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ABSTRACT 
 
 
Evolving technologies can provide continuous and accurate energy data to plan, implement, 

and maintain energy systems for areas where electricity access is a challenge, particularly in 

sub-Saharan Africa (SSA) where over 53% of the world’s energy-poor population resides. 

This research aims to analyse the applicability of smart metering data to the sustainable energy 

access planning (SEAP) framework for energy access programs (EAPs), toward the reduction 

of energy poverty in SSA. 

Household energy data based on energy access criteria from an SSA country was generated 

using smart metering technologies, then applied to the analysis and calculation of energy 

access indicators, demand forecasting through machine learning, and energy systems’ 

optimization and cost analysis. 

The approach involved five related components. Country-specific data was collected, 

analysed, and used to define an energy profile. This profile was then applied as input to a 

smart metering experiment using a variable household electrical load and a smart meter to 

measure electricity usage, from which data was collected on General Packet Radio Service 

(GPRS) communications via Meter Data Management (MDMS) software. The resulting energy 

data was analysed on its applicability to the SEAP framework and explored over three 

exercises that included the analysis and calculation of energy access indicators, demand 

forecasting through machine learning, and energy systems’ optimization and cost analysis.  

The measured household energy data, analysed and explored using tools and platforms that 

include Python, Azure ML Studio, and Homer Pro, were directly or indirectly applicable to all 

assessments in the SEAP framework and exposed the possibility of generating additional data 

for further use on applications that require a specific range of datasets. These capabilities 

presented the potential for energy planners and policymakers to use improved data to 

determine the indicators for the implementation and monitoring of an energy access program; 

furthermore, it unlocked aspects of data forecasting and optimization of energy systems in 

terms of sizing and cost. 
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1.1 Introduction  

The design of energy systems that are clean, affordable, and accessible for both the poor 

and non-poor is supported by frameworks such as the sustainable energy access 

planning (SEAP) (ADB, 2018b). Using these methodologies within an energy access 

program (EAP), household and energy features are identified to estimate future 

requirements for energy, based on the collection of data (ADB, 2018a), that is both of 

primary origin (generated directly from interviews, surveys, etc.) and secondary origin 

(records kept from health and government institutions, etc.) (BUL, 2021). However, this 

process has its challenges, the main research problems to be addressed: 

a) Input data for planning: missing, estimated, non-contextual, and old. 

b) Output data following implementation: no monitoring and tracking of the 

implemented energy systems. 

1.2 Background 

The lack of access to electricity is a global challenge affecting nearly 761 million people, 

of which more than half are in sub-Saharan Africa (SSA); moreover, the rural population 

is the most affected with only 28% being able to use electricity, notwithstanding overall 

economic growth (WB, 2021). 

Electricity access is key for human and economic growth. For this reason, the UN has 

defined global access to modern energy services as a universal 2030 goal; furthermore, 

a common outline was set by the Global Tracking Framework (GTF) of the Sustainable 

Energy for All (SE4ALL) initiative, defining access to electricity as “availability of an 

electricity connection at home or the use of electricity as the primary source for lighting” 

(IEA&WB, 2014; Shrestha & Acharya, 2015). 

To provide sustainable access to a minimum amount of energy for the basic needs of 

both poor and non-poor, while creating an energy supply system that is socially inclusive, 

the SEAP framework was released by the Asian Development Bank (Shrestha & 

Acharya, 2015). Included in this methodology are assessments on energy poverty, 

energy demand, energy resources, cost, affordability, sustainability and benefits. 

Key common indicators comprise the SEAP elements specified: electricity consumption, 

usage patterns, demand profile, with also modern energy services’ components that 

include availability (can be used), affordability (non-prohibitive cost), reliability (available 

most of the time), convenience (safe and available when needed), and quality (e.g., level 

of voltage) (Shrestha & Acharya, 2015). These aspects require energy data, which 
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survey or historical data alone might not provide, or might not be accurate enough if 

available. 

Smart metering technologies monitor, log, collect and provide data for energy planners 

to accurately measure and get valuable information which, combined with other useful 

information (such as that acquired from household surveys), will assist in motivating and 

taking informed decisions toward EAP initiatives. Data flows from energy monitoring 

translate into insights, forecasting, improved planning, effective implementation, better 

results, and progress tracking. 

1.3 Significance of the research 

By coupling the data-acquisition features of the smart metering technology with EAP, 

this research will aid energy planners in effectively extracting, interpreting, and using the 

data that derives from all the features the devices and applications can provide. It is a 

ripple effect that will be valuable to the EAP, implementation, and tracking, but ultimately 

and most importantly, to those who need access to modern energy in sub-Saharan 

Africa. 

1.4 Objectives of the research 

This research aims to analyse and evaluate the applicability of Smart Metering data to 

the SEAP framework, towards energy access planning.  

The objectives are: 

a. To analyse and identify the data from the smart meter, required for the SEAP. 

b. To establish the applicability of the data to each of the SEAP assessment 

components. 

c. To analyse and identify data from the smart meter for EAP post-implementation 

monitoring and targeting. 

1.5 Research questions 

• What data can the smart meter provide as an input to SEAP assessments? 

• Is this data inclusive to the full extent of the SEAP framework, i.e., is it applicable 

to its different assessment components? 

• How can monitoring and targeting aid in the sustainability of an EAP 

implementation? 
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1.6 Thesis organization 

The thesis encompasses 6 chapters, outlined as follows: 

Chapter one introduces the SEAP framework for energy access planning and smart 

metering technologies as contributors to the energy access framework; this applicability 

defines the thesis scope and subsequent problem definition. 

Chapter two outlines each of the elements. The concept of smart metering is explored in 

its different aspects: the smart meter, communication technologies, meter data collection 

and management software, security, global deployment figures and the recent COVID-

19 impact. On SEAP, the seven assessments of the framework and the energy data 

relationships are considered. Lastly, the applicability of smart metering technologies to 

energy access, through the SEAP framework, is discussed. 

Chapter three defines the method by which the applicability of smart metering to the 

SEAP framework will be explored, within the context of an SSA country/region. 

Processes are presented for data collection and analysis, with an indication of the 

applicable tools, and ethical considerations. The chapter concludes with an overall 

description of the methodology. 

Chapter four shapes the experiment by collecting the secondary data, and generating 

primary data through a smart metering experiment, to then explore the applicability of 

energy data to the SEAP framework. Furthermore, it expands to calculations based on 

the criteria defined by the applicable assessments of the energy access framework, 

machine learning prediction to build additional data, and the optimization and cost 

analysis of energy systems based on the built demand dataset. 

Chapter five presents and discusses the results of the experiment, exercises and 

analyses performed, with relevance to the smart metering technology and resulting 

household energy data applied to each of the assessments. 

Chapter six, lastly, presents a summary of the studies performed in this thesis, outlining 

the contributions, limitations, and possible areas for future research work. 

The following appendices are included: 

Appendix A: Types of electronic meters and grid connections 

Appendix B: Python commands used for data analysis 
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2.1 Introduction 

The SEAP framework was released by the Asian Development Bank to create an energy 

supply system that is socially inclusive and provides sustainable access to a minimum 

amount of energy for the basic needs of both poor and non-poor (Shrestha & Acharya, 

2015). SEAPs assessment components of energy poverty, energy demand, energy 

resources, cost, benefits, sustainability, and affordability, contain indicators that would 

greatly benefit from smart metering technologies, which would provide useful energy 

data for energy planners to accurately measure and get valuable information, to assist 

in informed decisions towards EAP initiatives, as well as the sustainability of the 

implementation; and as stated by Casals et al. (2020), adding benefit as a tool of not 

only energy but social analysis. 

The sections that follow review the two components of this study in the literature, that is 

smart metering and energy access program; and discuss the relationship between them. 

2.2 Smart metering system 

Reinforced by technology growth, smart metering has evolved (Figure 2.1) from just 

basic manual meter readings to incorporating advanced smart grids, including elements 

of prosuming, distributed generation, and charging stations for electric vehicles (EVs) 

while playing a more active role in reducing carbon footprint (Živi et al., 2015). 

 

 

Figure 2.1: Smart metering evolution (Živi et al., 2015) 
 

A typical smart metering system is described by Weranga et al. (2014) as one consisting 

of smart meters (metering gateway), control devices, appliances, a communication link, 

and a control centre; furthermore, it may include energy measurement taken at a point 

of distribution for an area (Sun et al., 2016). These elements are shown in Figure 2.2. 
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Figure 2.2: Smart metering system components (based on Živi et al., 2015) 

 

According to ADB (2018a), besides improving utilities’ operation efficiency and quality of 

supply (QoS), smart metering systems lead to increased consumer satisfaction and 

participation; moreover, key benefits include: 

 Utilities 

o Reduction in aggregated technical and commercial (AT&C) losses. 

o Lower costs of labour, purchased power and connection/disconnection. 

o Improved power quality, asset management and generation cash flow. 

o Enhanced anomaly detection and overall grid visibility. 

o Integration with renewable energies. 

o Demand management. 

 Consumers 

o Accurate bills. 

o Ability to not only monitor electricity consumption but also control and 

manage home/office appliances. 

o Electricity bill savings through the implementation of time-of-use (ToU) tariffs. 
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 General 

o Ability to introduce value-added services. 

o Reduced carbon footprint through reduced physical presence for monitoring 

and meter reading. 

A key component of a smart metering system is the device with energy metering and 

intelligence combined (Weranga et al., 2014), to interact with the energy endpoint, 

collecting and providing data: the smart meter. 

2.2.1 The electricity meter 

A smart meter is an energy device that has three main functions: (i) to measure 

electricity usage (or electricity generated); (ii) to switch the consumer on/off; (iii) 

remotely control the electricity consumption (Halder, 2014). Barai et al. (2016) further 

describe the smart meter as a device beyond just a traditional meter, capable of: 

 Monitoring the distribution grid, to detect issues and send notifications on outages 

or restoration. 

 Measuring and recording daily, interval-based power usage, and wirelessly 

sending collected high-resolution data over a network to a data management 

system, when part of AMI.  

 Allowing utilities to better communicate with the consumers, with pertinent 

information such as outages and their causes, expected restoration, and others. 

 Improving grid planning and management by improved response against the 

occurrence of outages, their frequency and duration. 

2.2.1.1 Measuring electricity: power, energy, and demand 

The measurement of electricity by meters relies on basic electricity principles, 

explained in Table 2.1. 
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Table 2.1: Electricity measurements overview (Toledo, 2013) 

Electric Measurement How it is calculated 
Power  
The rate of electricity 
transferred in a circuit per unit 
of time; it is the basis for 
measuring electricity. 
For example, a water heater 
would consume more 
electricity than an electric 
shaver over the same period 
because the former uses 
more watts than the latter. 
 
Demand 
Power, but measured within a 
predefined time interval 
(typically of 15 or 30 minutes) 
and expressed in kilo-units; 
utilities use this measurement 
to assess the consumer’s 
highest demand from the 
network (maximum demand), 
to invest, build and maintain 
it. 
Example: two consumers can 
use the same energy amount 
for a certain month, but with 
one reaching a maximum 
demand of 100 kW, while the 
other just 40 kW; the first 
would have used high-power 
equipment, leading to higher 
peaks of consumption. 
 
Power factor 
The ratio between real power 
used and apparent power 
supplied to a load, indicating 
how efficient the power usage 
is.  

In an alternating current (AC) circuit, the electric power has 3 
components, calculated from the measured voltage V and current I, 
expressed in volt (V) and ampere (A) respectively, as well as the 
phase angle between them, φ: 
 Active power P, as the real power consumed via caloric 

dissipation in a circuit, expressed in watt (W): 

𝑃𝑃 = 𝑉𝑉 × 𝐼𝐼 × cos𝜑𝜑 
Equation 2.1 

 Reactive power Q (Var), as the imaginary, unusable power used 
only for magnetic (e.g., motors) or electric (e.g., capacitors) fields, 
expressed in volt-ampere reactive (VAr): 

𝑄𝑄 = 𝑉𝑉 × 𝐼𝐼 × sin𝜑𝜑 
Equation 2.2 

 Apparent power S, as the vector sum of active and reactive 
powers, expressed in volt-ampere (VA): 
𝑆𝑆 = 𝑉𝑉 × 𝐼𝐼 
Equation 2.3 

Based on formulas 2.1, 2.2 and 2.3, the relationship between the 3 
power components is expressed by equation 2.4, and the 
corresponding power triangle in Figure 2.3: 
 

𝑆𝑆2 = 𝑃𝑃2 + 𝑄𝑄2 
Equation 2.4 

 
 
 

Figure 2.3: The power triangle 
 
The component cos𝜑𝜑 from formula 2.1 defines the power factor 
PF, which combined with formula 2.3 can be expressed as: 

𝑷𝑷𝑷𝑷 = 𝑷𝑷
𝑺𝑺
Equation 2.5 

 

Energy 
Power used over time results 
in energy consumed; this 
energy is the measurement 
generally used by utilities 
around the world for 
residential electricity billing. 

Calculated from electric power, electric energy is also classified as 
active, reactive, or apparent, typically expressed in kilowatt-hour 
(kWh), kilovolt-ampere reactive hour (kVArh) or kilovolt-ampere 
hour (kVAh) respectively. If X is expressed as either P, Q or S on a 
given period t (hours), then electric energy consumed E can be 
calculated as: 

𝐸𝐸 = 𝑋𝑋 × 𝑡𝑡 
Equation 2.6 

 

S 
Q 

P 
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2.2.1.2 Electricity meter evolution 

The levels of intelligence and energy measurement complexity that are currently 

present on the smart meters passed through several steps of evolution and 

technology improvement. Figure 2.4 illustrates the early history of the electricity 

meters, back to the 19th century when gas was used for urban street lighting. 

 
Figure 2.4: History of early electricity meters (based on Toledo, 2013) 

 
 

Many meter technologies have been on the market, provided by different 

manufacturers, but overall the induction electromechanical and static electronic are 

the two types available, which perform power and energy measurements used over 

a time range; furthermore, whilst billing and monitoring were the main use for meters, 

currently the applications are more diverse, ranging from real-time energy 

management, load shifting, demand forecasting, cogeneration monitoring, in-home 

smart plugs, among others (Toledo, 2013). 

2.2.1.3 Electricity measurement systems 

Of the different subsystems that comprise the metering system, the measurement 

system is the main subsystem, as illustrated in Figure 2.5. 
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Figure 2.5: A metering system and its subsystems (based on Toledo, 2013) 

 
 
 
Electromechanical induction meters 
This meter is based on 1888’s Thompson design, with energy consumption recorded 

using electrical and mechanical components, with the following characteristics 

(Toledo, 2013): 

- Can be single- or poly-phase 

- Operation principle (Figure 2.6): 

 The voltage circuit (1) and current circuit (2) have coils, in parallel with the 

main circuit and in series with the load, respectively 

 The voltage supply and the current flow generate electromagnetic fields via 

coils, which rotate the disk (4) 
 When the disk rotates, so do the pivot and the spindle (6), causing the 

register display to rotate proportionally to the energy usage 

 The magnetic brake rotor (5) controls rotor speed relative to the energy used 

 Other elements include the display dials (7), the stator (3), meter cover and 

base, the cover and terminal connections, the ID plate and the stator (4) 
    

Data 
Management

Communication Billing

Other 
Subsystems
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Figure 2.6: Electromechanical meter interior and exterior (Ali@gwc.org.uk, 2005; 
RODALCO, 2012b).  CC BY-SA 2.5, CC BY-SA 3.0 

 
Drawbacks of the electromechanical meter include kWh or kVArh measured 

separately (Toledo, 2013), as well as moving parts that wear over time and the 

limitation for manual readings only  (Weranga et al., 2014). 

 
 
 
Programmable electronic registers 
A transition that adds an electronic element to the mechanical, where the 

electromechanical meter counts its disk turns via an infra-red (IR) device, then 

transmits the resulting pulses to an embedded (Figure 2.7) or external element 

(programmable electronic register); moreover, these devices are still commonly used 

by utilities globally, even with electronic meters’ availability (Toledo, 2013). 

https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/3.0
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Figure 2.7: Programmable electronic meter (RODALCO, 2012a). CC BY-SA 3.0 

Static electronic meters 
Used for most smart metering installations globally (in contrast to only high-

consumption users in the past), static electronic meters merge functions of both the 

electromechanical meter and programmable electronic registers, allowing them to 

(Toledo, 2013): 

 Measure various parameters: power, energy, voltage, current, etc. 

 Monitor events and send alarms. 

 Calculate tariff rates. 

 Operate contacts and switches from programmed events and functions. 

 Store profiles for energy and other parameters. 

 Perform forecasts on consumption, telemetry functions, analysis of energy 

measurements, load monitoring and monetary conversions. 

 Manage single or multiple tariff rates. 

 Provide switching events by external sources or internal clock, for ripple 

control, clock synchronization, RF broadcast, local DCUs, remote servers, 

load shifting, etc. 

 

Similarly to Thompson’s initial design of the electromechanical meter, but with less 

mechanical and more electronic components, a static electronic meter has the 

following features, as indicated by Toledo (2013): 

 Single-phase or polyphase 

 Comprises electronic and electrical components functioning together to 

register energy consumption 

https://creativecommons.org/licenses/by-sa/3.0
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 The measurement of voltages and currents for energy consumption is 

achieved via internal sensors of high precision, and measurement algorithms 

 

Electronic meters have different classifications, based on different aspects such as 

form factor, billing, load, etc. Some of these features are summarized in Table 2.2 

and illustrated in Appendix A. 

 
Table 2.2: Different types of electronic meters (Toledo, 2013) 

Classification Category Description 
Design Single module  Components in a single, usually seal-protected unit. 

 Replacements are only possible in a laboratory. 

Modular  Components in separate, detachable modules. 
 Replacements and upgrades are possible in the field. 
 Plug-in meters are mainly implemented in South Africa for 

prepaid electricity, and socket meters in North America. 

Connection to 
the grid (load 
requirement) 

Direct 
measurement 

 Typically applied to residential customers. 
 Circuit load flows through the meter’s current circuit. 
 Typical load requirement in some countries in Europe is up to 

230/400 V and 100 A. 

Indirect 
measurement 

 Typically applied to commercial and industrial customers 
(bigger loads). 

 Circuit load flows through instrument transformers (current 
and/or voltage), to decrease the values to a level that the 
meters can support. 

 The typical load requirement in some countries in Europe is 
higher than 230/400 V and 100 A. 

Payment mode Credit or post-
paid 

 Over a defined cycle, meter readings are collected and used 
for energy bills that are sent to and paid by the customer. 

 The meter register count is progressive (cumulative). 
 Constraints associated with no customer visibility on energy 

consumption, late or non-payments, 
disconnections/reconnections, etc. 

Debit or 
prepaid 

 The customer purchases energy units and loads them onto 
the meter, which works on a regressive register count. 

 The customer has more control over energy consumption and 
can purchase based on budget and need, without the 
constraints of reconnection fees. 

 Recent developments now allow prepayment to be managed 
from the prepaid vending system, using smart meters: the 
system reads the consumption and subtracts it from the 
energy balance; once the balance reaches zero, it sends a 
command to the meter to disconnect the load. 

 

2.2.1.4 Smart meter 

A step-up from electronic meters, smart meters (Figure 2.8) bring in features such 

as two-way communication and remote disconnection and reconnection to the 

existing electricity measurements and AMR, playing a critical role in today’s AMI 

(Figure 2.1); moreover, functions like pre-payment, load profiling, tamper detection, 

power outage notification and multi-tariffs contribute to the enhancement of QoS 

and customer service (Weranga et al., 2014). 
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Figure 2.8: A single-phase smart meter (Mapondera, 2015). CC BY-SA 3.0 

 
Hardware structure 

As illustrated in Figure 2.9, the smart meter acquires input signals using the voltage 

and current sensors, to then condition, convert (analogue to digital) and compute 

them within the microcontroller; further operations are performed by other hardware 

(HW) elements such as the communications’ system, real-time clock, and power 

supply. 

https://creativecommons.org/licenses/by-sa/3.0
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*LCD = Liquid Crystal Display, EEPROM = Electrically Erasable Programmable Read-Only Memory 

Figure 2.9: A smart meter's hardware structure (based on Weranga et al., 2014) 

Typical components of a modern smart meter (highlighted in Figure 2.9) as 

described by Weranga et al. (2014), include the: 

 Voltage sensing unit, acquiring the input voltage signal generally through 

resistor dividers (Figure 2.10), given their low cost; with the output voltage 

Vout (to the analogue-to-digital conversion process) determined by the input 

voltage Vin and the resistors R1 and R2 (R1 >> R2), as per Equation 2.7. 

 

Figure 2.10: Resistor divider 

𝑉𝑉0 =
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
𝑉𝑉𝑖𝑖𝑖𝑖 

Equation 2.7 
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 Current sensing unit, acquiring the input current signal via current sensors 

and anti-aliasing filters. Different types include Current transformers, 

Rogowski coils, shunt resistors, and linear current sensors (Hall effect). 

 Power supply, to the HW elements in the smart meter, such as the MCU, 

battery, energy chip, LCD, RTC, and communications unit. Schematics vary 

by meter designer but generally include step-down transformers, rectifiers 

(diode bridge), converters from alternating current (AC) to direct current (DC) 

and vice versa, regulators, and filters. 

 Energy measurement unit (EMU), performing signal conditioning, 

analogue-to-digital conversion (ADC), and computation. The unit’s chips 

provide data such as kWh, kVArh and kVAh energy, or pulse (frequency) 

outputs; some smart meters additionally include measurements of Root 

Mean Square (RMS) voltage and current, temperature and frequency, and 

events/alarms on QoS, tampering detection, Total Harmonic Distortion 

(THD), and communications. The EMU can be a separate chip or the MCU 

itself, single- or multi-phase, and can operate in 2 or 4 quadrants. 

 Microcontroller (MCU), the smart meter’s core unit that runs all the 

functions, which may include all the EMU functions added to data 

calculations, display (e.g., via LCD) and smartcard reading. The MCU can 

act as an internal, single multi-tasking unit, performing all tasks, such as 

measurement of energy and routine calculations, or as an external unit to 

handle meters with stepper motor counters instead of an LCD. 

 Real-time clock (RTC), keeping the current date and time on the smart 

meter; time drift (about 60 min/year) is addressed by either periodic 

synchronization via smart network, manual correction at regular intervals, or 

by having a highly accurate RTC. The RTC can be built-in to the EMU, or 

work as a separate RTC, accessed by the MCU, the latter the most common. 

 Communications systems, allowing the smart meter access to a 

communications network to send data and events/alarms to a server, receive 

commands (e.g., remote disconnection or reconnection of supply), and 

communicate to other devices such as other meters, appliances, and IHDs. 

Communication networks and protocols include: 

o HAN: Zig-bee, Power Line Carrier (PLC), Wi-Fi, etc. 

o NAN: Zig-bee, etc. 

o WAN: Global Systems for Mobile Communication (GSM), General 

Packet Radio Service (GPRS), 3G, etc. 
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2.2.2 Data exchange: communications 

Communication networks, interfaces, and technologies are important components of a 

smart metering system (Figure 2.2). While smart meters are the main elements in an 

AMI, they also need to communicate to other smart meters, appliances, other types of 

meters (usually gas and water), and the energy supplier (Weranga et al., 2014). 

2.2.2.1 Networks and technologies 

The architecture in Figure 2.11 shows the different levels on which the networks exist. 

These networks comprise technologies and devices (Table 2.3) that enable the data 

exchange link between the smart meter, local devices and the middleware (Toledo, 

2013). The middleware comprises the software (SW) system, such as the Meter Data 

Management System (MDMS), databases and other applications, managing the 

smart metering devices, data, functionalities and upstream integration with platforms 

within, typically, the utility environment. 

 

 

Figure 2.11: Communications on a smart metering system (based on Bajer, 2019; IEC, 
2002; Toledo, 2013) 
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Table 2.3: Communication networks (IEC, 2002; Toledo, 2013; Weranga et al., 2014; 
Bajer, 2019) 

Network/interface Purpose Technology 
Home Area Network 
(HAN) 

For the communication between 
the different devices at the 
customer’s home, such as IHDs, 
sensors, appliances, and meters. 

 PLC – transmits data over the 
electricity grid 

 RF – operates on different 
frequency ranges of radio operation 

Neighbourhood Area 
Network 
(NAN) 

Transfers data between nearby 
smart meters and DCUs (WAN 
access), allowing for data transfer, 
firmware upgrades, diagnostic and 
real-time messages. 

 PLC  
 RF 

Wide Area Network 
(WAN) 

Allows for the interaction between 
the middleware and the metering 
system. Includes devices such as 
DCUs, modems, external 
gateways, external hotspots, etc. 

 GSM – transmits via cellular 
network, using cell-number based, 
circuit-switched data (CSD) 

 GPRS - transmits via cellular 
network, using IP-based, packet-
switched data (PSD) 

 PLC 
 Public Switched Telephone 

Network (PSTN) – transmission 
over a fixed telephone line 

Local data exchange Access the smart meter locally, 
collecting data to an HHU, to then 
upload it to the middleware. This 
access allows for both the reading 
and programming of the smart 
meter. 

 Optical probe – data is collected 
from the meters via an IR cable 
attached to the meter’s optical 
interface and an HHU such as a 
laptop computer. 

 

2.2.2.2 Topologies 

Impacting elements such as availability, communications, and robustness, the 

network topology is a vital component of a smart metering system, allowing its 

interaction with utility services; available topologies include (Toledo, 2013): 

 Concentrated point-to-point (P2P): nodes linking to a central device 

(master, typically a DCU) that collects and routes the data to the WAN, then 

to middleware. Currently implemented around the world, it is a short-range 

network (typically from ninety metres to a few kilometres) that uses bus, tree, 

or star topologies (Figure 2.12), on technologies such as Wi-Fi and PLC. 

Advantages include easy use, distributed processing, and technology 

availability; with complexity and single node dependency being some of the 

disadvantages. 
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Figure 2.12: A bus (left) and a star (right) network 

 

 Virtual P2P: usually applied to metering systems’ cellular-based GPRS, GSM 

and SMS technologies, where infrastructure between devices and middleware 

is not visible; these are typically owned and managed by 3rd parties (e.g., 

mobile telecoms providers). This topology (Figure 2.13) allows for simpler 

middleware access to field devices, however, the dependency on a single 

comms medium can be a constraint. 

 

 
Figure 2.13: Virtual P2P network 

 

 Mesh: compared with P2P, data is transferred to more than one central device 

directly or via other nodes (Figure 2.14), based on the best available route, 

allowing for a mesh network to provide higher reliability, availability, and 

feasibility; a disadvantage would be the communications’ range though. This 

topology is a utilities’ option for smart metering systems, using technologies 

that include Z-Wave and ZigBee. 
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Figure 2.14: A mesh network 

 Broadcast: while similar to concentrated P2P networks, it allows for a greater 

range of communication, up to tens of kilometres (Figure 2.15). Known 

implementations include RF and ripple-controlled systems in Europe, Africa 

and Australia. This topology has reduced installation and maintenance costs, 

but low signal bandwidth. 

 
Figure 2.15: Broadcast network 

2.2.3 Meter data management system 

As an important element of an AMI, the Meter Data Management System (MDMS) 

collects data from smart metering devices (such as DCUs and meters) and stores it in 

a central database; this central repository, through the MDMS’s analytical components, 

enables operations and management systems such as billing and demand response 

(DM), as illustrated in Figure 2.16 (Barai et al., 2016). 
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Figure 2.16: MDMS (based on Barai et al., 2016; ADB, 2018a) 

 
According to ADB (2018a), related functions of the MDMS may include: 

 Collect input data from different HESs, HHUs or manual readings. 

 Data validation, estimation and editing (VEE). 

 Billing calculation and determinants. 

 Perform trend analysis, log exceptions, and generate reports. 

 Integration with interfaces and systems. 

 Consumer access to interval data, current and historical. 

 

2.2.4 Smart metering and security 

A communications network is an important element of a smart metering (SM) system; 

among other benefits, it mainly allows the smart meter to send energy data to the 

MDMS and utility systems, or to receive commands from them. However, these 

networks also bring disadvantages to security and privacy, such as Internet attacks and 

exposure to personal data (Sun et al., 2016). Regardless of where the data is applied, 

utility or energy access in this case, threats such as the ones described in Table 2.4 

must always be considered. 
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Table 2.4: SM security threats (Živi et al., 2015; Hasan & Ibrahim, 2020) 

Threat Description Impact 
Man-in-the-middle 
attack 

The attacker connects to both ends of the 
communication session, captures data from 
one end and sends it to the other, giving a 
false impression that both ends are 
communicating directly. 

Being able to either eavesdrop or 
modify the data, false 
measurements could be 
provided. 

Denial-of-service 
(DoS) attack 

The attacker sends excessive commands to 
the gateways or utility servers, saturating the 
system to a point where it becomes 
unresponsive. 

Disable the grid totally or 
partially, with severe impact on 
essential services. 

Remote 
disconnect/connect 
attack 

Turning off or on critical components of the 
grid, such as a meter or faulty shutdown 
equipment, respectively. 

Disable the grid totally or 
partially, with severe impact on 
essential services. 

Packet injection The attacker injects false commands or 
packets into the network, to either 
compromise SM system components or the 
billing processes 

Disable the grid totally or 
partially, with severe impact on 
essential services, and financial 
losses due to false bills. 

Malware injection Malware is injected by the attacker into the 
network, affecting device communications. 

Compromises reporting and 
billing processes and may disrupt 
grid load. 

Eavesdropping The attacker “listens” to the data flowing 
between the system and the smart meter or 
SM gateway. 

Compromises 
personal/customer data privacy 

Firmware 
manipulation 

A smart meter or SM gateway’s firmware is 
manipulated, physically or via WAN (if 
supported); can be executed on a single or 
large scale. 

Disturbs billing (e.g., prepayment 
manipulation) and meter 
measurement (e.g., false 
consumption). 

Energy theft Tampering with the meter’s terminals, wiring, 
the mechanism (analogue meters), firmware 
(digital meters), bypassing the meter, etc.  

Financial losses due to meter 
damage, false consumption data 
and resulting bills. 

 
As illustrated in Figure 2.17, the country most targeted by cyber-threats is the United 

States, with the energy sector being one of the least targeted, and the public sector the 

most targeted. This indicates that while sub-Saharan Africa and SM systems might not 

be a favourite target for cyber-threats, attention should be given to the security of SM 

data stored by public utilities. 

 
 
*Intergovernmental Organizations 

 
 

Figure 2.17: Security threats globally (Lambert, 2021) 
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2.2.5 Global footprint and impact on COVID-19 

Smart meter deployments have been growing across the world: countries like China 

are leading the trend (Figure 2.18) with further plans for over 300 million more of these 

devices, while projections for emerging market countries indicate 178 million smart 

meters projected deployment; within sub-Saharan Africa, some of those emerging 

countries such as Kenya, Ghana, Nigeria and South Africa plan on taking the same 

path to address AT&C losses, however with financing as the main challenge to 

overcome (Chakerian, 2021). 

 

 

Figure 2.18: Smart meter deployment (IEA, 2019) 

 
The emergence of COVID-19 highlighted the importance of SM systems, with two main 

benefits: 

 Reduced physical presence to collect meter readings since these could be read 

remotely; therefore, besides minimizing personnel exposure to COVID, during 

lockdown periods utilities would still be able to timely and accurately bill 

consumers (ADD Grup, 2020). 

 Energy usage data collected from the meters pre-, during and post- COVID 

would allow for further analysis into consumer behaviour during these 3 periods, 

as García et al. (2021) show in Figure 2.19, where it is noticed that during strict 

lockdown energy demand had decreased for non-residential consumers 

(businesses closing, employees working from home, etc.). 
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Figure 2.19: Demand profile during COVID-19 (based on García et al., 2021) 

 

What stands out is the possibility of a smart metering system remotely accessing data 

(on-demand or at a schedule) reducing not only the constraints of health, safety and 

logistics for a physical site visit, but also the continuity of data and ability to study 

behaviours to address challenges. 

2.3 Energy access through the SEAP framework 

A key component in planning out the ideal solution for an EAP, the SEAP framework 

aims to identify technologies and resources which are sustainable and cost-effective, 

toward “providing universal access to basic energy services and to assess the 

affordability of cleaner-energy service options to energy-poor households” (Shrestha & 

Acharya, 2015); furthermore, it stands out from conventional energy and electricity 

planning frameworks through the following features, in particular for developing countries 

in the Middle East and sub-Saharan Africa regions: 

 Oriented to social inclusiveness, considering the poorest households in terms 

of access to electricity and other cleaner energies for necessities such as 

lighting, heating, and cooking. 

 For the poor households, it contemplates the minimum acceptable level of 

essential energy services, while for the non-poor, it considers energy demand 

access through econometrics and other conventional approaches. 

 Ensures affordability in the supply of electricity and other clean energies to the 

poor by evaluating the economic implications of even the more cost-effective 

options. 

 Safeguards EAPs' quality and sustainability locally by analysing acceptable, 

reliable, and sustainable cleaner energy options. 

 Generates key data on requirements for investment, along with EAP benefits 

concerning the reduction of energy inequality and greenhouse gases (GHGs), 

as well as improving environmental quality and social well-being. 
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 Ensures EAP continuity by analysing how acceptable, reliable, and sustainable 

the options of clean-energy services are. 

2.3.1 SEAP framework assessments 

Seven assessments establish the SEAP framework. As illustrated in Figure 2.20, the 

links between each assessment can be vertical, sequential, and horizontal as, for 

instance, the resource, cost, benefit, and affordability assessments provide inputs 

required for the sustainability assessment. Shrestha & Acharya (2015) define each 

assessment as: 

• Energy poverty - the households considered as energy-poor and their energy 

consumption, providing the input to estimate the energy demand required by an 

energy supply system within an EAP. 

• Energy demand - energy-poor household’s present and future demand, for energy 

services such as water heating, cooking, use of other electrical appliances, lighting, 

and others, meeting the minimum acceptable level of basic energy services, such 

as the one indicated in the Global Tracking Framework (IEA&WB, 2014). 

• Energy resources – indicates if sufficient energy resources are accessible to 

address present and future demand for the required volume of energy services, in 

the short, medium, and longer-term, and sustainably and reliably. 

• Cost – cost impact for options and programs for cleaner energy, getting information 

around the investment total, as well as additional costs implicated in the 

development and implementation of a lower-cost EAP, and the poor households’ 

burden for energy (affordability) in the program. 

• Benefits – an EAP can have the following benefits: (i) improve the quality of the 

environment (especially the quality of air indoors); (ii) energy, health and social 

security; (iii) lessen energy inequality amongst countries, etc.  

• Sustainability – the resource and technology options for providing energy access, 

measured in an EAP, are assessed for economic, institutional, technical, 

environmental, and social sustainability throughout their lifetime, from installation, 

operation, and maintenance next to pertinent indicators. 

• Affordability – defines the amount to pay for basic energy services, those energy-

poor households can afford (e.g., lighting, cooking, heating) and the population 

size that cannot. 
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*The resource, cost, benefit, and affordability assessments also provide inputs to the sustainability assessment. 

Figure 2.20: SEAP framework's flow diagram (based on Shrestha & Acharya, 2015) 

2.3.2 Relationship with energy data 

Each assessment uses different approaches, with its applicable data requirements. 

Examining the SEAP framework and fifty-one diverse types of data required, it 

becomes apparent how each of the 7 SEAP assessments could, directly or indirectly, 

benefit from energy data collected from a smart metering system (Table 2.5). 

Table 2.5: Matrix on SEAP assessments and energy data requirements (Shrestha & 
Acharya, 2015) 

Data requirement EP* ED* RSC* CST* SUS* AFF* BEN* 
Electrified/Unelectrified Households        

Basic Minimum Energy Requirement        

Energy Consumption by Fuel Type        

Specific Electricity Consumption per 
Activity Level        

Daily Load Profile        

Share of Renewable Energy in 
Electricity Supply        

Hours of Electricity Supply        

Potential for Renewable Energy        

End-use Device Efficiency        

Device power rating        

Time of Use        

Losses in Transmission and 
Distribution        

 
*EP = energy poverty assessment, ED = energy demand assessment, RSC = resource assessment, CST = cost 
assessment, SUS = sustainability assessment, AFF = affordability assessment, BEN = benefit assessment. 

ENERGY POVERTY ASSESSMENT
Determine the size and energy consumption

of energy-poor households

ENERGY DEMAND ASSESSMENT
Estimate the level of energy demand of poor 

and nonpoor households

COST ASSESSMENT
Determine least-cost energy access options 

and their cost implications

RESOURCE ASSESSMENT
Estimate the availability and 

cost of energy

SUSTAINABILITY ASSESSMENT
Evaluate the sustainability of energy 

technologies

Set of sustainable 
supply and

demand-side options

BENEFIT ASSESSMENT
Determine benefits associated with energy

access options

AFFORDABILITY ASSESSMENT
Assess the affordability of the energy access 

options to the energy poor

Assess supporting policies and measures to 
improve affordability

1

1*

1

1

1
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2.4 Considerations 

Smart metering and energy access have been addressed separately in the literature 

reviewed; moreover, a particular study by Casals et al. (2020) analysed a smart meter’s 

capability to address energy poverty within the context of a developed world HH, with 

data provided by the utility. 

This study takes instead an approach to energy poverty for the least developed and 

developing countries in SSA by directly using the smart metering system (meter, 

communications, software) to record and collect low-tier energy consumption data and 

then explore its applicability to an energy access framework that is relevant to those 

countries. 

Therefore, smart metering and energy access become relevant if the earlier is applied to 

the latter, which is an approach that has not been explored, especially from the 

perspective of smart metering high-resolution data and detailed capabilities, applied to a 

framework like SEAP towards energy access implementation and sustainability. 

Shrestha & Acharya (2015: 21) noted: “In electricity access planning, besides the total 

electricity demand, the typical daily demand profile (load profile) … also contains 

valuable information, since electricity consumption varies during the day and the year … 

combined with information about household use patterns to arrive at the demand profile 

with an electricity access program. In an area without electricity supply, the demand 

profile of electrified areas that are similar enough to the area for which an EAP is being 

planned would indicate the likely demand profile of the area.”; furthermore,  Casals et al. 

(2020) have mentioned: “… big data mining from Smart Meter readings could provide 

valuable information to utilities about the consumption patterns of households allowing 

the identification of people at risk.”. These statements highlight the value of using 

technologies such as smart metering for energy access planning. 
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3.1 Introduction 

This section explains the methods and processes to address the research questions. 

The literature review on the elements of smart metering and EAPs defined the context 

of the analysis. But instead of studying these elements separately, as has been done to 

date, the research aims at examining the relationship between them. 

The following segments aim to describe the methodology proposed for the research, with 

an explanation of the research design, sampling method, data collection, data analysis, 

and ethical considerations. 

3.2 Research design 

This study involves primary and secondary data, from the smart meter and existing SSA 

country databases respectively, implemented EAPs, among others, therefore a 

quantitative research method will be used. The data will be primarily on energy 

consumption over time and other related variables. Saunders et al. (2007) indicate that 

any data collection or data analysis procedure that produces or utilizes numerical data 

defines as quantitative; furthermore states primary as new, purpose-specific data, and 

secondary as previously collected data for other purposes, but both significant towards 

answering the research questions. 

3.3 Sampling method 

Decreasing the amount of data by collecting it from a smaller group, instead of all 

probable cases, is achieved by implementing sampling techniques; moreover, sampling 

as allowing for improved accuracy when compared to a census (Saunders et al., 2007). 

Simple random probability sampling was used in this research, based on the criteria 

described by Saunders et al. (2007: 216–218), with the resulting random numbering 

removing the bias factor from the data. The data was sampled as shown in Table 3.1. 

Table 3.1: Selecting samples 

Sampling frame Country or country area in sub-Saharan Africa 

Selection criteria for country Availability and detail of secondary data, energy poverty severity 

Case or element Region/area within the country 

Sample size 278 – 384 or 906 – 9595, within a 5% or 1% margin of error, 
respectively, based on a population range of 1 000 – 10 000 000 
(Saunders et al., 2007: 212). The specific size will depend on the 
availability and detail of EAP and other relevant data necessary for 
the energy profile. 
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3.4 Data collection 

Collected secondary data was derived from multiple sources, based on area and time 

series, such as government publications, books, journals, and industry statistics 

(Saunders et al., 2007). Some sources included organizations such as the country’s local 

website and statistics, The World Bank, International Energy Agency, International 

Renewable Energy Agency, and others. Primary data was acquired from an experiment, 

based on the examination of energy profile data collected from the secondary data over 

a period of 1 to 3 months; the latter includes variables such as, but not limited to: (i) 

energy data – interval consumption profile per household, supplied electricity, quality of 

supply, renewable energy data; (ii) demographic data – population, number of 

households, electricity access, energy poverty. 

Saunders et al. (2007) further state the experiment as a research method related to the 

natural sciences; and that it is often carried out in laboratories instead of in the field, 

allowing greater control over elements of the research process such as the selection of 

samples and the experiment occurrence context. Figure 3.1 shows the components of 

the experiment, as secondary data provides the energy profile to render detailed energy 

data scenarios on the smart meter using a variable load, resulting in new primary data 

for further analysis (which still includes secondary data). 

 
Figure 3.1: Steps of the proposed method to collect and apply the data to SEAP 

3.5 Data analysis 

Quantitative analysis was applied for both primary and secondary data in this study, 

using statistical methods and tools such as, but not limited to, Excel, Python, Jupyter, 

Azure ML and HOMER Pro. The analysis included the country/area data, the simulated 

data from the smart meter experiment, and the mapping/relationship with the SEAP 

framework components. Details on the approach are shown in  
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Table 3.2. 

 

 

Table 3.2: Quantitative analysis approach, (Saunders et al., 2007) 

Analysis 
component 

Sub-
component 

Approach 

Data preparation, 
input, and 
verification 

Data type  Quantifiable and categorical, sub-categories are applicable 
based on the country data and metering data available. 

Data layout  Mostly tabular (data matrix), in software-compatible formats 
such as CSV, XLS and XLSX. Other less common formats 
may include PBI (Power BI) and IPYNB (Python). 

Exploring and 
presenting data 

Exploration  Variable statistics, such as maximum, minimum, median, 
average, standard deviation, and distributions. 

Presentation  Tabular, histogram, box plot, bar, line or pie charts, based on 
the data type. 

Describe data 
applying statistics 

Relationships  Scatter chart, correlation, related to possible regression 
analysis on energy data 

Examining 
differences, trends 
and relationships 
by applying 
statistics 

Predict values  Regression analysis on energy data provided by the smart 
meter (benefit highlight). 

 
 

3.6 Ethical considerations 

No ethical considerations need to be taken, as quantitative data will be extracted from 

publicly available databases (secondary data) and generated from an experiment using 

technology (primary data). Data bias, from a data ethics perspective, is also not a 

concern as random numbering will be used for sampling as part of the simple random 

probability sampling technique. 

3.7 Summary 

In this chapter, the methodologies and processes to carry out the research work were 

presented. From an SSA country/region selected based on available information, 

secondary data was acquired and applied as input for the smart metering experiment, 

with the generated primary household energy data analysed against the SEAP 

framework. The quantitative data were presented in different formats (tabular, CSV, 

XLSX, PBI, IPYNB), explored using statistical methods (distributions, average, standard 

deviation, among others), and presented using different visuals and charts based on the 

data type (line, pie, histogram, etc.). Data analysis included correlation, regression, and 

prediction of energy data. Tools used included Excel, Python, Azure ML and HOMER 

Pro, with no ethical concerns for the quantitative data. 
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4.1 Introduction 

Toncich mentions in his book that a clear mark of good research is “the ability to establish 

a series of experiments or studies that can push a concept to its operational limits and, 

thereby, expose those limits” (1999:264). This chapter attempts to explore boundaries 

by running experiments on energy data through its analysis, creation, prediction, and 

simulation, using different means and tools within the context of the energy access 

framework. 

4.2 Secondary data: analysis 

Located in Western sub-Saharan Africa, Niger has the third-lowest electric energy 

consumption per capita in the world (WB, 2022), with a population of nearly 24 million 

(CIA, 2022) of which most are rural as shown in the secondary data from table 4.1. 

The number of households was calculated from the average household (HH) size. All 

secondary data was acquired for 2014, based on the latest available consumption data 

per HH in Niger, except for the required HH size (2012 latest); for this case, the HH size 

was normalized to 2014 by linear regression, based on the available historical data as 

shown in Figure 4.1. 

 

 
Figure 4.1: Historical HH size data and regression line 

𝑦𝑦 = −3 × 105𝑥𝑥 + 7.3421 

Equation 4.1 

With: 

• Coefficient of determination, R2=0.45 

• Coefficient of correlation, ρ=-0.67 

 

From linear regression Equation 4.1, the calculated HH size for 2014 is 6.08. Despite a 

coefficient of determination close to moderate effect (Karch, 2020), as all five data points 
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were round to 6 and the number of people per household was used as an integer, the 

projected value was applied for the calculation. 

 
Table 4.1: Niger energy and household data for 2014 

Indicator Value Unit Source 
Access to electricity: total population 15.77 % WB (2021) 

Access to electricity: rural population 7.72 % WB (2022a) 

Rural population 84.00 % WB (2022a) 

Average HH size (projected) 6.00 Member/HH UN (2019) 

Number of HH (calculated) 4 034 439 Household WB (2021); UN (2019) 

Electricity consumption per HH 307.14 kWh/yr UN (2019); CIA (2022) 

 
 

According to the multi-tier framework (MTF) for electricity access based on minimum 

thresholds for energy services (Table 4.2), the average household in Niger would fall 

under tier 2. However, seeing that majority of the population in the country, mostly rural, 

has no access to electricity (Table 4.1), consideration must be given to the lower tiers. 

This is corroborated by the fact that not only the rural areas lack access to modern 

energy services, but the urban areas with possible connectivity also face challenges with 

unreliable and poor access (WB, 2018); moreover, IEA & WB (2014) indicate that 

elements like the variety of appliances and energy efficiency would not accurately be 

reflected by a kilowatt-hour based indicator, with some household-level MTF as a key 

measure to get data on electricity access progress. This is where technology such as 

smart metering would aid with data collection and a more accurate energy profile. 

 
Table 4.2: Multi-tier matrix of access to electricity services and consumption for a 
household (WB, 2015) 

Tier Electricity services Annual consumption (kWh) 
0 - < 4.5 

1 Task lighting + Phone charging ≥ 4.5 

2 General lighting + Phone charging + TV + Fan ≥ 73 

3 Tier 2 + any medium-power appliances ≥ 365 

4 Tier 3 + any high-power appliances ≥ 1 250 

5 Tier 4 + any very high-power appliances ≥ 3 000 

 

4.3 Primary data: simulation 

Based on the country profile collected, the system illustrated in Figure 4.2 was built to 

simulate and build primary data for a typical MTF tier-1 household in Niger. 
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*APN = Access Point Name, MCB = Miniature Circuit Breaker. 

Figure 4.2: Designed system to simulate MTF tier-1 data for a household 

 
System assembly and device parametrization was performed between Dec 2021 – Jan 

2022, with the following aspects: 

 Simulation start date: 16/01/2022 15:00 

 Simulation end date: 26/04/2022 24:00 

 Analysed data set period: 17/01/2022 00:00 - 26/04/2022 24:00 

 Energy data to be collected: 

o Load profile (LP), also known as interval usage. 

o EOB cycles for the billing register (BR) data that include, among others, the 

monthly consumption based on current minus previous register calculation, 

and the maximum demand (MD) registers. 

o The following main events: 

- 29/01/2022: Mobile charging added to the load 

- 03/02/2022: Change to a low consumption bulb  

 
The sections that follow provide detail on the main system components. 

4.3.1 Smart meter 

A complex and robust meter designed for commercial and industrial applications, the 

Itron SL7000 meter (Figure 4.5, component 1) includes the capabilities of a modern 

residential smart meter and more, as shown in Table 4.3. 
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Table 4.3: Technical specification of the Itron SL7000 meter (Itron, 2012) 

Rating 3 x 57.7/100V to 3 x 277/480V, auto-ranging voltage 
In = 5A; Imax = 120A 

Network Type Direct Connection 

Accuracy Active energy: Class 1 
Reactive energy: Class 2 

Frequency 50 Hz 

Meter firmware 
version 

6.11 

Standards Full compliance with IEC 62052, IEC 62053, MID standard EN50470-1 and 
EN50470-3 and CE marking standards (electrical, mechanical, climatic, 
metrological, electromechanical), IEC 62056 (DLMS-Cosem Protocol). 

Communication IR port (IEC 61107) 
RS232 and RS485 ports (IEC 62056) 

Input/Output 
(I/O) 

4 pulse inputs 
6 pulse outputs 
2 control inputs 
4 control outputs 

Data Bi-directional active, reactive, and apparent power 
Per phase measurement 
Load profile: 2 sets of 8 channels each 
Energy: 10 channels, 32 rates 
Demand: 10 channels, 24 rates 
Network monitoring 

 

To log and collect the required energy data, the meter was programmed with the 

required parameters; Table 4.4 shows the energy data and corresponding parameters 

configured in the meter. Other related configurations included clock synchronization 

and register resets; every other parameter was left unchanged. 

 

 
 Table 4.4: Energy data parameters programmed into the meter 

Energy data 
required 

Parameter 
set 

Unit 
set 

No. of 
rates Remarks 

Energy 
registers 

Import active aggregate Wh 1  Import - from the grid/supply 
 Aggregate – total of all 3 

phases 
 Measured with no scaler (Wh 

instead of kWh) given the small 
size of the load. 

Export active aggregate Wh 1  Export - to the grid/supply 

Import reactive aggregate VArh 1  

Export reactive aggregate VArh 1  

Demand 
registers 

Import active aggregate Wh 1  Maximum demand register 
(top 5 for the configured cycle) 

Import apparent aggregate VAh 1  

Billing register 
(energy 
register and 

End of Billing (EOB): 

 Trigger: internal clock 

- -  EOB was set based on a 
calendar month billing cycle. At 
every reset date, the meter 
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Energy data 
required 

Parameter 
set 

Unit 
set 

No. of 
rates Remarks 

demand 
register) sets 

 Reset date: every 1st day of 
the month at midnight. 

 

stored both energy and 
demand registers in a historical 
set, keeping the count for the 
earlier (cumulative) and 
resetting the latter. 

Load profile 
(interval data) 
– set 1 

Import active aggregate Wh -  Recording interval to all 
channels: 30 minutes 

Export active aggregate Wh -  

Import reactive aggregate VArh -  

Export reactive aggregate VArh -  

Import apparent aggregate VAh -  

Export apparent aggregate VAh -  

Power factor aggregate - -  

Load profile 
(interval data) 
– set 2 

Voltage RMS value Phase 1 V -  Recording interval to all 
channels: 30 minutes 

Voltage RMS value Phase 2 V -  

Voltage RMS value Phase 3 V -  

Current RMS value Phase 1 A -  

Current RMS value Phase 2 A -  

Current RMS value Phase 3 A -  

Frequency - -  

 
 
 

4.3.2 Communications 

Two different methods were used to communicate with the meter, with the respective 

devices as per Table 4.5: 

 Remote: via GPRS modem (Figure 4.5, component 2), connected to the 

meter’s RS232 port. This method was mostly used to read data using the 

MDMS and meter SW. 

 Local: via IR optical probe, connected to the meter’s IR port (Figure 4.5, 

component 3). This method was used to program the meter, or to read data if 

the remote method failed (e.g., due to cellular network issues). 
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Table 4.5: Technical specification of the communication devices (Itron, 2019; Tespro, 
2022) 

Modem: 

Itron 
Sparklet 
GPRS 

Rating  10 VDC 
 100 mA to 500 mA 
 Powered externally or via meter (data cable’s RJ45 connector) 

Meter interface  RS-232, via isolated RJ45 connector 

Indicator Light 
Emitting Diodes 
(LEDs) 

 Power 
 GSM signal strength 
 Connection status 

GSM/GPRS   Quad band 850/900/1800/1900 MHz2-bands 900/2100MHz 

Antenna  External cellular antenna via FME connector 

Optical 
probe: 

Tespro TP-
USB-IEC 

Standard  IEC 62056-21 

Connector  USB 2.0 connector 

Fastening  Strong magnetic adhesion (IEC62056-21) 

Interface  IR 

 

4.3.3 Load 

Based on MTF’s tier 1 for a household, the load included: 

 Bulbs (Figure 4.5, component 4), used in 2 stages:  

o Stage 1: 60 W, 548 lumen (lm) incandescent 

o Stage 2: low-cost 9W, 650 lm LED, replacing the incandescent bulb 

 A socket (Figure 4.5, component 5):  

o 3-pin female socket with a 3-to-2 pin adaptor for mobile phone charging. 

 

These elements were used randomly during the day, based on the need for lighting or 

charging. No specific schedule was applied to avoid bias in the data. 

 

4.3.4 Software 

To program, read and manage the devices, the following applications were used: 

 Itron MP Modem SW: to check/program parameters (such as the APN details) 

in the GPRS modem, as well as monitor GSM signal strength (Error! 
Reference source not found.); the latter measured at a Received Signal 

Strength Indicator (RSSI) of -67 dBm, considered a good level within typical 

RSSI range (Azini et al., 2015). 
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Figure 4.3: Parameters set for the GPRS modem, and signal strength measurement 

 
 

 ACE Pilot meter SW: to check/program parameters in the meter (Table 4.4 and 

Figure 4.4), and to collect data either locally (via optical probe interface) or 

remotely (via GPRS modem). Besides the required energy data, specific data 

not accessible by the MDMS, such as events, fraud data, meter status and 

network history were collected using this specific meter application. 
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Figure 4.4: Programming the meter 

 PNPscada MDMS: to remotely collect and analyse data from the meter, on an 

automated schedule, via GPRS modem; the following parameters were set on 

the MDMS: 

o Remote meter reading schedule: daily at 00:01 

o Data to read: 

- Load Profile 

- Real-time register totals 

- Real-time phasor data (RMS voltages, currents, and angles per 

phase) 

- Events (network monitoring, QoS). 

 

The picture of the system, assembled with the components specified, is shown in Figure 4.5. 
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Figure 4.5: Designed simulation system 

 

4.4 Energy data and the SEAP framework 

The collected dataset from the simulation could then be applied as household data to 

the SEAP assessments, for both metered households in an area with access to electricity 

and for areas with no access to electricity but that have a profile similar enough to the 

metered, electrified area. For this purpose, the breakdown of energy data was defined 

as per Figure 4.6, mapping to the applicable assessments and use of the dataset to 

generate the required outputs, further described from a perspective of calculations or 

simulations; though each of the sections alone is fertile ground for further research, the 

current analysis was limited to the exploration of the different approaches to achieve 

such outputs (the journey), rather than just the outputs (the result). For simplicity, the 

acronyms defined for the SEAP assessments in Table 2.5 were used. The sections that 

follow cover different experiments, to analyse the different applications of energy data 

collected from a HH via smart meter. 
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Figure 4.6: Energy data to SEAP mapping 
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4.4.1 Applicability: data to calculate 

Deriving from figure 2.4’s matrix of energy data versus SEAP assessments, figure 4.8 

linked specific energy data, the benefits, and which indicators could be calculated; 

while to some assessments the calculations based on energy data are applicable, to 

others it is a direct/indirect benefit. Hence applicable to the relevant assessments, the 

equations for those calculations were then defined.  

4.4.1.1 Basic minimum energy requirement 

The load profile (LP) acquired from the meter, per HH, comprises import active energy 

(kWh) consumption data in regular recording intervals, typically 30 minutes (min); 

hence for a recording interval 𝐼𝐼, in minutes, a HH’s total number of load profile 

intervals 𝑁𝑁 recorded for the intended period can be calculated as: 

𝑁𝑁 =
1440 × 𝐷𝐷

𝐼𝐼
 

Equation 4.2 

Therefore, a HH’s total electricity consumption for a period (such as a year), 𝐸𝐸𝐻𝐻 in 

kWh, is given by the total of each interval consumption recorded by the meter 𝐸𝐸𝑖𝑖 in 

kWh, determined as: 

𝐸𝐸𝐻𝐻 = �𝐸𝐸𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Equation 4.3 

Complemented with contextual data from the area/region (e.g., from HH surveys), the 

basic minimum electricity threshold can be taken as the average annual total 

electricity consumption per HH in the given area/region, i.e.: 

𝐸𝐸𝐻𝐻𝐻𝐻����� =
∑ 𝐸𝐸𝐻𝐻𝑖𝑖
ℎ
𝑖𝑖=1

ℎ
 

Equation 4.4 

Where: 

 𝐸𝐸𝐻𝐻𝐸𝐸����� = average electricity consumption per HH for the intended area/region and 

a given period, or if applicable the HHs minimum electricity threshold specific 

to the same area, in kWh. 

 𝐸𝐸𝐻𝐻𝑖𝑖 = electricity consumption for each household, in kWh. 

 ℎ = total number of households. 
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Alternatively, the minimum electricity threshold can be determined from the monthly 

maximum demand, using the meter’s billing registers recorded for the defined cycle 

(EOB), specifically the MD register. For this case, a typical calendar month cycle is 

considered, thus the maximum demand for a HH, for the considered period (e.g., a 

year), is determined as: 

𝐷𝐷𝐻𝐻 = max
1≤𝑡𝑡≤𝑀𝑀

𝐷𝐷(𝑡𝑡) 

Equation 4.5 

Where: 

• 𝐷𝐷𝐻𝐻 = maximum demand per HH for a period, in kW. 

• 𝐷𝐷(𝑡𝑡) = monthly maximum demand per HH, in kW. 

 𝑡𝑡 = month of the year. 

 𝑀𝑀= total number of months 

Therefore, the minimum electricity threshold for the area 𝐷𝐷𝐻𝐻���� , in kW, is calculated as: 

𝐷𝐷𝐻𝐻���� =
∑ 𝐷𝐷𝐻𝐻ℎ
𝑖𝑖=1
ℎ

 

Equation 4.6 

Assuming 30min interval data, the threshold of Equation 4.6 can be converted to 

energy, through the following calculation: 

𝐸𝐸𝐻𝐻𝐻𝐻����� = 𝐷𝐷𝐻𝐻���� × 1/2 

Equation 4.7 

Where: 

• 𝐸𝐸𝐻𝐻𝐻𝐻����� = minimum electricity threshold for the area, in kWh. 

 

4.4.1.2 Energy demand 

According to (Shrestha & Acharya, 2015: 14–21), different methods in SEAP are used 

to determine energy demand. While the methods provide an estimate, smart meters 

installed at each of these endpoints would provide energy data (LP in particular), to 

determine: 

 Historical consumption patterns 

 Demand projection via forecasting techniques 

 End-use of electricity 
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Comparatively, Equation 4.4 can be generally used to calculate a HH’s annual 

electricity consumption, and with a previously defined minimum threshold (MTF-

based, region-based, or calculated), determine the energy demand variance. Hence 

based on the steps by Shrestha & Acharya (2015:16), the additional electricity 

required ∆𝐸𝐸𝐻𝐻𝐷𝐷 , in kWh, to raise that region’s number of households ℎ𝐷𝐷, from tier-𝑛𝑛 to 

tier-(𝑛𝑛 + 1), is given by a HH’s average electricity consumption 𝐸𝐸𝑖𝑖 and the minimum 

electricity threshold 𝐸𝐸(𝑖𝑖+1), i.e.: 

∆𝐸𝐸𝐷𝐷𝑃𝑃 = ℎ𝑃𝑃 × (𝐸𝐸(𝑖𝑖+1) − 𝐸𝐸𝑖𝑖) 

Equation 4.8 

Where: 

 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐻𝐻𝐻𝐻����� 

 𝐸𝐸(𝑖𝑖+1) > 𝐸𝐸𝑖𝑖 

 

4.4.1.3 Hours of Electricity Supply 

The number of hours a HH has been supplied with electricity for a period (such as a 

day), 𝑡𝑡𝑆𝑆, is a SUS measure that indicates how reliable the energy supply or technology 

is (Shrestha & Acharya, 2015); now with the available LP data such variable is 

obtained with actual measured data based on the number of LP intervals, 𝑁𝑁𝑆𝑆, for 

which consumption was recorded by the meter during supply on the given day or 

period, and the recording interval 𝐼𝐼 in minutes, i.e.:   

𝑡𝑡𝑆𝑆 =
𝑁𝑁𝑆𝑆 × 𝐼𝐼

60
 

Equation 4.9 

If required, the average daily HH hours of supply 𝑡𝑡𝑆𝑆�  for a given number of households 

ℎ is determined by: 

𝑡𝑡𝑆𝑆� =
∑ 𝑡𝑡𝑆𝑆𝑖𝑖
ℎ
𝑖𝑖=1

ℎ
 

Equation 4.10 

If instead calculating the number of hours a HH has been without electricity supply on 

a day or period, 𝑡𝑡𝑂𝑂, and the average daily HH hours for this scenario, 𝑡𝑡𝑂𝑂��� , Equation 

4.9 and Equation 4.10 can then be rewritten, respectively, as: 
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𝑡𝑡𝑂𝑂 =
(𝑁𝑁 − 𝑁𝑁𝑆𝑆) × 𝐼𝐼

60
 

Equation 4.11 

𝑡𝑡𝑂𝑂� =
∑ 𝑡𝑡𝑂𝑂𝑖𝑖
ℎ
𝑖𝑖=1

ℎ
 

Equation 4.12 

 

4.4.1.4 End-use Device Efficiency 

Assessing the efficiency of a device can be achieved in comparative, elemental 

actions, such as when in a HH an appliance or bulb is replaced. In section 4.3’s 

experiment, an incandescent light bulb was replaced with a more energy-efficient, 

LED light bulb; in terms of energy consumption, the LP data set (30-min consumption 

recording) or BR data set (monthly consumption recording) was used to determine 

the difference before and after replacing the bulb, in three variants: 

 Daily difference in electricity consumption ∆𝐸𝐸𝑑𝑑𝐻𝐻 , expressed as: 

∆𝐸𝐸𝑑𝑑𝐻𝐻 = �𝐸𝐸1𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−�𝐸𝐸2𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Equation 4.13 

  Where: 

o 𝑁𝑁 = number of recording intervals. For this case 𝑁𝑁 = 48, as the LP 

recording interval is 30 min 

o 𝐸𝐸1𝑖𝑖 = daily LP consumption at stage 1 (incandescent bulb) 

o 𝐸𝐸2𝑖𝑖 = daily LP consumption at stage 2 (LED bulb) 

 

 Period-based difference in electricity consumption ∆𝐸𝐸𝑝𝑝𝐻𝐻 , expressed as: 

∆𝐸𝐸𝑝𝑝𝐻𝐻 = (𝑅𝑅12 − 𝑅𝑅11) − (𝑅𝑅22 − 𝑅𝑅21) 

Equation 4.14 

Where: 

o 𝑅𝑅12 = end register reading at stage 1 (incandescent bulb) 

o 𝑅𝑅11 = start register reading at stage 1 (incandescent bulb) 

o 𝑅𝑅22 = end register reading at stage 2 (LED bulb) 

o 𝑅𝑅21 = start register reading at stage 2 (LED bulb) 
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 Cost difference, ∆𝐶𝐶 in South African Rand (R), determined as: 

∆𝐶𝐶 = 𝐶𝐶1 − 𝐶𝐶2 

Equation 4.15 

Where: 

o 𝐶𝐶1 = total monthly bill for stage 1 (incandescent bulb), obtained via 

MDMS provisional bill feature 

o 𝐶𝐶2 = total monthly bill for stage 2 (LED bulb), obtained via MDMS 

provisional bill feature) 

4.4.1.5 GHG emissions 

Shrestha & Acharya (2015) mention that the use of renewable energy sources and 

energy-efficient devices contributes to the avoidance of GHG emissions, and a 

comparison of the implementation can quantify such contribution, determined by: 

∆𝐺𝐺 = 𝐺𝐺1 − 𝐺𝐺2 

Equation 4.16 

Where: 

o ∆𝐺𝐺 = GHG emission reduction 

o 𝐺𝐺1 = GHG emission at stage 1 (before implementation) 

o 𝐺𝐺2 = GHG emission at stage 2 (after implementation) 

4.4.2 Load forecasting: data to predict 

The simulation for section 4.3.3 required LP data for a year, however, the current 

primary data simulated is for nearly 3 months. The current experiment attempted to fill 

that gap by applying electrical load forecasting (LF) through a machine learning (ML) 

model, built using Python (on Jupyter Notebook web interface) and Microsoft (MS) 

Azure ML Studio. The aim of this simulation was to, within the context of EP, ED, CST, 

and SUS, highlight smart metering energy data integration into machine learning and 

load prediction for future demand planning, preventive actions/maintenance, financial 

and tariff planning (Malik & Iqbal, 2021), especially when, according to Nti et al. (2020), 

close to 90% of the nine models mostly used in LF are based on artificial intelligence 

(AI).  

4.4.2.1 LF components 

The data-driven LF or electrical energy demand forecasting (EEDF) model in this 

experiment considers the following components, based on the inputs and related 

figures as described by Nti et al. (2020) and Malik & Iqbal (2021): 
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 Forecasting interval (lead time): medium-term forecasting (MTF), viz. 1-week 

to 1-year LF 

 Error metric: Root-mean-square-error (RMSE), most used metric in LF (38%). 

 Input parameters: weather and historical energy consumption; respectively, 

50% and 38% of EEDF models are based on these variables. 

4.4.2.2 Dataset definition 

The small village of Gorou, in Niger, was selected for the exercise. Despite the limited 

information available for this community, the following key facts for the selection could 

be obtained from Plan International España (2017) and ECREEE (2018), in the 

context of a solar mini-grid project in Gorou: 

 The village has about 4412 people. 

 There was no access to electricity, i.e., on MTF tier-0 (Table 4.2). 

 The community is far from the national electric grid, reinforcing the need for 

micro-grid renewable energy options. 

To build the data set, as shown in Figure 4.7, the smart meter LP data was exported 

from the MDMS within the range 17/01/2022 18:00 - 17/04/2022 17:00; assuming it 

as the average demand per interval per HH, the total demand for the village was 

calculated and allotted to Gorou’s historical 2021 weather data, from 01/01/2021 to 

31/03/2021 (Freemeteo, 2022), as indicated in the sample from Table 4.6. 

 
Figure 4.7: Dataset flow 
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Table 4.6: A sample from the 12-month dataset 

Date Time Temperature Wind Humidity Power_cut Demand 
2021/01/01 00:00 24.00 6.00 19.00 NO 0.00 
2021/01/01 01:00 23.00 2.00 19.00 NO 0.00 
2021/01/01 02:00 23.00 6.00 20.00 NO 44.16 
2021/01/01 03:00 21.00 0.00 21.00 NO 44.16 
2021/01/01 04:00 21.00 4.00 23.00 NO 44.16 
2021/01/01 05:00 20.00 4.00 23.00 NO 0.00 
2021/01/01 06:00 19.00 11.00 28.00 NO 0.00 

 

4.4.2.3 Description and statistics 

The analysis, performed using Python (Appendix B), was based on 2160 observations 

with three numeric features and one categorical feature (Table 4.7), using a 

regression model to predict the numeric label (demand data). 

Table 4.7: Variable description 

Variable/feature Type Description Unit 
Temperature Numeric Temperature °C 

Wind Numeric Wind speed km/h 

Humidity Numeric Relative humidity % 

Power_cut Categorical Power on (NO) or off (YES) - 

Demand Numeric Gorou hourly demand data kW 

Furthermore, numeric feature statistics that include the minimum, maximum, mean 

and standard deviation, indicated in 

Table 4.8, assisted in the analysis of the dataset; the data showed a count lower than 

2160 observations, indicating missing values, a key aspect to consider as it impacted 

the analysis and modelling, which was further addressed during the ML steps. 
 

Table 4.8: Descriptive Statistics for numeric columns 

Feature Minimum Maximum Mean  Median Range Standard 
deviation 

Count 

Temperature 17.00 43.00 29.36 29.00 26.00 5.71 2113 

Wind 0.00 39.00 12.96 11.00 39.00 7.85 2113 

Humidity 2.00 50.00 11.75 11.00 48.00 6.02 2113 

Demand 0.00 51.52 1.45 0.00 51.52 5.95 2128 
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The histogram in Figure 4.8 shows Demand values that are right-skewed, with a mean 

greater than the median value and a standard deviation larger than the mean; 

therefore, while electricity demand was mostly close to the value of a unit per hour, 

some few were distributed across a much broader range. 

 
Figure 4.8: Histogram of Demand 

 

The categorical feature Power_cut specified power supply to the households, 

indicating if the power supply was on (NO) or off (YES); with the meter also powered 

off, this resulted in missing demand data on the dataset. 

4.4.2.4 Correlation and relationships 

The relationships between the features in the data, and between the features and 

Demand, were analysed. 

Numeric Relationships 

The scatter-plot matrix in Figure 4.9 shows a comparison between the numeric 

features, including their distributions; when compared with Demand (the label), each 

of the features had a weak relationship with it, but from the relationship between the 

features a linear relationship could be identified between Temperature and Humidity, 

Wind and Humidity, and Temperature and Wind to some extent. Furthermore, 

Temperature is the only feature with a normal distribution, while the others are right-

skewed. 
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Figure 4.9: Scatter-plot matrix of numeric features 

 

Figure 4.10 further shows these relationships, based on Pearson’s correlation 

coefficient between the numeric features (Nettleton, 2014), of which magnitude is 

coded in shades of blue for positive and red for negative, darker as stronger the 

correlation is; here the correlation between the 3 features became apparent: (i) 

medium positive for Temperature and Wind; (ii) large negative for Temperature and 

Humidity; (iii) medium-large negative for Wind and Humidity. 

 

Figure 4.10: Correlation heatmap of numeric features 
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- Categorical Relationships 

Missing Demand data could be caused by several factors, which would define the 

approach to handle it, either by removing or completing the missing values. The 

Power_cut feature clarifies this aspect, where the category YES confirms that the 

missing data is due to no electricity supply, with no data collected; furthermore, it 

provides information on the proportion of power cuts (missing data) versus no 

power cuts, as indicated in Figure 4.11. Missing values were therefore removed 

and not estimated, and while this feature had a key purpose for data preparation, 

it was not used as a predictive feature for Demand. 

 

 
Figure 4.11: Count by Power_cut categories 

 

- Multi-Dimensional Relationships 

Besides the relationships between each of the features and Demand, a multi-

faceted relationship was also analysed for a wider view of how the features define 

the label to be predicted, using the features with the highest correlation coefficient. 

As shown in Figure 4.12, while higher Demand values were clustered within lower 

temperatures (20 to 25°C) and medium humidity (23 to 33%), lower values were 

frequent and spread across the Temperature-Humidity relationship, i.e., the 

increase in Temperature or decrease in Humidity did not appear to have a strong 

impact over Demand. 
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Figure 4.12: Influence of Temperature and Humidity interactions on Demand 

4.4.2.5 Prediction of Demand 

From the analysis of the features and the target label Demand, a model was defined 

to predict Demand where the value was not known, using MS Azure ML Studio. 

- Data preparation 

The following steps were applied to the data before creating the model: 

• Treat missing values on affected features: 

o Demand: rows removed. 

o Temperature: mean imputation with data calculated from the column, 

applicable to normal distributions (Zest AI, 2018). 

o Wind and Humidity: median imputation with data calculated from the 

column, applicable to imbalanced distributions (Zest AI, 2018). 

• Transformations to improve distribution properties and predictive ability: 

o Wind: square root. 

o Humidity: natural logarithm plus one. 

• Normalization for modelling: 

o Temperature: Zscore method, for normal distributions (Microsoft, n.d.). 

o Wind and Humidity: MinMax method, for imbalanced distributions 

(Microsoft, n.d.). 
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- Regression model 

Following the prepared data, a regression model (Figure 4.13) was created to 

predict Demand, with the data split into training and test sets at 70% and 30% of 

the dataset, respectively. 

 

Figure 4.13: Machine learning model 

 

A total of five models were run, with the Neural Network Regression (NNR) model 

being selected based on, among other metrics, the lowest RMSE and highest R-

squared, as shown in Table 4.9. 

Table 4.9: Regression models and metrics applied 

Metric Linear Boosted 
Decision 

Tree 

Neural 
Network 

Bayesian 
Linear 

Decision 
Forest 

Mean Absolute Error 2.69 2.25 2.27 2.68 2.23 

Root Mean Squared Error 6.04 6.03 5.74 6.04 6.07 

Relative Absolute Error 1.03 0.86 0.87 1.03 0.86 

Relative Squared Error 0.93 0.93 0.84 0.93 0.94 

Coefficient of Determination (R2) 0.07 0.07 0.16 0.07 0.06 

 

The plot in Figure 4.14 indicates a slight linear relationship between predicted and 

actual values, with a dispersion tendency for larger values. A low R2 (0.16 on a 

scale of 0 to 1) could be normal (Microsoft, 2019); further experiments, not within 
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the boundaries of the current study, would contribute to improving the model’s 

performance. 

 
Figure 4.14: Scored results compared to actual values for the Neural Network model. 

- Prediction of Demand for the full year 

Using the ML model by Neural Network Regression, the Demand values were 

predicted for the remainder of the year, i.e., 01/04/2021 00:00 - 01/01/2022 00:00. 

4.4.3 Energy potential and renewables: data to optimize 

For the analysis of RSC (energy resources), CST (cost-effective), BEN (beneficial), 

AFF (affordable) and SUS (sustainable), rather than manual calculations an equivalent 

techno-economic simulation tool was used with the LP dataset as input. HOMER Pro 

runs simulations on energy systems for one year, evaluating and optimizing design, 

costs, load profiles, components, and environmental variables (HOMER Energy, 2017); 

while it covered all the elements of the assessments as indicated in Table 4.10, it also 

allowed the use of raw energy data collected from a HH, by using LP as direct input for 

the load setup, instead of the pre-defined synthetic load. The latter benefit was one of 

the main advantages to be shown with this approach. 
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Table 4.10: Assessments versus software features 

Assessment Description HOMER Pro 
RSC  For off-grid power supply, identify renewable 

energy resources within the area where the EAP 
will be implemented; the grid-connected power 
supply is also considered. 

 The economic potential of energy resources. 
 Input for CST and SUS. 

 Identify technology options 
based on location 

 Renewable penetration 
 Sensitivity analysis 

CST  Cost-effective options of access to electricity.  Sensitivity analysis 

BEN  The benefit of access to cleaner energies.  Emissions 

AFF  HH affordability to use electricity services  Sensitivity analysis 

SUS  Energy resource options that are environment-
friendly, reliable, affordable, cost-effective, and 
socially acceptable. 

 Gets its input from RSC, CST, BEN and AFF. 

 Emissions 
 Sensitivity analysis 
 Identify technology options 

based on location 

 

4.4.3.1 Inputs 

The interval-based (LP) demand dataset for the year 2021 results from the following 

outputs: 

• Smart meter data (section 4.3), for the range 01/01/2021 00:00 - 31/03/2021 

23:00, with missing demand values replaced with zeros. 

• Predicted demand (section 4.4.2), for the range 01/04/2021 00:00 - 

01/01/2022 00:00, with negative demand values replaced with zeros. 

Besides the LP dataset, other inputs, as indicated in Table 4.11, included the solar 

and wind resources acquired directly from the software based on the location input, 

as well as economic variables. General system default values (costs and 

specifications) were used for this simulation. 

 Table 4.11: Defined inputs for the simulation 

Variables Settings/inputs 
Location  Community of Gorou, Niger. 

 GPS coordinates: 14°3.0'N, 1°47.0'E. 

Electric load  Imported from time series (LP dataset for 2021). 

Grid  Set as connected, to include a grid-connected power supply in the analysis. 

Fuel-based 
generator 

 Considered for the base case for the analysis. 
 Default values considered. 

Renewables  Solar photovoltaic (PV) 
 Wind turbine 

Sensitivity inputs  Discount rates (%): 3, 6 and 12 
 Inflation rates (%): 1, 2 and 4 
 Diesel fuel price (R/L): 7.83, 15.70 and 31.30 
 Wind scaled average (m/s): 3.00. 5.68 and 8.00 
 Project lifetime (years): 25 

Currency  Default costs used, in rands 
 $ to R conversion based on an exchange rate of 15.66 on 25/04/2022 (XE, 2022) 



 58 

4.4.3.1 Importing the load and building the design 

Using synthetic (predefined) loads (Figure 4.15), is a quick approach to generate a 

relatively realistic load for the simulation (HOMER Energy, 2017), but actual data from 

the source (the household) would provide a more accurate reflection of the load, thus 

a better approach. 

 
Figure 4.15: HOMER Pro synthetic loads (HOMER Energy, 2017) 

The interval-based energy data was pre-processed and imported using HOMER’s 

time-series import feature, and added to the design as daily profile, illustrated in 

Figure 4.16; the data was shifted to start on the first day of the year before the average 

daily profile is determined, as per criteria described by HOMER Energy (2017). 

 

  
Figure 4.16: Generated daily profile (left) and the designed system (right) 
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The system had six electrical supply elements that included the renewable solar and 

wind options, the related storage (battery), and current conversion components 

described in Table 4.12, with the respective input values of both capacity and costs. 

Once the design was set, the simulation was run to perform the optimization and 

sensitivity calculation, and analyses. 

Table 4.12: System components 

Component Description Capital 
(R) 

Replacement 
(R) 

O&M* 
(R/year) 

Lifetime 
(years) 

Electric load Average load demand 
based on the imported 
data, 51.52 kW peak. 

- - - - 

Gen Electrical supply: auto-
sizing diesel generator 

7 830.00 7 830.00 4 115.45 1.71 

PV Electrical supply: generic 
1 kW flat-plate PV 
system 

39 150.00 39 150.00 156.60 25.00 

G1 Electrical supply: generic 
1 kW wind turbine 

109 620.00 

 

109 620.00 1 096.20 20.00 

1kWh LA Electrical supply: 1 kWh 
Lead Acid (LA) battery. 

4 698.00 4 698.00 156.60 10.00 

Converter Electrical supply: 
Rectifier for AC-to-DC 
conversion, and inverter 
for DC-to-AC conversion. 

4 698.00 4 698.00 - 15.00 

Grid Electrical supply: a grid-
connected system for 
grid extension analysis, 
power priced at 1.57 
R/kWh 

125 280 

(per km) 

- 2 505.6 

(per km) 

- 

*O&M = Operation and maintenance 

4.5 Summary 

The experiment was defined in this chapter. With one of the lowest electricity 

consumption levels in Africa and the World, Niger was the selected SSA country, from 

which household and electricity access data were collected and analysed. Some linear 

regression was applied to normalize data to a particular year. The multi-tier framework 

was an important aspect analysed as it measured the level of access to electricity in the 

country, more severe in rural areas. The tier-2 level identified was then applied to the 

smart metering experiment designed to measure energy data from a household, 

collected remotely by an MDMS. 

Following assembly of the smart metering experiment, an Itron SL000 smart meter was 

configured with the required measurement parameters using Itron ACE Pilot meter 

configuration software over an IR probe (local access); the parameters included energy 

and demand registers, profile interval channels and clock synchronization. For remote 
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access, the Itron Sparklet modem was used for remote communication over the cellular 

network (GPRS), on which parameters such as the APN and signal were checked (at -

67 dBm, good level signal strength) and configured and using Itron MP Modem software. 

The household energy, register and event data logged by the smart meter was then 

collected daily at midnight, via automated schedule set on the PNPscada MDMS. The 

load to be measured was set up as per identified tier-2 electricity access level: a bulb 

and an energy socket for cell phone charging at two stages, the first with an incandescent 

bulb and the second with an LED bulb replacement, defined to evaluate the impact of 

efficient appliances/devices in energy demand, cost, benefit, and sustainability; 

moreover, the load followed a random household usage to avoid data bias. 

The applicability of the data to the SEAP framework was then analysed by mapping the 

data requirements to the measured household energy data, within the range 17/01/2022 

00:00 - 26/04/2022 24:00. Where then applicable, energy access indicators were 

calculated based on the framework’s criteria: the basic minimum energy requirement, 

energy demand, hours of electricity supply, end-use device efficiency (the bulb load 

stages of incandescent VS LED), and GHG emissions. 

The household energy data measured was further explored by medium-term electrical 

load forecasting (LF) through a machine learning (ML) model, taking the existing 3-month 

dataset (17/01/2022 18:00 - 17/04/2022 17:00) allocated to the year 2021’s weather 

data, to then train and predict demand data to cover that full year; extending the data set 

was with the intent of not only exploring the potential of smart metering energy data but 

also as input for the other aspects of the study. Inputs were local weather data, 

population, household size and demand data; the small rural village of Gorou, in Niger, 

was selected for this exercise, based on the criterion of village size, no access to 

electricity (tier-0) and distance from the grid. Statistics, correlation, and relationships 

were analysed in Python, and regression models were trained and built based on the 3-

month dataset on MS Azure ML Studio. Five regression models were simulated, with the 

neural network model being selected based on the RMSE and R-squared metrics. 

The complete year dataset, comprising 3 months of smart metering data and 9 months 

of predicted data, was then applied to run optimization and cost sensitivity analysis of 

hybrid renewable energy systems using HOMER Pro software. The designed energy 

system to be optimized comprised six electrical supply components that included a diesel 

Genset, renewable solar and wind based on Gorou’s resources, storage (batteries), 

converter (DC-to-AC inverter and AC-to-DC rectifier), and grid supply; furthermore, 

sensitivity inputs were based on interest, inflation, diesel costs, and wind speed, over a 

25-year project lifetime. 
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5.1 Introduction 

The designed experiment aimed to explore the energy data through its different 

applications relevant to the energy access framework. This chapter provides and 

discusses the outputs at the boundaries explored in terms of the SEAP framework 

assessments applicable through the measured household energy data from the smart 

metering system, the calculation results for the applicable SEAP indicators, the predicted 

demand data, and the optimized energy system. 

 

5.2 Meter data collection 

In the built experiment a smart meter collected energy usage data from a household load 

based on MTF tier-2. Using the different features available from smart metering 

technologies, diverse data was acquired using local and remote access methods to the 

smart meter, each providing different levels of access to the meter, the detailed data in 

it, and the analysis and reporting from the MDMS system. 

 

5.2.1 Local access by meter SW over IR probe 

Even though in an SM system most of the access to a smart meter is accomplished 

remotely, it is occasionally required that the meter is locally accessed; such cases 

include: 

• Initial configuration of the meter. 

• Collect data from the meter that the MDMS might not be able to collect, such 

as detailed event and alarm data, and firmware version. 

• Collect data from the meter when remote communication is not possible. 

With the IR optical probe attached to the meter’s optical sensor, and using the 

configuration SW, energy data on the load, device and installation was collected from 

the meter at 14/02/2022 20:42; such data included real-time power (at 14/02/2022 

20:40), energy, and event logs, with the observations as indicated in Table 5.1. For a 

measurement-transformer-connected meter, parameters such as the current 

transformer (CT) and voltage transformer (VT) ratios would’ve also been included. 
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Table 5.1: Energy data, status, and observations 

Type Parameter Value/message Observation 
Real-time 
power 
usage 

Import active, P+ 8 W Only the 9W LED bulb was 
on (no phone charging). 

Export active, P- 0 W No exported quantities, only 
imported from the grid. 

Import reactive, Q+ 0 var No reactive quantities, 
despite LED bulb. 

Export reactive, Q- 2 var No exported quantities, only 
imported from the grid. 

Power factor 1.0 No reactive quantities, 
despite LED bulb. 

 

Energy 
registers 

Import active, A+ 2 899 Wh Energy register count since 
the start of measurement 

Export active, A- 0 Wh No exported quantities, only 
imported from the grid. No 
reactive quantities, despite 
LED bulb. 

Import reactive, R+ 0 VArh No reactive quantities, 
despite LED bulb. 

Export reactive, R- 0 VArh No exported quantities, only 
imported from the grid. No 
reactive quantities, despite 
LED bulb. 

Logs Date and time: 
meter 

2022/02/14 20:40:00 Synchronized, otherwise, it 
would result in inaccurate 
data. 

Date and time: 
PC 

2022/02/14 20:40:11 The PC’s time was used to 
synchronize the meter time. 

Alarms: 
Fatal 

 Not present. A fatal alarm 
indicates a severe problem 
with the meter, requiring 
removal and testing. 

Alarms: 
Non-fatal 

• Network voltage unbalance 
detected. 

• Voltage cut detected in phase 2. 
• Voltage cut detected in phase 3. 

Only 1 phase is being used, 
hence the absence of 
voltage in the remaining 
phases. 

 

Event data is key to monitoring the network for factors such as QoS. One detailed case 

in Table 5.2 showed a power cut event, accurately logged from the time when the alarm 

was raised for a phase-cut, then a power cut, to restoration; the power cut lasted for 

exactly 6 minutes and 58 seconds. 
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Table 5.2: A sample meter configuration tool export of event data (network monitoring) 

Type Setting ID Date Time 
Register data saved in 
Flash memory 

SAVE POWER UP 762 Sunday, 13 February 2022 19:22:49 

AC fail signal 
disappearance 

PRESENCE PHASE 761 Sunday, 13 February 2022 19:22:46 

Non-fatal alarm 
disappearance 

Alarm Type: VOLTAGE 
CUT PHASE 1 

760 Sunday, 13 February 2022 19:22:46 

Power up   759 Sunday, 13 February 2022 19:22:46 
Power fail signal raised   758 Sunday, 13 February 2022 19:15:48 
AC Fail signal raised PHASE CUT 757 Sunday, 13 February 2022 19:15:48 
Non-fatal alarm raised Alarm Type: VOLTAGE 

CUT PHASE 1 
756 Sunday, 13 February 2022 19:15:48 

Non-fatal alarm raised Alarm Type: VOLTAGE 
SAG PHASE 1 

755 Sunday, 13 February 2022 19:15:48 

 

While a smart meter in a household is an important element in an SM system, it is as 

equally important to make sure that such device is deployed with the correct 

parameters to measure and log the required energy data for the required purpose, and 

that further to the regular collection of the data, the device, installation, load, and supply 

aspects are monitored. Thus, the aspects of meter configuration, real-time data and 

event logging are important measures to the SEAP framework as they quantify and 

track the aspects of reliability, convenience, and adequacy of supply to a household. 

Now despite the advantages of monitoring through data collection, i.e., proactively 

identifying issues and addressing them, the maintenance actions to be taken on-site to 

fix those issues would require local know-how to use the required technologies and 

tools, and availability of resources. 

5.2.2 Remote access by MDMS over GPRS 

Once the meter was configured for the measurement and the modem configured for 

communications, the MDMS was scheduled to collect energy data regularly and 

provide different types of reports and views for the data analysis.  

5.2.2.1 Daily load profile 

The graph in Figure 5.1 showed some of the insights based on collected load profile 

data, with three load scenarios and related events: 

• The initial load from 17/01/2022: a 60 W, 548 lumens (lm) incandescent bulb 

applied. 

• An increase in usage from 29/01/2022: introduction of phone charging. 

• A decrease in usage from 03/02/2022: incandescent bulb replaced by a 9W, 

650 lumens Light Emitting Diode (LED). 
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Figure 5.1: Daily consumption analysis (kWh per day). 

 

The data from the last scenario measures and highlights the use of efficient options 

for demand-side technology in the SEAP framework (ADB, 2018b: 86): at a 

consumption 6 times lower (9 W) while providing more light, the LED lamp is more 

efficient and cost-effective (Desai, 2015), addressing important factors of affordability 

(for both lamp and electricity bill) and adequacy (low power rating), where aspects 

such as power generation capacity requirement and cost of providing electricity 

access would be reduced. 

5.2.2.2 Hourly load profile 

Observing the load profile further to a higher data resolution (every few hours to an 

hour, to half an hour), consumption patterns were identified, as illustrated in Figure 

5.2: 

• Accessibility and affordability through demand and ToU: a demand higher for 

both charging and lighting occurring in the evening, after 18:00 hours. 

• Reliability through QoS monitoring: a stable voltage for phase 1.  

 

Demand analysis: lights were on for longer at 
the household, compared to the other days.

Consumption variance 
due to random phone 

charging

Phone charging 
added to the load.

Reduced consumption: 
60W (548 lm) 
incandescent replaced by 
9W LED bulb (650 lm).
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Figure 5.2: Half-hourly usage analysis (kW per day). 

 

This level of granularity would assist in addressing affordability and affordability 

challenges by implementing improved electricity tariffs (ADB, 2018b) that benefit the 

energy-poor, optimize tariffs for the non-energy poor, and QoS (reliability). 

Furthermore, the interval-based, load profile data opens several possibilities to 

explore usage data, as indicated in section 4.4 and further determined in section 5.3 

of this chapter. 

5.2.2.3 Environmental impact 

The United Nations refers to the importance of providing, where viable, energy access 

from low GHG emission sources (Shrestha & Acharya, 2015). With the energy data 

collected, environmental impact analysis data was generated from the MDMS, 

constants set out by the local utility and the specified consumption period, and the 

emission and utilization values for the different compounds, as indicated in Table 5.3; 

considering aspects of carbon emissions and water use as an example, for the nearly 

27 days of household consumption, close to 3 kg of CO2 was released and 4 litres of 

water were used to generate the required electricity. 

 

 

 

Consumption 
profile: lighting from 
a 60 W (0.060 kW) 
incandescent bulb.

Consumption 
profile: lighting from 
a 9 W (0.009 kW) 
incandescent bulb

Consumption 
profile: lighting 
and charging 
happen mostly 
in the evening, 
after 18:00.
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Table 5.3: Environmental impact (based on South Africa) 

Implication Unit 2022-01-17 16:00 to 
2022-02-13 20:30 

Daily 
Average 

Monthly 
Average 

Ash produced kg 0.4280 0.0157 0.4791 

CO2 emissions kg 2.7334 0.1005 3.0601 

Coal use kg 1.4633 0.0538 1.6383 

NOx emissions kg 0.0115 4.2450 0.0129 

Particulate emissions kg 9.1113 3.3513 0.0010 

SO2 emissions kg 0.0214 7.8704 0.0240 

Water use kl 0.0039 1.4218 0.4327 

Besides just energy, the data acquired from the smart metering system can also be 

used as input to generate environmental data and any other data that can be derived 

from HH usage. Applicable to the benefit and sustainability elements of the SEAP 

framework, and as further determined in section 5.3 (based on section 4.4), the 

environmental data can be used to determine the reduction in GHG emissions based 

on different energy access implementations, as defined by Shrestha & Acharya 

(2015). 

5.3 Assessment calculations 

For the applicable indicators, the values were calculated based on the equations directly 

or indirectly originating from the SEAP framework. Moreover, the input energy data 

measured from the experiment: (i) was about a quarter (99 days) of the annual range 

typically used for these indicators (section 4.3), which according to Saunders et al. (2007: 

212) falls within an acceptable 1% margin of error; (ii) was collected from only one HH, 

thus used as an average of HHs.  

From the results, shown in Table 5.4, the following relevant aspects are discussed: 

• The average result from Equation 4.4 was applied for a year, equal to a value of 

approximately 16 kWh, which was within MTF tier-1 for task lighting and phone 

charging as per load used for the experiment. 

• Niger’s number of rural HHs with access to electricity (Table 4.1) was considered 

as the sample for the energy demand calculation; moving these HHs to MTF tier-

2 required additional energy of nearly 15 GWh (Equation 4.8). 

• Based on the result from Equation 4.10, electricity was available for 97% of the 

considered supply period. 

• The consumption difference, based on the change from an incandescent to a 

more efficient LED bulb (Figure 5.1), indicated: 
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o Based on the periods before and after the change (February and March), 

a daily and monthly reduction by 47 Wh (Equation 4.13) and 246 Wh 

(Equation 4.14) respectively. 

o From an MDMS-simulated tariff and bill, applied to the energy 

consumption for the months before and after the change (Figure 5.3), a 

monthly saving of 8.37 R on the HH bill (Equation 4.15). 

• Considering South Africa’s grid emission factor of 0.928 kg CO2 per kWh 

(Carbon Footprint, 2020), the monthly reduction in consumption resulting from 

the use of a more efficient end-device saw a monthly decrease in carbon 

emissions of 228.29 kg CO2 (Equation 4.16); furthermore, a daily comparative 

breakdown was extracted from the MDMS based on the same factor and 

consumption values, as indicated in Table 5.5. 

Table 5.4: Calculation results for the applicable assessments. 

Indicator Applicable 
assessment 

HH energy data 
input (SM) 

Equation Main 
parameter 
and unit 

Result 

Basic minimum 
energy requirement 

EP, ED Load profile, 
maximum demand 

4.4 𝐸𝐸𝐻𝐻𝐻𝐻�����, kWh 4.08 
4.7 𝐸𝐸𝐻𝐻𝐻𝐻�����, kWh 37.50 

Energy demand EP, ED Load profile, 
maximum demand 

4.8 ∆𝐸𝐸𝐻𝐻𝐷𝐷, GWh 14.83 

Hours of electricity 
supply 

SUS, AFF Load profile 4.10 𝑡𝑡𝑆𝑆� , h 2 308.00 
4.12 𝑡𝑡𝑂𝑂� , h 68.00 

End-use device 
efficiency 

ED, CST, SUS, 
BEN 

Load profile, 
billing registers 

4.13 ∆𝐸𝐸𝑑𝑑𝑑𝑑, Wh 47.00 
4.14 ∆𝐸𝐸𝑝𝑝𝑑𝑑, Wh 246.00 
4.15 ∆𝐶𝐶, R 8.37 

GHG emissions RSC, CST, 
SUS, BEN 

Load profile 4.16 ∆𝐺𝐺, kg CO2 0.044 

 

Calculating the minimum electricity threshold (𝐸𝐸𝐻𝐻𝐻𝐻�����) using either 30-min consumption 

data or the monthly maximum demand billing registers ensured higher granularity and 

accuracy, when with non-metered data it would not have been possible. Furthermore, it 

was also noticed that the calculation of the same indicator using demand data (𝐸𝐸𝐻𝐻𝐻𝐻�����) was 

about 9 times higher than that based on consumption; now monthly MD values look at 

demand peaks, which the supply energy system should be able to cater for; thus if such 

criteria are considered then the calculation could be used as an indicator for supply 

requirement (adequacy). 

Indicators such as 𝑡𝑡𝑆𝑆�  , complemented by logged events such as those indicated in section 

5.2.1, particularly indicated when supply was available or not, and for how long. 

Moreover, with the measured energy data, improvements in end-device efficiency were 

quantified in consumption, cost, and carbon emissions. 
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Figure 5.3: MDMS simulated household bills with and without an energy-efficient device. 

Table 5.5: MDMS-generated daily savings report on usage, costs, and carbon emissions. 

Parameter Period 1 
  2022-02-01 00:00:00.000   

to 
  2022-03-01 00:00:00.000 

Period 2 
  2022-03-01 00:00:00.000   

to 
  2022-04-01 00:00:00.000 

Difference   

Energy (kWh)      0.031      0.02      0.011    
Max. Demand (kVA)      0.064      0.014         0.05    
Money (R)      0.662      0.363      0.299    
Carbon (kg)      0.029      0.019      0.01 

 

5.4 Predicted demand 

The ML exercise by NNR model (Figure 4.13) was applied to predict the demand values 

for the period of 01/04/2021 00:00 - 01/01/2022 00:00, based on temperature, wind, and 

humidity. The output model in Figure 5.4 and sample of predicted data in Table 5.6 
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shows the process and data, where it was noticed that not only transformations were 

applied to the input data (features) to improve predictive power, but that some of the 

predictive values were negative; as there can be no negative demand, they were 

replaced by zeros for the final dataset. 

 

Figure 5.4: Predicting demand data with the built ML model. 

 

Table 5.6: Sample of predicted data (scored labels). 

Temperature Sqrt(Wind) LnPlus1(Humidity) Scored Labels 
-0.855093474 0.293972368 0.498921986 0.669818521 
-1.049094918 0.293972368 0.498921986 1.927718997 
-1.049094918 0.333333333 0.476092568 -0.176963925 
-1.243096362 0.368513866 0.476092568 0.534485459 
-1.243096362 0.368513866 0.476092568 0.534485459 
-1.437097806 0.368513866 0.498921986 0.554687619 
-1.631099251 0.368513866 0.498921986 -0.192573905 
-1.631099251 0.368513866 0.498921986 -0.192573905 
-1.243096362 0.368513866 0.476092568 0.534485459 
-0.467090585 0.521157307 0.421637992 0.542003989 
0.114913747 0.587944736 0.388236767 0.576710582 
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The predicted data was then combined with the input primary data (January to March 

2021) for the final dataset covering the full year, which can be seen graphically in Figure 

5.5. The initial spike in January related to the use of a higher load (incandescent bulb), 

then changed to a lower load in early February (LED bulb); these stages were part of the 

experiment on end-use device efficiency for affordability and sustainability, as per 

section 67. Also observed with the predicted data was the increase in consumption 

during the Winter and Autumn seasons (July to November), typical for annual usage 

patterns. 

 

Figure 5.5: Full-year demand dataset (primary and predicted). 

 

5.5 Energy system optimization and cost analysis 

The full dataset resulting from the meter and prediction exercises was then used as load 

input to HOMER Pro to perform a resource and cost analysis of an energy system (ES) 

to implement for energy access, in line with SEAP frameworks’ resource, cost, benefit, 

affordability and sustainability assessments. The results in Table 5.7 compare the base 

energy system supplying electricity via diesel fuel-based generator, with the optimized 

systems: 

• Base versus best cases: the optimized energy systems reduce operating costs 

by 83% and 78%, and electricity costs by 35% and 67%, respectively. The hybrid 

renewable energy system (HRES) option provided an off-grid supply system 

composed of non-renewable (Gen) and renewable (PV), the latter responsible 

for nearly 31% of the supply 

• Renewable-only versus HRES: the PV-only scenario was explored to assess the 

pros and cons of a fully renewable energy system; the environmental benefit is 
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evident, with no carbon emissions, no fuel consumption costs and 26% less in 

O&M costs, but all these come at a higher investment and an electricity cost 

about double that of the combined option. Thus, if considered, a carbon-free, 

renewable system is a clean but costly option, with a payback period of 4 to 5 

years (4 times longer than the HRES). 

Table 5.7: Results on base system against HRES and full PV systems 

Metrics Unit Base system: 
Gen 

Best-case system (optimized) 
Renewable-only:  
PV + 1 kWh LA + 

Converter 

HRES: 
PV + Gen + 1 kWh LA 

+ Converter 
Net Present Cost 
(NPC) 

R 9.04M 5.69M 3.02M 

Capital R 446 310.00 4.28M 1.11M 

O&M R/year 1.01M 167 058 225 317.00 

Levelized Cost of 
Electricity (LCOE) 

R/kWh 38.18 24.78 12.77 

Internal rate of 
return (IRR) 

% - 22.20 109 

Discounted 
payback 

Year - 4.65 1.05 

Simple payback Year - 4.28 1.01 

Renewable fraction % - 100.00 31.10 

CO2 emission kg/year 108 665.00 0.00 20 805.00 

Fuel Consumption L/year 41 513.00 0.00 7 948.00 

 
 
Furthermore, on the HRES there were periods of the year with carbon emissions close 

to none; Figure 5.6 illustrates a cleaner supply of electricity during Summer/Autumn, with 

nearly no use of fossil-fuel-based power generation. 

 

 

Figure 5.6: Monthly electric production 
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In the same scenario, fuel (resources) and storage are to be considered in terms of 

recurrent costs of electricity supply that are high in the mix, where the fuel costs over the 

EAP’s lifetime were almost as high as the initial capital investment for all components 

combined, as indicated in Figure 5.7. 

 

 

Figure 5.7: Cost breakdown, in USD. 

 

5.6 Summary 

This chapter presented and discussed the experiment results. Accessing the smart 

meter locally using an optical probe allowed for the initial configuration of the meter 

(parameterize the device to collect the intended household data) and extraction of data 

that would not be possible by the MDMS alone, either due to data size, the capability for 

reading it, or remote communication issues; such data included billing register, real-time 

active and reactive power, alarms, and date/&time synchronization. With the MDMS on 

the other hand, emphasis was on the scheduled, remote data acquisition as well as the 

MDMSs data processing, visualization and reporting. Analysis of daily and more granular 

half-hourly consumption provided usage patterns that included reduced consumption 

due to improved efficiency (incandescent to LED load replacement), consumption 

variance related to cell phone charging, higher demand during evenings, and 

environmental impact of the usage pattern (GHG emissions); all these aspects were 

relevant to the accessibility, affordability, and reliability components of the SEAP 

framework. 

The calculated SEAP indicators, based on the household energy data collected and 

applied to the defined formulas, quantified aspects of the seven assessments of the 

framework: energy poverty, energy demand, sustainability, cost, benefit, resource, and 

affordability; the differentiator was using actual energy data measured from the 

household, in contrast to estimated or old data. 
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The neural network model trained from the measured household energy data was then 

applied to predict the remaining data based on weather input (temperature, wind, 

humidity). The result was demand data for a full year, combining the 3-month initial 

dataset and the 9-month predicted dataset; within the energy access planning context, 

weather data from a similar area could equally be applied to predict energy data 

applicable to that same area. Furthermore, the full-year dataset was required and applied 

to the simulation on energy system optimization and cost sensitivity analysis. The best-

case scenario was an HRES of solar, genset, storage and converter, with the lowest 

NPC payback period and LCOE, however with a third of renewable energy penetration. 

Thus, a second best-case was considered for a fully renewable scenario (no genset), 

which had in contrast 100% penetration and zero emissions, but at almost double the 

NPC and LCOE, and a payback period nearly 4 times longer. These scenarios, based 

on smart metering energy data, present cases for analysis of costs versus sustainability 

and benefit, within the framework’s assessments. 
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6CHAPTER SIX 
CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusion 

6.2 Further work and recommendations 
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6.1 Conclusion 

In this study, data-acquisition features of smart metering technologies were coupled with 

energy access (SEAP) methods through energy data. Using input data acquired from a 

selected country in SSA, a smart metering system was assembled, with a smart meter 

measuring electricity usage data and an MDMS wirelessly collecting it. The applicability 

of this data to the energy access framework was then analysed against its assessments 

and explored by applying it to different, but interdependent applications that included the 

calculation of indicators using the energy access framework as the baseline, data 

prediction (demand forecasting) via machine learning exercise to build a full year dataset 

from the available meter data, and energy systems optimization and cost sensitivity 

analysis by applying the full dataset (measured plus predicted) to simulation software. 

The analysis and exploration of household energy data from smart metering through the 

SEAP framework highlighted the following applicability aspects: (i) usage patterns 

identified from interval-based consumption data that indicate how the household uses 

electricity, used to make electricity more affordable over improved tariffs or increased 

efficiency of household appliances/devices – demand (ED), affordability (AFF) and cost 

(CST); (ii) energy and local supply data that translates into environmental indicators such 

as carbon emissions, quantifying the impact of energy supply technologies to the 

environment – benefit (BEN) and sustainability (SUS); (iii) real-time power usage and 

alarms (e.g., voltage cuts, sags and swells, per phase) not only to monitor the electricity 

supply (QoS) but also to identify issues and take preventive action on the implemented 

energy system – resource (RSC) and sustainability (SUS); (iv) interval, register and/or 

alarm data used to directly (calculations) or indirectly (input for analysis) determine 

energy access indicators (e.g., basic minimum energy requirement, hours of electricity 

supply, GHG emissions, etc.), continuous and accurate as measured from the household 

– applicable to all assessments; (v) register and interval-based data used as proxy 

demand profile for completely unelectrified areas with similar demand profiles – demand 

(ED); (vi) demand prediction from interval-based and geographic area data (such as 

weather), of advantage for demand forecasting (additional data based on features from 

the same area), for new demand profile (non-electrified area based on features from that 

area), and for proactive action (demand planning, preventive maintenance, financial and 

tariff planning) – applicable to all assessments; (vii) daily load profile from interval-based 

and geographic area data (such as energy resources: solar, wind, etc.) to use for the 

optimization and cost analysis of energy systems, including microgrids and renewables 

– resource (RSC), cost (CST), benefit (BEN), affordability (AFF) and sustainability (SUS). 
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With the contribution provided in this study, energy planners not only can effectively 

extract, interpret, and use real energy data toward implementing and sustaining an 

optimal energy system for the energy poor, but also benefit from aspects such as data 

acquisition on-demand, building big data with household usage that is systematically 

collected and stored in a database, monitoring the implemented energy system and 

proactively acting on issues identified by events and alarms, tracking changes in 

behaviour and implemented measures (e.g. energy efficiency initiatives) through energy 

data, and reducing costs of physical presence for data collection. It is a ripple effect that 

will be valuable to the EAP, implementation, and tracking, but ultimately and most 

importantly, to those who need access to modern energy. 

6.2 Further work and recommendations 

The results of this thesis have the potential to be extended in several directions, namely: 

Limitations in wireless communications, building local know-how, Increasing the 

accuracy of forecasted demand data, applying demand profile data to non-electrified 

areas, and assessing the cost-benefit of fully renewable versus HRESs. These issues 

are briefly discussed below. 

Limitations in wireless communications:  

While continuous and accurate energy data collection will help build a database for 

reference and forecasting, the remote communications component of smart metering 

technologies plays a key role in access to the smart meter; the best technology, 

applicable to the reality and available services of the area where energy access is to be 

implemented, are aspects that must be explored. 

Building local know-how:  

The smart meter not only needs to be installed at the household or distribution point but 

also requires maintenance (preventive and corrective); to ensure the sustainability of 

both energy system and on-site smart metering technologies such work implies giving 

local personnel the required know-how; furthermore, adding knowledge-transfer 

contributes to the social, empowering aspect of a community. Consideration should thus 

be given to the incorporation of smart metering technologies and local empowerment 

into the energy access framework and planning. 
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Increasing accuracy of forecasted demand data:  

Applying different sets of ML models and other methods not only to improve predictive 

power but also to cater for the uncertainty on the availability of renewable energy supply, 

such as the cases of solar and wind. 

Applying demand profile data to non-electrified areas:  

Analysing how existing household demand data obtained from electrified areas, using 

smart metering, could be applied to non-electrified areas that are similar. 

Assessing the cost-benefit of fully renewable versus HRESs:  

Ensuring electricity access to the energy-poor is looking at energy access programs that 

are not only cost-effective but also sustainable and beneficial, e.g., improved health, 

reduced air pollution, increased energy security, etc. 
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Appendix A: Types of electronic meters and grid connections 

   

Figure A.1: Electronic meter types and related components, left-to-right: single module smart 
meter, plug-in modular prepayment meter, and socket modular meter (Zuzu, 2008; Kibelka, 

2013; Mapondera, 2015). CC BY-SA 2.0, CC BY-SA 3.0 

  

Figure A.2: Connection to the grid, left-to-right: Direct meter circuit, and indirect meter 
circuit, current transformers, voltage transformers (based on Toledo (2013) 

  
 

Figure A.3: Instrument transformers, left-to-right: current transformer, and voltage transformer 
(Ali@gwc.org.uk, 2004; Wordtwist, 2013). CC BY-SA 2.5, CC BY-SA 3.0 

 

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/3.0
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Appendix B: Python commands used for data analysis 

#!/usr/bin/env python 
# coding: utf-8 
 
# In[1]: 
 
 
import pandas as pd 
from sklearn import preprocessing 
import sklearn.model_selection as ms 
from sklearn import linear_model 
import sklearn.metrics as sklm 
import numpy as np 
import numpy.random as nr 
import matplotlib.pyplot as plt 
import seaborn as sns 
import scipy.stats as ss 
import math 
from tabulate import tabulate 
 
get_ipython().run_line_magic('matplotlib', 
'inline') 
 
 
# In[2]: 
 
 
#Import dataframe 
 
df = 
pd.read_csv(r"C:\Users\Bbacar\Desktop\Pyt
hon files\Dataset.csv", sep=',') 
 
 
# In[3]: 
 
 
#Show imported data 
 
df.head(10) 
 
 
# In[4]: 
 
 
print(df.info(),'\n') 
print('>Unique entries (for duplicates):  
',df.UID.unique().shape, '\n') 
 
 
# In[5]: 
 
 
#Define features 
 
num_col=['Temperature','Wind','Humidity','D
emand'] 
 
num_col_f=['Temperature','Wind','Humidity'] 
 
cat_col=['Power_cut'] 

# In[6]: 
 
 
#Summary statistics (median = 50% quartile) 
#Use transpose() or T to transpose. 
 
df[num_col].describe().round(4).T 
 
 
# In[7]: 
 
 
# For Dissertation 
 
median1 = df['Demand'].median() 
mean1 = df['Demand'].mean() 
 
font = {'family' : 'arial', 
        'weight' : 'normal', 
        'size'   : 12} 
 
def plot_density_hist(df, cols): 
    for col in cols: 
        sns.set_style("darkgrid") 
        fig = plt.figure(figsize=(10,4)) # define 
plot area 
        ax = fig.gca() # define axis     
        sns.distplot(df[col], ax = ax, bins = 10, 
rug=False, hist = True, kde = False, 
norm_hist = False) 
        #Vertical lines and labels 
        plt.axvline(x=median1, linewidth=1, 
color='r') 
        plt.text(median1-
2.5,2100,'0.00',fontsize=12, color = 'r') 
        plt.axvline(x=mean1, linewidth=1, 
color='b') 
        plt.text(mean1,2100,'1.45',fontsize=12, 
color = 'b') 
        #Axis labels         
        #plt.title('Histogram of ' + col) # Give the 
plot a main title 
        plt.xlabel('Demand',fontsize=15) # Set 
text for the x axis 
        plt.ylabel('Frequency',fontsize=15)# Set 
text for y axis 
        #font size for axis labels and legend 
        plt.rc('font', **font) 
        #Axis legend 
        plt.legend(('Median', 'Mean', 
'Frequency'), title = 'Legend', frameon = True, 
borderpad = True)#frameon = True, 
framealpha =120 
        #plb.plot(x=, label='Frequency') 
        #pylab.plot(x, y2, '-r', label='cosine') 
        #plb.legend(loc='upper right') 
        #plt.yscale('log') 
        plt.show() 
 
plot_density_hist(df, ['Demand']) 
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# In[8]: 
 
 
def plot_density_hist(df, cols): 
    for col in cols: 
        sns.set_style("darkgrid") 
        fig = plt.figure(figsize=(10,2)) # define 
plot area 
        ax = fig.gca() # define axis 
        sns.distplot(df[col], ax = ax, bins = 25, 
rug=False, hist = True, kde = True) 
        plt.title('Histogram of ' + col) # Give the 
plot a main title 
        plt.xlabel(col) # Set text for the x axis 
        plt.ylabel('Density')# Set text for y axis 
        plt.rc('font', **font) 
        #plt.xscale('log') 
        plt.show() 
         
plot_density_hist(df, num_col) 
 
 
# Notes from histograms: right-skewed. 
Needs transformation (log, ln, sqrt, etc) 
#  
# [log(x) for natural (base-e) of x, log2(x) for 
base-2 of x, log10(x) for base-10 of x, 
log1p(x) for natural (base-e) of (x+1)] 
#  
# After different trials, sqrt and log1p were 
the ones that improved some of the 
distributions (other logs didn't like the zeros): 
 
# In[9]: 
 
 
#Temperature - no transformation required 
 
def plot_density_hist(df, cols): 
    for col in cols: 
        sns.set_style("darkgrid") 
        fig = plt.figure(figsize=(10,2)) # define 
plot area 
        ax = fig.gca() # define axis 
        sns.distplot(df[col], ax = ax, bins = 25, 
rug=False, hist = True, kde = True) 
        plt.title('Histogram of ' + col) # Give the 
plot a main title 
        plt.xlabel(col) # Set text for the x axis 
        plt.ylabel('Density')# Set text for y axis 
        plt.rc('font', **font) 
        #plt.xscale('log') 
        plt.show() 
         
plot_density_hist(df, ['Temperature', 
'Demand']) 

# In[10]: 
 
 
#Wind transformation - sqrt 
 
df_TR_wind = 0 
 
df_TR_wind = 
df[num_col].applymap(math.sqrt) 
 
def plot_density_hist(df_TR_wind, 
cols): 
    for col in cols: 
        sns.set_style("darkgrid") 
        fig = plt.figure(figsize=(10,2)) # 
define plot area 
        ax = fig.gca() # define axis 
        sns.distplot(df_TR_wind[col], ax = 
ax, bins = 25, rug=False, hist = True, 
kde = True) 
        plt.title('Histogram of ' + col) # 
Give the plot a main title 
        plt.xlabel(col) # Set text for the x 
axis 
        plt.ylabel('Density')# Set text for y 
axis 
        #plt.xscale('log') 
        plt.show() 
         
plot_density_hist(df_TR_wind, ['Wind', 
'Demand']) 
 
# In[11]: 
 
 
#Wind transformation - log1p 
 
df_TR_hum = 0 
 
df_TR_hum = np.log1p(df[num_col]) 
 
def plot_density_hist(df_TR_hum, cols): 
    for col in cols: 
        sns.set_style("darkgrid") 
        fig = plt.figure(figsize=(10,2)) # define 
plot area 
        ax = fig.gca() # define axis 
        sns.distplot(df_TR_hum[col], ax = ax, 
bins = 25, rug=False, hist = True, kde = True) 
        plt.title('Histogram of ' + col) # Give the 
plot a main title 
        plt.xlabel(col) # Set text for the x axis 
        plt.ylabel('Density')# Set text for y axis 
        #plt.xscale('log') 
        plt.show() 
         
plot_density_hist(df_TR_hum, ['Humidity', 
'Demand']) 
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# In[12]: 
 
 
#Build transformed dataframe for analysis 
 
#Convert to array 
col_temp = df.Temperature.to_numpy() 
col_tr_wind = df_TR_wind.Wind.to_numpy() 
col_tr_hum = 
df_TR_hum.Humidity.to_numpy() 
col_tr_demand = df.Demand.to_numpy() 
 
#Confert to dataframe 
df_TR = 
pd.DataFrame({'Temperature':col_temp, 
'TR_Wind':col_tr_wind, 
'TR_Humidity':col_tr_hum, 
'TR_Demand':col_tr_demand}) 
df_TR 
 
 
# In[13]: 
 
 
sns.pairplot(df[num_col], height = 1.5, aspect 
= 2) 
plt.show() 
 
 
# In[14]: 
 
 
#With transformed features 
 
sns.pairplot(df_TR, height = 1.5, aspect = 2) 
plt.show() 
 
 
#                                       Confirm using 
Cohen guidelines (Pearson method): 
#  
# | # | Correlation | Meaning | 
# |---|-------------|------------| 
# | 1 | 0.0 - 0.1 | Negligible | 
# | 2 | 0.1 - 0.3 | Small | 
# | 3 | 0.3 - 0.5 | Medium | 
# | 4 | 0.5 + | Large | 
 
# In[15]: 
 
 
corr = df[num_col].corr(method = 
'pearson').round(2) 
corr 
 
 
# In[16]: 
 
 
corr_tr = df_TR.corr(method = 'pearson').round(2) 
corr_tr 
# No significant correlation of any of the 

features with the label. 
#  
# Temperature VS Wind: MEDIUM (positive) 
#  
# Temperature VS Humidity: LARGE 
(negative) 
#  
# Wind VS Humidity: MEDIUM-LARGE 
(negative) 
#  
# The above shows inter-feature correlation 
that varies between 0.3 and 0.7, therefore 
confirming a medium to large correlation 
(>=0.3) 
 
# #Correlation heatmap - transformed VS 
untransformed: 
#  
# sns.heatmap(corr_tr, cmap='RdBu') 
# plt.title('Correlation matrix (transformed 
features)') 
# plt.yticks(rotation='horizontal') 
# plt.xticks(rotation='vertical') 
# plt.show() 
#  
# sns.heatmap(corr, cmap='RdBu') 
# #plt.title('Correlation matrix (untransformed 
features)') 
# plt.yticks(rotation='horizontal') 
# plt.xticks(rotation='vertical') 
# plt.show() 
 
# In[17]: 
 
 
x2 = np.array(df['Temperature']) 
y2 = np.array(df['Humidity']) 
z2 = np.array(df['Demand']) 
 
#color = sns.cubehelix_palette(dark=-4, 
as_cmap=True, gamma = 2) 
color = sns.cubehelix_palette(8, start=.5, 
rot=-.75, dark=0, as_cmap=True, gamma = 
2) 
#color = sns.cubehelix_palette(8, start=.5, 
rot=-.75, as_cmap=True, reverse=True) 
("") 
sns.set_style("whitegrid") 
f, ax = plt.subplots() 
points = ax.scatter(x=x2, y=y2, c=z2, 
cmap=color) 
f.colorbar(points) 
#plt.xscale('log') 
#plt.yscale('log') 
ax.set_xlabel('Temperature') # Set text for 
the x axis 
ax.set_ylabel('Humidity')# Set text for y axis 
plt.legend((''), title = 'Demand', fontsize = 'x-
small', frameon = False, 
           borderpad = False, loc='upper right', 
bbox_to_anchor=(1.2, 1.1)) 
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