

A NOVEL OPTIMISATION METHOD FOR VOLTAGE AND REACTIVE POWER
CONTROL OF ELECTRIC POWER SYSTEMS

by

HALTOR MATAIFA

Thesis submitted in fulfilment of the requirements for the degree

Doctor of Engineering: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Dr. Senthil. Krishnamurthy

Co-supervisor: Dr. Carl. Kriger

Bellville
15th Feburary 2023

 ii

DECLARATION

I, Haltor Mataifa, declare that the contents of this dissertation/thesis represent my own
unaided work, and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own opinions
and not necessarily those of the Cape Peninsula University of Technology.

 2023/02/15

Signed Date

 iii

ABSTRACT

Reliable electrical power supply is one of the most important utilities for modern society. This

can be seen by the fact that any prolonged interruption of electrical power supply usually

leads to enormous disruption of essential services and normal daily activities, and can in fact

threaten to cause a lot of damage or losses if not promptly remedied. Moreover, recent

developments in the power system, such as the deregulation and restructuring of the

electrical power supply industry, the introduction of competitive electricity and power

markets, and the rapid growth and expansion of distributed and decentralized electrical

power generation, have led to a significant increase in the complexity of modern power

systems, adding to the challenge of operating them reliably and efficiently. Thus, the need for

optimal strategies for the secure, economical and efficient operation of the power system is

arguably even greater now than at any other time in the history of the power system. In line

with this identified need, this thesis investigates the theoretical design, development, and

practical implementation of efficient algorithms that contribute to the secure, economical and

reliable operation of electric power transmission systems.

The focus of the research presented in this thesis is on the development of methods and

algorithms for the solution of the Volt/VAR optimization (VVO) problem, which is a very

important sub-problem of the optimal power flow (OPF) problem that is primarily concerned

with determination of the optimal coordinated dispatch of voltage-regulating devices and

reactive power sources, with voltage profile improvement and system power loss

minimization as the main objectives (among others). Volt/VAR optimization is one of the most

actively researched areas of power system operation. While most researchers consider

either classical or heuristic optimization methods in isolation, the research work presented in

this thesis investigates the design of efficient Volt/VAR optimization strategies considering

both classical and heuristic optimization techniques.

Two main optimization algorithms are developed for the solution of the Volt/VAR optimization

problem in this thesis. One is based on the primal-dual interior-point method (PDIPM), which

is one of the most efficient classical methods for large-scale nonlinear optimization. The

other is based on the particle swarm optimization algorithm, one of the most popular heuristic

optimization techniques. To enhance the efficiency of the developed algorithms, the model

development for the Volt/VAR optimization problem considers both the polar and rectangular

coordinate representations of the system voltages. Although most researchers make use of

the polar representation, analysis reveals that the rectangular representation has relatively

more favourable mathematical properties from the computational efficiency perspective,

particularly for the methods and algorithms developed in this thesis. The efficiency of the

developed methods and algorithms is further enhanced by incorporating the Newton-

Raphson load flow computation into the Volt/VAR optimization algorithm, which is moreover

 iv

also developed using the rectangular model formulation. Five power system case studies, a

3-bus system, a 6-bus system, and the IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus power

systems, are used to analyse the performance of the developed algorithms. The results

obtained from the performance analysis reveal that the developed algorithms exhibit high

computational efficiency and superior convergence characteristics. Moreover, a comparative

performance analysis is also conducted between the PDIPM-based VVO algorithm and the

PSO-based VVO algorithm. The performance analysis reveals that the primal-dual interior-

point method outperforms the particle swarm optimization algorithm in terms of

computational efficiency, since on average it requires fewer iterations to converge, and has a

shorter running time. The particle swarm optimization, on the other hand, generally achieves

a higher percentage real power loss reduction than the primal-dual interior-point method.

This suggests that the two classes of methods (i.e. classical and heuristic optimization

methods) have complementary performance characteristics, something which could be

exploited to devise optimization strategies that seek to combine their relative strengths, and

thus have a better prospect of exhibiting performance that is superior to that of the individual

algorithms.

The methods, algorithms and software programs developed and presented in this thesis are

of great relevance both to industry and to academia, and can serve as a good foundation for

further research and development, as suggested in the concluding chapter of the thesis.

Keywords: Optimal Power Flow, Volt/VAR Optimization, reactive power/voltage control,

classical optimization, primal-dual interior-point method, heuristic optimization techniques,

computational intelligence, particle swarm optimization.

 v

ACKNOWLEDGEMENTS

I wish to thank:
 The Centre for Substation Automation and Energy Management Systems (CSAEMS),

for the opportunity extended to me to be a member of the CSAEMS, and to conduct
my research under their capable stewardship. It has been a tremendously enriching
experience.

 My former supervisor, Prof. Raynitchka Tzoneva, for her immeasurable contribution to
my research work. The depth of my indebtedness toward her cannot possibly be
conveyed by any set of words.

 My supervisors Dr. Senthil Krishnamurthy and Dr. Carl Kriger for their guidance and
mentorship throughout the course of this research

 Dr. Zakhele Nkosi (HoP) and Dr. Marco Adonis (HoD) for their immense support,
without which the completion of this research would simply not have been possible

 My family for their patience and support of my studies

 All others not mentioned by name who have in some way rendered support to the
work done in connection with this thesis.

The financial assistance of the National Research Foundation towards this research is
acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of
the author, and are not necessarily to be attributed to the National Research Foundation.

 vi

DEDICATION

To all my dear family members, whose unconditional love, extraordinary patience and

unwavering support have made the most challenging times during my study period

bearable; to dear Prof. Raynitchka Tzoneva, the most remarkable person I have ever

had the honour of knowing; and to Jehovah God Almighty, the source of my life, of all

my strength and of all my capabilities.

 vii

TABLE OF CONTENTS

 Declaration ii

 Abstract iii

 Acknowledgements v

 Dedication vi

 Table of contents vii

 Bibliography xii

 Appendices xii

 List of Figures xii

 List of Tables xv

 List of Appendices xvi

 Glossary xix

 List of Mathematical Notations xxi

CHAPTER ONE: THESIS INTRODUCTION

1.1 Introduction 1

1.2 Motivation for the research 2

1.3 Problem statement 3

1.3.1 Design-oriented sub-problems 4

1.3.2 Implementation-oriented sub-problems 4

1.4 Research aim and objectives 4

1.4.1 Aim 4

1.4.2 Objectives 5

1.5 Hypothesis 5

1.6 Delimitation of the research 6

1.7 Assumptions 7

1.8 Research methodology 8

1.8.1 Literature review 8

1.8.2 Theoretical development 8

1.8.3 Practical implementation and performance analysis 9

1.9 Main research outputs/deliverables 9

1.10 Thesis outline 10

1.11 Conclusion 12

 viii

CHAPTER TWO: LITERATURE REVIEW ON CLASSICAL AND HEURISTIC
METHODS FOR VOLT/VAR OPTIMIZATION

2.1 Introduction 13

2.2 Reactive power and voltage control devices in the power system 17

2.2.1 Synchronous generator 17

2.2.2 Shunt capacitors 18

2.2.3 Shunt reactors 19

2.2.4 FACTS devices 20

2.2.5 Under-load tap-changing transformers 21

2.2.6 Distributed generation 21

2.2.7 Brief summary of reactive power and voltage control devices 22

2.3 Volt/VAR optimization problem formulation 23

2.3.1 Objectives and decision variables of the Volt/VAR optimization
problem

23

2.3.2 Constraints of the Volt/VAR optimization problem 25

2.3.3 Brief summary of Volt/VAR optimization problem formulation 26

2.4 Optimization methods for the Volt/VAR optimization problem 27

2.4.1 Classical/conventional methods for Volt/VAR optimization 28

2.4.1.1 First-order gradient-based methods 28

2.4.1.2 Second-order gradient-based methods 30

2.4.1.3 Quadratic programming 31

2.4.1.4 Linear programming 32

2.4.1.5 Interior-point methods 33

2.4.1.6 Mixed integer programming and decomposition methods 34

2.4.1.7 Brief summary of classical/conventional methods for Volt/VAR
optimization

35

2.4.2 Heuristic/intelligent search-based methods for Volt/VAR
optimization

37

2.4.2.1 Genetic algorithm 38

2.4.2.2 Evolutionary programming 39

2.4.2.3 Particle swarm optimization 40

2.4.2.4 Fuzzy set theory 42

2.4.2.5 Expert system 43

2.4.2.6 Brief summary of heuristic/intelligent search-based methods for
Volt/VAR optimization

45

2.5 Comparative analysis of solution approaches for VVO problem 46

2.6 Conclusion 47

 ix

CHAPTER THREE: FORMULATION OF THE VOLT/VAR OPTIMIZATION

PROBLEM

3.1 Introduction 49

3.2 Mathematical formulation 50

3.2.1 General definitions 51

3.2.2 Elements of the problem formulation 52

3.2.2.1 Objectives 53

3.2.2.2 System variables 53

3.2.2.3 System constraints 54

3.2.3 Statement of the Volt/VAR optimization problem in rectangular
coordinates

55

3.2.4 Statement of the Volt/VAR optimization problem in polar
coordinates

56

3.3 Discussion of the two problem formulations 56

3.4 Conclusion 57

CHAPTER FOUR: DESIGN AND IMPLEMENTATION OF THE PRIMAL-DUAL
INTERIOR-POINT METHOD AND APPLICATION TO A NONLINEAR PROBLEM

4.1 Introduction 58

4.2 Primal-dual Interior-Point Method (PDIPM) 59

4.2.1 Transforming of inequality constraints into equality constraints 60

4.2.2 Handling the non-negativity condition of slack variables 60

4.2.3 Transformation of the equality-constrained problem into an
unconstrained one

61

4.2.4 Determining the search direction by the Newton method 62

4.2.5 Determining the step length in the Newton direction 64

4.2.6 Decreasing the barrier parameter 65

4.2.7 Checking convergence of the iterates to the solution 66

4.2.8 Initialization of the primal-dual interior-point algorithm 67

4.2.9 Outline of the primal-dual interior-point algorithm 69

4.3 Example of application of the PDIPM 69

4.3.1 Transformation of inequality constraints into equality constraints 69

4.3.2 Handling the non-negativity condition of slack variables 69

4.3.3 Transforming the equality-constrained problem into an
unconstrained one

70

4.3.4 Determining the search direction by the Newton method 71

4.3.5 Determining the step size 72

4.3.6 Checking convergence of the iterates to the solution 72

 x

4.3.7 Determining the initial values of the input parameters to the
algorithm

72

4.3.8 Implementation and results of the example problem 72

4.4 Conclusion 78

CHAPTER FIVE: SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY

THE PRIMAL-DUAL INTERIOR-POINT METHOD

5.1 Introduction 79

5.2 Application of the PDIPM to the solution of the Volt/VAR
optimization problem

81

5.2.1 VVO problem formulation in standard form 81

5.2.2 Transforming the problem into an equality-constrained problem 82

5.2.3 Handling the non-negativity of slack variables and formulating the
Lagrangian of the problem

82

5.2.4 Newton-Raphson load flow algorithm in rectangular coordinates 83

5.2.5 Example of implementation of the Newton-Raphson load flow
algorithm

86

5.2.6 Results of the Newton-Raphson-based load flow computation 90

5.2.7 Lagrangian of the PDIPM-VVO problem incorporating the Newton-
Raphson load flow

91

5.2.8 Derivation of the first-order optimality (KKT) conditions 93

5.2.9 Derivation of the elements needed to implement the PDIPM-VVO
algorithm: example for the three-bus system

94

5.3 Case studies 96

5.3.1 Case study 1: 3-bus power system 97

5.3.2 Case study 2: 6-bus power system 101

5.3.3 Case study 3: 14-bus power system 105

5.3.4 Case study 4: 30-bus power system 110

5.3.5 Case study 5: 118-bus power system 114

5.4 Conclusion 118

CHAPTER SIX: SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY
THE PARTICLE SWARM OPTIMIZATION ALGORITHM

6.1 Introduction 120

6.2 Historical development of the particle swarm optimization
algorithm

121

6.3 Principle of operation and basic formulation of the PSO algorithm 123

6.3.1 Swarm size 125

6.3.2 Velocity update 126

6.3.3 Neighbourhood topology 126

 xi

6.3.4 Number of iterations 127

6.3.5 Initialization of particle positions and velocities 127

6.4 Implementation aspects of the algorithm 127

6.4.1 Balancing the exploration/exploitation tradeoff 128

6.4.2 Velocity clamping 128

6.4.3 Inertia weight 129

6.4.4 Constriction coefficient 130

6.4.5 Initialization of the PSO algorithm parameters 131

6.4.6 Termination conditions for the algorithm 132

6.5 PSO algorithm applied to the VVO problem 132

6.5.1 Case studies 138

6.5.2 Case study 1: 3-bus system 139

6.5.3 Case study 2: 6-bus system 142

6.5.4 Case study 3: 14-bus system 146

6.5.5 Case study 4: 30-bus system 149

6.5.6 Case study 5: 118-bus system 153

6.6 Comparison of PSO with PDIPM for VVO 156

6.7 Conclusion 157

CHAPTER SEVEN: CONCLUSION AND RECOMMENDATIONS FOR FUTURE
RESEARCH

7.1 Introduction 158

7.2 Aim and objectives of the research 159

7.2.1 Aim 159

7.2.2 Objectives 159

7.3 Thesis deliverables 160

7.3.1 Comprehensive literature study and review of the main aspects of
Volt/VAR optimization

160

7.3.2 Problem formulation and model development for the Volt/VAR
optimization problem

160

7.3.3 Theoretical development and design of the algorithms used in
solving the Volt/VAR optimization problem

161

7.3.4 Software development for the implementation of the developed
algorithms

161

7.3.5 Comprehensive performance analysis of the developed
algorithms by means of a variety of power system case studies

164

7.4 Possible applications of the research outputs 165

7.5 Recommendations for future research 165

7.6 Publications 166

 xii

7.7 Conclusion 166

BIBLIOGRAPHY 167

APPENDICES 177

LIST OF FIGURES

Figure 2.1 Number of publications reviewed plotted against year of

publication
15

Figure 2.2 Number of publications reviewed in terms of algorithm 16

Figure 2.3 Pictorial representation of the content of this chapter 16

Figure 2.4 Reactive power and voltage control devices discussed in this
section

17

Figure 2.5 Schematic of a synchronous condenser integrated into an HVDC
system (adapted from Wang et al., 2019)

18

Figure 2.6 Schematic of a shunt capacitor bank connected to the tertiary
winding of a transmission system transformer (adapted from
Kundur, 1994)

19

Figure 2.7 Schematic of a tapped shunt reactor connected to the tertiary
winding of a transmission system transformer (adapted from
Kundur, 1994)

20

Figure 2.8 Static VAR compensator (SVC), an example of a FACTS device
(adapted from Gandoman et al., 2018)

20

Figure 2.9 Schematic of an under-load tap-changing transformer with the
tap-changer located on the primary side of the transformer
(adapted from Csany, 2014)

21

Figure 2.10 Diagram of a photovoltaic (PV) generation system as an example
of a distributed generation system (adapted from Momoh, 2007)

22

Figure 2.11 Classical/conventional methods for Volt/VAR optimization
reviewed in this section

28

Figure 2.12 Heuristic/intelligent search-based methods for Volt/VAR
optimization reviewed in this section

38

Figure 3.1 Summary of the content covered in this chapter 50

Figure 4.1 Summary of the content covered in this chapter 59

Figure 4.2 Flowchart of the Primal-Dual Interior-Point Algorithm 68

Figure 4.3 Evolution of the variables x1 and x2 over the iterations of the
PDIPA for problem (4.29)

77

Figure 4.4 Evolution of the norm of the gradient of the Lagrangian and of the
barrier parameter for problem (4.29)

78

Figure 5.1 Summary of the content covered in this chapter 80

Figure 5.2 Flowchart of the Newton-Raphson load flow algorithm 87

Figure 5.3 Network diagram of the 3-bus system depicting the network data 88

Figure 5.4 Flowchart of the PDIPM-VVO algorithm incorporating the Newton-
Raphson load flow computation

92

Figure 5.5 3-bus system generator voltage magnitudes before and after 98

 xiii

Volt/VAR optimization in bar chart form

Figure 5.6 3-bus system real power losses plotted against the iteration
number

99

Figure 5.7 3-bus system comparison of real power loss with slack-bus active
power (top plot) and with total generated reactive power (bottom
plot)

99

Figure 5.8 3-bus system comparison of change in each generator’s reactive
power output with change in real power loss

100

Figure 5.9 3-bus system comparison of change in each generator’s reactive
power output with change in its terminal voltage magnitude

101

Figure 5.10 Bar chart of a 6-bus system generator voltage magnitudes before
and after Volt/VAR optimization

102

Figure 5.11 6-bus system real power losses plotted against the iteration
number

103

Figure 5.12 6-bus system comparison of real power loss with slack-bus active
power (top plot) and with total generated reactive power (bottom
plot)

103

Figure 5.13 6-bus system comparison of change in each generator’s reactive
power output with change in real power loss

104

Figure 5.14 6-bus system comparison of change in each generator’s reactive
power output with change in its terminal voltage magnitude

105

Figure 5.15 IEEE 14-bus system generator voltage magnitudes prior to and
following VVO in radar chart form

106

Figure 5.16 IEEE 14-bus system real power losses plotted against the
iteration number

107

Figure 5.17 IEEE 14-bus system comparison of real power loss with slack-bus
active power (top plot) and with total generated reactive power
(bottom plot)

108

Figure 5.18 IEEE 14-bus system comparison of change in each generator’s
reactive power output with change in real power loss

108

Figure 5.19 IEEE 14-bus system comparison of change in each generator’s
reactive power output with change in its terminal voltage
magnitude

109

Figure 5.20 IEEE 30-bus system generator voltage magnitudes before and
after Volt/VAR optimization in radar chart form

111

Figure 5.21 IEEE 30-bus system real power losses plotted against the
iteration number

112

Figure 5.22 IEEE 30-bus system comparison of real power loss with slack-bus
active power (top plot) and with total generated reactive power
(bottom plot)

112

Figure 5.23 IEEE 30-bus system comparison of change in each generator’s
reactive power output with change in real power loss

113

Figure 5.24 IEEE 30-bus system comparison of change in each generator’s
reactive power output with change in its terminal voltage
magnitude

114

Figure 5.25 IEEE 118-bus system generator voltage magnitudes before and
after Volt/VAR optimization

115

 xiv

Figure 5.26 IEEE 118-bus system generator voltage magnitudes before and
after Volt/VAR optimization, in radar chart form

116

Figure 5.27 IEEE 118-bus system real power losses plotted against the
iteration number

117

Figure 5.28 IEEE 118-bus system comparison of real power loss with slack-
bus active power (top lot) and with total generated reactive power
(bottom plot)

117

Figure 5.29 IEEE 118-bus system comparison of slack-bus reactive power
with real-power loss (top plot) and slack-bus reactive power and
voltage magnitude change (bottom plot)

118

Figure 6.1 Summary of the content covered in this chapter 121

Figure 6.2 Summary of the key developments of the particle swarm
optimization algorithm over the years (adapted from Freitas et al.,
2020)

123

Figure 6.3 Flowchart of the particle swarm optimization algorithm 137

Figure 6.4 3-bus system convergence behaviour of the PSO algorithm 140

Figure 6.5 3-bus system voltage magnitudes before and after PSO-based
VVO

141

Figure 6.6 3-bus system real power loss and slack-bus active power plotted
against number of iterations

141

Figure 6.7 3-bus system real power loss and total generated reactive power
plotted against number of iterations

142

Figure 6.8 6-bus system convergence behaviour of the PSO algorithm 143

Figure 6.9 6-bus system voltage magnitudes before and after PSO-based
VVO

144

Figure 6.10 6-bus system real power loss and slack-bus active power plotted
against number of iterations

145

Figure 6.11 6-bus system real power loss and total generated reactive power
plotted against number of iterations

145

Figure 6.12 14-bus system convergence behaviour of the PSO algorithm 147

Figure 6.13 Radar chart of 14-bus system voltage profiles before and after
PSO-based VVO

148

Figure 6.14 14-bus system real power loss and slack-bus active power plotted
against number of iterations

148

Figure 6.15 14-bus system real power loss and total generated reactive power
plotted against number of iterations

149

Figure 6.16 30-bus system convergence behaviour of the PSO algorithm 151

Figure 6.17 Radar chart of 30-bus system voltage profiles before and after
PSO-based VVO

151

Figure 6.18 30-bus system real power loss and slack-bus active power plotted
against number of iterations

152

Figure 6.19 300-bus system real power loss and total generated reactive
power plotted against number of iterations

152

Figure 6.20 118-nus system convergence characteristics of the PSO
algorithm, showing slightly oscillatory behaviour

154

 xv

Figure 6.21 118-bus system convergence characteristics of the PSO
algorithm after increasing termination condition tolerance of the
change in the fitness value (top trace), showing successful
convergence

155

Figure 6.22 Radar chart of 118-bus system voltage profiles before and after
PSO-based VVO

155

LIST OF TABLES

Table 2.1 Typical power system phenomena requiring Volt/VAR

optimization
18

Table 2.2 Main characteristics of reactive power and voltage control
devices

22

Table 2.3 Summary of main characteristics of conventional optimization
techniques

36

Table 2.4 Summary of main characteristics nonconventional/heuristic
optimization techniques

45

Table 2.5 Comparison of conventional with nonconventional/heuristic
optimization techniques

47

Table 4.1 Simulation results of the PDIPA applied to problem (4.29) 76

Table 5.1 Classification of system buses based on specified and unknown
variables

84

Table 5.2 3-bus system change in bus power/voltage mismatch over
iterations of the Newton-Raphson load flow computations

91

Table 5.3 3-bus system change in bus voltages over iterations of the
Newton-Raphson load flow computations

91

Table 5.4 3-bus system generator voltage magnitudes prior to and following
VVO

98

Table 5.5 3-bus system loss reduction prior to and following VVO 98

Table 5.6 6-bus system generator voltage magnitudes before and after
Volt/VAR optimization

102

Table 5.7 6-bus system loss reduction before and after Volt/VAR
optimization

102

Table 5.8 IEEE 14-bus system generator voltage magnitudes before and
after Volt/VAR optimization

105

Table 5.9 IEEE 14-bus system loss reduction before and after Volt/VAR
optimization

106

Table 5.10 IEEE 30-bus system generator voltage magnitudes before and
after Volt/VAR optimization

110

Table 5.11 IEEE 30-bus system loss reduction before and after Volt/VAR
optimization

110

Table 5.12 IEEE 118-bus system loss reduction before and after Volt/VAR
optimization

115

Table 5.13 Performance comparison of the PDIPM-VVO algorithm presented
in this chapter with other algorithms from the literature for the
IEEE 14-bus system

118

 xvi

Table 5.14 Performance comparison of the PDIPM-VVO algorithm presented
in this chapter with other algorithms from the literature for the
IEEE 30-bus system

119

Table 6.1 PSO algorithm parameters used in the VVO case studies 139

Table 6.2 3-bus system summary of PSO-VVO algorithm simulation results 139

Table 6.3 6-bus system summary of PSO-VVO algorithm simulation results 142

Table 6.4 14-bus system summary of PSO-VVO algorithm simulation results 146

Table 6.5 30-bus system summary of PSO-VVO algorithm simulation results 150

Table 6.6 118-bus system summary of PSO-VVO algorithm simulation
results

153

Table 6.7 Comparison of the PDIPM and PSO Volt/VAR optimization results 156

Table 7.1 Software programs developed and implemented in this thesis 161

LIST OF APPENDICES

Appendix A.1 Function to implement the interior-point method (IPM) for a

general nonlinear programming problem with inequality
constraints

177

Appendix A.2 Function to define the objective function, constraints, and the
Jacobian and Hessian of the Lagrangian of the problem

179

Appendix A.3 MATLAB script that calls the IPM to implement the example
problem in section 4.3.8

179

Appendix B.1 Function that computes the residues of the load flow problem 181

Appendix B.2 Function that computes the Jacobian of the power flow equations
for the load flow problem

182

Appendix B.3 Function that implements the Newton-Raphson load flow
algorithm

183

Appendix B.4 MATLAB script that runs the Newton-Raphson load flow
computation for the 3-bus system

184

Appendix B.5 Function that implements the primal-dual interior-point method-
based Volt/VAR optimization (PDIPM-VVO) for the 3-bus system,
incorporating the Newton-Raphson load flow computation

187

Appendix B.6 Function that computes the objective function, the gradient and
Hessian for the 3-bus system

189

Appendix B.7 Function that computes the constraint functions, their Jacobian
and Hessian for the 3-bus system

190

Appendix B.8 Function that computes the Jacobian and Hessian of the
Lagrangian of the VVO problem for the 3-bus system

190

Appendix B.9 MATLAB script that runs the PDIPM-VVO algorithm for the 3-bus
system

191

Appendix B.10 Function that implements the primal-dual interior-point method-
based Volt/VAR optimization (PDIPM-VVO) for the 6-bus system,
incorporating the Newton-Raphson load flow computation

199

Appendix B.11 Function that computes the objective function, its gradient and
Hessian for the 6-bus system

201

 xvii

Appendix B.12 Function that computes the constraint functions, their Jacobian
and Hessian for the 6-bus system

202

Appendix B.13 Function that computes the Jacobian and Hessian of the
Lagrangian of the VVO problem for the 6-bus system

203

Appendix B.14 MATLAB script that runs the PDIPM-VVO algorithm for the 6-bus
system

203

Appendix B.15 Function that implements the primal-dual interior-point method-
based Volt/VAR optimization (PDIPM-VVO) for the 14-bus system,
incorporating the Newton-Raphson load flow computation

210

Appendix B.16 Function that computes the objective function, its gradient and
Hessian for the 14-bus system

213

Appendix B.17 Function that computes the constraint functions, their Jacobian
and Hessian for the 14-bus system

214

Appendix B.18 Function that computes the Jacobian and Hessian of the
Lagrangian of the VVO problem for the 14-bus system

215

Appendix B.19 MATLAB script that runs the PDIPM-VVO algorithm for the 14-bus
system

215

Appendix B.20 Function that implements the primal-dual interior-point method-
based Volt/VAR optimization (PDIPM-VVO) for the 30-bus system,
incorporating the Newton-Raphson load flow computation

225

Appendix B.21 Function that computes the objective function, its gradient and
Hessian for the 30-bus system

228

Appendix B.22 Function that computes the constraint functions, their Jacobian
and Hessian for the 30-bus system

229

Appendix B.23 Function that computes the Jacobian and Hessian of the
Lagrangian of the VVO problem for the 30-bus system

230

Appendix B.24 MATLAB script that runs the PDIPM-VVO algorithm for the 30-bus
system

230

Appendix B.25 Function that implements the primal-dual interior-point method-
based Volt/VAR optimization (PDIPM-VVO) for the 118-bus
system, incorporating the Newton-Raphson load flow
computation

238

Appendix B.26 Function that computes the gradient of the objective function for
the 118-bus system

241

Appendix B.27 Function that computes the Hessian of the objective function for
the 118-bus system

246

Appendix B.28 Function that defines the constraint functions for the 118-bus
system

252

Appendix B.29 Function that computes the Jacobian of the constraint functions
for the 118-bus system

252

Appendix B.30 Function that computes the Hessian of the constraint functions
for the 118-bus system

256

Appendix B.31 Function that computes the Jacobian and Hessian of the
Lagrangian of the VVO problem for the 118-bus system

258

Appendix B.32 MATLAB script that runs the PDIPM-VVO algorithm for the 118-
bus system

259

Appendix C.1 MATLAB script that runs the PSO-VVO algorithm for the 3-bus 272

 xviii

system

Appendix C.2 MATLAB script that runs the PSO-VVO algorithm for the 6-bus
system

278

Appendix C.3 MATLAB script that runs the PSO-VVO algorithm for the 14-bus
system

284

Appendix C.4 MATLAB script that runs the PSO-VVO algorithm for the 30-bus
system

292

Appendix C.5 MATLAB script that runs the PSO-VVO algorithm for the 118-bus
system

299

Appendix C.6 Function that computes the personal and global best positions
for the PSO algorithm; applies to all case studies

305

Appendix C.7 Function that computes the fitness value of an individual particle
for the PSO algorithm; applies to all case studies

306

Appendix C.8 Function that computes the velocity update and adjusts the
particle position for the PSO algorithm; applies to all case studies

307

Appendix D.1 Function to compute the impedance (Y) matrix for an arbitrary
power system

308

Appendix D.2 Function to compute the generator active and reactive power
outputs once the load flow computation has converged

308

Appendix D.3 Function to define the initial guess for the Newton-Raphson load
flow computation

309

Appendix D.4 Function to define the generator voltage magnitude set-points for
the Newton-Raphson load flow computation

309

Appendix D.5 Function to compute the real power loss magnitude for an
arbitrary power system

310

 xix

GLOSSARY

Terms/Acronyms/Abbreviations Definition/Explanations

AI Artificial intelligence

B&B Branch and Bound; an algorithm design paradigm for
discrete and combinatorial optimization problems

CG Conjugate gradient (optimization method)

DC Direct current

DE Differential evolution

DG Distributed generation

EP Evolutionary programming

EPRI Electric power research institute

ES Expert system

FACTS Flexible AC Transmission System

FERC Federal Energy Regulatory Commission

GA Genetic algorithm

Gbest The global best position of the particle swarm; that is,
the best position achieved by any particle in the entire
swarm

GRG Generalized reduced gradient (optimization method)

HVDC High Voltage Direct Current

IPM Interior-point method

KKT Karush-Kuhn-Tucker; first-order derivative tests used
to check the optimality of a solution to an optimization
problem

Lbest The local best position achieved within a given
neighbourhood of a particle swarm

LP Linear programming

LTC Load tap changer

MATLAB A technical and numerical computing environment,
developed by MathWorks

MINLP Mixed-integer nonlinear programming

MIP Mixed integer programming

OPF Optimal power flow

ORD Optimal reactive (power) dispatch

ORPD Optimal reactive power dispatch

Pbest The personal best position of a particle in the particle
swarm optimization algorithm

PC-PDIPM Predictor-corrector primal-dual interior-point method

PDIPA Primal-dual interior-point algorithm

PDIPM Primal-dual interior-point method

PQ Active/reactive power

 xx

PSO Particle swarm optimization

PV Photovoltaic

QP Quadratic programming

RG Reduced gradient (optimization method)

RTDS Real-Time Digital Simulator

SLP Sequential linear programming

SPEA2 Strength-pareto evolutionary algorithm

SQP Sequential quadratic programming

SSR Sub-synchronous resonance

SVC Static VAR compensator

ULTC Under-load tap-changing (transformer)

VAR Volt-Amp-Reactive; the units of measurement for
reactive power

VVO Volt/VAR optimization

 xxi

LIST OF MATHEMATICAL NOTATIONS

Symbol Definition/Explanation

LossP Total real power transmission losses

kG Series conductance of branch k

LN Number of branches in a power network

ji VV , Voltage magnitudes at buses i and j respectively

ij Phase angle of the ijth Y-matrix component

 ,,VPi Active power injection at bus i

 ,,VQi Reactive power injection at bus i

GiP Generator active power output at bus i

diLi PP , Active power demand at bus i

GiQ Generator reactive power output at bus i

diLi QQ , Reactive power demand at bus i

ciSi QQ , Reactive power source/sink magnitude at bus i

GiV Generator terminal voltage magnitude at bus i

LiV Voltage magnitude at PQ bus i

k Tap position of ULTC connected in branch k

kS Apparent power flow in branch k

ijY ijth component of admittance matrix

 Voltage phase angle

kd Search direction of a gradient-based optimization
method at the kth iteration

kx Solution of a gradient-based optimization method at
the kth iteration

)(kxH Hessian of the objective function in the Newton-based
solution of an optimization problem

)(kxf Gradient (i.e. 1st order partial derivatives) of the
objective function in a gradient-based solution of an
optimization problem

),(uxf Objective function of a general nonlinear
programming problem

),(uxg Equality constraints of a general nonlinear
programming problem

),(uxh Inequality constraints of a general nonlinear
programming problem

maxmin , xx Lower and upper bounds on the value of the state
variable, x, respectively

maxmin , uu Lower and upper bounds on the value of the control
variable, u, respectively

 xxii

ii fe , Real and imaginary components of bus voltage at ith
bus, respectively

ijG Conductance of transmission line connecting buses i
and j (real component of ijth component of Y matrix)

ijB Susceptance of transmission line connecting buses i
and j (imaginary component of ijth component of Y
matrix)

ijI Current magnitude in branch ij

s Slack variable, added to an inequality constraint to
transform it into an equality constraint

S Diagonal matrix with the slack variables on the
principal diagonal

 Barrier parameter in the primal-dual interior-point
method

E Lagrange multiplier for the equality constraint

I Lagrange multiplier for the inequality constraint

I Diagonal matrix with vector of Lagrange multipliers for
inequality constraints on the principal diagonal

Lx Gradient of the Lagrangian of the logarithmic barrier
function with respect to x, in the primal-dual interior-
point method

Lxx

2 Hessian of the Lagrangian of the logarithmic barrier
function with respect to x, in the primal-dual interior-
point method

Y Gradient (or Jacobian) of generic nonlinear function
Y, where Y can be f (objective function), g (equality
constraints) or h (inequality constraints)

Yxx

2 Hessian of generic nonlinear function Y, where Y can
be f (objective function), g (equality constraints) or h
(inequality constraints)

)(kXF General nonlinear function of independent variable Xk

)(kXJ Jacobian of general nonlinear function F(Xk) in the
Newton method

kX Increment added to Xk to advance it towards the
solution in the Newton method

Y Increment in generic variable Y, where Y can be
either a primal or a dual variable in the primal-dual
interior-point method

k

d

k

p , Step length for the primal and dual variables
respectively, in the primal-dual interior-point method

 Safety factor in the primal-dual interior-point method

 Complementarity gap in the primal-dual interior-point
method

 Centering parameter in the primal-dual interior-point
method

 xxiii

 Scalar parameter used in the setting of the initial
slack variables for the primal-dual interior-point
method

Pig Equality constraint corresponding to the active power
flow balance equation

Qig Equality constraint corresponding to the reactive
power flow balance equation

ViMVim hh , Inequality constraints corresponding to the lower and
upper bounds of the bus voltage magnitudes
respectively, in the primal-dual interior-point method

QgiMQgim hh , Inequality constraints corresponding to the lower and
upper bounds of the generator reactive power outputs
respectively

qciMqcim hh , Inequality constraints corresponding to the lower and
upper bounds of the shunt reactive power outputs
respectively

tiMtim hh , Inequality constraints corresponding to the lower and
upper bounds of the transformer load tap changer
position respectively

ViMVim ss , Slack variables for the voltage bound inequality
constraints

QgiMQgim ss , Slack variables for the generator reactive power
bound inequality constraints

qciMqcim ss , Slack variables for the shunt reactive power bound
inequality constraints

tiMtim ss , Slack variables for the load tap changer position
bound inequality constraints

IViMIVim , Lagrangian multipliers for the voltage bound
inequality constraints

IQgiMIQgim , Lagrangian multipliers for the generator reactive
power bound inequality constraints

IqciMIqcim , Lagrangian multipliers for the shunt reactive power
bound inequality constraints

ItiMItim , Lagrangian multipliers for the load tap changer
position bound inequality constraints

iP Real power residue (i.e. mismatch) for the active
power balance equation in the Newton-Raphson load
flow algorithm

iQ Reactive power residue (i.e. mismatch) for the
reactive power balance equation in the Newton-
Raphson load flow algorithm

2

iV Squared voltage residue (i.e. mismatch) for the
squared balance equation in the Newton-Raphson
load flow algorithm

x

Y

Partial derivative of generic nonlinear function Y with
respect to independent variable x

k

iX Current position of particle i at iteration k in the
particle swarm optimization (PSO) algorithm

 xxiv

k

ibestp , Personal best position of particle i at iteration k in the
PSO algorithm

k

bestg Global best position of the (entire) particle swarm at
iteration k in the PSO algorithm

k

iV Velocity of particle i at iteration k in the PSO algorithm

 iU ,0

 Vector of uniformly distributed random numbers used
to scale the cognitive and social components of the
velocity update equation in the PSO algorithm

21 , Cognitive and social coefficients (also known as
acceleration coefficients) in the PSO algorithm

 Inertia weight in the PSO algorithm

minmax , Initial and final values of the inertia weight,
respectively, in the PSO algorithm

itermax_ Maximum number of iterations in the PSO algorithm

 Constriction coefficient in the PSO algorithm

ir Uniformly distributed random variable between 0 and
1, applied to particle i

k

igenV , Generator voltage magnitude represented in particle i
at iteration k in the PSO algorithm

max

,

min

, , igenigen VV Minimum and maximum values of generator voltage
magnitude represented in particle i in the PSO
algorithm

1

CHAPTER ONE

THESIS INTRODUCTION

1.1 Introduction and background

The electric power system has undergone significant developments over the past

century or so. Notable among the many developments are the deregulation and

restructuring of the electrical power supply industry, the establishment of competitive

electricity markets, and the resurgence of distributed and decentralized electric power

generation (Li & Zhong, 2021; Rahimi, 2020; Jha & Dubey, 2020). This has naturally

led to an increase in complexity of the modern power system. And in spite of these

major developments and the increase in complexity, the primary objective of the

power system has remained practically the same: to deliver electric power to the

consumer in a secure, efficient, economical, reliable and sustainable way. Indeed,

reliability of electric power supply has become so critical to modern society that even

momentary unavailability of electric power may threaten to cause enough disruption

to essential public (and private) services and normal daily activities to be considered

practically intolerable.

Being able to deliver electric power with the required high reliability and security,

while being economical, has necessitated the development of a variety of planning

and operational strategies over the decades, by means of which the power system

can be operated optimally as far as practicable. These strategies are collectively

referred to as Optimal Power Flow (OPF). In the course of the operation of the power

system, changes in load demand and network configurations may cause the system

to operate outside of the nominal range, which could threaten the quality and even

security or reliability of supply. To prevent or correct anomalous operating conditions,

the system operator continually implements controls to regulate the production,

absorption and flow of power at all levels in the system. Some of the controlled

variables include generator active and reactive power outputs, reactive power

compensation device outputs, transformer tap settings, and phase shifter settings,

among others. OPF has evolved into a sophisticated computational tool employed in

the determination of the optimal dispatch of all the system control variables so as to

ensure the economical and secure operation of the system, while respecting many

functional and operational constraints of the system.

The research presented in this thesis is primarily concerned with the theoretical

design, development, and practical implementation of efficient algorithms that

contribute to the secure, economical and reliable operation of modern complex power

systems. This chapter covers the background to the research presented in this thesis.

The motivation for the research is briefly discussed in section 1.2, followed by the

2

problem statement in section 1.3. Section 1.4 outlines the aim and objectives of the

research, followed by the hypotheses that underlie the conducted research in section

1.5. Delimitation of the research and the assumptions taken in conducting the

research are presented in sections 1.6 and 1.7 respectively. Section 1.8 outlines the

research methodology, followed by the main research outputs in section 1.9. The

outline of the thesis is then presented in section 1.10, and section 1.11 concludes the

chapter with a brief summary of key points from the chapter.

1.2 Motivation for the research

The electrical power system is arguably one of the most complex engineering

systems in existence. The complexity is in part due to the need to simultaneously

consider several important operational objectives, some of which may be conflicting in

nature. Engineering optimization has turned out to be the most effective way of

dealing with the complexity associated with the efficient operation of the power

system. Indeed, optimization of power system operation as a subject of study has

quite a long history, and has benefited over the years from the advances in

mathematical programming techniques and computational methods, although it even

predates the advent of digital computers, which can be said to have revolutionized

numerical optimization and computation in general. One of the most widely studied

power system optimization problems is the optimal power flow (OPF) problem, the

first complete formulation of which is generally attributed to Carpentier (1962). The

OPF problem is concerned with the optimization of some aspect of power system

operation (which could be economical, technical, environmental, etc.), while satisfying

the functional and operational constraints of the system (Frank & Rebennack, 2016).

Reactive power and voltage control, otherwise referred to as optimal reactive power

dispatch (ORPD) or Volt/VAR optimization (VVO), is one of the most important sub-

problems of the OPF problem. It is primarily concerned with determination of the

optimal coordinated dispatch of voltage-regulating devices and reactive power

sources, with the aim of maintaining a secure voltage profile, while also optimizing

some aspect of system operation, subject to functional and operational system

constraints (Chebbo, 1990). Optimal reactive power dispatch plays a key role in the

efficient transfer of real power, especially in the bulk power transmission system, and

contributes significantly to the security, reliability, quality and economy of power

system operation (Miller, 1982). Volt/VAR optimization has consistently been one of

the most active areas of research in the field of optimization of power system

operation, which gives evidence to the continued relevance of research in this aspect

of power system operation. This is especially true in view of the growing complexity of

modern power systems, in part due to such developments as electric power system

3

deregulation and restructuring, establishment of competitive electricity markets, the

proliferation of distributed and decentralized electric power generation, and electric

power grid modernization efforts under the smart grid paradigm. All these

developments bring about the need for continuous advancement in optimization

techniques and computational methods that are to support the secure, reliable, and

economical operation of the 21st century power system and beyond (Myrda, 2013).

Volt/VAR optimization has a number of characteristics that make it a very challenging

optimization problem, and much effort has been dedicated over the decades to the

study of a variety of problem formulations, as well as the development of solution

techniques for the various formulations, encompassing both classical or conventional

optimization methods, as well as heuristic or intelligent search-based optimization

methods. Most researchers consider either a classical or a heuristic optimization

method in isolation. Recent works have applied such heuristic optimization methods

as particle swarm optimization (Pijarski & Kacejko, 2018; Vitor & Vieira, 2018),

genetic algorithm (Choden et al., 2022), and expert system (Lomi & Limpraptono,

2017) to the Volt/VAR optimization problem. Examples of classical methods applied

to the Volt/VAR optimization algorithm can be found in (Xu & Wu, 2022; Jha Dubey,

2020; Prabawa & Choi, 2019). The research work presented in this thesis

investigates the design of efficient Volt/VAR optimization strategies considering both

approaches, that is, classical and heuristic optimization techniques. Moreover,

whereas most researchers make use of the polar formulation of the Volt/VAR

optimization problem, both the polar and rectangular formulations are analysed in this

thesis, and the rectangular formulation is found to have more favourable

mathematical properties from the computational efficiency perspective, and is thus

used in the studies conducted in this research. Both the model development of the

Volt/VAR optimization problem as well as the theoretical design and practical

implementation of the developed algorithms are thoroughly covered in the research.

1.3 Problem statement

The main problem dealt with in this research is the theoretical design and practical

implementation of efficient methods for Volt/VAR optimization. This is in recognition of

the pivotal role played by Volt/VAR optimization in ensuring the security, economy,

efficiency and reliability of operation of modern complex power systems. The solution

to the research problem is addressed through a thorough and comprehensive

investigation of the state-of-the-art in the problem formulation and solution methods

for the Volt/VAR optimization problem, followed by the theoretical design and

practical implementation of the algorithms developed within the framework of this

4

research. The problem statement can thus be considered to consist of design and

implementation sub-problems, as follows:

1.3.1 Design-oriented sub-problems

i. Study and comparative analysis of the various classical and heuristic

optimization methods that have been applied to the Volt/VAR optimization

problem over the decades.

ii. Formulation of the Volt/VAR optimization problem, considering both the polar

and rectangular representations of the system voltages.

iii. Development and design of the Newton-Raphson load flow algorithm in

rectangular coordinates, which is used as a component of the Volt/VAR

optimization algorithm.

iv. Theoretical development and design of the primal-dual interior-point algorithm

for application to the Volt/VAR optimization problem.

v. Theoretical development and design of the particle swarm optimization

algorithm for application to the Volt/VAR optimization algorithm.

vi. Design of power system case studies to be used in the performance analysis

of the developed Volt/VAR optimization algorithms.

1.3.2 Implementation-oriented sub-problems

Development of software for the implementation of:

i. The Newton-Raphson load flow algorithm in rectangular coordinates.

ii. The primal-dual interior-point method for solution of the Volt/VAR optimization

problem, incorporating the Newton-Raphson load flow computation.

iii. The particle swarm optimization algorithm for solution of the Volt/VAR

optimization problem, also incorporating the Newton-Raphson load flow

computation.

iv. The power system case studies used to analyse the performance of the

developed algorithms.

1.4 Research aim and objectives

1.4.1 Aim

The main aim of this research, in line with the problem statement outlined in the

preceding section, is theoretical design and practical implementation of efficient

solution methods for the Volt/VAR optimization algorithm, based on both

classical/conventional and heuristic/intelligent search-based optimization techniques.

5

1.4.2 Objectives

The objectives supporting the realization of this aim can be stated as:

1. Thorough investigation of the state-of-the-art in problem formulation and

solution techniques for the Volt/VAR optimization problem, considering both

classical and heuristic optimization techniques.

2. Critical comparative analysis of classical and heuristic optimization

techniques, based on key optimization performance criteria, such as

computational efficiency, convergence characteristics, and solution quality.

3. Model development for the Volt/VAR optimization problem, considering both

the polar and rectangular form of representing the system voltages.

4. Theoretical development of the primal-dual interior-point method (PDIPM) as

the classical optimization technique applied to the solution of the Volt/VAR

optimization problem.

5. Practical implementation of the PDIPM-based Volt/VAR optimization (PDIPM-

VVO) algorithm, and a comprehensive performance analysis of the developed

algorithm by means of a variety of power system case studies.

6. Theoretical development of the particle swarm optimization (PSO) algorithm

as the heuristic optimization technique applied to the solution of the Volt/VAR

optimization problem.

7. Practical implementation of the PSO-based Volt/VAR optimization (PSO-VVO)

algorithm, and a comprehensive performance analysis of the developed

algorithm by means of a variety of power system case studies.

8. Comparative analysis of the performance of the PDIPM and PSO algorithms

as solution methods for the Volt/VAR optimization problem.

9. Making of recommendations for further research based on the results

achieved from the current research.

1.5 Hypothesis

The hypotheses underpinning the research presented in this thesis are based on the

investigative literature review that has been conducted in the field of problem

formulation and solution techniques for the Volt/VAR optimization problem, spanning

several decades, and encompassing both classical and heuristic optimization

techniques. The following are the main hypotheses investigated in this research:

 Many different solution approaches for the Volt/VAR optimization problem

have been explored and presented in the literature over the past decades. A

detailed study of the individual techniques and a critical comparative analysis

is conducted with the aim of establishing their key characteristics, as well their

6

relative strengths and weaknesses, which then forms the basis for the

methods and algorithms developed and implemented in this thesis.

 The model formulation for the Volt/VAR optimization problem has a significant

impact on the computational efficiency with which it is solved, especially when

considered in conjunction with a specific optimization technique. The polar

and rectangular representations of the Volt/VAR optimization problem are

considered in this thesis, and their relative merits and demerits are discussed.

Based on their mathematical properties, the rectangular formulation is found

to be especially suitable for the solution algorithms developed in this thesis.

 There are a number of performance criteria on the basis of which the

effectiveness of an optimization algorithm can be evaluated, for example,

computational speed, accuracy and quality of the solution, convergence

properties, and ability to effectively handle inequality constraints, among

others. The hypothesis is that classical optimization methods perform

relatively better in some of these characteristics, and heuristic methods

perform better in others. Thus, the solution to the Volt/VAR optimization

algorithm is developed on the basis of both a classical optimization method

(i.e. PDIPM) as well as a heuristic optimization method (i.e. PSO), and a

comparative analysis is conducted to ascertain their relative performance with

respect to the Volt/VAR optimization problem.

The investigation of these hypotheses leads to the design and implementation of

efficient and scalable solution methods for the Volt/VAR optimization problem, based

on both the classical and heuristic optimization techniques, as presented in this

thesis.

1.6 Delimitation of the research

The focus of the research presented in this thesis is on the theoretical study and

analysis of classical and heuristic optimization methods, and their application to the

Volt/VAR optimization problem. More specifically, the following aspects of the

research are emphasized:

 Development and implementation of the Newton-Raphson-based load flow

algorithm formulated in rectangular coordinates of system voltages.

 Development and implementation of the primal-dual interior-point method-

based Volt/VAR optimization algorithm, which incorporates the Newton-

Raphson-based load flow computation.

 Development and implementation of the particle swarm optimization-based

Volt/VAR optimization algorithm, which also incorporates the Newton-

Raphson-based load flow computation.

7

 Performance analysis of the developed algorithms by means of several power

system case studies varying in size, in order to analyse such characteristics

as computational efficiency, solution quality, convergence properties, and

scalability of the algorithms.

Many algorithms are studied in the framework of this thesis, but only the ones

outlined above are further developed and implemented.

1.7 Assumptions

The following assumptions are made in approaching the problem of developing and

implementing solution methods for the Volt/VAR optimization problem:

 Volt/VAR optimization is treated as a static optimization problem, such that the

load demand and active power generation are considered to remain constant

at the scheduled values throughout the optimization process. This is a

simplifying assumption, as in reality load demand tends to vary over time, and

active power generation must correspondingly be adjusted to follow the load

demand variation.

 The system power loss calculation is based only on the transmission line

losses. This is a simplifying assumption, as many other system components,

such as generators and transformers, also contribute to system power losses.

In this study, however, their contribution is taken to be relatively negligible.

 In developing the model for the Volt/VAR optimization problem, only the

aspects relevant to the optimization process are modelled, and only a

selection of system state and control variables are incorporated into the

model, which is a simplification meant to handle the model complexity.

 The PDIPM algorithm requires initialization of certain parameters (e.g. barrier

parameters, slack variables, etc.), which is largely problem-dependent. Once

these parameters are initialized, some of them stay constant throughout the

optimization process, others are adjusted algorithmically. No re-initialization of

the parameters is performed, unless a different run of the algorithm is

conducted in order to evaluate it for a different set of parameters.

 The PSO algorithm requires initialization of some random parameters as well

as some static parameters (e.g. cognitive and social acceleration coefficients,

which are held constant throughout the optimization process), and these are

also largely problem-dependent.

 The performance analysis of the developed algorithms focuses on the

measurable aspects of the algorithm performance, such as the number of

iterations taken by the algorithm to converge and the corresponding running

time, and the solution quality as judged by the achieved amount of power loss

8

reduction and voltage profile improvement. Many other aspects are not

considered.

 Other than the primal-dual interior-point and particle swarm optimization

algorithms, other optimization algorithms are not considered for

implementation in this research.

1.8 Research methodology

The methodology followed in conducting the research presented in this thesis

encompasses three main strands, these being (1) a thorough literature review on the

various aspects pertaining to the research, (2) a theoretical development of the

components of the research as stated in the research objectives, (3) a practical

implementation of the developed solutions to the research problem, and

comprehensive performance analysis of the developed methods.

1.8.1 Literature review

The review of previous work related to the proposed research has considered the

various aspects related to Volt/VAR optimization. The following topics have been the

main focus of the literature review:

1. Formulation of the Volt/VAR optimization problem, considering the objectives,

constraints, and decision or control variables, and the representation of the

system voltages in both polar and rectangular coordinates.

2. The main reactive power and voltage control devices that are typically

employed in Volt/VAR optimization.

3. Classical/conventional methods for Volt/VAR optimization.

4. Heuristic/intelligent search-based methods for Volt/VAR optimization.

5. Performance analysis criteria for optimization in general, and Volt/VAR

optimization in particular.

1.8.2 Theoretical development

The knowledge and information derived from the literature review has been used as

the basis for the theoretical development of the solution to the research problem.

Specifically, this has resulted in the:

 Definition of the problem formulation for the Volt/VAR optimization problem for

both the polar and rectangular coordinate representations of the system

voltages.

 Development of the Newton-Raphson load flow algorithm in rectangular

coordinates, which is then incorporated into the Volt/VAR optimization

algorithm.

9

 Development of the primal-dual interior-point method and adaptation to the

requirements of the solution algorithm for the Volt/VAR optimization problem.

 Development of the particle swarm optimization algorithm and adaptation to

the requirements of the solution algorithm for the Volt/VAR optimization

problem.

1.8.3 Practical implementation and performance analysis

The practical implementation and performance analysis entails:

 Development of the software for the Newton-Raphson load flow algorithm that

has been theoretically developed, as outlined in section 1.8.2.

 Development of the software for the PDIPM-based Volt/VAR optimization

algorithm incorporating the Newton-Raphson algorithm.

 Development of the software for the PSO-based Volt/VAR optimization

algorithm incorporating the Newton-Raphson algorithm.

 Comprehensive performance analysis of all the developed algorithms by

means of several power system case studies varying in size from small (3-bus

system) to large (118-bus system).

1.9 Main research outputs/deliverables

The principal contributions of this research can be enumerated as: (1) comprehensive

literature study and review; (2) problem formulation and model development for the

Volt/VAR optimization problem; (3) theoretical development and design of the

algorithms used in solving the Volt/VAR optimization problem; (4) software

development for the implementation of the developed algorithms; and (5)

comprehensive performance analysis of the developed algorithms by means of a

variety of power system case studies:

1. The comprehensive literature review covers the following:

a. Problem formulation and solution methods for the Volt/VAR

optimization problem, considering both the classical/conventional and

heuristic/intelligent search-based optimization techniques.

b. Critical comparative analysis of the classical and heuristic optimization

techniques, highlighting their individual characteristics, as well as their

relative strengths and weaknesses.

c. Study and presentation of the main reactive power and voltage control

devices that are typically employed in the solution of the Volt/VAR

optimization problem.

10

2. The problem formulation and model development for the Volt/VAR

optimization problem considers both the polar and rectangular coordinate

representations of the system voltages.

3. The theoretical algorithm development and design encompasses:

a. The Newton-Raphson load flow algorithm in the rectangular coordinate

representation of the system voltages.

b. The primal-dual interior-point algorithm for Volt/VAR optimization

(PDIPM-VVO), formulated in rectangular coordinates, which

incorporates the rectangular-coordinate Newton-Raphson load flow

computation.

c. The particle swarm optimization algorithm for Volt/VAR optimization

(PSO-VVO), also formulated in rectangular coordinates, and

incorporating the rectangular-coordinate Newton-Raphson load flow

computation.

4. The software development and implementation encompasses the:

a. Rectangular-coordinate Newton-Raphson load flow algorithm.

b. Primal-dual interior-point method-based Volt/VAR optimization

(PDIPM-VVO) algorithm.

c. Particle swarm optimization-based Volt/VAR optimization (PSO-VVO)

algorithm.

5. The comprehensive performance analysis of the developed algorithms makes

use of five power system case studies, and analyses the performance of both

the PDIPM-VVO and PSO-VVO algorithms, focusing on the following

performance aspects:

a. The quality of the solution in terms of the magnitude of real power loss

percentage reduction and the voltage profile improvement.

b. The computational efficiency of the algorithm in terms of the required

number of iterations and runtime.

c. The scalability of the developed algorithms when applied to test

systems ranging in size from 3-bus to 118-bus system.

d. The impact of the swarm size on the solution quality and the

computational cost of the PSO algorithm.

1.10 Thesis outline

The thesis document comprises seven chapters, whose contents can be summarized

as follows:

Chapter one (i.e. this chapter) introduces the research presented in this thesis.

Among the topics covered are the motivation for the research, the problem statement,

11

the research aim and objectives, the hypotheses underpinning the research, the

delimitation of the research, the assumptions that have been made in the process of

conducting the research, the research methodology that has been followed, and the

main research outputs.

Chapter two presents a comprehensive literature review on the problem formulation

and solution methods for the Volt/VAR optimization problem, covering both the

classical/conventional as well as the heuristic/intelligent search-based optimization

techniques. A study of the main reactive power and control devices that are typically

employed in the Volt/VAR optimization are is also presented. A key result in this

chapter is a critical comparative analysis of the performance characteristics of

classical and heuristic optimization methods, which emphasizes their relative

strengths and weaknesses.

Chapter three focuses on the model development for the Volt/VAR optimization

problem, and discusses the objective functions, constraints, as well as decision or

control variables for the problem. Two models are presented, one based on the polar

representation of the system voltages, the other based on the rectangular

representation of the system voltages. The two models are compared in terms of their

mathematical properties, and their suitability for application to the current study.

Chapter four presents the theoretical design and practical implementation of the

primal-dual interior-point method, as well as an application example based on a

general nonlinear programming problem that is used to demonstrate both the

theoretical development and practical implementation of the algorithm.

Chapter five presents the theoretical development and practical implementation of the

primal-dual interior-point method-based Volt/VAR optimization (PDIPM-VVO)

algorithm, as well as the Newton-Raphson load flow algorithm, formulated in

rectangular coordinates. Five simulation case studies based on power systems

ranging in size from 3-bus to 118-bus are used to analyse the performance of the

developed PDIPM-VVO algorithm.

Chapter six presents the theoretical development and practical implementation of the

particle swarm optimization-based Volt/VAR optimization (PSO-VVO) algorithm,

which also incorporates the Newton-Raphson load flow algorithm presented in

chapter five. Similar to chapter five, several simulation case studies based on power

systems ranging in size from 3-bus to 118-bus are used to analyse the performance

of the developed PSO-VVO algorithm. A comparative analysis of the PDIPM-VVO

and PSO-VVO algorithms is also presented in this chapter.

12

Chapter seven presents the conclusion, the deliverables of the thesis, and the

recommendation for further research based on the outcomes of the current research.

1.11 Conclusion

This chapter has introduced the research presented in this thesis. Among the topics

covered are the motivation for the research, the problem statement, the research aim

and objectives, the hypotheses underpinning the research, the delimitation of the

research, the assumptions that have been made in the process of conducting the

research, the research methodology that has been followed, and the main research

outputs. Subsequent chapters will develop the themes outlined in this chapter, which

will culminate into the achievement of the aim and objectives stated for this research.

The main result of this chapter has been to set the background for the research

conducted and presented in this thesis.

To contextualize the current research and to lay the foundation for the developmental

work carried out in the framework of this research, the following chapter presents a

comprehensive literature review on the problem formulation and solution methods for

the Volt/VAR optimization problem, covering both the classical/conventional as well

as the heuristic/intelligent search-based optimization techniques.

13

CHAPTER TWO

LITERATURE REVIEW ON CLASSICAL AND HEURISTIC METHODS FOR
VOLT/VAR OPTIMIZATION

2.1 Introduction

Optimization of power system operation as a subject of study has quite a long history,

enriched over the years by advances in mathematical programming techniques and

computational methods, but certainly predating the advent of digital computers which

have revolutionized numerical optimization and computation in general. One of the

most widely studied power system optimization problems is the Optimal Power Flow

(OPF) problem, the first complete formulation of which is generally attributed to

Carpentier (1962), (Cain et al., 2012). The OPF problem seeks to optimize some

aspect of power system operation (could be economical, technical, environmental,

etc.), while satisfying the physical and operational constraints of the system (Frank &

Rebennack, 2016).

Volt/VAR Optimization (VVO) can be considered to be a sub-problem of the OPF

problem (or a variant formulation thereof) that is mainly concerned with the

determination of the optimal coordinated dispatch of voltage-regulating devices and

reactive power sources so as to maintain a secure voltage profile, while also

optimizing some aspect of power system operation, subject to physical and

operational system constraints (Feng & Peterson, 2010; Chebbo, 1990). Optimal

reactive power dispatch plays a key role in the efficient transfer of real power,

especially in the bulk power transmission system, and contributes significantly to the

security, reliability, quality and economy of power system operation (Miller, 1982).

The extensive research that has been (and continues to be) conducted in the area of

Volt/VAR optimization gives evidence to the continued relevance of research in this

aspect of power system operation, particularly in the wake of changes taking place in

the electric power system, spurred on by such developments as electric power

system deregulation, electric grid modernization under the paradigm of the smart grid,

and the rapid growth of renewable and distributed power generation (Li & Zhong,

2021; Rahimi, 2020; Jha & Dubey, 2020; Golkar & Rajabzadeh, 2009; Puttgen et al.,

2001; Lewis, 2000; Joos et al., 2000). Largely progressive as all these developments

are, they nonetheless pose a significant challenge to the power system operator

(Bekhouche, 2002), and hence the growing need for advancements in optimization

techniques and computational methods that will support the secure, reliable, and

economical operation of the 21st century power system and beyond (Myrda, 2013).

14

Volt/VAR optimization has a number of characteristics that make it a very challenging

optimization problem, and much effort has been dedicated over the decades to the

study of a variety of problem formulations, as well as the development of solution

techniques for the various formulations. Key developments in the treatment of the

OPF problem over the years have been presented in a number of review papers,

some notable ones being (Alghamdi, 2022; Risi, B-G. et al., 2022; Krishnamurthy &

Tzoneva, 2012; Frank et al., 2012a, 2012b; Pandya & Joshi, 2008; Momoh et al.,

1993; Huneault & Galiana, 1991; Alsac et al., 1990; Happ, 1977). Aspects of interest

that have been emphasized in these review papers have mainly been the problem

formulation, as well solution techniques, considering both the classical/deterministic

and the non-deterministic/artificial intelligence-based optimization methods.

A few review papers have focused on solution techniques for Volt/VAR optimization.

A review of literature on reactive power planning has been presented by Zhang and

Tolbert (2007). Taylor et al (2001) present a review of algorithmic and heuristic

methods for Volt/VAR control. Lin et al (2003) focus in their review of Volt/VAR control

on reactive power sources and their control devices, as well as discussing a number

of solution methods for the Volt/VAR control problem.

Reactive power planning, a problem that is closely related to Volt/VAR optimization

(or optimal reactive power dispatch), focuses on optimal investment in new reactive

power sources to meet future reactive power compensation needs (Zhang & Tolbert,

2007). The relevance of effective reactive power planning has become even more

pronounced in recent years, due to the need to account for the impact of the growing

share of variable renewable generation such as wind and photovoltaic power

generation on reactive power compensation. A multi-period, multi-scenario corrective

security-constrained OPF has been explored by Savvopoulos et al (2019) as a way of

dealing with increasing penetration of variable renewable generation. Ghodrati et al

(2019) proposed a probabilistic multi-objective reactive power planning framework

that considers large-scale wind generation integration. Li et al (2019) investigated the

coordination of the reactive power control of large-scale renewable generation with

the main grid as a way of enhancing the voltage stability of the entire system.

Recognition has continued to increase among utilities and researchers of the role to

be played by smart inverters in various forms of grid support. As an example,

California Rule 21, which regulates the integration of distributed generation (DG) to

the power grid, has implemented an adjustment to the rule that requires the use of

advanced (i.e. smart) inverters capable of performing a variety of grid support

functions, such as Volt/VAR management (Cha et al., 2020). Multi-agent deep

reinforcement learning has been applied to the control of DGs via smart inverters as a

15

way of adapting to time-varying conditions, as well as the spatial and temporal

uncertainties resulting from intermittent generation (Zhang et al., 2021; Liu et al.,

2021). The overarching concept underlying many of these works is to exploit the

capabilities of modern smart inverters to actively regulate inverter-based DG output

so as to support network functions such as voltage regulation, network loss

minimization, and electricity market-based day-ahead power dispatch, among others

(Aldahmashi & Ma, 2022; Li & Zhong, 2021; Xu & Wu, 2020; Ding et al., 2020).

This chapter presents an up-to-date comprehensive survey of the main optimization

methods that have been applied to the Volt/VAR optimization problem over the

decades. Both classical/conventional and heuristic/intelligent search-based

optimization methods are covered. Each optimization method is discussed in detail,

its strengths and drawbacks are highlighted, and a thorough comparative analysis of

the key characteristics of the classical and heuristic methods is presented. Figure

(2.1) depicts a graph of the number of publications that have been reviewed, plotted

against the year of publication, and Figure (2.2) indicates the number of each of the

optimization algorithms that have been covered.

Fig. 2.1: Number of publications reviewed plotted against year of publication

16

Fig. 2.2: Number of publications reviewed in terms of algorithm

Chapter Two:

Literature Review on Classical and Heuristic

Methods for Volt/VAR Optimization

2.2 Reactive power and voltage

control devices in the power system

2.2.1 Synchronous generator

2.6 Conclusion2.1 Introduction

2.2.2 Shunt capacitors

2.2.3 Shunt reactors

2.2.4 FACTS devices

2.2.5 Under-load tap-

changing transformers

2.4.1 Classical/conventional methods

for Volt/VAR optimization

2.4 Optimization methods for the

Volt/VAR optimization problem

2.5 Comparative analysis of solution

approaches for VVO problem

2.2.6 Distributed generation

2.3 Volt/VAR optimization

problem formulation

2.3.1 Objectives and decision

variables of the Volt/VAR

optimization problem

2.3.2 Constraints of the Volt/

VAR optimization problem

2.4.2 Heuristic/intelligent search-based

methods for Volt/VAR optimization

2.4.1.1 First-order gradient-

based methods

2.4.1.2 Second-order gradient-

based methods

2.4.1.3 Quadratic programming

2.4.1.4 Linear programming

2.4.1.5 Interior-point methods

2.4.1.6 Mixed integer programming

and decomposition techniques

2.4.2.1 Genetic algorithm

2.4.2.2 Evolutionary programming

2.4.2.3 Particle swarm optimization

2.4.2.4 Fuzzy set theory

2.4.2.5 Expert system

2.4.1.7 Brief summary of classical/

conventional methods for Volt/VAR

optimization

2.4.2.6 Brief summary of heuristic/

intelligent search-based methods for

Volt/VAR optimization

2.3.3 Brief summary of

Volt/VAR optimization

problem formulation

2.2.7 Brief summary of reactive

power and voltage control devices

Fig. 2.3: pictorial representation of the content of this chapter

The rest of the chapter is organized as follows. Section 2.2 briefly discusses the main

devices for reactive power and voltage control in the power system. The Volt/VAR

optimization problem formulation is presented in section 2.3, to contextualize the

discussion of the solution approaches presented in section 2.4, covering both

17

classical and heuristic methods. In section 2.5, a comparative analysis of the solution

methods is presented, and the concluding remarks for the chapter are given in

section 2.6. Figure (2.3) depicts a pictorial representation of the content covered in

this chapter.

2.2 Reactive power and voltage control devices in the power system

As mentioned in the introductory section, reactive power and voltage control plays a

pivotal role in the secure and economical operation of the power system. In the

course of the operation of a power system, a variety of phenomena occur that need

some form of intervention in order to maintain the system voltage, frequency and

other vital system parameters within the nominal range. These phenomena may be

classified as either steady-state or dynamic, depending on the speed of response

required in addressing them. Table (2.1) lists (not in any order of precedence) some

of the main phenomena, the addressing of which typically requires reactive power

and voltage control of some form (EPRI, 1984). In the following sub-sections, the

main power system devices that are typically employed in the provision of reactive

power and voltage control are briefly discussed. The devices discussed are depicted

in Figure (2.4).

Reactive power and voltage control

devices in the power system

Shunt capacitors
Synchronous

generator

FACTS

devices
Shunt reactors

Under-load tap-

changing transformers

Distributed

generation

Fig. 2.4: Reactive power and voltage control devices discussed in this section

2.2.1. Synchronous Generator

Although the synchronous generator’s main role in the power system is to supply

active power demand, it is also principally used to regulate system reactive power,

and has the ability to either generate (leading) or absorb (lagging) reactive power,

depending on whether it is overexcited or under-excited. An automatic voltage

regulator continually adjusts the generator’s field excitation in response to system

conditions, usually so as to maintain the terminal voltage or voltage at some other

system bus at a desired level. The fast response characteristic of the synchronous

generator’s reactive power generation/absorption implies that it can be used to

remedy dynamic system phenomena requiring Volt/VAR control. However, its reactive

power supply/absorption capability is limited by the machine thermal and steady-state

stability limits, and is a function of the real power output (Kundur, 1994).

18

When a synchronous generator is specially designed and operated so at to generate

reactive power only (i.e. real power output set to be zero), it is referred to as a

synchronous condenser. An example of a synchronous condenser integrated into a

high-voltage direct-current (HVDC) system is depicted in Figure (2.5). As a device

dedicated to reactive power supply/absorption, a synchronous condenser typically

has automatic controls that enable fast dynamic response to system anomalies, and

has a short-time overload capability that can be utilized in extreme situations. The

main disadvantage of the synchronous condenser is its higher capital and

maintenance costs compared to other solutions for reactive power supply and

absorption (Zhou et al., 2018).

Fig. 2.5: Schematic of a synchronous condenser integrated into an HVDC system (adapted

from Wang et al., 2019)

Table 2.1: typical power system phenomena requiring Volt/VAR optimization

Steady-state phenomena (slow response) Dynamic phenomena (fast response)

Low voltages Fluctuating loads or impact loads

High voltages Switching surges or load rejection overvoltages

Large voltage variability Voltage instability (load voltage collapse)

Excessive reactive power flow (or losses) Transient or dynamic instability

Normal requirements for HVDC converters Instability due to subsynchronous resonance (SSR)

Steady-state stability Variable system phase imbalances

 Dynamic reactive requirements at HVDC terminals

 Small-signal oscillations

2.2.2. Shunt capacitors

Shunt capacitors constitute a flexible and economical means of providing leading

reactive power, which is typically required to boost system voltages during heavy

loading periods, or to improve system power factor. Their flexibility stems from their

19

modular nature, large banks can be constructed from several small-size units, which

in turn gives them the characteristics of greater control, expansion capability,

transportability, and availability. Compared to synchronous generators, shunt

capacitors, being static components, have lower maintenance costs, and are

generally a cheaper source of reactive power. Their response characteristics,

however, make them a lot less effective than synchronous generators in responding

to dynamic system phenomena (FERC, 2005). Also, unlike synchronous generators,

they supply discrete (rather than continuous) reactive power, which may affect their

treatment in optimization problems, as the corresponding control variable will be

discrete rather than continuous. A schematic of a shunt capacitor bank connected to

the tertiary winding of a three-phase power transformer is depicted in Figure (2.6).

Fig. 2.6: Schematic of a shunt capacitor bank connected to the tertiary winding of a

transmission system transformer (adapted from Kundur, 1994)

2.2.3. Shunt reactors

Shunt reactors are employed in the bulk transmission system to remedy abnormally

high transmission voltages, often in lightly loaded conditions, when the capacitive

line-charging effects of high-voltage transmission lines tend to lead to conditions

exceeding design levels. They are typically required in extra high voltage lines longer

than 200 km, where the effects of capacitive line charging can be quite pronounced

(Kundur, 1994). A schematic of a tapped shunt reactor connected to the tertiary

winding of a three-phase power transformer is depicted in Figure (2.7).

3winding transformer

Bus 2

Bus 1

Bus 3

Circuit
Breakers

Shunt
capacitors

20

Fig. 2.7: Schematic of a tapped shunt reactor connected to the tertiary winding of a

transmission system transformer (adapted from Kundur, 1994)

2.2.4. FACTS devices

Flexible AC Transmission System (FACTS) devices have in recent times emerged as

a vital component in the efficient control of active/reactive power and voltage

magnitude and frequency (Hongji et al., 2022). A static VAR compensator (SVC), an

example of which is depicted in Figure (2.9), has ability to continuously vary inductive

or capacitive reactive power injection into the system, making use of power electronic

technologies. In terms of construction, an SVC can be thought of as being comprised

of a controllable reactor and a fixed capacitor (as shown in Figure 2.8), both of which

are controlled by means of power electronic switches in accordance with the required

reactive power injection, the main purpose being to maintain bus voltage at some

specified level.

Fig. 2.8: Static VAR compensator (SVC), an example of a FACTS device (adapted from

Gandoman et al., 2018)

 Use of power electronic switches gives FACTS devices ability to provide continuous,

instantaneous reactive power, and are thus suitable for addressing many of the

dynamic system phenomena associated with Volt/VAR control. Some drawbacks of

Three-winding
transformer

Load

Auto-transformer

Load

21

FACTS devices are their relatively higher cost, and possibly negative impact on

system power quality due to harmonic generation by power electronic switches

(Chebbo, 1990).

2.2.5. Under-load tap-changing transformer

A transformer equipped with a load tap-changing mechanism (LTC) can adjust the

transformer turns ratio in response to system conditions so as to keep the system

voltage within desired ranges. So unlike the devices discussed in the preceding sub-

sections, the LTC is not a reactive power source, but rather a voltage-regulating

device. Tap positions are discrete points on the windings of the transformer which

can be varied so as to realize different transformer turns-ratios, and correspondingly

different voltage transformations. The voltage can thus only be varied in discrete

steps (rather than continuously). Figure (2.9) shows an example of an under-load tap-

changing transformer, with the tap-changing mechanism located on the primary side

of the transformer (Csany, 2014). Equipping a transformer with an LTC adds

significantly to the cost, and thus requires the utility provided thereby to justify the

added cost, which is typically the case in the bulk transmission system where

effective voltage regulation is of paramount importance to the secure and efficient

operation of the system (EPRI, 1984).

Fig. 2.9: Schematic of an under-load tap-changing transformer with the tap-changer located

on the primary side of the transformer (adapted from Csany, 2014)

2.2.6. Distributed generation

The proliferation of diverse distributed generation technologies in the power system

has been one of the most noteworthy developments in the electric power industry in

recent years. A photovoltaic generation system is depicted in Figure (2.10) as a

typical example of distributed generation systems. Along with their growth, the need

for their contribution to the provision of grid ancillary services has been identified as

key to their sustained growth and overall improvement in grid operation (Pecas Lopez

22

et al., 2007). Thus, the consideration of distributed generation in Volt/VAR

optimization has become an active area of research (Dulau & Bica, 2022; Gupta et

al., 2021; Singh et al., 2021; Zhang et al., 2021; Ding et al., 2020; Xu et al., 2020).

The diversity of the technologies (incorporating both conventional synchronous

generators and newer technologies in the form of inverter-based generation systems)

certainly presents an opportunity for exploiting this form of system resource in the

meeting of the various steady-state and dynamic system requirements for the

provision of reactive power and voltage control (Braun, 2007; FERC, 2005).

Fig. 2.10: Diagram of a photovoltaic (PV) generation system as an example of a distributed

generation system (adapted from Momoh, 2007)

Table 2.2: Main characteristics of reactive power and voltage control devices

Volt/VAR Device Relative
Cost Per
MVA

Reactive
Supplied

Continuous
/Discrete

Dynamic
response

Advantages Disadvantages Application
(dynamic/steady-
state)

Synchronous
Generator/Condenser

High Lag/lead Continuous

Fast Fast response,
flexible, strong
stabilizing effect

High cost,
complex
controls

Dynamic

Shunt Capacitor Moderate

Lead

Discrete Slow Flexible,
modular, low
maintenance
requirement

Slow response,
non-continuous
(i.e. discrete)

Steady-state

Shunt Reactor Moderate

Lag Continuous

Slow Simple, low
maintenance
requirement

Slow response,
non-continuous
(i.e. discrete)

Steady-state

FACTS High

Lag/lead

Near-
continuous

Fast Fast response
dynamics,
flexible VAR
supply/absorption

High cost,
complex
controls

Dynamic

ULTC Transformer High

N/A

Discrete

Slow Effective means
of regulating
system voltage

High cost,
frequent
operation may
lead to high
maintenance
costs

Steady-state

Distributed
Generation

Technology-
dependent

Lag/lead Continuous Generally
fast

Flexible,
modular, can
provide VAR
support locally

VAR support
may impact
revenue from
active demand
supply

Dynamic

2.2.7. Brief summary of reactive power and voltage control devices

Reactive power and voltage control is a key component of the power system’s energy

management system. This section has reviewed the main power system devices that

are typically employed in the provision of reactive power and voltage control,

23

highlighting their main characteristics, and how they contribute to the addressing of

the static and dynamic reactive power and voltage control requirements of the power

system. Table 2.2 summarizes the principal characteristics of the major devices for

reactive power and voltage control that have been discussed in this section. It is the

operation of these devices that has to be optimized in order to realize the secure,

efficient and economical operation of the power system, as further discussed in

section 2.4. The next section briefly discusses the problem formulation for the

Volt/VAR optimization problem.

2.3 Volt/VAR optimization problem formulation

Volt/VAR optimization is a constrained optimization problem. The main components

of the problem formulation are the objective function, the decision or control variables,

and the constraints to be satisfied by the optimal solution to the problem.

Mathematically, the objective and constraint functions can be either linear or

nonlinear, the decision variables can be either continuous or discrete. Various

combinations of these choices will lead to different formulations of the problem. The

salient aspects of these components of the VVO problem formulation are briefly

discussed in the following sub-sections. This helps to set the context for the

discussion of solution methods in section 2.4.

2.3.1. Objectives and decision variables of the Volt/VAR optimization problem

There are multiple ways in which optimal reactive power dispatch contributes to the

economical, secure and efficient operation of the power system. This can directly be

related to the objectives of Volt/VAR optimization. Power loss minimization has

featured as the main objective in many research works over the years, both in earlier

publications (Billinton & Sachdeva, 1973; Narita & Hammam, 1971; Hano et al., 1969;

Peschon et al., 1968), and in more recent ones (Vitor & Vieira, 2018; Ji et al., 2017;

Sivalingam et al., 2017; Zheng et al., 2017; Ahmadi et al., 2015). Maintaining network

voltages within the specified range of nominal values constitutes another key

objective for Volt/VAR optimization (Padilha-Feltrin et al., 2015; De Souza & De

Almeida, 2010; Su & Lin, 1996). Then there is maximization of voltage security (De &

Goswami, 2014; Katuri et al., 2012; Venkatesh et al., 2000), and minimization of the

frequency of operation of the Volt/VAR control devices (Jin et al., 2019; Rabiee &

Parniani, 2013; Roytelman et al., 1995). Each of these objectives enhances in one

way or another the economics, security, power quality, and efficiency of power

system operation.

As there are several objectives that can be considered, the VVO problem may be

formulated as a single-objective optimization problem (the most prevalent formulation,

based on the reviewed literature) or as a multi-objective optimization problem (for

24

example, Rabiee & Parniani, 2013; Ji et al., 2017). A multi-objective formulation

permits the simultaneous consideration of economic and security objectives, for

example. A major concern in multi-objective optimization is how to formulate the

problem in such a way that the obtained solution is optimal for all the considered (and

potentially conflicting) objectives. The most common approach is to reduce the

multiple objectives to a single objective function by a weighted summation of the

individual objectives. This approach has the desirable characteristic of being simple

to implement, but also has a number of drawbacks, such as the dependence of the

obtained solution on the choice of the weighting vector, with considerable reliance on

user expertise and experience. The subject of multi-objective optimization is

discussed in detail by Deb (2001).

A key consideration regarding the objective function of the VVO problem is its

dynamic characteristics, particularly in terms of whether it is linear or nonlinear.

Taking the real power transmission losses as an example, the mathematical

expression thereof can be stated as (Deeb & Shahidepour, 1990):

)1.2(cos2
1

22

LN

k

ijjijikLoss VVVVGP

 where the symbols are defined as follows:

losses ontransmissi power total P

network the in branches of number N

k branch of econductanc es seriG

Loss

L

k

component matrixY ij of angle phase

j and i buses at magnitude voltage VV

th

ij

ji

,

 It can be deduced from Equation (2.1) that the expression for the real power

transmission losses is both nonlinear and nonconvex, being quadratic in terms of the

bus voltage magnitudes, in addition to having trigonometric function components. The

inherent difficulty of evaluating a nonlinear objective function of this nature has

motivated the devising of alternative (i.e. simpler) formulations of the objective

function, chiefly by means of linearization. Thus, a number of linear objective

functions for the loss minimization-based VVO problem have been proposed in the

literature, for example (Mangoli et al., 1993; Iyer et al., 1983).

As for the decision or control variables for the VVO problem, these can be classified

into those derived from voltage-regulating devices, and those derived from reactive

power sources, as has been briefly presented in section 2.2. Voltage regulation is

mainly through synchronous generator terminal voltage magnitude adjustments and

25

Under-Load Tap-Changing (ULTC) transformers. Reactive power

injection/consumption devices are synchronous generators, synchronous

condensers, shunt capacitors and reactors, Flexible AC Transmission System

(FACTS) devices, and Distributed Generation to the extent that is dependent on the

specific technology (Padullaparti et al., 2016). Some of these devices generate

continuous variables, others discrete variables. A complete and most accurate

formulation of the VVO problem would thus be a Mixed Integer Nonlinear

Programming (MINLP) problem formulation (Rabiee & Parniani, 2013).

2.3.2. Constraints of the Volt/VAR optimization problem

The constraints of the Volt/VAR optimization problem essentially consist of limits on

the permissible range of values for the control variables (e.g. transformer tap limits,

shunt capacitor range), operating limits on the power system state variables (e.g.

generator real and reactive power outputs, voltage magnitudes and phase angles,

line and transformer flow limits, etc.) (Momoh, 2001). The standard set of constraints

considered in most formulations of the VVO problem can be stated as:

)3.2(0 ,,

)2.2(0 ,,

 QQQVQ

 PPVP

:equations balance power Network

LiSiGii

LiGii

Li

Li

N

j

ijijijjii

N

j

ijijijjii

YVVVQ

YVVVP

:form polar in expressed where

1

1

sin ,,

cos ,,

)6.2(

)5.2(

)4.2(

maxmin

maxmin

maxmin

SiSiSi

kkk

GiGiGi

QQQ

VVV

:limits variable Control

)10.2(

)9.2(

)8.2(

)7.2(

2max2

maxmin

maxmin

max

11

min

1

kk

LiLiLi

GiGiGi

GGG

SS

VVV

QQQ

PPP

:sconstraint variable State

26

The symbols in the above expressions have the following definitions:

 i bus at injection power reactive VQ

i bus at demand power active P

bus slackof output power active generator P

i bus at output power active generator P

i bus at injection power active VP

i

Li

G

Gi

i

 ,,

 ,,

1

i bus at demand power reactive Q

i bus at output power reactive generator Q

Li

Gi

i bus to connected branches of number N

angle phase voltage

matrix admittance of component ij Y

k branch in flow power apparent S

k branch in connected ULTC of position tap

i bus PQ at magnitude voltage V

i bus at magnitude voltage terminal generator V

i bus at magnitude ink source/spower reactive Q

Li

th

ij

k

k

Li

Gi

Si

The set of constraints given by Equation (2.2) to (2.10) defines the feasible region for

the VVO problem, and a solution for the problem (i.e. a set of control variables that

minimizes Equation (2.1)) is admissible only if it is feasible with respect to the

constraint set. It can be observed that this constraint set is nonlinear and non-convex,

because the constraint Equations (2.2) and (2.3), for example, have trigonometric

terms, and Equations (2.4), (2.7) and (2.9) are non-convex quadratic (Frank &

Rebennack, 2016; Cain et al., 2012). Moreover, some control variables (specifically

ULTC tap positions and shunt reactive power sources, represented by Equations

(2.5) and (2.6) respectively) can only take on discrete values. This gives the

constraint set (indeed the overall problem formulation) for the VVO problem the

characteristic of being highly nonlinear (Huneault & Galiana, 1991), and poses

special challenges for any solution algorithm that may be applied to solve the

problem.

2.3.3. Brief summary of Volt/VAR optimization problem formulation

Volt/VAR optimization problem formulation involves the specification of the objective

function, the decision or control variables, and the constraints to be satisfied by the

optimal solution to the problem. The problem formulation reflects the ways in which

Volt/VAR optimization impacts the secure, economical and efficient operation of the

power system. The literature review that has been conducted reveals that power loss

minimization, voltage profile improvement, voltage security maximization, and control

effort minimization are among the most important objectives of the Volt/VAR

27

optimization problem. The achievement of these objectives needs to take into

account the functional and operational constraints that need to be maintained in the

course of the operation of the power system. The modelling of the Volt/VAR

optimization problem is further discussed in chapter 3 of this thesis.

In the following section, a detailed discussion of the variety of solution approaches

that have been applied over the decades to the VVO problem is presented, based on

the surveyed literature.

2.4 Optimization methods for the Volt/VAR optimization problem

The various approaches that have been proposed over the years for the solution of

the VVO problem may be taken to fall into two main categories: classical/conventional

methods, and heuristic/intelligent search-based techniques. The merit of any

candidate solution approach can be gauged on the basis of its ability to address the

performance characteristics relevant to the VVO problem, among them being (in no

particular order of importance) (Frank & Rebennack, 2012a; Momoh, 2001):

• Accuracy requirement of problem formulation

• Computation time and memory requirements

• Possibility for real-time implementation

• Scalability of solution approach

• Global convergence characteristics

• Global optimality characteristics

• Reliability of solution

• Robustness of solution method

• Ability to handle both continuous and discrete decision variables

• Ability to (simultaneously) address multiple objectives

• Simplicity of solution method

Model accuracy is a very important consideration in an optimization problem, from the

perspective of the accuracy (and usability) of the obtained solution, as well as the

complexity of the optimization problem, which has a bearing on the choice of the

solution algorithm for application to the problem (Wood et al., 2014). Indeed, different

solution algorithms require different levels of accuracy (or detail) of the problem

formulation. With VVO being an operational optimization problem, speed of

computation is also an important consideration, especially in the context of real-time

implementation, where control decisions need to be generated quickly in response to

dynamic system variations so as to maintain the reliability of system operation.

Similar observations can be made about each of the other performance characteristic

requirements of solution approaches for the VVO problem outlined above. A more

28

detailed discussion of desirable performance characteristics of optimization

algorithms can be found in Nocedal and Wright (2006).

It is evidently hardly practical to find a single solution algorithm that effectively

addresses all of the performance characteristics listed above, in part due to the

inherent mutual conflict that they may exhibit. Commonly, the various solution

algorithms are differentiated by how well they address some (and not necessarily all)

of these requirements. In the following sub-sections, some of the solution algorithms

that have been proposed in the literature are discussed under the two main

categories as stated earlier (i.e. classical/conventional methods, and

heuristic/intelligent search-based techniques).

2.4.1. Classical/conventional methods for Volt/VAR optimization

A wide variety of solution methods falling under the category of classical/conventional

optimization techniques have been applied to the VVO problem, among them being

first-order and second-order gradient-based methods, Quadratic Programming (QP),

Linear Programming (LP), Interior-Point Methods (IPM), and Mixed-Integer

Programming (MIP), along with decomposition techniques. The block diagram in

Figure (2.11) depicts the classical optimization methods reviewed in this section.

Gradient-based methods are iterative optimization techniques that seek to extremize

(i.e. minimize or maximize) a differentiable nonlinear function by generating a

sequence of improving estimates of the decision vector, moving in such a direction as

to achieve progressively lower values (in the case of minimization) of the objective

function, until the sequence hopefully terminates at the solution (i.e. the minimum of

the objective function to be optimized) (Nocedal & Wright, 2006). Some of the earliest

efforts to algorithmically solve the VVO problem applied gradient-based methods,

examples of which can be found in (Hano et al., 1969; Peschon et al., 1968; Dommel

& Tinney, 1968).

Classical/conventional methods for

Volt/VAR optimization

Second-order gradient-

based methods

First-order gradient-

based methods
Linear

programming

Quadratic

programming

Mixed-integer

programming and

decomposition methods

Interior-point

methods

Fig. 2.11: Classical/conventional methods for Volt/VAR optimization reviewed in this section

2.4.1.1. First-Order Gradient-Based Methods

The principal first-order gradient-based methods that have been applied to the

solution of the VVO problem are the Reduced Gradient (RG) (Bhatele et al., 1985;

29

Fernandes et al., 1980), Generalized Reduced Gradient (GRG) (Yu et al., 1986), and

Conjugate Gradient (CG) (Hano et al., 1969) methods.

In the Reduced Gradient (RG) method, first applied to the OPF problem by Dommel

and Tinney (1968), the functional and equality (i.e. power flow equation) constraints

are handled by means of penalty terms and Lagrangian multipliers respectively,

forming a linear combination with the objective function to construct the Lagrangian

function, to which the Karush-Kuhn-Tucker (KKT) conditions are then applied to solve

the minimization problem. The RG method provides a way to reduce the problem

size, where the problem variables are divided into decision variables and state

variables, the objective function expressed as a function of the decision variables,

while the state variables are adjusted to maintain solution feasibility (Frank &

Rebennack, 2012a).

The Generalized Reduced Gradient (GRG) method is an extension of the RG method

that allows for the direct handling of nonlinear and inequality constraints. Inequality

constraints are turned into equality constraints by the introduction of nonnegative

slack variables, and the (nonlinear) constraints are then linearized about the

operating point. The generalized reduced gradient is then defined as the gradient of

the linear combination of the objective function and the linearized constraints (Rao,

1996). Each such linearization is treated as a subproblem, which can be solved by a

gradient-based method such as the RG method, and a series of such subproblem

solutions should lead to the solution of the original problem. The GRG method was

applied by Yu et al (1986) to the solution of a variety of optimal power flow problems,

chiefly power loss minimization and network voltage profile optimization. Some of the

attractive features of the GRG method are the avoidance of penalty terms in dealing

with the functional constraints, the convenient way it provides for transforming a

nonlinear constrained optimization problem into an unconstrained one that can be

solved by a gradient-based method, and the reduced dimensionality of the resulting

problem (de Carvalho et al., 2008).

The Conjugate Gradient (CG) method was proposed in the 1950s as an iterative

method for solving linear systems with symmetric positive definite matrices (Hestenes

& Stiefel, 1952), offering an alternative to existing methods such as Gaussian

elimination, and especially well-suited to solving large-scale problems. Extension of

the method to the application to nonlinear problems was developed in the 1960s

(Fletcher & Reeves, 1964), and constituted one of the earliest known methods for

solving large-scale nonlinear optimization problems (Nocedal & Wright, 2006). The

nonlinear CG method was applied by Hano et al (1969) to the minimization of the

node voltage magnitude deviations from their nominal values. The conjugate gradient

30

vector (which establishes the search direction in the CG method) is computed as a

linear combination of successive previous search directions. This method of

constructing the search direction ensures non-interference of consecutive search

directions, consequently leading to greater advance of the algorithm towards the

solution. Key features of the CG method are low storage requirements, and more

rapid advance towards the solution relative to the steepest gradient method.

First-order gradient-based methods offer a reliable and fairly unsophisticated way to

optimize a differentiable nonlinear function, without being computationally expensive.

Their main drawback is the slow rate of convergence, as they rely solely on first-order

information of the function to be optimized in advancing toward the solution. The

second-order methods, discussed in the next sub-section, constitute an improvement

in this aspect.

2.4.1.2. Second-Order Gradient-Based Methods

Second-order methods differ from first-order methods chiefly in the construction of the

search direction for the optimization algorithm. Whereas first-order methods rely

solely on the first-order (partial) derivatives of the objective and constraint functions,

second-order methods additionally incorporate second-order information. The

second-order partial derivatives carry the function’s curvature information, and

incorporation of this information leads to faster convergence of the algorithm to the

solution. Newton’s method, the representative second-order gradient-based method,

applies a second-order Taylor series expansion to the objective function about the

current iterate kx , which leads to the search direction kd at k being defined by

)()(
1

kkk xfxHd
 , where)(kxH is the Hessian matrix (i.e. the matrix of second-

order partial derivatives of the objective function), and)(kxf is the vector of first-

order derivatives of the objective function at k . Examples of the application of

Newton’s method to the VVO problem can be found in (de Sousa et al., 2003; da

Costa, 1997; Bjelogrlic et al., 1990).

The distinguishing feature of second-order methods is their quadratic rate of

convergence, much faster than the convergence rate of first-order methods, although

this comes at the expense of additionally having to compute the inverse of the

Hessian matrix, which may be a cumbersome, error-prone, and computationally

expensive process, especially in the case of problems with a dense Hessian matrix.

An alternative is Quasi-Newton methods, which avoid the exact computation of the

Hessian matrix by approximating it using information about the change in the first-

order derivatives (Nocedal & Wright, 2006). Two other issues with second-order

methods are the need for the Hessian matrix to be positive definite to ensure the

31

search direction is a descent direction, and the difficulty in dealing with the inequality

constraints of the VVO problem (da Costa, 1997; Happ, 1977). The reliability of

Newton’s method particularly requires that the difference between the objective

function and its 2nd-order approximation at the current iterate not be too large.

Despite these issues, Newton’s method is not only a classical method for nonlinear

optimization, but also represents an important optimization approach, both efficient

and robust for a large class of problems (Bjelogrlic et al., 1990).

2.4.1.3. Quadratic Programming

Quadratic Programming (QP) is a special case of nonlinear programming in which the

objective function is quadratic and the constraint set is linear. When applied to the

VVO problem, a technique known as sequential quadratic programming (SQP) is

employed, involving iteratively generating a quadratic approximation of the objective

function, and linearizing the constraints about the current operating point. The

solution of these QP subproblems should converge to the optimal solution of the

original nonlinear problem (Bazaraa et al., 2006). Quadratic programming is

somewhat of a compromise between the general nonlinear programming problem

and a linear programming formulation, trying to achieve some balance between the

accuracy of the model representation and the computational complexity of the

solution of the problem (Quintana & Santos-Nieto, 1989).

Depending on whether the QP model formulation is convex or nonconvex, a variety of

solution techniques exist, among them being active set methods and interior point

methods. Examples of the QP model formulation of the VVO problem can be found in

(Grudinin, 1998; Quintana & Santos-Nieto, 1989; Nicholson & Sterling, 1972).

Quintana and Santos-Nieto (1989) developed a convex QP formulation for the real

power loss minimization reactive power dispatch problem, and solved by it the active-

set projection method. Nicholson and Sterling (1972) solved the real and reactive

power dispatch problem by quadratic programming, considering a quadratic cost

function for the generation and transmission line losses, and a linear approximation of

the system constraints. An improvement in accuracy was obtained over the linear

programming-based model, and faster solutions compared to the exact nonlinear

model of the combined active/reactive power optimization problem. Grudinin (1998)

also applied SQP to reactive power optimization, and developed a quadratic multi-

objective optimization problem, combining economic and security objectives, which

was also solved by the Newton-based active-set method.

The attractiveness of the quadratic programming solution technique lies in its

providing a means to achieve a good balance between the requirements of a

32

reasonably accurate model of the VVO problem, and the computational expense

associated with the exact nonlinear model formulation. The quadratic approximation

of the nonlinear system power loss function is sufficiently accurate, and permits the

application of efficient QP solution techniques to the problem (Grudinin, 1998;

Quintana & Santos-Nieto, 1989).

2.4.1.4. Linear Programming

An optimization problem is classified as a linear programming (LP) problem when

both the objective function and the constraint set are linear functions of the decision

variables. Because the VVO problem is inherently nonlinear (as discussed in section

2.3), an LP formulation of the problem entails the linearization of both the objective

function and the constraint set (section 2.3, Equations (2.1) and (2.2) to (2.10)

respectively). As pointed out in section 2.3, linearization is typically performed around

some desired operating point, and can be done on the basis of the first-order Taylor

series expansion (i.e. taking the first-order partial derivatives of the nonlinear power

loss function with respect to the control variables) (Deeb & Shahidepour, 1990), or on

the basis of sensitivity relationships devised to relate changes in the state variables to

changes in the control variables (Iyer et al., 1983; Narita & Hamman, 1971; Hano et

al., 1969).

Linear programming has traditionally been a popular approach for the solution of the

OPF problem, which includes economic dispatch and reactive power dispatch (Zhu,

2009). The approach has many desirable characteristics, such as reliability, very

good convergence properties even for large-scale problems, faster computational

speed, and availability of very efficient algorithms for solving the problem (Nocedal &

Wright, 2006). The main solution techniques for the LP problem are several variants

of the Simplex method, and Interior Point Methods (IPM).

Examples of LP formulations of the VVO problem are to be found in (Chebbo et al.,

1992; Mota-Palomino & Quintana, 1986; Mamandur & Chenoweth, 1981; Hobson,

1980; Kishore & Hill, 1971). Chebbo et al (1992) devised an LP formulation for the

reactive power dispatch problem incorporating voltage stability, to minimize the risk of

voltage collapse in the system, and solved it by the dual revised simplex method. The

linearization and solution of the problem was done in an iterative manner, leading to

what is commonly referred to as sequential linear programming (SLP). The desirable

characteristic of this technique that has been highlighted is convergence of the

solution that is independent of the problem size, whereas in the case of the original

nonlinear problem formulation, depending on the solution algorithm, global

convergence may not be guaranteed (Frank et al., 2012a). An LP-based network-

constrained reactive power control problem is presented by Hobson (1980), which is

33

found to be suitable for real-time application in large-scale power systems, with speed

of solution and convergence characteristics that are difficult to achieve in the case of

the classic nonlinear formulation of the problem.

With all the desirable characteristics of the LP approach to VVO, it must be borne in

mind that this comes along with the compromise of the accurate representation of the

otherwise highly nonlinear model of the VVO problem. Efforts to devise more efficient

solution techniques for the original nonlinear problem formulation have thus continued

to attract a lot of attention (Zhang et al., 2007).

2.4.1.5. Interior-Point Methods

Interior point methods (IPM) are a class of optimization techniques that were initially

developed as an alternative to the Simplex method for solving linear programs

(Forsgren et al., 2002), with the introduction of Karmakar’s method (Karmarkar,

1984), a polynomial-time linear programming method. Whereas the Simplex method

exploits the convexity of the feasible region of the LP problem, searching along the

vertices of the polytope that defines the feasible region for the optimal solution to the

problem, IPMs take a different approach, attempting to confine the search path within

the feasible region, and establishing and following a “central path” towards the

optimal solution of the problem. Besides having pseudo-polynomial complexity, IPMs

also exhibit some advantages relative to the Simplex method, such as being

especially efficient for large-scale problems, and making more rapid advance towards

the optimal point (Wright, 1997). The successes of IPMs in LP incited research

efforts to extend them to general nonlinear problems, and these methods have

attractive properties that make them especially suitable for nonlinearly constrained

optimization, such as the efficient handling of inequality constraints (which is quite

problematic for the classical Newton-based methods), rapid convergence, and not

having to start from a strictly feasible initial solution (Capitanescu et al., 2007).

Examples of the application of interior-point methods to reactive power optimization

and voltage control can be found in (Ding et al., 2000; Torres & Quintana, 1998;

Granville, 1994). Granville (1994) applied the primal-dual logarithmic-barrier interior

point algorithm (PDIPM) to the solution of the optimal reactive power dispatch (ORD)

problem. It is highlighted in the paper that ORD is a large-scale highly nonlinear,

nonconvex optimization problem, and the characteristics of the chosen IPM that make

it suitable for application to this problem are the insensitivity of the problem

complexity (i.e. number of iterations required to reach to solution) to the problem size,

more efficient handling of the nonlinear inequality constraints, and numerical

robustness, even ability to handle large-scale, ill-conditioned problems. Ding et al

(2000) used a version of the PDIPM method known as predictor-corrector PDIPM

34

(PC-PDIPM) to solve the reactive power optimization/voltage control problem, a

method which seeks to improve the search direction at each iteration (Mehrotra,

1992). The authors focused in the development of their algorithm on computational

speed to be suitable for real-time application, reliability to converge even from an

initially infeasible starting point, and the effective detection and handling of

infeasibility. Comparison with quadratic programming and least squares-based

infeasibility handling showed that the developed PDIPM method scaled better with

the number of constraints (i.e. increase in number of constraints having less impact

on computational speed), and the infeasibility detection and handling approach taken

added much less computational burden to the overall optimization process. Interior

point methods have thus been found to be very suitable for solving the large-scale,

highly nonlinear constrained OPF problems, an example of which is the VVO problem

(Torres & Quintana, 1998).

Due to the many appealing characteristics of interior-point methods as established

from the conducted literature review, the primal-dual interior-point method (PDIPM)

has been selected as the classical optimization algorithm that will form the basis for

the design and implementation of the Volt/VAR optimization algorithm in this

research. This work is presented in detail in chapters 4 and 5 of the thesis.

2.4.1.6. Mixed Integer Programming and Decomposition Techniques

In all the solution algorithms discussed thus far, only continuous control variables are

considered in the formulation of the VVO problem. However, as pointed out in section

2.3, the presence of discrete control variables (e.g. transformer tap positions in ULTC

transformers) makes the general formulation of the VVO problem a mixed integer

programming problem, implying that integrality constraints have to be enforced on a

subset of control variables. The motivation for considering a continuous approximate

formulation of the problem has been the very high computational expense associated

with the full mixed integer nonlinear programming (MINLP) problem, especially in

large-scale systems with possibly thousands of mixed integer and continuous

variables, and nonlinear objective and constraint functions (Feng & Peterson, 2010).

The drawback of this approach is that achieving feasibility of the continuous solution

by rounding off the values of the control variables required to be integral to the

nearest integer values may in many cases be difficult. Moreover, the objective value

of the rounded-off solution may deviate significantly from that of the continuous

optimal solution (Rao, 1996). These considerations, along with the advances in

computational capabilities of modern computers that have enhanced the tractability of

this class of problems, have encouraged the search for effective algorithms to treat

the full MINLP (Hemmecke et al., 2009).

35

The most commonly used optimization algorithm for MINLP is the branch-and-bound

(B&B) algorithm, developed by Land and Doig (1960) to solve integer linear

programming problems, which was subsequently extended to the solution of MINLP

problems. In the B&B method of solving MIP problems, an indirect approach is taken

where firstly a continuous version of the problem is optimized by relaxing the

integrality constraints (thus obtaining a continuous optimal solution), then each of the

integrality constraints is progressively enforced until an integer optimal solution is

found. The key components of the algorithm are branching, where for a given

continuous optimal solution the associated integer feasible solutions are evaluated for

optimality; and bounding, where the prevailing integer optimal value is used as an

upper bound to eliminate from further consideration any alternatives that cannot

possibly achieve a better optimal solution.

Examples of MINLP formulations of the VVO problem can be found in (Ahmadi et al.,

2015; Rabiee & Parniani, 2013; Saric & Stankovic, 2009; Mehra, 1994) [57], [112]-

[114]. Due to the need to simultaneously treat both continuous and discrete variables,

it is common to apply decomposition techniques in solving mixed-integer

programming problems. The problem is reformulated into two separable optimization

sub-problems, a continuous one and a discrete one. The two sub-problems are then

solved alternately, and related together by some decomposition technique, such as

Benders decomposition (Geoffrion, 1972), one of the most commonly applied

decomposition methods to which the MINLP problem is very amenable. Such an

approach has been used by Mehra (1994), for example, where Benders

decomposition is used along with the B&B algorithm to solve the combined reactive

power planning and real-time voltage control (or reactive power dispatch) problem

formulated as a MINLP problem.

The main advantage of solving the VVO problem as a mixed-integer programming

problem is the greater accuracy of problem formulation and resulting optimal solution

that can be achieved, enabling the accurate modeling of all control devices involved

in the problem, including discrete ones such as shunt capacitors, ULTC transformers,

and a variety of FACTS devices (Mehra, 1994). This comes at the cost of greater

computational complexity of the problem, however. Improvement of algorithms

geared towards this class of problems and such paradigms as parallel computing can

enhance results that are achievable using this approach of solving the VVO problem.

2.4.1.7. Brief summary of classical/conventional methods for Volt/VAR

optimization

Classical/conventional optimization methods furnish a broad arsenal of techniques for

solving a wide variety of optimization problems, and have been extensively applied to

36

the Volt/VAR optimization problem. The key characteristic they all share is their

implementation of a mathematically rigorous and systematic iterative procedure in the

search for the optimal solution to the optimization problem within the feasible space.

Based on the reviewed literature, they do differ, however, in key performance metrics,

such as accuracy, speed, reliability, convergence characteristics, and effectiveness of

handling inequality constraints and discrete variables, among other criteria. A

summary of these characteristics as they apply to each of the discussed methods is

presented in Table (2.3).

Table 2.3: Summary of main characteristics of conventional optimization techniques
Technique Operating principle/main

characteristics
Main positive attributes Main deficiencies

First-order
gradient-based
methods (RG, CG,
GRG)

o Iterative search based on 1st-order
gradient of objective

o Constraints handled by adding penalty
terms to objective function to form
Lagrangian

o GRG uses successive constraint set
linearization and slack variables to
handle inequality constraints

o Earliest approaches to
algorithmically solve OPF

o Unsophisticated, reliable,
at moderate computational
expense

o Suitable for large-scale
application (e.g. CG, due
to low memory
requirement)

o Slow convergence rate; RG
susceptible to zig-zag
behaviour close to optimal
point

o Difficulty handling inequality
constraints

o Need for smoothness of
objective function

o Can only find local optima

Second-order
gradient-based
methods (Newton,
Quasi-Newton)

o Approach similar to 1st-order methods,
with additional incorporation of 2nd-order
derivative information of objective
function

o Newton’s algorithm is the representative
method under the category

o Quasi-Newton methods approximate the
2nd-order derivative information to reduce
computational expense

o Very effective methods;
addition of 2nd-order
derivative information
significantly improves
convergence rate

o Efficient and robust for a
large class of problems,
under some mild
assumptions (e.g. sufficient
accuracy of quadratic
approximate model in
vicinity of solution)

o Similar issues as those of 1st-
order methods, except having
higher convergence rate

o Convergence requires
Hessian matrix to be positive
semidefinite

o Computationally more
expensive than 1st-order
methods

(Sequential)
Quadratic
Programming
(SQP)

o Special case of NLP with quadratic
objective function and linear constraint
set

o Involves iterative quadratic and linear
approximation of objective and constraint
functions respectively about the current
iterate

o Achieves good balance
between model accuracy
and computational
expense (accuracy of QP
and speed of LP)

o Efficient solution
techniques available that
can solve the QP
formulation effectively and
reliably

o Has similar drawbacks as
those outlined above of
gradient-based methods

o Convergence requires
Hessian matrix of quadratic
approximation to be positive
semidefinite

Linear
Programming (LP)

o Both objective and constraint functions
are linear

o For VVO problem, this entails successive
linearization of objective and constraint
functions about the current operating
point

o Reliable, good convergence
characteristics, even for
large-scale problems

o Fast computational speed
o Availability of efficient

solution techniques
(typically Simplex and
Interior-Point Methods)

o Loss of accuracy due to
linearization may lead to
solution that’s not only non-
optimal, but perhaps even
infeasible for original
nonlinear problem

o For successive linear
formulation, solution is only
locally optimal

Interior-Point
Methods (IPM)

o Make use of path-following techniques
that confine the search path within the
feasible region

o Initially developed for application to LP
as alternative to Simplex method; been
extended to the treatment of NLP
problems

o Very effective and efficient,
especially for large-scale
problems, both linear and
nonlinear

o Rapid convergence, more
effective constraint handling
than classical gradient-
based methods

o Better handling of
infeasibility

o Reliability concerns for
particularly difficult problems

o Combines mathematical
rigour with some heuristics;
proper parameter selection
(e.g. barrier parameters) can
be challenging, affecting
effectiveness and
convergence properties

Mixed-Integer
Programming
(MIP)

o Explicitly considers both continuous and
discrete variables, thus a more accurate
model for the VVO problem

o A more accurate solution is
achieved without the need
to round off values of

o Computationally more
expensive, and requires
sophisticated techniques to

37

o Decomposition techniques made use of
to treat continuous and discrete portions
as subproblems

o Branch-and-bound the main solution
technique for MINLP formulations

discrete variables so as to
enforce integrality
constraints, which may lead
to non-optimality, even
infeasibility relative to the
exact formulation

simultaneously handle both
continuous and discrete
variables

o Issues similar to classical
gradient-based methods of
difficulty of inequality
constraint handling, only
locally optimal

Collectively, the class of conventional optimization methods suffer from a number of

significant deficiencies or drawbacks, notably the inherent difficulty of handling

discrete variables, the requirement for the (nonlinear) objective and constraint

functions to be smooth (i.e. for the gradient-based methods), and the difficulty of

handling nonconvexity in nonlinear problems (meaning they can only find local

optimal solutions) (Frank et al., 2012a). Heuristic or intelligent search-based

optimization methods have been extensively explored as an alternative approach to

solving the VVO problem, as they possess characteristics that can be exploited

particularly in addressing some of the deficiencies of the conventional optimization

methods that have been highlighted above. The following section presents a review

and discussion of this class of optimization methods.

2.4.2. Heuristic/intelligent search-based methods for Volt/VAR optimization

Heuristic/intelligent search-based optimization techniques employ a variety of

optimum-seeking strategies that are distinctly different from the approaches taken in

conventional optimization algorithms. The search strategies employed in these

techniques are meant to overcome many of the deficiencies of the conventional

optimization problems, such as the local (rather than global) nature of the search, the

limited ability to handle combinatorial problems with discrete decision variables, and

the requirement for smoothness of the objective and constraint functions for gradient-

based methods, among other factors (Frank et al., 2012b). Over the past few

decades a wide variety of these heuristic optimum-seeking techniques have been

developed. A representative sample of them are discussed in this section, as they

have been applied to the VVO problem, particularly Genetic Algorithms (GA),

Evolutionary Programming (EP), Particle Swarm Optimization (PSO), Fuzzy Set

Theory, and Expert Systems (ES). The main distinctive characteristics of each

technique are briefly discussed, and a sample of applications is also given. Figure

(2.12) depicts the heuristic optimization methods reviewed in this section.

38

Heuristic/intelligent search-based

methods for Volt/VAR optimization

Evolutionary

programming
Genetic algorithm Fuzzy set

theory

Particle

swarm

optimization
Expert system

Fig. 2.12: Heuristic/intelligent search-based methods for Volt/VAR optimization reviewed in this

section

2.4.2.1. Genetic Algorithm

Genetic algorithm (GA) is a population-based search algorithm that is modelled after

the processes of natural selection and natural genetics, combining the features of

survival of the fittest in a population of optimal solution candidates, efficient

exploitation of historical information, and randomized information exchange among

the population candidate solutions so as to evolve the population into a new

generation of improved candidate solutions (Goldberg, 1989). The development of

GAs was inspired by the robustness, efficiency and efficacy through adaptation

observed in biological processes, and efforts were made to develop artificial software

systems that could mimic and replicate the natural processes responsible for these

characteristics, such as selection, crossover and mutation (De Jong et al., 1997;

Holland, 1975). GAs, though conceptually and computationally simple, constitute an

efficient, effective and robust approach to search for optimal solutions to a variety of

problems in diverse environments, with no reliance on such limiting assumptions of

conventional optimization methods as continuity, existence of derivatives, and

unimodality (Choden et al., 2022). Once an initial population of candidate solutions is

generated, either randomly or heuristically, the population is evolved through the

sequential and iterative application of the selection, crossover and mutation

operations, into a new generation of improved solution candidates (Alves da Silva &

Falcao, 2008).

A number of works have applied GAs to the VVO problem, examples of which can be

found in (Padilha-Feltrin et al., 2015; Katuri et al., 2012; Subbaraj & Rajnarayanan,

2009; Lee et al., 1995; Iba, 1994; Haida & Akimoto, 1991). Haida and Akimoto (1991)

emphasize the property of GAs of being domain-independent search mechanisms,

which provide powerful search characteristics for large, complex search spaces

without requiring full knowledge of the problem domain. Iba (1994) proposes an

alternative crossover method and incorporation of stochastic “if-then” rules (akin to

expert systems) into the GA applied to reactive power planning, so as to enhance the

algorithm’s efficiency and effectiveness. A hybridized GA is considered by Lee et al

39

(1995) for the solution of the reactive power operation and planning problem,

combining it with successive linear programming (SLP), and using a new population

selection and generation method that makes use of Benders’ cuts, in an effort to

combine the positive characteristics of deterministic and non-deterministic

optimization techniques.

Many appealing characteristics have been highlighted in the literature that make the

genetic algorithm an effective search mechanism. The effectiveness, however, is also

a function of the algorithm design, including choices regarding the selection,

crossover and mutation operations, the encoding of the candidate solutions used, and

the fitness function (Alves da Silva & Falcao, 2008).

2.4.2.2. Evolutionary Programming

Evolutionary Programming (EP) was conceived and developed by L.J. Fogel in the

early 1960s as an alternative approach to realizing artificial intelligence (AI), utilizing

the concepts of Darwinian evolution to iteratively generate increasingly appropriate

solutions to a given optimization problem (Porto, 1997). It can be seen as an

approach to optimization that makes use of simulated evolution to evolve a set of

solutions (or organisms) which exhibit increasing intellect evidenced by ability to

make correct predictions, to translate those predictions into suitable actions, and to

adapt behaviour so as to meet specific goals in a range of environments (De Jong et

al., 1997). As an evolutionary algorithm, EP employs the key concept of selection-by-

fitness, which entails the generation of a population of candidate solutions (to an

optimization problem), devising a suitable fitness function with which to evaluate the

worth of each candidate solution in light of stated objectives, and application of

evolutionary operators such as mutation to evolve the population through generations

of ever-improving candidate solutions (Miranda, 2008). The selection of candidate

solutions to propagate through to the next generation can be either elitist (the best in

each generation are selected to form the next one) or by stochastic tournament

(probabilistic selection of next-generation candidate solutions).

EP has been used as the solution algorithm to the VVO problem in (Abido &

Bakhashwain, 2003; Gomes & Saavedra, 1999; Wu & Ma, 1995). The global search

characteristics of the EP algorithm, and the non-reliance on the smoothness and/or

convexity properties of the objective and constraint functions for effective search, are

highlighted by Wu and Ma (1995) as making it suitable for solving the reactive power

optimization and voltage control problem, which is highly nonlinear and nonconvex.

By maintaining a population of candidate solutions at each iteration, which are

propagated through future generations using probabilistic transition rules as a

function of their overall merit, with a Gaussian relationship between parents and

40

offspring, the EP algorithm is able to move over hills and valleys of the search space,

and therefore arrive at the globally optimal solution. In (Gomes & Saavedra, 1999),

enhanced evolutionary algorithms (evolutionary programming and evolutionary

strategies), the enhancement consisting in use of alternative mutation strategies,

have been applied to the solution of the reactive power dispatch problem,

demonstrating that enhancements can be made to the standard algorithm to improve

its efficiency and effectiveness. The effectiveness of population-based evolutionary

algorithms in finding pareto-optimal solutions in multiobjective optimization has been

pointed out by Abido & Bakhashwain (2003), who have developed a multiobjective

evolutionary algorithm for the optimal reactive dispatch problem.

The main evolutionary operations used in EP are mutation, competition and

reproduction. As with other evolutionary algorithms, parameter selection plays a key

role in exploiting the various desirable attributes of the algorithm, and ensuring its

efficiency and effectiveness.

2.4.2.3. Particle Swarm Optimization

Swarm intelligence is a stream of AI research that got established in the early 1990s,

based on the study of the swarm behaviour of natural creatures, in terms of how

decision making of the individual is influenced by both the individual’s experience and

the experiences of others (Colorni et al., 1991; Reynolds, 1987; Boyd & Richerson,

1985). Particle swarm optimization (PSO), one variant of swarm intelligence

techniques that has become prominent, was developed by Eberhart and Kennedy

(Kennedy & Eberhart, 1995), and is based on the analogy of swarms of birds and fish

schooling. The algorithm uses a population of particles exploring the search space in

search of the optimal solution to an optimization problem. Associated with each

particle is a position and a velocity in a two-dimensional search space, and the

change in position of the particles as a function of the current best positions of the

individual and of the overall population is what constitutes the population’s evolution

towards the optimal point. The use of a population of candidate solutions,

incorporating randomness and memory, as well as diversification at the beginning,

and intensification towards the end of the search, adds greatly to PSO’s efficiency as

a search mechanism (Fukuyama, 2008).

Having been originally developed to treat nonlinear optimization problems with

continuous variables, a number of enhancements to the standard PSO algorithm

have been proposed and developed, to improve the algorithm’s efficiency, and to

extend its applicability to other problems (e.g. combinatorial optimization, and mixed-

integer nonlinear programming (MINLP) problems).

41

Examples of the application of PSO to the solution of the VVO problem can be found

in (Vitor & Vieira, 2018; Ferreira et al., 2016; Kaur et al., 2016; Sahli et al., 2014;

Grant et al., 2008; Cai et al., 2007). Vitor and Vieira (2018) solve a multi-objective

Volt/VAR control problem that considers robustness in addition to power loss

minimization using the PSO algorithm, exploiting the ability to structure the algorithm

so as to handle multiple objectives (Coello et al., 2004). A modified PSO algorithm

has been applied to optimal reactive power dispatch by Cai et al (2007), the

modification consisting in adding mutation to the standard algorithm in order to

improve its global search characteristics and prevent rapid convergence to local

optima. Sahli et al (2014) follow a different approach to enhancing the global search

characteristics of the PSO algorithm, which is to hybridize it with the Tabu Search

algorithm, another stochastic search algorithm (Glover & Laguna, 1997). Grant et al

(2008) solve the reactive power and voltage control problem using the differential

evolution (DE) (an evolutionary computation algorithm) (Storn & Price, 1995) and

PSO algorithms, and performance comparison of the two methods has been made,

particularly in terms of solution quality and convergence characteristics. The authors

found the PSO algorithm to slightly outperform the DE algorithm, although exhibiting

relatively greater computational effort. Ferreira et al (2016) take advantage of the

PSO’s ability to better handle discrete control variables than the conventional

optimization methods, and apply it to the solution of the optimal reactive power

dispatch problem considering discrete variables. Kaur et al

 (2016) focus on how PSO-based optimal reactive power dispatch can enhance

system security, considering the impact of intermittent renewable generation such as

wind power generation.

Besides being able to address diverse optimization objectives, as can be deduced

from the surveyed literature, the PSO algorithm additionally has the desirable

characteristic of being quite simple to implement, in the sense that simple rules

governing individual agent behaviour can result in sophisticated swarm behaviour (Li

& Coster, 2022). The model of each individual agent (or particle) is relatively simple,

yet can lead to effective and efficient collective behaviour of the whole swarm in

terms of searching for the optimal solution in a search space. Hybridization with other

methods, and other enhancements to the standard algorithm, are often considered to

improve the efficiency and effectiveness of the algorithm (Gad, 2022).

The PSO algorithm has been selected as the heuristic optimization algorithm to form

the basis for the design and implementation of the Volt/VAR optimization algorithm in

this research, due to its many desirable characteristics when compared with the other

42

heuristic techniques. The design and implementation of the PSO-based Volt/VAR

optimization algorithm is presented in chapter 6 of this thesis.

2.4.2.4. Fuzzy Set Theory

Although conventional optimization problems are computed with the assumption of

precise information, in reality most real-world data that serves as input to the

optimization problems is embedded with uncertainty and imprecision. Power systems

are especially prone to a significant amount of uncertainty in operational data, largely

due to their large scale, being geographically widely distributed, complexity in

operational dynamics, and susceptibility to unexpected events (Momoh & Tomsovic,

1995). Fuzzy set theory is a mathematical approach that can be used to capture this

uncertainty and imprecision of information, the incorporation into the optimization

problem of which can enhance the robustness of the obtained results. Fuzzy set

theory enables objective and constraint functions to be represented as fuzzy sets,

where the membership to these sets represents the degree of closeness to the

optimum (for the objective function) and the degree of enforcement of the constraints

(for constraint functions). The maximization of membership functions then implies the

simultaneous optimization of the objective function and enforcement of the constraint

set, all while taking uncertainties into account. This leads to a better compromised

solution, more robust in the sense of being less sensitive to parameter variations

(Zhang & Tolbert, 2007).

Fuzzy set theory is not actually an optimization technique, and so it is normally used

in conjunction with optimization techniques, where it essentially serves as a tool for

modeling uncertainty and imprecision in the problem formulation. Applications to

reactive power optimization and voltage control have been many over the years,

combining with a variety of optimization techniques, examples of which can be found

in (de Souza & Almeida, 2010; Aucharimayet & Sirisumrannukul, 2009; Momoh et al.,

2009; Lu & Hsu, 1997; Su & Lin, 1996; Abdul-Rahman & Shahidepour, 1993;

Yokoyama et al., 1993; Tomsovic, 1992). De Souza and Almeida (2010) combine

fuzzy set theory with a strength-pareto evolutionary algorithm (SPEA2) to solve the

multi-objective reactive power/voltage control problem. Tomsovic (1992), Abdul-

Rahman and Shahidepour (1993), and Yokoyama et al. (1993) formulate a fuzzy-

linear programming-based reactive power/voltage control, combining the reliability

and speed characteristics of linear programming with fuzzy set theory’s ability to more

efficiently depict the realistic system objective and constraint functions, leading to a

more practical solution of the problem. Other examples of hybrid methods

incorporating fuzzy set theory or fuzzy logic are the fuzzy-dynamic programming

43

approach presented by Lu and Hsu (1997), and the fuzzy-PSO multi-objective

algorithm presented by Aucharimayet and Sirisumrannukul (2009).

The strength of fuzzy set theory that has been exploited in reactive power

optimization and voltage control (among other power system applications) is the

capability of handling ambiguity, conflicting objectives, and soft constraints in a

flexible way that can moreover improve computational complexity of power system

optimization problems (Momoh & Tomsovic, 1995). By providing the means to

effectively model uncertainty and imprecision, and to incorporate the approximate

reasoning and subjective judgment of expert operators into the mathematical model,

fuzzy set-based modeling facilitates the realization of a better compromised solution,

where both accuracy and robustness of the solution are taken into account

(Yokoyama et al., 1993).

2.4.2.5 Expert System

Expert systems (also known as knowledge-based systems) constituted one of the

earliest approaches to building AI systems in the 1960s, and were among first

successful commercial applications of the then nascent field of artificial intelligence

(Russel & Norvig, 2010). An expert system (ES) can be defined as an intelligent

computer-based system in which representations of human expert knowledge are

stored, and it can apply inference procedures and heuristics to this knowledge base

to solve complex problems in a manner that a human expert would do. An ES is

fashioned after the model of human reasoning, which may be considered to be based

on the creation of categories, application of specific (a priori) rules, use of heuristics

(i.e. rules-of-thumb, representing conventional wisdom), as well as use of past

experience (precedence-based reasoning). Most expert systems make use of rule-

based reasoning, the main components of which are the knowledge/rule base

containing much of the problem-solving knowledge, a database containing some data

of interest to the system, an inference engine generating the decisions, and a user

interface providing a means for user interaction with the system (Brown & O’Leary,

1995).

Expert systems are especially applicable to fields such as power system operation,

where a wealth of system operational knowledge and expertise has been

accumulated, and can be used to build intelligent decision support systems that can

aid system operators in making decisions and taking quick action especially under

anomalous conditions, where not only correct action, but also speed of execution can

be critical in preventing major emergencies (Negnevitsky & Le, 1996).

44

A number of researchers have built expert systems for optimal reactive power

dispatch and voltage control, examples of which are to be found in (Lomi &

Limpraptono, 2017; Xiang-jun, 2011; Exposito et al., 1993; Wagner et al., 1990;

Cheng et al., 1988; Liu & Tomsovic, 1986). In many of these applications of expert

systems to the reactive power/voltage control problem, the emphasis is placed on

leveraging human expert knowledge and experience, and historical information to

build a system that can quickly provide effective remedial action in emergency

conditions, when human operator reaction may be too slow, and conventional

optimization methods ineffective (Wagner et al., 1990). Liu and Tomsovic (1986) built

an ES that applies empirical rules to generate appropriate controls when slight

voltage violations occur, whereas mathematical programming software is used to

address more severe contingencies. Cheng et al (1988) developed an ES for reactive

power and voltage control based on a sensitivity-tree approach, where the most

effective control measures to alleviate abnormal voltage conditions are determined on

the basis of the rule base coded into the ES. Scalability and possibility for real-time

application are highlighted as the main characteristics of the proposed system. A

similar sensitivity-based approach has been used in the ES developed by Exposito et

al (1993) for reactive power control for voltage profile improvement. In Xiang-jun

(2011) makes use of historical information and real-time data to develop an ES for

substation voltage and reactive power control. The opportunity to leverage years of

operating experience in developing the ES is highlighted as one of the main

advantages of this approach. The ES developed by Limo and Limpraptono (2017) is

focused on monitoring and improving power system voltage stability. The ES can use

the empirical knowledge in the knowledge base to effectively identify the critical load

buses most susceptible to excessive voltage violations, and recommend the most

effective remedial actions, as an aid to the system operator.

Expert systems present many advantages as intelligent decision support systems

where decisions have to be made to solve complex problems, as in the case of

reactive power/voltage control under emergency conditions. Notable among these

advantages are the opportunity to combine the knowledge and experience of several

human experts, accumulated over a period of time, along with historical information,

to build an efficient and effective decision-support system, little reliance on precise

mathematical models of the system, thus especially effective under anomalous

operating conditions, and others such as reproducibility, consistency, and lack of

fatigue (which human operators are very susceptible to). Some obvious

disadvantages of expert systems are that they lack the human capabilities of common

sense, creativity, and learning. There is also the likelihood of gradual degradation of

45

the system, requiring periodical update of the rule base to remain up to date as the

modeled system undergoes any changes (Brown & O’Leary, 1995).

2.4.2.6 Brief summary of heuristic/intelligent search-based methods for

Volt/VAR optimization

Heuristic optimization techniques employ a variety of optimum-seeking strategies that

differ conceptually from those employed in conventional optimization methods. By

and large, these techniques make use of a population of candidate search points,

which, coupled with their stochastic nature, generally gives them global search

characteristics (that is, the ability to globally converge to a solution where one exists,

independently of the initial point, and to find the globally optimal solution, despite

nonconvexity of the objective function and the feasible region). They do suffer some

drawbacks, however, when compared with the conventional methods, such as lacking

mathematical rigor (by virtue of their heuristic nature), being relatively computationally

more expensive, and their effectiveness being very dependent on the judicious choice

of the algorithm parameters. A summary of the main characteristics of each of the

heuristic methods discussed in this section is presented in Table (2.4). The following

section presents a brief comparative analysis of the two main classes of optimization

techniques that have been presented in this section.

Table 2.4: Summary of main characteristics of nonconventional/heuristic optimization techniques
Technique Operating principle/main

characteristics
Main positive attributes Main deficiencies

Genetic algorithm
(GA)

o Population-based evolutionary stochastic
search algorithm, modeled after
mechanics of natural genetics,
incorporating crossover, mutation and
selection

o Adaptation through use of genetic
operators, enabling use of historical
information, and randomized information
exchange among population candidates,
is what characterizes the search for the
optimal point

o Conceptually and
computationally simple, yet
efficient, effective and
robust search mechanism
applicable to various
problem classes

o Not limited by the
properties of convexity,
smoothness, unimodality of
objective function,
requirements typical of
classical techniques

o Can achieve global
convergence and global
optimality

o Computation time can be
long, thus limited scalability
(although parallelization is
possible to improve
computational efficiency)

o Effectiveness a function of
design aspects like encoding,
choice of fitness function, and
other parameters of the
algorithm

Evolutionary
Programming (EP)

o Evolutionary stochastic search algorithm
using simulated evolution to evolve a
population of candidate solutions of
“increasing intellect” in search of optimal
point

o Stresses mutation (rather than
crossover, opposed to GA)

o Capable of global
convergence and global
optimality, by judicious
choice of mutation and
selection-by-fitness
mechanisms (which can be
either elitist or by stochastic
tournament)

o Computationally quite
expensive for OPF problems,
which typically have
thousands of variables and
constraints

Particle Swarm
Optimization (PSO)

o Modeled after swarm behavior of natural
creatures, where an individual makes
decisions based on best own experience
and best group experience

o Population of particles evolved towards
the optimal point by modifying each
particle’s position as a function of its
current best and group’s best position

o Simple both conceptually
and in terms of
implementation; simple
rules governing individual
particle behavior can result
in sophisticated swarm
behaviour

o Many enhancements to the
standard algorithm are
possible, to enable

o Convergence properties are
highly influenced by
parameter selection for the
algorithm

46

application to a wide
variety of problems

Fuzzy Set Theory-
based methods

o Fuzzy set theory used as a tool for
modeling uncertainty present in
objective, constraint functions, and
system parameters

o Objective, constraint functions are
represented as fuzzy sets; membership
to these sets represents the degree of
closeness to optimum point and degree
of enforcement of constraints

o Provides a better
compromised solution,
balancing robustness (i.e.
insensitivity to parameter
variations) and optimality

o Furnishes capability to
handle ambiguity, conflicting
objectives, and soft
constraints in a flexible way
that can improve
computational complexity

o Not actually an optimization
problem, only a way to
handle uncertainty and
imprecision; thus largely
needs to be combined with
an optimization technique;
this may affect overall
complexity and effectiveness,
depending on problem
formulation and optimization
algorithm used

Expert System
(ES)

o Uses a computer-based representation
of human expert knowledge, in
conjunction with an information database
and an inference engine to solve
complex problems requiring human
expertise and experience

o Main components are the knowledge
base, database, inference engine, and
interfaces to the user and to other
programs needed to execute the
system’s functionalities

o Accumulated wealth of
knowledge in the field can
be exploited to build an
intelligent decision support
system to assist system
operators respond quickly
and effectively especially
under anomalous conditions

o Has desirable attributes of
efficiency, reproducibility,
consistency, and
opportunity for expertise
consolidation

o Lacks many natural strengths
of a human expert operator,
such as common sense,
creativity, adaptability,
learning ability

2.5 Comparative analysis of solution approaches for the VVO problem

It is quite evident that the two classes of optimization techniques discussed in the

preceding section exhibit diverse characteristics, both in terms of operating principle,

as well as strengths and drawbacks when gauged against the desired performance

characteristics outlined at the beginning of the section.

The key characteristic of classical/conventional optimization methods is their

implementation of a mathematically rigorous and systematic iterative procedure in the

search for the optimal solution to an optimization problem within the feasible space.

They do differ, however, in key performance metrics, such as accuracy, speed,

reliability, convergence characteristics, and effectiveness of handling inequality

constraints and discrete variables, among other criteria. Collectively, the class of

conventional optimization methods suffer from a number of significant deficiencies or

drawbacks, notably the inherent difficulty of handling discrete variables, the

requirement for the (nonlinear) objective and constraint functions to be smooth (i.e.

for the gradient-based methods), and the difficulty of handling nonconvexity in

nonlinear problems (meaning they can only find locally optimal solutions) (Frank et

al., 2012a).

Heuristic optimization techniques employ a variety of optimum-seeking strategies that

differ conceptually from those employed in conventional optimization methods. By

and large, these techniques make use of a population of candidate search points,

which, coupled with their stochastic nature, generally gives them global search

characteristics (that is, the ability to globally converge to a solution where one exists,

47

independently of the initial point, and to find the globally optimal solution, despite

nonconvexity of the objective function and the feasible region). They do suffer some

drawbacks, however, when compared with the conventional methods, such as lacking

mathematical rigor (by virtue of their heuristic nature), being relatively computationally

more expensive, and their effectiveness being very dependent on judicious choice of

the algorithm parameters.

Table (2.5) presents a high-level comparative analysis of the conventional and

heuristic techniques. The comparison is made on the basis of some of the key

performance characteristics for an optimization technique that have been outlined in

section (2.4), such as computational speed, reliability, robustness, convergence and

global optimality properties, among others. The table (along with Tables 2.3 and 2.4)

provides a general overview of the relative strengths and shortcomings of the two

classes of methods, which should prove to be informative to researchers and other

practitioners in the field of engineering optimization.

Table 2.5: Comparison of conventional with nonconventional/heuristic optimization techniques
Characteristic Classical/conventional optimization

techniques
Nonconventional/heuristic optimization
techniques

Computational
speed

Varies among the various techniques, but
generally faster than heuristic techniques

Generally slower than conventional techniques,
largely due to dependence on heuristic search,
thus a function of parameter selection

Reliability/quality
of solution

A function of problem formulation; e.g. LP is
generally reliable (as regards convergence),
while Newton’s algorithm requires sufficient
accuracy of quadratic approximate model
relative to original model at each iterate

Mainly a function of parameter selection; no
theoretical guarantees can be made generally

Accuracy of
model/solution

Somehow a trade-off between accuracy and
complexity; e.g. LP formulation (of VVO
problem) is fast, but only approximate; MINLP is
accurate but also computationally expensive

Generally more versatile, able to handle problems
of varying detail and accuracy, often not requiring
a precise mathematical model; not dependent on
such properties as smoothness of functions, etc.

Robustness Exhibit sensitivity to initial starting point (e.g.
Newton’s algorithm), degree of nonlinearity, ill-
conditioned nature of problem, and other
problem parameters

Many techniques employ heuristics that make
them robust, i.e. able to handle problems of
diverse characteristics and parameters

Complexity of
solution technique

Well-grounded theoretically, well-understood
and quite straightforward to implement
algorithmically

Heuristic nature of the methods generally requires
domain expertise; parameter tuning often requires
experience and good understanding of the
problem

Handling of
discrete variables

Not well-suited to handle discrete variables Many have ability to handle discrete, even mixed-
integer problems quite naturally

Convergence
properties

Generally a function of problem definition and
such factors as initial starting point and system
parameters (e.g. nature of Hessian matrix in
case of 2nd-order methods)

Can generally achieve global convergence,
independent of problem formulation, although
computational expense may be a limiting factor

Global optimality
properties

All local solvers, global optimality only
achievable in the case of convex problems
(which VVO problem is not)

Many can achieve global optimality, although
computational expense may be high, if not
prohibitive

2.6 Conclusion

Volt/VAR optimization is one of the key operational tools needed by electric power

system operators, and has a significant impact on the security, economy, technical

viability and efficiency of system operation. It is also one of the most complex

optimization problems to solve, being nonlinear, nonconvex and involving both

48

continuous and discrete variables. The challenge of efficiently and effectively solving

the VVO problem is reflected in the diversity of the solution techniques that have

been applied to the problem, which exhibit varying characteristics, both in operating

principle and how effectively they address the key performance characteristics of the

optimization problem. Conventional optimization methods have proven to be efficient,

reliable, fast and quite straightforward to algorithmically implement, but suffer from

significant drawbacks when applied to the VVO problem, as discussed in section

2.4.1. Particularly, shortcomings exist in their convergence and global optimality

properties, and the difficulty in the handling of inequality constraints and discrete

variables. The nonconventional/heuristic optimization techniques present some

advantages exactly where the conventional techniques fall short, such as superior

global search characteristics, thus having the ability to achieve global convergence

and global optimality independently of the problem formulation, and the natural ability

to handle discrete variables. Their main drawbacks are that their heuristic nature

implies that parameter selection weighs heavily on their efficiency and effectiveness,

and they incur relatively greater computational expense. The main results of this

chapter have been to present a comprehensive and critical literature review that

contextualizes the research conducted and presented in this thesis. The results will

be applied throughout the remainder of the thesis in model development, and

algorithm design and implementation.

The main objective of the research presented in this thesis is to design and

implement Volt/VAR optimization strategies that exhibit the desirable characteristics

of superior solution quality, high computational efficiency, and scalability (among

others), characteristics which are vital for the efficient and optimal operation of

modern complex power systems. The following chapter presents two formulations of

the Volt/VAR optimization problem, and briefly compares the two models in terms of

their computational characteristics. One of the models is then used in subsequent

chapters as the basis for the implementation of the Volt/VAR optimization algorithms

developed in this research.

49

CHAPTER THREE

FORMULATION OF THE VOLT/VAR OPTIMIZATION PROBLEM

3.1 Introduction

The electrical power system is arguably one of the most complex engineering

systems in existence. For the majority of the world population, reliable electric power

supply has become an indispensable daily commodity, with prolonged unavailability

thereof causing enough disruption to essential public (and private) services and

normal daily activities to be considered practically intolerable. To be able to deliver

electric power with the required high reliability and security, while being economical,

planning and operational strategies have been developed over the decades by

means of which the system can be operated optimally as far as practicable. These

strategies are collectively referred to as Optimal Power Flow (OPF). In the course of

the operation of the power system, changes in load demand and network

configurations may cause the system to operate outside of the nominal range, which

could threaten the quality and even security or reliability of supply. To prevent or

correct anomalous operating conditions, the system operator continually implements

controls to regulate the production, absorption and flow of power at all levels in the

system. Some of the controlled variables include generator active and reactive power

outputs, reactive power (VAR) compensation device outputs, transformer tap settings,

phase shifter settings, etc. OPF is a sophisticated computational tool used in

determining the optimal dispatch of all the system control variables so as to ensure

the economical and secure operation of the system, while respecting many functional

and operational constraints of the system.

Mathematically, OPF has the characteristic of being a very large-scale nonconvex,

nonlinear programming problem, with a large number of constraints and a mixture of

continuous and discrete variables. Given its great importance to the efficient

operation of the power system, the OPF problem has attracted extensive research

interest over the decades, with particular attention being paid to improvement in

problem formulation as well as solution techniques (Momoh, 2001). Optimal reactive

power dispatch (ORPD) or Volt/VAR optimization (VVO) is the variant of OPF

concerned with the maintenance of system voltage quality to increase system

security, at the same time leading to improved system economy (Chebbo, 1990). This

chapter is mainly concerned with the presentation of the mathematical formulation of

the VVO problem, which will then be solved in chapter 5 by the Interior Point Method

(IPM), one of the most efficient classical methods for large-scale nonlinear

optimization presently available.

50

The chapter is organized as follows. After briefly presenting some general definitions

and discussing the elements of the problem formulation, two variants of the

mathematical formulation of the Volt/VAR optimization problem are developed in

section 3.2, one based on the rectangular representation of the system bus voltages,

the other based on the polar representation of the voltages. A discussion is then

presented in section 3.3 particularly highlighting the distinct characteristics of the two

variants of the problem formulation. Concluding remarks for the chapter are then

presented in section 3.4. A pictorial representation of the content of this chapter is

depicted in Figure (3.1).

Chapter Three:

Formulation of the Volt/VAR Optimization Problem

3.2 Mathematical

formulation

3.2.2.2 System variables

3.2.2.3 System constraints

3.2.2.1 Objectives

3.4 Conclusion
3.1 Introduction

3.3 Discussion of the two

problem formulations

3.2.1 General definitions
3.2.2 Elements of the

problem formulation

3.2.3 Statement of the Volt/

VAR optimization problem in

rectangular coordinates

3.2.4 Statement of the Volt/

VAR optimization problem in

polar coordinates

Fig. 3.1: Summary of the content covered in this chapter

3.2 Mathematical formulation

Volt/VAR optimization (VVO) is mainly concerned with the determination of the

optimal coordinated dispatch of voltage-regulating devices and reactive power

sources so as to maintain a secure voltage profile, subject to system functional and

operational constraints, while optimizing some aspect of system operation, such as

minimization of active power transmission losses (Mataifa et al., 2022).

Mathematically, it is formulated as a constrained nonlinear optimization problem,

intended to minimize a scalar objective function subject to equality and inequality

constraints. This can be stated as:

51

)1.3(,

)1.3(

)1.3(

)1.3(0 , :

)1.3(, min

maxmin

maxmin

maxmin

ehuxhh

dxxx

cuuu

buxgtosubject

auxf

Where),(uxf represents the objective function to be minimized, as a scalar function

of the state variable vector, x , and the control or decision variable vector, u , subject

to the physical and operational constraints according to (3.1b) – (3.1e).),(uxg

represents functional constraints that need to be satisfied at every operating point

(power flow equations in the case of the VVO problem), (3.1c) and (3.1d) represent

bounds on the values of the control and state variables respectively, and),(uxh is a

generic function of the state and control variables representing other system

operational parameters that may need to be constrained within specified limits (e.g.

generator reactive power output limits, and branch flow limits, among others).

In the following sub-sections, further details are given pertaining to the problem

formulation for the VVO problem, based on the generic model (3.1).

3.2.1. General definitions

Since Volt/VAR optimization is essentially an optimal power flow problem, it

effectively consists in finding the solution to the power flow problem while minimizing

a specified objective function subject to constraints. Therefore, the power flow

balance equations play a central role in the problem definition.

For a given network, we can make the following definitions:

Voltage at bus i is a complex quantity, and can be defined either in rectangular or

polar form as:

52

 Where ie and if are the real and imaginary components of the complex voltage

respectively,
22

iii feV , and

i

i
i e

f
arctan are the magnitude and phase angle

of the voltage at bus i respectively. The two definitions of the bus voltage lead to two

variants of the power flow equations. The rectangular form of the of the active and

reactive power injections at bus i can be expressed as (Torres, 1998):

Where ijG and ijB are the real and imaginary components of the ijth element of the

bus admittance matrix, ijY , and t is the vector of (on-load) transformer tap settings,

which are implicit in some of the elements of Y .

The polar form of the complex bus voltage representation is commonly used in power

system studies, and leads to the following expressions for the power flow equations:

Where v and are the vectors of the bus voltage magnitude and phase angle

respectively, and ij is the phase angle difference between buses i and j . The

active power losses in the transmission system can be expressed either in

rectangular or polar form according to Equations (3.8) and (3.9) respectively

(Capitanescu et al., 2005, Torres, 1998).

3.2.2. Elements of the problem formulation

Formulation of the VVO problem consists in defining the system (state and control)

variables, the objective(s) of optimization, and the constraints, as reflected in the

53

generic problem formulation (3.1). Each of these components is further elaborated on

in the following sub-sections.

3.2.2.1 Objectives

The main objective of Volt/VAR optimization is to ensure a network voltage profile

that meets nominal requirements for bus voltage magnitudes, at the same time

optimizing network reactive power dispatch which has a significant impact on the

economical operation of the power system (Martinez Ramos et al., 2005). Key

objectives of Volt/VAR optimization can thus be stated as:

 Active power loss minimization (Equation (3.8) or (3.9)).

 Reactive power loss minimization (see, for example, Torres, 1998).

 Voltage profile improvement (e.g. minimization of bus voltage deviation from

nominal values; see, for example, Momoh, 2001).

 Voltage stability maximization (see, for example, Cai et al., 2007).

 Minimization of control effort to achieve a desired system operating state (see,

for example, Cai et al., 2007).

The problem may be formulated to have a single objective or multiple objectives.

Traditionally, the main objective considered is active power loss minimization, and

has been adopted in this study, in the implementation of the Volt/VAR optimization

discussed in chapters 5 and 6.

3.2.2.2 System variables

System variables can be classified into two types: state (dependent) variables and

control (independent) variables. State variables include:

 Load bus voltage magnitudes.

 Load and generator bus phase angles.

 Slack bus real power output.

 Generator reactive power outputs.

 Line flows.

Load and generator bus voltage magnitudes and phase angles are represented in

Equation (3.10e), for example, which expresses the system voltages in rectangular

coordinates. The slack-bus real power is represented in Equation (3.10b), generator

reactive power outputs are represented in Equation (3.10c), and line flows are

represented in Equation (3.10d).

Control variables can in turn be classified into those derived from voltage-regulating

devices, and those derived from reactive power sources, and include:

54

 Generator terminal voltage magnitudes.

 Under-Load Tap-Changing (ULTC) transformer settings.

 Shunt capacitors and reactors.

 Flexible AC Transmission System (FACTS) devices.

 Distributed Generation (DG).

Some of these variables are continuous, others are discrete. A complete and most

accurate formulation of the VVO problem would thus be a Mixed Integer Nonlinear

Programming (MINLP) problem formulation (Rabie & Parniani, 2013). Although

having the desirable characteristic of being accurate, it is also computationally

intensive, an important consideration for practical applications, and as far as choice of

solution method is concerned.

Generator terminal voltage magnitudes are considered as the control variables in this

study in the implementation of the Volt/VAR optimization algorithms in chapters 5 and

6. Control of generator voltage magnitudes implicitly translates into the control of

generator reactive power outputs. This constitutes a very efficient way of

simultaneously achieving both system voltage regulation and reactive power

optimization to minimize system losses (Martinez Ramos et al., 2005).

3.2.2.3 System constraints

The Volt/VAR optimization problem is solved subject to both equality and inequality

constraints, which are all generally nonlinear, and encompass operational and

functional-type constraints. The main equality constraints are the bus active and

reactive power balance equations, but may also include such constraints as voltage

magnitude and/or phase angle imposed or required to be of a specified value at a

given bus.

Inequality constraints are of two types: operational constraints that apply to the power

system state variables, needed to ensure the secure operation of the system, and

physical limits on the operating range of values for the control variables. Limits in the

form of inequality constraints are typically imposed on each of the following:

 Generator reactive power outputs (Equation 3.10f).

 Bus voltage magnitudes (Equation 3.10e).

 Shunt reactive power compensation device outputs (Equation 3.10g).

 Load tap changing transformer tap settings (Equation 3.10h).

 Line flows (in terms of either active/reactive power or current) (Equation

3.10d).

55

 All these constraints are considered in this study, other than the transformer tap

positions (Equation 3.10h) and shunt reactive compensation (Equation 3.10g).

3.2.3. Statement of the Volt/VAR optimization problem in rectangular

coordinates

Combining the general definitions and the elements of the problem formulation

presented in sections 3.2.1 and 3.2.2 respectively, the Volt/VAR optimization problem

formulation (P1) in the rectangular form of the nodal voltages can be stated as

(Capitanescu et al., 2005):

s.t.

The variables in model P1 can be defined as:

56

3.2.4. Statement of the Volt/VAR optimization problem in polar coordinates

Defining the Volt/VAR optimization problem in the polar form of the nodal voltages

(P2) follows the same procedure as that outlined in section 3.2.3 for the rectangular

formulation, with the main differences being in the form taken by the objective

function, the power flow balance equations, and the bus voltage bound constraints,

and can be stated as (Torres, 1998):

s.t.

The variables in model P2 that are different from those in model P1 are defined as

follows:

3.3 Discussion of the two problem formulations

Both the objective function and the main constraints (the power balance equations) of

the Volt/VAR optimization problem are nonlinear and nonconvex. Computational

effort to evaluate these functions and their derivatives (in the case of gradient-based

solution techniques) is an important consideration, and in this respect, a comparison

can be made between the rectangular and polar formulations as presented in

sections 3.2.3 and 3.2.4 respectively. The main distinction to be observed is that in

the case of the rectangular formulation (model P1), both the objective function

(equation 3.8) and power balance equality constraints (equations 3.4, 3.5, 3.10b and

3.10c) are quadratic functions of the complex voltage components (ie , if), whereas

this is not the case for the polar formulation due to the presence of trigonometric

terms in the corresponding expressions (Equations 3.6, 3.7, 3.9, 3.11b and 3.11c).

This is an important distinction which has significant implications for the relative

computational efficiency of the two formulations. Particularly, the advantages of the

57

rectangular formulation resulting in quadratic objective and constraint functions

consist in the fact that (Capitanescu et al., 2005):

 The second-order derivatives (Hessian matrices) of the objective and

constraint functions (including the power balance equations, branch flow limits

and bus voltage bound constraints) are constant

 The Taylor-series expansion of a quadratic function terminates at the second-

order term without any truncation error, and is thus relatively more accurate

The properties stated above make the rectangular formulation computationally

efficient in an optimization technique that requires availability of second-order

derivative information of the objective and constraint functions, such as the Newton

method employed in interior-point methods (as outlined in the next chapter). The

(slight) disadvantage of the rectangular formulation lies in the fact that bus voltage

bound constraints (Equation 3.10e) need to be treated as functional constraints,

whereas in the polar formulation, they are handled as simple bound constraints

(Equation 3.11e).

For the reasons discussed above, the rectangular formulation (model P1) has been

adopted in this study, and is used in the implementation of the Volt/VAR optimization

in chapters 5 and 6.

3.4 Conclusion

Volt/VAR optimization (VVO) is the variant of the optimal power flow (OPF) problem

concerned with the optimal dispatch of voltage-regulating and reactive power control

devices so as to minimize system losses and improve the network voltage profile,

and assumes that an economic dispatch that minimizes the fuel cost of meeting a

given demand has already been computed. This chapter has presented the problem

formulation for the VVO problem, thoroughly discussing the main elements of the

problem formulation (i.e. the system variables comprising the state and control

variables, the objective functions, and the constraints). The problem formulation has

been presented in both the rectangular and polar forms of the complex bus voltage,

and relative merits and demerits of the two formulations have been briefly discussed.

The main result of this chapter, which is the development of the model used in the

design of the algorithm for the VVO problem, will be used in chapters 5 and 6, and

contributes to one of the main deliverables of this thesis (i.e., problem formulation). In

the next chapter, the solution of the VVO problem based on the interior-point method,

one of the most efficient classical optimization techniques for large-scale nonlinear

optimization, will be presented.

58

CHAPTER FOUR

DESIGN AND IMPLEMENTATION OF THE PRIMAL-DUAL INTERIOR POINT
METHOD AND APPLICATION TO A NONLINEAR PROBLEM

4.1 Introduction

The general optimal power flow (OPF) problem was first formulated in the early 1960s

(Carpentier, 1962), and has since then attracted a lot of research interest, with the

primary focus being on the development of efficient problem formulations, as well as

effective solution methods. With the characteristic of being a very large-scale

nonlinear, nonconvex optimization problem with typically thousands of variables and

constraints, as well as a mix of continuous and discrete variables, solving the OPF

problem efficiently poses special challenges, and much effort has been dedicated to

the on-going search for efficient solution techniques over the decades. Gradient-

based techniques constituted the first approaches applied to the algorithmic solution

of the OPF problem (Dommel & Tinney, 1968; Peschon et al., 1968; Hano et al.,

1969). Over the years, a variety of solution methods have been investigated and

developed, broadly classified as conventional/classical or deterministic methods, and

non-conventional/heuristic or non-deterministic methods. The principle classical

optimization methods include a variety of gradient-based methods (e.g. reduced-

gradient, generalized reduced-gradient, conjugate-gradient, Newton and quasi-

Newton methods), (successive) linear programming, (successive) quadratic

programming, and interior-point methods. Heuristic optimization methods encompass

genetic algorithms, evolutionary programming, particle swarm optimization, fuzzy set

theory, and expert systems, among others (Mataifa et al., 2022).

Interior-point methods (IPM) stand out among traditional optimization methods due to

a number of characteristics that make them very suitable for application to large-scale

nonlinear programming problems. Having been initially developed as an alternative to

the Simplex method for solving linear programs (LP), their success in this class of

optimization problems elicited the attention of the operations research community,

and substantial efforts were made quite early in their development to extend their

application to nonlinear programming problems (Capitanescu et al., 2007). With these

initial efforts bearing fruitful results, their popularity continued to grow, and until today

they constitute one of the most widely researched and most commonly applied

classical optimization methods to the OPF problem (Frank & Rebennack, 2012).

This chapter presents the design and implementation of the primal-dual interior-point

method (PDIPM), a principal variant of interior-point methods, which then forms the

basis for the development of an efficient Volt/VAR optimization (VVO) algorithm in the

following chapter. Following this introductory section, the details of the development

59

of the algorithm are presented in section 4.2. This is followed by an illustrative

example in section 4.3 that demonstrates the implementation of the developed

algorithm, thoroughly covering all the aspects of the algorithm discussed in section

4.2. Section 4.4 concludes the chapter with a brief summary of the key results from

this chapter. Figure (4.1) depicts a pictorial representation of the content of this

chapter.

Chapter Four:

Design and Implementation of the Primal-Dual Interior-Point

Method and Application to a Nonlinear Problem

4.2 Primal-Dual Interior-Point Method (PDIPM)

4.2.1 Transforming of inequality constraints

into equality constraints

4.4 Conclusion
4.1 Introduction

4.2.2 Handling the non-negativity condition

of slack variables

4.2.3 Transformation of the equality-

constrained problem into an unconstrained

one

4.2.4 Determining the search direction by the

Newton method

4.2.5 Determining the step length in the

Newton direction

4.2.6 Decreasing the barrier parameter

4.2.7 Checking convergence of the iterates to

the solution

4.2.8 Initialization of the primal-dual

interior-point algorithm

4.2.9 Outline of the primal-dual interior-

point algorithm

4.3 Example of application of the PDIPM

4.3.1 Transformation of inequality

constraints into equality constraints

4.3.2 Handling the non-negativity

condition of slack variables

4.3.3 Transforming the equality-constrained

problem into an unconstrained one

4.3.4 Determining the search direction by

the Newton method

4.3.5 Determining the step size

4.3.6 Checking convergence of the iterates to

the solution

4.3.7 Determining the initial values of the

input parameters to the algorithm

4.3.8 Implementation and results of the

example problem

Fig. 4.1: Summary of the content covered in this chapter

4.2 Primal-Dual Interior Point-Method (PDIPM)

The primal-dual interior-point method (PDIPM) effectively combines three concepts to

provide an approach for solving constrained nonlinear optimization problems: (i)

handling of inequality constraints by means of a logarithmic barrier function, (ii)

application of Lagrangian theory of optimization to the solution of an equality-

constrained optimization problem, and (iii) application of the Newton method to solve

the resulting system. The main steps of the technique can be outlined as:

1. Transforming all inequality constraints into equality constraints by adding a

nonnegative slack variable to each inequality constraint.

2. Implicit handling of the non-negativity condition of slack variables by

appending each of them to the objective function using a logarithmic barrier

function.

60

3. Transforming the resulting equality-constrained optimization problem into an

unconstrained one using the Lagrangian approach.

4. Solving the resulting unconstrained optimization problem using the Newton

method.

To form the basis for the development of the primal-dual interior-point algorithm

(PDIPA) to be applied to the solution of the VVO problem, the general nonlinear

programming problem (initially stated in equations (3.1) – (3.5)) can be restated here

as:

 s.t.

where)(xf represents the objective function as a scalar-valued function of the

combined state and control variable vector nRx , mRxg)(represents the active and

reactive power balance equations, and pRxh)(combines the operational and

functional inequality constraints of the VVO problem (as stated in problem P1 or P2 in

chapter 3). In the following subsections, the steps of the PDIPM outlined earlier are

applied to the problem (4.1) in order to develop the PDIPA.

4.2.1 Transformation of inequality constraints into equality constraints

By adding slack variables to the inequality constraints given by equation (4.1c), the

general nonlinear program (4.1) is transformed into:

s.t.

4.2.2 Handling the non-negativity condition of slack variables

The non-negativity condition of the slack variables (equation 4.2d) is handled by

appending them to the objective function by means of the logarithmic barrier function,

which has the singularity property at the origin. With this modification, the problem

(4.2) becomes:

s.t.

61

where is a positive scalar, referred to as the barrier parameter, which is

progressively decreased to zero as the iteration progresses. It has been shown by

Fiacco and McCormick (1968) that as tends to zero, the solution of the problem

(4.3),)(x , approaches the optimizer of problem (4.1), *x . In problem (4.3), the

non-negativity condition on the slack variables is handled implicitly through the

logarithmic barrier functions appended to the objective function, so that equation

(4.2d) is no longer required, and so does not appear in (4.3).

4.2.3 Transformation of the equality-constrained problem into an unconstrained one

The next step in the development of the algorithm is to formulate the Lagrangian

function of the problem by forming a linear combination of the objective function

(equation (4.3a)) and the equality constraints (equations (4.3b), (4.3c)) with the help

of Lagrangian multipliers, thus transforming the equality-constrained problem into an

unconstrained problem (Capitanescu et al., 2005):

where E and I are the Lagrange multipliers for the equality and inequality

constraints respectively. The first-order optimality conditions of the problem (known

as the Karush-Kuhn-Tucker or KKT conditions) are derived by taking the first partial

derivatives of the Lagrangian function (equation (4.4)) with respect to both the primal

and dual variables (i.e. the vector TIEsxX , , ,), and equating each of them to

zero, which yields:

where e is a vector of ones of appropriate length (i.e. T
e 1 ,... ,1 ,1), S is a diagonal

matrix with the slack variables on the diagonal (i.e. psssdiagS ,...,, 21).

The KKT conditions (4.5) can be written in a compact form as:

62

Equation (4.6) has been derived from (4.5) by multiplying equations (4.5b) by S ,

which has the advantage (particularly for the Newton method) of decreasing the

relative nonlinearity of the system (4.5) near the solution as 0s (Nocedal & Wright,

2006).

Determining the solution of the general nonlinear programming problem (4.1) typically

takes the form of an iterative process that seeks the point **,*,*,* IEsxX which

satisfies the KKT conditions (4.6), as well as the non-negativity conditions on the

slack and dual variables. For the primal-dual interior-point method, the main

components of this iterative process include:

 Determining the search direction (by the Newton method).

 Determining the step size to be taken in the already computed search

direction, then updating the primal and dual variables.

 Updating the barrier parameter, which should monotonically be decreased to

zero as the iterative process proceeds.

 Checking the stopping criteria that indicate the algorithm’s convergence to the

solution of the problem.

These aspects of the algorithm are discussed in detail in the following sub-sections.

4.2.4 Determining the search direction by the Newton method

The Newton method is an iterative procedure for finding the solution to a nonlinear

problem of the form (Zhu, 2009):

which involves generating the Taylor series expansion of)(XF about an initial

estimated solution 0X , subjected to a small increment 0X :

where)(,...,)(' 00 XFXF n
 are the derivatives of the function)(XF , evaluated at

0X .

Assuming that the initial point 0X is close to the solution for problem (4.7), such that

the change 0X can be considered to be relatively small, a first-order model can be

63

derived from equation (4.8) by neglecting the higher-order terms, leading to the

approximate model:

From equation (4.9), the Newton iteration is derived as:

where)(kXJ is the matrix of first partial derivatives of)(kXF ,)(' kXF (known as the

Jacobian of)(kXF). The increment kX is successively added to the current

solution at each iteration until the approximate solution reaches a sufficient level of

accuracy. k denotes the iteration number, and may be omitted in subsequent

expressions (for example, in Equation 4.11) for the sake of simplicity.

To determine the Newton-based search direction for the KKT system, equation (4.10)

is applied to equation (4.6), resulting in the system:

where:

and)(XF is given by equation (4.6). Combining equations (4.6), (4.12) and (4.13),

we obtain the following (primal-dual) system:

64

where I is a diagonal matrix with the Lagrange multiplier vector for the inequality

constraints, I , on the diagonal (i.e. II diag). By expressing s in terms of x

and I in terms of s , a reduced-order system can be derived from system (4.15),

as detailed below. Considering the second and fourth rows of equation (4.15), the

following expressions in terms of I and s are derived.

Then substituting equation (4.17) into the first row of (4.15) leads to:

Taking equation (4.18) and the third row of equation (4.15), the reduced-order primal-

dual system can be written as:

where:

Thus, to determine the Newton direction for the primal-dual system (4.15), we can

solve the reduced-order system (4.19) for x and E , then determine s and I

using equations (4.16) and (4.17) respectively.

4.2.5 Determining the step length to take in the Newton direction

Once the Newton direction has been computed as in the previous sub-section, the

primal and dual variables (IEsxX ,,,) are updated according to:

65

]1,0(p and]1,0(d are the step lengths taken in the Newton direction for the

primal and dual spaces respectively. Incorporating a step length adjustment into the

Newton step computation has the dual objective of maintaining the strict positivity

condition of the slack variables and their corresponding dual variables, while

providing for a sufficient advance towards the (local) minimizer of the problem. The

following expressions are commonly used in the computation of the primal and dual

step lengths (Capitanescu et al., 2005; Torres, 1998):

where)1 ,0(is a scalar parameter slightly less than one, referred to as the safety

factor, and is intended to ensure strict positivity of the slack variables and their

corresponding dual variables. It is commonly set to be as close to one as possible, to

enable as large a step in the Newton direction as possible. A usual value of the

parameter is 99995.0 .

Close coupling between the primal and dual variables in the case of interior-point

methods for general nonlinear programming (as reflected in the dual feasibility

condition in equation (4.5b)), gives rise to the consideration of a common step length

adjustment for the primal and dual variables, in which case it can be derived from

equation (4.23) as:

The exceptional case when such use of a common step length might not be effective

is when there is a large difference in magnitude between the primal and dual step

lengths, usually an indication of a poorly centred iteration, in which case it may be

preferable to use separate step length adjustments (Capitanescu et al., 2005).

4.2.6 Decreasing the barrier parameter

For the solution of problem (4.3) (having the logarithmic barrier function) to coincide

with that of the original problem (4.1), a scheme is required as part of the iterative

process to monotonically decrease the sequence of barrier parameters k until it

66

converges to zero at the solution. The rate of decrease of the barrier parameter does

affect the rate of progress of the iterative process. If decreased too slowly, the

number of iterations required for the interior-point algorithm becomes large. If

decreased too quickly, some of the slack or dual variables may approach zero

prematurely, again slowing down the rate of progress of the iterations (Nocedal &

Wright, 2006). Most (modern) implementations of the interior-point method use an

adaptive strategy for updating the barrier parameter, varying it at every iteration as a

function of the progress of the algorithm, based on the complementarity gap, that is,

the residue of the complementarity constraints:

The barrier parameter is adjusted proportionately to the complementarity gap

(equation (4.25)) according to:

where m and p are the numbers of equality and inequality constraints respectively,

k is the iteration number, k is referred to as the centering parameter, for which

there exist several heuristics for setting its value (Nocedal & Wright, 2006). Its value

is essentially a compromise between achieving optimality (i.e. making substantial

advance in the Newton direction) and feasibility (i.e. improving centrality of the

iterate). A value in the range 2.0 ,1.0 is often used. Choice of the initial barrier

parameter (
0) is also an important consideration for the convergence characteristics

of the algorithm, and is to some extent problem-dependent. Its choice is governed by

the need to avoid the premature forcing of the inequality constraints to become

active, which may adversely affect the convergence of the algorithm ((Capitanescu et

al., 2005; Torres, 1998).

4.2.7 Checking convergence of the iterates to the solution

The interior-point algorithm is considered to have converged when an approximate

local minimum has been obtained, which is signified by the iterate satisfying specified

tolerances for the primal feasibility, (scaled) dual feasibility, (scaled) complementarity

gap and scaled objective function variation. Additionally, the barrier parameter is

often required to decrease to a specified tolerance (as opposed to the requirement of

becoming null at the solution). The termination conditions are given in Equation

(4.27), and have been adopted in the implementation of the PDIPM algorithm in this

study (Capitanescu et al., 2005).

67

Typical values for the tolerances are
66

2

4

1 10,10,10 (Martinez Ramos et

al., 2005). A point kX that satisfies the above conditions is said to be a KKT point of

accuracy 1 . Besides satisfying optimality conditions according to equation (4.27), the

algorithm may also terminate unsuccessfully, either due to numerical infeasibility (e.g.

when the primal/dual step lengths become so small that no further progress can be

made either towards reaching optimality or decreasing the barrier parameter), or the

predetermined maximum number of iterations being reached.

4.2.8 Initialization of the primal-dual interior-point algorithm

The primal-dual interior-point algorithm is referred to as an infeasible interior-point

method, in the sense that it need not start from a feasible initial point, the only

requirement being the satisfaction of the strict positivity condition on the slack

variables and their corresponding dual variables (Torres & Quintana, 1998). In spite

of this fact, the initial point may have a significant impact on the convergence

characteristics of the algorithm, and thus problem-specific heuristics may be applied

to come up with a ‘good’ initial point. Such a ‘good’ initial point should ideally be well-

centred (such that values of complementarity products k

I

k
s 00 are comparable for

every iteration index k), and should not be ‘too infeasible’ (as measured by the

complementarity gap).

For the optimal power flow problem, it is recommended to initialize the decision vector

0x with the solution of a load flow computation, if available. Otherwise, the values of

the variables may be set to be in the middle of the range determined by their lower

and upper limits. The Lagrange multiplier for the equality constraints (E) may be set

to zero, while the slack variable vector and its corresponding dual variable (i.e. the

Lagrange multiplier for the inequality constraints, I) may be set as follows (Torres,

1998):

68

Start

Derive the KKT conditions (Equation 4.6) for the system by:
 Transforming inequality constraints into equality constraints using

slack variables
 Handling non-negativity of slack variables by appending them to

the objective function using the logarithmic barrier function
 Forming the Lagrangian from the resulting equality-constrained

problem, turning it into an unconstrained problem
 Applying the first-order optimality (KKT) conditions to the resulting

Lagrangian

Initialization:
 Set the values of the constants: safety, centering,

barrier parameters, and convergence tolerance
values

 Set initial values of the primal and dual variables as
discussed in section 4.2.8

Computation of Newton direction:
 Compute the Newton direction, using either the full-

order primal-dual system (Equation 4.15) or the
reduced-order system (Equations 4.16, 4.17, 4.19-
4.21)

Computation of step size:
 Compute the step sizes to be taken in the Newton

direction, using Equations 4.23, 4.24, then update
the primal and dual variables using Equation 4.22

Convergence check:
 Test for convergence of the current iterate using

Equations 4.27

Output result:
 Converged or numerically failed

Converged

End

Check if maximum
number of iterations is
not exceeded

Not yet
converged

 Update barrier
parameter

 Increment
iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Fig. 4.2: Flowchart of the Primal-Dual Interior-Point Algorithm

69

where mh and Mh are the lower and upper limits on the inequality constraints)(xh ,

the scalar parameter is chosen to be in the range 3.0 ,1.0 . Equation (4.28a)

ensures that the maximum inequality constraint violation is minimized.

4.2.9 Outline of the primal-dual interior-point algorithm

The flowchart in Figure (4.2) below summarizes the steps of the primal-dual interior-

point algorithm discussed in the preceding sub-sections.

4.3 Example of application of the PDIPM

To illustrate the implementation of the primal-dual interior-point algorithm developed

in the previous section, it is applied to the following simple problem, taken from

Momoh (2001), stated as:

s.t.

This is a (fairly simple) inequality-constrained quadratic programming problem (with a

quadratic objective function and linear inequality constraints). It can be expressed in

standard form as:

s.t.

In the following sub-sections, the steps outlined in section (4.2) will be applied to

problem (4.30) so as to solve the system using the primal-dual interior-point method.

4.3.1 Transformation of inequality constraints into equality constraints

By adding slack variables to the two inequality constraints, the problem is transformed

into an equality-constrained problem as follows:

s.t.

4.3.2 Handling the non-negativity condition of slack variables

The next step is to form the logarithmic barrier function to handle the non-negativity

condition of the slack variables, resulting in the problem taking the following form:

70

s.t.

4.3.3 Transforming the equality-constrained problem into an unconstrained one

The logarithmic barrier function and the equality constraints as presented in problem

(4.32) are then combined to form the Lagrangian function of the problem as follows:

Note that the original problem has no equality constraints, and so the term)(xgT

E

does not appear in the Lagrangian function (4.33) of the problem. The first-order

optimality (i.e. KKT) conditions for the problem are derived by taking the partial

derivatives of the Lagrangian function with respect to the primal and dual variables as

follows:

The KKT conditions can be written in compact form as:

The solution of system (4.35) is determined by iteratively applying the Newton method

to it to compute the Newton direction, then determining the step size to be taken in

the Newton direction. The algorithm will also involve determining the initial values of

all the parameters needed to implement the algorithm, updating the barrier parameter

 , and testing the convergence conditions.

71

4.3.4 Determining the search direction by the Newton method

The search direction can be computed on the basis of either the full (Newton-based)

primal-dual system according to Equation (4.15), or the reduced-order system

according to Equations (4.16), (4.17), (4.19) – (4.21). The reduced-order system has

the advantage of requiring less computation time, and will be used to solve the

example problem.

Since the problem (4.29) does not have equality constraints, the system (4.19)

reduces to:

where A and B are given by equations (4.20) and (4.21) respectively, restated below

for convenience.

Once the increment x has been computed using equation (4.36), the increments

s and I can be determined using the equations (4.16) and (4.17) respectively,

also restated below for convenience:

The components required to compute the values of A and B for the example problem

can be determined as follows:

By using equations (4.36) – (4.39), the (Newton-based) search direction for the

interior-point algorithm is determined for problem (4.29).

72

4.3.5 Determining the step size

The step size to be taken in the Newton direction can be computed by means of

Equation (4.23), as discussed in section (4.2.5), and Equation (4.22) can be used to

update the primal and dual variables (for problem (4.29), these are IsxX , ,).

4.3.6 Checking the convergence of the algorithm

Next, the convergence conditions according to equation (4.27) are computed at the

current iterate to check whether the algorithm has converged to the solution of the

problem (4.29).

If the algorithm has not yet converged and the predetermined maximum number of

iterations has not yet been exceeded, a new Newton direction is computed and a new

iterate generated, as depicted in the algorithm in Figure (4.1). At each new iteration,

the barrier parameter also has to be updated, using Equation (4.26).

4.3.7 Determining the initial values of the input parameters to the algorithm

The primal-dual interior-point method has quite a number of parameters whose initial

values need to be determined judiciously as they significantly impact the convergence

performance of the algorithm. Following the guidelines discussed in section (4.2.8)

the following initial values have been used for problem (4.29):

With the initial parameter values specified as above, the parameters needed to

implement the algorithm are available. Other input parameters (mainly constants) are

determined as discussed in section (4.2).

4.3.8 Implementation and results of the example problem

After applying the steps outlined in sections (4.3.1) – (4.3.7) to problem (4.29), the

following results are obtained. As an illustration, computation of the first two iterations

is detailed below, the rest of the results are given in Table 4.1.

Using the initial values in Equation (4.40), the components needed for the

computation of the Newton direction according to equation (4.39) are determined as

follows:

73

1st iteration

Firstly, the Newton direction is determined as follows:

Next, the step length to be taken in the Newton direction is determined as follows:

74

Then the primal and dual variables are updated as follows:

The next step is to check the convergence conditions, using equation (4.27), as

follows:

It can be observed from the results above that the complementarity, objective

function, and barrier parameter conditions (i.e. tolerances) are not satisfied by the

current iterate. Thus, another iterate needs to be computed, after updating the barrier

parameter according to equations (4.25), (4.26) (here using 15.0).

2nd iteration

Newton direction:

75

Step length determination:

76

Update of primal-dual variables:

Test of convergence:

Table 4.1: Simulation results of the PDIPA applied to problem (4.29)

Iteration
f(x)

0 2 1 1 1 10 10 10 2 2

1 0.7692 -0.7692 0.4615 0.5385 15.3846 14.6154 0.5614 2 -0.5917

2 0.7742 -0.7742 0.4516 0.5484 1.5473 0.7731 0.0421 3.5527e-15 -0.5994

3 0.8459 -0.8459 0.3083 0.6917 0.8459 0 0.0098 3.3307e-16 -0.7155

4 1 -1 0 1 1.0118 0.0118 4.43e-4 2.22e-16 -1

5 0.9998 -0.9998 0.0004 0.9996 1.0002 0.0004 3.32e-5 5.5511e-17 -0.9996

6 1 -1 0 1 1 0 2.5e-6 4.55e-15 -1

The convergence test shows that the complementarity, objective function, and barrier

parameter conditions are still not satisfied by the second iterate. Thus, another iterate

should be computed, after updating the barrier parameter. The algorithm converges

77

after about 6 iterations. The results for the rest of the iterations are displayed in Table

4.1. Figure (4.3) depicts the trajectories of the solution (1x , 2x) over the iterations of

the algorithm, from which it can be observed that the variable 1x settles at the

optimal value of 1, and the variable 2x settles at the optimal value of -1, as can be

read from Table (4.1) as well. Figure (4.4) depicts the trajectories of the norm of the

gradient of the Lagrangian function as well as the barrier parameter, and shows that

both of them are driven to zero at the optimal solution, as is required by the algorithm.

The MATLAB program for the PDIPA algorithm applied to problem (4.29) is presented

in Appendix A.

Fig. 4.3: Evolution of the variables x1 and x2 over the iterations of the PDIPA for problem

(4.29)

78

Fig. 4.4: Evolution of the norm of the gradient of the Lagrangian and of the barrier parameter

for problem (4.29)

4.4 Conclusion

The primal-dual interior-point method (PDIPM) combines effective inequality

constraint handling by the logarithmic barrier function and an efficient iterative search

technique by the Newton method to provide one of the most efficient classical

methods for large-scale constrained nonlinear optimization. The main result of this

chapter has been to present a thorough, step-by-step process for the design and

implementation of this algorithm. All the pertinent aspects related to the

implementation of the algorithm have been discussed in great detail, encompassing

the derivation of the first-order optimality (KKT) conditions and their solution by the

Newton method, as well as the many parameter selection and tuning considerations

that are integral to the effective implementation of the algorithm. The developed

algorithm has been applied to a general nonlinear programming problem in order to

demonstrate the key practical implementation aspects that have been presented in

the chapter. Although the example used to illustrate the implementation of the

algorithm is fairly simple, the results obtained nonetheless demonstrate the

effectiveness and efficiency of the developed algorithm. The results of this chapter

are used as the basis for the development and implementation of an efficient

optimization strategy for the Volt/VAR optimization problem in the following chapter,

namely, the primal-dual interior-point algorithm. This also constitutes one of the main

deliverables of the thesis (i.e., theoretical algorithm development and design).

79

CHAPTER FIVE

SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY THE PRIMAL-
DUAL INTERIOR POINT METHOD

5.1 Introduction

The significance of the optimal power flow (OPF) as the principal tool used by the

power system operator for all aspects of power system planning and operation has

been underscored in chapter 3. Volt/VAR optimization (VVO), an important variant of

the OPF, is primarily concerned with the optimal coordinated dispatch of voltage-

regulating devices and reactive power sources so as to maintain a secure voltage

profile, and plays a key role in ensuring system security, and improving system

economy by minimizing system losses (Chebbo et al., 1992). Optimal reactive power

dispatch (as it is otherwise referred to) plays a key role in the efficient transfer of real

power, especially in the bulk power transmission system, and contributes significantly

to the security, reliability, quality and economy of power system operation (Miller,

1982). In fact, reactive power-related bottlenecks are often cited as underlying the

system operator’s inability to economically dispatch active power, which underscores

the great significance of efficiently utilizing available reactive power resources. It is

also worth pointing out that the security aspect of system operation normally takes

precedence over the economic aspect. Thus, in the presence of limit violations (e.g.

voltages or branch flows exceeding predetermined limits), the main objective

becomes the elimination of the violations (or minimizing them in case they cannot be

eliminated entirely), and a minimal set of controls is sought that can be dispatched to

achieve that objective. The economic aspect (i.e. loss minimization) can then be

considered once the security of system operation is ensured (Martinez Ramos et al.,

2005).

 This chapter presents the design and implementation of an efficient primal-dual

interior-point method-based Volt/VAR optimization (PDIPM-VVO) algorithm, and

builds on the work presented in chapter 4. The algorithm makes use of the

rectangular formulation of the VVO problem (presented in chapter 3), and

incorporates a Newton-Raphson-based load flow computation, which is also

formulated in rectangular coordinates. The content of this chapter is organized as

follows. Section 5.2 outlines in great detail the adaptation of the primal-dual interior

point algorithm (PDIPA) presented in chapter 4 to the requirements of the VVO

problem. The development and implementation of the Newton-Raphson load flow

algorithm in rectangular coordinates is also presented in this section, prior to its

incorporation into the PDIPM-VVO algorithm. Section 5.3 presents five case studies

that facilitate the analysis of the newly developed PDIPM-VVO algorithm. Extensive

simulations and discussion of the results in this section are presented to demonstrate

80

the effectiveness and efficiency of the developed algorithm. Section 5.4 concludes

the chapter with a brief summary of the main outcomes of the work presented in the

chapter. A pictorial representation of the content of this chapter is depicted in Figure

(5.1).

Chapter Five:

Solution of the Volt/VAR Optimization Problem by the Primal-

Dual Interior-Point Method

5.2 Application of the PDIPM to the solution of the

Volt/VAR optimization problem

5.2.1 VVO problem formulation in standard

form

5.4 Conclusion
5.1 Introduction

5.2.2 Transforming the problem into an

equality-constrained problem

5.2.3 Handling the non-negativity of slack

variables and formulating the Lagrangian of

the problem

5.2.4 Newton-Raphson load flow algorithm in

rectangular coordinates

5.2.5 Example of implementation of the

Newton-Raphson load flow algorithm

5.2.6 Results of the Newton-Raphson-based

load flow computation

5.2.7 Lagrangian of the PDIPM-VVO problem

incorporating the Newton-Raphson load flow

5.2.8 Derivation of the first-order optimality

(KKT) conditions

5.2.9 Derivation of the elements needed to

implement the PDIPM-VVO algorithm:

example for the three-bus system

5.3 Case studies

5.3.1 Case study 1: 3-bus power system

5.3.2 Case study 2: 6-bus power system

5.3.3 Case study 3: IEEE 14-bus power system

5.3.4 Case study 4: IEEE 30-bus power system

5.3.5 Case study 5: IEEE 118-bus power system

Fig. 5.1: Summary of the content covered in this chapter

The key contributions of this research as presented in this chapter are:

 Development and implementation of an efficient Newton-Raphson load flow

algorithm in the rectangular coordinate representation of the system voltages

 Development and implementation of a novel efficient primal-dual interior-point

algorithm for Volt/VAR optimization (PDIPM-VVO), formulated in rectangular

coordinates, which incorporates the rectangular-coordinate Newton-Raphson

load flow computation

 Comprehensive performance analysis of the developed PDIPM-VVO

algorithm, focusing on the quality of the solution (in terms of the magnitude of

real power loss percentage reduction and the voltage profile improvement)

and the computational efficiency of the algorithm (in terms of the required

number of iterations and runtime)

 Demonstrating the scalability of the developed algorithm by analysing its

performance for test systems ranging in size from 3-bus to 118-bus system

81

5.2 Application of the PDIPM to the solution of the Volt/VAR optimization problem

Following the procedure illustrated in section 4.3 in the preceding chapter,

development of the PDIPM-based solution algorithm for the VVO problem is

presented in this section, making use of the rectangular form of the VVO problem

formulation as detailed in section 3.2.3. As demonstrated in section 4.3, the

procedure involves (i) expressing the optimization problem in standard form, (ii)

adding slack variables to the inequality constraints so as to transform the problem

into an equality-constrained problem, (iii) handling the non-negativity of slack

variables by means of the logarithmic barrier function, (iv) formulating the Lagrangian

of the problem, then (v) deriving the KKT system and subsequently (vi) solving it by

the Newton method. Each of these steps is applied sequentially to the VVO problem

in the following sub-sections.

5.2.1 VVO problem formulation in standard form

In standard form, the rectangular representation of the VVO problem can be

expressed as:

s.t.

In Equation (5.1c), subscripts im and iM represent the inequality constraints

corresponding to the lower and upper bounds of the ith element respectively. Thus, for

example, Vimh is the inequality constraint corresponding to the lower bound on the

voltage magnitude of the ith bus. The rest of the symbols have been defined in

chapter 3, section 3.2.3.

82

5.2.2 Transforming the problem into an equality-constrained problem

By adding slack variables to each of the inequality constraints (Equation 5.1c), the

problem (5.1) is transformed into the following:

s.t.

5.2.3 Handling the non-negativity of slack variables and formulating the

Lagrangian of the problem

The non-negativity condition on the slack variables (Equation 5.2d) is then handled by

means of a logarithmic barrier function augmented to the objective function, leading

to:

s.t.

Where , defines the set of indices for the

slack variables and Lagrange multipliers associated with the inequality constraints.

83

At this point, the implementation of the PDIPM-based VVO solution digresses slightly

from that discussed and implemented in section 4.3 for a general nonlinear

programming problem, particularly in the handling of the (original) equality and

inequality constraints. The reason for the digression is that after each iteration of the

Newton method, the VVO algorithm needs to run a load flow algorithm in order to

compute the system bus voltages (following the generator voltage set-point

adjustments made by the VVO algorithm). The equality constraints (i.e. the real and

reactive power balance equations, Equation 5.3b) are consequently handled by the

load flow algorithm, while the PDIPM-based VVO algorithm handles the inequality

constraints (Equation 5.3c). This scheme ensures the convergence of the VVO

algorithm. Since the VVO algorithm makes use of the rectangular form of the problem

formulation, the load flow algorithm is developed on the basis of the rectangular form

of the system voltages as well, which happens to exhibit characteristics of fast

convergence and high efficiency. In the following sub-section, the developed

rectangular form of the Newton-Raphson load flow algorithm is presented. Other

methods that are commonly applied to the load flow computation problem include

Gauss-Seidel, fast-decoupled, and DC load flow methods, all of which are extensively

discussed in power system analysis textbooks (see, for example, Glover & Sarma,

2002).

5.2.4 Newton-Raphson load flow algorithm in rectangular coordinates

The Newton method of solving a general nonlinear problem was discussed in section

4.2.4. The same algorithm forms the basis for the development of the Newton-

Raphson load flow algorithm. The objective of a load flow computation for a power

system is to determine the system bus voltages (magnitudes and phase angles) for a

given generation, load and network condition, while satisfying active and reactive

power balance equations (i.e. sum of active and reactive power injections at each

bus, each treated separately, must equal zero). Other than handling the active and

reactive power balance equations, the load flow algorithm does not enforce the

satisfaction of any other system constraints (such as limits on bus voltage

magnitudes), which thus needs to be taken care of by the VVO algorithm. Once the

system voltages have been determined, other system quantities such as line power

flows and system losses can be computed in turn as part of the load flow solution of

the system.

A load flow computation requires classifying each system bus on the basis of the

known and unknown variables at the bus, as detailed in Table 5.1. All system buses

essentially fall broadly into two main categories, depending on whether there is

generation at the bus or not. Non-generator buses are referred to as load (or PQ)

84

buses, and the rest are referred to as generator (or PV or regulated) buses. Among

generator buses, one bus (possibly more) is selected to be the reference bus, which

is responsible for setting the reference voltage phase angle for the system, as well as

compensating for the mismatch between load demand (plus system losses) and

scheduled generation. Hence, it is also referred to as the slack bus or swing bus.

Table 5.1: classification of system buses based on specified and unknown variables

Bus type
Voltage (V) Real power (P) Reactive power (Q)

Magnitude Angle Generation Load Generation Load

Reference/slack/swing Specified Specified Unknown - Unknown -

Generator/PV/regulated Specified Unknown Specified - Unknown -

Load/PQ Unknown Unknown - Specified - Specified

As can be deduced from Table 5.1, both the voltage magnitude and voltage phase

angle are specified at the reference bus, the voltage magnitude is specified at each

generator bus, whereas neither voltage magnitude nor phase angle is specified at

load buses. The load flow solution is thus needed to compute voltage magnitudes

and phase angles for all load buses, as well as voltage phase angles for generator

buses. The load flow algorithm is derived on the basis of the active and reactive

power balance equations for the system, Equations (5.3a), (5.3b), (3.4) and (3.5),

which can be expressed as follows for the presently considered application:

Equation (5.4a) is the active power mismatch (or active power balance) equation, and

needs to be computed for each bus other than the slack bus. Equation (5.4b) is the

reactive power mismatch equation, and needs to be computed for each load bus.

Equation (5.4c) needs to be computed for each generator bus except for the slack

bus, to ensure maintenance of the voltage magnitude set-point at the voltage-

regulated (i.e. PV) buses. For a system with n buses, a total of)1(2 n equations

are formulated in order to solve for the load-bus voltage magnitudes and phase

angles, as well as PV-bus voltage phase angles. The mismatch equations (5.4) have

85

been expressed in rectangular form, as the developed load flow algorithm is based on

the rectangular representation of system bus voltages.

Similar to the computation of the Newton-based search direction for the PDIPM

algorithm in section 4.2.4, the Newton-Raphson load flow algorithm is based on

equation (4.11), rewritten here for ease of reference:

where)(XF is comprised of equations (4.44),)(XJ is the Jacobian of)(XF (i.e.

the first-order partial derivatives of)(XF with respect to the system bus voltages),

and X is the correction to be applied to the variable X (the system bus voltages) in

order to drive it towards the load flow solution, according to equation (4.45b).

For each ith PQ bus, the mismatch vector (PQiF) and the corresponding Jacobian

(PQijJ) are given by:

And for each ith PV bus, the mismatch vector (PViF) and the corresponding Jacobian

(PVijJ) are given by:

And the vector iX is given by:

for every bus other than the slack bus.

The flowchart in Figure (5.2) outlines the Newton-Raphson load flow algorithm.

86

5.2.5 Example of implementation of the Newton-Raphson load flow algorithm

To illustrate the implementation of the Newton-Raphson-based load flow algorithm, a

simple three-bus power system is used, whose network diagram is depicted in Figure

(5.3) (adapted from Albadi, 2019).

The example three-bus system has one slack bus (bus one), one PQ bus (bus two),

and one PV bus (bus three). Thus, according to equations (5.6) – (5.8), the

components of equation (5.4a) can be defined as follows:

87

Start

Given input (network, load, generation) data:
 Express bus voltages in rectangular form
 Form bus admittance matrix
 Assume initial values of bus voltages (except slack

bus)

Convergence check:
 Compute power mismatch based on Equations (5.4)
 Check whether the mismatch satisfies the tolerance

values, i.e. |ΔF|<ε

Computation of correction term ΔX:
 Compute power mismatch and the Jacobian based

on Equations 5.4 and 5.6b, 5.7b
 Compute the correction term ΔX using Equation 5.5a
 Update the bus voltages X using Equation 5.5b
 Check for convergence of the algorithm (i.e. |ΔF|<ε)

Output result (bus voltages):
 Converged or numerically failed

Converged

End

Check if maximum
number of iterations is
not exceeded

Not yet
converged

 Update barrier
parameter

 Increment
iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Converged

Not yet converged

Fig. 5.2: Flowchart of the Newton-Raphson load flow algorithm

88

GS GS
Slack bus

V1=1.02 0°

PV bus

|V3|=1.03

P3=1.5 p.u.

PQ bus

P2+jQ2=2+j0.5 p.u.

Bus 1 Bus 3

Bus 2

Z13=0.0059+j0.0235 p.u.

Z12=0.02+j0.06 p.u. Z23=0.0055+j0.0183 p.u.

Fig. 5.3: Network diagram of the 3-bus system depicting the network data

The elements of equation (5.9b) for the system under consideration are defined as:

The elements of equation (5.9c) are defined as:

89

One of the key input data for the load flow computation is the bus admittance matrix,

ijijij jBGY , which can be thought of as representing the network topology. For the

system under consideration, it is determined to be (for details of its determination,

reference can be made to any power systems textbook, such as Glover and Sarma,

2002):

The only other component left to perform the load flow computation is to decide on an

initial starting point for the (iterative) load flow algorithm. For this example, the

following initial starting point is used:

The slack-bus voltage is set to 002.1111 jjfeV , and does not change

throughout the load flow computation.

90

5.2.6 Results of the Newton-Raphson-based load flow computation

Based on the network data given in Figure (5.3) and the initial starting point as stated

above, the initial mismatch vector and the Jacobian (Equations (5.9b) and (5.9c)

respectively) are determined to be:

Equations (4.45a) and (4.45b) can then be used to update the vector X as follows:

Performing another two iterations leads to convergence of the algorithm. The results

for the rest of the iterations are tabulated in Tables (5.2) and (5.3). The MATLAB

program for this example is presented in Appendix B.

91

Table 5.2: 3-bus system change in bus power/voltage mismatch over iterations of the

Newton-Raphson load flow computations

Iteration number 2P 2Q 3P
2

3V

0 1.4481 -1.3035 -0.9310 0

1 0.01928 0.0549 -0.0033 -1.12e-5

2 5.57e-7 5.2e-6 1e-5 -4.92e-8

3 1.28e-12 4.1e-11 1.16e-11 7.2e-14

Table 5.3: 3-bus system change in bus voltages over iterations of the Newton-

Raphson load flow computations

 Bus 2 Bus 3

Iteration number 22 jfe 33 jfe

1 1.0123-j0.0278 1.03-j0.0034

2 1.0115-j0.028 1.03-j0.00367

3 1.0115-j0.028 1.03-j0.00367

As mentioned earlier, the developed Newton-Raphson load flow algorithm exhibits

very fast convergence and high computational efficiency, which is very desirable for

Volt/VAR optimization, since each iteration of the VVO algorithm requires a load flow

computation as well. In the next sub-section, the implementation of the VVO

algorithm incorporating the developed Newton-Raphson load flow algorithm is further

discussed, particularly the formulation of the Lagrangian function for the problem, and

subsequently derivation of the first-order optimality (KKT) conditions for the system.

The PDIPM-VVO algorithm incorporating the Newton-Raphson load flow computation

is depicted in the flowchart in Figure (5.4).

5.2.7 Lagrangian of PDIPM-VVO problem incorporating the Newton-Raphson

load flow

With the (original) equality constraints (the active and reactive power balance

equations, Equation 5.3b) incorporated into the Newton-Raphson load flow algorithm,

the Lagrangian function of the VVO problem is formulated on the basis of only the

logarithmic barrier function-augmented objective function (Equation 5.3a) and the

92

Start

Derive the KKT conditions (Equation 4.13) for the system by:
 Transforming inequality constraints into equality constraints

using slack variables
 Handling non-negativity of slack variables by appending them

to the objective function using the logarithmic barrier function
 Forming the Lagrangian from the resulting equality-

constrained problem, turning it into an unconstrained problem
 Applying the first-order optimality (KKT) conditions to the

resulting Lagrangian

Initialization:
 Set the values of the constants: safety, centering,

barrier parameters, and convergence tolerance
values

 Set initial values of the primal and dual variables as
discussed in section IV (F); this includes computation
of the Newton-Raphson load flow

Computation of Newton direction:
 Compute the Newton direction, using either the full-

order primal-dual system (Equation 4.15) or the
reduced-order equivalent system (Equation 4.19)

Computation of step size:
 Compute the step sizes to be taken in the Newton direction, using

Equations 4.23, 4.24, then update the primal and dual variables
using Equation 4.22

 Recompute the Newton-Raphson load flow to update the state
and control variables

Convergence check:
 Test for convergence of the current iterate using

Equations 4.27

End

Check if maximum number of
iterations is not exceeded

Not yet
converged

 Update barrier parameter
 Increment iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Output results:
 Optimal generator voltage

set-points if converged
 Else, numerically failed

Fig. 5.4: Flowchart of the PDIPM-VVO algorithm incorporating the Newton-Raphson load flow

computation

93

inequality constraints transformed into equality constraints by addition of slack

variables (Equation 5.3c), resulting in:

The Lagrangian multiplier vector I can be defined as:

The full expression of the Lagrangian function takes the form as given by equation

(5.13).

5.2.8 Derivation of the first-order optimality (KKT) conditions

The first-order optimality (KKT) conditions are given by equation (4.6) as derived in

section (4.2.3), and can be stated for the VVO problem, based on the Lagrangian

function for the problem (Equation 5.13), as:

94

On the basis of the KKT system (5.14), the full-order primal-dual system can be

derived, as given by Equation (4.15). For reasons of computational efficiency (as

discussed earlier), the reduced-order primal-dual system (according to Equations

(4.16), (4.17), (4.19) – (4.21)) is used as the basis for the implementation of the

PDIPM-based VVO solution. Moreover, since the equality constraints ()(xg) are no

longer part of the VVO problem (as they are handled by the Newton-Raphson load

flow algorithm), the algorithm is implemented in a similar manner to the example

presented in section 4.3; that is, on the basis of the reduced-order system according

to equations (4.36) – (4.38), rewritten here for ease of reference.

The derivation of the components in Equations (5.15) as are needed to solve the

PDIPM-based VVO problem is demonstrated by means of the simple three-bus power

system (also used in section 4.4.5) in the following sub-section.

5.2.9 Derivation of elements needed to implement the PDIPM-VVO algorithm:

example for the three-bus system

The main elements needed to compute the PDIPM-based VVO solution according to

Equations (5.15) are the gradient and Hessian of the Lagrangian function, the

Jacobian and Hessian of the inequality constraints, the diagonal matrix of the slack

variables, and the diagonal matrix of the equality-constraint Lagrangian multipliers, as

can be deduced from Equation (5.15). Derivation of these components is illustrated in

this section for the example system under consideration. The same can be done for

systems of arbitrary size, although the process becomes fairly tedious for larger

systems.

95

The objective function (
1)(Rxf), its gradient (

k

x Rxf)() and its Hessian

(
kk

xx Rxf)(2
, where k is the dimension of x) are expressed in equations (5.16).

Here the decision vector is taken to comprise of the generator terminal voltages (i.e.

 ii fex , for every generator bus, where 1f is fixed at zero, which corresponds to a

slack-bus voltage phase angle reference of 0).

The (inequality) constraint function ()(xh), its Jacobian ()(xhx) and its Hessian

(actually, the Jacobian of)(xhx transposed and multiplied with the Lagrangian

multiplier vector, that is, I

T

xx xh)(2) are expressed in equations (5.17). The

constraints comprise the bus voltage magnitudes (as functional constraints) and the

limits on generator reactive power outputs.

96

The gradient and Hessian of the Lagrangian function are defined on the basis of

Equations (5.16) and (5.17) as follows (modified forms of equations (4.5a) and (4.14)

respectively):

Based on Equations (5.16) – (5.18), and by defining the diagonal matrices S and

Lambda as done in section 4.3.8, the PDIPM-based VVO solution algorithm

according equations (5.15) can be implemented. Other steps of the implementation

(e.g. initialization, step size determination, checking for convergence, and updating of

the barrier parameter) are as outlined in example presented in section 4.3.

5.3 Case studies

To evaluate the performance of the developed PDIPM-based VVO algorithm, a

number of case studies have been performed. The case studies are based on the 3-

bus system used in sections 5.2.5 and 5.2.9 to demonstrate the implementation of the

Newton-Raphson and PDIPM-based VVO algorithms respectively, a 6-bus power

system, and the IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus power systems. The

97

choice of the case studies enables the demonstration of the scalability and efficiency

of the algorithm independently of the system size (as it relates to the number of buses

in the system). As part of the performance analysis of the algorithm, the following

aspects are of particular interest:

 Magnitude of loss minimization

 Voltage profile improvement due to the Volt/VAR optimization

 Efficiency and speed of convergence of the algorithm, measured by the

number of iterations taken for the algorithm to converge, and the elapsed time

 Impact of generator reactive power output variation on both the power loss

minimization and the voltage profile improvement

The Matlab programs for the case studies presented in the following sub-sections are

appended in Appendix B.

5.3.1 Case study 1: 3-bus power system

As already stated, the 3-bus power system has been presented in sections 5.2.5 and

5.2.9, in connection with the details of implementation of the Newton-Raphson and

PDIPM-based VVO algorithms respectively. The corresponding network diagram is

depicted in Figure (5.3). The data needed to perform the Volt/VAR optimization (i.e.

network, load and generation data) appears in Figure (5.3), and is presented

Appendix B as well. The analysis in this sub-section follows the points outlined at the

end of the previous sub-section. That is, focus is on the improvement in the power

system losses and the voltage profile of the power system, the efficiency of the

algorithm in arriving at the solution, as well as a number of other qualitative aspects

of the solution, such as the impact of the variation of generator reactive power output

on both the real power loss minimization and voltage profile improvement.

Table (5.4) compares the initial generator bus voltage magnitudes with the

corresponding optimal values following the execution of the PDIPM-based VVO

algorithm. The same information is depicted in Figure (5.5) in the form of a bar chart,

which shows that voltage magnitudes increase on all buses as a result of the

Volt/VAR optimization.

98

Table 5.4: 3-bus system generator voltage magnitudes prior to and following VVO

Control variable Initial value Optimal value Lower limit Upper limit

1gV 1.02 1.0281 0.95 1.1

3gV 1.03 1.034 0.95 1.1

Table 5.5: 3-bus system loss reduction prior to and following VVO

 Initial Final Percentage loss reduction

Real power system losses (p.u.) 0.0195 0.0180 7.89%

Number of iterations 4

Execution time (sec) 0.0843

Fig. 5.5: 3-bus system generator voltage magnitudes before and after Volt/VAR optimization in bar

chart form

As depicted in Table (5.5), executing the VVO algorithm results in a 7.89 percent

reduction in system real power losses. The algorithm converges within four iterations,

and takes about 84.3 milliseconds to execute (which includes running the Newton-

Raphson load flow algorithm at each iteration of the VVO algorithm). Figure (5.6)

depicts the real power loss change over the iterations of the VVO algorithm, and

shows that by the third iteration, there is no appreciable change in the real power

loss, thus demonstrating very fast convergence of the algorithm for this case study.

99

Fig. 5.6: 3-bus system real power losses plotted against the iteration number

Fig. 5.7: 3-bus system comparison of real power loss with slack-bus active power (top plot) and

with total generated reactive power (bottom plot)

An interesting comparison is depicted in Figure (5.7) between the real power loss

trajectory over the iterations of the algorithm, and the slack-bus active power as well as

100

the total generated reactive power in the top and bottom plots respectively. The top plot

shows that the real power loss curve coincides with that of the slack-bus active power,

demonstrating that the real power loss reduction due to the Volt/VAR optimization

corresponds to the reduction in the slack-bus active power output. The bottom plot also

shows that the system reactive power generation tracks the real power loss reduction,

implying that real power loss minimization simultaneously leads to decrease in reactive

power generation as well.

Fig. 5.8: 3-bus system comparison of change in each generator’s reactive power output with

change in real power loss

This is the total (or net) system reactive power generation though, as Figure (5.8) shows

that slack-bus reactive power output increases while bus-3 generator reactive power

output decreases over the iterations of the VVO algorithm. In Figure (5.9), the change in

reactive power output of each generator is compared with the corresponding change in its

terminal voltage, showing a proportional relationship between the two quantities (that is,

increase in generator terminal voltage magnitude leads to corresponding increase in

reactive power output), which confirms the well-established theory of power system

operation (Glover & Sarma, 2002).

101

Fig. 5.9: 3-bus system comparison of change in each generator’s reactive power output with

change in its terminal voltage magnitude

5.3.2 Case study 2: 6-bus power system

Case study 2 is based on a 6-bus power system adapted from Wood et al. (2014),

which has 3 generators (with the slack generator located at bus 1), 11 lines and 3

loads. The network, load and generation data for the system are presented in

Appendix B.

The results of the Volt/VAR optimization for the 6-bus system are presented in Tables

(5.6) and (5.7), as well as Figures (5.10) to (5.14). Table (5.6) displays the generator

voltage magnitudes (as the control variables for the optimization) prior to and

following the execution of the VVO algorithm, and shows an increase in the voltage

magnitude in each case. The whole voltage profile of the system (including load-bus

voltages) is depicted in Figure (5.10) in the form of a bar chart, which demonstrates

that the Volt/VAR optimization leads to an increase in all system voltages, yet both

lower and upper bounds on the voltage magnitudes are respected, as can be

deduced from Table (5.6). Table (5.7) shows a power loss reduction of 3.372%,

achieved in about 13 iterations, with an execution time of 178 milliseconds (about

twice the run-time of the algorithm for the 3-bus system case study).

102

Table 5.6: 6-bus system generator voltage magnitudes before and after Volt/VAR optimization

Control variable Initial value Optimal value Lower limit Upper limit

1gV 1.07 1.099 0.95 1.1

2gV 1.05 1.098 0.95 1.1

3gV 1.05 1.10 0.95 1.1

Table 5.7: 6-bus system loss reduction before and after Volt/VAR optimization

 Initial Final Percentage loss reduction

Real power system losses (p.u.) 0.1335 0.1290 3.372%

Number of iterations 13

Execution time (sec) 0.1775

Fig. 5.10: bar chart of 6-bus system generator voltage magnitudes before and after Volt/VAR

optimization

The power loss reduction of the 6-bus system over the iterations of the VVO algorithm

is depicted pictorially in Figure (5.11), where it can be seen that the power loss

initially increases, then decreases progressively as the algorithm continues to iterate.

This behaviour of the algorithm can be explained by the fact that it is a local

optimizer, and its convergence characteristics are impacted by the initial starting

103

Fig. 5.11: 6-bus system real power losses plotted against the iteration number

Fig. 5.12: 6-bus system comparison of real power loss with slack-bus active power (top plot)

and with total generated reactive power (bottom plot)

point. Despite taking significantly more iterations to converge due to the initial

increase in the objective function value, the overall execution time is nonetheless

small, which demonstrates the efficiency of the algorithm.

104

Comparison of the real power loss trajectory with the slack-bus active power and the

total generated reactive power in Figure (5.12) shows similar characteristics to those

observed in Figure (5.7) for the 3-bus system case. That is, the real power loss curve

coincides with that of the slack-bus active power, and the total system reactive power

generation tracks the real power loss reduction, indicating simultaneous real and

reactive power loss minimization.

Fig. 5.13: 6-bus system comparison of change in each generator’s reactive power output with

change in real power loss

The individual generator reactive power outputs are compared with the real power

loss curve in Figure (5.13). Although no clear relationship can be seen in this

comparison, it is quite clear from the figure that running the Volt/VAR optimization

algorithm leads to redistribution of reactive power generation in the system, which

moreover results in overall reduction in both active and reactive power generation in

the system, as can be deduced from Figure (5.12).

In Figure (5.14), the reactive power output variation of each generator is compared

with the change in its terminal voltage magnitude, and a general proportional

relationship between the two quantities can be observed, although with a varying

correlation coefficient (i.e. relative proportional change) and responsiveness for the

various generators.

105

Fig. 5.14: 6-bus system comparison of change in each generator’s reactive power output with

change in its terminal voltage magnitude

5.3.3 Case study 3: IEEE 14-bus power system

The IEEE 14-bus system considered in this case study comprises 14 buses, 5

generators, 20 lines, and 11 loads. The network, load and generation data for the

system have been taken from Zhu (2009), and are presented in Appendix B. The

network represents a portion of the transmission system in the Midwest United

States, as of 1962. It is characterized as having low base voltages and a lot of

voltage control capability (Gonzalez-Longatt, 2015).

The results of the Volt/VAR optimization for this case study are presented in Tables

(5.8) and (5.9), as well as Figures (5.15) to (5.19). The optimal set-points for the

generator voltage magnitudes are listed in Table (5.8), which presents them along

with the corresponding initial values. The final bus voltage magnitudes for the whole

Table 5.8: IEEE 14-bus system generator voltage magnitudes before and after Volt/VAR

optimization

Control variable Initial value Optimal value Lower limit Upper limit

1gV 1.06 1.1 0.95 1.1

106

2gV 1.045 1.077 0.95 1.1

3gV 1.01 1.061 0.95 1.1

6gV 1.07 1.10 0.95 1.1

8gV 1.09 1.036 0.95 1.1

Table 5.9: IEEE 14-bus system loss reduction before and after Volt/VAR optimization

 Initial Final Percentage loss reduction

Real power system losses (p.u.) 0.1353 0.1296 4.237%

Number of iterations 14

Execution time (sec) 0.1477

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IEEE 14-bus system voltages before and after Volt/Var Optimization

Voltages before VVO Voltages after VVO

Fig. 5.15: IEEE 14-bus system generator voltage magnitudes prior to and following VVO in

radar chart form

system are depicted in the radar chart in Figure (5.15). Table (5.8) reveals that nearly

all optimal voltage set-points are greater than the corresponding initial values (except

for bus 8, which is also the only final voltage lower than the initial value for the whole

system, according to Figure (5.15)). The power loss reduction due to the optimization

is 4.237%, which is achieved within 14 iterations, with an execution time of about 148

milliseconds. This information is presented in Table (5.9). The number of iterations

taken is only one more than that required for the 6-bus system case, and with a

slightly lower runtime, which indicates that the execution time (to convergence) is not

107

quite proportional to the number of iterations. It may also be pointed out that the

convergence rate of the algorithm will depend on other case-specific characteristics

(such as the initial starting point).

Fig. 5.16: IEEE 14-bus system real power losses plotted against the iteration number

Figure (5.16) depicts the power loss trajectory for the case under study, plotted

against the iteration count. Similar to the 6-bus system case, the power loss initially

increases, then decreases progressively in the subsequent iterations of the algorithm.

Figure (5.17) shows characteristics similar those observed in the previous two cases,

that is, the coincidence of the power loss and slack-bus active power trajectories, as

well as the corresponding decrease in both the real power loss and the total system

reactive power generation.

108

Fig. 5.17: IEEE 14-bus system comparison of real power loss with slack-bus active power (top

plot) and with total generated reactive power (bottom plot)

Fig. 5.18: IEEE 14-bus system comparison of change in each generator’s reactive power

output with change in real power loss

109

Fig. 5.19: IEEE 14-bus system comparison of change in each generator’s reactive power

output with change in its terminal voltage magnitude

Comparison of the individual generator reactive power outputs with the real power

loss curve, as well as with the corresponding generator terminal voltage magnitudes,

110

is presented in Figures (5.18) and (5.19) respectively. Figure (5.19) shows that the

majority of generator reactive power outputs change in tandem with the real power

loss, the main difference being with the slack-bus reactive power output, whose

change tends to be opposite to that of the aggregated (non-reference) generator

outputs. The reactive power change mostly tracks the voltage set-point changes for

all generators, as can be seen in Figure (5.19).

5.3.4 Case study 4: IEEE 30-bus power system

This case study is based on the IEEE 30-bus system, which comprises 30 buses, 6

generators, 41 lines, and 21 loads, based on the network, load and generation data

taken from Zhu (2009), which are presented in Appendix B. Similar to the IEEE 14-

bus system considered in the previous case study, the IEEE 30-bus system also

represents a portion of the transmission system in the Midwest United States, as of

December 1961 (Gonzalez-Longatt, 2014).

Table 5.10: IEEE 30-bus system generator voltage magnitudes before and after Volt/VAR

optimization

Control variable Initial value Optimal value Lower limit Upper limit

1gV 1.0 1.026 0.95 1.1

2gV 1.0 1.027 0.95 1.1

5gV 1.0 1.028 0.95 1.1

8gV 1.0 1.029 0.95 1.1

11gV 1.0 1.025 0.95 1.1

13gV 1.0 1.025 0.95 1.1

Table 5.11: IEEE 30-bus system loss reduction before and after Volt/VAR optimization

 Initial Final Percentage loss reduction

Real power system losses (p.u.) 0.1141 0.1084 5.0298%

Number of iterations 14

Execution time (sec) 0.3565

The Volt/VAR optimization results for the IEEE 30-bus system are presented in

Tables (5.10) and (5.11), as well as Figures (5.20) to (5.24). As detailed in table

(5.10), all the generator initial voltage set-points are given a flat start (i.e. starting at

111

unity). Volt/VAR optimization leads to an average increase of about 2.5% for each

generator terminal voltage magnitude.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

IEEE 30-bus system voltages before and after Volt/VAR Optimizati o n

Voltages before VVO Voltages after VVO

Fig. 5.20: IEEE 30-bus system generator voltage magnitudes before and after Volt/VAR

optimization in radar char form

The voltage profile (before and after optimization) for the entire network is depicted in

the radar chart in Figure (5.20), where an overall voltage profile improvement for the

entire network can be deduced, particularly in terms of eliminating low-voltage

violations for quite a few load buses.

The power loss reduction following the Volt/VAR optimization for this case is 5.03%,

which is achieved within 14 iterations, with an execution time of about 357

milliseconds, as can be read from Table (5.11). The number of iterations taken by the

algorithm to converge for this case is the same as that required for the previous case

study (i.e. the IEEE 14-bus system), but the execution time is longer (about 2.4 times

longer), again showing that the relationship between the number of iterations and the

execution time is not quite fixed, and is influenced by a number of case-specific

characteristics, as mentioned earlier.

112

Fig. 5.21: IEEE 30-bus system real power losses plotted against the iteration number

Fig. 5.22: IEEE 30-bus system comparison of real power loss with slack-bus active power (top

plot) and with total generated reactive power (bottom plot)

113

Fig. 5.23: IEEE 30-bus system comparison of change in each generator’s reactive power

output with change in real power loss

Plotting the real power loss trajectory together with the slack-bus active power (Figure

5.22, top plot) and the total system reactive power generation (Figure 5.22, bottom

plot) reveals characteristics similar to those observed in the previous case studies.

The individual generator reactive power outputs are together compared with the real

power loss in Figure (5.23), and separately with the corresponding generator terminal

voltage magnitudes in Figure (5.24). The comparison in Figure (5.23) does not seem

to yield much information, but looking at the bottom plot in Figure (5.22) reveals a

clear correlation between the real power loss and the aggregated reactive power

generation trajectories. The trajectories of the individual generator reactive power

outputs compared with the generator terminal voltage magnitudes in Figure (5.24) do

not show a consistent relationship for the observed window. In some cases direct

proportionality can be observed (albeit with a lagging effect on the response of the

reactive power to the generator voltage set-point change), in other cases inverse

proportionality seems to be exhibited. Overall, it can be seen that adjustment of the

generator terminal voltage magnitude set-point always leads to a corresponding

change in the generator reactive power output, and there is generally a positive

correlation in the variation of the two quantities.

114

Fig. 5.24: IEEE 30-bus system comparison of change in each generator’s reactive power

output with change in its terminal voltage magnitude

5.3.5 Case study 5: IEEE 118-bus power system

The final case study considered for the analysis of the developed PDIPM-based VVO

algorithm is the IEEE 118-bus system, which comprises 118 buses, 19 generators, 35

115

synchronous condensers (i.e. synchronous generators that are confined to generating

reactive power only), 186 lines, and 99 loads. The network, load and generation data

is taken from an appendix attributed to Springer Verlag (2012) and is listed in

Appendix B.

The Volt/VAR optimization results for the IEEE 118-bus system are presented in

Table (5.12) and Figures (5.25) to (5.29). Due to the very large number of generators

(54 in total), the initial and optimal generator voltage set-points for this case study are

presented in the form of a radar chart, depicted in Figure (5.25), unlike the previous

cases in which this information was tabulated.

0.85

0.9

0.95

1

1.05

1.1

1
2 3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

2627
28

2930
31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53 54

1 1 8 -bus s y s tem i ni t ia l and o pti mal g e ne rator v o l tages

Initial Optimal

Fig. 5.25: IEEE 118-bus system generator voltage magnitudes before and after Volt/VAR

optimization

Table 5.12: IEEE 118-bus system loss reduction before and after Volt/VAR optimization

 Initial Final Percentage loss reduction

Real power system losses (p.u.) 3.3939 3.2270 4.9167%

Number of iterations 8

Execution time (sec) 2.012

The main improvement that can be observed from Figure (5.25) is the relief in the

low-voltage violations at a considerable number of buses. The voltage profiles before

and after the optimization for the entire network are depicted in the radar chart in

116

Figure (5.26), which exhibits similar characteristics (of raising the voltage magnitudes

from the lower limit) across the network buses.

0.8

0.85

0.9

0.95

1

1.05

1.1

1
3 5

7
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49
51

53
555759616365

67
69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109
111

113
115 117

IEEE 1 1 8 -bus s y stem v o l tages be f ore and af te r Vo l t/VAR Opti mization

Voltages before VVO Voltages after VVO

Fig. 5.26: IEEE 118-bus system generator voltage magnitudes before and after Volt/VAR

optimization in radar char form

The power loss reduction following the Volt/VAR optimization for the IEEE 118-bus

system is 4.917%, which is achieved within 8 iterations, with an execution time of

about 2.012 seconds, information which is tabulated in Table (5.12). For this case,

the algorithm takes fewer iterations to converge compared with the IEEE 30-bus and

the IEEE 14-bus systems (8 vs. 14), but the execution time is longer, implying that

each iteration takes longer to execute, due to the much larger size of the system.

Overall, the algorithm appears to scale very well with the system size. For example,

comparing the IEEE 118-bus and IEEE 30-bus system cases, the former is about 4

times as large (based on the number of buses), and the execution time is only about

5 times longer, which is nearly a linear scaling of the execution time with the problem

size. This applies particularly to the studied cases, and need not be taken as a

guarantee that the algorithm will always exhibit these desirable performance

characteristics.

117

Fig. 5.27: IEEE 118-bus system real power losses plotted against the iteration number

Fig. 5.28: IEEE 118-bus system comparison of real power loss with slack-bus active power

(top plot) and with total generated reactive power (bottom plot)

The real power loss trajectory is plotted against the iteration count separately in

Figure (5.27), and together with the slack-bus active power and the total system

reactive power generation in the top and bottom plots of Figure (5.28) respectively.

The top plot in Figure (5.29) compares the real power loss with the slack-bus reactive

118

power, whereas the bottom plot compares the slack-bus reactive power output with

the slack-bus generator terminal voltage magnitude. The comparisons exhibit similar

characteristics to those observed in the previous 4 case studies, thus demonstratting

the consistency of the results produced by the algorithm when applied to different

cases, irrespective of the system size.

Fig. 5.29: IEEE 118-bus system comparison of slack-bus reactive power with real power loss

(top plot) and slack-bus reactive power and voltage magnitude change (bottom plot)

Finally, the efficacy of the presented algorithm is demonstrated by comparing with

results reported in the literature. The results are tabulated in Tables 5.13 and 5.14 for

the IEEE 14-bus and IEEE-30-bus systems respectively. It can be deduced from the

comparative analysis that the primal-dual interior-point algorithm presented in this

chapter has superior performance, both in terms of solution quality (i.e. magnitude of

real power loss minimization) and efficiency (i.e. required execution time).

Table 5.13: Performance comparison of the PDIPM-VVO algorithm presented in this chapter

with other algorithms from the literature for the IEEE 14-bus system

 Interior-Point
Method (Zhu,

2009)

Linear
Programming

(Zhu, 2009)

PDIPM

(presented in this
chapter)

Initial loss (p.u.) 0.11646 0.11646 0.1125

Final loss (p.u.) 0.11004 0.11108 0.1084

% Real power loss
reduction

5.513 4.619 6.914

Number of iterations - - 16

Execution time (sec) 18.2 61.5 0.0578

119

Table 5.14: Performance comparison of the PDIPM-VVO algorithm presented in this chapter with
other algorithms from the literature for the IEEE 30-bus system

 Modified Particle Swarm
Optimization (Zhu, 2009)

Interior-Point
Method (Zhu,

2009)

PDIPM

(presented in this
chapter)

Initial loss (p.u.) - - 0.0505

Final loss (p.u.) 0.050921 0.051109 0.0480

% Real power loss
reduction

- - 5.096

Number of iterations - - 20

Execution time (sec) - - 0.2064

5.4 Conclusion

The main result of this chapter is the design and implementation of a Volt/VAR

optimization algorithm based on the Primal-Dual Interior-Point Method presented in

chapter 4. All the pertinent aspects related to the implementation of the designed

PDIPM-based Volt/VAR optimization (PDIPM-VVO) algorithm have been discussed in

great detail. A distinctive feature of the PDIPM-VVO algorithm’s implementation

(particularly when compared with the more generic algorithm presented in chapter 4)

is that it incorporates a load flow computation (by the Newton-Raphson method),

which then requires the separate handling of the equality and inequality constraints of

the VVO problem. After demonstrating the implementation of the PDIPM-VVO

algorithm for a simple power system, 5 case studies are conducted, the aim being to

analyse the performance of the developed algorithm in terms of the real power loss

reduction and voltage profile improvement, as well as the efficiency and convergence

characteristics of the algorithm, besides other qualitative aspects of the algorithm

performance. The extensive analyses that have been conducted reveal the

algorithm’s effectiveness and efficiency, notably in being able to successfully solve

the VVO problem for systems of widely varying size without much increase in

computational cost or deterioration in the quality of the results. Based on the case

studies conducted in this chapter, the developed PDIPM-VVO algorithm exhibits

characteristics of fast convergence, high efficiency, and scalability to large-scale

problems. The results obtained are very encouraging, and suggest carrying out more

analyses with the goal of possibly further optimizing it so as to be able to effectively

handle a wide variety of operational scenarios.

The following chapter will carry on with the developmental work, this time addressing

the design and implementation of a Volt/VAR optimization algorithm based on the

Particle Swarm Optimization, a prominent heuristic optimization method.

120

CHAPTER SIX

SOLUTION OF THE VOLT/VAR OPTIMIZATION PROBLEM BY THE PARTICLE
SWARM OPTIMIZATION ALGORITHM

6.1 Introduction

Heuristic/intelligent search-based optimization techniques employ a variety of

optimum-seeking strategies that are distinctly different from the approaches taken in

conventional optimization algorithms, such as the primal-dual interior-point algorithm

considered in the preceding chapter. The search strategies employed in these

techniques are meant to overcome many of the deficiencies of the conventional

optimization problems, such as the local (rather than global) nature of the search, the

limited ability to handle combinatorial problems with discrete decision variables, and

the requirement for the smoothness of the objective and constraint functions for

gradient-based methods, among other factors (Frank et al., 2012b). Over the past few

decades a wide variety of these heuristic optimum-seeking techniques have been

developed, among the prominent ones being Genetic Algorithms (GA), Evolutionary

Programming (EP), Particle Swarm Optimization (PSO), Fuzzy Set Theory, and

Expert Systems (ES). In this chapter, the PSO algorithm is discussed, and its

application to the solution of the Volt/VAR optimization algorithm is presented.

The outline of this chapter is as follows. After a brief discussion of the historical

development of the PSO algorithm in section 6.2, the principle of operation and basic

formulation of the algorithm is presented in section 6.3. This is followed by a detailed

discussion of the key practical considerations and implementation aspects of the

algorithm in section 6.4. The application of the PSO algorithm to the solution of the

VVO problem is then presented in section 6.5. The section begins with a detailed

outline of the implementation of the PSO-based VVO algorithm, after which five case

studies and simulation results are presented and discussed, based on the 3-bus, 6-

bus, 14-bus, 30-bus and 118-bus test systems. Section 6.6 details a comparative

analysis of the PDIPM algorithm (developed and presented in the preceding chapter)

and the PSO algorithm presented in this chapter, and interesting results of the

comparative analysis are highlighted. Section 6.7 concludes the chapter with key

results from the chapter. A pictorial representation of the content of this chapter is

depicted in Figure (6.1).

121

Chapter Six:

Solution of the Volt/VAR Optimization Problem by the Particle

Swarm Optimization Algorithm

6.3 Principle of operation and basic

formulation of the PSO algorithm

6.3.1 Swarm size

6.7 Conclusion6.1 Introduction

6.3.2 Velocity update

6.3.3 Neighbourhood

topology

6.3.4 Number of iterations

6.3.5 Initialization of particle

positions and velocities

6.5 PSO algorithm applied to

the VVO problem

6.2 Historical development

of the particle swarm

optimization algorithm

6.4 Implementation aspects of the

algorithm

6.6 Comparison of PSO with

PDIPM for VVO

6.4.1 Balancing the exploration/

exploitation tradeoff

6.4.2 Velocity clamping

6.4.3 Inertia weight

6.4.4 Constriction coefficient

6.4.5 Initialization of the

PSO algorithm parameters

6.4.6 Termination conditions

for the algorithm

6.5.1 Case studies

6.5.2 Case study 1: 3-bus system

6.5.3 Case study 2: 6-bus system

6.5.4 Case study 3: 14-bus system

6.5.5 Case study 4: 30-bus system

6.5.6 Case study 5: 118-bus system

Fig. 6.1: Summary of the content covered in this chapter

The key contributions of this research as presented in this chapter are:

 Thorough presentation of both the historical development of the particle

swarm optimization algorithm as well as the details of the most important

implementation aspects that have a major influence on the algorithm’s

effectiveness and efficiency.

 Development and implementation of the PSO-based Volt/VAR optimization

algorithm, formulated in rectangular coordinates, which incorporates the

rectangular-coordinate Newton-Raphson load flow computation.

 Comprehensive performance analysis of the developed PSO-VVO algorithm,

focusing on the quality of the solution (in terms of the magnitude of real power

loss percentage reduction and the voltage profile improvement) and the

computational efficiency of the algorithm (in terms of the required number of

iterations and runtime).

 Study and analysis of the impact of the swarm size on the solution quality and

the computational cost of the PSO algorithm.

6.2 Historical development of the particle swarm optimization algorithm

Particle swarm optimization (PSO) belongs to the class of heuristic optimization

techniques collectively referred to as Swarm Intelligence, which constitutes a stream

of Artificial Intelligence (AI) research that got established in the early 1990s, based on

the study of the swarm behaviour of natural creatures, in terms of how the decision

making of the individual is influenced by both the individual’s own experience and the

experiences of community members. PSO was conceptualized and developed by J.

122

Kennedy, a social psychologist, and R. Eberhart, an Electrical Engineer (1995). The

main idea behind their conceptualization was to produce computational intelligence

by exploiting simple analogues of social interaction among conspeciates, and was

inspired by the works of Reynolds (1987), Heppner and Grenander (1990). Reynolds,

as well as Heppner and Grenander, had studied the dynamics of bird social

behaviour, out of which came the conjecture that the aesthetics and synchrony of

flocking behaviour exhibited by birds was a function of the birds’ efforts to maintain an

optimal inter-individual distance among neighbouring members of the flock. With

reference to fish schooling, E.O. Wilson, a socio-biologist, said (1975): “In theory at

least, individual members of the school can profit from the discoveries of all other

members of the school during the search for food. This advantage can become

decisive, outweighing the disadvantage of competition for food items, whenever the

resource is unpredictably distributed in patches.” What could be inferred from this

statement is that social sharing of information among community members offers an

evolutionary advantage, and is the principal concept underlying the development of

the PSO algorithm (Kennedy & Eberhart, 1995).

Work on the PSO algorithm started out as a simulation of a simplified social milieu, in

which agents were conceptualized as portraying collision-proof birds, and were

intended to simulate the graceful though unpredictable choreography of a bird flock.

The resulting algorithm could be seen to have ties with artificial life (A-life) in general,

and with bird flocking, fish schooling, and swarming theory in particular. Additional

ties with evolutionary computation, such as genetic algorithms and evolutionary

programming, are quite evident. Obvious relations with the evolutionary computation

algorithms include the fact that it is population-based, it is highly dependent on

stochastic processes for the evolution of the population, and it uses the concept of

fitness to differentiate the quality of the candidate solutions (Kennedy & Eberhart,

1995).

A distinctive feature of PSO is the idea of flying candidate solutions through

hyperspace in search of better solutions. The algorithm is characterized by simplicity

and robustness. Its implementation requires only a few lines of code, making use of

only primitive mathematical operators, with modest memory requirements, and only

few parameters that need to be specified for any given problem. Out of this “natural

simplicity” that is based on emulating nature emerges a powerful algorithm that has

proved to be effective for a wide range of applications, notably the training of artificial

neural network weights (Hu et al., 2004).

123

Since its conceptualization in the early 1990s and eventual implementation in the

subsequent years, the PSO has undergone a number of developments, among them

being:

 The introduction of new parameters (e.g. inertia weight, constriction factor) to

improve the algorithm’s convergence characteristics.

 Modification of the basic algorithm to tailor it to different problem types (e.g.

cooperative PSO).

 Hybridization with other heuristic optimization techniques, to enhance the

effectiveness and efficiency of the algorithm.

Figure (6.2) provides a summary of these notable developments (Freitas et al., 2020).

Some of them are further discussed in subsequent sections in this chapter.

Fig. 6.2: Summary of the key developments of the particle swarm optimization algorithm over

the years (adapted from Freitas et al., 2020)

6.3 Principle of operation and basic formulation of the PSO algorithm

PSO can be characterized as a stochastic multi-agent parallel search algorithm in

which each of a swarm of particles represents a candidate solution to an optimization

problem. A particle can be thought of as an independent intelligent agent that “flies”

through a multi-dimensional problem space in search of the optimal solution to the

optimization problem, based on its own past flying experience, and that of the rest of

the swarm (Hu, et al., 2004). Each particle i in the swarm is comprised of three n-

dimensional vectors (n being the dimensionality of the search space,
nR), which at

124

time k can be denoted as the current position,
k

iX , the previous best position,
k

ibestp , ,

and the velocity,
k

iV (Poli et al., 2007).

From the perspective of the search space, the current position of each particle,
k

iX ,

constitutes a set of coordinates representing a point in space, and the movement of

this point through the search space is what constitutes the search for the optimal

solution to the optimization problem. From the perspective of the optimization

problem,
k

iX constitutes the decision vector, which at each iteration is evaluated for

“fitness” by means of the objective function of the optimization problem. The particle

velocity,
k

iV , embodies the composite flying experience of the individual particle and

of the rest of the swarm, and is used to update the individual particle position in an

effort to advance it to a “better” position, as judged by its attaining an improved fitness

evaluation. It can thus also be characterized as the step size of the algorithm. An

iteration of the algorithm is complete once all particle positions have been updated,

and their fitness values computed. Besides the current position and the velocity, each

particle keeps track of the position corresponding to the best fitness value it has

attained up to the latest iteration, denoted as
k

ibestp , , which is then updated to the

current position whenever the (updated) current position results in a better fitness

value than the previous best value. As the iterations progress, the swarm as a whole,

much like a flock of birds foraging for food, is likely to move towards the optimal point

in the search space.

It is worth emphasizing, as mentioned earlier, that it is the social interaction and the

sharing of information among the swarm’s particles that underpins the effectiveness

of the PSO algorithm. A particle by itself generally has no ability to solve an

optimization problem. Problem solving is thus a collective task in the context of the

particle swarm, and progress is possible only through particle interaction of some sort

(Kennedy & Eberhart, 1995). This also makes the communication structure or

topology, which describes the interconnectivity among the particles and can be

thought of as a social network, a key characteristic of the particle swarm. A number of

neighbourhood topologies exist, as further discussed later.

The core component of the particle swarm optimization algorithm is the iterative

velocity update, which adjusts each particle’s position so as to drive the entire swarm

towards the optimal solution to the optimization problem. The original algorithm can

roughly be outlined as follows (Poli et al., 2007):

1. Initialize a population of particles with random positions and velocities, each of

dimension n in the search space.

125

2. Iterate:

2.1 For each particle, evaluate its fitness using the problem’s objective

function.

2.2 Compare the particle’s fitness value with the previous (personal) best

value, and update the previous best position to the current position, if

the current fitness value is better than the previous one.

2.3 Determine the best fitness value among the personal best values of all

the particles, and designate the corresponding position as the global

best attained by any particle thus far.

2.4 Compute the velocity update and adjust each particle’s position

according to the equations (Poli et al., 2007):

)1.6(

,0,0

11

2,1

1

k

i

k

i

k

i

k

i

k

best

k

i

k

ibest

k

i

k

i

VXX

XGUXPUVV

2.5 If stopping criteria are met (e.g. maximum number of iterations

reached and/or sufficiently good fitness value attained), terminate the

iterations.

In Equation (6.1), iU ,0

 represents a vector of random numbers uniformly

distributed in i,0 , generated for each particle at each iteration. The symbol

denotes component-wise multiplication. The parameters 1 and 2 are commonly

referred to as acceleration coefficients, their magnitudes determine the relative

influence of the cognitive and social components on the flight of the particle, as

further discussed later. A distinctive feature of the standard PSO algorithm

(particularly when compared with other heuristic optimization techniques) is that it has

relatively few parameters that need to be set for a given problem, and are briefly

highlighted in the following sub-sections.

6.3.1 Swarm size

The swarm size (i.e. the number of particles, or the population size of the particle

swarm) is a key parameter that must be decided upon for any given problem. A

primary consideration in the setting of this parameter is the relation between the

swarm size and the computational cost of executing the algorithm. While a large

swarm size leads to a correspondingly large search space, which is especially

desirable for large-scale, multi-dimensional problems, it tends to increase the

computational cost of the algorithm. Empirical studies have shown that swarm sizes

in the range [20 – 60] tend to cover the majority of problem requirements (Poli et al.,

2007, Talukder, 2011). The higher end of the range is typically favoured for higher-

126

dimensional and more complex problems, which may benefit from a larger search

space and potentially greater diversity of the population.

6.3.2 Velocity update

The velocity update formula comprises three components: (1) the inertial component,

k

iV

, which acts as a momentum component that induces the particle to maintain its

current direction of motion, thus lessening the likelihood of drastic changes in the

particle’s direction; (2) the cognitive component, k

i

k

ibest XPU

 ,1,0 , which

constitutes a memory of personal good past performance, and biases a particle

towards search regions where it performed best in the past; and (3) the social

component, k

i

k

best XGU

2,0 , which represents the influence of the rest of the

swarm on a particle’s flight trajectory, and serves to bias the particle’s movement

towards the global best position of the entire swarm. The relative influence of these

three components on the overall velocity update is very impactful on the performance

of the algorithm, and a number of cases that may hypothetically arise can be

identified. In the absence of the inertial component, for instance, past velocity has no

influence on future velocity, and particles may be susceptible to abrupt changes in the

direction of motion, with potentially adverse impact on the algorithm’s performance.

When the cognitive component is much less than the social component (i.e. 21)

or even non-existent altogether, the particle is almost wholly drawn towards the global

best position, with little to no influence of its past good performance. In the opposite

case, when the social component is much less than the cognitive component (i.e.

21) or even non-existent altogether, then the personal best performance is the

dominant factor in guiding the particle’s future trajectory in the search space. When

neither cognitive nor social component contributes to the velocity update (i.e.

021), the particle’s future movement is determined only by the inertial velocity

component. When the cognitive and social components are of about the same size

and non-zero (i.e. 021), their overall influence on the particle’s search trajectory

is essentially an arithmetic mean of the two components. The latter case (i.e.

021) is found to work well for most applications, with a typical setting being

221 (Talukder, 2011).

6.3.3 Neighbourhood topology

The interconnectivity among the particles, also referred to as the neighbourhood

topology, determines the extent of social interaction among the particles, and has a

considerable impact on the performance of the PSO algorithm. The PSO model given

127

in Equation (6.1) is referred to as the Gbest-model. In this model, each particle has

the rest of the swarm as its neighbour, and is thus a fully connected topology.

Another commonly considered neighbourhood topology is the Lbest (local-best)

model, in which each particle is connected only to the particles adjacent to it (for

example, in an array with i representing the array index, particle i would have as its

neighbours particles i-1 and i+1). An important consideration regarding

neighbourhood topologies is the impact on the convergence characteristics of the

algorithm. A fully connected topology (such as Gbest) typically has a high number of

interactions, and is thus likely to have fast convergence, although fast convergence

may also increase the likelihood of premature convergence (to a local minimum). A

small-neighbourhood topology (such as Lbest) may exhibit slow convergence, but

may also be less susceptible to premature convergence to a local optimum. The

problem type (e.g. whether unimodal or multimodal) may also influence the choice of

the neighbourhood topology.

6.3.4 Number of iterations

The number of iterations needed to obtain a good result is another key parameter that

needs proper consideration. It is desirable to allow for a sufficient number of iterations

to give the algorithm enough room to find a good solution. The larger the problem

size, the higher the number of iterations that are likely to be needed. On the other

hand, an excessive number of iterations may lead to excessively high execution time

of the algorithm. The setting of the maximum number of iterations is thus likely to be

problem-dependent, and obviously involves a compromise between two somewhat

mutually exclusive objectives (i.e. the objective of finding a good solution, which may

entail a large number of iterations, and the objective of limiting the execution time of

the algorithm, which may benefit from a small number of iterations).

6.3.5 Initialization of particle positions and velocities

Initialization of the particle positions and velocities is another important consideration

that generally has a significant influence on the performance of the PSO algorithm.

As mentioned earlier, PSO is a population-based stochastic algorithm, factors which

play a key role in the initialization of the algorithm. The issue of initialization of the

PSO algorithm parameters is further discussed in section 6.4.5.

The next section focuses on some practical implementation aspects of the PSO

algorithm, which, when combined with the basic algorithm presented in this section,

leads to a more practical algorithm for implementation purposes.

6.4 Implementation aspects of the PSO algorithm

128

The algorithm presented in the previous section requires a few enhancements and

additional considerations in order to improve its efficiency and effectiveness for

practical implementation purposes. Particularly, the following implementation aspects

are discussed in this section (Freitas et al., 2020; Talukder, 2011; Poli et al., 2007):

 Balancing the exploration/exploitation trade-off.

 Controlling the velocity to improve convergence characteristics by means of:

o Velocity clamping.

o Inertia weight.

o Constriction coefficient.

 Initialization of algorithm parameters.

 Termination conditions for the algorithm.

6.4.1 Balancing the exploration/exploitation trade-off

Two important characteristics of any population-based optimization technique are

exploration and exploitation. Exploration refers to the algorithm’s ability to cover as

wide an area of the search space as possible, in order to enhance the algorithm’s

likelihood of finding the globally optimal solution. Exploitation refers to the algorithm’s

ability to concentrate the search on an area of the search space that seems to be

promising. A good balance between the two characteristics holds the key to the

effectiveness and efficiency of the algorithm. Generally, the early phase of the

algorithm’s execution can largely be classified as the exploratory phase, when the

algorithm is “encouraged” to widen its search as far as possible. As the iterations

progress, the algorithm should gradually transition into the exploitative phase, when

the search can possibly be narrowed down to promising areas of the search space,

which implies a relatively more fine-tuned search. Control of the velocity plays an

important role in achieving this exploration/exploitation balance. While large velocity

adjustments may be considered to be desirable during the exploratory phase, they

may need to be significantly dampened in the exploitative phase.

Velocity control is actually a critical component that has a large bearing on the

efficiency of the PSO algorithm, a fact that was recognized quite early in the

developmental stages of the algorithm, as discussed in the following sub-sections

(Poli et al., 2007).

6.4.2 Velocity clamping

Effective velocity control is important not only for preventing possible divergence of

the algorithm (which would occur if the velocity were to be allowed to build up

uncontrollably), but it also impacts the speed of convergence of the algorithm, the

129

exploration/exploitation balance, and the ability to find a quality solution within a

reasonable amount of time. In fact, in an effort to prevent potential velocity explosion

in certain contexts, the use of velocity clamping, was suggested, which essentially

places bounds on the value of the velocity update, k

iV in Equation (6.1), so that it is

kept within the range maxmax , VV . While preventing potential velocity explosion and

helping to keep the particles within the boundaries of the search space, this approach

has been found to have a number of significant drawbacks. One obvious issue is the

choice of the optimal value of the maxV , which tends to be problem-dependent, and

may require extensive empirical studies to establish a suitable value to use for a

given application. Additionally, clamping the velocities may actually negatively impact

the algorithm’s ability to converge, perhaps causing the algorithm to be trapped in

local minima, particularly when maxV is set improperly for a given problem. In some

studies, maxV was observed to simply chop off the particle’s oscillations, rather than

reduce the granularity of the search as typically would be desirable in an exploitative

phase of the algorithm, which results in poor convergence characteristics (Poli et al.,

2007). On account of these and other performance issues, the use of an “inertia

weight” as a velocity control mechanism was suggested, as discussed in the following

sub-section.

6.4.3 Inertia weight

The limitations of velocity clamping as discussed in the preceding sub-section

encouraged the search for alternative ways of regulating the velocity update to

achieve exploration/exploitation balance, prevent velocity explosion, and enhance the

convergence characteristics of the algorithm. Efforts in this direction led Shi and

Eberhart (1998) to suggest a modification to the velocity update formula (given in

Equation 6.1) that applies a scaling to the inertial component of the velocity update

formula, as given by Equation (6.2).

)2.6(,0,0 2,1

1 k

i

k

best

k

i

k

ibest

k

i

k

i XGUXPUVV

with the term referred to as the “inertia weight.” One interpretation of the inertia

weight that has been suggested is that it resembles a “fluidity” of the medium in which

the particles move, such that it seems appropriate to set it to a relatively high value in

the early stages of the algorithm execution, which would correspond to a low-viscosity

medium, so as to promote exploration, then gradually decrease it as the iterations

progress, thereby transitioning the algorithm into an exploitative phase. With this

scheme, a linearly decreasing inertia weight has been found to provide good results

for many applications, which is adjusted according to Equation (6.3).

130

)3.6(,
max_

minmax
minmax

max

1

 k

iter

k

where minmax , are the initial and final values of the inertia weight, respectively,

iterk max_ , , are the current iteration number and maximum number of iterations

respectively. Initial and final values of the inertia weight that have been found to work

well are 4.0 ,9.0 minmax .

The linear monotonic decrement in the inertia weight as expressed by Equation (6.3)

has the drawback of being quite rigid, in the sense that adjustment is only in one

direction, and so may adversely impact the diversity of search (i.e. particularly in the

exploratory phase). Naturally, other dynamic inertia weight adjustment schemes have

been experimented with. Eberhart and Shi (2000) for example, applied fuzzy logic to

the adaptation of the inertia weight, where the inputs to the fuzzy system were taken

to be the fitness value of the global best position and the current value of the inertia

weight, and the output represented the suggested adjustment to the value of the

inertia weight, based on the membership function classification of the input variables

(the possible fuzzy classifications being low, medium or high). The authors reported

significantly improved PSO performance using this scheme. It is worth noting that

when 1 , the velocity tends to increase uncontrollably, and when 1 , the

influence of the previous velocity on the current position adjustment becomes nearly

insignificant, which may make the particle susceptible to abrupt changes in the

direction of motion, similarly to what was discussed in section 6.3. The inertia weight

approach to velocity regulation has proven to be so effective as to render the velocity

clamping (discussed in section 6.4.2) largely unnecessary, which then also eliminates

the many issues it introduces into the PSO algorithm (Poli et al., 2007).

6.4.4 Constriction coefficient

The need to dampen the particle dynamics by somehow restraining velocity build-up

has long been recognized as a key factor to ensuring the convergence of the PSO

algorithm. Otherwise (without some form of velocity restraint), the velocity rapidly

increases to unacceptable levels within just a few iterations of the algorithm. The

search for alternative mechanisms to achieve this (besides the velocity clamping and

the inertia weight discussed in sections 6.4.2 and 6.4.3 respectively) led Clerc and

Kennedy (2002) to suggest the use of a constriction coefficient, , which would be

applied to the velocity update formula, as given in Equations (6.4) and (6.5).

)4.6(

,0,0

11

2,1

1

k

i

k

i

k

i

k

i

k

best

k

i

k

ibest

k

i

k

i

VXX

XGUXPUVV

131

)5.6(4 ,
42

2
21

2

 where

It is worth noting that unlike the inertia weight (which scales only the inertial

component of the velocity update, k

iV

), the constriction coefficient is applied to all the

three terms of the velocity update formula. Parameters that have been found to work

well for the constriction coefficient are 05.221 , such that 7298.0 . With

these parameter settings, the previous velocity is scaled by about 7298.0 , and the

cognitive and social components of the velocity update formula are each scaled by a

random number with an upper limit of 49618.105.27298.0 . This form of velocity

constriction enables convergence of the algorithm without the need for velocity

clamping. Interestingly, the inertia-weight and constriction-coefficient approaches to

velocity regulation can be seen to be algebraically equivalent when the variable

transformations and ii are considered. In this case, the

corresponding parameter settings for the inertia weight approach (considering the

suggested values 05.221) would be a fixed inertia weight 7298.0 and the

upper bounds for the acceleration coefficients would be 49618.121 .

6.4.5 Initialization of the PSO algorithm parameters

PSO is a population-based algorithm and makes use of stochastic processes to

perform the search for the solution to an optimization problem. Proper initialization of

the PSO parameters is important for the effectiveness and efficiency of the algorithm.

Some of the parameters that need to be initialized or otherwise have their values

determined have been discussed in the preceding sections, particularly the

acceleration coefficients, the inertia weight and the constriction coefficient. Deciding

upon the swarm size has also been discussed (in section 6.3). Once the swarm size

has been determined, the particle positions and velocities have to be initialized. A key

consideration here is the diversity of the initial population, that is, how much of the

search space the initial population covers, and how well-distributed the particles are

throughout the search space. The particle positions are usually initialized by means of

a uniform random distribution over the search space, while the particle velocities can

be set to zero, since the randomization of the particle positions ensures the

randomization of the initial directions of motion as well. It may be possible to initialize

the velocities by means of a uniform random distribution as well, in which case care

must be taken that the magnitudes of the initial velocities are not too large (Talukder,

2011). Otherwise this may adversely impact the convergence characteristics of the

132

algorithm. A formula for initializing the position of each particle iX that can be

appropriate for most applications is:

)6.6(1 ,0 ,min,max,min,

0 UrXXrXX iiiiii

where iX min, and iX max, denote the lower and upper bounds of the magnitude of the

particle position iX respectively, and 1 ,0Uri is a uniformly distributed random

number bounded between 0 and 1.

6.4.6 Termination conditions for the algorithm

As PSO is an iterative search algorithm, a mechanism is needed to establish when

the search for the solution may be terminated, whether successfully (i.e. optimal

solution found) or not (i.e. the algorithm failed to converge). A number of termination

criteria may be considered, for example, once:

 There is no appreciable (improving) change in the fitness value of the global

best position over a number of iterations.

 The change in the global best position becomes insignificant over a number of

iterations.

 The predetermined maximum number of iterations is reached.

These criteria can be used in any combination (either one or several of them). With

regards to the maximum number of iterations, setting the value too small may lead to

premature termination of the search, and setting it too large may make the

computational cost of running the algorithm prohibitive, as discussed earlier.

6.5 PSO algorithm applied to the VVO problem

The Volt/VAR optimization (VVO) problem formulation has been presented in chapter

3, and the solution based on the primal-dual interior-point method (PDIPM) is detailed

in chapter 5. In this section, the PSO algorithm discussed in the preceding sections is

adapted for application to the VVO problem. The rectangular formulation of the VVO

problem presented in section 3.2.3 is used. In applying the PSO algorithm to any

optimization problem, the mechanics of the algorithm have to be mapped to the

structure of the optimization problem. Particularly, the mapping needs to be made

between the particle positions and velocities, and the decision vector of the

optimization problem, along with the adjustment process of the decision vector in the

search for the optimal solution to the problem. For the VVO problem, the mapping

can be stated as follows:

133

 The decision vector comprises the generator voltages, expressed in

rectangular coordinates; thus, each particle is constructed by combining the

real and imaginary components of all the generator voltages in the system.

 For the slack bus, the phase angle is required to be maintained at a

predetermined constant value, and so the imaginary component of the slack-

bus voltage does not form part of the decision vector.

 The length (i.e. number of elements) of each particle is thus 12 gn , where

gn represents the number of generators in the system, including the slack-bus

generator.

 The velocities of the particles represent the step size adjustments to the

decision-vector components (i.e. particle positions), and their computation is

one of the main tasks performed in each iteration of the algorithm.

The steps of the PSO algorithm applied to the VVO problem can be outlined as

follows:

Step 1:

Load the system parameters: this includes the (1) bus voltages in rectangular

coordinates, the (2) generator scheduled active generation outputs (reactive

generation outputs are set to zero, since they are unscheduled), (3) the load active

and reactive power demands, and the (3) line impedance (i.e. resistance and

reactance) data. The impedance and bus connectivity matrices are computed on the

basis of the input line data.

Step 2:

Initialize the PSO algorithm parameters: this includes the acceleration coefficients

(21 ,), the swarm size, the problem dimension (i.e. number of elements comprising

each particle), and the maximum number of iterations.

Step 3:

Compute the initial particle positions and velocities: the particle positions are

initialized according to Equation (6.6), which is reformulated below as it applies to the

VVO problem:

)7.6(1 ,0 ,min

_

max

_

min

_

0

_ UrVVrVV iigenigeniigenigen

where 0

_ igenV is the ith generator’s initial voltage magnitude, and max

_

min

_ , igenigen VV are the

minimum and maximum generator voltage magnitudes respectively. For the VVO

problem, the generator-bus voltage magnitudes have the bounds:

)8.6(1.195.0 genV

134

So based on Equation (6.8), the initial generator voltage magnitude (which

corresponds to particle position iX in Equation 6.6) can be set according to Equation

(6.7) as:

(6.9) 15.095.00

_ iigen rV

In effect, for the rectangular-coordinate representation of the generator voltages,

Equation (6.9) is actually used to compute the real component of the voltage (ie),

after which the imaginary component (if) is computed by means of Equation (6.10),

as also discussed in section 3.2.1.

(6.10) 222

iii feV

Initialization of the particle positions by means of Equations (6.9) and (6.10) ensures

that they are all feasible with respect to the bound constraints according to Equation

(6.8).

The initial velocities are set to zero for this study. As discussed in section 6.4.5, they

could be set to uniformly distributed random values as well; the rationale for setting

them to zero in this study is that the randomized initial positions provide sufficient

diversity, in terms of both magnitude and direction, to enable a well-diversified search

of the search space for the PSO algorithm.

Step 4:

Compute each particle’s fitness value based on initial positions: the objective

function for the VVO problem in rectangular coordinates is given by Equation (3.8),

which is the transmission real power loss function, restated below for ease of

reference:

 (6.11))(
Nj

22

Ni

jijiijL ffeeGPXf

The constraints considered in this study are all bound constraints (Equations 3.10e,

3.10f in section 3.2.3). Each bound constraint is handled such that when it violates its

bound constraint, its value is set to the violated bound. The generator voltage

magnitude, for example, has its value set according to:

(6.12)

max

__

max

_

max

__

min

__

min

__

min

_

_

igenigenigen

igenigenigenigen

igenigenigen

igen

VVifV

VVVifV

VVifV

V

Before computing the fitness values using Equation (6.11), limit violations are

checked and corrected according to Equation (6.12).

135

After this initial computation of fitness values, the (initial) personal best position and

corresponding fitness value of each particle is set to the current (i.e. initial) position

and its corresponding fitness value. That is, for each particle, iX :

(6.13) 00

, iibest Xp

The initial global best position is determined as the value of
0

,ibestp giving the best (i.e.

minimum) fitness value, determined as:

 (6.14) ,...,1 , minarg 0

,

0 pipfg ibestbest

where p is the number of particles in the swarm, and the operator min()arg returns the

argument 0

,ibestp that yields the minimum value of the fitness function)(0

,ibestpf .

Step 5:

Compute the Newton-Raphson load flow: the effect of the PSO algorithm is to adjust

the generator voltage magnitude set-points at each iteration of the algorithm. Similar

to the approach used in the PDIPM-VVO algorithm (please refer to section 5.2.4), a

load flow computation is run at each iteration of the PSO algorithm in order to

determine the load-bus voltages, subject to the active and reactive power balance

equations (Equations 3.10b and 3.10c, section 3.2.3). The Newton-Raphson

algorithm presented in section 5.2.4 is used to compute the load flow at each iteration

of the PSO algorithm. For the load flow computation, the global best position (bestg) is

used, since this is assumed to be the best available solution.

Step 6:

Recompute the objective function value: a converged load flow computation implies

that the solution obtained in step 4 is feasible with respect to both the equality and

inequality constraints of the VVO problem. Recomputing the objective function value

following the load flow computation is meant to track the objective value of the current

best feasible solution of the optimization problem.

Step 7:

Compute the velocity update and adjust the particle positions: this is essentially the

beginning of the iterative loop of the PSO algorithm, where the particle velocity is

iteratively computed and then used to adjust the particle position. In this study, the

velocity and position update are computed on the basis of Equations (6.4) and (6.5),

restated below for ease of reference

)4.6(

,0,0

11

2,1

1

k

i

k

i

k

i

k

i

k

best

k

i

k

ibest

k

i

k

i

VXX

XGUXPUVV

136

)5.6(4 ,
42

2
21

2

 where

That is, the constriction coefficient is used as the velocity regulation mechanism, as

discussed in section 6.4.4.

Step 8:

Compute the fitness value of each particle and update the personal and global best

positions: after adjusting the particle positions, limit violations are checked and

corrected for using Equation (6.12), after which the fitness value of each particle is

computed using Equation (6.11). Once the fitness value of each particle has been

computed, the personal best k

ibestp , of each particle i is updated as follows:

)15.6(
)()(

)()(

11

,

1

,

k

i

k

i

k

ibest

k

i

k

i

k

i
k

ibest

XfXfifp

XfXfifX
p

Then the global best position is updated according to Equation (6.14), restated here

for ease of reference:

 (6.16) ,...,1 , minarg , pipfg k

ibest

k

best

Step 9:

Recompute the Newton-Raphson load flow: similar to step 5, perform a load flow

computation to determine the new load-bus voltages, with the global best position

(computed in step 8) acting as the new generator voltage set-points.

Step 10:

Recompute the objective function value: similar to step 6, the objective function value

is recomputed to account for the change in the load-bus voltages due to the load flow

computation. The recomputed objective function value constitutes the optimal value

of the current best feasible solution. The algorithm is assumed to have advanced in

the desired direction if the recomputed objective function value is better (i.e. less)

than the one computed in the previous iteration.

Step 11:

Check for convergence of the algorithm: the PSO algorithm is considered to have

converged successfully to an optimal solution when there isn’t an appreciable change

in the objective function value over a number of successive iterations, and the current

objective function value is better than the initial value. Otherwise it is terminated with

a result of “failure” when it fails to achieve an objective function value minimization

within the predetermined number of iterations. In summary, the PSO algorithm will be

terminated if any one of the following two conditions is satisfied:

137

Start

Load system data:
 Bus voltages in rectangular coordinates
 Scheduled generator real power outputs
 Real and reactive power demand
 Line data (resistance and reactance)
 From line data, compute Y-bus matrix and bus

connectivity matrix

Initialize PSO parameters:
 Acceleration coefficients (φ1, φ2) (see Table 6.1)
 Swarm size (p) (see Table 6.1)
 Problem dimension (i.e. number of decision variables, n)
 Maximum number of iterations (N) (see table 6.1)
 Initial position (Equation 6.9) and velocity (0) of each particle
 Set each particle's personal best to current position (Equation

6.13)

Compute velocity update, adjust particle positions:
 For each particle, compute velocity update and adjust particle

position based on Equatiions 6.4 and 6.5.
 Compute particle's fitness value (Equation 6.11), update personal

best if current fitness value is better than previous one (Equation
6.15)

 Compute global best position based on all particles ' personal
best positions (Equation 6.16)

Compute Newton-Raphson load flow:
 Based on global best position, compute Newton-Raphson load

flow to determine load-bus voltages for new generator-bus
voltages computed by the PSO algorithm

Convergence check:
 Check the convergence of the algorithm, based on

change in fitness value and change in global best
position between subsequent iterations

End

Check if maximum number of
iterations is not exceeded

Not yet
converged

 Increment iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Output results:
 Generator bus voltage magnitudes if converged
 Else, numerically failed

Fig. 6.3: Flowchart of the particle swarm optimization algorithm

138

1. There is no appreciable improvement in the objective function value over a

number of successive iterations, and the current objective function value is

better than the initial one

2. The maximum number of iterations has been reached

If neither of the two conditions is satisfied, the iteration counter (k) is incremented and

the algorithm loops back to step 7, repeating steps 7 to 11 until termination conditions

are satisfied.

The flowchart in Figure (6.3) summarises the steps of the PSO algorithm outlined

above as adapted for application to the VVO problem.

6.5.1 Case studies

There are quite a number of parallels in the implementation of the PSO–based VVO

algorithm presented in this chapter and the PDIPM-VVO algorithm presented in the

previous chapter, for example:

 Use of the rectangular formulation of the VVO problem presented in chapter 3.

 Incorporation of the rectangular–form Newton–Raphson load flow computation

in each iteration of the VVO algorithm, as indicated in the flowchart in Figure

(6.3).

 Performance analysis of the algorithm by means of the 3–bus, 6–bus, IEEE

14–bus, IEEE 30–bus and IEEE 118–bus test systems.

Results of applying the PSO algorithm to each of the case studies are presented in

the following sub-sections. Performance analysis of the PSO algorithm focuses on

the following performance metrics:

 Magnitude of loss minimization.

 Voltage profile improvement due to the Volt/VAR optimization.

 Impact of particle swarm size on the quality of the solution and on the number

of iterations needed for the algorithm to converge, and the resulting execution

time.

The PSO parameters used in the case studies are given in Table (6.1) (values of

acceleration coefficients are according to Poli et al., 2007). It can be noted that the

swarm size has been specified as a range of values. As stated in the last bullet point

above, one key metric analysed in this study is the impact that the particle swarm size

has on the quality of the solution, and on the computational cost of the algorithm, as

measured by the number of iterations and the execution time of the algorithm. For

each case study, the case is run for values of the swarm size ranging from 10 to 50,

in increments of 10. Since PSO is a stochastic algorithm, the approach taken is to

139

make several runs of the algorithm for each value of the swarm size. The statistical

variance can then be assessed by looking at the minimum, maximum and average

values of the key results. Such statistical analysis is likely to yield insightful

information. The MATLAB programs for the case studies presented in the following

sub-sections are presented in Appendix C.

Table 6.1: PSO algorithm parameters used in the VVO case studies

Parameter Setting

Cognitive acceleration coefficient, 1 2.05

Social acceleration coefficient, 2 2.05

Swarm size, p 10 – 50

Maximum number of iterations, itermax_ 200

6.5.2 Case study 1: 3-bus power system

This case study parallels the one presented in section 5.3.1 for the PDIPM algorithm.

The case data is the same as that used in chapter 5. The analysis in this sub-section

follows the points outlined at the end of the previous sub-section. The PSO algorithm

is used to solve the VVO problem for the 3-bus power system, similarly to what was

done using the PDIPM algorithm. The key performance metrics, as outlined above,

are the magnitude of loss minimization, the voltage profile improvement, and the

computational efficiency of the algorithm. Several runs of the algorithm have been

executed for different values of the swarm size, averaging about five runs for each

value of the swarm size. The results are then averaged and tabulated, as presented

in Table (6.2).

Table 6.2: 3-bus system summary of PSO-VVO algorithm simulation results

Swarm
size

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average
% loss

reduction Min Max Average Min Max Average Min Max Average Min Max Average

10 0.0255 0.1490 0.0735 0.0156 0.0180 0.0160 12 14 14 0.0159 0.0221 0.0195 78.78

20 0.0185 0.1843 0.0716 0.0156 0.0170 0.0158 3 19 13 0.0057 0.0294 0.0167 78.22

30 0.1157 0.2625 0.16088 0.0156 0.0165 0.0160 8 17 13 0.0138 0.0312 0.0231 90.30

40 0.0159 0.1482 0.07484 0.0156 0.0185 0.0162 8 32 17 0.0153 0.0576 0.0327 79.16

50 0.0180 0.1189 0.0693 0.0156 0.0171 0.0159 4 17 11 0.0103 0.0416 0.0247 77.48

What can be deduced from Table (6.3) is that the PSO algorithm consistently yields a

substantial real power loss reduction, in the range of about 77% to about 90%.

Although the initial power loss for the various runs is quite varied (from as low as

140

0.018 to as high as 0.184) the final power loss is consistently at around 0.016, which

appears to be the globally optimal solution for this cases study. The number of

iterations averages at about 14, and appears to be independent of the swarm size,

although the average run time appears to increase with the swarm size. Overall for

this case study, increasing the swarm size (from 10 to 50) does not seem to lead to

an appreciable improvement in the solution quality, and moreover the computational

cost does not increase excessively either.

The convergence behaviour of the PSO algorithm for the 3-bus system is depicted in

Figure (6.4), which shows traces of the change in the global best position (top trace of

Figure 6.4), the change in the fitness value of the global best position (middle trace),

and the fitness value of the global best position (bottom trace). It can be seen that this

case converges in about six iterations, when the change in the fitness value of the

global best position becomes effectively zero.

The voltage profile of the 3-bus system before and after the Volt/VAR optimization is

depicted in Figure (6.5) in the form of a bar chart. The voltage profile shows that the

post-optimization voltage magnitude is greater than the pre-optimization value for

each bus. For buses 1 and 3 which are the generator buses, the voltage magnitudes

actually hit their upper limits. This is an expected result, since higher system voltages

generally tend to lead to reduced real power loss.

Fig. 6.4: 3-bus system convergence behaviour of the PSO algorithm

141

Fig. 6.5: 3-bus system voltage magnitudes before and after PSO-based VVO

Fig. 6.6: 3-bus system real power loss and slack-bus active power plotted against number of

iterations

Figure (6.6) depicts the real power loss trajectory plotted along with the slack-bus

active power output against the number of iterations. Similar to the case study in

section 5.3.1, the two trajectories coincide, showing that the change in the system

real power loss corresponds to an equal change in the slack-bus active power output.

142

Figure (6.7) compares the real power loss trajectory with that of the total system

generated reactive power. It can be seen that the two variable track each other,

implying that real power loss minimization simultaneously achieves a reduction in

total system reactive power generation as well.

Fig. 6.7: 3-bus system real power loss and total generated reactive power plotted against

number of iterations

6.5.3 Case study 2: 6-bus power system

Case study 2 parallels the one presented in section 5.3.2, which is based on a 6-bus

power system adapted from Wood et al. (2014), having 3 generators, 11 lines and 3

loads. The case data is the same as that used in chapter 5. Results of applying the

PSO algorithm to the 6-bus system for solving the VVO problem are presented in

Table (6.3) and Figures (6.8) to (6.10).

Table 6.3: 6-bus system summary of PSO-VVO algorithm simulation results

Swarm
size

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average %
loss

reduction Min Max Average Min Max Average Min Max Average Min Max Average

10 0.1276 0.2441 0.1647 0.1259 0.1339 0.1302 28 71 40 0.0378 0.3638 0.1385 20.95

20 0.1378 0.2885 0.2215 0.1265 0.1318 0.1293 13 102 54 0.0280 0.2056 0.1060 41.62

30 0.1273 0.3275 0.1811 0.1262 0.1336 0.1284 16 56 31 0.0381 0.1363 0.0713 29.10

40 0.1275 0.1670 0.1613 0.1255 0.1302 0.1284 8 32 19 0.0249 0.1531 0.0615 20.40

50 0.1303 0.2212 0.1569 0.1263 0.1332 0.1294 10 133 49 0.0275 0.3185 0.1216 17.53

143

The results in Table (6.3) reveal a consistent and substantial real power loss

reduction by the PSO algorithm, with the lowest (average) percentage loss reduction

being 17.93%, and the highest being 41.62%. The average number of iterations lies

in the range between 19 and 54 for all cases. There is quite a large dispersion

between the average minimum (8) and maximum (133) number of iterations. The

execution time shows a similar dispersion (minimum average value of 0.0713 sec and

maximum value of 0.1385). As in the 3-bus system case, increasing the swarm size

does not seem to significantly influence the solution quality. The impact on the

computational cost of the algorithm is also not very noticeable.

Fig. 6.8: 6-bus system convergence behaviour of the PSO algorithm

The convergence behaviour of the PSO algorithm for the 6-bus system is depicted in

Figure (6.8), which plots the change in the global best position, the change in the

fitness value of the global best position, and the fitness value of the global best

position in the top, middle and bottom traces respectively. This case takes relatively

long to converge, about 70 iterations, requiring about 0.13 seconds. This result can

be considered to lie on the higher end of the range of the average results presented

in Table (6.3).

144

Fig. 6.9: 6-bus system voltage magnitudes before and after PSO-based VVO

The voltage profile of the 6-bus system before and after the Volt/VAR optimization is

depicted in Figure (6.9) in the form of a bar chart. The post-optimization voltage

magnitudes are greater than the pre-optimization values for all buses, except bus 2,

where the pre-optimization voltage is slightly higher than the post-optimization

voltage. In all cases, both the pre- and post-optimization voltages are within the range

of nominal values (i.e. 0.95 – 1.1).

Figure (6.10) depicts the real power loss trajectory plotted together with the slack-bus

active power output against the number of iterations. Unlike the 3-bus system case

where these two graphs coincided, this case just shows them to be changing in

tandem, again showing the close relationship between the change in the two

quantities. The same relationship can be seen in Figure (6.11), which plots the real

power loss reduction together with the total system reactive power generation, also

showing that real power loss reduction is accompanied by system reactive power

generation reduction as well.

145

Fig. 6.10: 6-bus system real power loss and slack-bus active power plotted against number of

iterations

Fig. 6.11: 6-bus system real power loss and total generated reactive power plotted against

number of iterations

146

6.5.4 Case study 3: 14-bus power system

Case study 3 is based on the IEEE 14-bus test system, the same as that considered

in section 5.3.3. The network, load and generation data is taken from Zhu (2009), and

is the same as that used in chapter 5. Results of applying the PSO algorithm to the

14-bus system for solving the VVO problem are presented in Table (6.4).

Table 6.4: 14-bus system summary of PSO-VVO algorithm simulation results

Swarm
size

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average %
loss

reduction Min Max Average Min Max Average Min Max Average Min Max Average

10 0.1347 0.2011 0.1613 0.1235 0.1291 0.1279 6 40 21 0.0203 0.2432 0.1196 20.71

20 0.1353 0.1652 0.1439 0.1268 0.1290 0.1282 4 24 11 0.0214 0.1375 0.0662 10.91

30 0.1381 0.2408 0.1873 0.1290 0.1301 0.1293 5 71 41 0.0307 0.5822 0.2867 30.97

40 0.1416 0.1921 0.1613 0.1273 0.1290 0.1287 4 109 29 0.0237 0.6544 0.1791 20.22

50 0.1335 0.2385 0.1595 0.1290 0.1308 0.1294 5 51 21 0.0488 0.2931 0.1394 18.85

Based on the results presented in Table (6.4), the average real power loss reduction

ranges from 10.91% in the case of the simulation with 20 particle swarms, to 30.97%

in the case of the simulation with 30 particle swarms. The average number of

iterations lies in the range between 11 and 49 for all cases. The minimum number of

iterations is 4, recorded when the swarm size is 20 and 40, and the maximum number

of iterations is 109, recorded in the case of a swarm size of 40. It can be noticed from

the results presented in Table (6.4) that while increasing the swarm size does not

necessarily lead to increased execution time, there is a direct relationship between

the number of iterations and the execution time. Thus, the maximum execution time

(0.6544 seconds) is recorded in connection with the swarm size of 40, which also

happens to coincide with the maximum number of iterations recorded for all the runs.

The average execution time ranges from 0.0662 seconds (for swarm size of 20) to

0.2867 seconds (for swarm size of 30). The lowest absolute real power loss achieved

is 0.1235 per-unit, with a swarm size of 10. It can thus be seen here that the global

minimum (in the context of the presented results) is attained with a swarm size of 10,

implying that increasing the swarm size for this case does not necessarily lead to an

improvement in the quality of the solution. It is worth noting that the (average)

minimum number of iterations (11) is attained in the case of a swarm size of 20,

which also has the minimum average execution time (0.0662 seconds).

147

Fig. 6.12: 14-bus system convergence behaviour of the PSO algorithm

The convergence behaviour of the PSO algorithm for the 14-bus system is depicted

in Figure (6.12) which, similar to Figure (6.8) for the 6-bus system, plots the changes

in the global best position and in the fitness value of the global best position, as well

as the fitness value of the global best position. This case takes relatively long to

converge, about 120 iterations, requiring about 0.5 seconds. It can be noticed,

however, that the change in both the global best position and in its corresponding

fitness value is not significant beyond the 40th iteration, although the termination

conditions for the algorithm are satisfied only much later, leading to the high number

of iterations.

The voltage profile of the 14-bus system before and after the Volt/VAR optimization is

depicted in Figure (6.13) in the form of a radar chart. The post-optimization voltage

magnitudes are greater than the pre-optimization values for all buses. It can be seen

also for this case study that both the pre- and post-optimization voltages are within

the range of nominal values (i.e. 0.95 – 1.1) for all the buses.

148

Fig. 6.13: Radar chart of 14-bus system voltage profiles before and after PSO-based VVO

Fig. 6.14: 14-bus system real power loss and slack-bus active power plotted against number

of iterations

149

Figure (6.14) depicts the real power loss trajectory plotted together with the slack-bus

active power output against the number of iterations. Similar to the two previous case

studies, the close relationship between the change in the two quantities is clearly

noticeable, and the displacement between them can be attributed to the difference in

the scale of the two quantities. Figure (6.15) compares the trajectories of the real

power loss and the total generated system reactive power, which also depicts a

relationship between the two quantities similar to that observed in the case of the real

power loss and the slack-bus active power.

Fig. 6.15: 14-bus system real power loss and total generated reactive power plotted against

number of iterations

6.5.5 Case study 4: 30-bus power system

Case study 4 is based on the IEEE 30-bus test system, the same as the one

considered in section 5.3.4. It comprises 30 buses, 6 generators, 41 lines, and 21

loads. The network, load and generation data is also taken from Zhu (2009), and is

the same as that used in chapter 5. Results of applying the PSO algorithm to the 30-

bus system for solving the VVO problem are presented in Table (6.5).

150

Table 6.5: 30-bus system summary of PSO-VVO algorithm simulation results

Swarm
size

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average %
loss

reduction Min Max Average Min Max Average Min Max Average Min Max Average

10 0.1353 2.0046 0.5253 0.0925 0.1067 0.0979 23 108 58 0.4386 2.1174 1.3169 81.29

20 0.1180 1.1763 0.4763 0.0925 0.0993 0.0947 32 179 80 0.7819 4.7353 2.2789 80.12

30 0.1203 0.8751 0.3089 0.0925 0.1054 0.0953 40 164 84 0.7581 3.7345 2.0272 69.15

40 0.1053 0.5211 0.2628 0.0925 0.0980 0.0937 20 170 96 0.4842 3.2412 1.6484 64.34

50 0.1008 1.1291 0.3987 0.0925 0.1031 0.0953 3 200 67 0.0448 4.8044 1.5187 76.10

The results presented in Table (6.5) show that there is substantial real power loss

reduction in all the cases, ranging from 64.34% (attained with a swarm size of 20) to

81.29% (attained with a swarm size of 10). The average number of iterations is quite

high for all the cases, lying in the range between 58 and 96. The dispersion between

the minimum and maximum number of iterations is also quite high, the minimum and

maximum values being 3 and 200 respectively, both obtained with a swarm size of

50. The average execution time ranges from a low of 1.3169 to a high of 2.2789,

obtained with swarm sizes of 10 and 20 respectively. Compared with the previous

case studies, the 30-bus system requires significantly more iterations to converge,

and the execution is correspondingly longer. As in the previous cases, increasing the

swarm size does not seem to have a large impact on either the quality of the solution

or the computational cost of the algorithm.

The convergence behaviour of the PSO algorithm for the 30-bus system is depicted

in Figure (6.16), and shows the changes in the global best position and in the fitness

value of the global best position, as well as the fitness value of the global best

position. The case depicted in the figure takes converges relatively quickly, requiring

about 12 iterations and an execution time of 0.19 seconds.

The voltage profile of the 30-bus system before and after the Volt/VAR optimization is

depicted in Figure (6.17) in the form of a radar chart. The post-optimization voltage

magnitudes are greater than the pre-optimization values for the majority of buses.

Some voltages hit their lower or upper limits, but there is no voltage violation for any

of the buses.

151

Fig. 6.16: 30-bus system convergence behaviour of the PSO algorithm

Fig. 6.17: Radar chart of 30-bus system voltage profiles before and after PSO-based VVO

152

Fig. 6.18: 30-bus system real power loss and slack-bus active power plotted against number

of iterations

Fig. 6.19: 30-bus system real power loss and total generated reactive power plotted against

number of iterations

Figure (6.18) plots the real power loss trajectory together with the slack-bus active

power output against the number of iterations, and Figure (6.19) dose the same for

153

the real power loss and total generated system reactive power trajectories. Similar

characteristics can be observed as those observed in the preceding case studies.

6.5.6 Case study 5: 118-bus power system

The final case study considered in this section is that of the IEEE 118-bus test

system, the same as that considered in section 5.2.5. The system comprises 118

buses, 54 generators (35 of which are synchronous condensers), 186 lines, and 99

loads. The network, load and generation data is adapted from an appendix attributed

to Springer Verlag (2012), and is the same as that used in chapter 5. Results of

applying the PSO algorithm to the 118-bus system for solving the VVO problem are

presented in Table (6.6), as well as in Figures (6.20) and (6.21)

Table 6.6: 118-bus system summary of PSO-VVO algorithm simulation results

Swarm
size

Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) Average
% loss

reduction Min Max Average Min Max Average Min Max Average Min Max Average

10 4.4286 6.7848 5.3158 2.3799 2.8516 2.6342 200 200 200 81.8725 82.7431 82.3317 50.45

20 5.0498 11.8646 7.9246 2.3778 3.0462 2.4514 111 200 183 45.7052 93.5918 77.8222 67.44

30 4.2654 11.0633 6.2787 2.3935 3.0599 2.5487 200 200 200 83.9581 88.0829 85.9590 59.41

40 4.4071 9.8267 5.9971 2.3822 2.5720 2.4510 200 200 200 82.2720 85.6926 84.2950 59.13

50 4.6573 11.1649 8.6517 2.3743 2.5027 2.4172 200 200 200 85.4243 86.8651 85.7809 72.06

The results for the 118-bus system presented in Table (6.6) show the average real

power loss reduction among all the simulated cases to range from 50.45% (attained

with a swarm size of 10) to 72.06% (attained with a swarm size of 50). The average

number of iterations is quite high for all the cases. In fact, all cases except the case

with a swarm size of 20 reach the pre-set maximum number of iterations. The

average execution time is also quite high, especially when compared with the

preceding case studies, and ranges from 77.8 seconds to 85.9 seconds. The

minimum real power loss achieved is 2.37 per-unit. The results are quite consistent

over the range of the swarm size, implying that the algorithm’s performance is not

significantly influenced by changing the swarm size, something that has been

observed across all the preceding case studies as well.

The convergence behaviour of the PSO algorithm for the 118-bus system is displayed

in Figure (6.20), which depicts the changes in the global best position in the top trace

and the fitness value of the global best position in the bottom trace of the figure. It can

be seen from the figure that the algorithm exhibits oscillatory behaviour beyond the

35th iteration. This also seems to explain the results tabulated in Table (6.6), the

oscillatory behaviour being the reason behind the algorithm exhausting the pre-set

154

maximum number of iterations. By adjusting higher the tolerance value of the

termination condition (i.e. the change in the fitness value over successive iterations),

the algorithm successfully terminates in much fewer iterations, as depicted in Figure

(6.21).

Fig. 6.20: 118-bus system convergence characteristics of the PSO algorithm, showing slightly

oscillatory behaviour

The voltage profile of the 118-bus system before and after the Volt/VAR optimization

is depicted in Figure (6.22) in the form of a radar chart. The pattern is similar to the

preceding case studies, with the post-optimization voltage magnitudes being greater

than the pre-optimization values for almost all the buses. Incidentally, the Volt/VAR

optimization also alleviates some over-voltage conditions, particularly at buses 73

and 99, where the initial (i.e. pre-optimization) voltage magnitudes actually exceed

the upper limit of 1.1 per-unit.

155

Fig. 6.21: 118-bus system convergence characteristics of the PSO algorithm after increasing

termination condition tolerance of the change in the fitness value (top trace), showing

successful convergence

Fig. 6.22: radar chart of 118-bus system voltage profiles before and after PSO-based VVO

156

6.6 Comparison of PSO with PDIPM for VVO

It is interesting to compare how the two algorithms (i.e. PDIPM and PSO), developed

in the previous chapter and in this chapter respectively, perform with respect to the

Volt/VAR optimization problem. The comparison is made relatively easier by the fact

that the same case studies have been conducted for both algorithms. The summary

of the results is detailed in Table (6.7). For the PSO algorithm, since several

simulations have been performed for each system case study, the “pareto-optimal”

solution was selected for comparison with the PDIPM algorithm, considering the

performance analysis criteria used in Table (6.7).

Table 6.7: Comparison of the PDIPM and PSO Volt/VAR optimization results

System
Initial loss (p.u.) Final loss (p.u.) Number of iterations Run time (sec) % Loss reduction

PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO

3-bus 0.0195 0.0180 0.0180 0.0156 4 11 0.0843 0.025 7.89 77.48

6-bus 0.1335 0.1378 0.1290 0.1265 13 54 0.1775 0.1060 3.37 41.62

14-bus 0.1353 0.1381 0.1296 0.1290 14 41 0.1477 0.2870 4.24 30.95

30-bus 0.1141 0.1353 0.1084 0.0925 14 58 0.3565 1.3170 5.03 80.29

118-bus 3.3939 4.6573 3.2270 2.3743 8 200 2.0120 85.78 4.92 72.06

In line with the performance analysis for the individual algorithms, the comparative

performance analysis is made on the basis of the computational efficiency, in terms of

the number of iterations taken by the algorithm to converge and the execution time

required, as well as the percentage real power loss reduction. As can be deduced

from the table, the PSO algorithm far outperforms the PDIPM algorithm in terms of

the percentage loss reduction in all cases, as it consistently achieves much higher

percentage loss reduction, and the final per-unit loss reduction is less for the PSO

algorithm in all cases. The computational efficiency of the PSO algorithm, however, is

generally worse than that of the PDIPM algorithm. It requires a much higher number

of iterations in order to converge in all cases, although the execution time itself is

lower for the 3-bus and 6-bus systems, but much higher for the 14-bus, 30-bus and

118-bus systems. This seems to suggest that the computational cost of the PSO

algorithm tends to increase significantly as the problem dimension increases. The

results of this study demonstrate what is generally known about the relative

performance characteristics of classical and heuristic optimization techniques. The

main strength of classical optimization methods is their high computational efficiency,

particularly for differentiable nonlinear systems, but have the drawback of lacking the

ability to find the globally optimal solution. Heuristic optimization techniques, on the

other hand, generally incur high computational cost, but have the advantage that they

have the capability to find the globally optimal solution.

157

6.7 Conclusion

The main result of this chapter is the development and implementation of the particle

swarm optimization (PSO) algorithm for solving the Volt/VAR optimization (VVO)

problem. A brief presentation on the historical development of the PSO algorithm is

followed by a discussion of the principle of operation and basic construction of the

algorithm, after which some pertinent implementation aspects are presented. The

adaptation of the algorithm to the solution of the VVO problem is then outlined, before

presenting five case studies by means of which the performance analysis of the

developed PSO algorithm has been analysed. The performance analysis has focused

on the algorithm’s ability to effect real power loss reduction without adversely

impacting the voltage profile of the system, and the computational efficiency,

assessed in terms of the number of iterations required by the algorithm to converge,

and the corresponding execution time. From the results analysis, the PSO performs

very well in terms of real power loss reduction, although the computational cost is

quite high, especially for systems with high problem dimensions (particularly the 118-

bus system). The chapter ends with a comparative analysis of the PDIPM algorithm

(developed and presented in chapter 5) and the PSO algorithm presented in this

chapter, based on the same set of case studies. The comparative analysis reveals

that the PDIPM algorithm is relatively more computationally efficient, whereas the

PSO algorithm far outperforms in terms of real power loss reduction.

The following chapter concludes this thesis with a summary of the achievements of

this research, as well as recommendations for further research.

158

CHAPTER SEVEN

CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Introduction

Reliable electrical power supply is one of the most important utilities for modern

society, so much that even momentary power supply interruptions can lead to

enormous disruption of essential services and normal daily activities to the extent of

being considered intolerable. Moreover, recent developments in the power system,

such as the deregulation and restructuring of the electrical power supply industry, the

introduction of competitive electricity and power markets, and the rapid growth of

distributed and decentralized electrical power generation, have led to a significant

increase in the complexity of modern power systems, adding to the challenge of

operating them reliably and efficiently. Thus, the need for optimal strategies for the

secure, economical and efficient operation of the power system is arguably even

greater now than at any other time in the history of the power system. In line with this

identified need, this thesis has presented the research conducted on the theoretical

design, development, and practical implementation of efficient algorithms that

contribute to the secure, economical and reliable operation of modern complex power

systems. Particularly, algorithms have been developed for the solution of the

Volt/VAR optimization problem, a very important sub-problem of the optimal power

flow (OPF) problem that is mainly concerned with the optimal coordinated dispatch of

voltage-regulating devices and reactive power sources.

The foundation for the work developed and presented in this thesis was laid by

means of a thorough investigation of the state-of-the-art in problem formulation and

solution techniques for the Volt/VAR optimization problem, considering both classical

and heuristic optimization techniques. A critical comparative analysis of the classical

and heuristic optimization techniques was then performed, to establish their individual

characteristics, as well as their relative strengths and weaknesses. Some of the

optimization performance criteria considered in the comparative analysis included the

computational efficiency, convergence characteristics, and solution quality. This work

has been presented in chapter 2 of this thesis.

The theoretical development and practical implementation of the classical primal-dual

interior-point method for the solution of the Volt/VAR optimization problem has been

detailed in chapters 4 and 5. Chapter 6 presents the design and implementation of

the heuristic particle swarm optimization algorithm, also for the solution of the

Volt/VAR optimization problem. The chapter also presents a comparative analysis of

the performance of the two developed methods when applied to the Volt/VAR

optimization problem. The performance analysis reveals that the primal-dual interior-

159

point method outperforms the particle swarm optimization algorithm in terms of

computational efficiency, since on average it requires fewer iterations to converge,

and has a shorter running time. The particle swarm optimization, on the other hand,

generally achieves a higher percentage real power loss reduction than the primal-

dual interior-point method. This suggests that the two classes of methods (i.e.

classical and heuristic optimization methods) have complementary performance

characteristics, something which could be exploited to devise optimization strategies

that seek to combine their relative strengths, and thus have a better prospect

exhibiting performance that is superior to that of the individual algorithms.

This chapter presents a concise summary of the main outcomes of the research

presented in this thesis. The aim and objectives of the research have been outlined in

section 1.4, and are reiterated in section 7.2, followed by the thesis deliverables in

section 7.3. Section 7.4 lists possible applications of the results obtained from this

research, and section 7.5 provides some recommendations for the direction that

further research building on the work presented in this thesis could take. Section 7.6

lists the publications that have come out of this research.

The main purpose of sections 7.2 and 7.3 is to make a correlation between the aim

and objectives stated in chapter 1 (reiterated in section 7.2 for convenience) and the

thesis deliverables as reported in chapters 2 to 6.

7.2 Aim and objectives of the research

7.2.1 Aim

The main focus of the research presented in this thesis has been the theoretical

design and practical implementation of efficient methods for the Volt/VAR optimization

problem, in recognition of the central role played by Volt/VAR optimization in ensuring

the security, economy, efficiency and reliability of operation of modern complex power

systems. The research encompassed a thorough and comprehensive investigation of

the state-of-the-art in the problem formulation and solution methods for the Volt/VAR

optimization problem, as well as the theoretical development, design and practical

implementation of the algorithms for the solution of the Volt/VAR optimization

problem, based on both classical/conventional and heuristic/intelligent search-based

optimization techniques. The objectives that supported the realization of the main aim

of the research can be outlined as follows.

7.2.2 Objectives

1. Thorough investigation of the state-of-the-art in problem formulation and

solution techniques for the Volt/VAR optimization problem, considering both

classical and heuristic optimization techniques.

160

2. Critical comparative analysis of classical and heuristic optimization

techniques, based on key optimization performance criteria, such as

computational efficiency, convergence characteristics, and solution quality.

3. Model development for the Volt/VAR optimization problem, considering both

the polar and rectangular coordinate representation of the system voltages.

4. Theoretical development of the primal-dual interior-point method (PDIPM) as

the classical optimization technique applied to the solution of the Volt/VAR

optimization problem.

5. Practical implementation of the PDIPM-based Volt/VAR optimization (PDIPM-

VVO) algorithm, and a comprehensive performance analysis of the developed

algorithm by means of a variety of power system case studies.

6. Theoretical development of the particle swarm optimization (PSO) algorithm

as the heuristic optimization technique applied to the solution of the Volt/VAR

optimization problem.

7. Practical implementation of the PSO-based Volt/VAR optimization (PSO-VVO)

algorithm, and a comprehensive performance analysis of the developed

algorithm by means of a variety of power system case studies.

8. Comparative analysis of the performance of the PDIPM and PSO algorithms

as solution methods for the Volt/VAR optimization problem.

These objectives have been achieved, and are detailed in the preceding chapters of

this thesis. In the following section, the deliverables of the research as outlined in

section 1.9 are presented.

7.3 Thesis deliverables

7.3.1 Comprehensive literature study and review of the main aspects of

Volt/VAR optimization

The comprehensive literature covered the problem formulation for the Volt/VAR

optimization problem, encompassing the objectives, constraints and decision

variables, as well as the main reactive power and voltage control devices most

commonly used in Volt/VAR optimization. It also covered a thorough review and

critical analysis of the main classical/conventional and heuristic/intelligent search-

based optimization techniques that have been applied to the Volt/VAR optimization

problem over the decades. A critical comparative analysis of these two classes of

optimization methods was presented, highlighting their individual characteristics, as

well as their relative strengths and weaknesses. This deliverable has been presented

in chapter 2 of this thesis, as well in the publication (Mataifa et al., 2022)

161

7.3.2 Problem formulation and model development for the Volt/VAR

optimization problem

The problem formulation and model development for the Volt/VAR optimization

problem involved the analysis of the objective functions, constraints and decision

variables of the problem. Both the polar and rectangular coordinate representations of

the system voltages were considered. The analysis performed revealed that the

rectangular formulation had relatively more favourable mathematical properties from

the perspective of computational efficiency, particularly for (although not limited to)

the primal-dual interior-point algorithm, and was thus adopted in this study. This

deliverable has been presented in chapter 3 of this thesis.

7.3.3 Theoretical development and design of the algorithms used in solving the

Volt/VAR optimization problem

Three main algorithms were designed and developed for the solution of the Volt/VAR

optimization problem: (1) the Newton-Raphson load flow algorithm in rectangular

coordinates of system voltages, which is used as part of the Volt/VAR optimization

algorithm purely for load flow computation; (2) the primal-dual interior-point method,

which forms the basis for the design of the solution algorithm for the Volt/VAR

optimization problem based on a classical optimization method; and (3) the particle

swam optimization algorithm, which forms the basis for the design of the solution

algorithm for the Volt/VAR optimization algorithm based on a heuristic optimization

method. The development of the primal-dual interior-point method has been

presented in chapters 4 and 5, the Newton-Raphson load flow algorithm has also

been detailed in chapter 5, and the particle swarm optimization algorithm has been

presented in chapter 6 of this thesis.

7.3.4 Software development for the implementation of the developed algorithms

The algorithms developed as detailed in section 7.3.3 (Newton-Raphson load flow

algorithm, primal-dual interior-point method and particle swarm optimization

algorithm) have been implemented in the MATLAB numerical and technical

computing environment. The MATLAB programs for these algorithms are presented

in Appendices A-C, and are listed in Table (8.1).

Table 7.1: Software programs developed and implemented in this thesis

Chapter 4

Program description Appendix

Function that implements the
interior-point method (IPM) for a
general nonlinear programming
problem with inequality
constraints

A.1
File name: ipm_generic_nonlinear.m

162

Function that defines the
objective function, constraints,
and the Jacobian and Hessian of
the Lagrangian of the problem

A.2
File name: func.m

MATLAB script that calls the IPM
to implement the example
problem in section 4.3.8

A.3
File name: ipm_generic_nonlinear_test.m

Chapter 5

Function that computes the
residues of the load flow problem

B.1
File name: dF.m

Function that computes the
Jacobian of the power flow
equations for the load flow
problem

B.2
File name: jacobian.m

Function that implements the
Newton-Raphson load flow
algorithm

B.3
File name: NR_load_flow.m

MATLAB script that runs the
Newton-Raphson load flow
computation for the 3-bus system

B.4
File name: three_bus_system_NR_load_flow.m

Function that implements the
primal-dual interior-point method-
based Volt/VAR optimization
(PDIPM-VVO) for the 3-bus
system, incorporating the
Newton-Raphson load flow
computation

B.5
File name: ipm_3bus.m

Function that computes the
objective function, its gradient
and Hessian for the 3-bus system

B.6
File name: loss_func_3bus.m

Function that computes the
constraint functions, their
Jacobian and Hessian for the 3-
bus system

B.7
File name: h_gradh_hessh_3bus.m

Function that computes the
Jacobian and Hessian of the
Lagrangian of the VVO problem
for the 3-bus system

B.8
File name: f_3bus.m

MATLAB script that runs the
PDIPM-VVO algorithm for the 3-
bus system

B.9
File name: three_bus_system_pdipm_vvo_test.m

Function that implements the
primal-dual interior-point method-
based Volt/VAR optimization
(PDIPM-VVO) for the 6-bus
system, incorporating the
Newton-Raphson load flow
computation

B.10
File name: ipm_6bus.m

Function that computes the
objective function, its gradient
and Hessian for the 6-bus system

B.11
File name: loss_func_6bus.m

Function that computes the
constraint functions, their
Jacobian and Hessian for the 6-
bus system

B.12
File name: h_gradh_hessh_6bus.m

Function that computes the
Jacobian and Hessian of the
Lagrangian of the VVO problem
for the 6-bus system

B.13
File name: f_6bus.m

MATLAB script that runs the
PDIPM-VVO algorithm for the
6_bus system

B.14
File name: six_bus_system_pdipm_vvo_test.m

163

Function that implements the
primal-dual interior-point method-
based Volt/VAR optimization
(PDIPM-VVO) for the 14-bus
system, incorporating the
Newton-Raphson load flow
computation

B.15
File name: ipm_14bus.m

Function that computes the
objective function, its gradient
and Hessian for the 14-bus
system

B.16
File name: loss_func_14bus.m

Function that computes the
constraint functions, their
Jacobian and Hessian for the 14-
bus system

B.17
File name: h_gradh_hessh_14bus.m

Function that computes the
Jacobian and Hessian of the
Lagrangian of the VVO problem
for the 14-bus system

B.18
File name: f_14bus.m

MATLAB script that runs the
PDIPM-VVO algorithm for the
14_bus system

B.19
File name: fourteen_bus_system_pdipm_vvo_test.m

Function that implements the
primal-dual interior-point method-
based Volt/VAR optimization
(PDIPM-VVO) for the 30-bus
system, incorporating the
Newton-Raphson load flow
computation

B.20
File name: ipm_30bus.m

Function that computes the
objective function, its gradient
and Hessian for the 30-bus
system

B.21
File name: loss_func_30bus.m

Function that computes the
constraint functions, their
Jacobian and Hessian for the 30-
bus system

B.22
File name: h_gradh_hessh_30bus.m

Function that computes the
Jacobian and Hessian of the
Lagrangian of the VVO problem
for the 30-bus system

B.23
File name: f_30bus.m

MATLAB script that runs the
PDIPM-VVO algorithm for the 30-
bus system

B.24
File name: thirty_bus_system_pdipm_vvo_test.m

Function that implements the
primal-dual interior-point method-
based Volt/VAR optimization
(PDIPM-VVO) for the 118-bus
system, incorporating the
Newton-Raphson load flow
computation

B.25
File name: ipm_118bus.m

Function that computes the
gradient of the objective function
for the 118-bus system

B.26
File name: df_118bus.m

Function that computes the
Hessian of the objective function
for the 118-bus system

B.27
File name: d2f_118bus.m

Function that defines the
constraint functions for the 118-
bus system

B.28
File name: h_118bus.m

Function that computes the
Jacobian of the constraint
functions for the 118-bus system

B.29
File name: dh_118bus.m

Function that computes the
Hessian of the constraint
functions for the 118-bus system

B.30
File name: d2ht_lami_118bus.m

Function that computes the
Jacobian and Hessian of the
Lagrangian of the VVO problem
for the 118-bus system

B.31
File name: f_118bus.m

164

MATLAB script that runs the
PDIPM-VVO algorithm for the
118_bus system

B.32
File name:
one_hundred_eighteen_bus_system_pdipm_vvo_test.m

Chapter 6

MATLAB script that runs the
PSO-VVO algorithm for the 3-bus
system

C.1
File name: pso_vvo_3bus_system.m

MATLAB script that runs the
PSO-VVO algorithm for the 6-bus
system

C.2
File name: pso_vvo_6bus_system.m

MATLAB script that runs the
PSO-VVO algorithm for the 14-
bus system

C.3
File name: pso_vvo_14bus_system.m

MATLAB script that runs the
PSO-VVO algorithm for the 30-
bus system

C.4
File name: pso_vvo_30bus_system.m

MATLAB script that runs the
PSO-VVO algorithm for the 118-
bus system

C.5
File name: pso_vvo_118bus_system.m

Function that computes the
personal and global best
positions for the PSO algorithm;
applies to all case studies

C.6
File name: PSO_compute_pbest_gbest.m

Function that computes the
fitness value of an individual
particle for the PSO algorithm;
applies to all case studies

C.7
File name: PSO_objective_evaluation.m

Function that computes the
velocity update and adjusts the
particle position for the PSO
algorithm; applies to all case
studies

C.8
File name: PSO_X_update_cc1.m

Utility functions

Function to compute the
impedance (Y) matrix for an
arbitrary power system

D.1
File name: compute_Ybus.m

Function to compute the
generator active and reactive
power outputs once the load flow
computation has converged

D.2
File name: compute_PQ.m

Function to define the initial
guess for the Newton-Raphson
load flow computation

D.3
File name: define_x0.m

Function to define the generator
voltage magnitude set-points for
the Newton-Raphson load flow
computation

D.4
File name: Vgref_0.m

Function to compute the real
power loss magnitude for an
arbitrary power system

D.5
File name: loss_func.m

165

7.3.5 Comprehensive performance analysis of the developed algorithms by

means of a variety of power system case studies

The performance of the developed PDIPM-VVO and PSO-VVO algorithms has been

analysed by means of five different power system case studies, ranging in size from a

3-bus system to a 118-bus system. The main performance analysis criteria

considered were the solution quality, in terms of the magnitude of real power loss

percentage reduction and the voltage profile improvement achieved; the

computational efficiency of the algorithm in terms of the number of iterations and

corresponding runtime required by the algorithm to converge; the scalability of the

developed algorithms, analysed in terms of the increase in number of iterations and

running time as the system size increases, considering power system case studies

ranging in size from 3-bus to 118-bus system; for the PSO-VVO algorithm, the impact

of the swarm size on the solution quality and the computational cost of the PSO

algorithm. The results of these analyses have been presented in chapters 5 and 6 of

this thesis. Chapter 6 also presents a comparative analysis of the PDIPM-VVO and

PSO-VVO algorithms.

7.4 Possible applications of the research outputs

The methods, algorithms and software programs developed in this thesis can find

application in industry as well as in academia, for example:

 Voltage profile improvement in industrial electrical networks.

 Reactive power optimization and voltage control in transmission networks, as

part of the energy management system.

 Power system simulators used to train operators, to facilitate the study of the

impact of reactive power optimization on system voltages and on overall

power and energy management.

 Postgraduate research programs focused on the teaching of fundamental

concepts in classical and heuristic optimization, and their practical

implementation in software development environments such as MATLAB.

7.5 Recommendations for future research

Possible directions of further research that builds on the research presented in this

thesis can be:

 Testing of the developed algorithms in a real-time simulation environment,

with MATLAB as the computational engine for the optimization, and the Real

Time Digital Simulator (RTDS) as the real-time environment for the modelling

of the power system. Consideration of the robustness of the developed

algorithm to parameter uncertainties.

166

 Extension of the developed algorithms and software programs to incorporate

parallel programming and parallel processing, to enable the handling of larger

systems in a computationally more efficient way, and to improve

computational resource utilization.

 Consideration of other objectives besides real power loss minimization and

voltage profile improvement, such as voltage stability maximization, and

reactive power reserve margin maximization, as well the impact of

generation/demand variation on the effectiveness of the developed algorithms.

 Consideration of other optimization algorithms, such as genetic algorithm,

evolutionary programming, and simulated annealing, and comparing the

efficiency and effectiveness of the various algorithms when applied to the

Volt/VAR optimization problem.

 Consideration of newer forms of power system resources, such as FACTS

devices and various distributed energy resources using type 4 wind turbines

and inverter based systems which are capable of providing reactive power

support in the framework of Volt/VAR optimization, and additional controls,

such as under-load transformer tap changer.

7.6 Publications

1. Mataifa, H., Krishnamurthy, S. & Kriger, C., “Volt/VAR Optimization: A Survey

of Classical and Heuristic Optimization Methods,” IEEE Access, vol. 10, 2022.

2. Mataifa, H., Krishnamurthy, S. & Kriger, C., “An Efficient Primal-Dual Interior-

Point Algorithm for Volt/VAR Optimization in Rectangular Coordinates,” (under

review, submitted to IEEE Access, November 2022).

3. Mataifa, H., Krishnamurthy, S. & Kriger, C., “Comparative Analysis of the

Primal-Dual Interior-Point Method and Particle Swarm Optimization Algorithms

for the Solution of the Volt/VAR Optimization Problem,” (to be submitted to

Electric Power Systems Research, December 2022).

7.7 Conclusion

This chapter has concluded the thesis by presenting a concise summary of the most

important outcomes of the research. Section 7.2 has outlined the research aim and

objectives, section 7.3 has presented a detailed description of the thesis deliverables,

making the linkage clear between the work presented in the thesis chapters and their

alignment to the main research outputs and deliverables. Possible applications of the

research presented in this thesis are covered in section 7.4, and section 7.5 makes

some recommendations for further research that builds on the work presented in this

thesis. Section 7.6 has listed the publications coming out of this research.

167

BIBLIOGRAPHY

Abdul-Rahman, K.H. & Shahidehpour, S.M., “A fuzzy-based optimal reactive power control,” IEEE Trans.

on Power Syst., vol. 8, no. 2, May 1993.

Abido M.A. & Bakhashwain, J.M., “A novel multiobjective evolutionary algorithm for optimal reactive power

dispatch problem,” Proc. of 10th IEEE Intern. Conf. on Electronic Circuits and Syst., ICECS, vol. 3, pp.

1054-1057, 2003.

Ahmadi, H., Marti, J.R. & Dommel, H.W., “A framework for volt/var optimization in distribution systems,”

IEEE Trans. Smart Grid, vol 6, no. 3, May 2015.

Aldahmashi, J. & Ma, X., “Advanced machine learning approach of power flow optimization in community

microgrid,” Proceedings of the 27th International Conference on Automation & Computing, University of the

West of Englad, Bristol, UK, 1-3 September 2022.

Alghamdi, A.S., “Optimal power flow of renewable-integrated power systems using a Gaussian bare-bones

levy-flight firefly algorithm,” Frontiers in Energy Research, vol. 10, May 2022.

Alsac, O., Bright, J., Paris M., & Stott, B., “Further developments in LP-based optimal power flow,” IEEE

Trans. Power Syst., vol. 5, no. 3, Aug. 1990, pp. 697-711.

Alves da Silva, A.P. & Falcao, D.M., “Fundamentals of genetic algorithms,” in K.Y. Lee and M.A. El-

Sharkawi (eds.), Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems,

John Wiley & Sons Inc., 2008.

Aucharimayet, S. & Sirisumrannukul, S., “Volt/VAr control in distribution systems by fuzzy multiobjective

and particle swarm,” 6th Intern. Conf. on Electr. Eng./Electronics, Computer, Telecom. & Info. Tech., pp.

234-237, 2009.

Bazaraa, M., Sherali H. and Shetty, C., “Nonlinear programming: theory and algorithms,” Wiley New York,

2006.

Bekhouche, N., “Automatic generation control before and after deregulation,” Proceedings of the Thirty-

Fourth Southeastern Symp. on Syst. Theory, Huntsville, AL., USA, 2002, pp. 321-323.

Bhatele, R.P., Sharma, J.D. & Thapar, O.D., “Optimal reactive power control via loss minimization and

voltage control,” Electric Power & Energy Syst., vol. 7, no. 4, Oct. 1985.

Billinton, R. & Sachdeva, S.S., “Real and reactive power optimization by suboptimal techniques,” IEEE

Trans. Power Appar. & Syst., PAS-92, No. 3, pp. 950-956, May 1973.

Bjelogrlic, M., Calovic, M.S. & Babic, B.S., “Application of Newton’s optimal power flow in voltage/reactive

power control,” IEEE Trans. Power Syst., vol. 5, no. 4, Nov. 1990.

Boyd, R. & Richerson, P.J., “Culture and the evolutionary process,” Univ. of Chicago Press, Chicago,

1985.

Braun, M., “Technological control capabilities of DER to provide future ancillary services,” Intern. Journal

of Distrib. Energy Res., vol. 3, no. 3, pp. 191-206., 2007.

Brown, C.E. & O’Leary, D.E., “Introduction to artificial intelligence and expert systems,” Intern. Journal of

Intelligent Syst., 1995.

Cai, G., Ren, Z. & Yu, T., “Optimal reactive power dispatch based on modified particle swarm optimization

considering voltage stability,” IEEE Power Eng. Society Gen. Meet., pp. 1-5, 2007.

Cain, M.B., O’Neill, P.R. & Castillo, A., “History of optimal power flow and formulations (OPF Paper 1),”

Tech. Rep., US FERC, December 2012.

Capitanescu, F., Glavic, M. & Wehenkel, L., “Interior-point based algorithms for the solution of optimal

power flow problems,” Electr. Power Syst. Res., 77, pp. 508-517, 2007.

Capitanescu, F., Glavic, M. & Wehenkel, L., 2005, “An interior-point based optimal power flow,” 3rd

168

ACOMEN Conference, Gand, Belgium, June 2005.

Carpentier, J., “Contribution a l’etude du dispatching economique,” Bulletin de la Societe Francaise des

Electriciens, vol. 3, ser. 8, pp. 431-447, 1962.

Cha, M., Yazdani, A., Harkness, J., Melendrez, D., Vang, N. & Lopez, J., “Smart Inverters and Volt Var

Optimization,” 2020 52nd North American Power Symposium (NAPS), 2020.

Chebbo, A.M., “Security constrained reactive power dispatch in electrical power systems,” Ph.D.

dissertation, Sch. of Eng. & Appl. Science, Durham Univ., Durham, UK, 1990.

Chebbo, A.M., Irving M.R. & Sterling, M.J.H., “Reactive power dispatch incorporating voltage stability,” IEE

Proceedings-C, vol. 139, no. 3, May 1992.

Cheng, S.J., Malik, O.P. & Hope, G.S., “An expert system for voltage and reactive power control of a

power system,” IEEE Trans. on Power Syst., vol. 3, no. 4, Nov. 1988.

Choden, K., Sonam, C., Tenzin, S., Karchung, J. & Seldon, Y., “Enhancement of voltage stability in the

power system using genetic algorithm,” Journal of Applied Engineering, Technology and Management

(JAETM), vol. II, iss. I, June 2022.

Clausen, J., “Branch and bound algorithms-principles and examples,” Tech. Rep., Univ. Copenhagen,

1999.

Clerc, M. & Kennedy, J., “The particle swarm – explosion, stability and convergence in a multidimensional

complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.

Coello, C.A.C., Pullido, G.T. & Lechuga, M.S., “Handling multiple objectives with particle swarm

optimization,” IEEE Trans. on Evolutionary Computation, vol. 8, no. 3, pp. 256-279, June 2004.

Colorni, A., Dorigo M. & Maniezzo, V., “Distributed optimization by ant colonies,” Proc. of First Euro. Conf.

on Artificial Life, pp. 134-142, MIT Press, Cambridge, 1991.

Csany, E., 2014, “An example of transformer tap-changer correct adjustment,” [online]. Available at:

https://electrical-engineering-portal.com/example-of-transformer-tap-changer-correct-adjustment.

Accessed June 13, 2022.

da Costa, G.R.M., “Optimal reactive dispatch through primal-dual method,” IEEE Trans. Power Syst., vol.

12, no. 2, May 1997.

de Carvalho, E., dos Santos, A. & Mac, T., “Reduced gradient method combined with augmented

Lagrangian and barrier for the optimal power flow problem,” Appl. Math. Comput. vol. 200, pp. 529-536,

2008.

De Jong, K., Fogel, D.B. & Schwefel, H.-P., “A history of evolutionary computation,” in T. Baeck, D.B.

Fogel and Z. Michalewicz (eds.), Handbook of Evolutionary Computation, CRC Press, 1997.

De M. & Goswami, S.K., “Optimal reactive power procurement with voltage stability consideration in

deregulated power system,” IEEE Trans. Power Syst. vol. 29, no. 5, Sept. 2014.

de Sousa, V.A., Nunes, L.C.T., Belati, E.A. & da Costa, G.R.M., “A new approach type-Newton for optimal

reactive power dispatch,” IEEE Power Eng. Soc. Gen. Meet., vol. 1, pp. 252-257, 2003.

de Souza, B.A. & de Almeida, A.M.F., “Multiobjective optimization and fuzzy logic applied to planning of

the volt/var problem in distributions systems,” IEEE Trans. Power Syst., vol. 25, no. 3, Aug. 2010.

Deb, K., “Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Ltd, Chichester,

England, 2001.

Deeb N., & Shahidehpour, S.M., “Linear reactive power optimization in a large power network using the

decomposition approach,” IEEE Trans. Power Syst., vol. 5, no. 2, May 1990.

Ding, F., Zhang, Y., Simpson, J., Bernstein A. & Vadari, S., “Optimal Energy Dispatch of Distributed PVs

for the Next Generation of Distribution Management Systems,” IEEE Open Access Journal of Power and

Energy, Aug. 2020.

https://electrical-engineering-portal.com/example-of-transformer-tap-changer-correct-adjustment

169

Ding, Q., Li, N. & Wang, X., “Implementation of Interior Point Method Based on Voltage/Reactive Power

Optimization,” IEEE Power Eng. Society Winter Meeting, Conf. Proc., vol. 12, pp. 1197-1201, 2000.

Dommel, H.W. & Tinney, W.F., “Optimal power flow solutions, IEEE Trans. Power Appar. & Syst., Oct.

1968.

Dulau, L-L. & Bica, D., “Optimal power flow analysis of a power system with distributed generators and

storage considering seasons,” Tehnicki vjesnik 29, 6 (2022), 1819-1826.

Eberhart, R.C. & Shi, Y., “Comparing inertia weights and constriction factors in particle swarm

optimization,” Proceedings of the IEEE Conference on Evolutionary Computation (CEC), pp. 84-88, San

Diego, CA., Piscataway

EPRI, “Optimization of Reactive Volt-Ampere (VAR) Sources in System Planning: Volume 1, Solution

Techniques, Computing Methods, and Results,” EPRI, Scientific Systems, Inc., Cambridge,

Massachusetts, Nov. 1984.

Exposito, A.G., Ramos, J.L.M., Macias, J.L.R. & Salinas, Y.C., “Sensitivity-based reactive power control

for voltage profile improvement,” IEEE Trans. on Power Syst., vol. 8, no. 3, Aug. 1993.

Feng X., & Peterson, W., “Volt/VAR optimization reduces losses, peak demands,” EET&D Magazine, vol.

14, no. 1, pp. 22-25, Feb. 2010.

FERC, “Reactive Power Supply and Consumption,” Federal Energy Regulatory Commision Staff Report

No. AD05-1-000, Feb. 4, 2005.

Fernandes, R.A., Happ H.H. & Wirgau, K.A., “Optimal reactive power flow for improved system

operations,” Electric Power & Energy Syst., vol. 2, no. 3, July 1980.

Ferreira, E.C., Neto, M.S.I. & Asada, E.N., “Metaheuristic strategies for solving the optimal reactive power

dispatch with discrete variables,” 12th IEEE Intern. Conf. on Industr. Appl., INDUSCON, pp. 1-6, 2016.

Fletcher R. & Reeves, C.M., “Function minimization by conjugate gradients,” Computer Journal, iss. 7, pp.

149-154, 1964.

Forsgren, A., Gill P.E. & Wright, M.H., “Interior Methods for Nonlinear Optimization,” SIAM Review, vol. 44,

no. 4, pp. 525-597, 2002.

Frank, S. Rebennack, S., “An introduction to optimal power flow: theory, formulation, and examples,” IIE

Trans., vol. 48, no. 12, pp. 1172-1197, August 2016.

Frank, S., Steponavice, I. & Rebennack, S., “Optimal power flow: a bibliographic survey I, formulations

and deterministic methods,” Energy Systems, vol. 3, pp. 221-258, 2012a.

Frank, S., Steponavice, I. & Rebennack, S., “Optimal power flow: a bibliographic survey II, non-determistic

and hybrid methods”, Energy Systems, vol. 3, pp. 259-289, 2012b.

Freitas, D., Lopes, L.G. & Morgado-Dias, F., “Particle Swarm Optimisation: A Historical Review Up to the

Current Developments,” Entropy 2020, 22, 362.

Fukuyama, Y., “Fundamentals of Particle Swarm Optimization,” in K.Y. Lee and M.A. El-Sharkawi (eds.),

Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, John Wiley &

Sons Inc., 2008.

Gad, A.G., “Particle swarm optimization algorithm and its applications: A systematic review,” Archives of

Computational Methods in Engineering (2022) 29:2531-2561.

Gandoman, F.H., Ahmadi, A., Sharaf, A.M., Siano, P., Pou, J., Hredzak, B. & Agelidis, V.G., “Review of

FACTS technologies and applications for power quality in smart grids with renewable energy systems,”

Renewable and Sustainable Energy Reviews 82 (2018) 502-514.

Geoffrion, A.M., “Generalized Benders decomposition,” Journal Optim. Theory & Appl., vol. 10, no. 4,

1972.

Ghodrati, M., Piri, M., & Sadr, S.M., “Probabilistic Multi-Objective Reactive Power Planning Considering

170

Large-Scale Wind Integration,” 34th International Power System Conference (PSC2019), 9-11 Dec.,

Tehran, Iran, 2019.

Glover, F. & Laguna, M., “Tabu search,” Kluwer Academic Press, Boston, 1997.

Goldberg, D.E., “Genetic algorithms in search, optimization and machine learning,” Addison-Wesley

Publishing Company, Inc., 1989.

Golkar, M.A. & Rajabzadeh, M., “Optimum allocation of reactive power in real-time operation under de-

regulated electricity market,” 2009 Australasian Univ. Power Eng. Conf., Adelaide, SA., 2009, pp. 1-6.

Gomes J.R. & Saavedra, O.R., “Optimal reactive power dispatch using evolutionary computation:

extended algorithms,” IEE Pro.-Gener. Transm. Distrib., vol. 146, no. 6, Nov. 1999.

Gonzalez-Longatt, F.M., 2014, “IEEE 30 bus Test,” [online]. Available at:

https://www.fglongatt.org/Test_Systems/IEEE_30bus.html. Accessed August 30, 2022.

Gonzalez-Longatt, F.M., 2015, “IEEE 14 bus Test,” [online]. Available at:

https://www.fglongatt.org/Test_Systems/IEEE_14bus.html. Accessed August 30, 2022.

Grant, L., Venayagamoorthy, G.K., Krost, G. & Bakare, G.A., “Swarm intelligence and evolutionary

approaches for reactive power and voltage control,” IEEE Swarm Intelligence Symposium, St. Louis MO,

USA, Sept. 21-23 2008.

Granville, S., “Optimal Reactive Dispatch Through Interior Point Methods,” IEEE Trans. Power Syst., vol.

9, no. 1, Feb. 1994.

Grudinin, N., “Reactive Power Optimization Using Successive Quadratic Programming Method,” IEEE

Trans. Power Syst., vol. 13, no. 4, Nov. 1998.

Gupta, Y., Chatterjee, K. & Doolla, S., “Volt-Var optimization and reconfiguration: reducing power demand

and losses in a droop-based microgrid,” IEEE Trans. on Industry Applications, vol. 57, no. 3, May/June

2021.

Haida, T. & Akimoto, Y., “Genetic algorithms approach to voltage optimization,” Proc. of First Intern.

Forum on Appl. of Neural Networks to Power Syst., pp. 139-143, 1991.

Hano, I., Tamura, Y., Narita, S. & Matsumoto, K., “Real time control of system voltage and reactive

power,” IEEE Trans. Power Appar. & Syst., pp. 1544-1559, Oct. 1969.

Happ, H.H., “Optimal power dispatch: a comprehensive survey,” IEEE Trans. Power Appar. and Syst.,

PAS-90, May 1977, pp. 841-854.

Hemmecke, R., Koeppe, M., Lee, J. & Weismantel, R., “Nonlinear integer programming,” in 50 Years of

Integer Programming 1958-2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009.

Heppner, F. & Grenander, U., “A stochastic nonlinear model for coordinated bird flocks,” In Krasner, S.,

Ed., “The ubiquity of chaos,” AAAS Publications, Washington D.C., 1990.

Hestenes M.R. & Stiefel, E., “Methods of conjugate gradients for solving linear systems,” Journal Res.

National Bureau of Standards, vol. 49, pp. 409-436, 1952.

Hobson, E., “Network Constrained Reactive Power Control Using Linear Programming,” IEEE Trans.

Power Appar. & Syst., vol. PAS-99, no. 3, 1980.

Holland, J.H., “Adaptation in natural and artificial systems,” ANN Harbor, MI, Michigan Univ. Press, 1975.

Hongji, C., Daobing, L., Shichun, L., Zitong, J., Ye, Y. & Songlin, X., “Optimal power flow calculation of

active distribution network based on improved comprehensive technology,” Wuhan University Journal of

Natural Sciences, vol. 27, no. 2, pp. 142-152, 2022.

Hu, X., Shi, Y. & Eberhart, R., “Recent advances in particle swarm,” Proceedings of the 2004 Congress on

Evolutionary Computation, vol. 1, pp. 90-97.

Huneault M & Galiana, F.D., “A survey of the optimal power flow literature,” IEEE Trans. Power Syst., vol.

https://www.fglongatt.org/Test_Systems/IEEE_30bus.html
https://www.fglongatt.org/Test_Systems/IEEE_14bus.html

171

6, 1991, pp. 762-770.

Iba, K., “Reactive power optimization by genetic algorithm,” IEEE Trans. on Power Syst., vol. 9, no. 2, May

1994.

Iyer, R.S., Ramachandran, K. & Hariharan , S., “New technique for optimal reactive-power allocation for

loss minimization in power systems,” IEE Proceedings, vol.130, no.4, July 1983

Jenkins, N., Ekanayake, J.B. & Strbac, G. 2010. “Distributed Generation”, IET, London.

Jha R.R., & Dubey, A., “Coordinated voltage control for conservation voltage reduction in power

distribution systems,” IEEE Power & Energy Society General Meeting (PESGM), 2020.

Ji, Y., Liu, K., Geng, G., Sheng, W., Meng, X., Jia D. & He, K., “A novel reactive power optimization in

distribution network based on typical scenarios partitioning and load distribution matching method,” MDPI,

Appl. Sciences, Aug. 2017

Jin, D., Chiang, H.-D. & Li, P., “Two-timescale multi-objective coordinated volt/var optimization for active

distribution networks,” IEEE Trans. Power Syst., vol. 34, no. 6, Nov. 2019.

Joos, G., Ooi, B.T., McGillis, D., Galiana, F.D. & Marceau, R., “The potential of distributed generation to

provide ancillary services,” Power Eng. Society Summer Meeting, Seattle, WA, 2000, vol. 3, pp. 1762-

1767.

Karmakar, N., Raj, S. & Bhattacharyya, B., “Hybrid Intelligence Technique for Reactive Power Planning

using FACTS devices,” 2020 International Conference on Emerging Frontiers in Electrical and Electronic

Technologies (ICEFEET), pp. 1-6, 2020.

Karmarkar, N., “A new polynomial time algorithm for linear programming,” Combinatorica, iss. 4, pp. 373-

395, 1984.

Katuri, R., Jayalaxmi, A., Yesuratnam, G. & Yeddanapalli, D., “Genetic algorithm optimization of generator

reactive power,” AASRI Conf. Power & Energy Syst., pp. 192-198, 2012.

Kaur, D., Lie, T.T., Nair, N.K.C. & Valles, B., “An optimal reactive power dispatch (ORPD) for voltage

security using particle swarm optimization (PSO) in graph theory,” IEEE Intern. Conf. on Sustainable

Energy Technologies (ICSET), pp. 25-30, 2016.

Kennedy, J. & Eberhart, R., “Particle swarm optimization,” Proc. of IEEE Intern. Conf. on Neural Networks

(ICNN’95), vol. iv, pp. 1942-1948, Perth, Australia.

Kishore A. and Hill, E.F., “Static Optimization of Reactive Power Sources by use of Sensitivity Parameters,

IEEE Transactions on Power Apparatus and Systems,” PAS-90, no. 3, pp. 1166-1173, May 1971.

Krishnamurthy, S. & Tzoneva, R., “Investigation of the methods for single area and multi area optimization

of a power system dispatch problem,” Intern. Review of Electr. Eng. (IREE), vol. 7, no. 1, Jan.-Feb. 2012.

Kundur, P., “Power System Stability and Control,” McGraw-Hill, Inc., 1994.

Land A.H. & Doig, A., “An automatic method for solving discrete programming problems,” Econometrica,

vol. 28, pp. 497-520, 1960.

Lee, K.Y., Bai, X. & Park, Y-M., “Optimization method for reactive power planning by using a modified

simple genetic algorithm,” IEEE Trans. on Power Syst., vol. 10, no. 4, Nov. 1995.

Lewis, S.M., “Creating a smart power-delivery system,” Transm. & Distrib., vol. 52, no. 1, Jan. 2000, pp.

34-41.

Li A. & Zhong, J., “Market-Based Volt-Var Optimization and It’s Applications on Bottom-Up Load Modeling

Method,” IEEE Transactions on Power Systems, Vol. 36, No. 3, May 2021.

Li, C. & Coster, D.C., “Improved particle swarm optimization algorithms for optimal designs with various

decision criteria,” Mathematics, MDPI, 2022.

Li, J., Huang, H., Lou, B., Peng, Y., Huang, Q. & Xia, K., “Wind Farm Reactive Power and Voltage Control

Strategy Based on Adaptive Discrete Binary Particle Swarm Optimization Algorithm,” 2019 IEEE Asia

172

Power and Energy Engineering Conference (APEEC), 2019, pp. 99-102.

Lin, M., Rayudu, R.K. & Samarasinghe, S., “A review of voltage/var control,” Australasian Univ. Power

Eng. Conf. (AUPEC2003), Christchurch, New Zealand, October 2003.

Liu, C.-C. & Tomsovic, K., “An expert system assisting decision-making of reactive power/voltage control,”

IEEE Trans. on Power Syst., vol. PWRS-1, no. 3, Aug. 1986.

Liu, H., Zhang, C., Chai, Q., Meng, K., Guo, G. & Yang Dong, Z., “Robust Regional Coordination of

Inverter-Based Volt/Var Control via Multi-Agent Deep Reinforcement Learning,” DOI

10.1109/TSG.2021.3104139, IEEE Transactions on Smart Grid, 2021.

Lomi A. & Limpraptono, F.Y., “Implementation of expert system for power system voltage stability

improvement,” Intern. Journal of Electr. Eng., vol. 5, no. 1, June 2017.

Lu, F.-C. & Hsu, Y.-Y., “Fuzzy dynamic programming approach to reactive power/voltage control in a

distribution substation,” IEEE Trans. on Power Syst., vol. 12, no. 2, May 1997.

Mahapatra, S., Badi, M. & Raj, S., “Implementation of PSO, its variants and hybrid GWO-PSO for

improving reactive power planning,” Global Conference for Advancement in Technology (GCAT),

Bangalore, India, Oct. 18-20, 2019.

Mahapatra, S., Dey, B. & Raj, S., “A novel ameliorated Harris Hawk optimizer for solving complex

engineering optimization problems,” Int. J. Intell. Syst., 2021, 36, 7641-7681.

Mahapatra, S., Raj, S. & Mohan Krishna, S., “Optimal TCSC location for reactive power optimization using

oppositional salp swarm algorithm,” in book: Innovation in Electrical Power Engineering, Communication,

and Computing Technology, pp. 413-424, 2020.

Mamandur, K.R.C. & Chenoweth, R.D., “Optimal Control of Reactive Power Flow for Improvements in

Voltage Profiles and for Real Power Loss Minimization,” IEEE Trans. Power Appar. & Syst., PAS-100, no.

7, July 1981.

Manbachi, M., “Smart grid adaptive Volt/VAR optimization in distribution networks,” PhD Thesis, Simon

Fraser University, 2015.

Mangoli, M.K., Lee, K.Y. & Park, Y.M., “Optimal real and reactive power control using linear

programming,” Electr. Power Syst. Res., vol. 26. pp. 1-10, 1993.

Martinez Ramos, J.L., Gomez Exposito, A. & Quintana, V.H., 2005, “Transmission power loss reduction by

interior-point methods: implementation issues and practical experience,” IEE Pro.-Gener. Transm. Distrib.,

Vol. 152, No. 1, January 2005.

Mataifa, H., Krishnamurthy, S. & Kriger, C., 2022, “Volt/VAR Optimization: A Survey of Classical and

Heuristic Optimization Methods,” IEEE Access, vol. 10, 2022, DOI: 10.1109/ACCESS.2022.3146366.

Mehra, R.K., “Hierarchical control design challenge problems for optimal VAR planning and real time

voltage control in electric power systems,” Proc. 33rd Conf. Decision & Control, 1994.

Mehrotra, S., “On the implementation of a primal-dual interior-point method,” SIAM J. Optim. vol. 2, no. 4,

pp. 575-601, 1992.

Miller, T.J.E., “Reactive Power Control in Electric Systems,” John Wiley and Sons, 1982.

Miranda, V., “Fundamentals of evolution strategies and evolutionary programming,” in K.Y. Lee and M.A.

El-Sharkawi (eds.), Modern Heuristic Optimization Techniques: Theory and Applications to Power

Systems, John Wiley & Sons Inc., 2008.

Momoh, J.A. & Tomsovic, K., “Overview and literature survey of fuzzy set theory in power systems,” IEEE

Trans. on Power Syst., vol. 10, no. 3, Aug. 1995.

Momoh, J.A., “Electric power distribution, automation, protection and control,” Taylor & Francis Group,

LLC, CRC Press, Boca Raton, FL., 2007.

Momoh, J.A., 2001, “Electric power system applications of optimization,” Marcel Dekker, Inc., New York,

173

NY, USA.

Momoh, J.A., El-Harway M.E. & Adapa, R., “A review of selected optimal power flow literature to 1993,”

parts I and II, IEEE Trans. Power Syst., vol. 14, no. 1, Feb. 1999, pp. 96-111.

Momoh, J.A., Zheng, W. & D’Arnaud, K., “Fuzzy logic control application to enhance voltage stability of

electric power systems,” 15th Intern. Conf. on Intelligent Syst. Appl. to Power Syst., pp. 1-6, 2009.

Mota-Palomino R. & Quintana, V.H., “Sparse Reactive Power Scheduling by a Penalty Function-Linear

Programming Technique,” IEEE Trans. Power Syst., PWRS-1, no. 3, Aug. 1986.

Myrda, P., “Modeling, simulation and optimization for the 21st century electric power grid,” Electric Power

Research Institute Eds., ECI Symposium Series, 2013.

Narita S. & Hammam, M.S.A.A., “A computational algorithm for real-time control of system voltage and

reactive power, part I-Problem formulation,” IEEE Winter Power Meeting, New York, January 1971.

Negnevitsky, M. & Le, T.L., “An expert system for teaching voltage control in power systems,” 11th Intern.

Conf. on Appl. of Artificial Intelligence in Eng., Florida, 1996.

NERSA, 2014a, “South African Distribution Code: System Operating Code, Version 6.0,” RSA Grid Code

Secretariat.

Nicholson, H. & Sterling, M.J.H., “Optimum Dispatch of Active and Reactive Generation by Quadratic

Programming,” IEEE Power Eng. Society, 1972.

Nocedal J. & Wright, S.J., “Numerical Optimization,” 2nd ed., Springer Science + Business Media LLC.,

New York, 2006.

NRS 048-2:2003, Electricity Supply-Quality of Supply-Part 2: Voltage characteristics, compatibility levels,

limits and assessment methods.

Padilha-Feltrin, A., Rodezno, D.A.Q. & Mantovani, J.R.S., “Volt-VAR multiobjective optimization to peak-

load relief and energy efficiency in distribution systems,” IEEE Trans. on Power Deliv., vol. 30, no. 2, April

2015.

Padullaparti, H.V., Nguyen, Q. Santoso, S., “Advances in volt-var control approaches in utility distribution

systems, IEEE Power & Energy Society Gen. Meet. (PESGM), pp. 1-5, 2016.

Pandya K.S. & Joshi, S.K., “A survey of optimal power flow methods,” Journal of Theoret. and Appl.

Inform. Techn., vol. 4, no. 5, May 2008, pp. 452-458.

Pecas Lopez, J.A., Hatziargyriou, N., Mutale, J., Djapic, P. & Jenkins, N., “Integrating distributed

generation into electric power systems: A review of drivers, challenges and opportunities,” Electric Power

Syst. Res., vol. 77, pp. 1189-1203, 2007.

Peschon, J., Piercy, D.S., Tinney, W.F., Tveit, O.J. & Cuenod, M., “Optimum control of reactive power

flow,” IEEE Trans. Power Appar. & Syst., PAS-87, vol. 1: pp. 40-48, 1968.

Pijarski, P. & Kacejko, P., “Methods of simulated annealing and particle swarm applied to the optimization

of reactive power flow in electric power systems,” Advances in Electrical and Computer Engineering, vol.

18, no. 4, 2018.

Pilo et al., 2014, “Planning and optimization methods for active distribution systems,” Technical Report,

CIGRE Working Group C6.19, August 2014.

Poli, R., Kennedy, J. & Blackwell, T., “Particle swarm optimization: An overview,” Swarm Intell (2007),

1:33-37, Springer Science + Business Media, LLC, 2007.

Porto, V.W., “Evolutionary programming,” in T. Baeck, D.B. Fogel and Z. Michalewicz (eds.), Handbook of

Evolutionary Computation, CRC Press, 1997.

Prabawa, P. & Choi, D-H., “Hierarchical Volt-VAR optimization framework considering voltage control of

smart electric vehicle charging stations under uncertainty,” IEEE Access, 2019.

Puttgen, H., Volzka, D. & Olken, M., “Restructuring and reregulation of the U.S. electric utility industry,”

174

IEEE Power Eng. Rev., vol. 21, no. 2, pp. 8-10, Feb. 2001.

Quintana V.H. & Santos-Nieto, M., “Reactive-power dispatch by successive quadratic programming,” IEEE

Trans. Energy Conv., vol. 4, no. 3, Sept. 1989.

Rabiee A. & Parniani, M., “Voltage security constrained multi-period optimal reactive power flow using

Benders decomposition and optimality condition decompositions,” IEEE Trans. Power Syst., vol. 28, no. 2,

May 2013.

Rahimi, K. et al., “Dynamic control of Volt-VAr devices: an effective approach to overcome associated

issues with high penetration of solar photovoltaic resources,” IEEE/PES Transm. & Distr. Conf. & Expo.

(T&D), pp. 1-5, 2020.

Raj, S. & Bhattacharyya, B., “Optimal placement of TCSC and SVC for reactive power planning using

Whale optimization algorithm,” Swarm and Evolutionary Computation 40 (2018), 131-143.

Rao, S.S., “Engineering optimization: theory and practice,” 3rd ed., John Wiley & Sons, Inc., 1996.

Reynolds, C., “Flocks, herds and schools: a distributed behavioral model,” Computer Graphics, 21(4), pp.

25-34, 1987.

Risi, B-G., Riganti-Fulginei, F. & Laudani, A., “Modern techniques for the optimal power flow problem:

state of the art,” Energies, MDPI, 2022.

Roytelman, I., Wee, B.K. & Lugtu, R.L., “Volt/Var control algorithm for modern distribution management

system,” IEEE Trans. Power Syst., vol. 10, no. 3, Aug. 1995.

Russell S. & Norvig, P., “Artificial Intelligence: A Modern Approach,” 3rd ed., Pearson Education, Inc.,

2010.

Sahli, Z., Hamouda, A., Bekrar, A. & Trentesaux, D., “Hybrid PSO-Tabu search for the optimal reactive

power dispatch problem,” 40th Annual Conf. of IEEE Industr. Electronics Society, IECON 2014, pp. 3536-

3542, 2014.

Saric, A.T. & Stankovic, A.M., “A robust algorithm for volt/var control,” IEEE/PES Power Syst. Conf. &

Expo., pp. 1-8, 2009.

Savvopoulos, N., Evrenosoglu, C.Y., Marinakis, A., Oudalov, A. & Hatziargyriou, N., “A Long-Term

Reactive Power Planning Framework for Transmission Grids with High Shares of Variable Renewable

Generation,” 2019 IEEE Milan PowerTech, 2019, pp. 1-6.

Shi, Y. & Eberhart, R., “A modified particle swarm optimizer,” Proceedings of the IEEE International

Conference on Evolutionary Computation, pp. 69-73, 1998.

Singh, S., Kumar, S., Kalla, U.K., Chandra, A. & Saad, M., “Optimization of rooftop PV system deployment

for LV distribution network,” Intern. Conf. on Sustainable Energy & Future Electr. Transp. (SeFeT), Jan.

2021, GRIET, Huderabad, India.

Sivalingam, C.M.K., Ramachandran, S. & Rajamani, P.S.S., “Reactive power optimization in a power

system network through metaheuristic algorithms,” Turkish Journal of Electr. Eng. & Comp. Sciences, vol.

25, pp. 4615-4623, 2017.

Springer Verlag, 2012, “Appendix E: IEEE 118-bus test system data,” [online]. Available at:

https://link.springer.com/content/pdf/bbm%3A978-1-4615-4473-9%2F1.pdf. Accessed May 05, 2022.

Storn R., & Price, K., “Differential evolution-a simple and efficient adaptive scheme for global optimization

over continuous spaces,” Tech. Rep. TR-95-012, March 1995.

Su, C.-T. & Lin, C.-T., “A new fuzzy control approach to voltage profile enhancement for power systems,”

IEEE Trans. Power Syst., vol. 11, no. 3, Aug. 1996.

Subbaraj, P. & Rajnarayanan, P.N., “Optimal reactive power dispatch using self-adaptive real-coded

genetic algorithm,” Electric Power Syst. Res. vol. 79, 374-381, 2009.

Talukder, S., “Mathematical modeling and applications of particle swarm optimization,” MSc Thesis,

https://link.springer.com/content/pdf/bbm%3A978-1-4615-4473-9%2F1.pdf

175

Blekinge Institute of Technology, Karlskrona, Sweden, 2011.

Taylor, G.A., Song, Y.-H. Irving, M.R. Bradley, M.E. & Williams, T.G., “A review of algorithmic and heuristic

based methods for voltage/var control,” 5th Intern. Power Eng. Conf. (IPEC2001), vol. 1, pp. 117-122,

2001.

Tomsovic, K., “A fuzzy linear programming approach to the reactive power/voltage control problem,” IEEE

Trans. on Power Syst., vol. 7, no. 1, Feb. 1992.

Torres G. & Quintana, V., “An interior-point method for nonlinear optimal power flow using voltage

rectangular coordinates,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1211-1218, 1998.

Torres, G.L., 1998, “Nonlinear Optimal Power Flow by Interior and Non-Interior Point Methods,” Ph.D.

dissertation, Electrical Engineering, University of Waterloo, Canada.

Venkatesh, B., Sadasivam, G. & Abdullah Khan, M., “A new optimal reactive power scheduling method for

loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP

technique,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 844-851, May 2000.

Vitor T.S. & Vieira, J.C.M., “A robust volt/var control via multi-objective optimization,” 13th IEEE Intern.

Conf. Indust. Appl., 2018.

Wagner, W.R., Keyhani, A., Hao, S. & Wong, T.C., “A rule-based approach to decentralized voltage

control,” IEEE Trans. on Power Syst., vol. 5, no. 2, May 1990.

Wang, P., Mou, Q., Liu, X., Gu, W. & Chen, W., “Start-up control of a synchronous condenser integrated

HVDC system with power electronics based static frequency converter,” IEEE Access, vol. 7, pp. 146914-

146921, 2019.

Wilson, E.O., “Sociobiology: The new synthesis,” Belknap Press, Cambridge, MA, 1975.

Wood, A.J., Wollenberg, B.F. & Sheble, G.B., “Power Generation, Operation and Control,” 3rd ed., John

Wiley & Sons, Inc., 2014.

Wright, S.J., “Primal-dual interior-point methods, Society for Industr. & Appl. Math., Univ. City Science

Center, Philadelphia, 1997.

Wu Q.H. & Ma, J.T., “Power system optimal reactive power dispatch using evolutionary programming,”

IEEE Trans. on Power Syst., vol. 10, no. 3., 1995

Xiang-jun, L., “Research and development on substation voltage and reactive power control based on

expert system,” 6th IEEE Conf. on Industr. Electronics & Appl., pp. 489-492, 2011.

Xu T. & Wu, W., “Accelerated ADMM-Based Fully Distributed Inverter-Based Volt/Var Control Strategy for

Active Distribution Networks,” IEEE Transactions on Industrial Informatics, Vol. 16, No. 12, Dec. 2020.

Yokoyama, R., Nimura, T. & Nakanish, Y., “A coordinated control of voltage and reactive power by

heuristic modeling and approximate reasoning,” IEEE Trans. on Power Syst., vol. 8, no. 2, May 1993.

Yu, D.C., Fagan, J.E., Foote, B. & Aly, A.A., “An optimal load flow study by the generalized reduced

gradient approach,” Electr. Power Syst. Res., vol. 10, 47-53, 1986.

Zhang, W., Li, F. & Tolbert, L.M., “Review of reactive power planning: objectives, constraints and

algorithms,” IEEE Trans. Power Syst., vol. 22, no. 4, Nov. 2007, pp. 2177-2186.

Zhang, Y., Wang, X., Wang, J. & Zhang, Y., “Deep Reinforcement Learning Based Volt-VAR Optimization

in Smart Distribution Systems,” IEEE Transactions on Smart Grid, Vol. 12, No. 1, Jan. 2021.

Zheng, W., Wu, W., Zhang, B. & Wang, Y., “Robust reactive power optimization and voltage control

method for active distribution networks via dual time-scale coordination,” IET Gener. Transm. Distrib., vol.

11, Iss. 6, pp. 1461-1471, 2017

Zhou, X., Wei, K., Ma, Y. & Gao, Z., “A Review of Reactive Power Compensation Devices,” 2018 IEEE

International Conference on Mechatronics and Automation (ICMA), 2018, pp. 2020-2024.

Zhu, J., “Optimization of power system operation,” John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

176

APPENDICES

177

APPENDIX A: SOFTWARE PROGRAMS FOR CHAPTER 4

A.1 Function to implement the interior-point method (IPM) for a general nonlinear

 programming problem with inequality constraints

function [x,dx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu, gradL_norm,fval,

cond]=ipm_generic_nonlinear(f3,x0,s0,mu0,h3, sigma)

zeta=.99995;

x=x0;

s=s0;

mu=mu0;

niq=length(h3(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

eps_1=1e-4;

eps_2=1e-4;

eps_mu=1e-4;

maxIt=30;

Lam_i=diag(lam_i);

%mu=sigma*(s'*lam_i)/2/niq;

grad_norm=[];

X=[];

Mu=[];

[f, h, dh, gL, g2L]=f3(x, lam_i);

c1=max(h);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

grad_norm=[grad_norm; c2];

X=[X;x0'];

Mu=[Mu; c5];

converged=c1<=0&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu;

fprev=f;

i=1;

while (~converged && i<=maxIt)

A=g2L+dh'*Si*Lam_i*dh;

B=gL+dh'*Si*(mu*e+Lam_i*h);

gradL_norm=norm(gL,inf);

dx=-A\B;

ds=-h-s-dh*dx;

dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

178

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

x=x+alpha*dx;

s=s+alpha*ds;

lam_i=lam_i+alpha*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

[f, h, dh, gL, g2L]=f3(x, lam_i);

fval=f;

i=i+1;

c1=max(h);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

converged=c1<=0&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu;

fprev=f;

cond.num_iterations=i;

grad_norm=[grad_norm; c2];

X=[X;x'];

Mu=[Mu; c5];

end

cond.primal_feasibility=c1;

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.B=B;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.grad_norm=grad_norm;

179

cond.X=X;

cond.Mu=Mu;

A.2 Function to define the objective function, constraints, and the Jacobian and

 Hessian of the Lagrangian of the problem

function [f, h, dh, gL, g2L]=func(x, lam_i)

f=x(1)*x(2);

h=[x(1)-x(2)-2; -x(1)+x(2)+1];

dh=[1 -1; -1 1];

grad_f=[x(2); x(1)];

grad_2_f=[0 1; 1 0];

grad_h_t_lam=[lam_i(1)-lam_i(2); -lam_i(1)+lam_i(2)];

grad_2_h_t_lam=0;

gL=grad_f+grad_h_t_lam;

g2L=grad_2_f+grad_2_h_t_lam;

A.3 MATLAB script that calls the IPM to implement the example problem in section

 4.3.8

clear

clc

% File name: ipm_generic_nolinear_test.m

%==

% Test script to test the interior-point algorithm on a generic

% nonlinear function

%===

% Define initial solution estimate and IPM parameters:

% slack variables, barrier parameter, and centering parameter

x0=[2 1]';

s0=[1 1]';

mu0=10;

sigma=.15;

% Call the interior-point algorithm:

tic

[x,dx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu, gradL_norm,fval,

cond]=ipm_generic_nonlinear(@func,x0,s0,mu0,@nonlincon, sigma)

toc

% Extract some results:

t=1:length(cond.Mu);

%t=t(1:6);

x1=cond.X(:,1);

%x1=x1(1:6);

x2=cond.X(:,2);

%x2=x2(1:6);

180

gNorm=cond.grad_norm;

%gNorm=gNorm(1:6);

mu=cond.Mu;

%mu=mu(1:6);

% Plot the results:

figure(1)

plot(t,x1,t,x2,'r--');

title('Trajectories of x_1 and x_2 over the PDIPA''s iterations for problem

(4.29)');

legend('x_1','x_2');

xlabel('Iteration number');

ylabel('x_1,x_2');

axis([1 7 -1 2]);

grid

figure(2)

[hAx, ~, hLine2]=plotyy(t,gNorm,t,mu);

title('Gradient norm and barrier parameter trajectories for problem (4.29)')

legend('Gradient norm of the Lagrangian','Barrier parameter (\mu)')

xlabel('Iteration number')

ylabel(hAx(1),'Gradient norm of Lagrangian');

ylabel(hAx(2),'Barrier parameter (\mu)');

hLine2.LineStyle='--';

axis([1 7 0 .2]);

grid

181

APPENDIX B: SOFTWARE PROGRAMS FOR CHAPTER 5

B.1 Function that computes the residues of the load flow problem

function dF=dF(x, Vgref)

global E F G B bus_data nbus Cf

% Define some parameters:

bus_type=bus_data(:,1);

Pg=bus_data(:,4);

Qg=bus_data(:,5);

Pd=bus_data(:,6);

Qd=bus_data(:,7);

Pdg=Pd-Pg;

Qdg=Qd-Qg;

Vsq=E.^2+F.^2;

% Update the voltage vectors E, F from the input x

E(1)=sqrt(Vgref(1)^2-F(1)^2);

k=1;

for i=2:nbus

 E(i)=x(k);

 F(i)=x(k+1);

 k=k+2;

end

% Generate the vector of bus power and voltage residues:

dF=[];

for i=2:nbus

 Pi=G(i,i)*Vsq(i)+Pdg(i); % Each bus has a real power balance residue

 for j=1:nbus

 if (Cf(i,j)==1 && i~=j)

 Pi=Pi+E(i)*(G(i,j)*E(j)-B(i,j)*F(j))+...

 F(i)*(G(i,j)*F(j)+B(i,j)*E(j));

 end

 end

 dF=[dF Pi];

 if (bus_type(i)==2) % PV bus, requires voltage balance residue

 dVi2=Vgref(i)^2-Vsq(i);

 dF=[dF dVi2];

 else % PQ bus, requires reactive power balance residue

 Qi=-B(i,i)*Vsq(i)+Qdg(i);

 for j=1:nbus

 if (Cf(i,j)==1 && i~=j)

 Qi=Qi+F(i)*(G(i,j)*E(j)-B(i,j)*F(j))-...

 E(i)*(G(i,j)*F(j)+B(i,j)*E(j));

 end

 end

 dF=[dF Qi];

 end

182

end

dF=dF';

B.2 Function that computes the Jacobian of the power flow equations for the load

 flow problem

function J=jacobian(x)

global E F G B nbus Cf bus_type

% Update the voltage vectors E, F from the input x

k=1;

for i=2:nbus

 E(i)=x(k);

 F(i)=x(k+1);

 k=k+2;

end

% Generate the Jacobian of bus power and voltage residues:

J=[]; % Initialize Jacobian to empty matrix:

for i=2:nbus

 dPi=[]; % Vector of partial derivatives of Pi:

 for j=2:nbus

 if (i==j) % dPi/dei and dPi/dfi

 dPidei=2*G(i,i)*E(i);

 dPidfi=2*G(i,i)*F(i);

 for k=1:nbus

 if (Cf(i,k)==1 && i~=k)

 dPidei=dPidei+G(i,k)*E(k)-B(i,k)*F(k);

 dPidfi=dPidfi+G(i,k)*F(k)+B(i,k)*E(k);

 end

 end

 dPi=[dPi dPidei dPidfi];

 else

 dPidej=0;

 dPidfj=0;

 if (Cf(i,j)==1 && i~=j)

 dPidej=G(i,j)*E(i)+B(i,j)*F(i);

 dPidfj=G(i,j)*F(i)-B(i,j)*E(i);

 end

 dPi=[dPi dPidej dPidfj];

 end

 end

 J=[J; dPi];

 if (bus_type(i)==2) % PV bus, vector of partial derivatives of dVi^2:

 dVi2=[];

 for j=2:nbus

 dVi2dej=0;

 dVi2dfj=0;

183

 if (i==j)

 dVi2dej=-2*E(i);

 dVi2dfj=-2*F(i);

 end

 dVi2=[dVi2 dVi2dej dVi2dfj];

 end

 J=[J; dVi2];

 else % PQ bus, vector of partial derivatives of dQi:

 dQi=[];

 for j=2:nbus

 if (i==j) % dQi/dei and dQi/dfi

 dQidei=-2*B(i,i)*E(i);

 dQidfi=-2*B(i,i)*F(i);

 for k=1:nbus

 if (Cf(i,k)==1 && i~=k)

 dQidei=dQidei-G(i,k)*F(k)-B(i,k)*E(k);

 dQidfi=dQidfi+G(i,k)*E(k)-B(i,k)*F(k);

 end

 end

 dQi=[dQi dQidei dQidfi];

 else

 dQidej=0;

 dQidfj=0;

 if (Cf(i,j)==1 && i~=j)

 dQidej=G(i,j)*F(i)-B(i,j)*E(i);

 dQidfj=-G(i,j)*E(i)-B(i,j)*F(i);

 end

 dQi=[dQi dQidej dQidfj];

 end

 end

 J=[J; dQi];

 end

end

B.3 Function that implements the Newton-Raphson load flow algorithm

function [V, output]=NR_load_flow(dF, J, x0, Vgref)

global E F

x=x0;

tol=1e-3;

maxIt=10;

mismatch=max(norm(dF(x,Vgref), inf));

converged=(mismatch<=tol);

i=1;

while (~converged && i<maxIt)

 dV=-J(x)\dF(x,Vgref);

 x=x+dV;

184

 mismatch=max(norm(dF(x,Vgref), Inf));

 converged=(mismatch<=tol);

 i=i+1;

end

V=E+1i*F;

Vm=sqrt(E.^2+F.^2);

Va=180/pi*atan(F./E);

result='Failed to converge';

if (converged)

 result='converged successfully';

end

output.num_iter=i;

output.exit_flag=converged;

output.result=result;

output.mismatch=mismatch;

output.V=[Vm Va];

B.4 MATLAB script that runs the Newton-Raphson load flow computation for the 3-

 bus system

clear

close all

clc

% File name: three_bus_system_NR_load_flow.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. Vgref=Vgref_0()

% 5. dF=dF(x, Vgref)

% 6. J=jacobian(x)

% 7. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

%

% Bus Data:

% Volt/VAR optimization for a 3-bus system:

% Number of buses : 3

% Number of lines : 3

% Number of generators : 2

% Number of loads : 1

global bus_data Cf E F G B bus_type nbus

% bus_data is matrix in which each row applies to a bus, and specifies

% (numbers in parentheses are column numbers of the bus_data matrix):

185

%

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%===

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 1.02 0 0 0 0 0 ;...

 3 1 0 0 0 2 .5 ;...

 2 1.03 0 1.5 0 0 0];

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

% bus_data(2,end)=-.5;

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from_bus=[1 1 2];

to_bus=[2 3 3];

r=[.02 .0059 .0055];

x=[.06 .0235 .0183];

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x);

186

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

global deltaF JJ deltaX X

deltaF=[];

JJ=[];

deltaX=[];

X=[];

format long

tic

[~, output]=NR_load_flow1(@dF, @jacobian, x0, Vgref);

toc

v=[output.V(:,1) output.V(:,2)]

% mismatch=output.dF

% J=output.jacobian

% dX=output.dX

% XX=output.X

deltaF

JJ

deltaX

X

% Computes system losses after the load flow algorithm has terminated

[losses, ~]=loss_func();

losses=-losses

187

B.5 Function that implements the primal-dual interior-point method-based

 Volt/VAR optimization (PDIPM-VVO) for the 3-bus system, incorporating the

 Newton-Raphson load flow computation

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond,

output]=ipm_3bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter)

global E F

%zeta=.99995;

zeta=.9995;

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Initial load flow voltage results:

Vinit=output.V(:,1);

% Initial system real power losses:

[initial_loss, ~, ~]=loss_func_3bus();

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

s=s0;

mu=mu0;

niq=length(h(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

Lam_i=diag(lam_i);

eps_1=1e-3;

eps_2=1e-3;

eps_mu=1e-3;

i=1;

[f, h, dh, gL, g2L]=Func(x, lam_i);

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x, inf)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

fval=[];

188

fval=[fval; f];

X=[];

X=[X x];

adx=[];

iter=[];

iter=[iter; i];

Loss=[];

Loss=[Loss; initial_loss];

Vslack=[E(1) F(1)];

while (~converged && i<=maxIter)

 A=g2L+dh'*Si*Lam_i*dh;

 b=gL+dh'*Si*(mu*e+Lam_i*h);

 dx=-A\b;

 ds=-h-s-dh*dx;

 dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

if (alpha_p>.1 && alpha_d>.1)

 alpha_p=alpha_d;

end

x=x+alpha_p*dx;

s=s+alpha_p*ds;

lam_i=lam_i+alpha_d*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

i=i+1;

% Define updated initial voltage vector for the NR load flow algorithm:

x0=define_updated_x0(x);

% Define generator voltage reference vector for the NR load flow algorithm

Vgref=updated_Vgref(x);

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

189

F=imag(V);

% Vslack:

Vslack=[Vslack; E(1) F(1)];

[x(1), x(2), x(3)]=deal(E(1), E(3), F(3));

[f, h, dh, gL, g2L]=Func(x, lam_i);

loss=f;

fval=[fval;f];

X=[X x];

adx=[adx alpha_p*dx];

iter=[iter; i];

Loss=[Loss; loss];

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x, inf));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

cond.num_iterations=i;

end

cond.primal_feasibility=max(h);

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.b=b;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.initial_loss=initial_loss;

cond.loss=Loss;

cond.iter=iter;

cond.V1=Vslack;

cond.Vinit=Vinit;

B.6 Function that computes the objective function, its gradient and Hessian for the

 3-bus system

function [f, df, d2f]=loss_func_3bus()

global E F G

f=G(1,2)*((E(1)-E(2))^2+(F(1)-F(2))^2)+...

190

 G(1,3)*((E(1)-E(3))^2+(F(1)-F(3))^2)+...

 G(2,3)*((E(2)-E(3))^2+(F(2)-F(3))^2);

df=2*[G(1,2)*(E(1)-E(2))+G(1,3)*(E(1)-E(3));...

 -G(1,3)*(E(1)-E(3))-G(2,3)*(E(2)-E(3));...

 -G(1,3)*(F(1)-F(3))-G(2,3)*(F(2)-F(3))];

d2f=2*[G(1,2)+G(1,3) -G(1,3) 0;...

 -G(1,3) G(1,3)+G(2,3) 0;...

 0 0 G(1,3)+G(2,3)];

B.7 Function that computes the constraint functions, their Jacobian and Hessian

 for the 3-bus system

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i)

global E F nbus

Vmsq=.95^2;

VMsq=1.1^2;

[E(1), E(3), F(3)]=deal(x(1), x(2), x(3));

% Define inequality constraints h(x):

h=zeros(2*nbus,1);

k=1;

for i=1:nbus

 h(k)=-(E(i)^2+F(i)^2)+Vmsq;

 h(k+1)=E(i)^2+F(i)^2-VMsq;

 k=k+2;

end

% Define the Jacobian of the inequality constraints dh(x):

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i):

dh=zeros(2*nbus, length(x));

[dh(1,1), dh(2,1), dh(5,2), dh(5,3), dh(6,2), dh(6,3)]=...

 deal(-2*E(1), 2*E(1), -2*E(3), -2*F(3), 2*E(3), 2*F(3));

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));...

 E(3)*(lam_i(6)-lam_i(5));...

 F(3)*(lam_i(6)-lam_i(5))];

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(6)-lam_i(5), lam_i(6)-lam_i(5)];

d2ht_lam_i=diag(d2ht_lam_i_diag);

B.8 Function that computes the Jacobian and Hessian of the Lagrangian of the

 VVO problem for the 3-bus system

function [f, h, dh, gL, g2L]=f_3bus(x, lam_i)

% Define objective function, its gradient and hessian [f, df, d2f]:

191

[f, df, d2f]=loss_func_3bus();

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i,

d2ht_lam_i]:

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i);

% Define gradient and Hessian of Lagrangian, gL, g2L:

gL=df+dht_lam_i;

g2L=d2f-d2ht_lam_i;

B.9 MATLAB script that runs the PDIPM-VVO algorithm for the 3-bus system

clear

close all

clc

% File name: three_bus_system_pdipm_vvo_test.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. Vgref=Vgref_0()

% 5. dF=dF(x, Vgref)

% 6. J=jacobian(x)

% 7. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

% 8. h=h_3bus(x)

% 9. [f, df, d2f]=loss_func_3bus()

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_3bus(x, lam_i)

% 11. [f, h, dh, gL, g2L]=f_3bus(x, lam_i)

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

% ipm_3bus(@f_3bus,x0,s0,mu0, sigma, @h_3bus, @dF, @jacobian,...

% Vgref, maxIter)

% 13. x=update_control_vector()

% 14. update_generator_voltages(x)

% 15. Vgref=updated_Vgref(x)

%

% Bus Data:

% Volt/VAR optimization for a 3-bus system:

% Number of buses : 3

% Number of lines : 3

% Number of generators : 2

% Number of loads : 1

global bus_data Cf E F G B bus_type nbus

% bus_data is matrix in which each row applies to a bus, and specifies

192

% (numbers in parentheses are column numbers of the bus_data matrix):

%

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%===

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 1.02 0 0 0 0 0 ;...

 3 1 0 0 0 2 .5 ;...

 2 1.03 0 1.5 0 0 0];

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

% bus_data(2,end)=-.5;

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from_bus=[1 1 2];

to_bus=[2 3 3];

r=[.02 .0059 .0055];

x=[.06 .0235 .0183];

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x);

193

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

% global deltaF JJ deltaX X

% deltaF=[];

% JJ=[];

% deltaX=[];

% X=[];

%

% format long

% tic

% [~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref);

% toc

% v=[output.V(:,1) output.V(:,2)]

% mismatch=output.dF

% J=output.jacobian

% dX=output.dX

% XX=output.X

%

% deltaF

% JJ

% deltaX

% X

%

% Computes system losses after the load flow algorithm has terminated

[losses, ~]=loss_func();

194

losses=-losses

% Perform Volt/VAR optimization

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies

% the Newton method to compute the search direction for the primal-dual

% system of the VVO problem derived on the basis of the perturbed KKT

% (first-order) optimality conditions.

%

% Computation of the Newton step requires calculating the first- and

% second-order partial derivatives of the objective and constraint

% functions. The IPM algorithm only considers the inequality constraints

% (in this implementation only the bus voltage magnitude constraints),

% the equality constraints (real and reactive power balance equations)

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at

% each iteration of the Newton step of the IPM algorithm, the load flow

% algorithm is executed once the primal and dual variables have been

% updated.

%

% The IPM algorithm needs the following functions to execute:

%

% 1. f_3bus(), which computes the gradient and hessian of the Lagrangian

% function of the VVO problem, which are required to compute the

% Newton step;

% 2. loss_func_3bus(), which is called by f_3bus(), to compute the

% objective, its gradient and hessian;

% 3. h_gradh_hessh_3bus(), which is also called by f_3bus, to compute

% the constraint functions, the Jacobian and hessian thereof as well;

% 4. h_3bus(), used only once at the beginning of the IPM algorithm

% to determine the number of constraint function;

% 5. dF(), which computes the residues needed by the Newton-Raphson

% load flow algorithm;

% 6. jacobian(), which computes the Jacobian of the residues, also needed

% by the Newton-Raphson load flow algorithm;

% 7. A number of utility functions called by the functions stated above,

% including update_generator_voltages(), update_control_vector(),

% define_updated_x0(), updated_Vgref();

%

% The IPM algorithm also requires a number of parameters, such as the

% barrier parameter (mu), the centering parameter (zeta), and the

% choice of initial primal and dual variables.

% Initialize some input parameters:

xc=update_control_vector();

h0=h_3bus(xc);

s0=abs(h0);

s0(s0==0)=.01;

mu0=10;

sigma=.15;

maxIt=3;

% Run the IPM algorithm on the VVO problem:

tic

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

195

 ipm_3bus6(@f_3bus,x0,s0,mu0, sigma, @h_3bus, @dF, @jacobian, @compute_PQ_3bus,

Vgref, maxIt);

toc

% Output some computation results:

X

mu

cond

output

V=output.V

% Compute the loss reduction:

initial_loss_pu=-cond.loss(1)

final_loss_pu=-cond.loss(end)

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1)

% Plot the loss reduction vs. the iteration number:

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on,

plot(cond.V1(:,2)./cond.V1(:,1),'k--')

legend('E','F','F/E');

title('Fig.1: Slack-bus voltage (real(E) and imaginary(F) components)');

xlabel('Iteration number')

ylabel('V_{slack-pu}')

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2);

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1));

V1=[V1_mag V1_angle]

figure(2)

Vinit=cond.Vinit;

Vfinal=V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}')

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

figure(3)

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*');

grid

title('3-bus system real power loss vs. iteration number', 'FontSize', 11.0)

xlabel('Iteration number')

ylabel('P_{loss} (p.u.)')

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%'];

ax=gca;

y_lims=ax.YLim;

text(1.5,y_lims(2)-.0001, loss_label);

loss=-cond.loss;

P1=cond.PQs(1,:)';

Q1=cond.PQs(2,:)';

Q3=cond.PQs(3,:)';

196

Qsum=.0015+cond.Qsum';

Vg1=cond.Vgen(1,:)';

Vg3=cond.Vgen(2,:)';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

% subplot(221)

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

% title('Fig.4(a): Slack-bus active power and power loss')

% legend('P_{loss}','P_{slack}')

% xlabel('Iteration number')

% ylabel(hAx(1),'Real power loss');

% ylabel(hAx(2),'Slack-bus real power');

% hLine2.LineStyle='--';

% grid

subplot(311)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(312)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(313)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

197

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(10)

subplot(121)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

198

subplot(122)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(11)

subplot(211)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(12)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

199

B.10 Function that implements the primal-dual interior-point method-based

 Volt/VAR optimization (PDIPM-VVO) for the 6-bus system, incorporating the

 Newton-Raphson load flow computation

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond,

output]=ipm_6bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter)

global E F

%zeta=.99995;

zeta=.9995;

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Initial load flow voltage results:

Vinit=output.V(:,1);

% Initial system real power losses:

[initial_loss, ~, ~]=loss_func_6bus();

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

s=s0;

mu=mu0;

niq=length(h(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

Lam_i=diag(lam_i);

eps_1=1e-3;

eps_2=1e-3;

eps_mu=1e-3;

i=1;

[f, h, dh, gL, g2L]=Func(x, lam_i);

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x, inf)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

fval=[];

200

fval=[fval; f];

X=[];

X=[X x];

adx=[];

iter=[];

iter=[iter; i];

Loss=[];

Loss=[Loss; initial_loss];

Vslack=[E(1) F(1)];

while (~converged && i<=maxIter)

 A=g2L+dh'*Si*Lam_i*dh;

 b=gL+dh'*Si*(mu*e+Lam_i*h);

 dx=-A\b;

 ds=-h-s-dh*dx;

 dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

if (alpha_p>.1 && alpha_d>.1)

 alpha_p=alpha_d;

end

x=x+alpha_p*dx;

s=s+alpha_p*ds;

lam_i=lam_i+alpha_d*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

i=i+1;

% Define updated initial voltage vector for the NR load flow algorithm:

x0=define_updated_x0(x);

% Define generator voltage reference vector for the NR load flow algorithm:

Vgref=updated_Vgref(x);

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

201

F=imag(V);

% Vslack:

Vslack=[Vslack; E(1) F(1)];

[x(1), x(2), x(3), x(4), x(5)]=deal(E(1), E(2), F(2), E(3), F(3));

[f, h, dh, gL, g2L]=Func(x, lam_i);

loss=f;

fval=[fval;f];

X=[X x];

adx=[adx alpha_p*dx];

iter=[iter; i];

Loss=[Loss; loss];

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x, inf));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

cond.num_iterations=i;

end

cond.primal_feasibility=max(h);

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.b=b;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.initial_loss=initial_loss;

cond.loss=Loss;

cond.iter=iter;

cond.V1=Vslack;

cond.Vinit=Vinit;

B.11 Function that computes the objective function, its gradient and Hessian for

 the 6-bus system

function [f, df, d2f]=loss_func_6bus()

global E F G

202

f=G(1,2)*((E(1)-E(2))^2+(F(1)-F(2))^2)+...

 G(1,4)*((E(1)-E(4))^2+(F(1)-F(4))^2)+...

 G(1,5)*((E(1)-E(5))^2+(F(1)-F(5))^2)+...

 G(2,3)*((E(2)-E(3))^2+(F(2)-F(3))^2)+...

 G(2,4)*((E(2)-E(4))^2+(F(2)-F(4))^2)+...

 G(2,5)*((E(2)-E(5))^2+(F(2)-F(5))^2)+...

 G(2,6)*((E(2)-E(6))^2+(F(2)-F(6))^2)+...

 G(3,5)*((E(3)-E(5))^2+(F(3)-F(5))^2)+...

 G(3,6)*((E(3)-E(6))^2+(F(3)-F(6))^2)+...

 G(4,5)*((E(4)-E(5))^2+(F(4)-F(5))^2)+...

 G(5,6)*((E(5)-E(6))^2+(F(5)-F(6))^2);

df=2*[G(1,2)*(E(1)-E(2))+G(1,4)*(E(1)-E(4))+G(1,5)*(E(1)-E(5));...

 G(2,3)*(E(2)-E(3))-G(1,2)*(E(1)-E(2))+G(2,4)*(E(2)-E(4))+...

 G(2,5)*(E(2)-E(5))+G(2,6)*(E(2)-E(6));...

 G(2,3)*(F(2)-F(3))-G(1,2)*(F(1)-F(2))+G(2,4)*(F(2)-F(4))+...

 G(2,5)*(F(2)-F(5))+G(2,6)*(F(2)-F(6));...

 G(3,5)*(E(3)-E(5))-G(2,3)*(E(2)-E(3))+G(3,6)*(E(3)-E(6));...

 G(3,5)*(F(3)-F(5))-G(2,3)*(F(2)-F(3))+G(3,6)*(F(3)-F(6))];

d2f=2*[G(1,2)+G(1,4)+G(1,5) -G(1,2) 0 0 0;...

 -G(1,2) G(1,2)+G(2,3)+G(2,4)+G(2,5)+G(2,6) 0 -G(2,3) 0;...

 0 0 G(1,2)+G(2,3)+G(2,4)+G(2,5)+G(2,6) 0 -G(2,3);...

 0 -G(2,3) 0 G(2,3)+G(3,5)+G(3,6) 0;...

 0 0 -G(2,3) 0 G(2,3)+G(3,5)+G(3,6)];

B.12 Function that computes the constraint functions, their Jacobian and

 Hessian for the 6-bus system

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i)

global E F nbus

Vmsq=.95^2;

VMsq=1.1^2;

[E(1), E(2), F(2), E(3), F(3)]=deal(x(1), x(2), x(3), x(4), x(5));

% Define inequality constraints h(x):

h=zeros(2*nbus,1);

k=1;

for i=1:nbus

 h(k)=-(E(i)^2+F(i)^2)+Vmsq;

 h(k+1)=E(i)^2+F(i)^2-VMsq;

 k=k+2;

end

% Define the Jacobian of the inequality constraints dh(x):

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i):

dh=zeros(2*nbus, length(x));

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(5,4), dh(5,5),...

203

 dh(6,4), dh(6,5)]=deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2),...

 2*F(2), -2*E(3), -2*F(3), 2*E(3), 2*F(3));

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));...

 E(2)*(lam_i(4)-lam_i(3));...

 F(2)*(lam_i(4)-lam_i(3));...

 E(3)*(lam_i(6)-lam_i(5));...

 F(3)*(lam_i(6)-lam_i(5))];

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3),...

 lam_i(4)-lam_i(3), lam_i(6)-lam_i(5), lam_i(6)-lam_i(5)];

d2ht_lam_i=diag(d2ht_lam_i_diag);

B.13 Function that computes the Jacobian and Hessian of the Lagrangian of the

 VVO problem for the 6-bus system

function [f, h, dh, gL, g2L]=f_6bus(x, lam_i)

% Define objective function, its gradient and hessian [f, df, d2f]:

[f, df, d2f]=loss_func_6bus();

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i,

d2ht_lam_i]:

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i);

% Define gradient and Hessian of Lagrangian, gL, g2L:

gL=df+dht_lam_i;

g2L=-d2f+d2ht_lam_i;

B.14 MATLAB script that runs the PDIPM-VVO algorithm for the 6_bus system

clear

close all

clc

% File name: six_bus_system_pdipm_vvo_test.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. Vgref=Vgref_0()

% 5. dF=dF(x, Vgref)

% 6. J=jacobian(x)

% 7. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

% 8. h=h_6bus(x)

204

% 9. [f, df, d2f]=loss_func_6bus()

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_6bus(x, lam_i)

% 11. [f, h, dh, gL, g2L]=f_6bus(x, lam_i)

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

% ipm_6bus(@f_6bus,x0,s0,mu0, sigma, @h_6bus, @dF, @jacobian,...

% Vgref, maxIter)

% 13. x=update_control_vector()

% 14. update_generator_voltages(x)

% 15. Vgref=updated_Vgref(x)

%

% Bus Data:

% Volt/VAR optimization for a 6-bus system:

%

% Number of buses : 6;

% Number of lines : 11;

% Number of generators : 3;

% Number of loads : 3

global bus_data Cf E F G B bus_type nbus

% bus_data is matrix in which each row applies to a bus, and specifies

% (numbers in parentheses are column numbers of the bus_data matrix):

%

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%===

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 1.07 0 0 0 0 0 ;...

 2 1.05 0 .5 0 0 0 ;...

 2 1.05 0 .5 0 0 0 ;...

 3 1 0 0 0 1 .15 ;...

 3 1 0 0 0 1 .15 ;...

 3 1 0 0 0 1 .15];

205

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from_bus=[1 1 1 2 2 2 2 3 3 4 5]';

to_bus=[2 4 5 3 4 5 6 5 6 5 6]';

r=[.1 .05 .08 .05 .05 .1 .07 .12 .02 .2 .1];

x=[.2 .2 .3 .25 .1 .3 .2 .26 .1 .4 .3];

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x);

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

tic

206

[~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref);

toc

v=[output.V(:,1) output.V(:,2)]

% Computes system losses after the load flow algorithm has terminated

[losses, ~, ~]=loss_func_6bus()

%losses=-losses;

% Perform Volt/VAR optimization:

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies

% the Newton method to compute the search direction for the primal-dual

% system of the VVO problem derived on the basis of the perturbed KKT

% (first-order) optimality conditions.

%

% Computation of the Newton step requires calculating the first- and

% second-order partial derivatives of the objective and constraint

% functions. The IPM algorithm only considers the inequality constraints

% (in this implementation only the bus voltage magnitude constraints),

% the equality constraints (real and reactive power balance equations)

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at

% each iteration of the Newton step of the IPM algorithm, the load flow

% algorithm is executed once the primal and dual variables have been

% updated.

%

% The IPM algorithm needs the following functions to execute:

%

% 1. f_6bus(), which computes the gradient and hessian of the Lagrangian

% function of the VVO problem, which are required to compute the

% Newton step;

% 2. loss_func_6bus(), which is called by f_6bus(), to compute the

% objective, its gradient and hessian;

% 3. h_gradh_hessh_6bus(), which is also called by f_6bus, to compute

% the constraint functions, the Jacobian and hessian thereof as well;

% 4. h_6bus(), used only once at the beginning of the IPM algorithm

% to determine the number of constraint function;

% 5. dF(), which computes the residues needed by the Newton-Raphson

% load flow algorithm;

% 6. jacobian(), which computes the Jacobian of the residues, also needed

% by the Newton-Raphson load flow algorithm;

% 7. A number of utility functions called by the functions stated above,

% including update_generator_voltages(), update_control_vector(),

% define_updated_x0(), updated_Vgref();

%

% The IPM algorithm also requires a number of parameters, such as the

% barrier parameter (mu), the centering parameter (zeta), and the

% choice of initial primal and dual variables.

% Initialize some input parameters:

h0=h_6bus(x0);

s0=abs(h0);

s0(s0==0)=.01;

mu0=10;

207

sigma=.15;

maxIt=12;

% Run the IPM algorithm on the VVO problem:

tic

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

 ipm_6bus6(@f_6bus,x0,s0,mu0, sigma, @h_6bus, @dF, @jacobian, Vgref, maxIt);

toc

% Output some computation results:

X

mu

cond

output

V=output.V

% Compute the loss reduction:

initial_loss_pu=-cond.loss(1)

final_loss_pu=-cond.loss(end)

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1)

% Plot the loss reduction vs. the iteration number:

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on,

plot(cond.V1(:,2)./cond.V1(:,1),'k--')

legend('E','F','F/E');

title('Slack-bus voltage (real(E) and imaginary(F) components)');

xlabel('Iteration number')

ylabel('V_{slack-pu}')

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2);

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1));

V1=[V1_mag V1_angle]

figure(2)

Vinit=cond.Vinit;

Vfinal=V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}')

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('six_bus_system_voltage.xlsx', [Vinit Vfinal])

figure(3)

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*');

grid

title('6-bus system real power loss vs. iteration number', 'FontSize', 10.0)

xlabel('Iteration number')

ylabel('P_{loss} (p.u.)')

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%'];

208

ax=gca;

y_lims=ax.YLim;

text(6,y_lims(2)-.0025, loss_label);

loss=-cond.loss;

P1=cond.PQs(1,:)';

Q1=cond.PQs(2,:)';

Q2=cond.PQs(3,:)';

Q3=cond.PQs(4,:)';

Qsum=cond.Qsum';

Vg1=cond.Vgen(1,:)';

Vg2=cond.Vgen(2,:)';

Vg3=cond.Vgen(3,:)';

x1=[0:length(loss)-1]';

x2=[0:length(P1)-1]';

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

209

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('6-bus system: slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

ax=gca;

y_lims=ax.YLim;

text(5,y_lims(2)-.0025, loss_label);

subplot(212)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('6-bus system: total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2],[Q1,Q2,Q3]);

title('Generator reactive powers and power loss')

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx6(1),'Real power loss');

ylabel(hAx6(2),'Generator reactive power outputs');

hLine6(1).LineStyle='--';

hLine6(2).LineStyle=':';

hLine6(2).Color='r';

hLine6(3).LineStyle='-.';

grid

figure(7)

subplot(311)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(312)

210

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(313)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

B.15 Function that implements the primal-dual interior-point method-based

 Volt/VAR optimization (PDIPM-VVO) for the 14-bus system, incorporating the

 Newton-Raphson load flow computation

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond,

output]=ipm_14bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter)

global E F PQs Qsum Vgens

%zeta=.99995;

zeta=.9995;

% Added computation of slack-bus active and generator reactive powers

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

% Initial load flow voltage results:

Vinit=output.V(:,1);

211

% Initial system real power losses:

[initial_loss, ~, ~]=loss_func_14bus();

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

s=s0;

mu=mu0;

niq=length(h(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

Lam_i=diag(lam_i);

eps_1=1e-3;

eps_2=1e-3;

eps_mu=1e-3;

i=1;

[f, h, dh, gL, g2L]=Func(x, lam_i);

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x, inf)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

fval=[];

fval=[fval; f];

X=[];

X=[X x];

adx=[];

iter=[];

iter=[iter; i];

Loss=[];

Loss=[Loss; initial_loss];

Vslack=[E(1) F(1)];

while (~converged && i<=maxIter)

 A=g2L+dh'*Si*Lam_i*dh;

 b=gL+dh'*Si*(mu*e+Lam_i*h);

 dx=-A\b;

 ds=-h-s-dh*dx;

 dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

212

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

if (alpha_p>.1 && alpha_d>.1)

 alpha_p=alpha_d;

end

x=x+alpha_p*dx;

s=s+alpha_p*ds;

lam_i=lam_i+alpha_d*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

i=i+1;

% Define updated initial voltage vector for the NR load flow algorithm:

x0=define_updated_x0(x);

% Define generator voltage reference vector for the NR load flow algorithm:

Vgref=updated_Vgref(x);

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Extract generator bus voltages;

get_Vgen();

% Vslack:

Vslack=[Vslack; E(1) F(1)];

[x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9)]=...

 deal(E(1), E(2), F(2), E(3), F(3), E(6), F(6), E(8), F(8));

[f, h, dh, gL, g2L]=Func(x, lam_i);

loss=f;

fval=[fval;f];

213

X=[X x];

adx=[adx alpha_p*dx];

iter=[iter; i];

Loss=[Loss; loss];

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x, inf));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

cond.num_iterations=i;

end

cond.primal_feasibility=max(h);

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.b=b;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.initial_loss=initial_loss;

cond.loss=Loss;

cond.iter=iter;

cond.V1=Vslack;

cond.Vinit=Vinit;

cond.PQs=PQs;

cond.Qsum=Qsum;

cond.Vgen=Vgens;

B.16 Function that computes the objective function, its gradient and Hessian for

 the 14-bus system

function [f, df, d2f]=loss_func_14bus()

global E F G

f=abs(G(1,2))*((E(1)-E(2))^2+(F(1)-F(2))^2)+abs(G(1,5))*((E(1)-E(5))^2+(F(1)-

F(5))^2)+...

 abs(G(2,3))*((E(2)-E(3))^2+(F(2)-F(3))^2)+abs(G(2,4))*((E(2)-E(4))^2+(F(2)-

F(4))^2)+...

 abs(G(2,5))*((E(2)-E(5))^2+(F(2)-F(5))^2)+abs(G(3,4))*((E(3)-E(4))^2+(F(3)-

F(4))^2)+...

 abs(G(4,5))*((E(4)-E(5))^2+(F(4)-F(5))^2)+abs(G(6,11))*((E(6)-E(11))^2+(F(6)-

F(11))^2)+...

 abs(G(6,12))*((E(6)-E(12))^2+(F(6)-F(12))^2)+abs(G(6,13))*((E(6)-

E(13))^2+(F(6)-F(13))^2)+...

214

 abs(G(9,10))*((E(9)-E(10))^2+(F(9)-F(10))^2)+abs(G(9,14))*((E(9)-

E(14))^2+(F(9)-F(14))^2)+...

 abs(G(10,11))*((E(10)-E(11))^2+(F(10)-F(11))^2)+abs(G(12,13))*((E(12)-

E(13))^2+(F(12)-F(13))^2)+...

 abs(G(13,14))*((E(13)-E(14))^2+(F(13)-F(14))^2);

df=2*[abs(G(1,2))*(E(1)-E(2))+abs(G(1,5))*(E(1)-E(5));...

 abs(G(2,3))*(E(2)-E(3))-abs(G(1,2))*(E(1)-E(2))+abs(G(2,4))*(E(2)-E(4))+...

 abs(G(2,5))*(E(2)-E(5));...

 abs(G(2,3))*(F(2)-F(3))-abs(G(1,2))*(F(1)-F(2))+abs(G(2,4))*(F(2)-F(4))+...

 abs(G(2,5))*(F(2)-F(5));...

 abs(G(3,4))*(E(3)-E(4))-abs(G(2,3))*(E(2)-E(3));...

 abs(G(3,4))*(F(3)-F(4))-abs(G(2,3))*(F(2)-F(3));...

 abs(G(6,11))*(E(6)-E(11))+abs(G(6,12))*(E(6)-E(12))+...

 abs(G(6,13))*(E(6)-E(13));...

 abs(G(6,11))*(F(6)-F(11))+abs(G(6,12))*(F(6)-F(12))+...

 abs(G(6,13))*(F(6)-F(13));...

 0;...

 0];

d2f=zeros(length(df));

d2f(1,1)=2*abs(G(1,2)+G(1,5));

d2f(1,2)=-2*abs(G(1,2));

d2f(2,1)=d2f(1,2);

d2f(2,2)=2*abs(G(1,2)+G(2,3)+G(2,4)+G(2,5));

d2f(2,4)=-2*abs(G(2,3));

d2f(3,3)=2*abs(G(1,2)+G(2,3)+G(2,4)+G(2,5));

d2f(3,5)=-2*abs(G(2,3));

d2f(4,2)=d2f(2,4);

d2f(4,4)=2*abs(G(2,3)+G(3,4));

d2f(5,3)=d2f(3,5);

d2f(5,5)=2*abs(G(2,3)+G(3,4));

d2f(6,6)=2*abs(G(6,11)+G(6,12)+G(6,13));

d2f(7,7)=2*abs(G(6,11)+G(6,12)+G(6,13));

B.17 Function that computes the constraint functions, their Jacobian and

 Hessian for the 14-bus system

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i)

global E F nbus

Vmsq=.95^2;

VMsq=1.1^2;

[E(1), E(2), F(2), E(3), F(3), E(6), F(6), E(8), F(8)]=...

 deal(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9));

% Define inequality constraints h(x):

h=zeros(2*nbus,1);

215

k=1;

for i=1:nbus

 h(k)=-(E(i)^2+F(i)^2)+Vmsq;

 h(k+1)=E(i)^2+F(i)^2-VMsq;

 k=k+2;

end

% Define the Jacobian of the inequality constraints dh(x):

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i):

dh=zeros(2*nbus, length(x));

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(5,4), dh(5,5)]=...

 deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2), 2*F(2), -2*E(3), -2*F(3));

[dh(6,4), dh(6,5), dh(11,6), dh(11,7), dh(12,6), dh(12,7), dh(15,8), dh(15,9),...

 dh(16,8), dh(16,9)]=deal(2*E(3), 2*F(3),-2*E(6), -2*F(6), 2*E(6), 2*F(6),...

 -2*E(8), -2*F(8), 2*E(8), 2*F(8));

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));...

 E(2)*(lam_i(4)-lam_i(3));...

 F(2)*(lam_i(4)-lam_i(3));...

 E(3)*(lam_i(6)-lam_i(5));...

 F(3)*(lam_i(6)-lam_i(5));...

 E(6)*(lam_i(12)-lam_i(11));...

 F(6)*(lam_i(12)-lam_i(11));...

 E(8)*(lam_i(16)-lam_i(15));...

 F(8)*(lam_i(16)-lam_i(15))];

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3), lam_i(4)-lam_i(3),...

 lam_i(6)-lam_i(5), lam_i(6)-lam_i(5), lam_i(12)-lam_i(11), lam_i(12)-

lam_i(11),...

 lam_i(16)-lam_i(15), lam_i(16)-lam_i(15)];

d2ht_lam_i=diag(d2ht_lam_i_diag);

B.18 Function that computes the Jacobian and Hessian of the Lagrangian of the

 VVO problem for the 14-bus system

function [f, h, dh, gL, g2L]=f_14bus(x, lam_i)

% Define objective function, its gradient and hessian [f, df, d2f]:

[f, df, d2f]=loss_func_14bus();

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i,

d2ht_lam_i]:

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i);

% Define gradient and Hessian of Lagrangian, gL, g2L:

% gL=-df+dht_lam_i;

% g2L=d2f-d2ht_lam_i;

% This seems to give better results

gL=-df+dht_lam_i;

g2L=-(d2f+d2ht_lam_i);

216

B.19 MATLAB script that runs the PDIPM-VVO algorithm for the 14_bus system

clear

close all

clc

% File name: fourteen_bus_system_pdipm_vvo_test.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. Vgref=Vgref_0()

% 5. dF=dF(x, Vgref)

% 6. J=jacobian(x)

% 7. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

% 8. h=h_14bus(x)

% 9. [f, df, d2f]=loss_func_14bus()

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_14bus(x, lam_i)

% 11. [f, h, dh, gL, g2L]=f_14bus(x, lam_i)

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

% ipm_14bus(@f_14bus,x0,s0,mu0, sigma, @h_14bus, @dF, @jacobian,...

% Vgref, maxIter)

% 13. x=update_control_vector()

% 14. update_generator_voltages(x)

% 15. Vgref=updated_Vgref(x)

%

% Bus Data:

% Volt/VAR optimization for the IEEE 14-bus system:

%

% Number of buses : 14;

% Number of lines : 20;

% Number of generators : 5;

% Number of loads : 11;

global bus_data Cf E F G B bus_type nbus

% bus_data is matrix in which each row applies to a bus, and specifies:

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

217

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%==

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 1.06 0 0 0 0 0 ;...

 2 1.045 0 .4 0 .217 .127 ;...

 2 1.01 0 0 0 .942 .19 ;...

 3 1 0 0 0 .478 -.039 ;...

 3 1 0 0 0 .076 .016 ;...

 2 1.07 0 0 0 .112 .075 ;...

 3 1 0 0 0 0 0 ;...

 2 1.09 0 0 0 0 0 ;...

 3 1 0 0 0 .295 .166 ;...

 3 1 0 0 0 .09 .058 ;...

 3 1 0 0 0 .035 .018 ;...

 3 1 0 0 0 .061 .016 ;...

 3 1 0 0 0 .135 .058 ;...

 3 1 0 0 0 .149 .05];

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

global from_bus to_bus r x

% Uniformly distributed generated power:

% for i=2:nbus

% if (bus_type(i)==2)

% bus_data(i,4)=.15;

% end

% end

% figure(4), plot(bus_data(:,4)), title('Uniformly distributed power generation');

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from_bus=[1 1 2 2 2 3 4 4 4 5 6 6 6 7 7 9 9 10 12 13]';

to_bus=[2 5 3 4 5 4 5 7 9 6 11 12 13 8 9 10 14 11 13 14]';

r=[.01938 .05403 .04699 .05811 .05695 .06701 .01335 0 0 0 ...

218

 .09498 .12291 .06615 0 0 .03181 .12711 .08205 .22092 .17093];

x=[.05917 .22304 .19797 .17632 .17388 .17103 .04211 .20912 ...

 .55618 .25202 .1989 .25581 .13027 .17615 .11001 .0845 ...

 .27038 .19207 .19988 .34802];

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x);

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

tic

[~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref);

toc

v=[output.V(:,1) output.V(:,2)]

% Computes system losses after the load flow algorithm has terminated

[losses, ~, ~]=loss_func_14bus()

% Perform Volt/VAR optimization:

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies

% the Newton method to compute the search direction for the primal-dual

219

% system of the VVO problem derived on the basis of the perturbed KKT

% (first-order) optimality conditions.

%

% Computation of the Newton step requires calculating the first- and

% second-order partial derivatives of the objective and constraint

% functions. The IPM algorithm only considers the inequality constraints

% (in this implementation only the bus voltage magnitude constraints),

% the equality constraints (real and reactive power balance equations)

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at

% each iteration of the Newton step of the IPM algorithm, the load flow

% algorithm is executed once the primal and dual variables have been

% updated.

%

% The IPM algorithm needs the following functions to execute:

%

% 1. f_14bus(), which computes the gradient and hessian of the Lagrangian

% function of the VVO problem, which are required to compute the

% Newton step;

% 2. loss_func_14bus(), which is called by f_14bus(), to compute the

% objective, its gradient and hessian;

% 3. h_gradh_hessh_14bus(), which is also called by f_14bus, to compute

% the constraint functions, the Jacobian and hessian thereof as well;

% 4. h_14bus(), used only once at the beginning of the IPM algorithm

% to determine the number of constraint function;

% 5. dF(), which computes the residues needed by the Newton-Raphson

% load flow algorithm;

% 6. jacobian(), which computes the Jacobian of the residues, also needed

% by the Newton-Raphson load flow algorithm;

% 7. A number of utility functions called by the functions stated above,

% including update_generator_voltages(), update_control_vector(),

% define_updated_x0(), updated_Vgref();

%

% The IPM algorithm also requires a number of parameters, such as the

% barrier parameter (mu), the centering parameter (zeta), and the

% choice of initial primal and dual variables.

% Initialize some input parameters:

h0=h_14bus(x0);

s0=abs(h0);

s0(s0==0)=.015;

mu0=10;

sigma=.15;

maxIt=13;

% Run the IPM algorithm on the VVO problem:

tic

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

 ipm_14bus6(@f_14bus,x0,s0,mu0, sigma, @h_14bus, @dF, @jacobian, Vgref, maxIt);

toc

% Output some computation results:

220

X

mu

cond

output

V=output.V

% Compute the loss reduction:

initial_loss_pu=cond.loss(1)

final_loss_pu=cond.loss(end)

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1)

% Plot the loss reduction vs. the iteration number:

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on,

plot(cond.V1(:,2)./cond.V1(:,1),'k--')

legend('E','F','F/E');

title('Slack-bus voltage (real(E) and imaginary(F) components)');

xlabel('Iteration number')

ylabel('V_{slack-pu}')

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2);

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1));

V1=[V1_mag V1_angle]

figure(2)

Vinit=cond.Vinit;

Vfinal=V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}')

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('fourteen_bus_system_voltage.xlsx', [Vinit Vfinal])

figure(3)

plot(cond.iter,cond.loss, 'r',cond.iter,cond.loss, 'b*');

grid

title('IEEE 14-bus system real power loss vs. iteration number')

xlabel('Iteration number')

ylabel('P_{loss} (p.u.)')

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%'];

ax=gca;

y_lims=ax.YLim;

text(.5,y_lims(2)-.0025, loss_label);

loss=cond.loss;

P1=cond.PQs(1,:)';

Q1=cond.PQs(2,:)';

Q2=cond.PQs(3,:)';

Q3=cond.PQs(4,:)';

Q6=cond.PQs(5,:)';

Q8=cond.PQs(6,:)';

221

Qsum=cond.Qsum';

Vg1=cond.Vgen(1,:)';

Vg2=cond.Vgen(2,:)';

Vg3=cond.Vgen(3,:)';

Vg6=cond.Vgen(4,:)';

Vg8=cond.Vgen(5,:)';

x1=[0:length(loss)-1]';

x2=[0:length(P1)-1]';

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q2);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

% figure(5)

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

222

% title('Fig.5: Slack-bus active power and power loss')

% legend('P_{loss}','P_{slack}')

% xlabel('Iteration number')

% ylabel(hAx(1),'Real power loss');

% ylabel(hAx(2),'Slack-bus real power');

% hLine2.LineStyle='--';

% grid

figure(5)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('14-bus system: slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

ax=gca;

y_lims=ax.YLim;

text(.5,y_lims(2)-.0025, loss_label);

subplot(212)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('14-bus system: total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2,x2,x2],[Q1, Q2, Q3, Q6, Q8]);

title('Generator reactive powers and power loss')

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}')

xlabel('Iteration number')

ylabel(hAx6(1),'Real power loss');

ylabel(hAx6(2),'Generator reactive power outputs');

hLine6(1).LineStyle='--';

hLine6(2).LineStyle=':';

hLine6(2).Color='r';

hLine6(3).LineStyle='-.';

grid

% figure(6)

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

% title('Fig.6: Slack-bus reactive power and power loss')

% legend('P_{loss}','Q_{slack}')

% xlabel('Iteration number')

% ylabel(hAx(1),'Real power loss');

223

% ylabel(hAx(2),'Slack-bus reactive power');

% hLine2.LineStyle='--';

% grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q6);

title('Bus-6 generator reactive power and power loss')

legend('P_{loss}','Q_{g6}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-6 generator reactive power');

hLine2.LineStyle='--';

grid

figure(10)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8);

title('Bus-6 generator reactive power and power loss')

legend('P_{loss}','Q_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-8 generator reactive power');

hLine2.LineStyle='--';

grid

figure(11)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

224

figure(12)

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.',x2,Q6,'c-+',x2,Q8,'k-*')

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}')

grid

figure(13)

subplot(311)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(312)

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(313)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(14)

subplot(211)

[hAx, ~, hLine2]=plotyy(x2,Q6,x2,Vg6);

title('Bus-6 generator reactive power and voltage magnitude')

legend('Q_{g6}','V_{g6}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-6 generator reactive power');

ylabel(hAx(2),'Bus-6 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8);

title('Bus-8 generator reactive power and voltage magnitude')

legend('Q_{g8}','V_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-8 generator reactive power');

225

ylabel(hAx(2),'Bus-8 voltage magnitude');

hLine2.LineStyle='--';

grid

B.20 Function that implements the primal-dual interior-point method-based

 Volt/VAR optimization (PDIPM-VVO) for the 30-bus system, incorporating the

 Newton-Raphson load flow computation

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond,

output]=ipm_30bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter)

global E F PQs Qsum Vgens

%zeta=.99995;

zeta=.9995;

% Added computation of slack-bus active and generator reactive powers

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

Vinit=output.V(:,1);

[initial_loss, ~, ~]=loss_func_30bus();

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

s=s0;

mu=mu0;

niq=length(h(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

Lam_i=diag(lam_i);

eps_1=1e-3;

eps_2=1e-3;

226

eps_mu=1e-3;

i=1;

[f, h, dh, gL, g2L]=Func(x, lam_i);

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x, inf)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6;

Vslack=[E(1) F(1)];

fprev=f;

fval=[];

fval=[fval; f];

X=[];

X=[X x];

adx=[];

iter=[];

iter=[iter; i];

Loss=[];

Loss=[Loss; initial_loss];

while (~converged && i<=maxIter)

 A=g2L+dh'*Si*Lam_i*dh;

 b=gL+dh'*Si*(mu*e+Lam_i*h);

 dx=-A\b;

 ds=-h-s-dh*dx;

 dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

if (alpha_p>.1 && alpha_d>.1)

 alpha_p=alpha_d;

end

227

x=x+alpha_p*dx;

s=s+alpha_p*ds;

lam_i=lam_i+alpha_d*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

i=i+1;

% Define updated initial voltage vector for the NR load flow algorithm:

x0=define_updated_x0(x);

% Define generator voltage reference vector for the NR load flow algorithm:

Vgref=updated_Vgref(x);

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Extract generator bus voltages;

get_Vgen();

% Vslack:

Vslack=[Vslack; E(1) F(1)];

[x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11)]=...

 deal(E(1), E(2), F(2), E(5), F(5), E(8), F(8), E(11), F(11), E(13), F(13));

[f, h, dh, gL, g2L]=Func(x, lam_i);

loss=f;

fval=[fval;f];

X=[X x];

adx=[adx alpha_p*dx];

iter=[iter; i];

Loss=[Loss; loss];

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x, inf));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

cond.num_iterations=i;

end

cond.primal_feasibility=max(h);

228

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.b=b;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.initial_loss=initial_loss;

cond.loss=Loss;

cond.iter=iter;

cond.V1=Vslack;

cond.Vinit=Vinit;

cond.PQs=PQs;

cond.Qsum=Qsum;

cond.Vgen=Vgens;

B.21 Function that computes the objective function, its gradient and Hessian for

 the 30-bus system

function [f, df, d2f]=loss_func_30bus()

global E F G

[f, ~]=loss_func();

df=2*[G(1,2)*(E(1)-E(2))+G(1,3)*(E(1)-E(3));...

 G(2,4)*(E(2)-E(4))-G(1,2)*(E(1)-E(2))+G(2,5)*(E(2)-E(5))+G(2,6)*(E(2)-E(6));...

 G(2,4)*(F(2)-F(4))-G(1,2)*(F(1)-F(2))+G(2,5)*(F(2)-F(5))+G(2,6)*(F(2)-F(6));...

 G(5,7)*(E(5)-E(7))-G(2,5)*(E(2)-E(5));...

 G(5,7)*(F(5)-F(7))-G(2,5)*(F(2)-F(5));...

 G(8,28)*(E(8)-E(28))-G(6,8)*(E(6)-E(8));...

 G(8,28)*(F(8)-F(28))-G(6,8)*(F(6)-F(8));...

 -G(9,11)*(E(9)-E(11));...

 -G(9,11)*(F(9)-F(11));...

 -G(12,13)*(E(12)-E(13));...

 -G(12,13)*(F(12)-F(13))];

d2f=zeros(length(df));

d2f(1,1)=2*(G(1,2)+G(1,3));

d2f(1,2)=-2*G(1,2);

d2f(2,1)=d2f(1,2);

d2f(2,2)=2*(G(1,2)+G(2,4)+G(2,5)+G(2,6));

d2f(2,4)=-2*G(2,5);

d2f(3,3)=2*(G(1,2)+G(2,4)+G(2,5)+G(2,6));

d2f(3,5)=-2*G(2,5);

d2f(4,2)=d2f(2,4);

d2f(4,4)=2*(G(2,5)+G(5,7));

d2f(5,3)=d2f(3,5);

d2f(5,5)=2*(G(2,5)+G(5,7));

d2f(6,6)=2*(G(6,8)+G(8,28));

d2f(7,7)=2*(G(6,8)+G(8,28));

229

d2f(8,8)=2*G(9,11);

d2f(9,9)=2*G(9,11);

d2f(10,10)=2*G(12,13);

d2f(11,11)=2*G(12,13);

B.22 Function that computes the constraint functions, their Jacobian and

 Hessian for the 30-bus system

function [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i)

global E F nbus

Vmsq=.95^2;

VMsq=1.1^2;

[E(1), E(2), F(2), E(5), F(5), E(8), F(8), E(11), F(11), E(13), F(13)]=...

 deal(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11));

% Define inequality constraints h(x):

h=zeros(2*nbus,1);

k=1;

for i=1:nbus

 h(k)=-(E(i)^2+F(i)^2)+Vmsq;

 h(k+1)=E(i)^2+F(i)^2-VMsq;

 k=k+2;

end

% Define the Jacobian of the inequality constraints dh(x):

% (transposed and multiplied with the Lagrangian multiplier vector lambda_i):

dh=zeros(2*nbus, length(x));

[dh(1,1), dh(2,1), dh(3,2), dh(3,3), dh(4,2), dh(4,3), dh(9,4), dh(9,5),...

 dh(10,4), dh(10,5), dh(15,6), dh(15,7), dh(16,6), dh(16,7), dh(21,8),...

 dh(21,9), dh(22,8), dh(22,9), dh(25,10), dh(25,11), dh(26,10), dh(26,11)]=...

 deal(-2*E(1), 2*E(1), -2*E(2), -2*F(2), 2*E(2), 2*F(2), -2*E(5), -2*F(5),...

 2*E(5), 2*F(5), -2*E(8), -2*F(8), 2*E(8), 2*F(8), -2*E(11), -2*F(11),...

 2*E(11), 2*F(11), -2*E(13), -2*F(13), 2*E(13), 2*F(13));

dht_lam_i=2*[E(1)*(lam_i(2)-lam_i(1));...

 E(2)*(lam_i(4)-lam_i(3));...

 F(2)*(lam_i(4)-lam_i(3));...

 E(5)*(lam_i(10)-lam_i(9));...

 F(5)*(lam_i(10)-lam_i(9));...

 E(8)*(lam_i(16)-lam_i(15));...

 F(8)*(lam_i(16)-lam_i(15));...

 E(11)*(lam_i(22)-lam_i(21));...

 F(11)*(lam_i(22)-lam_i(21));...

 E(13)*(lam_i(26)-lam_i(25));...

 F(13)*(lam_i(26)-lam_i(25))];

d2ht_lam_i_diag=2*[lam_i(2)-lam_i(1), lam_i(4)-lam_i(3), lam_i(4)-lam_i(3),...

 lam_i(10)-lam_i(9), lam_i(10)-lam_i(9), lam_i(16)-lam_i(15), lam_i(16)-

lam_i(15),...

230

 lam_i(22)-lam_i(21), lam_i(22)-lam_i(21), lam_i(26)-lam_i(25), lam_i(26)-

lam_i(25)];

d2ht_lam_i=diag(d2ht_lam_i_diag);

B.23 Function that computes the Jacobian and Hessian of the Lagrangian of the

 VVO problem for the 30-bus system

function [f, h, dh, gL, g2L]=f_30bus(x, lam_i)

% Define objective function, its gradient and hessian [f, df, d2f]:

[f, df, d2f]=loss_func_30bus();

%[~, f, df, d2f, ~, ~]=loss_func_sym_30bus();

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i,

d2ht_lam_i]:

[h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i);

% Define gradient and Hessian of Lagrangian, gL, g2L:

gL=df+dht_lam_i;

g2L=-d2f+d2ht_lam_i;

B.24 MATLAB script that runs the PDIPM-VVO algorithm for the 30-bus system

clear

close all

clc

% File name: thirty_bus_system_pdipm_vvo_test.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. Vgref=Vgref_0()

% 5. dF=dF(x, Vgref)

% 6. J=jacobian(x)

% 7. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

% 8. h=h_30bus(x)

% 9. [f, df, d2f]=loss_func_30bus()

% 10. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_30bus(x, lam_i)

% 11. [f, h, dh, gL, g2L]=f_30bus(x, lam_i)

% 12. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

% ipm_30bus(@f_30bus,x0,s0,mu0, sigma, @h_30bus, @dF, @jacobian,...

231

% Vgref, maxIter)

% 13. x=update_control_vector()

% 14. update_generator_voltages(x)

% 15. Vgref=updated_Vgref(x)

%

% Bus Data:

%

% Volt/VAR optimization for the IEEE 30-bus system:

% Number of buses : 30;

% Number of lines : 41;

% Number of generators : 6;

% Number of loads : 21

global bus_data Cf E F G B bus_type nbus

% bus_data is matrix in which each row applies to a bus, and specifies:

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%===

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 1 0 0 0 0 0 ;...

 2 1 0 .4882 0 .217 .127;...

 3 1 0 0 0 .024 .012;...

 3 1 0 0 0 .076 .016;...

 2 1 0 .2151 0 .942 .19 ;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 .228 .109;...

 2 1 0 .2215 0 .3 .3 ;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 .058 .02 ;...

 2 1 0 .1214 0 0 0 ;...

 3 1 0 0 0 .112 .075;...

 2 1 0 .12 0 0 0 ;...

232

 3 1 0 0 0 .062 .016;...

 3 1 0 0 0 .082 .025;...

 3 1 0 0 0 .035 .016;...

 3 1 0 0 0 .09 .058;...

 3 1 0 0 0 .032 .009;...

 3 1 0 0 0 .095 .034;...

 3 1 0 0 0 .022 .007;...

 3 1 0 0 0 .175 .112;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 .032 .016;...

 3 1 0 0 0 .087 .067;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 .035 .023;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 0 0 ;...

 3 1 0 0 0 .024 .009;...

 3 1 0 0 0 .106 .019];

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from_bus=[1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 6, 6, 6, 8, 9, 9,...

 10, 10, 10, 10, 12, 12, 12, 12, 14, 15, 15, 16, 18, 19, 21,...

 22, 23, 24, 25, 25, 27, 27, 28, 29];

to_bus=[2, 3, 4, 5, 6, 4, 6, 12, 7, 7, 8, 9, 10, 28, 28, 10,...

 11, 17, 20, 21, 22, 13, 14, 15, 16, 15, 18, 23, 17, 19, 20,...

 22, 24, 24, 25, 26, 27, 29, 30, 27, 30];

r=[.0192, .0452, .057, .0472, .0581, .0132, .0119, 0, .046, .0267,...

 .012, 0, 0, .0169, .0636, 0, 0, .0324, .0936, .0348, .0727, 0,...

 .1231, .0662, .0945, .221, .107, .1, .0824, .0639, .034, .0116,...

 .115, .132, .1885, .2544, .1093, .2198, .3202, 0, .2399];

x=[.0575, .1852, .1737, .1983, .1763, .0379, .0414, .256, .116, .082,...

 .042, .208, .556, .0599, .2, .208, .11, .0845, .209, .0749, .1499,...

 .14, .2559, .1304, .1987, .1997, .2185, .202, .1932, .1292, .068,...

 .0236, .179, .27, .3292, .38, .2087, .4153, .6027, .396, .4533];

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[G, B, Cf]=compute_Ybus(from_bus, to_bus, r, x);

233

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

% tic

% [~, output]=NR_load_flow(@dF, @jacobian, x0, Vgref);

% toc

%

% v=[output.V(:,1) output.V(:,2)]

%

% % Computes system losses after the load flow algorithm has terminated

%

% [losses, ~, ~]=loss_func_30bus()

% Perform Volt/VAR optimization:

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies

% the Newton method to compute the search direction for the primal-dual

% system of the VVO problem derived on the basis of the perturbed KKT

% (first-order) optimality conditions.

%

% Computation of the Newton step requires calculating the first- and

% second-order partial derivatives of the objective and constraint

% functions. The IPM algorithm only considers the inequality constraints

% (in this implementation only the bus voltage magnitude constraints),

% the equality constraints (real and reactive power balance equations)

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at

% each iteration of the Newton step of the IPM algorithm, the load flow

% algorithm is executed once the primal and dual variables have been

% updated.

234

%

% The IPM algorithm needs the following functions to execute:

%

% 1. f_30bus(), which computes the gradient and hessian of the Lagrangian

% function of the VVO problem, which are required to compute the

% Newton step;

% 2. loss_func_30bus(), which is called by f_30bus(), to compute the

% objective, its gradient and hessian;

% 3. h_gradh_hessh_30bus(), which is also called by f_30bus, to compute

% the constraint functions, the Jacobian and hessian thereof as well;

% 4. h_30bus(), used only once at the beginning of the IPM algorithm

% to determine the number of constraint function;

% 5. dF(), which computes the residues needed by the Newton-Raphson

% load flow algorithm;

% 6. jacobian(), which computes the Jacobian of the residues, also needed

% by the Newton-Raphson load flow algorithm;

% 7. A number of utility functions called by the functions stated above,

% including update_generator_voltages(), update_control_vector(),

% define_updated_x0(), updated_Vgref();

%

% The IPM algorithm also requires a number of parameters, such as the

% barrier parameter (mu), the centering parameter (zeta), and the

% choice of initial primal and dual variables.

% Initialize some input parameters:

h0=h_30bus(x0);

s0=abs(h0);

s0(s0==0)=.01;

mu0=10;

sigma=.15;

maxIt=13;

% Run the IPM algorithm on the VVO problem:

tic

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

 ipm_30bus6(@f_30bus,x0,s0,mu0, sigma, @h_30bus, @dF, @jacobian, Vgref, maxIt);

toc

% Output some computation results:

X

mu

cond

output

V=output.V

% Compute the loss reduction:

initial_loss_pu=-cond.loss(1)

final_loss_pu=-cond.loss(end)

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1)

235

% Plot the loss reduction vs. the iteration number:

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on,

plot(cond.V1(:,2)./cond.V1(:,1),'k--')

legend('E','F','F/E');

title('Slack-bus voltage (real(E) and imaginary(F) components)');

xlabel('Iteration number')

ylabel('V_{slack-pu}')

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2);

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1));

V1=[V1_mag V1_angle]

figure(2)

Vinit=cond.Vinit;

Vfinal=V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}')

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('thirty_bus_system_voltage.xlsx', [Vinit Vfinal])

figure(3)

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*');

grid

title('IEEE 30-bus system real power loss vs. iteration number', 'FontSize', 10.0)

xlabel('Iteration number')

ylabel('P_{loss} (p.u.)')

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%'];

ax=gca;

y_lims=ax.YLim;

text(.5,y_lims(2)-.0005, loss_label);

loss=-cond.loss;

% Adding 2.2e-3 to P1 makes slack-bus active power

% and power loss coincide; this (value of 2.2e-3)

% seems to only represent a discrepancy due to

% differences in scale of the two quantities

P1=2.2e-3+cond.PQs(1,:)';

Q1=cond.PQs(2,:)';

Q2=cond.PQs(3,:)';

Q5=cond.PQs(4,:)';

Q8=cond.PQs(5,:)';

Q11=cond.PQs(6,:)';

Q13=cond.PQs(7,:)';

Qsum=cond.Qsum';

Vg1=cond.Vgen(1,:)';

Vg2=cond.Vgen(2,:)';

Vg5=cond.Vgen(3,:)';

Vg8=cond.Vgen(4,:)';

Vg11=cond.Vgen(5,:)';

Vg13=cond.Vgen(6,:)';

236

x1=[0:length(loss)-1]';

x2=[0:length(P1)-1]';

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5);

title('Bus-5 generator reactive power and power loss')

legend('P_{loss}','Q_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-5 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q5);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('30-bus system: slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

237

grid

ax=gca;

y_lims=ax.YLim;

text(.5,y_lims(2)-.0005, loss_label);

subplot(212)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('30-bus system: total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx6, ~, hLine6]=plotyy(x1,loss,[x2,x2,x2,x2,x2 x2],[Q1, Q2, Q5, Q8, Q11, Q13]);

title('Generator reactive powers and power loss')

legend('P_{loss}','Q_{slack}','Q_{g2}','Q_{g5}','Q_{g8}','Q_{g11}','Q_{g13}')

xlabel('Iteration number')

ylabel(hAx6(1),'Real power loss');

ylabel(hAx6(2),'Generator reactive power outputs');

hLine6(1).LineStyle='--';

hLine6(2).LineStyle=':';

hLine6(2).Color='r';

hLine6(3).LineStyle='-.';

grid

figure(14)

subplot(311)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(312)

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(313)

[hAx, ~, hLine2]=plotyy(x2,Q5,x2,Vg5);

title('Bus-5 generator reactive power and voltage magnitude')

legend('Q_{g5}','V_{g5}')

xlabel('Iteration number')

238

ylabel(hAx(1),'Bus-5 generator reactive power');

ylabel(hAx(2),'Bus-5 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(15)

subplot(311)

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8);

title('Bus-8 generator reactive power and voltage magnitude')

legend('Q_{g8}','V_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-8 generator reactive power');

ylabel(hAx(2),'Bus-8 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(312)

[hAx, ~, hLine2]=plotyy(x2,Q11,x2,Vg11);

title('Bus-11 generator reactive power and voltage magnitude')

legend('Q_{g11}','V_{g11}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-11 generator reactive power');

ylabel(hAx(2),'Bus-11 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(313)

[hAx, ~, hLine2]=plotyy(x2,Q13,x2,Vg13);

title('Bus-13 generator reactive power and voltage magnitude')

legend('Q_{g13}','V_{g13}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-13 generator reactive power');

ylabel(hAx(2),'Bus-13 voltage magnitude');

hLine2.LineStyle='--';

grid

B.25 Function that implements the primal-dual interior-point method-based

 Volt/VAR optimization (PDIPM-VVO) for the 118-bus system, incorporating the

 Newton-Raphson load flow computation

function [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond,

output]=ipm_118bus(Func,x0,s0,mu0, sigma, h, dF, J, Vgref, maxIter, V1_angle_ratio)

global E F PQs Qsum

%zeta=.9995;

zeta=.99995;

% Added computation of slack-bus active and generator reactive powers

% Perform initial load flow:

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

239

F=imag(V);

% Initialize slack-bus active, and generator reactive power matrix to

% empty array:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Initial load flow voltage results:

Vinit=output.V(:,1);

% Initial system real power losses:

[initial_loss, ~]=loss_func();

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

s=s0;

mu=mu0;

niq=length(h(x));

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

Lam_i=diag(lam_i);

eps_1=1e-3;

eps_2=1e-3;

eps_mu=1e-3;

i=1;

[f, h, dh, gL, g2L]=Func(x, lam_i);

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=(norm(gL,inf)/(1+norm(x)+norm(lam_i)));

c3=((s'*lam_i)/(1+norm(x, inf)));

c4=(abs(f)/(1+abs(f)));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_2&&c4<=eps_2&&c5<=eps_mu&&c6;

Vslack=[E(1) F(1)];

fprev=f;

fval=[];

fval=[fval; f];

X=[];

X=[X x];

adx=[];

240

iter=[];

iter=[iter; i];

Loss=[];

Loss=[Loss; initial_loss];

while (~converged && i<=maxIter)

 A=g2L+dh'*Si*Lam_i*dh;

 b=gL+dh'*Si*(mu*e+Lam_i*h);

 dx=-A\b;

 ds=-h-s-dh*dx;

 dlam_i=Si*(-S*lam_i+mu*e-Lam_i*ds);

k_ds=find(ds<0);

if(k_ds)

 alpha_p=min(1, zeta*min(-s(k_ds)./ds(k_ds)));

else

 alpha_p=1;

end

k_dlam_i=find(dlam_i<0);

if(k_dlam_i)

 alpha_d=min(1, zeta*min(-lam_i(k_dlam_i)./dlam_i(k_dlam_i)));

else

 alpha_d=1;

end

alpha=min(alpha_p,alpha_d);

%alpha_p=1;

if (alpha_p>.1 && alpha_d>.1)

 alpha_p=alpha_d;

end

x=x+alpha_p*dx;

s=s+alpha_p*ds;

lam_i=lam_i+alpha_d*dlam_i;

mu=sigma*(s'*lam_i)/2/niq;

S=diag(s);

Si=inv(S);

Lam_i=diag(lam_i);

i=i+1;

% Define updated initial voltage vector for the NR load flow algorithm:

x0=define_updated_x0(x);

% To maintain slack-bus voltage angle:

F(1)=V1_angle_ratio*x(1);

% Define generator voltage reference vector for the NR load flow algorithm

%Vgref=Vgref_0();

Vgref=updated_Vgref1(x);

% Run the NR load flow algorithm:

[V, output]=NR_load_flow(dF, J, x0, Vgref);

E=real(V);

F=imag(V);

241

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vslack:

Vslack=[Vslack; E(1) F(1)];

% update control vector x from generator voltage vector components E, F:

x=update_control_vector();

[f, h, dh, gL, g2L]=Func(x, lam_i);

loss=f;

fval=[fval;f];

X=[X x];

adx=[adx alpha_p*dx];

iter=[iter; i];

Loss=[Loss; loss];

c1=(max(h)<0 || norm(h, inf)<=1e-3);

c2=norm(gL,inf)/(1+norm(x)+norm(lam_i));

c3=s'*lam_i/(1+norm(x, inf));

c4=abs(f-fprev)/(1+abs(f));

c5=mu;

c6=output.exit_flag;

converged=c1&&c2<=eps_1&&c3<=eps_1&&c4<=eps_2&&c5<=eps_mu&&c6;

fprev=f;

cond.num_iterations=i;

end

cond.primal_feasibility=max(h);

cond.grad_condition=c2;

cond.comp_condition=c3;

cond.objective_condition=c4;

cond.barrier_condition=c5;

cond.A=A;

cond.b=b;

cond.h=h;

cond.S=S;

cond.Lami=Lam_i;

cond.initial_loss=initial_loss;

cond.loss=Loss;

cond.iter=iter;

cond.V1=Vslack;

cond.Vinit=Vinit;cond.PQs=PQs;

cond.Qsum=Qsum;

B.26 Function that computes the gradient of the objective function for the 118-

 bus system

242

function df=df_118bus()

global E F G

df=[G(1,2)*(2*E(1)-2*E(2))+G(1,3)*(2*E(1)-2*E(3));...

 G(4,5)*(2*E(4)-2*E(5))+G(4,11)*(2*E(4)-2*E(11));...

 G(4,5)*(2*F(4)-2*F(5))+G(4,11)*(2*F(4)-2*F(11));...

 G(6,7)*(2*E(6)-2*E(7))-G(5,6)*(2*E(5)-2*E(6));...

 G(6,7)*(2*F(6)-2*F(7))-G(5,6)*(2*F(5)-2*F(6));...

 G(8,9)*(2*E(8)-2*E(9))-G(5,8)*(2*E(5)-2*E(8))+...

 G(8,30)*(2*E(8)-2*E(30));...

 G(8,9)*(2*F(8)-2*F(9))-G(5,8)*(2*F(5)-2*F(8))+...

 G(8,30)*(2*F(8)-2*F(30));...

 -G(9,10)*(2*E(9)-2*E(10));...

 -G(9,10)*(2*F(9)-2*F(10));...

 G(12,14)*(2*E(12)-2*E(14))-G(11,12)*(2*E(11)-2*E(12))+...

 G(12,16)*(2*E(12)-2*E(16))+G(12,117)*(2*E(12)-2*E(117))-...

 G(2,12)*(2*E(2)-2*E(12))-G(3,12)*(2*E(3)-2*E(12))-...

 G(7,12)*(2*E(7)-2*E(12));...

 G(12,14)*(2*F(12)-2*F(14))-G(11,12)*(2*F(11)-2*F(12))+...

 G(12,16)*(2*F(12)-2*F(16))+G(12,117)*(2*F(12)-2*F(117))-...

 G(2,12)*(2*F(2)-2*F(12))-G(3,12)*(2*F(3)-2*F(12))-...

 G(7,12)*(2*F(7)-2*F(12));...

 G(15,17)*(2*E(15)-2*E(17))-G(14,15)*(2*E(14)-2*E(15))-...

 G(13,15)*(2*E(13)-2*E(15))+G(15,19)*(2*E(15)-2*E(19))+...

 G(15,33)*(2*E(15)-2*E(33));...

 G(15,17)*(2*F(15)-2*F(17))-G(14,15)*(2*F(14)-2*F(15))-...

 G(13,15)*(2*F(13)-2*F(15))+G(15,19)*(2*F(15)-2*F(19))+...

 G(15,33)*(2*F(15)-2*F(33));...

 G(18,19)*(2*E(18)-2*E(19))-G(17,18)*(2*E(17)-2*E(18));...

 G(18,19)*(2*F(18)-2*F(19))-G(17,18)*(2*F(17)-2*F(18));...

 G(19,20)*(2*E(19)-2*E(20))-G(18,19)*(2*E(18)-2*E(19)) - ...

 G(15,19)*(2*E(15)-2*E(19))+G(19,34)*(2*E(19)-2*E(34));...

 G(19,20)*(2*F(19)-2*F(20))-G(18,19)*(2*F(18)-2*F(19)) - ...

 G(15,19)*(2*F(15)-2*F(19))+G(19,34)*(2*F(19)-2*F(34));...

 G(24,70)*(2*E(24)-2*E(70))-G(23,24)*(2*E(23)-2*E(24))+...

 G(24,72)*(2*E(24)-2*E(72));...

 G(24,70)*(2*F(24)-2*F(70))-G(23,24)*(2*F(23)-2*F(24))+...

 G(24,72)*(2*F(24)-2*F(72));...

 G(25,26)*(2*E(25)-2*E(26))-G(23,25)*(2*E(23)-2*E(25))+...

 G(25,27)*(2*E(25)-2*E(27));...

 G(25,26)*(2*F(25)-2*F(26))-G(23,25)*(2*F(23)-2*F(25))+...

 G(25,27)*(2*F(25)-2*F(27));...

 G(26,30)*(2*E(26)-2*E(30))-G(25,26)*(2*E(25)-2*E(26));...

 G(26,30)*(2*F(26)-2*F(30))-G(25,26)*(2*F(25)-2*F(26));...

 G(27,28)*(2*E(27)-2*E(28))-G(25,27)*(2*E(25)-2*E(27))+...

 G(27,32)*(2*E(27)-2*E(32))+...

 G(27,115)*(2*E(27)-2*E(115));...

 G(27,28)*(2*F(27)-2*F(28))-G(25,27)*(2*F(25)-2*F(27))+...

 G(27,32)*(2*F(27)-2*F(32))+...

 G(27,115)*(2*F(27)-2*F(115));...

 G(31,32)*(2*E(31)-2*E(32))-G(29,31)*(2*E(29)-2*E(31))-...

 G(17,31)*(2*E(17)-2*E(31));...

 G(31,32)*(2*F(31)-2*F(32))-G(29,31)*(2*F(29)-2*F(31))-...

 G(17,31)*(2*F(17)-2*F(31));...

243

 G(32,113)*(2*E(32)-2*E(113))-G(27,32)*(2*E(27)-2*E(32))-...

 G(31,32)*(2*E(31)-2*E(32))-...

 G(23,32)*(2*E(23)-2*E(32))+G(32,114)*(2*E(32)-2*E(114));...

 G(32,113)*(2*F(32)-2*F(113))-G(27,32)*(2*F(27)-2*F(32))-...

 G(31,32)*(2*F(31)-2*F(32))-...

 G(23,32)*(2*F(23)-2*F(32))+G(32,114)*(2*F(32)-2*F(114));...

 G(34,36)*(2*E(34)-2*E(36))-G(19,34)*(2*E(19)-2*E(34))+...

 G(34,37)*(2*E(34)-2*E(37))+...

 G(34,43)*(2*E(34)-2*E(43));...

 G(34,36)*(2*F(34)-2*F(36))-G(19,34)*(2*F(19)-2*F(34))+...

 G(34,37)*(2*F(34)-2*F(37))+...

 G(34,43)*(2*F(34)-2*F(43));...

 - G(34,36)*(2*E(34)-2*E(36))-G(35,36)*(2*E(35)-2*E(36));...

 - G(34,36)*(2*F(34)-2*F(36))-G(35,36)*(2*F(35)-2*F(36));...

 G(40,41)*(2*E(40)-2*E(41))-G(39,40)*(2*E(39)-2*E(40))-...

 G(37,40)*(2*E(37)-2*E(40))+G(40,42)*(2*E(40)-2*E(42));...

 G(40,41)*(2*F(40)-2*F(41))-G(39,40)*(2*F(39)-2*F(40))-...

 G(37,40)*(2*F(37)-2*F(40))+G(40,42)*(2*F(40)-2*F(42));...

 G(42,49)*(2*E(42)-2*E(49))-G(41,42)*(2*E(41)-2*E(42))-...

 G(40,42)*(2*E(40)-2*E(42));...

 G(42,49)*(2*F(42)-2*F(49))-G(41,42)*(2*F(41)-2*F(42))-...

 G(40,42)*(2*F(40)-2*F(42));...

 G(46,47)*(2*E(46)-2*E(47))-G(45,46)*(2*E(45)-2*E(46))+...

 G(46,48)*(2*E(46)-2*E(48));...

 G(46,47)*(2*F(46)-2*F(47))-G(45,46)*(2*F(45)-2*F(46))+...

 G(46,48)*(2*F(46)-2*F(48));...

 G(49,50)*(2*E(49)-2*E(50))-G(45,49)*(2*E(45)-2*E(49))-...

 G(47,49)*(2*E(47)-2*E(49))-...

 G(48,49)*(2*E(48)-2*E(49))-G(42,49)*(2*E(42)-2*E(49))+...

 G(49,51)*(2*E(49)-2*E(51))+...

 G(49,54)*(2*E(49)-2*E(54))+G(49,66)*(2*E(49)-2*E(66))+...

 G(49,69)*(2*E(49)-2*E(69));...

 G(49,50)*(2*F(49)-2*F(50))-G(45,49)*(2*F(45)-2*F(49))-...

 G(47,49)*(2*F(47)-2*F(49))-G(48,49)*(2*F(48)-2*F(49))-...

 G(42,49)*(2*F(42)-2*F(49))+G(49,51)*(2*F(49)-2*F(51))+...

 G(49,54)*(2*F(49)-2*F(54))+G(49,66)*(2*F(49)-2*F(66))+...

 G(49,69)*(2*F(49)-2*F(69));...

 G(54,55)*(2*E(54)-2*E(55))-G(53,54)*(2*E(53)-2*E(54))-...

 G(49,54)*(2*E(49)-2*E(54))+G(54,56)*(2*E(54)-2*E(56))+...

 G(54,59)*(2*E(54)-2*E(59));...

 G(54,55)*(2*F(54)-2*F(55))-G(53,54)*(2*F(53)-2*F(54))-...

 G(49,54)*(2*F(49)-2*F(54))+G(54,56)*(2*F(54)-2*F(56))+...

 G(54,59)*(2*F(54)-2*F(59));...

 G(55,56)*(2*E(55)-2*E(56))-G(54,55)*(2*E(54)-2*E(55))+...

 G(55,59)*(2*E(55)-2*E(59));...

 G(55,56)*(2*F(55)-2*F(56))-G(54,55)*(2*F(54)-2*F(55))+...

 G(55,59)*(2*F(55)-2*F(59));...

 G(56,57)*(2*E(56)-2*E(57))-G(55,56)*(2*E(55)-2*E(56))-...

 G(54,56)*(2*E(54)-2*E(56))+G(56,58)*(2*E(56)-2*E(58))+...

 G(56,59)*(2*E(56)-2*E(59));...

 G(56,57)*(2*F(56)-2*F(57))-G(55,56)*(2*F(55)-2*F(56))-...

 G(54,56)*(2*F(54)-2*F(56))+G(56,58)*(2*F(56)-2*F(58))+...

 G(56,59)*(2*F(56)-2*F(59));...

 G(59,60)*(2*E(59)-2*E(60))-G(55,59)*(2*E(55)-2*E(59))-...

244

 G(56,59)*(2*E(56)-2*E(59))-G(54,59)*(2*E(54)-2*E(59))+...

 G(59,61)*(2*E(59)-2*E(61))+G(59,63)*(2*E(59)-2*E(63));...

 G(59,60)*(2*F(59)-2*F(60))-G(55,59)*(2*F(55)-2*F(59))-...

 G(56,59)*(2*F(56)-2*F(59))-G(54,59)*(2*F(54)-2*F(59))+...

 G(59,61)*(2*F(59)-2*F(61))+G(59,63)*(2*F(59)-2*F(63));...

 G(61,62)*(2*E(61)-2*E(62))-G(60,61)*(2*E(60)-2*E(61))-...

 G(59,61)*(2*E(59)-2*E(61))+G(61,64)*(2*E(61)-2*E(64));...

 G(61,62)*(2*F(61)-2*F(62))-G(60,61)*(2*F(60)-2*F(61))-...

 G(59,61)*(2*F(59)-2*F(61))+G(61,64)*(2*F(61)-2*F(64));...

 G(62,66)*(2*E(62)-2*E(66))-G(61,62)*(2*E(61)-2*E(62))-...

 G(60,62)*(2*E(60)-2*E(62))+G(62,67)*(2*E(62)-2*E(67));...

 G(62,66)*(2*F(62)-2*F(66))-G(61,62)*(2*F(61)-2*F(62))-...

 G(60,62)*(2*F(60)-2*F(62))+G(62,67)*(2*F(62)-2*F(67));...

 G(65,66)*(2*E(65)-2*E(66))-G(64,65)*(2*E(64)-2*E(65))-...

 G(38,65)*(2*E(38)-2*E(65))+G(65,68)*(2*E(65)-2*E(68));...

 G(65,66)*(2*F(65)-2*F(66))-G(64,65)*(2*F(64)-2*F(65))-...

 G(38,65)*(2*F(38)-2*F(65))+G(65,68)*(2*F(65)-2*F(68));...

 G(66,67)*(2*E(66)-2*E(67))-G(62,66)*(2*E(62)-2*E(66))-...

 G(65,66)*(2*E(65)-2*E(66))-G(49,66)*(2*E(49)-2*E(66));...

 G(66,67)*(2*F(66)-2*F(67))-G(62,66)*(2*F(62)-2*F(66))-...

 G(65,66)*(2*F(65)-2*F(66))-G(49,66)*(2*F(49)-2*F(66));...

 G(69,70)*(2*E(69)-2*E(70))-G(49,69)*(2*E(49)-2*E(69))-...

 G(68,69)*(2*E(68)-2*E(69))-G(47,69)*(2*E(47)-2*E(69))+...

 G(69,75)*(2*E(69)-2*E(75))+G(69,77)*(2*E(69)-2*E(77));...

 G(69,70)*(2*F(69)-2*F(70))-G(49,69)*(2*F(49)-2*F(69))-...

 G(68,69)*(2*F(68)-2*F(69))-G(47,69)*(2*F(47)-2*F(69))+...

 G(69,75)*(2*F(69)-2*F(75))+G(69,77)*(2*F(69)-2*F(77));...

 G(70,71)*(2*E(70)-2*E(71))-G(69,70)*(2*E(69)-2*E(70))-...

 G(24,70)*(2*E(24)-2*E(70))+G(70,74)*(2*E(70)-2*E(74))+...

 G(70,75)*(2*E(70)-2*E(75));...

 G(70,71)*(2*F(70)-2*F(71))-G(69,70)*(2*F(69)-2*F(70))-...

 G(24,70)*(2*F(24)-2*F(70))+G(70,74)*(2*F(70)-2*F(74))+...

 G(70,75)*(2*F(70)-2*F(75));...

 - G(24,72)*(2*E(24)-2*E(72))-G(71,72)*(2*E(71)-2*E(72));...

 - G(24,72)*(2*F(24)-2*F(72))-G(71,72)*(2*F(71)-2*F(72));...

 -G(71,73)*(2*E(71)-2*E(73));...

 -G(71,73)*(2*F(71)-2*F(73));...

 G(74,75)*(2*E(74)-2*E(75))-G(70,74)*(2*E(70)-2*E(74));...

 G(74,75)*(2*F(74)-2*F(75))-G(70,74)*(2*F(70)-2*F(74));...

 G(76,77)*(2*E(76)-2*E(77))+G(76,118)*(2*E(76)-2*E(118));...

 G(76,77)*(2*F(76)-2*F(77))+G(76,118)*(2*F(76)-2*F(118));...

 G(77,78)*(2*E(77)-2*E(78))-G(75,77)*(2*E(75)-2*E(77))-...

 G(76,77)*(2*E(76)-2*E(77))-G(69,77)*(2*E(69)-2*E(77))+...

 G(77,80)*(2*E(77)-2*E(80))+G(77,82)*(2*E(77)-2*E(82));...

 G(77,78)*(2*F(77)-2*F(78))-G(75,77)*(2*F(75)-2*F(77))-...

 G(76,77)*(2*F(76)-2*F(77))-G(69,77)*(2*F(69)-2*F(77))+...

 G(77,80)*(2*F(77)-2*F(80))+G(77,82)*(2*F(77)-2*F(82));...

 G(80,81)*(2*E(80)-2*E(81))-G(79,80)*(2*E(79)-2*E(80))-...

 G(77,80)*(2*E(77)-2*E(80))+G(80,96)*(2*E(80)-2*E(96))+...

 G(80,97)*(2*E(80)-2*E(97))+G(80,98)*(2*E(80)-2*E(98))+...

 G(80,99)*(2*E(80)-2*E(99));...

 G(80,81)*(2*F(80)-2*F(81))-G(79,80)*(2*F(79)-2*F(80))-...

 G(77,80)*(2*F(77)-2*F(80))+G(80,96)*(2*F(80)-2*F(96))+...

 G(80,97)*(2*F(80)-2*F(97))+G(80,98)*(2*F(80)-2*F(98))+...

245

 G(80,99)*(2*F(80)-2*F(99));...

 G(85,86)*(2*E(85)-2*E(86))-G(84,85)*(2*E(84)-2*E(85))-...

 G(83,85)*(2*E(83)-2*E(85))+G(85,88)*(2*E(85)-2*E(88))+...

 G(85,89)*(2*E(85)-2*E(89));...

 G(85,86)*(2*F(85)-2*F(86))-G(84,85)*(2*F(84)-2*F(85))-...

 G(83,85)*(2*F(83)-2*F(85))+G(85,88)*(2*F(85)-2*F(88))+...

 G(85,89)*(2*F(85)-2*F(89));...

 -G(86,87)*(2*E(86)-2*E(87));...

 -G(86,87)*(2*F(86)-2*F(87));...

 G(89,90)*(2*E(89)-2*E(90))-G(88,89)*(2*E(88)-2*E(89))-...

 G(85,89)*(2*E(85)-2*E(89))+G(89,92)*(2*E(89)-2*E(92));...

 G(89,90)*(2*F(89)-2*F(90))-G(88,89)*(2*F(88)-2*F(89))-...

 G(85,89)*(2*F(85)-2*F(89))+G(89,92)*(2*F(89)-2*F(92));...

 G(90,91)*(2*E(90)-2*E(91))-G(89,90)*(2*E(89)-2*E(90));...

 G(90,91)*(2*F(90)-2*F(91))-G(89,90)*(2*F(89)-2*F(90));...

 G(91,92)*(2*E(91)-2*E(92))-G(90,91)*(2*E(90)-2*E(91));...

 G(91,92)*(2*F(91)-2*F(92))-G(90,91)*(2*F(90)-2*F(91));...

 G(92,93)*(2*E(92)-2*E(93))-G(91,92)*(2*E(91)-2*E(92))-...

 G(89,92)*(2*E(89)-2*E(92))+G(92,94)*(2*E(92)-2*E(94))+...

 G(92,100)*(2*E(92)-2*E(100))+G(92,102)*(2*E(92)-2*E(102));...

 G(92,93)*(2*F(92)-2*F(93))-G(91,92)*(2*F(91)-2*F(92))-...

 G(89,92)*(2*F(89)-2*F(92))+G(92,94)*(2*F(92)-2*F(94))+...

 G(92,100)*(2*F(92)-2*F(100))+G(92,102)*(2*F(92)-2*F(102));...

 G(99,100)*(2*E(99)-2*E(100))-G(80,99)*(2*E(80)-2*E(99));...

 G(99,100)*(2*F(99)-2*F(100))-G(80,99)*(2*F(80)-2*F(99));...

 G(100,101)*(2*E(100)-2*E(101))-G(94,100)*(2*E(94)-2*E(100))-...

 G(98,100)*(2*E(98)-2*E(100))-G(99,100)*(2*E(99)-2*E(100))-...

 G(92,100)*(2*E(92)-2*E(100))+G(100,103)*(2*E(100)-2*E(103))+...

 G(100,104)*(2*E(100)-2*E(104))+G(100,106)*(2*E(100)-2*E(106));...

 G(100,101)*(2*F(100)-2*F(101))-G(94,100)*(2*F(94)-2*F(100))-...

 G(98,100)*(2*F(98)-2*F(100))-G(99,100)*(2*F(99)-2*F(100))-...

 G(92,100)*(2*F(92)-2*F(100))+G(100,103)*(2*F(100)-2*F(103))+...

 G(100,104)*(2*F(100)-2*F(104))+G(100,106)*(2*F(100)-2*F(106));...

 G(103,104)*(2*E(103)-2*E(104))-G(100,103)*(2*E(100)-2*E(103)) + ...

 G(103,105)*(2*E(103)-2*E(105))+G(103,110)*(2*E(103)-2*E(110));...

 G(103,104)*(2*F(103)-2*F(104))-G(100,103)*(2*F(100)-2*F(103)) + ...

 G(103,105)*(2*F(103)-2*F(105))+G(103,110)*(2*F(103)-2*F(110));...

 G(104,105)*(2*E(104)-2*E(105))-G(103,104)*(2*E(103)-2*E(104))-...

 G(100,104)*(2*E(100)-2*E(104));...

 G(104,105)*(2*F(104)-2*F(105))-G(103,104)*(2*F(103)-2*F(104))-...

 G(100,104)*(2*F(100)-2*F(104));...

 G(105,106)*(2*E(105)-2*E(106))-G(104,105)*(2*E(104)-2*E(105))-...

 G(103,105)*(2*E(103)-2*E(105))+G(105,107)*(2*E(105)-2*E(107)) + ...

 G(105,108)*(2*E(105)-2*E(108));...

 G(105,106)*(2*F(105)-2*F(106))-G(104,105)*(2*F(104)-2*F(105))-...

 G(103,105)*(2*F(103)-2*F(105))+G(105,107)*(2*F(105)-2*F(107))+...

 G(105,108)*(2*F(105)-2*F(108));...

 - G(105,107)*(2*E(105)-2*E(107))-G(106,107)*(2*E(106)-2*E(107));...

 - G(105,107)*(2*F(105)-2*F(107))-G(106,107)*(2*F(106)-2*F(107));...

 G(110,111)*(2*E(110)-2*E(111))-G(109,110)*(2*E(109)-2*E(110))-...

 G(103,110)*(2*E(103)-2*E(110))+G(110,112)*(2*E(110)-2*E(112));...

 G(110,111)*(2*F(110)-2*F(111))-G(109,110)*(2*F(109)-2*F(110))-...

 G(103,110)*(2*F(103)-2*F(110))+G(110,112)*(2*F(110)-2*F(112));...

 -G(110,111)*(2*E(110)-2*E(111));...

246

 -G(110,111)*(2*F(110)-2*F(111));...

 -G(110,112)*(2*E(110)-2*E(112));...

 -G(110,112)*(2*F(110)-2*F(112));...

 - G(17,113)*(2*E(17)-2*E(113))-G(32,113)*(2*E(32)-2*E(113));...

 - G(17,113)*(2*F(17)-2*F(113))-G(32,113)*(2*F(32)-2*F(113));...

 -G(68,116)*(2*E(68)-2*E(116));...

 -G(68,116)*(2*F(68)-2*F(116))];

B.27 Function that computes the Hessian of the objective function for the 118-

 bus system

function d2f=d2f_118bus()

global G

d2f=zeros(107);

d2f(1,1)=2*G(1,2) + 2*G(1,3);

d2f(2,2)=2*G(4,5) + 2*G(4,11);

d2f(3,3)=2*G(4,5) + 2*G(4,11);

d2f(4,4)=2*G(5,6) + 2*G(6,7);

d2f(5,5)=2*G(5,6) + 2*G(6,7);

d2f(6,6)=2*G(5,8) + 2*G(8,9) + 2*G(8,30);

d2f(7,7)=2*G(5,8) + 2*G(8,9) + 2*G(8,30);

d2f(8,8)=2*G(9,10);

d2f(9,9)=2*G(9,10);

d2f(10,10)=2*G(11,12) + 2*G(12,14) + 2*G(12,16)+...

 2*G(12,117) + 2*G(2,12) + 2*G(3,12) + 2*G(7,12);

d2f(11,11)=2*G(11,12) + 2*G(12,14) + 2*G(12,16) + 2*G(12,117) + 2*G(2,12) +

2*G(3,12) + 2*G(7,12);

d2f(12,12)=2*G(13,15) + 2*G(14,15) + 2*G(15,17) + 2*G(15,19) + 2*G(15,33);

d2f(12,16)=-2*G(15,19);

d2f(13,13)=2*G(13,15) + 2*G(14,15) + 2*G(15,17) + 2*G(15,19) + 2*G(15,33);

d2f(13,17)=-2*G(15,19);

d2f(14,14)=2*G(17,18) + 2*G(18,19);

d2f(14,16)=-2*G(18,19);

d2f(15,15)=2*G(17,18) + 2*G(18,19);

d2f(15,17)=-2*G(18,19);

d2f(16,12)=-2*G(15,19);

d2f(16,14)=-2*G(18,19);

d2f(16,16)=2*G(15,19) + 2*G(18,19) + 2*G(19,20) + 2*G(19,34);

d2f(16,30)=-2*G(19,34);

d2f(17,13)=-2*G(15,19);

d2f(17,15)=-2*G(18,19);

d2f(17,17)=2*G(15,19) + 2*G(18,19) + 2*G(19,20) + 2*G(19,34);

d2f(17,31)=-2*G(19,34);

d2f(18,18)=2*G(23,24) + 2*G(24,70) + 2*G(24,72);

d2f(18,60)=-2*G(24,70);

d2f(18,62)=-2*G(24,72);

d2f(19,19)=2*G(23,24) + 2*G(24,70) + 2*G(24,72);

d2f(19,61)=-2*G(24,70);

d2f(19,63)=-2*G(24,72);

d2f(20,20)=2*G(23,25) + 2*G(25,26) + 2*G(25,27);

247

d2f(20,22)=-2*G(25,26);

d2f(20,24)=-2*G(25,27);

d2f(21,21)=2*G(23,25) + 2*G(25,26) + 2*G(25,27);

d2f(21,23)=-2*G(25,26);

d2f(21,25)=-2*G(25,27);

d2f(22,20)=-2*G(25,26);

d2f(22,22)=2*G(25,26) + 2*G(26,30);

d2f(23,21)=-2*G(25,26);

d2f(23,23)=2*G(25,26) + 2*G(26,30);

d2f(24,20)=-2*G(25,27);

d2f(24,24)=2*G(25,27) + 2*G(27,28) + 2*G(27,32) + 2*G(27,115);

d2f(24,28)=-2*G(27,32);

d2f(25,21)=-2*G(25,27);

d2f(25,25)=2*G(25,27) + 2*G(27,28) + 2*G(27,32) + 2*G(27,115);

d2f(25,29)=-2*G(27,32);

d2f(26,26)=2*G(17,31) + 2*G(29,31) + 2*G(31,32);

d2f(26,28)=-2*G(31,32);

d2f(27,27)=2*G(17,31) + 2*G(29,31) + 2*G(31,32);

d2f(27,29)=-2*G(31,32);

d2f(28,24)=-2*G(27,32);

d2f(28,26)=-2*G(31,32);

d2f(28,28)=2*G(23,32) + 2*G(27,32) + 2*G(31,32) + 2*G(32,113) + 2*G(32,114);

d2f(28,104)=-2*G(32,113);

d2f(29,25)=-2*G(27,32);

d2f(29,27)=-2*G(31,32);

d2f(29,29)=2*G(23,32) + 2*G(27,32) + 2*G(31,32) + 2*G(32,113) + 2*G(32,114);

d2f(29,105)=-2*G(32,113);

d2f(30,16)=-2*G(19,34);

d2f(30,30)=2*G(19,34) + 2*G(34,36) + 2*G(34,37) + 2*G(34,43);

d2f(30,32)=-2*G(34,36);

d2f(31,17)=-2*G(19,34);

d2f(31,31)=2*G(19,34) + 2*G(34,36) + 2*G(34,37) + 2*G(34,43);

d2f(31,33)=-2*G(34,36);

d2f(32,30)=-2*G(34,36);

d2f(32,32)=2*G(34,36) + 2*G(35,36);

d2f(33,31)=-2*G(34,36);

d2f(33,33)=2*G(34,36) + 2*G(35,3);

d2f(34,34)=2*G(37,40) + 2*G(39,40) + 2*G(40,41) + 2*G(40,42);

d2f(34,36)=-2*G(40,42);

d2f(35,35)=2*G(37,40) + 2*G(39,40) + 2*G(40,41) + 2*G(40,42);

d2f(35,37)=-2*G(40,42);

d2f(36,34)=-2*G(40,42);

d2f(36,36)=2*G(40,42) + 2*G(41,42) + 2*G(42,49);

d2f(36,40)=-2*G(42,49);

d2f(37,35)=-2*G(40,42);

d2f(37,37)=2*G(40,42) + 2*G(41,42) + 2*G(42,49);

d2f(37,41)=-2*G(42,49);

d2f(38,38)=2*G(45,46) + 2*G(46,47) + 2*G(46,48);

d2f(39,39)=2*G(45,46) + 2*G(46,47) + 2*G(46,48);

d2f(40,36)=-2*G(42,49);

d2f(40,40)=2*G(42,49) + 2*G(45,49) + 2*G(47,49) + ...

 2*G(48,49) + 2*G(49,50) + 2*G(49,51) + 2*G(49,54) + ...

 2*G(49,66) + 2*G(49,69);

d2f(40,42)=-2*G(49,54);

248

d2f(40,56)=-2*G(49,66);

d2f(40,58)=-2*G(49,69);

d2f(41,37)=-2*G(42,49);

d2f(41,41)=2*G(42,49) + 2*G(45,49) + 2*G(47,49) + ...

 2*G(48,49) + 2*G(49,50) + 2*G(49,51) + 2*G(49,54) + ...

 2*G(49,66) + 2*G(49,69);

d2f(41,43)=-2*G(49,54);

d2f(41,57)=-2*G(49,66);

d2f(41,59)=-2*G(49,69);

d2f(42,40)=-2*G(49,54);

d2f(42,42)=2*G(49,54) + 2*G(53,54) + 2*G(54,55) + 2*G(54,56) + 2*G(54,59);

d2f(42,44)=-2*G(54,55);

d2f(42,46)=-2*G(54,56);

d2f(42,48)=-2*G(54,59);

d2f(43,41)=-2*G(49,54);

d2f(43,43)=2*G(49,54) + 2*G(53,54) + 2*G(54,55) + 2*G(54,56) + 2*G(54,59);

d2f(43,45)=-2*G(54,55);

d2f(43,47)=-2*G(54,56);

d2f(43,49)=-2*G(54,59);

d2f(44,42)=-2*G(54,55);

d2f(44,44)=2*G(54,55) + 2*G(55,56) + 2*G(55,59);

d2f(44,46)=-2*G(55,56);

d2f(44,48)=-2*G(55,59);

d2f(45,43)=-2*G(54,55);

d2f(45,45)=2*G(54,55) + 2*G(55,56) + 2*G(55,59);

d2f(45,47)=-2*G(55,56);

d2f(45,49)=-2*G(55,59);

d2f(46,42)=-2*G(54,56);

d2f(46,44)=-2*G(55,56);

d2f(46,46)=2*G(54,56) + 2*G(55,56) + 2*G(56,57) + 2*G(56,58) + 2*G(56,59);

d2f(46,48)=-2*G(56,59);

d2f(47,43)=-2*G(54,56);

d2f(47,45)=-2*G(55,56);

d2f(47,47)=2*G(54,56) + 2*G(55,56) + 2*G(56,57) + 2*G(56,58) + 2*G(56,59);

d2f(47,49)=-2*G(56,59);

d2f(48,42)=-2*G(54,59);

d2f(48,44)=-2*G(55,59);

d2f(48,46)=-2*G(56,59);

d2f(48,48)=2*G(54,59) + 2*G(55,59) + 2*G(56,59) + 2*G(59,60) + 2*G(59,61) +

2*G(59,63);

d2f(48,50)=-2*G(59,61);

d2f(49,43)=-2*G(54,59);

d2f(49,45)=-2*G(55,59);

d2f(49,47)=-2*G(56,59);

d2f(49,49)=2*G(54,59) + 2*G(55,59) + 2*G(56,59) + 2*G(59,60) + 2*G(59,61) +

2*G(59,63);

d2f(49,51)=-2*G(59,61);

d2f(50,48)=-2*G(59,61);

d2f(50,50)=2*G(59,61) + 2*G(60,61) + 2*G(61,62) + 2*G(61,64);

d2f(50,52)=-2*G(61,62);

d2f(51,49)=-2*G(59,61);

d2f(51,51)=2*G(59,61) + 2*G(60,61) + 2*G(61,62) + 2*G(61,64);

d2f(51,53)=-2*G(61,62);

d2f(52,50)=-2*G(61,62);

249

d2f(52,52)=2*G(60,62) + 2*G(61,62) + 2*G(62,66) + 2*G(62,67);

d2f(52,56)=-2*G(62,66);

d2f(53,51)=-2*G(61,62);

d2f(53,53)=2*G(60,62) + 2*G(61,62) + 2*G(62,66) + 2*G(62,67);

d2f(53,57)=-2*G(62,66);

d2f(54,54)=2*G(38,65) + 2*G(64,65) + 2*G(65,66) + 2*G(65,68);

d2f(54,56)=-2*G(65,66);

d2f(55,55)=2*G(38,65) + 2*G(64,65) + 2*G(65,66) + 2*G(65,68);

d2f(55,57)=-2*G(65,66);

d2f(56,40)=-2*G(49,66);

d2f(56,52)=-2*G(62,66);

d2f(56,54)=-2*G(65,66);

d2f(56,56)=2*G(49,66) + 2*G(62,66) + 2*G(65,66) + 2*G(66,67);

d2f(57,41)=-2*G(49,66);

d2f(57,53)=-2*G(62,66);

d2f(57,55)=-2*G(65,66);

d2f(57,57)=2*G(49,66) + 2*G(62,66) + 2*G(65,66) + 2*G(66,67);

d2f(58,40)=-2*G(49,69);

d2f(58,58)=2*G(47,69) + 2*G(49,69) + 2*G(68,69) + 2*G(69,70) + 2*G(69,75) +

2*G(69,77);

d2f(58,60)=-2*G(69,70);

d2f(58,70)=-2*G(69,77);

d2f(59,41)=-2*G(49,69);

d2f(59,59)=2*G(47,69) + 2*G(49,69) + 2*G(68,69) + 2*G(69,70) + 2*G(69,75) +

2*G(69,77);

d2f(59,61)=-2*G(69,70);

d2f(59,71)=-2*G(69,77);

d2f(60,18)=-2*G(24,70);

d2f(60,58)=-2*G(69,70);

d2f(60,60)=2*G(24,70) + 2*G(69,70) + 2*G(70,71) + 2*G(70,74) + 2*G(70,75);

d2f(60,66)=-2*G(70,74);

d2f(61,19)=-2*G(24,70);

d2f(61,59)=-2*G(69,70);

d2f(61,61)=2*G(24,70) + 2*G(69,70) + 2*G(70,71) + 2*G(70,74) + 2*G(70,75);

d2f(61,67)=-2*G(70,74);

d2f(62,18)=-2*G(24,72);

d2f(62,62)=2*G(24,72) + 2*G(71,72);

d2f(63,19)=-2*G(24,72);

d2f(63,63)=2*G(24,72) + 2*G(71,72);

d2f(64,64)=2*G(71,73);

d2f(65,65)=2*G(71,73);

d2f(66,60)=-2*G(70,74);

d2f(66,66)=2*G(70,74) + 2*G(74,75);

d2f(67,61)=-2*G(70,74);

d2f(67,67)=2*G(70,74) + 2*G(74,75);

d2f(68,68)=2*G(76,77) + 2*G(76,118);

d2f(68,70)=-2*G(76,77);

d2f(69,69)=2*G(76,77) + 2*G(76,118);

d2f(69,71)=-2*G(76,77);

d2f(70,58)=-2*G(69,77);

d2f(70,68)=-2*G(76,77);

d2f(70,70)=2*G(69,77) + 2*G(75,77) + ...

 2*G(76,77) + 2*G(77,78) + 2*G(77,80) + 2*G(77,82);

d2f(70,72)=-2*G(77,80);

250

d2f(71,59)=-2*G(69,77);

d2f(71,69)=-2*G(76,77);

d2f(71,71)=2*G(69,77) + 2*G(75,77) + 2*G(76,77) + ...

 2*G(77,78) + 2*G(77,80) + 2*G(77,82);

d2f(71,73)=-2*G(77,80);

d2f(72,70)=-2*G(77,80);

d2f(72,72)=2*G(77,80) + 2*G(79,80) + 2*G(80,81) + ...

 2*G(80,96) + 2*G(80,97) + 2*G(80,98) + 2*G(80,99);

d2f(72,86)=-2*G(80,99);

d2f(73,71)=-2*G(77,80);

d2f(73,73)=2*G(77,80) + 2*G(79,80) + 2*G(80,81) + 2*G(80,96) + 2*G(80,97) +

2*G(80,98) + 2*G(80,99);

d2f(73,87)=-2*G(80,99);

d2f(74,74)=2*G(83,85) + 2*G(84,85) + 2*G(85,86) + 2*G(85,88) + 2*G(85,89);

d2f(74,78)=-2*G(85,89);

d2f(75,75)=2*G(83,85) + 2*G(84,85) + 2*G(85,86) + 2*G(85,88) + 2*G(85,89);

d2f(75,79)=-2*G(85,89);

d2f(76,76)=2*G(86,87);

d2f(77,77)=2*G(86,87);

d2f(78,74)=-2*G(85,89);

d2f(78,78)=2*G(85,89) + 2*G(88,89) + 2*G(89,90) + 2*G(89,92);

d2f(78,80)=-2*G(89,90);

d2f(78,84)=-2*G(89,92);

d2f(79,75)=-2*G(85,89);

d2f(79,79)=2*G(85,89) + 2*G(88,89) + 2*G(89,90) + 2*G(89,92);

d2f(79,81)=-2*G(89,90);

d2f(79,85)=-2*G(89,92);

d2f(80,78)=-2*G(89,90);

d2f(80,80)=2*G(89,90) + 2*G(90,91);

d2f(80,82)=-2*G(90,91);

d2f(81,79)=-2*G(89,90);

d2f(81,81)=2*G(89,90) + 2*G(90,91);

d2f(81,83)=-2*G(90,91);

d2f(82,80)=-2*G(90,91);

d2f(82,82)=2*G(90,91) + 2*G(91,92);

d2f(82,84)=-2*G(91,92);

d2f(83,81)=-2*G(90,91);

d2f(83,83)=2*G(90,91) + 2*G(91,92);

d2f(83,85)=-2*G(91,92);

d2f(84,78)=-2*G(89,92);

d2f(84,82)=-2*G(91,92);

d2f(84,84)=2*G(89,92) + 2*G(91,92) + 2*G(92,93) + 2*G(92,94) + ...

 2*G(92,100) + 2*G(92,102);

d2f(84,88)=-2*G(92,100);

d2f(85,79)=-2*G(89,92);

d2f(85,83)=-2*G(91,92);

d2f(85,85)=2*G(89,92) + 2*G(91,92) + 2*G(92,93) + 2*G(92,94) + ...

 2*G(92,100) + 2*G(92,102);

d2f(85,89)=-2*G(92,100);

d2f(86,72)=-2*G(80,99);

d2f(86,86)=2*G(80,99) + 2*G(99,100);

d2f(86,88)=-2*G(99,100);

d2f(87,73)=-2*G(80,99);

d2f(87,87)=2*G(80,99) + 2*G(99,100);

251

d2f(87,89)=-2*G(99,100);

d2f(88,84)=-2*G(92,100);

d2f(88,86)=-2*G(99,100);

d2f(88,88)=2*G(92,100) + 2*G(94,100) + 2*G(98,100) + 2*G(99,100) + ...

 2*G(100,101) + 2*G(100,103) + 2*G(100,104) + 2*G(100,106);

d2f(88,90)=-2*G(100,103);

d2f(88,92)=-2*G(100,104);

d2f(89,85)=-2*G(92,100);

d2f(89,87)=-2*G(99,100);

d2f(89,89)=2*G(92,100) + 2*G(94,100) + 2*G(98,100) + 2*G(99,100) + ...

 2*G(100,101) + 2*G(100,103) + 2*G(100,104) + 2*G(100,106);

d2f(89,91)=-2*G(100,103);

d2f(89,93)=-2*G(100,104);

d2f(90,88)=-2*G(100,103);

d2f(90,90)=2*G(100,103) + 2*G(103,104) + 2*G(103,105) + 2*G(103,110);

d2f(90,92)=-2*G(103,104);

d2f(90,94)=-2*G(103,105);

d2f(90,98)=-2*G(103,110);

d2f(91,89)=-2*G(100,103);

d2f(91,91)=2*G(100,103) + 2*G(103,104) + 2*G(103,105) + 2*G(103,110);

d2f(91,93)=-2*G(103,104);

d2f(91,95)=-2*G(103,105);

d2f(91,99)=-2*G(103,110);

d2f(92,88)=-2*G(100,104);

d2f(92,90)=-2*G(103,104);

d2f(92,92)=2*G(100,104) + 2*G(103,104) + 2*G(104,105);

d2f(92,94)=-2*G(104,105);

d2f(93,89)=-2*G(100,104);

d2f(93,91)=-2*G(103,104);

d2f(93,93)=2*G(100,104) + 2*G(103,104) + 2*G(104,105);

d2f(93,95)=-2*G(104,105);

d2f(94,90)=-2*G(103,105);

d2f(94,92)=-2*G(104,105);

d2f(94,94)=2*G(103,105) + 2*G(104,105) + 2*G(105,106) + ...

 2*G(105,107) + 2*G(105,108);

d2f(94,96)=-2*G(105,107);

d2f(95,91)=-2*G(103,105);

d2f(95,93)=-2*G(104,105);

d2f(95,95)=2*G(103,105) + 2*G(104,105) + 2*G(105,106) + 2*G(105,107) +

2*G(105,108);

d2f(95,97)=-2*G(105,107);

d2f(96,94)=-2*G(105,107);

d2f(96,96)=2*G(105,107) + 2*G(106,107);

d2f(97,95)=-2*G(105,107);

d2f(97,97)=2*G(105,107) + 2*G(106,107);

d2f(98,90)=-2*G(103,110);

d2f(98,98)=2*G(103,110) + 2*G(109,110) + 2*G(110,111) + 2*G(110,112);

d2f(98,100)=-2*G(110,111);

d2f(98,102)=-2*G(110,112);

d2f(99,91)=-2*G(103,110);

d2f(99,99)=2*G(103,110) + 2*G(109,110) + 2*G(110,111) + 2*G(110,112);

d2f(99,101)=-2*G(110,111);

d2f(99,103)=-2*G(110,112);

d2f(100,98)=-2*G(110,111);

252

d2f(100,100)=2*G(110,111);

d2f(101,99)=-2*G(110,111);

d2f(101,101)=2*G(110,111);

d2f(102,98)=-2*G(110,112);

d2f(102,102)=2*G(110,112);

d2f(103,99)=-2*G(110,112);

d2f(103,103)=2*G(110,112);

d2f(104,28)=-2*G(32,113);

d2f(104,104)=2*G(17,113) + 2*G(32,113);

d2f(105,29)=-2*G(32,113);

d2f(105,105)=2*G(17,113) + 2*G(32,113);

d2f(106,106)=2*G(68,116);

d2f(107,107)=2*G(68,116);

B.28 Function that defines the constraint functions for the 118-bus system

function h=h_118bus(x)

global E F nbus

Vmsq=.95^2;

VMsq=1.1^2;

% update generator voltage vector components

% in E, F from input control vector x:

update_generator_voltages(x);

% Define inequality constraints h(x):

h=zeros(2*nbus,1);

k=1;

for i=1:nbus

 h(k)=-(E(i)^2+F(i)^2)+Vmsq;

 h(k+1)=E(i)^2+F(i)^2-VMsq;

 k=k+2;

end

B.29 Function that computes the Jacobian of the constraint functions for the

 118-bus system

function dh=dh_118bus()

global E F nbus

dh=zeros(2*nbus, 107);

dh(1,1)=-2*E(1);

dh(2,1)=2*E(1);

dh(7,2)=-2*E(4);

dh(7,3)=-2*F(4);

dh(8,2)=2*E(4);

dh(8,3)=2*F(4);

dh(11,4)=-2*E(6);

dh(11,5)=-2*F(6);

253

dh(12,4)=2*E(6);

dh(12,5)=2*F(6);

dh(15,6)=-2*E(8);

dh(15,7)=-2*F(8);

dh(16,6)=2*E(8);

dh(16,7)=2*F(8);

dh(19,8)=-2*E(10);

dh(19,9)=-2*F(10);

dh(20,8)=2*E(10);

dh(20,9)=2*F(10);

dh(23,10)=-2*E(12);

dh(23,11)=-2*F(12);

dh(24,10)=2*E(12);

dh(24,11)=2*F(12);

dh(29,12)=-2*E(15);

dh(29,13)=-2*F(15);

dh(30,12)=2*E(15);

dh(30,13)=2*F(15);

dh(35,14)=-2*E(18);

dh(35,15)=-2*F(18);

dh(36,14)=2*E(18);

dh(36,15)=2*F(18);

dh(37,16)=-2*E(19);

dh(37,17)=-2*F(19);

dh(38,16)=2*E(19);

dh(38,17)=2*F(19);

dh(47,18)=-2*E(24);

dh(47,19)=-2*F(24);

dh(48,18)=2*E(24);

dh(48,19)=2*F(24);

dh(49,20)=-2*E(25);

dh(49,21)=-2*F(25);

dh(50,20)=2*E(25);

dh(50,21)=2*F(25);

dh(51,22)=-2*E(26);

dh(51,23)=-2*F(26);

dh(52,22)=2*E(26);

dh(52,23)=2*F(26);

dh(53,24)=-2*E(27);

dh(53,25)=-2*F(27);

dh(54,24)=2*E(27);

dh(54,25)=2*F(27);

dh(61,26)=-2*E(31);

dh(61,27)=-2*F(31);

dh(62,26)=2*E(31);

dh(62,27)=2*F(31);

dh(63,28)=-2*E(32);

dh(63,29)=-2*F(32);

dh(64,28)=2*E(32);

dh(64,29)=2*F(32);

dh(67,30)=-2*E(34);

dh(67,31)=-2*F(34);

dh(68,30)=2*E(34);

dh(68,31)=2*F(34);

254

dh(71,32)=-2*E(36);

dh(71,33)=-2*F(36);

dh(72,32)=2*E(36);

dh(72,33)=2*F(36);

dh(79,34)=-2*E(40);

dh(79,35)=-2*F(40);

dh(80,34)=2*E(40);

dh(80,35)=2*F(40);

dh(83,36)=-2*E(42);

dh(83,37)=-2*F(42);

dh(84,36)=2*E(42);

dh(84,37)=2*F(42);

dh(91,38)=-2*E(46);

dh(91,39)=-2*F(46);

dh(92,38)=2*E(46);

dh(92,39)=2*F(46);

dh(97,40)=-2*E(49);

dh(97,41)=-2*F(49);

dh(98,40)=2*E(49);

dh(98,41)=2*F(49);

dh(107,42)=-2*E(54);

dh(107,43)=-2*F(54);

dh(108,42)=2*E(54);

dh(108,43)=2*F(54);

dh(109,44)=-2*E(55);

dh(109,45)=-2*F(55);

dh(110,44)=2*E(55);

dh(110,45)=2*F(55);

dh(111,46)=-2*E(56);

dh(111,47)=-2*F(56);

dh(112,46)=2*E(56);

dh(112,47)=2*F(56);

dh(117,48)=-2*E(59);

dh(117,49)=-2*F(59);

dh(118,48)=2*E(59);

dh(118,49)=2*F(59);

dh(121,50)=-2*E(61);

dh(121,51)=-2*F(61);

dh(122,50)=2*E(61);

dh(122,51)=2*F(61);

dh(123,52)=-2*E(62);

dh(123,53)=-2*F(62);

dh(124,52)=2*E(62);

dh(124,53)=2*F(62);

dh(129,54)=-2*E(65);

dh(129,55)=-2*F(65);

dh(130,54)=2*E(65);

dh(130,55)=2*F(65);

dh(131,56)=-2*E(66);

dh(131,57)=-2*F(66);

dh(132,56)=2*E(66);

dh(132,57)=2*F(66);

dh(137,58)=-2*E(69);

dh(137,59)=-2*F(69);

255

dh(138,58)=2*E(69);

dh(138,59)=2*F(69);

dh(139,60)=-2*E(70);

dh(139,61)=-2*F(70);

dh(140,60)=2*E(70);

dh(140,61)=2*F(70);

dh(143,62)=-2*E(72);

dh(143,63)=-2*F(72);

dh(144,62)=2*E(72);

dh(144,63)=2*F(72);

dh(145,64)=-2*E(73);

dh(145,65)=-2*F(73);

dh(146,64)=2*E(73);

dh(146,65)=2*F(73);

dh(147,66)=-2*E(74);

dh(147,67)=-2*F(74);

dh(148,66)=2*E(74);

dh(148,67)=2*F(74);

dh(151,68)=-2*E(76);

dh(151,69)=-2*F(76);

dh(152,68)=2*E(76);

dh(152,69)=2*F(76);

dh(153,70)=-2*E(77);

dh(153,71)=-2*F(77);

dh(154,70)=2*E(77);

dh(154,71)=2*F(77);

dh(159,72)=-2*E(80);

dh(159,73)=-2*F(80);

dh(160,72)=2*E(80);

dh(160,73)=2*F(80);

dh(169,74)=-2*E(85);

dh(169,75)=-2*F(85);

dh(170,74)=2*E(85);

dh(170,75)=2*F(85);

dh(173,76)=-2*E(87);

dh(173,77)=-2*F(87);

dh(174,76)=2*E(87);

dh(174,77)=2*F(87);

dh(177,78)=-2*E(89);

dh(177,79)=-2*F(89);

dh(178,78)=2*E(89);

dh(178,79)=2*F(89);

dh(179,80)=-2*E(90);

dh(179,81)=-2*F(90);

dh(180,80)=2*E(90);

dh(180,81)=2*F(90);

dh(181,82)=-2*E(91);

dh(181,83)=-2*F(91);

dh(182,82)=2*E(91);

dh(182,83)=2*F(91);

dh(18384)=-2*E(92);

dh(183,85)=-2*F(92);

dh(184,84)=2*E(92);

dh(184,85)=2*F(92);

256

dh(197,86)=-2*E(99);

dh(197,87)=-2*F(99);

dh(198,86)=2*E(99);

dh(198,87)=2*F(99);

dh(199,88)=-2*E(100);

dh(199,89)=-2*F(100);

dh(200,88)=2*E(100);

dh(200,89)=2*F(100);

dh(205,90)=-2*E(103);

dh(205,91)=-2*F(103);

dh(206,90)=2*E(103);

dh(206,91)=2*F(103);

dh(207,92)=-2*E(104);

dh(207,93)=-2*F(104);

dh(208,92)=2*E(104);

dh(208,93)=2*F(104);

dh(209,94)=-2*E(105);

dh(209,95)=-2*F(105);

dh(210,94)=2*E(105);

dh(210,95)=2*F(105);

dh(213,96)=-2*E(107);

dh(213,97)=-2*F(107);

dh(214,96)=2*E(107);

dh(214,97)=2*F(107);

dh(219,98)=-2*E(110);

dh(219,99)=-2*F(110);

dh(220,98)=2*E(110);

dh(220,99)=2*F(110);

dh(221,100)=-2*E(111);

dh(221,101)=-2*F(111);

dh(222,100)=2*E(111);

dh(222,101)=2*F(111);

dh(223,102)=-2*E(112);

dh(223,103)=-2*F(112);

dh(224,102)=2*E(112);

dh(224,103)=2*F(112);

dh(225,104)=-2*E(113);

dh(225,105)=-2*F(113);

dh(226,104)=2*E(113);

dh(226,105)=2*F(113);

dh(231,106)=-2*E(116);

dh(231,107)=-2*F(116);

dh(232,106)=2*E(116);

dh(232,107)=2*F(116);

B.30 Function that computes the Hessian of the constraint functions for the 118-

 bus system

function d2ht_lami=d2ht_lami_118bus(lam_i)

d2ht_lami=2*zeros(107);

d2ht_lami(1,1)=lam_i(2)-lam_i(1);

d2ht_lami(2,2)=lam_i(8)-lam_i(7);

257

d2ht_lami(3,3)=lam_i(8)-lam_i(7);

d2ht_lami(4,4)=lam_i(12)-lam_i(11);

d2ht_lami(5,5)=lam_i(12)-lam_i(11);

d2ht_lami(6,6)=lam_i(16)-lam_i(15);

d2ht_lami(7,7)=lam_i(16)-lam_i(15);

d2ht_lami(8,8)=lam_i(20)-lam_i(19);

d2ht_lami(9,9)=lam_i(20)-lam_i(19);

d2ht_lami(10,10)=lam_i(24)-lam_i(23);

d2ht_lami(11,11)=lam_i(24)-lam_i(23);

d2ht_lami(12,12)=lam_i(30)-lam_i(29);

d2ht_lami(13,13)=lam_i(30)-lam_i(29);

d2ht_lami(14,14)=lam_i(36)-lam_i(35);

d2ht_lami(15,15)=lam_i(36)-lam_i(35);

d2ht_lami(16,16)=lam_i(38)-lam_i(37);

d2ht_lami(17,17)=lam_i(38)-lam_i(37);

d2ht_lami(18,18)=lam_i(48)-lam_i(47);

d2ht_lami(19,19)=lam_i(48)-lam_i(47);

d2ht_lami(20,20)=lam_i(50)-lam_i(49);

d2ht_lami(21,21)=lam_i(50)-lam_i(49);

d2ht_lami(22,22)=lam_i(52)-lam_i(51);

d2ht_lami(23,23)=lam_i(52)-lam_i(51);

d2ht_lami(24,24)=lam_i(54)-lam_i(53);

d2ht_lami(25,25)=lam_i(54)-lam_i(53);

d2ht_lami(26,26)=lam_i(62)-lam_i(61);

d2ht_lami(27,27)=lam_i(62)-lam_i(61);

d2ht_lami(28,28)=lam_i(64)-lam_i(63);

d2ht_lami(29,29)=lam_i(64)-lam_i(63);

d2ht_lami(30,30)=lam_i(68)-lam_i(67);

d2ht_lami(31,31)=lam_i(68)-lam_i(67);

d2ht_lami(32,32)=lam_i(72)-lam_i(71);

d2ht_lami(33,33)=lam_i(72)-lam_i(71);

d2ht_lami(34,34)=lam_i(80)-lam_i(79);

d2ht_lami(35,35)=lam_i(80)-lam_i(79);

d2ht_lami(36,36)=lam_i(84)-lam_i(83);

d2ht_lami(37,37)=lam_i(84)-lam_i(83);

d2ht_lami(38,38)=lam_i(92)-lam_i(91);

d2ht_lami(39,39)=lam_i(92)-lam_i(91);

d2ht_lami(40,40)=lam_i(98)-lam_i(97);

d2ht_lami(41,41)=lam_i(98)-lam_i(97);

d2ht_lami(42,42)=lam_i(108)-lam_i(107);

d2ht_lami(43,43)=lam_i(108)-lam_i(107);

d2ht_lami(44,44)=lam_i(110)-lam_i(109);

d2ht_lami(45,45)=lam_i(110)-lam_i(109);

d2ht_lami(46,46)=lam_i(112)-lam_i(111);

d2ht_lami(47,47)=lam_i(112)-lam_i(111);

d2ht_lami(48,48)=lam_i(118)-lam_i(117);

d2ht_lami(49,49)=lam_i(118)-lam_i(117);

d2ht_lami(50,50)=lam_i(122)-lam_i(121);

d2ht_lami(51,51)=lam_i(122)-lam_i(121);

d2ht_lami(52,52)=lam_i(124)-lam_i(123);

d2ht_lami(53,53)=lam_i(124)-lam_i(123);

d2ht_lami(54,54)=lam_i(130)-lam_i(129);

d2ht_lami(55,55)=lam_i(130)-lam_i(129);

d2ht_lami(56,56)=lam_i(132)-lam_i(131);

258

d2ht_lami(57,57)=lam_i(132)-lam_i(131);

d2ht_lami(58,58)=lam_i(138)-lam_i(137);

d2ht_lami(59,59)=lam_i(138)-lam_i(137);

d2ht_lami(60,60)=lam_i(140)-lam_i(139);

d2ht_lami(61,61)=lam_i(140)-lam_i(139);

d2ht_lami(62,62)=lam_i(144)-lam_i(143);

d2ht_lami(63,63)=lam_i(144)-lam_i(143);

d2ht_lami(64,64)=lam_i(146)-lam_i(145);

d2ht_lami(65,65)=lam_i(146)-lam_i(145);

d2ht_lami(66,66)=lam_i(148)-lam_i(147);

d2ht_lami(67,67)=lam_i(148)-lam_i(147);

d2ht_lami(68,68)=lam_i(152)-lam_i(151);

d2ht_lami(69,69)=lam_i(152)-lam_i(151);

d2ht_lami(70,70)=lam_i(154)-lam_i(153);

d2ht_lami(71,71)=lam_i(154)-lam_i(153);

d2ht_lami(72,72)=lam_i(160)-lam_i(159);

d2ht_lami(73,73)=lam_i(160)-lam_i(159);

d2ht_lami(74,74)=lam_i(170)-lam_i(169);

d2ht_lami(75,75)=lam_i(170)-lam_i(169);

d2ht_lami(76,76)=lam_i(174)-lam_i(173);

d2ht_lami(77,77)=lam_i(174)-lam_i(173);

d2ht_lami(78,78)=lam_i(178)-lam_i(177);

d2ht_lami(79,79)=lam_i(178)-lam_i(177);

d2ht_lami(80,80)=lam_i(180)-lam_i(179);

d2ht_lami(81,81)=lam_i(180)-lam_i(179);

d2ht_lami(82,82)=lam_i(182)-lam_i(181);

d2ht_lami(83,83)=lam_i(182)-lam_i(181);

d2ht_lami(84,84)=lam_i(184)-lam_i(183);

d2ht_lami(85,85)=lam_i(184)-lam_i(183);

d2ht_lami(86,86)=lam_i(198)-lam_i(197);

d2ht_lami(87,87)=lam_i(198)-lam_i(197);

d2ht_lami(88,88)=lam_i(200)-lam_i(199);

d2ht_lami(89,89)=lam_i(200)-lam_i(199);

d2ht_lami(90,90)=lam_i(206)-lam_i(205);

d2ht_lami(91,91)=lam_i(206)-lam_i(205);

d2ht_lami(92,92)=lam_i(208)-lam_i(207);

d2ht_lami(93,93)=lam_i(208)-lam_i(207);

d2ht_lami(94,94)=lam_i(210)-lam_i(209);

d2ht_lami(95,95)=lam_i(210)-lam_i(209);

d2ht_lami(96,96)=lam_i(214)-lam_i(213);

d2ht_lami(97,97)=lam_i(214)-lam_i(213);

d2ht_lami(98,98)=lam_i(220)-lam_i(219);

d2ht_lami(99,99)=lam_i(220)-lam_i(219);

d2ht_lami(100,100)=lam_i(222)-lam_i(221);

d2ht_lami(101,101)=lam_i(222)-lam_i(221);

d2ht_lami(102,102)=lam_i(224)-lam_i(223);

d2ht_lami(103,103)=lam_i(224)-lam_i(223);

d2ht_lami(104,104)=lam_i(226)-lam_i(225);

d2ht_lami(105,105)=lam_i(226)-lam_i(225);

d2ht_lami(106,106)=lam_i(232)-lam_i(231);

d2ht_lami(107,107)=lam_i(232)-lam_i(231);

259

B.31 Function that computes the Jacobian and Hessian of the Lagrangian of the

 VVO problem for the 118-bus system

function [f, h, dh, gL, g2L]=f_118bus(x, lam_i)

% Define objective function, its gradient and hessian [f, df, d2f]:

%[~, f, df, d2f, ~]=loss_func_sym_118bus();

[f, ~]=loss_func();

df=df_118bus();

d2f=d2f_118bus();

% Define inequality constraints, the Jacobian and hessian [h, dht_lam_i,

d2ht_lam_i]:

%[h, dh, dht_lam_i, d2ht_lam_i, ~, ~]=h_gradh_hessh_118bus_sym(x, lam_i);

h=h_118bus(x);

dh=dh_118bus();

dht_lam_i=dht_lami_118bus(lam_i);

d2ht_lam_i=d2ht_lami_118bus(lam_i);

% Define gradient and Hessian of Lagrangian, gL, g2L:

% gL=-df+dht_lam_i;

% g2L=d2f-d2ht_lam_i;

gL=-df+dht_lam_i;

g2L=d2f+d2ht_lam_i;

B.32 MATLAB script that runs the PDIPM-VVO algorithm for the 118_bus system

clear

close all

clc

% File name: one_hundred_eighteen_bus_system_pdipm_vvo_test.m

% List of functions needed to run this program:

% (further details are provided for each of these functions

% where they are first called in the program):

% 1. [G, B]=ybus(R, X, Cf)

% 2. [R, X, Cf]=computeRX(from, to, r, x)

% 3. x0=define_x0()

% 4. dF=dF(x, Vgref)

% 5. J=jacobian(x)

% 6. [V, output]=NR_load_flow(@dF, @jacobian, x0, Vgref)

% 7. h=h_118bus(x)

% 8. [f, df, d2f]=loss_func_118bus()

% 9. [h, dh, dht_lam_i, d2ht_lam_i]=h_gradh_hessh_118bus(x, lam_i)

% 10. [f, h, dh, gL, g2L]=f_118bus(x, lam_i)

% 11. update_generator_voltages(x)

% 12. [f, df]=loss_func()

260

% 13. df=df_118bus()

% 14. d2f=d2f_118bus()

% 15. h=h_118bus(x)

% 16. dh=dh_118bus()

% 17. dht_lami=dht_lami_118bus(lam_i)

% 18. d2ht_lami=d2ht_lami_118bus(lam_i)

% 19. x=update_control_vector()

% 20. x0=define_updated_x0(x)

% 21. Vgref=updated_Vgref1(x)

% 22. [X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

% ipm_118bus(@f_118bus,x0,s0,mu0, sigma, @h_118bus, @dF, @jacobian,...

% Vgref, maxIter)

%

% Bus Data:

% Volt/VAR optimization for the IEEE 118-bus system:

%

% Number of buses : 118;

% Number of lines : 186;

% Number of generators : 54;

% Number of loads : 99

global bus_data Cf E F G B bus_type nbus V1_angle_ratio PQs

% bus_data is matrix in which each row applies to a bus, and specifies:

% (1) bus type (1=slack bus, 2=PV bus, 3=PQ bus)

% (2) Real component of bus voltage (E)

% (3) Imaginary component of bus voltage (F)

% (4) Generated real power (Pg)

% (5) Generated reactive power (Qg)

% (6) Real power demand (Pd)

% (7) Reactive power demand (Qd)

% Cf is the bus connectivity matrix; Cf(i,j)=1 when buses i and j are

% connected, zero otherwise

% E and F are vectors containing real and imaginary components of the

% bus voltages (in rectangular coordinates)

% G and B are conductance and susceptance matrices respectively;

% i.e. Y=G+jB, where Y is the bus admittance matrix

% bus_type is simply the first column of the bus_data matrix

% nbus is the number of buses in the system

% Values are all in per-unit

%===

% Bus type V_real V_imag Pg Qg Pd Qd

bus_data=[1 .8963 .5175 0 0 0 0 ;...

 3 .971 0 0 0 .2 .09 ;...

 3 .968 0 0 0 .39 .1 ;...

 2 .998 0 0 0 .39 .12 ;...

 3 1.002 0 0 0 0 0 ;...

261

 2 .99 0 0 0 .52 .22 ;...

 3 .989 0 0 0 .19 .02 ;...

 2 1.015 0 0 0 .28 0 ;...

 3 1.043 0 0 0 0 0 ;...

 2 1.05 0 4.5 0 0 0 ;...

 3 .985 0 0 0 .7 .23 ;...

 2 .99 0 .85 0 .47 .1 ;...

 3 .968 0 0 0 .34 .16 ;...

 3 .984 0 0 0 .14 .01 ;...

 2 .97 0 0 0 .9 .3 ;...

 3 .984 0 0 0 .25 .1 ;...

 3 .995 0 0 0 .11 .03 ;...

 2 .973 0 0 0 .6 .34 ;...

 2 .963 0 0 0 .45 .25 ;...

 3 .958 0 0 0 .18 .03 ;...

 3 .959 0 0 0 .14 .08 ;...

 3 .97 0 0 0 .1 .05 ;...

 3 1 0 0 0 .07 .03 ;...

 2 .992 0 0 0 .13 0 ;...

 2 1.05 0 2.2 0 0 0 ;...

 2 1.015 0 3.14 0 0 0 ;...

 2 .968 0 0 0 .71 .13 ;...

 3 .962 0 0 0 .17 .07 ;...

 3 .963 0 0 0 .24 .04 ;...

 3 .968 0 0 0 0 0 ;...

 2 .967 0 .07 0 .43 .27 ;...

 2 .964 0 0 0 .59 .23 ;...

 3 .972 0 0 0 .23 .09 ;...

 2 .986 0 0 0 .59 .26 ;...

 3 .981 0 0 0 .33 .09 ;...

 2 .98 0 0 0 .31 .17 ;...

 3 .992 0 0 0 0 0 ;...

 3 .962 0 0 0 0 0 ;...

 3 .97 0 0 0 .27 .11 ;...

 2 .97 0 0 0 .66 .23 ;...

 3 .967 0 0 0 .37 .1 ;...

 2 .985 0 0 0 .96 .23 ;...

 3 .978 0 0 0 .18 .07 ;...

 3 .985 0 0 0 .16 .08 ;...

 3 .987 0 0 0 .53 .22 ;...

 2 1.005 0 .19 0 .28 .1 ;...

 3 1.017 0 0 0 .34 0 ;...

 3 1.021 0 0 0 .2 .11 ;...

 2 1.025 0 2.04 0 .87 .3 ;...

 3 1.001 0 0 0 .17 .04 ;...

 3 .967 0 0 0 .17 .08 ;...

 3 .957 0 0 0 .18 .05 ;...

 3 .946 0 0 0 .23 .11 ;...

 2 .955 0 .48 0 1.13 .32 ;...

 2 .952 0 0 0 .63 .22 ;...

 2 .954 0 0 0 .84 .18 ;...

 3 .971 0 0 0 .12 .03 ;...

 3 .959 0 0 0 .12 .03 ;...

 2 .985 0 1.55 0 2.77 1.13 ;...

262

 3 .993 0 0 0 .78 .03 ;...

 2 .995 0 1.6 0 0 0 ;...

 2 .998 0 0 0 .77 .14 ;...

 3 .969 0 0 0 0 0 ;...

 3 .984 0 0 0 0 0 ;...

 2 1.005 0 3.91 0 0 0 ;...

 2 1.05 0 3.92 0 .39 .18 ;...

 3 1.02 0 0 0 .28 .07 ;...

 3 1.003 0 0 0 0 0 ;...

 2 .955 0 0 0 .51 .27 ;...

 2 .984 0 0 0 .66 .2 ;...

 3 .987 0 0 0 0 0 ;...

 2 .98 0 0 0 .12 0 ;...

 2 .991 0 0 0 .06 0 ;...

 2 .958 0 0 0 .68 .27 ;...

 3 .967 0 0 0 .47 .11 ;...

 2 .943 0 0 0 .68 .36 ;...

 2 1.006 0 0 0 .61 .28 ;...

 3 1.003 0 0 0 .71 .26 ;...

 3 1.009 0 0 0 .39 .32 ;...

 2 1.04 0 4.77 0 1.3 .26 ;...

 3 .997 0 0 0 0 0 ;...

 3 .989 0 0 0 .54 .27 ;...

 3 .985 0 0 0 .2 .1 ;...

 3 .98 0 0 0 .11 .07 ;...

 2 .985 0 0 0 .24 .15 ;...

 3 .987 0 0 0 .21 .1 ;...

 2 1.015 0 .04 0 0 0 ;...

 3 .987 0 0 0 .48 .1 ;...

 2 1.005 0 6.07 0 0 0 ;...

 2 .985 0 0 0 1.63 .42 ;...

 2 .98 0 0 0 .1 0 ;...

 2 .993 0 0 0 .65 .1 ;...

 3 .987 0 0 0 .12 .07 ;...

 3 .991 0 0 0 .3 .16 ;...

 3 .981 0 0 0 .42 .31 ;...

 3 .993 0 0 0 .38 .15 ;...

 3 1.011 0 0 0 .15 .09 ;...

 3 1.024 0 0 0 .34 .08 ;...

 2 1.01 0 0 0 .42 0 ;...

 2 1.017 0 2.52 0 .37 .18 ;...

 3 .993 0 0 0 .22 .15 ;...

 3 .991 0 0 0 .05 .03 ;...

 2 1.001 0 .4 0 .23 .16 ;...

 2 .971 0 0 0 .38 .25 ;...

 2 .965 0 0 0 .31 .26 ;...

 3 .962 0 0 0 .43 .16 ;...

 2 .952 0 0 0 .5 .12 ;...

 3 .967 0 0 0 .02 .01 ;...

 3 .967 0 0 0 .08 .03 ;...

 2 .973 0 0 0 .39 .3 ;...

 2 .98 0 .36 0 0 0 ;...

 2 .975 0 0 0 .68 .13 ;...

 2 .993 0 0 0 .06 0 ;...

263

 3 .96 0 0 0 .08 .03 ;...

 3 .96 0 0 0 .22 .07 ;...

 2 1.005 0 0 0 1.84 0 ;...

 3 .974 0 0 0 .2 .08 ;...

 3 .949 0 0 0 .33 .15];

%==

bus_type=bus_data(:,1);

nbus=length(bus_type);

% Bus 44 consistently exhibits low voltage (<0.95)

% Adjusting initial voltage and reactive power injection

% seemed to result in some slight improvement

% bus_data(44,2)=.99;

% bus_data(44,end)=-.35;

% Uniformly distributed generation of 0.68 seems to result in slight

% reduction in losses and improvement in voltage magnitude, but voltage

% phase angles are too high (most beyond 45 degrees maximum specification)

for i=2:nbus

 if (bus_type(i)==2)

 bus_data(i,4)=.68;

 end

end

% figure(4), plot(bus_data(:,4)), title('Uniformly distributed power generation');

% xlabel('bus number'), ylabel('Amplitude')

% Line Data:

% Corresponding elements of the from_bus and to_bus vectors are the bus

% pairs of connected buses; a line or branch (i,j) exists between bus

% pairs (from_bus(i), to_bus(j));

% r and x are vectors of line resistance and reactance values,

% corresponding to the lines specified by (from_bus(i), to_bus(j))

from1=[1 1 4 3 5 6 8 8 9 4];

to1=[2 3 5 5 6 7 9 5 10 11];

r1=[.0303 .0129 .0018 .0241 .0119 .0046 .0024 0 .0026 .0209];

x1=[.0999 .0424 .008 .108 .054 .0208 .0305 .0267 .0322 .0688];

from2=[5 11 2 3 7 11 12 13 14 12];

to2=[11 12 12 12 12 13 14 15 15 16];

r2=[.0203 .006 .0187 .0484 .0086 .0223 .0215 .0744 .0595 .0212];

x2=[.0682 .0196 .0616 .16 .034 .0731 .0707 .2444 .195 .0834];

from3=[15 16 17 18 19 15 20 21 22 23];

to3=[17 17 18 19 20 19 21 22 23 24];

r3=[.0132 .0454 .0123 .0112 .0252 .012 .0183 .0209 .0342 .0135];

x3=[.0437 .1801 .0505 .0493 .117 .0394 .0849 .097 .159 .0492];

from4=[23 26 25 27 28 30 8 17 29 23];

to4=[25 25 27 28 29 17 30 31 31 32];

r4=[.0156 0 .0318 .0191 .0237 0 .0043 .0474 .0108 .0317];

x4=[.08 .0382 .163 .0855 .0943 .0388 .0504 .1563 .0331 .1153];

264

from5=[31 27 15 19 35 35 33 34 34 37];

to5=[32 32 33 34 36 37 37 36 37 39];

r5=[.0298 .0229 .038 .0752 .0022 .011 .0415 .0087 .0026 .0321];

x5=[.0985 .0755 .1244 .247 .0102 .0497 .142 .0268 .0094 .106];

from6=[37 30 39 40 40 41 43 34 44 45];

to6=[40 38 40 41 42 42 44 43 45 46];

r6=[.0593 .0046 .0184 .0145 .0555 .041 .0608 .0413 .0224 .04];

x6=[.168 .054 .0605 .0487 .183 .135 .2454 .1681 .0901 .1356];

from7=[46 46 47 42 42 45 48 49 49 51];

to7=[47 48 49 49 49 49 49 50 51 52];

r7=[.038 .0601 .0191 .0715 .0715 .0684 .0179 .0267 .0486 .0203];

x7=[.127 .189 .0625 .323 .323 .186 .0505 .0752 .137 .0588];

from8=[52 53 49 49 54 54 55 56 50 56];

to8=[53 54 54 54 55 56 56 57 57 58];

r8=[.0405 .0263 .073 .0869 .0169 .0027 .0049 .0343 .0474 .0343];

x8=[.1635 .122 .289 .291 .0707 .0095 .0151 .0966 .134 .0966];

from9=[51 54 56 56 55 59 59 60 60 61];

to9=[58 59 59 59 59 60 61 61 62 62];

r9=[.0255 .0503 .0825 .0803 .0474 .0317 .0328 .0026 .0123 .0082];

x9=[.0719 .2293 .251 .239 .2158 .145 .15 .0135 .0561 .0376];

from10=[63 63 64 38 64 49 49 62 62 65];

to10=[59 64 61 65 65 66 66 66 67 66];

r10=[0 .0017 0 .009 .0027 .018 .018 .0482 .0258 0];

x10=[.0386 .02 .0268 .0986 .0302 .0919 .0919 .218 .117 .037];

from11=[66 47 49 68 69 24 70 24 71 71];

to11=[67 69 69 69 70 70 71 72 72 73];

r11=[.0224 .0844 .0985 0 .03 .0022 .0088 .0488 .0446 .0087];

x11=[.1015 .2778 .324 .037 .127 .4115 .0355 .196 .18 .0454];

from12=[70 70 69 74 76 69 75 77 78 77];

to12=[74 75 75 75 77 77 77 78 79 80];

r12=[.0401 .0428 .0405 .0123 .0444 .0309 .0601 .0038 .0055 .017];

x12=[.1323 .141 .122 .0406 .148 .101 .1999 .0124 .0244 .0485];

from13=[77 79 68 81 77 82 83 83 84 85];

to13=[80 80 81 80 82 83 84 85 85 86];

r13=[.0294 .0156 .0018 0 .0298 .0112 .0625 .043 .0302 .035];

x13=[.105 .0704 .0202 .037 .0853 .0366 .132 .148 .0641 .123];

from14=[86 85 85 88 89 89 90 89 89 91];

to14=[87 88 89 89 90 90 91 92 92 92];

r14=[.0283 .02 .0239 .0139 .0518 .0238 .0254 .0099 .0393 .0387];

x14=[.2074 .102 .173 .0712 .188 .0997 .0836 .0505 .1581 .1272];

from15=[92 92 93 94 80 82 94 80 80 80];

to15=[93 94 94 95 96 96 96 97 98 99];

r15=[.0258 .0481 .0223 .0132 .0356 .0162 .0269 .0183 .0238 .0454];

265

x15=[.0848 .158 .0732 .0434 .182 .053 .0869 .0934 .108 .206];

from16=[92 94 95 96 98 99 100 92 101 100];

to16=[100 100 96 97 100 100 101 102 102 103];

r16=[.0648 .0178 .0171 .0173 .0397 .018 .0277 .0123 .0246 .016];

x16=[.295 .058 .0547 .0885 .179 .0813 .1262 .0559 .112 .0525];

from17=[100 103 103 100 104 105 105 105 106 108];

to17=[104 104 105 106 105 106 107 108 107 109];

r17=[.0451 .0466 .0535 .0605 .0099 .014 .053 .0261 .053 .0105];

x17=[.204 .1584 .1625 .229 .0378 .0547 .183 .0703 .183 .0288];

from18=[103 109 110 110 17 32 32 27 114 68];

to18=[110 110 111 112 113 113 114 115 115 116];

r18=[.0391 .0278 .022 .0247 .0091 .0615 .0135 .0164 .0023 .0003];

x18=[.1813 .0762 .0755 .064 .0301 .203 .0612 .0741 .0104 .0041];

from19=[12 75 76 38 26 65];

to19=[117 118 118 37 30 68];

r19=[.0329 .0145 .0164 0 .008 .0014];

x19=[.14 .0481 .0544 .0375 .086 .016];

% Combine the vectors:

from_bus=[from1 from2 from3 from4 from5 from6 from7 from8 from9 from10 ...

 from11 from12 from13 from14 from15 from16 from17 from18 from19]';

to_bus=[to1 to2 to3 to4 to5 to6 to7 to8 to9 to10 to11 to12 to13 to14 ...

 to15 to16 to17 to18 to19]';

r=[r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19]';

x=[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19]';

% Compute the admittance (in the form G+jB) and bus connectivity (Cf)

% matrices

% Function compute_Ybus() calls function computeRX(), which computes

% the resistance (R) and reactance (X) vectors, needed by the

% function compute_Ybus(), as well as matrix Cf

[R, X, Cf]=computeRX(from_bus, to_bus, r, x);

% Lines 42-49, 49-54, 49-66, 56-59, 77-80, 89-90 and 89-92 are double

% (parallel) lines; calculate the effective impedande and update the

% R, X vectors:

R(42,49)=.5*.0715;

R(49,42)=R(42,49);

X(42,49)=.5*.323;

X(49,42)=X(42,49);

R(49,54)=.073*.0869/(.073+.0869);

R(54,49)=R(49,54);

X(49,54)=.289*.291/(.289+.291);

X(54,49)=X(49,54);

266

R(49,66)=.5*.018;

R(66,49)=R(49,66);

X(49,66)=.5*.0919;

X(66,49)=X(49,66);

R(56,59)=.0803*.0825/(.0803+.0825);

R(59,56)=R(56,59);

X(56,59)=.239*.251/(.239+.251);

X(59,56)=X(56,59);

R(77,80)=.017*.0294/(.018+.0294);

R(80,77)=R(77,80);

X(77,80)=.0485*.105/(.0485+.105);

X(80,77)=X(77,80);

R(89,90)=.0518*.0238/(.0518+.0238);

R(90,89)=R(89,90);

X(89,90)=.188*.0997/(.188+.0997);

X(90,89)=X(89,90);

R(89,92)=.0099*.0393/(.0099+.0393);

R(92,89)=R(89,92);

X(89,92)=.0505*.1581/(.0505+.1581);

X(92,89)=X(89,92);

% Compute the admittance and bus connectivity matrices:

[G, B]=ybus(R, X, Cf);

% Define some parameters:

% Extract the vectors of real and imaginary bus voltage components

% from the bus_data matrix

E=bus_data(:,2);

F=bus_data(:,3);

% [E1, F1]=set_slack_bus_voltage();

% E(1)=E1(8);

% F(1)=F1(8);

% To maintain slack-bus voltage angle:

V1_angle_ratio=F(1)/E(1);

% Define initial input to Newton-Raphson load flow algorithm

% (initial bus voltages,in rectangular form):

x0=define_x0();

% Define the reference voltage vector for the generator voltages;

% this is required for the Volt/VAR optimization problem when running

% the load flow algorithm at each Newton method iteration

Vgref=Vgref_0();

267

% Perform Newton-Raphson load flow

% Newton-Raphson algorithm implemented in rectangular coordinates of

% bus voltages; assumes that bus 1 is the (only) slack bus. Calls functions

% dF() of residues (of the real and reactive power/voltage balance

% equations), as well as jacobian(), which computes the Jacobian of the

% residues, needed to compute the Newton step once the algorithm

% (hopefully) converges, the bus voltages are output in polar form

% (i.e. magnitude and phase angle)

% tic

% [~, output]=NR_load_flow(@dF, @jacobian_118bus, x0, Vgref);

% toc

%

% v=[output.V(:,1) output.V(:,2)]

%

% % Compute system losses after the load flow algorithm has terminated

%

% [losses, ~]=loss_func();

% Perform Volt/VAR optimization:

% Interior-Point Method (IPM)-based Volt/VAR optimization (VVO); applies

% the Newton method to compute the search direction for the primal-dual

% system of the VVO problem derived on the basis of the perturbed KKT

% (first-order) optimality conditions.

%

% Computation of the Newton step requires calculating the first- and

% second-order partial derivatives of the objective and constraint

% functions. The IPM algorithm only considers the inequality constraints

% (in this implementation only the bus voltage magnitude constraints),

% the equality constraints (real and reactive power balance equations)

% are handled by the (Newton-Raphson) load flow algorithm. Therefore, at

% each iteration of the Newton step of the IPM algorithm, the load flow

% algorithm is executed once the primal and dual variables have been

% updated.

%

% The IPM algorithm needs the following functions to execute:

%

% 1. f_118bus(), which computes the gradient and hessian of the Lagrangian

% function of the VVO problem, which are required to compute the

% Newton step;

% 2. loss_func(), df_118bus(), and d2f_118bus(), which are called by

% f_118bus(), to compute the objective, its gradient and hessian;

% 3. h_118bus(), dh_118bus(), dht_lami_118bus(), and d2ht_lami_118bus(),

% which are also called by f_118bus, to compute the constraint

% functions, the Jacobian and hessian thereof as well;

% 4. dF(), which computes the residues needed by the Newton-Raphson

% load flow algorithm;

% 5. jacobian(), which computes the Jacobian of the residues, also needed

% by the Newton-Raphson load flow algorithm;

% 6. A number of utility functions called by the functions stated above,

% including update_generator_voltages(), update_control_vector(),

% define_updated_x0(), updated_Vgref()

268

%

%

% The IPM algorithm also requires a number of parameters, such as the

% barrier parameter (mu), the centering parameter (zeta), and the

% choice of initial primal and dual variables.

% Initialize some input parameters:

xc=update_control_vector();

h0=h_118bus(x0);

s0=abs(h0);

s0(s0<0.01)=.01;

% choice of initial values of slack variables seems to significantly

% affect converge of the algorithm. s0 1.15*s0 gives better results,

% with a slight loss reduction (1.6%); requires limiting number of% Newton

% iterations to 8. But it causes divergence when the number of iterations

% is increased a lot (to say, 20)

s0=1.15*s0;

% mu0=9;

% sigma=.065;

mu0=10;

sigma=.15;

maxIt=7;

s=s0;

mu=mu0;

niq=length(h0);

e=ones(niq,1);

S=diag(s);

Si=inv(S);

lam_i=mu*Si*e;

%[h, dh, dht_lam_i, d2ht_lam_i, hh, nonzeroh]=h_gradh_hessh_118bus_sym(x, lam_i);

% Run the IPM algorithm on the VVO problem:

tic

[X,adx,s,ds,lam_i,dlam_i, alpha_p, alpha_d, mu,fval, cond, output]=...

 ipm_118bus5(@f_118bus,x0,s0,mu0, sigma, @h_118bus, @dF, @jacobian_118bus,

Vgref, maxIt, V1_angle_ratio);

toc

% Output some computation results:

X

mu

cond

output

V=output.V

% Compute the loss reduction:

initial_loss_pu=-cond.loss(1)

final_loss_pu=-cond.loss(end)

loss_reduction_percentage=100*(cond.loss(1)-cond.loss(end))/cond.loss(1)

269

% Plot the loss reduction vs. the iteration number:

figure(1), plot(cond.V1(:,1)), hold on, plot(cond.V1(:,2),'r'),hold on,

plot(cond.V1(:,2)./cond.V1(:,1),'k--')

legend('E','F','F/E');

title('Slack-bus voltage (real(E) and imaginary(F) components)');

xlabel('Iteration number')

ylabel('V_{slack-pu}')

V1_mag=sqrt(cond.V1(:,1).^2+cond.V1(:,2).^2);

V1_angle=180/pi*atan(cond.V1(:,2)./cond.V1(:,1));

V1=[V1_mag V1_angle]

figure(2)

Vinit=cond.Vinit;

Vfinal=V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}')

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% extract generator bus voltages:

Vall=[Vinit Vfinal];

gen_bus_idx=find(bus_type==1 | bus_type==2);

ng=length(gen_bus_idx);

Vgen=zeros(ng,3);

for i=1:ng

 Vgen(i,:)=[gen_bus_idx(i) Vall(gen_bus_idx(i), :)];

end

% xlswrite('one_eighteen_bus_system_voltage1.xlsx', Vgen)

figure(3)

plot(cond.iter,-cond.loss, 'r',cond.iter,-cond.loss, 'b*');

grid

title('IEEE 118-bus system real power loss vs. iteration number', 'FontSize', 10.0)

xlabel('Iteration number')

ylabel('P_{loss} (p.u.)')

loss_label=['Percentage loss reduction = ' num2str(loss_reduction_percentage) '%'];

ax=gca;

y_lims=ax.YLim;

text(2,y_lims(2)-.025, loss_label);

loss=-cond.loss;

% Adding 2e-2 to P1 makes slack-bus active power

% and power loss coincide; this (value of 2e-2)

% seems to only represent a discrepancy due to

% differences in scale of the two quantities

P1=.02+cond.PQs(1,:)';

Q1=cond.PQs(2,:)';

270

Q4=cond.PQs(3,:)';

% 4.8e-1 added to Qsum to shift it up, improves comparison with

% real power loss reduction

Qsum=.48+cond.Qsum';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q4);

title('Bus-4 generator reactive power and power loss')

legend('P_{loss}','Q_{g4}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-4 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(5)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('118-bus system: slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

271

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

ax=gca;

y_lims=ax.YLim;

text(.7,y_lims(2)-.025, loss_label);

subplot(212)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('118-bus system: total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

% figure(5)

% [hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

% title('Fig.5: Slack-bus active power and power loss')

% legend('P_{loss}','P_{slack}')

% xlabel('Iteration number')

% ylabel(hAx(1),'Real power loss');

% ylabel(hAx(2),'Slack-bus real power');

% hLine2.LineStyle='-.';

% grid

figure(6)

subplot(211)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

x3=[0:length(V1_mag)-1]';

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q1,x3,V1_mag);

title('Slack-bus reactive power and Slack-bus voltage')

legend('Q_{slack}','V_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage');

hLine2.LineStyle='--';

grid

272

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

APPENDIX C: SOFTWARE PROGRAMS FOR CHAPTER 6

C.1 MATLAB script that runs the PSO-VVO algorithm for the 3-bus system

% File name: pso_vvo_3bus_system.m

% load 3-bus system data:

three_bus_system_data;

global PQs Qsum Vgens

% initialize PSO parameters:

273

c1=2.05;

c2=2.05;

% c1=2;

% c2=2;

p=10; % swarm size

d=3; % problem dimension

N=200; % maximum number of iterations

wmin=.4; % minimum inertia weight

wmax=.9; % maximum inertia weight

% generate initial position vector:

e10=.95+.15*rand(p,1);

e30=.95+.15*rand(p,1);

f30=real(sqrt(1-(.95+.15*rand(p,1)).^2));

x=[e10 e30 f30];

% generate initial velocity vector (set to zero):

v=zeros(p,d);

fprev=inf*ones(p,1); % initialize fitness function values (to infinity)

pbest=x; % initialize each particle's past best position (equal

to initial position)

Gbest=[]; % keep track of global best position

fbest=[]; % keep track of fitness value of global best position

% evaluate fitness function for each particle to determine personal and global best

positions:

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest);

% run (Newton-Raphson) load flow:

% compute initial voltage vector for the load flow algorithm:

x_loadflow=define_updated_x0(gbest);

% compute voltage reference vector for the load flow algorithm:

Vgref_loadflow=updated_Vgref(gbest);

% run the load flow algorithm:

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

E=real(V);

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

274

% Initial load flow voltage results:

Vinit=output.V(:,1);

% update control vector (gbest):

gbest=update_control_vector()';

% recompute objective function:

f_best=PSO_objective_evaluation(gbest);

% keep track of global best position and its correspoding fitness/objective

function value:

Gbest=[Gbest;gbest];

fbest=[fbest;f_best];

% keep tract of change in global best position and its corresponding

fitness/objective value:

dGbest=[];

dfbest=[];

% compute termination conditions based on change in global best position, and its

associated fitness value:

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5);

global_position_change_norm=(norm(gbest)<1e-5);

objective_change=abs(f_best)>=0;

% initialize iteration counter:

t=1;

tic % time the PSO loop

% loop until termination conditions are satisfied:

while ((~objective_norm_change || objective_change) && t<=N)

 % compute the particle velocity:

 % based on inertia weight:

 %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N);

 % based on constriction coefficient:

 [v,x]=PSO_X_update_cc1(v,x,pbest,gbest,c1,c2);

 % compute the objective function value for each particle to

 % update the personal and global best positions:

 [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest);

 % re-run (Newton-Raphson) load flow:

 % compute initial voltage vector for the load flow algorithm:

 x_loadflow=define_updated_x0(gbest);

 % compute voltage reference vector for the load flow algorithm:

 Vgref_loadflow=updated_Vgref(gbest);

 % run the load flow algorithm:

 [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

275

 E=real(V);

 F=imag(V);

 % Compute slack-bus active, and generator reactive power outputs

 compute_PQ();

 % Extract generator bus voltages;

 get_Vgen();

 % update control vector (gbest):

 gbest=update_control_vector()';

 % recompute objective function:

 f_best=PSO_objective_evaluation(gbest);

 % keep track of the global best position and objective function values,

 % as well as the change in these quantities between iterations:

 Gbest=[Gbest;gbest];

 fbest=[fbest; f_best];

 delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)));

 dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))];

 dfbest=[dfbest; delta_fbest];

 % check to see if convergence criteria are satisfied by the global best

 % position:

 objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4);

 global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4);

 objective_change=(fbest(t+1)-fbest(1))>=0;

 % increment the iteration counter, before the loop runs again:

 t=t+1;

end

toc

x_opt=Gbest(end,:)

f_opt=[fbest(1);fbest(end)]

num_iterations=t

if (num_iterations<201 || fbest(end)<fbest(1))

 percentage_loss_reduction=100*(fbest(1)-fbest(end))/fbest(1)

else

 disp('Failed to achieve power loss reduction within set maximum number of

iterations')

end

[Va, Vm]=cart2pol(real(V), imag(V));

Vpolar=[Vm 180*Va/pi];

 plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*')

 grid

 for i=1:length(Gbest(:,1))

 text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)])

 end

 figure(2)

 subplot(311)

276

 plot(dGbest)

 hold on

 plot(dGbest,'r*')

 title('Change in global best position')

 grid

 hold off

 subplot(313)

 plot(fbest), grid

 title('Fitness value of global best position')

 subplot(312)

 plot(dfbest), grid

 title('Change in fitness value of global best position')

figure(3)

Vfinal=output.V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'),

hold off;

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

xlswrite('three_bus_system_voltage2.xlsx', [Vinit Vfinal]);

loss=fbest;

P1=PQs(1,:)';

Q1=PQs(2,:)';

Q3=PQs(3,:)';

Qsum=.0015+Qsum';

Vg1=Vgens(1,:)';

Vg3=Vgens(2,:)';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

277

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

278

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(10)

subplot(121)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(122)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

C.2 MATLAB script that runs the PSO-VVO algorithm for the 6-bus system

% File name: pso_vvo_6bus_system.m

% load 6-bus system data:

six_bus_system_data;

global PQs Qsum Vgens

% initialize PSO parameters:

c1=2.05;

c2=2.05;

% c1=2;

% c2=2;

279

p=10; % swarm size

d=5; % problem dimension

N=200; % maximum number of iterations

wmin=.4; % minimum inertia weight

wmax=.9; % maximum inertia weight

% generate initial position vector:

e10=.95+.15*rand(p,1);

e20=.95+.15*rand(p,1);

f20=real(sqrt(1-(.95+.15*rand(p,1)).^2));

e30=.95+.15*rand(p,1);

f30=real(sqrt(1-(.95+.15*rand(p,1)).^2));

x=[e10 e20 f20 e30 f30];

% generate initial velocity vector (set to zero):

v=zeros(p,d);

fprev=inf*ones(p,1); % initialize fitness function values (to infinity)

pbest=x; % initialize each particle's past best position (equal

to initial position)

Gbest=[]; % keep track of global best position

fbest=[]; % keep track of fitness value of global best position

% evaluate fitness function for each particle to determine personal and global best

positions:

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest);

% run (Newton-Raphson) load flow:

% compute initial voltage vector for the load flow algorithm:

x_loadflow=define_updated_x0(gbest);

% compute voltage reference vector for the load flow algorithm:

Vgref_loadflow=updated_Vgref(gbest);

% run the load flow algorithm:

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

E=real(V);

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

% Initial load flow voltage results:

280

Vinit=output.V(:,1);

% update control vector (gbest):

gbest=update_control_vector()';

% recompute objective function:

f_best=PSO_objective_evaluation(gbest);

Gbest=[Gbest;gbest];

fbest=[fbest;f_best];

% keep tract of change in global best position and its corresponding fitness value:

dGbest=[];

dfbest=[];

% compute termination conditions based on change in global best position, and its

associated fitness value:

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5);

global_position_change_norm=(norm(gbest)<1e-5);

objective_change=abs(f_best)>=0;

% initialize iteration counter:

t=1;

tic

% loop until termination conditions are satisfied:

while ((~objective_norm_change || objective_change) && t<=N)

 r1=rand(p,1);

 r2=rand(p,1);

 % compute the particle velocity:

 %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N);

 [v,x]=PSO_X_update_cc1(v,x,pbest,gbest,c1,c2);

 % compute the objective function value for each particle to

 % update the personal and global best positions:

 [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(x,fprev,pbest);

 % run (Newton-Raphson) load flow:

 % compute initial voltage vector for the load flow algorithm:

 x_loadflow=define_updated_x0(gbest);

 % compute voltage reference vector for the load flow algorithm:

 Vgref_loadflow=updated_Vgref(gbest);

 % run the load flow algorithm:

 [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

 E=real(V);

 F=imag(V);

 % Compute slack-bus active, and generator reactive power outputs

 compute_PQ();

 % Extract generator bus voltages;

281

 get_Vgen();

 % update control vector (gbest):

 gbest=update_control_vector()';

 % recompute objective function:

 f_best=PSO_objective_evaluation(gbest);

 % keep track of the global best position and objective function values,

 % as well as the change in these quantities between iterations:

 Gbest=[Gbest;gbest];

 fbest=[fbest; f_best];

 delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)));

 dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))];

 dfbest=[dfbest; delta_fbest];

 % check to see if convergence criteria are satisfied by the global best

 % position:

 objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4);

 global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4);

 objective_change=(fbest(t+1)-fbest(1))>=0;

 % increment the iteration counter, before the loop runs again:

 t=t+1;

end

x_opt=Gbest(end,:)

f_opt=[fbest(1);fbest(end)]

num_iterations=t

if (num_iterations<201 || fbest(end)<fbest(1))

 percentage_loss=100*(fbest(1)-fbest(end))/fbest(1)

else

 disp('Failed to achieve power loss reduction within set maximum number of

iterations')

end

[Va, Vm]=cart2pol(real(V), imag(V));

Vpolar=[Vm 180*Va/pi];

toc

 plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*')

 grid

 for i=1:length(Gbest(:,1))

 text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)])

 end

 figure(2)

 subplot(311)

 plot(dGbest)

 hold on

 plot(dGbest,'r*')

 title('Change in global best position')

 grid

 hold off

 subplot(313)

282

 plot(fbest), grid

 title('Fitness value of global best position')

 subplot(312)

 plot(dfbest), grid

 title('Change in fitness value of global best position')

figure(3)

Vfinal=output.V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'),

hold off;

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

xlswrite('six_bus_system_voltage2.xlsx', [Vinit Vfinal]);

loss=fbest;

P1=PQs(1,:)';

Q1=PQs(2,:)';

Q2=PQs(3,:)';

Q3=PQs(4,:)';

Qsum=Qsum';

Vg1=Vgens(1,:)';

Vg2=Vgens(2,:)';

Vg3=Vgens(3,:)';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

283

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q3);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

284

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(10)

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.')

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}','Q_{g3}')

grid

figure(11)

subplot(221)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

C.3 MATLAB script that runs the PSO-VVO algorithm for the 14-bus system

% File name: pso_vvo_14bus_system.m

285

% load 14-bus system data:

fourteen_bus_system_data;

global PQs Qsum Vgens

% initialize PSO parameters:

c1=2.05;

c2=2.05;

% c1=2;

% c2=2;

p=20; % swarm size

d=9; % problem dimension

N=200; % maximum number of iterations

wmin=.4; % minimum inertia weight

wmax=.9; % maximum inertia weight

% generate initial position vector:

ng=length(find(bus_type==2)); % number of PV buses

x=zeros(p,d); % initialize matrix to store initial generator

voltage vectors

x(:,1)=.95+.15*rand(p,1); % first element is slack-bus real component of

voltage

k=2;

for i=2:ng+1 % loop over PV buses

 x(:,k)=.95+.15*rand(p,1);

 x(:,k+1)=(-1)^randi(ng)*real(sqrt(1-x(:,k).^2));

 %x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2));

 k=k+2;

end

% generate initial velocity vector (set to zero):

v=zeros(p,d);

%v=.2*rand(p,d);

X0=x;

fprev=inf*ones(p,1); % initialize fitness function values (to infinity)

pbest=x; % initialize each particle's past best position (equal

to initial position)

Gbest=[]; % keep track of global best position

fbest=[]; % keep track of fitness value of global best position

% evaluate fitness function for each particle to determine personal and

% global best positions:

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_14bus2(x,fprev,pbest);

% run (Newton-Raphson) load flow:

% compute initial voltage vector for the load flow algorithm:

x_loadflow=define_updated_x0(gbest);

% compute voltage reference vector for the load flow algorithm:

Vgref_loadflow=updated_Vgref(gbest);

% run the load flow algorithm:

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

E=real(V);

286

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

% Initial load flow voltage results:

Vinit=output.V(:,1);

% update control vector (gbest):

gbest_before_update_control_vector=gbest;

gbest=update_control_vector()';

gbest_after_update_control_vector=gbest;

% recompute objective function:

f_best=PSO_objective_evaluation_14bus2(gbest);

Gbest=[Gbest;gbest];

fbest=[fbest;f_best];

% keep tract of change in global best position and its corresponding

% fitness value:

dGbest=[];

dfbest=[];

% compute termination conditions based on change in global best position, and its

associated fitness value:

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5);

global_position_change_norm=(norm(gbest)<1e-5);

objective_change=abs(f_best)>=0;

% initialize iteration counter:

t=1;

tic

% loop until termination conditions are satisfied:

while ((~objective_norm_change || objective_change) && t<=N)

 % compute the particle velocity:

 %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N);

 [v,x]=PSO_X_update_cc_14bus(v,x,pbest,gbest,c1,c2);

 % compute the objective function value for each particle to

 % update the personal and global best positions:

 [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_14bus2(x,fprev,pbest);

287

 % run (Newton-Raphson) load flow:

 % compute initial voltage vector for the load flow algorithm:

 x_loadflow=define_updated_x0(gbest);

 % compute voltage reference vector for the load flow algorithm:

 Vgref_loadflow=updated_Vgref(gbest);

 % run the load flow algorithm:

 [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

 E=real(V);

 F=imag(V);

 % Compute slack-bus active, and generator reactive power outputs

 compute_PQ();

 % Extract generator bus voltages;

 get_Vgen();

 % update control vector (gbest):

 gbest=update_control_vector()';

 % recompute objective function:

 f_best=PSO_objective_evaluation_14bus2(gbest);

 % keep track of the global best position and objective function values,

 % as well as the change in these quantities between iterations:

 Gbest=[Gbest;gbest];

 fbest=[fbest; f_best];

 delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)));

 dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))];

 dfbest=[dfbest; delta_fbest];

 % check to see if convergence criteria are satisfied by the global best

 % position:

 objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4);

 global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4);

 objective_change=(fbest(t+1)-fbest(1))>=0;

 % increment the iteration counter, before the loop runs again:

 t=t+1;

end

x_opt=Gbest(end,:)

f_opt=[fbest(1);fbest(end)]

num_iterations=t

if (num_iterations<201 || fbest(end)<fbest(1))

 percentage_loss=100*(fbest(1)-fbest(end))/fbest(1)

else

 disp('Failed to achieve power loss reduction within set maximum number of

iterations')

end

[Va, Vm]=cart2pol(real(V), imag(V));

Vpolar=[Vm 180*Va/pi];

288

toc

 plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*')

 grid

 for i=1:length(Gbest(:,1))

 text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)])

 end

 figure(2)

 subplot(311)

 plot(dGbest)

 hold on

 plot(dGbest,'r*')

 title('Change in global best position')

 grid

 hold off

 subplot(313)

 plot(fbest), grid

 title('Fitness value of global best position')

 subplot(312)

 plot(dfbest), grid

 title('Change in fitness value of global best position')

figure(3)

Vfinal=output.V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'),

hold off;

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('fourteen_bus_system_voltage2.xlsx', [Vinit Vfinal]);

loss=fbest;

P1=PQs(1,:)';

Q1=PQs(2,:)';

Q2=PQs(3,:)';

Q3=PQs(4,:)';

Q6=PQs(5,:)';

Q8=PQs(6,:)';

Qsum=Qsum';

Vg1=Vgens(1,:)';

Vg2=Vgens(2,:)';

Vg3=Vgens(3,:)';

Vg6=Vgens(4,:)';

Vg8=Vgens(5,:)';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

289

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q2);

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

290

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q3);

title('Bus-3 generator reactive power and power loss')

legend('P_{loss}','Q_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-3 generator reactive power');

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q6);

title('Bus-6 generator reactive power and power loss')

legend('P_{loss}','Q_{g6}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-6 generator reactive power');

hLine2.LineStyle='--';

grid

figure(10)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8);

title('Bus-6 generator reactive power and power loss')

legend('P_{loss}','Q_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-8 generator reactive power');

hLine2.LineStyle='--';

grid

figure(11)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

291

figure(12)

plot(x2,Q1,x2,Q2,'r--',x2,Q3,'m-.',x2,Q6,'c-+',x2,Q8,'k-*')

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}','Q_{g3}','Q_{g6}','Q_{g8}')

grid

figure(13)

subplot(321)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(322)

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(323)

[hAx, ~, hLine2]=plotyy(x2,Q3,x2,Vg3);

title('Bus-3 generator reactive power and voltage magnitude')

legend('Q_{g3}','V_{g3}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-3 generator reactive power');

ylabel(hAx(2),'Bus-3 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(324)

[hAx, ~, hLine2]=plotyy(x2,Q6,x2,Vg6);

title('Bus-6 generator reactive power and voltage magnitude')

legend('Q_{g6}','V_{g6}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-6 generator reactive power');

ylabel(hAx(2),'Bus-6 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(325)

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8);

title('Bus-8 generator reactive power and voltage magnitude')

legend('Q_{g8}','V_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-8 generator reactive power');

ylabel(hAx(2),'Bus-8 voltage magnitude');

292

hLine2.LineStyle='--';

grid

C.4 MATLAB script that runs the PSO-VVO algorithm for the 30-bus system

% File name: pso_vvo_30bus_system.m

% load 30-bus system data:

thirty_bus_system_data;

global PQs Qsum Vgens

% initialize PSO parameters:

c1=2.05;

c2=2.05;

% c1=2;

% c2=2;

p=20; % swarm size

d=11; % problem dimension

N=200; % maximum number of iterations

wmin=.4; % minimum inertia weight

wmax=.9; % maximum inertia weight

% generate initial position vector:

ng=length(find(bus_type==2)); % number of PV buses

x=zeros(p,d); % initialize matrix to store initial generator

voltage vectors

x(:,1)=.95+.15*rand(p,1); % first element is slack-bus real component of

voltage

k=2;

for i=2:ng+1 % loop over PV buses

 x(:,k)=.95+.15*rand(p,1);

 %x(:,k+1)=(-1)^i*real(sqrt(1-x(:,k).^2));

 x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2));

 k=k+2;

end

% generate initial velocity vector (set to zero):

v=zeros(p,d);

%v=.2*rand(p,d);

X0=x;

fprev=inf*ones(p,1); % initialize fitness function values (to infinity)

pbest=x; % initialize each particle's past best position (equal

to initial position)

Gbest=[]; % keep track of global best position

fbest=[]; % keep track of fitness value of global best position

% evaluate fitness function for each particle to determine personal and global best

positions:

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_30bus1(x,fprev,pbest);

% run (Newton-Raphson) load flow:

% compute initial voltage vector for the load flow algorithm:

x_loadflow=define_updated_x0(gbest);

293

% compute voltage reference vector for the load flow algorithm:

Vgref_loadflow=updated_Vgref(gbest);

% run the load flow algorithm:

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

E=real(V);

F=imag(V);

% Initialize slack-bus active, and generator reactive power outputs

% matrix to empty matrix:

PQs=[];

% Initial load flow voltage results:

Vinit=output.V(:,1);

% update control vector (gbest):

gbest_before_update_control_vector=gbest;

gbest=update_control_vector()';

gbest_after_update_control_vector=gbest;

% recompute objective function:

f_best=PSO_objective_evaluation_30bus1(gbest);

Gbest=[Gbest;gbest];

fbest=[fbest;f_best];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Vector to hold generator bus voltages:

Vgens=[];

% Extract generator bus voltages;

get_Vgen();

% keep tract of change in global best position and its corresponding fitness value:

dGbest=[];

dfbest=[];

% keep track of velocity update:

vupdate=[];

% compute termination conditions based on change in global best position, and its

associated fitness value:

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-5);

global_position_change_norm=(norm(gbest)<1e-5);

objective_change=abs(f_best)>=0;

% initialize iteration counter:

t=1;

294

tic

% loop until termination conditions are satisfied:

while ((~objective_norm_change || objective_change) && t<=N)

 % compute the particle velocity:

 %[v,x]=PSO_X_update3(v,x,pbest,gbest,c1,c2,wmin,wmax,t,N);

 [v,x]=PSO_X_update_cc_30bus(v,x,pbest,gbest,c1,c2);

 % keep track of velocity update:

 vupdate=[vupdate; v];

 % compute the objective function value for each particle to

 % update the personal and global best positions:

 [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_30bus1(x,fprev,pbest);

 % run (Newton-Raphson) load flow:

 % compute initial voltage vector for the load flow algorithm:

 x_loadflow=define_updated_x0(gbest);

 % compute voltage reference vector for the load flow algorithm:

 Vgref_loadflow=updated_Vgref(gbest);

 % run the load flow algorithm:

 [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

 E=real(V);

 F=imag(V);

 % update control vector (gbest):

 gbest=update_control_vector()';

 % recompute objective function:

 f_best=PSO_objective_evaluation_30bus1(gbest);

 % keep track of the global best position and objective function values,

 % as well as the change in these quantities between iterations:

 Gbest=[Gbest;gbest];

 fbest=[fbest; f_best];

 delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)));

 dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))];

 dfbest=[dfbest; delta_fbest];

 % Compute slack-bus active, and generator reactive power outputs

 compute_PQ();

 % Extract generator bus voltages;

 get_Vgen();

 % check to see if convergence criteria are satisfied by the global best

 % position:

 objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<1e-4);

295

 global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4);

 objective_change=(fbest(t+1)-fbest(1))>=0;

 % increment the iteration counter, before the loop runs again:

 t=t+1;

end

x_opt=Gbest(end,:)

f_opt=[fbest(1);fbest(end)]

num_iterations=t

if (num_iterations<N+1 || fbest(end)<fbest(1))

 percentage_loss=100*(fbest(1)-fbest(end))/fbest(1)

else

 disp('Failed to achieve power loss reduction within set maximum number of

iterations')

end

[Va, Vm]=cart2pol(real(V), imag(V));

Vpolar=[Vm 180*Va/pi];

toc

 plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*')

 grid

 for i=1:length(Gbest(:,1))

 text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)])

 end

 figure(2)

 subplot(311)

 plot(dGbest)

 hold on

 plot(dGbest,'r*')

 title('Change in global best position')

 grid

 hold off

 subplot(313)

 plot(fbest), grid

 title('Fitness value of global best position')

 subplot(312)

 plot(dfbest), grid

 title('Change in fitness value of global best position')

figure(3)

Vfinal=output.V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'),

hold off;

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('thirty_bus_system_voltage2.xlsx', [Vinit Vfinal]);

loss=fbest;

% Adding 2.2e-3 to P1 makes slack-bus active power

296

% and power loss coincide; this (value of 2.2e-3)

% seems to only represent a discrepancy due to

% differences in scale of the two quantities

P1=2.2e-3+PQs(1,:)';

Q1=PQs(2,:)';

Q2=PQs(3,:)';

Q5=PQs(4,:)';

Q8=PQs(5,:)';

Q11=PQs(6,:)';

Q13=PQs(7,:)';

Qsum=Qsum';

Vg1=Vgens(1,:)';

Vg2=Vgens(2,:)';

Vg5=Vgens(3,:)';

Vg8=Vgens(4,:)';

Vg11=Vgens(5,:)';

Vg13=Vgens(6,:)';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5);

title('Bus-5 generator reactive power and power loss')

legend('P_{loss}','Q_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-5 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Q5);

297

title('Generator reactive powers')

legend('Q_{slack}','Q_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Generator reactive powers');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q2);

title('Bus-2 generator reactive power and power loss')

legend('P_{loss}','Q_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-2 generator reactive power');

hLine2.LineStyle='--';

grid

figure(8)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q5);

title('Bus-5 generator reactive power and power loss')

legend('P_{loss}','Q_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-5 generator reactive power');

hLine2.LineStyle='--';

grid

figure(9)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q8);

title('Bus-8 generator reactive power and power loss')

legend('P_{loss}','Q_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

298

ylabel(hAx(2),'Bus-8 generator reactive power');

hLine2.LineStyle='--';

grid

figure(10)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q11);

title('Bus-11 generator reactive power and power loss')

legend('P_{loss}','Q_{g11}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-11 generator reactive power');

hLine2.LineStyle='--';

grid

figure(11)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q13);

title('Bus-11 generator reactive power and power loss')

legend('P_{loss}','Q_{g13}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-13 generator reactive power');

hLine2.LineStyle='--';

grid

figure(12)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(13)

plot(x2,Q1,x2,Q2,'r--',x2,Q5,'m-.',x2,Q8,'c-+',x2,Q11,'k-*',x2,Q13,'g-o')

title('Generator reactive powers')

legend('Q_{slack}','Q_{g2}','Q_{g5}','Q_{g8}','Q_{g11}','Q_{g13}')

grid

figure(14)

subplot(211)

[hAx, ~, hLine2]=plotyy(x2,Q1,x2,Vg1);

title('Slack-bus reactive power and voltage magnitude')

legend('Q_{slack}','V_{g1}')

xlabel('Iteration number')

ylabel(hAx(1),'Slack-bus reactive power');

ylabel(hAx(2),'Slack-bus voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q2,x2,Vg2);

title('Bus-2 generator reactive power and voltage magnitude')

299

legend('Q_{g2}','V_{g2}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-2 generator reactive power');

ylabel(hAx(2),'Bus-2 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(15)

subplot(211)

[hAx, ~, hLine2]=plotyy(x2,Q5,x2,Vg5);

title('Bus-5 generator reactive power and voltage magnitude')

legend('Q_{g5}','V_{g5}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-5 generator reactive power');

ylabel(hAx(2),'Bus-5 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q8,x2,Vg8);

title('Bus-8 generator reactive power and voltage magnitude')

legend('Q_{g8}','V_{g8}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-8 generator reactive power');

ylabel(hAx(2),'Bus-8 voltage magnitude');

hLine2.LineStyle='--';

grid

figure(16)

subplot(211)

[hAx, ~, hLine2]=plotyy(x2,Q11,x2,Vg11);

title('Bus-11 generator reactive power and voltage magnitude')

legend('Q_{g11}','V_{g11}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-11 generator reactive power');

ylabel(hAx(2),'Bus-11 voltage magnitude');

hLine2.LineStyle='--';

grid

subplot(212)

[hAx, ~, hLine2]=plotyy(x2,Q13,x2,Vg13);

title('Bus-13 generator reactive power and voltage magnitude')

legend('Q_{g13}','V_{g13}')

xlabel('Iteration number')

ylabel(hAx(1),'Bus-13 generator reactive power');

ylabel(hAx(2),'Bus-13 voltage magnitude');

hLine2.LineStyle='--';

grid

C.5 MATLAB script that runs the PSO-VVO algorithm for the 118-bus system

% File name: pso_vvo_118bus_system.m

300

% load 118-bus system data:

one_hundred_eighteen_bus_system_data;

global PQs Qsum

% initialize PSO parameters:

c1=2.05;

c2=2.05;

% c1=2;

% c2=2;

p=30; % swarm size

d=107; % problem dimension

N=200; % maximum number of iterations

wmin=.4; % minimum inertia weight

wmax=.9; % maximum inertia weight

% generate initial position vector:

ng=length(find(bus_type==2)); % number of PV buses

x=zeros(p,d); % initialize matrix to store initial generator

voltage vectors

x(:,1)=.95+.15*rand(p,1); % first element is slack-bus real component of

voltage

k=2;

for i=2:ng+1 % loop over PV buses

 x(:,k)=.95+.15*rand(p,1);

 %x(:,k+1)=(-1)^i*real(sqrt(1-x(:,k).^2));

 x(:,k+1)=(-1)^i*real(sqrt(1-(.95+.15*rand(p,1)).^2));

 %x(:,k+1)=real(sqrt(1-(.95+.15*rand(p,1)).^2));

 k=k+2;

end

% generate initial velocity vector (set to zero):

v=zeros(p,d);

%v=.2*rand(p,d);

X0=x;

fprev=inf*ones(p,1); % initialize fitness function values (to infinity)

pbest=x; % initialize each particle's past best position (equal

to initial position)

Gbest=[]; % keep track of global best position

fbest=[]; % keep track of fitness value of global best position

% evaluate fitness function for each particle to determine personal and global best

positions:

[fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_118bus(x,fprev,pbest);

% run (Newton-Raphson) load flow:

% compute initial voltage vector for the load flow algorithm:

x_loadflow=define_updated_x0(gbest);

% compute voltage reference vector for the load flow algorithm:

Vgref_loadflow=updated_Vgref(gbest);

% run the load flow algorithm:

[V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

E=real(V);

301

F=imag(V);

% Initialize slack-bus active, and generator reactive power matrix to

% empty array:

PQs=[];

% Compute slack-bus active, and generator reactive power outputs

compute_PQ();

% Initial load flow voltage results:

Vinit=output.V(:,1);

% update control vector (gbest):

gbest_before_update_control_vector=gbest;

gbest=update_control_vector()';

gbest_after_update_control_vector=gbest;

% recompute objective function:

f_best=PSO_objective_evaluation_118bus(gbest);

Gbest=[Gbest;gbest];

fbest=[fbest;f_best];

% keep tract of change in global best position and its corresponding fitness value:

dGbest=[];

dfbest=[];

% compute termination conditions based on change in global best position, and its

associated fitness value:

objective_norm_change=(abs(f_best)/(1+abs(f_best))<1e-3);

global_position_change_norm=(norm(gbest)<1e-3);

objective_change=abs(f_best)>=0;

% initialize iteration counter:

t=1;

tic

% loop until termination conditions are satisfied:

while ((~objective_norm_change || objective_change) && t<=N)

 % compute the particle velocity:

 %[V,X]=PSO_X_update2(V,X,pbest,gbest,c1,c2,r1,r2,wmin,wmax,t,N);

 [v,x]=PSO_X_update_cc_118bus(v,x,pbest,gbest,c1,c2);

 % compute the objective function value for each particle to

 % update the personal and global best positions:

 [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest_118bus(x,fprev,pbest);

 % run (Newton-Raphson) load flow:

 % compute initial voltage vector for the load flow algorithm:

 x_loadflow=define_updated_x0(gbest);

 % compute voltage reference vector for the load flow algorithm:

302

 Vgref_loadflow=updated_Vgref(gbest);

 % run the load flow algorithm:

 [V, output]=NR_load_flow(@dF, @jacobian, x_loadflow, Vgref_loadflow);

 E=real(V);

 F=imag(V);

 % Compute slack-bus active, and generator reactive power outputs

 compute_PQ();

 % update control vector (gbest):

 gbest=update_control_vector()';

 % recompute objective function:

 f_best=PSO_objective_evaluation_118bus(gbest);

 % keep track of the global best position and objective function values,

 % as well as the change in these quantities between iterations:

 Gbest=[Gbest;gbest];

 fbest=[fbest; f_best];

 delta_fbest=abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)));

 dGbest=[dGbest; norm(Gbest(t+1,:)-Gbest(t,:))];

 dfbest=[dfbest; delta_fbest];

 % check to see if convergence criteria are satisfied by the global best

 % position:

 objective_norm_change=(abs(fbest(t+1)-fbest(t))/(1+abs(fbest(t+1)))<0.01);

 global_position_change_norm=(norm(Gbest(t+1,:)-Gbest(t,:))<1e-4);

 objective_change=(fbest(t+1)-fbest(1))>=0;

 % increment the iteration counter, before the loop runs again:

 t=t+1;

end

x_opt=Gbest(end,:);

f_opt=[fbest(1);fbest(end)]

num_iterations=t

if (num_iterations<201 || fbest(end)<fbest(1))

 percentage_loss=100*(fbest(1)-fbest(end))/fbest(1)

else

 disp('Failed to achieve power loss reduction within set maximum number of

iterations')

end

[Va, Vm]=cart2pol(real(V), imag(V));

Vpolar=[Vm 180*Va/pi];

toc

 plot(Gbest(:,1),Gbest(:,2),Gbest(:,1),Gbest(:,2),'r*')

 grid

 for i=1:length(Gbest(:,1))

 text(Gbest(i,1), Gbest(i,2), ['iter ' num2str(i)])

 end

 figure(2)

303

 subplot(311)

 plot(dGbest)

 hold on

 plot(dGbest,'r*')

 title('Change in global best position')

 grid

 hold off

 subplot(313)

 plot(fbest), grid

 title('Fitness value of global best position')

 subplot(312)

 plot(dfbest), grid

 title('Change in fitness value of global best position')

figure(3)

Vfinal=output.V(:,1);

plot(Vinit,'b-s'), hold on, plot(Vfinal,'r-s'),legend('V_{Initial}','V_{Final}'),

hold off;

grid

title('Voltage profile, final compared with initial');

xlabel('Bus number')

ylabel('V_{bus-pu}')

% xlswrite('one_hundred_eighteen_bus_system_voltage2.xlsx', [Vinit Vfinal]);

loss=fbest;

% Adding 2e-2 to P1 makes slack-bus active power

% and power loss coincide; this (value of 2e-2)

% seems to only represent a discrepancy due to

% differences in scale of the two quantities

P1=.02+PQs(1,:)';

Q1=PQs(2,:)';

Q4=PQs(3,:)';

% 4.8e-1 added to Qsum to shift it up, improves comparison with

% real power loss reduction

Qsum=.48+Qsum';

x1=0:length(loss)-1;

x2=0:length(P1)-1;

figure(4)

subplot(221)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='--';

grid

subplot(222)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

304

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

subplot(223)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q4);

title('Bus-4 generator reactive power and power loss')

legend('P_{loss}','Q_{g4}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Bus-4 generator reactive power');

hLine2.LineStyle='--';

grid

subplot(224)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

hLine2.LineStyle='--';

grid

figure(5)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,P1);

title('Slack-bus active power and power loss')

legend('P_{loss}','P_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus real power');

hLine2.LineStyle='-.';

grid

figure(6)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Q1);

title('Slack-bus reactive power and power loss')

legend('P_{loss}','Q_{slack}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Slack-bus reactive power');

hLine2.LineStyle='--';

grid

figure(7)

[hAx, ~, hLine2]=plotyy(x1,loss,x2,Qsum);

title('Total generated reactive power and power loss')

legend('P_{loss}','Q_{gen}')

xlabel('Iteration number')

ylabel(hAx(1),'Real power loss');

ylabel(hAx(2),'Total generated reactive power');

305

hLine2.LineStyle='--';

grid

C.6 Function that computes the personal and global best positions for the PSO

 algorithm; applies to all case studies

function [fprev,pbest,gbest,best_idx]=PSO_compute_pbest_gbest(X,fprev,pbest)

global E F bus_type nbus

Vmsq=.95^2;

VMsq=1.1^2;

tol=1e-4;

% obtain swarm size and problem dimension:

[p,~]=size(X);

% initialize a vector to store the objective function/fitness value of each

particle:

f=zeros(p,1);

% evaluate objective and constraint functions;

% for any bound constraint exceeding the limit,

% set it to the limit value

gen_buses=[find(bus_type==1); find(bus_type==2)];

for i=1:p

 if (-(X(i,1)^2+F(1)^2)+Vmsq>tol)

 X(i,1)=sqrt(Vmsq);

 E(1)=X(i,1);

 F(1)=0;

 end

 if (X(i,1)^2+F(1)^2-VMsq>tol)

 X(i,1)=sqrt(VMsq);

 E(1)=X(i,1);

 F(1)=0;

 end

 k=2;

 for j=2:length(gen_buses)

 if (-(X(i,k)^2+X(i,k+1)^2)+Vmsq>tol)

 X(i,k)=sqrt(Vmsq);

 X(i,k+1)=0;

 E(gen_buses(j))=X(i,k);

 F(gen_buses(j))=X(i,k+1);

 k=k+2;

 else

 if (X(i,k)^2+X(i,k+1)^2-VMsq>tol)

 X(i,k)=sqrt(VMsq);

 X(i,k+1)=0;

 E(2)=X(i,k);

 F(2)=X(i,k+1);

306

 k=k+2;

 end

 end

 end

 k=0;

 ngen_buses=1:nbus;

 ngen_buses(gen_buses)=[];

 for jj=1:length(ngen_buses)

 if (-(E(ngen_buses(jj))^2+F(ngen_buses(jj))^2)+Vmsq>tol)

 E(ngen_buses(jj))=sqrt(Vmsq);

 F(ngen_buses(jj))=0;

 end

 if (E(ngen_buses(jj))^2+F(ngen_buses(jj))^2-VMsq>tol)

 E(ngen_buses(jj))=sqrt(VMsq);

 F(ngen_buses(jj))=0;

 end

 end

 f(i)=-loss_func2();

end

% update pbest:

for k=1:p

 if(f(k)<fprev(k))

 pbest(k,:)=X(k,:);

 end

end

 % save current objective function values for comparison later:

 fprev=f;

 % determine gbest:

 best_idx=find(f==min(f));

 best_idx=best_idx(1);

 gbest=X(best_idx,:);

C.7 Function that computes the fitness value of an individual particle for the PSO

 algorithm; applies to all case studies

function f_best=PSO_objective_evaluation(gbest)

global E F bus_type nbus

Vmsq=.95^2;

VMsq=1.1^2;

tol=1e-4;

% evaluate objective and constraint functions;

% for any bound constraint exceeding the limit,

307

% set it to the limit value

gen_buses=[find(bus_type==1); find(bus_type==2)];

if (-(gbest(1)^2+F(1)^2)+Vmsq>tol)

 E(1)=sqrt(Vmsq);

 F(1)=0;

end

if (gbest(1)^2+F(1)^2-VMsq>tol)

 E(1)=sqrt(VMsq);

 F(1)=0;

end

k=2;

for j=2:length(gen_buses)

 if (-(gbest(k)^2+gbest(k+1)^2)+Vmsq>tol)

 E(gen_buses(j))=sqrt(Vmsq);

 F(gen_buses(j))=0;

 k=k+2;

 end

 if (gbest(k)^2+gbest(k+1)^2-VMsq>tol)

 E(gen_buses(j))=sqrt(VMsq);

 F(gen_buses(j))=0;

 k=k+2;

 end

end

ngen_buses=1:nbus;

ngen_buses(gen_buses)=[];

for jj=1:length(ngen_buses)

 if (-(E(ngen_buses(jj))^2+F(ngen_buses(jj))^2)+Vmsq>tol)

 E(ngen_buses(jj))=sqrt(Vmsq);

 F(ngen_buses(jj))=0;

 end

 if (E(ngen_buses(jj))^2+F(ngen_buses(jj))^2-VMsq>tol)

 E(ngen_buses(jj))=sqrt(VMsq);

 F(ngen_buses(jj))=0;

 end

end

f_best=-loss_func();

C.8 Function that computes the velocity update and adjusts the particle position

 for the PSO algorithm; applies to all case studies

function [V,X]=PSO_X_update_cc1(V,X,pbest,gbest,c1,c2)

 [~,n]=size(X);

 % define constriction coefficient:

 phi=c1+c2;

308

 xi=2/(phi-2+sqrt(phi^2-4*phi));

 Gbest=ones(size(X));

 for i=1:n

 Gbest(:,i)=gbest(i)*Gbest(:,i);

 end

 % compute particle velocity:

 V=xi*(V+c1*rand(size(X)).*(pbest-X)+c2*rand(size(X)).*(Gbest-X));

 %V=xi*(V+c1*rand*(pbest-X)+c2*rand*(Gbest-X));

 X=X+V;

APPENDIX D: UTILITY FUNCTIONS USED IN CHAPTER 5

D.1 Function to compute the impedance (Y) matrix for an arbitrary power system

function [G, B, Cf]=compute_Ybus(from, to, r, x)

[R, X, Cf]=computeRX(from, to, r, x);

[~,n]=size(R);

Y=zeros(n);

for i=1:n

 for j=1:n

 if (i==j)

 for k=1:n

 if(Cf(i,k)==1 && i~=k)

 Y(i,j)=Y(i,j)+1/(R(i,k)+1i*X(i,k));

 end

 end

 else

 if (Cf(i,j)==1 && i~=j)

 Y(i,j)=-1/(R(i,j)+1i*X(i,j));

 Y(j,i)=Y(i,j);

 end

 end

 end

end

G=real(Y);

B=imag(Y);

D.2 Function to compute the generator active and reactive power outputs once the

 load flow computation has converged

function compute_PQ()

global E F G B bus_type nbus Cf PQs Qsum

% Define some parameters:

Vsq=E.^2+F.^2;

gen_buses=find(bus_type==2);

309

ng=length(gen_buses)+1;

PQ=zeros(ng+1,1);

PQ(1)=G(1,1)*Vsq(1);

PQ(2)=-B(1,1)*Vsq(1);

for j=1:nbus

 if (Cf(1,j)==1 && j~=1)

 PQ(1)=PQ(1)+E(1)*(G(1,j)*E(j)-B(1,j)*F(j))+...

 F(1)*(G(1,j)*F(j)+B(1,j)*E(j));

 PQ(2)=PQ(2)+F(1)*(G(1,j)*E(j)-B(1,j)*F(j))-...

 E(1)*(G(1,j)*F(j)+B(1,j)*E(j));

 end

end

k=1;

for i=3:ng+1

 l=gen_buses(k);

 PQ(i)=-B(l,l)*Vsq(l);

 for j=1:nbus

 if (Cf(l,j)==1 && l~=j)

 PQ(i)=PQ(i)+F(l)*(G(l,j)*E(j)-B(l,j)*F(j))-...

 E(l)*(G(l,j)*F(j)+B(l,j)*E(j));

 end

 end

 k=k+1;

end

PQs=[PQs PQ];

Qsum=sum(PQs(2:end,:));

D.3 Function to define the initial guess for the Newton-Raphson load flow

 computation

function x0=define_x0()

global nbus E F

x0=zeros(2*(nbus-1),1);

k=1;

for i=2:nbus

 x0(k)=E(i);

 x0(k+1)=F(i);

 k=k+2;

end

D.4 Function to define the generator voltage magnitude set-points for the Newton-

 Raphson load flow computation

function Vgref=Vgref_0()

global E F nbus bus_type

Vgref=zeros(nbus,1);

310

Vgref(1)=sqrt(E(1)^2+F(1)^2);

for i=2:nbus

 if (bus_type(i)==2)

 Vgref(i)=sqrt(E(i)^2+F(i)^2);

 end

end

D.5 Function to compute the real power loss magnitude for an arbitrary power

 system

function ploss=loss_func()

global E F G Cf

[n, ~]=size(G);

ploss=0;

for i=1:n-1

 for j=i+1:n

 if (Cf(i,j)==1)

 ploss=ploss+G(i,j)*((E(i)-E(j))^2+(F(i)-F(j))^2);

 end

 end

end

