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1. ABSTRACT 

 

 

A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) at CERN is 

going through a major upgrade during which some of its subdetectors are replaced with new 

ones, while others are equipped with new electronics to handle the expected higher collision 

rates in the current running period (Run 3), which will start in 2022. As part of the upgrade, 

certain subdetectors such as the Muon Trigger (MTR), renamed to Muon Identifier (MID), 

now operate in a continuous, triggerless readout mode, in addition to the previous triggered 

readout mode. Due to the increased quantity of data, typical methodologies are impossible to 

employ without massive efforts to expand the processing capacity. Since the new ALICE 

computing system cannot keep up with the increased data flow of the MID, a new processing 

algorithm has to be established. 

 

The MID employs a Common Readout Unit (CRU) to interact with all subsystems of its new 

readout chain. The CRU, based on the PCIe40 hardware and the ARRIA 10 FPGA, is 

designed to meet the ALICE requirements. Its common firmware framework enables data 

taking in both continuous and triggered modes from most ALICE subdetectors and can be 

customized to meet the needs of any subdetectors through the use of a user logic 

component placed at the heart of the CRU firmware. This research project provides a new 

approach to processing the MID readout data based on the user logic component. Innovative 

methods for reducing the high bandwidth data rate and adaptations to ease data handling in 

the computing system have been introduced. In order to test and evaluate the user logic, a 

laboratory test bench equipped with a small-scaled MID readout chain has been developed 

at NRF iThemba LABS. Finally, the research findings and deliverables of this research can 

be used as a preliminary solution for a full-scaled user logic component, as well as by other 

postgraduate students for their studies. 
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5. NOMENCLATURES 

 

Cavern – is a large subterranean space where the detector is situated. 

Collision – particles smashing together in the detector. 

Lead – is an elemental heavy metal particle present in the nature and industrialized product  
 
LHC Run – is a running period of which the LHC goes online, it usually lasts about 4 years. 
 
Muon – is a particle that is identical to an electron but heavier. 
 
Plasma – is a matter heated to high temperature, it is so hot that electrons are torn from 
atoms, resulting in an ionized gas. 
 
Proton – is a subatomic particle with a positive charge equivalent to an electron. 
 
Subdetector – is a component of the detector (e.g., the MID subdetector is a component of 
the ALICE detector). 
 
Submodule – is a module that is part of a bigger module. 
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CHAPTER 1 

1. Introduction 

 

 

Since the early days of its first employment in the 1960s, the distinctive qualities of Field 

Programmable Gate Array (FPGA) such as integration, flexibility, low power, and high 

bandwidth communication have allowed various new and critical approaches (Intel, n.d.). 

FPGAs are the result of multiple generations of sophisticated technology, and they are often 

recognized as one of the major components utilized in the data acquisition of detectors in 

high-energy physics experiments (Musa, 2008). However, the need for customized 

instruments entails ongoing research and development of new tools, electronics and 

instrumentation methods. This work provides a new customized FPGA firmware for one of 

the four collision points of the largest science experiment in the world, where technology is 

rapidly and continuously evolving.   

 

The ALICE detector (ALICE Collaboration, 2008) at the Large Hadron Collider (LHC) (Evans 

L., 2008) at the European Organization for Nuclear Research (CERN) is undergoing a major 

upgrade during which some of its subdetectors are replaced with new ones, while others are 

equipped with new electronics to cope with higher collision rates planned for the following 

years. Like most of the subdetectors in ALICE, the MID is taking full advantage of today's 

FPGAs by trying to improve the way data are processed in its readout chain. This research 

aims to identify the best approach to process data from the MID subdetector using a 

customized user logic firmware. This user logic firmware is written in the VHDL programming 

language and can implement multiple features tailored to the specifics of the MID. 

 

This chapter begins with background information on the experiment and then introduces the 

ALICE detector. The goals of the project are established, and an overview of the strategy 

used to achieve these goals is provided. The hypothesis, as well as the constraints and key 

contributions, are listed. 

 

1.1. Background 

 

1.1.1. ALICE experiment 

 

CERN (Brüning, et al., 2004) is the world’s leading laboratory for nuclear and particle physics 

research located on the border of Switzerland and France. CERN houses the LHC, which is 

about 100 meters below the surface and 27 kilometres in circumference (CERN, 2008).  
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The LHC produces particle beams, i.e., proton-proton (p-p), proton-lead (p-Pb), and lead-

lead (Pb-Pb) at ultra-relativistic energies to create and study the characteristics of a highly 

dense form of matter reminiscent of the early Universe a microsecond after the Big Bang 

(Giubellino, 2015). Spread along the LHC ring are four individual experiments positioned 

around the four collision points where the beams collide. As shown in Figure 1.1, one of 

these experiments is ALICE. 

 

For a few millionths of a second after the Big Bang, the universe consisted of a hot plasma of 

deconfined elementary particles called quarks and gluons. A few microseconds later, this hot 

plasma known as the quark-gluon plasma (QGP) cooled further down to form hadrons, 

amongst others protons and neutrons, the fundamental building blocks of atomic matter. The 

conditions of the QGP can be created in high-energy heavy-ion collisions at the CERN LHC. 

ALICE is the detector at the CERN LHC dedicated to studying this strongly interacting 

matter, the QGP, and its properties by recording data in Pb-Pb collisions, which also requires 

information from pp and p-Pb collisions for a complete study. 

 

 

Figure 1.1: LHC ring with its four main experiments, ALICE, ATLAS, LHCb, and CMS as well as 

its super proton synchrotron (SPS), proton synchrotron (PS), for the generation of p and Pb 

beams (Horvath, 2006) 

 

1.1.2.  ALICE detector 

 

To reconstruct and identify a myriad of particles created in these collisions, the ALICE 

detector illustrated in Figure 1.2, is using a set of 19 subdetectors extended over a length of 

26 m and 16 m in height and width, weighing over 10 000 tons. The subdetectors 

encapsulated in a toroid magnet (L3) provide information about the mass, velocity, and  
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electric charge of the particles by measuring their tracks. Each subdetector is designed to 

study different aspects of the particles created in the collisions. 

 

The ALICE detector consists of two main regions: the central barrel region and the forward 

region known as the Muon Spectrometer. 

 

The central barrel detectors are surrounded by a solenoid L3 magnet providing a field of 0.5 

T. At the center of the central barrel and closest to the beamline is the Inner Tracking System 

(ITS) composed of six layers of silicon detectors: Silicon Pixel Detector (SPD), Silicon Drift 

Detector (SDD), and Silicon Strip Detector (SSD). The ITS is encompassed by a cylindrical 

Time Projection Chamber (TPC), three-particle identification arrays of Time of Flight (TOF), a 

ring imaging of Cherenkov High Momentum Particle Identification Detector (HMPID), and a 

Transition Radiation Detector (TRD). The outer surface layer contains the Electromagnetic 

Calorimeters (EMCal), and the Photon Spectrometer (PHOS). Small-scale subdetectors used 

for global event identification and triggering such as the Zero Degree Calorimeter (ZDC), 

Photon Multiplicity Detector (PMD), Forward Multiplicity Detector (FMD), T0, and V0 are 

located on either side of the interaction point. On the three upper outside faces of the 

solenoid L3 magnet is A Cosmic Ray Detector (ACORDE). It consists of an array of plastic 

scintillator counters and provides accurate information about cosmic ray events. 

 

 

Figure 1.2: Schematic overview of the ALICE detector with its subdetectors. This picture was 
taken during the LHC Run 2 before the long shutdown upgrade 2 (Elena, 2017) 
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The Muon Spectrometer is designed to measure muon production from the decays of 

quarkonia, low mass vector mesons, heavy-flavor hadrons, and electroweak bosons 

(Consesa De Valle, 2007). The Muon Spectrometer has an angular acceptance of 171˚- 

178˚, corresponding to the pseudorapidity region −4.0 < η < −2.5. The Muon Spectrometer 

covers a total length of ≃ 17 m and it is composed of the following components:  front-

absorbers to filter all particles except muons coming from the interaction point, a large dipole 

magnet, high-resolution Muon Tracking Chambers (MCH), a 120 cm thick iron wall (Muon 

Filter), and a Muon Trigger (MTR). 

 

1.1.3.  Muon Trigger 

 

The MTR system is equipped with a configurable threshold to provide trigger signals for 

selecting events of interest and discarding events with only low momentum muons (p<4 

GeV/c). As illustrated in Figure 1.3, the muon trigger is based on 72 single-gap Resistive 

Plate Chamber (RPC) detectors, arranged in 2 stations of 2 chambers, each at a distance of 

about 16.1 m and 17.1 m from the interaction point, respectively. Each RPC consists of two 

planes: a positively charged anode and a negatively charged cathode, both made of very 

high resistivity plate plastic material and separated by 2 mm of a gas mixture of Ar, CH2F4, 

C4H10, and SF6. Once a charged particle such as a muon passes through the chamber, it 

knocks electrons out of the gas atoms. These electrons in turn hit other atoms, causing an 

avalanche of electrons. Since the electrodes are transparent to the electrons, they are 

instead picked up by external metallic strips after a small but precise time delay. The 

combination of hit strips firing gives a prompt measure of the muon momentum, which is 

read-out by the front-end electronics, known as A DUaL Threshold (ADULT) card (Dupieux, 

2006). The signals from the ADULT cards are then propagated to the readout electronics 

based on three programmable circuits (local, regional and Global) working in sequential 

mode at 40 MHz, to make immediate decisions about the validity of the data. The ADULT 

electronics were initially developed for streamer mode operation with a gas mixture for the 

LHC Run 1 (2010-2012). A few years later, a maxi-avalanche operation mode was 

introduced for the LHC Run 2 (2015 - 2018), where the signal amplitude was smaller than in 

the streamer mode, but still compatible with the minimum threshold of 7 mV set in the 

ADULT cards. The subdetector planes are mounted on a mechanical frame on rail support 

that can be moved to allow access to the chambers for maintenance purposes. 
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The MTR will be called MID after the upgrade for Run 3 (2022 – onwards). Technical details 

concerning the new MID readout chain are described in chapter 2, as the work described in 

this thesis is focused on this specific subdetector. 

 

 

Figure 1.3: Left: View of the two trigger stations positioned behind the muon filter. Right-top: 
schematic view of the cross-section of the RPC. Right-bottom: an independent RPC module 

equipped with front-end electronics  

(Adapted from Sauli, 2014) 
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1.2.   LHC Run 3 

 

Based on data collected in Runs 1 and 2 (~10 petabytes of raw data), ALICE is the leading 

heavy-ion experiment in the world and is quickly expanding the knowledge gathered in 

previous experiments all over the world. The LHC is currently going through three-years 

planned second Long Shutdown called (LS2), which started at the end of 2018 to prepare for 

Run 3. In line with the LHC upgrade, the ALICE detector is undergoing a major upgrade. This 

upgrade addresses the challenge of reading out lead-lead collisions at a rate of 50 kHz and 

proton-proton at 1 MHz and higher. At the center of the ALICE upgrade strategy, is a high-

speed readout approach based on a Common Readout Unit (CRU). The CRU has been 

developed for detector data readout, concentration, reconstruction, multiplexing, and data 

decoding on the Online-Offline (O²) computing system.  

Many of the proposed physics observables require a change in the data-taking strategy, 

moving away from triggering a small subset of events to continuous online processing and 

recording of all events. To achieve these goals, the ALICE detector is being upgraded in 

such a way that all interactions will be scrutinized with precision. The upgrade entails the 

replacement of some subdetectors with new ones, making use of new technologies, while 

most others are being equipped with new front-end and readout electronic systems. The LHC 

Run 3 was planned to start in the middle of 2021 onwards but has been postponed to March 

2022 due to the global pandemic (Schaeffer, 2020). 

 

1.2.1. The upgrade:  Muon Trigger to Muon Identifier 

 

For the past 10 years since the beginning of LHC Run 1, the selection of single muon and di-

muon events with a maximum trigger rate of 1 kHz was provided by the MTR, as well as 

muon identification. However, to cope with the increased luminosity of the LHC during Run 3, 

this current trigger strategy is no longer sufficient. The upgrade trigger strategy described in 

the letter of intent (ALICE Collaboration, 2012) does not require a muon trigger since all 

events of interest will be read out upon the interaction trigger before online selections. For 

this reason, as part of the upgrade, the MID will only play the role of muon identifier. 
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1.2 LHC Run 3  

 

 

1.3. Problem statement  

 

Several issues concerning the readout arose during the transition from MTR to MID. These 

issues (Stocco, 2020) were observed throughout a preliminary series of tests conducted on 

the MID readout chain at Subatech, Nantes, France, where the readout electronics were 

developed. The upgraded system showed limitations when running without data pre-analysis 

performed at the CRU firmware level. Among these limitations are large data rates, 

desynchronization of data, lack of hardware resources, and, many other minor issues related 

to the data format transmitted to the O² computing system. All these limitations had to be 

addressed urgently. 

 

1.3.1. Large data rate 

 

In the triggerless readout chain, all events are read out continuously. This results in a 

bandwidth of 3.2 Gbps generated by each data link in the chain. This large amount of data is 

a problem for the O² computing facility to conduct data processing concurrently without data 

compression at the CRU firmware level. The readout electronics data links are based on an 

80-bit frame transmitted continuously at 40 MHz (25 ns), which corresponds to the LHC 

bunch crossing interval. The Bunch Crossing (BC) interval is the period between bunches of 

particles crossing each other in the LHC. In other words, it is the amount of time between 

collisions. On the other hand, as previously mentioned, one of the primary goals of the 

ALICE detector upgrade is to read out lead-lead collisions at 50 kHz (20 µs), and proton-

proton collisions at 1 MHz (1 ns). This indicates that data worth analyzing are generated 

every 800 bunch crossings (20 µs / 25 ns = 800 BCs) during lead-lead collisions and every 

40 bunch crossings (1 µs / 25 ns = 40 BCs) during proton-proton collisions. Data collected 

outside this frame are meaningless and must be suppressed. Retaining these data in the 

memory results in inefficiency and a waste of memory. 

 

1.3.2. Desynchronization of data 

 

The data obtained from all readout electronics occur simultaneously, at fixed periods, and 

are transmitted to the CRU over a wide set of optical links. However, differing transmission 

delays result in the data from the various links losing synchronization when transmitted to the 

O² computing system. Therefore, they cause more problems further along the chain at the 

synchronous and reconstruction levels. 
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1.3.3.  Lack of hardware resources 

 

The O² computing system is capable of handling the data rate from a single regional crate at 

the expense of two central processor units. Attempting to use a single processor to decode a 

single regional crate leads to irreversible data loss. Hence, it takes two processors to decode 

a single regional crate. However, the computer (Costa, 2019) used in the readout chain 

contains 20 processors. To decode data from the entire readout chain, the computer would 

need 32 processors, not to mention any additional processors required to perform further 

processing of the decoded data. As a result, processing data from the complete system is 

unfeasible using a single computer. Details on the architecture of the MID readout chain are 

described in the next chapter. 

 

1.4. Research aim 

 

The ALICE collaborators participating in the MID project are searching for new ways to 

process raw data. Many alternatives have been suggested, but most of them entail 

significant improvements in the existing readout chain.  Some of the improvements require 

changing the algorithm implemented in the O² processing to cope with the large data rate, 

acquiring additional CRUs, and core processor computers to process data from the entire 

readout electronics. A thorough analysis review revealed that the most efficient and cost-

effective solution is to take advantage of the existing high-speed FPGA incorporated in the 

CRU by designing a customized user logic firmware to meet the requirements of the readout 

chain.  

 

The user logic is a specific subdetector component, that can be implemented in the CRU 

firmware through a specific compilation. It is developed by the subdetector teams and can 

perform low-level data processing and other additional features before forwarding data to the 

O² computing facility for further analysis. This research aims to improve the way data are 

processed in the MID readout chain using a customized user logic firmware before the start 

of the LHC Run 3. 
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1.3 Research aim  

 

 

1.5. Objectives 

 

The research aim stated above is achieved through the following objectives: 

• Review and analyze different components of the readout chain 

• Select the best user logic algorithm to meet the MID requirements 

• Monitor errors identified during the data acquisition 

• Successfully validate the user logic simulation tests 

• Successfully validate the user logic hardware tests 

• Make recommendations for future improvements 

 

1.6. Hypothesis 

 

This study offers the possibility of designing and developing a stable and reliable user logic 

firmware that can improve the way data are processed in the MID readout chain. This can be 

achieved by developing an algorithm based on systems requirements. However, the 

difference in protocol between various systems of the readout chain makes it complex and 

can be time-consuming. 

 
The main questions to be considered are whether a user logic prototype can be designed 

and tested to meet the requirements of the MID readout chain on time before the start of the 

commissioning phase of the MID-subdetector, and whether or not this prototype can be used 

to develop a realistic user logic capable of processing data from the entire readout chain, 

considering hardware and software restrictions of the approved FPGA. 

 

1.7. Delineation  

 
This thesis is limited to the design and development of the user logic firmware prototype 

capable of pre-analyzing data from 2 regional links of the MID readout chain. This research 

analyses in detail different systems used in the readout chain and improves the way data are 

processed in the CRU. The proposed scheme is developed after intensive research and a 

good understanding of the ALICE detector. Hence, the incorporation of the user logic 

component into the existing CRU firmware is done through conformance with established 

requirements and practice. Additionally, important technical decisions such as hardware, 

communication protocols, design tools, programming languages, and most relevant resource 

usage limit of the research in question have been established before the beginning of the 

research. 
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1.8. Collaboration and main contributions  

 

In South Africa, the National Research Foundation (NRF) iThemba Laboratory for 

Accelerators Based-Science (LABS) is part of the ALICE Collaboration and contributes to the 

ALICE Muon Spectrometer upgrade, in particular the MID. In collaboration with the Cape 

Peninsula University of Technology (CPUT) and the University of Cape Town (UCT), NRF 

iThemba LABS is responsible for conducting research and developing the CRU user logic 

firmware for the MID readout chain, including setting up an in-house testbench data 

acquisition readout chain and the maintenance thereof. 

 

The user logic project started in early 2018, of which the early research and findings are 

described in (Boyles et al., 2021). Due to the rapid evolution of the ALICE CRU software and 

firmware projects, a complete modification of the initial project was of paramount importance. 

In 2020, a new design and development of the user logic, based on realistic data acquisition 

requirements and availability of relevant readout components, led to the present study. 

Together with Dr. C.Renard (expert in the readout electronics at Subatech in Nantes, 

France), the requirements to process data from 2 data links of the readout chain were 

established. To keep track of the rapid evolution of the CRU software and firmware, regular 

and rigorous consultations and discussions took place with Dr. F.Costa (ALICE CRU 

software expert at CERN) and Dr. O.Bourrion (ALICE CRU firmware developer at the 

University of Grenoble, France). For what concerns the MID O² requirements, Dr. D.Stocco 

(MID O² expert at Subatech, France) was the main contact and source of information. His 

input was required since the outcome of this research is linked to the way data will be 

handled at the next phase of the data acquisition chain. As such, he was instrumental in 

setting up some additional requirements and constraints to facilitate the readability of the 

user logic output data. 

 

Overall, the design and development of the ALICE CRU user logic firmware prototype for the 

MID readout chain are provided by the Electrical Engineering department at CPUT with 

support from various collaborators using facilities provided by the NRF iThemba LABS and 

advanced technology. 
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1.9. Methodology 

 

The research methods that are utilized for the development of this thesis are:  

 

• Literature review: since in many cases the written literature is not available on the 

readout chain, the information was gathered by reading technical specification 

papers, IEEE published journals, conferences, interviewing specialist engineers in 

the data acquisition chain, and through the World Wide Web.  

 

• Prototyping: Intel Quartus Prime Pro 18.1 (Intel, 2019) is the main software 

environment recommended and used to design and develop the user logic. For 

this thesis, two different prototyping approaches are implemented. The rapid 

throwaway method involves exploring ideas by quickly developing a prototype 

based on preliminary requirements which are then revised through simulation test 

feedback. Once validated, the evolutionary approach is then introduced. This 

method uses a continuous, working prototype that is refined after each iteration of 

hardware test feedback.  

 

• Simulation tests: ModelSim Intel FPGA (Intel, 2020) is the simulation software 

used to verify the functionality of the user logic algorithm by analyzing each 

component of the model. A more advanced simulation is performed by merging 

the CRU firmware simulation files as well as the MID readout electronics firmware 

simulation files into a single testbench for more efficient and accurate results. 

 

• Hardware tests: a readout testbench facility available at iThemba LABS is 

developed for practical work. Expected tests for conformance include testing of 

the user logic prototype using a fully-functional MID readout testbench set-up 

capable of emulating the same events generated by the main ALICE MID readout 

chain at CERN.  

 

• Data collection: simulation and hardware tests are conducted to collect real data 

coming in and out of the user logic firmware. A comparison between the input and 

output data is done to achieve an effective assessment of the user logic 

algorithm. 
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1.10. Thesis outline  

 

This thesis is organized into six chapters, which are outlined as follows:  

 

Chapter 1, introduces and frames this study by reviewing the background of the ALICE 

detector. It goes into further depth on the LHC Run 3 upgrades, which resulted in the 

transition from MTR to MID. The issues observed are then encapsulated into a conventional 

problem statement. The research objectives are derived from the problem statement and the 

delineation, as well as the research contribution, is established. The methodology and 

approach used to investigate and consequently execute the aims of this study are defined.  

 

Chapter 2, describes the newly enhanced MID readout chain. It highlights the role of each 

component and describes the technologies implemented to manage the increased data rates 

arising due to the LHC upgrade.  

 

Chapter 3, concentrates on the architectural design of the CRU firmware, and its features 

and functionalities. A detailed discussion of the location of the MID user logic component in 

the CRU firmware, the multiple interfaces surrounding it, the choice of design specifications, 

their benefits and drawbacks, as well as the available FPGA resources are also presented. 

 

Chapter 4, presents the design and implementation of the user logic component. It provides 

a detailed description of the functioning of each submodule and elaborates on how they are 

implemented in the user logic component.  

 

Chapter 5, covers all tests performed on the user logic component. These tests are critical 

for evaluating the performance of the user logic. The rigorous evaluations are carried out 

throughout both the functional and hardware verifications. The key findings are presented in 

the form of tables and also include a thorough discussion of the outcome. 

 

Chapter 6, concludes this thesis and makes recommendations for future study as well as the 

extension of the project. The academic and industrial benefits of the test bench at iThemba 

LABS are also explored. 
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CHAPTER 2 

2. MID readout chain 

 

As discussed in the previous chapter, the approach taken by ALICE is to read out all lead-

lead events at an interaction rate of 50 kHz. The objective behind the upgrades is to 

significantly improve vertexing and tracking capabilities at low transverse momentum. In line 

with the ALICE upgrades, the MID readout chain is also being upgraded to support 

continuous readout operation after the LS2. This upgrade entails: 

• New RPCs; 

• New front-end electronics; 

• New readout electronics 

 

This chapter deals with the description of the MID readout chain and is organized as follows. 

Section 2.1 gives a brief overview of the readout chain. The upgrade of the RPCs is 

described in section 2.2, while the front-end and readout electronics upgrades are discussed 

in sections 2.3 and 2.4. The CRU is the heart of the readout chain, and its hardware 

architecture is discussed in section 2.5. The trigger architecture, online-offline computing 

system, and detector control systems are discussed accordingly in the following sections. 

 

 

2.1. Overview 

 

The readout chain block diagram designed for this study is shown in Figure 2.1. It consists of 

21,000 strips connected to 72 RPC detectors spread over multiple Front-End Electronic 

Rapid Integrated Circuit (FEERIC) cards equipped with one or two customized Application-

Specific Integrated Circuits (ASICs) (Manen et al., 2013). The strip pattern signals from the 

FEERICs are propagated to the readout electronics using high-speed Low-voltage 

Differential Signalling (LVDS) channels. The readout electronics act as the readout interface 

and are in charge of the first stage of the trigger decision. They are mounted on the upper 

gangways inside the cavern a little further away from the detector stations, where the 

radiation is low. Since the colliding beams will produce a lot of radiation in the area around 

the ALICE detector in the cavern, the readout electronics regional cards are equipped with 

Gigabit Transceiver (GBT) radiation hardening to operate under these conditions. The CRUs 

are the key components of the chain, they combine and multiplex data from multiple readout 

electronic cards as well as timing and trigger information generated from the Central Trigger 

Processor (CTP) via the Local Trigger Unit (LTU) before transmitting the data to the O² 

computing facility for processing and storage. The CRUs are mounted in computers housed 

in the intermediary computer room, called the counting room, away from the ALICE cavern  
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and thus, do not require radiation hardening, as is the case for the readout electronics. 

These computers can be reached over the network from the main Detector Control System 

(DCS). The DCS manages the readout chain by sending commands and monitoring the 

system. Experimental data are moved from the First Level Processor (FLP) to the Event 

Processing Node (EPN) for processing and storage. The EPN is an internal component of 

the O² computing system. 

 

Figure 2.1: A schematic description of the MID readout chain architecture for Run 3 

 

2.2. RPC detectors   

 

In the ALICE cavern, three distinct forms of RPC are installed. They refer to long, short, and 

cut forms, respectively as illustrated in Figure 2.2. The beam pipe is accommodated by the 

short and cut forms. 

 

Figure 2.2: Three forms of RPCs found in the ALICE cavern  

(Adapted from Blanc & Dupieux, 2008) 
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2.1 Overview  

 

 

As briefly discussed in subsection 1.1.3, the current RPCs are composed of metallic strips 

made of copper and have three different pitch options: 1, 2, and 4 cm. The RPCs have one 

collection of strips on each side. The strips on either side of the RPCs are orthogonal to one 

another. In comparison to the dipole motion on charged-particle tracks, the vertical strips that 

have (y) hits are referred to as Non-Bending Planes (NBPs) and the horizontal strips that 

have (x) hits are referred to as Bending Planes (BPs) as shown in Figure 2.3. 

 

The amount of RPC hits in Pb-Pb collisions is expected to exceed the highest counting rate 

of about 10 Hz/cm² up to 90 Hz/cm² (Ferreti, 2019). This is marginally similar to the maximum 

rated capacity of the detector during the LHC Run 2. This rise would also hasten the aging of 

the gas gaps, which will hit the end of their projected lifespan long before the end of Run 3, 

necessitating the replacement of certain gas gaps and other affected components. 

 

 

Figure 2.3: RPC non-bending and bending strip patterns. 

 

These upgrades are distributed among three institutions. The Puricelli factory in Costa 

Masnaga (Italy) is responsible for redesigning the bakelite resistive electrodes, which feature 

a smoother surface for the bakelite used on the presently installed RPCs, the General 

Tecnica in Colli (Italy) is responsible for manufacturing the gas gaps for the new RPCs and, 

the National Institute for Nuclear Physics (INFN) in Torino (Italy) is responsible for checking 

and testing the performance of the new RPCs with cosmic rays. The installation of the new 

RPCs in the cavern started from July 2021, with the intent of installing 2 RPCs per day. In 

case of failure to meet this deadline, the MID will operate with the existing RPCs during Run 

3 until the new RPCs are ready. 
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2.3. Front-End electronics 

 

The RPC ADULT electronics have been replaced by the new FEERIC and unlike the ADULT, 

it performs amplification of analog signals from the RPCs. The FEERIC is an 8-channel 

ASIC, which uses low-cost AMS 0:35mm CMOS technology developed by the Laboratory of 

Physics Clermont-Ferrand. It is made up of a trans-impedance amplifier stage, a zero-

crossing discriminator to limit time walk effects, and a one-shot to prevent retriggering during 

100 ns and LVDS drivers. Table 2.1 summarizes the main specifications, and requirements 

of the FEERIC ASIC. In contrast to the ADULT card thresholds, which were set using an 

analog voltage distribution of just one threshold value per RPC, the FEERIC card thresholds 

would be set wirelessly during the LHC Run 3. Their values will be determined by fine-tuning 

the threshold based on the RPC efficiency while minimizing the operating high voltage. 

 

The technology selected to accomplish this task is the ZIGBEE protocol (Farahani, 2008). It 

is a wireless technology established as an open universal norm to meet the special 

requirements of ultra-low-cost, low-power wireless IoT networks based on the IEEE 802.15.4 

physical radio and works in unlicensed bands such as 2.4 GHz. The ZEGBEE is incorporated 

on the Atmel SAMD21 microcontroller (Microchip inc, 2021) and the program is based on 

Arduino libraries (I2C, SD cards, and Xbee module). This is then mounted on a printed circuit 

board called the Xbee cards. The master cards are connected to the DCS computer using 

ethernet, and the ZIGBEE (wireless) protocol is used to communicate from master to nodes. 

 

Table 2.1: Requirements of the FEERIC ASIC (Manen et al., 2013) 

Feature Value or type 

pulse polarity positive or negative 

number of channels 8 

power consumption per channel < 100 mW 

input impedance < 50 ohms 

dynamic range 20 fC < q < 3 pC 

time resolution < 1 ns 

time walk < 2 ns 

one-shot 100 ns 

output format LVDS 

signal shape square pulse 23±3 ns 
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2.2 RPC detectors  

 

 

As previously mentioned, the charge delivered within the gas gaps must be lowered to 

minimize aging and improve rate capabilities. This is achieved by operating RPCs with the 

same gas mixture but at a lower gain, in conjunction with the FEERICs, which perform 

amplification of the analog signal before discrimination. Hitherto 2384 + 336 spares FEERIC 

cards and 26 Xbee cards have been manufactured and installed in the ALICE cavern. The 

installation and commissioning of all FEERIC and Xbee cards concluded in July 2019. 

 

2.4. Readout electronics 

 

To cope with the new readout rates, the local and regional readout cards were redesigned. 

Since the triggering functionalities are abandoned, a more streamlined approach was 

introduced. The hardware implementation of the regional and local card is almost identical, 

minimizing the design and development effort by re-using the same hardware and altering 

the FPGA firmware. The global crate was replaced by a new regional crate. As shown in 

Figure 2.4, the readout electronics are divided into 16 vertical regions (8 on the left and 8 on 

the right side of the plane). Each vertical region is read out by a single regional card located 

in the regional crate. Each crate contains a backplane bus card called the J2 card, which 

provides ports to a regional card and up to 16 local cards. 

 

2.4.1. Local card  

 

For every bunch crossing, the local card receives binary data from LVDS channels, which 

indicates whether the corresponding channel has been struck or not. The local card is 

equipped with 16 LVDS input connectors (32 pins, for both the bending and non-bending 

planes). It is embedded with the Intel MAX 10 FPGA (10M50DCF484C7G) (Intel, 2021), for 

which its firmware is described in (Renard, 2021). 

 

2.4.2. J2 bus card 

 

The J2 bus card serves as an interface between the regional crate and the local/regional 

cards in terms of power, and it also serves as an interface between the local and regional 

cards in terms of data transfer. The J2 bus card has a 4-bit dip switch for assigning a specific 

identification to the regional crate, as well as three LEDs for monitoring the voltages (2.5V, 

3.3V, and 5V) supplied to the regional and local cards. 
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Figure 2.4: Geometry of the readout electronics. This diagram was created for this work. It 

illustrates the number of local cards distributed per column 
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2.3 Front-End electronics  

 

 

2.4.3. Regional card  

 

The regional card collects data from up to 16 local cards using the GBT protocol, which is 

discussed in the next section. Similar to the local card, the regional card is incorporated with 

the same Intel MAX 10 FPGA. However, unlike the local card, it is equipped with two bi-

directional GBT optical links allowing transmission and reception of data to/from the CRU. 

The implementation of 2 GBT optical links per regional card enables complete regional crate 

data transfer. The firmware implemented in the regional card FPGA is a slightly modified 

version of the local card firmware, which is also described in (Renard, 2021). 

 

2.4.4. Event data formats 

 

Events are stored in the local and regional card multi-buffers for each trigger. The multi-event 

buffer in the local card carries strip patterns, therefore it is larger than the one found in the 

regional card. The event data formats of the local card and regional card are shown in Table 

2.2 and Table 2.3, respectively. 

 

Table 2.2: Local event format (Renard, 2021) 

Coding of 
SOx, EOx, RESET, CALIBRATE 

Event in LOCAL 
Bits 

 

Coding of 
PHY, ORBIT 

Event in LOCAL 
Bits 

 

Coding of 
self-triggered DATA 

Event in LOCAL 
Bits 

START BIT (always '1') 
CARD TYPE (always '1'=LOCAL) 
LOCAL BUSY ('0'=OK; '1'=FIFO 

full) 
LOCAL DECISION (tracklet) 
ACTIVE ('0'=OFF; '1'=ON) 

REJECTING ('0'=OFF; '1'=ON) 
MASKED ('0'=OFF; '1'=ON) 

OVERWRITED ('0'=OFF; '1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

START BIT (always '1') 
CARD TYPE (always 

'1'=LOCAL) 
LOCAL BUSY ('0'=OK; '1'=FIFO 

full) 
LOCAL DECISION (tracklet) 
ACTIVE ('0'=OFF; '1'=ON) 

REJECTING ('0'=OFF; '1'=ON) 
MASKED ('0'=OFF; '1'=ON) 
OVERWRITED ('0'=OFF; 

'1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

START BIT (always '1') 
CARD TYPE (always 

'1'=LOCAL) 
LOCAL BUSY ('0'=OK; 

'1'=FIFO full) 
LOCAL DECISION (tracklet) 

ACTIVE (always '1'=ON) 
REJECTING (always '0'=OFF;) 

MASKED ('0'=OFF; '1'=ON) 
OVERWRITED ('0'=OFF; 

'1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

SOx 
EOx 

PAUSE (always '0') 
RESUME (always '0') 

CALIBRATE 
PHY (ignored) 

RESET 
ORBIT 

1 
1 
1 
1 
1 
1 
1 
1 

SOx (always '0') 
EOx (always '0') 

PAUSE (always '0') 
RESUME (always '0') 

CALIBRATE (always '0') 
PHY 

RESET (always '0') 
ORBIT 

1 
1 
1 
1 
1 
1 
1 
1 

Always '0' 8 

LOCAL bunch counter 16 LOCAL bunch counter 16 LOCAL bunch counter 16 

LOCAL board position in Crate (0-
15) 

4 
LOCAL board position in Crate 

(0-15) 
 

LOCAL board position in Crate 
(0-15) 

 

Status: "0xF" 4 Always '0'  
Data:  detector plane(s) (1 bit / 

plane) 
 

Status: Mask registers 
(SOx=’1’|EOx=’1’) 

Data: all strip patterns (not 
masked) 

[(X4, Y4), (X3, Y3), (X2, Y2), (X1, 
Y1)] 

32*4 N/A 0 

Data: Only masked strip 
pattern(s) 

[(X4, Y4), (X3, Y3), (X2, Y2), 
(X1, Y1)] 

32*i 

Total number of bits 168 Total number of bits 40 Total number of bits 8*i 

Bunches needed to send 21 Bunches needed to send 5 Bunches needed to send 9 to 21 
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Table 2.3: Regional event format (Renard, 2021) 

Coding of SOx, EOx, RESET, 
CALIBRATE Event in 

REGIONAL 
Bits 

 

Coding of PHY, ORBIT Event in 
REGIONAL 

Bits 

 

Coding of self-triggered DATA 
Event in REGIONAL 

Bits 

START BIT (always '1') 
CARD TYPE (always 

'1'=LOCAL) 
LOCAL BUSY ('0'=OK; '1'=FIFO 

full) 
LOCAL DECISION (tracklet) 
ACTIVE ('0'=OFF; '1'=ON) 

REJECTING ('0'=OFF; '1'=ON) 
MASKED ('0'=OFF; '1'=ON) 
OVERWRITED ('0'=OFF; 

'1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

START BIT (always '1') 
CARD TYPE (always 

'1'=LOCAL) 
LOCAL BUSY ('0'=OK; '1'=FIFO 

full) 
LOCAL DECISION (tracklet) 
ACTIVE ('0'=OFF; '1'=ON) 

REJECTING ('0'=OFF; '1'=ON) 
MASKED ('0'=OFF; '1'=ON) 
OVERWRITED ('0'=OFF; 

'1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

START BIT (always '1') 
CARD TYPE (always 

'1'=LOCAL) 
LOCAL BUSY ('0'=OK; '1'=FIFO 

full) 
LOCAL DECISION (tracklet) 

ACTIVE (always '1'=ON) 
REJECTING (always '0'=OFF;) 

MASKED ('0'=OFF; '1'=ON) 
OVERWRITED ('0'=OFF; 

'1'=ON) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

SOx 
EOx 

PAUSE (always '0') 
RESUME (always '0') 

CALIBRATE 
PHY (ignored) 

RESET 
ORBIT 

1 
1 
1 
1 
1 
1 
1 
1 

SOx (always '0') 
EOx (always '0') 

PAUSE (always '0') 
RESUME (always '0') 

CALIBRATE (always '0') 
PHY 

RESET (always '0') 
ORBIT 

1 
1 
1 
1 
1 
1 
1 
1 

Always '0' 8 

REGIONAL bunch counter 16 REGIONAL bunch counter 16 REGIONAL bunch counter 16 

REGIONAL crate position (0-15) 4 REGIONAL position crate (0-15) 4 REGIONAL crate position (0-15) 4 

Status: Mask registers (SOx=’1’| 
EOx=’1’) 

Data: All tracklet inputs (not 
masked) 

4 Always '0' 4 
Data:  detector plane(s) (1 bit / 

plane) 
4 

Total number of bits 40 Total number of bits 40 Total number of bits 40 

Bunches needed to send 5 Bunches needed to send 5 Bunches needed to send 5 

 

 

2.4.5. Gigabit Transceiver protocol 

 

The GBT protocol architecture was created at CERN, for use in the LHC, which requires high 

bandwidth as well as radiation protection (Moreira et al., 2010). Embedded in the regional 

cards is a radiation-hardened ASIC known as GBTx. This ASIC contains a high-speed 

serializer and deserializer that takes data and then transmits them through a laser 

transmitter. The laser transmitter utilized is a special component manufactured at CERN. The 

GBT optical link controller is implemented as a module in the CRU firmware. The GBT 

protocol operates in 3 different modes: standard frame, wide frame, and 8B/10B frame. 

Figure 2.5 depicts the standard frame mode used in the MID readout chain. 

 

The standard frame is continuously transmitted during a single LHC bunch crossing. It starts 

with a 4-bit header field, which is necessary for frame-level synchronization of the data 

stream. Recognizing multiple valid headers implies a proper frame-locking. The opposite 

implies that the frame synchronization has failed and the frame synchronization cycle must 

be initialized. The header field can either provide a value “0x5” (data state), which indicates 
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that the frame includes legitimate data, or “0x6” (idle state), which indicates that the frame 

does not include valid data. The next four bits are used for slow control, the first two of which 

are for Internal Control (IC), which is reserved for controlling the GBTx ASIC. The last two 

slow control bits are for External Control (EC). The payload data and EC fields are not pre-

assigned and are utilized for a variety of functions, including Data Acquisition (DAQ), timing 

and trigger signals, and experiment control, depending on the needs of the MID. The last 32 

bits are utilized for forwarding Error Correction (FEC). The remaining 84-bit field, which 

includes the EC, has an associated bandwidth of 3.36 Gb/s, of which 3.2 Gb/s is allocated to 

the payload data. 

 

 

 

Figure 2.5: Block diagram of the standard mode encoding and decoding 

Adapted from (Sierra-Polanco et al., 2018) 

 

Before serialization, the data, EC, and IC fields are put through a scrambling process that 

concatenates them. In addition to the header, a Reed-Solomon (RS) encoder creates the 32-

bit FEC based on the scrambled data. These scrambled data are then transmitted to a 

deserializer located on the other end, which converts them back to their original format. Both 

scenarios are represented in Figure 2.6. 

 

The header is used to track frames and synchronize the receiver with the sender. The 

header is not affected by the scrambling therefore, it is easily detectable. When a GBT 

receiver is powered up, it enters a frame-lock initialization mode in which it searches for valid 

headers. After detecting a configurable number of frames with valid headers, it considers that 

the connection has been established and enters the frame tracking mode, in which it 

receives data and runs normally while searching for invalid headers. 
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Figure 2.6: Block diagram of the standard mode GBT encoding and decoding 

Adapted from (Moreira et al., 2015) 

 
The header is used to track frames and synchronize the receiver with the sender. Therefore, 

it is not affected by the scrambling and, it is easily detectable. When a GBT receiver is 

powered up, it enters a frame-lock initialization mode in which it searches for valid headers. 

After detecting a configurable number of frames with valid headers, it considers that the 

connection has been established and enters the frame tracking mode, in which it receives 

data and runs normally while searching for invalid headers. 

 
Once it is determined that a configurable number of consecutive frames is invalid, the 

synchronization is considered lost and the initialization mode is re-entered. This usually 

requires multiple invalid frames; hence, an accidental violation of a single random frame is 

not enough to cause channel synchronization. The data field (80 bits) of the GBT frame is 

used for data transmission. GBT frames are divided into control frames, data frames, and the 

header contains data valid only for the latter. The frame starts with a 4-bit identification 

header. Four headers are defined: IDLE, Start Of Packet (SOP), End Of Packet (EOP), and 

the Single Word Transaction (SWT). The IDLE frame does not contain any information. SOP 

and EOP, as the names suggest, mark the beginning and end of the detector data packet, 

which contains various packet-related metadata. The SWT frame contains any data used for 

a specific control or data transmission. On the GBT uplink, SWT frames are transmitted 

between data frames, that is, between EOP and SOP control frames. In the MID readout 

chain, the SWT frame is used to access the register bus on the regional card. The 2 bytes in 

the EC payload of the GBT frame are routed to a special slow control ASIC called GBT-SCA 

(Caratelli et al.., 2015). As mentioned above, the chip is part of the regional card. The 

communication between the CRU and SCA is handled by the CRU firmware described in the 

next chapter. 



 24 

2.4 Readout electronics  

 

 

The GBT-SCA has a large number of communication modules, including various protocols. 

The communication between the regional FPGA and GBT-SCA is carried out through the 

high-level serial link control protocol. The protocol is based on commands. In contrast to the 

direct reading and writing of registers, the transaction contains the command ID, transaction 

ID, and data required by the command. The command ID indicates what the GBT-SCA chip 

will do, such as read or write registers or perform operations. Each command transaction 

returns a batch with the same transaction ID. The return package contains status information 

and returned data. The slow control IC is used for GBTx register access, configuration, and 

monitoring. This field can also control the laser transceivers that use the main 

communication modules on the GBTx chip, which can be accessed through its registers. 

 

2.4.5.1. Electrical-links  

 

The GBTx chips on the regional cards communicate with up to 8 local card FPGAs using the 

standard GBT frame mode. It consists of connecting the GBTx chip and the regional FPGAs 

through duplex serial electrical links (e-links). Each GBT bi-directional optical link of the 

readout chain is made up of 10 serial e-links (8 local e-links + 2 regional e-links).  

 

Each of the e-links implemented in the readout chain consists of three signal lines: 

 

• Differential Clock line (dClk+/dClk-): Clock driven by GBTx to the local/regional 

FPGA 

• Differential Downlink data output (dOut+/dOut-): Data from GBTx to the 

local/regional FPGA 

• Differential Uplink data input (dIn+/dIn-): Data line from the local/regional FPGA to 

GBTx 

 
The MID readout chain is configured to operate at the maximum e-links data rate of 320 

Mb/s, with a maximum of 2 e-links per group. As mentioned earlier, each e-link is composed 

of one differential clock line (dClk+/dClk-), one differential downlink output (dOut+/dOut-), 

and one differential uplink input (dIn+/dIn-). Thus, the maximum number of differential e-link 

signals per group is 3 x 2 = 6, equivalent to 6 signal pins per group. Overall, a total of 6 x 5 = 

30 configuration pins are dedicated to the e-links. To provide the greatest possible signal 

quality and transmission reliability, the physical e-link connections are assumed to be 

differential transmission lines with a differential impedance of 100 Ω and a suitable 

termination line at the receiver end.  
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The diagram depicted in Figure 2.7 was created for this study to illustrate how the GBTx chip 

interacts with the readout electronics via e-links.  

 

 

 

Figure 2.7: E-link configuration between the GBTx chip and the readout electronics. This 

diagram is created for this work 
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2.5. Common readout unit  

 

As mentioned in the previous chapter, this study aims to design a bespoke user logic 

component that will be incorporated into the existing high-speed CRU FPGA. As a result, it is 

crucial to comprehend the functionalities of the CRU component. This section summarizes 

the clock and the hardware architectures of the CRU. The CRU firmware is covered later in 

the next chapter.  

 
2.5.1. Clock tree architecture 

 
The clock tree is designed to utilize a single reference clock for all CRU communication links 

except for the PCIe interface, which utilizes a built-in 100 MHz crystal oscillator. The CRU 

card can either be used independently with a built-in 40 MHz crystal oscillator or with a 

recovered clock retrieved from the TTS optical link. On the other hand, the TTS transceiver 

requires a constant 240 MHz reference frequency before initialization, which is generated 

locally with the help of a Phase-Locked Loop (PLL) SI5344 (Skyworks, 2018). The clock 

recovered from the FPGA is transferred to a high-performance SI5345 PLL (Skyworks, 2018) 

for jitter attenuation after it has successfully been locked to the incoming stream. The clocks 

extracted from the SI5345 PLL are then utilized to run the FPGA logic. The SI5345 PLL uses 

I²C communication to switch between local and recovered TTS clock modes. The clock 

generated from the built-in 100 MHz crystal oscillator is utilized to run many other features of 

the FPGA, including initialization and hardware monitoring.     

 

2.5.2. Hardware architecture 

 
The CRU card is based on an Intel ARRIA 10 FPGA (10AX115S3F45E2G) (Intel, 2022). It is 

equipped with two Small Form-factor Pluggable (SFP+) connections. One is used for the TTS 

connection, and the other is used as a backup. The connections from/to the readout 

electronics are ensured by up to 4x12 bi-directional channel modules, (Broadcom, 2005). 

These modules can connect to up to 24 GBT links. However, concerning the MID, 32 GBT 

links are necessary to transfer data from the complete readout electronics. Hence, 2 CRU 

cards are utilized, one for each side of the plane, and each connected to 16 GBT links. 

 
The CRU is equipped with a PCIe edge connector on the rear end, that provides a dual PCIe 

interface. This interface is synchronized with a 250 MHz reference frequency provided 

through the connector. The ARRIA 10 FPGA is also linked to temperature and current 

sensors, as well as an electrically erasable programmable read-only memory with a unique 
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identifier assigned by the manufacturer during board construction.  Other protocols are used 

to communicate with various peripheral devices. Additionally, tri-color LEDs are installed on 

the CRUs for maintenance purposes and to easily identify a specific machine among others 

in the server farm. Finally, the FPGA can be programmed using either a Joint Test Access 

Group (JTAG) connector, which is useful for software debugging in the laboratory, or a quad 

Serial Peripheral Interface (SPI) flash module. 

 

Figure 2.8 depicts a functional overview of the hardware emphasizing the characteristics 

utilized in ALICE CRU. The clock tree, as well as the FPGA and its connections with the 

different components of importance, are depicted. 

 

 

Figure 2.8: A functional overview of the hardware, highlighting the functions used in the CRU 

(Bourrion et al., 2021). 
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2.6. Trigger architecture 

 

The ALICE trigger architecture is an amalgamation of multi-link technologies based on 

several protocols. It has been optimized to function in coherence with the MID subdetector, 

allowing its readout chain to operate synchronously and efficiently (Kvapil et al., 2021). The 

trigger architecture relies on the Trigger and Timing distribution System (TTS) ability to 

efficiently distribute the critical timing and trigger information from the Central Trigger 

Processor (CTP) to the readout electronics via the Local Trigger Unit (LTU) and CRUs with 

constant latency over bi-directional 10-Gigabit Passive Optical Network (PON) links. This 

allows the MID to be read out in continuous and triggered readout mode operations. 

 

2.6.1. Central Trigger Processing 

 
The CTP is an electronic board that receives inputs from a set of triggers from contributing 

detectors and generates trigger decisions for all subdetectors (Evans et al., 2016). It interacts 

with up to 24 LTUs, one of which is dedicated to MID. The CTP is essential in trigger 

architecture as it provides periodic HeartBeat (HB) triggers as well as customized software 

triggers to the LTU for both continuous and triggered readout mode operations. 

 

2.6.2. Local Trigger Unit  

 

The LTU serves as an interface between the CTP and CRUs. It provides a clock, Orbit, and 

external trigger inputs as well as allows monitoring and control using ethernet bus protocols. 

The LTU is a 6U VME-type board equipped with a Xilinx Kintect FPGA with 2 Gigabytes of 

DDR4 memory (Krivda et al., 2018). It can be configured in two different ways (global and 

stand-alone). In global mode, the LTU acts as a transparent interface between the CTP and 

the CRU. It converts signals and provides online monitoring. Contrary, in the stand-alone 

mode, the LTU emulates the CTP protocol, allowing the MID team to perform tests, and 

calibration activities independently of the CTP, when the CTP is either unavailable or not 

necessary. 

 

2.6.3. Continuous and triggered readout modes 

 

An important requirement from ALICE is that the majority of subdetectors including the MID 

must implement a new type of readout mode on their systems. This new type of readout 

mode is called continuous readout mode and differs from the current practice.  
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In this mode, data are no longer bounded by physics trigger but rather by various data 

streams, namely HeartBeat Frames (HBFs) with a predetermined period of (89.4 µs) (Costa 

et al, 2017). These HBFs will then be aggregated by the CRU firmware into larger blocks 

called Time Frames (TFs) and transmitted to the O² systems for reconstruction and error 

handling. The HBF boundaries are determined by the HeartBeat triggers, which are 

transmitted by the CTP via the LTU. 

 

The readout electronics cards in the MID readout chain are modified to handle the 

combination of Physics and HeartBeat triggers. Each regional and local card autonomously 

tags the data using the copy of the LHC Orbit and the bunch crossing ID. For continuous 

readout mode, the payload data are sent as a continuous flow of successive frames each 

preceded with a header containing the time-based tagging. The triggered mode operates in 

the same way as the continuous mode with a few variations, it only sends a payload data 

block preceded with a header upon reception of physics triggers. Figure 2.9 shows how the 

physics and HeartBeat triggers are used for the continuous and triggered readout modes. 

 

 

 

Figure 2.9: Continuous and triggered mode trigger configuration  

Adapted from  (The ALICE Collaboration, 2014) 

 

 

2.6.4. Passive Optical Network message 

 

The PON is a point-to-multipoint network architecture that uses optical splitters to enable an 

Optical Line Terminal (OLT) to interact with several Optical Network Units (ONUs). As 

illustrated in Figure 2.10, the PON technology allows the timing and trigger message to be 

split among multiple CRUs of the readout chain using a single link. 
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Figure 2.10: Representation of the PON architecture implemented in the MID readout chain  

Adapted from (Mitra, 2018)  

The PON downstream (CTP to CRU) and upstream (CRU to CTP) messages are described 

as follows: 

 

• The PON downstream message is based on a 240-bit word transmitted 

synchronously with the LHC clock from CTP to the CRUs. The PON internally 

uses 40-bit, leaving 200-bit available for the subdetectors use. The PON 

downstream message is summarised in Table 2.4. The trigger type information is 

described in Table 2.5. 

• Upon reception of an HB trigger, each CRU of the readout chain transmits the 

PON upstream message of 56 bits to the CTP, alternatively called HeartBeat 

acknowledge message (HBam). The HBam carries information about the CRU 

status. The CTP then collects the HBam from all CRUs acknowledging that data 

have been successfully collected. 

Table 2.4: PON downstream message (Bourrion et al., 2019) 

No. of 
Bit 

Name Description 

<31:0> TType Trigger Types data 

<11:0> BCID Bunch crossing identification 

<31:0> Orbit Orbit counter 

<0:0> TTValid Trigger Type data valid 

<7:0> HBM header HeartBeat message header 

<31:0> 
First ORBIT of 

TF/HBMTF 
HeartBeat message Time Frame 

<0:0> HBMValid HeartBeat message valid 
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Table 2.5: Description of the Trigger Type bits  (Bourrion et al., 2019) 

 

Bit Name Description 

0 Orbit Orbit flag 

1 HB HeartBeat flag 

2 HBr HeartBeat reject flag 

3 HC Health Check 

4 PhT Physics Trigger 

5 PP Pre-Pulse Calibration 

6 Cal Calibration trigger 

7 SOT Start of Continuous 

8 EOT End of Continuous 

9 SOC Start of Triggered Data 

10 EOC End of Triggered Data 

11 TF Time Frame 

… … Spare 

29 TPCSync TPC synchronization 

30 TPCReset TPC reset 

31 TOF TOF special trigger 

 

 

2.6.5. MID custom trigger type format 

 

The TTC-PON trigger types contain useful information to accommodate various subdetectors 

in the ALICE experiment, although not all triggers are utilized by the MID. A special request 

from the MID team is to reduce the bandwidth transmitted to the subdetector readout 

electronics by compressing the 32-bit TTC-PON trigger types into a bespoke 8-bit trigger 

types format that will easily be interpreted by the readout electronics. This task is handled by 

the CRU firmware through a specific configuration of registers, and the agreed-upon format 

is described in Table 2.6. 
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Table 2.6: Custom trigger type format implemented to accommodate for the MID readout 

electronics (Renard, 2021) 

MID 
trigger type 

CTP 
trigger type 

CRU message to 
Readout electronics 

FEE 
trigger 
code 

SOx 
(Start Of Run) 

9: SOC 
7: SOT 

Update internal ORBIT, BCID, bunch counter 
Transmit command to all e-links 

Reset event buffers 
Start assembling events 

Start sending events 

0x80 

EOx 
(End Of Run) 

10: EOC 
8: EOT 

update internal Orbit, BCID & bunch counters 
Transmit command to all e-links 

Assemble last events 
Send last events 

0x40 

TF 
(Timeframe) 

11: TF Transmit command to all e-links 0x20 

RUNNING 
(Run status) 

14: RS Transmit command to all e-links 0x10 

CALIBRATE 6: CAL 
Update internal Orbit, BCID & bunch counters 

Transmit command to all e-links 
0x08 

PHY 4: PhT 
Update internal Orbit, BCID & bunch counters 

Transmit command to all e-links 
0x04 

RESET 12: FEErst 

Update internal Orbit, BCID & bunch counters 
Transmit command to all e-links 

Stop assembling events 
Stop sending events 

0x02 

ORBIT 0: ORBIT 
Update internal Orbit, BCID & bunch counters 

Reset internal MID's bunch counter 
Transmit command to all e-links 

0x01 

 

 

2.7. Online-Offline computing system 

 

The O² is a new computing system implemented to support both online and offline 

reconstructions (Buncic et al., 2015). Its architecture is made up of hundreds of thousands of 

processes that are spread over several nodes, and perform readout, processing, and 

storage. The architecture is shown in Figure 2.11. The online reconstruction is based on two 

types of computing nodes (FLP and EPN), while the offline reconstruction relies on the 

connection of multiple high-performance clusters, i.e., the Grid to move data from one 

storage to another. 
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Figure 2.11: O² computing system architecture 

 Adapted from (Eulisse et al., 2019) 

 

2.7.1. First Level Processor 

 

Data from various subdetectors including the MID are transmitted to dedicated DELL 

POWEREDGE R740 rack servers (Costa, 2019), namely, FLP nodes, which house the 

CRUs as the hardware interface to the front-end and/or readout electronics depending on the 

subdetector architecture (refer to Figure 2.1 for the MID readout chain architecture). In total, 

270 FLP nodes are used in the O² computing system (Richter et al., 2019). Each FLP 

compresses, merges, splits data into Sub-Time Frames (256 HeartBeat Frames from a 

single FLP), and stores them until they are forwarded to the EPN. As a result, the 

subdetector data are analyzed instantly on the EPN.  

 

2.7.2. Event Processing Node  

 

The EPNs of the O² computing system offer computational resources for data reconstruction. 

A many-to-many data distribution network configuration recomposes all Sub-Time Frames 

obtained from the subdetector FLPs over a Time Frame period (~20 ms) on one of the 

dedicated EPNs in a rational order (Nešković et al., 2018). Each EPN reconstructs these 

Sub-Time Frames and uses a variety of tasks based on the subdetector (e.g., clusterization 

and tracking for individual subdetectors) as a means to compress raw data-related 

information and reduce the size of each Sub-Time Frames from 500 GB/s to an aggregate 

rate of up to 90 GB/s before forwarding them to the on-site storage. 



 34 

2.7 Online-Offline computing system  

 

 

2.7.3 Data storage 

 

The EPN uses on-site storage as a buffer between online and offline data processing. To 

prevent overwhelming the EPN nodes already overburdened by data gathering and 

processing responsibilities, data transfer operations between the online system and the Grid 

are handled by specialized nodes of the order of 10 Data Movers (DM) (Buncic et al., 2015). 

The on-site storage is physically separated from the EPN nodes, but it nevertheless still 

provides a global storage area that is accessed by all EPNs and DMs. To minimize data pile-

ups in the EPNs and DMs, a large bandwidth protocol is implemented. 

 

2.8. Detector control system 

 

The DCS is used to monitor and control readout electronics from various subdetectors 

located in the ALICE cavern. It accesses the readout electronics via the FLP-CRU through 

the GBT links. The primary protocol considered for communication between the FLP and 

DCS is called Alice Low-Level Front-end (ALF) on the FLP side and Front-End Device 

(FRED) on the DCS side (Tkácik et al., 2020). 

 

In the current MID readout chain configuration, the ALF can read/write registers on the 

regional and local card firmware modules and publish data in the DCS control room using a 

Distributed Information Management (DIM) service (Tkácik et al., 2020). 

 

The DIM is a communication system for distributed/mixed environments, that provides a 

network transparent inter-process communication layer. The FLP node hosts a DIM server, 

which acts as a bridge between the DIM network and the CRU driver, enabling the DCS to 

interact with the readout electronics from the control room without requiring physical access 

to the FLP node. 
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CHAPTER 3 

3. CRU firmware 

 

 

This chapter presents the current CRU firmware implemented in the MID readout chain and 

illustrates how the user logic component fits into it. The architecture of the CRU firmware is 

described as well as the design requirements and specifications of the MID user logic 

component. 

 

3.1. Introduction 

 

The standard approach of delivering raw data to the O² system is no longer sufficient to fulfill 

the needs of the newly enhanced MID subdetector. As a result, an alternative option was 

presented to the collaboration (ALICE Collaboration, 2014). Since the introduction of version 

1.0.0 at the beginning of 2018, the CRU firmware can be configured in two different manners. 

The first configuration is the common mode, which interacts through various interfaces with 

various systems enabling the possibility to read out any subdetector without conducting any 

first stage data analysis in its CRU firmware. This is also known as the “CRU firmware 

without user logic”. The second configuration is the user logic mode, which is only available 

to high-performance subdetectors, such as MID, that requires first stage data analysis before 

online and offline reconstruction. In user logic mode, the MID readout electronics data are 

forwarded to the user logic component for analysis. It is the responsibility of the MID team to 

decide on how these data will be analyzed in the user logic component.  

 

One of the most important features of the CRU firmware is its ability to switch between 

common and user logic modes without reloading distinct firmware on the FPGA. For testing 

and debugging purposes, the CRU firmware can also be configured to run both modes 

simultaneously (Bourrion et al.,  2021). 

 

3.2. Firmware description 

 

The CRU firmware architecture is illustrated in Figure 3.1. From left to right, the main 

interfaces are the GBT wrappers, Board Support Package (BSP), Datapath Wrappers (DWs), 

Timing and Trigger Control (TTC), Dedicated Data Generator (DDG), slow control, and PCIe 

endpoints. All of these interfaces provide indispensable functionalities to the CRU firmware, 

and at the heart of it all is the user logic component, which will be unique to MID.   
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Figure 3.1: CRU firmware architecture  

Adapted from (Bourrion et al., 2021) 

3.2.1. GBT wrapper  

 
The GBT wrapper acts as a conduit between the MID readout electronics and the CRU 

firmware. It is made up of up to six banks, each with six bidirectional GTB links. The GBT 

wrapper can connect up to 36 GBT links in total, but only 24 are made available to the 

subdetectors. The remaining is preserved as a backup, and the configuration of the banks is 

done via slow control registers. The GBT links, as previously stated, are bidirectional. The 

purple bus line in Figure 3.1 depicts the uplink direction (CRU to FEE), whereas the green 

bus line represents the downlink direction (FEE to CRU). 

 

3.2.2. Datapath wrappers 

 
In contrast to user logic mode, where all available GBT uplinks (FEE to CRU) are directly 

attached to the user logic component, and subsequently diverted to the datapath wrappers 

after first-stage analysis, the GBT uplinks in common mode are uniformly distributed 

throughout the two identical datapath wrapper blocks. Depending on the mode selected in 

the CRU firmware, each datapath wrapper receives trigger information, gathers and 

combines raw data from the subdetector readout electronics over up to 12 GBT links, and/or 

utilized compressed data from the user logic readout channels as input. These data are then 

delayed for a few clock cycles to allow for the inclusion of the Raw Data Header (RDH).  The 

RDH enables the O² system to identify all data blocks transmitted by each subdetector in the 

ALICE experiment. 
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3.2.2.1. Raw Data Header 

 
The data blocks transmitted by the MID readout electronics must be identified and arranged 

in such a way that they can easily be recognized and processed efficiently in the receiving 

FLPs. As a result, a standard RDH format has been designed and deployed. The RDH 

format illustrated in Table 3.1 is generated by either the datapath wrappers in common mode 

or the user logic component in user logic mode to provide the necessary information required 

to identify the structure of the data in the O² system. 

 

Table 3.1: Raw Data Header format  

Adapted from (Costa, 2021) 

RDH 0 [128-bit] 

32-bit FEEID [31-16] Header size [15-8] Header version [7-0] 

32-bit Reserved [31-16] System ID [15-8] Priority bit [7-0] 

32-bit Memory size [31-16] Offset [15-0] 

32-bit DW [31-28] CRU ID [27-26] Packet cnt [15-8] Link ID [7-0] 

 

RDH 1 [128-bit] 

32-bit Reserved [31-12] BC [11-0] 

32-bit Orbit [31-0] 

32-bit Reserved [31-0] 

32-bit Reserved [31-0] 

 

RDH 2 [128-bit] 

32-bit  

32-bit Reserved [31-24] Stop bit [23-16] Page cnt [15-0] 

32-bit Reserved [31-0] 

32-bit Reserved [31-0] 

 

RDH 3 [128-bit] 

32-bit  

32-bit Reserved [31-16]  

32-bit Reserved [31-0] 

32-bit Reserved [31-0] 

 

 

The RDH fields are either populated using data transmitted by readout electronics as well as 

the LTU, or ctpemu (when the LTU is unavailable). The RESERVED fields are initialized to 

zero and saved for future usage. Table 3.2 provides a more in-depth description of various 

RDH fields. 
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Table 3.2: Field description of the Raw Data Header 

Adapted from (Costa, 2021) 

RDH Name Size in bit Description Default value 

0 
 

Header version 8 Header version number 0x06 

Header size 8 Size of the RDH in byte 0x64 

FEEID 16 FEE identification - 

Priority bit 8 Fast forward packet - 

System ID 8 Unique ID assign to subdetectors 0x25 (MID) 

Offset packet 16 Payload size before next RDH 0x2000 

Memory size 16 Size of the subdetector payload 0x2000 

Link ID 8 Number used to identify the link - 

Packet counter 8 Counter to keep track of packets - 

CRU ID 12 Number used to identify the CRU - 

DW 4 Number used to identify wrappers - 

1 
BC 12 Trigger orbit from TTC - 

Orbit 32 Trigger bunch crossing from TTC - 

2 

TRG type 32 Trigger type from TTC - 

Page counter 16 Counter to keep track of pages - 

Stop bit 8 A bit to identify the last RDH page - 

3 
Detector field 32 Subdetector specific field 0xA003(MID) 

PAR bit 16 Field used by the subdetector - 

 
 
3.2.3. Board Support Package  

 
The BSP provides access to GBT link parameters such as temperature and optical power, as 

well as the FPGA serial number. It also allows the user to reboot the FPGA into a stable 

condition. The approach used is to divide the flash memory into two sections, one for the 

stable firmware version and one for the beta version (e.g., version generated after 

implementing the user logic component). In the event of a power interruption or defective 

user logic component, the CRU firmware can simply be restored to a stable state. 

 
3.2.4. Timing and Trigger Control interface 

 
The basic function of the TTC interface is to communicate with the LTU and provide timing 

and trigger information to other interfaces. The TTC interface is divided into three distinct 

sub-components: ONU, CTP emulator (ctpemul), and Pattern player (patplayer). As the 

name implies, the ONU is named after the optical network unit found in the TTC-10G PON. 

This sub-component handles the communication with the LTU. The ctpemu is used for 

testing and debugging. During standalone tests, it may also be used to emulate the same 

information provided by the LTU-CTP. Finally, the patplayer provides a programmable 

sequence to the readout electronics when a HeartBeat or physics trigger bit is supplied by 

the ONU or ctpemu. 
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3.2.5. Detector Data Generator 

 
The DDG is capable of imitating any subdetector behavior and reproducing the data 

transmitted when the subdetector front-end and readout electronics are not available. The 

injection of the DDG data is made possible by simply configuring the GBT wrappers to 

operate in internal-loop-back mode. This enables the system to generate data without the 

need to connect to a physical subdetector. The DDG is an essential component for 

evaluating and testing the CRU firmware and software.  

 
3.2.6. Slow Control 

 
The slow control component distributes control sequences and collects status information 

from the readout electronics via GBT links using the SWT protocol. To enable slow control 

read/write access, the CRU firmware must be configured to SWT protocol using the GBT-

MUX component. 

 

3.2.7. PCIe Data Management 

 
The MID data stream passes through the Data Management interface, which moves it from 

the two Datapath Wrappers to the FLP memory. However, in order to avoid mixing up the 

data flow, the data stream is transmitted to the FLP server through a dual endpoint PCIe gen. 

3x8 interface.  This means that each half of the total GBT links is linked to a single endpoint 

through its datapath wrapper. Hence, the data flow is distributed equally among the two 

endpoints. Furthermore, communication with the Software is also achieved through the PCIe 

interface. 

 
3.3. Firmware resource usage 

 
A significant amount of effort was invested by the CRU experts in order to find a reasonable 

trade-off between lowering the ARRIA 10 FPGA resources and delivering a flexible firmware 

capable of addressing the demands of the majority of subdetectors encountered in the 

ALICE experiment. As shown in Table 3.3, the most recent firmware version (v3.10.0) 

implemented in the CRU at iThemba LABS uses about 123k/427k (29%) Adaptive Logic 

Module (ALM) and 1084/2713 (40%) Read Access Memory (RAM) blocks of the available 

resources. As a result, the MID readout chain has enough available resources to implement 

a fairly complicated user logic algorithm in the CRU firmware. However, to allow for future 

enhancements, it is advised that after inserting the user logic component, the overall ALMs 

and block RAMs consumption should be limited to less than 75%. 
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Table 3.3: FPGA resource usage of the CRU firmware before insertion of the user logic  

Resource name Total in ratio Total in percentage 

Logic utilization (in ALMs) 123,381 / 427,200 29 % 

Pins 369 / 960 38 % 

Block memory bits 17,514,564 / 55,562,240 32 % 

RAM Blocks 1,084 / 2,713 40 % 

Digital Signal Processing 
Blocks 

0 / 1,518 0 % 

RX channels 41 / 72 57 % 

TX channels 41 / 72 57 % 

Phase Locked Loops (PLLs) 59 / 144 41 % 

 

Special attention will be given to the ALMs and RAM blocks consumption throughout the 

implementation of the user logic, as it might consume a significant amount of these 

resources. The user logic design will not make use of the DSP blocks available in the FPGA, 

hence, the amount of DSP blocks used will remain unchanged. The RX and TX channels as 

well as the PLLs used in the CRU firmware will also remain unchanged. 

 

3.4. User logic component 

 

Before implementing the user logic component into the CRU firmware, it is important to 

understand the current condition of the data and the impact that the user logic will have on 

them.  

 

The CRU firmware receives 80-bit of data from a single GBT link. Following the completion of 

a HeartBeat Frame, which takes about (89.4 µs / 25 ns = 3576 BCs or LHC clock cycles), the 

CRU firmware would have acquired (80-bit x 3576 BCs = 28608-bit) of raw data. These raw 

data would be sent to the O² system in a packet form. During lead-lead collisions, each of the 

readout electronic cards is expected to generate around 4 events per Heartbeat Frame, this 

is based on the number of collisions occurring every 89.4 µs (i.e., 20 µs / 89.4 µs = 4). The 

regional card takes 5 BCs to transmit an event while the local card takes up to 21 BCs (refer 

to Table 2.2 and Table 2.3). This results in 40-bit per regional event and 160-bit for the 4 

events, as well as 168-bit per local event and 672-bits for 4 events. As mentioned in section 

2.4.5.1, a single GBT link is composed of 8 local e-links and 2 regional e-links, leading to a 

total amount of valuable data allocated in the packet of ((160x2) + (672x8) = 5696-bit). As 

stated in section 2.7.1, the FLP transmits data to the EPN per Sub-Time Frame, which is 

equivalent to 256 HeartBeat Frames. This indicates that scientists handling the  
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offline reconstruction must go through 256 packets to identify (5696-bit x 256 = 1458176-bit ~ 

182 KB) out of (28608-bit x 256 = 7323648-bit ~ 915 KB) in order to reconstruct the events. 

This is quite inconvenient for the MID, especially when all 32 GBT links are operational.  

 

The user logic takes a different approach to process the MID raw data by only transmitting 

valuable data to the O² system. Hence, decreasing the amount of data transmitted to the 

EPNs by 80%, and improving the readability of the data. 

 

Following extensive discussions with the CRU firmware experts at CERN, members of the 

MID team, and subsequent update meetings, the following user logic requirements, and 

specifications were established. 

 

3.4.1. Design requirements  

 

The user logic component must adhere to the readout control protocol shown in Figure 3.2. 

This protocol is pretty straightforward:  the user logic receives input flow and routes it to the 

datapath wrapper memories through user logic readout channels. Data are transmitted in 

256-bit words with Start Of Packet (SOP) and End Of Packet (EOP) signals to indicate the 

beginning and end of the packet. The valid signal indicates the validity of the data. The RDH 

is inserted at the start and end of the packet. It includes a Page counter that provides packet 

identification inside the associated HeartBeat Frame as well as a Stop bit that indicates 

whether or not the last packet for this specific HeartBeat Frame has been transmitted. 

 

Figure 3.2: Data flow from the user logic component to the datapath wrappers using the 
readout control protocol 

 Adapted from (Bourrion, 2015) 
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During update meetings, additional requirements were introduced, which are detailed below: 

 

• A packet must have a maximum size of 8 KB, which should include a payload and 

a valid RDH. 

• The RDH must have all fields correctly filled out by the user logic. 

• Each packet must have a valid page counter, which should be reset at each 

HeartBeat Frame transition, and a STOP bit must be set.  

• There must be a minimum instantaneous gap of one clock cycle between the 

preceding EOP and the next SOP (this limitation is due to the datapath wrapper 

component, which requires some delay to properly store data in the memory). 

• In triggered readout mode, packets should only contain physics event data and all 

remaining events should be discarded by the user logic with the exemption of the 

orbit event.  

• If no valid data are transmitted by the readout electronics, the use-logic should 

generate an empty packet with a valid RDH upon receiving a HeartBeat trigger 

(this allows the O² systems to keep track of different HeartBeat Frames). 

 

3.4.2. Design specifications  

 

The user logic design specifications are intertwined with the challenges raised in the problem 

statement (section 1.3). In order to overcome these challenges and achieve the goals 

stipulated in the objectives (section 1.5), an agreement with the MID team resulted in the 

design specifications outlined below. 

 

 

3.4.2.1. Event identification  

 
The GBT wrapper forwards the readout electronics data to the user logic component with a 

specific bit indicating whether or not the data transmitted are valid. These valid data will then 

be stored in appropriate registers and event identification will be performed instantly. At this 

level, the primary goal is to perform zero suppression by identifying the relevant event 

information (start bit, card type, etc…) transmitted by the local and regional cards.  

 
In contrast to the regional card, which transmits event data with a fixed size of 5 bytes (40-

bits), the local card transmits event data with a variable size ranging from 5 to 21 bytes (40 to 

168-bit). The local event data contains header information as well as strip patterns from  



 44 

3.4 User logic component  

 

 

the four MID detection planes attached to it. The last four less significant bits of the fifth byte 

indicate which of the four detection planes is transmitting data (1-bit per plane). The user 

logic will use these bits to predict the size of the event data and only collect strip patterns 

from the identified detection planes. This allows complete accuracy of the event identification 

and eventually leads to a drop-in data rate transmitted to the O² systems. 

 

3.4.2.2. New regional and local event formats 

 
As shown in Figure 2.7, a single regional crate contains two GBT optical links, each of which 

carries information from 10 distinct e-links (8 local e-links + 2 Regional e-links). In total, four 

regional e-links originate from the same crate. Hence, the event data delivered by these four 

e-links are nearly identical with exception of their 5th byte, which is not very useful to the O² 

systems as it does not provide the current position of the e-link in the GBT frame. In order to 

differentiate these regional e-links and facilitate the decoding process at the O² level, the 

user logic will assign a unique ID block to each of these four regional e-links based on their 

location in their respective GBT frame.  

 

A similar issue can also be observed with the local e-links, although they provide valuable 

information, they quickly become a challenge once two or more crates are involved. Each 

crate of the readout chain contains about the same number of local cards with the same local 

card ID ranging from 0 - 15. Once data from multiple crates are merged, they quickly become 

a pool of untraceable data. As a result, the existing regional and local event formats need to 

be altered.  As depicted in Figure 3.3, the new regional event format includes an additional 

unique ID block, whereas the new local event format includes a new crate ID block to 

indicate where it originated. 

 

 

3.4.2.3. Synchronization  

 

To solve the issue of desynchronization, the user logic will make use of the handshaking 

protocol. Data from each e-links will be routed through a pair of buffers, referred to as the 

sender and the receiver respectively. The sender and the receiver will continuously 

exchange information via several signals.  

 

This handshaking protocol will rely heavily on the Orbit trigger bit, which is found in the local 

and regional event data. Its purpose will be to filter and synchronize the data. The sender  
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will send a synchronization request signal to the receiver upon receiving an Orbit trigger. The 

receiver, in turn, will react with an acknowledge signal only after a third-party submodule has 

successfully collected the synchronization request from all e-links belonging to the same 

GBT link. By monitoring the Orbit trigger, it is easier to keep all e-links and GBT links 

synchronized. The Orbit trigger is also used to reset the bunch crossing counter in the 

readout electronics firmware, indicating the beginning of a new HeartBeat Frame. 

 

 

Figure 3.3: New regional and local event formats created for this work 

 

 

Although this approach appears to be the most efficient, it should be noted that there are 

certain caveats to it. In the event of a failure or if one of the readout cards stops transmitting 

data for whatever reason while the run is still ongoing, the receiver module will remain idle 

until the sender sends a request, which will be unlikely to occur. This will affect the 

synchronization process and eventually lead to system failure. To overcome this sort of 

event, a very complex logic must be implemented in the synchronizer. This is described in 

more detail in the next chapter. 
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3.4.2.4. Payload data block formats 

 

Following the data synchronization, the data belonging to the same Orbit or HeartBeat Frame 

will be arranged in small blocks of 256-bits in ascending order. A counter will be implemented 

to ensure that the 8 KB limit is not exceeded. These blocks of data, namely payload data, will 

then be combined with the appropriated RDH blocks and streamed as packets to the 

Datapath wrappers while adhering to the readout control protocol. However, to properly 

construct a custom O² software algorithm that would analyze the payload, a pre-defined data 

block format has to be agreed upon within the MID team before the implementation of the 

user logic component into the readout chain. For this specific purpose, two different 

approaches have been investigated: 

 

Fixed data block format 

A way to decrease the data rate and allow fast-tracking is to introduce a fixed data block 

format. All pre-analyzed events collected from a single GBT link can be used to generate 

data blocks of 256-bits composed of a header (32-bit) and a body (224-bits). Since each of 

the two regional e-links is linked to up to 4 local cards. The Track field found in these regional 

events reveals which of the four local cards is transmitting data belonging to the same event 

(1-bit per local card). Taking this into consideration, a fixed structured data block composed 

of a regional event (header) and a local event (body) can be implemented and is described in 

Table 3.4. The number of data blocks generated per regional event will be computed based 

on the Track field information, and it will range from 1 to 4 blocks. The header information will 

be duplicated for each data block generated from the same regional event. The data flow of 

the fixed data format is illustrated in Figure 3.4. 

 

Table 3.4: Field description of the fixed data block format 

 

 

 

HEADER (regional event) [32-bit] BODY (local event + reserved) [264-bit] 

Trigger [8-bit] Card ID [4-bit] 

Internal bunch counter [16-bit] Tracklet [4-bit] 

Unique ID [4-bit] Strip patterns [128-bit] 

No. local cards fired [4-bit] Reserved [88-bit] 
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Figure 3.4: A example of the fixed data block format designed for this work 

  

 

Serialized data block format 

Another way to significant data rate reduction can be achieved by concatenating all pre-

analyzed events (local & regional) collected from a single GBT link, and cutting them into 

multiple data blocks of 256-bit. This limits the number of blocks stored in the memory. Hence, 

reduce the packet size. The sequence in which these events are concatenated is completely 

arbitrary and depends on their arrival time. Figure 3.5 depicts the data flow of the serialized 

data format and provides a sense of what can be expected if implemented. 

 

 

Figure 3.5: An example of the serialized data block format designed for this work 
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Notwithstanding the fact that both options significantly reduce the data rate, they each offer 

advantages and disadvantages. The serialized data format will be slower as it will require 32 

clock cycles (8-bit x 32 = 256-bit) to fill up a single data block. It will be less efficient in terms 

of readability due to certain events being chopped if the data block reaches the maximum 

limit of 256-bit. However, it will be more compact with a lower data rate.  The fixed data 

format, contrastingly, will only take a few clock cycles to fill up a data block, it will provide 

greater readability, and will facilitate the debugging process. The fixed data format, 

nonetheless, will occasionally duplicate the header information and include a Reserved field, 

which must be filled with zeros if an extra local event cannot be accommodated. This 

contradicts the goal of this research, which is to only transmit valuable information. 

 

Following a comprehensive analysis, it was determined that the serialized data format would 

be implemented in the MID user logic component. The O² software algorithm will reconstruct 

the events by analyzing each byte of the data blocks collected during each Time Frame.   

 

3.5. Summary 

 

In this chapter, the architecture of the CRU firmware is described and the different CRU 

readout mode configurations are explained. The main interfaces and their functionalities are 

also discussed and the communication protocols are elaborated. Finally, the MID user logic 

component is introduced, and its design requirement and specifications are described. The 

next chapter will dive into the design and implementation of the user logic. 
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CHAPTER 4  

4. Design and implementation of the user logic 

 

This chapter delves into the design and implementation of the user logic component. It must 

be emphasized that the study aims to deliver a functional user logic prototype. Thus, this 

user logic firmware was designed to process data from a single MID regional crate 

composed of two GBT links. 

 
4.1. Architectural design 

 
The user logic is designed in a sequential manner, with all processing occurring one after 

another from an input-output perspective. The objective of this approach is to facilitate error 

tracking. The user logic design consists of three main segments, each of which is linked to a 

specific interface of the CRU firmware (see Figure 3.1). A representation of the user logic 

block diagram and its interfaces is represented in Figure 4.1. Starting from the top is the TTC 

segment (grey), which receives data from the timing and trigger system through the TTC 

interface. Next is the GBT segment (blue), which receives data from the readout electronics 

via the GBT wrappers, analyses them then combines them with the RDH extracted from 

timing and trigger information before transmitting them to the O² system via the datapath 

wrappers. The GBT segment is the only part of the design that can be duplicated through 

parameterization. Hence, enabling the possibility to process multiple GBT links, allowing for 

improvement and adaption to diverse testing scenarios. The last segment is the Avalon 

(orange), which provides configuration and monitoring through the PCIe interface.  

 

Figure 4.1: Structure of the user logic design showing the three main segments as well as the 

port specifications and data flow of each segment. This diagram was created for this work 
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4.2. Implementation 

 
This section describes in detail the functionality of the various submodules implemented in 

the user logic design and is organized as follows. Clocks and resets are extremely essential 

in digital electronics, and they receive special attention in subsection 4.2.1. The timing and 

trigger management, as well as header submodules, are detailed in subsections 4.2.2 and 

4.2.3. The GBT mapping and deserializer are discussed in subsections 4.2.4 and 4.2.5, 

respectively, whereas the synchronization process is explained in subsections 4.2.6. The 

event multiplexer, payload serializer, and data readout submodules are discussed in the 

following subsections. This section concludes with a brief explanation of the configuration 

and monitoring submodule.  

 

4.2.1. Clock and reset management 

 

The user logic requires several clock signals to extract, synchronize and monitor the e-links 

input data transmitted by the GBT links. Since the intention is to operate synchronously with 

the host firmware, the user logic takes full advantage of the already available clock signals 

provided by the CRU clock tree (see Figure 2.8). The faster clock (240 MHz) is utilized for 

data processing, while the slower clock (100 MHz) is used for signal configuration and data 

monitoring. 

 
To ensure that the system runs efficiently, the user logic firmware must be set to a known 

state at the beginning of each acquisition. The reset management incorporated in the design 

can either be provided externally through slow control via the Avalon MM register or 

generated internally using the trigger information from the LTU as a catalyst. The external 

and internal reset signals are referred to as hard and soft resets, respectively. 

 

 

Figure 4.2: Reset management circuitry designed for this work 
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As illustrated in Figure 4.1, the Avalon register dedicated to externally reset the user logic is 

attached to a multi-stage multiplexer, then stored into a Delay Flip-Flop (D-FF) register. This 

combination of circuits prevents the reset management to generate a hard reset signal for no 

more than a single clock cycle (100 MHz). Furthermore, to address the issue of clock domain 

crossing, and to acknowledge the acceptance of the slow control instruction before spreading 

it across the circuit, the hard reset signal is attached to a two-stage D-FF synchronizer. 

Finally, using an OR-Gate logic, the hard and soft reset signals are computed into a single 

synchronous reset signal, which is implemented throughout the design. This reduces the 

amount of work required in the Quartus Timing Analyzer tool as the majority of the work is 

already done by the CRU firmware developers. 

 

4.2.2. Timing and trigger management 

 

The main task of the timing and trigger management is to administrate the data acquisition. It 

receives the trigger information from the LTU via the CRU firmware and uses this information 

to generate signal pulses to activate other parts of the design. It is made up of three 

components: Decoder, Mode selector, and a Pulser. 

 
To track changes more effectively, the decoder examines the data transmitted by the LTU 

and categorizes them into three groups (trigger, Orbit, and bunch crossing). These data are 

temporarily stored in registers before being transmitted to the Header module for RDH 

generation. The trigger information extracted by the decoder contains trigger signals, which 

indicates whether the subdetector is running in continuous or triggered readout mode. These 

signals are used by the mode selector to switch back and forth between different modes of 

operation. The SOC and EOC signals mark the start and end of the continuous mode, 

whereas the SOT and EOT indicate the start and end of the triggered mode. Finally, once the 

readout moded is selected, the Pulser generates an internal soft reset pulse followed by 

other customed pulse signals used to activate different parts of the design in a pipeline 

manner, with each part being activated one after the other. 

 

4.2.3. Header 

 
The header submodule monitors, stores, and updates the necessary information required to 

populate the RDH fields, in particular, triggers, bunch crossing ID, and the Orbit ID (refer to  

Table 3.1 for detail about the RDH fields). It relies on a three-stage finite state machine to  



 53 

 Design and implementation of the user logic 

 

 

achieve these tasks. The timing and trigger information vary at regular intervals of 40 MHz. 

To keep track of the changes, the header closely monitors the SOx, EOx, and HeartBeat 

pulses transmitted by the timing and trigger management, and stores the updated 

information into a dedicated FIFO. This updated information is subsequently merged into the 

RDH fields upon request. The header and the timing and trigger management submodules 

rely heavily on the TTC information to operate properly. For this specific reason, they can 

only be initialized using a hard reset. 

 

4.2.4. GBT mapping 

 

As described in the previous Chapter, the user logic has access to 24 incoming GBT links. 

However, for this study, only 2 GBT link inputs are required. To provide flexibility in the user 

logic component, a GBT mapping submodule is implemented to select as input 1 out of 12 

GBT links. This is done using a multiplexer and a 4-bit select signal, which can be configured 

externally via Avalon MM. The output of the multiplexer is then attached to a register for  

synchronization. Figure 4.3 shows the circuit diagram of a single GBT mapping submodule. 

 

 

 

Figure 4.3: GBT mapping circuitry diagram designed for this work 

 
 
For better coverage, two GBT mapping submodules are implemented in the user logic, each 

of which reads 1 out of 12 GBT link inputs and both combined can be configured to select 2 

out of the 24 GBT links available. 
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4.2.5. GBT deserializer 

 

The GBT deserializer is used in conjunction with the GBT mapping submodule. The MID 

readout electronics data are presented to the user logic in the form of GBT buses, each of 

which consists of Valid and Enable flags, as well as an 80-bit raw data bus. The approach 

taken is to analyze each local and regional e-links separately. As a result, the GBT 

deserializer converts the 80-bit data stream into 10 independent parallel blocks of 8-bits 

(byte) and forwards them along with a copy of the valid and enable flags to the zero 

suppression submodules for data identification. Figure 4.4 shows how the GBT data stream 

is deserialized and distributed among 10 independent zero suppression submodules. 

 

 

 

Figure 4.4: The schematic diagram of the GBT deserializer designed for this work 

 

 

4.2.6. Zero suppression 

 
The primary task of zero suppression is to suppress non-valuable information by 

appropriately identifying events transmitted by a specific e-link channel. As already 

mentioned in the previous chapter, an event lasts from the moment the start bit and card type 

are identified until a programmable number of clock cycles (referred to as an event frame 

window) are completed. Depending on where the data originated, the event frame window 

can range from 5 up to 21 clock cycles. 
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The zero suppression is based on a finite state machine algorithm, that is implemented in a 

pipelined manner, and uses a rule check and a counter to transit from one state to another. 

The rules associated with the finite state machine evaluate every byte fragment of the events 

as they arrive. Each rule checks whether or not the byte fragment matches the rule’s criteria 

previously presented in Table 2.2 and Table 2.3. A counter is used to keep track of the 

number of clock cycles required to successfully identify a complete event. This algorithm 

consists of six states, which are used to validate the coherence of various byte fragments 

transferred across the local/regional e-link. Figure 4.5 shows a representation of the finite 

state machine diagram implemented in the zero suppression finite state machine. 

 
The state machine register is initialized to an idle state, every time the reset signal is 

asserted. It remains in an idle state until the GBT and DAQ signals are enabled, before 

proceeding on to the status state. 

 
The status state is used to determine the correct start bit and the card type of the given e-link 

event. After successfully identifying these two parameters, the counter is incremented, the 

1st byte of the event is stored and the next state is asserted. In case of failure to identify the 

relevant parameters, the state register remains in the status state and will only return to idle 

once the GBT and DAQ signals are disabled. 

 
The trigger state checks the second byte of the event data. It ensures that all incoming 

trigger bytes do not violate any of the fundamental trigger rules. Among these rules are the 

following:  

• SOx and EOx trigger bits cannot be activated simultaneously; 

• SOx and Eox trigger bits must be activated in conjunction with an Orbit trigger; 

• The Calibration trigger bit is always followed by a self-triggered event; 

Once all of the above requirements are met, the second byte is stored and the counter is 

incremented. 

 

The bunch crossing information is composed of the third and fourth-byte fragments of the 

event. Hence, the bunch counter state collects these byte fragments in two stages. The four 

most significant bits of the third-byte fragment must always be zero; anything other than that 

should be treated as noise. As a result, the event will be marked as corrupted and the state 

register will return to the status state. If no errors are identified, the bunch crossing 

information is stored, the counter is double-incremented, and the next state is asserted.  
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Figure 4.5: Finite state machine diagram implemented in the zero suppression. Each bubble 

represents a state of the finite state machine designed for this work 
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The ID/Track state is very crucial as it determines the identity given to the card as well as the 

length of the event. At this point, the card type of the event is already known (regional or 

local). Based on this information, the size of the event can be computed. For all regional and 

local events with no detected strip patterns, the event size does not exceed five bytes. In 

order to be ready for the next upcoming event, the state register returns to the status state 

and the event collected is forwarded to the next phase of the data acquisition. For all local 

events with detected strip patterns, the event size can range from 9 to 21 bytes. As a result, 

the fifth byte is stored, the counter is incremented and the next state is asserted. 

  

The strip patterns state has no rule checks and relies completely on the event size 

information computed during the preceding state. For each detection plane fired, the event 

size is extended by four bytes, so is the counter. The state register remains in the current 

state until the event is entirely collected, at which point it returns to the status state. Similar to 

the previous state, the event collected is forwarded to the next phase of the data acquisition. 

 

4.2.7. Handshake synchronizer   

 

The handshake synchronizer is implemented throughout the user logic to synchronize all e-

links and subsequently all GBT links. It consists of a pair of FIFOs working in parallel and 

managed by a slave controller. The synchronization is achieved by carefully monitoring the 

trigger bits found in the event data while compensating for the latency caused by various 

optical and e-links during the data acquisition. It is done in three phases and they are 

described as follows. 

 

The first phase of the synchronization focuses on determining whether or not the e-link 

pathway attached to the synchronizer is active or inactive. By default, all e-link pathways are 

presumed to be inactive until proven otherwise by the slave controller. This prevents the 

synchronizer from transmitting data outside the acquisition window. The sender FIFO stores 

and holds the event data transmitted by the zero suppression submodule until it receives a 

request signal from the slave controller. Following acknowledgment of the request and 

release of data, the slave controller analyses it in search of a potential SOx trigger. Any 

event data pulled from the sender FIFO is discarded until a valid SOx trigger is found in the 

event data, which enables the Active signal and marks the beginning of the acquisition 

window. 
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The second phase is devoted to data filtering. All events retrieved from the sender FIFO 

within the acquisition window are handled by a filtration process before being written to the 

receiver FIFO, except for the Orbit and EOx events, which do not require filtering and are 

instead moved to the third phase of the synchronization. The filtration process operates in 

two different ways. In continuous readout mode, all event data are automatically transferred 

to the receiver FIFO. However, in triggered mode, as previously stated in subsection 3.4.1, 

only physics events with a similar bunch crossing identification as the one found in the TTC 

information are permitted to be written to the receiver FIFO, the remaining events are 

discarded by the filtration process. 

 

The SOx, Orbit, and EOx events are set with the highest priority in the readout electronics 

firmware. This implies that regardless of the state of the memories, these events are always 

transmitted to the user logic component. Hence, by relying on these occurrences, complete 

synchronization is attained. However, as previously stated in subsection 3.4.2.3, mistakes do 

occur. Any active e-links may unexpectedly cease to transmit data within the acquisition 

window and jeopardize the entire synchronization. To overcome such events, the master 

controller uses the HeartBeat trigger found in the TTC information as a backup signal to keep 

the synchronization cycle running while ignoring data from all defective e-links. Figure 4.6 

shows a representation of the handshake synchronizer designed for a single e-link.  

 

Due to the difference in buffer sizes and specifications between the regional and local event 

data, two types of handshake synchronizers have been implemented for each card type. The 

local handshake synchronizer is designed as described above. On the other hand, the 

regional handshake synchronizer requires additional features such as the computation of a 

custom ID in its event data format. This is achieved between the second and third phases of 

the synchronization. 
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Figure 4.6: Illustration of a single e-link handshake synchronizer created for this work. The key 

components, as well as the necessary signals required to perform the synchronization, are 

shown 

 

4.2.8. Event multiplexer 

 

The concept behind the event multiplexer is to decode and extract event data from all 

handshake synchronizers belonging to the same GBT link and transmit them in the form of a 

byte segment to the next layer of the acquisition for packetization. However, despite the zero 

suppression, the data rates remain too high. The rate at which data are written to the 

receiver FIFO in the handshake synchronizer is faster than the rate at which data are read. 

As a result, the receiver FIFO fills up faster than expected and starts dropping data. This is 

solved by implementing two event multiplexers instead of one to deal with a single GBT link. 

Each of them collects event data from 5 different handshake synchronizers (1 regional + 4 

local) and operates independently of one another. A single event multiplexer is depicted in 

Figure 4.7. The diagram shows how the event multiplexer interacts with various handshake 

synchronizers via a Priority Encoder. A zoom-in on the event multiplexer is shown on the 

right side of the diagram. It highlights the key components of the submodule, which includes 

a finite state machine, multiplexer, and decoder. 

 

A Priority Encoder algorithm is implemented to assign a priority level to a handshake 

synchronizer before transmitting data. Its output is equivalent to the receiver buffer status of 

the handshake synchronizer with the highest priority. Due to the difference in length of their 

respective event data, collecting a regional event requires less time than collecting a local 

event. Therefore, the Priority Encoder is designed in such a way that the regional 

synchronizer always takes precedence over the local synchronizers. 
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Figure 4.7: Implementation of the e-link multiplexer from a conceptual standpoint. This diagram 

was designed for this work 

 

A finite state machine is designed to control the multiplexer and the output logic as well as to 

ensure that data are delivered only after the preceding event data has been properly 

decoded. It receives a Ready signal from the Priority Encoder, indicating that an event data 

is ready to be read out, and then responds to the highest priority synchronizer with a Read 

signal, instructing it to move data to the decoder through a multiplexer. 

 

The decoder operates similarly to the zero suppression submodule with fewer checks done. 

It receives a signal from the finite state machine indicating the card type of the selected 

synchronizer which is currently transmitting data. Based on this information, the number of 

clock cycles required to slice the event data into byte fragments can be computed. The new 

regional format requires 6 clock cycles, whereas the new local event is dependent on the 

plane tracklet located in the fifth byte of the event.  Furthermore, as shown in Figure 3.3, the 

new local event format includes a new crate identification block, that needs to be 

incorporated in the event data before packetization. Since the regional synchronizer always 

has priority over the local synchronizers, the crate identification found in its event is 

distributed among all local synchronizers. 
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4.2.9. Payload serializer 

 

The payload serializer is designed to gather data byte fragments from two event multiplexers 

(upper and lower parts of the GBT) and organize them in compact data blocks of 256-bit 

before passing them to the data readout submodule. The structure diagram of the payload 

serializer designed for this work is illustrated in Figure 4.8. 

 

 

 

Figure 4.8: Structure diagram of the payload serializer. The main components of this 

submodule can be observed as well as the data flow 

 

In order to facilitate the decoding of the data at the O² level, the payload serializer uses a 

preselected data block format that was agreed upon before implementation of the user logic 

(refer to Figure 3.5 for more details about the format). The data bytes collected from each 

event multiplexer are saved in a register until they are ready to be moved to the “Payload 

data FIFO”. The payload serializer relies on a byte counter to keep count of the number of 

incoming data bytes stored and waits until it reaches a maximum limit of 32 bytes before 

passing it onto the “Payload Data FIFO”. It should be noted that the total number of data 

blocks collected during a HeartBeat Frame period is referred to as payload size.  

 

One of the design requirements stipulated in subsection 3.4.1  is to prevent data blocks from 

two separate HeartBeat Frames from being mixed during the HeartBeat Frame transition. 

This is accomplished by computing and storing in an additional FIFO, namely “Payload size 

FIFO”, the total amount of data blocks acquired for each HeartBeat Frame. This enables the 

payload serializer to extract payload data based on their sizes.  
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Finally, the payload serializer includes a finite state machine that operates in tandem with a 

multiplexer and a transmitter. The role of the finite state machine is simple. It receives a 

transmission request signal from the data readout, extracts the payload size and the data 

from their respective FIFOs before transmitting them. The transmission is achieved in 

sequences through the multiplexer. First, it transmits data from the upper part of the GBT 

then only after it transmits data from the lower part. 

 

4.2.10. Data readout 

 

As mentioned in the preceding chapter, the user logic component must adhere to the CRU 

readout control protocol and provide data to the datapath wrappers in the form of packets 

(refer to Figure 3.2 to see the protocol). This is achieved using the data readout submodule 

designed to work in correlation with the header and payload serializer submodules.  

 

The data readout is very straightforward, it does not check the consistency of the data, nor 

has knowledge of the format or content of the data it receives. Its sole purpose is to combine 

the RDH and payload to form packets and route them to the datapath wrapper. Like many 

other submodules implemented in the user logic, it is based on a finite state machine, which 

is controlled by the value of its state signal. First, it receives a header-ready signal from a 

header submodule indicating that a new HeartBeat trigger has occurred and the RDH 

content is ready to be updated, in return it sends back a signal to tell the header submodule 

to advance the data and proceed with the update. Since the payload serializer submodule is 

also in sync with the HeartBeat trigger, permission to transmit data to the datapath wrapper 

is often granted to the payload serializer a few clock cycles after the RDH have been 

updated and transmitted. The stop bit, page counter, and other information required in the 

RDH format are computed based on the size of the payload and the number of data blocks 

transmitted. A data block counter is implemented to make sure that the packet does not 

exceed 8 KB.  

 

It might happen that the packet serializer has no payload to send, i.e., no valuable events 

were detected during the HeartBeat Frame, in this case, the payload size will be zero, and 

only the RDH will be transmitted. This is known as the sync packet, it has a fixed size and 

fixed format, but the information in it may vary.  
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There was no particular requirement set as to which of the two datapath wrappers the user 

logic should utilize; this decision was left to the subdetector. This research seeks to process 

data from two GBT links, the packets created from these GBT links data can either be sent to 

the same datapath wrapper or can be distributed among the two datapath wrappers. This 

decision is taken based on the configuration set in the GBT mapping submodule. Packets 

created from the first 12 GBT links data (0-11) can be transmitted to datapath wrapper 0, 

while the remaining (12-23) can be transmitted to the datapath wrapper 1. Figure 4.9 shows 

a scenario in which packets from two GBT links are moved from the user logic to different 

datapath wrappers via the data readout channels. The rectangles represent packets that 

have been transmitted throughout time. Each packet consists of the RDH and payload. The 

green colour indicates that the payload originated from GBT link #12, whereas the red 

originated from GBT link #0. 

 

 

Figure 4.9: Illustration of the user logic component showing how its data output is moved to 

the datapath wrapper channels. This diagram was created for this work 

 

4.2.11. Configuration and monitoring 

 

As mentioned throughout this chapter, several signals can or must be configured externally 

to improve the interoperability of the user logic design. This is accomplished through the use 

of the Avalon MM interface, which is already present in the CRU firmware. The Avalon MM 

interface is attached to the PCIe and serves as a link between the FLP software and the  
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CRU firmware. It enables the direct reading and writing of specialized registers, making the 

configuration and monitoring of the user logic design a lot easier. Thus, signals from 

numerous submodules are routed out to the Avalon MM registers to record the internal 

circuitry of the user logic once it has been integrated into the FPGA. This is useful for 

debugging purposes and managing errors.  

 

4.3. Error handling 

 

Monitoring the most critical submodules is an effective way to keep track of the stability of the 

user logic component. However, the major challenge is how to proceed once an error has 

been detected. The typical approach is to manually reset the user logic firmware. This is not 

always convenient, especially in the middle of an acquisition when data collection is very 

crucial. Hence, it is necessary to implement an algorithm to automatically handle some errors 

without interfering with the DAQ. During the period allocated to this study, only a few errors 

have been identified, and as the design expands more errors will eventually emerge. The 

errors identified thus far can be divided into two categories based on their severity levels: 

configuration and functional errors.  

 

Configuration errors occur when configuration registers are not properly configured and have 

an impact on the functionality of the user logic component. These errors will linger until a 

hard reset or reconfiguration is performed, and they can be rather serious at times. However, 

depending on which parameters were impacted, the user logic can still operate successfully 

in the midst of these errors. To prevent these errors from happening, the parameters inserted 

are fed back into their initial registers, where they can be visualized and adjusted when 

necessary. 

 

Functional errors are the most severe since they can prevent the user logic from functioning 

properly and, in extreme cases, cause the system to crash. The major cause of these errors 

is the transmission delay between finite state machines and FIFOs. To avoid such 

occurrences, a two-stage D-FF synchronizer is attached to the input and output of all FIFOs 

throughout the design. Furthermore, the soft reset is designed in a specific way to ensure 

that all finite state machines are always in an idle state at the beginning of each acquisition. 

In contrast to the hard reset, which resets everything, the soft reset simply initializes a subset 

of the design, allowing the user logic to automatically reset itself without having to 

reconfigure the Avalon MM registers. 
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CHAPTER 5  

5. Verification, testing, and results 

 

 

The architecture outlined in the previous chapter has been tested to ensure that, the design 

specifications and requirements of the user logic are met. This chapter elaborates on the 

methods used to perform the verification and testing of the user logic firmware before 

concluding with a detailed discussion of the readability and validity of the data. 

 

The chapter starts with a discussion on the functional verification of the user logic using 

software simulations. Methodologies used for reducing the probability of bugs occurring in 

the design are also covered. The chapter then goes on to describe the test bench that was 

built for the hardware testing. The focus is then shifted to hardware validation and testing, 

with a primary focus on the tests that have a significant impact on the user logic component. 

 

As per the CRU expert recommendation, any subdetector wishing to implement their custom 

user logic should utilize the suggested tools for synthesizing and simulating their code. For 

this reason, all HDL files produced for this project were written, compiled, and simulated in 

VHDL using Intel Quartus Prime Pro and ModelSim. 

 

5.1. Functional verification 

 

Functional verification is the most important part of design and development. It ensures that 

the system operates as it should. However, even though particular debugging capabilities 

have been implemented, there are no straightforward ways to determine the cause of any 

unexpected errors once the firmware is integrated into the FPGA. As a result, complex test 

benches are written to evaluate and validate various parts of the user logic component 

before the insertion of the code in the FPGA. The main objective of functional verification is 

to facilitate the testing process by providing dummy data to the Device Under Test (DUT) and 

automatically checking the validity of its response. The functional verification implemented in 

this design is divided into two sections: the first section is the module-based verification, 

which focuses on validating each module of the user logic individually, and the second part is 

the system-based verification, which combines various systems of the MID readout chain into 

a single test bench for a more complex verification. 
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5.1.1. Module-based verification 

 

By creating HDL test bench files for the most important submodules, the functionalities of 

these submodules can be thoroughly evaluated using ModelSim. Several HDL test bench 

files developed for this study have the same architecture depicted in Figure 5.1, which 

contains two or three input files providing dummy data that are fed into the stimulus 

generator included in the entity test bench file and applied to the input ports of the Design 

Under Test (DUT). An output process is running in parallel with the DUT, it collects the output 

data from the DUT and writes them to an output file for further analysis. 

 

 

Figure 5.1: Module-based verification test bench model designed for this work 

5.1.1.1. Stimulus generator 

 
In order to create an efficient simulation, the stimulus generator implemented in the module-

based verification is made up of three primary components, each of which emulates a distinct 

input interface. 

 

Multi-clock generator  

 
Due to the difference in clock domains from different systems interfacing with the user logic 

component, a multi-clock generator is implemented in the stimulus to drive the simulation by 

providing clock signals to the DUT. As illustrated in Figure 5.2, the multi-clock generator 

replicates the three main clock signals introduced in the CRU clock tree architecture (refer to 

section 2.5.1 and Figure 2.8). 

 

 

Figure 5.2: multi-clock generator waveforms showing the three main clock signals 
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TTC data generator 
 

As the name implies, the TTC data generator emulates the TTC interface and feeds dummy 

timing and trigger information retrieved from the TTC input file to the DUT. The user logic 

component heavily relies on the trigger information to determine the type of readout mode of 

operation. As a result, the readout mode used in the simulation can be selected by manually 

enabling or disabling the SOC or SOT trigger bit located in the TTC input file. However, the 

continuous readout mode is sufficient to evaluate the functionality of the entire design. 

 

GBT data generator 

 
Similar to the TTC data generator, the GBT data generator emulates the downlink bus line of 

the GBT wrapper described in section 3.2.1. It extracts the GBT data from the GBT input file 

and transmits it to the DUT. Although it is not required, the GBT data generator can duplicate 

the same input information to multiple GBT links, increasing the scalability of the simulation. 

Nevertheless, a single GBT link is sufficient to evaluate the functionality of the design. The 

TTC and GBT generators and their waveforms are illustrated in Figure 5.3. The waveform 

diagrams show how data are taken out from the files and transmitted to the DUT. It is 

also worth noting that the TTC valid signal always arrives ahead of the GBT valid 

signal. This is done so that the system may be initialized before processing the GBT 

data. 

 

Figure 5.3: TTC and GBT generators, as well as their waveforms. This diagram was made for 

this work 
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5.1.1.2. DUT 

 

As mentioned in the previous chapter, the user logic is designed sequentially, with each 

submodule designed one after the other. The same methodology is applied in the functioning 

verification. Each of the DUT is tested one after the other starting from the bottom to the top 

level of the hierarchy. Once a DUT has been validated as an isolated submodule, it is 

merged with the following DUT, and its output is utilized as input. 

 

5.1.1.3. Output process 

 

The output process uses assertions to detect unlawful transactions in the DUT. Assertions 

are brief pieces of simulation code included in the VDHL files that report when particular 

violations occur. The advantage of having assertions is that they report bugs when a 

submodule is tested alone as well as when it is tested in conjunction with other submodules 

as part of a larger hierarchy. The bugs detected are categorized into four severity levels 

(note, warning, error, and failure). All severity levels are reported in the ModelSim command 

line window as well as in the output files generated during the simulation. The severity failure 

is the most critical one, it terminates the simulation instantly upon identifying a bug.  

 

5.1.2. System-based verification 

 
The verification of the design from the top level of the hierarchy might be hampered by both, 

the limited amount of input data available and the amount of simulation time required to test 

a larger portion of the code. As a result, it is most preferable to test each submodule 

independently. However, whilst isolated tests seem to be the preferred solution, they might 

not have the ability to detect all issues related to the inter-communication between 

submodules in the architecture. Therefore, it is still necessary to validate the design from the 

top level of the hierarchy.  

 
As shown in Figure 5.4, the functional verification implemented in the user logic includes a 

system-based verification, which was created to validate the user logic as a single 

component together with the rest of the readout chain. It combines the CRU firmware 

modules (provided by the CRU experts), the readout electronic firmware modules (provided 

by Dr. Christophe Renard), as well as the user logic firmware (the outcome of this research) 

into a single test bench for a more sophisticated verification. 
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The advanced stimulus generator, in-cooperation with the readout electronics and CRU 

firmware, provides the user logic component with all of the data required to execute a 

complete verification. Data entering and exiting the user logic component are routed to a 

distribution process, which writes them to distinct text files based on their origin. These files 

(input and output) are then sent to an algorithm developed by the O² expert that compares 

them to ensure data consistency and identifies errors.  Finally, a report is generated stating 

the number of errors detected as well as the number of events missing from the user logic 

output file. The same input data can also be utilized in a standalone simulation of the user 

logic to pinpoint errors detected and enables rectification. 

 

 

Figure 5.4: System-based verification model designed for this work. The diagram shows how 

various systems are joined to form an advanced verification 

 

The module and system-based verifications can be replicated by following the instructions 

mentioned in Appendix B, which also provides the simulation stress test results as well as 

the necessary files to execute these simulations.  

 

5.2. Hardware tests 

 

The user logic component is an important part of the MID upgrade. It seats at the heart of the 

CRU firmware and, if not designed properly, it might jeopardize the functioning of the entire 

MID readout chain. To ensure that such an event does not occur, a test bench has been 

developed at iThemba LABS to perform extensive tests on the user logic prototype.  
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This section dives into the architecture and evolution of the hardware test bench as well as 

the methods used to perform a successful acquisition. 

 

5.2.1. Test bench layout 

 

A small-scale MID readout chain test bench is set up in the laboratory room S64 at iThemba 

LABS. This test bench has evolved during this Master Degree. The initial setup consisted of 

the Arria 10 Development Kit that was used as CRU, and a Versatile Link Demo Board 

(VLDB) (Raul Martin et al., 2017), which was used as temporary readout electronics. The 

Arria 10 Development Kit is loaded with an older version of the CRU firmware, which is 

similar to the one found on the final CRU board with much fewer features. The VLDB is a 

demonstration and development board specially designed to accommodate the GBT 

protocol. The VLDB board contains a GBTx chip attached to a single GBT optical link and e-

links exposed on mini-HDMI ports, a GBT-SCA chip, and custom FeastMP radiation-hard 

DC-DC converters developed at CERN. It is used to comprehend the basic operation of the 

CRU and GBT protocol, however, it does not emulate the MID data. Figure 5.5 shows the 

initial setup of the test bench. 

 

 

Figure 5.5: Test bench initial setup, it includes the ARRIA 10 FPGA Development Kit, a VLDB, 

and an oscilloscope 

 
As the project evolves, it became important to test the user logic component on a test bench 

capable of providing the MID data. The VLDB was shortly replaced with a readout electronics 

prototype board, namely MID proto (Renard, 2021), capable of emulating the subdetector 

data. The MID proto is based on two Altera Cyclone V FPGAs, one with seven local event  
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generators and the other consists of two regionals. The MID proto card, like the VLDB, is 

equipped with a GBTx chip coupled to a single GBT optical link which serves as a data link 

between the onboard FPGAs and the CRU. The MID proto was used to test the user logic 

firmware with a single GBT optical link, before acquiring the CRU board and the FLP server. 

Each internal generator is attached to an e-link, allowing the proto card to provide realistic 

events data to the user logic component. Figure 5.6 illustrates the MID proto card.  

 

 

Figure 5.6: MID readout prototype card and its main components (Renard, 2021) 

 

A new test bench was implemented towards the end of this study to extend the capabilities of 

the user logic component and match the test scenarios performed with readout electronics at 

Subatech (where the readout electronics cards were designed). The new test bench is a 

scaled-down replica of the MID readout chain without the RPC detectors. It includes a fully 

equipped VME crate (1 x FEERIC emulator board, 16 x local, 1 x regional, and 1 x J2 bus 

boards), a FEERIC board emulator, an LTU, CRU, and FLP. 

 

Figure 5.7 depicts the new test bench setup and illustrates how various components are 

linked together. The full setup can be observed on the top-left, and the bottom-left is the fully 

equipped VME crate, excluding the FERRIC emulator board. The local and regional cards 

are plugged into the crate via the J2 bus card sitting at the back of the crate.  
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Three cables are exiting the regional card, two of which are optical cables, and connect the 

regional card to the CRU. The latter is a USB (2.0) cable connected to a Centos PC, which is 

used to configure and program the local and regional FPGAs. Moving to the top-right is the 

LTU, which uses an OLT module, which can be used to interact with multiple CRUs via a 

splitter (refer to section 2.6.4). For this application, only one CRU is needed, the connection 

between the LTU and the CRU is done via an optical attenuator (15 dB), a single-mode SC 

to SC optical cable, and an ONU module. The LTU uses an Ethernet cable to interact with 

the FLP software, which runs on CentOS 7.3, as recommended by CERN experts. Finally, on 

the bottom-right is the CRU board enclosed in the FLP server. The CRU board is internally 

attached to the FLP via the PCIe connectors, its FPGA can be programmed using the PCIe 

interface or via its integrated USB blaster programmer, which connects to the FLP server 

using a micro USB (2.0) cable.   

 

 

Figure 5.7: New test bench located in the laboratory S64 at iThemba LABS. This diagram was 

created for this work. It shows the main components of the readout chain, and how they are 

connected 

 

Figure 5.8 illustrates a fully loaded VME crate with the FEERIC emulator board. On the right, 

an overview of the VME crate is displayed, and on the left, a zoom-in within the VME crate is 

presented, with the FEERIC emulator board plugged in.  
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The FEERIC emulator board was designed by the university of LPC Clermont Ferrand in 

France (where the front-end electronics were designed). It complements the test bench by 

emulating the strip patterns data extracted from the RPC detectors. As it can be seen in 

Figure 5.7, each local card has 4 input connectors that correspond to the 4 chambers of the 

MID subdetector. The FEERIC emulator board provides strip patterns data (X1Y1, X2Y2, 

X3Y3, and X4Y4) to each local card via 4 ribbon cables. In total 64 ribbon cables are used. 

 

 

Figure 5.8: Fully loaded VME crate with the FEERIC emulator board. This illustration is created 

for this work 

 

5.2.2. Insertion and compilation of the user logic component 

 

The CRU firmware specialists have created a dedicated folder (DETECTOR-UL) to house 

the user logic component before compilation. This folder is located in the CRU firmware 

repository available on GitLab (Bourrion, 2016). The sub-folder containing all user logic files 

must be named after the subdetector (e.g., DETECTOR-UL/MID), and deployed as a CRU 

firmware submodule. The compilation of the CRU firmware can be done the old-fashioned 

way, using the intel Quartus prime pro GUI interface, or by using command lines. The most 

common way of running the compilation is through the command line, which can be achieved 

by diving into the following directory (cru-fw/preint/syn-mid) and running the following 

commands: “make ip_gen;” and “make synthesis”. A detailed explanation of how to compile  
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the CRU firmware is described in Appendix C. The compilation time before and after 

implementing the user logic component remains roughly similar (~ 4-5 hours). This is due to 

the timing constraints, which have a significant influence on the compilation time since the 

fitter attempts to minimize routing delays in order to match the required clock frequencies. 

 

5.2.3. Test bench configuration 

 

Although all required software (Quartus, ModelSim, ReadoutCard, FLP suite, etc…) are 

already installed in the FLP server. It is still necessary to properly configure the readout chain 

before proceeding with the hardware tests. The configuration can be achieved using the FLP 

server, which is linked to all components of the chain. First, the CRU firmware has to be 

configured to operate in “user logic mode” and the two GBT links connected to the regional 

card must be synchronized and locked to the CRU clock using the GBTx programmer 

software installed on an external PC. This step is necessary before going back to the FLP 

server to configure the internal GBT MUX of the CRU firmware, which is used to implement 

the custom MID trigger format (see section 2.6.5). The last component to configure is the 

LTU, this process is pretty straightforward.  Step by step instructions on how to configure the 

test bench and the commands used are also given in Appendix C.  

 

5.2.4. Data acquisition 

 

Following the configuration of the test bench, the data acquisition is achieved using the CTP 

emulator graphic user interface program installed on the FLP server. As mentioned in section 

2.6.2, the LTU can be configured to operate in standalone mode and emulates the CTP 

protocol. This enables the MID team to run the data acquisition independently of the CTP 

electronic board. Figure 5.9 shows a screenshot of the CTP emulator. It is designed to assist 

in setting up and conducting the acquisition on the FLP server without the need to know the 

functioning of the DAQ system. Furthermore, the program simplifies the selection of both 

continuous and triggered readout mode operations and provides, among other things, the 

customization of the data acquisition. However, it should be noted that the CTP emulator is 

designed to accommodate the majority of the subdetectors, and some functionalities such as 

(TPC-SYNC, TPC RST, TOF RST) are made for specific subdetectors and are not utilized in 

the MID data acquisition. The functionalities required to execute the MID data acquisition are 

highlighted in red in Figure 5.9. To begin an acquisition, the user can simply click on the start 

button and press stop to end the acquisition. The physics and Calibration  
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triggers are not mandatory in the continuous readout mode, although they can be included. 

 

Data handling on the FLP server is taken care of by the ReadoutCard program. The program 

receives data packets from the user logic through the PCIe interface. The integrity of the 

packets is verified through the information present in the packet headers. A customized MID 

DAQ tool is implemented to detect anomalies of the payload included in the packets. The 

validity of the payload is confirmed by analyzing local and regional events extracted from the 

payload. An alternative way of verifying the packets is to configure the CRU in common and 

user logic mode. In this mode both the raw data and user logic packets are decoded and 

compared for potential errors. The hardware test results and instructions for reproducing 

these results are available in Appendix D. 

 

 

Figure 5.9: Screenshot of the CTP emulator graphical user interface, which is used to conduct 

a data acquisition in the test bench 
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5.3. Results 

 

This section analyses the simulation and hardware test results.  

 

5.3.1. Discussion of the results 

 

The simulation stress results of the working user logic prototype were generated in ModelSim 

and a portion of it is illustrated in Figure 5.10. This was achieved after spending several 

hours of debugging and moving back and forth between the module-based and system-

based verifications. Although, the system-based verification was mostly used for lengthy, and 

the module-based verification was used for short simulations.  

 

 As can be observed, the user logic output packets fulfill the readout control protocol criteria 

indicated in section 3.4.1, which states that packets created by the user logic must begin and 

terminate with the SOP and EOP signals, and each packet must be enclosed by the RDHs. 

The serialized data block format (illustrated in Figure 3.5), which relies on the concatenation 

of local and regional event byte fragments into multiple data blocks was also successfully 

implemented in the payload and the desired results were obtained. A clear comparison of 

data before and after being processed by the user logic is illustrated in Figure 5.10. It shows 

the final outcome of the data before and after the user logic firmware has performed all 

processing stages. The simulation tests validate the aim of this research, which is to 

enhance the way data are processed and only transmit valuable information using a very 

specific format as stated in chapter 2. 

 

The hardware tests could not be completed until a configuration error in the CRU firmware 

file was resolved, which caused the data acquisition to crush every time the user logic 

component was integrated into the CRU firmware. The problem was first considered to be 

caused by metastability in the data when it was moved between the Avalon and the GBT 

segments, given the two segments had independent input clocks (see Figure 4.1). However, 

by inserting a clock synchronizer delay between the two segments that were in sync with the 

Avalon clock and using Intel Quartus timing analyzer tool to check for potential timing errors, 

it was discovered that this was not the source of the issue since the user logic continued to 

corrupt the readout chain. 
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Figure 5.10: Simulation results extracted from ModelSim during the tests. This image compares 

data before and after being processed by the user logic 
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A consultation with the CRU experts revealed that the error was due to a parameter error in 

the "cru-mid.qsf" file located under the directory "/home/flp/cru-fw/preint/syn-mid/". Initially, 

the setting in this file was for subdetectors that use the GBT protocol in wide frame mode and 

had to be modified since the MID subdetector uses the GBT protocol in standard frame mode  

(see section 2.4.5 for details on the GBT protocol). Eventually, this issue was resolved and 

the hardware tests were performed. However, as expected, the hardware tests result did not 

reflect the simulation results at first but were refined after each iteration until complete 

accuracy was achieved. 

 

5.3.2. Resource usage  

 

The CRU firmware combined with the user logic component use about 160k (38%) ALMs 

and 1355 (50%) RAM blocks of the available resources. These results were obtained after 

integrating and compiling the CRU firmware with the user logic component. Table 5.1 

provides a summary of the total FPGA resource used. 

 

Table 5.1: FPGA resource usage of the CRU firmware after insertion of the user logic 

component 

Resource name Total in ratio Total in percentage 

Logic utilization (in ALMs) 160,282 / 427,200 38 % 

Pins 369 / 960 38 % 

Block memory bits 19,982,660 / 55,562,240 36 % 

 RAM blocks 1,355 / 2,713 50 % 

Digital Signal Processing 
Blocks 

0 / 1,518 0 % 

RX channels 41 / 72 57 % 

TX channels 41 / 72 57 % 

Phase Locked Loops (PLLs) 59 / 144 41 % 

 

 

Based on the information obtained in Table 3.3 and Table 5.1, the resources usage of the 

user logic component can be computed. It uses around 37k (9%) ALMs and 271 (10%) RAM 

blocks of the overall resources. These findings meet the requirement of this study, but are 

not good enough as the long-term aim is to process data from 16 GBT links while keeping 

the overall RAM consumption below 75%. Optimization of the RAM usage in the user logic 

will be required in order to process data from the complete readout chain. However, this task 

falls outside the scope of this study. 
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5.3.3. Performance 

 

During the final phase of the research, the performance of the user logic component was 

evaluated using a series of stress tests performed in ModelSim. The tests were carried out 

using the system-based verification technique, which includes the CRU and readout 

electronics modules. The advanced stimulus was configured in such a way that an unlimited 

number of valuable events was transmitted to the user logic in order to test its limits.  

 

The tests aimed to analyze its stability and reliability, as well as to monitor the status of its 

FIFOs. The longest stress test lasted 18 hours, and the results obtained are illustrated in 

Table 5.2. 

 

From the table below, it can be observed that none of the FIFO busy flags were detected and 

no valuable events were rejected. The user logic went through 18 hours of simulation without 

detecting any errors in the design. Furthermore, FIFO 64x8 and the FIFO 16x8 have the 

fewest number of words recorded. These FIFOs could have been replaced with simple 

registers to reduce the RAM consumption in the FPGA. However, they were left as they are 

to facilitate the expansion of the design. More details are provided in the next chapter. 

 

Table 5.2: Stress test results 

Submodule 
FIFO 
size 

Highest number of 
words recorded in 

ratio 

Highest number of 
words recorded in 

percentage 

Number 
 of busy 

flag raised 

Number 
 of events 
rejected 

Header 64x8 1/8 12.5% 0 0 

Local 
Handshake 

synchronizer 

168x64 13/64 20.3% 0 0 

168x128 126/128 98.4% 0 0 

Regional 
Handsgake 

synchronizer 

40x64 20/64 31.2% 0 0 

40x128 76/128 59.3% 0 0 

Payload  
serializer 

256x256 88/256 34.3% 0 0 

16x8 1/8 12.5% 0 0 

 

 

Overall, the user logic performed admirably during the stress testing. The findings shown in 

Table 5.2 demonstrate that the user logic component is stable, reliable, and built to withstand 

any form of collisions without issues. It is important to highlight that the tests were performed 

in continuous readout mode, which is enough for evaluating the design.  
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The next chapter will conclude the study by summarizing the key research findings and their 

contribution thereof. It will review the constraints and propose recommendations to improve 

and facilitate the expansion of the user logic design. 
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CHAPTER 6 

6. Conclusions and recommendations 

 
 
6.1. Conclusions 

 

The ALICE detector is undergoing a major upgrade. The goal of the upgrade is to address 

the challenges of reading out lead-lead collisions at 50 kHz and proton-lead collisions at 1 

MHz and higher. As part of the upgrade, the MTR subdetector was renamed to MID to 

support both continuous and triggered readout modes. This research aimed to enhance the 

way data are handled in the newly upgraded MID readout chain using a customized user 

logic component before the commencement of LHC Run 3 in 2022. The methodology 

implemented in this research shows that it is feasible to considerably reduce the large data 

rate and the amount of work performed at the O² level by 80%. The user logic prototype has 

passed the simulation tests and so fulfills the MID requirements. Its implementation into the 

CRU firmware can be considered successful based on the design requirements mentioned in 

section 3.4.1. The user logic has also been evaluated using a small-scaled readout chain test 

bench located at iThemba LABS. The results obtained indicate that with some optimizations, 

this prototype can immensely contribute to the development of a full-scale user logic capable 

of processing data from the entire MID readout chain. 

 

6.2. Recommendations 

 

This thesis proposes a refined approach for handling MID raw data during LHC Run 3. 

However, certain challenges need to be investigated in order to expand the user logic 

architecture and improve the performance of the readout chain. As a result, future effort 

should concentrate on the optimization of the RAM usage indicated in section 5.3.2 and 

development of new features. Based on the results and conclusions given, the following 

recommendations are made. 

 
As mentioned in section 4.2.4, the user logic component has access to 24 incoming GBT 

links and for this study, only two GBT links were used. To provide flexibility to the design, two 

GBT mapping submodules were implemented to select as input any 2 out of the 24 GBT 

links available. However, this will no longer be the case once a full-scaled user logic 

component is incorporated in the CRU firmware, as it will require too many registers. This 

leaves two possible solutions: either get rid of this feature and only use the required number 

of GBT links (16 out of 24) while discarding the remaining links, or improve this feature and 

use the remaining links as spare links. The first solution is the easiest but may pose a 

problem if any of the links fails. The second solution will also use the required number of  
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GBT links but will provide an option to replace any of the 16 GBT links with a spare link via 

Avalon MM in case of failure. 

 

The FIFO sizes implemented in the user logic component were chosen to accommodate the 

stress tests during simulation. A quick suggestion for the future is to leave them as they are. 

The results outlined in section 5.3.3, have proven that these FIFO sizes can handle any type 

of collision. To overcome the RAM consumption issue, these FIFOs can be optimized to use 

fewer resources in Quartus prime pro. 

 

Finally, the user logic registers can be accessed by following the instructions described in 

Appendix E. However, only someone who understands VHDL coding can decipher the 

information extracted from these registers. A Python script could be written to ease the 

configuration and monitoring of the user logic component using a graphical user interface. 

 

6.3. Research and industry applications 

 

This study resulted in the creation of a test bench where undergraduates and post-graduates 

can learn and understand the fundamentals of FPGA development. The test bench was 

developed in such a way that it may easily be adapted to future FPGA applications. It can be 

used to understand high-speed data transmission in High Energy Physics experiments, as 

well as to contribute to the studies on radiation-hard DC-DC converters and other related 

topics. In terms of industrial use, this test bench can be utilized to design and test the full-

scaled user logic component as well as to maintain it on behalf of the MID team during the 

LHC Run 3 and 4. Furthermore, this test bench can also be used for training purposes, 

especially for engineers and technicians.  
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8. Appendices 

 

 

Appendix A 

 

Source code 

The project's source code is publicly available at the following link:  

https://github.com/dthysdin/Meng-Thesis/tree/master/hdl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/dthysdin/Meng-Thesis/tree/master/hdl
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Appendix B 

 

Instructions for reproducing the simulation test results 

 

Note:  

The simulation stress test results obtained during this study, are publicly available at the 

following link:  https://github.com/dthysdin/Meng-Thesis/tree/master/sim/ul_output_files 

 
This section is intended to provide instructions on how to reproduce the above-mentioned 

test results, which are enough to validate the functionalities of the user logic component. 

However, if interested, one could take a step further and run the system-based verification, 

which provides a more in-depth understanding of the entire readout chain.  

 

B1. Run the module-based simulation   

The user logic component can be tested independently by following the instructions below. 

1. Clone the user logic repository on GitHub using the command below:   

git clone –recursive https://github.com/dthysdingou/Meng-Thesis.git 

2. Launch ModelSim*-Intel® FPGA Edition Software  

3. Use the ModelSim command window and navigate to “Meng-Thesis/sim” 

4. Execute the command below to start the simulation  

do ul_run_file.do 

5. Wait until the simulation is completed 

6. The output result files can be obtained under “Meng-Thesis/sim/ul_output_files” 

7. The input files used for this simulation are obtained from a system-based simulation 

performed during this study. These files are under: “Meng-Thesis/sim/ul_intput_files”. 

 

B2. Run the system-based simulation 

The user logic component can be tested together with other systems of the readout chain by 

following the instructions mentioned below. 

1. Clone the MID readout electronics firmware using the command below. 

git clone –recursive https://gitlab.cern.ch/alice-mid/readout.git 

[Permission required] 

2. Clone the CRU firmware using the command below. 

git clone --recursive https://gitlab.cern.ch/alice-cru/cru-fw.git 

[Permission required]  

3. Use ModelSim to navigate to “readout/mid_common-fw/simulatiuon/modelsim/” 

4. Run the command below to start the simulation. 

do mid_user_test_run_msim_vhdl_linux.do 

https://github.com/dthysdin/Meng-Thesis/tree/master/sim/ul_output_files
https://github.com/dthysdingou/Meng-Thesis.git
https://gitlab.cern.ch/alice-mid/readout.git
https://gitlab.cern.ch/alice-cru/cru-fw.git
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Instructions for setting up the test bench at iThemba LABS 

 

Note:  

In this section, we will assume that all software required to configure the MID test-bench is 

already installed and operational. Instructions on how to install that software is provided in 

the following link: install the required software [permission is required]. 

 

After installing the necessary software, the test bench must be properly configured before 

proceeding with the hardware tests. This is accomplished by following the instructions 

outlined below. Please keep in mind that certain commands are executed on the FLP server 

while others are executed on a Centos PC. 

 

C1. Clone the CRU firmware GitLab repository [FLP server] 

In order to provide better code management, keep the design secure, and accessible to 

everyone working on the ALICE upgrade, the CRU firmware is hosted on a GitLab repository, 

which can be retrieved using the command mentioned in Appendix B,  B2(3). 

 

C2. Compilation of the user logic with the CRU firmware [FLP server]  

The compilation of the CRU firmware with the user logic component can be performed by the 

commands below.  

cd cru-fw/preint/syn-mid 

make ip_gen; make synthesis 

 

C3. Program the ARRIA 10 FPGA on the CRU [FLP server] 

The SRAM object file (.sof) is generated after the compilation must be used to program the 

CRU FPGA. This is accomplished using the command below. 

quartus_pgm -c 1 -z --mode=JTAG --operation="p;cru.sof@1" 

 

C4. Initialization of the system [FLP server] 

After programming the Arria 10 FPGA on the CRU, the system must be initialized before the 

tetsts. This must be done as root user (repeat if not successful). 

su - 

for i in 3b 3c ; do echo 1 > /sys/bus/pci/devices/0000\:$i\:00.0/remove; echo 1 > 

/sys/bus/pci/rescan; done 

 

 

https://gitlab.cern.ch/rmonteve/mid-sa-testbench/-/tree/master#centos-7-computer
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C5. Set the ReadoutCard environment [FLP server] 

The ReadoutCard environment is a program developed by the CRU team to allow the user to 

configure the system. This program can be set using the following command:  

 module load 

 

C6. Detect the CRUs in the system [FLP server] 

This command lists all the CRUs installed in the system. This includes the PCI addresses, 

the sequence number, the serial and Endpoint IDs as well as the CRU firmware and user 

logic version. 

roc-list-cards 

 

As expected, this program successfully detected the only CRU card present in the test bench 

and gave the following output: 

====================================================================== 

  #     Type      PCI Addr      Serial      Endpoint      NUMA      FW Version      UL Version 

--------------------------------------------------------------------------------------------------------------------------- 

  0     CRU      3b:00.0         0000          0           1           da7521f4          da7521f4 

  1     CRU      3c:00.0         0000           1           1           da7521f4          da7521f4 

====================================================================== 

 

As it can be observed, the CRU card is equipped with a PCIe edge connector, that provides 

a dual PCIe interface, each of which has a unique address (3b:00.0 and 3c:00.0). The 

endpoints can be seen as each of the CRU firmware output channels, i.e., the user logic data 

readout #0 is linked to the datapath wrapper #0, which is then liked to the PCIe interface #0. 

The FW and UL versions represent the latest commit tag provided by GitLab before the code 

was compiled.  

 

C7. Configure the CRU [FLP server] 

The “roc-config” is the command used to configure the ReadoutCard software. It requires 

several parameters depending on the sort of test the user wishes to perform. The command 

below displays information about the function of each parameter. 

roc-config -h  

 

In order to test the functionalities of the user logic component, the following parameters are 

required: --i#0 is the endpoint ID to be configured, --clock=ttc specifies that the clock is taken  
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from the TTC, --links=0-1 indicates GBT links #0 and #1 are enabled, --data=STREAMING 

indicates that the GBT datapath is in standard mode also known as streaming mode, --

downstream=MID specifies that the downstream trigger data uses the custom MID trigger 

format (see section 2.6.5 for more details about the format), --pon indicates that the PON 

upstream flag is enabled, --onu=1 implies that the ONU address for the PON is 1, --user-logic 

means the user logic path is enabled, --force tells the system to disregard any previous 

setting, --user-and-common-logic denotes that the system will operate in both user logic and 

common modes and finally, --bypass means the cru firmware checker is bypassed. 

roc-config --i=#0 --clock=ttc --links=0-1 --data=STREAMING --downstream=MIDTRG --pon –

onu=1 --user-logic --force --user-and-common-logic --bypass 

 

C8. Configure the GBTx [Centos PC] 

The GBTx chip in the regional card must be configured in order to synchronize the Rx and Tx 

transmission clocks between the readout electronics and the CRU. The configuration can 

either be achieved via the GUI interface using the GBTx programmer or via a python script 

provided by Dr. Stocco. It is important to note that both procedures require root user access. 

 

GUI interface  

The GBtx programmer GUI can be launched by running the command below. 

java -jar /root/gbtxprogrammer/releases/programmerv2.20180725.jar 

 

After launching the GUI interface, make sure to check the dongle state, which should display 

“v1.d”. In case of error, check the USB cable connected to the regional card. Check that GBT 

link numbers #2 and #3 display below the scan button, pick #2, and set the watchdog to 

“OFF”. Click on the “import.” button and select the text file from the location listed below: 

 /home/CentosPC/gbtxprog/config/gbtx_mid_link0.tx 

Click on “write GBTx” and on “read GBTx”, if successful the state should be locked to “idle, 

18h”. Set the watchdog to “ON”, then under the scan button pick #3 and repeat the process 

mentioned above. This time, import the text file from the location listed below:  

/home/CentosPC/gbtxprog/config/gbtx_mid_link1.txt 

Repeat the write and read procedure until the state is successfully locked in “idle, 18h” then 

exit the program. 

 

Python script (preferred option) 

The GBTx chip can be configured using the commands below. 
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su - 

cd /home/CentosPC/gbtxprog/ 

source ../venv/bin/activate 

python3 gbt_vldb.py --config-file2 /home/CentosPC/gbtx_mid_link0.txt --config-file3 

/home/CentosPC/gbtx_mid_link1.txt config 

 

C9. Verify the configuration [FLP server] 

The following command is used to ensure that the configurations executed in B7 and B8 are 

successfully implemented. 

roc-status –i=#0 

 

As expected, this command successfully recognized all parameters implemented in the CRU, 

and produced the following output: 

CRU ID: 0 

TTC clock | Fixed offset 

User and Common Logic enabled 

================================================================================================= 

  Link ID   GBT Mode      Loopback   GBT MUX            Mode         Datapath   RX freq(MHz)   TX freq(MHz)  Status    Power(uW)    

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

  0             GBT/GBT          None       TTC:MIDTRG     Streaming       Enabled      240.47      240.47             UP                  316.0                

  1             GBT/GBT          None       TTC:MIDTRG     Streaming       Enabled      240.47      240.47             UP                  369.4                

  2             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     216.76      240.47              DOWN             0.0                

  3             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     197.40       240.47             DOWN             0.0                  

  4             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     239.96      240.47              DOWN             0.0                  

  5             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     199.07      240.47              DOWN             0.0                  

  6             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     239.45      240.47              DOWN             0.0                  

  7             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     198.14      240.47              DOWN             0.0                  

  8             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     196.66      240.47              DOWN             0.0                  

  9             GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     234.56      240.47              DOWN             0.0                 

  10           GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     240.69       240.47             DOWN             0.0                  

  11           GBT/GBT          None       TTC:MIDTRG     Streaming       Disabled     240.59       240.47             DOWN             0.0                  

================================================================================================= 
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Instructions for reproducing the hardware test results 

 

Note:  

The hardware test results and the output report file obtained during this study are publicly 

available at the following link: https://github.com/dthysdin/Meng-Thesis/tree/master/hw 

 

This section explains how to reproduce the above-mentioned test results using the MID test 

bench available at iThemba LABS. The tests are performed using two terminal windows, one 

for storing data and the other for sending triggers using the LTU GUI interface. 

 

D1. Source the O² program (Terminal 1) 

This program was created by Dr. Stocco to allow users who are unfamiliar with the system to 

run the acquisition. It first sets up the O² environment and then waits for the CRU firmware to 

transmit data upon receiving triggers. As mentioned in Appendix A, the CRU is configured to 

operate in both common and user logic mode. As a result, this program stores both the raw 

and the compressed data extracted from the user logic. The maximum amount of raw and 

compressed data storage is set to “100 MB”. 

. ~/setupO2.sh 

 alienv enter O2/latest 

/home/flp/daq_utils/scripts/launch_acquisition.sh -i "#0" -t external -u 2 -s "100M" -fl 

 

D2. Source the LTU program and launch the GUI (Terminal 2) 

Set the LTU environment and launch the LTU GUI interface using the following commands:  

. /home/flp/setupLTU.sh 

qtltu 

 

Once the LTU control v1a window pops up, select “open” then click on the “CTP emulator “ 

button to access the emulator interface (refer to Figure 5.9 to see how to configure the 

emulator). At this stage, the LTU is ready for data acquisition and testing. To begin the 

acquisition, click "start", and to halt it, click “stop”. It merely takes a couple of seconds to fill 

up a 100 MB file. Keep an eye on Terminal 1 as it will notify you as soon as the files are full.  

 

D3.  Read the output data raw files (Terminal 1) 

Following the completion of the acquisition, three distinct files are created. The raw data from 

the GBT links #0 and #1 can be found in “readout files_0_0.raw” and ”readout files_0_1.raw”, 

respectively, while the output data from the user logic can be found in “readout files_0_15”.  

https://github.com/dthysdin/Meng-Thesis/tree/master/hw
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The instructions listed below show the commands used  to read these files. 

cd ../ul_common/ 

o2-mid-rawdump readout_file_0_0.raw | less 

o2-mid-rawdump readout_file_0_1.raw | less 

o2-mid-rawdump readout_file_0_15.raw | less 

 

D4.  Execute the O² checker (Terminal 1) 

The O² checker compares the three files created during the DAQ to ensure data consistency 

and identify errors. The command required to execute the checker is listed below. 

o2-mid-raw-ul-checker --feeId-config-file /home/flp/daq_utils/config/feeId_mapper.txt --crate-

masks-file /home/flp/daq_utils/config/crate_masks.txt --bare-filenames 

readout_file_0_0.raw,readout_file_0_1.raw --ul-filenames readout_file_0_15.raw 

 

D5.  Read the report file (Terminal 1) 

A report file is created right after the checks have been completed. This file details the 

number of errors found and events missing from the user logic output file. The command 

listed below enables the user to open the report file. 

more check_ul.txt 

 

In most cases, no faults will be found. The hardware tests can be redone by repeating the 

preceding stages. Otherwise, shut all terminal windows to bring the tests to an end. 
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Instructions for accessing the registers 

 

Note:  

The CRU team uses the “roc-reg” tools to read and write the CRU firmware registers. These 

tools use low-level functions for directly interacting with the CRU over the PCI-e interface. 

They are intended for development and debug purposes. The “roc-reg-read” command is 

used to read the register while the “roc-reg-write” is used to write to the register. These 

commands use four parameters: “--i”, which is the endpoint ID of the CRU, displayed in the 

output of the “roc-list-cards” command (see Appendix C). The second parameter is 

“channel”, which is used to access the Avalon bus, the channel to be used is 2. The third 

parameter is “address”, which is the registered address assigned by the user logic. All 

addresses related to the user logic component always start with “--add=0xC8”. The fourth 

parameter varies based on the purpose of the action to be executed. During reading, the 

fourth parameter is “--range”, which determines the range of the register to be read. During 

write, the fourth parameter is “--val”, which represents the value written to the register.  

  

The following commands are used to read/write the user logic registers. These commands 

are executed on the FLP server. 

=================================================================== 

E1. Read all Avalon registers under  

roc-reg-read-range --i=#0 --ch=2 --add=0xc80004 --range=31       # Read all registers 

 =================================================================== 

E2. Write MID Reset 

roc-reg-write --i=#0 --ch=2 --add=0xc80000 --val=0x00000001    # Reset  

=================================================================== 

E3. Read/Write MID CRUID register               

roc-reg-write --i=#0 --ch=2 --add=0xc80004 --val=0x00000001   # Write CRUID = 1 

roc-reg-write --i=#0 --ch=2 --add=0xc80004 --val=0x00000000   # Write CRUID = 0     

roc-reg-read-range --i=#0 --ch=2 --add=0xc80004 --range=1      # Read CRUID  

=================================================================== 

E4. Read/Write MID switch register content 

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000000 # Write switch (0)           

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000001 # Write switch (1)   

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000002 # Write switch (2) 

roc-reg-write --i=#0 --ch=2 --add=0xc80008 --val=0x00000003 # Write switch (3)   

roc-reg-read-range --i=#0 --ch=2 --add=0xc80008 --range=1     # Read switch  
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=================================================================== 

E5. Read/Write GBT Mapping  

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000000 #UL link 0 => GBT link 0   

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000001 #UL link 0 => GBT link 1                 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000002 #UL link 0 => GBT link 2              

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000003 #UL link 0 =>GBT link 3               

-- .....                                                                                            # ..... 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000009 #UL link 0 => GBT link 9 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000A #UL link 0 => GBT link 10 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000B #UL link 0 => GBT link 11 

            

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000000 #UL link 1 => GBT link 0   

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000001 #UL link 1 => GBT link 1                 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000002 #UL link 1 => GBT link 2              

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x00000003 #UL link 1 => GBT link 3               

 .....                                                                                               # ..... 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000A #UL link 1 => GBT link 10 

roc-reg-write --i=#0 --ch=2 --add=0xc8000C --val=0x0000000B #UL link 1 => GBT link 11 

=================================================================== 

E6. Read/Write MID synchronization   

roc-reg-write --i=#0 --ch=2 --add=0xc80014 --val=0x00000080 # Write sync value         

roc-reg-read-range --i=#0 --ch=2 --add=0xc80014 --range=1 # Read sync value  

=================================================================== 

E7. Read trigger register 

roc-reg-read-range --i=#0 --ch=2 --add=0xc80034 --range=1 # Read trigger monitor 

=================================================================== 

E8. Read datapath wrapper registers  

roc-reg-read-range --i=#0 --ch=2 --add=0xc80038 --range=1 # Read DWrapper#0 register  

roc-reg-read-range --i=#0 --ch=2 --add=0xc8003C --range=1 # Read DWrapper#1 register  

=================================================================== 

E9. Read gbt registers   

roc-reg-read-range --i=#0 --ch=2 --add=0xc80040 --range=2  # read  GBT#0 and GBT#1 
=================================================================== 
 


