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ABSTRACT 

Reliable electrical power supply is one of the most important utilities for modern society. This 

can be seen by the fact that any prolonged interruption of electrical power supply usually 

leads to enormous disruption of essential services and normal daily activities, and can in fact 

threaten to cause a lot of damage or losses if not promptly remedied. Moreover, recent 

developments in the power system, such as the deregulation and restructuring of the 

electrical power supply industry, the introduction of competitive electricity and power 

markets, and the rapid growth and expansion of distributed and decentralized electrical 

power generation, have led to a significant increase in the complexity of modern power 

systems, adding to the challenge of operating them reliably and efficiently. Thus, the need for 

optimal strategies for the secure, economical and efficient operation of the power system is 

arguably even greater now than at any other time in the history of the power system. In line 

with this identified need, this thesis investigates the theoretical design, development, and 

practical implementation of efficient algorithms that contribute to the secure, economical and 

reliable operation of electric power transmission systems. 

The focus of the research presented in this thesis is on the development of methods and 

algorithms for the solution of the Volt/VAR optimization (VVO) problem, which is a very 

important sub-problem of the optimal power flow (OPF) problem that is primarily concerned 

with determination of the optimal coordinated dispatch of voltage-regulating devices and 

reactive power sources, with voltage profile improvement and system power loss 

minimization as the main objectives (among others). Volt/VAR optimization is one of the most 

actively researched areas of power system operation. While most researchers consider 

either classical or heuristic optimization methods in isolation, the research work presented in 

this thesis investigates the design of efficient Volt/VAR optimization strategies considering 

both classical and heuristic optimization techniques. 

Two main optimization algorithms are developed for the solution of the Volt/VAR optimization 

problem in this thesis. One is based on the primal-dual interior-point method (PDIPM), which 

is one of the most efficient classical methods for large-scale nonlinear optimization. The 

other is based on the particle swarm optimization algorithm, one of the most popular heuristic 

optimization techniques. To enhance the efficiency of the developed algorithms, the model 

development for the Volt/VAR optimization problem considers both the polar and rectangular 

coordinate representations of the system voltages. Although most researchers make use of 

the polar representation, analysis reveals that the rectangular representation has relatively 

more favourable mathematical properties from the computational efficiency perspective, 

particularly for the methods and algorithms developed in this thesis. The efficiency of the 

developed methods and algorithms is further enhanced by incorporating the Newton-

Raphson load flow computation into the Volt/VAR optimization algorithm, which is moreover 
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also developed using the rectangular model formulation. Five power system case studies, a 

3-bus system, a 6-bus system, and the IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus power 

systems, are used to analyse the performance of the developed algorithms. The results 

obtained from the performance analysis reveal that the developed algorithms exhibit high 

computational efficiency and superior convergence characteristics. Moreover, a comparative 

performance analysis is also conducted between the PDIPM-based VVO algorithm and the 

PSO-based VVO algorithm. The performance analysis reveals that the primal-dual interior-

point method outperforms the particle swarm optimization algorithm in terms of 

computational efficiency, since on average it requires fewer iterations to converge, and has a 

shorter running time. The particle swarm optimization, on the other hand, generally achieves 

a higher percentage real power loss reduction than the primal-dual interior-point method. 

This suggests that the two classes of methods (i.e. classical and heuristic optimization 

methods) have complementary performance characteristics, something which could be 

exploited to devise optimization strategies that seek to combine their relative strengths, and 

thus have a better prospect of exhibiting performance that is superior to that of the individual 

algorithms. 

The methods, algorithms and software programs developed and presented in this thesis are 

of great relevance both to industry and to academia, and can serve as a good foundation for 

further research and development, as suggested in the concluding chapter of the thesis. 

Keywords: Optimal Power Flow, Volt/VAR Optimization, reactive power/voltage control, 

classical optimization, primal-dual interior-point method, heuristic optimization techniques, 

computational intelligence, particle swarm optimization. 
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CHAPTER ONE  

THESIS INTRODUCTION 
 

1.1       Introduction and background 

The electric power system has undergone significant developments over the past 

century or so. Notable among the many developments are the deregulation and 

restructuring of the electrical power supply industry, the establishment of competitive 

electricity markets, and the resurgence of distributed and decentralized electric power 

generation (Li & Zhong, 2021; Rahimi, 2020; Jha & Dubey, 2020). This has naturally 

led to an increase in complexity of the modern power system. And in spite of these 

major developments and the increase in complexity, the primary objective of the 

power system has remained practically the same: to deliver electric power to the 

consumer in a secure, efficient, economical, reliable and sustainable way. Indeed, 

reliability of electric power supply has become so critical to modern society that even 

momentary unavailability of electric power may threaten to cause enough disruption 

to essential public (and private) services and normal daily activities to be considered 

practically intolerable. 

Being able to deliver electric power with the required high reliability and security, 

while being economical, has necessitated the development of a variety of planning 

and operational strategies over the decades, by means of which the power system 

can be operated optimally as far as practicable. These strategies are collectively 

referred to as Optimal Power Flow (OPF). In the course of the operation of the power 

system, changes in load demand and network configurations may cause the system 

to operate outside of the nominal range, which could threaten the quality and even 

security or reliability of supply. To prevent or correct anomalous operating conditions, 

the system operator continually implements controls to regulate the production, 

absorption and flow of power at all levels in the system. Some of the controlled 

variables include generator active and reactive power outputs, reactive power 

compensation device outputs, transformer tap settings, and phase shifter settings, 

among others. OPF has evolved into a sophisticated computational tool employed in 

the determination of the optimal dispatch of all the system control variables so as to 

ensure the economical and secure operation of the system, while respecting many 

functional and operational constraints of the system.  

The research presented in this thesis is primarily concerned with the theoretical 

design, development, and practical implementation of efficient algorithms that 

contribute to the secure, economical and reliable operation of modern complex power 

systems. This chapter covers the background to the research presented in this thesis. 

The motivation for the research is briefly discussed in section 1.2, followed by the 
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problem statement in section 1.3. Section 1.4 outlines the aim and objectives of the 

research, followed by the hypotheses that underlie the conducted research in section 

1.5. Delimitation of the research and the assumptions taken in conducting the 

research are presented in sections 1.6 and 1.7 respectively. Section 1.8 outlines the 

research methodology, followed by the main research outputs in section 1.9. The 

outline of the thesis is then presented in section 1.10, and section 1.11 concludes the 

chapter with a brief summary of key points from the chapter. 

1.2  Motivation for the research 

The electrical power system is arguably one of the most complex engineering 

systems in existence. The complexity is in part due to the need to simultaneously 

consider several important operational objectives, some of which may be conflicting in 

nature. Engineering optimization has turned out to be the most effective way of 

dealing with the complexity associated with the efficient operation of the power 

system. Indeed, optimization of power system operation as a subject of study has 

quite a long history, and has benefited over the years from the advances in 

mathematical programming techniques and computational methods, although it even 

predates the advent of digital computers, which can be said to have revolutionized 

numerical optimization and computation in general. One of the most widely studied 

power system optimization problems is the optimal power flow (OPF) problem, the 

first complete formulation of which is generally attributed to Carpentier (1962). The 

OPF problem is concerned with the optimization of some aspect of power system 

operation (which could be economical, technical, environmental, etc.), while satisfying 

the functional and operational constraints of the system (Frank & Rebennack, 2016). 

Reactive power and voltage control, otherwise referred to as optimal reactive power 

dispatch (ORPD) or Volt/VAR optimization (VVO), is one of the most important sub-

problems of the OPF problem. It is primarily concerned with determination of the 

optimal coordinated dispatch of voltage-regulating devices and reactive power 

sources, with the aim of maintaining a secure voltage profile, while also optimizing 

some aspect of system operation, subject to functional and operational system 

constraints (Chebbo, 1990). Optimal reactive power dispatch plays a key role in the 

efficient transfer of real power, especially in the bulk power transmission system, and 

contributes significantly to the security, reliability, quality and economy of power 

system operation (Miller, 1982). Volt/VAR optimization has consistently been one of 

the most active areas of research in the field of optimization of power system 

operation, which gives evidence to the continued relevance of research in this aspect 

of power system operation. This is especially true in view of the growing complexity of 

modern power systems, in part due to such developments as electric power system 
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deregulation and restructuring, establishment of competitive electricity markets, the 

proliferation of distributed and decentralized electric power generation, and electric 

power grid modernization efforts under the smart grid paradigm. All these 

developments bring about the need for continuous advancement in optimization 

techniques and computational methods that are to support the secure, reliable, and 

economical operation of the 21st century power system and beyond (Myrda, 2013).  

Volt/VAR optimization has a number of characteristics that make it a very challenging 

optimization problem, and much effort has been dedicated over the decades to the 

study of a variety of problem formulations, as well as the development of solution 

techniques for the various formulations, encompassing both classical or conventional 

optimization methods, as well as heuristic or intelligent search-based optimization 

methods. Most researchers consider either a classical or a heuristic optimization 

method in isolation. Recent works have applied such heuristic optimization methods 

as particle swarm optimization (Pijarski & Kacejko, 2018; Vitor & Vieira, 2018), 

genetic algorithm (Choden et al., 2022), and expert system (Lomi & Limpraptono, 

2017) to the Volt/VAR optimization problem. Examples of classical methods applied 

to the Volt/VAR optimization algorithm can be found in (Xu & Wu, 2022; Jha Dubey, 

2020; Prabawa & Choi, 2019). The research work presented in this thesis 

investigates the design of efficient Volt/VAR optimization strategies considering both 

approaches, that is, classical and heuristic optimization techniques. Moreover, 

whereas most researchers make use of the polar formulation of the Volt/VAR 

optimization problem, both the polar and rectangular formulations are analysed in this 

thesis, and the rectangular formulation is found to have more favourable 

mathematical properties from the computational efficiency perspective, and is thus 

used in the studies conducted in this research. Both the model development of the 

Volt/VAR optimization problem as well as the theoretical design and practical 

implementation of the developed algorithms are thoroughly covered in the research. 

1.3       Problem statement 

The main problem dealt with in this research is the theoretical design and practical 

implementation of efficient methods for Volt/VAR optimization. This is in recognition of 

the pivotal role played by Volt/VAR optimization in ensuring the security, economy, 

efficiency and reliability of operation of modern complex power systems. The solution 

to the research problem is addressed through a thorough and comprehensive 

investigation of the state-of-the-art in the problem formulation and solution methods 

for the Volt/VAR optimization problem, followed by the theoretical design and 

practical implementation of the algorithms developed within the framework of this 
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research. The problem statement can thus be considered to consist of design and 

implementation sub-problems, as follows: 

1.3.1 Design-oriented sub-problems 

i. Study and comparative analysis of the various classical and heuristic 

optimization methods that have been applied to the Volt/VAR optimization 

problem over the decades. 

ii. Formulation of the Volt/VAR optimization problem, considering both the polar 

and rectangular representations of the system voltages. 

iii. Development and design of the Newton-Raphson load flow algorithm in 

rectangular coordinates, which is used as a component of the Volt/VAR 

optimization algorithm. 

iv. Theoretical development and design of the primal-dual interior-point algorithm 

for application to the Volt/VAR optimization problem. 

v. Theoretical development and design of the particle swarm optimization 

algorithm for application to the Volt/VAR optimization algorithm. 

vi. Design of power system case studies to be used in the performance analysis 

of the developed Volt/VAR optimization algorithms. 

 

1.3.2 Implementation-oriented sub-problems 

Development of software for the implementation of: 

i. The Newton-Raphson load flow algorithm in rectangular coordinates. 

ii. The primal-dual interior-point method for solution of the Volt/VAR optimization 

problem, incorporating the Newton-Raphson load flow computation. 

iii. The particle swarm optimization algorithm for solution of the Volt/VAR 

optimization problem, also incorporating the Newton-Raphson load flow 

computation. 

iv. The power system case studies used to analyse the performance of the 

developed algorithms. 

1.4       Research aim and objectives 

1.4.1 Aim 

The main aim of this research, in line with the problem statement outlined in the 

preceding section, is theoretical design and practical implementation of efficient 

solution methods for the Volt/VAR optimization algorithm, based on both 

classical/conventional and heuristic/intelligent search-based optimization techniques. 
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1.4.2 Objectives 

The objectives supporting the realization of this aim can be stated as: 

1. Thorough investigation of the state-of-the-art in problem formulation and 

solution techniques for the Volt/VAR optimization problem, considering both 

classical and heuristic optimization techniques. 

2. Critical comparative analysis of classical and heuristic optimization 

techniques, based on key optimization performance criteria, such as 

computational efficiency, convergence characteristics, and solution quality. 

3. Model development for the Volt/VAR optimization problem, considering both 

the polar and rectangular form of representing the system voltages. 

4. Theoretical development of the primal-dual interior-point method (PDIPM) as 

the classical optimization technique applied to the solution of the Volt/VAR 

optimization problem. 

5. Practical implementation of the PDIPM-based Volt/VAR optimization (PDIPM-

VVO) algorithm, and a comprehensive performance analysis of the developed 

algorithm by means of a variety of power system case studies. 

6. Theoretical development of the particle swarm optimization (PSO) algorithm 

as the heuristic optimization technique applied to the solution of the Volt/VAR 

optimization problem. 

7. Practical implementation of the PSO-based Volt/VAR optimization (PSO-VVO) 

algorithm, and a comprehensive performance analysis of the developed 

algorithm by means of a variety of power system case studies. 

8. Comparative analysis of the performance of the PDIPM and PSO algorithms 

as solution methods for the Volt/VAR optimization problem. 

9. Making of recommendations for further research based on the results 

achieved from the current research. 

1.5       Hypothesis 

The hypotheses underpinning the research presented in this thesis are based on the 

investigative literature review that has been conducted in the field of problem 

formulation and solution techniques for the Volt/VAR optimization problem, spanning 

several decades, and encompassing both classical and heuristic optimization 

techniques. The following are the main hypotheses investigated in this research: 

 Many different solution approaches for the Volt/VAR optimization problem 

have been explored and presented in the literature over the past decades. A 

detailed study of the individual techniques and a critical comparative analysis 

is conducted with the aim of establishing their key characteristics, as well their 
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relative strengths and weaknesses, which then forms the basis for the 

methods and algorithms developed and implemented in this thesis. 

 The model formulation for the Volt/VAR optimization problem has a significant 

impact on the computational efficiency with which it is solved, especially when 

considered in conjunction with a specific optimization technique. The polar 

and rectangular representations of the Volt/VAR optimization problem are 

considered in this thesis, and their relative merits and demerits are discussed. 

Based on their mathematical properties, the rectangular formulation is found 

to be especially suitable for the solution algorithms developed in this thesis. 

 There are a number of performance criteria on the basis of which the 

effectiveness of an optimization algorithm can be evaluated, for example, 

computational speed, accuracy and quality of the solution, convergence 

properties, and ability to effectively handle inequality constraints, among 

others. The hypothesis is that classical optimization methods perform 

relatively better in some of these characteristics, and heuristic methods 

perform better in others. Thus, the solution to the Volt/VAR optimization 

algorithm is developed on the basis of both a classical optimization method 

(i.e. PDIPM) as well as a heuristic optimization method (i.e. PSO), and a 

comparative analysis is conducted to ascertain their relative performance with 

respect to the Volt/VAR optimization problem. 

The investigation of these hypotheses leads to the design and implementation of 

efficient and scalable solution methods for the Volt/VAR optimization problem, based 

on both the classical and heuristic optimization techniques, as presented in this 

thesis. 

1.6       Delimitation of the research 

The focus of the research presented in this thesis is on the theoretical study and 

analysis of classical and heuristic optimization methods, and their application to the 

Volt/VAR optimization problem. More specifically, the following aspects of the 

research are emphasized: 

 Development and implementation of the Newton-Raphson-based load flow 

algorithm formulated in rectangular coordinates of system voltages. 

 Development and implementation of the primal-dual interior-point method-

based Volt/VAR optimization algorithm, which incorporates the Newton-

Raphson-based load flow computation. 

 Development and implementation of the particle swarm optimization-based 

Volt/VAR optimization algorithm, which also incorporates the Newton-

Raphson-based load flow computation. 
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 Performance analysis of the developed algorithms by means of several power 

system case studies varying in size, in order to analyse such characteristics 

as computational efficiency, solution quality, convergence properties, and 

scalability of the algorithms. 

Many algorithms are studied in the framework of this thesis, but only the ones 

outlined above are further developed and implemented. 

1.7       Assumptions 

The following assumptions are made in approaching the problem of developing and 

implementing solution methods for the Volt/VAR optimization problem: 

 Volt/VAR optimization is treated as a static optimization problem, such that the 

load demand and active power generation are considered to remain constant 

at the scheduled values throughout the optimization process. This is a 

simplifying assumption, as in reality load demand tends to vary over time, and 

active power generation must correspondingly be adjusted to follow the load 

demand variation. 

 The system power loss calculation is based only on the transmission line 

losses. This is a simplifying assumption, as many other system components, 

such as generators and transformers, also contribute to system power losses. 

In this study, however, their contribution is taken to be relatively negligible. 

 In developing the model for the Volt/VAR optimization problem, only the 

aspects relevant to the optimization process are modelled, and only a 

selection of system state and control variables are incorporated into the 

model, which is a simplification meant to handle the model complexity. 

 The PDIPM algorithm requires initialization of certain parameters (e.g. barrier 

parameters, slack variables, etc.), which is largely problem-dependent. Once 

these parameters are initialized, some of them stay constant throughout the 

optimization process, others are adjusted algorithmically. No re-initialization of 

the parameters is performed, unless a different run of the algorithm is 

conducted in order to evaluate it for a different set of parameters. 

 The PSO algorithm requires initialization of some random parameters as well 

as some static parameters (e.g. cognitive and social acceleration coefficients, 

which are held constant throughout the optimization process), and these are 

also largely problem-dependent. 

 The performance analysis of the developed algorithms focuses on the 

measurable aspects of the algorithm performance, such as the number of 

iterations taken by the algorithm to converge and the corresponding running 

time, and the solution quality as judged by the achieved amount of power loss 
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reduction and voltage profile improvement. Many other aspects are not 

considered. 

 Other than the primal-dual interior-point and particle swarm optimization 

algorithms, other optimization algorithms are not considered for 

implementation in this research. 

1.8       Research methodology 

The methodology followed in conducting the research presented in this thesis 

encompasses three main strands, these being (1) a thorough literature review on the 

various aspects pertaining to the research, (2) a theoretical development of the 

components of the research as stated in the research objectives, (3) a practical 

implementation of the developed solutions to the research problem, and 

comprehensive performance analysis of the developed methods. 

1.8.1 Literature review 

The review of previous work related to the proposed research has considered the 

various aspects related to Volt/VAR optimization. The following topics have been the 

main focus of the literature review: 

1. Formulation of the Volt/VAR optimization problem, considering the objectives, 

constraints, and decision or control variables, and the representation of the 

system voltages in both polar and rectangular coordinates. 

2. The main reactive power and voltage control devices that are typically 

employed in Volt/VAR optimization. 

3. Classical/conventional methods for Volt/VAR optimization. 

4. Heuristic/intelligent search-based methods for Volt/VAR optimization. 

5. Performance analysis criteria for optimization in general, and Volt/VAR 

optimization in particular. 

1.8.2 Theoretical development 

The knowledge and information derived from the literature review has been used as 

the basis for the theoretical development of the solution to the research problem. 

Specifically, this has resulted in the: 

 Definition of the problem formulation for the Volt/VAR optimization problem for 

both the polar and rectangular coordinate representations of the system 

voltages. 

 Development of the Newton-Raphson load flow algorithm in rectangular 

coordinates, which is then incorporated into the Volt/VAR optimization 

algorithm. 
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 Development of the primal-dual interior-point method and adaptation to the 

requirements of the solution algorithm for the Volt/VAR optimization problem. 

 Development of the particle swarm optimization algorithm and adaptation to 

the requirements of the solution algorithm for the Volt/VAR optimization 

problem. 

1.8.3 Practical implementation and performance analysis 

The practical implementation and performance analysis entails: 

 Development of the software for the Newton-Raphson load flow algorithm that 

has been theoretically developed, as outlined in section 1.8.2. 

 Development of the software for the PDIPM-based Volt/VAR optimization 

algorithm incorporating the Newton-Raphson algorithm. 

 Development of the software for the PSO-based Volt/VAR optimization 

algorithm incorporating the Newton-Raphson algorithm. 

 Comprehensive performance analysis of all the developed algorithms by 

means of several power system case studies varying in size from small (3-bus 

system) to large (118-bus system). 

1.9       Main research outputs/deliverables 

The principal contributions of this research can be enumerated as: (1) comprehensive 

literature study and review; (2) problem formulation and model development for the 

Volt/VAR optimization problem; (3) theoretical development and design of the 

algorithms used in solving the Volt/VAR optimization problem; (4) software 

development for the implementation of the developed algorithms; and (5) 

comprehensive performance analysis of the developed algorithms by means of a 

variety of power system case studies: 

1. The comprehensive literature review covers the following: 

a. Problem formulation and solution methods for the Volt/VAR 

optimization problem, considering both the classical/conventional and 

heuristic/intelligent search-based optimization techniques. 

b. Critical comparative analysis of the classical and heuristic optimization 

techniques, highlighting their individual characteristics, as well as their 

relative strengths and weaknesses. 

c. Study and presentation of the main reactive power and voltage control 

devices that are typically employed in the solution of the Volt/VAR 

optimization problem. 
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2. The problem formulation and model development for the Volt/VAR 

optimization problem considers both the polar and rectangular coordinate 

representations of the system voltages. 

3. The theoretical algorithm development and design encompasses: 

a. The Newton-Raphson load flow algorithm in the rectangular coordinate 

representation of the system voltages. 

b. The primal-dual interior-point algorithm for Volt/VAR optimization 

(PDIPM-VVO), formulated in rectangular coordinates, which 

incorporates the rectangular-coordinate Newton-Raphson load flow 

computation. 

c. The particle swarm optimization algorithm for Volt/VAR optimization 

(PSO-VVO), also formulated in rectangular coordinates, and 

incorporating the rectangular-coordinate Newton-Raphson load flow 

computation. 

4. The software development and implementation encompasses the: 

a. Rectangular-coordinate Newton-Raphson load flow algorithm. 

b. Primal-dual interior-point method-based Volt/VAR optimization 

(PDIPM-VVO) algorithm. 

c. Particle swarm optimization-based Volt/VAR optimization (PSO-VVO) 

algorithm. 

5. The comprehensive performance analysis of the developed algorithms makes 

use of five power system case studies, and analyses the performance of both 

the PDIPM-VVO and PSO-VVO algorithms, focusing on the following 

performance aspects: 

a. The quality of the solution in terms of the magnitude of real power loss 

percentage reduction and the voltage profile improvement. 

b. The computational efficiency of the algorithm in terms of the required 

number of iterations and runtime. 

c. The scalability of the developed algorithms when applied to test 

systems ranging in size from 3-bus to 118-bus system. 

d. The impact of the swarm size on the solution quality and the 

computational cost of the PSO algorithm. 

1.10 Thesis outline  

The thesis document comprises seven chapters, whose contents can be summarized 

as follows: 

Chapter one (i.e. this chapter) introduces the research presented in this thesis. 

Among the topics covered are the motivation for the research, the problem statement, 
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the research aim and objectives, the hypotheses underpinning the research, the 

delimitation of the research, the assumptions that have been made in the process of 

conducting the research, the research methodology that has been followed, and the 

main research outputs. 

Chapter two presents a comprehensive literature review on the problem formulation 

and solution methods for the Volt/VAR optimization problem, covering both the 

classical/conventional as well as the heuristic/intelligent search-based optimization 

techniques. A study of the main reactive power and control devices that are typically 

employed in the Volt/VAR optimization are is also presented. A key result in this 

chapter is a critical comparative analysis of the performance characteristics of 

classical and heuristic optimization methods, which emphasizes their relative 

strengths and weaknesses. 

Chapter three focuses on the model development for the Volt/VAR optimization 

problem, and discusses the objective functions, constraints, as well as decision or 

control variables for the problem. Two models are presented, one based on the polar 

representation of the system voltages, the other based on the rectangular 

representation of the system voltages. The two models are compared in terms of their 

mathematical properties, and their suitability for application to the current study. 

Chapter four presents the theoretical design and practical implementation of the 

primal-dual interior-point method, as well as an application example based on a 

general nonlinear programming problem that is used to demonstrate both the 

theoretical development and practical implementation of the algorithm. 

Chapter five presents the theoretical development and practical implementation of the 

primal-dual interior-point method-based Volt/VAR optimization (PDIPM-VVO) 

algorithm, as well as the Newton-Raphson load flow algorithm, formulated in 

rectangular coordinates. Five simulation case studies based on power systems 

ranging in size from 3-bus to 118-bus are used to analyse the performance of the 

developed PDIPM-VVO algorithm. 

Chapter six presents the theoretical development and practical implementation of the 

particle swarm optimization-based Volt/VAR optimization (PSO-VVO) algorithm, 

which also incorporates the Newton-Raphson load flow algorithm presented in 

chapter five. Similar to chapter five, several simulation case studies based on power 

systems ranging in size from 3-bus to 118-bus are used to analyse the performance 

of the developed PSO-VVO algorithm. A comparative analysis of the PDIPM-VVO 

and PSO-VVO algorithms is also presented in this chapter. 



12  
 

Chapter seven presents the conclusion, the deliverables of the thesis, and the 

recommendation for further research based on the outcomes of the current research. 

1.11 Conclusion 

This chapter has introduced the research presented in this thesis. Among the topics 

covered are the motivation for the research, the problem statement, the research aim 

and objectives, the hypotheses underpinning the research, the delimitation of the 

research, the assumptions that have been made in the process of conducting the 

research, the research methodology that has been followed, and the main research 

outputs. Subsequent chapters will develop the themes outlined in this chapter, which 

will culminate into the achievement of the aim and objectives stated for this research. 

The main result of this chapter has been to set the background for the research 

conducted and presented in this thesis. 

To contextualize the current research and to lay the foundation for the developmental 

work carried out in the framework of this research, the following chapter presents a 

comprehensive literature review on the problem formulation and solution methods for 

the Volt/VAR optimization problem, covering both the classical/conventional as well 

as the heuristic/intelligent search-based optimization techniques. 
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CHAPTER TWO 

LITERATURE REVIEW ON CLASSICAL AND HEURISTIC METHODS FOR 
VOLT/VAR OPTIMIZATION 

 

2.1 Introduction 

Optimization of power system operation as a subject of study has quite a long history, 

enriched over the years by advances in mathematical programming techniques and 

computational methods, but certainly predating the advent of digital computers which 

have revolutionized numerical optimization and computation in general. One of the 

most widely studied power system optimization problems is the Optimal Power Flow 

(OPF) problem, the first complete formulation of which is generally attributed to 

Carpentier (1962), (Cain et al., 2012).  The OPF problem seeks to optimize some 

aspect of power system operation (could be economical, technical, environmental, 

etc.), while satisfying the physical and operational constraints of the system (Frank & 

Rebennack, 2016). 

Volt/VAR Optimization (VVO) can be considered to be a sub-problem of the OPF 

problem (or a variant formulation thereof) that is mainly concerned with the 

determination of the optimal coordinated dispatch of voltage-regulating devices and 

reactive power sources so as to maintain a secure voltage profile, while also 

optimizing some aspect of power system operation, subject to physical and 

operational system constraints (Feng & Peterson, 2010; Chebbo, 1990). Optimal 

reactive power dispatch plays a key role in the efficient transfer of real power, 

especially in the bulk power transmission system, and contributes significantly to the 

security, reliability, quality and economy of power system operation (Miller, 1982). 

The extensive research that has been (and continues to be) conducted in the area of 

Volt/VAR optimization gives evidence to the continued relevance of research in this 

aspect of power system operation, particularly in the wake of changes taking place in 

the electric power system, spurred on by such developments as electric power 

system deregulation, electric grid modernization under the paradigm of the smart grid, 

and the rapid growth of renewable and distributed power generation (Li & Zhong, 

2021; Rahimi, 2020; Jha & Dubey, 2020; Golkar & Rajabzadeh, 2009; Puttgen et al., 

2001; Lewis, 2000; Joos et al., 2000). Largely progressive as all these developments 

are, they nonetheless pose a significant challenge to the power system operator 

(Bekhouche, 2002), and hence the growing need for advancements in optimization 

techniques and computational methods that will support the secure, reliable, and 

economical operation of the 21st century power system and beyond (Myrda, 2013). 
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Volt/VAR optimization has a number of characteristics that make it a very challenging 

optimization problem, and much effort has been dedicated over the decades to the 

study of a variety of problem formulations, as well as the development of solution 

techniques for the various formulations. Key developments in the treatment of the 

OPF problem over the years have been presented in a number of review papers, 

some notable ones being (Alghamdi, 2022; Risi, B-G. et al., 2022; Krishnamurthy & 

Tzoneva, 2012; Frank et al., 2012a, 2012b; Pandya & Joshi, 2008; Momoh et al., 

1993; Huneault & Galiana, 1991; Alsac et al., 1990; Happ, 1977). Aspects of interest 

that have been emphasized in these review papers have mainly been the problem 

formulation, as well solution techniques, considering both the classical/deterministic 

and the non-deterministic/artificial intelligence-based optimization methods. 

A few review papers have focused on solution techniques for Volt/VAR optimization. 

A review of literature on reactive power planning has been presented by Zhang and 

Tolbert (2007). Taylor et al (2001) present a review of algorithmic and heuristic 

methods for Volt/VAR control. Lin et al (2003) focus in their review of Volt/VAR control 

on reactive power sources and their control devices, as well as discussing a number 

of solution methods for the Volt/VAR control problem. 

Reactive power planning, a problem that is closely related to Volt/VAR optimization 

(or optimal reactive power dispatch), focuses on optimal investment in new reactive 

power sources to meet future reactive power compensation needs (Zhang & Tolbert, 

2007). The relevance of effective reactive power planning has become even more 

pronounced in recent years, due to the need to account for the impact of the growing 

share of variable renewable generation such as wind and photovoltaic power 

generation on reactive power compensation. A multi-period, multi-scenario corrective 

security-constrained OPF has been explored by Savvopoulos et al (2019) as a way of 

dealing with increasing penetration of variable renewable generation. Ghodrati et al 

(2019) proposed a probabilistic multi-objective reactive power planning framework 

that considers large-scale wind generation integration. Li et al (2019) investigated the 

coordination of the reactive power control of large-scale renewable generation with 

the main grid as a way of enhancing the voltage stability of the entire system. 

Recognition has continued to increase among utilities and researchers of the role to 

be played by smart inverters in various forms of grid support. As an example, 

California Rule 21, which regulates the integration of distributed generation (DG) to 

the power grid, has implemented an adjustment to the rule that requires the use of 

advanced (i.e. smart) inverters capable of performing a variety of grid support 

functions, such as Volt/VAR management (Cha et al., 2020). Multi-agent deep 

reinforcement learning has been applied to the control of DGs via smart inverters as a 
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way of adapting to time-varying conditions, as well as the spatial and temporal 

uncertainties resulting from intermittent generation (Zhang et al., 2021; Liu et al., 

2021). The overarching concept underlying many of these works is to exploit the 

capabilities of modern smart inverters to actively regulate inverter-based DG output 

so as to support network functions such as voltage regulation, network loss 

minimization, and electricity market-based day-ahead power dispatch, among others 

(Aldahmashi & Ma, 2022; Li & Zhong, 2021; Xu & Wu, 2020; Ding et al., 2020). 

This chapter presents an up-to-date comprehensive survey of the main optimization 

methods that have been applied to the Volt/VAR optimization problem over the 

decades. Both classical/conventional and heuristic/intelligent search-based 

optimization methods are covered. Each optimization method is discussed in detail, 

its strengths and drawbacks are highlighted, and a thorough comparative analysis of 

the key characteristics of the classical and heuristic methods is presented. Figure 

(2.1) depicts a graph of the number of publications that have been reviewed, plotted 

against the year of publication, and Figure (2.2) indicates the number of each of the 

optimization algorithms that have been covered. 

 

Fig. 2.1: Number of publications reviewed plotted against year of publication 
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Fig. 2.2: Number of publications reviewed in terms of algorithm 
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Fig. 2.3: pictorial representation of the content of this chapter 

The rest of the chapter is organized as follows. Section 2.2 briefly discusses the main 

devices for reactive power and voltage control in the power system. The Volt/VAR 

optimization problem formulation is presented in section 2.3, to contextualize the 

discussion of the solution approaches presented in section 2.4, covering both 
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classical and heuristic methods. In section 2.5, a comparative analysis of the solution 

methods is presented, and the concluding remarks for the chapter are given in 

section 2.6. Figure (2.3) depicts a pictorial representation of the content covered in 

this chapter. 

2.2 Reactive power and voltage control devices in the power system 

As mentioned in the introductory section, reactive power and voltage control plays a 

pivotal role in the secure and economical operation of the power system. In the 

course of the operation of a power system, a variety of phenomena occur that need 

some form of intervention in order to maintain the system voltage, frequency and 

other vital system parameters within the nominal range. These phenomena may be 

classified as either steady-state or dynamic, depending on the speed of response 

required in addressing them. Table (2.1) lists (not in any order of precedence) some 

of the main phenomena, the addressing of which typically requires reactive power 

and voltage control of some form (EPRI, 1984). In the following sub-sections, the 

main power system devices that are typically employed in the provision of reactive 

power and voltage control are briefly discussed. The devices discussed are depicted 

in Figure (2.4). 

Reactive power and voltage control 

devices in the power system

Shunt capacitors
Synchronous 

generator

FACTS 

devices
Shunt reactors

Under-load tap-

changing transformers

Distributed 

generation

Fig. 2.4: Reactive power and voltage control devices discussed in this section 

2.2.1. Synchronous Generator 

Although the synchronous generator’s main role in the power system is to supply 

active power demand, it is also principally used to regulate system reactive power, 

and has the ability to either generate (leading) or absorb (lagging) reactive power, 

depending on whether it is overexcited or under-excited. An automatic voltage 

regulator continually adjusts the generator’s field excitation in response to system 

conditions, usually so as to maintain the terminal voltage or voltage at some other 

system bus at a desired level. The fast response characteristic of the synchronous 

generator’s reactive power generation/absorption implies that it can be used to 

remedy dynamic system phenomena requiring Volt/VAR control. However, its reactive 

power supply/absorption capability is limited by the machine thermal and steady-state 

stability limits, and is a function of the real power output (Kundur, 1994).  
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When a synchronous generator is specially designed and operated so at to generate 

reactive power only (i.e. real power output set to be zero), it is referred to as a 

synchronous condenser. An example of a synchronous condenser integrated into a 

high-voltage direct-current (HVDC) system is depicted in Figure (2.5). As a device 

dedicated to reactive power supply/absorption, a synchronous condenser typically 

has automatic controls that enable fast dynamic response to system anomalies, and 

has a short-time overload capability that can be utilized in extreme situations. The 

main disadvantage of the synchronous condenser is its higher capital and 

maintenance costs compared to other solutions for reactive power supply and 

absorption (Zhou et al., 2018). 

 

Fig. 2.5: Schematic of a synchronous condenser integrated into an HVDC system (adapted 

from Wang et al., 2019) 

Table 2.1: typical power system phenomena requiring Volt/VAR optimization 

Steady-state phenomena (slow response) Dynamic phenomena (fast response) 

Low voltages Fluctuating loads or impact loads 

High voltages Switching surges or load rejection overvoltages 

Large voltage variability Voltage instability (load voltage collapse) 

Excessive reactive power flow (or losses) Transient or dynamic instability 

Normal requirements for HVDC converters Instability due to subsynchronous resonance (SSR) 

Steady-state stability Variable system phase imbalances 

 Dynamic reactive requirements at HVDC terminals 

 Small-signal oscillations 

2.2.2. Shunt capacitors 

Shunt capacitors constitute a flexible and economical means of providing leading 

reactive power, which is typically required to boost system voltages during heavy 

loading periods, or to improve system power factor. Their flexibility stems from their 
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modular nature, large banks can be constructed from several small-size units, which 

in turn gives them the characteristics of greater control, expansion capability, 

transportability, and availability. Compared to synchronous generators, shunt 

capacitors, being static components, have lower maintenance costs, and are 

generally a cheaper source of reactive power. Their response characteristics, 

however, make them a lot less effective than synchronous generators in responding 

to dynamic system phenomena (FERC, 2005). Also, unlike synchronous generators, 

they supply discrete (rather than continuous) reactive power, which may affect their 

treatment in optimization problems, as the corresponding control variable will be 

discrete rather than continuous. A schematic of a shunt capacitor bank connected to 

the tertiary winding of a three-phase power transformer is depicted in Figure (2.6). 

 

Fig. 2.6: Schematic of a shunt capacitor bank connected to the tertiary winding of a 

transmission system transformer (adapted from Kundur, 1994) 

2.2.3. Shunt reactors 

Shunt reactors are employed in the bulk transmission system to remedy abnormally 

high transmission voltages, often in lightly loaded conditions, when the capacitive 

line-charging effects of high-voltage transmission lines tend to lead to conditions 

exceeding design levels. They are typically required in extra high voltage lines longer 

than 200 km, where the effects of capacitive line charging can be quite pronounced 

(Kundur, 1994). A schematic of a tapped shunt reactor connected to the tertiary 

winding of a three-phase power transformer is depicted in Figure (2.7). 
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Fig. 2.7: Schematic of a tapped shunt reactor connected to the tertiary winding of a 

transmission system transformer (adapted from Kundur, 1994) 

2.2.4. FACTS devices 

Flexible AC Transmission System (FACTS) devices have in recent times emerged as 

a vital component in the efficient control of active/reactive power and voltage 

magnitude and frequency (Hongji et al., 2022). A static VAR compensator (SVC), an 

example of which is depicted in Figure (2.9), has ability to continuously vary inductive 

or capacitive reactive power injection into the system, making use of power electronic 

technologies. In terms of construction, an SVC can be thought of as being comprised 

of a controllable reactor and a fixed capacitor (as shown in Figure 2.8), both of which 

are controlled by means of power electronic switches in accordance with the required 

reactive power injection, the main purpose being to maintain bus voltage at some 

specified level. 

 

Fig. 2.8: Static VAR compensator (SVC), an example of a FACTS device  (adapted from 

Gandoman et al., 2018) 

 Use of power electronic switches gives FACTS devices ability to provide continuous, 

instantaneous reactive power, and are thus suitable for addressing many of the 

dynamic system phenomena associated with Volt/VAR control. Some drawbacks of 
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FACTS devices are their relatively higher cost, and possibly negative impact on 

system power quality due to harmonic generation by power electronic switches 

(Chebbo, 1990). 

2.2.5. Under-load tap-changing transformer 

A transformer equipped with a load tap-changing mechanism (LTC) can adjust the 

transformer turns ratio in response to system conditions so as to keep the system 

voltage within desired ranges. So unlike the devices discussed in the preceding sub-

sections, the LTC is not a reactive power source, but rather a voltage-regulating 

device. Tap positions are discrete points on the windings of the transformer which 

can be varied so as to realize different transformer turns-ratios, and correspondingly 

different voltage transformations. The voltage can thus only be varied in discrete 

steps (rather than continuously). Figure (2.9) shows an example of an under-load tap-

changing transformer, with the tap-changing mechanism located on the primary side 

of the transformer (Csany, 2014). Equipping a transformer with an LTC adds 

significantly to the cost, and thus requires the utility provided thereby to justify the 

added cost, which is typically the case in the bulk transmission system where 

effective voltage regulation is of paramount importance to the secure and efficient 

operation of the system (EPRI, 1984). 

 

Fig. 2.9: Schematic of an under-load tap-changing transformer with the tap-changer located 

on the primary side of the transformer  (adapted from Csany, 2014) 

2.2.6. Distributed generation 

The proliferation of diverse distributed generation technologies in the power system 

has been one of the most noteworthy developments in the electric power industry in 

recent years. A photovoltaic generation system is depicted in Figure (2.10) as a 

typical example of distributed generation systems. Along with their growth, the need 

for their contribution to the provision of grid ancillary services has been identified as 

key to their sustained growth and overall improvement in grid operation (Pecas Lopez 
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et al., 2007). Thus, the consideration of distributed generation in Volt/VAR 

optimization has become an active area of research (Dulau & Bica, 2022; Gupta et 

al., 2021; Singh et al., 2021; Zhang et al., 2021; Ding et al., 2020; Xu et al., 2020). 

The diversity of the technologies (incorporating both conventional synchronous 

generators and newer technologies in the form of inverter-based generation systems) 

certainly presents an opportunity for exploiting this form of system resource in the 

meeting of the various steady-state and dynamic system requirements for the 

provision of reactive power and voltage control (Braun, 2007; FERC, 2005). 

 

Fig. 2.10: Diagram of a photovoltaic (PV) generation system as an example of a distributed 

generation system  (adapted from Momoh, 2007) 

Table 2.2: Main characteristics of reactive power and voltage control devices 

Volt/VAR Device Relative 
Cost Per 
MVA 

Reactive 
Supplied 

Continuous 
/Discrete 

Dynamic 
response 

Advantages Disadvantages Application 
(dynamic/steady-
state) 

Synchronous 
Generator/Condenser 

High Lag/lead Continuous 
 

Fast Fast response, 
flexible, strong 
stabilizing effect 

High cost, 
complex 
controls 

Dynamic 

Shunt Capacitor Moderate 
 

Lead 
 

Discrete Slow Flexible, 
modular, low 
maintenance 
requirement 

Slow response, 
non-continuous 
(i.e. discrete) 

Steady-state 

Shunt Reactor Moderate 
 

Lag Continuous 
 

Slow Simple, low 
maintenance 
requirement 

Slow response, 
non-continuous 
(i.e. discrete) 

Steady-state 

FACTS High 
 

Lag/lead 
 

Near-
continuous 
 

Fast Fast response 
dynamics, 
flexible VAR 
supply/absorption 

High cost, 
complex 
controls 

Dynamic 

ULTC Transformer High 
 

N/A 
 

Discrete 
 

Slow Effective means 
of regulating 
system voltage 

High cost, 
frequent 
operation may 
lead to high 
maintenance 
costs 

Steady-state 

Distributed 
Generation 

Technology-
dependent 

Lag/lead Continuous Generally 
fast 

Flexible, 
modular, can 
provide VAR 
support locally 

VAR support 
may impact 
revenue from 
active demand 
supply 

Dynamic 

 

2.2.7. Brief summary of reactive power and voltage control devices 

Reactive power and voltage control is a key component of the power system’s energy 

management system. This section has reviewed the main power system devices that 

are typically employed in the provision of reactive power and voltage control, 
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highlighting their main characteristics, and how they contribute to the addressing of 

the static and dynamic reactive power and voltage control requirements of the power 

system. Table 2.2 summarizes the principal characteristics of the major devices for 

reactive power and voltage control that have been discussed in this section. It is the 

operation of these devices that has to be optimized in order to realize the secure, 

efficient and economical operation of the power system, as further discussed in 

section 2.4. The next section briefly discusses the problem formulation for the 

Volt/VAR optimization problem. 

2.3 Volt/VAR optimization problem formulation 

Volt/VAR optimization is a constrained optimization problem. The main components 

of the problem formulation are the objective function, the decision or control variables, 

and the constraints to be satisfied by the optimal solution to the problem. 

Mathematically, the objective and constraint functions can be either linear or 

nonlinear, the decision variables can be either continuous or discrete. Various 

combinations of these choices will lead to different formulations of the problem. The 

salient aspects of these components of the VVO problem formulation are briefly 

discussed in the following sub-sections. This helps to set the context for the 

discussion of solution methods in section 2.4. 

2.3.1. Objectives and decision variables of the Volt/VAR optimization problem 

There are multiple ways in which optimal reactive power dispatch contributes to the 

economical, secure and efficient operation of the power system. This can directly be 

related to the objectives of Volt/VAR optimization. Power loss minimization has 

featured as the main objective in many research works over the years, both in earlier 

publications (Billinton & Sachdeva, 1973; Narita & Hammam, 1971; Hano et al., 1969; 

Peschon et al., 1968), and in more recent ones (Vitor & Vieira, 2018; Ji et al., 2017; 

Sivalingam et al., 2017; Zheng et al., 2017; Ahmadi et al., 2015). Maintaining network 

voltages within the specified range of nominal values constitutes another key 

objective for Volt/VAR optimization (Padilha-Feltrin et al., 2015; De Souza & De 

Almeida, 2010; Su & Lin, 1996). Then there is maximization of voltage security (De & 

Goswami, 2014; Katuri et al., 2012; Venkatesh et al., 2000), and minimization of the 

frequency of operation of the Volt/VAR control devices (Jin et al., 2019; Rabiee & 

Parniani, 2013; Roytelman et al., 1995). Each of these objectives enhances in one 

way or another the economics, security, power quality, and efficiency of power 

system operation. 

As there are several objectives that can be considered, the VVO problem may be 

formulated as a single-objective optimization problem (the most prevalent formulation, 

based on the reviewed literature) or as a multi-objective optimization problem (for 
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example, Rabiee & Parniani, 2013; Ji et al., 2017).  A multi-objective formulation 

permits the simultaneous consideration of economic and security objectives, for 

example. A major concern in multi-objective optimization is how to formulate the 

problem in such a way that the obtained solution is optimal for all the considered (and 

potentially conflicting) objectives. The most common approach is to reduce the 

multiple objectives to a single objective function by a weighted summation of the 

individual objectives. This approach has the desirable characteristic of being simple 

to implement, but also has a number of drawbacks, such as the dependence of the 

obtained solution on the choice of the weighting vector, with considerable reliance on 

user expertise and experience. The subject of multi-objective optimization is 

discussed in detail by Deb (2001). 

A key consideration regarding the objective function of the VVO problem is its 

dynamic characteristics, particularly in terms of whether it is linear or nonlinear. 

Taking the real power transmission losses as an example, the mathematical 

expression thereof can be stated as (Deeb & Shahidepour, 1990): 
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 It can be deduced from Equation (2.1) that the expression for the real power 

transmission losses is both nonlinear and nonconvex, being quadratic in terms of the 

bus voltage magnitudes, in addition to having trigonometric function components. The 

inherent difficulty of evaluating a nonlinear objective function of this nature has 

motivated the devising of alternative (i.e. simpler) formulations of the objective 

function, chiefly by means of linearization. Thus, a number of linear objective 

functions for the loss minimization-based VVO problem have been proposed in the 

literature, for example (Mangoli et al., 1993; Iyer et al., 1983). 

As for the decision or control variables for the VVO problem, these can be classified 

into those derived from voltage-regulating devices, and those derived from reactive 

power sources, as has been briefly presented in section 2.2. Voltage regulation is 

mainly through synchronous generator terminal voltage magnitude adjustments and 
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Under-Load Tap-Changing (ULTC) transformers. Reactive power 

injection/consumption devices are synchronous generators, synchronous 

condensers, shunt capacitors and reactors, Flexible AC Transmission System 

(FACTS) devices, and Distributed Generation to the extent that is dependent on the 

specific technology (Padullaparti et al., 2016). Some of these devices generate 

continuous variables, others discrete variables. A complete and most accurate 

formulation of the VVO problem would thus be a Mixed Integer Nonlinear 

Programming (MINLP) problem formulation (Rabiee & Parniani, 2013). 

2.3.2. Constraints of the Volt/VAR optimization problem 

The constraints of the Volt/VAR optimization problem essentially consist of limits on 

the permissible range of values for the control variables (e.g. transformer tap limits, 

shunt capacitor range), operating limits on the power system state variables (e.g. 

generator real and reactive power outputs, voltage magnitudes and phase angles, 

line and transformer flow limits, etc.) (Momoh, 2001). The standard set of constraints 

considered in most formulations of the VVO problem can be stated as: 
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The symbols in the above expressions have the following definitions: 

 

 

  i  bus  at  injection  power  reactive      VQ

i  bus  at  demand  power  active             P

bus  slackof  output  power  active  generator             P

i  bus  at  output  power  active  generator             P

i  bus  at  injection  power  active      VP
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i  bus  to  connected  branches  of  number           N

angle   phase  voltage              

matrix  admittance  of  component  ij             Y

k  branch  in  flow  power  apparent             S

k  branch  in  connected  ULTC  of  position  tap             

i  bus PQ  at  magnitude  voltage             V

i  bus  at  magnitude  voltage  terminal  generator             V

i  bus  at  magnitude ink  source/spower  reactive             Q
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The set of constraints given by Equation (2.2) to (2.10) defines the feasible region for 

the VVO problem, and a solution for the problem (i.e. a set of control variables that 

minimizes Equation (2.1)) is admissible only if it is feasible with respect to the 

constraint set. It can be observed that this constraint set is nonlinear and non-convex, 

because the constraint Equations (2.2) and (2.3), for example, have trigonometric 

terms, and Equations (2.4), (2.7) and (2.9) are non-convex quadratic (Frank & 

Rebennack, 2016; Cain et al., 2012). Moreover, some control variables (specifically 

ULTC tap positions and shunt reactive power sources, represented by Equations 

(2.5) and (2.6) respectively) can only take on discrete values. This gives the 

constraint set (indeed the overall problem formulation) for the VVO problem the 

characteristic of being highly nonlinear (Huneault & Galiana, 1991), and poses 

special challenges for any solution algorithm that may be applied to solve the 

problem. 

2.3.3. Brief summary of Volt/VAR optimization problem formulation 

Volt/VAR optimization problem formulation involves the specification of the objective 

function, the decision or control variables, and the constraints to be satisfied by the 

optimal solution to the problem. The problem formulation reflects the ways in which 

Volt/VAR optimization impacts the secure, economical and efficient operation of the 

power system. The literature review that has been conducted reveals that power loss 

minimization, voltage profile improvement, voltage security maximization, and control 

effort minimization are among the most important objectives of the Volt/VAR 
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optimization problem. The achievement of these objectives needs to take into 

account the functional and operational constraints that need to be maintained in the 

course of the operation of the power system. The modelling of the Volt/VAR 

optimization problem is further discussed in chapter 3 of this thesis. 

In the following section, a detailed discussion of the variety of solution approaches 

that have been applied over the decades to the VVO problem is presented, based on 

the surveyed literature. 

2.4 Optimization methods for the Volt/VAR optimization problem 

The various approaches that have been proposed over the years for the solution of 

the VVO problem may be taken to fall into two main categories: classical/conventional 

methods, and heuristic/intelligent search-based techniques. The merit of any 

candidate solution approach can be gauged on the basis of its ability to address the 

performance characteristics relevant to the VVO problem, among them being (in no 

particular order of importance) (Frank & Rebennack, 2012a; Momoh, 2001): 

• Accuracy requirement of problem formulation 

• Computation time and memory requirements 

• Possibility for real-time implementation 

• Scalability of solution approach 

• Global convergence characteristics 

• Global optimality characteristics 

• Reliability of solution 

• Robustness of solution method 

• Ability to handle both continuous and discrete decision variables  

• Ability to (simultaneously) address multiple objectives 

• Simplicity of solution method 

Model accuracy is a very important consideration in an optimization problem, from the 

perspective of the accuracy (and usability) of the obtained solution, as well as the 

complexity of the optimization problem, which has a bearing on the choice of the 

solution algorithm for application to the problem (Wood et al., 2014). Indeed, different 

solution algorithms require different levels of accuracy (or detail) of the problem 

formulation. With VVO being an operational optimization problem, speed of 

computation is also an important consideration, especially in the context of real-time 

implementation, where control decisions need to be generated quickly in response to 

dynamic system variations so as to maintain the reliability of system operation. 

Similar observations can be made about each of the other performance characteristic 

requirements of solution approaches for the VVO problem outlined above. A more 
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detailed discussion of desirable performance characteristics of optimization 

algorithms can be found in Nocedal and Wright (2006). 

It is evidently hardly practical to find a single solution algorithm that effectively 

addresses all of the performance characteristics listed above, in part due to the 

inherent mutual conflict that they may exhibit. Commonly, the various solution 

algorithms are differentiated by how well they address some (and not necessarily all) 

of these requirements. In the following sub-sections, some of the solution algorithms 

that have been proposed in the literature are discussed under the two main 

categories as stated earlier (i.e. classical/conventional methods, and 

heuristic/intelligent search-based techniques). 

2.4.1. Classical/conventional methods for Volt/VAR optimization 

A wide variety of solution methods falling under the category of classical/conventional 

optimization techniques have been applied to the VVO problem, among them being 

first-order and second-order gradient-based methods, Quadratic Programming (QP), 

Linear Programming (LP), Interior-Point Methods (IPM), and Mixed-Integer 

Programming (MIP), along with decomposition techniques. The block diagram in 

Figure (2.11) depicts the classical optimization methods reviewed in this section. 

Gradient-based methods are iterative optimization techniques that seek to extremize 

(i.e. minimize or maximize) a differentiable nonlinear function by generating a 

sequence of improving estimates of the decision vector, moving in such a direction as 

to achieve progressively lower values (in the case of minimization) of the objective 

function, until the sequence hopefully terminates at the solution (i.e. the minimum of 

the objective function to be optimized) (Nocedal & Wright, 2006). Some of the earliest 

efforts to algorithmically solve the VVO problem applied gradient-based methods, 

examples of which can be found in (Hano et al., 1969; Peschon et al., 1968; Dommel 

& Tinney, 1968). 

Classical/conventional methods for 

Volt/VAR optimization

Second-order gradient-

based methods

First-order gradient-

based methods
Linear 

programming

Quadratic 

programming

Mixed-integer 

programming and 

decomposition methods

Interior-point 

methods

Fig. 2.11: Classical/conventional methods for Volt/VAR optimization reviewed in this section 

2.4.1.1. First-Order Gradient-Based Methods 

The principal first-order gradient-based methods that have been applied to the 

solution of the VVO problem are the Reduced Gradient (RG) (Bhatele et al., 1985; 
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Fernandes et al., 1980), Generalized Reduced Gradient (GRG) (Yu et al., 1986), and 

Conjugate Gradient (CG) (Hano et al., 1969) methods. 

In the Reduced Gradient (RG) method, first applied to the OPF problem by Dommel 

and Tinney (1968), the functional and equality (i.e. power flow equation) constraints 

are handled by means of penalty terms and Lagrangian multipliers respectively, 

forming a linear combination with the objective function to construct the Lagrangian 

function, to which the Karush-Kuhn-Tucker (KKT) conditions are then applied to solve 

the minimization problem. The RG method provides a way to reduce the problem 

size, where the problem variables are divided into decision variables and state 

variables, the objective function expressed as a function of the decision variables, 

while the state variables are adjusted to maintain solution feasibility (Frank & 

Rebennack, 2012a). 

The Generalized Reduced Gradient (GRG) method is an extension of the RG method 

that allows for the direct handling of nonlinear and inequality constraints. Inequality 

constraints are turned into equality constraints by the introduction of nonnegative 

slack variables, and the (nonlinear) constraints are then linearized about the 

operating point. The generalized reduced gradient is then defined as the gradient of 

the linear combination of the objective function and the linearized constraints (Rao, 

1996).  Each such linearization is treated as a subproblem, which can be solved by a 

gradient-based method such as the RG method, and a series of such subproblem 

solutions should lead to the solution of the original problem. The GRG method was 

applied by Yu et al (1986) to the solution of a variety of optimal power flow problems, 

chiefly power loss minimization and network voltage profile optimization. Some of the 

attractive features of the GRG method are the avoidance of penalty terms in dealing 

with the functional constraints, the convenient way it provides for transforming a 

nonlinear constrained optimization problem into an unconstrained one that can be 

solved by a gradient-based method, and the reduced dimensionality of the resulting 

problem (de Carvalho et al., 2008). 

The Conjugate Gradient (CG) method was proposed in the 1950s as an iterative 

method for solving linear systems with symmetric positive definite matrices (Hestenes 

& Stiefel, 1952), offering an alternative to existing methods such as Gaussian 

elimination, and especially well-suited to solving large-scale problems.  Extension of 

the method to the application to nonlinear problems was developed in the 1960s 

(Fletcher & Reeves, 1964), and constituted one of the earliest known methods for 

solving large-scale nonlinear optimization problems (Nocedal & Wright, 2006). The 

nonlinear CG method was applied by Hano et al (1969) to the minimization of the 

node voltage magnitude deviations from their nominal values. The conjugate gradient 
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vector (which establishes the search direction in the CG method) is computed as a 

linear combination of successive previous search directions. This method of 

constructing the search direction ensures non-interference of consecutive search 

directions, consequently leading to greater advance of the algorithm towards the 

solution. Key features of the CG method are low storage requirements, and more 

rapid advance towards the solution relative to the steepest gradient method. 

First-order gradient-based methods offer a reliable and fairly unsophisticated way to 

optimize a differentiable nonlinear function, without being computationally expensive. 

Their main drawback is the slow rate of convergence, as they rely solely on first-order 

information of the function to be optimized in advancing toward the solution. The 

second-order methods, discussed in the next sub-section, constitute an improvement 

in this aspect. 

2.4.1.2. Second-Order Gradient-Based Methods 

Second-order methods differ from first-order methods chiefly in the construction of the 

search direction for the optimization algorithm. Whereas first-order methods rely 

solely on the first-order (partial) derivatives of the objective and constraint functions, 

second-order methods additionally incorporate second-order information. The 

second-order partial derivatives carry the function’s curvature information, and 

incorporation of this information leads to faster convergence of the algorithm to the 

solution. Newton’s method, the representative second-order gradient-based method, 

applies a second-order Taylor series expansion to the objective function about the 

current iterate kx , which leads to the search direction kd  at k  being defined by  

  )()(
1

kkk xfxHd 
 , where  )( kxH  is the Hessian matrix (i.e. the matrix of second-

order partial derivatives of the objective function), and )( kxf   is the vector of first-

order derivatives of the objective function at k . Examples of the application of 

Newton’s method to the VVO problem can be found in (de Sousa et al., 2003; da 

Costa, 1997; Bjelogrlic et al., 1990).  

The distinguishing feature of second-order methods is their quadratic rate of 

convergence, much faster than the convergence rate of first-order methods, although 

this comes at the expense of additionally having to compute the inverse of the 

Hessian matrix, which may be a cumbersome, error-prone, and computationally 

expensive process, especially in the case of problems with a dense Hessian matrix. 

An alternative is Quasi-Newton methods, which avoid the exact computation of the 

Hessian matrix by approximating it using information about the change in the first-

order derivatives (Nocedal & Wright, 2006). Two other issues with second-order 

methods are the need for the Hessian matrix to be positive definite to ensure the 
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search direction is a descent direction, and the difficulty in dealing with the inequality 

constraints of the VVO problem (da Costa, 1997; Happ, 1977). The reliability of 

Newton’s method particularly requires that the difference between the objective 

function and its 2nd-order approximation at the current iterate not be too large. 

Despite these issues, Newton’s method is not only a classical method for nonlinear 

optimization, but also represents an important optimization approach, both efficient 

and robust for a large class of problems (Bjelogrlic et al., 1990). 

2.4.1.3. Quadratic Programming 

Quadratic Programming (QP) is a special case of nonlinear programming in which the 

objective function is quadratic and the constraint set is linear. When applied to the 

VVO problem, a technique known as sequential quadratic programming (SQP) is 

employed, involving iteratively generating a quadratic approximation of the objective 

function, and linearizing the constraints about the current operating point. The 

solution of these QP subproblems should converge to the optimal solution of the 

original nonlinear problem (Bazaraa et al., 2006). Quadratic programming is 

somewhat of a compromise between the general nonlinear programming problem 

and a linear programming formulation, trying to achieve some balance between the 

accuracy of the model representation and the computational complexity of the 

solution of the problem (Quintana & Santos-Nieto, 1989). 

Depending on whether the QP model formulation is convex or nonconvex, a variety of 

solution techniques exist, among them being active set methods and interior point 

methods. Examples of the QP model formulation of the VVO problem can be found in 

(Grudinin, 1998; Quintana & Santos-Nieto, 1989; Nicholson & Sterling, 1972). 

Quintana and Santos-Nieto (1989) developed a convex QP formulation for the real 

power loss minimization reactive power dispatch problem, and solved by it the active-

set projection method. Nicholson and Sterling (1972) solved the real and reactive 

power dispatch problem by quadratic programming, considering a quadratic cost 

function for the generation and transmission line losses, and a linear approximation of 

the system constraints. An improvement in accuracy was obtained over the linear 

programming-based model, and faster solutions compared to the exact nonlinear 

model of the combined active/reactive power optimization problem.  Grudinin (1998) 

also applied SQP to reactive power optimization, and developed a quadratic multi-

objective optimization problem, combining economic and security objectives, which 

was also solved by the Newton-based active-set method. 

The attractiveness of the quadratic programming solution technique lies in its 

providing a means to achieve a good balance between the requirements of a 
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reasonably accurate model of the VVO problem, and the computational expense 

associated with the exact nonlinear model formulation. The quadratic approximation 

of the nonlinear system power loss function is sufficiently accurate, and permits the 

application of efficient QP solution techniques to the problem (Grudinin, 1998; 

Quintana & Santos-Nieto, 1989). 

2.4.1.4. Linear Programming 

An optimization problem is classified as a linear programming (LP) problem when 

both the objective function and the constraint set are linear functions of the decision 

variables. Because the VVO problem is inherently nonlinear (as discussed in section 

2.3), an LP formulation of the problem entails the linearization of both the objective 

function and the constraint set (section 2.3, Equations (2.1) and (2.2) to (2.10) 

respectively). As pointed out in section 2.3, linearization is typically performed around 

some desired operating point, and can be done on the basis of the first-order Taylor 

series expansion (i.e. taking the first-order partial derivatives of the nonlinear power 

loss function with respect to the control variables) (Deeb & Shahidepour, 1990), or on 

the basis of sensitivity relationships devised to relate changes in the state variables to 

changes in the control variables (Iyer et al., 1983; Narita & Hamman, 1971; Hano et 

al., 1969). 

Linear programming has traditionally been a popular approach for the solution of the 

OPF problem, which includes economic dispatch and reactive power dispatch (Zhu, 

2009). The approach has many desirable characteristics, such as reliability, very 

good convergence properties even for large-scale problems, faster computational 

speed, and availability of very efficient algorithms for solving the problem (Nocedal & 

Wright, 2006). The main solution techniques for the LP problem are several variants 

of the Simplex method, and Interior Point Methods (IPM).  

Examples of LP formulations of the VVO problem are to be found in (Chebbo et al., 

1992; Mota-Palomino & Quintana, 1986; Mamandur & Chenoweth, 1981; Hobson, 

1980; Kishore & Hill, 1971). Chebbo et al (1992) devised an LP formulation for the 

reactive power dispatch problem incorporating voltage stability, to minimize the risk of 

voltage collapse in the system, and solved it by the dual revised simplex method. The 

linearization and solution of the problem was done in an iterative manner, leading to 

what is commonly referred to as sequential linear programming (SLP). The desirable 

characteristic of this technique that has been highlighted is convergence of the 

solution that is independent of the problem size, whereas in the case of the original 

nonlinear problem formulation, depending on the solution algorithm, global 

convergence may not be guaranteed (Frank et al., 2012a). An LP-based network-

constrained reactive power control problem is presented by Hobson (1980), which is 
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found to be suitable for real-time application in large-scale power systems, with speed 

of solution and convergence characteristics that are difficult to achieve in the case of 

the classic nonlinear formulation of the problem. 

With all the desirable characteristics of the LP approach to VVO, it must be borne in 

mind that this comes along with the compromise of the accurate representation of the 

otherwise highly nonlinear model of the VVO problem. Efforts to devise more efficient 

solution techniques for the original nonlinear problem formulation have thus continued 

to attract a lot of attention (Zhang et al., 2007). 

2.4.1.5. Interior-Point Methods 

Interior point methods (IPM) are a class of optimization techniques that were initially 

developed as an alternative to the Simplex method for solving linear programs 

(Forsgren et al., 2002), with the introduction of Karmakar’s method (Karmarkar, 

1984), a polynomial-time linear programming method. Whereas the Simplex method 

exploits the convexity of the feasible region of the LP problem, searching along the 

vertices of the polytope that defines the feasible region for the optimal solution to the 

problem, IPMs take a different approach, attempting to confine the search path within 

the feasible region, and establishing and following a “central path” towards the 

optimal solution of the problem. Besides having pseudo-polynomial complexity, IPMs 

also exhibit some advantages relative to the Simplex method, such as being 

especially efficient for large-scale problems, and making more rapid advance towards 

the optimal point (Wright, 1997).  The successes of IPMs in LP incited research 

efforts to extend them to general nonlinear problems, and these methods have 

attractive properties that make them especially suitable for nonlinearly constrained 

optimization, such as the efficient handling of inequality constraints (which is quite 

problematic for the classical Newton-based methods), rapid convergence, and not 

having to start from a strictly feasible initial solution (Capitanescu et al., 2007). 

Examples of the application of interior-point methods to reactive power optimization 

and voltage control can be found in (Ding et al., 2000; Torres & Quintana, 1998; 

Granville, 1994). Granville (1994) applied the primal-dual logarithmic-barrier interior 

point algorithm (PDIPM) to the solution of the optimal reactive power dispatch (ORD) 

problem. It is highlighted in the paper that ORD is a large-scale highly nonlinear, 

nonconvex optimization problem, and the characteristics of the chosen IPM that make 

it suitable for application to this problem are the insensitivity of the problem 

complexity (i.e. number of iterations required to reach to solution) to the problem size, 

more efficient handling of the nonlinear inequality constraints, and numerical 

robustness, even ability to handle large-scale, ill-conditioned problems.  Ding et al 

(2000) used a version of the PDIPM method known as predictor-corrector PDIPM 
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(PC-PDIPM) to solve the reactive power optimization/voltage control problem, a 

method which seeks to improve the search direction at each iteration (Mehrotra, 

1992). The authors focused in the development of their algorithm on computational 

speed to be suitable for real-time application, reliability to converge even from an 

initially infeasible starting point, and the effective detection and handling of 

infeasibility. Comparison with quadratic programming and least squares-based 

infeasibility handling showed that the developed PDIPM method scaled better with 

the number of constraints (i.e. increase in number of constraints having less impact 

on computational speed), and the infeasibility detection and handling approach taken 

added much less computational burden to the overall optimization process. Interior 

point methods have thus been found to be very suitable for solving the large-scale, 

highly nonlinear constrained OPF problems, an example of which is the VVO problem 

(Torres & Quintana, 1998). 

Due to the many appealing characteristics of interior-point methods as established 

from the conducted literature review, the primal-dual interior-point method (PDIPM) 

has been selected as the classical optimization algorithm that will form the basis for 

the design and implementation of the Volt/VAR optimization algorithm in this 

research. This work is presented in detail in chapters 4 and 5 of the thesis. 

2.4.1.6. Mixed Integer Programming and Decomposition Techniques 

In all the solution algorithms discussed thus far, only continuous control variables are 

considered in the formulation of the VVO problem. However, as pointed out in section 

2.3, the presence of discrete control variables (e.g. transformer tap positions in ULTC 

transformers) makes the general formulation of the VVO problem a mixed integer 

programming problem, implying that integrality constraints have to be enforced on a 

subset of control variables. The motivation for considering a continuous approximate 

formulation of the problem has been the very high computational expense associated 

with the full mixed integer nonlinear programming (MINLP) problem, especially in 

large-scale systems with possibly thousands of mixed integer and continuous 

variables, and nonlinear objective and constraint functions (Feng & Peterson, 2010). 

The drawback of this approach is that achieving feasibility of the continuous solution 

by rounding off the values of the control variables required to be integral to the 

nearest integer values may in many cases be difficult. Moreover, the objective value 

of the rounded-off solution may deviate significantly from that of the continuous 

optimal solution (Rao, 1996). These considerations, along with the advances in 

computational capabilities of modern computers that have enhanced the tractability of 

this class of problems, have encouraged the search for effective algorithms to treat 

the full MINLP (Hemmecke et al., 2009). 
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The most commonly used optimization algorithm for MINLP is the branch-and-bound 

(B&B) algorithm, developed by Land and Doig (1960) to solve integer linear 

programming problems, which was subsequently extended to the solution of MINLP 

problems. In the B&B method of solving MIP problems, an indirect approach is taken 

where firstly a continuous version of the problem is optimized by relaxing the 

integrality constraints (thus obtaining a continuous optimal solution), then each of the 

integrality constraints is progressively enforced until an integer optimal solution is 

found. The key components of the algorithm are branching, where for a given 

continuous optimal solution the associated integer feasible solutions are evaluated for 

optimality; and bounding, where the prevailing integer optimal value is used as an 

upper bound to eliminate from further consideration any alternatives that cannot 

possibly achieve a better optimal solution. 

Examples of MINLP formulations of the VVO problem can be found in (Ahmadi et al., 

2015; Rabiee & Parniani, 2013; Saric & Stankovic, 2009; Mehra, 1994) [57], [112]-

[114]. Due to the need to simultaneously treat both continuous and discrete variables, 

it is common to apply decomposition techniques in solving mixed-integer 

programming problems. The problem is reformulated into two separable optimization 

sub-problems, a continuous one and a discrete one. The two sub-problems are then 

solved alternately, and related together by some decomposition technique, such as 

Benders decomposition (Geoffrion, 1972), one of the most commonly applied 

decomposition methods to which the MINLP problem is very amenable. Such an 

approach has been used by Mehra (1994), for example, where Benders 

decomposition is used along with the B&B algorithm to solve the combined reactive 

power planning and real-time voltage control (or reactive power dispatch) problem 

formulated as a MINLP problem. 

The main advantage of solving the VVO problem as a mixed-integer programming 

problem is the greater accuracy of problem formulation and resulting optimal solution 

that can be achieved, enabling the accurate modeling of all control devices involved 

in the problem, including discrete ones such as shunt capacitors, ULTC transformers, 

and a variety of FACTS devices (Mehra, 1994). This comes at the cost of greater 

computational complexity of the problem, however. Improvement of algorithms 

geared towards this class of problems and such paradigms as parallel computing can 

enhance results that are achievable using this approach of solving the VVO problem. 

2.4.1.7. Brief summary of classical/conventional methods for Volt/VAR 

optimization 

Classical/conventional optimization methods furnish a broad arsenal of techniques for 

solving a wide variety of optimization problems, and have been extensively applied to 
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the Volt/VAR optimization problem. The key characteristic they all share is their 

implementation of a mathematically rigorous and systematic iterative procedure in the 

search for the optimal solution to the optimization problem within the feasible space. 

Based on the reviewed literature, they do differ, however, in key performance metrics, 

such as accuracy, speed, reliability, convergence characteristics, and effectiveness of 

handling inequality constraints and discrete variables, among other criteria. A 

summary of these characteristics as they apply to each of the discussed methods is 

presented in Table (2.3).  

Table 2.3: Summary of main characteristics of conventional optimization techniques 
Technique Operating principle/main 

characteristics 
Main positive attributes Main deficiencies 

First-order 
gradient-based 
methods (RG, CG, 
GRG) 

o Iterative search based on 1st-order 
gradient of objective 

o Constraints handled by adding penalty 
terms to objective function to form 
Lagrangian 

o GRG uses successive constraint set 
linearization and slack variables to 
handle inequality constraints 

 

o Earliest approaches to 
algorithmically solve OPF 

o Unsophisticated, reliable, 
at moderate computational 
expense 

o Suitable for large-scale 
application (e.g. CG, due 
to low memory 
requirement) 

o Slow convergence rate; RG 
susceptible to zig-zag 
behaviour close to optimal 
point 

o Difficulty handling inequality 
constraints 

o Need for smoothness of 
objective function 

o Can only find local optima 

Second-order 
gradient-based 
methods (Newton, 
Quasi-Newton) 

o Approach similar to 1st-order methods, 
with additional incorporation of 2nd-order 
derivative information of objective 
function 

o Newton’s algorithm is the representative 
method under the category 

o Quasi-Newton methods approximate the 
2nd-order derivative information to reduce 
computational expense 

 

o Very effective methods; 
addition of 2nd-order 
derivative information 
significantly improves 
convergence rate 

o Efficient and robust for a 
large class of problems, 
under some mild 
assumptions (e.g. sufficient 
accuracy of quadratic 
approximate model in 
vicinity of solution) 

 

o Similar issues as those of 1st-
order methods, except having 
higher convergence rate 

o Convergence requires 
Hessian matrix to be positive 
semidefinite 

o Computationally more 
expensive than 1st-order 
methods 

(Sequential) 
Quadratic 
Programming 
(SQP) 

o Special case of NLP with quadratic 
objective function and linear constraint 
set 

o Involves iterative quadratic and linear 
approximation of objective and constraint 
functions respectively about the current 
iterate 

 

o Achieves good balance 
between model accuracy 
and computational 
expense (accuracy of QP 
and speed of LP) 

o Efficient solution 
techniques available that 
can solve the QP 
formulation effectively and 
reliably 

o Has similar drawbacks as 
those outlined above of 
gradient-based methods 

o Convergence requires 
Hessian matrix of quadratic 
approximation to be positive 
semidefinite 

Linear 
Programming (LP) 

o Both objective and constraint functions 
are linear 

o For VVO problem, this entails successive 
linearization of objective and constraint 
functions about the current operating 
point 

 

o Reliable, good convergence 
characteristics, even for 
large-scale problems 

o Fast computational speed 
o Availability of efficient 

solution techniques 
(typically Simplex and 
Interior-Point Methods) 

 

o Loss of accuracy due to 
linearization may lead to 
solution that’s not only non-
optimal, but perhaps even 
infeasible for original 
nonlinear problem 

o For successive linear 
formulation, solution is only 
locally optimal 

 

Interior-Point 
Methods (IPM) 

o Make use of path-following techniques 
that confine the search path within the 
feasible region 

o Initially developed for application to LP 
as alternative to Simplex method; been 
extended to the treatment of NLP 
problems 

 

o Very effective and efficient, 
especially for large-scale 
problems, both linear and 
nonlinear 

o Rapid convergence, more 
effective constraint handling 
than classical gradient-
based methods 

o Better handling of 
infeasibility 

 

o Reliability concerns for 
particularly difficult problems 

o Combines mathematical 
rigour with some heuristics; 
proper parameter selection 
(e.g. barrier parameters) can 
be challenging, affecting 
effectiveness and 
convergence properties 

 

Mixed-Integer 
Programming 
(MIP) 

o Explicitly considers both continuous and 
discrete variables, thus a more accurate 
model for the VVO problem 

o A more accurate solution is 
achieved without the need 
to round off values of 

o Computationally more 
expensive, and requires 
sophisticated techniques to 
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o Decomposition techniques made use of 
to treat continuous and discrete portions 
as subproblems 

o Branch-and-bound the main solution 
technique for MINLP formulations 

 

discrete variables so as to 
enforce integrality 
constraints, which may lead 
to non-optimality, even 
infeasibility relative to the 
exact formulation 
 

 

simultaneously handle both 
continuous and discrete 
variables 

o Issues similar to classical 
gradient-based methods of 
difficulty of inequality 
constraint handling, only 
locally optimal 

 

Collectively, the class of conventional optimization methods suffer from a number of 

significant deficiencies or drawbacks, notably the inherent difficulty of handling 

discrete variables, the requirement for the (nonlinear) objective and constraint 

functions to be smooth (i.e. for the gradient-based methods), and the difficulty of 

handling nonconvexity in nonlinear problems (meaning they can only find local 

optimal solutions) (Frank et al., 2012a). Heuristic or intelligent search-based 

optimization methods have been extensively explored as an alternative approach to 

solving the VVO problem, as they possess characteristics that can be exploited 

particularly in addressing some of the deficiencies of the conventional optimization 

methods that have been highlighted above. The following section presents a review 

and discussion of this class of optimization methods. 

2.4.2. Heuristic/intelligent search-based methods for Volt/VAR optimization 

Heuristic/intelligent search-based optimization techniques employ a variety of 

optimum-seeking strategies that are distinctly different from the approaches taken in 

conventional optimization algorithms. The search strategies employed in these 

techniques are meant to overcome many of the deficiencies of the conventional 

optimization problems, such as the local (rather than global) nature of the search, the 

limited ability to handle combinatorial problems with discrete decision variables, and 

the requirement for smoothness of the objective and constraint functions for gradient-

based methods, among other factors (Frank et al., 2012b). Over the past few 

decades a wide variety of these heuristic optimum-seeking techniques have been 

developed. A representative sample of them are discussed in this section, as they 

have been applied to the VVO problem, particularly Genetic Algorithms (GA), 

Evolutionary Programming (EP), Particle Swarm Optimization (PSO), Fuzzy Set 

Theory, and Expert Systems (ES). The main distinctive characteristics of each 

technique are briefly discussed, and a sample of applications is also given. Figure 

(2.12) depicts the heuristic optimization methods reviewed in this section. 
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Fig. 2.12: Heuristic/intelligent search-based methods for Volt/VAR optimization reviewed in this 

section 

2.4.2.1. Genetic Algorithm 

Genetic algorithm (GA) is a population-based search algorithm that is modelled after 

the processes of natural selection and natural genetics, combining the features of 

survival of the fittest in a population of optimal solution candidates, efficient 

exploitation of historical information, and randomized information exchange among 

the population candidate solutions so as to evolve the population into a new 

generation of improved candidate solutions (Goldberg, 1989). The development of 

GAs was inspired by the robustness, efficiency and efficacy through adaptation 

observed in biological processes, and efforts were made to develop artificial software 

systems that could mimic and replicate the natural processes responsible for these 

characteristics, such as selection, crossover and mutation (De Jong et al., 1997; 

Holland, 1975). GAs, though conceptually and computationally simple, constitute an 

efficient, effective and robust approach to search for optimal solutions to a variety of 

problems in diverse environments, with no reliance on such limiting assumptions of 

conventional optimization methods as continuity, existence of derivatives, and 

unimodality (Choden et al., 2022). Once an initial population of candidate solutions is 

generated, either randomly or heuristically, the population is evolved through the 

sequential and iterative application of the selection, crossover and mutation 

operations, into a new generation of improved solution candidates (Alves da Silva & 

Falcao, 2008). 

A number of works have applied GAs to the VVO problem, examples of which can be 

found in (Padilha-Feltrin et al., 2015; Katuri et al., 2012; Subbaraj & Rajnarayanan, 

2009; Lee et al., 1995; Iba, 1994; Haida & Akimoto, 1991). Haida and Akimoto (1991) 

emphasize the property of GAs of being domain-independent search mechanisms, 

which provide powerful search characteristics for large, complex search spaces 

without requiring full knowledge of the problem domain. Iba (1994) proposes an 

alternative crossover method and incorporation of stochastic “if-then” rules (akin to 

expert systems) into the GA applied to reactive power planning, so as to enhance the 

algorithm’s efficiency and effectiveness. A hybridized GA is considered by Lee et al 
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(1995) for the solution of the reactive power operation and planning problem, 

combining it with successive linear programming (SLP), and using a new population 

selection and generation method that makes use of Benders’ cuts, in an effort to 

combine the positive characteristics of deterministic and non-deterministic 

optimization techniques. 

Many appealing characteristics have been highlighted in the literature that make the 

genetic algorithm an effective search mechanism. The effectiveness, however, is also 

a function of the algorithm design, including choices regarding the selection, 

crossover and mutation operations, the encoding of the candidate solutions used, and 

the fitness function (Alves da Silva & Falcao, 2008). 

2.4.2.2. Evolutionary Programming 

Evolutionary Programming (EP) was conceived and developed by L.J. Fogel in the 

early 1960s as an alternative approach to realizing artificial intelligence (AI), utilizing 

the concepts of Darwinian evolution to iteratively generate increasingly appropriate 

solutions to a given optimization problem (Porto, 1997). It can be seen as an 

approach to optimization that makes use of simulated evolution to evolve a set of 

solutions (or organisms) which exhibit increasing intellect evidenced by ability to 

make correct predictions, to translate those predictions into suitable actions, and to 

adapt behaviour so as to meet specific goals in a range of environments (De Jong et 

al., 1997). As an evolutionary algorithm, EP employs the key concept of selection-by-

fitness, which entails the generation of a population of candidate solutions (to an 

optimization problem), devising a suitable fitness function with which to evaluate the 

worth of each candidate solution in light of stated objectives, and application of 

evolutionary operators such as mutation to evolve the population through generations 

of ever-improving candidate solutions (Miranda, 2008). The selection of candidate 

solutions to propagate through to the next generation can be either elitist (the best in 

each generation are selected to form the next one) or by stochastic tournament 

(probabilistic selection of next-generation candidate solutions). 

EP has been used as the solution algorithm to the VVO problem in (Abido & 

Bakhashwain, 2003; Gomes & Saavedra, 1999; Wu & Ma, 1995). The global search 

characteristics of the EP algorithm, and the non-reliance on the smoothness and/or 

convexity properties of the objective and constraint functions for effective search, are 

highlighted by Wu and Ma (1995) as making it suitable for solving the reactive power 

optimization and voltage control problem, which is highly nonlinear and nonconvex. 

By maintaining a population of candidate solutions at each iteration, which are 

propagated through future generations using probabilistic transition rules as a 

function of their overall merit, with a Gaussian relationship between parents and 
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offspring, the EP algorithm is able to move over hills and valleys of the search space, 

and therefore arrive at the globally optimal solution. In (Gomes & Saavedra, 1999), 

enhanced evolutionary algorithms (evolutionary programming and evolutionary 

strategies), the enhancement consisting in use of alternative mutation strategies, 

have been applied to the solution of the reactive power dispatch problem, 

demonstrating that enhancements can be made to the standard algorithm to improve 

its efficiency and effectiveness. The effectiveness of population-based evolutionary 

algorithms in finding pareto-optimal solutions in multiobjective optimization has been 

pointed out by Abido & Bakhashwain (2003), who have developed a multiobjective 

evolutionary algorithm for the optimal reactive dispatch problem. 

The main evolutionary operations used in EP are mutation, competition and 

reproduction. As with other evolutionary algorithms, parameter selection plays a key 

role in exploiting the various desirable attributes of the algorithm, and ensuring its 

efficiency and effectiveness. 

2.4.2.3. Particle Swarm Optimization 

Swarm intelligence is a stream of AI research that got established in the early 1990s, 

based on the study of the swarm behaviour of natural creatures, in terms of how 

decision making of the individual is influenced by both the individual’s experience and 

the experiences of others (Colorni et al., 1991; Reynolds, 1987; Boyd & Richerson, 

1985). Particle swarm optimization (PSO), one variant of swarm intelligence 

techniques that has become prominent, was developed by Eberhart and Kennedy 

(Kennedy & Eberhart, 1995), and is based on the analogy of swarms of birds and fish 

schooling. The algorithm uses a population of particles exploring the search space in 

search of the optimal solution to an optimization problem. Associated with each 

particle is a position and a velocity in a two-dimensional search space, and the 

change in position of the particles as a function of the current best positions of the 

individual and of the overall population is what constitutes the population’s evolution 

towards the optimal point. The use of a population of candidate solutions, 

incorporating randomness and memory, as well as diversification at the beginning, 

and intensification towards the end of the search, adds greatly to PSO’s efficiency as 

a search mechanism (Fukuyama, 2008). 

Having been originally developed to treat nonlinear optimization problems with 

continuous variables, a number of enhancements to the standard PSO algorithm 

have been proposed and developed, to improve the algorithm’s efficiency, and to 

extend its applicability to other problems (e.g. combinatorial optimization, and mixed-

integer nonlinear programming (MINLP) problems).  
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Examples of the application of PSO to the solution of the VVO problem can be found 

in (Vitor & Vieira, 2018; Ferreira et al., 2016; Kaur et al., 2016; Sahli et al., 2014; 

Grant et al., 2008; Cai et al., 2007). Vitor and Vieira (2018) solve a multi-objective 

Volt/VAR control problem that considers robustness in addition to power loss 

minimization using the PSO algorithm, exploiting the ability to structure the algorithm 

so as to handle multiple objectives (Coello et al., 2004). A modified PSO algorithm 

has been applied to optimal reactive power dispatch by Cai et al (2007), the 

modification consisting in adding mutation to the standard algorithm in order to 

improve its global search characteristics and prevent rapid convergence to local 

optima. Sahli et al (2014) follow a different approach to enhancing the global search 

characteristics of the PSO algorithm, which is to hybridize it with the Tabu Search 

algorithm, another stochastic search algorithm (Glover & Laguna, 1997). Grant et al 

(2008) solve the reactive power and voltage control problem using the differential 

evolution (DE) (an evolutionary computation algorithm) (Storn & Price, 1995) and 

PSO algorithms, and performance comparison of the two methods has been made, 

particularly in terms of solution quality and convergence characteristics. The authors 

found the PSO algorithm to slightly outperform the DE algorithm, although exhibiting 

relatively greater computational effort. Ferreira et al (2016) take advantage of the 

PSO’s ability to better handle discrete control variables than the conventional 

optimization methods, and apply it to the solution of the optimal reactive power 

dispatch problem considering discrete variables. Kaur et al 

 (2016) focus on how PSO-based optimal reactive power dispatch can enhance 

system security, considering the impact of intermittent renewable generation such as 

wind power generation.  

Besides being able to address diverse optimization objectives, as can be deduced 

from the surveyed literature, the PSO algorithm additionally has the desirable 

characteristic of being quite simple to implement, in the sense that simple rules 

governing individual agent behaviour can result in sophisticated swarm behaviour (Li 

& Coster, 2022). The model of each individual agent (or particle) is relatively simple, 

yet can lead to effective and efficient collective behaviour of the whole swarm in 

terms of searching for the optimal solution in a search space. Hybridization with other 

methods, and other enhancements to the standard algorithm, are often considered to 

improve the efficiency and effectiveness of the algorithm (Gad, 2022). 

The PSO algorithm has been selected as the heuristic optimization algorithm to form 

the basis for the design and implementation of the Volt/VAR optimization algorithm in 

this research, due to its many desirable characteristics when compared with the other 
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heuristic techniques. The design and implementation of the PSO-based Volt/VAR 

optimization algorithm is presented in chapter 6 of this thesis. 

2.4.2.4. Fuzzy Set Theory 

Although conventional optimization problems are computed with the assumption of 

precise information, in reality most real-world data that serves as input to the 

optimization problems is embedded with uncertainty and imprecision. Power systems 

are especially prone to a significant amount of uncertainty in operational data, largely 

due to their large scale, being geographically widely distributed, complexity in 

operational dynamics, and susceptibility to unexpected events (Momoh & Tomsovic, 

1995). Fuzzy set theory is a mathematical approach that can be used to capture this 

uncertainty and imprecision of information, the incorporation into the optimization 

problem of which can enhance the robustness of the obtained results. Fuzzy set 

theory enables objective and constraint functions to be represented as fuzzy sets, 

where the membership to these sets represents the degree of closeness to the 

optimum (for the objective function) and the degree of enforcement of the constraints 

(for constraint functions). The maximization of membership functions then implies the 

simultaneous optimization of the objective function and enforcement of the constraint 

set, all while taking uncertainties into account. This leads to a better compromised 

solution, more robust in the sense of being less sensitive to parameter variations 

(Zhang & Tolbert, 2007). 

Fuzzy set theory is not actually an optimization technique, and so it is normally used 

in conjunction with optimization techniques, where it essentially serves as a tool for 

modeling uncertainty and imprecision in the problem formulation. Applications to 

reactive power optimization and voltage control have been many over the years, 

combining with a variety of optimization techniques, examples of which can be found 

in (de Souza & Almeida, 2010; Aucharimayet & Sirisumrannukul, 2009; Momoh et al., 

2009; Lu & Hsu, 1997; Su & Lin, 1996; Abdul-Rahman & Shahidepour, 1993; 

Yokoyama et al., 1993; Tomsovic, 1992). De Souza and Almeida (2010) combine 

fuzzy set theory with a strength-pareto evolutionary algorithm (SPEA2) to solve the 

multi-objective reactive power/voltage control problem. Tomsovic (1992), Abdul-

Rahman and Shahidepour (1993), and Yokoyama et al. (1993) formulate a fuzzy-

linear programming-based reactive power/voltage control, combining the reliability 

and speed characteristics of linear programming with fuzzy set theory’s ability to more 

efficiently depict the realistic system objective and constraint functions, leading to a 

more practical solution of the problem. Other examples of hybrid methods 

incorporating fuzzy set theory or fuzzy logic are the fuzzy-dynamic programming 
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approach presented by Lu and Hsu (1997), and the fuzzy-PSO multi-objective 

algorithm presented by Aucharimayet and Sirisumrannukul (2009). 

The strength of fuzzy set theory that has been exploited in reactive power 

optimization and voltage control (among other power system applications) is the 

capability of handling ambiguity, conflicting objectives, and soft constraints in a 

flexible way that can moreover improve computational complexity of power system 

optimization problems (Momoh & Tomsovic, 1995). By providing the means to 

effectively model uncertainty and imprecision, and to incorporate the approximate 

reasoning and subjective judgment of expert operators into the mathematical model, 

fuzzy set-based modeling facilitates the realization of a better compromised solution, 

where both accuracy and robustness of the solution are taken into account 

(Yokoyama et al., 1993). 

2.4.2.5 Expert System 

Expert systems (also known as knowledge-based systems) constituted one of the 

earliest approaches to building AI systems in the 1960s, and were among first 

successful commercial applications of the then nascent field of artificial intelligence 

(Russel & Norvig, 2010). An expert system (ES) can be defined as an intelligent 

computer-based system in which representations of human expert knowledge are 

stored, and it can apply inference procedures and heuristics to this knowledge base 

to solve complex problems in a manner that a human expert would do. An ES is 

fashioned after the model of human reasoning, which may be considered to be based 

on the creation of categories, application of specific (a priori) rules, use of heuristics 

(i.e. rules-of-thumb, representing conventional wisdom), as well as use of past 

experience (precedence-based reasoning). Most expert systems make use of rule-

based reasoning, the main components of which are the knowledge/rule base 

containing much of the problem-solving knowledge, a database containing some data 

of interest to the system, an inference engine generating the decisions, and a user 

interface providing a means for user interaction with the system (Brown & O’Leary, 

1995).  

Expert systems are especially applicable to fields such as power system operation, 

where a wealth of system operational knowledge and expertise has been 

accumulated, and can be used to build intelligent decision support systems that can 

aid system operators in making decisions and taking quick action especially under 

anomalous conditions, where not only correct action, but also speed of execution can 

be critical in preventing major emergencies (Negnevitsky & Le, 1996). 
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A number of researchers have built expert systems for optimal reactive power 

dispatch and voltage control, examples of which are to be found in (Lomi & 

Limpraptono, 2017; Xiang-jun, 2011; Exposito et al., 1993; Wagner et al., 1990; 

Cheng et al., 1988; Liu & Tomsovic, 1986). In many of these applications of expert 

systems to the reactive power/voltage control problem, the emphasis is placed on 

leveraging human expert knowledge and experience, and historical information to 

build a system that can quickly provide effective remedial action in emergency 

conditions, when human operator reaction may be too slow, and conventional 

optimization methods ineffective (Wagner et al., 1990). Liu and Tomsovic (1986) built 

an ES that applies empirical rules to generate appropriate controls when slight 

voltage violations occur, whereas mathematical programming software is used to 

address more severe contingencies. Cheng et al (1988) developed an ES for reactive 

power and voltage control based on a sensitivity-tree approach, where the most 

effective control measures to alleviate abnormal voltage conditions are determined on 

the basis of the rule base coded into the ES. Scalability and possibility for real-time 

application are highlighted as the main characteristics of the proposed system. A 

similar sensitivity-based approach has been used in the ES developed by Exposito et 

al (1993) for reactive power control for voltage profile improvement. In Xiang-jun 

(2011) makes use of historical information and real-time data to develop an ES for 

substation voltage and reactive power control. The opportunity to leverage years of 

operating experience in developing the ES is highlighted as one of the main 

advantages of this approach. The ES developed by Limo and Limpraptono (2017) is 

focused on monitoring and improving power system voltage stability. The ES can use 

the empirical knowledge in the knowledge base to effectively identify the critical load 

buses most susceptible to excessive voltage violations, and recommend the most 

effective remedial actions, as an aid to the system operator. 

Expert systems present many advantages as intelligent decision support systems 

where decisions have to be made to solve complex problems, as in the case of 

reactive power/voltage control under emergency conditions. Notable among these 

advantages are the opportunity to combine the knowledge and experience of several 

human experts, accumulated over a period of time, along with historical information, 

to build an efficient and effective decision-support system, little reliance on precise 

mathematical models of the system, thus especially effective under anomalous 

operating conditions, and others such as reproducibility, consistency, and lack of 

fatigue (which human operators are very susceptible to). Some obvious 

disadvantages of expert systems are that they lack the human capabilities of common 

sense, creativity, and learning. There is also the likelihood of gradual degradation of 
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the system, requiring periodical update of the rule base to remain up to date as the 

modeled system undergoes any changes (Brown & O’Leary, 1995). 

2.4.2.6 Brief summary of heuristic/intelligent search-based methods for 

Volt/VAR optimization 

Heuristic optimization techniques employ a variety of optimum-seeking strategies that 

differ conceptually from those employed in conventional optimization methods. By 

and large, these techniques make use of a population of candidate search points, 

which, coupled with their stochastic nature, generally gives them global search 

characteristics (that is, the ability to globally converge to a solution where one exists, 

independently of the initial point, and to find the globally optimal solution, despite 

nonconvexity of the objective function and the feasible region). They do suffer some 

drawbacks, however, when compared with the conventional methods, such as lacking 

mathematical rigor (by virtue of their heuristic nature), being relatively computationally 

more expensive, and their effectiveness being very dependent on the judicious choice 

of the algorithm parameters. A summary of the main characteristics of each of the 

heuristic methods discussed in this section is presented in Table (2.4). The following 

section presents a brief comparative analysis of the two main classes of optimization 

techniques that have been presented in this section. 

Table 2.4: Summary of main characteristics of nonconventional/heuristic optimization techniques 
Technique Operating principle/main 

characteristics 
Main positive attributes Main deficiencies 

Genetic algorithm 
(GA) 

o Population-based evolutionary stochastic 
search algorithm, modeled after 
mechanics of natural genetics, 
incorporating crossover, mutation and 
selection 

o Adaptation through use of genetic 
operators, enabling use of historical 
information, and randomized information 
exchange among population candidates, 
is what characterizes the search for the 
optimal point 

 

o Conceptually and 
computationally simple, yet 
efficient, effective and 
robust search mechanism 
applicable to various 
problem classes 

o Not limited by the 
properties of convexity, 
smoothness, unimodality of 
objective function, 
requirements typical of 
classical techniques 

o Can achieve global 
convergence and global 
optimality 

o Computation time can be 
long, thus limited scalability 
(although parallelization is 
possible to improve 
computational efficiency) 

o Effectiveness a function of 
design aspects like encoding, 
choice of fitness function, and 
other parameters of the 
algorithm 
 

Evolutionary 
Programming (EP) 

o Evolutionary stochastic search algorithm 
using simulated evolution to evolve a 
population of candidate solutions of 
“increasing intellect” in search of optimal 
point 

o Stresses mutation (rather than 
crossover, opposed to GA) 

 

o Capable of global 
convergence and global 
optimality, by judicious 
choice of mutation and 
selection-by-fitness 
mechanisms (which can be 
either elitist or by stochastic 
tournament) 

 

o Computationally quite 
expensive for OPF problems, 
which typically have 
thousands of variables and 
constraints 

Particle Swarm 
Optimization (PSO) 

o Modeled after swarm behavior of natural 
creatures, where an individual makes 
decisions based on best own experience 
and best group experience 

o Population of particles evolved towards 
the optimal point by modifying each 
particle’s position as a function of its 
current best and group’s best position 

 

o Simple both conceptually 
and in terms of 
implementation; simple 
rules governing individual 
particle behavior can result 
in sophisticated swarm 
behaviour 

o Many enhancements to the 
standard algorithm are 
possible, to enable 

o Convergence properties are 
highly influenced by 
parameter selection for the 
algorithm 
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application to a wide 
variety of problems 

Fuzzy Set Theory-
based methods 

o Fuzzy set theory used as a tool for 
modeling uncertainty present in 
objective, constraint functions, and 
system parameters 

o Objective, constraint functions are 
represented as fuzzy sets; membership 
to these sets represents the degree of 
closeness to optimum point and degree 
of enforcement of constraints 

 

o Provides a better 
compromised solution, 
balancing robustness (i.e. 
insensitivity to parameter 
variations) and optimality  

o Furnishes capability to 
handle ambiguity, conflicting 
objectives, and soft 
constraints in a flexible way 
that can improve 
computational complexity 

 

o Not actually an optimization 
problem, only a way to 
handle uncertainty and 
imprecision; thus largely 
needs to be combined with 
an optimization technique; 
this may affect overall 
complexity and effectiveness, 
depending on problem 
formulation and optimization 
algorithm used 

 

Expert System 
(ES) 

o Uses a computer-based representation 
of human expert knowledge, in 
conjunction with an information database 
and an inference engine to solve 
complex problems requiring human 
expertise and experience 

o Main components are the knowledge 
base, database, inference engine, and 
interfaces to the user and to other 
programs needed to execute the 
system’s functionalities 

 

o Accumulated wealth of 
knowledge in the field can 
be exploited to build an 
intelligent decision support 
system to assist system 
operators respond quickly 
and effectively especially 
under anomalous conditions 

o Has desirable attributes of 
efficiency, reproducibility, 
consistency, and 
opportunity for expertise 
consolidation 

 

o Lacks many natural strengths 
of a human expert operator, 
such as common sense, 
creativity, adaptability, 
learning ability 

 

 

2.5 Comparative analysis of solution approaches for the VVO problem 

It is quite evident that the two classes of optimization techniques discussed in the 

preceding section exhibit diverse characteristics, both in terms of operating principle, 

as well as strengths and drawbacks when gauged against the desired performance 

characteristics outlined at the beginning of the section. 

The key characteristic of classical/conventional optimization methods is their 

implementation of a mathematically rigorous and systematic iterative procedure in the 

search for the optimal solution to an optimization problem within the feasible space. 

They do differ, however, in key performance metrics, such as accuracy, speed, 

reliability, convergence characteristics, and effectiveness of handling inequality 

constraints and discrete variables, among other criteria. Collectively, the class of 

conventional optimization methods suffer from a number of significant deficiencies or 

drawbacks, notably the inherent difficulty of handling discrete variables, the 

requirement for the (nonlinear) objective and constraint functions to be smooth (i.e. 

for the gradient-based methods), and the difficulty of handling nonconvexity in 

nonlinear problems (meaning they can only find locally optimal solutions) (Frank et 

al., 2012a). 

Heuristic optimization techniques employ a variety of optimum-seeking strategies that 

differ conceptually from those employed in conventional optimization methods. By 

and large, these techniques make use of a population of candidate search points, 

which, coupled with their stochastic nature, generally gives them global search 

characteristics (that is, the ability to globally converge to a solution where one exists, 
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independently of the initial point, and to find the globally optimal solution, despite 

nonconvexity of the objective function and the feasible region). They do suffer some 

drawbacks, however, when compared with the conventional methods, such as lacking 

mathematical rigor (by virtue of their heuristic nature), being relatively computationally 

more expensive, and their effectiveness being very dependent on judicious choice of 

the algorithm parameters.  

Table (2.5) presents a high-level comparative analysis of the conventional and 

heuristic techniques. The comparison is made on the basis of some of the key 

performance characteristics for an optimization technique that have been outlined in 

section (2.4), such as computational speed, reliability, robustness, convergence and 

global optimality properties, among others. The table (along with Tables 2.3 and 2.4) 

provides a general overview of the relative strengths and shortcomings of the two 

classes of methods, which should prove to be informative to researchers and other 

practitioners in the field of engineering optimization. 

Table 2.5: Comparison of conventional with nonconventional/heuristic optimization techniques 
Characteristic Classical/conventional optimization 

techniques 
Nonconventional/heuristic optimization 
techniques 

Computational 
speed 

Varies among the various techniques, but 
generally faster than heuristic techniques 

Generally slower than conventional techniques, 
largely due to dependence on heuristic search, 
thus a function of parameter selection 

Reliability/quality 
of solution 

A function of problem formulation; e.g. LP is 
generally reliable (as regards convergence), 
while Newton’s algorithm requires sufficient 
accuracy of quadratic approximate model 
relative to original model at each iterate 

Mainly a function of parameter selection; no 
theoretical guarantees can be made generally 

Accuracy of 
model/solution 

Somehow a trade-off between accuracy and 
complexity; e.g. LP formulation (of VVO 
problem) is fast, but only approximate; MINLP is 
accurate but also computationally expensive 

Generally more versatile, able to handle problems 
of varying detail and accuracy, often not requiring 
a precise mathematical model; not dependent on 
such properties as smoothness of functions, etc. 

Robustness Exhibit sensitivity to initial starting point (e.g. 
Newton’s algorithm), degree of nonlinearity, ill-
conditioned nature of problem, and other 
problem parameters 

Many techniques employ heuristics that make 
them robust, i.e. able to handle problems of 
diverse characteristics and parameters 

Complexity of 
solution technique 

Well-grounded theoretically, well-understood 
and quite straightforward to implement 
algorithmically 

Heuristic nature of the methods generally requires 
domain expertise; parameter tuning often requires 
experience and good understanding of the 
problem 

Handling of 
discrete variables 

Not well-suited to handle discrete variables Many have ability to handle discrete, even mixed-
integer problems quite naturally 

Convergence 
properties 

Generally a function of problem definition and 
such factors as initial starting point and system 
parameters (e.g. nature of Hessian matrix in 
case of 2nd-order methods) 

Can generally achieve global convergence, 
independent of problem formulation, although 
computational expense may be a limiting factor 

Global optimality 
properties 

All local solvers, global optimality only 
achievable in the case of convex problems 
(which VVO problem is not) 

Many can achieve global optimality, although 
computational expense may be high, if not 
prohibitive 

 

 

2.6 Conclusion 

Volt/VAR optimization is one of the key operational tools needed by electric power 

system operators, and has a significant impact on the security, economy, technical 

viability and efficiency of system operation. It is also one of the most complex 

optimization problems to solve, being nonlinear, nonconvex and involving both 
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continuous and discrete variables. The challenge of efficiently and effectively solving 

the VVO problem is reflected in the diversity of the solution techniques that have 

been applied to the problem, which exhibit varying characteristics, both in operating 

principle and how effectively they address the key performance characteristics of the 

optimization problem. Conventional optimization methods have proven to be efficient, 

reliable, fast and quite straightforward to algorithmically implement, but suffer from 

significant drawbacks when applied to the VVO problem, as discussed in section 

2.4.1. Particularly, shortcomings exist in their convergence and global optimality 

properties, and the difficulty in the handling of inequality constraints and discrete 

variables. The nonconventional/heuristic optimization techniques present some 

advantages exactly where the conventional techniques fall short, such as superior 

global search characteristics, thus having the ability to achieve global convergence 

and global optimality independently of the problem formulation, and the natural ability 

to handle discrete variables. Their main drawbacks are that their heuristic nature 

implies that parameter selection weighs heavily on their efficiency and effectiveness, 

and they incur relatively greater computational expense. The main results of this 

chapter have been to present a comprehensive and critical literature review that 

contextualizes the research conducted and presented in this thesis. The results will 

be applied throughout the remainder of the thesis in model development, and 

algorithm design and implementation. 

The main objective of the research presented in this thesis is to design and 

implement Volt/VAR optimization strategies that exhibit the desirable characteristics 

of superior solution quality, high computational efficiency, and scalability (among 

others), characteristics which are vital for the efficient and optimal operation of 

modern complex power systems. The following chapter presents two formulations of 

the Volt/VAR optimization problem, and briefly compares the two models in terms of 

their computational characteristics. One of the models is then used in subsequent 

chapters as the basis for the implementation of the Volt/VAR optimization algorithms 

developed in this research. 
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CHAPTER THREE 

FORMULATION OF THE VOLT/VAR OPTIMIZATION PROBLEM 

 
3.1 Introduction 

The electrical power system is arguably one of the most complex engineering 

systems in existence. For the majority of the world population, reliable electric power 

supply has become an indispensable daily commodity, with prolonged unavailability 

thereof causing enough disruption to essential public (and private) services and 

normal daily activities to be considered practically intolerable. To be able to deliver 

electric power with the required high reliability and security, while being economical, 

planning and operational strategies have been developed over the decades by 

means of which the system can be operated optimally as far as practicable. These 

strategies are collectively referred to as Optimal Power Flow (OPF). In the course of 

the operation of the power system, changes in load demand and network 

configurations may cause the system to operate outside of the nominal range, which 

could threaten the quality and even security or reliability of supply. To prevent or 

correct anomalous operating conditions, the system operator continually implements 

controls to regulate the production, absorption and flow of power at all levels in the 

system. Some of the controlled variables include generator active and reactive power 

outputs, reactive power (VAR) compensation device outputs, transformer tap settings, 

phase shifter settings, etc. OPF is a sophisticated computational tool used in 

determining the optimal dispatch of all the system control variables so as to ensure 

the economical and secure operation of the system, while respecting many functional 

and operational constraints of the system. 

Mathematically, OPF has the characteristic of being a very large-scale nonconvex, 

nonlinear programming problem, with a large number of constraints and a mixture of 

continuous and discrete variables. Given its great importance to the efficient 

operation of the power system, the OPF problem has attracted extensive research 

interest over the decades, with particular attention being paid to improvement in 

problem formulation as well as solution techniques (Momoh, 2001). Optimal reactive 

power dispatch (ORPD) or Volt/VAR optimization (VVO) is the variant of OPF 

concerned with the maintenance of system voltage quality to increase system 

security, at the same time leading to improved system economy (Chebbo, 1990). This 

chapter is mainly concerned with the presentation of the mathematical formulation of 

the VVO problem, which will then be solved in chapter 5 by the Interior Point Method 

(IPM), one of the most efficient classical methods for large-scale nonlinear 

optimization presently available. 
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The chapter is organized as follows. After briefly presenting some general definitions 

and discussing the elements of the problem formulation, two variants of the 

mathematical formulation of the Volt/VAR optimization problem are developed in 

section 3.2, one based on the rectangular representation of the system bus voltages, 

the other based on the polar representation of the voltages. A discussion is then 

presented in section 3.3 particularly highlighting the distinct characteristics of the two 

variants of the problem formulation. Concluding remarks for the chapter are then 

presented in section 3.4. A pictorial representation of the content of this chapter is 

depicted in Figure (3.1). 

Chapter Three:

Formulation of the Volt/VAR Optimization Problem

3.2 Mathematical 

formulation

3.2.2.2 System variables

3.2.2.3 System constraints

3.2.2.1 Objectives

3.4 Conclusion
3.1 Introduction

3.3 Discussion of the two 

problem formulations

3.2.1 General definitions
3.2.2 Elements of the 

problem formulation

3.2.3 Statement of the Volt/

VAR optimization problem in 

rectangular coordinates

3.2.4 Statement of the Volt/

VAR optimization problem in 

polar coordinates

Fig. 3.1: Summary of the content covered in this chapter 

3.2 Mathematical formulation 

Volt/VAR optimization (VVO) is mainly concerned with the determination of the 

optimal coordinated dispatch of voltage-regulating devices and reactive power 

sources so as to maintain a secure voltage profile, subject to system functional and 

operational constraints, while optimizing some aspect of system operation, such as 

minimization of active power transmission losses (Mataifa et al., 2022). 

Mathematically, it is formulated as a constrained nonlinear optimization problem, 

intended to minimize a scalar objective function subject to equality and inequality 

constraints. This can be stated as: 
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Where ),( uxf  represents the objective function to be minimized, as a scalar function 

of the state variable vector, x , and the control or decision variable vector, u , subject 

to the physical and operational constraints according to (3.1b) – (3.1e). ),( uxg  

represents functional constraints that need to be satisfied at every operating point 

(power flow equations in the case of the VVO problem), (3.1c) and (3.1d) represent 

bounds on the values of the control and state variables respectively, and ),( uxh  is a 

generic function of the state and control variables representing other system 

operational parameters that may need to be constrained within specified limits (e.g. 

generator reactive power output limits, and branch flow limits, among others). 

In the following sub-sections, further details are given pertaining to the problem 

formulation for the VVO problem, based on the generic model (3.1). 

3.2.1. General definitions 

Since Volt/VAR optimization is essentially an optimal power flow problem, it 

effectively consists in finding the solution to the power flow problem while minimizing 

a specified objective function subject to constraints. Therefore, the power flow 

balance equations play a central role in the problem definition. 

For a given network, we can make the following definitions: 

  

  

  

  

  

  

  

Voltage at bus i is a complex quantity, and can be defined either in rectangular or 

polar form as: 
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 Where ie  and if  are the real and imaginary components of the complex voltage 

respectively, 
22

iii feV  , and 







i

i
i e

f
arctan  are the magnitude and phase angle 

of the voltage at bus i respectively. The two definitions of the bus voltage lead to two 

variants of the power flow equations. The rectangular form of the of the active and 

reactive power injections at bus i can be expressed as (Torres, 1998): 

 

 

 

Where ijG  and ijB  are the real and imaginary components of the ijth element of the 

bus admittance matrix, ijY , and t  is the vector of (on-load) transformer tap settings, 

which are implicit in some of the elements of Y .  

The polar form of the complex bus voltage representation is commonly used in power 

system studies, and leads to the following expressions for the power flow equations: 

 

 

Where v  and   are the vectors of the bus voltage magnitude and phase angle 

respectively, and ij  is the phase angle difference between buses i  and j . The 

active power losses in the transmission system can be expressed either in 

rectangular or polar form according to Equations (3.8) and (3.9) respectively 

(Capitanescu et al., 2005, Torres, 1998). 

 

 

3.2.2. Elements of the problem formulation 

Formulation of the VVO problem consists in defining the system (state and control) 

variables, the objective(s) of optimization, and the constraints, as reflected in the 
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generic problem formulation (3.1). Each of these components is further elaborated on 

in the following sub-sections. 

3.2.2.1 Objectives 

The main objective of Volt/VAR optimization is to ensure a network voltage profile 

that meets nominal requirements for bus voltage magnitudes, at the same time 

optimizing network reactive power dispatch which has a significant impact on the 

economical operation of the power system (Martinez Ramos et al., 2005). Key 

objectives of Volt/VAR optimization can thus be stated as: 

 Active power loss minimization (Equation (3.8) or (3.9)). 

 Reactive power loss minimization (see, for example, Torres, 1998). 

 Voltage profile improvement (e.g. minimization of bus voltage deviation from 

nominal values; see, for example, Momoh, 2001). 

 Voltage stability maximization (see, for example, Cai et al., 2007). 

 Minimization of control effort to achieve a desired system operating state (see, 

for example, Cai et al., 2007). 

The problem may be formulated to have a single objective or multiple objectives. 

Traditionally, the main objective considered is active power loss minimization, and 

has been adopted in this study, in the implementation of the Volt/VAR optimization 

discussed in chapters 5 and 6. 

3.2.2.2 System variables 

System variables can be classified into two types: state (dependent) variables and 

control (independent) variables. State variables include: 

 Load bus voltage magnitudes. 

 Load and generator bus phase angles. 

 Slack bus real power output. 

 Generator reactive power outputs. 

 Line flows. 

Load and generator bus voltage magnitudes and phase angles are represented in 

Equation (3.10e), for example, which expresses the system voltages in rectangular 

coordinates. The slack-bus real power is represented in Equation (3.10b), generator 

reactive power outputs are represented in Equation (3.10c), and line flows are 

represented in Equation (3.10d). 

Control variables can in turn be classified into those derived from voltage-regulating 

devices, and those derived from reactive power sources, and include: 
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 Generator terminal voltage magnitudes. 

 Under-Load Tap-Changing (ULTC) transformer settings. 

 Shunt capacitors and reactors. 

 Flexible AC Transmission System (FACTS) devices. 

 Distributed Generation (DG). 

Some of these variables are continuous, others are discrete. A complete and most 

accurate formulation of the VVO problem would thus be a Mixed Integer Nonlinear 

Programming (MINLP) problem formulation (Rabie & Parniani, 2013). Although 

having the desirable characteristic of being accurate, it is also computationally 

intensive, an important consideration for practical applications, and as far as choice of 

solution method is concerned. 

Generator terminal voltage magnitudes are considered as the control variables in this 

study in the implementation of the Volt/VAR optimization algorithms in chapters 5 and 

6. Control of generator voltage magnitudes implicitly translates into the control of 

generator reactive power outputs. This constitutes a very efficient way of 

simultaneously achieving both system voltage regulation and reactive power 

optimization to minimize system losses (Martinez Ramos et al., 2005). 

3.2.2.3 System constraints 

The Volt/VAR optimization problem is solved subject to both equality and inequality 

constraints, which are all generally nonlinear, and encompass operational and 

functional-type constraints. The main equality constraints are the bus active and 

reactive power balance equations, but may also include such constraints as voltage 

magnitude and/or phase angle imposed or required to be of a specified value at a 

given bus.  

Inequality constraints are of two types: operational constraints that apply to the power 

system state variables, needed to ensure the secure operation of the system, and 

physical limits on the operating range of values for the control variables. Limits in the 

form of inequality constraints are typically imposed on each of the following: 

 Generator reactive power outputs (Equation 3.10f). 

 Bus voltage magnitudes (Equation 3.10e). 

 Shunt reactive power compensation device outputs (Equation 3.10g). 

 Load tap changing transformer tap settings (Equation 3.10h). 

 Line flows (in terms of either active/reactive power or current) (Equation 

3.10d). 
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 All these constraints are considered in this study, other than the transformer tap 

positions (Equation 3.10h) and shunt reactive compensation (Equation 3.10g).  

3.2.3. Statement of the Volt/VAR optimization problem in rectangular 

coordinates 

Combining the general definitions and the elements of the problem formulation 

presented in sections 3.2.1 and 3.2.2 respectively, the Volt/VAR optimization problem 

formulation (P1) in the rectangular form of the nodal voltages can be stated as 

(Capitanescu et al., 2005): 

 

s.t. 

 

 

 

 

 

 

 

The variables in model P1 can be defined as: 

 

 

 

 

 

 

 

 

 

 

 

 

 



56  
 

3.2.4. Statement of the Volt/VAR optimization problem in polar coordinates 

Defining the Volt/VAR optimization problem in the polar form of the nodal voltages 

(P2) follows the same procedure as that outlined in section 3.2.3 for the rectangular 

formulation, with the main differences being in the form taken by the objective 

function, the power flow balance equations, and the bus voltage bound constraints, 

and can be stated as (Torres, 1998): 

 

s.t. 

 

 

 

 

 

 

 

The variables in model P2 that are different from those in model P1 are defined as 

follows: 

 

 

 

3.3 Discussion of the two problem formulations 

Both the objective function and the main constraints (the power balance equations) of 

the Volt/VAR optimization problem are nonlinear and nonconvex. Computational 

effort to evaluate these functions and their derivatives (in the case of gradient-based 

solution techniques) is an important consideration, and in this respect, a comparison 

can be made between the rectangular and polar formulations as presented in 

sections 3.2.3 and 3.2.4 respectively. The main distinction to be observed is that in 

the case of the rectangular formulation (model P1), both the objective function 

(equation 3.8) and power balance equality constraints (equations 3.4, 3.5, 3.10b and 

3.10c) are quadratic functions of the complex voltage components ( ie , if ), whereas 

this is not the case for the polar formulation due to the presence of trigonometric 

terms in the corresponding expressions (Equations 3.6, 3.7, 3.9, 3.11b and 3.11c). 

This is an important distinction which has significant implications for the relative 

computational efficiency of the two formulations. Particularly, the advantages of the 
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rectangular formulation resulting in quadratic objective and constraint functions 

consist in the fact that (Capitanescu et al., 2005): 

 The second-order derivatives (Hessian matrices) of the objective and 

constraint functions (including the power balance equations, branch flow limits 

and bus voltage bound constraints) are constant 

 The Taylor-series expansion of a quadratic function terminates at the second-

order term without any truncation error, and is thus relatively more accurate 

The properties stated above make the rectangular formulation computationally 

efficient in an optimization technique that requires availability of second-order 

derivative information of the objective and constraint functions, such as the Newton 

method employed in interior-point methods (as outlined in the next chapter). The 

(slight) disadvantage of the rectangular formulation lies in the fact that bus voltage 

bound constraints (Equation 3.10e) need to be treated as functional constraints, 

whereas in the polar formulation, they are handled as simple bound constraints 

(Equation 3.11e). 

For the reasons discussed above, the rectangular formulation (model P1) has been 

adopted in this study, and is used in the implementation of the Volt/VAR optimization 

in chapters 5 and 6. 

3.4 Conclusion 

Volt/VAR optimization (VVO) is the variant of the optimal power flow (OPF) problem 

concerned with the optimal dispatch of voltage-regulating and reactive power control 

devices so as to minimize system losses and improve the network voltage profile, 

and assumes that an economic dispatch that minimizes the fuel cost of meeting a 

given demand has already been computed. This chapter has presented the problem 

formulation for the VVO problem, thoroughly discussing the main elements of the 

problem formulation (i.e. the system variables comprising the state and control 

variables, the objective functions, and the constraints). The problem formulation has 

been presented in both the rectangular and polar forms of the complex bus voltage, 

and relative merits and demerits of the two formulations have been briefly discussed. 

The main result of this chapter, which is the development of the model used in the 

design of the algorithm for the VVO problem, will be used in chapters 5 and 6, and 

contributes to one of the main deliverables of this thesis (i.e., problem formulation). In 

the next chapter, the solution of the VVO problem based on the interior-point method, 

one of the most efficient classical optimization techniques for large-scale nonlinear 

optimization, will be presented. 
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CHAPTER FOUR 

DESIGN AND IMPLEMENTATION OF THE PRIMAL-DUAL INTERIOR POINT 
METHOD AND APPLICATION TO A NONLINEAR PROBLEM 

 
4.1 Introduction 

The general optimal power flow (OPF) problem was first formulated in the early 1960s 

(Carpentier, 1962), and has since then attracted a lot of research interest, with the 

primary focus being on the development of efficient problem formulations, as well as 

effective solution methods. With the characteristic of being a very large-scale 

nonlinear, nonconvex optimization problem with typically thousands of variables and 

constraints, as well as a mix of continuous and discrete variables, solving the OPF 

problem efficiently poses special challenges, and much effort has been dedicated to 

the on-going search for efficient solution techniques over the decades. Gradient-

based techniques constituted the first approaches applied to the algorithmic solution 

of the OPF problem (Dommel & Tinney, 1968; Peschon et al., 1968; Hano et al., 

1969). Over the years, a variety of solution methods have been investigated and 

developed, broadly classified as conventional/classical or deterministic methods, and 

non-conventional/heuristic or non-deterministic methods. The principle classical 

optimization methods include a variety of gradient-based methods (e.g. reduced-

gradient, generalized reduced-gradient, conjugate-gradient, Newton and quasi-

Newton methods), (successive) linear programming, (successive) quadratic 

programming, and interior-point methods. Heuristic optimization methods encompass 

genetic algorithms, evolutionary programming, particle swarm optimization, fuzzy set 

theory, and expert systems, among others (Mataifa et al., 2022). 

Interior-point methods (IPM) stand out among traditional optimization methods due to 

a number of characteristics that make them very suitable for application to large-scale 

nonlinear programming problems. Having been initially developed as an alternative to 

the Simplex method for solving linear programs (LP), their success in this class of 

optimization problems elicited the attention of the operations research community, 

and substantial efforts were made quite early in their development to extend their 

application to nonlinear programming problems (Capitanescu et al., 2007). With these 

initial efforts bearing fruitful results, their popularity continued to grow, and until today 

they constitute one of the most widely researched and most commonly applied 

classical optimization methods to the OPF problem (Frank & Rebennack, 2012).  

This chapter presents the design and implementation of the primal-dual interior-point 

method (PDIPM), a principal variant of interior-point methods, which then forms the 

basis for the development of an efficient Volt/VAR optimization (VVO) algorithm in the 

following chapter. Following this introductory section, the details of the development 
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of the algorithm are presented in section 4.2. This is followed by an illustrative 

example in section 4.3 that demonstrates the implementation of the developed 

algorithm, thoroughly covering all the aspects of the algorithm discussed in section 

4.2. Section 4.4 concludes the chapter with a brief summary of the key results from 

this chapter. Figure (4.1) depicts a pictorial representation of the content of this 

chapter. 

Chapter Four:

Design and Implementation of the Primal-Dual Interior-Point 

Method and Application to a Nonlinear Problem

4.2 Primal-Dual Interior-Point Method (PDIPM)

4.2.1 Transforming of inequality constraints 

into equality constraints

4.4 Conclusion
4.1 Introduction

4.2.2 Handling the non-negativity condition 

of slack variables

4.2.3 Transformation of the equality-

constrained problem into an unconstrained 

one

4.2.4 Determining the search direction by the 

Newton method

4.2.5 Determining the step length in the 

Newton direction

4.2.6 Decreasing the barrier parameter

4.2.7 Checking convergence of the iterates to 

the solution

4.2.8 Initialization of the primal-dual 

interior-point algorithm

4.2.9 Outline of the primal-dual interior-

point algorithm

4.3 Example of application of the PDIPM

4.3.1 Transformation of inequality 

constraints into equality constraints

4.3.2 Handling the non-negativity 

condition of slack variables

4.3.3 Transforming the equality-constrained 

problem into an unconstrained one

4.3.4 Determining the search direction by 

the Newton method

4.3.5 Determining the step size

4.3.6 Checking convergence of the iterates to 
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4.3.7 Determining the initial values of the 

input parameters to the algorithm

4.3.8 Implementation and results of the 

example problem

Fig. 4.1: Summary of the content covered in this chapter 

4.2 Primal-Dual Interior Point-Method (PDIPM) 

The primal-dual interior-point method (PDIPM) effectively combines three concepts to 

provide an approach for solving constrained nonlinear optimization problems: (i) 

handling of inequality constraints by means of a logarithmic barrier function, (ii) 

application of Lagrangian theory of optimization to the solution of an equality-

constrained optimization problem, and (iii) application of the Newton method to solve 

the resulting system. The main steps of the technique can be outlined as: 

1. Transforming all inequality constraints into equality constraints by adding a 

nonnegative slack variable to each inequality constraint. 

2. Implicit handling of the non-negativity condition of slack variables by 

appending each of them to the objective function using a logarithmic barrier 

function. 
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3. Transforming the resulting equality-constrained optimization problem into an 

unconstrained one using the Lagrangian approach. 

4. Solving the resulting unconstrained optimization problem using the Newton 

method. 

To form the basis for the development of the primal-dual interior-point algorithm 

(PDIPA) to be applied to the solution of the VVO problem, the general nonlinear 

programming problem (initially stated in equations (3.1) – (3.5)) can be restated here 

as: 

 

 s.t.  

 

where )(xf  represents the objective function as a scalar-valued function of the 

combined state and control variable vector nRx  , mRxg )(  represents the active and 

reactive power balance equations, and pRxh )(  combines the operational and 

functional inequality constraints of the VVO problem (as stated in problem P1 or P2 in 

chapter 3). In the following subsections, the steps of the PDIPM outlined earlier are 

applied to the problem (4.1) in order to develop the PDIPA.  

4.2.1 Transformation of inequality constraints into equality constraints 

By adding slack variables to the inequality constraints given by equation (4.1c), the 

general nonlinear program (4.1) is transformed into: 

 

s.t.  

 

 

4.2.2 Handling the non-negativity condition of slack variables 

The non-negativity condition of the slack variables (equation 4.2d) is handled by 

appending them to the objective function by means of the logarithmic barrier function, 

which has the singularity property at the origin. With this modification, the problem 

(4.2) becomes: 

 

s.t.  
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where   is a positive scalar, referred to as the barrier parameter, which is 

progressively decreased to zero as the iteration progresses. It has been shown by 

Fiacco and McCormick (1968) that as   tends to zero, the solution of the problem 

(4.3), )(x , approaches the optimizer of problem (4.1), *x . In problem (4.3), the 

non-negativity condition on the slack variables is handled implicitly through the 

logarithmic barrier functions appended to the objective function, so that equation 

(4.2d) is no longer required, and so does not appear in (4.3). 

4.2.3 Transformation of the equality-constrained problem into an unconstrained one 

The next step in the development of the algorithm is to formulate the Lagrangian 

function of the problem by forming a linear combination of the objective function 

(equation (4.3a)) and the equality constraints (equations (4.3b), (4.3c)) with the help 

of Lagrangian multipliers, thus transforming the equality-constrained problem into an 

unconstrained problem (Capitanescu et al., 2005): 

 

where E  and I  are the Lagrange multipliers for the equality and inequality 

constraints respectively. The first-order optimality conditions of the problem (known 

as the Karush-Kuhn-Tucker or KKT conditions) are derived by taking the first partial 

derivatives of the Lagrangian function (equation (4.4)) with respect to both the primal 

and dual variables (i.e. the vector  TIEsxX   , , , ), and equating each of them to 

zero, which yields: 

 

 

 

 

where e  is a vector of ones of appropriate length (i.e.  T
e 1 ,... ,1 ,1 ), S  is a diagonal 

matrix with the slack variables on the diagonal (i.e.  psssdiagS ,...,, 21 ). 

The KKT conditions (4.5) can be written in a compact form as: 
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Equation (4.6) has been derived from (4.5) by multiplying equations (4.5b) by S , 

which has the advantage (particularly for the Newton method) of decreasing the 

relative nonlinearity of the system (4.5) near the solution as 0s  (Nocedal & Wright, 

2006).  

Determining the solution of the general nonlinear programming problem (4.1) typically 

takes the form of an iterative process that seeks the point  **,*,*,* IEsxX   which 

satisfies the KKT conditions (4.6), as well as the non-negativity conditions on the 

slack and dual variables. For the primal-dual interior-point method, the main 

components of this iterative process include: 

 Determining the search direction (by the Newton method). 

 Determining the step size to be taken in the already computed search 

direction, then updating the primal and dual variables. 

 Updating the barrier parameter, which should monotonically be decreased to 

zero as the iterative process proceeds. 

 Checking the stopping criteria that indicate the algorithm’s convergence to the 

solution of the problem. 

These aspects of the algorithm are discussed in detail in the following sub-sections. 

4.2.4 Determining the search direction by the Newton method 

The Newton method is an iterative procedure for finding the solution to a nonlinear 

problem of the form (Zhu, 2009): 

 

which involves generating the Taylor series expansion of )(XF  about an initial 

estimated solution 0X , subjected to a small increment 0X : 

 

where )( ,..., )(' 00 XFXF n
 are the derivatives of the function )(XF , evaluated at 

0X . 

Assuming that the initial point 0X  is close to the solution for problem (4.7), such that 

the change 0X  can be considered to be relatively small, a first-order model can be 
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derived from equation (4.8) by neglecting the higher-order terms, leading to the 

approximate model: 

 

From equation (4.9), the Newton iteration is derived as: 

 

where )( kXJ  is the matrix of first partial derivatives of )( kXF , )(' kXF  (known as the 

Jacobian of )( kXF ). The increment kX  is successively added to the current 

solution at each iteration until the approximate solution reaches a sufficient level of 

accuracy. k  denotes the iteration number, and may be omitted in subsequent 

expressions (for example, in Equation 4.11) for the sake of simplicity. 

To determine the Newton-based search direction for the KKT system, equation (4.10) 

is applied to equation (4.6), resulting in the system: 

 

where: 

 

 

 

and )(XF  is given by equation (4.6). Combining equations (4.6), (4.12) and (4.13), 

we obtain the following (primal-dual) system: 
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where I  is a diagonal matrix with the Lagrange multiplier vector for the inequality 

constraints, I , on the diagonal (i.e.  II diag  ). By expressing s  in terms of x  

and I  in terms of s , a reduced-order system can be derived from system (4.15), 

as detailed below. Considering the second and fourth rows of equation (4.15), the 

following expressions in terms of I  and s  are derived. 

 

 

 

 

 

Then substituting equation (4.17) into the first row of (4.15) leads to: 

 

 

 

Taking equation (4.18) and the third row of equation (4.15), the reduced-order primal-

dual system can be written as: 

 

where: 

 

 

Thus, to determine the Newton direction for the primal-dual system (4.15), we can 

solve the reduced-order system (4.19) for x  and E , then determine s  and I  

using equations (4.16) and (4.17) respectively. 

4.2.5 Determining the step length to take in the Newton direction 

Once the Newton direction has been computed as in the previous sub-section, the 

primal and dual variables (  IEsxX  ,,, ) are updated according to: 
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]1,0(p  and ]1,0(d  are the step lengths taken in the Newton direction for the 

primal and dual spaces respectively. Incorporating a step length adjustment into the 

Newton step computation has the dual objective of maintaining the strict positivity 

condition of the slack variables and their corresponding dual variables, while 

providing for a sufficient advance towards the (local) minimizer of the problem. The 

following expressions are commonly used in the computation of the primal and dual 

step lengths (Capitanescu et al., 2005; Torres, 1998): 

 

 

where )1 ,0(  is a scalar parameter slightly less than one, referred to as the safety 

factor, and is intended to ensure strict positivity of the slack variables and their 

corresponding dual variables. It is commonly set to be as close to one as possible, to 

enable as large a step in the Newton direction as possible. A usual value of the 

parameter is 99995.0 .  

Close coupling between the primal and dual variables in the case of interior-point 

methods for general nonlinear programming (as reflected in the dual feasibility 

condition in equation (4.5b)), gives rise to the consideration of a common step length 

adjustment for the primal and dual variables, in which case it can be derived from 

equation (4.23) as: 

 

The exceptional case when such use of a common step length might not be effective 

is when there is a large difference in magnitude between the primal and dual step 

lengths, usually an indication of a poorly centred iteration, in which case it may be 

preferable to use separate step length adjustments (Capitanescu et al., 2005).  

4.2.6 Decreasing the barrier parameter 

For the solution of problem (4.3) (having the logarithmic barrier function) to coincide 

with that of the original problem (4.1), a scheme is required as part of the iterative 

process to monotonically decrease the sequence of barrier parameters  k  until it 
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converges to zero at the solution. The rate of decrease of the barrier parameter does 

affect the rate of progress of the iterative process. If decreased too slowly, the 

number of iterations required for the interior-point algorithm becomes large. If 

decreased too quickly, some of the slack or dual variables may approach zero 

prematurely, again slowing down the rate of progress of the iterations (Nocedal & 

Wright, 2006). Most (modern) implementations of the interior-point method use an 

adaptive strategy for updating the barrier parameter, varying it at every iteration as a 

function of the progress of the algorithm, based on the complementarity gap, that is, 

the residue of the complementarity constraints: 

 

The barrier parameter is adjusted proportionately to the complementarity gap 

(equation (4.25)) according to: 

 

where m  and p  are the numbers of equality and inequality constraints respectively,  

k  is the iteration number, k  is referred to as the centering parameter, for which 

there exist several heuristics for setting its value (Nocedal & Wright, 2006). Its value 

is essentially a compromise between achieving optimality (i.e. making substantial 

advance in the Newton direction) and feasibility (i.e. improving centrality of the 

iterate).  A value in the range  2.0 ,1.0  is often used. Choice of the initial barrier 

parameter (
0 ) is also an important consideration for the convergence characteristics 

of the algorithm, and is to some extent problem-dependent. Its choice is governed by 

the need to avoid the premature forcing of the inequality constraints to become 

active, which may adversely affect the convergence of the algorithm ((Capitanescu et 

al., 2005; Torres, 1998). 

4.2.7 Checking convergence of the iterates to the solution 

The interior-point algorithm is considered to have converged when an approximate 

local minimum has been obtained, which is signified by the iterate satisfying specified 

tolerances for the primal feasibility, (scaled) dual feasibility, (scaled) complementarity 

gap and scaled objective function variation. Additionally, the barrier parameter is 

often required to decrease to a specified tolerance (as opposed to the requirement of 

becoming null at the solution). The termination conditions are given in Equation 

(4.27), and have been adopted in the implementation of the PDIPM algorithm in this 

study (Capitanescu et al., 2005). 
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Typical values for the tolerances are 
66

2

4

1 10,10,10    (Martinez Ramos et 

al., 2005). A point kX  that satisfies the above conditions is said to be a KKT point of 

accuracy 1 . Besides satisfying optimality conditions according to equation (4.27), the 

algorithm may also terminate unsuccessfully, either due to numerical infeasibility (e.g. 

when the primal/dual step lengths become so small that no further progress can be 

made either towards reaching optimality or decreasing the barrier parameter), or the 

predetermined maximum number of iterations being reached. 

4.2.8 Initialization of the primal-dual interior-point algorithm 

The primal-dual interior-point algorithm is referred to as an infeasible interior-point 

method, in the sense that it need not start from a feasible initial point, the only 

requirement being the satisfaction of the strict positivity condition on the slack 

variables and their corresponding dual variables (Torres & Quintana, 1998). In spite 

of this fact, the initial point may have a significant impact on the convergence 

characteristics of the algorithm, and thus problem-specific heuristics may be applied 

to come up with a ‘good’ initial point. Such a ‘good’ initial point should ideally be well-

centred (such that values of complementarity products    k

I

k
s 00   are comparable for 

every iteration index k ), and should not be ‘too infeasible’ (as measured by the 

complementarity gap). 

For the optimal power flow problem, it is recommended to initialize the decision vector 

0x  with the solution of a load flow computation, if available. Otherwise, the values of 

the variables may be set to be in the middle of the range determined by their lower 

and upper limits. The Lagrange multiplier for the equality constraints ( E ) may be set 

to zero, while the slack variable vector and its corresponding dual variable (i.e. the 

Lagrange multiplier for the inequality constraints, I ) may be set as follows (Torres, 

1998): 
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Start

Derive the KKT conditions (Equation 4.6) for the system by:
 Transforming inequality constraints into equality constraints using 

slack variables
 Handling non-negativity of slack variables by appending them to 

the objective function using the logarithmic barrier function
 Forming the Lagrangian from the resulting equality-constrained 

problem, turning it into an unconstrained problem
 Applying the first-order optimality (KKT) conditions to the resulting 

Lagrangian 

Initialization:
 Set the values of the constants: safety, centering, 

barrier parameters, and convergence tolerance 
values

 Set initial values of the primal and dual variables as 
discussed in section 4.2.8 

Computation of Newton direction:
 Compute the Newton direction, using either the full-

order primal-dual system (Equation 4.15) or the 
reduced-order system (Equations 4.16, 4.17, 4.19-
4.21) 

Computation of step size:
 Compute the step sizes to be taken in the Newton 

direction, using Equations 4.23, 4.24, then update 
the primal and dual variables using Equation 4.22 

Convergence check:
 Test for convergence of the current iterate using 

Equations 4.27

Output result:
 Converged or numerically failed

Converged

End

Check if maximum 
number of iterations is 
not exceeded

Not yet
converged

 Update barrier 
parameter

 Increment 
iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

 

Fig. 4.2: Flowchart of the Primal-Dual Interior-Point Algorithm 
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where mh  and Mh  are the lower and upper limits on the inequality constraints )(xh , 

the scalar parameter   is chosen to be in the range  3.0 ,1.0 . Equation (4.28a) 

ensures that the maximum inequality constraint violation is minimized. 

4.2.9 Outline of the primal-dual interior-point algorithm 

The flowchart in Figure (4.2) below summarizes the steps of the primal-dual interior-

point algorithm discussed in the preceding sub-sections. 

4.3 Example of application of the PDIPM 

To illustrate the implementation of the primal-dual interior-point algorithm developed 

in the previous section, it is applied to the following simple problem, taken from 

Momoh (2001), stated as: 

 

s.t. 

  

This is a (fairly simple) inequality-constrained quadratic programming problem (with a 

quadratic objective function and linear inequality constraints). It can be expressed in 

standard form as: 

 

s.t.  

 

In the following sub-sections, the steps outlined in section (4.2) will be applied to 

problem (4.30) so as to solve the system using the primal-dual interior-point method. 

4.3.1 Transformation of inequality constraints into equality constraints 

By adding slack variables to the two inequality constraints, the problem is transformed 

into an equality-constrained problem as follows: 

 

s.t.  

 

 

4.3.2 Handling the non-negativity condition of slack variables 

The next step is to form the logarithmic barrier function to handle the non-negativity 

condition of the slack variables, resulting in the problem taking the following form: 
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s.t.  

 

4.3.3 Transforming the equality-constrained problem into an unconstrained one 

The logarithmic barrier function and the equality constraints as presented in problem 

(4.32) are then combined to form the Lagrangian function of the problem as follows: 

 

 

Note that the original problem has no equality constraints, and so the term )(xgT

E  

does not appear in the Lagrangian function (4.33) of the problem. The first-order 

optimality (i.e. KKT) conditions for the problem are derived by taking the partial 

derivatives of the Lagrangian function with respect to the primal and dual variables as 

follows: 

 

 

 

 

The KKT conditions can be written in compact form as: 

 

The solution of system (4.35) is determined by iteratively applying the Newton method 

to it to compute the Newton direction, then determining the step size to be taken in 

the Newton direction. The algorithm will also involve determining the initial values of 

all the parameters needed to implement the algorithm, updating the barrier parameter 

 , and testing the convergence conditions. 
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4.3.4 Determining the search direction by the Newton method 

The search direction can be computed on the basis of either the full (Newton-based) 

primal-dual system according to Equation (4.15), or the reduced-order system 

according to Equations (4.16), (4.17), (4.19) – (4.21). The reduced-order system has 

the advantage of requiring less computation time, and will be used to solve the 

example problem. 

Since the problem (4.29) does not have equality constraints, the system (4.19) 

reduces to: 

 

where A and B are given by equations (4.20) and (4.21) respectively, restated below 

for convenience. 

 

 

Once the increment x  has been computed using equation (4.36), the increments 

s  and I  can be determined using the equations (4.16) and (4.17) respectively, 

also restated below for convenience: 

 

 

The components required to compute the values of A and B for the example problem 

can be determined as follows: 

 

 

 

 

 

 

By using equations (4.36) – (4.39), the (Newton-based) search direction for the 

interior-point algorithm is determined for problem (4.29). 
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4.3.5 Determining the step size 

The step size to be taken in the Newton direction can be computed by means of 

Equation (4.23), as discussed in section (4.2.5), and Equation (4.22) can be used to 

update the primal and dual variables (for problem (4.29), these are  IsxX  , , ). 

4.3.6 Checking the convergence of the algorithm 

Next, the convergence conditions according to equation (4.27) are computed at the 

current iterate to check whether the algorithm has converged to the solution of the 

problem (4.29). 

If the algorithm has not yet converged and the predetermined maximum number of 

iterations has not yet been exceeded, a new Newton direction is computed and a new 

iterate generated, as depicted in the algorithm in Figure (4.1). At each new iteration, 

the barrier parameter also has to be updated, using Equation (4.26). 

4.3.7 Determining the initial values of the input parameters to the algorithm 

The primal-dual interior-point method has quite a number of parameters whose initial 

values need to be determined judiciously as they significantly impact the convergence 

performance of the algorithm. Following the guidelines discussed in section (4.2.8) 

the following initial values have been used for problem (4.29): 

 

 

 

 

 

With the initial parameter values specified as above, the parameters needed to 

implement the algorithm are available. Other input parameters (mainly constants) are 

determined as discussed in section (4.2). 

4.3.8 Implementation and results of the example problem 

After applying the steps outlined in sections (4.3.1) – (4.3.7) to problem (4.29), the 

following results are obtained. As an illustration, computation of the first two iterations 

is detailed below, the rest of the results are given in Table 4.1. 

Using the initial values in Equation (4.40), the components needed for the 

computation of the Newton direction according to equation (4.39) are determined as 

follows: 
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1st iteration 

Firstly, the Newton direction is determined as follows: 

 

 

 

 

     

 

      

 

 

       

 

 

   

Next, the step length to be taken in the Newton direction is determined as follows: 
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Then the primal and dual variables are updated as follows: 

 

 

 

The next step is to check the convergence conditions, using equation (4.27), as 

follows: 

 

 

 

 

 

 

It can be observed from the results above that the complementarity, objective 

function, and barrier parameter conditions (i.e. tolerances) are not satisfied by the 

current iterate. Thus, another iterate needs to be computed, after updating the barrier 

parameter according to equations (4.25), (4.26) (here using 15.0 ). 

 

2nd iteration 

Newton direction: 
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Step length determination: 
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Update of primal-dual variables: 

 

 

 

Test of convergence: 

 

 

 

 

 

 

 

Table 4.1: Simulation results of the PDIPA applied to problem (4.29) 

Iteration         
f(x) 

0 2 1 1 1 10 10 10 2 2 

1 0.7692 -0.7692 0.4615 0.5385 15.3846 14.6154 0.5614 2 -0.5917 

2 0.7742 -0.7742 0.4516 0.5484 1.5473 0.7731 0.0421 3.5527e-15 -0.5994 

3 0.8459 -0.8459 0.3083 0.6917 0.8459 0 0.0098 3.3307e-16 -0.7155 

4 1 -1 0 1 1.0118 0.0118 4.43e-4 2.22e-16 -1 

5 0.9998 -0.9998 0.0004 0.9996 1.0002 0.0004 3.32e-5 5.5511e-17 -0.9996 

6 1 -1 0 1 1 0 2.5e-6 4.55e-15 -1 

 

The convergence test shows that the complementarity, objective function, and barrier 

parameter conditions are still not satisfied by the second iterate. Thus, another iterate 

should be computed, after updating the barrier parameter. The algorithm converges 
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after about 6 iterations. The results for the rest of the iterations are displayed in Table 

4.1. Figure (4.3) depicts the trajectories of the solution ( 1x , 2x ) over the iterations of 

the algorithm, from which it can be observed that the variable 1x  settles at the 

optimal value of 1, and the variable 2x  settles at the optimal value of -1, as can be 

read from Table (4.1) as well. Figure (4.4) depicts the trajectories of the norm of the 

gradient of the Lagrangian function as well as the barrier parameter, and shows that 

both of them are driven to zero at the optimal solution, as is required by the algorithm. 

The MATLAB program for the PDIPA algorithm applied to problem (4.29) is presented 

in Appendix A. 

 

Fig. 4.3: Evolution of the variables x1 and x2 over the iterations of the PDIPA for problem 

(4.29) 
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Fig. 4.4: Evolution of the norm of the gradient of the Lagrangian and of the barrier parameter 

for problem (4.29) 

4.4 Conclusion 

The primal-dual interior-point method (PDIPM) combines effective inequality 

constraint handling by the logarithmic barrier function and an efficient iterative search 

technique by the Newton method to provide one of the most efficient classical 

methods for large-scale constrained nonlinear optimization. The main result of this 

chapter has been to present a thorough, step-by-step process for the design and 

implementation of this algorithm. All the pertinent aspects related to the 

implementation of the algorithm have been discussed in great detail, encompassing 

the derivation of the first-order optimality (KKT) conditions and their solution by the 

Newton method, as well as the many parameter selection and tuning considerations 

that are integral to the effective implementation of the algorithm. The developed 

algorithm has been applied to a general nonlinear programming problem in order to 

demonstrate the key practical implementation aspects that have been presented in 

the chapter. Although the example used to illustrate the implementation of the 

algorithm is fairly simple, the results obtained nonetheless demonstrate the 

effectiveness and efficiency of the developed algorithm. The results of this chapter 

are used as the basis for the development and implementation of an efficient 

optimization strategy for the Volt/VAR optimization problem in the following chapter, 

namely, the primal-dual interior-point algorithm. This also constitutes one of the main 

deliverables of the thesis (i.e., theoretical algorithm development and design). 
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CHAPTER FIVE 

SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY THE PRIMAL-
DUAL INTERIOR POINT METHOD 

 
5.1 Introduction 

The significance of the optimal power flow (OPF) as the principal tool used by the 

power system operator for all aspects of power system planning and operation has 

been underscored in chapter 3. Volt/VAR optimization (VVO), an important variant of 

the OPF, is primarily concerned with the optimal coordinated dispatch of voltage-

regulating devices and reactive power sources so as to maintain a secure voltage 

profile, and plays a key role in ensuring system security, and improving system 

economy by minimizing system losses (Chebbo et al., 1992). Optimal reactive power 

dispatch (as it is otherwise referred to) plays a key role in the efficient transfer of real 

power, especially in the bulk power transmission system, and contributes significantly 

to the security, reliability, quality and economy of power system operation (Miller, 

1982). In fact, reactive power-related bottlenecks are often cited as underlying the 

system operator’s inability to economically dispatch active power, which underscores 

the great significance of efficiently utilizing available reactive power resources. It is 

also worth pointing out that the security aspect of system operation normally takes 

precedence over the economic aspect. Thus, in the presence of limit violations (e.g. 

voltages or branch flows exceeding predetermined limits), the main objective 

becomes the elimination of the violations (or minimizing them in case they cannot be 

eliminated entirely), and a minimal set of controls is sought that can be dispatched to 

achieve that objective. The economic aspect (i.e. loss minimization) can then be 

considered once the security of system operation is ensured (Martinez Ramos et al., 

2005). 

 This chapter presents the design and implementation of an efficient primal-dual 

interior-point method-based Volt/VAR optimization (PDIPM-VVO) algorithm, and 

builds on the work presented in chapter 4. The algorithm makes use of the 

rectangular formulation of the VVO problem (presented in chapter 3), and 

incorporates a Newton-Raphson-based load flow computation, which is also 

formulated in rectangular coordinates. The content of this chapter is organized as 

follows. Section 5.2 outlines in great detail the adaptation of the primal-dual interior 

point algorithm (PDIPA) presented in chapter 4 to the requirements of the VVO 

problem. The development and implementation of the Newton-Raphson load flow 

algorithm in rectangular coordinates is also presented in this section, prior to its 

incorporation into the PDIPM-VVO algorithm. Section 5.3 presents five case studies 

that facilitate the analysis of the newly developed PDIPM-VVO algorithm. Extensive 

simulations and discussion of the results in this section are presented to demonstrate 
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the effectiveness and efficiency of the developed algorithm. Section 5.4 concludes 

the chapter with a brief summary of the main outcomes of the work presented in the 

chapter. A pictorial representation of the content of this chapter is depicted in Figure 

(5.1). 

Chapter Five:

Solution of the Volt/VAR Optimization Problem by the Primal-

Dual Interior-Point Method

5.2 Application of the PDIPM to the solution of the 

Volt/VAR optimization problem

5.2.1 VVO problem formulation in standard 

form

5.4 Conclusion
5.1 Introduction

5.2.2 Transforming the problem into an 

equality-constrained problem

5.2.3 Handling the non-negativity of slack 

variables and formulating the Lagrangian of 

the problem

5.2.4 Newton-Raphson load flow algorithm in 

rectangular coordinates

5.2.5 Example of implementation of the 

Newton-Raphson load flow algorithm

5.2.6 Results of the Newton-Raphson-based 

load flow computation

5.2.7 Lagrangian of the PDIPM-VVO problem 

incorporating the Newton-Raphson load flow

5.2.8 Derivation of the first-order optimality 

(KKT) conditions

5.2.9 Derivation of the elements needed to 

implement the PDIPM-VVO algorithm: 

example for the three-bus system

5.3 Case studies

5.3.1 Case study 1: 3-bus power system

5.3.2 Case study 2: 6-bus power system

5.3.3 Case study 3: IEEE 14-bus power system

5.3.4 Case study 4: IEEE 30-bus power system

5.3.5 Case study 5: IEEE 118-bus power system

Fig. 5.1: Summary of the content covered in this chapter 

The key contributions of this research as presented in this chapter are: 

 Development and implementation of an efficient Newton-Raphson load flow 

algorithm in the rectangular coordinate representation of the system voltages 

 Development and implementation of a novel efficient primal-dual interior-point 

algorithm for Volt/VAR optimization (PDIPM-VVO), formulated in rectangular 

coordinates, which incorporates the rectangular-coordinate Newton-Raphson 

load flow computation 

 Comprehensive performance analysis of the developed PDIPM-VVO 

algorithm, focusing on the quality of the solution (in terms of the magnitude of 

real power loss percentage reduction and the voltage profile improvement) 

and the computational efficiency of the algorithm (in terms of the required 

number of iterations and runtime) 

 Demonstrating the scalability of the developed algorithm by analysing its 

performance for test systems ranging in size from 3-bus to 118-bus system 
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5.2 Application of the PDIPM to the solution of the Volt/VAR optimization problem 

Following the procedure illustrated in section 4.3 in the preceding chapter, 

development of the PDIPM-based solution algorithm for the VVO problem is 

presented in this section, making use of the rectangular form of the VVO problem 

formulation as detailed in section 3.2.3. As demonstrated in section 4.3, the 

procedure involves (i) expressing the optimization problem in standard form, (ii) 

adding slack variables to the inequality constraints so as to transform the problem 

into an equality-constrained problem, (iii) handling the non-negativity of slack 

variables by means of the logarithmic barrier function, (iv) formulating the Lagrangian 

of the problem, then (v) deriving the KKT system and subsequently (vi) solving it by 

the Newton method. Each of these steps is applied sequentially to the VVO problem 

in the following sub-sections. 

5.2.1 VVO problem formulation in standard form 

In standard form, the rectangular representation of the VVO problem can be 

expressed as: 

 

s.t. 

 

 

 

In Equation (5.1c), subscripts im  and iM  represent the inequality constraints 

corresponding to the lower and upper bounds of the ith element respectively. Thus, for 

example, Vimh  is the inequality constraint corresponding to the lower bound on the 

voltage magnitude of the ith bus. The rest of the symbols have been defined in 

chapter 3, section 3.2.3. 
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5.2.2 Transforming the problem into an equality-constrained problem 

By adding slack variables to each of the inequality constraints (Equation 5.1c), the 

problem (5.1) is transformed into the following: 

 

s.t. 

 

 

 

5.2.3 Handling the non-negativity of slack variables and formulating the 

Lagrangian of the problem 

The non-negativity condition on the slack variables (Equation 5.2d) is then handled by 

means of a logarithmic barrier function augmented to the objective function, leading 

to: 

 

s.t. 

 

 

Where , defines the set of indices for the 

slack variables and Lagrange multipliers associated with the inequality constraints.  
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At this point, the implementation of the PDIPM-based VVO solution digresses slightly 

from that discussed and implemented in section 4.3 for a general nonlinear 

programming problem, particularly in the handling of the (original) equality and 

inequality constraints. The reason for the digression is that after each iteration of the 

Newton method, the VVO algorithm needs to run a load flow algorithm in order to 

compute the system bus voltages (following the generator voltage set-point 

adjustments made by the VVO algorithm). The equality constraints (i.e. the real and 

reactive power balance equations, Equation 5.3b) are consequently handled by the 

load flow algorithm, while the PDIPM-based VVO algorithm handles the inequality 

constraints (Equation 5.3c). This scheme ensures the convergence of the VVO 

algorithm. Since the VVO algorithm makes use of the rectangular form of the problem 

formulation, the load flow algorithm is developed on the basis of the rectangular form 

of the system voltages as well, which happens to exhibit characteristics of fast 

convergence and high efficiency. In the following sub-section, the developed 

rectangular form of the Newton-Raphson load flow algorithm is presented. Other 

methods that are commonly applied to the load flow computation problem include 

Gauss-Seidel, fast-decoupled, and DC load flow methods, all of which are extensively 

discussed in power system analysis textbooks (see, for example, Glover & Sarma, 

2002). 

5.2.4 Newton-Raphson load flow algorithm in rectangular coordinates 

The Newton method of solving a general nonlinear problem was discussed in section 

4.2.4. The same algorithm forms the basis for the development of the Newton-

Raphson load flow algorithm. The objective of a load flow computation for a power 

system is to determine the system bus voltages (magnitudes and phase angles) for a 

given generation, load and network condition, while satisfying active and reactive 

power balance equations (i.e. sum of active and reactive power injections at each 

bus, each treated separately, must equal zero). Other than handling the active and 

reactive power balance equations, the load flow algorithm does not enforce the 

satisfaction of any other system constraints (such as limits on bus voltage 

magnitudes), which thus needs to be taken care of by the VVO algorithm. Once the 

system voltages have been determined, other system quantities such as line power 

flows and system losses can be computed in turn as part of the load flow solution of 

the system. 

A load flow computation requires classifying each system bus on the basis of the 

known and unknown variables at the bus, as detailed in Table 5.1. All system buses 

essentially fall broadly into two main categories, depending on whether there is 

generation at the bus or not. Non-generator buses are referred to as load (or PQ) 
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buses, and the rest are referred to as generator (or PV or regulated) buses. Among 

generator buses, one bus (possibly more) is selected to be the reference bus, which 

is responsible for setting the reference voltage phase angle for the system, as well as 

compensating for the mismatch between load demand (plus system losses) and 

scheduled generation. Hence, it is also referred to as the slack bus or swing bus. 

Table 5.1: classification of system buses based on specified and unknown variables 

Bus type 
Voltage ( V ) Real power (P) Reactive power (Q) 

Magnitude Angle Generation Load Generation Load 

Reference/slack/swing Specified Specified Unknown - Unknown - 

Generator/PV/regulated Specified Unknown Specified - Unknown - 

Load/PQ Unknown Unknown - Specified - Specified 

 

As can be deduced from Table 5.1, both the voltage magnitude and voltage phase 

angle are specified at the reference bus, the voltage magnitude is specified at each 

generator bus, whereas neither voltage magnitude nor phase angle is specified at 

load buses. The load flow solution is thus needed to compute voltage magnitudes 

and phase angles for all load buses, as well as voltage phase angles for generator 

buses. The load flow algorithm is derived on the basis of the active and reactive 

power balance equations for the system, Equations (5.3a), (5.3b), (3.4) and (3.5), 

which can be expressed as follows for the presently considered application: 

 

 
 

 

 

 

Equation (5.4a) is the active power mismatch (or active power balance) equation, and 

needs to be computed for each bus other than the slack bus. Equation (5.4b) is the 

reactive power mismatch equation, and needs to be computed for each load bus. 

Equation (5.4c) needs to be computed for each generator bus except for the slack 

bus, to ensure maintenance of the voltage magnitude set-point at the voltage-

regulated (i.e. PV) buses. For a system with n  buses, a total of )1(2 n  equations 

are formulated in order to solve for the load-bus voltage magnitudes and phase 

angles, as well as PV-bus voltage phase angles. The mismatch equations (5.4) have 
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been expressed in rectangular form, as the developed load flow algorithm is based on 

the rectangular representation of system bus voltages.  

Similar to the computation of the Newton-based search direction for the PDIPM 

algorithm in section 4.2.4, the Newton-Raphson load flow algorithm is based on 

equation (4.11), rewritten here for ease of reference: 

 

where )(XF   is comprised of equations (4.44), )(XJ  is the Jacobian of )(XF  (i.e. 

the first-order partial derivatives of )(XF  with respect to the system bus voltages), 

and X  is the correction to be applied to the variable X  (the system bus voltages) in 

order to drive it towards the load flow solution, according to equation (4.45b). 

 

 

For each ith PQ bus, the mismatch vector ( PQiF ) and the corresponding Jacobian 

( PQijJ ) are given by: 

 

 

And for each ith PV bus, the mismatch vector ( PViF ) and the corresponding Jacobian 

( PVijJ ) are given by: 

 

 

And the vector iX  is given by: 

 

for every bus other than the slack bus. 

The flowchart in Figure (5.2) outlines the Newton-Raphson load flow algorithm. 
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5.2.5 Example of implementation of the Newton-Raphson load flow algorithm 

To illustrate the implementation of the Newton-Raphson-based load flow algorithm, a 

simple three-bus power system is used, whose network diagram is depicted in Figure 

(5.3) (adapted from Albadi, 2019).  

The example three-bus system has one slack bus (bus one), one PQ bus (bus two), 

and one PV bus (bus three). Thus, according to equations (5.6) – (5.8), the 

components of equation (5.4a) can be defined as follows: 

 

 

 



87  
 

Start

Given input (network, load, generation) data:
 Express bus voltages in rectangular form
 Form bus admittance matrix
 Assume initial values of bus voltages (except slack 

bus) 

Convergence check:
 Compute power mismatch based on Equations (5.4)
 Check whether the mismatch satisfies the tolerance 

values, i.e. |ΔF|<ε 

Computation of correction term ΔX:
 Compute power mismatch and the Jacobian based 

on Equations 5.4 and 5.6b, 5.7b
 Compute the correction term ΔX using Equation 5.5a
 Update the bus voltages X using Equation 5.5b
 Check for convergence of the algorithm (i.e. |ΔF|<ε)

Output result (bus voltages):
 Converged or numerically failed

Converged

End

Check if maximum 
number of iterations is 
not exceeded

Not yet
converged

 Update barrier 
parameter

 Increment 
iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Converged

Not yet converged

 

Fig. 5.2: Flowchart of the Newton-Raphson load flow algorithm 
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GS GS
Slack bus

V1=1.02 0°  

PV bus

|V3|=1.03  

P3=1.5 p.u.  

PQ bus

P2+jQ2=2+j0.5 p.u.  

Bus 1 Bus 3

Bus 2

Z13=0.0059+j0.0235 p.u.  

Z12=0.02+j0.06 p.u.  Z23=0.0055+j0.0183 p.u.  

 

Fig. 5.3: Network diagram of the 3-bus system depicting the network data 

The elements of equation (5.9b) for the system under consideration are defined as: 

 

 

 

 

The elements of equation (5.9c) are defined as: 
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One of the key input data for the load flow computation is the bus admittance matrix, 

ijijij jBGY  , which can be thought of as representing the network topology. For the 

system under consideration, it is determined to be (for details of its determination, 

reference can be made to any power systems textbook, such as Glover and Sarma, 

2002): 

 

The only other component left to perform the load flow computation is to decide on an 

initial starting point for the (iterative) load flow algorithm. For this example, the 

following initial starting point is used: 

 

The slack-bus voltage is set to 002.1111 jjfeV  , and does not change 

throughout the load flow computation. 
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5.2.6 Results of the Newton-Raphson-based load flow computation 

Based on the network data given in Figure (5.3) and the initial starting point as stated 

above, the initial mismatch vector and the Jacobian (Equations (5.9b) and (5.9c) 

respectively) are determined to be: 

 

 

Equations (4.45a) and (4.45b) can then be used to update the vector X  as follows: 

 

 

 

Performing another two iterations leads to convergence of the algorithm. The results 

for the rest of the iterations are tabulated in Tables (5.2) and (5.3). The MATLAB 

program for this example is presented in Appendix B. 
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Table 5.2: 3-bus system change in bus power/voltage mismatch over iterations of the 

Newton-Raphson load flow computations 

Iteration number 2P  2Q  3P  
2

3V  

0  1.4481 -1.3035 -0.9310 0 

1  0.01928 0.0549 -0.0033 -1.12e-5 

2  5.57e-7 5.2e-6 1e-5 -4.92e-8 

3  1.28e-12 4.1e-11 1.16e-11 7.2e-14 

 

Table 5.3: 3-bus system change in bus voltages over iterations of the Newton-

Raphson load flow computations 

 Bus 2 Bus 3 

Iteration number 22 jfe   33 jfe   

1  1.0123-j0.0278 1.03-j0.0034 

2  1.0115-j0.028 1.03-j0.00367 

3  1.0115-j0.028 1.03-j0.00367 

 

As mentioned earlier, the developed Newton-Raphson load flow algorithm exhibits 

very fast convergence and high computational efficiency, which is very desirable for 

Volt/VAR optimization, since each iteration of the VVO algorithm requires a load flow 

computation as well. In the next sub-section, the implementation of the VVO 

algorithm incorporating the developed Newton-Raphson load flow algorithm is further 

discussed, particularly the formulation of the Lagrangian function for the problem, and 

subsequently derivation of the first-order optimality (KKT) conditions for the system. 

The PDIPM-VVO algorithm incorporating the Newton-Raphson load flow computation 

is depicted in the flowchart in Figure (5.4). 

5.2.7 Lagrangian of PDIPM-VVO problem incorporating the Newton-Raphson 

load flow 

With the (original) equality constraints (the active and reactive power balance 

equations, Equation 5.3b) incorporated into the Newton-Raphson load flow algorithm, 

the Lagrangian function of the VVO problem is formulated on the basis of only the 

logarithmic barrier function-augmented objective function (Equation 5.3a) and the  
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Start

Derive the KKT conditions (Equation 4.13) for the system by:
 Transforming inequality constraints into equality constraints 

using slack variables
 Handling non-negativity of slack variables by appending them 

to the objective function using the logarithmic barrier function
 Forming the Lagrangian from the resulting equality-

constrained problem, turning it into an unconstrained problem
 Applying the first-order optimality (KKT) conditions to the 

resulting Lagrangian 

Initialization:
 Set the values of the constants: safety, centering, 

barrier parameters, and convergence tolerance 
values

 Set initial values of the primal and dual variables as 
discussed in section IV (F); this includes computation 
of the Newton-Raphson load flow 

Computation of Newton direction:
 Compute the Newton direction, using either the full-

order primal-dual system (Equation 4.15) or the 
reduced-order equivalent system (Equation 4.19) 

Computation of step size:
 Compute the step sizes to be taken in the Newton direction, using 

Equations 4.23, 4.24, then update the primal and dual variables 
using Equation 4.22 

 Recompute the Newton-Raphson load flow to update the state 
and control variables

Convergence check:
 Test for convergence of the current iterate using 

Equations 4.27

End

Check if maximum number of 
iterations is not exceeded

Not yet
converged

 Update barrier parameter
 Increment iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Output results:
 Optimal generator voltage 

set-points if converged
 Else, numerically failed

 

Fig. 5.4: Flowchart of the PDIPM-VVO algorithm incorporating the Newton-Raphson load flow 

computation 
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inequality constraints transformed into equality constraints by addition of slack 

variables (Equation 5.3c), resulting in: 

 

The Lagrangian multiplier vector I  can be defined as: 

 

The full expression of the Lagrangian function takes the form as given by equation 

(5.13). 

 

5.2.8 Derivation of the first-order optimality (KKT) conditions 

The first-order optimality (KKT) conditions are given by equation (4.6) as derived in 

section (4.2.3), and can be stated for the VVO problem, based on the Lagrangian 

function for the problem (Equation 5.13), as: 
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On the basis of the KKT system (5.14), the full-order primal-dual system can be 

derived, as given by Equation (4.15). For reasons of computational efficiency (as 

discussed earlier), the reduced-order primal-dual system (according to Equations 

(4.16), (4.17), (4.19) – (4.21)) is used as the basis for the implementation of the 

PDIPM-based VVO solution. Moreover, since the equality constraints ( )(xg ) are no 

longer part of the VVO problem (as they are handled by the Newton-Raphson load 

flow algorithm), the algorithm is implemented in a similar manner to the example 

presented in section 4.3; that is, on the basis of the reduced-order system according 

to equations (4.36) – (4.38), rewritten here for ease of reference. 

 

 

 

 

 

 

The derivation of the components in Equations (5.15) as are needed to solve the 

PDIPM-based VVO problem is demonstrated by means of the simple three-bus power 

system (also used in section 4.4.5) in the following sub-section. 

5.2.9 Derivation of elements needed to implement the PDIPM-VVO algorithm: 

example for the three-bus system 

The main elements needed to compute the PDIPM-based VVO solution according to 

Equations (5.15) are the gradient and Hessian of the Lagrangian function, the 

Jacobian and Hessian of the inequality constraints, the diagonal matrix of the slack 

variables, and the diagonal matrix of the equality-constraint Lagrangian multipliers, as 

can be deduced from Equation (5.15). Derivation of these components is illustrated in 

this section for the example system under consideration. The same can be done for 

systems of arbitrary size, although the process becomes fairly tedious for larger 

systems. 
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The objective function (
1)( Rxf  ), its gradient (

k

x Rxf  )( ) and its Hessian 

(
kk

xx Rxf  )(2
, where k  is the dimension of x ) are expressed in equations (5.16). 

Here the decision vector is taken to comprise of the generator terminal voltages (i.e. 

 ii fex   ,  for every generator bus, where 1f  is fixed at zero, which corresponds to a 

slack-bus voltage phase angle reference of 0 ). 

 

         

 

 

 

The (inequality) constraint function ( )(xh ), its Jacobian ( )(xhx ) and its Hessian 

(actually, the Jacobian of )(xhx  transposed and multiplied with the Lagrangian 

multiplier vector, that is, I

T

xx xh )(2 ) are expressed in equations (5.17). The 

constraints comprise the bus voltage magnitudes (as functional constraints) and the 

limits on generator reactive power outputs. 
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The gradient and Hessian of the Lagrangian function are defined on the basis of 

Equations (5.16) and (5.17) as follows (modified forms of equations (4.5a) and (4.14) 

respectively): 

 

 

Based on Equations (5.16) – (5.18), and by defining the diagonal matrices S and 

Lambda as done in section 4.3.8, the PDIPM-based VVO solution algorithm 

according equations (5.15) can be implemented. Other steps of the implementation 

(e.g. initialization, step size determination, checking for convergence, and updating of 

the barrier parameter) are as outlined in example presented in section 4.3. 

5.3 Case studies 

To evaluate the performance of the developed PDIPM-based VVO algorithm, a 

number of case studies have been performed. The case studies are based on the 3-

bus system used in sections 5.2.5 and 5.2.9 to demonstrate the implementation of the 

Newton-Raphson and PDIPM-based VVO algorithms respectively, a 6-bus power 

system, and the IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus power systems. The 
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choice of the case studies enables the demonstration of the scalability and efficiency 

of the algorithm independently of the system size (as it relates to the number of buses 

in the system). As part of the performance analysis of the algorithm, the following 

aspects are of particular interest: 

 Magnitude of loss minimization 

 Voltage profile improvement due to the Volt/VAR optimization 

 Efficiency and speed of convergence of the algorithm, measured by the 

number of iterations taken for the algorithm to converge, and the elapsed time 

 Impact of generator reactive power output variation on both the power loss 

minimization and the voltage profile improvement 

The Matlab programs for the case studies presented in the following sub-sections are 

appended in Appendix B. 

5.3.1 Case study 1: 3-bus power system 

As already stated, the 3-bus power system has been presented in sections 5.2.5 and 

5.2.9, in connection with the details of implementation of the Newton-Raphson and 

PDIPM-based VVO algorithms respectively. The corresponding network diagram is 

depicted in Figure (5.3). The data needed to perform the Volt/VAR optimization (i.e. 

network, load and generation data) appears in Figure (5.3), and is presented 

Appendix B as well. The analysis in this sub-section follows the points outlined at the 

end of the previous sub-section. That is, focus is on the improvement in the power 

system losses and the voltage profile of the power system, the efficiency of the 

algorithm in arriving at the solution, as well as a number of other qualitative aspects 

of the solution, such as the impact of the variation of generator reactive power output 

on both the real power loss minimization and voltage profile improvement. 

Table (5.4) compares the initial generator bus voltage magnitudes with the 

corresponding optimal values following the execution of the PDIPM-based VVO 

algorithm. The same information is depicted in Figure (5.5) in the form of a bar chart, 

which shows that voltage magnitudes increase on all buses as a result of the 

Volt/VAR optimization. 
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Table 5.4: 3-bus system generator voltage magnitudes prior to and following VVO 

Control variable Initial value Optimal value Lower limit Upper limit 

1gV  1.02 1.0281 0.95 1.1 

3gV  1.03 1.034 0.95 1.1 

 

Table 5.5: 3-bus system loss reduction prior to and following VVO 

 Initial Final Percentage loss reduction 

Real power system losses (p.u.) 0.0195 0.0180 7.89% 

Number of iterations 4 

Execution time (sec) 0.0843 

 

 

Fig. 5.5: 3-bus system generator voltage magnitudes before and after Volt/VAR optimization in bar 

chart form 

As depicted in Table (5.5), executing the VVO algorithm results in a 7.89 percent 

reduction in system real power losses. The algorithm converges within four iterations, 

and takes about 84.3 milliseconds to execute (which includes running the Newton-

Raphson load flow algorithm at each iteration of the VVO algorithm). Figure (5.6) 

depicts the real power loss change over the iterations of the VVO algorithm, and 

shows that by the third iteration, there is no appreciable change in the real power 

loss, thus demonstrating very fast convergence of the algorithm for this case study. 
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Fig. 5.6: 3-bus system real power losses plotted against the iteration number 

 

 

Fig. 5.7: 3-bus system comparison of real power loss with slack-bus active power (top plot) and 

with total generated reactive power (bottom plot) 

An interesting comparison is depicted in Figure (5.7) between the real power loss 

trajectory over the iterations of the algorithm, and the slack-bus active power as well as 
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the total generated reactive power in the top and bottom plots respectively. The top plot 

shows that the real power loss curve coincides with that of the slack-bus active power, 

demonstrating that the real power loss reduction due to the Volt/VAR optimization 

corresponds to the reduction in the slack-bus active power output. The bottom plot also 

shows that the system reactive power generation tracks the real power loss reduction, 

implying that real power loss minimization simultaneously leads to decrease in reactive 

power generation as well. 

 

 

Fig. 5.8: 3-bus system comparison of change in each generator’s reactive power output with 

change in real power loss 

This is the total (or net) system reactive power generation though, as Figure (5.8) shows 

that slack-bus reactive power output increases while bus-3 generator reactive power 

output decreases over the iterations of the VVO algorithm. In Figure (5.9), the change in 

reactive power output of each generator is compared with the corresponding change in its 

terminal voltage, showing a proportional relationship between the two quantities (that is, 

increase in generator terminal voltage magnitude leads to corresponding increase in 

reactive power output), which confirms the well-established theory of power system 

operation (Glover & Sarma, 2002). 
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Fig. 5.9: 3-bus system comparison of change in each generator’s reactive power output with 

change in its terminal voltage magnitude 

5.3.2 Case study 2: 6-bus power system 

Case study 2 is based on a 6-bus power system adapted from Wood et al. (2014), 

which has 3 generators (with the slack generator located at bus 1), 11 lines and 3 

loads. The network, load and generation data for the system are presented in 

Appendix B. 

The results of the Volt/VAR optimization for the 6-bus system are presented in Tables 

(5.6) and (5.7), as well as Figures (5.10) to (5.14). Table (5.6) displays the generator 

voltage magnitudes (as the control variables for the optimization) prior to and 

following the execution of the VVO algorithm, and shows an increase in the voltage 

magnitude in each case. The whole voltage profile of the system (including load-bus 

voltages) is depicted in Figure (5.10) in the form of a bar chart, which demonstrates 

that the Volt/VAR optimization leads to an increase in all system voltages, yet both 

lower and upper bounds on the voltage magnitudes are respected, as can be 

deduced from Table (5.6). Table (5.7) shows a power loss reduction of 3.372%, 

achieved in about 13 iterations, with an execution time of 178 milliseconds (about 

twice the run-time of the algorithm for the 3-bus system case study). 
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Table 5.6: 6-bus system generator voltage magnitudes before and after Volt/VAR optimization 

Control variable Initial value Optimal value Lower limit Upper limit 

1gV  1.07 1.099 0.95 1.1 

2gV  1.05 1.098 0.95 1.1 

3gV  1.05 1.10 0.95 1.1 

 

Table 5.7: 6-bus system loss reduction before and after Volt/VAR optimization 

 Initial Final Percentage loss reduction 

Real power system losses (p.u.) 0.1335 0.1290 3.372% 

Number of iterations 13 

Execution time (sec) 0.1775 

 

 

Fig. 5.10: bar chart of 6-bus system generator voltage magnitudes before and after Volt/VAR 

optimization 

The power loss reduction of the 6-bus system over the iterations of the VVO algorithm 

is depicted pictorially in Figure (5.11), where it can be seen that the power loss 

initially increases, then decreases progressively as the algorithm continues to iterate. 

This behaviour of the algorithm can be explained by the fact that it is a local 

optimizer, and its convergence characteristics are impacted by the initial starting  
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Fig. 5.11: 6-bus system real power losses plotted against the iteration number 

 

Fig. 5.12: 6-bus system comparison of real power loss with slack-bus active power (top plot) 

and with total generated reactive power (bottom plot) 

point. Despite taking significantly more iterations to converge due to the initial 

increase in the objective function value, the overall execution time is nonetheless 

small, which demonstrates the efficiency of the algorithm. 
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Comparison of the real power loss trajectory with the slack-bus active power and the 

total generated reactive power in Figure (5.12) shows similar characteristics to those 

observed in Figure (5.7) for the 3-bus system case. That is, the real power loss curve 

coincides with that of the slack-bus active power, and the total system reactive power 

generation tracks the real power loss reduction, indicating simultaneous real and 

reactive power loss minimization. 

 

Fig. 5.13: 6-bus system comparison of change in each generator’s reactive power output with 

change in real power loss 

The individual generator reactive power outputs are compared with the real power 

loss curve in Figure (5.13). Although no clear relationship can be seen in this 

comparison, it is quite clear from the figure that running the Volt/VAR optimization 

algorithm leads to redistribution of reactive power generation in the system, which 

moreover results in overall reduction in both active and reactive power generation in 

the system, as can be deduced from Figure (5.12). 

In Figure (5.14), the reactive power output variation of each generator is compared 

with the change in its terminal voltage magnitude, and a general proportional 

relationship between the two quantities can be observed, although with a varying 

correlation coefficient (i.e. relative proportional change) and responsiveness for the 

various generators. 
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Fig. 5.14: 6-bus system comparison of change in each generator’s reactive power output with 

change in its terminal voltage magnitude 

5.3.3 Case study 3: IEEE 14-bus power system 

The IEEE 14-bus system considered in this case study comprises 14 buses, 5 

generators, 20 lines, and 11 loads. The network, load and generation data for the 

system have been taken from Zhu (2009), and are presented in Appendix B. The 

network represents a portion of the transmission system in the Midwest United 

States, as of 1962. It is characterized as having low base voltages and a lot of 

voltage control capability (Gonzalez-Longatt, 2015). 

The results of the Volt/VAR optimization for this case study are presented in Tables 

(5.8) and (5.9), as well as Figures (5.15) to (5.19). The optimal set-points for the 

generator voltage magnitudes are listed in Table (5.8), which presents them along 

with the corresponding initial values. The final bus voltage magnitudes for the whole  

Table 5.8: IEEE 14-bus system generator voltage magnitudes before and after Volt/VAR 

optimization 

Control variable Initial value Optimal value Lower limit Upper limit 

1gV  1.06 1.1 0.95 1.1 



106  
 

2gV  1.045 1.077 0.95 1.1 

3gV  1.01 1.061 0.95 1.1 

6gV  1.07 1.10 0.95 1.1 

8gV  1.09 1.036 0.95 1.1 

 

Table 5.9: IEEE 14-bus system loss reduction before and after Volt/VAR optimization 

 Initial Final Percentage loss reduction 

Real power system losses (p.u.) 0.1353 0.1296 4.237% 

Number of iterations 14 

Execution time (sec) 0.1477 
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Fig. 5.15: IEEE 14-bus system generator voltage magnitudes prior to and following VVO in 

radar chart form 

system are depicted in the radar chart in Figure (5.15). Table (5.8) reveals that nearly 

all optimal voltage set-points are greater than the corresponding initial values (except 

for bus 8, which is also the only final voltage lower than the initial value for the whole 

system, according to Figure (5.15)). The power loss reduction due to the optimization 

is 4.237%, which is achieved within 14 iterations, with an execution time of about 148 

milliseconds. This information is presented in Table (5.9).  The number of iterations 

taken is only one more than that required for the 6-bus system case, and with a 

slightly lower runtime, which indicates that the execution time (to convergence) is not 
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quite proportional to the number of iterations. It may also be pointed out that the 

convergence rate of the algorithm will depend on other case-specific characteristics 

(such as the initial starting point). 

 

Fig. 5.16: IEEE 14-bus system real power losses plotted against the iteration number 

Figure (5.16) depicts the power loss trajectory for the case under study, plotted 

against the iteration count. Similar to the 6-bus system case, the power loss initially 

increases, then decreases progressively in the subsequent iterations of the algorithm. 

Figure (5.17) shows characteristics similar those observed in the previous two cases, 

that is, the coincidence of the power loss and slack-bus active power trajectories, as 

well as the corresponding decrease in both the real power loss and the total system 

reactive power generation. 
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Fig. 5.17: IEEE 14-bus system comparison of real power loss with slack-bus active power (top 

plot) and with total generated reactive power (bottom plot) 

 

Fig. 5.18: IEEE 14-bus system comparison of change in each generator’s reactive power 

output with change in real power loss 
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Fig. 5.19: IEEE 14-bus system comparison of change in each generator’s reactive power 

output with change in its terminal voltage magnitude 

Comparison of the individual generator reactive power outputs with the real power 

loss curve, as well as with the corresponding generator terminal voltage magnitudes, 
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is presented in Figures (5.18) and (5.19) respectively. Figure (5.19) shows that the 

majority of generator reactive power outputs change in tandem with the real power 

loss, the main difference being with the slack-bus reactive power output, whose 

change tends to be opposite to that of the aggregated (non-reference) generator 

outputs. The reactive power change mostly tracks the voltage set-point changes for 

all generators, as can be seen in Figure (5.19). 

5.3.4 Case study 4: IEEE 30-bus power system 

This case study is based on the IEEE 30-bus system, which comprises 30 buses, 6 

generators, 41 lines, and 21 loads, based on the network, load and generation data 

taken from Zhu (2009), which are presented in Appendix B. Similar to the IEEE 14-

bus system considered in the previous case study, the IEEE 30-bus system also 

represents a portion of the transmission system in the Midwest United States, as of 

December 1961 (Gonzalez-Longatt, 2014). 

Table 5.10: IEEE 30-bus system generator voltage magnitudes before and after Volt/VAR 

optimization 

Control variable Initial value Optimal value Lower limit Upper limit 

1gV  1.0 1.026 0.95 1.1 

2gV  1.0 1.027 0.95 1.1 

5gV  1.0 1.028 0.95 1.1 

8gV  1.0 1.029 0.95 1.1 

11gV  1.0 1.025 0.95 1.1 

13gV  1.0 1.025 0.95 1.1 

 

Table 5.11: IEEE 30-bus system loss reduction before and after Volt/VAR optimization 

 Initial Final Percentage loss reduction 

Real power system losses (p.u.) 0.1141 0.1084 5.0298% 

Number of iterations 14 

Execution time (sec) 0.3565 

 

The Volt/VAR optimization results for the IEEE 30-bus system are presented in 

Tables (5.10) and (5.11), as well as Figures (5.20) to (5.24). As detailed in table 

(5.10), all the generator initial voltage set-points are given a flat start (i.e. starting at 
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unity). Volt/VAR optimization leads to an average increase of about 2.5% for each 

generator terminal voltage magnitude.  
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Fig. 5.20: IEEE 30-bus system generator voltage magnitudes before and after Volt/VAR 

optimization in radar char form 

The voltage profile (before and after optimization) for the entire network is depicted in 

the radar chart in Figure (5.20), where an overall voltage profile improvement for the 

entire network can be deduced, particularly in terms of eliminating low-voltage 

violations for quite a few load buses. 

The power loss reduction following the Volt/VAR optimization for this case is 5.03%, 

which is achieved within 14 iterations, with an execution time of about 357 

milliseconds, as can be read from Table (5.11).  The number of iterations taken by the 

algorithm to converge for this case is the same as that required for the previous case 

study (i.e. the IEEE 14-bus system), but the execution time is longer (about 2.4 times 

longer), again showing that the relationship between the number of iterations and the 

execution time is not quite fixed, and is influenced by a number of case-specific 

characteristics, as mentioned earlier. 
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Fig. 5.21: IEEE 30-bus system real power losses plotted against the iteration number 

 

Fig. 5.22: IEEE 30-bus system comparison of real power loss with slack-bus active power (top 

plot) and with total generated reactive power (bottom plot) 

 



113  
 

 

Fig. 5.23: IEEE 30-bus system comparison of change in each generator’s reactive power 

output with change in real power loss 

Plotting the real power loss trajectory together with the slack-bus active power (Figure 

5.22, top plot) and the total system reactive power generation (Figure 5.22, bottom 

plot) reveals characteristics similar to those observed in the previous case studies. 

The individual generator reactive power outputs are together compared with the real 

power loss in Figure (5.23), and separately with the corresponding generator terminal 

voltage magnitudes in Figure (5.24). The comparison in Figure (5.23) does not seem 

to yield much information, but looking at the bottom plot in Figure (5.22) reveals a 

clear correlation between the real power loss and the aggregated reactive power 

generation trajectories. The trajectories of the individual generator reactive power 

outputs compared with the generator terminal voltage magnitudes in Figure (5.24) do 

not show a consistent relationship for the observed window. In some cases direct 

proportionality can be observed (albeit with a lagging effect on the response of the 

reactive power to the generator voltage set-point change), in other cases inverse 

proportionality seems to be exhibited. Overall, it can be seen that adjustment of the 

generator terminal voltage magnitude set-point always leads to a corresponding 

change in the generator reactive power output, and there is generally a positive 

correlation in the variation of the two quantities. 
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Fig. 5.24: IEEE 30-bus system comparison of change in each generator’s reactive power 

output with change in its terminal voltage magnitude 

5.3.5 Case study 5: IEEE 118-bus power system 

The final case study considered for the analysis of the developed PDIPM-based VVO 

algorithm is the IEEE 118-bus system, which comprises 118 buses, 19 generators, 35 
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synchronous condensers (i.e. synchronous generators that are confined to generating 

reactive power only), 186 lines, and 99 loads. The network, load and generation data 

is taken from an appendix attributed to Springer Verlag (2012) and is listed in 

Appendix B. 

The Volt/VAR optimization results for the IEEE 118-bus system are presented in 

Table (5.12) and Figures (5.25) to (5.29). Due to the very large number of generators 

(54 in total), the initial and optimal generator voltage set-points for this case study are 

presented in the form of a radar chart, depicted in Figure (5.25), unlike the previous 

cases in which this information was tabulated. 
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Fig. 5.25: IEEE 118-bus system generator voltage magnitudes before and after Volt/VAR 

optimization 

Table 5.12: IEEE 118-bus system loss reduction before and after Volt/VAR optimization 

 Initial Final Percentage loss reduction 

Real power system losses (p.u.) 3.3939 3.2270 4.9167% 

Number of iterations 8 

Execution time (sec) 2.012 

 

The main improvement that can be observed from Figure (5.25) is the relief in the 

low-voltage violations at a considerable number of buses. The voltage profiles before 

and after the optimization for the entire network are depicted in the radar chart in 
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Figure (5.26), which exhibits similar characteristics (of raising the voltage magnitudes 

from the lower limit) across the network buses. 
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Fig. 5.26: IEEE 118-bus system generator voltage magnitudes before and after Volt/VAR 

optimization in radar char form 

The power loss reduction following the Volt/VAR optimization for the IEEE 118-bus 

system is 4.917%, which is achieved within 8 iterations, with an execution time of 

about 2.012 seconds, information which is tabulated in Table (5.12).  For this case, 

the algorithm takes fewer iterations to converge compared with the IEEE 30-bus and 

the IEEE 14-bus systems (8 vs. 14), but the execution time is longer, implying that 

each iteration takes longer to execute, due to the much larger size of the system. 

Overall, the algorithm appears to scale very well with the system size. For example, 

comparing the IEEE 118-bus and IEEE 30-bus system cases, the former is about 4 

times as large (based on the number of buses), and the execution time is only about 

5 times longer, which is nearly a linear scaling of the execution time with the problem 

size. This applies particularly to the studied cases, and need not be taken as a 

guarantee that the algorithm will always exhibit these desirable performance 

characteristics. 
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Fig. 5.27: IEEE 118-bus system real power losses plotted against the iteration number 

 

Fig. 5.28: IEEE 118-bus system comparison of real power loss with slack-bus active power 

(top plot) and with total generated reactive power (bottom plot) 

The real power loss trajectory is plotted against the iteration count separately in 

Figure (5.27), and together with the slack-bus active power and the total system 

reactive power generation in the top and bottom plots of Figure (5.28) respectively. 

The top plot in Figure (5.29) compares the real power loss with the slack-bus reactive 
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power, whereas the bottom plot compares the slack-bus reactive power output with 

the slack-bus generator terminal voltage magnitude. The comparisons exhibit similar 

characteristics to those observed in the previous 4 case studies, thus demonstratting 

the consistency of the results produced by the algorithm when applied to different 

cases, irrespective of the system size. 

 

Fig. 5.29: IEEE 118-bus system comparison of slack-bus reactive power with real power loss 

(top plot) and slack-bus reactive power and voltage magnitude change (bottom plot) 

Finally, the efficacy of the presented algorithm is demonstrated by comparing with 

results reported in the literature. The results are tabulated in Tables 5.13 and 5.14 for 

the IEEE 14-bus and IEEE-30-bus systems respectively. It can be deduced from the 

comparative analysis that the primal-dual interior-point algorithm presented in this 

chapter has superior performance, both in terms of solution quality (i.e. magnitude of 

real power loss minimization) and efficiency (i.e. required execution time). 

Table 5.13: Performance comparison of the PDIPM-VVO algorithm presented in this chapter 

with other algorithms from the literature for the IEEE 14-bus system 

 Interior-Point 
Method (Zhu, 

2009)  

Linear 
Programming 

(Zhu, 2009) 

PDIPM 

(presented in this 
chapter) 

Initial loss (p.u.) 0.11646 0.11646 0.1125 

Final loss (p.u.) 0.11004 0.11108 0.1084 

% Real power loss 
reduction 

5.513 4.619 6.914 

Number of iterations - - 16 

Execution time (sec) 18.2 61.5 0.0578 
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Table 5.14: Performance comparison of the PDIPM-VVO algorithm presented in this chapter with 
other algorithms from the literature for the IEEE 30-bus system 

 Modified Particle Swarm 
Optimization (Zhu, 2009)  

Interior-Point 
Method (Zhu, 

2009) 

PDIPM 

(presented in this 
chapter) 

Initial loss (p.u.) - - 0.0505 

Final loss (p.u.) 0.050921 0.051109 0.0480 

% Real power loss 
reduction 

- - 5.096 

Number of iterations - - 20 

Execution time (sec) - - 0.2064 

 

 

5.4 Conclusion 

The main result of this chapter is the design and implementation of a Volt/VAR 

optimization algorithm based on the Primal-Dual Interior-Point Method presented in 

chapter 4. All the pertinent aspects related to the implementation of the designed 

PDIPM-based Volt/VAR optimization (PDIPM-VVO) algorithm have been discussed in 

great detail. A distinctive feature of the PDIPM-VVO algorithm’s implementation 

(particularly when compared with the more generic algorithm presented in chapter 4) 

is that it incorporates a load flow computation (by the Newton-Raphson method), 

which then requires the separate handling of the equality and inequality constraints of 

the VVO problem. After demonstrating the implementation of the PDIPM-VVO 

algorithm for a simple power system, 5 case studies are conducted, the aim being to 

analyse the performance of the developed algorithm in terms of the real power loss 

reduction and voltage profile improvement, as well as the efficiency and convergence 

characteristics of the algorithm, besides other qualitative aspects of the algorithm 

performance. The extensive analyses that have been conducted reveal the 

algorithm’s effectiveness and efficiency, notably in being able to successfully solve 

the VVO problem for systems of widely varying size without much increase in 

computational cost or deterioration in the quality of the results. Based on the case 

studies conducted in this chapter, the developed PDIPM-VVO algorithm exhibits 

characteristics of fast convergence, high efficiency, and scalability to large-scale 

problems. The results obtained are very encouraging, and suggest carrying out more 

analyses with the goal of possibly further optimizing it so as to be able to effectively 

handle a wide variety of operational scenarios. 

The following chapter will carry on with the developmental work, this time addressing 

the design and implementation of a Volt/VAR optimization algorithm based on the 

Particle Swarm Optimization, a prominent heuristic optimization method. 
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CHAPTER SIX 

SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY THE PARTICLE 
SWARM OPTIMIZATION ALGORITHM 

 
6.1 Introduction 

Heuristic/intelligent search-based optimization techniques employ a variety of 

optimum-seeking strategies that are distinctly different from the approaches taken in 

conventional optimization algorithms, such as the primal-dual interior-point algorithm 

considered in the preceding chapter. The search strategies employed in these 

techniques are meant to overcome many of the deficiencies of the conventional 

optimization problems, such as the local (rather than global) nature of the search, the 

limited ability to handle combinatorial problems with discrete decision variables, and 

the requirement for the smoothness of the objective and constraint functions for 

gradient-based methods, among other factors (Frank et al., 2012b). Over the past few 

decades a wide variety of these heuristic optimum-seeking techniques have been 

developed, among the prominent ones being Genetic Algorithms (GA), Evolutionary 

Programming (EP), Particle Swarm Optimization (PSO), Fuzzy Set Theory, and 

Expert Systems (ES). In this chapter, the PSO algorithm is discussed, and its 

application to the solution of the Volt/VAR optimization algorithm is presented. 

The outline of this chapter is as follows. After a brief discussion of the historical 

development of the PSO algorithm in section 6.2, the principle of operation and basic 

formulation of the algorithm is presented in section 6.3. This is followed by a detailed 

discussion of the key practical considerations and implementation aspects of the 

algorithm in section 6.4. The application of the PSO algorithm to the solution of the 

VVO problem is then presented in section 6.5. The section begins with a detailed 

outline of the implementation of the PSO-based VVO algorithm, after which five case 

studies and simulation results are presented and discussed, based on the 3-bus, 6-

bus, 14-bus, 30-bus and 118-bus test systems. Section 6.6 details a comparative 

analysis of the PDIPM algorithm (developed and presented in the preceding chapter) 

and the PSO algorithm presented in this chapter, and interesting results of the 

comparative analysis are highlighted. Section 6.7 concludes the chapter with key 

results from the chapter. A pictorial representation of the content of this chapter is 

depicted in Figure (6.1). 
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Solution of the Volt/VAR Optimization Problem by the Particle 

Swarm Optimization Algorithm
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Fig. 6.1: Summary of the content covered in this chapter 

The key contributions of this research as presented in this chapter are: 

 Thorough presentation of both the historical development of the particle 

swarm optimization algorithm as well as the details of the most important 

implementation aspects that have a major influence on the algorithm’s 

effectiveness and efficiency. 

 Development and implementation of the PSO-based Volt/VAR optimization 

algorithm, formulated in rectangular coordinates, which incorporates the 

rectangular-coordinate Newton-Raphson load flow computation. 

 Comprehensive performance analysis of the developed PSO-VVO algorithm, 

focusing on the quality of the solution (in terms of the magnitude of real power 

loss percentage reduction and the voltage profile improvement) and the 

computational efficiency of the algorithm (in terms of the required number of 

iterations and runtime). 

 Study and analysis of the impact of the swarm size on the solution quality and 

the computational cost of the PSO algorithm. 

6.2 Historical development of the particle swarm optimization algorithm 

Particle swarm optimization (PSO) belongs to the class of heuristic optimization 

techniques collectively referred to as Swarm Intelligence, which constitutes a stream 

of Artificial Intelligence (AI) research that got established in the early 1990s, based on 

the study of the swarm behaviour of natural creatures, in terms of how the decision 

making of the individual is influenced by both the individual’s own experience and the 

experiences of community members. PSO was conceptualized and developed by J. 
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Kennedy, a social psychologist, and R. Eberhart, an Electrical Engineer (1995). The 

main idea behind their conceptualization was to produce computational intelligence 

by exploiting simple analogues of social interaction among conspeciates, and was 

inspired by the works of Reynolds (1987), Heppner and Grenander (1990). Reynolds, 

as well as Heppner and Grenander, had studied the dynamics of bird social 

behaviour, out of which came the conjecture that the aesthetics and synchrony of 

flocking behaviour exhibited by birds was a function of the birds’ efforts to maintain an 

optimal inter-individual distance among neighbouring members of the flock. With 

reference to fish schooling, E.O. Wilson, a socio-biologist, said (1975): “In theory at 

least, individual members of the school can profit from the discoveries of all other 

members of the school during the search for food. This advantage can become 

decisive, outweighing the disadvantage of competition for food items, whenever the 

resource is unpredictably distributed in patches.” What could be inferred from this 

statement is that social sharing of information among community members offers an 

evolutionary advantage, and is the principal concept underlying the development of 

the PSO algorithm (Kennedy & Eberhart, 1995). 

Work on the PSO algorithm started out as a simulation of a simplified social milieu, in 

which agents were conceptualized as portraying collision-proof birds, and were 

intended to simulate the graceful though unpredictable choreography of a bird flock. 

The resulting algorithm could be seen to have ties with artificial life (A-life) in general, 

and with bird flocking, fish schooling, and swarming theory in particular. Additional 

ties with evolutionary computation, such as genetic algorithms and evolutionary 

programming, are quite evident. Obvious relations with the evolutionary computation 

algorithms include the fact that it is population-based, it is highly dependent on 

stochastic processes for the evolution of the population, and it uses the concept of 

fitness to differentiate the quality of the candidate solutions (Kennedy & Eberhart, 

1995). 

A distinctive feature of PSO is the idea of flying candidate solutions through 

hyperspace in search of better solutions. The algorithm is characterized by simplicity 

and robustness. Its implementation requires only a few lines of code, making use of 

only primitive mathematical operators, with modest memory requirements, and only 

few parameters that need to be specified for any given problem. Out of this “natural 

simplicity” that is based on emulating nature emerges a powerful algorithm that has 

proved to be effective for a wide range of applications, notably the training of artificial 

neural network weights (Hu et al., 2004).  
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Since its conceptualization in the early 1990s and eventual implementation in the 

subsequent years, the PSO has undergone a number of developments, among them 

being: 

 The introduction of new parameters (e.g. inertia weight, constriction factor) to 

improve the algorithm’s convergence characteristics. 

 Modification of the basic algorithm to tailor it to different problem types (e.g. 

cooperative PSO). 

 Hybridization with other heuristic optimization techniques, to enhance the 

effectiveness and efficiency of the algorithm. 

Figure (6.2) provides a summary of these notable developments (Freitas et al., 2020). 

Some of them are further discussed in subsequent sections in this chapter. 

 

Fig. 6.2: Summary of the key developments of the particle swarm optimization algorithm over 

the years (adapted from Freitas et al., 2020) 

6.3 Principle of operation and basic formulation of the PSO algorithm 

PSO can be characterized as a stochastic multi-agent parallel search algorithm in 

which each of a swarm of particles represents a candidate solution to an optimization 

problem. A particle can be thought of as an independent intelligent agent that “flies” 

through a multi-dimensional problem space in search of the optimal solution to the 

optimization problem, based on its own past flying experience, and that of the rest of 

the swarm (Hu, et al., 2004). Each particle i in the swarm is comprised of three n-

dimensional vectors (n being the dimensionality of the search space, 
nR ), which at 
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time k can be denoted as the current position, 
k

iX , the previous best position, 
k

ibestp , , 

and the velocity, 
k

iV  (Poli et al., 2007). 

From the perspective of the search space, the current position of each particle, 
k

iX , 

constitutes a set of coordinates representing a point in space, and the movement of 

this point through the search space is what constitutes the search for the optimal 

solution to the optimization problem. From the perspective of the optimization 

problem, 
k

iX  constitutes the decision vector, which at each iteration is evaluated for 

“fitness” by means of the objective function of the optimization problem. The particle 

velocity, 
k

iV , embodies the composite flying experience of the individual particle and 

of the rest of the swarm, and is used to update the individual particle position in an 

effort to advance it to a “better” position, as judged by its attaining an improved fitness 

evaluation. It can thus also be characterized as the step size of the algorithm. An 

iteration of the algorithm is complete once all particle positions have been updated, 

and their fitness values computed. Besides the current position and the velocity, each 

particle keeps track of the position corresponding to the best fitness value it has 

attained up to the latest iteration, denoted as 
k

ibestp , , which is then updated to the 

current position whenever the (updated) current position results in a better fitness 

value than the previous best value. As the iterations progress, the swarm as a whole, 

much like a flock of birds foraging for food, is likely to move towards the optimal point 

in the search space. 

It is worth emphasizing, as mentioned earlier, that it is the social interaction and the 

sharing of information among the swarm’s particles that underpins the effectiveness 

of the PSO algorithm. A particle by itself generally has no ability to solve an 

optimization problem. Problem solving is thus a collective task in the context of the 

particle swarm, and progress is possible only through particle interaction of some sort 

(Kennedy & Eberhart, 1995). This also makes the communication structure or 

topology, which describes the interconnectivity among the particles and can be 

thought of as a social network, a key characteristic of the particle swarm. A number of 

neighbourhood topologies exist, as further discussed later. 

The core component of the particle swarm optimization algorithm is the iterative 

velocity update, which adjusts each particle’s position so as to drive the entire swarm 

towards the optimal solution to the optimization problem. The original algorithm can 

roughly be outlined as follows (Poli et al., 2007): 

1. Initialize a population of particles with random positions and velocities, each of 

dimension n in the search space. 



125  
 

2. Iterate: 

2.1 For each particle, evaluate its fitness using the problem’s objective 

function. 

2.2 Compare the particle’s fitness value with the previous (personal) best 

value, and update the previous best position to the current position, if 

the current fitness value is better than the previous one. 

2.3 Determine the best fitness value among the personal best values of all 

the particles, and designate the corresponding position as the global 

best attained by any particle thus far. 

2.4 Compute the velocity update and adjust each particle’s position 

according to the equations (Poli et al., 2007): 
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2.5 If stopping criteria are met (e.g. maximum number of iterations 

reached and/or sufficiently good fitness value attained), terminate the 

iterations. 

In Equation (6.1),  iU ,0


 represents a vector of random numbers uniformly 

distributed in  i,0 , generated for each particle at each iteration. The symbol   

denotes component-wise multiplication. The parameters 1  and 2  are commonly 

referred to as acceleration coefficients, their magnitudes determine the relative 

influence of the cognitive and social components on the flight of the particle, as 

further discussed later. A distinctive feature of the standard PSO algorithm 

(particularly when compared with other heuristic optimization techniques) is that it has 

relatively few parameters that need to be set for a given problem, and are briefly 

highlighted in the following sub-sections. 

6.3.1 Swarm size 

The swarm size (i.e. the number of particles, or the population size of the particle 

swarm) is a key parameter that must be decided upon for any given problem. A 

primary consideration in the setting of this parameter is the relation between the 

swarm size and the computational cost of executing the algorithm. While a large 

swarm size leads to a correspondingly large search space, which is especially 

desirable for large-scale, multi-dimensional problems, it tends to increase the 

computational cost of the algorithm. Empirical studies have shown that swarm sizes 

in the range [20 – 60] tend to cover the majority of problem requirements (Poli et al., 

2007, Talukder, 2011). The higher end of the range is typically favoured for higher-
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dimensional and more complex problems, which may benefit from a larger search 

space and potentially greater diversity of the population. 

 

6.3.2 Velocity update 

The velocity update formula comprises three components: (1) the inertial component, 

k

iV


, which acts as a momentum component that induces the particle to maintain its 

current direction of motion, thus lessening the likelihood of drastic changes in the 

particle’s direction; (2) the cognitive component,    k

i

k

ibest XPU


 ,1,0  , which 

constitutes a memory of personal good past performance, and biases a particle 

towards search regions where it performed best in the past; and (3) the social 

component,    k

i

k

best XGU


2,0  , which represents the influence of the rest of the 

swarm on a particle’s flight trajectory, and serves to bias the particle’s movement 

towards the global best position of the entire swarm. The relative influence of these 

three components on the overall velocity update is very impactful on the performance 

of the algorithm, and a number of cases that may hypothetically arise can be 

identified. In the absence of the inertial component, for instance, past velocity has no 

influence on future velocity, and particles may be susceptible to abrupt changes in the 

direction of motion, with potentially adverse impact on the algorithm’s performance. 

When the cognitive component is much less than the social component (i.e. 21   ) 

or even non-existent altogether, the particle is almost wholly drawn towards the global 

best position, with little to no influence of its past good performance. In the opposite 

case, when the social component is much less than the cognitive component (i.e. 

21   ) or even non-existent altogether, then the personal best performance is the 

dominant factor in guiding the particle’s future trajectory in the search space. When 

neither cognitive nor social component contributes to the velocity update (i.e. 

021   ), the particle’s future movement is determined only by the inertial velocity 

component. When the cognitive and social components are of about the same size 

and non-zero (i.e. 021   ), their overall influence on the particle’s search trajectory 

is essentially an arithmetic mean of the two components. The latter case (i.e. 

021   ) is found to work well for most applications, with a typical setting being 

221    (Talukder, 2011). 

6.3.3 Neighbourhood topology 

The interconnectivity among the particles, also referred to as the neighbourhood 

topology, determines the extent of social interaction among the particles, and has a 

considerable impact on the performance of the PSO algorithm. The PSO model given 
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in Equation (6.1) is referred to as the Gbest-model. In this model, each particle has 

the rest of the swarm as its neighbour, and is thus a fully connected topology. 

Another commonly considered neighbourhood topology is the Lbest (local-best) 

model, in which each particle is connected only to the particles adjacent to it (for 

example, in an array with i representing the array index, particle i would have as its 

neighbours particles i-1 and i+1). An important consideration regarding 

neighbourhood topologies is the impact on the convergence characteristics of the 

algorithm. A fully connected topology (such as Gbest) typically has a high number of 

interactions, and is thus likely to have fast convergence, although fast convergence 

may also increase the likelihood of premature convergence (to a local minimum). A 

small-neighbourhood topology (such as Lbest) may exhibit slow convergence, but 

may also be less susceptible to premature convergence to a local optimum. The 

problem type (e.g. whether unimodal or multimodal) may also influence the choice of 

the neighbourhood topology. 

6.3.4 Number of iterations 

The number of iterations needed to obtain a good result is another key parameter that 

needs proper consideration. It is desirable to allow for a sufficient number of iterations 

to give the algorithm enough room to find a good solution. The larger the problem 

size, the higher the number of iterations that are likely to be needed. On the other 

hand, an excessive number of iterations may lead to excessively high execution time 

of the algorithm. The setting of the maximum number of iterations is thus likely to be 

problem-dependent, and obviously involves a compromise between two somewhat 

mutually exclusive objectives (i.e. the objective of finding a good solution, which may 

entail a large number of iterations, and the objective of limiting the execution time of 

the algorithm, which may benefit from a small number of iterations). 

6.3.5 Initialization of particle positions and velocities 

Initialization of the particle positions and velocities is another important consideration 

that generally has a significant influence on the performance of the PSO algorithm. 

As mentioned earlier, PSO is a population-based stochastic algorithm, factors which 

play a key role in the initialization of the algorithm. The issue of initialization of the 

PSO algorithm parameters is further discussed in section 6.4.5. 

The next section focuses on some practical implementation aspects of the PSO 

algorithm, which, when combined with the basic algorithm presented in this section, 

leads to a more practical algorithm for implementation purposes. 

6.4 Implementation aspects of the PSO algorithm 
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The algorithm presented in the previous section requires a few enhancements and 

additional considerations in order to improve its efficiency and effectiveness for 

practical implementation purposes. Particularly, the following implementation aspects 

are discussed in this section (Freitas et al., 2020; Talukder, 2011; Poli et al., 2007): 

 Balancing the exploration/exploitation trade-off. 

 Controlling the velocity to improve convergence characteristics by means of: 

o Velocity clamping. 

o Inertia weight. 

o Constriction coefficient. 

 Initialization of algorithm parameters. 

 Termination conditions for the algorithm. 

6.4.1 Balancing the exploration/exploitation trade-off 

Two important characteristics of any population-based optimization technique are 

exploration and exploitation. Exploration refers to the algorithm’s ability to cover as 

wide an area of the search space as possible, in order to enhance the algorithm’s 

likelihood of finding the globally optimal solution. Exploitation refers to the algorithm’s 

ability to concentrate the search on an area of the search space that seems to be 

promising. A good balance between the two characteristics holds the key to the 

effectiveness and efficiency of the algorithm. Generally, the early phase of the 

algorithm’s execution can largely be classified as the exploratory phase, when the 

algorithm is “encouraged” to widen its search as far as possible. As the iterations 

progress, the algorithm should gradually transition into the exploitative phase, when 

the search can possibly be narrowed down to promising areas of the search space, 

which implies a relatively more fine-tuned search. Control of the velocity plays an 

important role in achieving this exploration/exploitation balance. While large velocity 

adjustments may be considered to be desirable during the exploratory phase, they 

may need to be significantly dampened in the exploitative phase. 

Velocity control is actually a critical component that has a large bearing on the 

efficiency of the PSO algorithm, a fact that was recognized quite early in the 

developmental stages of the algorithm, as discussed in the following sub-sections 

(Poli et al., 2007). 

6.4.2 Velocity clamping 

Effective velocity control is important not only for preventing possible divergence of 

the algorithm (which would occur if the velocity were to be allowed to build up 

uncontrollably), but it also impacts the speed of convergence of the algorithm, the 
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exploration/exploitation balance, and the ability to find a quality solution within a 

reasonable amount of time. In fact, in an effort to prevent potential velocity explosion 

in certain contexts, the use of velocity clamping, was suggested, which essentially 

places bounds on the value of the velocity update, k

iV  in Equation (6.1), so that it is 

kept within the range  maxmax , VV  . While preventing potential velocity explosion and 

helping to keep the particles within the boundaries of the search space, this approach 

has been found to have a number of significant drawbacks. One obvious issue is the 

choice of the optimal value of the maxV , which tends to be problem-dependent, and 

may require extensive empirical studies to establish a suitable value to use for a 

given application. Additionally, clamping the velocities may actually negatively impact 

the algorithm’s ability to converge, perhaps causing the algorithm to be trapped in 

local minima, particularly when maxV  is set improperly for a given problem. In some 

studies, maxV  was observed to simply chop off the particle’s oscillations, rather than 

reduce the granularity of the search as typically would be desirable in an exploitative 

phase of the algorithm, which results in poor convergence characteristics (Poli et al., 

2007). On account of these and other performance issues, the use of an “inertia 

weight” as a velocity control mechanism was suggested, as discussed in the following 

sub-section. 

6.4.3 Inertia weight 

The limitations of velocity clamping as discussed in the preceding sub-section 

encouraged the search for alternative ways of regulating the velocity update to 

achieve exploration/exploitation balance, prevent velocity explosion, and enhance the 

convergence characteristics of the algorithm. Efforts in this direction led Shi and 

Eberhart (1998) to suggest a modification to the velocity update formula (given in 

Equation 6.1) that applies a scaling to the inertial component of the velocity update 

formula, as given by Equation (6.2). 
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with the term   referred to as the “inertia weight.” One interpretation of the inertia 

weight that has been suggested is that it resembles a “fluidity” of the medium in which 

the particles move, such that it seems appropriate to set it to a relatively high value in 

the early stages of the algorithm execution, which would correspond to a low-viscosity 

medium, so as to promote exploration, then gradually decrease it as the iterations 

progress, thereby transitioning the algorithm into an exploitative phase. With this 

scheme, a linearly decreasing inertia weight has been found to provide good results 

for many applications, which is adjusted according to Equation (6.3). 
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where minmax   ,   are the initial and final values of the inertia weight, respectively, 

iterk max_  , , are the current iteration number and maximum number of iterations 

respectively. Initial and final values of the inertia weight that have been found to work 

well are 4.0  ,9.0 minmax   . 

The linear monotonic decrement in the inertia weight as expressed by Equation (6.3) 

has the drawback of being quite rigid, in the sense that adjustment is only in one 

direction, and so may adversely impact the diversity of search (i.e. particularly in the 

exploratory phase). Naturally, other dynamic inertia weight adjustment schemes have 

been experimented with. Eberhart and Shi (2000) for example, applied fuzzy logic to 

the adaptation of the inertia weight, where the inputs to the fuzzy system were taken 

to be the fitness value of the global best position and the current value of the inertia 

weight, and the output represented the suggested adjustment to the value of the 

inertia weight, based on the membership function classification of the input variables 

(the possible fuzzy classifications being low, medium or high). The authors reported 

significantly improved PSO performance using this scheme. It is worth noting that 

when 1 , the velocity tends to increase uncontrollably, and when 1 , the 

influence of the previous velocity on the current position adjustment becomes nearly 

insignificant, which may make the particle susceptible to abrupt changes in the 

direction of motion, similarly to what was discussed in section 6.3. The inertia weight 

approach to velocity regulation has proven to be so effective as to render the velocity 

clamping (discussed in section 6.4.2) largely unnecessary, which then also eliminates 

the many issues it introduces into the PSO algorithm (Poli et al., 2007). 

6.4.4 Constriction coefficient 

The need to dampen the particle dynamics by somehow restraining velocity build-up 

has long been recognized as a key factor to ensuring the convergence of the PSO 

algorithm. Otherwise (without some form of velocity restraint), the velocity rapidly 

increases to unacceptable levels within just a few iterations of the algorithm. The 

search for alternative mechanisms to achieve this (besides the velocity clamping and 

the inertia weight discussed in sections 6.4.2 and 6.4.3 respectively) led Clerc and 

Kennedy (2002) to suggest the use of a constriction coefficient,  , which would be 

applied to the velocity update formula, as given in Equations (6.4) and (6.5). 
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 where  

It is worth noting that unlike the inertia weight (which scales only the inertial 

component of the velocity update, k

iV


), the constriction coefficient is applied to all the 

three terms of the velocity update formula. Parameters that have been found to work 

well for the constriction coefficient are 05.221   , such that 7298.0 . With 

these parameter settings, the previous velocity is scaled by about 7298.0 , and the 

cognitive and social components of the velocity update formula are each scaled by a 

random number with an upper limit of 49618.105.27298.0  . This form of velocity 

constriction enables convergence of the algorithm without the need for velocity 

clamping. Interestingly, the inertia-weight and constriction-coefficient approaches to 

velocity regulation can be seen to be algebraically equivalent when the variable 

transformations    and ii    are considered. In this case, the 

corresponding parameter settings for the inertia weight approach (considering the 

suggested values 05.221   ) would be a fixed inertia weight 7298.0 and the 

upper bounds for the acceleration coefficients would be 49618.121  . 

6.4.5 Initialization of the PSO algorithm parameters 

PSO is a population-based algorithm and makes use of stochastic processes to 

perform the search for the solution to an optimization problem. Proper initialization of 

the PSO parameters is important for the effectiveness and efficiency of the algorithm. 

Some of the parameters that need to be initialized or otherwise have their values 

determined have been discussed in the preceding sections, particularly the 

acceleration coefficients, the inertia weight and the constriction coefficient. Deciding 

upon the swarm size has also been discussed (in section 6.3). Once the swarm size 

has been determined, the particle positions and velocities have to be initialized. A key 

consideration here is the diversity of the initial population, that is, how much of the 

search space the initial population covers, and how well-distributed the particles are 

throughout the search space. The particle positions are usually initialized by means of 

a uniform random distribution over the search space, while the particle velocities can 

be set to zero, since the randomization of the particle positions ensures the 

randomization of the initial directions of motion as well. It may be possible to initialize 

the velocities by means of a uniform random distribution as well, in which case care 

must be taken that the magnitudes of the initial velocities are not too large (Talukder, 

2011). Otherwise this may adversely impact the convergence characteristics of the 
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algorithm. A formula for initializing the position of each particle iX  that can be 

appropriate for most applications is: 

    )6.6(                                                                         1 ,0    ,min,max,min,

0 UrXXrXX iiiiii   

where iX min,  and iX max,  denote the lower and upper bounds of the magnitude of the 

particle position iX  respectively, and  1 ,0Uri   is a uniformly distributed random 

number bounded between 0 and 1. 

6.4.6 Termination conditions for the algorithm 

As PSO is an iterative search algorithm, a mechanism is needed to establish when 

the search for the solution may be terminated, whether successfully (i.e. optimal 

solution found) or not (i.e. the algorithm failed to converge). A number of termination 

criteria may be considered, for example, once: 

 There is no appreciable (improving) change in the fitness value of the global 

best position over a number of iterations. 

 The change in the global best position becomes insignificant over a number of 

iterations. 

 The predetermined maximum number of iterations is reached. 

These criteria can be used in any combination (either one or several of them). With 

regards to the maximum number of iterations, setting the value too small may lead to 

premature termination of the search, and setting it too large may make the 

computational cost of running the algorithm prohibitive, as discussed earlier.  

6.5 PSO algorithm applied to the VVO problem 

The Volt/VAR optimization (VVO) problem formulation has been presented in chapter 

3, and the solution based on the primal-dual interior-point method (PDIPM) is detailed 

in chapter 5. In this section, the PSO algorithm discussed in the preceding sections is 

adapted for application to the VVO problem. The rectangular formulation of the VVO 

problem presented in section 3.2.3 is used. In applying the PSO algorithm to any 

optimization problem, the mechanics of the algorithm have to be mapped to the 

structure of the optimization problem. Particularly, the mapping needs to be made 

between the particle positions and velocities, and the decision vector of the 

optimization problem, along with the adjustment process of the decision vector in the 

search for the optimal solution to the problem. For the VVO problem, the mapping 

can be stated as follows: 
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 The decision vector comprises the generator voltages, expressed in 

rectangular coordinates; thus, each particle is constructed by combining the 

real and imaginary components of all the generator voltages in the system. 

 For the slack bus, the phase angle is required to be maintained at a 

predetermined constant value, and so the imaginary component of the slack-

bus voltage does not form part of the decision vector. 

 The length (i.e. number of elements) of each particle is thus 12 gn , where 

gn  represents the number of generators in the system, including the slack-bus 

generator. 

 The velocities of the particles represent the step size adjustments to the 

decision-vector components (i.e. particle positions), and their computation is 

one of the main tasks performed in each iteration of the algorithm. 

The steps of the PSO algorithm applied to the VVO problem can be outlined as 

follows: 

Step 1: 

Load the system parameters: this includes the (1) bus voltages in rectangular 

coordinates, the (2) generator scheduled active generation outputs (reactive 

generation outputs are set to zero, since they are unscheduled), (3) the load active 

and reactive power demands, and the (3) line impedance (i.e. resistance and 

reactance) data. The impedance and bus connectivity matrices are computed on the 

basis of the input line data. 

Step 2: 

Initialize the PSO algorithm parameters: this includes the acceleration coefficients 

( 21  , ), the swarm size, the problem dimension (i.e. number of elements comprising 

each particle), and the maximum number of iterations. 

Step 3: 

Compute the initial particle positions and velocities:  the particle positions are 

initialized according to Equation (6.6), which is reformulated below as it applies to the 

VVO problem: 

    )7.6(                                                                    1 ,0    ,min

_

max

_

min

_

0

_ UrVVrVV iigenigeniigenigen   

where 0

_ igenV  is the ith generator’s initial voltage magnitude, and max

_

min

_   , igenigen VV  are the 

minimum and maximum generator voltage magnitudes respectively. For the VVO 

problem, the generator-bus voltage magnitudes have the bounds: 

)8.6(                                                                                                                    1.195.0  genV  
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So based on Equation (6.8), the initial generator voltage magnitude (which 

corresponds to particle position iX  in Equation 6.6) can be set according to Equation 

(6.7) as: 

(6.9)                                                                                                             15.095.00

_ iigen rV   

In effect, for the rectangular-coordinate representation of the generator voltages, 

Equation (6.9) is actually used to compute the real component of the voltage ( ie ), 

after which the imaginary component ( if ) is computed by means of Equation (6.10), 

as also discussed in section 3.2.1. 

(6.10)                                                                                                                        222

iii feV   

Initialization of the particle positions by means of Equations (6.9) and (6.10) ensures 

that they are all feasible with respect to the bound constraints according to Equation 

(6.8). 

The initial velocities are set to zero for this study. As discussed in section 6.4.5, they 

could be set to uniformly distributed random values as well; the rationale for setting 

them to zero in this study is that the randomized initial positions provide sufficient 

diversity, in terms of both magnitude and direction, to enable a well-diversified search 

of the search space for the PSO algorithm. 

Step 4: 

Compute each particle’s fitness value based on initial positions: the objective 

function for the VVO problem in rectangular coordinates is given by Equation (3.8), 

which is the transmission real power loss function, restated below for ease of 

reference: 

      (6.11)                                                                         )(
Nj

22


 


Ni

jijiijL ffeeGPXf  

The constraints considered in this study are all bound constraints (Equations 3.10e, 

3.10f in section 3.2.3). Each bound constraint is handled such that when it violates its 

bound constraint, its value is set to the violated bound. The generator voltage 

magnitude, for example, has its value set according to: 

(6.12)                                                                         
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V  

Before computing the fitness values using Equation (6.11), limit violations are 

checked and corrected according to Equation (6.12). 
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After this initial computation of fitness values, the (initial) personal best position and 

corresponding fitness value of each particle is set to the current (i.e. initial) position 

and its corresponding fitness value. That is, for each particle, iX : 

(6.13)                                                                                                                              00

, iibest Xp   

The initial global best position is determined as the value of 
0

,ibestp  giving the best (i.e. 

minimum) fitness value, determined as: 

   (6.14)                                                                                      ,...,1  , minarg 0

,

0 pipfg ibestbest   

where p is the number of particles in the swarm, and the operator min()arg  returns the 

argument 0

,ibestp  that yields the minimum value of the fitness function )( 0

,ibestpf . 

Step 5: 

Compute the Newton-Raphson load flow: the effect of the PSO algorithm is to adjust 

the generator voltage magnitude set-points at each iteration of the algorithm. Similar 

to the approach used in the PDIPM-VVO algorithm (please refer to section 5.2.4), a 

load flow computation is run at each iteration of the PSO algorithm in order to 

determine the load-bus voltages, subject to the active and reactive power balance 

equations (Equations 3.10b and 3.10c, section 3.2.3). The Newton-Raphson 

algorithm presented in section 5.2.4 is used to compute the load flow at each iteration 

of the PSO algorithm. For the load flow computation, the global best position ( bestg ) is 

used, since this is assumed to be the best available solution.  

Step 6: 

Recompute the objective function value: a converged load flow computation implies 

that the solution obtained in step 4 is feasible with respect to both the equality and 

inequality constraints of the VVO problem. Recomputing the objective function value 

following the load flow computation is meant to track the objective value of the current 

best feasible solution of the optimization problem. 

Step 7: 

Compute the velocity update and adjust the particle positions: this is essentially the 

beginning of the iterative loop of the PSO algorithm, where the particle velocity is 

iteratively computed and then used to adjust the particle position. In this study, the 

velocity and position update are computed on the basis of Equations (6.4) and (6.5), 

restated below for ease of reference 
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 where  

That is, the constriction coefficient is used as the velocity regulation mechanism, as 

discussed in section 6.4.4.  

Step 8: 

Compute the fitness value of each particle and update the personal and global best 

positions: after adjusting the particle positions, limit violations are checked and 

corrected for using Equation (6.12), after which the fitness value of each particle is 

computed using Equation (6.11). Once the fitness value of each particle has been 

computed, the personal best k

ibestp ,  of each particle i  is updated as follows: 

)15.6(                                                                                   
)()(    

)()(    
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p  

Then the global best position is updated according to Equation (6.14), restated here 

for ease of reference: 

   (6.16)                                                                                      ,...,1  , minarg , pipfg k

ibest

k

best   

Step 9: 

Recompute the Newton-Raphson load flow: similar to step 5, perform a load flow 

computation to determine the new load-bus voltages, with the global best position 

(computed in step 8) acting as the new generator voltage set-points. 

Step 10: 

Recompute the objective function value: similar to step 6, the objective function value 

is recomputed to account for the change in the load-bus voltages due to the load flow 

computation. The recomputed objective function value constitutes the optimal value 

of the current best feasible solution. The algorithm is assumed to have advanced in 

the desired direction if the recomputed objective function value is better (i.e. less) 

than the one computed in the previous iteration. 

Step 11: 

Check for convergence of the algorithm: the PSO algorithm is considered to have 

converged successfully to an optimal solution when there isn’t an appreciable change 

in the objective function value over a number of successive iterations, and the current 

objective function value is better than the initial value. Otherwise it is terminated with 

a result of “failure” when it fails to achieve an objective function value minimization 

within the predetermined number of iterations. In summary, the PSO algorithm will be 

terminated if any one of the following two conditions is satisfied: 
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Start

Load system data:
 Bus voltages in rectangular coordinates
 Scheduled generator real power outputs
 Real and reactive power demand
 Line data (resistance and reactance)
 From line data, compute Y-bus matrix and bus 

connectivity matrix 

Initialize PSO parameters:
 Acceleration coefficients (φ1, φ2 ) (see Table 6.1)
 Swarm size (p) (see Table 6.1)
 Problem dimension (i.e. number of decision variables, n)
 Maximum number of iterations (N) (see table 6.1)
 Initial position (Equation 6.9) and velocity (0) of each particle
 Set each particle's personal best to current position (Equation 

6.13)

Compute velocity update, adjust particle positions:
 For each particle, compute velocity update and adjust particle 

position based on Equatiions 6.4 and 6.5.
 Compute particle's fitness value (Equation 6.11), update personal 

best if current fitness value is better than previous one (Equation 
6.15)

 Compute global best position based on all particles ' personal 
best positions (Equation 6.16)

Compute Newton-Raphson load flow:
 Based on global best position, compute Newton-Raphson load 

flow to determine load-bus voltages for new generator-bus 
voltages computed by the PSO algorithm

Convergence check:
 Check the convergence of the algorithm, based on 

change in fitness value and change in global best 
position  between subsequent iterations

End

Check if maximum number of 
iterations is not exceeded

Not yet
converged

 Increment iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Output results:
 Generator bus voltage magnitudes if converged
 Else, numerically failed

 

Fig. 6.3: Flowchart of the particle swarm optimization algorithm 
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1. There is no appreciable improvement in the objective function value over a 

number of successive iterations, and the current objective function value is 

better than the initial one 

2. The maximum number of iterations has been reached 

If neither of the two conditions is satisfied, the iteration counter (k) is incremented and 

the algorithm loops back to step 7, repeating steps 7 to 11 until termination conditions 

are satisfied. 

The flowchart in Figure (6.3) summarises the steps of the PSO algorithm outlined 

above as adapted for application to the VVO problem. 

6.5.1 Case studies 

There are quite a number of parallels in the implementation of the PSO–based VVO 

algorithm presented in this chapter and the PDIPM-VVO algorithm presented in the 

previous chapter, for example: 

 Use of the rectangular formulation of the VVO problem presented in chapter 3. 

 Incorporation of the rectangular–form Newton–Raphson load flow computation 

in each iteration of the VVO algorithm, as indicated in the flowchart in Figure 

(6.3). 

 Performance analysis of the algorithm by means of the 3–bus, 6–bus, IEEE 

14–bus, IEEE 30–bus and IEEE 118–bus test systems. 

Results of applying the PSO algorithm to each of the case studies are presented in 

the following sub-sections. Performance analysis of the PSO algorithm focuses on 

the following performance metrics: 

 Magnitude of loss minimization. 

 Voltage profile improvement due to the Volt/VAR optimization. 

 Impact of particle swarm size on the quality of the solution and on the number 

of iterations needed for the algorithm to converge, and the resulting execution 

time. 

The PSO parameters used in the case studies are given in Table (6.1) (values of 

acceleration coefficients are according to Poli et al., 2007). It can be noted that the 

swarm size has been specified as a range of values. As stated in the last bullet point 

above, one key metric analysed in this study is the impact that the particle swarm size 

has on the quality of the solution, and on the computational cost of the algorithm, as 

measured by the number of iterations and the execution time of the algorithm. For 

each case study, the case is run for values of the swarm size ranging from 10 to 50, 

in increments of 10. Since PSO is a stochastic algorithm, the approach taken is to 
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make several runs of the algorithm for each value of the swarm size. The statistical 

variance can then be assessed by looking at the minimum, maximum and average 

values of the key results. Such statistical analysis is likely to yield insightful 

information. The MATLAB programs for the case studies presented in the following 

sub-sections are presented in Appendix C. 

Table 6.1: PSO algorithm parameters used in the VVO case studies 

Parameter Setting 

Cognitive acceleration coefficient, 1  2.05 

Social acceleration coefficient, 2  2.05 

Swarm size, p  10 – 50  

Maximum number of iterations, itermax_  200 

 

6.5.2 Case study 1: 3-bus power system 

This case study parallels the one presented in section 5.3.1 for the PDIPM algorithm. 

The case data is the same as that used in chapter 5. The analysis in this sub-section 

follows the points outlined at the end of the previous sub-section. The PSO algorithm 

is used to solve the VVO problem for the 3-bus power system, similarly to what was 

done using the PDIPM algorithm. The key performance metrics, as outlined above, 

are the magnitude of loss minimization, the voltage profile improvement, and the 

computational efficiency of the algorithm. Several runs of the algorithm have been 

executed for different values of the swarm size, averaging about five runs for each 

value of the swarm size. The results are then averaged and tabulated, as presented 

in Table (6.2). 

Table 6.2: 3-bus system summary of PSO-VVO algorithm simulation results 

Swarm 
size 

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average 
% loss 

reduction Min Max Average Min Max Average Min Max Average Min Max Average 

10 0.0255 0.1490 0.0735 0.0156 0.0180 0.0160 12 14 14 0.0159 0.0221 0.0195 78.78 

20 0.0185 0.1843 0.0716 0.0156 0.0170 0.0158 3 19 13 0.0057 0.0294 0.0167 78.22 

30 0.1157 0.2625 0.16088 0.0156 0.0165 0.0160 8 17 13 0.0138 0.0312 0.0231 90.30 

40 0.0159 0.1482 0.07484 0.0156 0.0185 0.0162 8 32 17 0.0153 0.0576 0.0327 79.16 

50 0.0180 0.1189 0.0693 0.0156 0.0171 0.0159 4 17 11 0.0103 0.0416 0.0247 77.48 

 

What can be deduced from Table (6.3) is that the PSO algorithm consistently yields a 

substantial real power loss reduction, in the range of about 77% to about 90%. 

Although the initial power loss for the various runs is quite varied (from as low as 
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0.018 to as high as 0.184) the final power loss is consistently at around 0.016, which 

appears to be the globally optimal solution for this cases study. The number of 

iterations averages at about 14, and appears to be independent of the swarm size, 

although the average run time appears to increase with the swarm size. Overall for 

this case study, increasing the swarm size (from 10 to 50) does not seem to lead to 

an appreciable improvement in the solution quality, and moreover the computational 

cost does not increase excessively either. 

The convergence behaviour of the PSO algorithm for the 3-bus system is depicted in 

Figure (6.4), which shows traces of the change in the global best position (top trace of 

Figure 6.4), the change in the fitness value of the global best position (middle trace), 

and the fitness value of the global best position (bottom trace). It can be seen that this 

case converges in about six iterations, when the change in the fitness value of the 

global best position becomes effectively zero. 

The voltage profile of the 3-bus system before and after the Volt/VAR optimization is 

depicted in Figure (6.5) in the form of a bar chart. The voltage profile shows that the 

post-optimization voltage magnitude is greater than the pre-optimization value for 

each bus. For buses 1 and 3 which are the generator buses, the voltage magnitudes 

actually hit their upper limits. This is an expected result, since higher system voltages 

generally tend to lead to reduced real power loss. 

 

Fig. 6.4: 3-bus system convergence behaviour of the PSO algorithm 
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Fig. 6.5: 3-bus system voltage magnitudes before and after PSO-based VVO 

 

Fig. 6.6: 3-bus system real power loss and slack-bus active power plotted against number of 

iterations 

Figure (6.6) depicts the real power loss trajectory plotted along with the slack-bus 

active power output against the number of iterations. Similar to the case study in 

section 5.3.1, the two trajectories coincide, showing that the change in the system 

real power loss corresponds to an equal change in the slack-bus active power output. 
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Figure (6.7) compares the real power loss trajectory with that of the total system 

generated reactive power. It can be seen that the two variable track each other, 

implying that real power loss minimization simultaneously achieves a reduction in 

total system reactive power generation as well. 

 

Fig. 6.7: 3-bus system real power loss and total generated reactive power plotted against 

number of iterations 

6.5.3 Case study 2: 6-bus power system 

Case study 2 parallels the one presented in section 5.3.2, which is based on a 6-bus 

power system adapted from Wood et al. (2014), having 3 generators, 11 lines and 3 

loads. The case data is the same as that used in chapter 5. Results of applying the 

PSO algorithm to the 6-bus system for solving the VVO problem are presented in 

Table (6.3) and Figures (6.8) to (6.10).  

Table 6.3: 6-bus system summary of PSO-VVO algorithm simulation results 

Swarm 
size 

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average % 
loss 

reduction Min Max Average Min Max Average Min Max Average Min Max Average 

10 0.1276 0.2441 0.1647 0.1259 0.1339 0.1302 28 71 40 0.0378 0.3638 0.1385 20.95 

20 0.1378 0.2885 0.2215 0.1265 0.1318 0.1293 13 102 54 0.0280 0.2056 0.1060 41.62 

30 0.1273 0.3275 0.1811 0.1262 0.1336 0.1284 16 56 31 0.0381 0.1363 0.0713 29.10 

40 0.1275 0.1670 0.1613 0.1255 0.1302 0.1284 8 32 19 0.0249 0.1531 0.0615 20.40 

50 0.1303 0.2212 0.1569 0.1263 0.1332 0.1294 10 133 49 0.0275 0.3185 0.1216 17.53 
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The results in Table (6.3) reveal a consistent and substantial real power loss 

reduction by the PSO algorithm, with the lowest (average) percentage loss reduction 

being 17.93%, and the highest being 41.62%. The average number of iterations lies 

in the range between 19 and 54 for all cases. There is quite a large dispersion 

between the average minimum (8) and maximum (133) number of iterations. The 

execution time shows a similar dispersion (minimum average value of 0.0713 sec and 

maximum value of 0.1385). As in the 3-bus system case, increasing the swarm size 

does not seem to significantly influence the solution quality. The impact on the 

computational cost of the algorithm is also not very noticeable. 

 

Fig. 6.8: 6-bus system convergence behaviour of the PSO algorithm 

The convergence behaviour of the PSO algorithm for the 6-bus system is depicted in 

Figure (6.8), which plots the change in the global best position, the change in the 

fitness value of the global best position, and the fitness value of the global best 

position in the top, middle and bottom traces respectively. This case takes relatively 

long to converge, about 70 iterations, requiring about 0.13 seconds. This result can 

be considered to lie on the higher end of the range of the average results presented 

in Table (6.3).  
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Fig. 6.9: 6-bus system voltage magnitudes before and after PSO-based VVO 

The voltage profile of the 6-bus system before and after the Volt/VAR optimization is 

depicted in Figure (6.9) in the form of a bar chart. The post-optimization voltage 

magnitudes are greater than the pre-optimization values for all buses, except bus 2, 

where the pre-optimization voltage is slightly higher than the post-optimization 

voltage. In all cases, both the pre- and post-optimization voltages are within the range 

of nominal values (i.e. 0.95 – 1.1). 

Figure (6.10) depicts the real power loss trajectory plotted together with the slack-bus 

active power output against the number of iterations. Unlike the 3-bus system case 

where these two graphs coincided, this case just shows them to be changing in 

tandem, again showing the close relationship between the change in the two 

quantities. The same relationship can be seen in Figure (6.11), which plots the real 

power loss reduction together with the total system reactive power generation, also 

showing that real power loss reduction is accompanied by system reactive power 

generation reduction as well. 
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Fig. 6.10: 6-bus system real power loss and slack-bus active power plotted against number of 

iterations 

 

Fig. 6.11: 6-bus system real power loss and total generated reactive power plotted against 

number of iterations 
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6.5.4 Case study 3: 14-bus power system 

Case study 3 is based on the IEEE 14-bus test system, the same as that considered 

in section 5.3.3. The network, load and generation data is taken from Zhu (2009), and 

is the same as that used in chapter 5. Results of applying the PSO algorithm to the 

14-bus system for solving the VVO problem are presented in Table (6.4). 

Table 6.4: 14-bus system summary of PSO-VVO algorithm simulation results 

Swarm 
size 

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average % 
loss 

reduction Min Max Average Min Max Average Min Max Average Min Max Average 

10 0.1347 0.2011 0.1613 0.1235 0.1291 0.1279 6 40 21 0.0203 0.2432 0.1196 20.71 

20 0.1353 0.1652 0.1439 0.1268 0.1290 0.1282 4 24 11 0.0214 0.1375 0.0662 10.91 

30 0.1381 0.2408 0.1873 0.1290 0.1301 0.1293 5 71 41 0.0307 0.5822 0.2867 30.97 

40 0.1416 0.1921 0.1613 0.1273 0.1290 0.1287 4 109 29 0.0237 0.6544 0.1791 20.22 

50 0.1335 0.2385 0.1595 0.1290 0.1308 0.1294 5 51 21 0.0488 0.2931 0.1394 18.85 

 

Based on the results presented in Table (6.4), the average real power loss reduction 

ranges from 10.91% in the case of the simulation with 20 particle swarms, to 30.97% 

in the case of the simulation with 30 particle swarms. The average number of 

iterations lies in the range between 11 and 49 for all cases. The minimum number of 

iterations is 4, recorded when the swarm size is 20 and 40, and the maximum number 

of iterations is 109, recorded in the case of a swarm size of 40. It can be noticed from 

the results presented in Table (6.4) that while increasing the swarm size does not 

necessarily lead to increased execution time, there is a direct relationship between 

the number of iterations and the execution time. Thus, the maximum execution time 

(0.6544 seconds) is recorded in connection with the swarm size of 40, which also 

happens to coincide with the maximum number of iterations recorded for all the runs. 

The average execution time ranges from 0.0662 seconds (for swarm size of 20) to 

0.2867 seconds (for swarm size of 30). The lowest absolute real power loss achieved 

is 0.1235 per-unit, with a swarm size of 10. It can thus be seen here that the global 

minimum (in the context of the presented results) is attained with a swarm size of 10, 

implying that increasing the swarm size for this case does not necessarily lead to an 

improvement in the quality of the solution. It is worth noting that the (average) 

minimum number of iterations (11) is attained in the case of a swarm size of 20, 

which also has the minimum average execution time (0.0662 seconds). 
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Fig. 6.12: 14-bus system convergence behaviour of the PSO algorithm 

The convergence behaviour of the PSO algorithm for the 14-bus system is depicted 

in Figure (6.12) which, similar to Figure (6.8) for the 6-bus system, plots the changes 

in the global best position and in the fitness value of the global best position, as well 

as the fitness value of the global best position. This case takes relatively long to 

converge, about 120 iterations, requiring about 0.5 seconds. It can be noticed, 

however, that the change in both the global best position and in its corresponding 

fitness value is not significant beyond the 40th iteration, although the termination 

conditions for the algorithm are satisfied only much later, leading to the high number 

of iterations. 

The voltage profile of the 14-bus system before and after the Volt/VAR optimization is 

depicted in Figure (6.13) in the form of a radar chart. The post-optimization voltage 

magnitudes are greater than the pre-optimization values for all buses. It can be seen 

also for this case study that both the pre- and post-optimization voltages are within 

the range of nominal values (i.e. 0.95 – 1.1) for all the buses. 
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Fig. 6.13: Radar chart of 14-bus system voltage profiles before and after PSO-based VVO 

 

Fig. 6.14: 14-bus system real power loss and slack-bus active power plotted against number 

of iterations 
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Figure (6.14) depicts the real power loss trajectory plotted together with the slack-bus 

active power output against the number of iterations. Similar to the two previous case 

studies, the close relationship between the change in the two quantities is clearly 

noticeable, and the displacement between them can be attributed to the difference in 

the scale of the two quantities. Figure (6.15) compares the trajectories of the real 

power loss and the total generated system reactive power, which also depicts a 

relationship between the two quantities similar to that observed in the case of the real 

power loss and the slack-bus active power. 

 

Fig. 6.15: 14-bus system real power loss and total generated reactive power plotted against 

number of iterations 

6.5.5 Case study 4: 30-bus power system 

Case study 4 is based on the IEEE 30-bus test system, the same as the one 

considered in section 5.3.4. It comprises 30 buses, 6 generators, 41 lines, and 21 

loads. The network, load and generation data is also taken from Zhu (2009), and is 

the same as that used in chapter 5. Results of applying the PSO algorithm to the 30-

bus system for solving the VVO problem are presented in Table (6.5). 
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Table 6.5: 30-bus system summary of PSO-VVO algorithm simulation results 

Swarm 
size 

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average % 
loss 

reduction Min Max Average Min Max Average Min Max Average Min Max Average 

10 0.1353 2.0046 0.5253 0.0925 0.1067 0.0979 23 108 58 0.4386 2.1174 1.3169 81.29 

20 0.1180 1.1763 0.4763 0.0925 0.0993 0.0947 32 179 80 0.7819 4.7353 2.2789 80.12 

30 0.1203 0.8751 0.3089 0.0925 0.1054 0.0953 40 164 84 0.7581 3.7345 2.0272 69.15 

40 0.1053 0.5211 0.2628 0.0925 0.0980 0.0937 20 170 96 0.4842 3.2412 1.6484 64.34 

50 0.1008 1.1291 0.3987 0.0925 0.1031 0.0953 3 200 67 0.0448 4.8044 1.5187 76.10 

 

The results presented in Table (6.5) show that there is substantial real power loss 

reduction in all the cases, ranging from 64.34% (attained with a swarm size of 20) to 

81.29% (attained with a swarm size of 10). The average number of iterations is quite 

high for all the cases, lying in the range between 58 and 96. The dispersion between 

the minimum and maximum number of iterations is also quite high, the minimum and 

maximum values being 3 and 200 respectively, both obtained with a swarm size of 

50. The average execution time ranges from a low of 1.3169 to a high of 2.2789, 

obtained with swarm sizes of 10 and 20 respectively. Compared with the previous 

case studies, the 30-bus system requires significantly more iterations to converge, 

and the execution is correspondingly longer. As in the previous cases, increasing the 

swarm size does not seem to have a large impact on either the quality of the solution 

or the computational cost of the algorithm.  

The convergence behaviour of the PSO algorithm for the 30-bus system is depicted 

in Figure (6.16), and shows the changes in the global best position and in the fitness 

value of the global best position, as well as the fitness value of the global best 

position. The case depicted in the figure takes converges relatively quickly, requiring 

about 12 iterations and an execution time of 0.19 seconds. 

The voltage profile of the 30-bus system before and after the Volt/VAR optimization is 

depicted in Figure (6.17) in the form of a radar chart. The post-optimization voltage 

magnitudes are greater than the pre-optimization values for the majority of buses. 

Some voltages hit their lower or upper limits, but there is no voltage violation for any 

of the buses. 
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Fig. 6.16: 30-bus system convergence behaviour of the PSO algorithm 

 

Fig. 6.17: Radar chart of 30-bus system voltage profiles before and after PSO-based VVO 
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Fig. 6.18: 30-bus system real power loss and slack-bus active power plotted against number 

of iterations 

 

Fig. 6.19: 30-bus system real power loss and total generated reactive power plotted against 

number of iterations 

Figure (6.18) plots the real power loss trajectory together with the slack-bus active 

power output against the number of iterations, and Figure (6.19) dose the same for 
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the real power loss and total generated system reactive power trajectories. Similar 

characteristics can be observed as those observed in the preceding case studies. 

6.5.6 Case study 5: 118-bus power system 

The final case study considered in this section is that of the IEEE 118-bus test 

system, the same as that considered in section 5.2.5. The system comprises 118 

buses, 54 generators (35 of which are synchronous condensers), 186 lines, and 99 

loads. The network, load and generation data is adapted from an appendix attributed 

to Springer Verlag (2012), and is the same as that used in chapter 5. Results of 

applying the PSO algorithm to the 118-bus system for solving the VVO problem are 

presented in Table (6.6), as well as in Figures (6.20) and (6.21) 

Table 6.6: 118-bus system summary of PSO-VVO algorithm simulation results 

Swarm 
size 

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average 
% loss 

reduction Min Max Average Min Max Average Min Max Average Min Max Average 

10 4.4286 6.7848 5.3158 2.3799 2.8516 2.6342 200 200 200 81.8725 82.7431 82.3317 50.45 

20 5.0498 11.8646 7.9246 2.3778 3.0462 2.4514 111 200 183 45.7052 93.5918 77.8222 67.44 

30 4.2654 11.0633 6.2787 2.3935 3.0599 2.5487 200 200 200 83.9581 88.0829 85.9590 59.41 

40 4.4071 9.8267 5.9971 2.3822 2.5720 2.4510 200 200 200 82.2720 85.6926 84.2950 59.13 

50 4.6573 11.1649 8.6517 2.3743 2.5027 2.4172 200 200 200 85.4243 86.8651 85.7809 72.06 

 

The results for the 118-bus system presented in Table (6.6) show the average real 

power loss reduction among all the simulated cases to range from 50.45% (attained 

with a swarm size of 10) to 72.06% (attained with a swarm size of 50). The average 

number of iterations is quite high for all the cases. In fact, all cases except the case 

with a swarm size of 20 reach the pre-set maximum number of iterations. The 

average execution time is also quite high, especially when compared with the 

preceding case studies, and ranges from 77.8 seconds to 85.9 seconds. The 

minimum real power loss achieved is 2.37 per-unit. The results are quite consistent 

over the range of the swarm size, implying that the algorithm’s performance is not 

significantly influenced by changing the swarm size, something that has been 

observed across all the preceding case studies as well.  

The convergence behaviour of the PSO algorithm for the 118-bus system is displayed 

in Figure (6.20), which depicts the changes in the global best position in the top trace 

and the fitness value of the global best position in the bottom trace of the figure. It can 

be seen from the figure that the algorithm exhibits oscillatory behaviour beyond the 

35th iteration. This also seems to explain the results tabulated in Table (6.6), the 

oscillatory behaviour being the reason behind the algorithm exhausting the pre-set 
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maximum number of iterations. By adjusting higher the tolerance value of the 

termination condition (i.e. the change in the fitness value over successive iterations), 

the algorithm successfully terminates in much fewer iterations, as depicted in Figure 

(6.21). 

 

Fig. 6.20: 118-bus system convergence characteristics of the PSO algorithm, showing slightly 

oscillatory behaviour 

The voltage profile of the 118-bus system before and after the Volt/VAR optimization 

is depicted in Figure (6.22) in the form of a radar chart. The pattern is similar to the 

preceding case studies, with the post-optimization voltage magnitudes being greater 

than the pre-optimization values for almost all the buses. Incidentally, the Volt/VAR 

optimization also alleviates some over-voltage conditions, particularly at buses 73 

and 99, where the initial (i.e. pre-optimization) voltage magnitudes actually exceed 

the upper limit of 1.1 per-unit. 
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Fig. 6.21: 118-bus system convergence characteristics of the PSO algorithm after increasing 

termination condition tolerance of the change in the fitness value (top trace), showing 

successful convergence 

 

 

Fig. 6.22: radar chart of 118-bus system voltage profiles before and after PSO-based VVO 
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6.6 Comparison of PSO with PDIPM for VVO 

It is interesting to compare how the two algorithms (i.e. PDIPM and PSO), developed 

in the previous chapter and in this chapter respectively, perform with respect to the 

Volt/VAR optimization problem. The comparison is made relatively easier by the fact 

that the same case studies have been conducted for both algorithms. The summary 

of the results is detailed in Table (6.7). For the PSO algorithm, since several 

simulations have been performed for each system case study, the “pareto-optimal” 

solution was selected for comparison with the PDIPM algorithm, considering the 

performance analysis criteria used in Table (6.7).  

Table 6.7: Comparison of the PDIPM and PSO Volt/VAR optimization results 

System 
Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) % Loss reduction 

PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO 

3-bus 0.0195 0.0180 0.0180 0.0156 4 11 0.0843 0.025 7.89 77.48 

6-bus 0.1335 0.1378 0.1290 0.1265 13 54 0.1775 0.1060 3.37 41.62 

14-bus 0.1353 0.1381 0.1296 0.1290 14 41 0.1477 0.2870 4.24 30.95 

30-bus 0.1141 0.1353 0.1084 0.0925 14 58 0.3565 1.3170 5.03 80.29 

118-bus 3.3939 4.6573 3.2270 2.3743 8 200 2.0120 85.78 4.92 72.06 

 

In line with the performance analysis for the individual algorithms, the comparative 

performance analysis is made on the basis of the computational efficiency, in terms of 

the number of iterations taken by the algorithm to converge and the execution time 

required, as well as the percentage real power loss reduction. As can be deduced 

from the table, the PSO algorithm far outperforms the PDIPM algorithm in terms of 

the percentage loss reduction in all cases, as it consistently achieves much higher 

percentage loss reduction, and the final per-unit loss reduction is less for the PSO 

algorithm in all cases. The computational efficiency of the PSO algorithm, however, is 

generally worse than that of the PDIPM algorithm. It requires a much higher number 

of iterations in order to converge in all cases, although the execution time itself is 

lower for the 3-bus and 6-bus systems, but much higher for the 14-bus, 30-bus and 

118-bus systems. This seems to suggest that the computational cost of the PSO 

algorithm tends to increase significantly as the problem dimension increases. The 

results of this study demonstrate what is generally known about the relative 

performance characteristics of classical and heuristic optimization techniques. The 

main strength of classical optimization methods is their high computational efficiency, 

particularly for differentiable nonlinear systems, but have the drawback of lacking the 

ability to find the globally optimal solution. Heuristic optimization techniques, on the 

other hand, generally incur high computational cost, but have the advantage that they 

have the capability to find the globally optimal solution. 
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6.7 Conclusion 

The main result of this chapter is the development and implementation of the particle 

swarm optimization (PSO) algorithm for solving the Volt/VAR optimization (VVO) 

problem. A brief presentation on the historical development of the PSO algorithm is 

followed by a discussion of the principle of operation and basic construction of the 

algorithm, after which some pertinent implementation aspects are presented. The 

adaptation of the algorithm to the solution of the VVO problem is then outlined, before 

presenting five case studies by means of which the performance analysis of the 

developed PSO algorithm has been analysed. The performance analysis has focused 

on the algorithm’s ability to effect real power loss reduction without adversely 

impacting the voltage profile of the system, and the computational efficiency, 

assessed in terms of the number of iterations required by the algorithm to converge, 

and the corresponding execution time. From the results analysis, the PSO performs 

very well in terms of real power loss reduction, although the computational cost is 

quite high, especially for systems with high problem dimensions (particularly the 118-

bus system). The chapter ends with a comparative analysis of the PDIPM algorithm 

(developed and presented in chapter 5) and the PSO algorithm presented in this 

chapter, based on the same set of case studies. The comparative analysis reveals 

that the PDIPM algorithm is relatively more computationally efficient, whereas the 

PSO algorithm far outperforms in terms of real power loss reduction. 

The following chapter concludes this thesis with a summary of the achievements of 

this research, as well as recommendations for further research. 
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CHAPTER SEVEN  

CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 
 

7.1       Introduction 

Reliable electrical power supply is one of the most important utilities for modern 

society, so much that even momentary power supply interruptions can lead to 

enormous disruption of essential services and normal daily activities to the extent of 

being considered intolerable. Moreover, recent developments in the power system, 

such as the deregulation and restructuring of the electrical power supply industry, the 

introduction of competitive electricity and power markets, and the rapid growth of 

distributed and decentralized electrical power generation, have led to a significant 

increase in the complexity of modern power systems, adding to the challenge of 

operating them reliably and efficiently. Thus, the need for optimal strategies for the 

secure, economical and efficient operation of the power system is arguably even 

greater now than at any other time in the history of the power system. In line with this 

identified need, this thesis has presented the research conducted on the theoretical 

design, development, and practical implementation of efficient algorithms that 

contribute to the secure, economical and reliable operation of modern complex power 

systems. Particularly, algorithms have been developed for the solution of the 

Volt/VAR optimization problem, a very important sub-problem of the optimal power 

flow (OPF) problem that is mainly concerned with the optimal coordinated dispatch of 

voltage-regulating devices and reactive power sources. 

The foundation for the work developed and presented in this thesis was laid by 

means of a thorough investigation of the state-of-the-art in problem formulation and 

solution techniques for the Volt/VAR optimization problem, considering both classical 

and heuristic optimization techniques. A critical comparative analysis of the classical 

and heuristic optimization techniques was then performed, to establish their individual 

characteristics, as well as their relative strengths and weaknesses. Some of the 

optimization performance criteria considered in the comparative analysis included the 

computational efficiency, convergence characteristics, and solution quality. This work 

has been presented in chapter 2 of this thesis. 

The theoretical development and practical implementation of the classical primal-dual 

interior-point method for the solution of the Volt/VAR optimization problem has been 

detailed in chapters 4 and 5. Chapter 6 presents the design and implementation of 

the heuristic particle swarm optimization algorithm, also for the solution of the 

Volt/VAR optimization problem. The chapter also presents a comparative analysis of 

the performance of the two developed methods when applied to the Volt/VAR 

optimization problem. The performance analysis reveals that the primal-dual interior-
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point method outperforms the particle swarm optimization algorithm in terms of 

computational efficiency, since on average it requires fewer iterations to converge, 

and has a shorter running time. The particle swarm optimization, on the other hand, 

generally achieves a higher percentage real power loss reduction than the primal-

dual interior-point method. This suggests that the two classes of methods (i.e. 

classical and heuristic optimization methods) have complementary performance 

characteristics, something which could be exploited to devise optimization strategies 

that seek to combine their relative strengths, and thus have a better prospect 

exhibiting performance that is superior to that of the individual algorithms. 

This chapter presents a concise summary of the main outcomes of the research 

presented in this thesis. The aim and objectives of the research have been outlined in 

section 1.4, and are reiterated in section 7.2, followed by the thesis deliverables in 

section 7.3. Section 7.4 lists possible applications of the results obtained from this 

research, and section 7.5 provides some recommendations for the direction that 

further research building on the work presented in this thesis could take. Section 7.6 

lists the publications that have come out of this research. 

The main purpose of sections 7.2 and 7.3 is to make a correlation between the aim 

and objectives stated in chapter 1 (reiterated in section 7.2 for convenience) and the 

thesis deliverables as reported in chapters 2 to 6. 

7.2  Aim and objectives of the research 

7.2.1 Aim 

The main focus of the research presented in this thesis has been the theoretical 

design and practical implementation of efficient methods for the Volt/VAR optimization 

problem, in recognition of the central role played by Volt/VAR optimization in ensuring 

the security, economy, efficiency and reliability of operation of modern complex power 

systems. The research encompassed a thorough and comprehensive investigation of 

the state-of-the-art in the problem formulation and solution methods for the Volt/VAR 

optimization problem, as well as the theoretical development, design and practical 

implementation of the algorithms for the solution of the Volt/VAR optimization 

problem, based on both classical/conventional and heuristic/intelligent search-based 

optimization techniques. The objectives that supported the realization of the main aim 

of the research can be outlined as follows. 

7.2.2 Objectives 

1. Thorough investigation of the state-of-the-art in problem formulation and 

solution techniques for the Volt/VAR optimization problem, considering both 

classical and heuristic optimization techniques. 
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2. Critical comparative analysis of classical and heuristic optimization 

techniques, based on key optimization performance criteria, such as 

computational efficiency, convergence characteristics, and solution quality. 

3. Model development for the Volt/VAR optimization problem, considering both 

the polar and rectangular coordinate representation of the system voltages. 

4. Theoretical development of the primal-dual interior-point method (PDIPM) as 

the classical optimization technique applied to the solution of the Volt/VAR 

optimization problem. 

5. Practical implementation of the PDIPM-based Volt/VAR optimization (PDIPM-

VVO) algorithm, and a comprehensive performance analysis of the developed 

algorithm by means of a variety of power system case studies. 

6. Theoretical development of the particle swarm optimization (PSO) algorithm 

as the heuristic optimization technique applied to the solution of the Volt/VAR 

optimization problem. 

7. Practical implementation of the PSO-based Volt/VAR optimization (PSO-VVO) 

algorithm, and a comprehensive performance analysis of the developed 

algorithm by means of a variety of power system case studies. 

8. Comparative analysis of the performance of the PDIPM and PSO algorithms 

as solution methods for the Volt/VAR optimization problem. 

These objectives have been achieved, and are detailed in the preceding chapters of 

this thesis. In the following section, the deliverables of the research as outlined in 

section 1.9 are presented. 

7.3       Thesis deliverables 

7.3.1 Comprehensive literature study and review of the main aspects of 

Volt/VAR optimization 

The comprehensive literature covered the problem formulation for the Volt/VAR 

optimization problem, encompassing the objectives, constraints and decision 

variables, as well as the main reactive power and voltage control devices most 

commonly used in Volt/VAR optimization. It also covered a thorough review and 

critical analysis of the main classical/conventional and heuristic/intelligent search-

based optimization techniques that have been applied to the Volt/VAR optimization 

problem over the decades. A critical comparative analysis of these two classes of 

optimization methods was presented, highlighting their individual characteristics, as 

well as their relative strengths and weaknesses. This deliverable has been presented 

in chapter 2 of this thesis, as well in the publication (Mataifa et al., 2022) 
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7.3.2 Problem formulation and model development for the Volt/VAR 

optimization problem 

The problem formulation and model development for the Volt/VAR optimization 

problem involved the analysis of the objective functions, constraints and decision 

variables of the problem. Both the polar and rectangular coordinate representations of 

the system voltages were considered. The analysis performed revealed that the 

rectangular formulation had relatively more favourable mathematical properties from 

the perspective of computational efficiency, particularly for (although not limited to) 

the primal-dual interior-point algorithm, and was thus adopted in this study. This 

deliverable has been presented in chapter 3 of this thesis. 

7.3.3 Theoretical development and design of the algorithms used in solving the 

Volt/VAR optimization problem 

Three main algorithms were designed and developed for the solution of the Volt/VAR 

optimization problem: (1) the Newton-Raphson load flow algorithm in rectangular 

coordinates of system voltages, which is used as part of the Volt/VAR optimization 

algorithm purely for load flow computation; (2) the primal-dual interior-point method, 

which forms the basis for the design of the solution algorithm for the Volt/VAR 

optimization problem based on a classical optimization method; and (3) the particle 

swam optimization algorithm, which forms the basis for the design of the solution 

algorithm for the Volt/VAR optimization algorithm based on a heuristic optimization 

method. The development of the primal-dual interior-point method has been 

presented in chapters 4 and 5, the Newton-Raphson load flow algorithm has also 

been detailed in chapter 5, and the particle swarm optimization algorithm has been 

presented in chapter 6 of this thesis. 

7.3.4 Software development for the implementation of the developed algorithms 

The algorithms developed as detailed in section 7.3.3 (Newton-Raphson load flow 

algorithm, primal-dual interior-point method and particle swarm optimization 

algorithm) have been implemented in the MATLAB numerical and technical 

computing environment. The MATLAB programs for these algorithms are presented 

in Appendices A-C, and are listed in Table (8.1). 

Table 7.1: Software programs developed and implemented in this thesis 

Chapter 4 

Program description Appendix 

Function that implements the 
interior-point method (IPM) for a 
general nonlinear programming 
problem with inequality 
constraints 

A.1 
File name: ipm_generic_nonlinear.m 
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Function that defines the 
objective function, constraints, 
and the Jacobian and Hessian of 
the Lagrangian of the problem 

A.2 
File name: func.m 

MATLAB script that calls the IPM 
to implement the example 
problem in section 4.3.8 

A.3 
File name: ipm_generic_nonlinear_test.m 

Chapter 5 

Function that computes the 
residues of the load flow problem 

B.1 
File name: dF.m 

Function that computes the 
Jacobian of the power flow 
equations for the load flow 
problem 

B.2 
File name: jacobian.m 

Function that implements the 
Newton-Raphson load flow 
algorithm 

B.3 
File name: NR_load_flow.m 

MATLAB script that runs the 
Newton-Raphson load flow 
computation for the 3-bus system 

B.4 
File name: three_bus_system_NR_load_flow.m 

Function that implements the 
primal-dual interior-point method-
based Volt/VAR optimization 
(PDIPM-VVO) for the 3-bus 
system, incorporating the 
Newton-Raphson load flow 
computation 

B.5 
File name: ipm_3bus.m 

Function that computes the 
objective function, its gradient 
and Hessian for the 3-bus system 

B.6 
File name: loss_func_3bus.m 

Function that computes the 
constraint functions, their 
Jacobian and Hessian for the 3-
bus system 

B.7 
File name: h_gradh_hessh_3bus.m 

Function that computes the 
Jacobian and Hessian of the 
Lagrangian of the VVO problem 
for the 3-bus system 

B.8 
File name: f_3bus.m 

MATLAB script that runs the 
PDIPM-VVO algorithm for the 3-
bus system 

B.9 
File name: three_bus_system_pdipm_vvo_test.m 

Function that implements the 
primal-dual interior-point method-
based Volt/VAR optimization 
(PDIPM-VVO) for the 6-bus 
system, incorporating the 
Newton-Raphson load flow 
computation 

B.10 
File name: ipm_6bus.m 

Function that computes the 
objective function, its gradient 
and Hessian for the 6-bus system 

B.11 
File name: loss_func_6bus.m 

Function that computes the 
constraint functions, their 
Jacobian and Hessian for the 6-
bus system 

B.12 
File name: h_gradh_hessh_6bus.m 

Function that computes the 
Jacobian and Hessian of the 
Lagrangian of the VVO problem 
for the 6-bus system 

B.13 
File name: f_6bus.m 

MATLAB script that runs the 
PDIPM-VVO algorithm for the 
6_bus system 

B.14 
File name: six_bus_system_pdipm_vvo_test.m 
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Function that implements the 
primal-dual interior-point method-
based Volt/VAR optimization 
(PDIPM-VVO) for the 14-bus 
system, incorporating the 
Newton-Raphson load flow 
computation 

B.15 
File name: ipm_14bus.m 

Function that computes the 
objective function, its gradient 
and Hessian for the 14-bus 
system 

B.16 
File name: loss_func_14bus.m 

Function that computes the 
constraint functions, their 
Jacobian and Hessian for the 14-
bus system 

B.17 
File name: h_gradh_hessh_14bus.m 

Function that computes the 
Jacobian and Hessian of the 
Lagrangian of the VVO problem 
for the 14-bus system 

B.18 
File name: f_14bus.m 

MATLAB script that runs the 
PDIPM-VVO algorithm for the 
14_bus system 

B.19 
File name: fourteen_bus_system_pdipm_vvo_test.m 

Function that implements the 
primal-dual interior-point method-
based Volt/VAR optimization 
(PDIPM-VVO) for the 30-bus 
system, incorporating the 
Newton-Raphson load flow 
computation 

B.20 
File name: ipm_30bus.m 

Function that computes the 
objective function, its gradient 
and Hessian for the 30-bus 
system 

B.21 
File name: loss_func_30bus.m 

Function that computes the 
constraint functions, their 
Jacobian and Hessian for the 30-
bus system 

B.22 
File name: h_gradh_hessh_30bus.m 

Function that computes the 
Jacobian and Hessian of the 
Lagrangian of the VVO problem 
for the 30-bus system 

B.23 
File name: f_30bus.m 

MATLAB script that runs the 
PDIPM-VVO algorithm for the 30-
bus system 

B.24 
File name: thirty_bus_system_pdipm_vvo_test.m 

Function that implements the 
primal-dual interior-point method-
based Volt/VAR optimization 
(PDIPM-VVO) for the 118-bus 
system, incorporating the 
Newton-Raphson load flow 
computation 

B.25 
File name: ipm_118bus.m 

Function that computes the 
gradient of the objective function 
for the 118-bus system 

B.26 
File name: df_118bus.m 

Function that computes the 
Hessian of the objective function 
for the 118-bus system 

B.27 
File name: d2f_118bus.m 

Function that defines the 
constraint functions for the 118-
bus system 

B.28 
File name: h_118bus.m 

Function that computes the 
Jacobian of the constraint 
functions for the 118-bus system 

B.29 
File name: dh_118bus.m 

Function that computes the 
Hessian of the constraint 
functions for the 118-bus system 

B.30 
File name: d2ht_lami_118bus.m 

Function that computes the 
Jacobian and Hessian of the 
Lagrangian of the VVO problem 
for the 118-bus system 

B.31 
File name: f_118bus.m 
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MATLAB script that runs the 
PDIPM-VVO algorithm for the 
118_bus system 

B.32 
File name: 
one_hundred_eighteen_bus_system_pdipm_vvo_test.m 

Chapter 6 

MATLAB script that runs the 
PSO-VVO algorithm for the 3-bus 
system 

C.1 
File name: pso_vvo_3bus_system.m 

MATLAB script that runs the 
PSO-VVO algorithm for the 6-bus 
system 

C.2 
File name: pso_vvo_6bus_system.m 

MATLAB script that runs the 
PSO-VVO algorithm for the 14-
bus system 

C.3 
File name: pso_vvo_14bus_system.m 

MATLAB script that runs the 
PSO-VVO algorithm for the 30-
bus system 

C.4 
File name: pso_vvo_30bus_system.m 

MATLAB script that runs the 
PSO-VVO algorithm for the 118-
bus system 

C.5 
File name: pso_vvo_118bus_system.m 

Function that computes the 
personal and global best 
positions for the PSO algorithm; 
applies to all case studies 

C.6 
File name: PSO_compute_pbest_gbest.m 

Function that computes the 
fitness value of an individual 
particle for the PSO algorithm; 
applies to all case studies 

C.7 
File name: PSO_objective_evaluation.m 

Function that computes the 
velocity update and adjusts the 
particle position for the PSO 
algorithm; applies to all case 
studies 

C.8 
File name: PSO_X_update_cc1.m 

Utility functions 

Function to compute the 
impedance (Y) matrix for an 
arbitrary power system 

D.1 
File name: compute_Ybus.m 

Function to compute the 
generator active and reactive 
power outputs once the load flow 
computation has converged 

D.2 
File name: compute_PQ.m 

Function to define the initial 
guess for the Newton-Raphson 
load flow computation 

D.3 
File name: define_x0.m 

Function to define the generator 
voltage magnitude set-points for 
the Newton-Raphson load flow 
computation 

D.4 
File name: Vgref_0.m 

Function to compute the real 
power loss magnitude for an 
arbitrary power system 

D.5 
File name: loss_func.m 
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7.3.5 Comprehensive performance analysis of the developed algorithms by 

means of a variety of power system case studies 

The performance of the developed PDIPM-VVO and PSO-VVO algorithms has been 

analysed by means of five different power system case studies, ranging in size from a 

3-bus system to a 118-bus system. The main performance analysis criteria 

considered were the solution quality, in terms of the magnitude of real power loss 

percentage reduction and the voltage profile improvement achieved; the 

computational efficiency of the algorithm in terms of the number of iterations and 

corresponding runtime required by the algorithm to converge; the scalability of the 

developed algorithms, analysed in terms of the increase in number of iterations and 

running time as the system size increases, considering power system case studies 

ranging in size from 3-bus to 118-bus system; for the PSO-VVO algorithm, the impact 

of the swarm size on the solution quality and the computational cost of the PSO 

algorithm. The results of these analyses have been presented in chapters 5 and 6 of 

this thesis. Chapter 6 also presents a comparative analysis of the PDIPM-VVO and 

PSO-VVO algorithms. 

7.4       Possible applications of the research outputs 

The methods, algorithms and software programs developed in this thesis can find 

application in industry as well as in academia, for example: 

 Voltage profile improvement in industrial electrical networks. 

 Reactive power optimization and voltage control in transmission networks, as 

part of the energy management system. 

 Power system simulators used to train operators, to facilitate the study of the 

impact of reactive power optimization on system voltages and on overall 

power and energy management. 

 Postgraduate research programs focused on the teaching of fundamental 

concepts in classical and heuristic optimization, and their practical 

implementation in software development environments such as MATLAB. 

7.5       Recommendations for future research 

Possible directions of further research that builds on the research presented in this 

thesis can be: 

 Testing of the developed algorithms in a real-time simulation environment, 

with MATLAB as the computational engine for the optimization, and the Real 

Time Digital Simulator (RTDS) as the real-time environment for the modelling 

of the power system. Consideration of the robustness of the developed 

algorithm to parameter uncertainties. 
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 Extension of the developed algorithms and software programs to incorporate 

parallel programming and parallel processing, to enable the handling of larger 

systems in a computationally more efficient way, and to improve 

computational resource utilization. 

 Consideration of other objectives besides real power loss minimization and 

voltage profile improvement, such as voltage stability maximization, and 

reactive power reserve margin maximization, as well the impact of 

generation/demand variation on the effectiveness of the developed algorithms. 

 Consideration of other optimization algorithms, such as genetic algorithm, 

evolutionary programming, and simulated annealing, and comparing the 

efficiency and effectiveness of the various algorithms when applied to the 

Volt/VAR optimization problem. 

 Consideration of newer forms of power system resources, such as FACTS 

devices and various distributed energy resources using type 4 wind turbines 

and inverter based systems which are capable of providing reactive power 

support in the framework of Volt/VAR optimization, and additional controls, 

such as under-load transformer tap changer. 

7.6       Publications 

1. Mataifa, H., Krishnamurthy, S. & Kriger, C., “Volt/VAR Optimization: A Survey 

of Classical and Heuristic Optimization Methods,” IEEE Access, vol. 10, 2022. 

2. Mataifa, H., Krishnamurthy, S. & Kriger, C., “An Efficient Primal-Dual Interior-

Point Algorithm for Volt/VAR Optimization in Rectangular Coordinates,” (under 

review, submitted to IEEE Access, November 2022). 

3. Mataifa, H., Krishnamurthy, S. & Kriger, C., “Comparative Analysis of the 

Primal-Dual Interior-Point Method and Particle Swarm Optimization Algorithms 

for the Solution of the Volt/VAR Optimization Problem,” (to be submitted to 

Electric Power Systems Research, December 2022). 

7.7       Conclusion 

This chapter has concluded the thesis by presenting a concise summary of the most 

important outcomes of the research. Section 7.2 has outlined the research aim and 

objectives, section 7.3 has presented a detailed description of the thesis deliverables, 

making the linkage clear between the work presented in the thesis chapters and their 

alignment to the main research outputs and deliverables. Possible applications of the 

research presented in this thesis are covered in section 7.4, and section 7.5 makes 

some recommendations for further research that builds on the work presented in this 

thesis. Section 7.6 has listed the publications coming out of this research. 
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APPENDIX A: SOFTWARE PROGRAMS FOR CHAPTER 4 
 

A.1       Function to implement the interior-point method (IPM) for a general nonlinear   

 programming problem with inequality constraints 

function [x,dx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu, gradL_norm,fval, 

cond]=ipm_generic_nonlinear(f3,x0,s0,mu0,h3, sigma) 

zeta=.99995; 

x=x0; 

s=s0; 

mu=mu0; 

niq=length(h3(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

 

eps_1=1e-4; 

eps_2=1e-4; 

eps_mu=1e-4; 

maxIt=30; 

 

Lam_i=diag(lam_i); 

%mu=sigma*(s'*lam_i)/2/niq; 

 

grad_norm=[]; 

X=[]; 

Mu=[]; 

 

[f, h, dh, gL, g2L]=f3(x, lam_i); 

 

c1=max(h); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

 

grad_norm=[grad_norm; c2]; 

X=[X;x0']; 

Mu=[Mu; c5]; 

 

converged=c1<=0&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu; 

 

fprev=f; 

i=1; 

while (~converged && i<=maxIt) 

A=g2L+dh'*Si*Lam_i*dh; 

B=gL+dh'*Si*(mu*e+Lam_i*h); 

gradL_norm=norm(gL,inf); 

dx=-A\B; 

ds=-h-s-dh*dx; 

dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 
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k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

x=x+alpha*dx; 

s=s+alpha*ds; 

lam_i=lam_i+alpha*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

 

[f, h, dh, gL, g2L]=f3(x, lam_i); 

 

fval=f; 

i=i+1; 

 

c1=max(h); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

converged=c1<=0&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu; 

fprev=f; 

cond.num_iterations=i; 

 

grad_norm=[grad_norm; c2]; 

X=[X;x']; 

Mu=[Mu; c5]; 

 

end 

cond.primal_feasibility=c1; 

cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.B=B; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.grad_norm=grad_norm; 
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cond.X=X; 

cond.Mu=Mu; 

 

 

A.2  Function to define the objective function, constraints, and the Jacobian and 

 Hessian of the Lagrangian of the problem 

function [f, h, dh, gL, g2L]=func(x, lam_i) 

f=x(1)*x(2); 

h=[x(1)-x(2)-2; -x(1)+x(2)+1]; 

dh=[1 -1; -1 1]; 

grad_f=[x(2); x(1)]; 

grad_2_f=[0 1; 1 0]; 

 

grad_h_t_lam=[lam_i(1)-lam_i(2); -lam_i(1)+lam_i(2)]; 

grad_2_h_t_lam=0; 

gL=grad_f+grad_h_t_lam; 

g2L=grad_2_f+grad_2_h_t_lam; 

 

A.3  MATLAB script that calls the IPM to implement the example problem in section 

 4.3.8 

clear 

clc 

% File name: ipm_generic_nolinear_test.m 

%============================================================== 

% Test script to test the interior-point algorithm on a generic 

% nonlinear function 

%=============================================================== 

% Define initial solution estimate and IPM parameters: 

% slack variables, barrier parameter, and centering parameter 

x0=[2 1]'; 

s0=[1 1]'; 

mu0=10; 

sigma=.15; 

 

% Call the interior-point algorithm: 

tic 

[x,dx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu, gradL_norm,fval, 

cond]=ipm_generic_nonlinear(@func,x0,s0,mu0,@nonlincon, sigma) 

toc 

 

% Extract some results: 

t=1:length(cond.Mu); 

%t=t(1:6); 

x1=cond.X(:,1); 

%x1=x1(1:6); 

x2=cond.X(:,2); 

%x2=x2(1:6); 
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gNorm=cond.grad_norm; 

%gNorm=gNorm(1:6); 

mu=cond.Mu; 

%mu=mu(1:6); 

 

% Plot the results: 

figure(1) 

plot(t,x1,t,x2,'r--'); 

title('Trajectories of x_1 and x_2 over the PDIPA''s iterations for problem 

(4.29)'); 

legend('x_1','x_2'); 

xlabel('Iteration number'); 

ylabel('x_1,x_2'); 

axis([1 7 -1 2]); 

grid 

 

figure(2) 

[hAx, ~, hLine2]=plotyy(t,gNorm,t,mu); 

title('Gradient norm and barrier parameter trajectories for problem (4.29)') 

legend('Gradient norm of the Lagrangian','Barrier parameter (\mu)') 

xlabel('Iteration number') 

ylabel(hAx(1),'Gradient norm of Lagrangian'); 

ylabel(hAx(2),'Barrier parameter (\mu)'); 

hLine2.LineStyle='--'; 

axis([1 7 0 .2]); 

grid 
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APPENDIX B: SOFTWARE PROGRAMS FOR CHAPTER 5 

B.1       Function that computes the residues of the load flow problem 

function dF=dF(x, Vgref) 

global E F G B bus_data nbus Cf 

 

% Define some parameters: 

bus_type=bus_data(:,1); 

Pg=bus_data(:,4); 

Qg=bus_data(:,5); 

Pd=bus_data(:,6); 

Qd=bus_data(:,7); 

Pdg=Pd-Pg; 

Qdg=Qd-Qg; 

Vsq=E.^2+F.^2; 

 

% Update the voltage vectors E, F from the input x 

E(1)=sqrt(Vgref(1)^2-F(1)^2); 

 

k=1; 

for i=2:nbus 

    E(i)=x(k); 

    F(i)=x(k+1); 

    k=k+2; 

end 

 

% Generate the vector of bus power and voltage residues: 

dF=[]; 

for i=2:nbus 

    Pi=G(i,i)*Vsq(i)+Pdg(i);    % Each bus has a real power balance residue 

 

    for j=1:nbus 

        if (Cf(i,j)==1 && i~=j) 

            Pi=Pi+E(i)*(G(i,j)*E(j)-B(i,j)*F(j))+... 

                F(i)*(G(i,j)*F(j)+B(i,j)*E(j)); 

        end 

    end 

    dF=[dF Pi]; 

 

    if (bus_type(i)==2) % PV bus, requires voltage balance residue 

        dVi2=Vgref(i)^2-Vsq(i); 

        dF=[dF dVi2]; 

    else                % PQ bus, requires reactive power balance residue 

        Qi=-B(i,i)*Vsq(i)+Qdg(i); 

 

        for j=1:nbus 

            if (Cf(i,j)==1 && i~=j) 

                Qi=Qi+F(i)*(G(i,j)*E(j)-B(i,j)*F(j))-... 

                    E(i)*(G(i,j)*F(j)+B(i,j)*E(j)); 

            end 

        end 

        dF=[dF Qi]; 

    end 
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end 

dF=dF'; 

 

B.2       Function that computes the Jacobian of the power flow equations for the load 

 flow problem 

function J=jacobian(x) 

global E F G B nbus Cf bus_type 

 

% Update the voltage vectors E, F from the input x 

 

k=1; 

for i=2:nbus 

    E(i)=x(k); 

    F(i)=x(k+1); 

    k=k+2; 

end 

 

% Generate the Jacobian of bus power and voltage residues: 

J=[];   % Initialize Jacobian to empty matrix: 

for i=2:nbus 

 

    dPi=[];    % Vector of partial derivatives of Pi: 

    for j=2:nbus 

        if (i==j)   % dPi/dei and dPi/dfi 

            dPidei=2*G(i,i)*E(i); 

            dPidfi=2*G(i,i)*F(i); 

 

            for k=1:nbus 

                if (Cf(i,k)==1 && i~=k) 

                    dPidei=dPidei+G(i,k)*E(k)-B(i,k)*F(k); 

                    dPidfi=dPidfi+G(i,k)*F(k)+B(i,k)*E(k); 

                end 

            end 

            dPi=[dPi dPidei dPidfi]; 

        else 

            dPidej=0; 

            dPidfj=0; 

            if (Cf(i,j)==1 && i~=j) 

                dPidej=G(i,j)*E(i)+B(i,j)*F(i); 

                dPidfj=G(i,j)*F(i)-B(i,j)*E(i); 

            end 

            dPi=[dPi dPidej dPidfj]; 

        end 

    end 

    J=[J; dPi]; 

 

    if (bus_type(i)==2) % PV bus, vector of partial derivatives of dVi^2: 

        dVi2=[]; 

        for j=2:nbus 

            dVi2dej=0; 

            dVi2dfj=0; 



183 
 

            if (i==j) 

                dVi2dej=-2*E(i); 

                dVi2dfj=-2*F(i); 

            end 

            dVi2=[dVi2 dVi2dej dVi2dfj]; 

        end 

        J=[J; dVi2]; 

    else                % PQ bus, vector of partial derivatives of dQi: 

        dQi=[]; 

            for j=2:nbus 

                if (i==j)   % dQi/dei and dQi/dfi 

                    dQidei=-2*B(i,i)*E(i); 

                    dQidfi=-2*B(i,i)*F(i); 

 

                    for k=1:nbus 

                        if (Cf(i,k)==1 && i~=k) 

                            dQidei=dQidei-G(i,k)*F(k)-B(i,k)*E(k); 

                            dQidfi=dQidfi+G(i,k)*E(k)-B(i,k)*F(k); 

                        end 

                    end 

                    dQi=[dQi dQidei dQidfi]; 

                else 

                    dQidej=0; 

                    dQidfj=0; 

                    if (Cf(i,j)==1 && i~=j) 

                        dQidej=G(i,j)*F(i)-B(i,j)*E(i); 

                        dQidfj=-G(i,j)*E(i)-B(i,j)*F(i); 

                    end 

                    dQi=[dQi dQidej dQidfj]; 

                end 

            end 

            J=[J; dQi]; 

    end 

end 

 

B.3       Function that implements the Newton-Raphson load flow algorithm 

function [V, output]=NR_load_flow(dF, J, x0, Vgref) 

global E F 

x=x0; 

tol=1e-3; 

maxIt=10; 

 

mismatch=max(norm(dF(x,Vgref), inf)); 

converged=(mismatch<=tol); 

 

i=1; 

 

while (~converged && i<maxIt) 

    dV=-J(x)\dF(x,Vgref); 

    x=x+dV; 
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    mismatch=max(norm(dF(x,Vgref), Inf)); 

    converged=(mismatch<=tol); 

    i=i+1; 

end 

V=E+1i*F; 

Vm=sqrt(E.^2+F.^2); 

Va=180/pi*atan(F./E); 

 

result='Failed to converge'; 

if (converged) 

    result='converged successfully'; 

end 

 

output.num_iter=i; 

output.exit_flag=converged; 

output.result=result; 

output.mismatch=mismatch; 

output.V=[Vm Va]; 

 

B.4       MATLAB script that runs the Newton-Raphson load flow computation for the 3-

 bus system 

clear 

close all 

clc 

% File name: three_bus_system_NR_load_flow.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  Vgref=Vgref_0() 

% 5.  dF=dF(x, Vgref) 

% 6.  J=jacobian(x) 

% 7.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 

% Bus Data: 

% Volt/VAR optimization for a 3-bus system: 

 

% Number of buses       : 3 

% Number of lines       : 3 

% Number of generators  : 2 

% Number of loads       : 1 

 

global bus_data Cf E F G B bus_type nbus 

 

% bus_data is matrix in which each row applies to a bus, and specifies 

% (numbers in parentheses are column numbers of the bus_data matrix): 
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% 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 

% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%=================================================================== 

%     Bus type    V_real     V_imag  Pg     Qg    Pd         Qd 

bus_data=[1        1.02         0     0      0     0         0  ;... 

          3         1           0     0      0     2        .5  ;... 

          2        1.03         0    1.5     0     0         0 ]; 

%==================================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

% bus_data(2,end)=-.5; 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from_bus=[1 1 2]; 

to_bus=[2 3 3]; 

r=[.02 .0059 .0055]; 

x=[.06 .0235 .0183]; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x); 
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% Define some parameters: 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 

 

% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

global deltaF JJ deltaX X 

deltaF=[]; 

JJ=[]; 

deltaX=[]; 

X=[]; 

 

format long 

 

tic 

[~, output]=NR_load_flow1(@dF, @jacobian, x0, Vgref); 

toc 

v=[output.V(:,1) output.V(:,2)] 

 

% mismatch=output.dF 

% J=output.jacobian 

% dX=output.dX 

% XX=output.X 

 

deltaF 

JJ 

deltaX 

X 

 

% Computes system losses after the load flow algorithm has terminated 

 

[losses, ~]=loss_func(); 

losses=-losses 
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B.5       Function that implements the primal-dual interior-point method-based 

 Volt/VAR optimization (PDIPM-VVO) for the 3-bus system, incorporating the 

 Newton-Raphson load flow computation 

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, 

output]=ipm_3bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter) 

global E F 

%zeta=.99995; 

zeta=.9995; 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% Initial system real power losses: 

[initial_loss, ~, ~]=loss_func_3bus(); 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

s=s0; 

mu=mu0; 

niq=length(h(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

Lam_i=diag(lam_i); 

 

eps_1=1e-3; 

eps_2=1e-3; 

eps_mu=1e-3; 

 

i=1; 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x, inf))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

c6=output.exit_flag; 

 

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6; 

 

fprev=f; 

fval=[]; 
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fval=[fval; f]; 

X=[]; 

X=[X x]; 

adx=[]; 

iter=[]; 

iter=[iter; i]; 

Loss=[]; 

Loss=[Loss; initial_loss]; 

 

Vslack=[E(1) F(1)]; 

 

while (~converged && i<=maxIter) 

 

    A=g2L+dh'*Si*Lam_i*dh; 

    b=gL+dh'*Si*(mu*e+Lam_i*h); 

    dx=-A\b; 

    ds=-h-s-dh*dx; 

    dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 

 

k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

if (alpha_p>.1 && alpha_d>.1) 

    alpha_p=alpha_d; 

end 

 

x=x+alpha_p*dx; 

s=s+alpha_p*ds; 

lam_i=lam_i+alpha_d*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

i=i+1; 

 

% Define updated initial voltage vector for the NR load flow algorithm: 

x0=define_updated_x0(x); 

 

% Define generator voltage reference vector for the NR load flow algorithm 

Vgref=updated_Vgref(x); 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 
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F=imag(V); 

 

% Vslack: 

Vslack=[Vslack; E(1) F(1)]; 

 

 

[x(1), x(2), x(3)]=deal(E(1), E(3), F(3)); 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

loss=f; 

 

fval=[fval;f]; 

X=[X x]; 

adx=[adx alpha_p*dx]; 

iter=[iter; i]; 

Loss=[Loss; loss]; 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x, inf)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

c6=output.exit_flag; 

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6; 

fprev=f; 

cond.num_iterations=i; 

 

end 

 

cond.primal_feasibility=max(h); 

cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.b=b; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.initial_loss=initial_loss; 

cond.loss=Loss; 

cond.iter=iter; 

cond.V1=Vslack; 

cond.Vinit=Vinit; 

 

B.6       Function that computes the objective function, its gradient and Hessian for the 

 3-bus system 

function [f, df, d2f]=loss_func_3bus() 

global E F G 

 

f=G(1,2)*((E(1)-E(2))^2+(F(1)-F(2))^2)+... 
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    G(1,3)*((E(1)-E(3))^2+(F(1)-F(3))^2)+... 

    G(2,3)*((E(2)-E(3))^2+(F(2)-F(3))^2); 

 

df=2*[G(1,2)*(E(1)-E(2))+G(1,3)*(E(1)-E(3));... 

    -G(1,3)*(E(1)-E(3))-G(2,3)*(E(2)-E(3));... 

    -G(1,3)*(F(1)-F(3))-G(2,3)*(F(2)-F(3))]; 

 

d2f=2*[G(1,2)+G(1,3) -G(1,3) 0;... 

    -G(1,3) G(1,3)+G(2,3) 0;... 

    0 0 G(1,3)+G(2,3)]; 

 

B.7       Function that computes the constraint functions, their Jacobian and Hessian 

 for the 3-bus system 

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i) 

global E F nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

 

[E(1), E(3), F(3)]=deal(x(1), x(2), x(3)); 

 

% Define inequality constraints h(x): 

h=zeros(2*nbus,1); 

k=1; 

for i=1:nbus 

    h(k)=-(E(i)^2+F(i)^2)+Vmsq; 

    h(k+1)=E(i)^2+F(i)^2-VMsq; 

    k=k+2; 

end 

 

% Define the Jacobian of the inequality constraints dh(x): 

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i): 

dh=zeros(2*nbus, length(x)); 

[dh(1,1), dh(2,1), dh(5,2), dh(5,3), dh(6,2), dh(6,3)]=... 

    deal(-2*E(1), 2*E(1), -2*E(3), -2*F(3), 2*E(3), 2*F(3)); 

 

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));... 

            E(3)*(lam_i(6)-lam_i(5));... 

            F(3)*(lam_i(6)-lam_i(5))]; 

 

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(6)-lam_i(5), lam_i(6)-lam_i(5)]; 

d2ht_lam_i=diag(d2ht_lam_i_diag); 

 

B.8       Function that computes the Jacobian and Hessian of the Lagrangian of the 

 VVO problem for the 3-bus system 

function [f, h, dh, gL, g2L]=f_3bus(x, lam_i) 

 

% Define objective function, its gradient and hessian [f, df, d2f]: 
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[f, df, d2f]=loss_func_3bus(); 

 

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i, 

d2ht_lam_i]: 

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i); 

 

% Define gradient and Hessian of Lagrangian, gL, g2L: 

gL=df+dht_lam_i; 

g2L=d2f-d2ht_lam_i; 

 

B.9       MATLAB script that runs the PDIPM-VVO algorithm for the 3-bus system 

clear 

close all 

clc 

 

% File name: three_bus_system_pdipm_vvo_test.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  Vgref=Vgref_0() 

% 5.  dF=dF(x, Vgref) 

% 6.  J=jacobian(x) 

% 7.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 8.  h=h_3bus(x) 

% 9.  [f, df, d2f]=loss_func_3bus() 

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i) 

% 11. [f, h, dh, gL, g2L]=f_3bus(x, lam_i) 

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

%         ipm_3bus(@f_3bus,x0,s0,mu0, sigma, @h_3bus, @dF, @jacobian,... 

%         Vgref, maxIter) 

% 13. x=update_control_vector() 

% 14. update_generator_voltages(x) 

% 15. Vgref=updated_Vgref(x) 

% 

% Bus Data: 

% Volt/VAR optimization for a 3-bus system: 

 

% Number of buses       : 3 

% Number of lines       : 3 

% Number of generators  : 2 

% Number of loads       : 1 

 

global bus_data Cf E F G B bus_type nbus 

 

% bus_data is matrix in which each row applies to a bus, and specifies 
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% (numbers in parentheses are column numbers of the bus_data matrix): 

% 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 

% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%=================================================================== 

%     Bus type    V_real     V_imag  Pg     Qg    Pd         Qd 

bus_data=[1        1.02         0     0      0     0         0  ;... 

          3         1           0     0      0     2        .5  ;... 

          2        1.03         0    1.5     0     0         0 ]; 

%==================================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

% bus_data(2,end)=-.5; 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from_bus=[1 1 2]; 

to_bus=[2 3 3]; 

r=[.02 .0059 .0055]; 

x=[.06 .0235 .0183]; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x); 
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% Define some parameters: 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 

 

% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

% global deltaF JJ deltaX X 

% deltaF=[]; 

% JJ=[]; 

% deltaX=[]; 

% X=[]; 

% 

% format long 

 

% tic 

% [~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref); 

% toc 

% v=[output.V(:,1) output.V(:,2)] 

 

% mismatch=output.dF 

% J=output.jacobian 

% dX=output.dX 

% XX=output.X 

% 

% deltaF 

% JJ 

% deltaX 

% X 

% 

 

% Computes system losses after the load flow algorithm has terminated 

 

[losses, ~]=loss_func(); 
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losses=-losses 

 

% Perform Volt/VAR optimization 

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies 

% the Newton method to compute the search direction for the primal-dual 

% system of the VVO problem derived on the basis of the perturbed KKT 

% (first-order) optimality conditions. 

% 

% Computation of the Newton step requires calculating the first- and 

% second-order partial derivatives of the objective and constraint 

% functions. The IPM algorithm only considers the inequality constraints 

% (in this implementation only the bus voltage magnitude constraints), 

% the equality constraints (real and reactive power balance equations) 

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at 

% each iteration of the Newton step of the IPM algorithm, the load flow 

% algorithm is executed once the primal and dual variables have been 

% updated. 

% 

% The IPM algorithm needs the following functions to execute: 

% 

% 1. f_3bus(), which computes the gradient and hessian of the Lagrangian 

%      function of the VVO problem, which are required to compute the 

%      Newton step; 

% 2.  loss_func_3bus(), which is called by f_3bus(), to compute the 

%     objective, its gradient and hessian; 

% 3.  h_gradh_hessh_3bus(), which is also called by f_3bus, to compute 

%     the constraint functions, the Jacobian and hessian thereof as well; 

% 4.  h_3bus(), used only once at the beginning of the IPM algorithm 

%     to determine the number of constraint function; 

% 5.  dF(), which computes the residues needed by the Newton-Raphson 

%     load flow algorithm; 

% 6.  jacobian(), which computes the Jacobian of the residues, also needed 

%     by the Newton-Raphson load flow algorithm; 

% 7.  A number of utility functions called by the functions stated above, 

%     including update_generator_voltages(), update_control_vector(), 

%     define_updated_x0(), updated_Vgref(); 

% 

% The IPM algorithm also requires a number of parameters, such as the 

% barrier parameter (mu), the centering parameter (zeta), and the 

% choice of initial primal and dual variables. 

 

% Initialize some input parameters: 

xc=update_control_vector(); 

h0=h_3bus(xc); 

s0=abs(h0); 

s0(s0==0)=.01; 

mu0=10; 

sigma=.15; 

maxIt=3; 

 

% Run the IPM algorithm on the VVO problem: 

 

tic 

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 
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    ipm_3bus6(@f_3bus,x0,s0,mu0, sigma, @h_3bus, @dF, @jacobian, @compute_PQ_3bus, 

Vgref, maxIt); 

toc 

 

% Output some computation results: 

 

X 

mu 

cond 

output 

V=output.V 

 

% Compute the loss reduction: 

 

initial_loss_pu=-cond.loss(1) 

final_loss_pu=-cond.loss(end) 

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1) 

 

% Plot the loss reduction vs. the iteration number: 

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on, 

plot(cond.V1(:,2)./cond.V1(:,1),'k--') 

legend('E','F','F/E'); 

title('Fig.1: Slack-bus voltage (real(E) and imaginary(F) components)'); 

xlabel('Iteration number') 

ylabel('V_{slack-pu}') 

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2); 

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1)); 

V1=[V1_mag V1_angle] 

 

figure(2) 

Vinit=cond.Vinit; 

Vfinal=V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}') 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

figure(3) 

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*'); 

grid 

title('3-bus system real power loss vs. iteration number', 'FontSize', 11.0) 

xlabel('Iteration number') 

ylabel('P_{loss} (p.u.)') 

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%']; 

 

ax=gca; 

y_lims=ax.YLim; 

text(1.5,y_lims(2)-.0001, loss_label); 

 

loss=-cond.loss; 

P1=cond.PQs(1,:)'; 

Q1=cond.PQs(2,:)'; 

Q3=cond.PQs(3,:)'; 
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Qsum=.0015+cond.Qsum'; 

Vg1=cond.Vgen(1,:)'; 

Vg3=cond.Vgen(2,:)'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

% subplot(221) 

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

% title('Fig.4(a): Slack-bus active power and power loss') 

% legend('P_{loss}','P_{slack}') 

% xlabel('Iteration number') 

% ylabel(hAx(1),'Real power loss'); 

% ylabel(hAx(2),'Slack-bus real power'); 

% hLine2.LineStyle='--'; 

% grid 

 

subplot(311) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(312) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(313) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 
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ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

subplot(121) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 
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subplot(122) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

figure(11) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

 

figure(12) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 
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B.10       Function that implements the primal-dual interior-point method-based 

 Volt/VAR optimization (PDIPM-VVO) for the 6-bus system, incorporating the 

 Newton-Raphson load flow computation 

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, 

output]=ipm_6bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter) 

global E F 

%zeta=.99995; 

zeta=.9995; 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% Initial system real power losses: 

[initial_loss, ~, ~]=loss_func_6bus(); 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

s=s0; 

mu=mu0; 

niq=length(h(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

Lam_i=diag(lam_i); 

 

eps_1=1e-3; 

eps_2=1e-3; 

eps_mu=1e-3; 

 

i=1; 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x, inf))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

c6=output.exit_flag; 

 

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6; 

 

fprev=f; 

fval=[]; 
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fval=[fval; f]; 

X=[]; 

X=[X x]; 

adx=[]; 

iter=[]; 

iter=[iter; i]; 

Loss=[]; 

Loss=[Loss; initial_loss]; 

 

Vslack=[E(1) F(1)]; 

 

while (~converged && i<=maxIter) 

 

    A=g2L+dh'*Si*Lam_i*dh; 

    b=gL+dh'*Si*(mu*e+Lam_i*h); 

    dx=-A\b; 

    ds=-h-s-dh*dx; 

    dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 

 

k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

if (alpha_p>.1 && alpha_d>.1) 

    alpha_p=alpha_d; 

end 

 

x=x+alpha_p*dx; 

s=s+alpha_p*ds; 

lam_i=lam_i+alpha_d*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

i=i+1; 

 

% Define updated initial voltage vector for the NR load flow algorithm: 

x0=define_updated_x0(x); 

 

% Define generator voltage reference vector for the NR load flow algorithm: 

Vgref=updated_Vgref(x); 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 
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F=imag(V); 

 

% Vslack: 

Vslack=[Vslack; E(1) F(1)]; 

 

 

[x(1), x(2), x(3), x(4), x(5)]=deal(E(1), E(2), F(2), E(3), F(3)); 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

loss=f; 

 

fval=[fval;f]; 

X=[X x]; 

adx=[adx alpha_p*dx]; 

iter=[iter; i]; 

Loss=[Loss; loss]; 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x, inf)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

c6=output.exit_flag; 

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6; 

fprev=f; 

cond.num_iterations=i; 

 

end 

 

cond.primal_feasibility=max(h); 

cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.b=b; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.initial_loss=initial_loss; 

cond.loss=Loss; 

cond.iter=iter; 

cond.V1=Vslack; 

cond.Vinit=Vinit; 

 

B.11       Function that computes the objective function, its gradient and Hessian for 

 the 6-bus system 

function [f, df, d2f]=loss_func_6bus() 

global E F G 
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f=G(1,2)*((E(1)-E(2))^2+(F(1)-F(2))^2)+... 

    G(1,4)*((E(1)-E(4))^2+(F(1)-F(4))^2)+... 

    G(1,5)*((E(1)-E(5))^2+(F(1)-F(5))^2)+... 

    G(2,3)*((E(2)-E(3))^2+(F(2)-F(3))^2)+... 

    G(2,4)*((E(2)-E(4))^2+(F(2)-F(4))^2)+... 

    G(2,5)*((E(2)-E(5))^2+(F(2)-F(5))^2)+... 

    G(2,6)*((E(2)-E(6))^2+(F(2)-F(6))^2)+... 

    G(3,5)*((E(3)-E(5))^2+(F(3)-F(5))^2)+... 

    G(3,6)*((E(3)-E(6))^2+(F(3)-F(6))^2)+... 

    G(4,5)*((E(4)-E(5))^2+(F(4)-F(5))^2)+... 

    G(5,6)*((E(5)-E(6))^2+(F(5)-F(6))^2); 

 

df=2*[G(1,2)*(E(1)-E(2))+G(1,4)*(E(1)-E(4))+G(1,5)*(E(1)-E(5));... 

    G(2,3)*(E(2)-E(3))-G(1,2)*(E(1)-E(2))+G(2,4)*(E(2)-E(4))+... 

    G(2,5)*(E(2)-E(5))+G(2,6)*(E(2)-E(6));... 

    G(2,3)*(F(2)-F(3))-G(1,2)*(F(1)-F(2))+G(2,4)*(F(2)-F(4))+... 

    G(2,5)*(F(2)-F(5))+G(2,6)*(F(2)-F(6));... 

    G(3,5)*(E(3)-E(5))-G(2,3)*(E(2)-E(3))+G(3,6)*(E(3)-E(6));... 

    G(3,5)*(F(3)-F(5))-G(2,3)*(F(2)-F(3))+G(3,6)*(F(3)-F(6))]; 

 

d2f=2*[G(1,2)+G(1,4)+G(1,5) -G(1,2) 0 0 0;... 

    -G(1,2) G(1,2)+G(2,3)+G(2,4)+G(2,5)+G(2,6) 0 -G(2,3) 0;... 

    0 0 G(1,2)+G(2,3)+G(2,4)+G(2,5)+G(2,6) 0 -G(2,3);... 

    0 -G(2,3) 0 G(2,3)+G(3,5)+G(3,6) 0;... 

    0 0 -G(2,3) 0 G(2,3)+G(3,5)+G(3,6)]; 

 

B.12       Function that computes the constraint functions, their Jacobian and 

 Hessian for the 6-bus system 

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i) 

global E F nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

 

[E(1), E(2), F(2), E(3), F(3)]=deal(x(1), x(2), x(3), x(4), x(5)); 

 

% Define inequality constraints h(x): 

h=zeros(2*nbus,1); 

k=1; 

for i=1:nbus 

    h(k)=-(E(i)^2+F(i)^2)+Vmsq; 

    h(k+1)=E(i)^2+F(i)^2-VMsq; 

    k=k+2; 

end 

 

% Define the Jacobian of the inequality constraints dh(x): 

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i): 

dh=zeros(2*nbus, length(x)); 

 

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(5,4), dh(5,5),... 
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    dh(6,4), dh(6,5)]=deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2),... 

    2*F(2), -2*E(3), -2*F(3), 2*E(3), 2*F(3)); 

 

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));... 

            E(2)*(lam_i(4)-lam_i(3));... 

            F(2)*(lam_i(4)-lam_i(3));... 

            E(3)*(lam_i(6)-lam_i(5));... 

            F(3)*(lam_i(6)-lam_i(5))]; 

 

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3),... 

    lam_i(4)-lam_i(3), lam_i(6)-lam_i(5), lam_i(6)-lam_i(5)]; 

d2ht_lam_i=diag(d2ht_lam_i_diag); 

 

B.13       Function that computes the Jacobian and Hessian of the Lagrangian of the 

 VVO problem for the 6-bus system 

function [f, h, dh, gL, g2L]=f_6bus(x, lam_i) 

 

% Define objective function, its gradient and hessian [f, df, d2f]: 

[f, df, d2f]=loss_func_6bus(); 

 

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i, 

d2ht_lam_i]: 

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i); 

 

% Define gradient and Hessian of Lagrangian, gL, g2L: 

gL=df+dht_lam_i; 

g2L=-d2f+d2ht_lam_i; 

 

B.14       MATLAB script that runs the PDIPM-VVO algorithm for the 6_bus system 

clear 

close all 

clc 

 

% File name: six_bus_system_pdipm_vvo_test.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  Vgref=Vgref_0() 

% 5.  dF=dF(x, Vgref) 

% 6.  J=jacobian(x) 

% 7.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 8.  h=h_6bus(x) 
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% 9.  [f, df, d2f]=loss_func_6bus() 

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i) 

% 11. [f, h, dh, gL, g2L]=f_6bus(x, lam_i) 

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

%         ipm_6bus(@f_6bus,x0,s0,mu0, sigma, @h_6bus, @dF, @jacobian,... 

%         Vgref, maxIter) 

% 13. x=update_control_vector() 

% 14. update_generator_voltages(x) 

% 15. Vgref=updated_Vgref(x) 

% 

% Bus Data: 

% Volt/VAR optimization for a 6-bus system: 

% 

% Number of buses       : 6; 

% Number of lines       : 11; 

% Number of generators  : 3; 

% Number of loads       : 3 

 

global bus_data Cf E F G B bus_type nbus 

 

% bus_data is matrix in which each row applies to a bus, and specifies 

% (numbers in parentheses are column numbers of the bus_data matrix): 

% 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 

% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%=================================================================== 

%     Bus type    V_real     V_imag  Pg     Qg    Pd      Qd 

bus_data=[1        1.07         0     0      0     0       0  ;... 

          2        1.05         0    .5      0     0       0  ;... 

          2        1.05         0    .5      0     0       0  ;... 

          3         1           0     0      0     1      .15 ;... 

          3         1           0     0      0     1      .15 ;... 

          3         1           0     0      0     1      .15]; 
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%==================================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from_bus=[1 1 1 2 2 2 2 3 3 4 5]'; 

to_bus=[2 4 5 3 4 5 6 5 6 5 6]'; 

r=[.1 .05 .08 .05 .05 .1 .07 .12 .02 .2 .1]; 

x=[.2 .2 .3 .25 .1 .3 .2 .26 .1 .4 .3]; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x); 

 

% Define some parameters: 

 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 

 

% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

 

tic 
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[~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref); 

toc 

v=[output.V(:,1) output.V(:,2)] 

 

% Computes system losses after the load flow algorithm has terminated 

 

[losses, ~, ~]=loss_func_6bus() 

%losses=-losses; 

 

% Perform Volt/VAR optimization: 

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies 

% the Newton method to compute the search direction for the primal-dual 

% system of the VVO problem derived on the basis of the perturbed KKT 

% (first-order) optimality conditions. 

% 

% Computation of the Newton step requires calculating the first- and 

% second-order partial derivatives of the objective and constraint 

% functions. The IPM algorithm only considers the inequality constraints 

% (in this implementation only the bus voltage magnitude constraints), 

% the equality constraints (real and reactive power balance equations) 

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at 

% each iteration of the Newton step of the IPM algorithm, the load flow 

% algorithm is executed once the primal and dual variables have been 

% updated. 

% 

% The IPM algorithm needs the following functions to execute: 

% 

% 1. f_6bus(), which computes the gradient and hessian of the Lagrangian 

%      function of the VVO problem, which are required to compute the 

%      Newton step; 

% 2.  loss_func_6bus(), which is called by f_6bus(), to compute the 

%     objective, its gradient and hessian; 

% 3.  h_gradh_hessh_6bus(), which is also called by f_6bus, to compute 

%     the constraint functions, the Jacobian and hessian thereof as well; 

% 4.  h_6bus(), used only once at the beginning of the IPM algorithm 

%     to determine the number of constraint function; 

% 5.  dF(), which computes the residues needed by the Newton-Raphson 

%     load flow algorithm; 

% 6.  jacobian(), which computes the Jacobian of the residues, also needed 

%     by the Newton-Raphson load flow algorithm; 

% 7.  A number of utility functions called by the functions stated above, 

%     including update_generator_voltages(), update_control_vector(), 

%     define_updated_x0(), updated_Vgref(); 

% 

% The IPM algorithm also requires a number of parameters, such as the 

% barrier parameter (mu), the centering parameter (zeta), and the 

% choice of initial primal and dual variables. 

 

% Initialize some input parameters: 

 

h0=h_6bus(x0); 

s0=abs(h0); 

s0(s0==0)=.01; 

mu0=10; 
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sigma=.15; 

maxIt=12; 

 

% Run the IPM algorithm on the VVO problem: 

 

tic 

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

    ipm_6bus6(@f_6bus,x0,s0,mu0, sigma, @h_6bus, @dF, @jacobian, Vgref, maxIt); 

toc 

 

% Output some computation results: 

 

X 

mu 

cond 

output 

V=output.V 

 

% Compute the loss reduction: 

 

initial_loss_pu=-cond.loss(1) 

final_loss_pu=-cond.loss(end) 

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1) 

 

% Plot the loss reduction vs. the iteration number: 

 

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on, 

plot(cond.V1(:,2)./cond.V1(:,1),'k--') 

legend('E','F','F/E'); 

title('Slack-bus voltage (real(E) and imaginary(F) components)'); 

xlabel('Iteration number') 

ylabel('V_{slack-pu}') 

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2); 

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1)); 

V1=[V1_mag V1_angle] 

 

figure(2) 

Vinit=cond.Vinit; 

Vfinal=V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}') 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('six_bus_system_voltage.xlsx', [Vinit Vfinal]) 

 

figure(3) 

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*'); 

grid 

title('6-bus system real power loss vs. iteration number', 'FontSize', 10.0) 

xlabel('Iteration number') 

ylabel('P_{loss} (p.u.)') 

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%']; 
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ax=gca; 

y_lims=ax.YLim; 

text(6,y_lims(2)-.0025, loss_label); 

 

loss=-cond.loss; 

P1=cond.PQs(1,:)'; 

Q1=cond.PQs(2,:)'; 

Q2=cond.PQs(3,:)'; 

Q3=cond.PQs(4,:)'; 

Qsum=cond.Qsum'; 

Vg1=cond.Vgen(1,:)'; 

Vg2=cond.Vgen(2,:)'; 

Vg3=cond.Vgen(3,:)'; 

 

x1=[0:length(loss)-1]'; 

x2=[0:length(P1)-1]'; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 

legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 
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ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('6-bus system: slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

ax=gca; 

y_lims=ax.YLim; 

text(5,y_lims(2)-.0025, loss_label); 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('6-bus system: total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2],[Q1,Q2,Q3]); 

title('Generator reactive powers and power loss') 

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx6(1),'Real power loss'); 

ylabel(hAx6(2),'Generator reactive power outputs'); 

hLine6(1).LineStyle='--'; 

hLine6(2).LineStyle=':'; 

hLine6(2).Color='r'; 

hLine6(3).LineStyle='-.'; 

grid 

 

figure(7) 

subplot(311) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(312) 



210 
 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 

legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(313) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

B.15       Function that implements the primal-dual interior-point method-based 

 Volt/VAR optimization (PDIPM-VVO) for the 14-bus system, incorporating the 

 Newton-Raphson load flow computation 

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, 

output]=ipm_14bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter) 

global E F PQs Qsum Vgens 

%zeta=.99995; 

zeta=.9995; 

 

% Added computation of slack-bus active and generator reactive powers 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 
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% Initial system real power losses: 

[initial_loss, ~, ~]=loss_func_14bus(); 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

s=s0; 

mu=mu0; 

niq=length(h(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

Lam_i=diag(lam_i); 

 

eps_1=1e-3; 

eps_2=1e-3; 

eps_mu=1e-3; 

 

i=1; 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x, inf))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

c6=output.exit_flag; 

 

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6; 

 

fprev=f; 

fval=[]; 

fval=[fval; f]; 

X=[]; 

X=[X x]; 

adx=[]; 

iter=[]; 

iter=[iter; i]; 

Loss=[]; 

Loss=[Loss; initial_loss]; 

 

Vslack=[E(1) F(1)]; 

 

while (~converged && i<=maxIter) 

 

    A=g2L+dh'*Si*Lam_i*dh; 

    b=gL+dh'*Si*(mu*e+Lam_i*h); 

    dx=-A\b; 

    ds=-h-s-dh*dx; 

    dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 
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k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

if (alpha_p>.1 && alpha_d>.1) 

    alpha_p=alpha_d; 

end 

 

x=x+alpha_p*dx; 

s=s+alpha_p*ds; 

lam_i=lam_i+alpha_d*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

i=i+1; 

 

% Define updated initial voltage vector for the NR load flow algorithm: 

x0=define_updated_x0(x); 

 

% Define generator voltage reference vector for the NR load flow algorithm: 

Vgref=updated_Vgref(x); 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

% Vslack: 

Vslack=[Vslack; E(1) F(1)]; 

 

[x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9)]=... 

    deal(E(1), E(2), F(2), E(3), F(3), E(6), F(6), E(8), F(8)); 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

loss=f; 

 

fval=[fval;f]; 
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X=[X x]; 

adx=[adx alpha_p*dx]; 

iter=[iter; i]; 

Loss=[Loss; loss]; 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x, inf)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

c6=output.exit_flag; 

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6; 

fprev=f; 

cond.num_iterations=i; 

 

end 

 

cond.primal_feasibility=max(h); 

cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.b=b; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.initial_loss=initial_loss; 

cond.loss=Loss; 

cond.iter=iter; 

cond.V1=Vslack; 

cond.Vinit=Vinit; 

cond.PQs=PQs; 

cond.Qsum=Qsum; 

cond.Vgen=Vgens; 

 

B.16       Function that computes the objective function, its gradient and Hessian for 

 the 14-bus system 

function [f, df, d2f]=loss_func_14bus() 

global E F G 

 

f=abs(G(1,2))*((E(1)-E(2))^2+(F(1)-F(2))^2)+abs(G(1,5))*((E(1)-E(5))^2+(F(1)-

F(5))^2)+... 

    abs(G(2,3))*((E(2)-E(3))^2+(F(2)-F(3))^2)+abs(G(2,4))*((E(2)-E(4))^2+(F(2)-

F(4))^2)+... 

    abs(G(2,5))*((E(2)-E(5))^2+(F(2)-F(5))^2)+abs(G(3,4))*((E(3)-E(4))^2+(F(3)-

F(4))^2)+... 

    abs(G(4,5))*((E(4)-E(5))^2+(F(4)-F(5))^2)+abs(G(6,11))*((E(6)-E(11))^2+(F(6)-

F(11))^2)+... 

    abs(G(6,12))*((E(6)-E(12))^2+(F(6)-F(12))^2)+abs(G(6,13))*((E(6)-

E(13))^2+(F(6)-F(13))^2)+... 



214 
 

    abs(G(9,10))*((E(9)-E(10))^2+(F(9)-F(10))^2)+abs(G(9,14))*((E(9)-

E(14))^2+(F(9)-F(14))^2)+... 

    abs(G(10,11))*((E(10)-E(11))^2+(F(10)-F(11))^2)+abs(G(12,13))*((E(12)-

E(13))^2+(F(12)-F(13))^2)+... 

    abs(G(13,14))*((E(13)-E(14))^2+(F(13)-F(14))^2); 

 

 

df=2*[abs(G(1,2))*(E(1)-E(2))+abs(G(1,5))*(E(1)-E(5));... 

    abs(G(2,3))*(E(2)-E(3))-abs(G(1,2))*(E(1)-E(2))+abs(G(2,4))*(E(2)-E(4))+... 

    abs(G(2,5))*(E(2)-E(5));... 

    abs(G(2,3))*(F(2)-F(3))-abs(G(1,2))*(F(1)-F(2))+abs(G(2,4))*(F(2)-F(4))+... 

    abs(G(2,5))*(F(2)-F(5));... 

    abs(G(3,4))*(E(3)-E(4))-abs(G(2,3))*(E(2)-E(3));... 

    abs(G(3,4))*(F(3)-F(4))-abs(G(2,3))*(F(2)-F(3));... 

    abs(G(6,11))*(E(6)-E(11))+abs(G(6,12))*(E(6)-E(12))+... 

    abs(G(6,13))*(E(6)-E(13));... 

    abs(G(6,11))*(F(6)-F(11))+abs(G(6,12))*(F(6)-F(12))+... 

    abs(G(6,13))*(F(6)-F(13));... 

    0;... 

    0]; 

 

d2f=zeros(length(df)); 

 

d2f(1,1)=2*abs(G(1,2)+G(1,5)); 

d2f(1,2)=-2*abs(G(1,2)); 

d2f(2,1)=d2f(1,2); 

d2f(2,2)=2*abs(G(1,2)+G(2,3)+G(2,4)+G(2,5)); 

d2f(2,4)=-2*abs(G(2,3)); 

d2f(3,3)=2*abs(G(1,2)+G(2,3)+G(2,4)+G(2,5)); 

d2f(3,5)=-2*abs(G(2,3)); 

d2f(4,2)=d2f(2,4); 

d2f(4,4)=2*abs(G(2,3)+G(3,4)); 

d2f(5,3)=d2f(3,5); 

d2f(5,5)=2*abs(G(2,3)+G(3,4)); 

d2f(6,6)=2*abs(G(6,11)+G(6,12)+G(6,13)); 

d2f(7,7)=2*abs(G(6,11)+G(6,12)+G(6,13)); 

 

B.17       Function that computes the constraint functions, their Jacobian and 

 Hessian for the 14-bus system 

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i) 

global E F nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

 

[E(1), E(2), F(2), E(3), F(3), E(6), F(6), E(8), F(8)]=... 

    deal(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9)); 

 

 

% Define inequality constraints h(x): 

h=zeros(2*nbus,1); 
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k=1; 

for i=1:nbus 

    h(k)=-(E(i)^2+F(i)^2)+Vmsq; 

    h(k+1)=E(i)^2+F(i)^2-VMsq; 

    k=k+2; 

end 

 

% Define the Jacobian of the inequality constraints dh(x): 

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i): 

dh=zeros(2*nbus, length(x)); 

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(5,4), dh(5,5)]=... 

    deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2), 2*F(2), -2*E(3), -2*F(3)); 

[dh(6,4), dh(6,5), dh(11,6), dh(11,7), dh(12,6), dh(12,7), dh(15,8), dh(15,9),... 

    dh(16,8), dh(16,9)]=deal(2*E(3), 2*F(3),-2*E(6), -2*F(6), 2*E(6), 2*F(6),... 

    -2*E(8), -2*F(8), 2*E(8), 2*F(8)); 

 

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));... 

    E(2)*(lam_i(4)-lam_i(3));... 

    F(2)*(lam_i(4)-lam_i(3));... 

    E(3)*(lam_i(6)-lam_i(5));... 

    F(3)*(lam_i(6)-lam_i(5));... 

    E(6)*(lam_i(12)-lam_i(11));... 

    F(6)*(lam_i(12)-lam_i(11));... 

    E(8)*(lam_i(16)-lam_i(15));... 

    F(8)*(lam_i(16)-lam_i(15))]; 

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3), lam_i(4)-lam_i(3),... 

    lam_i(6)-lam_i(5), lam_i(6)-lam_i(5), lam_i(12)-lam_i(11), lam_i(12)-

lam_i(11),... 

    lam_i(16)-lam_i(15), lam_i(16)-lam_i(15)]; 

d2ht_lam_i=diag(d2ht_lam_i_diag); 

 

B.18       Function that computes the Jacobian and Hessian of the Lagrangian of the 

 VVO problem for the 14-bus system 

function [f, h, dh, gL, g2L]=f_14bus(x, lam_i) 

 

% Define objective function, its gradient and hessian [f, df, d2f]: 

[f, df, d2f]=loss_func_14bus(); 

 

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i, 

d2ht_lam_i]: 

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i); 

 

% Define gradient and Hessian of Lagrangian, gL, g2L: 

% gL=-df+dht_lam_i; 

% g2L=d2f-d2ht_lam_i; 

 

% This seems to give better results 

gL=-df+dht_lam_i; 

g2L=-(d2f+d2ht_lam_i); 
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B.19       MATLAB script that runs the PDIPM-VVO algorithm for the 14_bus system 

clear 

close all 

clc 

 

% File name: fourteen_bus_system_pdipm_vvo_test.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  Vgref=Vgref_0() 

% 5.  dF=dF(x, Vgref) 

% 6.  J=jacobian(x) 

% 7.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 8.  h=h_14bus(x) 

% 9.  [f, df, d2f]=loss_func_14bus() 

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i) 

% 11. [f, h, dh, gL, g2L]=f_14bus(x, lam_i) 

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

%         ipm_14bus(@f_14bus,x0,s0,mu0, sigma, @h_14bus, @dF, @jacobian,... 

%         Vgref, maxIter) 

% 13. x=update_control_vector() 

% 14. update_generator_voltages(x) 

% 15. Vgref=updated_Vgref(x) 

% 

% Bus Data: 

% Volt/VAR optimization for the IEEE 14-bus system: 

% 

% Number of buses       : 14; 

% Number of lines       : 20; 

% Number of generators  : 5; 

% Number of loads       : 11; 

 

global bus_data Cf E F G B bus_type nbus 

 

% bus_data is matrix in which each row applies to a bus, and specifies: 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 
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% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%======================================================== 

%     Bus type    V_real     V_imag  Pg   Qg    Pd     Qd 

bus_data=[1       1.06         0     0    0      0      0  ;... 

          2       1.045        0    .4    0    .217   .127 ;... 

          2       1.01         0     0    0    .942   .19  ;... 

          3         1          0     0    0    .478  -.039 ;... 

          3         1          0     0    0    .076   .016 ;... 

          2       1.07         0     0    0    .112   .075 ;... 

          3         1          0     0    0      0      0  ;... 

          2       1.09         0     0    0      0      0  ;... 

          3         1          0     0    0     .295  .166 ;... 

          3         1          0     0    0     .09   .058 ;... 

          3         1          0     0    0     .035  .018 ;... 

          3         1          0     0    0     .061  .016 ;... 

          3         1          0     0    0     .135  .058 ;... 

          3         1          0     0    0     .149  .05]; 

%======================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

 

global from_bus to_bus r x 

 

% Uniformly distributed generated power: 

% for i=2:nbus 

%     if (bus_type(i)==2) 

%         bus_data(i,4)=.15; 

%     end 

% end 

% figure(4), plot(bus_data(:,4)), title('Uniformly distributed power generation'); 

 

 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from_bus=[1 1 2 2 2 3 4 4 4 5 6 6 6 7 7 9 9 10 12 13]'; 

to_bus=[2 5 3 4 5 4 5 7 9 6 11 12 13 8 9 10 14 11 13 14]'; 

 

r=[.01938 .05403 .04699 .05811 .05695 .06701 .01335 0 0 0 ... 
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    .09498 .12291 .06615 0 0 .03181 .12711 .08205 .22092 .17093]; 

x=[.05917 .22304 .19797 .17632 .17388 .17103 .04211 .20912 ... 

    .55618 .25202 .1989 .25581 .13027 .17615 .11001 .0845 ... 

    .27038 .19207 .19988 .34802]; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x); 

 

% Define some parameters: 

 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 

 

% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

 

tic 

[~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref); 

toc 

 

v=[output.V(:,1) output.V(:,2)] 

 

% Computes system losses after the load flow algorithm has terminated 

 

[losses, ~, ~]=loss_func_14bus() 

 

% Perform Volt/VAR optimization: 

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies 

% the Newton method to compute the search direction for the primal-dual 



219 
 

% system of the VVO problem derived on the basis of the perturbed KKT 

% (first-order) optimality conditions. 

% 

% Computation of the Newton step requires calculating the first- and 

% second-order partial derivatives of the objective and constraint 

% functions. The IPM algorithm only considers the inequality constraints 

% (in this implementation only the bus voltage magnitude constraints), 

% the equality constraints (real and reactive power balance equations) 

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at 

% each iteration of the Newton step of the IPM algorithm, the load flow 

% algorithm is executed once the primal and dual variables have been 

% updated. 

% 

% The IPM algorithm needs the following functions to execute: 

% 

% 1. f_14bus(), which computes the gradient and hessian of the Lagrangian 

%      function of the VVO problem, which are required to compute the 

%      Newton step; 

% 2.  loss_func_14bus(), which is called by f_14bus(), to compute the 

%     objective, its gradient and hessian; 

% 3.  h_gradh_hessh_14bus(), which is also called by f_14bus, to compute 

%     the constraint functions, the Jacobian and hessian thereof as well; 

% 4.  h_14bus(), used only once at the beginning of the IPM algorithm 

%     to determine the number of constraint function; 

% 5.  dF(), which computes the residues needed by the Newton-Raphson 

%     load flow algorithm; 

% 6.  jacobian(), which computes the Jacobian of the residues, also needed 

%     by the Newton-Raphson load flow algorithm; 

% 7.  A number of utility functions called by the functions stated above, 

%     including update_generator_voltages(), update_control_vector(), 

%     define_updated_x0(), updated_Vgref(); 

% 

% The IPM algorithm also requires a number of parameters, such as the 

% barrier parameter (mu), the centering parameter (zeta), and the 

% choice of initial primal and dual variables. 

 

% Initialize some input parameters: 

 

h0=h_14bus(x0); 

s0=abs(h0); 

s0(s0==0)=.015; 

mu0=10; 

sigma=.15; 

maxIt=13; 

 

% Run the IPM algorithm on the VVO problem: 

 

tic 

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

    ipm_14bus6(@f_14bus,x0,s0,mu0, sigma, @h_14bus, @dF, @jacobian, Vgref, maxIt); 

toc 

 

% Output some computation results: 
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X 

mu 

cond 

output 

V=output.V 

 

% Compute the loss reduction: 

 

initial_loss_pu=cond.loss(1) 

final_loss_pu=cond.loss(end) 

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1) 

 

% Plot the loss reduction vs. the iteration number: 

 

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on, 

plot(cond.V1(:,2)./cond.V1(:,1),'k--') 

legend('E','F','F/E'); 

title('Slack-bus voltage (real(E) and imaginary(F) components)'); 

xlabel('Iteration number') 

ylabel('V_{slack-pu}') 

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2); 

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1)); 

V1=[V1_mag V1_angle] 

 

figure(2) 

Vinit=cond.Vinit; 

Vfinal=V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}') 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('fourteen_bus_system_voltage.xlsx', [Vinit Vfinal]) 

 

figure(3) 

plot(cond.iter,cond.loss, 'r',cond.iter,cond.loss, 'b*'); 

grid 

title('IEEE 14-bus system real power loss vs. iteration number') 

xlabel('Iteration number') 

ylabel('P_{loss} (p.u.)') 

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%']; 

 

ax=gca; 

y_lims=ax.YLim; 

text(.5,y_lims(2)-.0025, loss_label); 

 

loss=cond.loss; 

P1=cond.PQs(1,:)'; 

Q1=cond.PQs(2,:)'; 

Q2=cond.PQs(3,:)'; 

Q3=cond.PQs(4,:)'; 

Q6=cond.PQs(5,:)'; 

Q8=cond.PQs(6,:)'; 
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Qsum=cond.Qsum'; 

Vg1=cond.Vgen(1,:)'; 

Vg2=cond.Vgen(2,:)'; 

Vg3=cond.Vgen(3,:)'; 

Vg6=cond.Vgen(4,:)'; 

Vg8=cond.Vgen(5,:)'; 

 

x1=[0:length(loss)-1]'; 

x2=[0:length(P1)-1]'; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q2); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

 

% figure(5) 

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 
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% title('Fig.5: Slack-bus active power and power loss') 

% legend('P_{loss}','P_{slack}') 

% xlabel('Iteration number') 

% ylabel(hAx(1),'Real power loss'); 

% ylabel(hAx(2),'Slack-bus real power'); 

% hLine2.LineStyle='--'; 

% grid 

 

figure(5) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('14-bus system: slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

ax=gca; 

y_lims=ax.YLim; 

text(.5,y_lims(2)-.0025, loss_label); 

 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('14-bus system: total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2,x2,x2],[Q1, Q2, Q3, Q6, Q8]); 

title('Generator reactive powers and power loss') 

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}') 

xlabel('Iteration number') 

ylabel(hAx6(1),'Real power loss'); 

ylabel(hAx6(2),'Generator reactive power outputs'); 

hLine6(1).LineStyle='--'; 

hLine6(2).LineStyle=':'; 

hLine6(2).Color='r'; 

hLine6(3).LineStyle='-.'; 

grid 

 

 

 

% figure(6) 

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

% title('Fig.6: Slack-bus reactive power and power loss') 

% legend('P_{loss}','Q_{slack}') 

% xlabel('Iteration number') 

% ylabel(hAx(1),'Real power loss'); 



223 
 

% ylabel(hAx(2),'Slack-bus reactive power'); 

% hLine2.LineStyle='--'; 

% grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 

legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q6); 

title('Bus-6 generator reactive power and power loss') 

legend('P_{loss}','Q_{g6}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-6 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8); 

title('Bus-6 generator reactive power and power loss') 

legend('P_{loss}','Q_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-8 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(11) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 
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figure(12) 

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.',x2,Q6,'c-+',x2,Q8,'k-*') 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}') 

grid 

 

figure(13) 

subplot(311) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(312) 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 

legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(313) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

figure(14) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x2,Q6,x2,Vg6); 

title('Bus-6 generator reactive power and voltage magnitude') 

legend('Q_{g6}','V_{g6}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-6 generator reactive power'); 

ylabel(hAx(2),'Bus-6 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8); 

title('Bus-8 generator reactive power and voltage magnitude') 

legend('Q_{g8}','V_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-8 generator reactive power'); 
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ylabel(hAx(2),'Bus-8 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

B.20       Function that implements the primal-dual interior-point method-based 

 Volt/VAR optimization (PDIPM-VVO) for the 30-bus system, incorporating the 

 Newton-Raphson load flow computation 

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, 

output]=ipm_30bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter) 

global E F PQs Qsum Vgens 

%zeta=.99995; 

zeta=.9995; 

 

% Added computation of slack-bus active and generator reactive powers 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

Vinit=output.V(:,1); 

 

[initial_loss, ~, ~]=loss_func_30bus(); 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

s=s0; 

mu=mu0; 

niq=length(h(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

Lam_i=diag(lam_i); 

 

eps_1=1e-3; 

eps_2=1e-3; 
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eps_mu=1e-3; 

 

i=1; 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x, inf))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

c6=output.exit_flag; 

 

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6; 

 

Vslack=[E(1) F(1)]; 

 

fprev=f; 

fval=[]; 

fval=[fval; f]; 

X=[]; 

X=[X x]; 

adx=[]; 

iter=[]; 

iter=[iter; i]; 

Loss=[]; 

Loss=[Loss; initial_loss]; 

 

while (~converged && i<=maxIter) 

 

    A=g2L+dh'*Si*Lam_i*dh; 

    b=gL+dh'*Si*(mu*e+Lam_i*h); 

    dx=-A\b; 

    ds=-h-s-dh*dx; 

    dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 

 

k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

if (alpha_p>.1 && alpha_d>.1) 

    alpha_p=alpha_d; 

end 
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x=x+alpha_p*dx; 

s=s+alpha_p*ds; 

lam_i=lam_i+alpha_d*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

i=i+1; 

 

% Define updated initial voltage vector for the NR load flow algorithm: 

x0=define_updated_x0(x); 

 

% Define generator voltage reference vector for the NR load flow algorithm: 

Vgref=updated_Vgref(x); 

 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

% Vslack: 

Vslack=[Vslack; E(1) F(1)]; 

 

[x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11)]=... 

    deal(E(1), E(2), F(2), E(5), F(5), E(8), F(8), E(11), F(11), E(13), F(13)); 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

loss=f; 

 

fval=[fval;f]; 

X=[X x]; 

adx=[adx alpha_p*dx]; 

iter=[iter; i]; 

Loss=[Loss; loss]; 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x, inf)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

c6=output.exit_flag; 

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6; 

fprev=f; 

cond.num_iterations=i; 

 

end 

 

cond.primal_feasibility=max(h); 
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cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.b=b; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.initial_loss=initial_loss; 

cond.loss=Loss; 

cond.iter=iter; 

cond.V1=Vslack; 

cond.Vinit=Vinit; 

cond.PQs=PQs; 

cond.Qsum=Qsum; 

cond.Vgen=Vgens; 

 

B.21       Function that computes the objective function, its gradient and Hessian for 

 the 30-bus system 

function [f, df, d2f]=loss_func_30bus() 

global E F G 

 

[f, ~]=loss_func(); 

 

df=2*[G(1,2)*(E(1)-E(2))+G(1,3)*(E(1)-E(3));... 

    G(2,4)*(E(2)-E(4))-G(1,2)*(E(1)-E(2))+G(2,5)*(E(2)-E(5))+G(2,6)*(E(2)-E(6));... 

    G(2,4)*(F(2)-F(4))-G(1,2)*(F(1)-F(2))+G(2,5)*(F(2)-F(5))+G(2,6)*(F(2)-F(6));... 

    G(5,7)*(E(5)-E(7))-G(2,5)*(E(2)-E(5));... 

    G(5,7)*(F(5)-F(7))-G(2,5)*(F(2)-F(5));... 

    G(8,28)*(E(8)-E(28))-G(6,8)*(E(6)-E(8));... 

    G(8,28)*(F(8)-F(28))-G(6,8)*(F(6)-F(8));... 

    -G(9,11)*(E(9)-E(11));... 

    -G(9,11)*(F(9)-F(11));... 

    -G(12,13)*(E(12)-E(13));... 

    -G(12,13)*(F(12)-F(13))]; 

 

d2f=zeros(length(df)); 

d2f(1,1)=2*(G(1,2)+G(1,3)); 

d2f(1,2)=-2*G(1,2); 

d2f(2,1)=d2f(1,2); 

d2f(2,2)=2*(G(1,2)+G(2,4)+G(2,5)+G(2,6)); 

d2f(2,4)=-2*G(2,5); 

d2f(3,3)=2*(G(1,2)+G(2,4)+G(2,5)+G(2,6)); 

d2f(3,5)=-2*G(2,5); 

d2f(4,2)=d2f(2,4); 

d2f(4,4)=2*(G(2,5)+G(5,7)); 

d2f(5,3)=d2f(3,5); 

d2f(5,5)=2*(G(2,5)+G(5,7)); 

d2f(6,6)=2*(G(6,8)+G(8,28)); 

d2f(7,7)=2*(G(6,8)+G(8,28)); 
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d2f(8,8)=2*G(9,11); 

d2f(9,9)=2*G(9,11); 

d2f(10,10)=2*G(12,13); 

d2f(11,11)=2*G(12,13); 

 

 

B.22       Function that computes the constraint functions, their Jacobian and 

 Hessian for the 30-bus system 

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i) 

global E F nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

 

[E(1), E(2), F(2), E(5), F(5), E(8), F(8), E(11), F(11), E(13), F(13)]=... 

    deal(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11)); 

 

 

% Define inequality constraints h(x): 

h=zeros(2*nbus,1); 

k=1; 

for i=1:nbus 

    h(k)=-(E(i)^2+F(i)^2)+Vmsq; 

    h(k+1)=E(i)^2+F(i)^2-VMsq; 

    k=k+2; 

end 

 

% Define the Jacobian of the inequality constraints dh(x): 

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i): 

dh=zeros(2*nbus, length(x)); 

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(9,4), dh(9,5),... 

    dh(10,4), dh(10,5), dh(15,6), dh(15,7), dh(16,6), dh(16,7), dh(21,8),... 

    dh(21,9), dh(22,8), dh(22,9), dh(25,10), dh(25,11), dh(26,10), dh(26,11)]=... 

    deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2), 2*F(2), -2*E(5), -2*F(5),... 

    2*E(5), 2*F(5), -2*E(8), -2*F(8), 2*E(8), 2*F(8), -2*E(11), -2*F(11),... 

    2*E(11), 2*F(11), -2*E(13), -2*F(13), 2*E(13), 2*F(13)); 

 

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));... 

    E(2)*(lam_i(4)-lam_i(3));... 

    F(2)*(lam_i(4)-lam_i(3));... 

    E(5)*(lam_i(10)-lam_i(9));... 

    F(5)*(lam_i(10)-lam_i(9));... 

    E(8)*(lam_i(16)-lam_i(15));... 

    F(8)*(lam_i(16)-lam_i(15));... 

    E(11)*(lam_i(22)-lam_i(21));... 

    F(11)*(lam_i(22)-lam_i(21));... 

    E(13)*(lam_i(26)-lam_i(25));... 

    F(13)*(lam_i(26)-lam_i(25))]; 

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3), lam_i(4)-lam_i(3),... 

    lam_i(10)-lam_i(9), lam_i(10)-lam_i(9), lam_i(16)-lam_i(15), lam_i(16)-

lam_i(15),... 
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    lam_i(22)-lam_i(21), lam_i(22)-lam_i(21), lam_i(26)-lam_i(25), lam_i(26)-

lam_i(25)]; 

d2ht_lam_i=diag(d2ht_lam_i_diag); 

 

 

B.23       Function that computes the Jacobian and Hessian of the Lagrangian of the 

 VVO problem for the 30-bus system 

function [f, h, dh, gL, g2L]=f_30bus(x, lam_i) 

 

% Define objective function, its gradient and hessian [f, df, d2f]: 

 

[f, df, d2f]=loss_func_30bus(); 

 

%[~, f, df, d2f, ~, ~]=loss_func_sym_30bus(); 

 

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i, 

d2ht_lam_i]: 

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i); 

 

% Define gradient and Hessian of Lagrangian, gL, g2L: 

gL=df+dht_lam_i; 

g2L=-d2f+d2ht_lam_i; 

 

B.24       MATLAB script that runs the PDIPM-VVO algorithm for the 30-bus system 

clear 

close all 

clc 

 

% File name: thirty_bus_system_pdipm_vvo_test.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  Vgref=Vgref_0() 

% 5.  dF=dF(x, Vgref) 

% 6.  J=jacobian(x) 

% 7.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 8.  h=h_30bus(x) 

% 9.  [f, df, d2f]=loss_func_30bus() 

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i) 

% 11. [f, h, dh, gL, g2L]=f_30bus(x, lam_i) 

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

%         ipm_30bus(@f_30bus,x0,s0,mu0, sigma, @h_30bus, @dF, @jacobian,... 
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%         Vgref, maxIter) 

% 13. x=update_control_vector() 

% 14. update_generator_voltages(x) 

% 15. Vgref=updated_Vgref(x) 

% 

% Bus Data: 

% 

% Volt/VAR optimization for the IEEE 30-bus system: 

% Number of buses       : 30; 

% Number of lines       : 41; 

% Number of generators  : 6; 

% Number of loads       : 21 

 

global bus_data Cf E F G B bus_type nbus 

 

% bus_data is matrix in which each row applies to a bus, and specifies: 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 

% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%=================================================================== 

%     Bus type    V_real     V_imag  Pg     Qg    Pd         Qd 

bus_data=[1         1         0     0       0      0         0  ;... 

          2         1         0   .4882     0    .217       .127;... 

          3         1         0     0       0    .024       .012;... 

          3         1         0     0       0    .076       .016;... 

          2         1         0   .2151     0    .942       .19 ;... 

          3         1         0     0       0      0         0  ;... 

          3         1         0     0       0    .228       .109;... 

          2         1         0   .2215     0     .3        .3  ;... 

          3         1         0     0       0      0         0  ;... 

          3         1         0     0       0    .058       .02 ;... 

          2         1         0   .1214     0      0         0  ;... 

          3         1         0     0       0    .112       .075;... 

          2         1         0   .12       0      0         0  ;... 
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          3         1         0     0       0    .062       .016;... 

          3         1         0     0       0    .082       .025;... 

          3         1         0     0       0    .035       .016;... 

          3         1         0     0       0    .09        .058;... 

          3         1         0     0       0    .032       .009;... 

          3         1         0     0       0    .095       .034;... 

          3         1         0     0       0    .022       .007;... 

          3         1         0     0       0    .175       .112;... 

          3         1         0     0       0      0         0  ;... 

          3         1         0     0       0    .032       .016;... 

          3         1         0     0       0    .087       .067;... 

          3         1         0     0       0      0         0  ;... 

          3         1         0     0       0    .035       .023;... 

          3         1         0     0       0     0          0  ;... 

          3         1         0     0       0     0          0  ;... 

          3         1         0     0       0    .024       .009;... 

          3         1         0     0       0    .106       .019]; 

%==================================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from_bus=[1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 6, 6, 6, 8, 9, 9,... 

    10, 10, 10, 10, 12, 12, 12, 12, 14, 15, 15, 16, 18, 19, 21,... 

    22, 23, 24, 25, 25, 27, 27, 28, 29]; 

 

to_bus=[2, 3, 4, 5, 6, 4, 6, 12, 7, 7, 8, 9, 10, 28, 28, 10,... 

    11, 17, 20, 21, 22, 13, 14, 15, 16, 15, 18, 23, 17, 19, 20,... 

    22, 24, 24, 25, 26, 27, 29, 30, 27, 30]; 

 

r=[.0192, .0452, .057, .0472, .0581, .0132, .0119, 0, .046, .0267,... 

    .012, 0, 0, .0169, .0636, 0, 0, .0324, .0936, .0348, .0727, 0,... 

    .1231, .0662, .0945, .221, .107, .1, .0824, .0639, .034, .0116,... 

    .115, .132, .1885, .2544, .1093, .2198, .3202, 0, .2399]; 

 

x=[.0575, .1852, .1737, .1983, .1763, .0379, .0414, .256, .116, .082,... 

    .042, .208, .556, .0599, .2, .208, .11, .0845, .209, .0749, .1499,... 

    .14, .2559, .1304, .1987, .1997, .2185, .202, .1932, .1292, .068,... 

    .0236, .179, .27, .3292, .38, .2087, .4153, .6027, .396, .4533]; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x); 
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% Define some parameters: 

 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 

 

% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

 

% tic 

% [~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref); 

% toc 

% 

% v=[output.V(:,1) output.V(:,2)] 

% 

% % Computes system losses after the load flow algorithm has terminated 

% 

% [losses, ~, ~]=loss_func_30bus() 

 

% Perform Volt/VAR optimization: 

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies 

% the Newton method to compute the search direction for the primal-dual 

% system of the VVO problem derived on the basis of the perturbed KKT 

% (first-order) optimality conditions. 

% 

% Computation of the Newton step requires calculating the first- and 

% second-order partial derivatives of the objective and constraint 

% functions. The IPM algorithm only considers the inequality constraints 

% (in this implementation only the bus voltage magnitude constraints), 

% the equality constraints (real and reactive power balance equations) 

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at 

% each iteration of the Newton step of the IPM algorithm, the load flow 

% algorithm is executed once the primal and dual variables have been 

% updated. 
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% 

% The IPM algorithm needs the following functions to execute: 

% 

% 1. f_30bus(), which computes the gradient and hessian of the Lagrangian 

%      function of the VVO problem, which are required to compute the 

%      Newton step; 

% 2.  loss_func_30bus(), which is called by f_30bus(), to compute the 

%     objective, its gradient and hessian; 

% 3.  h_gradh_hessh_30bus(), which is also called by f_30bus, to compute 

%     the constraint functions, the Jacobian and hessian thereof as well; 

% 4.  h_30bus(), used only once at the beginning of the IPM algorithm 

%     to determine the number of constraint function; 

% 5.  dF(), which computes the residues needed by the Newton-Raphson 

%     load flow algorithm; 

% 6.  jacobian(), which computes the Jacobian of the residues, also needed 

%     by the Newton-Raphson load flow algorithm; 

% 7.  A number of utility functions called by the functions stated above, 

%     including update_generator_voltages(), update_control_vector(), 

%     define_updated_x0(), updated_Vgref(); 

% 

% The IPM algorithm also requires a number of parameters, such as the 

% barrier parameter (mu), the centering parameter (zeta), and the 

% choice of initial primal and dual variables. 

 

% Initialize some input parameters: 

 

h0=h_30bus(x0); 

s0=abs(h0); 

s0(s0==0)=.01; 

mu0=10; 

sigma=.15; 

maxIt=13; 

 

% Run the IPM algorithm on the VVO problem: 

 

tic 

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

    ipm_30bus6(@f_30bus,x0,s0,mu0, sigma, @h_30bus, @dF, @jacobian, Vgref, maxIt); 

toc 

 

% Output some computation results: 

 

X 

mu 

cond 

output 

V=output.V 

 

% Compute the loss reduction: 

 

initial_loss_pu=-cond.loss(1) 

final_loss_pu=-cond.loss(end) 

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1) 
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% Plot the loss reduction vs. the iteration number: 

 

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on, 

plot(cond.V1(:,2)./cond.V1(:,1),'k--') 

legend('E','F','F/E'); 

title('Slack-bus voltage (real(E) and imaginary(F) components)'); 

xlabel('Iteration number') 

ylabel('V_{slack-pu}') 

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2); 

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1)); 

V1=[V1_mag V1_angle] 

 

figure(2) 

Vinit=cond.Vinit; 

Vfinal=V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}') 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('thirty_bus_system_voltage.xlsx', [Vinit Vfinal]) 

 

figure(3) 

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*'); 

grid 

title('IEEE 30-bus system real power loss vs. iteration number', 'FontSize', 10.0) 

xlabel('Iteration number') 

ylabel('P_{loss} (p.u.)') 

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%']; 

 

ax=gca; 

y_lims=ax.YLim; 

text(.5,y_lims(2)-.0005, loss_label); 

 

loss=-cond.loss; 

% Adding 2.2e-3 to P1 makes slack-bus active power 

% and power loss coincide; this (value of 2.2e-3) 

% seems to only represent a discrepancy due to 

% differences in scale of the two quantities 

P1=2.2e-3+cond.PQs(1,:)'; 

Q1=cond.PQs(2,:)'; 

Q2=cond.PQs(3,:)'; 

Q5=cond.PQs(4,:)'; 

Q8=cond.PQs(5,:)'; 

Q11=cond.PQs(6,:)'; 

Q13=cond.PQs(7,:)'; 

Qsum=cond.Qsum'; 

Vg1=cond.Vgen(1,:)'; 

Vg2=cond.Vgen(2,:)'; 

Vg5=cond.Vgen(3,:)'; 

Vg8=cond.Vgen(4,:)'; 

Vg11=cond.Vgen(5,:)'; 

Vg13=cond.Vgen(6,:)'; 
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x1=[0:length(loss)-1]'; 

x2=[0:length(P1)-1]'; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5); 

title('Bus-5 generator reactive power and power loss') 

legend('P_{loss}','Q_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-5 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q5); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('30-bus system: slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 



237 
 

grid 

ax=gca; 

y_lims=ax.YLim; 

text(.5,y_lims(2)-.0005, loss_label); 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('30-bus system: total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2,x2,x2 x2],[Q1, Q2, Q5, Q8, Q11, Q13]); 

title('Generator reactive powers and power loss') 

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g5}','Q_{g8}','Q_{g11}','Q_{g13}') 

xlabel('Iteration number') 

ylabel(hAx6(1),'Real power loss'); 

ylabel(hAx6(2),'Generator reactive power outputs'); 

hLine6(1).LineStyle='--'; 

hLine6(2).LineStyle=':'; 

hLine6(2).Color='r'; 

hLine6(3).LineStyle='-.'; 

grid 

 

figure(14) 

subplot(311) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(312) 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 

legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(313) 

[hAx, ~, hLine2]=plotyy(x2,Q5,x2,Vg5); 

title('Bus-5 generator reactive power and voltage magnitude') 

legend('Q_{g5}','V_{g5}') 

xlabel('Iteration number') 
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ylabel(hAx(1),'Bus-5 generator reactive power'); 

ylabel(hAx(2),'Bus-5 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

figure(15) 

subplot(311) 

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8); 

title('Bus-8 generator reactive power and voltage magnitude') 

legend('Q_{g8}','V_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-8 generator reactive power'); 

ylabel(hAx(2),'Bus-8 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(312) 

[hAx, ~, hLine2]=plotyy(x2,Q11,x2,Vg11); 

title('Bus-11 generator reactive power and voltage magnitude') 

legend('Q_{g11}','V_{g11}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-11 generator reactive power'); 

ylabel(hAx(2),'Bus-11 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(313) 

[hAx, ~, hLine2]=plotyy(x2,Q13,x2,Vg13); 

title('Bus-13 generator reactive power and voltage magnitude') 

legend('Q_{g13}','V_{g13}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-13 generator reactive power'); 

ylabel(hAx(2),'Bus-13 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

B.25       Function that implements the primal-dual interior-point method-based 

 Volt/VAR optimization (PDIPM-VVO) for the 118-bus system, incorporating the 

 Newton-Raphson load flow computation 

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, 

output]=ipm_118bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter, V1_angle_ratio) 

global E F  PQs Qsum 

 

%zeta=.9995; 

zeta=.99995; 

 

% Added computation of slack-bus active and generator reactive powers 

 

% Perform initial load flow: 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 
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F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power matrix to 

% empty array: 

 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% Initial system real power losses: 

[initial_loss, ~]=loss_func(); 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

s=s0; 

mu=mu0; 

niq=length(h(x)); 

e=ones(niq,1); 

 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

Lam_i=diag(lam_i); 

 

eps_1=1e-3; 

eps_2=1e-3; 

eps_mu=1e-3; 

 

i=1; 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i))); 

c3=((s'*lam_i)/(1+norm(x, inf))); 

c4=(abs(f)/(1+abs(f))); 

c5=mu; 

c6=output.exit_flag; 

 

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6; 

 

Vslack=[E(1) F(1)]; 

 

fprev=f; 

fval=[]; 

fval=[fval; f]; 

X=[]; 

X=[X x]; 

adx=[]; 
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iter=[]; 

iter=[iter; i]; 

Loss=[]; 

Loss=[Loss; initial_loss]; 

 

while (~converged && i<=maxIter) 

 

    A=g2L+dh'*Si*Lam_i*dh; 

    b=gL+dh'*Si*(mu*e+Lam_i*h); 

    dx=-A\b; 

    ds=-h-s-dh*dx; 

    dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds); 

 

k_ds=find(ds<0); 

if(k_ds) 

    alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds))); 

else 

    alpha_p=1; 

end 

k_dlam_i=find(dlam_i<0); 

if(k_dlam_i) 

    alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i))); 

else 

    alpha_d=1; 

end 

alpha=min(alpha_p,alpha_d); 

%alpha_p=1; 

if (alpha_p>.1 && alpha_d>.1) 

    alpha_p=alpha_d; 

end 

 

x=x+alpha_p*dx; 

s=s+alpha_p*ds; 

lam_i=lam_i+alpha_d*dlam_i; 

mu=sigma*(s'*lam_i)/2/niq; 

S=diag(s); 

Si=inv(S); 

Lam_i=diag(lam_i); 

i=i+1; 

 

% Define updated initial voltage vector for the NR load flow algorithm: 

x0=define_updated_x0(x); 

 

% To maintain slack-bus voltage angle: 

F(1)=V1_angle_ratio*x(1); 

 

% Define generator voltage reference vector for the NR load flow algorithm 

%Vgref=Vgref_0(); 

Vgref=updated_Vgref1(x); 

 

% Run the NR load flow algorithm: 

[V, output]=NR_load_flow(dF, J, x0, Vgref); 

E=real(V); 

F=imag(V); 
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% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vslack: 

Vslack=[Vslack; E(1) F(1)]; 

 

% update control vector x from generator voltage vector components E, F: 

x=update_control_vector(); 

 

[f, h, dh, gL, g2L]=Func(x, lam_i); 

 

loss=f; 

 

fval=[fval;f]; 

X=[X x]; 

adx=[adx alpha_p*dx]; 

iter=[iter; i]; 

Loss=[Loss; loss]; 

 

c1=(max(h)<0 || norm(h, inf)<=1e-3); 

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i)); 

c3=s'*lam_i/(1+norm(x, inf)); 

c4=abs(f-fprev)/(1+abs(f)); 

c5=mu; 

c6=output.exit_flag; 

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6; 

fprev=f; 

cond.num_iterations=i; 

 

end 

 

cond.primal_feasibility=max(h); 

cond.grad_condition=c2; 

cond.comp_condition=c3; 

cond.objective_condition=c4; 

cond.barrier_condition=c5; 

cond.A=A; 

cond.b=b; 

cond.h=h; 

cond.S=S; 

cond.Lami=Lam_i; 

cond.initial_loss=initial_loss; 

cond.loss=Loss; 

cond.iter=iter; 

cond.V1=Vslack; 

cond.Vinit=Vinit;cond.PQs=PQs; 

cond.Qsum=Qsum; 

 

B.26       Function that computes the gradient of the objective function for the 118-

 bus system 
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function df=df_118bus() 

global E F G 

 

df=[G(1,2)*(2*E(1)-2*E(2))+G(1,3)*(2*E(1)-2*E(3));... 

    G(4,5)*(2*E(4)-2*E(5))+G(4,11)*(2*E(4)-2*E(11));... 

    G(4,5)*(2*F(4)-2*F(5))+G(4,11)*(2*F(4)-2*F(11));... 

    G(6,7)*(2*E(6)-2*E(7))-G(5,6)*(2*E(5)-2*E(6));... 

    G(6,7)*(2*F(6)-2*F(7))-G(5,6)*(2*F(5)-2*F(6));... 

    G(8,9)*(2*E(8)-2*E(9))-G(5,8)*(2*E(5)-2*E(8))+... 

    G(8,30)*(2*E(8)-2*E(30));... 

    G(8,9)*(2*F(8)-2*F(9))-G(5,8)*(2*F(5)-2*F(8))+... 

    G(8,30)*(2*F(8)-2*F(30));... 

    -G(9,10)*(2*E(9)-2*E(10));... 

    -G(9,10)*(2*F(9)-2*F(10));... 

    G(12,14)*(2*E(12)-2*E(14))-G(11,12)*(2*E(11)-2*E(12))+... 

    G(12,16)*(2*E(12)-2*E(16))+G(12,117)*(2*E(12)-2*E(117))-... 

    G(2,12)*(2*E(2)-2*E(12))-G(3,12)*(2*E(3)-2*E(12))-... 

    G(7,12)*(2*E(7)-2*E(12));... 

    G(12,14)*(2*F(12)-2*F(14))-G(11,12)*(2*F(11)-2*F(12))+... 

    G(12,16)*(2*F(12)-2*F(16))+G(12,117)*(2*F(12)-2*F(117))-... 

    G(2,12)*(2*F(2)-2*F(12))-G(3,12)*(2*F(3)-2*F(12))-... 

    G(7,12)*(2*F(7)-2*F(12));... 

    G(15,17)*(2*E(15)-2*E(17))-G(14,15)*(2*E(14)-2*E(15))-... 

    G(13,15)*(2*E(13)-2*E(15))+G(15,19)*(2*E(15)-2*E(19))+... 

    G(15,33)*(2*E(15)-2*E(33));... 

    G(15,17)*(2*F(15)-2*F(17))-G(14,15)*(2*F(14)-2*F(15))-... 

    G(13,15)*(2*F(13)-2*F(15))+G(15,19)*(2*F(15)-2*F(19))+... 

    G(15,33)*(2*F(15)-2*F(33));... 

    G(18,19)*(2*E(18)-2*E(19))-G(17,18)*(2*E(17)-2*E(18));... 

    G(18,19)*(2*F(18)-2*F(19))-G(17,18)*(2*F(17)-2*F(18));... 

    G(19,20)*(2*E(19)-2*E(20))-G(18,19)*(2*E(18)-2*E(19)) - ... 

    G(15,19)*(2*E(15)-2*E(19))+G(19,34)*(2*E(19)-2*E(34));... 

    G(19,20)*(2*F(19)-2*F(20))-G(18,19)*(2*F(18)-2*F(19)) - ... 

    G(15,19)*(2*F(15)-2*F(19))+G(19,34)*(2*F(19)-2*F(34));... 

    G(24,70)*(2*E(24)-2*E(70))-G(23,24)*(2*E(23)-2*E(24))+... 

    G(24,72)*(2*E(24)-2*E(72));... 

    G(24,70)*(2*F(24)-2*F(70))-G(23,24)*(2*F(23)-2*F(24))+... 

    G(24,72)*(2*F(24)-2*F(72));... 

    G(25,26)*(2*E(25)-2*E(26))-G(23,25)*(2*E(23)-2*E(25))+... 

    G(25,27)*(2*E(25)-2*E(27));... 

    G(25,26)*(2*F(25)-2*F(26))-G(23,25)*(2*F(23)-2*F(25))+... 

    G(25,27)*(2*F(25)-2*F(27));... 

    G(26,30)*(2*E(26)-2*E(30))-G(25,26)*(2*E(25)-2*E(26));... 

    G(26,30)*(2*F(26)-2*F(30))-G(25,26)*(2*F(25)-2*F(26));... 

    G(27,28)*(2*E(27)-2*E(28))-G(25,27)*(2*E(25)-2*E(27))+... 

    G(27,32)*(2*E(27)-2*E(32))+... 

    G(27,115)*(2*E(27)-2*E(115));... 

    G(27,28)*(2*F(27)-2*F(28))-G(25,27)*(2*F(25)-2*F(27))+... 

    G(27,32)*(2*F(27)-2*F(32))+... 

    G(27,115)*(2*F(27)-2*F(115));... 

    G(31,32)*(2*E(31)-2*E(32))-G(29,31)*(2*E(29)-2*E(31))-... 

    G(17,31)*(2*E(17)-2*E(31));... 

    G(31,32)*(2*F(31)-2*F(32))-G(29,31)*(2*F(29)-2*F(31))-... 

    G(17,31)*(2*F(17)-2*F(31));... 



243 
 

    G(32,113)*(2*E(32)-2*E(113))-G(27,32)*(2*E(27)-2*E(32))-... 

    G(31,32)*(2*E(31)-2*E(32))-... 

    G(23,32)*(2*E(23)-2*E(32))+G(32,114)*(2*E(32)-2*E(114));... 

    G(32,113)*(2*F(32)-2*F(113))-G(27,32)*(2*F(27)-2*F(32))-... 

    G(31,32)*(2*F(31)-2*F(32))-... 

    G(23,32)*(2*F(23)-2*F(32))+G(32,114)*(2*F(32)-2*F(114));... 

    G(34,36)*(2*E(34)-2*E(36))-G(19,34)*(2*E(19)-2*E(34))+... 

    G(34,37)*(2*E(34)-2*E(37))+... 

    G(34,43)*(2*E(34)-2*E(43));... 

    G(34,36)*(2*F(34)-2*F(36))-G(19,34)*(2*F(19)-2*F(34))+... 

    G(34,37)*(2*F(34)-2*F(37))+... 

    G(34,43)*(2*F(34)-2*F(43));... 

    - G(34,36)*(2*E(34)-2*E(36))-G(35,36)*(2*E(35)-2*E(36));... 

    - G(34,36)*(2*F(34)-2*F(36))-G(35,36)*(2*F(35)-2*F(36));... 

    G(40,41)*(2*E(40)-2*E(41))-G(39,40)*(2*E(39)-2*E(40))-... 

    G(37,40)*(2*E(37)-2*E(40))+G(40,42)*(2*E(40)-2*E(42));... 

    G(40,41)*(2*F(40)-2*F(41))-G(39,40)*(2*F(39)-2*F(40))-... 

    G(37,40)*(2*F(37)-2*F(40))+G(40,42)*(2*F(40)-2*F(42));... 

    G(42,49)*(2*E(42)-2*E(49))-G(41,42)*(2*E(41)-2*E(42))-... 

    G(40,42)*(2*E(40)-2*E(42));... 

    G(42,49)*(2*F(42)-2*F(49))-G(41,42)*(2*F(41)-2*F(42))-... 

    G(40,42)*(2*F(40)-2*F(42));... 

    G(46,47)*(2*E(46)-2*E(47))-G(45,46)*(2*E(45)-2*E(46))+... 

    G(46,48)*(2*E(46)-2*E(48));... 

    G(46,47)*(2*F(46)-2*F(47))-G(45,46)*(2*F(45)-2*F(46))+... 

    G(46,48)*(2*F(46)-2*F(48));... 

    G(49,50)*(2*E(49)-2*E(50))-G(45,49)*(2*E(45)-2*E(49))-... 

    G(47,49)*(2*E(47)-2*E(49))-... 

    G(48,49)*(2*E(48)-2*E(49))-G(42,49)*(2*E(42)-2*E(49))+... 

    G(49,51)*(2*E(49)-2*E(51))+... 

    G(49,54)*(2*E(49)-2*E(54))+G(49,66)*(2*E(49)-2*E(66))+... 

    G(49,69)*(2*E(49)-2*E(69));... 

    G(49,50)*(2*F(49)-2*F(50))-G(45,49)*(2*F(45)-2*F(49))-... 

    G(47,49)*(2*F(47)-2*F(49))-G(48,49)*(2*F(48)-2*F(49))-... 

    G(42,49)*(2*F(42)-2*F(49))+G(49,51)*(2*F(49)-2*F(51))+... 

    G(49,54)*(2*F(49)-2*F(54))+G(49,66)*(2*F(49)-2*F(66))+... 

    G(49,69)*(2*F(49)-2*F(69));... 

    G(54,55)*(2*E(54)-2*E(55))-G(53,54)*(2*E(53)-2*E(54))-... 

    G(49,54)*(2*E(49)-2*E(54))+G(54,56)*(2*E(54)-2*E(56))+... 

    G(54,59)*(2*E(54)-2*E(59));... 

    G(54,55)*(2*F(54)-2*F(55))-G(53,54)*(2*F(53)-2*F(54))-... 

    G(49,54)*(2*F(49)-2*F(54))+G(54,56)*(2*F(54)-2*F(56))+... 

    G(54,59)*(2*F(54)-2*F(59));... 

    G(55,56)*(2*E(55)-2*E(56))-G(54,55)*(2*E(54)-2*E(55))+... 

    G(55,59)*(2*E(55)-2*E(59));... 

    G(55,56)*(2*F(55)-2*F(56))-G(54,55)*(2*F(54)-2*F(55))+... 

    G(55,59)*(2*F(55)-2*F(59));... 

    G(56,57)*(2*E(56)-2*E(57))-G(55,56)*(2*E(55)-2*E(56))-... 

    G(54,56)*(2*E(54)-2*E(56))+G(56,58)*(2*E(56)-2*E(58))+... 

    G(56,59)*(2*E(56)-2*E(59));... 

    G(56,57)*(2*F(56)-2*F(57))-G(55,56)*(2*F(55)-2*F(56))-... 

    G(54,56)*(2*F(54)-2*F(56))+G(56,58)*(2*F(56)-2*F(58))+... 

    G(56,59)*(2*F(56)-2*F(59));... 

    G(59,60)*(2*E(59)-2*E(60))-G(55,59)*(2*E(55)-2*E(59))-... 
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    G(56,59)*(2*E(56)-2*E(59))-G(54,59)*(2*E(54)-2*E(59))+... 

    G(59,61)*(2*E(59)-2*E(61))+G(59,63)*(2*E(59)-2*E(63));... 

    G(59,60)*(2*F(59)-2*F(60))-G(55,59)*(2*F(55)-2*F(59))-... 

    G(56,59)*(2*F(56)-2*F(59))-G(54,59)*(2*F(54)-2*F(59))+... 

    G(59,61)*(2*F(59)-2*F(61))+G(59,63)*(2*F(59)-2*F(63));... 

    G(61,62)*(2*E(61)-2*E(62))-G(60,61)*(2*E(60)-2*E(61))-... 

    G(59,61)*(2*E(59)-2*E(61))+G(61,64)*(2*E(61)-2*E(64));... 

    G(61,62)*(2*F(61)-2*F(62))-G(60,61)*(2*F(60)-2*F(61))-... 

    G(59,61)*(2*F(59)-2*F(61))+G(61,64)*(2*F(61)-2*F(64));... 

    G(62,66)*(2*E(62)-2*E(66))-G(61,62)*(2*E(61)-2*E(62))-... 

    G(60,62)*(2*E(60)-2*E(62))+G(62,67)*(2*E(62)-2*E(67));... 

    G(62,66)*(2*F(62)-2*F(66))-G(61,62)*(2*F(61)-2*F(62))-... 

    G(60,62)*(2*F(60)-2*F(62))+G(62,67)*(2*F(62)-2*F(67));... 

    G(65,66)*(2*E(65)-2*E(66))-G(64,65)*(2*E(64)-2*E(65))-... 

    G(38,65)*(2*E(38)-2*E(65))+G(65,68)*(2*E(65)-2*E(68));... 

    G(65,66)*(2*F(65)-2*F(66))-G(64,65)*(2*F(64)-2*F(65))-... 

    G(38,65)*(2*F(38)-2*F(65))+G(65,68)*(2*F(65)-2*F(68));... 

    G(66,67)*(2*E(66)-2*E(67))-G(62,66)*(2*E(62)-2*E(66))-... 

    G(65,66)*(2*E(65)-2*E(66))-G(49,66)*(2*E(49)-2*E(66));... 

    G(66,67)*(2*F(66)-2*F(67))-G(62,66)*(2*F(62)-2*F(66))-... 

    G(65,66)*(2*F(65)-2*F(66))-G(49,66)*(2*F(49)-2*F(66));... 

    G(69,70)*(2*E(69)-2*E(70))-G(49,69)*(2*E(49)-2*E(69))-... 

    G(68,69)*(2*E(68)-2*E(69))-G(47,69)*(2*E(47)-2*E(69))+... 

    G(69,75)*(2*E(69)-2*E(75))+G(69,77)*(2*E(69)-2*E(77));... 

    G(69,70)*(2*F(69)-2*F(70))-G(49,69)*(2*F(49)-2*F(69))-... 

    G(68,69)*(2*F(68)-2*F(69))-G(47,69)*(2*F(47)-2*F(69))+... 

    G(69,75)*(2*F(69)-2*F(75))+G(69,77)*(2*F(69)-2*F(77));... 

    G(70,71)*(2*E(70)-2*E(71))-G(69,70)*(2*E(69)-2*E(70))-... 

    G(24,70)*(2*E(24)-2*E(70))+G(70,74)*(2*E(70)-2*E(74))+... 

    G(70,75)*(2*E(70)-2*E(75));... 

    G(70,71)*(2*F(70)-2*F(71))-G(69,70)*(2*F(69)-2*F(70))-... 

    G(24,70)*(2*F(24)-2*F(70))+G(70,74)*(2*F(70)-2*F(74))+... 

    G(70,75)*(2*F(70)-2*F(75));... 

    - G(24,72)*(2*E(24)-2*E(72))-G(71,72)*(2*E(71)-2*E(72));... 

    - G(24,72)*(2*F(24)-2*F(72))-G(71,72)*(2*F(71)-2*F(72));... 

    -G(71,73)*(2*E(71)-2*E(73));... 

    -G(71,73)*(2*F(71)-2*F(73));... 

    G(74,75)*(2*E(74)-2*E(75))-G(70,74)*(2*E(70)-2*E(74));... 

    G(74,75)*(2*F(74)-2*F(75))-G(70,74)*(2*F(70)-2*F(74));... 

    G(76,77)*(2*E(76)-2*E(77))+G(76,118)*(2*E(76)-2*E(118));... 

    G(76,77)*(2*F(76)-2*F(77))+G(76,118)*(2*F(76)-2*F(118));... 

    G(77,78)*(2*E(77)-2*E(78))-G(75,77)*(2*E(75)-2*E(77))-... 

    G(76,77)*(2*E(76)-2*E(77))-G(69,77)*(2*E(69)-2*E(77))+... 

    G(77,80)*(2*E(77)-2*E(80))+G(77,82)*(2*E(77)-2*E(82));... 

    G(77,78)*(2*F(77)-2*F(78))-G(75,77)*(2*F(75)-2*F(77))-... 

    G(76,77)*(2*F(76)-2*F(77))-G(69,77)*(2*F(69)-2*F(77))+... 

    G(77,80)*(2*F(77)-2*F(80))+G(77,82)*(2*F(77)-2*F(82));... 

    G(80,81)*(2*E(80)-2*E(81))-G(79,80)*(2*E(79)-2*E(80))-... 

    G(77,80)*(2*E(77)-2*E(80))+G(80,96)*(2*E(80)-2*E(96))+... 

    G(80,97)*(2*E(80)-2*E(97))+G(80,98)*(2*E(80)-2*E(98))+... 

    G(80,99)*(2*E(80)-2*E(99));... 

    G(80,81)*(2*F(80)-2*F(81))-G(79,80)*(2*F(79)-2*F(80))-... 

    G(77,80)*(2*F(77)-2*F(80))+G(80,96)*(2*F(80)-2*F(96))+... 

    G(80,97)*(2*F(80)-2*F(97))+G(80,98)*(2*F(80)-2*F(98))+... 
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    G(80,99)*(2*F(80)-2*F(99));... 

    G(85,86)*(2*E(85)-2*E(86))-G(84,85)*(2*E(84)-2*E(85))-... 

    G(83,85)*(2*E(83)-2*E(85))+G(85,88)*(2*E(85)-2*E(88))+... 

    G(85,89)*(2*E(85)-2*E(89));... 

    G(85,86)*(2*F(85)-2*F(86))-G(84,85)*(2*F(84)-2*F(85))-... 

    G(83,85)*(2*F(83)-2*F(85))+G(85,88)*(2*F(85)-2*F(88))+... 

    G(85,89)*(2*F(85)-2*F(89));... 

    -G(86,87)*(2*E(86)-2*E(87));... 

    -G(86,87)*(2*F(86)-2*F(87));... 

    G(89,90)*(2*E(89)-2*E(90))-G(88,89)*(2*E(88)-2*E(89))-... 

    G(85,89)*(2*E(85)-2*E(89))+G(89,92)*(2*E(89)-2*E(92));... 

    G(89,90)*(2*F(89)-2*F(90))-G(88,89)*(2*F(88)-2*F(89))-... 

    G(85,89)*(2*F(85)-2*F(89))+G(89,92)*(2*F(89)-2*F(92));... 

    G(90,91)*(2*E(90)-2*E(91))-G(89,90)*(2*E(89)-2*E(90));... 

    G(90,91)*(2*F(90)-2*F(91))-G(89,90)*(2*F(89)-2*F(90));... 

    G(91,92)*(2*E(91)-2*E(92))-G(90,91)*(2*E(90)-2*E(91));... 

    G(91,92)*(2*F(91)-2*F(92))-G(90,91)*(2*F(90)-2*F(91));... 

    G(92,93)*(2*E(92)-2*E(93))-G(91,92)*(2*E(91)-2*E(92))-... 

    G(89,92)*(2*E(89)-2*E(92))+G(92,94)*(2*E(92)-2*E(94))+... 

    G(92,100)*(2*E(92)-2*E(100))+G(92,102)*(2*E(92)-2*E(102));... 

    G(92,93)*(2*F(92)-2*F(93))-G(91,92)*(2*F(91)-2*F(92))-... 

    G(89,92)*(2*F(89)-2*F(92))+G(92,94)*(2*F(92)-2*F(94))+... 

    G(92,100)*(2*F(92)-2*F(100))+G(92,102)*(2*F(92)-2*F(102));... 

    G(99,100)*(2*E(99)-2*E(100))-G(80,99)*(2*E(80)-2*E(99));... 

    G(99,100)*(2*F(99)-2*F(100))-G(80,99)*(2*F(80)-2*F(99));... 

    G(100,101)*(2*E(100)-2*E(101))-G(94,100)*(2*E(94)-2*E(100))-... 

    G(98,100)*(2*E(98)-2*E(100))-G(99,100)*(2*E(99)-2*E(100))-... 

    G(92,100)*(2*E(92)-2*E(100))+G(100,103)*(2*E(100)-2*E(103))+... 

    G(100,104)*(2*E(100)-2*E(104))+G(100,106)*(2*E(100)-2*E(106));... 

    G(100,101)*(2*F(100)-2*F(101))-G(94,100)*(2*F(94)-2*F(100))-... 

    G(98,100)*(2*F(98)-2*F(100))-G(99,100)*(2*F(99)-2*F(100))-... 

    G(92,100)*(2*F(92)-2*F(100))+G(100,103)*(2*F(100)-2*F(103))+... 

    G(100,104)*(2*F(100)-2*F(104))+G(100,106)*(2*F(100)-2*F(106));... 

    G(103,104)*(2*E(103)-2*E(104))-G(100,103)*(2*E(100)-2*E(103)) + ... 

    G(103,105)*(2*E(103)-2*E(105))+G(103,110)*(2*E(103)-2*E(110));... 

    G(103,104)*(2*F(103)-2*F(104))-G(100,103)*(2*F(100)-2*F(103)) + ... 

    G(103,105)*(2*F(103)-2*F(105))+G(103,110)*(2*F(103)-2*F(110));... 

    G(104,105)*(2*E(104)-2*E(105))-G(103,104)*(2*E(103)-2*E(104))-... 

    G(100,104)*(2*E(100)-2*E(104));... 

    G(104,105)*(2*F(104)-2*F(105))-G(103,104)*(2*F(103)-2*F(104))-... 

    G(100,104)*(2*F(100)-2*F(104));... 

    G(105,106)*(2*E(105)-2*E(106))-G(104,105)*(2*E(104)-2*E(105))-... 

    G(103,105)*(2*E(103)-2*E(105))+G(105,107)*(2*E(105)-2*E(107)) + ... 

    G(105,108)*(2*E(105)-2*E(108));... 

    G(105,106)*(2*F(105)-2*F(106))-G(104,105)*(2*F(104)-2*F(105))-... 

    G(103,105)*(2*F(103)-2*F(105))+G(105,107)*(2*F(105)-2*F(107))+... 

    G(105,108)*(2*F(105)-2*F(108));... 

    - G(105,107)*(2*E(105)-2*E(107))-G(106,107)*(2*E(106)-2*E(107));... 

    - G(105,107)*(2*F(105)-2*F(107))-G(106,107)*(2*F(106)-2*F(107));... 

    G(110,111)*(2*E(110)-2*E(111))-G(109,110)*(2*E(109)-2*E(110))-... 

    G(103,110)*(2*E(103)-2*E(110))+G(110,112)*(2*E(110)-2*E(112));... 

    G(110,111)*(2*F(110)-2*F(111))-G(109,110)*(2*F(109)-2*F(110))-... 

    G(103,110)*(2*F(103)-2*F(110))+G(110,112)*(2*F(110)-2*F(112));... 

    -G(110,111)*(2*E(110)-2*E(111));... 
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    -G(110,111)*(2*F(110)-2*F(111));... 

    -G(110,112)*(2*E(110)-2*E(112));... 

    -G(110,112)*(2*F(110)-2*F(112));... 

    - G(17,113)*(2*E(17)-2*E(113))-G(32,113)*(2*E(32)-2*E(113));... 

    - G(17,113)*(2*F(17)-2*F(113))-G(32,113)*(2*F(32)-2*F(113));... 

    -G(68,116)*(2*E(68)-2*E(116));... 

    -G(68,116)*(2*F(68)-2*F(116))]; 

 

B.27       Function that computes the Hessian of the objective function for the 118-

 bus system 

function d2f=d2f_118bus() 

global G 

 

d2f=zeros(107); 

 

d2f(1,1)=2*G(1,2) + 2*G(1,3); 

d2f(2,2)=2*G(4,5) + 2*G(4,11); 

d2f(3,3)=2*G(4,5) + 2*G(4,11); 

d2f(4,4)=2*G(5,6) + 2*G(6,7); 

d2f(5,5)=2*G(5,6) + 2*G(6,7); 

d2f(6,6)=2*G(5,8) + 2*G(8,9) + 2*G(8,30); 

d2f(7,7)=2*G(5,8) + 2*G(8,9) + 2*G(8,30); 

d2f(8,8)=2*G(9,10); 

d2f(9,9)=2*G(9,10); 

d2f(10,10)=2*G(11,12) + 2*G(12,14) + 2*G(12,16)+... 

    2*G(12,117) + 2*G(2,12) + 2*G(3,12) + 2*G(7,12); 

d2f(11,11)=2*G(11,12) + 2*G(12,14) + 2*G(12,16) + 2*G(12,117) + 2*G(2,12) + 

2*G(3,12) + 2*G(7,12); 

d2f(12,12)=2*G(13,15) + 2*G(14,15) + 2*G(15,17) + 2*G(15,19) + 2*G(15,33); 

d2f(12,16)=-2*G(15,19); 

d2f(13,13)=2*G(13,15) + 2*G(14,15) + 2*G(15,17) + 2*G(15,19) + 2*G(15,33); 

d2f(13,17)=-2*G(15,19); 

d2f(14,14)=2*G(17,18) + 2*G(18,19); 

d2f(14,16)=-2*G(18,19); 

d2f(15,15)=2*G(17,18) + 2*G(18,19); 

d2f(15,17)=-2*G(18,19); 

d2f(16,12)=-2*G(15,19); 

d2f(16,14)=-2*G(18,19); 

d2f(16,16)=2*G(15,19) + 2*G(18,19) + 2*G(19,20) + 2*G(19,34); 

d2f(16,30)=-2*G(19,34); 

d2f(17,13)=-2*G(15,19); 

d2f(17,15)=-2*G(18,19); 

d2f(17,17)=2*G(15,19) + 2*G(18,19) + 2*G(19,20) + 2*G(19,34); 

d2f(17,31)=-2*G(19,34); 

d2f(18,18)=2*G(23,24) + 2*G(24,70) + 2*G(24,72); 

d2f(18,60)=-2*G(24,70); 

d2f(18,62)=-2*G(24,72); 

d2f(19,19)=2*G(23,24) + 2*G(24,70) + 2*G(24,72); 

d2f(19,61)=-2*G(24,70); 

d2f(19,63)=-2*G(24,72); 

d2f(20,20)=2*G(23,25) + 2*G(25,26) + 2*G(25,27); 
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d2f(20,22)=-2*G(25,26); 

d2f(20,24)=-2*G(25,27); 

d2f(21,21)=2*G(23,25) + 2*G(25,26) + 2*G(25,27); 

d2f(21,23)=-2*G(25,26); 

d2f(21,25)=-2*G(25,27); 

d2f(22,20)=-2*G(25,26); 

d2f(22,22)=2*G(25,26) + 2*G(26,30); 

d2f(23,21)=-2*G(25,26); 

d2f(23,23)=2*G(25,26) + 2*G(26,30); 

d2f(24,20)=-2*G(25,27); 

d2f(24,24)=2*G(25,27) + 2*G(27,28) + 2*G(27,32) + 2*G(27,115); 

d2f(24,28)=-2*G(27,32); 

d2f(25,21)=-2*G(25,27); 

d2f(25,25)=2*G(25,27) + 2*G(27,28) + 2*G(27,32) + 2*G(27,115); 

d2f(25,29)=-2*G(27,32); 

d2f(26,26)=2*G(17,31) + 2*G(29,31) + 2*G(31,32); 

d2f(26,28)=-2*G(31,32); 

d2f(27,27)=2*G(17,31) + 2*G(29,31) + 2*G(31,32); 

d2f(27,29)=-2*G(31,32); 

d2f(28,24)=-2*G(27,32); 

d2f(28,26)=-2*G(31,32); 

d2f(28,28)=2*G(23,32) + 2*G(27,32) + 2*G(31,32) + 2*G(32,113) + 2*G(32,114); 

d2f(28,104)=-2*G(32,113); 

d2f(29,25)=-2*G(27,32); 

d2f(29,27)=-2*G(31,32); 

d2f(29,29)=2*G(23,32) + 2*G(27,32) + 2*G(31,32) + 2*G(32,113) + 2*G(32,114); 

d2f(29,105)=-2*G(32,113); 

d2f(30,16)=-2*G(19,34); 

d2f(30,30)=2*G(19,34) + 2*G(34,36) + 2*G(34,37) + 2*G(34,43); 

d2f(30,32)=-2*G(34,36); 

d2f(31,17)=-2*G(19,34); 

d2f(31,31)=2*G(19,34) + 2*G(34,36) + 2*G(34,37) + 2*G(34,43); 

d2f(31,33)=-2*G(34,36); 

d2f(32,30)=-2*G(34,36); 

d2f(32,32)=2*G(34,36) + 2*G(35,36); 

d2f(33,31)=-2*G(34,36); 

d2f(33,33)=2*G(34,36) + 2*G(35,3); 

d2f(34,34)=2*G(37,40) + 2*G(39,40) + 2*G(40,41) + 2*G(40,42); 

d2f(34,36)=-2*G(40,42); 

d2f(35,35)=2*G(37,40) + 2*G(39,40) + 2*G(40,41) + 2*G(40,42); 

d2f(35,37)=-2*G(40,42); 

d2f(36,34)=-2*G(40,42); 

d2f(36,36)=2*G(40,42) + 2*G(41,42) + 2*G(42,49); 

d2f(36,40)=-2*G(42,49); 

d2f(37,35)=-2*G(40,42); 

d2f(37,37)=2*G(40,42) + 2*G(41,42) + 2*G(42,49); 

d2f(37,41)=-2*G(42,49); 

d2f(38,38)=2*G(45,46) + 2*G(46,47) + 2*G(46,48); 

d2f(39,39)=2*G(45,46) + 2*G(46,47) + 2*G(46,48); 

d2f(40,36)=-2*G(42,49); 

d2f(40,40)=2*G(42,49) + 2*G(45,49) + 2*G(47,49) + ... 

    2*G(48,49) + 2*G(49,50) + 2*G(49,51) + 2*G(49,54) + ... 

    2*G(49,66) + 2*G(49,69); 

d2f(40,42)=-2*G(49,54); 
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d2f(40,56)=-2*G(49,66); 

d2f(40,58)=-2*G(49,69); 

d2f(41,37)=-2*G(42,49); 

d2f(41,41)=2*G(42,49) + 2*G(45,49) + 2*G(47,49) + ... 

    2*G(48,49) + 2*G(49,50) + 2*G(49,51) + 2*G(49,54) + ... 

    2*G(49,66) + 2*G(49,69); 

d2f(41,43)=-2*G(49,54); 

d2f(41,57)=-2*G(49,66); 

d2f(41,59)=-2*G(49,69); 

d2f(42,40)=-2*G(49,54); 

d2f(42,42)=2*G(49,54) + 2*G(53,54) + 2*G(54,55) + 2*G(54,56) + 2*G(54,59); 

d2f(42,44)=-2*G(54,55); 

d2f(42,46)=-2*G(54,56); 

d2f(42,48)=-2*G(54,59); 

d2f(43,41)=-2*G(49,54); 

d2f(43,43)=2*G(49,54) + 2*G(53,54) + 2*G(54,55) + 2*G(54,56) + 2*G(54,59); 

d2f(43,45)=-2*G(54,55); 

d2f(43,47)=-2*G(54,56); 

d2f(43,49)=-2*G(54,59); 

d2f(44,42)=-2*G(54,55); 

d2f(44,44)=2*G(54,55) + 2*G(55,56) + 2*G(55,59); 

d2f(44,46)=-2*G(55,56); 

d2f(44,48)=-2*G(55,59); 

d2f(45,43)=-2*G(54,55); 

d2f(45,45)=2*G(54,55) + 2*G(55,56) + 2*G(55,59); 

d2f(45,47)=-2*G(55,56); 

d2f(45,49)=-2*G(55,59); 

d2f(46,42)=-2*G(54,56); 

d2f(46,44)=-2*G(55,56); 

d2f(46,46)=2*G(54,56) + 2*G(55,56) + 2*G(56,57) + 2*G(56,58) + 2*G(56,59); 

d2f(46,48)=-2*G(56,59); 

d2f(47,43)=-2*G(54,56); 

d2f(47,45)=-2*G(55,56); 

d2f(47,47)=2*G(54,56) + 2*G(55,56) + 2*G(56,57) + 2*G(56,58) + 2*G(56,59); 

d2f(47,49)=-2*G(56,59); 

d2f(48,42)=-2*G(54,59); 

d2f(48,44)=-2*G(55,59); 

d2f(48,46)=-2*G(56,59); 

d2f(48,48)=2*G(54,59) + 2*G(55,59) + 2*G(56,59) + 2*G(59,60) + 2*G(59,61) + 

2*G(59,63); 

d2f(48,50)=-2*G(59,61); 

d2f(49,43)=-2*G(54,59); 

d2f(49,45)=-2*G(55,59); 

d2f(49,47)=-2*G(56,59); 

d2f(49,49)=2*G(54,59) + 2*G(55,59) + 2*G(56,59) + 2*G(59,60) + 2*G(59,61) + 

2*G(59,63); 

d2f(49,51)=-2*G(59,61); 

d2f(50,48)=-2*G(59,61); 

d2f(50,50)=2*G(59,61) + 2*G(60,61) + 2*G(61,62) + 2*G(61,64); 

d2f(50,52)=-2*G(61,62); 

d2f(51,49)=-2*G(59,61); 

d2f(51,51)=2*G(59,61) + 2*G(60,61) + 2*G(61,62) + 2*G(61,64); 

d2f(51,53)=-2*G(61,62); 

d2f(52,50)=-2*G(61,62); 
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d2f(52,52)=2*G(60,62) + 2*G(61,62) + 2*G(62,66) + 2*G(62,67); 

d2f(52,56)=-2*G(62,66); 

d2f(53,51)=-2*G(61,62); 

d2f(53,53)=2*G(60,62) + 2*G(61,62) + 2*G(62,66) + 2*G(62,67); 

d2f(53,57)=-2*G(62,66); 

d2f(54,54)=2*G(38,65) + 2*G(64,65) + 2*G(65,66) + 2*G(65,68); 

d2f(54,56)=-2*G(65,66); 

d2f(55,55)=2*G(38,65) + 2*G(64,65) + 2*G(65,66) + 2*G(65,68); 

d2f(55,57)=-2*G(65,66); 

d2f(56,40)=-2*G(49,66); 

d2f(56,52)=-2*G(62,66); 

d2f(56,54)=-2*G(65,66); 

d2f(56,56)=2*G(49,66) + 2*G(62,66) + 2*G(65,66) + 2*G(66,67); 

d2f(57,41)=-2*G(49,66); 

d2f(57,53)=-2*G(62,66); 

d2f(57,55)=-2*G(65,66); 

d2f(57,57)=2*G(49,66) + 2*G(62,66) + 2*G(65,66) + 2*G(66,67); 

d2f(58,40)=-2*G(49,69); 

d2f(58,58)=2*G(47,69) + 2*G(49,69) + 2*G(68,69) + 2*G(69,70) + 2*G(69,75) + 

2*G(69,77); 

d2f(58,60)=-2*G(69,70); 

d2f(58,70)=-2*G(69,77); 

d2f(59,41)=-2*G(49,69); 

d2f(59,59)=2*G(47,69) + 2*G(49,69) + 2*G(68,69) + 2*G(69,70) + 2*G(69,75) + 

2*G(69,77); 

d2f(59,61)=-2*G(69,70); 

d2f(59,71)=-2*G(69,77); 

d2f(60,18)=-2*G(24,70); 

d2f(60,58)=-2*G(69,70); 

d2f(60,60)=2*G(24,70) + 2*G(69,70) + 2*G(70,71) + 2*G(70,74) + 2*G(70,75); 

d2f(60,66)=-2*G(70,74); 

d2f(61,19)=-2*G(24,70); 

d2f(61,59)=-2*G(69,70); 

d2f(61,61)=2*G(24,70) + 2*G(69,70) + 2*G(70,71) + 2*G(70,74) + 2*G(70,75); 

d2f(61,67)=-2*G(70,74); 

d2f(62,18)=-2*G(24,72); 

d2f(62,62)=2*G(24,72) + 2*G(71,72); 

d2f(63,19)=-2*G(24,72); 

d2f(63,63)=2*G(24,72) + 2*G(71,72); 

d2f(64,64)=2*G(71,73); 

d2f(65,65)=2*G(71,73); 

d2f(66,60)=-2*G(70,74); 

d2f(66,66)=2*G(70,74) + 2*G(74,75); 

d2f(67,61)=-2*G(70,74); 

d2f(67,67)=2*G(70,74) + 2*G(74,75); 

d2f(68,68)=2*G(76,77) + 2*G(76,118); 

d2f(68,70)=-2*G(76,77); 

d2f(69,69)=2*G(76,77) + 2*G(76,118); 

d2f(69,71)=-2*G(76,77); 

d2f(70,58)=-2*G(69,77); 

d2f(70,68)=-2*G(76,77); 

d2f(70,70)=2*G(69,77) + 2*G(75,77) + ... 

    2*G(76,77) + 2*G(77,78) + 2*G(77,80) + 2*G(77,82); 

d2f(70,72)=-2*G(77,80); 
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d2f(71,59)=-2*G(69,77); 

d2f(71,69)=-2*G(76,77); 

d2f(71,71)=2*G(69,77) + 2*G(75,77) + 2*G(76,77) + ... 

    2*G(77,78) + 2*G(77,80) + 2*G(77,82); 

d2f(71,73)=-2*G(77,80); 

d2f(72,70)=-2*G(77,80); 

d2f(72,72)=2*G(77,80) + 2*G(79,80) + 2*G(80,81) + ... 

    2*G(80,96) + 2*G(80,97) + 2*G(80,98) + 2*G(80,99); 

d2f(72,86)=-2*G(80,99); 

d2f(73,71)=-2*G(77,80); 

d2f(73,73)=2*G(77,80) + 2*G(79,80) + 2*G(80,81) + 2*G(80,96) + 2*G(80,97) + 

2*G(80,98) + 2*G(80,99); 

d2f(73,87)=-2*G(80,99); 

d2f(74,74)=2*G(83,85) + 2*G(84,85) + 2*G(85,86) + 2*G(85,88) + 2*G(85,89); 

d2f(74,78)=-2*G(85,89); 

d2f(75,75)=2*G(83,85) + 2*G(84,85) + 2*G(85,86) + 2*G(85,88) + 2*G(85,89); 

d2f(75,79)=-2*G(85,89); 

d2f(76,76)=2*G(86,87); 

d2f(77,77)=2*G(86,87); 

d2f(78,74)=-2*G(85,89); 

d2f(78,78)=2*G(85,89) + 2*G(88,89) + 2*G(89,90) + 2*G(89,92); 

d2f(78,80)=-2*G(89,90); 

d2f(78,84)=-2*G(89,92); 

d2f(79,75)=-2*G(85,89); 

d2f(79,79)=2*G(85,89) + 2*G(88,89) + 2*G(89,90) + 2*G(89,92); 

d2f(79,81)=-2*G(89,90); 

d2f(79,85)=-2*G(89,92); 

d2f(80,78)=-2*G(89,90); 

d2f(80,80)=2*G(89,90) + 2*G(90,91); 

d2f(80,82)=-2*G(90,91); 

d2f(81,79)=-2*G(89,90); 

d2f(81,81)=2*G(89,90) + 2*G(90,91); 

d2f(81,83)=-2*G(90,91); 

d2f(82,80)=-2*G(90,91); 

d2f(82,82)=2*G(90,91) + 2*G(91,92); 

d2f(82,84)=-2*G(91,92); 

d2f(83,81)=-2*G(90,91); 

d2f(83,83)=2*G(90,91) + 2*G(91,92); 

d2f(83,85)=-2*G(91,92); 

d2f(84,78)=-2*G(89,92); 

d2f(84,82)=-2*G(91,92); 

d2f(84,84)=2*G(89,92) + 2*G(91,92) + 2*G(92,93) + 2*G(92,94) + ... 

    2*G(92,100) + 2*G(92,102); 

d2f(84,88)=-2*G(92,100); 

d2f(85,79)=-2*G(89,92); 

d2f(85,83)=-2*G(91,92); 

d2f(85,85)=2*G(89,92) + 2*G(91,92) + 2*G(92,93) + 2*G(92,94) + ... 

    2*G(92,100) + 2*G(92,102); 

d2f(85,89)=-2*G(92,100); 

d2f(86,72)=-2*G(80,99); 

d2f(86,86)=2*G(80,99) + 2*G(99,100); 

d2f(86,88)=-2*G(99,100); 

d2f(87,73)=-2*G(80,99); 

d2f(87,87)=2*G(80,99) + 2*G(99,100); 
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d2f(87,89)=-2*G(99,100); 

d2f(88,84)=-2*G(92,100); 

d2f(88,86)=-2*G(99,100); 

d2f(88,88)=2*G(92,100) + 2*G(94,100) + 2*G(98,100) + 2*G(99,100) + ... 

    2*G(100,101) + 2*G(100,103) + 2*G(100,104) + 2*G(100,106); 

d2f(88,90)=-2*G(100,103); 

d2f(88,92)=-2*G(100,104); 

d2f(89,85)=-2*G(92,100); 

d2f(89,87)=-2*G(99,100); 

d2f(89,89)=2*G(92,100) + 2*G(94,100) + 2*G(98,100) + 2*G(99,100) + ... 

    2*G(100,101) + 2*G(100,103) + 2*G(100,104) + 2*G(100,106); 

d2f(89,91)=-2*G(100,103); 

d2f(89,93)=-2*G(100,104); 

d2f(90,88)=-2*G(100,103); 

d2f(90,90)=2*G(100,103) + 2*G(103,104) + 2*G(103,105) + 2*G(103,110); 

d2f(90,92)=-2*G(103,104); 

d2f(90,94)=-2*G(103,105); 

d2f(90,98)=-2*G(103,110); 

d2f(91,89)=-2*G(100,103); 

d2f(91,91)=2*G(100,103) + 2*G(103,104) + 2*G(103,105) + 2*G(103,110); 

d2f(91,93)=-2*G(103,104); 

d2f(91,95)=-2*G(103,105); 

d2f(91,99)=-2*G(103,110); 

d2f(92,88)=-2*G(100,104); 

d2f(92,90)=-2*G(103,104); 

d2f(92,92)=2*G(100,104) + 2*G(103,104) + 2*G(104,105); 

d2f(92,94)=-2*G(104,105); 

d2f(93,89)=-2*G(100,104); 

d2f(93,91)=-2*G(103,104); 

d2f(93,93)=2*G(100,104) + 2*G(103,104) + 2*G(104,105); 

d2f(93,95)=-2*G(104,105); 

d2f(94,90)=-2*G(103,105); 

d2f(94,92)=-2*G(104,105); 

d2f(94,94)=2*G(103,105) + 2*G(104,105) + 2*G(105,106) + ... 

    2*G(105,107) + 2*G(105,108); 

d2f(94,96)=-2*G(105,107); 

d2f(95,91)=-2*G(103,105); 

d2f(95,93)=-2*G(104,105); 

d2f(95,95)=2*G(103,105) + 2*G(104,105) + 2*G(105,106) + 2*G(105,107) + 

2*G(105,108); 

d2f(95,97)=-2*G(105,107); 

d2f(96,94)=-2*G(105,107); 

d2f(96,96)=2*G(105,107) + 2*G(106,107); 

d2f(97,95)=-2*G(105,107); 

d2f(97,97)=2*G(105,107) + 2*G(106,107); 

d2f(98,90)=-2*G(103,110); 

d2f(98,98)=2*G(103,110) + 2*G(109,110) + 2*G(110,111) + 2*G(110,112); 

d2f(98,100)=-2*G(110,111); 

d2f(98,102)=-2*G(110,112); 

d2f(99,91)=-2*G(103,110); 

d2f(99,99)=2*G(103,110) + 2*G(109,110) + 2*G(110,111) + 2*G(110,112); 

d2f(99,101)=-2*G(110,111); 

d2f(99,103)=-2*G(110,112); 

d2f(100,98)=-2*G(110,111); 
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d2f(100,100)=2*G(110,111); 

d2f(101,99)=-2*G(110,111); 

d2f(101,101)=2*G(110,111); 

d2f(102,98)=-2*G(110,112); 

d2f(102,102)=2*G(110,112); 

d2f(103,99)=-2*G(110,112); 

d2f(103,103)=2*G(110,112); 

d2f(104,28)=-2*G(32,113); 

d2f(104,104)=2*G(17,113) + 2*G(32,113); 

d2f(105,29)=-2*G(32,113); 

d2f(105,105)=2*G(17,113) + 2*G(32,113); 

d2f(106,106)=2*G(68,116); 

d2f(107,107)=2*G(68,116); 

 

B.28       Function that defines the constraint functions for the 118-bus system 

function h=h_118bus(x) 

global E F nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

 

% update generator voltage vector components 

% in E, F from input control vector x: 

update_generator_voltages(x); 

 

% Define inequality constraints h(x): 

h=zeros(2*nbus,1); 

k=1; 

for i=1:nbus 

    h(k)=-(E(i)^2+F(i)^2)+Vmsq; 

    h(k+1)=E(i)^2+F(i)^2-VMsq; 

    k=k+2; 

end 

 

B.29       Function that computes the Jacobian of the constraint functions for the 

 118-bus system 

function dh=dh_118bus() 

global E F nbus 

 

dh=zeros(2*nbus, 107); 

 

dh(1,1)=-2*E(1); 

dh(2,1)=2*E(1); 

dh(7,2)=-2*E(4); 

dh(7,3)=-2*F(4); 

dh(8,2)=2*E(4); 

dh(8,3)=2*F(4); 

dh(11,4)=-2*E(6); 

dh(11,5)=-2*F(6); 
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dh(12,4)=2*E(6); 

dh(12,5)=2*F(6); 

dh(15,6)=-2*E(8); 

dh(15,7)=-2*F(8); 

dh(16,6)=2*E(8); 

dh(16,7)=2*F(8); 

dh(19,8)=-2*E(10); 

dh(19,9)=-2*F(10); 

dh(20,8)=2*E(10); 

dh(20,9)=2*F(10); 

dh(23,10)=-2*E(12); 

dh(23,11)=-2*F(12); 

dh(24,10)=2*E(12); 

dh(24,11)=2*F(12); 

dh(29,12)=-2*E(15); 

dh(29,13)=-2*F(15); 

dh(30,12)=2*E(15); 

dh(30,13)=2*F(15); 

dh(35,14)=-2*E(18); 

dh(35,15)=-2*F(18); 

dh(36,14)=2*E(18); 

dh(36,15)=2*F(18); 

dh(37,16)=-2*E(19); 

dh(37,17)=-2*F(19); 

dh(38,16)=2*E(19); 

dh(38,17)=2*F(19); 

dh(47,18)=-2*E(24); 

dh(47,19)=-2*F(24); 

dh(48,18)=2*E(24); 

dh(48,19)=2*F(24); 

dh(49,20)=-2*E(25); 

dh(49,21)=-2*F(25); 

dh(50,20)=2*E(25); 

dh(50,21)=2*F(25); 

dh(51,22)=-2*E(26); 

dh(51,23)=-2*F(26); 

dh(52,22)=2*E(26); 

dh(52,23)=2*F(26); 

dh(53,24)=-2*E(27); 

dh(53,25)=-2*F(27); 

dh(54,24)=2*E(27); 

dh(54,25)=2*F(27); 

dh(61,26)=-2*E(31); 

dh(61,27)=-2*F(31); 

dh(62,26)=2*E(31); 

dh(62,27)=2*F(31); 

dh(63,28)=-2*E(32); 

dh(63,29)=-2*F(32); 

dh(64,28)=2*E(32); 

dh(64,29)=2*F(32); 

dh(67,30)=-2*E(34); 

dh(67,31)=-2*F(34); 

dh(68,30)=2*E(34); 

dh(68,31)=2*F(34); 
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dh(71,32)=-2*E(36); 

dh(71,33)=-2*F(36); 

dh(72,32)=2*E(36); 

dh(72,33)=2*F(36); 

dh(79,34)=-2*E(40); 

dh(79,35)=-2*F(40); 

dh(80,34)=2*E(40); 

dh(80,35)=2*F(40); 

dh(83,36)=-2*E(42); 

dh(83,37)=-2*F(42); 

dh(84,36)=2*E(42); 

dh(84,37)=2*F(42); 

dh(91,38)=-2*E(46); 

dh(91,39)=-2*F(46); 

dh(92,38)=2*E(46); 

dh(92,39)=2*F(46); 

dh(97,40)=-2*E(49); 

dh(97,41)=-2*F(49); 

dh(98,40)=2*E(49); 

dh(98,41)=2*F(49); 

dh(107,42)=-2*E(54); 

dh(107,43)=-2*F(54); 

dh(108,42)=2*E(54); 

dh(108,43)=2*F(54); 

dh(109,44)=-2*E(55); 

dh(109,45)=-2*F(55); 

dh(110,44)=2*E(55); 

dh(110,45)=2*F(55); 

dh(111,46)=-2*E(56); 

dh(111,47)=-2*F(56); 

dh(112,46)=2*E(56); 

dh(112,47)=2*F(56); 

dh(117,48)=-2*E(59); 

dh(117,49)=-2*F(59); 

dh(118,48)=2*E(59); 

dh(118,49)=2*F(59); 

dh(121,50)=-2*E(61); 

dh(121,51)=-2*F(61); 

dh(122,50)=2*E(61); 

dh(122,51)=2*F(61); 

dh(123,52)=-2*E(62); 

dh(123,53)=-2*F(62); 

dh(124,52)=2*E(62); 

dh(124,53)=2*F(62); 

dh(129,54)=-2*E(65); 

dh(129,55)=-2*F(65); 

dh(130,54)=2*E(65); 

dh(130,55)=2*F(65); 

dh(131,56)=-2*E(66); 

dh(131,57)=-2*F(66); 

dh(132,56)=2*E(66); 

dh(132,57)=2*F(66); 

dh(137,58)=-2*E(69); 

dh(137,59)=-2*F(69); 
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dh(138,58)=2*E(69); 

dh(138,59)=2*F(69); 

dh(139,60)=-2*E(70); 

dh(139,61)=-2*F(70); 

dh(140,60)=2*E(70); 

dh(140,61)=2*F(70); 

dh(143,62)=-2*E(72); 

dh(143,63)=-2*F(72); 

dh(144,62)=2*E(72); 

dh(144,63)=2*F(72); 

dh(145,64)=-2*E(73); 

dh(145,65)=-2*F(73); 

dh(146,64)=2*E(73); 

dh(146,65)=2*F(73); 

dh(147,66)=-2*E(74); 

dh(147,67)=-2*F(74); 

dh(148,66)=2*E(74); 

dh(148,67)=2*F(74); 

dh(151,68)=-2*E(76); 

dh(151,69)=-2*F(76); 

dh(152,68)=2*E(76); 

dh(152,69)=2*F(76); 

dh(153,70)=-2*E(77); 

dh(153,71)=-2*F(77); 

dh(154,70)=2*E(77); 

dh(154,71)=2*F(77); 

dh(159,72)=-2*E(80); 

dh(159,73)=-2*F(80); 

dh(160,72)=2*E(80); 

dh(160,73)=2*F(80); 

dh(169,74)=-2*E(85); 

dh(169,75)=-2*F(85); 

dh(170,74)=2*E(85); 

dh(170,75)=2*F(85); 

dh(173,76)=-2*E(87); 

dh(173,77)=-2*F(87); 

dh(174,76)=2*E(87); 

dh(174,77)=2*F(87); 

dh(177,78)=-2*E(89); 

dh(177,79)=-2*F(89); 

dh(178,78)=2*E(89); 

dh(178,79)=2*F(89); 

dh(179,80)=-2*E(90); 

dh(179,81)=-2*F(90); 

dh(180,80)=2*E(90); 

dh(180,81)=2*F(90); 

dh(181,82)=-2*E(91); 

dh(181,83)=-2*F(91); 

dh(182,82)=2*E(91); 

dh(182,83)=2*F(91); 

dh(18384)=-2*E(92); 

dh(183,85)=-2*F(92); 

dh(184,84)=2*E(92); 

dh(184,85)=2*F(92); 
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dh(197,86)=-2*E(99); 

dh(197,87)=-2*F(99); 

dh(198,86)=2*E(99); 

dh(198,87)=2*F(99); 

dh(199,88)=-2*E(100); 

dh(199,89)=-2*F(100); 

dh(200,88)=2*E(100); 

dh(200,89)=2*F(100); 

dh(205,90)=-2*E(103); 

dh(205,91)=-2*F(103); 

dh(206,90)=2*E(103); 

dh(206,91)=2*F(103); 

dh(207,92)=-2*E(104); 

dh(207,93)=-2*F(104); 

dh(208,92)=2*E(104); 

dh(208,93)=2*F(104); 

dh(209,94)=-2*E(105); 

dh(209,95)=-2*F(105); 

dh(210,94)=2*E(105); 

dh(210,95)=2*F(105); 

dh(213,96)=-2*E(107); 

dh(213,97)=-2*F(107); 

dh(214,96)=2*E(107); 

dh(214,97)=2*F(107); 

dh(219,98)=-2*E(110); 

dh(219,99)=-2*F(110); 

dh(220,98)=2*E(110); 

dh(220,99)=2*F(110); 

dh(221,100)=-2*E(111); 

dh(221,101)=-2*F(111); 

dh(222,100)=2*E(111); 

dh(222,101)=2*F(111); 

dh(223,102)=-2*E(112); 

dh(223,103)=-2*F(112); 

dh(224,102)=2*E(112); 

dh(224,103)=2*F(112); 

dh(225,104)=-2*E(113); 

dh(225,105)=-2*F(113); 

dh(226,104)=2*E(113); 

dh(226,105)=2*F(113); 

dh(231,106)=-2*E(116); 

dh(231,107)=-2*F(116); 

dh(232,106)=2*E(116); 

dh(232,107)=2*F(116); 

B.30       Function that computes the Hessian of the constraint functions for the 118-

 bus system 

function d2ht_lami=d2ht_lami_118bus(lam_i) 

 

d2ht_lami=2*zeros(107); 

 

d2ht_lami(1,1)=lam_i(2)-lam_i(1); 

d2ht_lami(2,2)=lam_i(8)-lam_i(7); 



257 
 

d2ht_lami(3,3)=lam_i(8)-lam_i(7); 

d2ht_lami(4,4)=lam_i(12)-lam_i(11); 

d2ht_lami(5,5)=lam_i(12)-lam_i(11); 

d2ht_lami(6,6)=lam_i(16)-lam_i(15); 

d2ht_lami(7,7)=lam_i(16)-lam_i(15); 

d2ht_lami(8,8)=lam_i(20)-lam_i(19); 

d2ht_lami(9,9)=lam_i(20)-lam_i(19); 

d2ht_lami(10,10)=lam_i(24)-lam_i(23); 

d2ht_lami(11,11)=lam_i(24)-lam_i(23); 

d2ht_lami(12,12)=lam_i(30)-lam_i(29); 

d2ht_lami(13,13)=lam_i(30)-lam_i(29); 

d2ht_lami(14,14)=lam_i(36)-lam_i(35); 

d2ht_lami(15,15)=lam_i(36)-lam_i(35); 

d2ht_lami(16,16)=lam_i(38)-lam_i(37); 

d2ht_lami(17,17)=lam_i(38)-lam_i(37); 

d2ht_lami(18,18)=lam_i(48)-lam_i(47); 

d2ht_lami(19,19)=lam_i(48)-lam_i(47); 

d2ht_lami(20,20)=lam_i(50)-lam_i(49); 

d2ht_lami(21,21)=lam_i(50)-lam_i(49); 

d2ht_lami(22,22)=lam_i(52)-lam_i(51); 

d2ht_lami(23,23)=lam_i(52)-lam_i(51); 

d2ht_lami(24,24)=lam_i(54)-lam_i(53); 

d2ht_lami(25,25)=lam_i(54)-lam_i(53); 

d2ht_lami(26,26)=lam_i(62)-lam_i(61); 

d2ht_lami(27,27)=lam_i(62)-lam_i(61); 

d2ht_lami(28,28)=lam_i(64)-lam_i(63); 

d2ht_lami(29,29)=lam_i(64)-lam_i(63); 

d2ht_lami(30,30)=lam_i(68)-lam_i(67); 

d2ht_lami(31,31)=lam_i(68)-lam_i(67); 

d2ht_lami(32,32)=lam_i(72)-lam_i(71); 

d2ht_lami(33,33)=lam_i(72)-lam_i(71); 

d2ht_lami(34,34)=lam_i(80)-lam_i(79); 

d2ht_lami(35,35)=lam_i(80)-lam_i(79); 

d2ht_lami(36,36)=lam_i(84)-lam_i(83); 

d2ht_lami(37,37)=lam_i(84)-lam_i(83); 

d2ht_lami(38,38)=lam_i(92)-lam_i(91); 

d2ht_lami(39,39)=lam_i(92)-lam_i(91); 

d2ht_lami(40,40)=lam_i(98)-lam_i(97); 

d2ht_lami(41,41)=lam_i(98)-lam_i(97); 

d2ht_lami(42,42)=lam_i(108)-lam_i(107); 

d2ht_lami(43,43)=lam_i(108)-lam_i(107); 

d2ht_lami(44,44)=lam_i(110)-lam_i(109); 

d2ht_lami(45,45)=lam_i(110)-lam_i(109); 

d2ht_lami(46,46)=lam_i(112)-lam_i(111); 

d2ht_lami(47,47)=lam_i(112)-lam_i(111); 

d2ht_lami(48,48)=lam_i(118)-lam_i(117); 

d2ht_lami(49,49)=lam_i(118)-lam_i(117); 

d2ht_lami(50,50)=lam_i(122)-lam_i(121); 

d2ht_lami(51,51)=lam_i(122)-lam_i(121); 

d2ht_lami(52,52)=lam_i(124)-lam_i(123); 

d2ht_lami(53,53)=lam_i(124)-lam_i(123); 

d2ht_lami(54,54)=lam_i(130)-lam_i(129); 

d2ht_lami(55,55)=lam_i(130)-lam_i(129); 

d2ht_lami(56,56)=lam_i(132)-lam_i(131); 
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d2ht_lami(57,57)=lam_i(132)-lam_i(131); 

d2ht_lami(58,58)=lam_i(138)-lam_i(137); 

d2ht_lami(59,59)=lam_i(138)-lam_i(137); 

d2ht_lami(60,60)=lam_i(140)-lam_i(139); 

d2ht_lami(61,61)=lam_i(140)-lam_i(139); 

d2ht_lami(62,62)=lam_i(144)-lam_i(143); 

d2ht_lami(63,63)=lam_i(144)-lam_i(143); 

d2ht_lami(64,64)=lam_i(146)-lam_i(145); 

d2ht_lami(65,65)=lam_i(146)-lam_i(145); 

d2ht_lami(66,66)=lam_i(148)-lam_i(147); 

d2ht_lami(67,67)=lam_i(148)-lam_i(147); 

d2ht_lami(68,68)=lam_i(152)-lam_i(151); 

d2ht_lami(69,69)=lam_i(152)-lam_i(151); 

d2ht_lami(70,70)=lam_i(154)-lam_i(153); 

d2ht_lami(71,71)=lam_i(154)-lam_i(153); 

d2ht_lami(72,72)=lam_i(160)-lam_i(159); 

d2ht_lami(73,73)=lam_i(160)-lam_i(159); 

d2ht_lami(74,74)=lam_i(170)-lam_i(169); 

d2ht_lami(75,75)=lam_i(170)-lam_i(169); 

d2ht_lami(76,76)=lam_i(174)-lam_i(173); 

d2ht_lami(77,77)=lam_i(174)-lam_i(173); 

d2ht_lami(78,78)=lam_i(178)-lam_i(177); 

d2ht_lami(79,79)=lam_i(178)-lam_i(177); 

d2ht_lami(80,80)=lam_i(180)-lam_i(179); 

d2ht_lami(81,81)=lam_i(180)-lam_i(179); 

d2ht_lami(82,82)=lam_i(182)-lam_i(181); 

d2ht_lami(83,83)=lam_i(182)-lam_i(181); 

d2ht_lami(84,84)=lam_i(184)-lam_i(183); 

d2ht_lami(85,85)=lam_i(184)-lam_i(183); 

d2ht_lami(86,86)=lam_i(198)-lam_i(197); 

d2ht_lami(87,87)=lam_i(198)-lam_i(197); 

d2ht_lami(88,88)=lam_i(200)-lam_i(199); 

d2ht_lami(89,89)=lam_i(200)-lam_i(199); 

d2ht_lami(90,90)=lam_i(206)-lam_i(205); 

d2ht_lami(91,91)=lam_i(206)-lam_i(205); 

d2ht_lami(92,92)=lam_i(208)-lam_i(207); 

d2ht_lami(93,93)=lam_i(208)-lam_i(207); 

d2ht_lami(94,94)=lam_i(210)-lam_i(209); 

d2ht_lami(95,95)=lam_i(210)-lam_i(209); 

d2ht_lami(96,96)=lam_i(214)-lam_i(213); 

d2ht_lami(97,97)=lam_i(214)-lam_i(213); 

d2ht_lami(98,98)=lam_i(220)-lam_i(219); 

d2ht_lami(99,99)=lam_i(220)-lam_i(219); 

d2ht_lami(100,100)=lam_i(222)-lam_i(221); 

d2ht_lami(101,101)=lam_i(222)-lam_i(221); 

d2ht_lami(102,102)=lam_i(224)-lam_i(223); 

d2ht_lami(103,103)=lam_i(224)-lam_i(223); 

d2ht_lami(104,104)=lam_i(226)-lam_i(225); 

d2ht_lami(105,105)=lam_i(226)-lam_i(225); 

d2ht_lami(106,106)=lam_i(232)-lam_i(231); 

d2ht_lami(107,107)=lam_i(232)-lam_i(231); 
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B.31       Function that computes the Jacobian and Hessian of the Lagrangian of the 

 VVO problem for the 118-bus system 

function [f, h, dh, gL, g2L]=f_118bus(x, lam_i) 

 

% Define objective function, its gradient and hessian [f, df, d2f]: 

 

%[~, f, df, d2f, ~]=loss_func_sym_118bus(); 

[f, ~]=loss_func(); 

df=df_118bus(); 

d2f=d2f_118bus(); 

 

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i, 

d2ht_lam_i]: 

%[h, dh, dht_lam_i, d2ht_lam_i, ~, ~]=h_gradh_hessh_118bus_sym(x, lam_i); 

h=h_118bus(x); 

dh=dh_118bus(); 

dht_lam_i=dht_lami_118bus(lam_i); 

d2ht_lam_i=d2ht_lami_118bus(lam_i); 

 

% Define gradient and Hessian of Lagrangian, gL, g2L: 

% gL=-df+dht_lam_i; 

% g2L=d2f-d2ht_lam_i; 

 

gL=-df+dht_lam_i; 

g2L=d2f+d2ht_lam_i; 

 

B.32       MATLAB script that runs the PDIPM-VVO algorithm for the 118_bus system 

clear 

close all 

clc 

 

% File name: one_hundred_eighteen_bus_system_pdipm_vvo_test.m 

 

% List of functions needed to run this program: 

% (further details are provided for each of these functions 

%  where they are first called in the program): 

 

% 1.  [G, B]=ybus(R, X, Cf) 

% 2.  [R, X, Cf]=computeRX(from, to, r, x) 

% 3.  x0=define_x0() 

% 4.  dF=dF(x, Vgref) 

% 5.  J=jacobian(x) 

% 6.  [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref) 

% 7.  h=h_118bus(x) 

% 8.  [f, df, d2f]=loss_func_118bus() 

% 9.  [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_118bus(x, lam_i) 

% 10. [f, h, dh, gL, g2L]=f_118bus(x, lam_i) 

% 11. update_generator_voltages(x) 

% 12. [f, df]=loss_func() 
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% 13. df=df_118bus() 

% 14. d2f=d2f_118bus() 

% 15. h=h_118bus(x) 

% 16. dh=dh_118bus() 

% 17. dht_lami=dht_lami_118bus(lam_i) 

% 18. d2ht_lami=d2ht_lami_118bus(lam_i) 

% 19. x=update_control_vector() 

% 20. x0=define_updated_x0(x) 

% 21. Vgref=updated_Vgref1(x) 

% 22. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

%         ipm_118bus(@f_118bus,x0,s0,mu0, sigma, @h_118bus, @dF, @jacobian,... 

%         Vgref, maxIter) 

% 

% Bus Data: 

% Volt/VAR optimization for the IEEE 118-bus system: 

% 

% Number of buses       : 118; 

% Number of lines       : 186; 

% Number of generators  : 54; 

% Number of loads       : 99 

 

global bus_data Cf E F G B bus_type nbus V1_angle_ratio PQs 

 

% bus_data is matrix in which each row applies to a bus, and specifies: 

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus) 

% (2) Real component of bus voltage (E) 

% (3) Imaginary component of bus voltage (F) 

% (4) Generated real power (Pg) 

% (5) Generated reactive power (Qg) 

% (6) Real power demand (Pd) 

% (7) Reactive power demand (Qd) 

 

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are 

% connected, zero otherwise 

 

% E and F are vectors containing real and imaginary components of the 

% bus voltages (in rectangular coordinates) 

 

% G and B are conductance and susceptance matrices respectively; 

% i.e. Y=G+jB, where Y is the bus admittance matrix 

 

% bus_type is simply the first column of the bus_data matrix 

 

% nbus is the number of buses in the system 

 

% Values are all in per-unit 

 

%=================================================================== 

%     Bus type    V_real     V_imag     Pg      Qg      Pd          Qd 

bus_data=[1       .8963     .5175       0       0       0           0  ;... 

          3       .971         0        0       0      .2          .09  ;... 

          3       .968         0        0       0      .39         .1   ;... 

          2       .998         0        0       0      .39         .12  ;... 

          3      1.002         0        0       0       0           0   ;... 
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          2       .99          0        0       0      .52         .22  ;... 

          3       .989         0        0       0      .19         .02  ;... 

          2      1.015         0        0       0      .28          0  ;... 

          3      1.043         0        0       0       0           0  ;... 

          2      1.05          0      4.5       0       0           0  ;... 

          3       .985         0        0       0      .7          .23  ;... 

          2       .99          0       .85      0      .47         .1   ;... 

          3       .968         0        0       0      .34         .16  ;... 

          3       .984         0        0       0      .14         .01   ;... 

          2       .97          0        0       0      .9          .3   ;... 

          3       .984         0        0       0      .25         .1   ;... 

          3       .995         0        0       0      .11         .03  ;... 

          2       .973         0        0       0      .6          .34  ;... 

          2       .963         0        0       0      .45         .25  ;... 

          3       .958         0        0       0      .18         .03  ;... 

          3       .959         0        0       0      .14         .08  ;... 

          3       .97          0        0       0      .1          .05  ;... 

          3         1          0        0       0      .07         .03  ;... 

          2       .992         0        0       0      .13          0   ;... 

          2      1.05          0      2.2       0       0           0  ;... 

          2      1.015         0      3.14      0       0           0   ;... 

          2       .968         0        0       0      .71         .13  ;... 

          3       .962         0        0       0      .17         .07  ;... 

          3       .963         0        0       0      .24         .04  ;... 

          3       .968         0        0       0       0           0   ;... 

          2       .967         0       .07      0      .43         .27   ;... 

          2       .964         0        0       0      .59         .23   ;... 

          3       .972         0        0       0      .23         .09   ;... 

          2       .986         0        0       0      .59         .26   ;... 

          3       .981         0        0       0      .33         .09   ;... 

          2       .98          0        0       0      .31         .17   ;... 

          3       .992         0        0       0       0           0   ;... 

          3       .962         0        0       0       0           0   ;... 

          3       .97          0        0       0      .27         .11   ;... 

          2       .97          0        0       0      .66         .23   ;... 

          3       .967         0        0       0      .37         .1   ;... 

          2       .985         0        0       0      .96         .23   ;... 

          3       .978         0        0       0      .18         .07   ;... 

          3       .985         0        0       0      .16         .08   ;... 

          3       .987         0        0       0      .53         .22   ;... 

          2      1.005         0       .19      0      .28         .1   ;... 

          3      1.017         0        0       0      .34          0   ;... 

          3      1.021         0        0       0      .2          .11   ;... 

          2      1.025         0      2.04      0      .87         .3   ;... 

          3      1.001         0        0       0      .17         .04   ;... 

          3       .967         0        0       0      .17         .08   ;... 

          3       .957         0        0       0      .18         .05   ;... 

          3       .946         0        0       0      .23         .11   ;... 

          2       .955         0       .48      0     1.13         .32   ;... 

          2       .952         0        0       0      .63         .22   ;... 

          2       .954         0        0       0      .84         .18   ;... 

          3       .971         0        0       0      .12         .03   ;... 

          3       .959         0        0       0      .12         .03   ;... 

          2       .985         0      1.55      0     2.77        1.13   ;... 
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          3       .993         0        0       0      .78         .03   ;... 

          2       .995         0      1.6       0       0           0   ;... 

          2       .998         0        0       0      .77         .14   ;... 

          3       .969         0        0       0       0           0   ;... 

          3       .984         0        0       0       0           0   ;... 

          2      1.005         0      3.91      0       0           0   ;... 

          2      1.05          0      3.92      0      .39         .18   ;... 

          3      1.02          0        0       0      .28         .07   ;... 

          3      1.003         0        0       0       0           0   ;... 

          2       .955         0        0       0      .51         .27   ;... 

          2       .984         0        0       0      .66         .2   ;... 

          3       .987         0        0       0       0           0   ;... 

          2       .98          0        0       0      .12          0   ;... 

          2       .991         0        0       0      .06          0   ;... 

          2       .958         0        0       0      .68         .27   ;... 

          3       .967         0        0       0      .47         .11   ;... 

          2       .943         0        0       0      .68         .36   ;... 

          2      1.006         0        0       0      .61         .28   ;... 

          3      1.003         0        0       0      .71         .26   ;... 

          3      1.009         0        0       0      .39         .32   ;... 

          2      1.04          0      4.77      0     1.3          .26   ;... 

          3       .997         0        0       0       0           0   ;... 

          3       .989         0        0       0      .54         .27   ;... 

          3       .985         0        0       0      .2          .1   ;... 

          3       .98          0        0       0      .11         .07   ;... 

          2       .985         0        0       0      .24         .15   ;... 

          3       .987         0        0       0      .21         .1   ;... 

          2      1.015         0       .04      0       0           0   ;... 

          3       .987         0        0       0      .48         .1   ;... 

          2      1.005         0      6.07      0       0           0   ;... 

          2       .985         0        0       0     1.63         .42   ;... 

          2       .98          0        0       0      .1           0   ;... 

          2       .993         0        0       0      .65         .1   ;... 

          3       .987         0        0       0      .12         .07   ;... 

          3       .991         0        0       0      .3          .16   ;... 

          3       .981         0        0       0      .42         .31   ;... 

          3       .993         0        0       0      .38         .15   ;... 

          3      1.011         0        0       0      .15         .09   ;... 

          3      1.024         0        0       0      .34         .08   ;... 

          2      1.01          0        0       0      .42          0   ;... 

          2      1.017         0      2.52      0      .37         .18   ;... 

          3       .993         0        0       0      .22         .15   ;... 

          3       .991         0        0       0      .05         .03   ;... 

          2      1.001         0       .4       0      .23         .16   ;... 

          2       .971         0        0       0      .38         .25   ;... 

          2       .965         0        0       0      .31         .26   ;... 

          3       .962         0        0       0      .43         .16   ;... 

          2       .952         0        0       0      .5          .12   ;... 

          3       .967         0        0       0      .02         .01   ;... 

          3       .967         0        0       0      .08         .03   ;... 

          2       .973         0        0       0      .39         .3   ;... 

          2       .98          0       .36      0       0           0   ;... 

          2       .975         0        0       0      .68         .13   ;... 

          2       .993         0        0       0      .06          0   ;... 
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          3       .96          0        0       0      .08         .03   ;... 

          3       .96          0        0       0      .22         .07   ;... 

          2      1.005         0        0       0     1.84          0   ;... 

          3       .974         0        0       0      .2          .08   ;... 

          3       .949         0        0       0      .33         .15]; 

%========================================================================== 

 

bus_type=bus_data(:,1); 

nbus=length(bus_type); 

 

% Bus 44 consistently exhibits low voltage (<0.95) 

% Adjusting initial voltage and reactive power injection 

% seemed to result in some slight improvement 

% bus_data(44,2)=.99; 

% bus_data(44,end)=-.35; 

 

 

% Uniformly distributed generation of 0.68 seems to result in slight 

% reduction in losses and improvement in voltage magnitude, but voltage 

% phase angles are too high (most beyond 45 degrees maximum specification) 

for i=2:nbus 

    if (bus_type(i)==2) 

        bus_data(i,4)=.68; 

    end 

end 

% figure(4), plot(bus_data(:,4)), title('Uniformly distributed power generation'); 

% xlabel('bus number'), ylabel('Amplitude') 

 

% Line Data: 

% Corresponding elements of the from_bus and to_bus vectors are the bus 

% pairs of connected buses; a line or branch (i,j) exists between bus 

% pairs (from_bus(i), to_bus(j)); 

% r and x are vectors of line resistance and reactance values, 

% corresponding to the lines specified by (from_bus(i), to_bus(j)) 

 

from1=[1 1 4 3 5 6 8 8 9 4]; 

to1=[2 3 5 5 6 7 9 5 10 11]; 

r1=[.0303 .0129 .0018 .0241 .0119 .0046 .0024 0 .0026 .0209]; 

x1=[.0999 .0424 .008 .108 .054 .0208 .0305 .0267 .0322 .0688]; 

 

from2=[5 11 2 3 7 11 12 13 14 12]; 

to2=[11 12 12 12 12 13 14 15 15 16]; 

r2=[.0203 .006 .0187 .0484 .0086 .0223 .0215 .0744 .0595 .0212]; 

x2=[.0682 .0196 .0616 .16 .034 .0731 .0707 .2444 .195 .0834]; 

 

from3=[15 16 17 18 19 15 20 21 22 23]; 

to3=[17 17 18 19 20 19 21 22 23 24]; 

r3=[.0132 .0454 .0123 .0112 .0252 .012 .0183 .0209 .0342 .0135]; 

x3=[.0437 .1801 .0505 .0493 .117 .0394 .0849 .097 .159 .0492]; 

 

from4=[23 26 25 27 28 30 8 17 29 23]; 

to4=[25 25 27 28 29 17 30 31 31 32]; 

r4=[.0156 0 .0318 .0191 .0237 0 .0043 .0474 .0108 .0317]; 

x4=[.08 .0382 .163 .0855 .0943 .0388 .0504 .1563 .0331 .1153]; 
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from5=[31 27 15 19 35 35 33 34 34 37]; 

to5=[32 32 33 34 36 37 37 36 37 39]; 

r5=[.0298 .0229 .038 .0752 .0022 .011 .0415 .0087 .0026 .0321]; 

x5=[.0985 .0755 .1244 .247 .0102 .0497 .142 .0268 .0094 .106]; 

 

from6=[37 30 39 40 40 41 43 34 44 45]; 

to6=[40 38 40 41 42 42 44 43 45 46]; 

r6=[.0593 .0046 .0184 .0145 .0555 .041 .0608 .0413 .0224 .04]; 

x6=[.168 .054 .0605 .0487 .183 .135 .2454 .1681 .0901 .1356]; 

 

from7=[46 46 47 42 42 45 48 49 49 51]; 

to7=[47 48 49 49 49 49 49 50 51 52]; 

r7=[.038 .0601 .0191 .0715 .0715 .0684 .0179 .0267 .0486 .0203]; 

x7=[.127 .189 .0625 .323 .323 .186 .0505 .0752 .137 .0588]; 

 

from8=[52 53 49 49 54 54 55 56 50 56]; 

to8=[53 54 54 54 55 56 56 57 57 58]; 

r8=[.0405 .0263 .073 .0869 .0169 .0027 .0049 .0343 .0474 .0343]; 

x8=[.1635 .122 .289 .291 .0707 .0095 .0151 .0966 .134 .0966]; 

 

from9=[51 54 56 56 55 59 59 60 60 61]; 

to9=[58 59 59 59 59 60 61 61 62 62]; 

r9=[.0255 .0503 .0825 .0803 .0474 .0317 .0328 .0026 .0123 .0082]; 

x9=[.0719 .2293 .251 .239 .2158 .145 .15 .0135 .0561 .0376]; 

 

from10=[63 63 64 38 64 49 49 62 62 65]; 

to10=[59 64 61 65 65 66 66 66 67 66]; 

r10=[0 .0017 0 .009 .0027 .018 .018 .0482 .0258 0]; 

x10=[.0386 .02 .0268 .0986 .0302 .0919 .0919 .218 .117 .037]; 

 

from11=[66 47 49 68 69 24 70 24 71 71]; 

to11=[67 69 69 69 70 70 71 72 72 73]; 

r11=[.0224 .0844 .0985 0 .03 .0022 .0088 .0488 .0446 .0087]; 

x11=[.1015 .2778 .324 .037 .127 .4115 .0355 .196 .18 .0454]; 

 

from12=[70 70 69 74 76 69 75 77 78 77]; 

to12=[74 75 75 75 77 77 77 78 79 80]; 

r12=[.0401 .0428 .0405 .0123 .0444 .0309 .0601 .0038 .0055 .017]; 

x12=[.1323 .141 .122 .0406 .148 .101 .1999 .0124 .0244 .0485]; 

 

from13=[77 79 68 81 77 82 83 83 84 85]; 

to13=[80 80 81 80 82 83 84 85 85 86]; 

r13=[.0294 .0156 .0018 0 .0298 .0112 .0625 .043 .0302 .035]; 

x13=[.105 .0704 .0202 .037 .0853 .0366 .132 .148 .0641 .123]; 

 

from14=[86 85 85 88 89 89 90 89 89 91]; 

to14=[87 88 89 89 90 90 91 92 92 92]; 

r14=[.0283 .02 .0239 .0139 .0518 .0238 .0254 .0099 .0393 .0387]; 

x14=[.2074 .102 .173 .0712 .188 .0997 .0836 .0505 .1581 .1272]; 

 

from15=[92 92 93 94 80 82 94 80 80 80]; 

to15=[93 94 94 95 96 96 96 97 98 99]; 

r15=[.0258 .0481 .0223 .0132 .0356 .0162 .0269 .0183 .0238 .0454]; 
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x15=[.0848 .158 .0732 .0434 .182 .053 .0869 .0934 .108 .206]; 

 

from16=[92 94 95 96 98 99 100 92 101 100]; 

to16=[100 100 96 97 100 100 101 102 102 103]; 

r16=[.0648 .0178 .0171 .0173 .0397 .018 .0277 .0123 .0246 .016]; 

x16=[.295 .058 .0547 .0885 .179 .0813 .1262 .0559 .112 .0525]; 

 

from17=[100 103 103 100 104 105 105 105 106 108]; 

to17=[104 104 105 106 105 106 107 108 107 109]; 

r17=[.0451 .0466 .0535 .0605 .0099 .014 .053 .0261 .053 .0105]; 

x17=[.204 .1584 .1625 .229 .0378 .0547 .183 .0703 .183 .0288]; 

 

from18=[103 109 110 110 17 32 32 27 114 68]; 

to18=[110 110 111 112 113 113 114 115 115 116]; 

r18=[.0391 .0278 .022 .0247 .0091 .0615 .0135 .0164 .0023 .0003]; 

x18=[.1813 .0762 .0755 .064 .0301 .203 .0612 .0741 .0104 .0041]; 

 

from19=[12 75 76 38 26 65]; 

to19=[117 118 118 37 30 68]; 

r19=[.0329 .0145 .0164 0 .008 .0014]; 

x19=[.14 .0481 .0544 .0375 .086 .016]; 

 

% Combine the vectors: 

from_bus=[from1 from2 from3 from4 from5 from6 from7 from8 from9 from10 ... 

    from11 from12 from13 from14 from15 from16 from17 from18 from19]'; 

 

to_bus=[to1 to2 to3 to4 to5 to6 to7 to8 to9 to10 to11 to12 to13 to14 ... 

    to15 to16 to17 to18 to19]'; 

 

r=[r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19]'; 

 

x=[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19]'; 

 

% Compute the admittance (in the form G+jB) and bus connectivity (Cf) 

% matrices 

% Function compute_Ybus() calls function computeRX(), which computes 

% the resistance (R) and reactance (X) vectors, needed by the 

% function compute_Ybus(), as well as matrix Cf 

 

[R, X, Cf]=computeRX(from_bus, to_bus, r, x); 

 

% Lines 42-49, 49-54, 49-66, 56-59, 77-80, 89-90 and 89-92 are double 

% (parallel) lines; calculate the effective impedande and update the 

% R, X vectors: 

R(42,49)=.5*.0715; 

R(49,42)=R(42,49); 

X(42,49)=.5*.323; 

X(49,42)=X(42,49); 

 

R(49,54)=.073*.0869/(.073+.0869); 

R(54,49)=R(49,54); 

X(49,54)=.289*.291/(.289+.291); 

X(54,49)=X(49,54); 
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R(49,66)=.5*.018; 

R(66,49)=R(49,66); 

X(49,66)=.5*.0919; 

X(66,49)=X(49,66); 

 

R(56,59)=.0803*.0825/(.0803+.0825); 

R(59,56)=R(56,59); 

X(56,59)=.239*.251/(.239+.251); 

X(59,56)=X(56,59); 

 

R(77,80)=.017*.0294/(.018+.0294); 

R(80,77)=R(77,80); 

X(77,80)=.0485*.105/(.0485+.105); 

X(80,77)=X(77,80); 

 

R(89,90)=.0518*.0238/(.0518+.0238); 

R(90,89)=R(89,90); 

X(89,90)=.188*.0997/(.188+.0997); 

X(90,89)=X(89,90); 

 

R(89,92)=.0099*.0393/(.0099+.0393); 

R(92,89)=R(89,92); 

X(89,92)=.0505*.1581/(.0505+.1581); 

X(92,89)=X(89,92); 

 

% Compute the admittance and bus connectivity matrices: 

 

[G, B]=ybus(R, X, Cf); 

 

% Define some parameters: 

 

% Extract the vectors of real and imaginary bus voltage components 

% from the bus_data matrix 

 

E=bus_data(:,2); 

F=bus_data(:,3); 

 

% [E1, F1]=set_slack_bus_voltage(); 

% E(1)=E1(8); 

% F(1)=F1(8); 

 

% To maintain slack-bus voltage angle: 

V1_angle_ratio=F(1)/E(1); 

 

% Define initial input to Newton-Raphson load flow algorithm 

% (initial bus voltages,in rectangular form): 

 

x0=define_x0(); 

 

% Define the reference voltage vector for the generator voltages; 

% this is required for the Volt/VAR optimization problem when running 

% the load flow algorithm at each Newton method iteration 

 

Vgref=Vgref_0(); 
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% Perform Newton-Raphson load flow 

% Newton-Raphson algorithm implemented in rectangular coordinates of 

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions 

% dF() of residues (of the real and reactive power/voltage balance 

% equations), as well as jacobian(), which computes the Jacobian of the 

% residues, needed to compute the Newton step once the algorithm 

% (hopefully) converges, the bus voltages are output in polar form 

% (i.e. magnitude and phase angle) 

 

% tic 

% [~, output]=NR_load_flow(@dF, @jacobian_118bus, x0, Vgref); 

% toc 

% 

% v=[output.V(:,1) output.V(:,2)] 

% 

% % Compute system losses after the load flow algorithm has terminated 

% 

% [losses, ~]=loss_func(); 

 

 

% Perform Volt/VAR optimization: 

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies 

% the Newton method to compute the search direction for the primal-dual 

% system of the VVO problem derived on the basis of the perturbed KKT 

% (first-order) optimality conditions. 

% 

% Computation of the Newton step requires calculating the first- and 

% second-order partial derivatives of the objective and constraint 

% functions. The IPM algorithm only considers the inequality constraints 

% (in this implementation only the bus voltage magnitude constraints), 

% the equality constraints (real and reactive power balance equations) 

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at 

% each iteration of the Newton step of the IPM algorithm, the load flow 

% algorithm is executed once the primal and dual variables have been 

% updated. 

% 

% The IPM algorithm needs the following functions to execute: 

% 

% 1. f_118bus(), which computes the gradient and hessian of the Lagrangian 

%      function of the VVO problem, which are required to compute the 

%      Newton step; 

% 2.  loss_func(), df_118bus(), and d2f_118bus(), which are called by 

%     f_118bus(), to compute the objective, its gradient and hessian; 

% 3.  h_118bus(), dh_118bus(), dht_lami_118bus(), and d2ht_lami_118bus(), 

%     which are also called by f_118bus, to compute the constraint 

%     functions, the Jacobian and hessian thereof as well; 

% 4.  dF(), which computes the residues needed by the Newton-Raphson 

%     load flow algorithm; 

% 5.  jacobian(), which computes the Jacobian of the residues, also needed 

%     by the Newton-Raphson load flow algorithm; 

% 6.  A number of utility functions called by the functions stated above, 

%     including update_generator_voltages(), update_control_vector(), 

%     define_updated_x0(), updated_Vgref() 
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% 

% 

% The IPM algorithm also requires a number of parameters, such as the 

% barrier parameter (mu), the centering parameter (zeta), and the 

% choice of initial primal and dual variables. 

 

% Initialize some input parameters: 

xc=update_control_vector(); 

h0=h_118bus(x0); 

s0=abs(h0); 

s0(s0<0.01)=.01; 

% choice of initial values of slack variables seems to significantly 

% affect converge of the algorithm. s0 1.15*s0 gives better results, 

% with a slight loss reduction (1.6%); requires limiting number of% Newton 

% iterations to 8. But it causes divergence when the number of iterations 

% is increased a lot (to say, 20) 

s0=1.15*s0; 

% mu0=9; 

% sigma=.065; 

mu0=10; 

sigma=.15; 

maxIt=7; 

 

s=s0; 

mu=mu0; 

niq=length(h0); 

e=ones(niq,1); 

S=diag(s); 

Si=inv(S); 

lam_i=mu*Si*e; 

%[h, dh, dht_lam_i, d2ht_lam_i, hh, nonzeroh]=h_gradh_hessh_118bus_sym(x, lam_i); 

 

% Run the IPM algorithm on the VVO problem: 

 

tic 

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=... 

    ipm_118bus5(@f_118bus,x0,s0,mu0, sigma, @h_118bus, @dF, @jacobian_118bus, 

Vgref, maxIt, V1_angle_ratio); 

toc 

 

% Output some computation results: 

 

X 

mu 

cond 

output 

V=output.V 

 

% Compute the loss reduction: 

 

initial_loss_pu=-cond.loss(1) 

final_loss_pu=-cond.loss(end) 

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1) 
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% Plot the loss reduction vs. the iteration number: 

 

 

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on, 

plot(cond.V1(:,2)./cond.V1(:,1),'k--') 

legend('E','F','F/E'); 

title('Slack-bus voltage (real(E) and imaginary(F) components)'); 

xlabel('Iteration number') 

ylabel('V_{slack-pu}') 

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2); 

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1)); 

V1=[V1_mag V1_angle] 

 

figure(2) 

Vinit=cond.Vinit; 

Vfinal=V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}') 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% extract generator bus voltages: 

Vall=[Vinit Vfinal]; 

 

gen_bus_idx=find(bus_type==1 | bus_type==2); 

ng=length(gen_bus_idx); 

Vgen=zeros(ng,3); 

 

for i=1:ng 

    Vgen(i,:)=[gen_bus_idx(i) Vall(gen_bus_idx(i), :)]; 

end 

 

% xlswrite('one_eighteen_bus_system_voltage1.xlsx', Vgen) 

 

figure(3) 

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*'); 

grid 

title('IEEE 118-bus system real power loss vs. iteration number', 'FontSize', 10.0) 

xlabel('Iteration number') 

ylabel('P_{loss} (p.u.)') 

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%']; 

 

ax=gca; 

y_lims=ax.YLim; 

text(2,y_lims(2)-.025, loss_label); 

 

loss=-cond.loss; 

% Adding 2e-2 to P1 makes slack-bus active power 

% and power loss coincide; this (value of 2e-2) 

% seems to only represent a discrepancy due to 

% differences in scale of the two quantities 

P1=.02+cond.PQs(1,:)'; 

Q1=cond.PQs(2,:)'; 



270 
 

Q4=cond.PQs(3,:)'; 

% 4.8e-1 added to Qsum to shift it up, improves comparison with 

% real power loss reduction 

Qsum=.48+cond.Qsum'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q4); 

title('Bus-4 generator reactive power and power loss') 

legend('P_{loss}','Q_{g4}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-4 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('118-bus system: slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 
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xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

ax=gca; 

y_lims=ax.YLim; 

text(.7,y_lims(2)-.025, loss_label); 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('118-bus system: total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

 

% figure(5) 

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

% title('Fig.5: Slack-bus active power and power loss') 

% legend('P_{loss}','P_{slack}') 

% xlabel('Iteration number') 

% ylabel(hAx(1),'Real power loss'); 

% ylabel(hAx(2),'Slack-bus real power'); 

% hLine2.LineStyle='-.'; 

% grid 

 

 

figure(6) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

x3=[0:length(V1_mag)-1]'; 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x3,V1_mag); 

title('Slack-bus reactive power and Slack-bus voltage') 

legend('Q_{slack}','V_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage'); 

hLine2.LineStyle='--'; 

grid 
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figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C: SOFTWARE PROGRAMS FOR CHAPTER 6 
 

C.1       MATLAB script that runs the PSO-VVO algorithm for the 3-bus system 

% File name: pso_vvo_3bus_system.m 

 

% load 3-bus system data: 

three_bus_system_data; 

global PQs Qsum Vgens 

 

% initialize PSO parameters: 
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c1=2.05; 

c2=2.05; 

% c1=2; 

% c2=2; 

p=10;       % swarm size 

d=3;        % problem dimension 

N=200;       % maximum number of iterations 

wmin=.4;    % minimum inertia weight 

wmax=.9;    % maximum inertia weight 

 

% generate initial position vector: 

e10=.95+.15*rand(p,1); 

e30=.95+.15*rand(p,1); 

f30=real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

x=[e10 e30 f30]; 

 

% generate initial velocity vector (set to zero): 

v=zeros(p,d); 

 

fprev=inf*ones(p,1);        % initialize fitness function values (to infinity) 

pbest=x;                    % initialize each particle's past best position (equal 

to initial position) 

Gbest=[];                   % keep track of global best position 

fbest=[];                   % keep track of fitness value of global best position 

 

% evaluate fitness function for each particle to determine personal and global best 

positions: 

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest); 

 

% run (Newton-Raphson) load flow: 

% compute initial voltage vector for the load flow algorithm: 

x_loadflow=define_updated_x0(gbest); 

 

% compute voltage reference vector for the load flow algorithm: 

Vgref_loadflow=updated_Vgref(gbest); 

 

% run the load flow algorithm: 

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

E=real(V); 

F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 
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% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

 

% update control vector (gbest): 

gbest=update_control_vector()'; 

 

% recompute objective function: 

f_best=PSO_objective_evaluation(gbest); 

 

% keep track of global best position and its correspoding fitness/objective 

function value: 

Gbest=[Gbest;gbest]; 

fbest=[fbest;f_best]; 

 

% keep tract of change in global best position and its corresponding 

fitness/objective value: 

dGbest=[]; 

dfbest=[]; 

 

% compute termination conditions based on change in global best position, and its 

associated fitness value: 

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5); 

global_position_change_norm=(norm(gbest)<1e-5); 

objective_change=abs(f_best)>=0; 

 

% initialize iteration counter: 

t=1; 

 

tic     % time the PSO loop 

% loop until termination conditions are satisfied: 

while ((~objective_norm_change || objective_change) && t<=N) 

 

    % compute the particle velocity: 

 

    % based on inertia weight: 

    %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N); 

 

    % based on constriction coefficient: 

    [v,x]=PSO_X_update_cc1(v,x,pbest,gbest,c1,c2); 

 

    % compute the objective function value for each particle to 

    % update the personal and global best positions: 

    [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest); 

 

    % re-run (Newton-Raphson) load flow: 

    % compute initial voltage vector for the load flow algorithm: 

    x_loadflow=define_updated_x0(gbest); 

 

    % compute voltage reference vector for the load flow algorithm: 

    Vgref_loadflow=updated_Vgref(gbest); 

 

    % run the load flow algorithm: 

    [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 
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    E=real(V); 

    F=imag(V); 

 

    % Compute slack-bus active, and generator reactive power outputs 

    compute_PQ(); 

 

    % Extract generator bus voltages; 

    get_Vgen(); 

 

    % update control vector (gbest): 

    gbest=update_control_vector()'; 

 

    % recompute objective function: 

    f_best=PSO_objective_evaluation(gbest); 

 

    % keep track of the global best position and objective function values, 

    % as well as the change in these quantities between iterations: 

    Gbest=[Gbest;gbest]; 

    fbest=[fbest; f_best]; 

    delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1))); 

    dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))]; 

    dfbest=[dfbest; delta_fbest]; 

 

    % check to see if convergence criteria are satisfied by the global best 

    % position: 

    objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4); 

    global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4); 

    objective_change=(fbest(t+1)-fbest(1))>=0; 

 

    % increment the iteration counter, before the loop runs again: 

    t=t+1; 

 

end 

toc 

 

x_opt=Gbest(end,:) 

f_opt=[fbest(1);fbest(end)] 

num_iterations=t 

if (num_iterations<201 || fbest(end)<fbest(1)) 

    percentage_loss_reduction=100*(fbest(1)-fbest(end))/fbest(1) 

else 

    disp('Failed to achieve power loss reduction within set maximum number of 

iterations') 

end 

[Va, Vm]=cart2pol(real(V), imag(V)); 

Vpolar=[Vm 180*Va/pi]; 

 

    plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*') 

    grid 

    for i=1:length(Gbest(:,1)) 

        text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)]) 

    end 

    figure(2) 

    subplot(311) 
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    plot(dGbest) 

    hold on 

    plot(dGbest,'r*') 

    title('Change in global best position') 

    grid 

    hold off 

    subplot(313) 

    plot(fbest), grid 

    title('Fitness value of global best position') 

    subplot(312) 

    plot(dfbest), grid 

    title('Change in fitness value of global best position') 

 

figure(3) 

Vfinal=output.V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'), 

hold off; 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

xlswrite('three_bus_system_voltage2.xlsx', [Vinit Vfinal]); 

 

loss=fbest; 

P1=PQs(1,:)'; 

Q1=PQs(2,:)'; 

Q3=PQs(3,:)'; 

Qsum=.0015+Qsum'; 

Vg1=Vgens(1,:)'; 

Vg3=Vgens(2,:)'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 



277 
 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 
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[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

subplot(121) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(122) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

C.2       MATLAB script that runs the PSO-VVO algorithm for the 6-bus system 

% File name: pso_vvo_6bus_system.m 

 

% load 6-bus system data: 

six_bus_system_data; 

global PQs Qsum Vgens 

 

% initialize PSO parameters: 

c1=2.05; 

c2=2.05; 

% c1=2; 

% c2=2; 
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p=10;       % swarm size 

d=5;        % problem dimension 

N=200;       % maximum number of iterations 

wmin=.4;    % minimum inertia weight 

wmax=.9;    % maximum inertia weight 

 

% generate initial position vector: 

e10=.95+.15*rand(p,1); 

e20=.95+.15*rand(p,1); 

f20=real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

e30=.95+.15*rand(p,1); 

f30=real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

 

x=[e10 e20 f20 e30 f30]; 

 

% generate initial velocity vector (set to zero): 

v=zeros(p,d); 

 

fprev=inf*ones(p,1);        % initialize fitness function values (to infinity) 

pbest=x;                    % initialize each particle's past best position (equal 

to initial position) 

Gbest=[];                   % keep track of global best position 

fbest=[];                   % keep track of fitness value of global best position 

 

% evaluate fitness function for each particle to determine personal and global best 

positions: 

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest); 

 

% run (Newton-Raphson) load flow: 

% compute initial voltage vector for the load flow algorithm: 

x_loadflow=define_updated_x0(gbest); 

 

% compute voltage reference vector for the load flow algorithm: 

Vgref_loadflow=updated_Vgref(gbest); 

 

% run the load flow algorithm: 

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

E=real(V); 

F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

% Initial load flow voltage results: 
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Vinit=output.V(:,1); 

 

% update control vector (gbest): 

gbest=update_control_vector()'; 

 

% recompute objective function: 

f_best=PSO_objective_evaluation(gbest); 

 

Gbest=[Gbest;gbest]; 

fbest=[fbest;f_best]; 

 

% keep tract of change in global best position and its corresponding fitness value: 

dGbest=[]; 

dfbest=[]; 

 

% compute termination conditions based on change in global best position, and its 

associated fitness value: 

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5); 

global_position_change_norm=(norm(gbest)<1e-5); 

objective_change=abs(f_best)>=0; 

 

% initialize iteration counter: 

t=1; 

 

tic 

% loop until termination conditions are satisfied: 

while ((~objective_norm_change || objective_change) && t<=N) 

    r1=rand(p,1); 

    r2=rand(p,1); 

 

    % compute the particle velocity: 

    %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N); 

    [v,x]=PSO_X_update_cc1(v,x,pbest,gbest,c1,c2); 

 

    % compute the objective function value for each particle to 

    % update the personal and global best positions: 

    [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest); 

 

    % run (Newton-Raphson) load flow: 

    % compute initial voltage vector for the load flow algorithm: 

    x_loadflow=define_updated_x0(gbest); 

 

    % compute voltage reference vector for the load flow algorithm: 

    Vgref_loadflow=updated_Vgref(gbest); 

 

    % run the load flow algorithm: 

    [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

    E=real(V); 

    F=imag(V); 

 

    % Compute slack-bus active, and generator reactive power outputs 

    compute_PQ(); 

 

    % Extract generator bus voltages; 
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    get_Vgen(); 

 

    % update control vector (gbest): 

    gbest=update_control_vector()'; 

 

    % recompute objective function: 

    f_best=PSO_objective_evaluation(gbest); 

 

    % keep track of the global best position and objective function values, 

    % as well as the change in these quantities between iterations: 

    Gbest=[Gbest;gbest]; 

    fbest=[fbest; f_best]; 

    delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1))); 

    dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))]; 

    dfbest=[dfbest; delta_fbest]; 

 

    % check to see if convergence criteria are satisfied by the global best 

    % position: 

    objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4); 

    global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4); 

    objective_change=(fbest(t+1)-fbest(1))>=0; 

 

    % increment the iteration counter, before the loop runs again: 

    t=t+1; 

 

end 

x_opt=Gbest(end,:) 

f_opt=[fbest(1);fbest(end)] 

num_iterations=t 

if (num_iterations<201 || fbest(end)<fbest(1)) 

    percentage_loss=100*(fbest(1)-fbest(end))/fbest(1) 

else 

    disp('Failed to achieve power loss reduction within set maximum number of 

iterations') 

end 

 

[Va, Vm]=cart2pol(real(V), imag(V)); 

Vpolar=[Vm 180*Va/pi]; 

 

toc 

    plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*') 

    grid 

    for i=1:length(Gbest(:,1)) 

        text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)]) 

    end 

    figure(2) 

    subplot(311) 

    plot(dGbest) 

    hold on 

    plot(dGbest,'r*') 

    title('Change in global best position') 

    grid 

    hold off 

    subplot(313) 
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    plot(fbest), grid 

    title('Fitness value of global best position') 

    subplot(312) 

    plot(dfbest), grid 

    title('Change in fitness value of global best position') 

 

figure(3) 

Vfinal=output.V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'), 

hold off; 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

xlswrite('six_bus_system_voltage2.xlsx', [Vinit Vfinal]); 

 

loss=fbest; 

P1=PQs(1,:)'; 

Q1=PQs(2,:)'; 

Q2=PQs(3,:)'; 

Q3=PQs(4,:)'; 

Qsum=Qsum'; 

Vg1=Vgens(1,:)'; 

Vg2=Vgens(2,:)'; 

Vg3=Vgens(3,:)'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 
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legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 

legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 
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hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.') 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}','Q_{g3}') 

grid 

 

figure(11) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 

legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

C.3       MATLAB script that runs the PSO-VVO algorithm for the 14-bus system 

% File name: pso_vvo_14bus_system.m 
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% load 14-bus system data: 

fourteen_bus_system_data; 

global PQs Qsum Vgens 

 

% initialize PSO parameters: 

c1=2.05; 

c2=2.05; 

% c1=2; 

% c2=2; 

p=20;       % swarm size 

d=9;        % problem dimension 

N=200;       % maximum number of iterations 

wmin=.4;    % minimum inertia weight 

wmax=.9;    % maximum inertia weight 

 

% generate initial position vector: 

ng=length(find(bus_type==2));   % number of PV buses 

x=zeros(p,d);                   % initialize matrix to store initial generator 

voltage vectors 

x(:,1)=.95+.15*rand(p,1);       % first element is slack-bus real component of 

voltage 

k=2; 

for i=2:ng+1                      % loop over PV buses 

    x(:,k)=.95+.15*rand(p,1); 

    x(:,k+1)=(-1)^randi(ng)*real(sqrt(1-x(:,k).^2)); 

    %x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

    k=k+2; 

end 

 

% generate initial velocity vector (set to zero): 

v=zeros(p,d); 

%v=.2*rand(p,d); 

X0=x; 

fprev=inf*ones(p,1);        % initialize fitness function values (to infinity) 

pbest=x;                    % initialize each particle's past best position (equal 

to initial position) 

Gbest=[];                   % keep track of global best position 

fbest=[];                   % keep track of fitness value of global best position 

 

% evaluate fitness function for each particle to determine personal and 

% global best positions: 

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_14bus2(x,fprev,pbest); 

 

% run (Newton-Raphson) load flow: 

% compute initial voltage vector for the load flow algorithm: 

x_loadflow=define_updated_x0(gbest); 

 

% compute voltage reference vector for the load flow algorithm: 

Vgref_loadflow=updated_Vgref(gbest); 

 

% run the load flow algorithm: 

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

E=real(V); 
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F=imag(V); 

 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% update control vector (gbest): 

gbest_before_update_control_vector=gbest; 

gbest=update_control_vector()'; 

gbest_after_update_control_vector=gbest; 

% recompute objective function: 

f_best=PSO_objective_evaluation_14bus2(gbest); 

 

Gbest=[Gbest;gbest]; 

fbest=[fbest;f_best]; 

 

% keep tract of change in global best position and its corresponding 

% fitness value: 

dGbest=[]; 

dfbest=[]; 

 

% compute termination conditions based on change in global best position, and its 

associated fitness value: 

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5); 

global_position_change_norm=(norm(gbest)<1e-5); 

objective_change=abs(f_best)>=0; 

 

% initialize iteration counter: 

t=1; 

 

tic 

% loop until termination conditions are satisfied: 

while ((~objective_norm_change || objective_change) && t<=N) 

 

    % compute the particle velocity: 

    %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N); 

    [v,x]=PSO_X_update_cc_14bus(v,x,pbest,gbest,c1,c2); 

 

    % compute the objective function value for each particle to 

    % update the personal and global best positions: 

    [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_14bus2(x,fprev,pbest); 
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    % run (Newton-Raphson) load flow: 

    % compute initial voltage vector for the load flow algorithm: 

    x_loadflow=define_updated_x0(gbest); 

 

    % compute voltage reference vector for the load flow algorithm: 

    Vgref_loadflow=updated_Vgref(gbest); 

 

    % run the load flow algorithm: 

    [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

    E=real(V); 

    F=imag(V); 

 

    % Compute slack-bus active, and generator reactive power outputs 

    compute_PQ(); 

 

    % Extract generator bus voltages; 

    get_Vgen(); 

 

    % update control vector (gbest): 

    gbest=update_control_vector()'; 

 

    % recompute objective function: 

    f_best=PSO_objective_evaluation_14bus2(gbest); 

 

    % keep track of the global best position and objective function values, 

    % as well as the change in these quantities between iterations: 

    Gbest=[Gbest;gbest]; 

    fbest=[fbest; f_best]; 

    delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1))); 

    dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))]; 

    dfbest=[dfbest; delta_fbest]; 

 

    % check to see if convergence criteria are satisfied by the global best 

    % position: 

    objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4); 

    global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4); 

    objective_change=(fbest(t+1)-fbest(1))>=0; 

 

    % increment the iteration counter, before the loop runs again: 

    t=t+1; 

 

end 

x_opt=Gbest(end,:) 

f_opt=[fbest(1);fbest(end)] 

num_iterations=t 

if (num_iterations<201 || fbest(end)<fbest(1)) 

    percentage_loss=100*(fbest(1)-fbest(end))/fbest(1) 

else 

    disp('Failed to achieve power loss reduction within set maximum number of 

iterations') 

end 

[Va, Vm]=cart2pol(real(V), imag(V)); 

Vpolar=[Vm 180*Va/pi]; 
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toc 

    plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*') 

    grid 

    for i=1:length(Gbest(:,1)) 

        text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)]) 

    end 

    figure(2) 

    subplot(311) 

    plot(dGbest) 

    hold on 

    plot(dGbest,'r*') 

    title('Change in global best position') 

    grid 

    hold off 

    subplot(313) 

    plot(fbest), grid 

    title('Fitness value of global best position') 

    subplot(312) 

    plot(dfbest), grid 

    title('Change in fitness value of global best position') 

 

figure(3) 

Vfinal=output.V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'), 

hold off; 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('fourteen_bus_system_voltage2.xlsx', [Vinit Vfinal]); 

 

loss=fbest; 

P1=PQs(1,:)'; 

Q1=PQs(2,:)'; 

Q2=PQs(3,:)'; 

Q3=PQs(4,:)'; 

Q6=PQs(5,:)'; 

Q8=PQs(6,:)'; 

Qsum=Qsum'; 

Vg1=Vgens(1,:)'; 

Vg2=Vgens(2,:)'; 

Vg3=Vgens(3,:)'; 

Vg6=Vgens(4,:)'; 

Vg8=Vgens(5,:)'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 
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legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q2); 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 
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ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 

legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3); 

title('Bus-3 generator reactive power and power loss') 

legend('P_{loss}','Q_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-3 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q6); 

title('Bus-6 generator reactive power and power loss') 

legend('P_{loss}','Q_{g6}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-6 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8); 

title('Bus-6 generator reactive power and power loss') 

legend('P_{loss}','Q_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-8 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(11) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 
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figure(12) 

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.',x2,Q6,'c-+',x2,Q8,'k-*') 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}') 

grid 

 

figure(13) 

subplot(321) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(322) 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 

legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(323) 

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3); 

title('Bus-3 generator reactive power and voltage magnitude') 

legend('Q_{g3}','V_{g3}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-3 generator reactive power'); 

ylabel(hAx(2),'Bus-3 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(324) 

[hAx, ~, hLine2]=plotyy(x2,Q6,x2,Vg6); 

title('Bus-6 generator reactive power and voltage magnitude') 

legend('Q_{g6}','V_{g6}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-6 generator reactive power'); 

ylabel(hAx(2),'Bus-6 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(325) 

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8); 

title('Bus-8 generator reactive power and voltage magnitude') 

legend('Q_{g8}','V_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-8 generator reactive power'); 

ylabel(hAx(2),'Bus-8 voltage magnitude'); 
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hLine2.LineStyle='--'; 

grid 

 

C.4       MATLAB script that runs the PSO-VVO algorithm for the 30-bus system 

% File name: pso_vvo_30bus_system.m 

 

% load 30-bus system data: 

thirty_bus_system_data; 

global PQs Qsum Vgens 

 

% initialize PSO parameters: 

c1=2.05; 

c2=2.05; 

% c1=2; 

% c2=2; 

p=20;       % swarm size 

d=11;        % problem dimension 

N=200;       % maximum number of iterations 

wmin=.4;    % minimum inertia weight 

wmax=.9;    % maximum inertia weight 

 

% generate initial position vector: 

ng=length(find(bus_type==2));   % number of PV buses 

x=zeros(p,d);                   % initialize matrix to store initial generator 

voltage vectors 

x(:,1)=.95+.15*rand(p,1);       % first element is slack-bus real component of 

voltage 

k=2; 

for i=2:ng+1                      % loop over PV buses 

    x(:,k)=.95+.15*rand(p,1); 

    %x(:,k+1)=(-1)^i*real(sqrt(1-x(:,k).^2)); 

    x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

    k=k+2; 

end 

 

% generate initial velocity vector (set to zero): 

v=zeros(p,d); 

%v=.2*rand(p,d); 

X0=x; 

fprev=inf*ones(p,1);        % initialize fitness function values (to infinity) 

pbest=x;                    % initialize each particle's past best position (equal 

to initial position) 

Gbest=[];                   % keep track of global best position 

fbest=[];                   % keep track of fitness value of global best position 

 

% evaluate fitness function for each particle to determine personal and global best 

positions: 

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_30bus1(x,fprev,pbest); 

 

% run (Newton-Raphson) load flow: 

% compute initial voltage vector for the load flow algorithm: 

x_loadflow=define_updated_x0(gbest); 
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% compute voltage reference vector for the load flow algorithm: 

Vgref_loadflow=updated_Vgref(gbest); 

 

% run the load flow algorithm: 

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

E=real(V); 

F=imag(V); 

 

 

% Initialize slack-bus active, and generator reactive power outputs 

% matrix to empty matrix: 

PQs=[]; 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% update control vector (gbest): 

gbest_before_update_control_vector=gbest; 

gbest=update_control_vector()'; 

gbest_after_update_control_vector=gbest; 

 

% recompute objective function: 

f_best=PSO_objective_evaluation_30bus1(gbest); 

 

Gbest=[Gbest;gbest]; 

fbest=[fbest;f_best]; 

 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Vector to hold generator bus voltages: 

Vgens=[]; 

 

% Extract generator bus voltages; 

get_Vgen(); 

 

 

% keep tract of change in global best position and its corresponding fitness value: 

dGbest=[]; 

dfbest=[]; 

 

% keep track of velocity update: 

vupdate=[]; 

 

% compute termination conditions based on change in global best position, and its 

associated fitness value: 

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5); 

global_position_change_norm=(norm(gbest)<1e-5); 

objective_change=abs(f_best)>=0; 

 

% initialize iteration counter: 

t=1; 
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tic 

% loop until termination conditions are satisfied: 

while ((~objective_norm_change || objective_change) && t<=N) 

 

    % compute the particle velocity: 

    %[v,x]=PSO_X_update3(v,x,pbest,gbest,c1,c2,wmin,wmax,t,N); 

    [v,x]=PSO_X_update_cc_30bus(v,x,pbest,gbest,c1,c2); 

 

    % keep track of velocity update: 

    vupdate=[vupdate; v]; 

 

    % compute the objective function value for each particle to 

    % update the personal and global best positions: 

    [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_30bus1(x,fprev,pbest); 

 

    % run (Newton-Raphson) load flow: 

    % compute initial voltage vector for the load flow algorithm: 

    x_loadflow=define_updated_x0(gbest); 

 

    % compute voltage reference vector for the load flow algorithm: 

    Vgref_loadflow=updated_Vgref(gbest); 

 

    % run the load flow algorithm: 

    [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

    E=real(V); 

    F=imag(V); 

 

 

 

    % update control vector (gbest): 

    gbest=update_control_vector()'; 

 

    % recompute objective function: 

    f_best=PSO_objective_evaluation_30bus1(gbest); 

 

    % keep track of the global best position and objective function values, 

    % as well as the change in these quantities between iterations: 

    Gbest=[Gbest;gbest]; 

    fbest=[fbest; f_best]; 

    delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1))); 

    dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))]; 

    dfbest=[dfbest; delta_fbest]; 

 

     % Compute slack-bus active, and generator reactive power outputs 

    compute_PQ(); 

 

    % Extract generator bus voltages; 

    get_Vgen(); 

 

 

    % check to see if convergence criteria are satisfied by the global best 

    % position: 

    objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4); 
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    global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4); 

    objective_change=(fbest(t+1)-fbest(1))>=0; 

 

    % increment the iteration counter, before the loop runs again: 

    t=t+1; 

 

end 

x_opt=Gbest(end,:) 

f_opt=[fbest(1);fbest(end)] 

num_iterations=t 

if (num_iterations<N+1 || fbest(end)<fbest(1)) 

    percentage_loss=100*(fbest(1)-fbest(end))/fbest(1) 

else 

    disp('Failed to achieve power loss reduction within set maximum number of 

iterations') 

end 

 

[Va, Vm]=cart2pol(real(V), imag(V)); 

Vpolar=[Vm 180*Va/pi]; 

 

toc 

    plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*') 

    grid 

    for i=1:length(Gbest(:,1)) 

        text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)]) 

    end 

    figure(2) 

    subplot(311) 

    plot(dGbest) 

    hold on 

    plot(dGbest,'r*') 

    title('Change in global best position') 

    grid 

    hold off 

    subplot(313) 

    plot(fbest), grid 

    title('Fitness value of global best position') 

    subplot(312) 

    plot(dfbest), grid 

    title('Change in fitness value of global best position') 

 

figure(3) 

Vfinal=output.V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'), 

hold off; 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('thirty_bus_system_voltage2.xlsx', [Vinit Vfinal]); 

 

loss=fbest; 

% Adding 2.2e-3 to P1 makes slack-bus active power 
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% and power loss coincide; this (value of 2.2e-3) 

% seems to only represent a discrepancy due to 

% differences in scale of the two quantities 

P1=2.2e-3+PQs(1,:)'; 

Q1=PQs(2,:)'; 

Q2=PQs(3,:)'; 

Q5=PQs(4,:)'; 

Q8=PQs(5,:)'; 

Q11=PQs(6,:)'; 

Q13=PQs(7,:)'; 

Qsum=Qsum'; 

Vg1=Vgens(1,:)'; 

Vg2=Vgens(2,:)'; 

Vg5=Vgens(3,:)'; 

Vg8=Vgens(4,:)'; 

Vg11=Vgens(5,:)'; 

Vg13=Vgens(6,:)'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5); 

title('Bus-5 generator reactive power and power loss') 

legend('P_{loss}','Q_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-5 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q5); 
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title('Generator reactive powers') 

legend('Q_{slack}','Q_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Generator reactive powers'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2); 

title('Bus-2 generator reactive power and power loss') 

legend('P_{loss}','Q_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-2 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(8) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5); 

title('Bus-5 generator reactive power and power loss') 

legend('P_{loss}','Q_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-5 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(9) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8); 

title('Bus-8 generator reactive power and power loss') 

legend('P_{loss}','Q_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 
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ylabel(hAx(2),'Bus-8 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(10) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q11); 

title('Bus-11 generator reactive power and power loss') 

legend('P_{loss}','Q_{g11}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-11 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(11) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q13); 

title('Bus-11 generator reactive power and power loss') 

legend('P_{loss}','Q_{g13}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-13 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(12) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(13) 

plot(x2,Q1,x2,Q2,'r--',x2,Q5,'m-.',x2,Q8,'c-+',x2,Q11,'k-*',x2,Q13,'g-o') 

title('Generator reactive powers') 

legend('Q_{slack}','Q_{g2}','Q_{g5}','Q_{g8}','Q_{g11}','Q_{g13}') 

grid 

 

figure(14) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1); 

title('Slack-bus reactive power and voltage magnitude') 

legend('Q_{slack}','V_{g1}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Slack-bus reactive power'); 

ylabel(hAx(2),'Slack-bus voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2); 

title('Bus-2 generator reactive power and voltage magnitude') 
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legend('Q_{g2}','V_{g2}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-2 generator reactive power'); 

ylabel(hAx(2),'Bus-2 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

figure(15) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x2,Q5,x2,Vg5); 

title('Bus-5 generator reactive power and voltage magnitude') 

legend('Q_{g5}','V_{g5}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-5 generator reactive power'); 

ylabel(hAx(2),'Bus-5 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8); 

title('Bus-8 generator reactive power and voltage magnitude') 

legend('Q_{g8}','V_{g8}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-8 generator reactive power'); 

ylabel(hAx(2),'Bus-8 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

figure(16) 

subplot(211) 

[hAx, ~, hLine2]=plotyy(x2,Q11,x2,Vg11); 

title('Bus-11 generator reactive power and voltage magnitude') 

legend('Q_{g11}','V_{g11}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-11 generator reactive power'); 

ylabel(hAx(2),'Bus-11 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(212) 

[hAx, ~, hLine2]=plotyy(x2,Q13,x2,Vg13); 

title('Bus-13 generator reactive power and voltage magnitude') 

legend('Q_{g13}','V_{g13}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Bus-13 generator reactive power'); 

ylabel(hAx(2),'Bus-13 voltage magnitude'); 

hLine2.LineStyle='--'; 

grid 

 

C.5       MATLAB script that runs the PSO-VVO algorithm for the 118-bus system 

% File name: pso_vvo_118bus_system.m 
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% load 118-bus system data: 

one_hundred_eighteen_bus_system_data; 

global PQs Qsum 

 

% initialize PSO parameters: 

c1=2.05; 

c2=2.05; 

% c1=2; 

% c2=2; 

p=30;       % swarm size 

d=107;        % problem dimension 

N=200;       % maximum number of iterations 

wmin=.4;    % minimum inertia weight 

wmax=.9;    % maximum inertia weight 

 

% generate initial position vector: 

ng=length(find(bus_type==2));   % number of PV buses 

x=zeros(p,d);                   % initialize matrix to store initial generator 

voltage vectors 

x(:,1)=.95+.15*rand(p,1);       % first element is slack-bus real component of 

voltage 

k=2; 

for i=2:ng+1                      % loop over PV buses 

    x(:,k)=.95+.15*rand(p,1); 

    %x(:,k+1)=(-1)^i*real(sqrt(1-x(:,k).^2)); 

    x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

    %x(:,k+1)=real(sqrt(1-(.95+.15*rand(p,1)).^2)); 

    k=k+2; 

end 

 

% generate initial velocity vector (set to zero): 

v=zeros(p,d); 

%v=.2*rand(p,d); 

X0=x; 

fprev=inf*ones(p,1);        % initialize fitness function values (to infinity) 

pbest=x;                    % initialize each particle's past best position (equal 

to initial position) 

Gbest=[];                   % keep track of global best position 

fbest=[];                   % keep track of fitness value of global best position 

 

% evaluate fitness function for each particle to determine personal and global best 

positions: 

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_118bus(x,fprev,pbest); 

 

% run (Newton-Raphson) load flow: 

% compute initial voltage vector for the load flow algorithm: 

x_loadflow=define_updated_x0(gbest); 

 

% compute voltage reference vector for the load flow algorithm: 

Vgref_loadflow=updated_Vgref(gbest); 

 

% run the load flow algorithm: 

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

E=real(V); 
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F=imag(V); 

 

% Initialize slack-bus active, and generator reactive power matrix to 

% empty array: 

 

PQs=[]; 

 

% Compute slack-bus active, and generator reactive power outputs 

compute_PQ(); 

 

% Initial load flow voltage results: 

Vinit=output.V(:,1); 

 

% update control vector (gbest): 

gbest_before_update_control_vector=gbest; 

gbest=update_control_vector()'; 

gbest_after_update_control_vector=gbest; 

 

% recompute objective function: 

f_best=PSO_objective_evaluation_118bus(gbest); 

 

Gbest=[Gbest;gbest]; 

fbest=[fbest;f_best]; 

 

% keep tract of change in global best position and its corresponding fitness value: 

dGbest=[]; 

dfbest=[]; 

 

% compute termination conditions based on change in global best position, and its 

associated fitness value: 

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-3); 

global_position_change_norm=(norm(gbest)<1e-3); 

objective_change=abs(f_best)>=0; 

 

% initialize iteration counter: 

t=1; 

 

tic 

% loop until termination conditions are satisfied: 

while ((~objective_norm_change || objective_change) && t<=N) 

 

    % compute the particle velocity: 

    %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N); 

    [v,x]=PSO_X_update_cc_118bus(v,x,pbest,gbest,c1,c2); 

 

    % compute the objective function value for each particle to 

    % update the personal and global best positions: 

    [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_118bus(x,fprev,pbest); 

 

    % run (Newton-Raphson) load flow: 

    % compute initial voltage vector for the load flow algorithm: 

    x_loadflow=define_updated_x0(gbest); 

 

    % compute voltage reference vector for the load flow algorithm: 
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    Vgref_loadflow=updated_Vgref(gbest); 

 

    % run the load flow algorithm: 

    [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow); 

    E=real(V); 

    F=imag(V); 

 

    % Compute slack-bus active, and generator reactive power outputs 

    compute_PQ(); 

 

    % update control vector (gbest): 

    gbest=update_control_vector()'; 

 

    % recompute objective function: 

    f_best=PSO_objective_evaluation_118bus(gbest); 

 

    % keep track of the global best position and objective function values, 

    % as well as the change in these quantities between iterations: 

    Gbest=[Gbest;gbest]; 

    fbest=[fbest; f_best]; 

    delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1))); 

    dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))]; 

    dfbest=[dfbest; delta_fbest]; 

 

    % check to see if convergence criteria are satisfied by the global best 

    % position: 

    objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<0.01); 

    global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4); 

    objective_change=(fbest(t+1)-fbest(1))>=0; 

 

    % increment the iteration counter, before the loop runs again: 

    t=t+1; 

 

end 

x_opt=Gbest(end,:); 

f_opt=[fbest(1);fbest(end)] 

num_iterations=t 

if (num_iterations<201 || fbest(end)<fbest(1)) 

    percentage_loss=100*(fbest(1)-fbest(end))/fbest(1) 

else 

    disp('Failed to achieve power loss reduction within set maximum number of 

iterations') 

end 

 

[Va, Vm]=cart2pol(real(V), imag(V)); 

Vpolar=[Vm 180*Va/pi]; 

 

toc 

    plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*') 

    grid 

    for i=1:length(Gbest(:,1)) 

        text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)]) 

    end 

    figure(2) 
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    subplot(311) 

    plot(dGbest) 

    hold on 

    plot(dGbest,'r*') 

    title('Change in global best position') 

    grid 

    hold off 

    subplot(313) 

    plot(fbest), grid 

    title('Fitness value of global best position') 

    subplot(312) 

    plot(dfbest), grid 

    title('Change in fitness value of global best position') 

 

figure(3) 

Vfinal=output.V(:,1); 

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'), 

hold off; 

grid 

title('Voltage profile, final compared with initial'); 

xlabel('Bus number') 

ylabel('V_{bus-pu}') 

 

% xlswrite('one_hundred_eighteen_bus_system_voltage2.xlsx', [Vinit Vfinal]); 

 

loss=fbest; 

% Adding 2e-2 to P1 makes slack-bus active power 

% and power loss coincide; this (value of 2e-2) 

% seems to only represent a discrepancy due to 

% differences in scale of the two quantities 

P1=.02+PQs(1,:)'; 

Q1=PQs(2,:)'; 

Q4=PQs(3,:)'; 

% 4.8e-1 added to Qsum to shift it up, improves comparison with 

% real power loss reduction 

Qsum=.48+Qsum'; 

 

x1=0:length(loss)-1; 

x2=0:length(P1)-1; 

 

figure(4) 

subplot(221) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(222) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 
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legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(223) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q4); 

title('Bus-4 generator reactive power and power loss') 

legend('P_{loss}','Q_{g4}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Bus-4 generator reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

subplot(224) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(5) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1); 

title('Slack-bus active power and power loss') 

legend('P_{loss}','P_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus real power'); 

hLine2.LineStyle='-.'; 

grid 

 

figure(6) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1); 

title('Slack-bus reactive power and power loss') 

legend('P_{loss}','Q_{slack}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Slack-bus reactive power'); 

hLine2.LineStyle='--'; 

grid 

 

figure(7) 

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum); 

title('Total generated reactive power and power loss') 

legend('P_{loss}','Q_{gen}') 

xlabel('Iteration number') 

ylabel(hAx(1),'Real power loss'); 

ylabel(hAx(2),'Total generated reactive power'); 
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hLine2.LineStyle='--'; 

grid 

 

C.6       Function that computes the personal and global best positions for the PSO 

 algorithm; applies to all case studies 

function [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(X,fprev,pbest) 

global E F bus_type nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

tol=1e-4; 

 

% obtain swarm size and problem dimension: 

[p,~]=size(X); 

 

% initialize a vector to store the objective function/fitness value of each 

particle: 

f=zeros(p,1); 

 

% evaluate objective and constraint functions; 

% for any bound constraint exceeding the limit, 

% set it to the limit value 

gen_buses=[find(bus_type==1); find(bus_type==2)]; 

for i=1:p 

    if (-(X(i,1)^2+F(1)^2)+Vmsq>tol) 

        X(i,1)=sqrt(Vmsq); 

        E(1)=X(i,1); 

        F(1)=0; 

    end 

 

    if (X(i,1)^2+F(1)^2-VMsq>tol) 

        X(i,1)=sqrt(VMsq); 

        E(1)=X(i,1); 

        F(1)=0; 

    end 

 

    k=2; 

    for j=2:length(gen_buses) 

        if (-(X(i,k)^2+X(i,k+1)^2)+Vmsq>tol) 

            X(i,k)=sqrt(Vmsq); 

            X(i,k+1)=0; 

            E(gen_buses(j))=X(i,k); 

            F(gen_buses(j))=X(i,k+1); 

            k=k+2; 

        else 

            if (X(i,k)^2+X(i,k+1)^2-VMsq>tol) 

                X(i,k)=sqrt(VMsq); 

                X(i,k+1)=0; 

                E(2)=X(i,k); 

                F(2)=X(i,k+1); 
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                k=k+2; 

            end 

        end 

    end 

    k=0; 

 

    ngen_buses=1:nbus; 

    ngen_buses(gen_buses)=[]; 

 

    for jj=1:length(ngen_buses) 

        if (-(E(ngen_buses(jj))^2+F(ngen_buses(jj))^2)+Vmsq>tol) 

            E(ngen_buses(jj))=sqrt(Vmsq); 

            F(ngen_buses(jj))=0; 

        end 

 

        if (E(ngen_buses(jj))^2+F(ngen_buses(jj))^2-VMsq>tol) 

            E(ngen_buses(jj))=sqrt(VMsq); 

            F(ngen_buses(jj))=0; 

        end 

    end 

 

    f(i)=-loss_func2(); 

 

end 

 

% update pbest: 

for k=1:p 

     if(f(k)<fprev(k)) 

        pbest(k,:)=X(k,:); 

     end 

end 

 

    % save current objective function values for comparison later: 

    fprev=f; 

 

    % determine gbest: 

    best_idx=find(f==min(f)); 

    best_idx=best_idx(1); 

    gbest=X(best_idx,:); 

 

C.7       Function that computes the fitness value of an individual particle for the PSO 

 algorithm; applies to all case studies 

function f_best=PSO_objective_evaluation(gbest) 

global E F bus_type nbus 

 

Vmsq=.95^2; 

VMsq=1.1^2; 

tol=1e-4; 

 

% evaluate objective and constraint functions; 

% for any bound constraint exceeding the limit, 
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% set it to the limit value 

gen_buses=[find(bus_type==1); find(bus_type==2)]; 

 

if (-(gbest(1)^2+F(1)^2)+Vmsq>tol) 

    E(1)=sqrt(Vmsq); 

    F(1)=0; 

end 

 

if (gbest(1)^2+F(1)^2-VMsq>tol) 

    E(1)=sqrt(VMsq); 

    F(1)=0; 

end 

 

k=2; 

for j=2:length(gen_buses) 

    if (-(gbest(k)^2+gbest(k+1)^2)+Vmsq>tol) 

        E(gen_buses(j))=sqrt(Vmsq); 

        F(gen_buses(j))=0; 

        k=k+2; 

    end 

 

    if (gbest(k)^2+gbest(k+1)^2-VMsq>tol) 

        E(gen_buses(j))=sqrt(VMsq); 

        F(gen_buses(j))=0; 

        k=k+2; 

    end 

end 

 

ngen_buses=1:nbus; 

ngen_buses(gen_buses)=[]; 

 

for jj=1:length(ngen_buses) 

    if (-(E(ngen_buses(jj))^2+F(ngen_buses(jj))^2)+Vmsq>tol) 

        E(ngen_buses(jj))=sqrt(Vmsq); 

        F(ngen_buses(jj))=0; 

    end 

 

    if (E(ngen_buses(jj))^2+F(ngen_buses(jj))^2-VMsq>tol) 

        E(ngen_buses(jj))=sqrt(VMsq); 

        F(ngen_buses(jj))=0; 

    end 

end 

f_best=-loss_func(); 

 

C.8       Function that computes the velocity update and adjusts the particle position 

 for the PSO algorithm; applies to all case studies 

function [V,X]=PSO_X_update_cc1(V,X,pbest,gbest,c1,c2) 

    [~,n]=size(X); 

 

    % define constriction coefficient: 

    phi=c1+c2; 
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    xi=2/(phi-2+sqrt(phi^2-4*phi)); 

 

    Gbest=ones(size(X)); 

    for i=1:n 

        Gbest(:,i)=gbest(i)*Gbest(:,i); 

    end 

 

    % compute particle velocity: 

    V=xi*(V+c1*rand(size(X)).*(pbest-X)+c2*rand(size(X)).*(Gbest-X)); 

    %V=xi*(V+c1*rand*(pbest-X)+c2*rand*(Gbest-X)); 

    X=X+V; 

 
 

APPENDIX D: UTILITY FUNCTIONS USED IN CHAPTER 5 
 

D.1       Function to compute the impedance (Y) matrix for an arbitrary power system 

function [G, B, Cf]=compute_Ybus(from, to, r, x) 

[R, X, Cf]=computeRX(from, to, r, x); 

[~,n]=size(R); 

Y=zeros(n); 

for i=1:n 

    for j=1:n 

        if (i==j) 

            for k=1:n 

                if(Cf(i,k)==1 && i~=k) 

                    Y(i,j)=Y(i,j)+1/(R(i,k)+1i*X(i,k)); 

                end 

            end 

        else 

            if (Cf(i,j)==1 && i~=j) 

                Y(i,j)=-1/(R(i,j)+1i*X(i,j)); 

                Y(j,i)=Y(i,j); 

            end 

        end 

    end 

end 

G=real(Y); 

B=imag(Y); 

 

D.2       Function to compute the generator active and reactive power outputs once the 

 load flow computation has converged 

function compute_PQ() 

global E F G B bus_type nbus Cf PQs Qsum 

 

% Define some parameters: 

Vsq=E.^2+F.^2; 

 

gen_buses=find(bus_type==2); 
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ng=length(gen_buses)+1; 

PQ=zeros(ng+1,1); 

PQ(1)=G(1,1)*Vsq(1); 

PQ(2)=-B(1,1)*Vsq(1); 

for j=1:nbus 

        if (Cf(1,j)==1 && j~=1) 

            PQ(1)=PQ(1)+E(1)*(G(1,j)*E(j)-B(1,j)*F(j))+... 

                F(1)*(G(1,j)*F(j)+B(1,j)*E(j)); 

            PQ(2)=PQ(2)+F(1)*(G(1,j)*E(j)-B(1,j)*F(j))-... 

                E(1)*(G(1,j)*F(j)+B(1,j)*E(j)); 

        end 

end 

 

k=1; 

 

for i=3:ng+1 

    l=gen_buses(k); 

    PQ(i)=-B(l,l)*Vsq(l); 

    for j=1:nbus 

            if (Cf(l,j)==1 && l~=j) 

                PQ(i)=PQ(i)+F(l)*(G(l,j)*E(j)-B(l,j)*F(j))-... 

                    E(l)*(G(l,j)*F(j)+B(l,j)*E(j)); 

            end 

    end 

    k=k+1; 

end 

 

PQs=[PQs PQ]; 

Qsum=sum(PQs(2:end,:)); 

 

D.3       Function to define the initial guess for the Newton-Raphson load flow 

 computation 

function x0=define_x0() 

global nbus E F 

x0=zeros(2*(nbus-1),1); 

k=1; 

for i=2:nbus 

    x0(k)=E(i); 

    x0(k+1)=F(i); 

    k=k+2; 

end 

 

D.4       Function to define the generator voltage magnitude set-points for the Newton-

 Raphson load flow computation 

function Vgref=Vgref_0() 

global E F nbus bus_type 

 

Vgref=zeros(nbus,1); 
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Vgref(1)=sqrt(E(1)^2+F(1)^2); 

 

for i=2:nbus 

    if (bus_type(i)==2) 

        Vgref(i)=sqrt(E(i)^2+F(i)^2); 

    end 

end 

 

 

 

 

D.5       Function to compute the real power loss magnitude for an arbitrary power 

 system 

function ploss=loss_func() 

global E F G Cf 

[n, ~]=size(G); 

ploss=0; 

for i=1:n-1 

    for j=i+1:n 

        if (Cf(i,j)==1) 

            ploss=ploss+G(i,j)*((E(i)-E(j))^2+(F(i)-F(j))^2); 

        end 

    end 

end 

 
 


