

DESIGN AND DEVELOPMENT OF THE ALICE CRU USER LOGIC

FIRMWARE FOR THE MID READOUT CHAIN

by

DIEUVEIL ORCEL THYS-DINGOU

A thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Electrical Engineering

in the Faculty of Engineering Built and Environment

at the Cape Peninsula University of Technology

Supervisor: Prof. A. RAJI

Co-supervisor: Prof. E.Z. BUTHELEZI and Dr. S.V. FÖRTSCH

Bellville

Date submitted (March 2022)

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific, or technical journals) or

as a whole (as a monograph) unless permission has been obtained from the University.

i

 DECLARATION

I, DIEUVEIL ORCEL THYS-DINGOU, declare that the contents of this thesis represent my

unaided work and that the thesis has not previously been submitted for academic

examination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

Signed Date

12/10/20222

ii

1. ABSTRACT

A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) at CERN is

going through a major upgrade during which some of its subdetectors are replaced with new

ones, while others are equipped with new electronics to handle the expected higher collision

rates in the current running period (Run 3), which will start in 2022. As part of the upgrade,

certain subdetectors such as the Muon Trigger (MTR), renamed to Muon Identifier (MID),

now operate in a continuous, triggerless readout mode, in addition to the previous triggered

readout mode. Due to the increased quantity of data, typical methodologies are impossible to

employ without massive efforts to expand the processing capacity. Since the new ALICE

computing system cannot keep up with the increased data flow of the MID, a new processing

algorithm has to be established.

The MID employs a Common Readout Unit (CRU) to interact with all subsystems of its new

readout chain. The CRU, based on the PCIe40 hardware and the ARRIA 10 FPGA, is

designed to meet the ALICE requirements. Its common firmware framework enables data

taking in both continuous and triggered modes from most ALICE subdetectors and can be

customized to meet the needs of any subdetectors through the use of a user logic

component placed at the heart of the CRU firmware. This research project provides a new

approach to processing the MID readout data based on the user logic component. Innovative

methods for reducing the high bandwidth data rate and adaptations to ease data handling in

the computing system have been introduced. In order to test and evaluate the user logic, a

laboratory test bench equipped with a small-scaled MID readout chain has been developed

at NRF iThemba LABS. Finally, the research findings and deliverables of this research can

be used as a preliminary solution for a full-scaled user logic component, as well as by other

postgraduate students for their studies.

iii

2. ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis external supervisors Prof. Zinhle Buthelezi

and Dr. Siegfried FÖrtsch of the Department of Subatomic Physics at iThemba LABS. The

doors to Prof. Buthelezi and Dr. FÖrtcsh offices were always open whenever I ran into trouble

or had queries regarding my research or writing. They consistently guided me through

hardships, allowing this research to be my work but steering me in the right direction

whenever they believe I needed it. They made this project possible, and I am grateful for

their insightful remarks on this thesis.

I would also like to thank Prof. Atanda Raji, my thesis internal supervisor. This thesis would

not have been completed without his academic guidance and dedicated commitment to

every step of the process. I would like to express my gratitude for your patience and

understanding over the past two years.

In February 2020, I spent several weeks at CERN (Geneva, Switzerland) studying with Dr.

Christophe Renard, Dr. Diego Stocco, and Dr. Fillipo Costa. My time at CERN has been

extremely productive, and working with these specialists has been an incredible experience.

Much of the analysis presented in chapters 2 and 3 is owed to my time at CERN. Dr. Renard

graciously assisted me in strengthening my skills in FPGA development and he was quite

tolerant of my knowledge gaps in the field. I would also want to thank Dr. Stocco and Dr.

Costa for their assistance in validating the user logic component for this research project.

The validation of the user logic could not have been completed without their enthusiastic

participation and feedback.

I would also like to acknowledge Mr. Rene Monteverdi, Mr. Rony Kuriakose, and Mr. Nathan

Boyles for their contributions to the development of the test bench at iThemba LABS.

I would not have been able to complete this study on my own without the contributions and

support of many people, including Ms. Anu Joseph, family, and friends. Recognizing your

contribution, whether direct or indirect, is an important element of my endeavour. Thank you

very much!

The financial assistance of the SA-CERN program and iThemba LABS towards this research

is acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those

of the author, and are not necessarily to be attributed to the SA-CERN program or iThemba

LABS.

iv

3. DEDICATION

This thesis is dedicated to my mother, Doris, who has been a consistent source of inspiration

and support throughout the hardships of graduate school and life. I am very grateful to have

you in my life. This work is also dedicated to my grandparents, Gilbert and Angele Castanou,

who have always loved me unconditionally and whose good example has inspired me to

work hard for what I desire.

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

DEDICATION.. iv

ABBREVATIONS AND ACRONYMS ... xii

NOMENCLATURES .. xiii

CHAPTER 1

Introduction .. 1

1.1 Background ... 1

1.1.2 ALICE detector ... 2

1.1.3 Muon Trigger ... 4

1.2 LHC Run 3 .. 6

1.2.1 The upgrade: Muon Trigger to Muon Identifier .. 6

1.3 Problem statement .. 7

1.3.1 Large data rate... 7

1.3.2 Desynchronization of data .. 7

1.3.3 Lack of hardware resources ... 8

1.4 Research aim .. 8

1.5 Objectives ... 9

1.6 Hypothesis .. 9

1.7 Delineation .. 9

1.8 Collaboration and main contributions .. 10

1.9 Methodology ... 11

1.10 Thesis outline .. 12

CHAPTER 2

MID readout chain ... 14

2.1 Overview ... 14

2.2 RPC detectors .. 15

2.3 Front-End electronics .. 17

2.4 Readout electronics .. 18

2.4.1 Local card .. 18

2.4.2 J2 bus card .. 18

2.4.3 Regional card ... 20

vi

Table of contents

2.4.4 Event data formats ... 20

2.4.5 Gigabit Transceiver protocol .. 21

2.5 Common readout unit ... 26

2.5.1 Clock tree architecture ... 26

2.5.2 Hardware architecture .. 26

2.6 Trigger architecture ... 28

2.6.1 Central Trigger Processing... 28

2.6.2 Local Trigger Unit ... 28

2.6.3 Continuous and triggered readout modes .. 28

2.6.4 Passive Optical Network message ... 29

2.6.5 MID custom trigger type format .. 31

2.7 Online-Offline computing system .. 32

2.7.1 First Level Processor ... 33

2.7.2 Event Processing Node .. 33

2.7.3 Data storage .. 34

2.8 Detector control system .. 34

CHAPTER 3

CRU firmware .. 36

3.1 Introduction ... 36

3.2 Firmware description ... 36

3.2.1 GBT wrapper ... 37

3.2.2 Datapath wrappers ... 37

3.2.3 Board Support Package ... 39

3.2.4 Timing and Trigger Control interface .. 39

3.2.5 Detector Data Generator .. 40

3.2.6 Slow Control .. 40

3.2.7 PCIe Data Management ... 40

3.3 Firmware resource usage ... 40

3.4 User Logic component .. 41

3.4.1 Design requirements .. 42

3.4.2 Design specifications ... 43

3.5 Summary .. 48

vii

Table of contents

CHAPTER 4

Design and implementation of the user logic .. 50

4.1 Architectural design .. 50

4.2 Implementation ... 51

4.2.1 Clock and reset management .. 51

4.2.2 Timing and trigger management .. 52

4.2.3 Header ... 52

4.2.4 GBT mapping ... 53

4.2.5 GBT deserializer .. 54

4.2.6 Zero suppression ... 54

4.2.7 Handshake synchronizer .. 57

4.2.8 Event multiplexer ... 59

4.2.9 Payload serializer ... 61

4.2.10 Data readout .. 62

4.2.11 Configuration and monitoring ... 63

4.3 Error handling ... 64

CHAPTER 5

Verification, testing, and results ... 66

5.1 Functional verification ... 66

5.1.1 Module-based verification .. 67

5.1.2 System-based verification .. 69

5.2 Hardware tests .. 70

5.2.1 Test bench layout ... 71

5.2.2 Insertion and compilation of the user logic component ... 74

5.2.3 Test bench configuration .. 75

5.2.4 Data acquisition ... 75

5.3 Results .. 77

5.3.1 Discussion of the results .. 77

5.3.2 Resource usage ... 79

5.3.3 Performance .. 80

viii

 Table of contents

CHAPTER 6

Conclusions and recommandations ... 82

6.1 Conclusions .. 82

6.2 Recommendations .. 82

7. References .. 84

8. Appendices .. 89

Appendix A : Source code ... : 89

Appendix B : Instructions for reproducing the simulation test results 90

Appendix C : Instructions for setting up the test bench at iThemba LABS 91

Appendix D : Instruction for reproducing the hardware test results 95

Appendix E : Instructions for accessing the registers ... 97

ix

LIST OF FIGURES

Figure 1.1: LHC ring with its four main experiments, ALICE, ATLAS, LHCb, and CMS as well

as its super proton synchrotron (SPS), proton synchrotron (PS), for the generation of p and

Pb beams (Horvath, 2006) ... 2

Figure 1.2: Schematic overview of the ALICE detector with its subdetectors. This picture was

taken during the LHC Run 2 before the long shutdown upgrade 2 (Elena, 2017) 3

Figure 1.3: Left: View of the two trigger stations positioned behind the muon filter. Right-top:

schematic view of the cross-section of the RPC. Right-bottom: an independent RPC module

equipped with front-end electronics .. 5

Figure 2.1: A schematic description of the MID readout chain architecture for Run 3 15

Figure 2.2: Three forms of RPCs found in the ALICE cavern ... 15

Figure 2.3: RPC non-bending and bending strip patterns. .. 16

Figure 2.4: Geometry of the readout electronics. This diagram was created for this work. It

illustrates the number of local cards distributed per column ... 19

Figure 2.5: Block diagram of the standard mode encoding and decoding 22

Figure 2.6: Block diagram of the standard mode GBT encoding and decoding 23

Figure 2.7: E-link configuration between the GBTx chip and the readout electronics. This

diagram is created for this work ... 25

Figure 2.8: A functional overview of the hardware, highlighting the functions used in the CRU

(Bourrion et al., 2021). ... 27

Figure 2.9: Continuous and triggered mode trigger configuration ... 29

Figure 2.10: Representation of the PON architecture implemented in the MID readout chain

 .. 30

Figure 2.11: O² computing system architecture .. 33

Figure 3.1: CRU firmware architecture ... 37

Figure 3.2: Data flow from the user logic component to the datapath wrappers using the

readout control protocol ... 42

Figure 3.3: New regional and local event formats created for this work 45

Figure 3.4: A example of the fixed data block format designed for this work 47

Figure 3.5: An example of the serialized data block format designed for this work 47

Figure 4.1: Structure of the user logic design showing the three main segments as well as

the port specifications and data flow of each segment. This diagram was created for this

work ... 50

Figure 4.2: Reset management circuitry designed for this work ... 51

Figure 4.3: GBT mapping circuitry diagram designed for this work....................................... 53

Figure 4.4: The schematic diagram of the GBT deserializer designed for this work 54

x

Figure 4.5: Finite state machine diagram implemented in the zero suppression. Each bubble

represents a state of the finite state machine designed for this work 56

Figure 4.6: Illustration of a single e-link handshake synchronizer created for this work. The

key components, as well as the necessary signals required to perform the synchronization,

are shown .. 59

Figure 4.7: Implementation of the e-link multiplexer from a conceptual standpoint. This

diagram was designed for this work ... 60

Figure 4.8: Structure diagram of the payload serializer. The main components of this

submodule can be observed as well as the data flow... 61

Figure 4.9: Illustration of the user logic component showing how its data output is moved to

the datapath wrapper channels. This diagram was created for this work 63

Figure 5.1: Module-based verification test bench model designed for this work 67

Figure 5.2: multi-clock generator waveforms showing the three main clock signals 67

Figure 5.3: TTC and GBT generators, as well as their waveforms. This diagram was made

for this work ... 68

Figure 5.4: System-based verification model designed for this work. The diagram shows how

various systems are joined to form an advanced verification .. 70

Figure 5.5: Test bench initial setup, it includes the ARRIA 10 FPGA Development Kit, a

VLDB, and an oscilloscope .. 71

Figure 5.6: MID readout prototype card and its main components (Renard, 2021) 72

Figure 5.7: New test bench located in the laboratory S64 at iThemba LABS. This diagram

was created for this work. It shows the main components of the readout chain, and how they

are connected .. 73

Figure 5.8: Fully loaded VME crate with the FEERIC emulator board. This illustration is

created for this work... 74

Figure 5.9: Screenshot of the CTP emulator graphical user interface, which is used to

conduct a data acquisition in the test bench ... 76

Figure 5.10: Simulation results extracted from Modelsim during the stress tests. This image

compares data before and after being processed by the user logic...................................... 78

xi

LIST OF TABLES

Table 2.1: Requirements of the FEERIC ASIC (Manen et al., 2013) 17

Table 2.2: Local event format (Renard, 2021) .. 20

Table 2.3: Regional event format (Renard, 2021) ... 21

Table 2.4: PON downstream message (Bourrion et al., 2019) ... 30

Table 2.5: Description of the Trigger Type bits (Bourrion et al., 2019) 31

Table 2.6: Custom trigger type format implemented to accommodate for the MID readout

electronics (Renard, 2021) ... 32

Table 3.1: Raw Data Header format ... 38

Table 3.2: Field description of the Raw Data Header ... 39

Table 3.3: FPGA resource usage of the CRU firmware before insertion of the user logic 41

Table 3.4: Field description of the fixed data block format .. 46

Table 5.1: FPGA resource usage of the CRU firmware after insertion of the user logic

component ... 79

Table 5.2: Stress test results .. 80

xii

4. ABBREVATIONS AND ACRONYMS

ADC - Analog-Digital Converter

ADULT - A DUaL Threshold

ALICE - A Large Ion Collider Experiment

BC - Bunch Crossing

CTP - Central Trigger Processor

CRU - Common Readout Unit

DCS - Detector Control System

FEE - Front-End Electronics

FEERIC - Front-End Electronics Integrated Circuit

FLP - First Level Processor

FPGA - Field Programmable Gate Array

GBT - GigaBit Transceiver

LABS - Laboratory for Accelerator-Based Science

LHC - Large Hadron Collider

LS2 - Long Shutdown 2

LTU - Local Trigger Unit

MID - Muon Identifier

MTR - Muon Trigger

NRF - National Research Foundation

O² - Online-Offline

QGP - Quark-Gluon Plasma

RPC - Resistive Plate Chamber

RTL - Register Transfer Logic

TTC - Timing and Trigger Control

TTS - Timing and Trigger System

VHDL - VHSIC Hardware Description Language

xiii

5. NOMENCLATURES

Cavern – is a large subterranean space where the detector is situated.

Collision – particles smashing together in the detector.

Lead – is an elemental heavy metal particle present in the nature and industrialized product

LHC Run – is a running period of which the LHC goes online, it usually lasts about 4 years.

Muon – is a particle that is identical to an electron but heavier.

Plasma – is a matter heated to high temperature, it is so hot that electrons are torn from
atoms, resulting in an ionized gas.

Proton – is a subatomic particle with a positive charge equivalent to an electron.

Subdetector – is a component of the detector (e.g., the MID subdetector is a component of
the ALICE detector).

Submodule – is a module that is part of a bigger module.

 1

CHAPTER 1

1. Introduction

Since the early days of its first employment in the 1960s, the distinctive qualities of Field

Programmable Gate Array (FPGA) such as integration, flexibility, low power, and high

bandwidth communication have allowed various new and critical approaches (Intel, n.d.).

FPGAs are the result of multiple generations of sophisticated technology, and they are often

recognized as one of the major components utilized in the data acquisition of detectors in

high-energy physics experiments (Musa, 2008). However, the need for customized

instruments entails ongoing research and development of new tools, electronics and

instrumentation methods. This work provides a new customized FPGA firmware for one of

the four collision points of the largest science experiment in the world, where technology is

rapidly and continuously evolving.

The ALICE detector (ALICE Collaboration, 2008) at the Large Hadron Collider (LHC) (Evans

L., 2008) at the European Organization for Nuclear Research (CERN) is undergoing a major

upgrade during which some of its subdetectors are replaced with new ones, while others are

equipped with new electronics to cope with higher collision rates planned for the following

years. Like most of the subdetectors in ALICE, the MID is taking full advantage of today's

FPGAs by trying to improve the way data are processed in its readout chain. This research

aims to identify the best approach to process data from the MID subdetector using a

customized user logic firmware. This user logic firmware is written in the VHDL programming

language and can implement multiple features tailored to the specifics of the MID.

This chapter begins with background information on the experiment and then introduces the

ALICE detector. The goals of the project are established, and an overview of the strategy

used to achieve these goals is provided. The hypothesis, as well as the constraints and key

contributions, are listed.

1.1. Background

1.1.1. ALICE experiment

CERN (Brüning, et al., 2004) is the world’s leading laboratory for nuclear and particle physics

research located on the border of Switzerland and France. CERN houses the LHC, which is

about 100 meters below the surface and 27 kilometres in circumference (CERN, 2008).

 2

 Introduction

The LHC produces particle beams, i.e., proton-proton (p-p), proton-lead (p-Pb), and lead-

lead (Pb-Pb) at ultra-relativistic energies to create and study the characteristics of a highly

dense form of matter reminiscent of the early Universe a microsecond after the Big Bang

(Giubellino, 2015). Spread along the LHC ring are four individual experiments positioned

around the four collision points where the beams collide. As shown in Figure 1.1, one of

these experiments is ALICE.

For a few millionths of a second after the Big Bang, the universe consisted of a hot plasma of

deconfined elementary particles called quarks and gluons. A few microseconds later, this hot

plasma known as the quark-gluon plasma (QGP) cooled further down to form hadrons,

amongst others protons and neutrons, the fundamental building blocks of atomic matter. The

conditions of the QGP can be created in high-energy heavy-ion collisions at the CERN LHC.

ALICE is the detector at the CERN LHC dedicated to studying this strongly interacting

matter, the QGP, and its properties by recording data in Pb-Pb collisions, which also requires

information from pp and p-Pb collisions for a complete study.

Figure 1.1: LHC ring with its four main experiments, ALICE, ATLAS, LHCb, and CMS as well as

its super proton synchrotron (SPS), proton synchrotron (PS), for the generation of p and Pb

beams (Horvath, 2006)

1.1.2. ALICE detector

To reconstruct and identify a myriad of particles created in these collisions, the ALICE

detector illustrated in Figure 1.2, is using a set of 19 subdetectors extended over a length of

26 m and 16 m in height and width, weighing over 10 000 tons. The subdetectors

encapsulated in a toroid magnet (L3) provide information about the mass, velocity, and

 3

1.1 Background

electric charge of the particles by measuring their tracks. Each subdetector is designed to

study different aspects of the particles created in the collisions.

The ALICE detector consists of two main regions: the central barrel region and the forward

region known as the Muon Spectrometer.

The central barrel detectors are surrounded by a solenoid L3 magnet providing a field of 0.5

T. At the center of the central barrel and closest to the beamline is the Inner Tracking System

(ITS) composed of six layers of silicon detectors: Silicon Pixel Detector (SPD), Silicon Drift

Detector (SDD), and Silicon Strip Detector (SSD). The ITS is encompassed by a cylindrical

Time Projection Chamber (TPC), three-particle identification arrays of Time of Flight (TOF), a

ring imaging of Cherenkov High Momentum Particle Identification Detector (HMPID), and a

Transition Radiation Detector (TRD). The outer surface layer contains the Electromagnetic

Calorimeters (EMCal), and the Photon Spectrometer (PHOS). Small-scale subdetectors used

for global event identification and triggering such as the Zero Degree Calorimeter (ZDC),

Photon Multiplicity Detector (PMD), Forward Multiplicity Detector (FMD), T0, and V0 are

located on either side of the interaction point. On the three upper outside faces of the

solenoid L3 magnet is A Cosmic Ray Detector (ACORDE). It consists of an array of plastic

scintillator counters and provides accurate information about cosmic ray events.

Figure 1.2: Schematic overview of the ALICE detector with its subdetectors. This picture was
taken during the LHC Run 2 before the long shutdown upgrade 2 (Elena, 2017)

 4

 Introduction

The Muon Spectrometer is designed to measure muon production from the decays of

quarkonia, low mass vector mesons, heavy-flavor hadrons, and electroweak bosons

(Consesa De Valle, 2007). The Muon Spectrometer has an angular acceptance of 171˚-

178˚, corresponding to the pseudorapidity region −4.0 < η < −2.5. The Muon Spectrometer

covers a total length of ≃ 17 m and it is composed of the following components: front-

absorbers to filter all particles except muons coming from the interaction point, a large dipole

magnet, high-resolution Muon Tracking Chambers (MCH), a 120 cm thick iron wall (Muon

Filter), and a Muon Trigger (MTR).

1.1.3. Muon Trigger

The MTR system is equipped with a configurable threshold to provide trigger signals for

selecting events of interest and discarding events with only low momentum muons (p<4

GeV/c). As illustrated in Figure 1.3, the muon trigger is based on 72 single-gap Resistive

Plate Chamber (RPC) detectors, arranged in 2 stations of 2 chambers, each at a distance of

about 16.1 m and 17.1 m from the interaction point, respectively. Each RPC consists of two

planes: a positively charged anode and a negatively charged cathode, both made of very

high resistivity plate plastic material and separated by 2 mm of a gas mixture of Ar, CH2F4,

C4H10, and SF6. Once a charged particle such as a muon passes through the chamber, it

knocks electrons out of the gas atoms. These electrons in turn hit other atoms, causing an

avalanche of electrons. Since the electrodes are transparent to the electrons, they are

instead picked up by external metallic strips after a small but precise time delay. The

combination of hit strips firing gives a prompt measure of the muon momentum, which is

read-out by the front-end electronics, known as A DUaL Threshold (ADULT) card (Dupieux,

2006). The signals from the ADULT cards are then propagated to the readout electronics

based on three programmable circuits (local, regional and Global) working in sequential

mode at 40 MHz, to make immediate decisions about the validity of the data. The ADULT

electronics were initially developed for streamer mode operation with a gas mixture for the

LHC Run 1 (2010-2012). A few years later, a maxi-avalanche operation mode was

introduced for the LHC Run 2 (2015 - 2018), where the signal amplitude was smaller than in

the streamer mode, but still compatible with the minimum threshold of 7 mV set in the

ADULT cards. The subdetector planes are mounted on a mechanical frame on rail support

that can be moved to allow access to the chambers for maintenance purposes.

 5

1.1 Background

The MTR will be called MID after the upgrade for Run 3 (2022 – onwards). Technical details

concerning the new MID readout chain are described in chapter 2, as the work described in

this thesis is focused on this specific subdetector.

Figure 1.3: Left: View of the two trigger stations positioned behind the muon filter. Right-top:
schematic view of the cross-section of the RPC. Right-bottom: an independent RPC module

equipped with front-end electronics

(Adapted from Sauli, 2014)

 6

 Introduction

1.2. LHC Run 3

Based on data collected in Runs 1 and 2 (~10 petabytes of raw data), ALICE is the leading

heavy-ion experiment in the world and is quickly expanding the knowledge gathered in

previous experiments all over the world. The LHC is currently going through three-years

planned second Long Shutdown called (LS2), which started at the end of 2018 to prepare for

Run 3. In line with the LHC upgrade, the ALICE detector is undergoing a major upgrade. This

upgrade addresses the challenge of reading out lead-lead collisions at a rate of 50 kHz and

proton-proton at 1 MHz and higher. At the center of the ALICE upgrade strategy, is a high-

speed readout approach based on a Common Readout Unit (CRU). The CRU has been

developed for detector data readout, concentration, reconstruction, multiplexing, and data

decoding on the Online-Offline (O²) computing system.

Many of the proposed physics observables require a change in the data-taking strategy,

moving away from triggering a small subset of events to continuous online processing and

recording of all events. To achieve these goals, the ALICE detector is being upgraded in

such a way that all interactions will be scrutinized with precision. The upgrade entails the

replacement of some subdetectors with new ones, making use of new technologies, while

most others are being equipped with new front-end and readout electronic systems. The LHC

Run 3 was planned to start in the middle of 2021 onwards but has been postponed to March

2022 due to the global pandemic (Schaeffer, 2020).

1.2.1. The upgrade: Muon Trigger to Muon Identifier

For the past 10 years since the beginning of LHC Run 1, the selection of single muon and di-

muon events with a maximum trigger rate of 1 kHz was provided by the MTR, as well as

muon identification. However, to cope with the increased luminosity of the LHC during Run 3,

this current trigger strategy is no longer sufficient. The upgrade trigger strategy described in

the letter of intent (ALICE Collaboration, 2012) does not require a muon trigger since all

events of interest will be read out upon the interaction trigger before online selections. For

this reason, as part of the upgrade, the MID will only play the role of muon identifier.

 7

1.2 LHC Run 3

1.3. Problem statement

Several issues concerning the readout arose during the transition from MTR to MID. These

issues (Stocco, 2020) were observed throughout a preliminary series of tests conducted on

the MID readout chain at Subatech, Nantes, France, where the readout electronics were

developed. The upgraded system showed limitations when running without data pre-analysis

performed at the CRU firmware level. Among these limitations are large data rates,

desynchronization of data, lack of hardware resources, and, many other minor issues related

to the data format transmitted to the O² computing system. All these limitations had to be

addressed urgently.

1.3.1. Large data rate

In the triggerless readout chain, all events are read out continuously. This results in a

bandwidth of 3.2 Gbps generated by each data link in the chain. This large amount of data is

a problem for the O² computing facility to conduct data processing concurrently without data

compression at the CRU firmware level. The readout electronics data links are based on an

80-bit frame transmitted continuously at 40 MHz (25 ns), which corresponds to the LHC

bunch crossing interval. The Bunch Crossing (BC) interval is the period between bunches of

particles crossing each other in the LHC. In other words, it is the amount of time between

collisions. On the other hand, as previously mentioned, one of the primary goals of the

ALICE detector upgrade is to read out lead-lead collisions at 50 kHz (20 µs), and proton-

proton collisions at 1 MHz (1 ns). This indicates that data worth analyzing are generated

every 800 bunch crossings (20 µs / 25 ns = 800 BCs) during lead-lead collisions and every

40 bunch crossings (1 µs / 25 ns = 40 BCs) during proton-proton collisions. Data collected

outside this frame are meaningless and must be suppressed. Retaining these data in the

memory results in inefficiency and a waste of memory.

1.3.2. Desynchronization of data

The data obtained from all readout electronics occur simultaneously, at fixed periods, and

are transmitted to the CRU over a wide set of optical links. However, differing transmission

delays result in the data from the various links losing synchronization when transmitted to the

O² computing system. Therefore, they cause more problems further along the chain at the

synchronous and reconstruction levels.

 8

 Introduction

1.3.3. Lack of hardware resources

The O² computing system is capable of handling the data rate from a single regional crate at

the expense of two central processor units. Attempting to use a single processor to decode a

single regional crate leads to irreversible data loss. Hence, it takes two processors to decode

a single regional crate. However, the computer (Costa, 2019) used in the readout chain

contains 20 processors. To decode data from the entire readout chain, the computer would

need 32 processors, not to mention any additional processors required to perform further

processing of the decoded data. As a result, processing data from the complete system is

unfeasible using a single computer. Details on the architecture of the MID readout chain are

described in the next chapter.

1.4. Research aim

The ALICE collaborators participating in the MID project are searching for new ways to

process raw data. Many alternatives have been suggested, but most of them entail

significant improvements in the existing readout chain. Some of the improvements require

changing the algorithm implemented in the O² processing to cope with the large data rate,

acquiring additional CRUs, and core processor computers to process data from the entire

readout electronics. A thorough analysis review revealed that the most efficient and cost-

effective solution is to take advantage of the existing high-speed FPGA incorporated in the

CRU by designing a customized user logic firmware to meet the requirements of the readout

chain.

The user logic is a specific subdetector component, that can be implemented in the CRU

firmware through a specific compilation. It is developed by the subdetector teams and can

perform low-level data processing and other additional features before forwarding data to the

O² computing facility for further analysis. This research aims to improve the way data are

processed in the MID readout chain using a customized user logic firmware before the start

of the LHC Run 3.

 9

1.3 Research aim

1.5. Objectives

The research aim stated above is achieved through the following objectives:

• Review and analyze different components of the readout chain

• Select the best user logic algorithm to meet the MID requirements

• Monitor errors identified during the data acquisition

• Successfully validate the user logic simulation tests

• Successfully validate the user logic hardware tests

• Make recommendations for future improvements

1.6. Hypothesis

This study offers the possibility of designing and developing a stable and reliable user logic

firmware that can improve the way data are processed in the MID readout chain. This can be

achieved by developing an algorithm based on systems requirements. However, the

difference in protocol between various systems of the readout chain makes it complex and

can be time-consuming.

The main questions to be considered are whether a user logic prototype can be designed

and tested to meet the requirements of the MID readout chain on time before the start of the

commissioning phase of the MID-subdetector, and whether or not this prototype can be used

to develop a realistic user logic capable of processing data from the entire readout chain,

considering hardware and software restrictions of the approved FPGA.

1.7. Delineation

This thesis is limited to the design and development of the user logic firmware prototype

capable of pre-analyzing data from 2 regional links of the MID readout chain. This research

analyses in detail different systems used in the readout chain and improves the way data are

processed in the CRU. The proposed scheme is developed after intensive research and a

good understanding of the ALICE detector. Hence, the incorporation of the user logic

component into the existing CRU firmware is done through conformance with established

requirements and practice. Additionally, important technical decisions such as hardware,

communication protocols, design tools, programming languages, and most relevant resource

usage limit of the research in question have been established before the beginning of the

research.

 10

 Introduction

1.8. Collaboration and main contributions

In South Africa, the National Research Foundation (NRF) iThemba Laboratory for

Accelerators Based-Science (LABS) is part of the ALICE Collaboration and contributes to the

ALICE Muon Spectrometer upgrade, in particular the MID. In collaboration with the Cape

Peninsula University of Technology (CPUT) and the University of Cape Town (UCT), NRF

iThemba LABS is responsible for conducting research and developing the CRU user logic

firmware for the MID readout chain, including setting up an in-house testbench data

acquisition readout chain and the maintenance thereof.

The user logic project started in early 2018, of which the early research and findings are

described in (Boyles et al., 2021). Due to the rapid evolution of the ALICE CRU software and

firmware projects, a complete modification of the initial project was of paramount importance.

In 2020, a new design and development of the user logic, based on realistic data acquisition

requirements and availability of relevant readout components, led to the present study.

Together with Dr. C.Renard (expert in the readout electronics at Subatech in Nantes,

France), the requirements to process data from 2 data links of the readout chain were

established. To keep track of the rapid evolution of the CRU software and firmware, regular

and rigorous consultations and discussions took place with Dr. F.Costa (ALICE CRU

software expert at CERN) and Dr. O.Bourrion (ALICE CRU firmware developer at the

University of Grenoble, France). For what concerns the MID O² requirements, Dr. D.Stocco

(MID O² expert at Subatech, France) was the main contact and source of information. His

input was required since the outcome of this research is linked to the way data will be

handled at the next phase of the data acquisition chain. As such, he was instrumental in

setting up some additional requirements and constraints to facilitate the readability of the

user logic output data.

Overall, the design and development of the ALICE CRU user logic firmware prototype for the

MID readout chain are provided by the Electrical Engineering department at CPUT with

support from various collaborators using facilities provided by the NRF iThemba LABS and

advanced technology.

 11

1.4 Objectives

1.9. Methodology

The research methods that are utilized for the development of this thesis are:

• Literature review: since in many cases the written literature is not available on the

readout chain, the information was gathered by reading technical specification

papers, IEEE published journals, conferences, interviewing specialist engineers in

the data acquisition chain, and through the World Wide Web.

• Prototyping: Intel Quartus Prime Pro 18.1 (Intel, 2019) is the main software

environment recommended and used to design and develop the user logic. For

this thesis, two different prototyping approaches are implemented. The rapid

throwaway method involves exploring ideas by quickly developing a prototype

based on preliminary requirements which are then revised through simulation test

feedback. Once validated, the evolutionary approach is then introduced. This

method uses a continuous, working prototype that is refined after each iteration of

hardware test feedback.

• Simulation tests: ModelSim Intel FPGA (Intel, 2020) is the simulation software

used to verify the functionality of the user logic algorithm by analyzing each

component of the model. A more advanced simulation is performed by merging

the CRU firmware simulation files as well as the MID readout electronics firmware

simulation files into a single testbench for more efficient and accurate results.

• Hardware tests: a readout testbench facility available at iThemba LABS is

developed for practical work. Expected tests for conformance include testing of

the user logic prototype using a fully-functional MID readout testbench set-up

capable of emulating the same events generated by the main ALICE MID readout

chain at CERN.

• Data collection: simulation and hardware tests are conducted to collect real data

coming in and out of the user logic firmware. A comparison between the input and

output data is done to achieve an effective assessment of the user logic

algorithm.

 12

Introduction

1.10. Thesis outline

This thesis is organized into six chapters, which are outlined as follows:

Chapter 1, introduces and frames this study by reviewing the background of the ALICE

detector. It goes into further depth on the LHC Run 3 upgrades, which resulted in the

transition from MTR to MID. The issues observed are then encapsulated into a conventional

problem statement. The research objectives are derived from the problem statement and the

delineation, as well as the research contribution, is established. The methodology and

approach used to investigate and consequently execute the aims of this study are defined.

Chapter 2, describes the newly enhanced MID readout chain. It highlights the role of each

component and describes the technologies implemented to manage the increased data rates

arising due to the LHC upgrade.

Chapter 3, concentrates on the architectural design of the CRU firmware, and its features

and functionalities. A detailed discussion of the location of the MID user logic component in

the CRU firmware, the multiple interfaces surrounding it, the choice of design specifications,

their benefits and drawbacks, as well as the available FPGA resources are also presented.

Chapter 4, presents the design and implementation of the user logic component. It provides

a detailed description of the functioning of each submodule and elaborates on how they are

implemented in the user logic component.

Chapter 5, covers all tests performed on the user logic component. These tests are critical

for evaluating the performance of the user logic. The rigorous evaluations are carried out

throughout both the functional and hardware verifications. The key findings are presented in

the form of tables and also include a thorough discussion of the outcome.

Chapter 6, concludes this thesis and makes recommendations for future study as well as the

extension of the project. The academic and industrial benefits of the test bench at iThemba

LABS are also explored.

 13

 14

CHAPTER 2

2. MID readout chain

As discussed in the previous chapter, the approach taken by ALICE is to read out all lead-

lead events at an interaction rate of 50 kHz. The objective behind the upgrades is to

significantly improve vertexing and tracking capabilities at low transverse momentum. In line

with the ALICE upgrades, the MID readout chain is also being upgraded to support

continuous readout operation after the LS2. This upgrade entails:

• New RPCs;

• New front-end electronics;

• New readout electronics

This chapter deals with the description of the MID readout chain and is organized as follows.

Section 2.1 gives a brief overview of the readout chain. The upgrade of the RPCs is

described in section 2.2, while the front-end and readout electronics upgrades are discussed

in sections 2.3 and 2.4. The CRU is the heart of the readout chain, and its hardware

architecture is discussed in section 2.5. The trigger architecture, online-offline computing

system, and detector control systems are discussed accordingly in the following sections.

2.1. Overview

The readout chain block diagram designed for this study is shown in Figure 2.1. It consists of

21,000 strips connected to 72 RPC detectors spread over multiple Front-End Electronic

Rapid Integrated Circuit (FEERIC) cards equipped with one or two customized Application-

Specific Integrated Circuits (ASICs) (Manen et al., 2013). The strip pattern signals from the

FEERICs are propagated to the readout electronics using high-speed Low-voltage

Differential Signalling (LVDS) channels. The readout electronics act as the readout interface

and are in charge of the first stage of the trigger decision. They are mounted on the upper

gangways inside the cavern a little further away from the detector stations, where the

radiation is low. Since the colliding beams will produce a lot of radiation in the area around

the ALICE detector in the cavern, the readout electronics regional cards are equipped with

Gigabit Transceiver (GBT) radiation hardening to operate under these conditions. The CRUs

are the key components of the chain, they combine and multiplex data from multiple readout

electronic cards as well as timing and trigger information generated from the Central Trigger

Processor (CTP) via the Local Trigger Unit (LTU) before transmitting the data to the O²

computing facility for processing and storage. The CRUs are mounted in computers housed

in the intermediary computer room, called the counting room, away from the ALICE cavern

 15

 MID readout chain

and thus, do not require radiation hardening, as is the case for the readout electronics.

These computers can be reached over the network from the main Detector Control System

(DCS). The DCS manages the readout chain by sending commands and monitoring the

system. Experimental data are moved from the First Level Processor (FLP) to the Event

Processing Node (EPN) for processing and storage. The EPN is an internal component of

the O² computing system.

Figure 2.1: A schematic description of the MID readout chain architecture for Run 3

2.2. RPC detectors

In the ALICE cavern, three distinct forms of RPC are installed. They refer to long, short, and

cut forms, respectively as illustrated in Figure 2.2. The beam pipe is accommodated by the

short and cut forms.

Figure 2.2: Three forms of RPCs found in the ALICE cavern

(Adapted from Blanc & Dupieux, 2008)

 16

2.1 Overview

As briefly discussed in subsection 1.1.3, the current RPCs are composed of metallic strips

made of copper and have three different pitch options: 1, 2, and 4 cm. The RPCs have one

collection of strips on each side. The strips on either side of the RPCs are orthogonal to one

another. In comparison to the dipole motion on charged-particle tracks, the vertical strips that

have (y) hits are referred to as Non-Bending Planes (NBPs) and the horizontal strips that

have (x) hits are referred to as Bending Planes (BPs) as shown in Figure 2.3.

The amount of RPC hits in Pb-Pb collisions is expected to exceed the highest counting rate

of about 10 Hz/cm² up to 90 Hz/cm² (Ferreti, 2019). This is marginally similar to the maximum

rated capacity of the detector during the LHC Run 2. This rise would also hasten the aging of

the gas gaps, which will hit the end of their projected lifespan long before the end of Run 3,

necessitating the replacement of certain gas gaps and other affected components.

Figure 2.3: RPC non-bending and bending strip patterns.

These upgrades are distributed among three institutions. The Puricelli factory in Costa

Masnaga (Italy) is responsible for redesigning the bakelite resistive electrodes, which feature

a smoother surface for the bakelite used on the presently installed RPCs, the General

Tecnica in Colli (Italy) is responsible for manufacturing the gas gaps for the new RPCs and,

the National Institute for Nuclear Physics (INFN) in Torino (Italy) is responsible for checking

and testing the performance of the new RPCs with cosmic rays. The installation of the new

RPCs in the cavern started from July 2021, with the intent of installing 2 RPCs per day. In

case of failure to meet this deadline, the MID will operate with the existing RPCs during Run

3 until the new RPCs are ready.

 17

 MID readout chain

2.3. Front-End electronics

The RPC ADULT electronics have been replaced by the new FEERIC and unlike the ADULT,

it performs amplification of analog signals from the RPCs. The FEERIC is an 8-channel

ASIC, which uses low-cost AMS 0:35mm CMOS technology developed by the Laboratory of

Physics Clermont-Ferrand. It is made up of a trans-impedance amplifier stage, a zero-

crossing discriminator to limit time walk effects, and a one-shot to prevent retriggering during

100 ns and LVDS drivers. Table 2.1 summarizes the main specifications, and requirements

of the FEERIC ASIC. In contrast to the ADULT card thresholds, which were set using an

analog voltage distribution of just one threshold value per RPC, the FEERIC card thresholds

would be set wirelessly during the LHC Run 3. Their values will be determined by fine-tuning

the threshold based on the RPC efficiency while minimizing the operating high voltage.

The technology selected to accomplish this task is the ZIGBEE protocol (Farahani, 2008). It

is a wireless technology established as an open universal norm to meet the special

requirements of ultra-low-cost, low-power wireless IoT networks based on the IEEE 802.15.4

physical radio and works in unlicensed bands such as 2.4 GHz. The ZEGBEE is incorporated

on the Atmel SAMD21 microcontroller (Microchip inc, 2021) and the program is based on

Arduino libraries (I2C, SD cards, and Xbee module). This is then mounted on a printed circuit

board called the Xbee cards. The master cards are connected to the DCS computer using

ethernet, and the ZIGBEE (wireless) protocol is used to communicate from master to nodes.

Table 2.1: Requirements of the FEERIC ASIC (Manen et al., 2013)

Feature Value or type

pulse polarity positive or negative

number of channels 8

power consumption per channel < 100 mW

input impedance < 50 ohms

dynamic range 20 fC < q < 3 pC

time resolution < 1 ns

time walk < 2 ns

one-shot 100 ns

output format LVDS

signal shape square pulse 23±3 ns

 18

2.2 RPC detectors

As previously mentioned, the charge delivered within the gas gaps must be lowered to

minimize aging and improve rate capabilities. This is achieved by operating RPCs with the

same gas mixture but at a lower gain, in conjunction with the FEERICs, which perform

amplification of the analog signal before discrimination. Hitherto 2384 + 336 spares FEERIC

cards and 26 Xbee cards have been manufactured and installed in the ALICE cavern. The

installation and commissioning of all FEERIC and Xbee cards concluded in July 2019.

2.4. Readout electronics

To cope with the new readout rates, the local and regional readout cards were redesigned.

Since the triggering functionalities are abandoned, a more streamlined approach was

introduced. The hardware implementation of the regional and local card is almost identical,

minimizing the design and development effort by re-using the same hardware and altering

the FPGA firmware. The global crate was replaced by a new regional crate. As shown in

Figure 2.4, the readout electronics are divided into 16 vertical regions (8 on the left and 8 on

the right side of the plane). Each vertical region is read out by a single regional card located

in the regional crate. Each crate contains a backplane bus card called the J2 card, which

provides ports to a regional card and up to 16 local cards.

2.4.1. Local card

For every bunch crossing, the local card receives binary data from LVDS channels, which

indicates whether the corresponding channel has been struck or not. The local card is

equipped with 16 LVDS input connectors (32 pins, for both the bending and non-bending

planes). It is embedded with the Intel MAX 10 FPGA (10M50DCF484C7G) (Intel, 2021), for

which its firmware is described in (Renard, 2021).

2.4.2. J2 bus card

The J2 bus card serves as an interface between the regional crate and the local/regional

cards in terms of power, and it also serves as an interface between the local and regional

cards in terms of data transfer. The J2 bus card has a 4-bit dip switch for assigning a specific

identification to the regional crate, as well as three LEDs for monitoring the voltages (2.5V,

3.3V, and 5V) supplied to the regional and local cards.

 19

 MID readout chain

Figure 2.4: Geometry of the readout electronics. This diagram was created for this work. It

illustrates the number of local cards distributed per column

 20

2.3 Front-End electronics

2.4.3. Regional card

The regional card collects data from up to 16 local cards using the GBT protocol, which is

discussed in the next section. Similar to the local card, the regional card is incorporated with

the same Intel MAX 10 FPGA. However, unlike the local card, it is equipped with two bi-

directional GBT optical links allowing transmission and reception of data to/from the CRU.

The implementation of 2 GBT optical links per regional card enables complete regional crate

data transfer. The firmware implemented in the regional card FPGA is a slightly modified

version of the local card firmware, which is also described in (Renard, 2021).

2.4.4. Event data formats

Events are stored in the local and regional card multi-buffers for each trigger. The multi-event

buffer in the local card carries strip patterns, therefore it is larger than the one found in the

regional card. The event data formats of the local card and regional card are shown in Table

2.2 and Table 2.3, respectively.

Table 2.2: Local event format (Renard, 2021)

Coding of
SOx, EOx, RESET, CALIBRATE

Event in LOCAL
Bits

Coding of
PHY, ORBIT

Event in LOCAL
Bits

Coding of
self-triggered DATA

Event in LOCAL
Bits

START BIT (always '1')
CARD TYPE (always '1'=LOCAL)
LOCAL BUSY ('0'=OK; '1'=FIFO

full)
LOCAL DECISION (tracklet)
ACTIVE ('0'=OFF; '1'=ON)

REJECTING ('0'=OFF; '1'=ON)
MASKED ('0'=OFF; '1'=ON)

OVERWRITED ('0'=OFF; '1'=ON)

1
1
1
1
1
1
1
1
1

START BIT (always '1')
CARD TYPE (always

'1'=LOCAL)
LOCAL BUSY ('0'=OK; '1'=FIFO

full)
LOCAL DECISION (tracklet)
ACTIVE ('0'=OFF; '1'=ON)

REJECTING ('0'=OFF; '1'=ON)
MASKED ('0'=OFF; '1'=ON)
OVERWRITED ('0'=OFF;

'1'=ON)

1
1
1
1
1
1
1
1
1

START BIT (always '1')
CARD TYPE (always

'1'=LOCAL)
LOCAL BUSY ('0'=OK;

'1'=FIFO full)
LOCAL DECISION (tracklet)

ACTIVE (always '1'=ON)
REJECTING (always '0'=OFF;)

MASKED ('0'=OFF; '1'=ON)
OVERWRITED ('0'=OFF;

'1'=ON)

1
1
1
1
1
1
1
1
1

SOx
EOx

PAUSE (always '0')
RESUME (always '0')

CALIBRATE
PHY (ignored)

RESET
ORBIT

1
1
1
1
1
1
1
1

SOx (always '0')
EOx (always '0')

PAUSE (always '0')
RESUME (always '0')

CALIBRATE (always '0')
PHY

RESET (always '0')
ORBIT

1
1
1
1
1
1
1
1

Always '0' 8

LOCAL bunch counter 16 LOCAL bunch counter 16 LOCAL bunch counter 16

LOCAL board position in Crate (0-
15)

4
LOCAL board position in Crate

(0-15)

LOCAL board position in Crate
(0-15)

Status: "0xF" 4 Always '0'
Data: detector plane(s) (1 bit /

plane)

Status: Mask registers
(SOx=’1’|EOx=’1’)

Data: all strip patterns (not
masked)

[(X4, Y4), (X3, Y3), (X2, Y2), (X1,
Y1)]

32*4 N/A 0

Data: Only masked strip
pattern(s)

[(X4, Y4), (X3, Y3), (X2, Y2),
(X1, Y1)]

32*i

Total number of bits 168 Total number of bits 40 Total number of bits 8*i

Bunches needed to send 21 Bunches needed to send 5 Bunches needed to send 9 to 21

 21

 MID readout chain

Table 2.3: Regional event format (Renard, 2021)

Coding of SOx, EOx, RESET,
CALIBRATE Event in

REGIONAL
Bits

Coding of PHY, ORBIT Event in
REGIONAL

Bits

Coding of self-triggered DATA
Event in REGIONAL

Bits

START BIT (always '1')
CARD TYPE (always

'1'=LOCAL)
LOCAL BUSY ('0'=OK; '1'=FIFO

full)
LOCAL DECISION (tracklet)
ACTIVE ('0'=OFF; '1'=ON)

REJECTING ('0'=OFF; '1'=ON)
MASKED ('0'=OFF; '1'=ON)
OVERWRITED ('0'=OFF;

'1'=ON)

1
1
1
1
1
1
1
1
1

START BIT (always '1')
CARD TYPE (always

'1'=LOCAL)
LOCAL BUSY ('0'=OK; '1'=FIFO

full)
LOCAL DECISION (tracklet)
ACTIVE ('0'=OFF; '1'=ON)

REJECTING ('0'=OFF; '1'=ON)
MASKED ('0'=OFF; '1'=ON)
OVERWRITED ('0'=OFF;

'1'=ON)

1
1
1
1
1
1
1
1
1

START BIT (always '1')
CARD TYPE (always

'1'=LOCAL)
LOCAL BUSY ('0'=OK; '1'=FIFO

full)
LOCAL DECISION (tracklet)

ACTIVE (always '1'=ON)
REJECTING (always '0'=OFF;)

MASKED ('0'=OFF; '1'=ON)
OVERWRITED ('0'=OFF;

'1'=ON)

1
1
1
1
1
1
1
1
1

SOx
EOx

PAUSE (always '0')
RESUME (always '0')

CALIBRATE
PHY (ignored)

RESET
ORBIT

1
1
1
1
1
1
1
1

SOx (always '0')
EOx (always '0')

PAUSE (always '0')
RESUME (always '0')

CALIBRATE (always '0')
PHY

RESET (always '0')
ORBIT

1
1
1
1
1
1
1
1

Always '0' 8

REGIONAL bunch counter 16 REGIONAL bunch counter 16 REGIONAL bunch counter 16

REGIONAL crate position (0-15) 4 REGIONAL position crate (0-15) 4 REGIONAL crate position (0-15) 4

Status: Mask registers (SOx=’1’|
EOx=’1’)

Data: All tracklet inputs (not
masked)

4 Always '0' 4
Data: detector plane(s) (1 bit /

plane)
4

Total number of bits 40 Total number of bits 40 Total number of bits 40

Bunches needed to send 5 Bunches needed to send 5 Bunches needed to send 5

2.4.5. Gigabit Transceiver protocol

The GBT protocol architecture was created at CERN, for use in the LHC, which requires high

bandwidth as well as radiation protection (Moreira et al., 2010). Embedded in the regional

cards is a radiation-hardened ASIC known as GBTx. This ASIC contains a high-speed

serializer and deserializer that takes data and then transmits them through a laser

transmitter. The laser transmitter utilized is a special component manufactured at CERN. The

GBT optical link controller is implemented as a module in the CRU firmware. The GBT

protocol operates in 3 different modes: standard frame, wide frame, and 8B/10B frame.

Figure 2.5 depicts the standard frame mode used in the MID readout chain.

The standard frame is continuously transmitted during a single LHC bunch crossing. It starts

with a 4-bit header field, which is necessary for frame-level synchronization of the data

stream. Recognizing multiple valid headers implies a proper frame-locking. The opposite

implies that the frame synchronization has failed and the frame synchronization cycle must

be initialized. The header field can either provide a value “0x5” (data state), which indicates

 22

2.4 Readout electronics

that the frame includes legitimate data, or “0x6” (idle state), which indicates that the frame

does not include valid data. The next four bits are used for slow control, the first two of which

are for Internal Control (IC), which is reserved for controlling the GBTx ASIC. The last two

slow control bits are for External Control (EC). The payload data and EC fields are not pre-

assigned and are utilized for a variety of functions, including Data Acquisition (DAQ), timing

and trigger signals, and experiment control, depending on the needs of the MID. The last 32

bits are utilized for forwarding Error Correction (FEC). The remaining 84-bit field, which

includes the EC, has an associated bandwidth of 3.36 Gb/s, of which 3.2 Gb/s is allocated to

the payload data.

Figure 2.5: Block diagram of the standard mode encoding and decoding

Adapted from (Sierra-Polanco et al., 2018)

Before serialization, the data, EC, and IC fields are put through a scrambling process that

concatenates them. In addition to the header, a Reed-Solomon (RS) encoder creates the 32-

bit FEC based on the scrambled data. These scrambled data are then transmitted to a

deserializer located on the other end, which converts them back to their original format. Both

scenarios are represented in Figure 2.6.

The header is used to track frames and synchronize the receiver with the sender. The

header is not affected by the scrambling therefore, it is easily detectable. When a GBT

receiver is powered up, it enters a frame-lock initialization mode in which it searches for valid

headers. After detecting a configurable number of frames with valid headers, it considers that

the connection has been established and enters the frame tracking mode, in which it

receives data and runs normally while searching for invalid headers.

 23

 MID readout chain

Figure 2.6: Block diagram of the standard mode GBT encoding and decoding

Adapted from (Moreira et al., 2015)

The header is used to track frames and synchronize the receiver with the sender. Therefore,

it is not affected by the scrambling and, it is easily detectable. When a GBT receiver is

powered up, it enters a frame-lock initialization mode in which it searches for valid headers.

After detecting a configurable number of frames with valid headers, it considers that the

connection has been established and enters the frame tracking mode, in which it receives

data and runs normally while searching for invalid headers.

Once it is determined that a configurable number of consecutive frames is invalid, the

synchronization is considered lost and the initialization mode is re-entered. This usually

requires multiple invalid frames; hence, an accidental violation of a single random frame is

not enough to cause channel synchronization. The data field (80 bits) of the GBT frame is

used for data transmission. GBT frames are divided into control frames, data frames, and the

header contains data valid only for the latter. The frame starts with a 4-bit identification

header. Four headers are defined: IDLE, Start Of Packet (SOP), End Of Packet (EOP), and

the Single Word Transaction (SWT). The IDLE frame does not contain any information. SOP

and EOP, as the names suggest, mark the beginning and end of the detector data packet,

which contains various packet-related metadata. The SWT frame contains any data used for

a specific control or data transmission. On the GBT uplink, SWT frames are transmitted

between data frames, that is, between EOP and SOP control frames. In the MID readout

chain, the SWT frame is used to access the register bus on the regional card. The 2 bytes in

the EC payload of the GBT frame are routed to a special slow control ASIC called GBT-SCA

(Caratelli et al.., 2015). As mentioned above, the chip is part of the regional card. The

communication between the CRU and SCA is handled by the CRU firmware described in the

next chapter.

 24

2.4 Readout electronics

The GBT-SCA has a large number of communication modules, including various protocols.

The communication between the regional FPGA and GBT-SCA is carried out through the

high-level serial link control protocol. The protocol is based on commands. In contrast to the

direct reading and writing of registers, the transaction contains the command ID, transaction

ID, and data required by the command. The command ID indicates what the GBT-SCA chip

will do, such as read or write registers or perform operations. Each command transaction

returns a batch with the same transaction ID. The return package contains status information

and returned data. The slow control IC is used for GBTx register access, configuration, and

monitoring. This field can also control the laser transceivers that use the main

communication modules on the GBTx chip, which can be accessed through its registers.

2.4.5.1. Electrical-links

The GBTx chips on the regional cards communicate with up to 8 local card FPGAs using the

standard GBT frame mode. It consists of connecting the GBTx chip and the regional FPGAs

through duplex serial electrical links (e-links). Each GBT bi-directional optical link of the

readout chain is made up of 10 serial e-links (8 local e-links + 2 regional e-links).

Each of the e-links implemented in the readout chain consists of three signal lines:

• Differential Clock line (dClk+/dClk-): Clock driven by GBTx to the local/regional

FPGA

• Differential Downlink data output (dOut+/dOut-): Data from GBTx to the

local/regional FPGA

• Differential Uplink data input (dIn+/dIn-): Data line from the local/regional FPGA to

GBTx

The MID readout chain is configured to operate at the maximum e-links data rate of 320

Mb/s, with a maximum of 2 e-links per group. As mentioned earlier, each e-link is composed

of one differential clock line (dClk+/dClk-), one differential downlink output (dOut+/dOut-),

and one differential uplink input (dIn+/dIn-). Thus, the maximum number of differential e-link

signals per group is 3 x 2 = 6, equivalent to 6 signal pins per group. Overall, a total of 6 x 5 =

30 configuration pins are dedicated to the e-links. To provide the greatest possible signal

quality and transmission reliability, the physical e-link connections are assumed to be

differential transmission lines with a differential impedance of 100 Ω and a suitable

termination line at the receiver end.

 25

 MID readout chain

The diagram depicted in Figure 2.7 was created for this study to illustrate how the GBTx chip

interacts with the readout electronics via e-links.

Figure 2.7: E-link configuration between the GBTx chip and the readout electronics. This

diagram is created for this work

 26

2.5 Common readout unit

2.5. Common readout unit

As mentioned in the previous chapter, this study aims to design a bespoke user logic

component that will be incorporated into the existing high-speed CRU FPGA. As a result, it is

crucial to comprehend the functionalities of the CRU component. This section summarizes

the clock and the hardware architectures of the CRU. The CRU firmware is covered later in

the next chapter.

2.5.1. Clock tree architecture

The clock tree is designed to utilize a single reference clock for all CRU communication links

except for the PCIe interface, which utilizes a built-in 100 MHz crystal oscillator. The CRU

card can either be used independently with a built-in 40 MHz crystal oscillator or with a

recovered clock retrieved from the TTS optical link. On the other hand, the TTS transceiver

requires a constant 240 MHz reference frequency before initialization, which is generated

locally with the help of a Phase-Locked Loop (PLL) SI5344 (Skyworks, 2018). The clock

recovered from the FPGA is transferred to a high-performance SI5345 PLL (Skyworks, 2018)

for jitter attenuation after it has successfully been locked to the incoming stream. The clocks

extracted from the SI5345 PLL are then utilized to run the FPGA logic. The SI5345 PLL uses

I²C communication to switch between local and recovered TTS clock modes. The clock

generated from the built-in 100 MHz crystal oscillator is utilized to run many other features of

the FPGA, including initialization and hardware monitoring.

2.5.2. Hardware architecture

The CRU card is based on an Intel ARRIA 10 FPGA (10AX115S3F45E2G) (Intel, 2022). It is

equipped with two Small Form-factor Pluggable (SFP+) connections. One is used for the TTS

connection, and the other is used as a backup. The connections from/to the readout

electronics are ensured by up to 4x12 bi-directional channel modules, (Broadcom, 2005).

These modules can connect to up to 24 GBT links. However, concerning the MID, 32 GBT

links are necessary to transfer data from the complete readout electronics. Hence, 2 CRU

cards are utilized, one for each side of the plane, and each connected to 16 GBT links.

The CRU is equipped with a PCIe edge connector on the rear end, that provides a dual PCIe

interface. This interface is synchronized with a 250 MHz reference frequency provided

through the connector. The ARRIA 10 FPGA is also linked to temperature and current

sensors, as well as an electrically erasable programmable read-only memory with a unique

 27

 MID readout chain

identifier assigned by the manufacturer during board construction. Other protocols are used

to communicate with various peripheral devices. Additionally, tri-color LEDs are installed on

the CRUs for maintenance purposes and to easily identify a specific machine among others

in the server farm. Finally, the FPGA can be programmed using either a Joint Test Access

Group (JTAG) connector, which is useful for software debugging in the laboratory, or a quad

Serial Peripheral Interface (SPI) flash module.

Figure 2.8 depicts a functional overview of the hardware emphasizing the characteristics

utilized in ALICE CRU. The clock tree, as well as the FPGA and its connections with the

different components of importance, are depicted.

Figure 2.8: A functional overview of the hardware, highlighting the functions used in the CRU

(Bourrion et al., 2021).

 28

2.6 Trigger architecture

2.6. Trigger architecture

The ALICE trigger architecture is an amalgamation of multi-link technologies based on

several protocols. It has been optimized to function in coherence with the MID subdetector,

allowing its readout chain to operate synchronously and efficiently (Kvapil et al., 2021). The

trigger architecture relies on the Trigger and Timing distribution System (TTS) ability to

efficiently distribute the critical timing and trigger information from the Central Trigger

Processor (CTP) to the readout electronics via the Local Trigger Unit (LTU) and CRUs with

constant latency over bi-directional 10-Gigabit Passive Optical Network (PON) links. This

allows the MID to be read out in continuous and triggered readout mode operations.

2.6.1. Central Trigger Processing

The CTP is an electronic board that receives inputs from a set of triggers from contributing

detectors and generates trigger decisions for all subdetectors (Evans et al., 2016). It interacts

with up to 24 LTUs, one of which is dedicated to MID. The CTP is essential in trigger

architecture as it provides periodic HeartBeat (HB) triggers as well as customized software

triggers to the LTU for both continuous and triggered readout mode operations.

2.6.2. Local Trigger Unit

The LTU serves as an interface between the CTP and CRUs. It provides a clock, Orbit, and

external trigger inputs as well as allows monitoring and control using ethernet bus protocols.

The LTU is a 6U VME-type board equipped with a Xilinx Kintect FPGA with 2 Gigabytes of

DDR4 memory (Krivda et al., 2018). It can be configured in two different ways (global and

stand-alone). In global mode, the LTU acts as a transparent interface between the CTP and

the CRU. It converts signals and provides online monitoring. Contrary, in the stand-alone

mode, the LTU emulates the CTP protocol, allowing the MID team to perform tests, and

calibration activities independently of the CTP, when the CTP is either unavailable or not

necessary.

2.6.3. Continuous and triggered readout modes

An important requirement from ALICE is that the majority of subdetectors including the MID

must implement a new type of readout mode on their systems. This new type of readout

mode is called continuous readout mode and differs from the current practice.

 29

 MID readout chain

In this mode, data are no longer bounded by physics trigger but rather by various data

streams, namely HeartBeat Frames (HBFs) with a predetermined period of (89.4 µs) (Costa

et al, 2017). These HBFs will then be aggregated by the CRU firmware into larger blocks

called Time Frames (TFs) and transmitted to the O² systems for reconstruction and error

handling. The HBF boundaries are determined by the HeartBeat triggers, which are

transmitted by the CTP via the LTU.

The readout electronics cards in the MID readout chain are modified to handle the

combination of Physics and HeartBeat triggers. Each regional and local card autonomously

tags the data using the copy of the LHC Orbit and the bunch crossing ID. For continuous

readout mode, the payload data are sent as a continuous flow of successive frames each

preceded with a header containing the time-based tagging. The triggered mode operates in

the same way as the continuous mode with a few variations, it only sends a payload data

block preceded with a header upon reception of physics triggers. Figure 2.9 shows how the

physics and HeartBeat triggers are used for the continuous and triggered readout modes.

Figure 2.9: Continuous and triggered mode trigger configuration

Adapted from (The ALICE Collaboration, 2014)

2.6.4. Passive Optical Network message

The PON is a point-to-multipoint network architecture that uses optical splitters to enable an

Optical Line Terminal (OLT) to interact with several Optical Network Units (ONUs). As

illustrated in Figure 2.10, the PON technology allows the timing and trigger message to be

split among multiple CRUs of the readout chain using a single link.

 30

2.6 Trigger architecture

Figure 2.10: Representation of the PON architecture implemented in the MID readout chain

Adapted from (Mitra, 2018)

The PON downstream (CTP to CRU) and upstream (CRU to CTP) messages are described

as follows:

• The PON downstream message is based on a 240-bit word transmitted

synchronously with the LHC clock from CTP to the CRUs. The PON internally

uses 40-bit, leaving 200-bit available for the subdetectors use. The PON

downstream message is summarised in Table 2.4. The trigger type information is

described in Table 2.5.

• Upon reception of an HB trigger, each CRU of the readout chain transmits the

PON upstream message of 56 bits to the CTP, alternatively called HeartBeat

acknowledge message (HBam). The HBam carries information about the CRU

status. The CTP then collects the HBam from all CRUs acknowledging that data

have been successfully collected.

Table 2.4: PON downstream message (Bourrion et al., 2019)

No. of
Bit

Name Description

<31:0> TType Trigger Types data

<11:0> BCID Bunch crossing identification

<31:0> Orbit Orbit counter

<0:0> TTValid Trigger Type data valid

<7:0> HBM header HeartBeat message header

<31:0>
First ORBIT of

TF/HBMTF
HeartBeat message Time Frame

<0:0> HBMValid HeartBeat message valid

 31

 MID readout chain

Table 2.5: Description of the Trigger Type bits (Bourrion et al., 2019)

Bit Name Description

0 Orbit Orbit flag

1 HB HeartBeat flag

2 HBr HeartBeat reject flag

3 HC Health Check

4 PhT Physics Trigger

5 PP Pre-Pulse Calibration

6 Cal Calibration trigger

7 SOT Start of Continuous

8 EOT End of Continuous

9 SOC Start of Triggered Data

10 EOC End of Triggered Data

11 TF Time Frame

… … Spare

29 TPCSync TPC synchronization

30 TPCReset TPC reset

31 TOF TOF special trigger

2.6.5. MID custom trigger type format

The TTC-PON trigger types contain useful information to accommodate various subdetectors

in the ALICE experiment, although not all triggers are utilized by the MID. A special request

from the MID team is to reduce the bandwidth transmitted to the subdetector readout

electronics by compressing the 32-bit TTC-PON trigger types into a bespoke 8-bit trigger

types format that will easily be interpreted by the readout electronics. This task is handled by

the CRU firmware through a specific configuration of registers, and the agreed-upon format

is described in Table 2.6.

 32

2.7 Online-Offline computing system

Table 2.6: Custom trigger type format implemented to accommodate for the MID readout

electronics (Renard, 2021)

MID
trigger type

CTP
trigger type

CRU message to
Readout electronics

FEE
trigger
code

SOx
(Start Of Run)

9: SOC
7: SOT

Update internal ORBIT, BCID, bunch counter
Transmit command to all e-links

Reset event buffers
Start assembling events

Start sending events

0x80

EOx
(End Of Run)

10: EOC
8: EOT

update internal Orbit, BCID & bunch counters
Transmit command to all e-links

Assemble last events
Send last events

0x40

TF
(Timeframe)

11: TF Transmit command to all e-links 0x20

RUNNING
(Run status)

14: RS Transmit command to all e-links 0x10

CALIBRATE 6: CAL
Update internal Orbit, BCID & bunch counters

Transmit command to all e-links
0x08

PHY 4: PhT
Update internal Orbit, BCID & bunch counters

Transmit command to all e-links
0x04

RESET 12: FEErst

Update internal Orbit, BCID & bunch counters
Transmit command to all e-links

Stop assembling events
Stop sending events

0x02

ORBIT 0: ORBIT
Update internal Orbit, BCID & bunch counters

Reset internal MID's bunch counter
Transmit command to all e-links

0x01

2.7. Online-Offline computing system

The O² is a new computing system implemented to support both online and offline

reconstructions (Buncic et al., 2015). Its architecture is made up of hundreds of thousands of

processes that are spread over several nodes, and perform readout, processing, and

storage. The architecture is shown in Figure 2.11. The online reconstruction is based on two

types of computing nodes (FLP and EPN), while the offline reconstruction relies on the

connection of multiple high-performance clusters, i.e., the Grid to move data from one

storage to another.

 33

 MID readout chain

Figure 2.11: O² computing system architecture

 Adapted from (Eulisse et al., 2019)

2.7.1. First Level Processor

Data from various subdetectors including the MID are transmitted to dedicated DELL

POWEREDGE R740 rack servers (Costa, 2019), namely, FLP nodes, which house the

CRUs as the hardware interface to the front-end and/or readout electronics depending on the

subdetector architecture (refer to Figure 2.1 for the MID readout chain architecture). In total,

270 FLP nodes are used in the O² computing system (Richter et al., 2019). Each FLP

compresses, merges, splits data into Sub-Time Frames (256 HeartBeat Frames from a

single FLP), and stores them until they are forwarded to the EPN. As a result, the

subdetector data are analyzed instantly on the EPN.

2.7.2. Event Processing Node

The EPNs of the O² computing system offer computational resources for data reconstruction.

A many-to-many data distribution network configuration recomposes all Sub-Time Frames

obtained from the subdetector FLPs over a Time Frame period (~20 ms) on one of the

dedicated EPNs in a rational order (Nešković et al., 2018). Each EPN reconstructs these

Sub-Time Frames and uses a variety of tasks based on the subdetector (e.g., clusterization

and tracking for individual subdetectors) as a means to compress raw data-related

information and reduce the size of each Sub-Time Frames from 500 GB/s to an aggregate

rate of up to 90 GB/s before forwarding them to the on-site storage.

 34

2.7 Online-Offline computing system

2.7.3 Data storage

The EPN uses on-site storage as a buffer between online and offline data processing. To

prevent overwhelming the EPN nodes already overburdened by data gathering and

processing responsibilities, data transfer operations between the online system and the Grid

are handled by specialized nodes of the order of 10 Data Movers (DM) (Buncic et al., 2015).

The on-site storage is physically separated from the EPN nodes, but it nevertheless still

provides a global storage area that is accessed by all EPNs and DMs. To minimize data pile-

ups in the EPNs and DMs, a large bandwidth protocol is implemented.

2.8. Detector control system

The DCS is used to monitor and control readout electronics from various subdetectors

located in the ALICE cavern. It accesses the readout electronics via the FLP-CRU through

the GBT links. The primary protocol considered for communication between the FLP and

DCS is called Alice Low-Level Front-end (ALF) on the FLP side and Front-End Device

(FRED) on the DCS side (Tkácik et al., 2020).

In the current MID readout chain configuration, the ALF can read/write registers on the

regional and local card firmware modules and publish data in the DCS control room using a

Distributed Information Management (DIM) service (Tkácik et al., 2020).

The DIM is a communication system for distributed/mixed environments, that provides a

network transparent inter-process communication layer. The FLP node hosts a DIM server,

which acts as a bridge between the DIM network and the CRU driver, enabling the DCS to

interact with the readout electronics from the control room without requiring physical access

to the FLP node.

 35

 36

CHAPTER 3

3. CRU firmware

This chapter presents the current CRU firmware implemented in the MID readout chain and

illustrates how the user logic component fits into it. The architecture of the CRU firmware is

described as well as the design requirements and specifications of the MID user logic

component.

3.1. Introduction

The standard approach of delivering raw data to the O² system is no longer sufficient to fulfill

the needs of the newly enhanced MID subdetector. As a result, an alternative option was

presented to the collaboration (ALICE Collaboration, 2014). Since the introduction of version

1.0.0 at the beginning of 2018, the CRU firmware can be configured in two different manners.

The first configuration is the common mode, which interacts through various interfaces with

various systems enabling the possibility to read out any subdetector without conducting any

first stage data analysis in its CRU firmware. This is also known as the “CRU firmware

without user logic”. The second configuration is the user logic mode, which is only available

to high-performance subdetectors, such as MID, that requires first stage data analysis before

online and offline reconstruction. In user logic mode, the MID readout electronics data are

forwarded to the user logic component for analysis. It is the responsibility of the MID team to

decide on how these data will be analyzed in the user logic component.

One of the most important features of the CRU firmware is its ability to switch between

common and user logic modes without reloading distinct firmware on the FPGA. For testing

and debugging purposes, the CRU firmware can also be configured to run both modes

simultaneously (Bourrion et al., 2021).

3.2. Firmware description

The CRU firmware architecture is illustrated in Figure 3.1. From left to right, the main

interfaces are the GBT wrappers, Board Support Package (BSP), Datapath Wrappers (DWs),

Timing and Trigger Control (TTC), Dedicated Data Generator (DDG), slow control, and PCIe

endpoints. All of these interfaces provide indispensable functionalities to the CRU firmware,

and at the heart of it all is the user logic component, which will be unique to MID.

 37

 CRU firmware

Figure 3.1: CRU firmware architecture

Adapted from (Bourrion et al., 2021)

3.2.1. GBT wrapper

The GBT wrapper acts as a conduit between the MID readout electronics and the CRU

firmware. It is made up of up to six banks, each with six bidirectional GTB links. The GBT

wrapper can connect up to 36 GBT links in total, but only 24 are made available to the

subdetectors. The remaining is preserved as a backup, and the configuration of the banks is

done via slow control registers. The GBT links, as previously stated, are bidirectional. The

purple bus line in Figure 3.1 depicts the uplink direction (CRU to FEE), whereas the green

bus line represents the downlink direction (FEE to CRU).

3.2.2. Datapath wrappers

In contrast to user logic mode, where all available GBT uplinks (FEE to CRU) are directly

attached to the user logic component, and subsequently diverted to the datapath wrappers

after first-stage analysis, the GBT uplinks in common mode are uniformly distributed

throughout the two identical datapath wrapper blocks. Depending on the mode selected in

the CRU firmware, each datapath wrapper receives trigger information, gathers and

combines raw data from the subdetector readout electronics over up to 12 GBT links, and/or

utilized compressed data from the user logic readout channels as input. These data are then

delayed for a few clock cycles to allow for the inclusion of the Raw Data Header (RDH). The

RDH enables the O² system to identify all data blocks transmitted by each subdetector in the

ALICE experiment.

 38

3.1 Introduction

3.2.2.1. Raw Data Header

The data blocks transmitted by the MID readout electronics must be identified and arranged

in such a way that they can easily be recognized and processed efficiently in the receiving

FLPs. As a result, a standard RDH format has been designed and deployed. The RDH

format illustrated in Table 3.1 is generated by either the datapath wrappers in common mode

or the user logic component in user logic mode to provide the necessary information required

to identify the structure of the data in the O² system.

Table 3.1: Raw Data Header format

Adapted from (Costa, 2021)

RDH 0 [128-bit]

32-bit FEEID [31-16] Header size [15-8] Header version [7-0]

32-bit Reserved [31-16] System ID [15-8] Priority bit [7-0]

32-bit Memory size [31-16] Offset [15-0]

32-bit DW [31-28] CRU ID [27-26] Packet cnt [15-8] Link ID [7-0]

RDH 1 [128-bit]

32-bit Reserved [31-12] BC [11-0]

32-bit Orbit [31-0]

32-bit Reserved [31-0]

32-bit Reserved [31-0]

RDH 2 [128-bit]

32-bit

32-bit Reserved [31-24] Stop bit [23-16] Page cnt [15-0]

32-bit Reserved [31-0]

32-bit Reserved [31-0]

RDH 3 [128-bit]

32-bit

32-bit Reserved [31-16]

32-bit Reserved [31-0]

32-bit Reserved [31-0]

The RDH fields are either populated using data transmitted by readout electronics as well as

the LTU, or ctpemu (when the LTU is unavailable). The RESERVED fields are initialized to

zero and saved for future usage. Table 3.2 provides a more in-depth description of various

RDH fields.

 39

 CRU firmware

Table 3.2: Field description of the Raw Data Header

Adapted from (Costa, 2021)

RDH Name Size in bit Description Default value

0

Header version 8 Header version number 0x06

Header size 8 Size of the RDH in byte 0x64

FEEID 16 FEE identification -

Priority bit 8 Fast forward packet -

System ID 8 Unique ID assign to subdetectors 0x25 (MID)

Offset packet 16 Payload size before next RDH 0x2000

Memory size 16 Size of the subdetector payload 0x2000

Link ID 8 Number used to identify the link -

Packet counter 8 Counter to keep track of packets -

CRU ID 12 Number used to identify the CRU -

DW 4 Number used to identify wrappers -

1
BC 12 Trigger orbit from TTC -

Orbit 32 Trigger bunch crossing from TTC -

2

TRG type 32 Trigger type from TTC -

Page counter 16 Counter to keep track of pages -

Stop bit 8 A bit to identify the last RDH page -

3
Detector field 32 Subdetector specific field 0xA003(MID)

PAR bit 16 Field used by the subdetector -

3.2.3. Board Support Package

The BSP provides access to GBT link parameters such as temperature and optical power, as

well as the FPGA serial number. It also allows the user to reboot the FPGA into a stable

condition. The approach used is to divide the flash memory into two sections, one for the

stable firmware version and one for the beta version (e.g., version generated after

implementing the user logic component). In the event of a power interruption or defective

user logic component, the CRU firmware can simply be restored to a stable state.

3.2.4. Timing and Trigger Control interface

The basic function of the TTC interface is to communicate with the LTU and provide timing

and trigger information to other interfaces. The TTC interface is divided into three distinct

sub-components: ONU, CTP emulator (ctpemul), and Pattern player (patplayer). As the

name implies, the ONU is named after the optical network unit found in the TTC-10G PON.

This sub-component handles the communication with the LTU. The ctpemu is used for

testing and debugging. During standalone tests, it may also be used to emulate the same

information provided by the LTU-CTP. Finally, the patplayer provides a programmable

sequence to the readout electronics when a HeartBeat or physics trigger bit is supplied by

the ONU or ctpemu.

 40

3.2 Firmware description

3.2.5. Detector Data Generator

The DDG is capable of imitating any subdetector behavior and reproducing the data

transmitted when the subdetector front-end and readout electronics are not available. The

injection of the DDG data is made possible by simply configuring the GBT wrappers to

operate in internal-loop-back mode. This enables the system to generate data without the

need to connect to a physical subdetector. The DDG is an essential component for

evaluating and testing the CRU firmware and software.

3.2.6. Slow Control

The slow control component distributes control sequences and collects status information

from the readout electronics via GBT links using the SWT protocol. To enable slow control

read/write access, the CRU firmware must be configured to SWT protocol using the GBT-

MUX component.

3.2.7. PCIe Data Management

The MID data stream passes through the Data Management interface, which moves it from

the two Datapath Wrappers to the FLP memory. However, in order to avoid mixing up the

data flow, the data stream is transmitted to the FLP server through a dual endpoint PCIe gen.

3x8 interface. This means that each half of the total GBT links is linked to a single endpoint

through its datapath wrapper. Hence, the data flow is distributed equally among the two

endpoints. Furthermore, communication with the Software is also achieved through the PCIe

interface.

3.3. Firmware resource usage

A significant amount of effort was invested by the CRU experts in order to find a reasonable

trade-off between lowering the ARRIA 10 FPGA resources and delivering a flexible firmware

capable of addressing the demands of the majority of subdetectors encountered in the

ALICE experiment. As shown in Table 3.3, the most recent firmware version (v3.10.0)

implemented in the CRU at iThemba LABS uses about 123k/427k (29%) Adaptive Logic

Module (ALM) and 1084/2713 (40%) Read Access Memory (RAM) blocks of the available

resources. As a result, the MID readout chain has enough available resources to implement

a fairly complicated user logic algorithm in the CRU firmware. However, to allow for future

enhancements, it is advised that after inserting the user logic component, the overall ALMs

and block RAMs consumption should be limited to less than 75%.

 41

 CRU firmware

Table 3.3: FPGA resource usage of the CRU firmware before insertion of the user logic

Resource name Total in ratio Total in percentage

Logic utilization (in ALMs) 123,381 / 427,200 29 %

Pins 369 / 960 38 %

Block memory bits 17,514,564 / 55,562,240 32 %

RAM Blocks 1,084 / 2,713 40 %

Digital Signal Processing
Blocks

0 / 1,518 0 %

RX channels 41 / 72 57 %

TX channels 41 / 72 57 %

Phase Locked Loops (PLLs) 59 / 144 41 %

Special attention will be given to the ALMs and RAM blocks consumption throughout the

implementation of the user logic, as it might consume a significant amount of these

resources. The user logic design will not make use of the DSP blocks available in the FPGA,

hence, the amount of DSP blocks used will remain unchanged. The RX and TX channels as

well as the PLLs used in the CRU firmware will also remain unchanged.

3.4. User logic component

Before implementing the user logic component into the CRU firmware, it is important to

understand the current condition of the data and the impact that the user logic will have on

them.

The CRU firmware receives 80-bit of data from a single GBT link. Following the completion of

a HeartBeat Frame, which takes about (89.4 µs / 25 ns = 3576 BCs or LHC clock cycles), the

CRU firmware would have acquired (80-bit x 3576 BCs = 28608-bit) of raw data. These raw

data would be sent to the O² system in a packet form. During lead-lead collisions, each of the

readout electronic cards is expected to generate around 4 events per Heartbeat Frame, this

is based on the number of collisions occurring every 89.4 µs (i.e., 20 µs / 89.4 µs = 4). The

regional card takes 5 BCs to transmit an event while the local card takes up to 21 BCs (refer

to Table 2.2 and Table 2.3). This results in 40-bit per regional event and 160-bit for the 4

events, as well as 168-bit per local event and 672-bits for 4 events. As mentioned in section

2.4.5.1, a single GBT link is composed of 8 local e-links and 2 regional e-links, leading to a

total amount of valuable data allocated in the packet of ((160x2) + (672x8) = 5696-bit). As

stated in section 2.7.1, the FLP transmits data to the EPN per Sub-Time Frame, which is

equivalent to 256 HeartBeat Frames. This indicates that scientists handling the

 42

3.3 Firmware resource usage

offline reconstruction must go through 256 packets to identify (5696-bit x 256 = 1458176-bit ~

182 KB) out of (28608-bit x 256 = 7323648-bit ~ 915 KB) in order to reconstruct the events.

This is quite inconvenient for the MID, especially when all 32 GBT links are operational.

The user logic takes a different approach to process the MID raw data by only transmitting

valuable data to the O² system. Hence, decreasing the amount of data transmitted to the

EPNs by 80%, and improving the readability of the data.

Following extensive discussions with the CRU firmware experts at CERN, members of the

MID team, and subsequent update meetings, the following user logic requirements, and

specifications were established.

3.4.1. Design requirements

The user logic component must adhere to the readout control protocol shown in Figure 3.2.

This protocol is pretty straightforward: the user logic receives input flow and routes it to the

datapath wrapper memories through user logic readout channels. Data are transmitted in

256-bit words with Start Of Packet (SOP) and End Of Packet (EOP) signals to indicate the

beginning and end of the packet. The valid signal indicates the validity of the data. The RDH

is inserted at the start and end of the packet. It includes a Page counter that provides packet

identification inside the associated HeartBeat Frame as well as a Stop bit that indicates

whether or not the last packet for this specific HeartBeat Frame has been transmitted.

Figure 3.2: Data flow from the user logic component to the datapath wrappers using the
readout control protocol

 Adapted from (Bourrion, 2015)

 43

 CRU firmware

During update meetings, additional requirements were introduced, which are detailed below:

• A packet must have a maximum size of 8 KB, which should include a payload and

a valid RDH.

• The RDH must have all fields correctly filled out by the user logic.

• Each packet must have a valid page counter, which should be reset at each

HeartBeat Frame transition, and a STOP bit must be set.

• There must be a minimum instantaneous gap of one clock cycle between the

preceding EOP and the next SOP (this limitation is due to the datapath wrapper

component, which requires some delay to properly store data in the memory).

• In triggered readout mode, packets should only contain physics event data and all

remaining events should be discarded by the user logic with the exemption of the

orbit event.

• If no valid data are transmitted by the readout electronics, the use-logic should

generate an empty packet with a valid RDH upon receiving a HeartBeat trigger

(this allows the O² systems to keep track of different HeartBeat Frames).

3.4.2. Design specifications

The user logic design specifications are intertwined with the challenges raised in the problem

statement (section 1.3). In order to overcome these challenges and achieve the goals

stipulated in the objectives (section 1.5), an agreement with the MID team resulted in the

design specifications outlined below.

3.4.2.1. Event identification

The GBT wrapper forwards the readout electronics data to the user logic component with a

specific bit indicating whether or not the data transmitted are valid. These valid data will then

be stored in appropriate registers and event identification will be performed instantly. At this

level, the primary goal is to perform zero suppression by identifying the relevant event

information (start bit, card type, etc…) transmitted by the local and regional cards.

In contrast to the regional card, which transmits event data with a fixed size of 5 bytes (40-

bits), the local card transmits event data with a variable size ranging from 5 to 21 bytes (40 to

168-bit). The local event data contains header information as well as strip patterns from

 44

3.4 User logic component

the four MID detection planes attached to it. The last four less significant bits of the fifth byte

indicate which of the four detection planes is transmitting data (1-bit per plane). The user

logic will use these bits to predict the size of the event data and only collect strip patterns

from the identified detection planes. This allows complete accuracy of the event identification

and eventually leads to a drop-in data rate transmitted to the O² systems.

3.4.2.2. New regional and local event formats

As shown in Figure 2.7, a single regional crate contains two GBT optical links, each of which

carries information from 10 distinct e-links (8 local e-links + 2 Regional e-links). In total, four

regional e-links originate from the same crate. Hence, the event data delivered by these four

e-links are nearly identical with exception of their 5th byte, which is not very useful to the O²

systems as it does not provide the current position of the e-link in the GBT frame. In order to

differentiate these regional e-links and facilitate the decoding process at the O² level, the

user logic will assign a unique ID block to each of these four regional e-links based on their

location in their respective GBT frame.

A similar issue can also be observed with the local e-links, although they provide valuable

information, they quickly become a challenge once two or more crates are involved. Each

crate of the readout chain contains about the same number of local cards with the same local

card ID ranging from 0 - 15. Once data from multiple crates are merged, they quickly become

a pool of untraceable data. As a result, the existing regional and local event formats need to

be altered. As depicted in Figure 3.3, the new regional event format includes an additional

unique ID block, whereas the new local event format includes a new crate ID block to

indicate where it originated.

3.4.2.3. Synchronization

To solve the issue of desynchronization, the user logic will make use of the handshaking

protocol. Data from each e-links will be routed through a pair of buffers, referred to as the

sender and the receiver respectively. The sender and the receiver will continuously

exchange information via several signals.

This handshaking protocol will rely heavily on the Orbit trigger bit, which is found in the local

and regional event data. Its purpose will be to filter and synchronize the data. The sender

 45

 CRU firmware

will send a synchronization request signal to the receiver upon receiving an Orbit trigger. The

receiver, in turn, will react with an acknowledge signal only after a third-party submodule has

successfully collected the synchronization request from all e-links belonging to the same

GBT link. By monitoring the Orbit trigger, it is easier to keep all e-links and GBT links

synchronized. The Orbit trigger is also used to reset the bunch crossing counter in the

readout electronics firmware, indicating the beginning of a new HeartBeat Frame.

Figure 3.3: New regional and local event formats created for this work

Although this approach appears to be the most efficient, it should be noted that there are

certain caveats to it. In the event of a failure or if one of the readout cards stops transmitting

data for whatever reason while the run is still ongoing, the receiver module will remain idle

until the sender sends a request, which will be unlikely to occur. This will affect the

synchronization process and eventually lead to system failure. To overcome this sort of

event, a very complex logic must be implemented in the synchronizer. This is described in

more detail in the next chapter.

 46

3.4 User logic component

3.4.2.4. Payload data block formats

Following the data synchronization, the data belonging to the same Orbit or HeartBeat Frame

will be arranged in small blocks of 256-bits in ascending order. A counter will be implemented

to ensure that the 8 KB limit is not exceeded. These blocks of data, namely payload data, will

then be combined with the appropriated RDH blocks and streamed as packets to the

Datapath wrappers while adhering to the readout control protocol. However, to properly

construct a custom O² software algorithm that would analyze the payload, a pre-defined data

block format has to be agreed upon within the MID team before the implementation of the

user logic component into the readout chain. For this specific purpose, two different

approaches have been investigated:

Fixed data block format

A way to decrease the data rate and allow fast-tracking is to introduce a fixed data block

format. All pre-analyzed events collected from a single GBT link can be used to generate

data blocks of 256-bits composed of a header (32-bit) and a body (224-bits). Since each of

the two regional e-links is linked to up to 4 local cards. The Track field found in these regional

events reveals which of the four local cards is transmitting data belonging to the same event

(1-bit per local card). Taking this into consideration, a fixed structured data block composed

of a regional event (header) and a local event (body) can be implemented and is described in

Table 3.4. The number of data blocks generated per regional event will be computed based

on the Track field information, and it will range from 1 to 4 blocks. The header information will

be duplicated for each data block generated from the same regional event. The data flow of

the fixed data format is illustrated in Figure 3.4.

Table 3.4: Field description of the fixed data block format

HEADER (regional event) [32-bit] BODY (local event + reserved) [264-bit]

Trigger [8-bit] Card ID [4-bit]

Internal bunch counter [16-bit] Tracklet [4-bit]

Unique ID [4-bit] Strip patterns [128-bit]

No. local cards fired [4-bit] Reserved [88-bit]

 47

 CRU firmware

Figure 3.4: A example of the fixed data block format designed for this work

Serialized data block format

Another way to significant data rate reduction can be achieved by concatenating all pre-

analyzed events (local & regional) collected from a single GBT link, and cutting them into

multiple data blocks of 256-bit. This limits the number of blocks stored in the memory. Hence,

reduce the packet size. The sequence in which these events are concatenated is completely

arbitrary and depends on their arrival time. Figure 3.5 depicts the data flow of the serialized

data format and provides a sense of what can be expected if implemented.

Figure 3.5: An example of the serialized data block format designed for this work

 48

3.5 Summary

Notwithstanding the fact that both options significantly reduce the data rate, they each offer

advantages and disadvantages. The serialized data format will be slower as it will require 32

clock cycles (8-bit x 32 = 256-bit) to fill up a single data block. It will be less efficient in terms

of readability due to certain events being chopped if the data block reaches the maximum

limit of 256-bit. However, it will be more compact with a lower data rate. The fixed data

format, contrastingly, will only take a few clock cycles to fill up a data block, it will provide

greater readability, and will facilitate the debugging process. The fixed data format,

nonetheless, will occasionally duplicate the header information and include a Reserved field,

which must be filled with zeros if an extra local event cannot be accommodated. This

contradicts the goal of this research, which is to only transmit valuable information.

Following a comprehensive analysis, it was determined that the serialized data format would

be implemented in the MID user logic component. The O² software algorithm will reconstruct

the events by analyzing each byte of the data blocks collected during each Time Frame.

3.5. Summary

In this chapter, the architecture of the CRU firmware is described and the different CRU

readout mode configurations are explained. The main interfaces and their functionalities are

also discussed and the communication protocols are elaborated. Finally, the MID user logic

component is introduced, and its design requirement and specifications are described. The

next chapter will dive into the design and implementation of the user logic.

 49

 50

CHAPTER 4

4. Design and implementation of the user logic

This chapter delves into the design and implementation of the user logic component. It must

be emphasized that the study aims to deliver a functional user logic prototype. Thus, this

user logic firmware was designed to process data from a single MID regional crate

composed of two GBT links.

4.1. Architectural design

The user logic is designed in a sequential manner, with all processing occurring one after

another from an input-output perspective. The objective of this approach is to facilitate error

tracking. The user logic design consists of three main segments, each of which is linked to a

specific interface of the CRU firmware (see Figure 3.1). A representation of the user logic

block diagram and its interfaces is represented in Figure 4.1. Starting from the top is the TTC

segment (grey), which receives data from the timing and trigger system through the TTC

interface. Next is the GBT segment (blue), which receives data from the readout electronics

via the GBT wrappers, analyses them then combines them with the RDH extracted from

timing and trigger information before transmitting them to the O² system via the datapath

wrappers. The GBT segment is the only part of the design that can be duplicated through

parameterization. Hence, enabling the possibility to process multiple GBT links, allowing for

improvement and adaption to diverse testing scenarios. The last segment is the Avalon

(orange), which provides configuration and monitoring through the PCIe interface.

Figure 4.1: Structure of the user logic design showing the three main segments as well as the

port specifications and data flow of each segment. This diagram was created for this work

 51

 Design and implementation of the user logic

4.2. Implementation

This section describes in detail the functionality of the various submodules implemented in

the user logic design and is organized as follows. Clocks and resets are extremely essential

in digital electronics, and they receive special attention in subsection 4.2.1. The timing and

trigger management, as well as header submodules, are detailed in subsections 4.2.2 and

4.2.3. The GBT mapping and deserializer are discussed in subsections 4.2.4 and 4.2.5,

respectively, whereas the synchronization process is explained in subsections 4.2.6. The

event multiplexer, payload serializer, and data readout submodules are discussed in the

following subsections. This section concludes with a brief explanation of the configuration

and monitoring submodule.

4.2.1. Clock and reset management

The user logic requires several clock signals to extract, synchronize and monitor the e-links

input data transmitted by the GBT links. Since the intention is to operate synchronously with

the host firmware, the user logic takes full advantage of the already available clock signals

provided by the CRU clock tree (see Figure 2.8). The faster clock (240 MHz) is utilized for

data processing, while the slower clock (100 MHz) is used for signal configuration and data

monitoring.

To ensure that the system runs efficiently, the user logic firmware must be set to a known

state at the beginning of each acquisition. The reset management incorporated in the design

can either be provided externally through slow control via the Avalon MM register or

generated internally using the trigger information from the LTU as a catalyst. The external

and internal reset signals are referred to as hard and soft resets, respectively.

Figure 4.2: Reset management circuitry designed for this work

 52

4.1 Architectural design

As illustrated in Figure 4.1, the Avalon register dedicated to externally reset the user logic is

attached to a multi-stage multiplexer, then stored into a Delay Flip-Flop (D-FF) register. This

combination of circuits prevents the reset management to generate a hard reset signal for no

more than a single clock cycle (100 MHz). Furthermore, to address the issue of clock domain

crossing, and to acknowledge the acceptance of the slow control instruction before spreading

it across the circuit, the hard reset signal is attached to a two-stage D-FF synchronizer.

Finally, using an OR-Gate logic, the hard and soft reset signals are computed into a single

synchronous reset signal, which is implemented throughout the design. This reduces the

amount of work required in the Quartus Timing Analyzer tool as the majority of the work is

already done by the CRU firmware developers.

4.2.2. Timing and trigger management

The main task of the timing and trigger management is to administrate the data acquisition. It

receives the trigger information from the LTU via the CRU firmware and uses this information

to generate signal pulses to activate other parts of the design. It is made up of three

components: Decoder, Mode selector, and a Pulser.

To track changes more effectively, the decoder examines the data transmitted by the LTU

and categorizes them into three groups (trigger, Orbit, and bunch crossing). These data are

temporarily stored in registers before being transmitted to the Header module for RDH

generation. The trigger information extracted by the decoder contains trigger signals, which

indicates whether the subdetector is running in continuous or triggered readout mode. These

signals are used by the mode selector to switch back and forth between different modes of

operation. The SOC and EOC signals mark the start and end of the continuous mode,

whereas the SOT and EOT indicate the start and end of the triggered mode. Finally, once the

readout moded is selected, the Pulser generates an internal soft reset pulse followed by

other customed pulse signals used to activate different parts of the design in a pipeline

manner, with each part being activated one after the other.

4.2.3. Header

The header submodule monitors, stores, and updates the necessary information required to

populate the RDH fields, in particular, triggers, bunch crossing ID, and the Orbit ID (refer to

Table 3.1 for detail about the RDH fields). It relies on a three-stage finite state machine to

 53

 Design and implementation of the user logic

achieve these tasks. The timing and trigger information vary at regular intervals of 40 MHz.

To keep track of the changes, the header closely monitors the SOx, EOx, and HeartBeat

pulses transmitted by the timing and trigger management, and stores the updated

information into a dedicated FIFO. This updated information is subsequently merged into the

RDH fields upon request. The header and the timing and trigger management submodules

rely heavily on the TTC information to operate properly. For this specific reason, they can

only be initialized using a hard reset.

4.2.4. GBT mapping

As described in the previous Chapter, the user logic has access to 24 incoming GBT links.

However, for this study, only 2 GBT link inputs are required. To provide flexibility in the user

logic component, a GBT mapping submodule is implemented to select as input 1 out of 12

GBT links. This is done using a multiplexer and a 4-bit select signal, which can be configured

externally via Avalon MM. The output of the multiplexer is then attached to a register for

synchronization. Figure 4.3 shows the circuit diagram of a single GBT mapping submodule.

Figure 4.3: GBT mapping circuitry diagram designed for this work

For better coverage, two GBT mapping submodules are implemented in the user logic, each

of which reads 1 out of 12 GBT link inputs and both combined can be configured to select 2

out of the 24 GBT links available.

 54

4.2 Implementation

4.2.5. GBT deserializer

The GBT deserializer is used in conjunction with the GBT mapping submodule. The MID

readout electronics data are presented to the user logic in the form of GBT buses, each of

which consists of Valid and Enable flags, as well as an 80-bit raw data bus. The approach

taken is to analyze each local and regional e-links separately. As a result, the GBT

deserializer converts the 80-bit data stream into 10 independent parallel blocks of 8-bits

(byte) and forwards them along with a copy of the valid and enable flags to the zero

suppression submodules for data identification. Figure 4.4 shows how the GBT data stream

is deserialized and distributed among 10 independent zero suppression submodules.

Figure 4.4: The schematic diagram of the GBT deserializer designed for this work

4.2.6. Zero suppression

The primary task of zero suppression is to suppress non-valuable information by

appropriately identifying events transmitted by a specific e-link channel. As already

mentioned in the previous chapter, an event lasts from the moment the start bit and card type

are identified until a programmable number of clock cycles (referred to as an event frame

window) are completed. Depending on where the data originated, the event frame window

can range from 5 up to 21 clock cycles.

 55

 Design and implementation of the user logic

The zero suppression is based on a finite state machine algorithm, that is implemented in a

pipelined manner, and uses a rule check and a counter to transit from one state to another.

The rules associated with the finite state machine evaluate every byte fragment of the events

as they arrive. Each rule checks whether or not the byte fragment matches the rule’s criteria

previously presented in Table 2.2 and Table 2.3. A counter is used to keep track of the

number of clock cycles required to successfully identify a complete event. This algorithm

consists of six states, which are used to validate the coherence of various byte fragments

transferred across the local/regional e-link. Figure 4.5 shows a representation of the finite

state machine diagram implemented in the zero suppression finite state machine.

The state machine register is initialized to an idle state, every time the reset signal is

asserted. It remains in an idle state until the GBT and DAQ signals are enabled, before

proceeding on to the status state.

The status state is used to determine the correct start bit and the card type of the given e-link

event. After successfully identifying these two parameters, the counter is incremented, the

1st byte of the event is stored and the next state is asserted. In case of failure to identify the

relevant parameters, the state register remains in the status state and will only return to idle

once the GBT and DAQ signals are disabled.

The trigger state checks the second byte of the event data. It ensures that all incoming

trigger bytes do not violate any of the fundamental trigger rules. Among these rules are the

following:

• SOx and EOx trigger bits cannot be activated simultaneously;

• SOx and Eox trigger bits must be activated in conjunction with an Orbit trigger;

• The Calibration trigger bit is always followed by a self-triggered event;

Once all of the above requirements are met, the second byte is stored and the counter is

incremented.

The bunch crossing information is composed of the third and fourth-byte fragments of the

event. Hence, the bunch counter state collects these byte fragments in two stages. The four

most significant bits of the third-byte fragment must always be zero; anything other than that

should be treated as noise. As a result, the event will be marked as corrupted and the state

register will return to the status state. If no errors are identified, the bunch crossing

information is stored, the counter is double-incremented, and the next state is asserted.

 56

4.2 Implementation

Figure 4.5: Finite state machine diagram implemented in the zero suppression. Each bubble

represents a state of the finite state machine designed for this work

 57

 Design and implementation of the user logic

The ID/Track state is very crucial as it determines the identity given to the card as well as the

length of the event. At this point, the card type of the event is already known (regional or

local). Based on this information, the size of the event can be computed. For all regional and

local events with no detected strip patterns, the event size does not exceed five bytes. In

order to be ready for the next upcoming event, the state register returns to the status state

and the event collected is forwarded to the next phase of the data acquisition. For all local

events with detected strip patterns, the event size can range from 9 to 21 bytes. As a result,

the fifth byte is stored, the counter is incremented and the next state is asserted.

The strip patterns state has no rule checks and relies completely on the event size

information computed during the preceding state. For each detection plane fired, the event

size is extended by four bytes, so is the counter. The state register remains in the current

state until the event is entirely collected, at which point it returns to the status state. Similar to

the previous state, the event collected is forwarded to the next phase of the data acquisition.

4.2.7. Handshake synchronizer

The handshake synchronizer is implemented throughout the user logic to synchronize all e-

links and subsequently all GBT links. It consists of a pair of FIFOs working in parallel and

managed by a slave controller. The synchronization is achieved by carefully monitoring the

trigger bits found in the event data while compensating for the latency caused by various

optical and e-links during the data acquisition. It is done in three phases and they are

described as follows.

The first phase of the synchronization focuses on determining whether or not the e-link

pathway attached to the synchronizer is active or inactive. By default, all e-link pathways are

presumed to be inactive until proven otherwise by the slave controller. This prevents the

synchronizer from transmitting data outside the acquisition window. The sender FIFO stores

and holds the event data transmitted by the zero suppression submodule until it receives a

request signal from the slave controller. Following acknowledgment of the request and

release of data, the slave controller analyses it in search of a potential SOx trigger. Any

event data pulled from the sender FIFO is discarded until a valid SOx trigger is found in the

event data, which enables the Active signal and marks the beginning of the acquisition

window.

 58

4.2 Implementation

The second phase is devoted to data filtering. All events retrieved from the sender FIFO

within the acquisition window are handled by a filtration process before being written to the

receiver FIFO, except for the Orbit and EOx events, which do not require filtering and are

instead moved to the third phase of the synchronization. The filtration process operates in

two different ways. In continuous readout mode, all event data are automatically transferred

to the receiver FIFO. However, in triggered mode, as previously stated in subsection 3.4.1,

only physics events with a similar bunch crossing identification as the one found in the TTC

information are permitted to be written to the receiver FIFO, the remaining events are

discarded by the filtration process.

The SOx, Orbit, and EOx events are set with the highest priority in the readout electronics

firmware. This implies that regardless of the state of the memories, these events are always

transmitted to the user logic component. Hence, by relying on these occurrences, complete

synchronization is attained. However, as previously stated in subsection 3.4.2.3, mistakes do

occur. Any active e-links may unexpectedly cease to transmit data within the acquisition

window and jeopardize the entire synchronization. To overcome such events, the master

controller uses the HeartBeat trigger found in the TTC information as a backup signal to keep

the synchronization cycle running while ignoring data from all defective e-links. Figure 4.6

shows a representation of the handshake synchronizer designed for a single e-link.

Due to the difference in buffer sizes and specifications between the regional and local event

data, two types of handshake synchronizers have been implemented for each card type. The

local handshake synchronizer is designed as described above. On the other hand, the

regional handshake synchronizer requires additional features such as the computation of a

custom ID in its event data format. This is achieved between the second and third phases of

the synchronization.

 59

 Design and implementation of the user logic

Figure 4.6: Illustration of a single e-link handshake synchronizer created for this work. The key

components, as well as the necessary signals required to perform the synchronization, are

shown

4.2.8. Event multiplexer

The concept behind the event multiplexer is to decode and extract event data from all

handshake synchronizers belonging to the same GBT link and transmit them in the form of a

byte segment to the next layer of the acquisition for packetization. However, despite the zero

suppression, the data rates remain too high. The rate at which data are written to the

receiver FIFO in the handshake synchronizer is faster than the rate at which data are read.

As a result, the receiver FIFO fills up faster than expected and starts dropping data. This is

solved by implementing two event multiplexers instead of one to deal with a single GBT link.

Each of them collects event data from 5 different handshake synchronizers (1 regional + 4

local) and operates independently of one another. A single event multiplexer is depicted in

Figure 4.7. The diagram shows how the event multiplexer interacts with various handshake

synchronizers via a Priority Encoder. A zoom-in on the event multiplexer is shown on the

right side of the diagram. It highlights the key components of the submodule, which includes

a finite state machine, multiplexer, and decoder.

A Priority Encoder algorithm is implemented to assign a priority level to a handshake

synchronizer before transmitting data. Its output is equivalent to the receiver buffer status of

the handshake synchronizer with the highest priority. Due to the difference in length of their

respective event data, collecting a regional event requires less time than collecting a local

event. Therefore, the Priority Encoder is designed in such a way that the regional

synchronizer always takes precedence over the local synchronizers.

 60

4.2 Implementation

Figure 4.7: Implementation of the e-link multiplexer from a conceptual standpoint. This diagram

was designed for this work

A finite state machine is designed to control the multiplexer and the output logic as well as to

ensure that data are delivered only after the preceding event data has been properly

decoded. It receives a Ready signal from the Priority Encoder, indicating that an event data

is ready to be read out, and then responds to the highest priority synchronizer with a Read

signal, instructing it to move data to the decoder through a multiplexer.

The decoder operates similarly to the zero suppression submodule with fewer checks done.

It receives a signal from the finite state machine indicating the card type of the selected

synchronizer which is currently transmitting data. Based on this information, the number of

clock cycles required to slice the event data into byte fragments can be computed. The new

regional format requires 6 clock cycles, whereas the new local event is dependent on the

plane tracklet located in the fifth byte of the event. Furthermore, as shown in Figure 3.3, the

new local event format includes a new crate identification block, that needs to be

incorporated in the event data before packetization. Since the regional synchronizer always

has priority over the local synchronizers, the crate identification found in its event is

distributed among all local synchronizers.

 61

 Design and implementation of the user logic

4.2.9. Payload serializer

The payload serializer is designed to gather data byte fragments from two event multiplexers

(upper and lower parts of the GBT) and organize them in compact data blocks of 256-bit

before passing them to the data readout submodule. The structure diagram of the payload

serializer designed for this work is illustrated in Figure 4.8.

Figure 4.8: Structure diagram of the payload serializer. The main components of this

submodule can be observed as well as the data flow

In order to facilitate the decoding of the data at the O² level, the payload serializer uses a

preselected data block format that was agreed upon before implementation of the user logic

(refer to Figure 3.5 for more details about the format). The data bytes collected from each

event multiplexer are saved in a register until they are ready to be moved to the “Payload

data FIFO”. The payload serializer relies on a byte counter to keep count of the number of

incoming data bytes stored and waits until it reaches a maximum limit of 32 bytes before

passing it onto the “Payload Data FIFO”. It should be noted that the total number of data

blocks collected during a HeartBeat Frame period is referred to as payload size.

One of the design requirements stipulated in subsection 3.4.1 is to prevent data blocks from

two separate HeartBeat Frames from being mixed during the HeartBeat Frame transition.

This is accomplished by computing and storing in an additional FIFO, namely “Payload size

FIFO”, the total amount of data blocks acquired for each HeartBeat Frame. This enables the

payload serializer to extract payload data based on their sizes.

 62

4.2 Implementation

Finally, the payload serializer includes a finite state machine that operates in tandem with a

multiplexer and a transmitter. The role of the finite state machine is simple. It receives a

transmission request signal from the data readout, extracts the payload size and the data

from their respective FIFOs before transmitting them. The transmission is achieved in

sequences through the multiplexer. First, it transmits data from the upper part of the GBT

then only after it transmits data from the lower part.

4.2.10. Data readout

As mentioned in the preceding chapter, the user logic component must adhere to the CRU

readout control protocol and provide data to the datapath wrappers in the form of packets

(refer to Figure 3.2 to see the protocol). This is achieved using the data readout submodule

designed to work in correlation with the header and payload serializer submodules.

The data readout is very straightforward, it does not check the consistency of the data, nor

has knowledge of the format or content of the data it receives. Its sole purpose is to combine

the RDH and payload to form packets and route them to the datapath wrapper. Like many

other submodules implemented in the user logic, it is based on a finite state machine, which

is controlled by the value of its state signal. First, it receives a header-ready signal from a

header submodule indicating that a new HeartBeat trigger has occurred and the RDH

content is ready to be updated, in return it sends back a signal to tell the header submodule

to advance the data and proceed with the update. Since the payload serializer submodule is

also in sync with the HeartBeat trigger, permission to transmit data to the datapath wrapper

is often granted to the payload serializer a few clock cycles after the RDH have been

updated and transmitted. The stop bit, page counter, and other information required in the

RDH format are computed based on the size of the payload and the number of data blocks

transmitted. A data block counter is implemented to make sure that the packet does not

exceed 8 KB.

It might happen that the packet serializer has no payload to send, i.e., no valuable events

were detected during the HeartBeat Frame, in this case, the payload size will be zero, and

only the RDH will be transmitted. This is known as the sync packet, it has a fixed size and

fixed format, but the information in it may vary.

 63

 Design and implementation of the user logic

There was no particular requirement set as to which of the two datapath wrappers the user

logic should utilize; this decision was left to the subdetector. This research seeks to process

data from two GBT links, the packets created from these GBT links data can either be sent to

the same datapath wrapper or can be distributed among the two datapath wrappers. This

decision is taken based on the configuration set in the GBT mapping submodule. Packets

created from the first 12 GBT links data (0-11) can be transmitted to datapath wrapper 0,

while the remaining (12-23) can be transmitted to the datapath wrapper 1. Figure 4.9 shows

a scenario in which packets from two GBT links are moved from the user logic to different

datapath wrappers via the data readout channels. The rectangles represent packets that

have been transmitted throughout time. Each packet consists of the RDH and payload. The

green colour indicates that the payload originated from GBT link #12, whereas the red

originated from GBT link #0.

Figure 4.9: Illustration of the user logic component showing how its data output is moved to

the datapath wrapper channels. This diagram was created for this work

4.2.11. Configuration and monitoring

As mentioned throughout this chapter, several signals can or must be configured externally

to improve the interoperability of the user logic design. This is accomplished through the use

of the Avalon MM interface, which is already present in the CRU firmware. The Avalon MM

interface is attached to the PCIe and serves as a link between the FLP software and the

 64

4.3 Error handling

CRU firmware. It enables the direct reading and writing of specialized registers, making the

configuration and monitoring of the user logic design a lot easier. Thus, signals from

numerous submodules are routed out to the Avalon MM registers to record the internal

circuitry of the user logic once it has been integrated into the FPGA. This is useful for

debugging purposes and managing errors.

4.3. Error handling

Monitoring the most critical submodules is an effective way to keep track of the stability of the

user logic component. However, the major challenge is how to proceed once an error has

been detected. The typical approach is to manually reset the user logic firmware. This is not

always convenient, especially in the middle of an acquisition when data collection is very

crucial. Hence, it is necessary to implement an algorithm to automatically handle some errors

without interfering with the DAQ. During the period allocated to this study, only a few errors

have been identified, and as the design expands more errors will eventually emerge. The

errors identified thus far can be divided into two categories based on their severity levels:

configuration and functional errors.

Configuration errors occur when configuration registers are not properly configured and have

an impact on the functionality of the user logic component. These errors will linger until a

hard reset or reconfiguration is performed, and they can be rather serious at times. However,

depending on which parameters were impacted, the user logic can still operate successfully

in the midst of these errors. To prevent these errors from happening, the parameters inserted

are fed back into their initial registers, where they can be visualized and adjusted when

necessary.

Functional errors are the most severe since they can prevent the user logic from functioning

properly and, in extreme cases, cause the system to crash. The major cause of these errors

is the transmission delay between finite state machines and FIFOs. To avoid such

occurrences, a two-stage D-FF synchronizer is attached to the input and output of all FIFOs

throughout the design. Furthermore, the soft reset is designed in a specific way to ensure

that all finite state machines are always in an idle state at the beginning of each acquisition.

In contrast to the hard reset, which resets everything, the soft reset simply initializes a subset

of the design, allowing the user logic to automatically reset itself without having to

reconfigure the Avalon MM registers.

 65

 66

CHAPTER 5

5. Verification, testing, and results

The architecture outlined in the previous chapter has been tested to ensure that, the design

specifications and requirements of the user logic are met. This chapter elaborates on the

methods used to perform the verification and testing of the user logic firmware before

concluding with a detailed discussion of the readability and validity of the data.

The chapter starts with a discussion on the functional verification of the user logic using

software simulations. Methodologies used for reducing the probability of bugs occurring in

the design are also covered. The chapter then goes on to describe the test bench that was

built for the hardware testing. The focus is then shifted to hardware validation and testing,

with a primary focus on the tests that have a significant impact on the user logic component.

As per the CRU expert recommendation, any subdetector wishing to implement their custom

user logic should utilize the suggested tools for synthesizing and simulating their code. For

this reason, all HDL files produced for this project were written, compiled, and simulated in

VHDL using Intel Quartus Prime Pro and ModelSim.

5.1. Functional verification

Functional verification is the most important part of design and development. It ensures that

the system operates as it should. However, even though particular debugging capabilities

have been implemented, there are no straightforward ways to determine the cause of any

unexpected errors once the firmware is integrated into the FPGA. As a result, complex test

benches are written to evaluate and validate various parts of the user logic component

before the insertion of the code in the FPGA. The main objective of functional verification is

to facilitate the testing process by providing dummy data to the Device Under Test (DUT) and

automatically checking the validity of its response. The functional verification implemented in

this design is divided into two sections: the first section is the module-based verification,

which focuses on validating each module of the user logic individually, and the second part is

the system-based verification, which combines various systems of the MID readout chain into

a single test bench for a more complex verification.

 67

 Verification, testing, and results

5.1.1. Module-based verification

By creating HDL test bench files for the most important submodules, the functionalities of

these submodules can be thoroughly evaluated using ModelSim. Several HDL test bench

files developed for this study have the same architecture depicted in Figure 5.1, which

contains two or three input files providing dummy data that are fed into the stimulus

generator included in the entity test bench file and applied to the input ports of the Design

Under Test (DUT). An output process is running in parallel with the DUT, it collects the output

data from the DUT and writes them to an output file for further analysis.

Figure 5.1: Module-based verification test bench model designed for this work

5.1.1.1. Stimulus generator

In order to create an efficient simulation, the stimulus generator implemented in the module-

based verification is made up of three primary components, each of which emulates a distinct

input interface.

Multi-clock generator

Due to the difference in clock domains from different systems interfacing with the user logic

component, a multi-clock generator is implemented in the stimulus to drive the simulation by

providing clock signals to the DUT. As illustrated in Figure 5.2, the multi-clock generator

replicates the three main clock signals introduced in the CRU clock tree architecture (refer to

section 2.5.1 and Figure 2.8).

Figure 5.2: multi-clock generator waveforms showing the three main clock signals

 68

5.1 Functional verification

TTC data generator

As the name implies, the TTC data generator emulates the TTC interface and feeds dummy

timing and trigger information retrieved from the TTC input file to the DUT. The user logic

component heavily relies on the trigger information to determine the type of readout mode of

operation. As a result, the readout mode used in the simulation can be selected by manually

enabling or disabling the SOC or SOT trigger bit located in the TTC input file. However, the

continuous readout mode is sufficient to evaluate the functionality of the entire design.

GBT data generator

Similar to the TTC data generator, the GBT data generator emulates the downlink bus line of

the GBT wrapper described in section 3.2.1. It extracts the GBT data from the GBT input file

and transmits it to the DUT. Although it is not required, the GBT data generator can duplicate

the same input information to multiple GBT links, increasing the scalability of the simulation.

Nevertheless, a single GBT link is sufficient to evaluate the functionality of the design. The

TTC and GBT generators and their waveforms are illustrated in Figure 5.3. The waveform

diagrams show how data are taken out from the files and transmitted to the DUT. It is

also worth noting that the TTC valid signal always arrives ahead of the GBT valid

signal. This is done so that the system may be initialized before processing the GBT

data.

Figure 5.3: TTC and GBT generators, as well as their waveforms. This diagram was made for

this work

 69

 Verification, testing, and results

5.1.1.2. DUT

As mentioned in the previous chapter, the user logic is designed sequentially, with each

submodule designed one after the other. The same methodology is applied in the functioning

verification. Each of the DUT is tested one after the other starting from the bottom to the top

level of the hierarchy. Once a DUT has been validated as an isolated submodule, it is

merged with the following DUT, and its output is utilized as input.

5.1.1.3. Output process

The output process uses assertions to detect unlawful transactions in the DUT. Assertions

are brief pieces of simulation code included in the VDHL files that report when particular

violations occur. The advantage of having assertions is that they report bugs when a

submodule is tested alone as well as when it is tested in conjunction with other submodules

as part of a larger hierarchy. The bugs detected are categorized into four severity levels

(note, warning, error, and failure). All severity levels are reported in the ModelSim command

line window as well as in the output files generated during the simulation. The severity failure

is the most critical one, it terminates the simulation instantly upon identifying a bug.

5.1.2. System-based verification

The verification of the design from the top level of the hierarchy might be hampered by both,

the limited amount of input data available and the amount of simulation time required to test

a larger portion of the code. As a result, it is most preferable to test each submodule

independently. However, whilst isolated tests seem to be the preferred solution, they might

not have the ability to detect all issues related to the inter-communication between

submodules in the architecture. Therefore, it is still necessary to validate the design from the

top level of the hierarchy.

As shown in Figure 5.4, the functional verification implemented in the user logic includes a

system-based verification, which was created to validate the user logic as a single

component together with the rest of the readout chain. It combines the CRU firmware

modules (provided by the CRU experts), the readout electronic firmware modules (provided

by Dr. Christophe Renard), as well as the user logic firmware (the outcome of this research)

into a single test bench for a more sophisticated verification.

 70

5.1 Functional verification

The advanced stimulus generator, in-cooperation with the readout electronics and CRU

firmware, provides the user logic component with all of the data required to execute a

complete verification. Data entering and exiting the user logic component are routed to a

distribution process, which writes them to distinct text files based on their origin. These files

(input and output) are then sent to an algorithm developed by the O² expert that compares

them to ensure data consistency and identifies errors. Finally, a report is generated stating

the number of errors detected as well as the number of events missing from the user logic

output file. The same input data can also be utilized in a standalone simulation of the user

logic to pinpoint errors detected and enables rectification.

Figure 5.4: System-based verification model designed for this work. The diagram shows how

various systems are joined to form an advanced verification

The module and system-based verifications can be replicated by following the instructions

mentioned in Appendix B, which also provides the simulation stress test results as well as

the necessary files to execute these simulations.

5.2. Hardware tests

The user logic component is an important part of the MID upgrade. It seats at the heart of the

CRU firmware and, if not designed properly, it might jeopardize the functioning of the entire

MID readout chain. To ensure that such an event does not occur, a test bench has been

developed at iThemba LABS to perform extensive tests on the user logic prototype.

 71

 Verification, testing, and results

This section dives into the architecture and evolution of the hardware test bench as well as

the methods used to perform a successful acquisition.

5.2.1. Test bench layout

A small-scale MID readout chain test bench is set up in the laboratory room S64 at iThemba

LABS. This test bench has evolved during this Master Degree. The initial setup consisted of

the Arria 10 Development Kit that was used as CRU, and a Versatile Link Demo Board

(VLDB) (Raul Martin et al., 2017), which was used as temporary readout electronics. The

Arria 10 Development Kit is loaded with an older version of the CRU firmware, which is

similar to the one found on the final CRU board with much fewer features. The VLDB is a

demonstration and development board specially designed to accommodate the GBT

protocol. The VLDB board contains a GBTx chip attached to a single GBT optical link and e-

links exposed on mini-HDMI ports, a GBT-SCA chip, and custom FeastMP radiation-hard

DC-DC converters developed at CERN. It is used to comprehend the basic operation of the

CRU and GBT protocol, however, it does not emulate the MID data. Figure 5.5 shows the

initial setup of the test bench.

Figure 5.5: Test bench initial setup, it includes the ARRIA 10 FPGA Development Kit, a VLDB,

and an oscilloscope

As the project evolves, it became important to test the user logic component on a test bench

capable of providing the MID data. The VLDB was shortly replaced with a readout electronics

prototype board, namely MID proto (Renard, 2021), capable of emulating the subdetector

data. The MID proto is based on two Altera Cyclone V FPGAs, one with seven local event

 72

5.2 Hardware tests

generators and the other consists of two regionals. The MID proto card, like the VLDB, is

equipped with a GBTx chip coupled to a single GBT optical link which serves as a data link

between the onboard FPGAs and the CRU. The MID proto was used to test the user logic

firmware with a single GBT optical link, before acquiring the CRU board and the FLP server.

Each internal generator is attached to an e-link, allowing the proto card to provide realistic

events data to the user logic component. Figure 5.6 illustrates the MID proto card.

Figure 5.6: MID readout prototype card and its main components (Renard, 2021)

A new test bench was implemented towards the end of this study to extend the capabilities of

the user logic component and match the test scenarios performed with readout electronics at

Subatech (where the readout electronics cards were designed). The new test bench is a

scaled-down replica of the MID readout chain without the RPC detectors. It includes a fully

equipped VME crate (1 x FEERIC emulator board, 16 x local, 1 x regional, and 1 x J2 bus

boards), a FEERIC board emulator, an LTU, CRU, and FLP.

Figure 5.7 depicts the new test bench setup and illustrates how various components are

linked together. The full setup can be observed on the top-left, and the bottom-left is the fully

equipped VME crate, excluding the FERRIC emulator board. The local and regional cards

are plugged into the crate via the J2 bus card sitting at the back of the crate.

CYCLONE V
FPGA

(7 locals)

Power
Supply

Connector

CYCLONE V
FPGA

(2 regionals)

GBTx
ASIC

GBT
Rx/Tx

connector

GBT-SCA
FPGA

 73

 Verification, testing, and results

Three cables are exiting the regional card, two of which are optical cables, and connect the

regional card to the CRU. The latter is a USB (2.0) cable connected to a Centos PC, which is

used to configure and program the local and regional FPGAs. Moving to the top-right is the

LTU, which uses an OLT module, which can be used to interact with multiple CRUs via a

splitter (refer to section 2.6.4). For this application, only one CRU is needed, the connection

between the LTU and the CRU is done via an optical attenuator (15 dB), a single-mode SC

to SC optical cable, and an ONU module. The LTU uses an Ethernet cable to interact with

the FLP software, which runs on CentOS 7.3, as recommended by CERN experts. Finally, on

the bottom-right is the CRU board enclosed in the FLP server. The CRU board is internally

attached to the FLP via the PCIe connectors, its FPGA can be programmed using the PCIe

interface or via its integrated USB blaster programmer, which connects to the FLP server

using a micro USB (2.0) cable.

Figure 5.7: New test bench located in the laboratory S64 at iThemba LABS. This diagram was

created for this work. It shows the main components of the readout chain, and how they are

connected

Figure 5.8 illustrates a fully loaded VME crate with the FEERIC emulator board. On the right,

an overview of the VME crate is displayed, and on the left, a zoom-in within the VME crate is

presented, with the FEERIC emulator board plugged in.

 74

5.2 Hardware tests

The FEERIC emulator board was designed by the university of LPC Clermont Ferrand in

France (where the front-end electronics were designed). It complements the test bench by

emulating the strip patterns data extracted from the RPC detectors. As it can be seen in

Figure 5.7, each local card has 4 input connectors that correspond to the 4 chambers of the

MID subdetector. The FEERIC emulator board provides strip patterns data (X1Y1, X2Y2,

X3Y3, and X4Y4) to each local card via 4 ribbon cables. In total 64 ribbon cables are used.

Figure 5.8: Fully loaded VME crate with the FEERIC emulator board. This illustration is created

for this work

5.2.2. Insertion and compilation of the user logic component

The CRU firmware specialists have created a dedicated folder (DETECTOR-UL) to house

the user logic component before compilation. This folder is located in the CRU firmware

repository available on GitLab (Bourrion, 2016). The sub-folder containing all user logic files

must be named after the subdetector (e.g., DETECTOR-UL/MID), and deployed as a CRU

firmware submodule. The compilation of the CRU firmware can be done the old-fashioned

way, using the intel Quartus prime pro GUI interface, or by using command lines. The most

common way of running the compilation is through the command line, which can be achieved

by diving into the following directory (cru-fw/preint/syn-mid) and running the following

commands: “make ip_gen;” and “make synthesis”. A detailed explanation of how to compile

 75

 Verification, testing, and results

the CRU firmware is described in Appendix C. The compilation time before and after

implementing the user logic component remains roughly similar (~ 4-5 hours). This is due to

the timing constraints, which have a significant influence on the compilation time since the

fitter attempts to minimize routing delays in order to match the required clock frequencies.

5.2.3. Test bench configuration

Although all required software (Quartus, ModelSim, ReadoutCard, FLP suite, etc…) are

already installed in the FLP server. It is still necessary to properly configure the readout chain

before proceeding with the hardware tests. The configuration can be achieved using the FLP

server, which is linked to all components of the chain. First, the CRU firmware has to be

configured to operate in “user logic mode” and the two GBT links connected to the regional

card must be synchronized and locked to the CRU clock using the GBTx programmer

software installed on an external PC. This step is necessary before going back to the FLP

server to configure the internal GBT MUX of the CRU firmware, which is used to implement

the custom MID trigger format (see section 2.6.5). The last component to configure is the

LTU, this process is pretty straightforward. Step by step instructions on how to configure the

test bench and the commands used are also given in Appendix C.

5.2.4. Data acquisition

Following the configuration of the test bench, the data acquisition is achieved using the CTP

emulator graphic user interface program installed on the FLP server. As mentioned in section

2.6.2, the LTU can be configured to operate in standalone mode and emulates the CTP

protocol. This enables the MID team to run the data acquisition independently of the CTP

electronic board. Figure 5.9 shows a screenshot of the CTP emulator. It is designed to assist

in setting up and conducting the acquisition on the FLP server without the need to know the

functioning of the DAQ system. Furthermore, the program simplifies the selection of both

continuous and triggered readout mode operations and provides, among other things, the

customization of the data acquisition. However, it should be noted that the CTP emulator is

designed to accommodate the majority of the subdetectors, and some functionalities such as

(TPC-SYNC, TPC RST, TOF RST) are made for specific subdetectors and are not utilized in

the MID data acquisition. The functionalities required to execute the MID data acquisition are

highlighted in red in Figure 5.9. To begin an acquisition, the user can simply click on the start

button and press stop to end the acquisition. The physics and Calibration

 76

5.2 Hardware tests

triggers are not mandatory in the continuous readout mode, although they can be included.

Data handling on the FLP server is taken care of by the ReadoutCard program. The program

receives data packets from the user logic through the PCIe interface. The integrity of the

packets is verified through the information present in the packet headers. A customized MID

DAQ tool is implemented to detect anomalies of the payload included in the packets. The

validity of the payload is confirmed by analyzing local and regional events extracted from the

payload. An alternative way of verifying the packets is to configure the CRU in common and

user logic mode. In this mode both the raw data and user logic packets are decoded and

compared for potential errors. The hardware test results and instructions for reproducing

these results are available in Appendix D.

Figure 5.9: Screenshot of the CTP emulator graphical user interface, which is used to conduct

a data acquisition in the test bench

 77

 Verification, testing, and results

5.3. Results

This section analyses the simulation and hardware test results.

5.3.1. Discussion of the results

The simulation stress results of the working user logic prototype were generated in ModelSim

and a portion of it is illustrated in Figure 5.10. This was achieved after spending several

hours of debugging and moving back and forth between the module-based and system-

based verifications. Although, the system-based verification was mostly used for lengthy, and

the module-based verification was used for short simulations.

 As can be observed, the user logic output packets fulfill the readout control protocol criteria

indicated in section 3.4.1, which states that packets created by the user logic must begin and

terminate with the SOP and EOP signals, and each packet must be enclosed by the RDHs.

The serialized data block format (illustrated in Figure 3.5), which relies on the concatenation

of local and regional event byte fragments into multiple data blocks was also successfully

implemented in the payload and the desired results were obtained. A clear comparison of

data before and after being processed by the user logic is illustrated in Figure 5.10. It shows

the final outcome of the data before and after the user logic firmware has performed all

processing stages. The simulation tests validate the aim of this research, which is to

enhance the way data are processed and only transmit valuable information using a very

specific format as stated in chapter 2.

The hardware tests could not be completed until a configuration error in the CRU firmware

file was resolved, which caused the data acquisition to crush every time the user logic

component was integrated into the CRU firmware. The problem was first considered to be

caused by metastability in the data when it was moved between the Avalon and the GBT

segments, given the two segments had independent input clocks (see Figure 4.1). However,

by inserting a clock synchronizer delay between the two segments that were in sync with the

Avalon clock and using Intel Quartus timing analyzer tool to check for potential timing errors,

it was discovered that this was not the source of the issue since the user logic continued to

corrupt the readout chain.

 78

5.3 Results

Figure 5.10: Simulation results extracted from ModelSim during the tests. This image compares

data before and after being processed by the user logic

 79

 Verification, testing, and results

A consultation with the CRU experts revealed that the error was due to a parameter error in

the "cru-mid.qsf" file located under the directory "/home/flp/cru-fw/preint/syn-mid/". Initially,

the setting in this file was for subdetectors that use the GBT protocol in wide frame mode and

had to be modified since the MID subdetector uses the GBT protocol in standard frame mode

(see section 2.4.5 for details on the GBT protocol). Eventually, this issue was resolved and

the hardware tests were performed. However, as expected, the hardware tests result did not

reflect the simulation results at first but were refined after each iteration until complete

accuracy was achieved.

5.3.2. Resource usage

The CRU firmware combined with the user logic component use about 160k (38%) ALMs

and 1355 (50%) RAM blocks of the available resources. These results were obtained after

integrating and compiling the CRU firmware with the user logic component. Table 5.1

provides a summary of the total FPGA resource used.

Table 5.1: FPGA resource usage of the CRU firmware after insertion of the user logic

component

Resource name Total in ratio Total in percentage

Logic utilization (in ALMs) 160,282 / 427,200 38 %

Pins 369 / 960 38 %

Block memory bits 19,982,660 / 55,562,240 36 %

 RAM blocks 1,355 / 2,713 50 %

Digital Signal Processing
Blocks

0 / 1,518 0 %

RX channels 41 / 72 57 %

TX channels 41 / 72 57 %

Phase Locked Loops (PLLs) 59 / 144 41 %

Based on the information obtained in Table 3.3 and Table 5.1, the resources usage of the

user logic component can be computed. It uses around 37k (9%) ALMs and 271 (10%) RAM

blocks of the overall resources. These findings meet the requirement of this study, but are

not good enough as the long-term aim is to process data from 16 GBT links while keeping

the overall RAM consumption below 75%. Optimization of the RAM usage in the user logic

will be required in order to process data from the complete readout chain. However, this task

falls outside the scope of this study.

 80

5.3 Results

5.3.3. Performance

During the final phase of the research, the performance of the user logic component was

evaluated using a series of stress tests performed in ModelSim. The tests were carried out

using the system-based verification technique, which includes the CRU and readout

electronics modules. The advanced stimulus was configured in such a way that an unlimited

number of valuable events was transmitted to the user logic in order to test its limits.

The tests aimed to analyze its stability and reliability, as well as to monitor the status of its

FIFOs. The longest stress test lasted 18 hours, and the results obtained are illustrated in

Table 5.2.

From the table below, it can be observed that none of the FIFO busy flags were detected and

no valuable events were rejected. The user logic went through 18 hours of simulation without

detecting any errors in the design. Furthermore, FIFO 64x8 and the FIFO 16x8 have the

fewest number of words recorded. These FIFOs could have been replaced with simple

registers to reduce the RAM consumption in the FPGA. However, they were left as they are

to facilitate the expansion of the design. More details are provided in the next chapter.

Table 5.2: Stress test results

Submodule
FIFO
size

Highest number of
words recorded in

ratio

Highest number of
words recorded in

percentage

Number
 of busy

flag raised

Number
 of events
rejected

Header 64x8 1/8 12.5% 0 0

Local
Handshake

synchronizer

168x64 13/64 20.3% 0 0

168x128 126/128 98.4% 0 0

Regional
Handsgake

synchronizer

40x64 20/64 31.2% 0 0

40x128 76/128 59.3% 0 0

Payload
serializer

256x256 88/256 34.3% 0 0

16x8 1/8 12.5% 0 0

Overall, the user logic performed admirably during the stress testing. The findings shown in

Table 5.2 demonstrate that the user logic component is stable, reliable, and built to withstand

any form of collisions without issues. It is important to highlight that the tests were performed

in continuous readout mode, which is enough for evaluating the design.

 81

 Verification, testing, and results

The next chapter will conclude the study by summarizing the key research findings and their

contribution thereof. It will review the constraints and propose recommendations to improve

and facilitate the expansion of the user logic design.

 82

CHAPTER 6

6. Conclusions and recommendations

6.1. Conclusions

The ALICE detector is undergoing a major upgrade. The goal of the upgrade is to address

the challenges of reading out lead-lead collisions at 50 kHz and proton-lead collisions at 1

MHz and higher. As part of the upgrade, the MTR subdetector was renamed to MID to

support both continuous and triggered readout modes. This research aimed to enhance the

way data are handled in the newly upgraded MID readout chain using a customized user

logic component before the commencement of LHC Run 3 in 2022. The methodology

implemented in this research shows that it is feasible to considerably reduce the large data

rate and the amount of work performed at the O² level by 80%. The user logic prototype has

passed the simulation tests and so fulfills the MID requirements. Its implementation into the

CRU firmware can be considered successful based on the design requirements mentioned in

section 3.4.1. The user logic has also been evaluated using a small-scaled readout chain test

bench located at iThemba LABS. The results obtained indicate that with some optimizations,

this prototype can immensely contribute to the development of a full-scale user logic capable

of processing data from the entire MID readout chain.

6.2. Recommendations

This thesis proposes a refined approach for handling MID raw data during LHC Run 3.

However, certain challenges need to be investigated in order to expand the user logic

architecture and improve the performance of the readout chain. As a result, future effort

should concentrate on the optimization of the RAM usage indicated in section 5.3.2 and

development of new features. Based on the results and conclusions given, the following

recommendations are made.

As mentioned in section 4.2.4, the user logic component has access to 24 incoming GBT

links and for this study, only two GBT links were used. To provide flexibility to the design, two

GBT mapping submodules were implemented to select as input any 2 out of the 24 GBT

links available. However, this will no longer be the case once a full-scaled user logic

component is incorporated in the CRU firmware, as it will require too many registers. This

leaves two possible solutions: either get rid of this feature and only use the required number

of GBT links (16 out of 24) while discarding the remaining links, or improve this feature and

use the remaining links as spare links. The first solution is the easiest but may pose a

problem if any of the links fails. The second solution will also use the required number of

 83

 Conclusion and recommendations

GBT links but will provide an option to replace any of the 16 GBT links with a spare link via

Avalon MM in case of failure.

The FIFO sizes implemented in the user logic component were chosen to accommodate the

stress tests during simulation. A quick suggestion for the future is to leave them as they are.

The results outlined in section 5.3.3, have proven that these FIFO sizes can handle any type

of collision. To overcome the RAM consumption issue, these FIFOs can be optimized to use

fewer resources in Quartus prime pro.

Finally, the user logic registers can be accessed by following the instructions described in

Appendix E. However, only someone who understands VHDL coding can decipher the

information extracted from these registers. A Python script could be written to ease the

configuration and monitoring of the user logic component using a graphical user interface.

6.3. Research and industry applications

This study resulted in the creation of a test bench where undergraduates and post-graduates

can learn and understand the fundamentals of FPGA development. The test bench was

developed in such a way that it may easily be adapted to future FPGA applications. It can be

used to understand high-speed data transmission in High Energy Physics experiments, as

well as to contribute to the studies on radiation-hard DC-DC converters and other related

topics. In terms of industrial use, this test bench can be utilized to design and test the full-

scaled user logic component as well as to maintain it on behalf of the MID team during the

LHC Run 3 and 4. Furthermore, this test bench can also be used for training purposes,

especially for engineers and technicians.

 84

7. References

ALICE Collaboration, 2008. The ALICE experiment at the CERN LHC., Journal of
Instrumentation (JINST), 3(08), p259.
https://doi.org/10.1088/1748-0221/3/08/S08002

ALICE Collaboration, 2012. Upgrade of the ALICE Experiment: Letter of Intent, Journal of
Physics G: Nuclear and Particle Physics, CERN-LHCC-2012-012, 41(8), pp.107-109.
https://doi.org/10.1088/0954-3899/41/8/087001

ALICE Collaboration, 2014. Technical Design Report: Upgrade of the ALICE Read-out &
Trigger System, CERN-LHCC-2013-019, ALICE-TDR-015, p. 165.
http://cds.cern.ch/record/1603472/files/ALICE-TDR-015.pdf?version=6

Blanc, A. & Dupieux, P., 2008. The trigger system of the ALICE muon spectrometer at the
LHC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors, and Associated Equipment. Elsevier, 604(2), pp. 301-303.
https://doi.org/10.1016/j.nima.2009.01.186

Bourrion, O., Bouvier, J., Costa, F., Dávid, E., Imrek, J., Nguyen, T.M., & Mukherjee, S.,
2021. Versatile firmware for the Common Readout Unit (CRU) of the ALICE experiment at
the LHC. Journal of Instrumentation (JINST), 16(05), p. 1-17.
 https://doi.org/10.1088/1748-0221/16/05/P05019

Bourrion, O., Evans, J., Imrek, J., Jusko, A., Kluge, A., Krivda, M., Kvapil, J., Lietava, R.,
Pérez Moreno, L.A., Villalobos-Baillie, O. & Willsher, E., 2019. Interface between CTS-CRU
and CTS-Detector Front Ends. Trigger Notes for Developers.
https://readthedocs.web.cern.ch/ate/files/113214939/113214965/1/1557935021000/CTS_CR
U_FE_interface.pdf

Bourrion, O., 2015. CRU firmware Gitlab, Readout protocol. [Private website]
https://gitlab.cern.ch/alice-cru/cru-fw/-/tree/master/DWRAPPER

Bourrion, O., 2016. CRU Firmware project GitLab.
https://gitlab.cern.ch/alice-cru/cru-fw

Boyles, N., Buthelezi, Z., Winberg, S. & Mishra, A., 2021. User Logic Development for the
Muon Identifier Common Readout Unit for the ALICE Experiment at the Large Hadron
Collider. Instrumentation and Detectors.
https://doi.org/10.48550/arXiv.2104.05476

Broadcom, 2005. High-Speed Networking Fiber Optics.
https://www.broadcom.com/products/fiber-optic-modules-components/networking
[Accessed 05 July 2021]

Buncic, P., Krzewicki, M. & Vande Vyvre, P., 2015. Technical Design Report for the Upgrade
of the Online-Offline Computing System, CERN, CERN-LHCC-2015-006, ALICE-TDR-019.
http://cds.cern.ch/record/2011297/

Brüning, O.S.(ed), Collier, P.(ed), Lebrun, P.(ed), Myers, S.(ed), Ostojic, R.(ed), Poole, J.(ed)
& Proudlock, P., 2004. LHC Design Report, Accelerators and Storage Rings, CERN.
https://doi.org/10.5170/CERN-2004-003-V-1

https://doi.org/10.1088/0954-3899/41/8/087001
http://cds.cern.ch/record/1603472/files/ALICE-TDR-015.pdf?version=6
https://doi.org/10.1088/1748-0221/16/05/P05019
https://readthedocs.web.cern.ch/ate/files/113214939/113214965/1/1557935021000/CTS_CRU_FE_interface.pdf
https://readthedocs.web.cern.ch/ate/files/113214939/113214965/1/1557935021000/CTS_CRU_FE_interface.pdf
https://gitlab.cern.ch/alice-cru/cru-fw/-/tree/master/DWRAPPER
https://gitlab.cern.ch/alice-cru/cru-fw
https://doi.org/10.48550/arXiv.2104.05476
https://www.broadcom.com/products/fiber-optic-modules-components/networking
http://cds.cern.ch/record/2011297/
https://doi.org/10.5170/CERN-2004-003-V-1

 85

 References

Caratelli, A., Paillard, C., Bonacini, S., Kloukinas, K.,Marchioro, A., Moreira, P. &., De
Oliveira, R., 2015. The GBT-SCA, a radiation tolerant ASIC for detector control and
monitoring applications in HEP experiments, Journal of Instrumentation (JINST), 10, C03034.
https://doi.org/10.1088/1748-0221/10/03/C03034

Consesa Del Valle, Z., 2007. Performance of the ALICE muon spectrometer. Weak boson
production and measurement in heavy-ion collisions at LHC, CERN-THESIS-2007-102,
Nantes: Universite de Nantes, pp. 117-132.
https://inspirehep.net/files/a09d6ba3024ce006f182765b5231cce9

Costa, F., Kluge, A., & Vande Vyvre, P., 2017. The detector read-out in ALICE during Run 3
and 4. Journal of Physics: Conference Series, 898, 032011, pp. 1-4.
https://doi.org/10.1088/1742-6596/898/3/032011

Costa, F., 2019. Assessment of the ALICE O2 readout servers. 24th International
Conference on Computing in High Energy and Nuclear Physics (CHEP), 245, pp.6.
https://doi.org/10.1051/epjconf/202024501013

Costa, F., 2021. CERN Alice O2 Group Gitlab, Raw Data Header (RDH). [Private webite]
https://gitlab.cern.ch/AliceO2Group/wp6-doc/-/blob/master/rdh/RDHv6.md

Dupieux, P., 2006. A new front-end for better performances of RPC in streamer mode.
Nuclear Instruments and Methods in Physics Research: Proceeding 6th International
workshop on Resistive Plate Chambers and Related Detectors (RPC 2001), 508(2), pp. 185-
188. https://doi.org/10.1016/S0168-9002(03)01348-2

Elena, B., 2017. Particle identification performance at ALICE, Nuclear Experiment:
Proceedings of the Fifth Annual Conference on Large Hadron Collider Physics, 15-20 May
2017. Shanghai: Shanghai Jiao Tong University.
 https://doi.org/10.48550/arXiv.1709.00288

Eulisse, K., Konopka, P., Krzewicki, M., Richter, M., Rohr, D. & Wenzel, S., 2019. Evolution
of the ALICE Software Framework for Run 3. The European Physical Journal WEB
Conferences: 23rd International Conference on Computing in High Energy and Nuclear
Physics (CHEP 2018), 214, 05010, pp. 2-4.
https://doi.org/10.1051/epjconf/201921405010

Evans, D., Jusko, A., Krivda, M., Lietava, L. & Moreno, P., 2016. Trigger System Design
Review, Birmingham: CERN, 2(1), pp. 21-31.
https://indico.cern.ch/event/533412/contributions/2172791/attachments/1291065/1922927/C
TPLTU12.pdf

Evans, L., Bryant, P., 2008. LHC Machine. Journal of Instrumentation (JINST), 3(08), p165.
https://doi.org/10.1088/1748-0221/3/08/s08001

Farahani, S., 2008. ZigBee and IEEE 802.15.4 Protocol Layers. In: ZigBee Wireless
Networks and Transceivers. s.l.:Elsevier inc, pp. 33-135.
https://doi.org/10.1016/B978-0-7506-8393-7.X0001-5

Ferreti A, 2019. The upgrade of the RPC-based ALICE Muon Trigger. Journal of
Instrumentation (JINST): 14th Workshop on Resistive Plate Chambers and Related
Detectors, 14, C06011, June 2019.
 https://doi.org/10.1088/1748-0221/14/06/C06011

https://doi.org/10.1088/1748-0221/10/03/C03034
https://inspirehep.net/files/a09d6ba3024ce006f182765b5231cce9
https://doi.org/10.1051/epjconf/202024501013
https://doi.org/10.1016/S0168-9002(03)01348-2
http://dx.doi.org/10.1051/epjconf/201921405010
https://indico.cern.ch/event/533412/contributions/2172791/attachments/1291065/1922927/CTPLTU12.pdf
https://indico.cern.ch/event/533412/contributions/2172791/attachments/1291065/1922927/CTPLTU12.pdf
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1016/B978-0-7506-8393-7.X0001-5
https://doi.org/10.1088/1748-0221/14/06/C06011

 86

References

Giubellino, P., 2015. The Big-Bang in the Lab. Science and Technology Festival (TechFest),
Powai: IIT Bombay, [PowerPoint presentation].
https://indico.cern.ch/event/357092/contributions/1766869/attachments/710437/975250/Tech
fest_IIT_Mumbai_Jan_2015.pdf

Horvath, A., 2006. LHC ring with its four main experiments, Wikipedia.
https://en.wikipedia.org/wiki/Large_Hadron_Collider#/media/File:LHC.svg

Intel, 2019. Quartus Prime Pro 18.1 Software
https://www.intel.com/content/www/us/en/software-kit/664780/intel-quartus-prime-pro-edition-
design-software-version-18-1-for-linux.html?
[Accessed 06 07 2020].

Intel, 2020. ModelSim*-Intel® FPGA Edition Software.
intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
[Accessed 2 April 2020].

Intel, 2021. Intel® MAX® 10 FPGA Device.
https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html
[Accessed 22 December 2021].

Intel, 2022. Intel® Arria® 10 FPGA Device.
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
[Accessed 07 March 2022].

Intel, n.d. FPGAs Resources Center.
https://www.intel.com/content/www/us/en/products/details/fpga/resources/overview.html
[Accessed 28 June 2021].

Kvapil, J., Bhasin, A., Bombara, M., Evans, D., Jusko, A., Kluge, A., Krivda, M., Roman,
L.,Sanket, K.N., et al., 2021. ALICE Central Trigger System for LHC Run 3. European
Physical Journal (EPJ) Web of Conferences: Proceeding 25th International Conference on
Computing in High-Energy and Nuclear Physics (CHEP 2021), 251(2), pp. 1-10.
 https://doi.org/10.48550/arXiv.2106.08353

Krivda, M., Evans, D., Graham, K.L., Jusko, A., Lietava, R., Villalobos Baillie, O., Zardoshti,
N., Sefcik, M., Kralik, I. & Perez Moreno, L.A., 2018. The ALICE Trigger System for LHC Run
3. Proceeding of the Topical Workshop on Electronics for Particle Physics (TWEPP), p.149,
11-14 September, California: University of Santa Cruz.
 https://doi.org/10.22323/1.313.0149

L., Musa, FPGAS in high energy physics experiments at CERN, 2008 International
Conference on Field Programmable Logic and Applications, pp. 2-2.
https://doi.org/10.1109/FPL.2008.4629896.

Manen, S., Dupieux, P., Joly, B. & Jouve, F., 2013. FEERIC, a very-front-end ASIC for the
ALICE Muon Trigger Resistive Plate Chambers. Conference: Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC) Seoul: IEEE, pp. 1-4.
https://doi.org/10.1109/NSSMIC.2013.6829539

https://indico.cern.ch/event/357092/contributions/1766869/attachments/710437/975250/Techfest_IIT_Mumbai_Jan_2015.pdf
https://indico.cern.ch/event/357092/contributions/1766869/attachments/710437/975250/Techfest_IIT_Mumbai_Jan_2015.pdf
https://en.wikipedia.org/wiki/Large_Hadron_Collider#/media/File:LHC.svg
https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/resources/overview.html
https://doi.org/10.48550/arXiv.2106.08353
https://doi.org/10.1109/NSSMIC.2013.6829539

 87

 References

Microchip inc, 2021. SAM D21 microcontroller.
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-D21-DA1-Family-Data-Sheet-
DS40001882H.pdf
[Accessed 14 August 2020].

Mitra, J., David, E., Mendez, E., Khan, S.A., Kiss, T., Baron, S., Kluge, A. & Nayak, T., 2018.
Trigger and timing distributions using the TTC-PON and GBT bridge connection in ALICE for
the LHC Run 3 Upgrade, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors, and Associated Equipment, Volume 922, pp. 119-
133, ISSN 0168-9002.
https://doi.org/10.1016/j.nima.2018.12.076

Moreira, P., Ballabriga, P., Baron, S., Bonacini, S., Cobanoglu, O., Faccio, F., Fedorov, T.,
Francisco, R., Gui, P. & Hartin, P., 2010. The GBT Project, Engineering: Proceedings of the
Topical Workshop on Electronics for Particle Physics (TWEPP), pp.342-346.
https://doi.org/10.5170/CERN-2009-006.342

Moreira P, Christiansen J & Wyllie K, 2015. Draft: GBT Manual, CERN.
http://padley.rice.edu/cms/OH_GE21/gbtxManual_2016.pdf

Nešković, G., 2018. Data Distribution and Load Balancing for the ALICE Online-Offline
System, [PowerPoint presentation]
https://indico.cern.ch/event/587955/contributions/2935761/attachments/1678768/2701788/C
HEP18_WP5_O2_Data_Dist_rev1.pdf
[Accessed 14 August 2020].

Renard, C., 2021. MID readout electronics project website. Subatech.
http://www-subatech.in2p3.fr/~electro/projets/alice/dimuon/trigger/upgrade/index.html

Richter, M., Krzewicki, M. & Eulisse, G., 2019. Data Handling in the ALICE O2 Event
Processing. European Physical Journal (EPJ) Web of Conferences: 23rd International
Conference on Computing in High Energy and Nuclear Physics (CHEP), 214, 01035.
https://doi.org/10.1051/epjconf/201921401035

Sauli, F., 2014. Resistive plate chambers. Gaseous Radiation Detectors: Fundamentals and
Applications, pp. 344-364.
https://doi.org/10.1017/CBO9781107337701.014

Schaeffer, A., 2020. New schedule for CERN’s accelerators and experiments.
https://home.cern/news/news/accelerators/new-schedule-cerns-accelerators-and-
experiments
[Accessed 5 December 2020].

Skyworks, 2018. Jitter Attenuator.
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5345-
44-42-D-DataSheet.pdf
[Accessed 2021 April 25].

Sierra-Polanco, T., Milanés, D. & Vera, C.E., 2018. Configuration of operation modes for a
scintillating fiber subdetector in the LHCb experiment. Neogranadina Science and
Engineering, Bogotá, 28(2), pp. 43-62.
https://doi.org/10.18359/rcin.2854

https://doi.org/10.1016/j.nima.2018.12.076
https://doi.org/10.5170/CERN-2009-006.342
http://padley.rice.edu/cms/OH_GE21/gbtxManual_2016.pdf
https://indico.cern.ch/event/587955/contributions/2935761/attachments/1678768/2701788/CHEP18_WP5_O2_Data_Dist_rev1.pdf
https://indico.cern.ch/event/587955/contributions/2935761/attachments/1678768/2701788/CHEP18_WP5_O2_Data_Dist_rev1.pdf
http://www-subatech.in2p3.fr/~electro/projets/alice/dimuon/trigger/upgrade/index.html
https://doi.org/10.1017/CBO9781107337701.014
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5345-44-42-D-DataSheet.pdf
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5345-44-42-D-DataSheet.pdf
https://doi.org/10.18359/rcin.2854

 88

References

Stocco, D., 2020. MID issues [Interview] (23 April 2020).

Tkácik, M., Jadlovský, J., Jadlovská, S., Koska, L., Jadlovská, A. & Donadoni, M., 2020.
FRED - Flexible Framework for Frontend ElectronicsControl in ALICE Experiment at CERN.
Processes, 8(5), pp. 565.
https://doi.org/10.3390/pr8050565

https://doi.org/10.3390/pr8050565

 89

8. Appendices

Appendix A

Source code

The project's source code is publicly available at the following link:

https://github.com/dthysdin/Meng-Thesis/tree/master/hdl

https://github.com/dthysdin/Meng-Thesis/tree/master/hdl

 90

Appendix B

Instructions for reproducing the simulation test results

Note:

The simulation stress test results obtained during this study, are publicly available at the

following link: https://github.com/dthysdin/Meng-Thesis/tree/master/sim/ul_output_files

This section is intended to provide instructions on how to reproduce the above-mentioned

test results, which are enough to validate the functionalities of the user logic component.

However, if interested, one could take a step further and run the system-based verification,

which provides a more in-depth understanding of the entire readout chain.

B1. Run the module-based simulation

The user logic component can be tested independently by following the instructions below.

1. Clone the user logic repository on GitHub using the command below:

git clone –recursive https://github.com/dthysdingou/Meng-Thesis.git

2. Launch ModelSim*-Intel® FPGA Edition Software

3. Use the ModelSim command window and navigate to “Meng-Thesis/sim”

4. Execute the command below to start the simulation

do ul_run_file.do

5. Wait until the simulation is completed

6. The output result files can be obtained under “Meng-Thesis/sim/ul_output_files”

7. The input files used for this simulation are obtained from a system-based simulation

performed during this study. These files are under: “Meng-Thesis/sim/ul_intput_files”.

B2. Run the system-based simulation

The user logic component can be tested together with other systems of the readout chain by

following the instructions mentioned below.

1. Clone the MID readout electronics firmware using the command below.

git clone –recursive https://gitlab.cern.ch/alice-mid/readout.git

[Permission required]

2. Clone the CRU firmware using the command below.

git clone --recursive https://gitlab.cern.ch/alice-cru/cru-fw.git

[Permission required]

3. Use ModelSim to navigate to “readout/mid_common-fw/simulatiuon/modelsim/”

4. Run the command below to start the simulation.

do mid_user_test_run_msim_vhdl_linux.do

https://github.com/dthysdin/Meng-Thesis/tree/master/sim/ul_output_files
https://github.com/dthysdingou/Meng-Thesis.git
https://gitlab.cern.ch/alice-mid/readout.git
https://gitlab.cern.ch/alice-cru/cru-fw.git

 91

Appendix C

Instructions for setting up the test bench at iThemba LABS

Note:

In this section, we will assume that all software required to configure the MID test-bench is

already installed and operational. Instructions on how to install that software is provided in

the following link: install the required software [permission is required].

After installing the necessary software, the test bench must be properly configured before

proceeding with the hardware tests. This is accomplished by following the instructions

outlined below. Please keep in mind that certain commands are executed on the FLP server

while others are executed on a Centos PC.

C1. Clone the CRU firmware GitLab repository [FLP server]

In order to provide better code management, keep the design secure, and accessible to

everyone working on the ALICE upgrade, the CRU firmware is hosted on a GitLab repository,

which can be retrieved using the command mentioned in Appendix B, B2(3).

C2. Compilation of the user logic with the CRU firmware [FLP server]

The compilation of the CRU firmware with the user logic component can be performed by the

commands below.

cd cru-fw/preint/syn-mid

make ip_gen; make synthesis

C3. Program the ARRIA 10 FPGA on the CRU [FLP server]

The SRAM object file (.sof) is generated after the compilation must be used to program the

CRU FPGA. This is accomplished using the command below.

quartus_pgm -c 1 -z --mode=JTAG --operation="p;cru.sof@1"

C4. Initialization of the system [FLP server]

After programming the Arria 10 FPGA on the CRU, the system must be initialized before the

tetsts. This must be done as root user (repeat if not successful).

su -

for i in 3b 3c ; do echo 1 > /sys/bus/pci/devices/0000\:$i\:00.0/remove; echo 1 >

/sys/bus/pci/rescan; done

https://gitlab.cern.ch/rmonteve/mid-sa-testbench/-/tree/master#centos-7-computer

 92

 Instructions for setting up the test bench at iThemba LABS

C5. Set the ReadoutCard environment [FLP server]

The ReadoutCard environment is a program developed by the CRU team to allow the user to

configure the system. This program can be set using the following command:

 module load

C6. Detect the CRUs in the system [FLP server]

This command lists all the CRUs installed in the system. This includes the PCI addresses,

the sequence number, the serial and Endpoint IDs as well as the CRU firmware and user

logic version.

roc-list-cards

As expected, this program successfully detected the only CRU card present in the test bench

and gave the following output:

==

 # Type PCI Addr Serial Endpoint NUMA FW Version UL Version

 0 CRU 3b:00.0 0000 0 1 da7521f4 da7521f4

 1 CRU 3c:00.0 0000 1 1 da7521f4 da7521f4

==

As it can be observed, the CRU card is equipped with a PCIe edge connector, that provides

a dual PCIe interface, each of which has a unique address (3b:00.0 and 3c:00.0). The

endpoints can be seen as each of the CRU firmware output channels, i.e., the user logic data

readout #0 is linked to the datapath wrapper #0, which is then liked to the PCIe interface #0.

The FW and UL versions represent the latest commit tag provided by GitLab before the code

was compiled.

C7. Configure the CRU [FLP server]

The “roc-config” is the command used to configure the ReadoutCard software. It requires

several parameters depending on the sort of test the user wishes to perform. The command

below displays information about the function of each parameter.

roc-config -h

In order to test the functionalities of the user logic component, the following parameters are

required: --i#0 is the endpoint ID to be configured, --clock=ttc specifies that the clock is taken

 93

Instructions for setting up the test bench at iThemba LABS

from the TTC, --links=0-1 indicates GBT links #0 and #1 are enabled, --data=STREAMING

indicates that the GBT datapath is in standard mode also known as streaming mode, --

downstream=MID specifies that the downstream trigger data uses the custom MID trigger

format (see section 2.6.5 for more details about the format), --pon indicates that the PON

upstream flag is enabled, --onu=1 implies that the ONU address for the PON is 1, --user-logic

means the user logic path is enabled, --force tells the system to disregard any previous

setting, --user-and-common-logic denotes that the system will operate in both user logic and

common modes and finally, --bypass means the cru firmware checker is bypassed.

roc-config --i=#0 --clock=ttc --links=0-1 --data=STREAMING --downstream=MIDTRG --pon –

onu=1 --user-logic --force --user-and-common-logic --bypass

C8. Configure the GBTx [Centos PC]

The GBTx chip in the regional card must be configured in order to synchronize the Rx and Tx

transmission clocks between the readout electronics and the CRU. The configuration can

either be achieved via the GUI interface using the GBTx programmer or via a python script

provided by Dr. Stocco. It is important to note that both procedures require root user access.

GUI interface

The GBtx programmer GUI can be launched by running the command below.

java -jar /root/gbtxprogrammer/releases/programmerv2.20180725.jar

After launching the GUI interface, make sure to check the dongle state, which should display

“v1.d”. In case of error, check the USB cable connected to the regional card. Check that GBT

link numbers #2 and #3 display below the scan button, pick #2, and set the watchdog to

“OFF”. Click on the “import.” button and select the text file from the location listed below:

 /home/CentosPC/gbtxprog/config/gbtx_mid_link0.tx

Click on “write GBTx” and on “read GBTx”, if successful the state should be locked to “idle,

18h”. Set the watchdog to “ON”, then under the scan button pick #3 and repeat the process

mentioned above. This time, import the text file from the location listed below:

/home/CentosPC/gbtxprog/config/gbtx_mid_link1.txt

Repeat the write and read procedure until the state is successfully locked in “idle, 18h” then

exit the program.

Python script (preferred option)

The GBTx chip can be configured using the commands below.

 94

 Instructions for setting up the test bench at iThemba LABS

su -

cd /home/CentosPC/gbtxprog/

source ../venv/bin/activate

python3 gbt_vldb.py --config-file2 /home/CentosPC/gbtx_mid_link0.txt --config-file3

/home/CentosPC/gbtx_mid_link1.txt config

C9. Verify the configuration [FLP server]

The following command is used to ensure that the configurations executed in B7 and B8 are

successfully implemented.

roc-status –i=#0

As expected, this command successfully recognized all parameters implemented in the CRU,

and produced the following output:

CRU ID: 0

TTC clock | Fixed offset

User and Common Logic enabled

===

 Link ID GBT Mode Loopback GBT MUX Mode Datapath RX freq(MHz) TX freq(MHz) Status Power(uW)

--

 0 GBT/GBT None TTC:MIDTRG Streaming Enabled 240.47 240.47 UP 316.0

 1 GBT/GBT None TTC:MIDTRG Streaming Enabled 240.47 240.47 UP 369.4

 2 GBT/GBT None TTC:MIDTRG Streaming Disabled 216.76 240.47 DOWN 0.0

 3 GBT/GBT None TTC:MIDTRG Streaming Disabled 197.40 240.47 DOWN 0.0

 4 GBT/GBT None TTC:MIDTRG Streaming Disabled 239.96 240.47 DOWN 0.0

 5 GBT/GBT None TTC:MIDTRG Streaming Disabled 199.07 240.47 DOWN 0.0

 6 GBT/GBT None TTC:MIDTRG Streaming Disabled 239.45 240.47 DOWN 0.0

 7 GBT/GBT None TTC:MIDTRG Streaming Disabled 198.14 240.47 DOWN 0.0

 8 GBT/GBT None TTC:MIDTRG Streaming Disabled 196.66 240.47 DOWN 0.0

 9 GBT/GBT None TTC:MIDTRG Streaming Disabled 234.56 240.47 DOWN 0.0

 10 GBT/GBT None TTC:MIDTRG Streaming Disabled 240.69 240.47 DOWN 0.0

 11 GBT/GBT None TTC:MIDTRG Streaming Disabled 240.59 240.47 DOWN 0.0

===

 95

Appendix D

Instructions for reproducing the hardware test results

Note:

The hardware test results and the output report file obtained during this study are publicly

available at the following link: https://github.com/dthysdin/Meng-Thesis/tree/master/hw

This section explains how to reproduce the above-mentioned test results using the MID test

bench available at iThemba LABS. The tests are performed using two terminal windows, one

for storing data and the other for sending triggers using the LTU GUI interface.

D1. Source the O² program (Terminal 1)

This program was created by Dr. Stocco to allow users who are unfamiliar with the system to

run the acquisition. It first sets up the O² environment and then waits for the CRU firmware to

transmit data upon receiving triggers. As mentioned in Appendix A, the CRU is configured to

operate in both common and user logic mode. As a result, this program stores both the raw

and the compressed data extracted from the user logic. The maximum amount of raw and

compressed data storage is set to “100 MB”.

. ~/setupO2.sh

 alienv enter O2/latest

/home/flp/daq_utils/scripts/launch_acquisition.sh -i "#0" -t external -u 2 -s "100M" -fl

D2. Source the LTU program and launch the GUI (Terminal 2)

Set the LTU environment and launch the LTU GUI interface using the following commands:

. /home/flp/setupLTU.sh

qtltu

Once the LTU control v1a window pops up, select “open” then click on the “CTP emulator “

button to access the emulator interface (refer to Figure 5.9 to see how to configure the

emulator). At this stage, the LTU is ready for data acquisition and testing. To begin the

acquisition, click "start", and to halt it, click “stop”. It merely takes a couple of seconds to fill

up a 100 MB file. Keep an eye on Terminal 1 as it will notify you as soon as the files are full.

D3. Read the output data raw files (Terminal 1)

Following the completion of the acquisition, three distinct files are created. The raw data from

the GBT links #0 and #1 can be found in “readout files_0_0.raw” and ”readout files_0_1.raw”,

respectively, while the output data from the user logic can be found in “readout files_0_15”.

https://github.com/dthysdin/Meng-Thesis/tree/master/hw

 96

 Instructions for reproducing the hardware test results

The instructions listed below show the commands used to read these files.

cd ../ul_common/

o2-mid-rawdump readout_file_0_0.raw | less

o2-mid-rawdump readout_file_0_1.raw | less

o2-mid-rawdump readout_file_0_15.raw | less

D4. Execute the O² checker (Terminal 1)

The O² checker compares the three files created during the DAQ to ensure data consistency

and identify errors. The command required to execute the checker is listed below.

o2-mid-raw-ul-checker --feeId-config-file /home/flp/daq_utils/config/feeId_mapper.txt --crate-

masks-file /home/flp/daq_utils/config/crate_masks.txt --bare-filenames

readout_file_0_0.raw,readout_file_0_1.raw --ul-filenames readout_file_0_15.raw

D5. Read the report file (Terminal 1)

A report file is created right after the checks have been completed. This file details the

number of errors found and events missing from the user logic output file. The command

listed below enables the user to open the report file.

more check_ul.txt

In most cases, no faults will be found. The hardware tests can be redone by repeating the

preceding stages. Otherwise, shut all terminal windows to bring the tests to an end.

 97

Appendix E

Instructions for accessing the registers

Note:

The CRU team uses the “roc-reg” tools to read and write the CRU firmware registers. These

tools use low-level functions for directly interacting with the CRU over the PCI-e interface.

They are intended for development and debug purposes. The “roc-reg-read” command is

used to read the register while the “roc-reg-write” is used to write to the register. These

commands use four parameters: “--i”, which is the endpoint ID of the CRU, displayed in the

output of the “roc-list-cards” command (see Appendix C). The second parameter is

“channel”, which is used to access the Avalon bus, the channel to be used is 2. The third

parameter is “address”, which is the registered address assigned by the user logic. All

addresses related to the user logic component always start with “--add=0xC8”. The fourth

parameter varies based on the purpose of the action to be executed. During reading, the

fourth parameter is “--range”, which determines the range of the register to be read. During

write, the fourth parameter is “--val”, which represents the value written to the register.

The following commands are used to read/write the user logic registers. These commands

are executed on the FLP server.

===

E1. Read all Avalon registers under

roc-reg-read-range --i=#0 --ch=2 --add=0xc80004 --range=31 # Read all registers

 ===

E2. Write MID Reset

roc-reg-write --i=#0 --ch=2 --add=0xc80000 --val=0x00000001 # Reset

===

E3. Read/Write MID CRUID register

roc-reg-write --i=#0 --ch=2 --add=0xc80004 --val=0x00000001 # Write CRUID = 1

roc-reg-write --i=#0 --ch=2 --add=0xc80004 --val=0x00000000 # Write CRUID = 0

roc-reg-read-range --i=#0 --ch=2 --add=0xc80004 --range=1 # Read CRUID

===

E4. Read/Write MID switch register content

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000000 # Write switch (0)

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000001 # Write switch (1)

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000002 # Write switch (2)

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000003 # Write switch (3)

roc-reg-read-range --i=#0 --ch=2 --add=0xc80008 --range=1 # Read switch

 98

 Instructions for accessing the registers

===

E5. Read/Write GBT Mapping

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000000 #UL link 0 => GBT link 0

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000001 #UL link 0 => GBT link 1

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000002 #UL link 0 => GBT link 2

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000003 #UL link 0 =>GBT link 3

-- #

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000009 #UL link 0 => GBT link 9

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000A #UL link 0 => GBT link 10

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000B #UL link 0 => GBT link 11

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000000 #UL link 1 => GBT link 0

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000001 #UL link 1 => GBT link 1

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000002 #UL link 1 => GBT link 2

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000003 #UL link 1 => GBT link 3

 #

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000A #UL link 1 => GBT link 10

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000B #UL link 1 => GBT link 11

===

E6. Read/Write MID synchronization

roc-reg-write --i=#0 --ch=2 --add=0xc80014 --val=0x00000080 # Write sync value

roc-reg-read-range --i=#0 --ch=2 --add=0xc80014 --range=1 # Read sync value

===

E7. Read trigger register

roc-reg-read-range --i=#0 --ch=2 --add=0xc80034 --range=1 # Read trigger monitor

===

E8. Read datapath wrapper registers

roc-reg-read-range --i=#0 --ch=2 --add=0xc80038 --range=1 # Read DWrapper#0 register

roc-reg-read-range --i=#0 --ch=2 --add=0xc8003C --range=1 # Read DWrapper#1 register

===

E9. Read gbt registers

roc-reg-read-range --i=#0 --ch=2 --add=0xc80040 --range=2 # read GBT#0 and GBT#1
===

