DT engage in activities such as analysis, development and testing

concerning validation of the product.

Various frameworks that support agility has been in practice ever since the fall of traditional methodology

where iterations are done after the completion of the project (Dimitrijević, Jovanovic and Devedžić, 2015).

Consequently, agile frameworks such as extreme programming (XP), Kanban, and Scrum have gained

popularity. However, Scrum has shown to be the most prominent one amongst the three due to its ability

to divide the project into small manageable modules (Diebold et al., 2015; Sharma and Hasteer, 2017;

Khabbazian et al., 2018; Ralph, Sedano and Péraire, 2019). Therefore, our case study is going to rely

on Scum methodology.

23

In practice, the Scrum team often selects small stories from the PB to implement. Small USs give the DT

the confidence to choose them over epics during sprint planning because there are no unanticipated

emergent details, and their efforts are easy to estimate. Therefore, the accuracy of the sprint planning

lies in the heart of the US’s complexity and inherent risk. Furthermore, decomposed stories have a higher

probability of being completed on time during their execution than the larger stories.

2.2 Epics

Massive USs are sometimes referred to as epics (Dimitrijević, Jovanovic and Devedžić, 2015; Ali, Shaikh and Ali,

2016). Usually, this type of stories consists of two or more action verbs based on their analysed linguistic structures.

For example, consider the following epic in Figure 2.1:

 The Administrator can reset the user password, update the user's details, and deactivate user

accounts that are not functional within 3 months.

Figure 2.1:Analysed linguistic structure of an epic requirement

From the analysed text, we extracted three action verbs through their POS tag VERB. The list of action

verbs is, reset, update, and deactivate.

These stories are massive to handle on a single sprint, so they are moved on to the next sprint to avoid

overfitting. Overfitting is when the US is too large and cannot be coupled with other USs very well due

to its capacity. It is crucial to note that USs should not be too small or too big in terms of estimates. If the

estimations of the user's story points are too small, say 0.3, there is a possibility of facing

micromanagement. Moreover, a 60 points story stands a chance or high risk of ending up being a partially

complete sprint (Ali, Shaikh and Ali, 2016). There are two methods of splitting USs into a manageable

task: horizontal and vertical slice. A more recent study suggested that the utilization of predictive analysis

can be deployed on managing USs (Dam et al., 2018).

2.3 User stories

24

In agile methodology, requirements elicitations are stated as USs. USs are the representation of software

requirements specification captured in a concise to avoid ambiguity. They are written in natural language.

Over the last decade, USs have been ruled as the representation of user requirements in ASD. They are

described as the semi-structured and concise representation of user requirements transcribed using NL

(Kassab, 2015). These stories are transcribed concisely to enable the fast progression of software

development while maximising business value. Being concise ascribe to the flexibility and adoption of

this notation in a dynamic environment such as ASD where less documentation is required but rather

focus on the implementation.

Albeit easy to use, there are few complications. Some stories are large enough to fit the sprint and this

brings negative repercussions on the projects; partially complete tasks and schedule overrun. These

large stories are referred to as epics. Therefore, decomposing them is essential for proper sprint planning.

Decomposing is reducing stories into small manageable stories.

 The widely embraced USs template by practitioners is given as follows: As < actor/user >, I want to <

functionally/goal > so that < business value or reason > which is easy to comprehend and employ (Cohn,

2004).

 As a user/role (i.e., Customer, Administrator)

 I want functionality /Goal (i.e., Pay using ATM card)

 So that / what reason (i.e., I can receive discount next time I buy)

The last part of a US is the reason. This is an optional clause that describes why the implementation of

the story is important to the user. As it is optional, not every US has it added nor needs it; however, it is

a good practise to add it to avoid vague goal.

2.3.1 Quality criterion

As suggested by Wake (2003) properly written stories in Scrum must adhere to the INVEST criteria.

INVEST is an acronym of (Independent, Negotiable, Valuable, Estimatable, Small, Testable).

 Independent: The story should be loosely coupled with one another or independent. Stories that parade

a high degree of interdependency convolute estimating, prioritizing, and planning. When applying the

independent criterion, the goal is not to eliminate all dependencies, but instead to write stories in a way

that minimises dependencies. If the PB is fraught with lot of depended on stories, there are two common

practices which can assist to resolve this issue. (1) combine similar story into one and (2) Split story into

small manageable sizes (Cohn, 2004).

 Negotiable: A good story is negotiable. It is not an explicit contract in

which the development team follow as the future requirements document; rather, placeholders for the

conversations between customer and the development team. This means that a good story possesses

25

an adaptive feature that allow room for improvement; over time additional information can be added such

as test ideas etc.

 Valuable: A good story must present a high return on investment (ROI) to the users and customers. They

must be implemented in such a way that customers perceive them as important. However, developers

may have input regarding the importance of stories, but agreements are reached after discussing them

with the customers.

 Estimatable: It is imperative for developers to be able to estimate the amount of works required to

complete a story. The quality of estimation varies with team’s experience. If the team is well experienced

with estimations, the more accurate are the estimates. This is influenced by the gained knowledge from

prior stories with similar features. However, there are common barriers which could impede the estimation

quality:

1. Developer lacks domain knowledge.

2. Developer lacks technical knowledge.

3. The story is too big.

 Small: Good stories are small. In ASD, it is advisable that the stories are small because they are easily

estimable. Having small stories in PB attribute towards the success of sprint as there are no anticipated

emergent details which can trigger risks. A small story takes few days or hours to implement. This mean

that if there are emergent risk associated with such story during its implementation, the team can resolve

it on time.

 Testable: A good US should be written in such a way that its functionality can be validated by passing its

test cases. In ASD there are two approaches to test if the developed feature corresponds to what it was

intended, (1) behaviour driven development (BDD) and (2) Test driven development (TDD). However,

the widely practised method is TDD. In TDD, there is what is called acceptance criteria (AC). AC is the

spring of test cases, and they can also be described as the preconditions that must be accomplished to

satisfy the PO on the functionalities that the team delivers after the Sprint. Recently, some of the software

development companies practice the automation of testing through tools like Selenium etc.

If a customer is not familiar with testing something, this may show that the story isn’t detailed enough, or

that it doesn’t reflect something valuable to them, or that the customer just needs help in testing.

2.4 Natural Language Processing

NL is the language that humans use in daily bases to communicate to one another, it normally routes

from different sources such as social media, newspapers etc. These sources are also available in diverse

26

array of languages besides English. Therefore, having different natural languages translates to different

standards concerning the construction of phrases or sentences.

NLP is subset of linguistics, information engineering and AI that concentrates on processing documented

text written in variety of natural languages. Problems which are frequently tackled using NLP techniques

are, information extraction, text generation, automatic text summarization, and automatic entity

recognition. There are variety of tools available on the market that helps to accomplish those tasks.

However, the tool that is currently dominating in NLP domain is Stanza. Stanza is the NLP library written

in python language and supports variety of languages up to 66 (Qi et al., 2020). In the subsequent

subsection, we discuss the most common nlp techniques applied when forming Agile requirements

artefacts.

2.4.1 Conference resolution

This NLP process that can also be understood as natural language understanding (NLU) process as it

possesses the ability to understand who is been talked about in the given sentence or text processed. It

substitutes the pronouns with their relative subjects in each text. The subject mentions are referred to as

antecedent (Customer, Administrator) while pronouns are referred to as anophera (his, her, their).

Consider the text below as an example to determine the conference resolution (Sukthanker et al., 2020).

The conference resolution results of the sentence are shown on Table 2.1.

 “The bank administrator maintains customers information. But he cannot delete their transaction history.”

Table 2.1:Conference resolution results

Anophera Antecedent

He The bank administrator

Their customers

After the processing is done, the modified text is returned as:

 “The bank administrator maintains customers information. But The bank administrator cannot delete

customers transaction history.”

2.4.2 Chunking

Definition: Separating a sentence into parts that have a discrete grammatical meaning. Examples of these

meanings could be the noun phrase (‘the developers’) or verb group (‘have to develop’). Examples: The

usage of chunking to identify noun and verb phrases by Mala and Uma (2006); identifying noun phrases

and verb phrases using chunking by Arora et.al. (2015a); chunking as a pre-processing step for

classification by Silberztein et al. (2018).

27

2.4.3 Lemmatization

Definition: The words in the search string are morphologically analysed to derive the basis of the term,

known as the lemma. By deleting the inflectional endings of nouns and verbs, the lemma is identified.

Using this strategy, we can find words that are similar or linked to the search keyword. For example, the

lemma "go" is found in the lexemes "go", "goes", "going", "went", and "gone". The lemma of the search

phrase is used to identify and demarcate the activity in the USs.

2.4.4 Named Entity Recognition (NER)

Definition: It the machine learning process of recognising the named entity mentions from a given text or

sentence. It can categorise tags as PERSON, MONEY DATE, LOCATION, etc. Consider the sentence in

Figure 2.2, the highlighted text is identified as the output of NER elements using stanza library. Table 2.2

below explains the keyword highlighted from the output obtained in Figure 2.2.

Examples: Consider the following code below that extracts NER features from a given text. The NER are

highlighted by light blue, orange and green.

Figure 2.2:NER sentence results

Table 2.2:NER keywords meaning

NER keyword Meaning

28

ORG Organisation

GPE Geographical

DATE Time

2.4.5 Part-of-Speech (POS) tagging

Definition: It is the process of tagging words with their representative syntactic part of speech tags within

a sentence. It categorises the tags as verbs, adjective, direct object or etc.

Table 2.3:Universal Part-of-Speech

Tag Meaning Example

CONJ Conjunction and, while, although

NOUN Noun London, John,

PRON Pronoun He, she

DET Determiner The, a

VERB verb Cook, eat, walk, sleep

ADV adverb Now, later, soon,

ADJ adjective Tall, old, lovely

There are different libraries used to determine the POS tags for the given text. NLTK, Spacy, Stanza,

Stanford CoreNLP, etc. For demonstration purpose we will utilise spacy-stanza. Consider the text below

as the input text to be processed:

 Our Turkey was eaten by the dog. There is considerable range of expertise demonstrated by the spam

senders.

29

Figure 2.3:POS tags for sentence.

2.4.6 Sentence segmentation

Definition: In NLP, sentence segmentation is the process of splitting a sentence from a given text with

multiple sentences.

2.4.7 Stemming

Definition: Reducing a word to a base form: the stem. However, as opposed to lemmatization, stemming

operates without context; so, if, for example, ‘better’ would be both stemmed and lemmatized, stemming

would yield no output while lemmatization would return `good’. A categorization of NLP within

requirements elicitation and analysis.

Examples: Stemming as pre-processing for analysing use cases by (Bolloju, Schneider and Sugumaran,

2012); stemming words to create keywords of a requirement by (Ninaus et al., 2014); stemming as pre-

processing for predicate generation by (Veerappa and Harrison, 2013).

2.4.8 Syntactic parsing

Definition: Recognizing a sentence or text and assigning a syntactic structure to it. This task includes

both dependency-based and constituency-based parse trees.

Examples: Constituent parse tree as pre-processing for the identification of candidate services in Bhat,

Ye and Jacobsen (2014) creating a dependency-based parse tree to uncover dependencies between

words in sentences by Biébow and Szulman (1993) using syntactic parsing as a way to evaluate well-

formedness of a US by (Lucassen et al., 2015).

Scrum grooming process

2.4.9 Grooming PB

The definition of PB is explained in chapter 1 section 1.1.3. It is a list of requirements from customers

that needs to be implemented and present the working product. The contents of PB are called PBI and

they are listed as epics, defects, updates, and features.

30

Refinement of PBI from PB is usually referred to as PB grooming. It is a technique utilized by PO in

collaboration with development team to keep the PB clean and organized. However, involving the team

leaders is optional. The involvement of the team leaders during grooming communicates a clear vision

about the upcoming sprint to the team. Consequentely, the development teams can anticipate the next

sprint intensions (Cobb, 2015).

The PO and team members gather to distill the size, risk and assign priority values to USs based on their

gained knowledge on previous backlogs. This is performed in sprint planning meeting where the next

sprint is prepared.

New developments may emerge from this meeting due to customers’ demands influenced by the demand

on the market: adding new stories into PB, reassigning story points, and reducing the epics. This process

affects the structure of PB. For instance, the decomposition of epics into small manageable stories cause

the addition of new stories to the PB. New items must adhere to the principles or guidelines that govern

USs properties, INVEST model. INVEST is an acronym that states how the good USs should be

structured: Independent, Negotiable, Valuable, Estimable, Small, and Testable (Cohn, 2004). Moreover,

there is a DEEP acronym used as a quality metric to identify good characteristics of PB. As outlined by

Meyer (2014), DEEP stands for Detailed appropriately, Estimated, Emergent, Prioritized.

The most critical goal of grooming is to maintain the PB in good order such that it is prepared for the

upcoming sprint. It is normally refined during sprint planning; the development teams and PO spans about

5 - 10 % of sprint doing grooming.Figure 2.4 shows activities involved in PB grooming;prioritisation,

estimation using story point ,adding new PBI, deleting less important PBI, and refinement of large PBIs.

Figure 2.4: tasks involved in PB grooming

31

Reassigning story points, adding new stories, and the decomposition of epics contributes to the continual

grooming of PBI in the PB. For instance, a low prioritized story can be moved into the high-value USs in

the PB due to the dependency with higher US. In most cases, customers only concentrate on products

that bring business value. Therefore, the current research studies suggest the decomposition of epics

into USs to fit the sprint. It is worth noting that adding new features causes PB scope creep due to high

incoming requirements.

We have discussed what grooming entails and how it is established. There are various activities involved

in grooming: reprioritization, splitting USs, effort estimation, inserting new PBIs, etc. However, this thesis

only concentrated on splitting epics into small manageable USs due to the scarcity of literature available

in the academic world. We have also extended further to research about how USs are decomposed into

tasks. Therefore, it was important to reasech about the state of art on this field.

2.4.9.1 Importance of grooming

The review and refinery of business prioritization and resize of the PB are done in parallel with the

implementation of the sprint. If the product grooming is not done, the next sprint will lack an appropriate

PB ready for the PO and the team to agree on what the next sprint need to include. Instead, they may

have to spend a day or two doing an evaluation which could delay the start of the upcoming sprint.

2.5 Regular expressions

Regular expressions (regexps) are essential tools in computer science regarding information extraction,

text analysis and etc. In information extraction, a popoular example could be the extraction of a pattern

from the String. For instance, it detemines the authentic format of emails issued by the users. The table

below illustrates the information about RE and their meanings. RE are highly used with NLP

technique like POS Tagging.

Table 2.4:Regular expression meaning

Character Regular-expression

meaning

. Any character, including

whitespace or numeric

? Zero or one of the preceding

character

* Zero or more of the preceding

character

32

+ One or more of the

preceding character

^ Negation or complement`

2.6 Split the user story in a manageable task using traditional approaches

2.6.1 Horizontal and vertical slicing

According to Taibi et al. (2017), the widely practiced decomposing technique within the boundaries of

Agile is US mapping. It describes the decomposition of large USs from the user's perspective; It provides

the highest level of requirements abstraction. In story mapping, large stories are coarse-grained from

epics to stories until their constituent's tasks. For instance, "create registration form" and "create login

page for the system" are good examples of high-level requirements. In addition, they further explored

how different agile methodologies such (XP, Scrum, Scrum with Kanban) engage in the decomposition

process. Their research results revealed that the utilization of traditional processes is still inherited in the

agile process during the splitting of stories. Moreover, the most proficient method between the discussed

methods is Scrum with kanban followed by XP. The success of Scum with Kanban was due to the use

of vertical slicing technique. Albeit its popularity among Agilist, story mapping is achieved by human

expertise.

Vertical slicing is the technique of decomposing of an epic by touching aspects of every layer such as

from User Interface (UI) to database. It encourages to showcase the delivery of product increments

frequently to the end-users such that they provide feedback and incorporates updates within the

subsequent iteration. In study contacted by Ratner and Harvey (2011), four teams were deployed to study

and determine how efficient is horizontal and vertical slicing in US decomposition. Vertical tends to have

positive traits than horizontal slicing in terms of risk and completions of project. The utilization of horizontal

technique parades no functionality to the end-users rather partially completed tasks which leads to

reiterate and delivers ineffective sprints.

There are other studies that worth noting, Lawrence proposed the strategy that decompose epics through

the reprioritization and isolation of requirements. Here large story is chunked into small fragments and

discard stories with lower importance or that has no importance. This technique was found to improve

the isolation and decreases inter-dependencies between stories.

2.7 Split the story using NLP

The degree of automating requirements’ decomposition is scarce in agile software engineering in both

academic world and enterprise environment. However, the contemporary state of art only provides the

roadmap of possibilities of using NLP to address the challenges faced by manual techniques. Although

NLP is deemed to be effective approach to transform and model requirements in different granularities,

33

it is still fraught with complications. Requirements are sometimes ambiguous and inconsistent. Thus,

there is a room for improvement in requirement elicitation in the form of NL.

The use of NLP techniques has modernized the refinery process of epics in ASD. NLP techniques are

utilised to automate and augments human capabilities especially in the field of text analytics, language

modelling and language translations. Consequently, having requirements predominately written in NL

symbolize NLP as an effective candidate for US decomposition.

The preliminary attempt which paved the way on the decomposition of requirements using NLP was

recently shed to light by (Müter et al., 2019). They studied linguistic structure that characterize USs

together with their corresponding sprint backlog items. To achieve this, they utilised the Stanford Part-of-

Speech (POS) tagger to determine the structure of the task labels. POS tagger is especially used in NLP

to extract language structure such as verbs, adjectives, nouns etc. Their results revealed some useful

insights that can be employed to form linguistic structure of tasks. Table 2.5 shows their analysed results.

Table 2.5: Frequent linguistic structure from (Müter et al., 2019)

Structure Frequency % Example

VB, NN(S), NN 130 8.17 create tender-settings component

VB, NN(S), NN,

NN(S)

 67 4.18 Create Message DB tables

NN, NN(S), IN,

NN

 25 1.57 Admin licences breadcrumbs

VB, NN(S), IN,

NN

 21 1.32 Add filters for KO

VB, NN, NN(S),

NN(S), NN

20

1.26 Implement TenderPlan actions business

logic

VB, JJ, NN(S),

NN

18

1.13 Create disqualified offers card

VB, NN

27

1.67 Create

TenderProcessDefinitionLevelRule

VB, NN(S), IN,

NN, NN

15

0.94 Bind rules per section item

VB, NN, NN,

IN, NN, NN(S)

13

0.82 Create SQL script for AcceptedById items

34

NN, NN(S)

10

0.62 Update actions

They went further and define task as the given equation 2:1.

task = verb, follow, {follow}. 2:1

Where:

follow = noun | conjunction | adjective | "to" | cardinal number.

(Gunes and Aydemir, 2020) developed a goal-oriented NLP powered tool that generates and modify USs.

To accomplish their objective, they presented the fundamental heuristics that combines the pieces of

information distilled from USs by applying NLP techniques and stored in a Neo4j graph to view the

relations between analyzed artefacts.

2.8 State of art: generating Agile requirements artefacts

There is a plethora of research papers that presented the automatic generation of Agile artefacts using

NLP techniques. Applying NLP is not the new topic in the generation of Agile software artefacts. The

structure of agile requirements makes NLP to be viable solution to generate them. This was due to the

new NLP libraries which provides high accuracy as compared to the state of the art. Requirements are

predominately written concisely using NLP to focus more on production. This section highlights the

success of NLP in generation agile artefacts namely, USs and test cases. The rationality to select these

two artefacts was that they are mostly used in every agile project developed, especially in Scrum context.

(Azzazi, 2017) proposed a framework that transforms USs into use cases by exerting NLP techniques.

To reach their goal, they studied the heuristics that can generate the use case from the US’s text by

studying the linguistic features of US and how it relates to the linguistic structure of the use case. They

divided the US’s information into two categories: (1) extraction of Noun from US of which the Noun is

appended into a list referred to as “Actor List” and (2) extraction of the verb from the US and stored the

acquired information into a list called “Use case “. This was feasible solution due to the relationship that

the US shares with use case is <<extends>>, so this means the existence of use case is strongly

dependent on the presence of US.

(Robeer et al., 2016) amalgamated NLP heuristics to form an algorithm that automatically generates

conceptual models from the USs. Their paper reported that they have acquired high precision and recall

35

greater than 80% on both metrics. A more similar paper to Robeer et al. (2016) was recently proposed

by (Tugce and Aydemir, 2020). (Tugce and Aydemir, 2020) have presented goal-oriented models using

the NLP pipeline which aided in automating the creation and visualisation of the generated models from

USs. The results obtained from their paper were proclaimed to be so accurate that they were compared

to models generated by human experts.

2.8.1 Generating test cases using nlp

Software testing is an integral part of the software process which verifies that the feature developed

conforms to the standards it was meant to serve by detecting errors and defects at an early stage to

avoid software failure like in (Garfinkel, 2005). By observing its positive traits, it can also be used as a

metric to measure the quality assurance (QA) of the developed software. Testing a developed feature

triggers the generation of test cases. According to (Ansari, 2017), test case generation comes in three

phases: coding, design and specification. The specification phase deals with deriving test cases from

functional requirements. Notwithstanding its importance, it consumes a lot of time to generate test cases

especially in the context of extensive complex projects. Therefore, researchers had to come up with new

approaches to automate the generation of test cases of which most of them harness the power of NLP

techniques.

(Verma, 2013) proposed the construction of test cases from software requirements specification (SRS)

documentation expressed as NL with the help of NLP techniques. To accomplish their goal, they apply

POS tags and syntactic relation parser which returns the relation between words in a graphical manner.

The graph provision for better text analysis that leads to test case generation. In 2017, Ansari (2017)

proposed a similar approach to the Verma (2013) by excavating test cases from SRS documentation

using NLP. The noticeable difference was that the algorithm proposed by Ansari (2017) was built on

keywords context from the functional requirement of the SRS documentation while Verma didn’t specify.

A more recent study by Wang et al. (2020) presented the automated user acceptance test cases

generation from use case specification by utilising NLP approach. Their algorithm proclaimed to provide

unlimited abstraction when it comes to writing the use cases unlike other approaches. The systematic

literature conducted by Raharjana, Siahaan and Fatichah (2021) provides a comprehensive work carried

out in research concerning the applicability of NLP in USs. The study reported on creation of traceability

matrix using NLP, generation of test cases from SRS, generating use cases from USs etc.

There is also other noticeable work which contributed towards the generation of test cases besides using

the NLP techniques. The test case generation from unified modelling language diagrams using a genetic

algorithm. The algorithm is proclaimed to provide early defects detection and lessens the time consumed

36

while extracting test cases as compared to manually efforts. NLP was used to transform USs into use

cases.

There also classification machine learning approach that helped to identify if the story needs to be

decomposed or not. The dataset used was numerical values with two classes, 1 and 0. The 1 indicates

the need to decompose a story while 0 indicates no need to decompose the story.

2.8.2 Applying deep neural network to generate trace links

The use of deep neural networks (DNN) is slowly overcoming NLP in NL problems. This is due to the

DNN being able to process data in a short time and return highly accurate results. Some of the flavours

of neural networks possess memory to remember important features which can be exerted to excavate

useful information such as understanding sentence semantics etc. The variety of DNN which can offer

those features are the conversional recurrent neural networks (RNN) models namely; long short-term

memory (LSTM), bidirectional LSTM (Bi-LSTM), gated recurrent unit (GRU) and Bi-GRU. (Guo, Cheng

and Cleland-Huang, 2017) presented a semantically enhanced DNN architecture (Bi-GRU) to determine

the trace links between software artefacts. The results reported on their papers has surpassed the state

of arts. Determining trace links in agile is imperative for provision of defects and requirements

management.

2.8.3 Summary of applying NLP in requirement engineering

Using NLP is deemed to stand as the pillar of automatically generating agile artefacts, especially in

requirements elicitation, requirements testing, and requirements management. There is profound

evidence that can attest to this statement based on the discussed theories applied in preceding sections.

From the literature, one can infer that NLP provides substantial techniques that can obviate manual work

carried by business analysts concerning the capturing of requirements from customers, generating USs

and test cases.

The use of DNN seems to provide accurate results which surpass the state of art in relation to

requirements traceability. However, the major challenge with DNN is that it requires massive amount of

data to train and its memory hungry. Triggered by this observation, this thesis has adopted the use of

NLP techniques to generate USs and extended the functionality of the tool proposed by (Pereira, 2018).

In contrast with Pereira (2018) our tool introduces two features namely (1) decomposition of USs to tasks

and (2) assign the decomposed tasks to the developers.

2.9 Task assignment

Task assignment is a paradigm of assigning tasks to workers to accomplish a certain goal. The

assignment process is mostly governed by criterion such as delivery time and resources spend. The task

37

assignment problem is regarded as an NP-complete problem (Salman, Ahmad and Al-Madani, 2002).

Recently, the problems associated with task assignment are predominately resolved using

Crowdsourcing and Hungarian algorithm especially in software development.

2.9.1 Crowdsourcing for task assignment

Crowdsourcing is the task assignment paradigm where tasks are allocated to dispersed workers across

the globe. The paradigm aims to improve collaboration between developers globally rather than small

group isolated developers (Begel, Bosch and Storey, 2013). This technique is currently studied in recent

literature under the topics "spatial crowdsourcing and online task assignment". Crowdsourcing was

adopted in software industries due to the potential to deliver rapid products at a low cost.

In crowdsourcing, developers are assigned microtasks to complete and they receive incentives as

rewards. Remote workers are under the spectrum defined by the requester and participants, or

developers subscribe to the to-do list by the requester (i.e., the requester must be bonded by location

with the worker). Sometimes tasks are allocated to workers by physically collecting them from the

requester and receiving money once completed.

However, some of the proposed crowdsourcing methods possess characteristics that can affect product

quality adversely. There is no assurance that the participant developer subscribed to solve the task can

implement the expected content as their expertise levels are sometimes unknown (Ho and Vaughan,

2011). Furthermore, since developers come from different network communities; therefore, this diversity

sometimes translates to workers not working together.

2.9.1.1 Applying crowdsourcing in unknown competence levels of the developers

Since traditional crowdsourcing was fraught with various challenges, including the unknown skill set,

some of the researchers took it up for a challenge to learn the skillset that the developers possess by

monitoring the developers’ performance and time developers take to complete the task. (Ho and

Vaughan, 2011) explored the problem of assigning miscellaneous tasks to workers with various, unknown

skill sets in crowdsourcing. Their proposed algorithm included two constraints: a fixed set of tasks and

budged for each task with several iterations the worker must complete the task. They implemented a

solution on the premise that their objective was to allocate tasks to workers such that they achieve

maximum profit. To achieve this, the unknown worker’s competence level had to be known. This was

discovered later by monitoring the performance of each worker as they accomplish the task to estimate

their skills. Although their aim proclaimed to maximise profit, assigning tasks to participants with unknown

competence levels poses a threat to the project’s schedule and quality assurance.

38

An adaptive crowdsourcing framework called SMARTCROWD is presented (Basu et al., 2015). This

framework can address task optimisation through knowledge-intensive crowdsourcing (KI-C) which

accounts for human aspects such as skillset, proposed income per requirements to be developed and

the presence of workers inside the optimisation process. KI-C is a recent form of the crowd, which

concentrates on knowledge development rather than traditional crowdsourcing whose optimisation

concentrates on quality and cost. Basu et al., tooling presented an adaptive feature that can be efficient

for APM. For instance, delegating tasks to the senior developer in the case the current developer who

was involved in the implementation of certain tasks is absent. Observing the positive traits that this

framework exerts, can diminish the development time and budget due to multiple developers who

undertake a single task.

A real-time spatial crowdsourcing task assignment where only developers from the same neighbourhood

as the requester are eligible to participate in the task assignment was proposed (Tran et al., 2018).

Algorithms under this domain often concentrate on maximising the number of tasks assigned to

developers under a limited budget across the entire campaign. Being influenced by the complexity of

classical crowdsourcing paradigms, they further proposed an online heuristic that exploits the spatial and

temporal knowledge learnt over time.

2.9.1.2 Online crowdsourcing

The recent state of the art shows that there is a trend of online crown sourcing when it comes to (Miao et

al., 2020) designed a probabilistic online tasks assignment suitable for mobile crowdsourcing. The

technique is distinct from traditional crowdsourcing in the following perspective, tasks and workers appear

in the platform dynamically and workers are only restrained to perfume spatial tasks with the limited

number of tasks they can execute.

Because crowdsourcing some of the workers are unreliable due to the small amount of money they

receive, crowdsourcing decided to devise a strategy to ensure the reliability of workers. The common

practice amongst crowdsourcers was to assign a single task to different workers and compare the best

solution provided by combining the answers in some way as majority voting. To diminish the cost of

assigning a single task to different workers, Karger (2011) proposed an iterative learning algorithm that

possesses the ability to distinguish appropriate workers to execute a certain task and to infer correct

answers from workers’ answers. Figure 2.5 shows the crowdsourcing process followed for task

assignment. For the process to be successful, it starts from step 1 and end at step 6.

39

Figure 2.5: Crowdsourcing process (Shi et al., 2020)

Since crowdsourcing is fraught with several complications concerning quality assurance and time spent

by novice workers to deliver tasks, (Shi et al., 2020) saw an opportunity to impede this behaviour by

proposing a new task recommendation model based on the Hungarian algorithm. This model can

enhance the efficiency of crowdsourcing by lessening the time spent on tasks by novice developers as

they will be assigned tasks that are equivalent to their expertise.

2.9.2 Task assignment based on Hungarian

 A novel based task assignment algorithm that harness the power of the Hungarian algorithm was

proposed (Yu, 2019). Hungarian was utilised to resolve optimum matching when the bipartite graph

structure is determined. The structure was dynamically attained by altering the bipartite graph structure

through the collaborative candidate group replacement strategy. Other researchers addressed the

Travelling Salesman Problem (TSP) with Hungarian due to reaching optimum solution (Mondal, Hossain

and Saha, 2013).

To address the problem of allocating competent developers to appropriate tasks as an unbalanced

personnel assignment problem, Wang et al. (2017) proposed an algorithm which improved traditional

Hungarian algorithm by applying three strategies; (a) assign tasks to developers with an exceptional skill

set to accomplish a task, (b) create a cluster developer based on their optimal ranking, and (c) group

developers based on for the optimal group assignment. An improved version of the Hungarian algorithm

was proposed by (Mills-tettey and Stentz, 2007).

A reinforced Hungarian algorithm (RHA) for task assignment in global software development was

proposed (Wu et al., 2017). RHA consist of three key phases. First, RHA changes 𝑛 × 𝑚 cost matrix by

adding (2𝑛 − 𝑚) virtual development tasks. Second, RHA executes the traditional HA on the two 𝑛 × 𝑚

matrix to get optimal assignment results. Finally, RHA removes the virtual development sites to get the

optimal assignment results.

40

2.10 Summary

This chapter introduced ASD and its terminologies. Agile methodologies have captured researchers'

attention in the past decades due to its ability to accommodate change in requirements along the project

lifetime without affecting the project schedule and cost. We described and discussed requirements

artefacts which are involved in Agile particularly user stories and epics. US are the representation of

software requirements specification captured in a concise to avoid ambiguity. The most complex USs to

work with are called epics due to their size. The rules that govern the properly written US were discussed.

Later showed necessary NLP techniques which are used to extract essential information to generate

agile artefacts. The literature showed that POS tagger is the most used NLP data extraction technique.

POS tagger is especially used in NLP to extract language structure such as verbs, adjectives, nouns etc.

In ASD, POS tagger extract information such as action verbs which are used to form part of US, use

cases, test cases etc.

Different task assignment models were discussed applicable in agile environment were discussed. The

literature revealed that problems associated with task assignment are predominately resolved using

Crowdsourcing and Hungarian algorithm especially in software development. We concluded the chapter

by analysing the importance of applying AI in project management.

41

2.11 Summary of literature

Author/Date Aim/goal Concept
Theoretical

model

Paradigm
/ Method

Context /
Setting /
Sample

Findings Future
Research

(Raharjana et al.,
2021)

to capture the current state-of-
the-art of NLP research on user
stories.

forward and
backward
snowballing

systematic
literature
review

Nlp in ASD The generation of user stories
from free text has not yet
been much explored

 Contextual knowledge is

needed when processing user
stories

 Generating models/artifacts

from a user story is widely
performed by researchers.

We hope that the ASD would also
thrive in NLP and user story research.
Research in broader aspects, such as
management and requirement

Taibi et al.
(2017)

To investigate the process
through which user stories are
refined into tasks

 NLP Study the
backlog item
of 1,593
items

 widely practiced decomposing
technique within the
boundaries of Agile is user
story mapping

 The guidelines are likely to
need some amplification.

 their impact on software
development needs to be
evaluated in vivo

(Ratner & Harvey,
2011)

To determine how efficient is
horizontal and vertical slicing in
user story decomposition

 Survey four teams Vertical tends to have positive
traits than horizontal slicing in
terms of risk and completions
of project.

 horizontal technique parades
no functionality to the end-
users rather partially
completed tasks which leads
to reiterate and delivers
ineffective sprints.

Automate the process

(Pereira, 2018) To generate user stories from
SRS

 NLP ASD concise texts with the
description of the software
focused on the user
perspective have the greatest
result

 enhancing the sentence
splitting and the separation
of a verb plus complement
pairs

 saving the information in a
database before returning
the list of user stories

42

(Ansari, 2017) generate test cases from the
functional requirement given in
conjunctive statement format

 NLP Due To maximum efforts and time
consumed in developing test cases is
being saved

 automatically construct test
cases from the functional
requirement given in any
form

 predict that what test cases
would prove to be more
important in the future

(Basu et al., 2015) To address task optimisation
through knowledge-intensive
crowdsourcing

SMARTCROWD Crowd
sourcing

•to integrating the human factor further
into the task assignment process
•To determine the peripheral methods
on which KI-C optimisation is based

 imperial study to validate
the

(Miao et al., 2020) proposed a real-time spatial
crowdsourcing task assignment
where only developers from the
same neighbourhood as the
requester are eligible to
participate in the task
assignment

 Spatial crowd
sourcing

Online
crowd
sourcing

 workers are only restrained to
perfume spatial tasks with the
limited number of tasks they
can execute

 Use approximation
algorithm to lessen time
complexity

 change the worker
assignment scheme in
Algorithm 1 such that tasks
with higher priorities are
assigned to workers with
higher probabilities.

(Son et al., 2021) propose an approach based on
multi-objective combinatorial
optimization to do this
automatically

 Online crowd
sourcing and
Hungarian
algorithm

 improve the efficiency of
crowdsourcing by lessening
the time spent on tasks by
novice developers

 to refine the model to
consider new goals and
constraints in many
situations.

43

2.12 Conclusion

Agile methodologies are the future of software development with the integration of AI. Adopting AI brings

lucrative results to the executives as it promotes quality development of products. On the other hand,

Agile delivers value to customers in a short iterative manner and does not compromise project schedule

and costs. The integration of AI and Agile is in demand to develop the tools that are truly intelligent to

support project managers in the project planning activities.

Improving project management activity such as estimates facilitate more effective control of time and

budget.

Based on the attained information from the literature, it is evident that to develop a scalable ubiquitous

APM tool that supports traceability between requirements and PB management, AI is the right candidate.

The gradual increase in requirements does not place a substantial thread to the system performance but

increases its estimation accuracy while using AI. It is also worth noting that, the quantity and quality of

data contributes towards the higher precision of trained AI solutions, especially in the field of deep

learning.

Most of APM tools focus on PB management and sprint planning. However, according to the author's

knowledge, there is the scarcity of tools that incorporate agent-based technology in managing the PB

with the inherent USs risks. Therefore, this thesis aimed to bridge the gap in the literature and implement

the smart tool that will support the outlined objectives in 1.5 using AI. Less effort is devoted to

decomposition of USs. The acquired literature leads to the development of a methodology that is

described in chapter three.

44

3. CHAPTER THREE.

RESEARCH METHODOLOGY

3.1 Introduction

Based on the analysed advantages and disadvantages of techniques found in the literature APM tools

performance can be enhanced using AI techniques. (Dam et al., 2019) provided profound evidence that

APM tools efficiency is in the hands of automated processes developed using AI. The premise for this

thesis is to apply AI techniques to achieve the following objectives below:

1. To groom PB with NLP

2. To assign tasks to developers

3.1.1 Aim

Enable agile teams to spend more time delivering right solutions with reduced sprint planning time and

effort.

3.1.2 Input

 PO’s responsibilities

- Provide unstructured text file which comprised of requirements to be processed.

 Developers:

- provides proposed time frame for each task to be developed.

3.1.3 Output

 User stories

 Tasks

 Feasible tasks to fit sprint backlog

3.2 Methodology

NL and Hungarian algorithm were integrated to support in the automation of two activities involved in

Scrum process (1) the grooming of the PB, and (2) task assignment for sprint planning. NLP was mainly

utilised to address the following objectives: the decomposition of epic to USs, and USs to tasks.

Hungarian algorithm attempted sprint planning problem by assigning task to developers. These

techniques were interconnected to guarantee interoperability amongst each other. The integration of

these techniques presented a smart agile project management (SAPMT) tool that advocates in decision

making during the sprint planning phase in Scrum methodology until the release of the potential shippable

product increment. The Figure 3.1 illustrate the enhanced Scrum process proposed.

45

3.3 Enhanced Scum process

Figure 3.1:Proposed Scrum process

1. The PO collects epic requirements from the customers and save them into PB.

2. A pool of requirements is inserted into PB where refinery of large PBIs is decomposed using NLP (stanza)

techniques proposed in chapter 4. After these requirements are decomposed into USs, they are normally

assigned priority values using either MoSCoW or AHP. Most important PBI are moved to the top level in

the PB called the definition of ready (DoR) for the next iteration. However, our work will only concentrate

on the decomposition of epics using NLP.

3. After the epics are decomposed, now we apply task assignment model to assign the decomposed task

to developers.

3.4 User story template

To form a US using a text generative model, it is important to define the model this thesis followed for

validation purposes. There is a limited number of templates proposed in the literature for US format. The

template popularised by (Cohn, 2004) state that the US should follow the template, AS a <user role> I

want to <goal> so that <benefit>. The user role references the who part of the story while goal focusses

on the what functionality does the story delivers and why focusses on the benefit part of the story (i.e., it

answers what value will the story bring If implemented or show why it is essential to have such story in

sprint). In most cases when automating the US generation from unstructured text using NLP, the last part

of the US (benefit) is omitted(Lin et al., 2014; Gunes and Aydemir, 2020). Since the last part of the US

template is optional, this thesis has omitted it. Thus, the template that this thesis use is as follows:

46

Template = As <user role> I want to be able to <goal>. This template has been used before to generate

the USs from requirements specifications using NLP (Pereira, 2018).

3.5 Dataset

This Thesis have formulated its own dataset to validate the feasibility of applying the SAPMT in Agile

processes (grooming and sprint planning). However, this thesis tried to bring the project to real life

situations when constructing the data by using one of the prominent case studies in software engineering

industry. The dataset used was relying on assumptions as these is not an empirical study, we therefore

used ATM and Ecommerce in our case studies. ATM and Ecommerce have been studied for last two

decades now, these systems have diverse requirements and there is always room for improvement

concerning the proliferation of technology. During the elicitation of both case studies, the requirements

were written in an active voice for the system.

Since the research falls under text generative models, we had to perform data transformation before

using our dataset to enhance the performance of our tool. Data transformation was performed using

python library named regular expression (regexp); It helps on the elimination of stop words and unwanted

text from the dataset that reduces the accuracy of the tool. The rationality to choose this library was that

it offers freedom to developers to express their creativity without limiting them and its fast.

3.6 Attributes of the research

3.6.1 Grooming PB with NLP

3.6.1.1 Decomposing user stories into manageable stories.

The decomposition of USs was performed prior to sprint planning due to the gathering of the necessary

feedback from the stakeholders and the system’s customers. The PBIs in the definition of ready state

were identified and examined. The stories which comprised of more than one action verbs on their

analysed linguistic structure were referred to as epics. An epic is the US that constitute large functionality

that cannot fit into a single sprint. Therefore, they need to be on their simplest granularity, tasks before

inserted in the SB. To demonstrate how an epic was coarse-grained into manageable stories, consider

an example in chapter 4 in section 4.4.2.2. Spacy-stanza was used as the tool to process all the

information needed to formulate the US from epics.

3.6.2 Hungarian algorithm

Hungarian algorithm is classical combinational optimisation task assignment model which dates back as

1955 proposed by Harold Kuhn to find the minimum total cost of job assignment to each worker. To find

the minimal total cost, the problem is addressed as the square matrix of the costs of workers executing

tasks. Figure 3.2 Illustrated how the algorithm attain the minimal cost. The algorithm solves the problem

in a polynomial computational time complexity 𝑂(𝑛3) for any 𝑛 × 𝑛 assignment problem. Figure 3.2

47

shows flowchart of Hungarian algorithm. The algorithm attain minimum cost can be mathematically

described by equation 3:1.

Figure 3.2:Hungerian algorithm flowchart

Although Hungarian is a classical solution for task assignment, it is still applied to current models as the

evaluation tool that measures their accuracy and performance of newly developed task assignment

models.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑝(𝑥) = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

,
3:1

Begin

The alue of mar ed ero
elements is 1 and t he

other is 0 in the

counter part matri

Mar t he least ero element s and

remo e the other ero element

Transform coefficient

matri ag ain

Each ro and column
melement minus the minimum

Generate coefficient
matri

Co er a ll ero elements

the least straight line s

End

I s the num er of

independ en t ero

elements e ual to

the matri order

I s the num er of

straight lines
smaller tha n the

matri order

NO

NO

YES

YES

48

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 1

𝑛

𝑗=1

, 𝑖 = 1,2,3 … , 𝑛,

 ∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1 , 𝑖 = 1,2,3 … , 𝑛,

 𝑥𝑖𝑗 > 0, 𝑖, 𝑗 = 1,2,3 … , 𝑛

3.7 Summary

This chapter presented the core objectives of this thesis followed by an overview of automated Scrum

process. The two objectives of designing this framework were identified and outlined as follows: the

decomposition of epics and task assignment. Fulfilling these objectives will answer to the limitations of

existing APM tools mentioned in problem statement. Both Hungarian algorithm and NLP techniques were

integrated to form enhanced Scrum process. The integration of these approaches was seamlessly

integrated and helped us to propose the enhanced Scrum process outlined in section 3.3. Among these

subsystems, NLP model is responsible for generating USs from unstructured text file which comprised of

epics and later transform this USs into tasks. The Hungarian was utilised to resolve task assignment. We

concluded the chapter by discussing benefits of using Hungarian algorithm for task assignment model.

49

4. CHAPTER FOUR.

SYSTEM ARCHITECTURE AND IMPLEMENTATION

4.1 Introduction

In reference to the boundary conditions that are associated to the complexity of the prevailing APM tools

as identified in the problem statement, this chapter is about the description of the design, system

architecture and implementation of the tool that is accountable of the mentioned requirements in problem

statement.

The architecture was designed in such a way that it accommodates scalability. Object oriented

programming paradigm was adopted to provide flexibility and code reuse, while trained AI models were

used to provide scalable solution and high accuracy. Furthermore, a web application was designed to

provide heterogenous accessibility of the developed tool. That is, it can be accessible to any device that

possess Internet or web browser. Etc., phone, laptop, and tablet.

The tool was developed using micro-python framework, Flask, MySQL, and Tailwind CSS framework.

Python was selected because it serves as the multipurpose programming language with large community

support, and it also provides extensive documentation and tutorials.

In the subsequent sections, we present the design approach, high-level system architecture, inputs

expected for the system to function, drill down of system implementation, and expected output. Then, in

section 4.11, we summaries the chapter.

4.2 Design approach

In this thesis, we’re proposing called SAPMT. The preliminary approach to achieve the implementation

of this tool initially starts by designing a high-level architecture and model the system using activity

diagrams.

For the system to function, the PO issues unstructured text file which comprised of desired project’s

documentation to the developed system as input. The input is processed using the Restful technologies

from python Flask framework and regular expression for NL data cleaning. The system is a web-based

application which entails the sublayers which are proficient to filter and process attributes which acts as

inputs data for different pipelines on the system.

50

4.3 Design goals

The goal was to design and implement a SAPMT for requirements engineering especially in the context

of Scrum methodology that can automate the generation of Agile USs and tasks from epics. Later assign

the decomposed tasks to available developers using Hungarian algorithm without taking away Scrum’s

agility processes. We hypothesised that the generated artefacts could help project managers (PMs) and

PO in sense that it can lessen the time spend on requirements elicitation. We tried to align our work with

the Agile framework called Scrum.

4.4 System architecture

In this thesis, we have adopted some of the concepts from blackboard architecture due to its flexibility to

integrated several algorithms and data representation into a coherent and flexible computational

framework (Hayes-Roth, 1985). The Figure 4.1 illustrates the architecture of the proposed tool. The

architecture is composed of system components, mainly dependent on NLP engine and web services

and Hungarian model. This architecture deviates from a decision support system for sprint planning

proposed by Khabbazian et al. (2018) by one element. Although our proposed architecture adapted their

task assignment model, we enhance the architecture by adding new feature, NLP engine which is

responsible for the decomposition of epics.

Figure 4.1:Proposed high-level architecture

51

4.4.1 components of architecture.

 Web application: presents results to the end user using RESTful web services. The web services are also

used to send data to NLP pipelines where it’s processed to get an output.

 NLP Engine

1. Advanced NLP: return the generated Agile artefacts (USs and tasks).

 Hungarian algorithm: assign tasks to competent developers.

4.4.2 NLP engine 3

The following diagram in Figure 4.2 illustrated high-level design of decomposing USs and tasks. The

processes are divided into two pipelines to enhance the tool’s performance: first pipeline and second

pipeline. The first pipeline carries the most common NLP functions which will be described in section

4.4.2.1.

52

Figure 4.2:Outline the design process of decomposing epics

Adapted from (Pereira, 2018)

53

4.4.2.1 First pipeline implementation

There are of six processes executed in this stage: sentence segmentation, POS, NER, dependency

graph generation, conference resolution and the replacement of the subject mentions with their pronouns

(Pereira, 2018). This thesis has adopted the use of new python NLP libraries called Stanza and Spacy-

Stanza. The first four tasks were resolved by utilizing spacy-stanza pipelines and annotations which

returned the POS tag of words, lemma and dependency graph of text provided as an output. As

mentioned in chapter 2, the dependency graph returns syntactic relationship between words in a

sentence. The graph can consist of POS tags, root, etc. To visualize the dependencies, we imported

displacy library from spacy1.

The subsequent step resolved conference resolution between the sentences by utilizing Stanza

CoreNLPClient interface annotators. This process simply replaces the pronouns by their correlated

subject names or noun present in the Mentions. If similar subjects refer to the same pro/noun on the text

given, the algorithm returns none, and continues with the output of the current dependency graph where

the graph’s metadata acts as the input to the second pipeline. For demonstration purposes, we have

illustrated the process of attaining the first output pipeline by using the text below.

Sentence 1:

 “The bank Administrator views customer profile. But he cannot delete transactions history”.

After the text went through all processes from the first pipeline, the output comes as modified text below:

Transformed sentence:

 The bank Administrator views customer profile. But the bank administrator cannot delete transactions

history.

It is worth noting that the algorithm identified “The bank administrator” and “he” as the subjects in both

sentences. However, the pronoun “he” refers to the same subject as “the bank administrator”, therefore

the algorithm suggested to replace the pronouns its respective subjects. Therefore, this triggers the

dependency graph to be updated and return the modified text. Figure 4.3 and Error! Reference source

not found. shows the dependency graph after performing conference resolution. shows the

programmatic output of the dependencies excavated from the sentence 1 while 4.4 shows the output of

dependencies in a graphical form.

1 https://spacy.io/

54

Figure 4.3: programmatic dependency output

Figure 4.4:Dependency graph visualized by displacy

4.4.2.2 Second pipeline implementation 4

The second pipeline receives metadata from the first pipeline’s output and execute the most fundamental

NL tasks to decompose the epics into USs. Having the input as dependency graph from the first pipeline,

it permits us to perform text analysis and extract essential information to generate USs information. For

instance, to extract the user/actor of the US from dependency graph, we have implemented a function

that facilitates extraction of the subject representatives of nouns and returns them as a list. This was

accomplished by extracting a word with POS tags NOUN, PROPN and dependency token either nsubj,

or nsubjpass, compound. The code illustrates how to extract the user/actor for the US generation.

def subject_extraction ():

 for sent in doc. sentences: # perform sentence segmentation

 for word in sent. words: #

 if 'nsubj' in word. deprel and word.pos == 'PRON, NOUN': #

55

 subject_words. append(word.text)

 return subject_words

The first line from the code performs the sentence segmentation while the second and third lines perform

tokenization. The fourth line finds all the words that are subjects with active voice (nsubj) by using the

dependency attribute deprel.

The items from this list are retrived later to form part of the US’s information, user /actor. For instance,

the template that this thesis followed is given as:

Template: “As “+ <user/actor> + “I want to be able to “+ <phrase>.

To generate the US, the algorithm starts by counting number of verbs as indicated in activity diagram in

Figure 4.7. The processing is given in two categories, singe verb and multiple verbs. For each category,

there are different steps to follow until the USs and tasks are generated.

4.4.2.3 Algorithm for single verb sentences 4

The process initiates by counting the number of verbs present in each sentence. Most of the algorithm

steps followed is activity diagram in Figure 4.7 which are self-explanatory. After that, we determined the

subject from the sentence using the dependency graph by finding the keyword key nsubj. The nsubj

denotes that the sentence is in active voice and it’s a nominal subject, while nsubjpass denotes that the

sentence it’s in passive mode. However, this thesis focusses mainly on text written in active mode. We

therefore discard all text written in passive mode.

For demonstration purpose we will continue with the first sentence from the first pipeline.

 The bank Administrator views customer’s profile.

Following the algorithm proposed by (Pereira, 2018), iterate through the entire dependency graph and

count the number of verbs in each sentence by finding their POS tag with keyword VERB. It is worth

noting that this research only implemented the USs that are in active mode. The activity diagram in Figure

4.7 illustrates the algorithm that is utilised to attain USs and tasks. From the above text, ‘views’ was found

as verb. Find the position of the identified verb and start the partial sentence generation from the index

of the verb until end of the sentence. Save this information in a string variable called partial phrase. The

figure 4.5 shows the code snippet that this thesis has developed to identify the index of the verb and the

generate partial sentence.

56

Figure 4.5:Code snipped for partial sentence generation

The first line of the code finds tokens found in a sentence. The doc_sent[i] in this case indicates the

specific sentence we are focusing on with single verb. Line 3 identifies the verb from the sentence by

using POS tag VERB. After finding the position of the verb in a sentence, get the index of the verb by

using keyword token.i. The next task was to determine the end of the sentence. As indicated from line 6,

the end of sentence was found by using the keyword end with the sentence. After finding the position of

the verb and the end of the sentence, construct a partial sentence by starting the text generation from

verb’s index to the end of the sentence. Store this information in a string called partial phrase. Line 6 of

the code performed exactly partial text generation and gives the output below.

output:

Partial phrase = views customer’s profile.

The subsequent step followed was to eliminate the punctuation at the end of sentence. This thesis has

used the power of regular expression (regex) for text processing to remove the punctuation from partial

phrase. After that, replace the verb from partial phrase with its verb lemma. Figure 4.6 shows a code

snippet that illustrates how to replace verb with its lemma.

Figure 4.6:Replacing verb with its lemma

The ultimate step left is now to collect the pieces of information that attribute towards the formation of US

(subject and partial phrase]. Use this information to form US using template in section 1.

From the template we get the following US when using sentence 1.

Template = [subject/actor] I want to be able to [partial phrase]

Subject: The bank Administrator

Partial phrase: view customer’s profile.

It is also imperative for the US formed to possess an object. This was extracted from partial phrase’s

dependency graph by identify word with dependency keyword obj. If the object exists, utilise the US’s

template to fill in the corresponding missing information to form US. The results of US for above text

were found as:

57

User story: As the bank Administrator I want to be able to view customer’s profile.

Figure 4.7:Activity diagram decomposes user story and task

58

adopted from (Pereira, 2018)

4.4.2.4 Algorithm for multiple verbs.

In case the sentence is comprised of multiple verbs that are in active voice, use dependency graph to

determine subject or compound from the sentence given. Furthermore, utilise the dependency graph’s

metadata to extract the presence of root nodes that are verbs from the entire sentence. Save the index

of each verb found from the input text. Then, initialise the splitting process to form partial phrases. Spitting

process was summarised by the following steps below:

1. Get the root verbs and their index positions from the entire sentence. Save this information in a list

2. Count three words before reaching the next root verb in the sentence and append this text to the root

verb.

3. Form partial sentences with the output of step 2.

4. Verify the presence of an object (obj) from the partial sentences by searching through the dependency

graph. We have illustrated this process by using code snippet in Figure 4.8.

Figure 4.8: Determine the presence of object in generated phrase

5. Refine all unnecessary conjunctions words that complicates the US to avoid ambiguity.

6. From the partial sentence formed, replace the verb with its lemma.

7. With the information from step 6, retrieve the subject fill in the US’s template with its corresponding text.

Remember template = As [subject], I want to be able to [partial phrase].

8. Use chunking to extract the tasks from obtained USs generated.

9. Repeat all the steps until the entire text is processed.

For illustration purposes, we have used the following.

 The bank customer can withdraw money from ATM without card. The bank customer can also deposit

money on the ATM, change PIN on ATM and transfer money from current account to saving account

using the ATM. If money is deposited or withdrawn from account, customer receives SMS notification.

Looking at the text provided, the subject of the sentence never changed, thus, conference resolution just

continues using the bank customer as the subject through the entire text. Therefore, the output of the

dependency graph that is fed to second pipeline for above sentence is given in Figure 4.9.

The --> DET --> det

bank --> NOUN --> compound

customer --> NOUN --> nsubj

can --> AUX --> aux

59

withdraw --> VERB --> root

money --> NOUN --> obj

from --> ADP --> case

the --> DET --> det

ATM --> NOUN --> obl

without --> ADP --> case

card --> NOUN --> obl

. --> PUNCT --> punct

The --> DET --> det

bank --> NOUN --> compound

Customer --> NOUN --> nsubj

can --> AUX --> aux

also --> ADV --> advmod

deposit --> VERB --> root

money --> NOUN --> obj

on --> ADP --> case

the --> DET --> det

ATM --> NOUN --> obl

, --> PUNCT --> punct

change --> VERB --> conj

PIN --> NOUN --> obj

on --> ADP --> case

ATM --> NOUN --> obl

and --> CCONJ --> cc

transfer --> VERB --> conj

funds --> NOUN --> obj

from --> ADP --> case

the --> DET --> det

current --> ADJ --> amod

account --> NOUN --> obl

to --> ADP --> case

savings --> NOUN --> compound

account --> NOUN --> nmod

using --> VERB --> acl

ATM --> NOUN --> obj

. --> PUNCT --> punct

If --> SCONJ --> mark

money --> NOUN --> nsubj:pass

is --> AUX --> aux:pass

deposited --> VERB --> advcl

or --> CCONJ --> cc

withdrawn --> VERB --> conj

from --> ADP --> case

account --> NOUN --> obl

, --> PUNCT --> punct

customer --> NOUN --> nsubj

receive --> VERB --> root

SMS --> NOUN --> compound

notification --> NOUN --> obj

Figure 4.9:The output of the dependency graph

The first sentence contains the single verb which is, withdraws. The verb was replaced with its lemma,

withdraw. Following the algorithm in section 4.4.2.4., we got the output of the first sentence as:

US: As the bank Customer, I want to be able to withdraw money from ATM without card.

Task: withdraw money from the ATM without card.

60

The next sentence contains multiple verbs, deposit, change, transfer, deposited, withdrawn and lastly

receive. We followed the steps outlined in section 4.4.2.4 to attain USs for different verbs. The output of

the USs and tasks was given as below:

US: As the bank Customer, I want to be able to deposit money on the ATM.

Task: deposit money on the ATM

US: As the bank customer, I want to change Pin on the ATM.

Task: change PIN on ATM

US: As the bank Customer, I want to be able to transfer money from current account to savings account

using ATM

Task: transfer money from current account to savings account using ATM.

User story: As the bank Customer, I want to be able to receive SMS notification.

4.4.3 Extracting tasks from user stories

After the generation of USs is complete, we extracted useful insights from the decomposed USs to form

tasks associated with those decomposed stories. To decompose USs to tasks, this thesis builds on the

guidelines provided by an empirical study on how to formulate tasks from a given USs by applying NLP

techniques (Müter et al., 2019). We have also distilled grammatical patterns that generate the task from

the given US by using chunking technique through the aid of Spacy-stanza annotations and pipelines. To

be more specific, verb phrase detection was the most effective chunking technique we employed. A verb

phrase is a syntactic phrase which consist of at least one action verb. This verb can be trailed by other

chunks, such as object phrases, noun phrase etc.

The tasks were extracted by analysing partial phrases from the US information. This thesis determined

the rules that govern the determination of tasks from their US linguistic structure linguistic task stricture.

 Initial word should be verb a with dependency tag ‘root’

Therefore, the pattern of finding the tasks from US was given as:

Pattern = ‘r(<VERB>? <OBJ>*<NN>+)’

For demonstration purpose, consider the formulated US at section Algorithm for single verb.

The output of the task was found as:

Task: view customer’s profile

4.5 Tasks assignment to the developers.

This section shows how the designer of this thesis has assigned the obtained tasks from the USs to the

developers using Hungarian model. While using Hungarian, the number of tasks should be equal to the

number of developers. We therefore count the number of tasks extracted from the USs and equate them

61

to the number of developers. Table 4.1 below shows the tasks that are available from SB waiting for task

assignment model.

Table 4.1:Task extracted from ATM text

ID Tasks

1. withdraw money from ATM without card

2. deposit money on the ATM

3. change PIN on ATM

4. transfer money from current account to savings

account using ATM

Table 4.2:Available developers

ID Developers

1. Thabo

2. George

3. Albert

4. Clyde

Developers compete for task assignment by issuing their proposed delivery time to complete each task.

This information is received secretly by the PO who model this information in a cost matrix format which

is suitable for Hungarian algorithm to process it. The secrecy provides the transparency as developers

would not base their opinions on their colleague’s decisions. From Table 4.1 and Table 4.2, the number

of tasks equate to the number of developers, thus, each developer will implement a single task. Both

tables were modelled as the cost matrix with the proposed time frame below. The aim was to find optimum

sprint with less development cost while maximising value.

Table 4.3:TO-DO Table (iteration 1) Hungarian

TO-DO Task 0 Task 1 Task 2 Task 3

62

Thabo 3 6 4 2

George 5 1 7 5

Albert 2 4 3 6

Clyde 4 2 4 5

Table 4.4:After applying Hungarian algorithm

TO-DO Task 0 Task 1 Task 2 Task 3

Thabo 3 6 4 2

George 5 1 7 5

Albert 2 4 3 6

Clyde 4 2 4 5

Following the activity diagram in section 3.6.2, we obtained the results of the task assignment model as

show in Table 4.5. The numbers highlighted in blue colour in Table 4.4 are results proposed by Hungarian

algorithm.

Table 4.5:Iteration 1

We have used pseudo names for tasks obtained from Table 4.1. For example, Task 1 is mapped with

withdraw money from ATM without card. However, the real tasks will be displayed during task assignment

while using the system.

4.6 Implementation details

Iterations

Iteration 1

Task TT

Thabo Task 3 2

George Task 1 1

Albert Task 0 2

Clyde Task 2 4

Total TT 9

63

4.6.1 Web application

After considering different possibilities to present the tool, a web-based platform was selected as the

potential solution. The rationality to select the web-based platform was the ability to provide

heterogeneous accessibility to the developed tool. To attain this, we have adopted the Tailwind CSS

framework (Tailwind, 2019) and presented our tool as a dashboard application that facilitates the

communication between the development team to enhance their decision making. Figure 4 illustrates the

implemented tool. The tool recently supports four project management actives, mentioned on the

objectives.

To guarantee seamless accessibility to the developed tool, we designed the application using responsive

web design (RWD) principles. RWD states that way the users interacts with the developed system must

be same regardless of the device used to access the system (H. Gillbert Miller, 2011). The web

application designed using these principles adopt the flexible layout by harnessing the power of cascades

styles sheets (CSS3) media queries.

It is crucial that the tool supports PO activities and the development team activities. The user interface

currently supports the following PO activities: create, update, and delete task from the PB and to approves

estimated requirements’ priorities made by AI model. Create option is utilised to generate new tasks,

while update is used to edit the parameters of tasks and lastly, delete option is used to remove selected

element from the Prioritised PB.

Figure 4.10:The user interface of the developed tool

64

4.6.2 Database

The database module is utilised to save information in a persistent and consistent way and has no distinct

functionalities. The web application is interconnected to the database to perform the read and write

functionalities. The database is a significant module of the SAPMT as it is where all the data issued by

the users is stored.

4.6.2.1 Model

The SAMPT utilises a relational database as its storage system. There are currently numerous other

alternatives, but relational database was preferred due to their extensive usage, and they permit the

practical implementation of the models. It is not the scope of this thesis to explore alternative methods to

store information.

4.6.2.2 Database management system

There is diverse array of database management system (DBMS) platforms that implement a relational

model. Despite having different features, all those DMBS have common base; provide data abstraction

in a tabular manner which is easy to use and understand. So, the rationality to select the DMBS was

based on opensource, reliable technical support and popularity. To develop SAPMT, we utilised MySQL

which is an open-source database which has the set of comprehensive advanced features, management

tools and technical support to achieve the highest levels of MySQL scalability, security reliability and

uptime. MySQL is the most popular opensource DBMS which is mostly integrated with web applications

Figure 4.11:Database schema of developed tool

4.7 Libraries used

65

To achieve the goal of this research, we have used different kinds of NLP libraries, Spacy-stanza, Stanza,

Stanford CoreNLP. But the main library which offered diverse number of functionalities was Stanza.

Stanza is the python NLP library which was renamed after its predecessor Stanford CoreNLP (written in

java). During the writing of this thesis, the library currently supports diverse array of language up to 66

official languages in the world (Qi et al., 2020). It is one of the best efficient NL libraries as compared to

its competitors spacy and NLTK. The tool supports the functions like sentence segmentation, POS,

Lemmatization, Name Entity Recognition (NER), sentence sentiments analysis etc. Additionally, it

sources java packages to enhance its functionality: to resolve conference resolution on text, it accesses

Stanford Server toolkit via Stanza CoreNLP interface which is written using native python. It also provides

flexibility to allow developers to customise their annotators and pipelines. Lately Stanza was integrated

with Spacy to provide visualisation of dependencies by using displacy.

4.8 Inputs and outputs

For the system to function, the input was given as a textual data in a form of a file. The file was be

comprised of epic USs.

4.8.1 Product Owners inputs

The framework as it appears in the Figure 4.1:Proposed high-level architecture, it starts with the PO who

is accountable for providing the detailed project documentation captured during. The documentation

consists Agile epic requirements stated by the customer. This input was processed at different pipelines

demonstrated on system architecture. The PO also participates in the entering information provided by

the DT regarding task assignment.

4.8.2 Developers’ inputs

The registered developers provide their credentials to access system and view tasks assigned to them.

These credentials are passed to authentication subsystem where they are going to be validated to log

on the system. The tasks are assigned to individual development team members are resolved by

Hungarian model. The certain developer will be given administrative rights to approve or change the

proposed sprint velocity by the PO. The tasks from definition of ready are selected by the sprint planner

implemented by Hungarian algorithm to provide less risky sprint with ROI.

4.9 Task’s selection model

The PO can start the Sprint planning as soon as there are present tasks on the SB such that tasks are

assigned to developers by applying Hungarian algorithm. The task assignment model is divided into three

subprocesses which are discussed on the subsequent sections.

4.9.1 Process 1

At this stage, the tool will check the presence of developers to equate them to equal number of tasks

present on the SB. After equating process, results are sent to Hungarian algorithm as square matrix.

66

4.9.2 Hungarian algorithm

The Hungarian algorithm will use the TO-DO-Table as a squire matrix to determine the shortest time cost

and forward the results to the subsequent stage of the process (Khabbazian, 2018).

4.9.3 Process 2.

The output of the Hungarian algorithm will be processed to allocate the tasks for the developers. Under

normal circumstances, the system will complete the allocation procedure for that task by copying the

Hungarian algorithm result “Developer, Task, Time” to the Assigning-Table, submitting the iteration result

in the Iterations-Table, and removing the Task from the TO-DO-Table. This is the progressive process, so

the system will find available developers and return to work again from the first level of the processing

(Process - 1) until the entire tasks have been allocated to developers.

4.10 Output

The output will be comprised of two table: (1) Iteration tables and (2) Task assignment table. Iteration

tables will consist of attributes such as developers’ names, tasks they are bound to implement together

with proposed total time (TT) which can be spent to implement such task. The second table is assignment

table which will show all tasks that each developer has contributed towards its implementation. To

encounter for sprint duration, the developers must work on the tasks assigned to them on iteration table.

4.11 Summary

We have presented the NLP and Hungarian based decision support system architecture to enhance the

project managers and development team duties in the following activities, decomposition of epics and

task assignment. The system consists of sprint planner which output the proposed Sprint in the form of

iterations.

We harnessed the ability of Blackbox architecture to integrate two different technologies, NLP, and the

Hungarian algorithm. This resulted into the design of the proposed high-level architecture described in

section 4.4. NLP was responsible for the decomposition of epics into user stories and task while

Hungarian algorithms was used for task assignment. Furthermore, we presented an outline of the design

process of decomposing epics; the algorithm was divided into two sub sections (1) single verb and

multiple verbs. This was done to enhance algorithm’s performance. Both algorithms were discussed into

more details, the complexity of multi verb’s algorithm is more complicated than single verbs. The

algorithm for multiple verbs is more complicated than single verbs. We further demonstrated how to

extract the necessary information to decompose the USs.

We further describe the technology used to design and implement the tool, in aspect of database and

user interface design. MySQL was selected as the best solution for data storage while Tailwind CSS was

used to design the user interface. We stated expected inputs for the systems to function.

67

5. CHAPTER FIVE

EVALUATION OF THE DEVELOPED TOOL (SAMPT)

5.1 Introduction

In the previous chapter, we engaged in the description of system architecture and drill-down of how we

have implemented the proposed tool that can help Agile teams efficiently use timeboxed sprints by

applying minimal effort. These can enable Agile teams to spend more time delivering the right solutions

with reduced sprint planning time and effort. Therefore, it is essential to evaluate the quality of the

developed tool by executing case studies to conclude on the tool’s performance.

To evaluate our solution, we started by discussing the methodology this thesis followed to validate the

tool. Subsequently, give an example on how to attain the results from a given epic, assign the

decomposed task to users using Hungarian algorithm, discuss results obtained and ultimately summarise

the chapter.

5.2 Methodology

This chapter embarks on the validation of the developed tool and how it can be evaluated. To assess the

validity of the SAPMT, we conducted a case study on ATM project and Ecommerce project. ATM is a bank

machine which offer functionalities like withdrawals, deposit of money, change of PIN to the customers.

Ecommerce is a web-based shopping platform that sells products to customers online. customers can

purchase the products they like.

We build on the hypothesis that the implemented tool should obtain similar results to the methodology

we have adapted. Therefore, this thesis has used IBM’s payroll requirement text to validate SAPMT.

5.2.1 Example of evaluation

Since we build on the hypothesis that the tool will attain identical results to the methodology adapted in

(Pereira, 2018), this thesis adapted the payroll system requirement from IBM to validate the efficiency

and accuracy of the tool.

Input: Unstructured text from IBM

 “The Payroll Administrator maintains employee information. The Payroll Administrator is responsible for

adding new employees, deleting employees, and changing all employee’s information such as tittle,

address, and payment classification (hourly, salaried, commissioned) as well as run administrative

reports.”

Following the algorithm in first pipeline, the system starts the processing from sentence 1 where it

identified that the first sentence contains single verb, Therefore, single story and task were generated as

follows:

68

US => As the Payroll administrator I want to be able to maintain employee information.

Task => maintain employee information.

69

Figure 5.1:Graphical dependency output

70

After the text generation processes, USs and tasks were copied to the pandas. The table below shows

all obtained USs from the IBM text.

5.3 Extracted user stories and tasks

This section shows results obtained after applying NLP for US and task generation. The tasks from text

were send to the database as To-Do list. Each task possesses a unique identity (id) to avoid replication.

For instance, the task “maintain employee information” hold position 1 from Table 4.1:Task extracted from

ATM text, therefore it was assigned an id of 1. All the ids are auto incremental by 1 and all subsequent

tasks followed that sequence.

The results can be viewed on the Table 5.1. Table 5.1 shows the generated user stories and tasks from

IBM's payroll system text.

Table 5.1:Generated user stories and tasks from IBM's payroll system text

User story description Task

As Payroll Administrator I want to be able to

maintain employee information

maintain employee information

As Payroll Administrator I want to be able to add

new employees

add new employees

As Payroll Administrator I want to be able to delete

employees

delete employees

As Payroll Administrator I want to be able change

all employee’s information such as tittle, address,

and payment classification (hourly,

change all employee’s

information such as tittle,

address, and payment

classification (hourly,

As Payroll Administrator I want to be able to run

administrative reports

run administrative reports

5.4 Task assignment process

5.4.1 Process 1

The PO decides when to initiate task assignment process. The PO receives all tasks from the

decomposition process as pandas’ data frame where all extracted tasks are sent to the database such

that they can be viewed from the PB of the developed tool. Since Hungarian algorithm (HA) functions

efficiently when assigned a square matrix (the number of tasks must be equal the number of developers

available for implementation of tasks), the system will pick the total number of tasks equal to the

developers. However, there are circumstances where number of tasks are less than the number of

developers. Suppose there are 3 tasks with their unique identities (id) (id = 1, maintain employees’

71

information, id = 2, add new employees, id = 3, delete employees) for simplicity purposes, we gave them

pseudo names as follows, task 1, task 2, and task 3:

 In case the number of tasks is less than the number of developers, the system present additional virtual

task with zeros so that the matrix is squired

5.4.2 Applying Hungarian algorithm

The system consists of five developers who compete for each task. Each developer gives their proposed

delivery time for each task and their answers are received by the PO who puts them in a cost matrix

format such that Hungarian algorithm selects the best candidate to perform certain job. Table 5.2 shows

the proposed delivery time recorded as cost matrix. Hungarian algorithm selects the optimal assignment

for each iteration. The job of Hungarian is to retain the sprint or iteration at minimum development time

with maximised quality.

5.4.3 Process 2

After Hungarian results are processed, each developer now knows what s/he will be focusing on

concerning the next iteration. The PO will be authorised to view the tasks assigned to each developer

while the developers will only view assigned tasks to them. It is significant to eliminate assigned tasks

from the PB as this will evade repeating tasks that are already assigned to developers. Therefore, SAPMT

saved all assigned tasks to assignment table in database with attributes, task id, developer, and Total

time (TT). TT refers to the time each developer proposes to complete that task.

5.5 Sprint Iterations

This section illustrates the detailed description of task assignment model. After the completion of

Iterations, the PO will have access to view the resulted sprints assigned by the Hungarian algorithm. To

accomplish this, the iteration must have registered developers who are willing to compete for task

assignment by issuing their proposed time to complete a task. Since sprint planning is progressive

process, it divided into subsections called iterations. This will give the DT to focus more on stories which

are aligned to the defined goal. Table 5.2 shows the proposed time by different DT.

5.5.1 Iteration 1

5.5.1.1 Available developers

- London

- Mphaufele

- Tau

- Lehlohonolo

- Shale

Table 5.2:Square matrix for task assignment

TO-DO Task 0 Task 1 Task 2 Task 3 Task 4

72

London 5 13 4 8 2

Tau 4 1 7 2 6

Mphaufele 6 9 8 5 9

John 7 3 6 4 4

Lehlohonolo 8 4 4 7 5

Table 5.3:Hungarian results for iteration 1

 Iterations

Iteration 1

Task TT

London Task 4 2

Tau Task 3 2

Mphaufele Task 0 6

John Task 1 3

Lehlohonolo Task 2 4

Total TT 17

After Hungarian assign task to developers, results are populated to the assignment table with the

following attributes (Developer’s name, Task, Total Time (TT).

The web application retrieves the obtained results:

 Each developer can view assigned tasks on their private dashboard after successfully login. To

attain results, we have used the object relational mapper (ORM) which queries database in a

high-level format.

 If the task is implemented, they can change the status of the task by selecting either busy, idle, or

completed. This will help the PO and stakeholders to gauge the progress made regarding the

project.

5.6 Case studies

73

5.6.1 Case study 1: ATM

 “The bank customer can withdraw money from the ATM without card. The Bank customer can also deposit

money on the ATM, change PIN on the ATM and transfer funds from the current account to savings

account on the ATM. The customer should be able to receive SMS notifications when money is withdrawn

from the account.”

From the ATM case study, there are 5 USs and task expected:

Expect stories are from the following phrases:

 Withdraw money on ATM

 Deposit money on ATM

 Change PIN on ATM

 Transfer funds

 Receive SMS notifications.

To generate the stories, this thesis automatically identified indexes that has potential to generate the story

from the given text. Table 5.4 shows the generated USs together with their corresponding tasks after

applying our algorithm. First, the algorithm gives out indexes that will be used to form ranges that has

potential to generate a story. For instance, suppose the index’s output was given as a list with values

[12,22,24,34]. To generate the first story, the range could be given as 12:22, while the second story could

be from 22:24 and the rest will consecutively follow the same pattern. However, note that the last number

on the list does not have a neighbouring number to produce a range. Therefore, to solve this challenge,

we have used the pythonic way of determining the solution. Since 34 is at the end of the list, python

programming gives the last element of array as value -1. Therefore, the last index could be given as 34:

-1.

Table 5.6 below shows the results of above input text where the second and third rows shows generated

stories with their corresponding tasks. The results of applying the range can be observed at figure 6.6

during production appendix 4.

74

Table 5.4:Decomposed epics results from ATM text

Index

range

Generated user stories Tasks

4:11 As the bank customer I want to be able to

withdraw money from ATM without card

Withdraw money from

ATM without card

16:22

As the bank customer I want to be able to

deposit money on the ATM

Deposit money on the

ATM

22:27 As the bank customer I want to be able to

change PIN on the ATM and

Change PIN on the ATM

and

27:35

As the bank customer I want to be able to

transfer funds from the current account to

savings account on the ATM

Transfer funds from the

current account to

savings account on the

ATM

35:42 As the bank customer I want to be able to use

the ATM if money is

to use the ATM if money

is

49: -1 As the bank customer I want to be able to

receive SMS notification

Receive SMS notification

5.6.1.1 Task assignment

Since the output of Agile epics decomposition influences the sprint planning, for instance if the generated

text does not the fit qualify criteria of the story especially the rule that specifies that the US should read

like a sentence with no grammar mistakes there will be no tasks to process. Therefore, subsequent step

was to apply task assignment model. We have used same developers from section 5.5.1.1 throughout

the entire evaluation.

5.6.1.2 Iteration

5.6.1.3 Available tasks on the sprint backlog:

1. Withdraw money from the ATM

2. Deposit money on the ATM

3. Change PIN on the ATM and

4. Transfer funds from the current account to savings account on the ATM.

5. to use the ATM if money is

6. Receive SMS notification

5.6.1.4 Available developers

 London

75

 Tau

 Mphaufele

 John

 Lehlohonolo

Table 5.5 Hungarian matrix input 2

TO-DO Task 5 Task 6 Task 7 Task 8 Task 9

London 2 4 3 1 1

Tau 5 7 6 3 4

Mphaufele 6 8 7 4 9

John 4 4 2 1 3

Lehlohonolo 5 7 9 8 6

The highlighted text in blue are the selected tasks after applying the Hungarian algorithm. The proposed

minimum time was found to be 19. The results are indicated on Table 5.6: Iteration-Table (iteration

2)below. Table 5.6 shows the results of iteration

Table 5.6: Iteration-Table (iteration 2)

Iterations

Iteration 2

Task TT

London Task 9 1

Tau Task 8 3

Mphaufele Task 6 8

John Task 7 2

Lehlohonolo Task 5 5

Total TT 19

5.6.2 Case study 2: Ecommerce

For this case study, suppose there is a company in Cape Town which is looking for the development of

their Ecommerce websites and they specifies their requirements as:

 Input text:

“The customers should be able to view products sold online. If the customer decides to purchase the

products online, add products to the bucket where s/he can continue with the purchasing process as the

76

guest or create account for shipping purposes. They must be able to pay with visa cards or cash on

delivery (COD). The system should validate expired cards to avoid scammers.”

Looking at the text provides above, there are 6 stories that could be extracted:

Expected stories are from the following phrases:

 View products sold online

 Purchase the product online

 Add products to the bucket

 Create account for shipping purpose

 Pay with visa card or cash on delivery (COD).

 Validate cards to avoid scammers

Table 5.7:Extracted user stories and tasks from Ecommerce text

Index range Generated user stories Tasks

6:8 As products I want to be able to view

products.

View products

14:16 As products I want to be able to purchase

the products online

Purchase products

online

26: As products I want to be able to add

products to the bucket where s he can

Add products to the

bucket where s he

can

41:50 As products I want to be able to create

account for shipping purposes they must

be able to

create account for

shipping purposes

they must be able

to

65:69 As products I want to be able to validate

expired cards to ‘]

validate expired

cards to ‘]

5.6.2.1 Available tasks on the sprint backlog

 View products

 Purchase products online

 Add products to the bucket where she can

 create account for shipping purposes they must be able to

77

 validate expired cards to ‘]

5.6.2.2 Available developers

Since the number of tasks in sprint backlog are equal to the number of developers, we just continue with

the assignment. Therefore, we use the same developers from section 5.6.1.4.

Table 5.8:The Hungarian matrix input 3

TO-DO Task 10 Task 11 Task 12 Task 13 Task 14

London 3 4 4 5 2

Tau 4 6 3 5 7

Mphaufele 2 3 1 1 5

John 6 7 4 8 4

Lehlohonolo 1 4 9 7 6

Table 5.9:Iteration-Table (iteration 3)

Iterations

Iteration 3

Task TT

London Task 11 4

Tau Task 12 3

Mphaufele Task 13 1

John Task 14 4

Lehlohonolo Task 10 1

Total TT 13

5.6.3 Case study 3

Input text:

The user of the application can track his/her performance when running or riding his/her bike via the

GPS. His/her performance can be saved to his/her account and shared with other friends from his/her

social networks. The user cannot delete any entries once they are saved to the account. The user can

create a report with all the activities by date range, or by type (running or biking).

The expected USs generated from this text of the second case study will be:

• Track his/her performance

• Save performance

78

• Share performance

• Cannot delete any entries

• Create a report

Table 5.10:generated user stories and tasks from agile samurai textbook

Index range Generated user stories Tasks

6:8 As his I want to be able to track his her

performance when'

Track his her performance

when

14:16 As his I want to be able to ride his her bike via

the GPS His her performance can be

ride his her bike via the

GPS His her performance

can be

26: As his I want to be able to delete any entries

once they are

delete any entries once

they are

41:50 As products I want to be able to have ability to Have ability to

65:69 'As his I want to be able to create a report with

all the activities by date range or by type (']

create a report with all the

activities by date range or

by type ('

5.6.3.1 Available tasks on the sprint backlog

 Track his her performance

 ride his her bike via the GPS His her performance can be Add product to the bucket where she can

 delete any entries once they are

 have ability to

 create a report with all the activities by date range or by type ('

5.6.3.2 Available developers

We apply the same rules defined in section 5.6.2.2 to determine the available developers.

Table 5.11:Hungerian input 4

TO-DO Task 15 Task 16 Task 17 Task 18 Task 19

London 7 9 4 5 3

Tau 10 6 7 9 6

Mphaufele 5 3 4 2 5

John 6 8 5 7 4

79

Lehlohonolo 1 4 5 3 6

Table 5.12:Iteration-Table (iteration 4)

Iterations

Iteration 4

Task TT

London Task 19 3

Tau Task 16 6

Mphaufele Task 18 2

John Task 17 5

Lehlohonolo Task 15 1

Total TT 17

5.7 Output of iterations and task assignments

Table 5.13 consist of all iterations after applying the Hungarian algorithm. The proposed iterations

optimised to deliver high quality with loss cost.

Table 5.13: Iterations-table

Table

5.14:Task assignment

Developer’s name Task name Total TT

London Task 4 2

London Task 9 1

London Task 11 4

London Task 19 3

Iterations

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Task TT
Task TT

Task TT Task TT

London Task 4 2 Task 9 1 Task 11 4 Task 19 3

Tau Task 3 2 Task 8 3 Task 12 3 Task 16 6

Mphaufele Task 0 6 Task 6 8 Task 13 1 Task 18 2

John Task 1 3 Task 7 2 Task 14 4 Task 17 5

Lehlohonolo Task 2 4 Task 5 5 Task 10 1 Task 15 1

Total TT 17 Total TT 19 Total TT 13 Total TT 17

80

Tau Task 3 2

Tau Task 8 3

Tau Task 12 3

Tau Task 16 6

Mphaufele Task 0 6

Mphaufele Task 6 8

Mphaufele Task 13 1

Mphaufele Task 18 2

John Task 1 3

John Task 7 2

John Task 14 4

John Task 17 5

Lehlohonolo Task 2 4

Lehlohonolo Task 5 5

Lehlohonolo Task 10 1

Lehlohonolo

Task 15 1

5.8 Results

This section concentrates on the measure of how accurate and efficient the SAPMT in is (1) generating

Agile artefacts (USs and tasks) from unstructured text using NLP techniques and assign the attained

tasks from USs to available developers using Hungarian algorithm. This thesis harnessed power of the

classical machine learning called confusion matrix metric in classification problems with known answers.

Table 5.15 provides detailed descriptions about what was referred as a true positive, false positive, true

negative, and false negative. Since the creating of US affects the presence of tasks, there was no need

to access the feasibility of creating tasks from the generated stories as tasks strongly depends on the

existence of USs.

Table 5.15:Classification of sentences that will correctly create user story (Pereira, 2018)

Sentences/partial phrase

Should create

User Story and Task

Shouldn’t create User

story and Task

Creates a user story True Positive (TP)

Correct results

False positive (FP)

Incorrect results

81

Doesn’t create a user

story

False Negative (FN)

Incorrect results

True Negative (TN)

Correct results

Where:

 TP = The sentence or partial phrase processed by the SAPMT that generates a US, task and which really

should create these artefacts.

 FP = The sentence or partial phrase that after processed by the SAPMT generate an Agile US and task

but shouldn’t do it.

 TN = The sentence or partial processed by the US that doesn’t generates Agile US and task, and this is

the expected behaviour.

 FN = When the sentence or partial phrase are processed by the SAPMT generates a story, but it

shouldn’t.

Then, above metrics are utilised to formulate the accuracy equation 5.1 to product

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

5:1

Another imperative metrics that were computed are the Precision (P) and Recall (R) which attributed in

the formation of F measure in equation 5:5. The precision rate is the percentage of selected items that

are correct, and it’s computed by equation 5:2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

5:2

The Recall is the percentage of correct items that are selected, and it’s computed by Equation 5:3

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

5:3

82

𝐹 =
1

𝛼𝑃
1 + (1. 𝛼)

1
𝑅

=
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅

5:4

Where:

β = 1

α = 0.5

These constants (β and α) help to reduce Equation 5:4 to Equation 5:5

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅

5:5

83

Table 5.16:Case study results

Case study experiment TP FP TN FN Accuracy
rate (%)

Precision Recall F1
Measure

IBM payroll
system

1 5 0 1 1 85.6 100 83.3 90.7

ATM 2 5 0 1 0 100 100 83.3 91

Ecommerce 3 5 0 1 0 100 100 83.3 91

Agile samurai
book

4 3 0 2 2 71.4 100 60 75

The preceding Table 5.16 presented the results of the experiments performed on four use cases. It

illustrates the performance of each case study when using the case study (IBM Payroll system, ATM,

Ecommerce and agile samurai(book) respectively. The values of metrics A, P, R and F1 measure were

determined. For all metrics used, the higher the value obtained better the results. The results of case

study 5.6.3 have an F1 score of 75% reflecting is a huge gap as compared to case other studies. This

was affected by the Lack of clarity and concise information attributed to the complication of processing it

correctly.

Table 5.14 below shows the general performance of the tool aggregated an average on the tested use

cases.

Table 5.17:Avarage performance of the tool

Metrics Percentage %

Accuracy 89.25

Precision 100

Recall 77.25

F1 Measure 87%

In comparison with the results obtained by Pereira, (2018), the results of experiment 1 were almost

identical our results except the last US generated. The results slightly differ from our tool due to words

like salaried and commissioned which were found to possess POS tag with VERB. This means that those

words have potential to generate the USs. However, this raises false alarm and cause ambiguous results

as indicated on appendix. This resulted into the Accuracy of 85.6, Precision of 100, Recall of 83.3 percent

and lastly F1 measure of 90.7%. Moreover, one of the noticeable differences is the results of the

84

conference resolution. On case study 2, our tool presented the antecedent as products while (Pereira,

2018) was his/ her.

5.9 Discussions

This section discusses the tool’s performance, threats to validity, limitations and challenges faced while

conducting this study. The proposed tool in this study improves the generation of USs and tasks given

the file which comprised of epic USs by automatically generating small manageable stories and tasks.

Observing the results in Table 5.16, the tool has efficiently achieved its goals. The research questions, to

what extend can NLP be utilised on USs and task generation provided the epics written in NL and how

efficient can the automated solution replace the manual solutions were answered. The accuracy and

precision degree of the SAPMT has shown an outstanding result that illustrated how NLP can be infused

in US decomposition based on the evaluations made. The results obtained shows there is a promising

similarity that could be exerted if the epics were decomposed by an expert. Based on these observations,

we can argue that our tool cam be useful to start-up companies which lacks experienced personnel in

requirements decomposition and task assignment.

The best results were obtained when using case study 1,2,3 yielding F1 Score performance of 91%.

Furthermore, the tool proposed in section 4.4 which implement the proposed approach has the potential

to assist PO and project manager during the sprint planning.

5.9.1 SAMPT performance

On our first exploration, we observed poor performance on NLP while performing conference resolution

process concerning the accuracy and processing time. There was a long delay as the algorithm tried to

produce the expected results. This caused the laptop to overhead as we waited for the results. To address

the delay issue, we enhance the performance of the NLP core server by increasing the RAM parameter

on code from 4GB to 6GB and the performance was better.

Upon the arrival of the results from conference resolution process, the results were occasionally not

accurate. For example, in experiment 2, the customer was supposed to be replaced with was supposed

to be the subject of the US throughout the entire text, however “product” was used instead.

5.9.2 Lack of dataset

There is lack of publicly available data sources that can be used by machine leaning, artificial intelligence

and NLP techniques concerning the automated generation of Agile artefacts. The researchers are bound

with the rules that compel them to conceal the information from companies they. this complicates the

NLP algorithms to analyse and come with the standardize excavation of agile artefacts solution.

85

5.10 Threads to validity

This section discusses the most relevant threats to validity for our evaluation. Text used to evaluate the

tool was generated by the designer. Therefore, there are selective biases in data. This means that the

evaluation results obtained in this study do not portray the generic results for other case studies. The

validity of this study contests the veracity of constructing the USs and tasks given the file comprised of

agile epics written in NL. This study followed aspects of veracity discussed by Runeson and Höst (2009)

namely, construct validity, reliability.

The construct validity focuses on the relation between theory and observation. This paradigm concerns

whether the measurements studied characterise what the researcher envisioned to examine.

Furthermore, the aspects of construction validity were considered during this project. This thesis

concluded that not only the accuracy would provide the measurement of the approach's performance but

also precision, recall and F1 score.

Reliability concerns the ability to extend this study to which data and analysis are reliant on the

researcher's interests. In reference with Runeson and Höst (2009), reliability states that the results of

the replicated study should reflect the same results as the original publication. However, there might be

complications that could pose threats to reliability. The main reliability threat in this thesis is the technique

used to excavate USs and tasks from the SRS consisting of Agile epics. Following section 4.4.2.4, there

are linguistic features which are relevant concerning the formulation of USs and tasks but couldn’t be

extracted. Furthermore, since the SRS consist of Agile epics which are written in NL, these specifications

can be ambiguous due to spelling misstates. If the keyword in the specification is misspelt, the precision,

recall and F1 metrics are affected. Moreover, if the requirements are written in a different language

besides English, the results may differ.

86

5.11 Conclusion

The results presented in this chapter propose that succinctly written software documentations with the

description of the software focused on the user perspective leads to higher accuracy as compared with

long texts. The metrics results demonstrated texts with concise structure produces higher precision, recall

and F1 Measure. Hungarian is a simple task assignment problem which optimise cost and it is still used

in agile environment.

87

6. CHAPTER SIX.

CONCLUSION AND RECCOMENDATION

6.1 Introduction

This thesis has presented a SAPMT that aids in decision support during PB grooming and sprint planning

in Scrum. We proposed the integration of NLP techniques with Hungarian algorithm to attain cost effective

tool that maximise the quality of the developed project. Based on the results obtained, this thesis conclude

that NLP is adequate technique to automate Agile software artefacts’ generation.

6.2 summary of findings

The use of Scrum in ASD has gained popularity among the researchers. 81% of Agile practitioners

choose it as the development framework. The generation or construction of agile artefacts is recently

performed by NLP. NLP presents viable techniques which automate the text generation processes to

minimise total time and development cost. Although NLP is widely used in the generation of Agile

artefacts, it produces results that has not reach certain level maturity which can replace human

intelligence. This is due to (1) lack of opensource dataset used to train NLP models and structure used

to construct requirements. The accuracy of NLP lies in a succinctly written SRS.

Hungarian algorithm is recently used to enhance the performance of task assignment algorithms.

Although it is Classical, its applicable to address task assignments in ASD.

6.3 Conclusion

To conclude the results of the study we want to address the research questions and the aim set in the

beginning of the research. The aim was to design and implement an intelligent tool for IoT application

requirements specification into stories for the Scrum team.

To address the specified research questions stated in section 1.6, we conducted evaluation experiments

regarding How NLP can be used to decompose agile epics to manageable US and tasks. NLP provides

rich text analysis techniques which help to generate user stories and tasks. To decompose epics, there

are two aspects of US that needs to be extracted: (1) the who and (2) what aspects of the US. POS

tagger is NLP technique which is used to extract action verb in a sentence to provide what aspect of US.

For complex sentences with more than two action verbs, POS tagger is intertwined with dependency

graph to distinguish verbs with dependency tag, root verb. All individual roots verbs are regarded as parts

88

which form what aspect of US. Discard all other verbs. To extract the who aspect of US, subject mention’s

results are used in conjunction with conference resolution technique. The output of the two methods

provides the answer as pronoun or noun. Activity diagram in section shows a detailed NLP techniques

on how epics are decomposed into USs and tasks. Since the algorithm obtained 78% of recall, NLP is

the trusted technique to decompose epic stories. Through further experiments and analysis of sentence

structures that formulates Agile epics, this thesis infers that the linguistic feature of epics explicitly has

two or more action verbs. Action verbs are easily identified by POS tagger. Although the results of

automating the decomposition of epics using Nlp provides 90% of accuracy, they have not reached

certain level of maturity that can be compared to human experts.

To answer the research question what is an effective approach used to assign tasks to developers in an

agile environment?, this thesis has extracted some insights from the literature review. There are two

mostly used methods used task assignment models, Crowd sourcing and Hungarian algorithm. Although

Hungarian algorithm is a classical task assignment algorithm, its usage is deemed as a powerful

technique that is be adapted on ASD.

6.4 Future research and Recommendations

From table 5.14, we can infer that our tool produces 100% Precision. Despite these satisfying results our

tool has generated, there is still room for improvement; some of the generated stories possess minor

grammatical errors. It would be great to advance the tool with word sense ambiguity. If the words are

misspelled, the system should be able to correct them. This would improve the accuracy of the tool.

Our tool’s assessment has shown that there a stringent need to enhance the performance of the tool in

(1) conference resolution stage in terms of accuracy and time spent to execute the results, add feature

for generating USs with passive voice and (3) the complexity of automating text generation was intricate

when large text is processed which attributes to complex automation of USs in multiple verbs and lastly

introduce software agent with capabilities to capture requirements during requirements elicitation.

In reference to conference resolution, the usage of Stanza with Stanford CoreNLP server could be

swapped with NeuralCoref and observe the results. To enhance the tools performance, that indexes that

generate USs should be automated thus improving scalability.

89

Bibliography

Ahmed, M. et al. (2019) ‘Estimation of Risks in Scrum Using Agile Software Development’, Springer
International Publishing AG [Preprint].

Ali, M., Shaikh, Z. and Ali, E. (2016) ‘Estimation of Project Size Using User Stories’, International
Conference on Recent Advances in Computer Systems (RACS), (Racs 2015), pp. 54–60.

Ansari, P.A. (2017) ‘Constructing Test Cases Using Natural Language Processing’, 3rd International
Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB17) [Preprint], (3).

Azzazi, A. (2017) ‘A Framework using NLP to automatically convert User-Stories into Use Cases in
Software Projects’, International Journal of Computer Science and Network Security, 17(5), pp. 71–76.

Basu, S. et al. (2015) ‘Task assignment optimization in knowledge-intensive crowdsourcing’, The VLDB
Journal, pp. 467–491

Beck, K. et al. (2001) ‘The agile manifesto’.

Begel, A., Bosch, J. and Storey, M.-A. (2013) ‘Social networking meets software development:
Perspectives from github, msdn, stack exchange, and topcoder’, IEEE software, 30(1), pp. 52–66.

Bhat, M., Ye, C. and Jacobsen, H.-A. (2014) ‘Orchestrating soa using requirement specifications and
domain ontologies’, in International Conference on Service-Oriented Computing, pp. 403–410.

Biébow, B. and Szulman, S. (1993) ‘Acquisition and validation: from text to semantic network’, in
International Conference on Knowledge Engineering and Knowledge Management, pp. 427–446.

Bolloju, N., Schneider, C. and Sugumaran, V. (2012) ‘A knowledge-based system for improving the
consistency between object models and use case narratives’, Expert Systems with Applications, 39(10),

pp. 9398–9410.

Choetkiertikul, M. et al. (2016) A deep learning model for estimating story points. Available at:

www.openhub.net, (Accessed: 9 July 2019).

Cobb, C.G. (2015) The project manager’s guide to mastering agile : principles and practices for an
adaptive approach. john Wiley && sons. (Accessed: 14 June 2019).

Cohn, M. (2004) User stories applied: For agile software development. Addison-Wesley Professional.

Dam, H.K. et al. (2018) ‘Towards effective AI-powered agile project management’, 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE- NIER), pp.

41–44.

Dam, H.K. et al. (2019) ‘Towards effective AI-powered agile project management’, in 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),

pp. 41–44.

Diebold, P. et al. (2015) ‘What Do Practitioners Vary in Using Scrum?’, in Springer International Publishing
Switzerland. Springer, Cham, pp. 40–51.

Dimitrijević, S., Jovanovic, J. and Devedžić, V. (2015) ‘A comparative study of software tools for user

90

story management’, Information and Software Technology, 57(1), pp. 352–368.

García, T.R., Cancelas, N.G. and Soler-Flores, F. (2014) ‘The Artificial Neural Networks to Obtain Port
Planning Parameters’, Procedia - Social and Behavioral Sciences, 162, pp. 168–177.

García, T.R., Cancelas, N.G. and Soler-Flores, F. (2015) ‘Setting the port planning parameters in
container terminals through bayesian networks’, Promet - Traffic - Traffico, 27(5), pp. 395–403.

Garfinkel, S. (2005) ‘History’s worst software bugs’, Wired News, Nov [Preprint].

Gunes, T. and Aydemir, F.B. (2020) ‘Automated Goal Model Extraction from User Stories Using NLP’,
Proceedings of the IEEE International Conference on Requirements Engineering, 2020-Augus, pp. 382–
387.

Guo, J., Cheng, J. and Cleland-Huang, J. (2017) ‘Semantically Enhanced Software Traceability Using
Deep Learning Techniques’, Proceedings - 2017 IEEE/ACM 39th International Conference on Software
Engineering, ICSE 2017, 39, pp. 3–14.

H. Gillbert Miller (2011) ‘The spark of innovation begins with collaboration’, Inside the digital Ecosystem,
11(1), pp. 13–19.

Hayes-Roth, B. (1985) ‘A blackboard architecture for control’, Artificial intelligence, 26(3), pp. 251–321.

Ho, C. and Vaughan, J.W. (2011) ‘Online Task Assignment in Crowdsourcing Markets’, pp. 45–51.

Karger, D.R. (2011) ‘Iterative Learning for Reliable Crowdsourcing Systems’, pp. 0–9.

Kassab, M. (2015) ‘The changing landscape of requirements engineering practices over the past decade’,
in 2015 IEEE fifth international workshop on empirical requirements engineering (EmpiRE), pp. 1–8.

Khabbazian, A. et al. (2018) ‘A decision support system for goods distribution planning in urban areas’,
SoutheastCon 2018, 57(1), pp. 1–9.

Khabbazian, A. (2018) ‘A decision support system for goods distribution planning in urban areas’,
SoutheastCon 2018, pp. 1–9.

Klotins, E., Unterkalmsteiner, M. and Gorschek, T. (2016) Software Engineering in Start-up companies :
an Exploratory Study of 88 Start-ups, Submitted to EMSE. Empirical Software Engineering.

Kniberg, H. (2015) Scrum and XP from the Trenches. Available at:

http://tscherning.mono.net/upl/10004/110224ScrumAndXpFromTheTrenches.pdf (Accessed: 7 July
2019).

Lin, J. et al. (2014) ‘Using goal net to model user stories in agile software development’, 2014 IEEE/ACIS
15th International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD 2014 - Proceedings, pp. 1–6.

Lin, Y. et al. (2015) ‘Multi-Agent System for intelligent Scrum project management’, Integrated Computer-
Aided Engineering, 22(3), pp. 281–296.

Liu, J.W. et al. (2019) ‘The role of Sprint planning and feedback in game development projects:
Implications for game quality’, Journal of Systems and Software, 154, pp. 79–91.

Lucassen, G. et al. (2015) ‘Forging high-quality user stories: towards a discipline for agile requirements’,
in 2015 IEEE 23rd international requirements engineering conference (RE), pp. 126–135.

91

Meyer, B. (2014) ‘Agile principles’, Agile!, pp. 49–78.

Miao, X.I.N. et al. (2020) ‘Quality-aware Online Task Assignment in Mobile’, 16(3).

MIHALACHE, A. (2017) ‘Project Management Tools for Agile Teams’, Informatica Economica, 21(4/2017),

pp. 85–93.

Mills-tettey, G.A. and Stentz, A. (2007) ‘The Dynamic Hungarian Algorithm for the Assignment Problem
with Changing Costs’, (July).

Mohagheghi, P. and Jorgensen, M. (2017) ‘What contributes to the success of IT projects? Success
factors, challenges and lessons learned from an empirical study of software projects in the norwegian
public sector’, Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion, ICSE-C 2017, pp. 371–373.

Mondal, R.N., Hossain, M.R. and Saha, S.K. (2013) ‘An Approach for Solving Traveling Salesman
Problem’, 3(2), pp. 15–26.

Müter, L. et al. (2019) ‘Refinement of User Stories into Backlog Items: Linguistic Structure and Action

Verbs’, in. Springer, pp. 109–116.
.
Nayak, A. and Dutta, K. (2018) ‘Impacts of machine learning and artificial intelligence on mankind’,
Proceedings of 2017 International Conference on Intelligent Computing and Control, I2C2 2017 , 2018-

Janua, pp. 1–3.
.
Ninaus, G. et al. (2014) ‘INTELLIREQ: intelligent techniques for software requirements engineering’, in
ECAI 2014. IOS Press, pp. 1161–1166.

Pereira, A.C. (2018) using NLP to generate user stories from software specification in natural language.

UNIVERSIDADE FEDERAL DO PARANÁ.

Perkusich, M. et al. (2017) ‘Assisting the continuous improvement of Scrum projects using metrics and
Bayesian networks’, in Journal of Software: Evolution and Process.

.
Qi, P. et al. (2020) ‘Stanza: A Python natural language processing toolkit for many human languages’,
arXiv preprint arXiv:2003.07082 [Preprint].

Raharjana, I.K., Siahaan, D. and Fatichah, C. (2021) ‘User Stories and Natural Language Processing : A
Systematic Literature Review’, IEEE Access, 9, pp. 53811–53826.

Ralph, P., Sedano, T. and Péraire, C. (2019) The Product Backlog. Available at:

https://www.researchgate.net/publication/330823863 (Accessed: 14 June 2019).

Ramirez-noriega, A. et al. (2016) ‘Using Bayesian Networks to Obtain the Task ’ s Parameters for
Schedule Planning in Scrum’, 2016 4th International Conference in Software Engineering Research and
Innovation (CONISOFT), (1), pp. 167–174.

Ratner, I.M. and Harvey, J. (2011) ‘Vertical slicing: Smaller is better’, in Proceedings - 2011 Agile
Conference, Agile 2011, pp. 240–245.

Robeer, M. et al. (2016) ‘Automated Extraction of Conceptual Models from User Stories via NLP’, IEEE
International Requirement Engineering Conference [Preprint], (24).

Runeson, P. and Höst, M. (2009) ‘Guidelines for conducting and reporting case study research in software
engineering’, Empirical software engineering, 14(2), pp. 131–164.

92

Salman, A., Ahmad, I. and Al-Madani, S. (2002) ‘Particle swarm optimization for task assignment
problem’, Microprocessors and Microsystems, 26(8), pp. 363–371.

Sharma, S. and Hasteer, N. (2017) ‘A comprehensive study on state of Scrum development’, Proceeding
- IEEE International Conference on Computing, Communication and Automation, ICCCA 2016, pp. 867–

872.

Shi, Z. et al. (2020) ‘New Task Oriented Recommendation method Based on Hungarian algorithm in
Crowdsourcing Platform’, pp. 134–144.

Silberztein, M. et al. (2018) Natural Language Processing and Information Systems: 23rd International
Conference on Applications of Natural Language to Information Systems, NLDB 2018, Paris, France,
June 13-15, 2018, Proceedings. Springer.

Sukthanker, R. et al. (2020) ‘Anaphora and coreference resolution: A review’, Information Fusion, 59, pp.

139–162.

Taherdoost, H. and Keshavarzsaleh, A. (2015) ‘A Theoretical Review on IT Project Success / Failure
Factors and Evaluating the Associated Risks’, 4th International Conference on Telecommunications and
Informatics, Sliema, Malta, (August), pp. 80–88.

Taibi, D. et al. (2017) ‘Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban,
XP, and Banana Development Processes’, in Baumeister, H., Lichter, H., and Riebisch, M. (eds) Agile
Processes in Software Engineering and Extreme Programming. Cham: Springer International Publishing,
pp. 68–83.

Tailwind, C.S.S. (2019) ‘A utility-first CSS framework for rapidly building custom designs’.

Tran, L. et al. (2018) ‘A real-time framework for task assignment in hyperlocal spatial crowdsourcing’,
ACM Transactions on Intelligent Systems and Technology, 9(3), pp. 1–26.

Tugce, G. and Aydemir, F.B. (2020) ‘Automated Goal Model Extraction from User Stories Using NLP’,
International Requirements Engineering Conference (RE), (28), pp. 382–387.

Veerappa, V. and Harrison, R. (2013) ‘Assessing the maturity of requirements through argumentation: A
good enough approach’, in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 670–675.

Verma, R.P. (2013) ‘Generation of Test Cases from Software Requirements Using Natural Language
Processing’, 6thh International Conference on Emerging Trends in Engineering and Technolo, (6), pp.

141–148.

Vinet, L. and Zhedanov, A. (2011) A ‘missing’ family of classical orthogonal polynomials, Journal of
Physics A: Mathematical and Theoretical. Addison-Wesley Professional.

Wake, B. (2003) ‘INVEST in good stories, and SMART tasks’, Retrieved December, 13, p. 2011.

Wang, C. et al. (2017) ‘How to Reduce Software Development Cost with Personnel Assignment
Optimization’, ACM International Conference Proceeding Series, pp. 270–279.

Wang, C. et al. (2020) ‘Automatic Generation of Acceptance Test Cases from Use Case Specifications:
an NLP-based Approach’, IEEE Transactions on Software Engineering, pp. 1–1.

Wang, H. (1997) ‘Intelligent agent-assisted decision support systems: Integration of knowledge discovery,

93

knowledge analysis, and group decision support’, Expert Systems with Applications, 12(3), pp. 323–335.

Wu, M. et al. (2017) ‘A Reinforced Hungarian Algorithm for Task Allocation in Global Software

Development’.

Yu, D. (2019) ‘Crowdsourcing Software Task Assignment Method for Collaborative Development’, IEEE
Access, 7, pp. 35743–35754.

94

7. APPENDICES

7.1 APENDIX A

Generating ATM results.

95

Table 7.1:Saved stories and tasks

96

97

98

APENDIXB

	DECLARATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Terms and concepts
	Abbreviations

	1. CHAPTER 1
	1.0
	1.1 Introduction
	1.1.1 Overview of Scrum
	1.1.2 Scrum artefacts
	1.1.3 Planning

	1.2 Background to the problem
	1.3 Problem statement
	1.4 Aim and Objectives
	1.5 Objectives
	1.6 Context of research
	1.7 Research Questions
	1.7.1 Main Research Questions.
	1.7.2 Sub Research Questions

	1.8 Delineation
	1.9 Contributions
	1.10 Methodology
	1.11 The organisation of the dissertation

	2. CHAPTER TWO
	1
	2
	2.1 Introduction
	2.1 Agile Software development
	2.2 Epics
	2.3 User stories
	2.3.1 Quality criterion

	2.4 Natural Language Processing
	2.4.1 Conference resolution
	2.4.2 Chunking
	2.4.3 Lemmatization
	2.4.4 Named Entity Recognition (NER)
	2.4.5 Part-of-Speech (POS) tagging
	2.4.6 Sentence segmentation
	2.4.7 Stemming
	2.4.8 Syntactic parsing

	Scrum grooming process
	2.4.9 Grooming PB
	2.4.9.1 Importance of grooming

	2.5 Regular expressions
	2.6 Split the user story in a manageable task using traditional approaches
	2.6.1 Horizontal and vertical slicing

	2.7 Split the story using NLP
	2.8 State of art: generating Agile requirements artefacts
	2.8.1 Generating test cases using nlp
	2.8.2 Applying deep neural network to generate trace links
	2.8.3 Summary of applying NLP in requirement engineering

	2.9 Task assignment
	2.9.1 Crowdsourcing for task assignment
	2.9.1.1 Applying crowdsourcing in unknown competence levels of the developers
	2.9.1.2 Online crowdsourcing

	2.9.2 Task assignment based on Hungarian

	2.10 Summary
	2.11 Summary of literature
	2.12 Conclusion

	3. CHAPTER THREE.
	3.1 Introduction
	3.1.1 Aim
	3.1.2 Input
	3.1.3 Output

	3.2 Methodology
	3.3 Enhanced Scum process
	3.4 User story template
	3.5 Dataset
	3.6 Attributes of the research
	3.6.1 Grooming PB with NLP
	3.6.1.1 Decomposing user stories into manageable stories.

	3.6.2 Hungarian algorithm

	3.7 Summary

	4. CHAPTER FOUR.
	4.1 Introduction
	4.2 Design approach
	4.3 Design goals
	4.4 System architecture
	4.4.1 components of architecture.
	4.4.2 NLP engine 3
	4.4.2.1 First pipeline implementation
	4.4.2.2 Second pipeline implementation 4
	4.4.2.3 Algorithm for single verb sentences 4
	4.4.2.4 Algorithm for multiple verbs.

	4.4.3 Extracting tasks from user stories

	4.5 Tasks assignment to the developers.
	4.6 Implementation details
	4.6.1 Web application
	4.6.2 Database
	4.6.2.1 Model
	4.6.2.2 Database management system

	4.7 Libraries used
	4.8 Inputs and outputs
	4.8.1 Product Owners inputs
	4.8.2 Developers’ inputs

	4.9 Task’s selection model
	4.9.1 Process 1
	4.9.2 Hungarian algorithm
	4.9.3 Process 2.

	4.10 Output
	4.11 Summary

	5. CHAPTER FIVE
	5.1 Introduction
	5.2 Methodology
	5.2.1 Example of evaluation

	5.3 Extracted user stories and tasks
	5.4 Task assignment process
	5.4.1 Process 1
	5.4.2 Applying Hungarian algorithm
	5.4.3 Process 2

	5.5 Sprint Iterations
	5.5.1 Iteration 1
	5.5.1.1 Available developers

	5.6 Case studies
	5.6.1 Case study 1: ATM
	5.6.1.1 Task assignment
	5.6.1.2 Iteration
	5.6.1.3 Available tasks on the sprint backlog:
	5.6.1.4 Available developers

	5.6.2 Case study 2: Ecommerce
	5.6.2.1 Available tasks on the sprint backlog
	5.6.2.2 Available developers

	5.6.3 Case study 3
	5.6.3.1 Available tasks on the sprint backlog
	5.6.3.2 Available developers

	5.7 Output of iterations and task assignments
	5.8 Results
	5.9 Discussions
	5.9.1 SAMPT performance
	5.9.2 Lack of dataset

	5.10 Threads to validity
	5.11 Conclusion

	6. CHAPTER SIX.
	6.1 Introduction
	6.2 summary of findings
	6.3 Conclusion
	6.4 Future research and Recommendations

	Bibliography
	7. APPENDICES
	7.1 APENDIX A

