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Abstract 

The Philippi Horticultural Area (PHA) is a peri-urban area with a long history of food production dating 
back to the mid-1800s. The total area of the PHA comprises over 3000 hectares, of which 1200 hectares 
are suitable for food production. However, farming within the PHA has been  affected by increased 
development in the area. Thus, the need for a spatial understanding of urban growth in the area is 
imperative. This study aims to utilize satellite imagery combined with remote sensing to identify 
vegetation and urban indices and to analyse land use through change detection mapping. Part of the 
process was to determine the change detection through the classification of satellite images and the 
insertion of vegetation indices in order to produce accurate land cover changes on a map. Limitations to 
the study were restriction to sensors being used, the years available of images for the study area. Certain 
population statistics were not available for the years in question and only three classifiers could be used. 
The study was done between the years 2015 and 2021.  
 
This study used image classification and PlanetScope digital images data which were essential in the 
application that was used in this study, namely machine learning (ML). The need to provide analysis an d 
decision-making for the PHA has been a challenge, but currently, remote sensing has globally been 
applied with the use of current advanced satellite systems and sensors. In terms of classifying satellite 
imagery, three machine learning techniques have been applied to this research, namely Random Forest 
(RF), K Nearest Neighbour (K-NN), and Support Vector Machines (SVM). The best-performing classifier 
was used to classify the images into six classes namely urban fabric, water, vegetation (agricultural and 
natural), and bare ground (sand and bare ground). Change detection was done on images of consecutive 
years by displaying differences over time and then by mapping the trajectory of urban growth. 
 
The main findings in this study was the growth in urban fabric. Urban fabric started at 30% during 2015 
and 2016, it increased by 2% during 2016 and 2017, and a further 3%% between 2017 and 2018, there 
was a slight decrease by 1% between 2018 and 2019, it increased slightly by 1% in 2019 and 2020 and 
further increased by another 1% between 2020 and 2021. In contrast, farming area started off at 10% for 
2015 and 2016, it increased by 9% during 2016 and 2017, reduced by 9% again during 2017 and 2018, 
there was another increase by 7% between 2018 and 2019, a slight decrease of 2% between 2019 and 
2020 and further decreased by a 3% between 2020 and 2021.  
 
The vegetation indices resulted in the following being found with the overall classification accuracy 
showing improvement with the inclusion of indices for each year. In 2015 the accuracy was found to 
increase by .04%,  in 2016 the accuracy improved by 6.6%, in 2017 the accuracy improved by 27.5%, in 
2018 the accuracy increased by 10.8%, in 2019 the accuracy increased by 1.6%, in 2020 the accuracy 
improved by 18.6% and in 2021 the accuracy increased by 7.8%.  
 
The accuracy results for two of the three classifiers—Random Forest (RF) and Support Machine 
Vector—were comparable. Despite the great accuracy of the two classifiers, Random Forest (RF) 
consistently outperformed Support Vector Machines. The findings indicate that high accuracy 
classifications for mapping the agricultural and urban edge are possible using both the SVM and RF 
classifiers. It is clear that the study region influences how well the classifiers function.   



iv 

 
Acknowledgements 

I would like to thank the Cape Peninsula University of Technology; 
 
I would like to thank my supervisors Mr Kevin Musungu and Assoc. Prof. Pallav Kumar.  
 
I would like to thank The Department of Environmental Affairs and Development Planning (Western 
Cape Government) and the Geomatics Development Fund for sponsorship. 
 
I would also like to thank God for giving me the strength and ability to conduct this research. 



v 

 
Table of Contents   

Page 

Declaration  ................................................................................................................................. iii 
Abstract  ................................................................................................................................. iii 
Acknowledgments........................................................................................................................... iv 
Table of Contents ............................................................................................................................. v 
List of Figures .............................................................................................................................. viii 
List of Tables  .................................................................................................................................. x 
Chapter 1 Introduction................................................................................................................ 1 

1.1 Background and Motivation ...................................................................................... 1 
1.1.1 Details of the research area ..................................................................................... 2 

1.2 Research problem ..................................................................................................... 2 
1.3 Research Question .................................................................................................... 3 
1.4 Objectives and outcomes........................................................................................... 3 
1.5 Delineation .............................................................................................................. 3 
1.6 Assumptions ............................................................................................................ 3 
1.7 Methodology............................................................................................................ 4 
1.8 Analytical studies ..................................................................................................... 4 
1.9 Organisation of dissertation....................................................................................... 5 

Chapter 2 Literature review and theory ........................................................................................ 5 
2.1 Introduction ............................................................................................................. 5 
2.2 Urbanization ............................................................................................................ 5 
2.3 Land use and land cover mapping using remote sensing .............................................. 6 
2.4 Vegetation Indices .................................................................................................... 6 
2.5 Feature selection ...................................................................................................... 8 
2.6 Image classification .................................................................................................. 8 

2.6.1 K Nearest Neighbours (KNN) ................................................................................. 9 
2.6.2 Random Forest (RF)............................................................................................. 10 
2.6.3 Support Vector Machine (SVM) ........................................................................... 12 

2.7 Change Detection ................................................................................................... 13 
2.8 Summary ............................................................................................................... 14 

Chapter 3 Research methodology .............................................................................................. 15 
3.1 Study area .............................................................................................................. 15 
3.2 Data collection ....................................................................................................... 17 

3.2.1 Data .................................................................................................................... 18 
3.2.2 Research equipmen........................................................................................................19 

             3.3 Vegetation indices .................................................................................................... 20 
             3.4 Feature Selection ...................................................................................................... 20 

3.5 Classification ......................................................................................................... 22 
   3.5.1   Classification image process.................................................................................. 22 

3.5.2 Selecting classifiers .............................................................................................. 23 
3.5.3 Classification using machine learning .................................................................... 23 
3.5.4 Accuracy assessment ............................................................................................ 23 
3.5.5 Change Detection................................................................................................. 23 

Chapter 4 Results ..................................................................................................................... 24 
4.1 Choosing classifiers ................................................................................................ 24 



vi 

 
4.2 Identifying the best indices...................................................................................... 24 
4.3 Classification maps................................................................................................. 25 

4.3.1 Maps for 2015 ..................................................................................................... 25 
4.3.2 Maps for 2016 ..................................................................................................... 27 
4.3.3 Maps for 2017 ..................................................................................................... 28 
4.3.4 Maps for 2018 ..................................................................................................... 29 
4.3.5 Maps for 2019 ..................................................................................................... 30 
4.3.6 Maps for 2020 ..................................................................................................... 31 
4.3.7 Maps for 2021 ..................................................................................................... 32 

4.4 Classification statistics ............................................................................................ 34 
4.4.1 Classification accuracies after using Random Forest ............................................... 34 
4.4.2 Acreage ............................................................................................................... 35 
4.4.3 Impact of indices.................................................................................................. 36 

4.5 Change Detection ................................................................................................... 36 
Chapter 5 Discussion ................................................................................................................ 42 

5.1 Vegetation Indices .................................................................................................. 42 
5.2 Comparison of classifiers ........................................................................................ 42 
5.3 Classification ......................................................................................................... 43 

5.3.1 Classification maps .............................................................................................. 43 
5.3.2 Accuracies per class ............................................................................................. 43 

5.4 Change detection .................................................................................................... 43 
5.5 Sensors .................................................................................................................. 43 

Chapter 6 Conclusions and recommendations ............................................................................ 43 
6.1 Conclusions ........................................................................................................... 43 

6.1.1 Vegetation indices................................................................................................ 44 
6.1.2 Classifiers............................................................................................................ 44 
6.1.3 Land cover .......................................................................................................... 44 
6.1.4 Sensors................................................................................................................ 44 

6.2 Recommendations .................................................................................................. 45 
6.2.1 Sensors................................................................................................................ 45 
6.2.2 Indices ................................................................................................................ 44 
6.2.3 Concluding remarks………………………………………………………………….. 44 

References  ................................................................................................................................ 46 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 
 

 

 

 

 

Appendices  ................................................................................................................................ 53 
Appendix A. Accuracy results ........................................................................................... 55 
Appendix B. Effect of Indices............................................................................................ 55 
Appendix C. Results of Random Forest error matrix calculations ......................................... 56 
Appendix D. Results of K-Nearest Neighbor error matrix calculations.................................. 61 
Appendix E. Results of Support Vector Machine error matrix calculations ........................... 65 
Appendix F. Computing classifiers in R studio ................................................................... 70 
Appendix G. Computing classifiers with indices in R studio ................................................ 71 
Appendix H. Producing graphs from indices in R studio ...................................................... 71 
Appendix I. Error matrix for years 2015 with and without indices....................................... 72 
Appendix J. Error matrices for 2016 with and without indices ............................................ 74 
Appendix K. Error matrix for 2017 with and without indices ............................................... 77 
Appendix L. Error matrices for 2018 with and without indices ............................................ 81 
Appendix M. Error matrices for 2019 with and without indices ............................................ 84 
Appendix N. Error matrices for 2020 with and without indices ............................................ 86 
Appendix O. Error matrices for 2021 with and without indices ............................................ 88 



viii 

 
List of Figures 

Page 

Body 

Figure 1.1    Map of the study area .................................................................................................. 1 
Figure 1.2    Flow chart of the methodology process take for this research ......................................... 4 
Figure 2.1    Examples of K-Nearest Neighbors ............................................................................... 7 
Figure 2.2    Examples of Random Forest ........................................................................................ 9 
Figure 2.3    Examples of Support Vector Machine ........................................................................ 10 
Figure 3.1  Locality map of the Philippi Horticultural Area (PHA) ................................................ 14 
Figure 3.2  Map showing the predominant land use around the PHA prior to 1967 ......................... 15 
Figure 3.3  Reduction of the PHA core owing to a sequence of planning decisions ......................... 16 
Figure 3.4   Raster calculation example of vegetation indices......................................................... 19 
Figure 3.5   Map indicating training and validation samples done in the QGIS software .................. 21 
Figure 3.6   Flow chart indicating the classification process done on the images.............................. 22 
Figure 4.1   Classification model accuracy for all three classifiers used .......................................... 24 
Figure 4.2   Results from Boruta showing feature importance ........................................................ 25 
Figure 4.3    Map showing the classified image from 2015 for the layer stack of only original bands . 25 
Figure 4.4  Map showing the classified image from 2015 for the layer stack of original bands and best 

indices ..................................................................................................................... 26 
Figure 4.5 Map showing the classified image from 2016 for the layer stack of only original bands . 26 
Figure 4.6  Map showing the classified image from 2016 for the layer stack of original bands and best 

indices ..................................................................................................................... 27 
Figure 4.7   Map showing the classified image from 2017 for the layer stack of only original bands . 27 
Figure 4.8   Map showing the classified image from 2017 for the layer stack of original bands and best 

indices ..................................................................................................................... 28 
Figure 4.9   Map showing the classified image from 2018 for the layer stack of only original bands . 28 
Figure 4.10   Map showing the classified image from 2018 for the layer stack of original bands and best 

indices ..................................................................................................................... 29 
Figure 4.11    Map showing the classified image from 2019 for the layer stack of only original bands . 29 
Figure 4.12  Map showing the classified image from 2019 for the layer stack of original bands and best 

indices ..................................................................................................................... 30 
Figure 4.13  Map showing the classified image from 2020 for the layer stack of only original bands . 30 
Figure 4.14  Map showing the classified image from 2020 for the layer stack of original bands and best 

indices ..................................................................................................................... 31 
Figure 4.15   Map showing the classified image from 2021 for the layer stack of only original bands . 31 
Figure 4.16   Map showing the classified image from 2021 for the layer stack of original bands and best 

indices ..................................................................................................................... 32 
Figure 4.17   Chart indicating the various class accuracies over the 7 year period.............................. 35 
Figure 4.18  Chart indicating the various class acreages over the 7 year period  ............................... 35 
Figure 4.19   Change detection map for years 2015 – 2016 .............................................................. 36 
Figure 4.20   Change detection chart for years 2015 – 2016 ............................................................. 37 
Figure 4.21   Change detection map for years 2016 – 2017 .............................................................. 37 
Figure 4.22   Change detection chart for years 2016 – 2017 ............................................................. 38 
Figure 4.23   Change detection map for years 2017 – 2018 .............................................................. 38 



ix 

 
Figure 4.24   Change detection chart for years 2017 – 2018 ............................................................. 39 
Figure 4.25   Change detection map for years 2018 – 2019 .............................................................. 39 
Figure 4.26   Change detection chart for years 2018 – 2019 ............................................................. 40 
Figure 4.27   Change detection map for years 2019 – 2020 .............................................................. 40 
Figure 4.28   Change detection chart for years 2019 – 2020 ............................................................. 41 
Figure 4.29   Change detection map for years 2019 – 2021 .............................................................. 41 
Figure 4.30   Change detection chart for years 2020 – 2021 ............................................................. 42 
 
 

Appendices 

Appendices  ................................................................................................................................ 56 
Appendix A. Accuracy results ........................................................................................... 55 
Appendix B. Effect of Indices............................................................................................ 57 
Appendix C. Results of Random Forest error matrix calculations ......................................... 58 
Appendix D. Results of K-Nearest Neighbor error matrix calculations.................................. 61 
Appendix E. Results of Support Vector Machine error matrix calculations ........................... 65 
Appendix F. Computing classifiers in R studio ................................................................... 70 
Appendix G. Computing classifiers with indices in R studio ................................................ 71 
Appendix H. Producing graphs from indices in R studio ...................................................... 71 
Appendix I. Error matrix for years 2015 with and without indices....................................... 72 
Appendix J. Error matrices for 2016 with and without indices ............................................ 74 
Appendix K. Error matrix for 2017 with and without indices ............................................... 77 
Appendix L. Error matrices for 2018 with and without indices ............................................ 81 
Appendix M. Error matrices for 2019 with and without indices ............................................ 84 
Appendix N. Error matrices for 2020 with and without indices ............................................ 87 
Appendix O. Error matrices for 2021 with and without indices ............................................ 88 

 

 



x 

 
List of Tables 

Page 

Body 

 

Table 2.1   Vegetation Indices (VIs) that were derived from multispectral images in this study ....... 11 

Table 3.1   Constellation overview and sensor specification ......................................................... 16 

Table 3.2   Sampled reflectance values  ....................................................................................... 23 

Table 4.1    Classification accuracies Random Forest  ................................................................... 34 

Table 4.2    Classification accuracies of all six classes  .................................................................. 34 

Table 4.3    Overall accuracy assessment  ..................................................................................... 36 

 



 

- 1 - 

Chapter 1 Introduction 

In this chapter the Philippi Horticultural Area will be introduced as well as the research problem, question 
and as well as the objectives and outcomes. 

1.1 Background and Motivation 

Philippi is one of the biggest suburbs situated within the Cape Metropolitan area in the Western Cape 
province of South Africa. It forms a part of the city municipal area and contains many farms which are 
sparsely populated compared to the remainder of the town. The area of Philippi is additionally known to 
grow about 80% of Cape Town's vegetables within the farmland and is slated for several large 
developments including the 'Philippi Mini-City' (Indego, 2018). However, a changing urban edge and 
rezoning of land from agricultural to mixed use in the Philippi Horticultural Area (PHA) has resulted in 
less land being used for agricultural activity. This has resulted in illegal dumping, conflicting land use, 
winter flooding, and safety and security concerns for the remaining farmland, which is under severe 
threat. Natural vegetation is being replaced with impermeable concrete, and there is encroachment of 
commercial, residential and informal land use which reduces the available recharge area and increases the 
danger of aquifer contamination. 
 

 
Figure 1.1 Map of study area within the Western Cape. (Source: GeoEye) 
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1.1.1 Details of the research area 

 
The Philippi Horticultural Area (PHA), a peri-urban area with a long history of food production going 
back to the middle of the nineteenth century, is situated in the Cape Flats area of the City of Cape Town 
region. The Khoi and San were formerly a nomadic people who used the region to graze livestock and 
hunt for food. In 1833, while it was still known as ‘Die Duine’ (The Dunes), the first public records of 
local citizens were made. When German settlers arrived at Philippi in Cape Town in three waves between 
1860 and 1883, they quickly earned a reputation for being able to cultivate vegetables in the sand-filled 
Cape Flats. The region was mostly utilized for grazing until the 1970s, when there were a few farms in 
the area. In the neighbouring areas of Langa, Gugulethu, Browns Farm, Samora Machel, and Crossroads, 
economic migrants from the former Ciskei and Transkei Bantustans in the Eastern Cape began settling 
when apartheid laws were implemented in the late 1970s and early 1980s. The 1980s saw a rise in 
opposition to apartheid, and Philippi increasingly became a haven from the political upheaval in the areas 
mentioned above (Setplan 2017).  
 
At least half of Cape Town's vegetables are produced here, despite the city being encircled by residential 
suburbs that include townships, unincorporated areas, and historic neighbourhoods. Over 3 000 hectares 
of land are included in the region, of which 1 200 hectares are ideal for food production. More than 50 
different horticultural crops are grown by smallholder and commercial farmers in the PHA. Nearly 100 
000 tonnes of fresh vegetables are reportedly cultivated yearly in the PHA, with a significant percentage 
of that product finding it into Cape Town's food chain. It is a component of an interconnected network of 
economic systems that benefit each other and the region as a whole, adding to their mutual economic 
integrity and sustaining about 4 000 jobs inside the PHA (Spain, 1984). In the time of apartheid, it was 
reserved for coloured people, who made up 70.5% of the population, with white people and black 
Africans making up the remaining population. The remaining core of the PHA consists of about 1 884 
hectares of agricultural land inside the Cape Flats District of the City of Cape Town (CoCT). With a total 
size of 3 168.65 ha, the larger PHA region has a wide variety of formal and informal land uses, including 
industrial and residential, which forms so-called buffer areas around the core PHA. There are nine 
informal communities in the larger PHA region, just one of which is situated in the core. The horticulture 
is unique and sites like sand mining, and mining of silica sand should be preserved. The main PHA 
footprint has, however, been reduced as a result of a series of planning choices made after 1988 (Indego, 
2018). 

1.2 Research problem 

The Philippi Horticultural Area was impacted by the area's rising urbanization. Urbanization in the 
Western Cape was accompanied by an increase in urban sprawl in all socioeconomic classes. Urban 
expansion into the periphery of cities and towns typically involves unplanned, low-density growth. Urban 
sprawl in the Western Cape was partially a result of poor spatial planning (within the historical context) 
and land use decision-making, which were both factors in the rapid population increase into urban areas, 
with smaller household sizes leading to more households. The upshot of urban spread has been a less than 
optimal use of resources, particularly where this sprawl engulfed productive agricultural area on the city's 
borders. The need for housing and urban growth for the community is a need that is currently being 
viewed by the City of Cape Town. Housing is definitely a challenge in certain parts of the province, but 
protection of food sources also needs to be monitored as it plays a big role in supplying vegetation for the 
city. 
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Therefore, a further spatial understanding of urban expansion in the area is urgently needed. The goal of 
the study is to determine how remote sensing may be utilized to obtain more ways to monitor the growth 
of the urban areas within the PHA.  

1.3 Research Question 

The proposed research questions are as follows:  
 
1) How can remote sensing technologies be used to map urban growth in the Philippi Horticultural 

Area?  
2) What is the trend in urban growth in the Philippi Horticultural Area? 

1.4 Objectives and outcomes 

The aim of this work was to map the urban growth within the Philippi Horticultural Area using remote 
sensing. To achieve this, the following objectives were met:  
 
1) To identify appropriate indices to facilitate the mapping of urban growth.  
2) To classify land cover in the study area over different periods. 
3) To detect changes in the PHA using remote sensing. 
 
The outcomes were as follows: 
 
1) The identification of key vegetation and urban indices.  
2) The creation of multitemporal land cover maps.  
3) Change detection maps over a seven-year period. 

1.5 Delineation 

The limitations of the study are: 
 
1) The data used in this study was limited to the period 2015 to 2021.  
2) It is constrained to the use of PlanetScope satellites.  
3) Only three machine learning algorithms, namely Random Forest, K-Nearest Neighbour and 

Support Machine Vector were used in this study. 
4) No up to date third party statistical information data from STATS SA was used in this study. 

1.6 Assumptions 

The assumption was that urban growth has sprawled over the PHA area and it has affected the agricultural 
sector. 

1.7 Methodology 

The process that will be followed for this study is to download mid-resolution satellite imagery and 
compute it through a GIS/remote sensing software package. This software will process various images 
and classify them accordingly. Pre-processed multispectral data was downloaded from PlanetScope for 
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the dates April 2015, 2016, 2017, 2018, 2019, 2020 and 2021. To further improve the accuracy levels 18 
vegetation indices were used and processed in order to improve the accuracy levels of the classifications 
these number of indices were created from the data based on previous literature. Six classes of samples 
were created for the following namely, urban fabric, water, vegetation, natural vegetation, bare ground 
and bare ground – sand.  In addition, the Boruta feature selection was used to reduce the number of 
features that are statistically least relevant. The Dzetsaka Plugin in QuantumGIS software was utilised to 
perform pixel-based classifications using random forest, support vector and k-nearest neighbour 
classifiers. Post classification accuracy assessment was done in the Semi-automatic plugin. It was 
repeated for each classification between 2015 and 2021. Change detection was done by differencing 
consecutive classifications using the Semi-automatic plug-in tool. once this has been done the land cover 
tool was used to create the change detection maps for the various years. These additions provided an 
accurate assessment which helped improved the change detection maps to provide a visual representation 
of the land cover change over the area of interest. See Figure 2.1 for the summary of the methodology. A 
graphical summary of the methodology is presented below.  
 

 
 
Figure 1.2 Flow chart of the methodology process take for this research. 

1.8 Analytical studies 

An analysis of mid-resolution satellite imagery was done over the Philippi Horticultural area to determine 
change in urban growth over a 7-year period. The results determined the amount of growth that occurred 
and the visual changes over the given period using Planet scope data.   
 
The research methods utilised resulted in the data being collected and the spatial data from various 
custodians related to the focus area. This data was processed through a GIS desktop application called 
Quantum GIS running on the Windows 10 operating system. The satellite data collected was processed 
through this application and analysed using a change detection method.  
 
Each image will be processed and analyzed through the software. This analysis will provide a solid 
foundation with the data that will be used. This type of study will speak to how raster data can be 
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transformed to be a mechanism that can produce results and to provide analytic assessment to the 
outcome. 

1.9 Organisation of dissertation 

Chapter 1 introduces the study area. Chapter 2 discusses the literature review and theory including 
urbanization, classification and change detection methods used previously. Chapter 3 describes the study 
area and the research methodology. Chapter 4 presents the results of the research. Chapter 5 discusses the 
findings of the research. Chapter 6 presents the conclusion and recommendations in relation to the 
findings. 
 

Chapter 2 Literature review and theory 

2.1 Introduction 

This chapter reports on various studies that have utilised remote sensing in mapping urbanization. 

2.2 Urbanization 

Urbanization (or urbanisation) refers to the changes in the size, density, and land use of cities. 
Urbanization encompasses several factors such as industrialization, population growth, population 
mobility and population density as well as the growth or decrease of cities (Vlahov and Galea, 2002).  
 
Between the 1950s and 2014, the percentage of people living in urban areas worldwide rose from 30% to 
54%. The worldwide urban population is expected to increase by 2.5 billion people over the next few 
decades, mostly in Asia and Africa. Urban land cover could increase by 1.2 million km² by 2030, roughly 
tripling the global urban land area since 2000 (Seto et al., 2012). The rate of expansion within urban areas 
requires an intense degree of environmental sustainability to maintain the areas and communities living in 
them (Fernandes, 2002; Weber and Puissant, 2003; Sudmeier-Rieux et al., 2015; Li et al., 2019).  
 
Several scholars from across the world have identified the negative impact that urbanisation of 
agricultural areas has on food security (Deng et al., 2006; Gomes et al., 2019; Zhou et al., 2019). In 
developing countries, the scale and speed of urbanization can result in unsustainable settlements that 
create pressure on ecosystems (Pham et al., 2015). The direct pressures caused by urbanisation are usually 
localised around cities themselves (Bugnot et al., 2019; Liu et al., 2019). A direct loss of land is created 
through construction of buildings and infrastructure which results in the loss of the ecosystem services 
that facilitate food production (Cui et al., 2019; García-Nieto et al., 2018; Wang et al., 2019; Wen et al., 
2019). Studies have shown that urbanization in agricultural areas can lead to a decline in both animal 
breeding and the cultivation of crops (Pham, Kappas & Faust, 2021). Some studies have also shown that 
more land elsewhere may be required than the urbanised agricultural land to yield the same amount of 
harvest because of differences in soil properties and climate (Andrade et al., 2022). Thus, it is important 
to monitor changes to land cover in areas that are traditionally used for agriculture (Guan et al., 2019). 
The next section highlights the use of earth observation technologies for monitoring land cover.  
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2.3 Land use and land cover mapping using remote sensing 

 
Many vegetation monitoring research and applications, such as wetland mapping, plant health and species 
mapping, and even mapping urban forests, have made use of remote sensing (Kaplan et al., 2018; Sharifi 
et al., 2020; Singh et al., 2020; Stubbings et al., 2019; Sanesi, et al., 2019; Lefulebe, Van der Walt & 
Xulu, 2022). Remote sensing offers the instruments needed for long-term monitoring of the transition 
between farmland and urbanized regions. It is important to define land use and land cover: 
 
‘Land use is defined as a series of operations on land, carried out by humans, with the intention to obtain 
products and/or benefits through using land resources’ (Coffey et al., 2013). 
 
‘Land cover is defined as the vegetation (natural or planted) or man-made constructions (buildings, etc.) 
which occur on the earth surface. Water, ice, bare rock, sand, and similar surfaces also count as land 
cover’ (Coffey et al., 2013).  
 
The increasing availability of open image processing software and open data from earth observation (EO) 
satellites combined with toolboxes have popularised land use and land cover (LULC)-focussed research. 
Several machine learning algorithms have been studied and implemented to classify different features on 
the ground (Lefulebe, Van der Walt & Xulu, 2022). There is a growing need to monitor changes in intra-
urban structures due to urbanization in cities of developing countries. Remote sensing has proven to be a 
versatile tool in achieving this, although the spatial resolution has a major influence on the efficiency of 
the mapping process (Kuffer et al., 2011). Medium resolution satellite dataset products such as Sentinel 
and Landsat have frequently been utilized for regional level analysis but the advent of constellations of 
CubeSats such as PlantScope have extended the capacity of remote sensing-based studies. 
 
In recent years, machine learning has also improved the capacity for remote sensing datasets to map intra-
urban dynamics such as population density, immigration, infrastructure and business development 
(Wieland & Pittore, 2014; Magidi & Ahmed, 2019). For instance, studies have focussed on mapping 
informal settlements (Kohli, 2012; Hacker et al., 2013), land surface temperature (Guha et al., 2019) and 
urban land use change (Wu et al., 2021).  

2.4 Vegetation Indices  

Vegetation Indices (VIs) have been used for crop type identification and agriculture land cover 
classification. Spectral information of the original bands and vegetation indices can provide additional 
information for detailed analysis which can both be utilized for crop classification. It is possible to detect 
different cultivating patterns since multitemporal vegetation indices enhance analysis of crop growing 
pattern and different crop classes. Vegetation indices have also been widely used for crop monitoring 
studies because they can serve as powerful and simple indicators of stress, biophysical attributes, and crop 
maturity.  
 
Many studies have proven to increase accuracy levels in various scenarios by adding vegetation indices 
(reference?). Vegetation indices improve the spectral information and raise the separability of the classes 
of interest, which in turn impact on classification accuracy. Vegetation indices are used to differentiate 
between each land use and land cover, reduce intra-class variation, and increase inter-class variability. In 
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addition, some crops' spectral features are enhanced while others are suppressed by the various 
combinations of vegetation indices (Kuzucu & Balcik 2017).  
 
The vegetation indices will assist in improving the accuracy levels of the classifications of the images.  
 
Below is the table displaying all the indices used within the study: 
 
Table 2.1 Vegetation Indices (VIs) that were derived from multispectral images in this study. 
Vegetation Indices Formula References 
Enhanced Vegetation Index 2 
(EV12) 

2.5*(N-R)/(1+N+(2.4*R) Huete et al. (1999) 

Normalized Difference 
Vegetation Index (NDVI) 

(N-R)/(N+R) Kriegler et al. (1969) 

Green Normalized Difference 
Vegetation Index (GNDVI) 

(N-G)/(N+G) Gitelson et al. (1996) 

Red Green Vegetation Index 
(RG) 

R-(G-R) Coops et al. (2006) 

Green Ratio Vegetation Index 
(GRVI) 

N/G Sripada et al. (2006) 

Transformed NDVI (TNDVI) sqrt[0.5+(N-R)/(N+R)] Bannari et al. (2002) 
Normalized Green Red 
Difference Index (NGRDI) 

(G-R)/(G+R) Bannari et al. (1995) 

Normalized Difference Water 
Index (NDWI) 

(G-N)/(G+N) Gao (1996) 

Modified Simple Ratio (MSR) (N/R-1)/ sqrt(N/R+1) Chen (1996) 
Green Soil Adjusted Vegetation 
Index (GSAVI) 

1.5*(N-G)/(N+G+0.5) Broge and Leblanc (2001) 

Log Red (LogR) logR Vogelmann et al., (1993) 
Ratio Vegetation Index (RVI) R/NIR Colwell et al. (1974) 
Vegetation Index Number (VIN) NIR/R Gao (1996) 
Transformed Vegetation Index 
(TVI) 

Sqrt [NDVI + 0.5] Perry and Lautenschlager (1984) 

Differenced Vegetation Index 
(DVI) 

(NIR-R) Clevers (1986) 

Normalized Difference Green 
Index (NDGI) 

(G-R)/(G+R) Rouse et al., (1974) 

Redness Index (RI) (R-G)/(R+G) Lyon et al., (1998) 
Green Chlorophyll Index (GCI) (NIR/G)-1 Huete et al., (1994) 
Modified Soil Adjustment 
Vegetation Index (MSAVI) 

2 * NIR + 1 – sqrt ((2 * NIR + 
1)2 – 8 * (NIR - R))) / 2 

Huete et al., (1994) 

Renormalized Difference 
Vegetation Index (RDVI) 

(R-R)/(R+R)0.5 Chen (2006) 

 
In urban area studies, remote sensing based on mid-resolution multi-spectral data has proven to be an 
effective tool. Previous papers have presented methods for mapping urban developments in terms of 
impervious surface expansion based on spectral index ratios. T. Accurate information of urban land-cover 
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is crucial for urban management since it has a direct impact on runoff prevention, urban vegetation 
planning, monitoring and enhancing air quality, and even mitigating the consequences of climate change. 
In order to better understand urban area ecosystems and thereby improve the environment and human life 
quality in urbanized areas, reliable urban land-cover mapping combined with vegetation indices can 
provide crucial information with very accurate results (Villa, 2012). 

2.5 Feature selection 

As a dimensionality reduction strategy, feature selection seeks to pick a small subset of the pertinent 
characteristics from the initial ones by omitting features that are unnecessary and redundant. Feature 
selection eliminates redundant and irrelevant data. It typically results in greater learning accuracy, lower 
cost of computing performance and easier model interpretation. Generally speaking, insignificant 
qualities that cannot be utilized to distinguish between numerous classes being monitored are grouped 
together (unsupervised). Since unnecessary features throw the learning system off balance, impair 
memory, and result in inefficient computation, deleting them may actually help develop a better model. 
This can speed up computation, increase learning accuracy, and provide a deeper comprehension of the 
learning model or data. Wrapper-based and filter-based approaches are the two main categories of feature 
selection techniques (Rodrigues et al., 2014). While filter-based approaches evaluate the value of 
individual features to pick features through ordering, wrapper-based approaches use the classifier's 
performance as an assessment criterion for optimizing the feature subset. Recent studies focused on filter-
based techniques but used feature selection in object-based classification (Ma et al., 2015). Certain studies 
utilized evolutionary algorithms to implement feature selection for object-based classification used by van 
Coilie, Verbeke and De Wulf (2007), whereas Laliberte, Browning and Rango (2012) used the GINI 
index as the splitting criteria to rank object features.  
 
One of the popular methods for feature selection is Boruta (Kursa and Rudnicki, 2010). In Boruta, the 
first step involves creating a randomized version of the features to be assessed called shadow features. 
The original features are only determined to be important if they improve the classification better than the 
best shadow feature.  Szul, Sylwester and Krzysztof (2021) uased to select data for the prediction of 
energy consumption for building heating. Agjee et al. (2016) used Boruta and Recursive Feature 
Elimination to improve the classification accuracy when mapping the effect of weevils as a water 
hyacinth biocontrol measure. Arjasakusuma, Swahyu, Kusuma and Phinn (2020) used Boruta and other 
feature selection algorithms to select the most important features for estimating forest height using 
hyperspectral data, airborne light detection and lidar height metrics as separate features and when 
combined.  It is evident that Boruta is a viable method for feature selection in remote sensing data.  
 
This process assists in focusing on the selected features and eliminates redundancy. This method will 
prove the assurance that the outcomes speak directly to the intended classes.   

2.6 Image classification 

Image classification of remote sensing images is the process of grouping all pixels in a satellite image or 
aerial image to extract land cover features (Andrade et al., 2022; Wenjing and Wang 2020). 
 
It is evident from prevailing literature that scholars have employed a variety of classification techniques 
depending on the scene being classified. These techniques can be either pixel-based or object-based 
(Franklin & Ahmed, 2017; Pande-Chhetri, et al., 2017; Puliti, Talbot, & Astrup, 2018). The pixel-based 
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approaches can further be categorised as supervised or unsupervised, although some studies have used a 
hybrid approach (Chang et al., 2020; Goldblatt et al., 2018; Louargant et al., 2018). Due to the availability 
of high-quality data, temporal frequency, and broad coverage compared to the conventional data 
collection methodologies, the use of remote sensing in several agro-environmental applications is 
attractive (Li et al., 2020).  
 
Supervised classification usually starts with the creation of training samples. Samples are based on either 
ground-truth knowledge or visual image interpretation, which has been identified and defined by an 
expert. They usually consist of a point-location with an associated class label corresponding to the feature 
of interest. A training dataset can be used to train a classifier on any kind of input feature space and image 
type and is defined as a basic structure (Samaniego., L & Schulz., K. 2009).  
 
The state-of-the-art in machine learning is represented through classification algorithms and is based on 
different concepts such as tree-based, nearest neighbor and function-based.  The following section 
describes three commonly used classifiers. Images need to be classified in order for a change detection 
process to take place. These classifiers will be introduced as the first phase to getting the process started. 
This will assist in other tools to be introduced as well as provide an accurate outcome for this study.  A 
more detailed discussion of classification can be found in Aldoski et  al. (2013).  

2.6.1 K Nearest Neighbour (KNN) 

The k-nearest neighbour algorithm (KNN) is a supervised learning classification process that utilises 
proximity to a known point to predict or classify the class of each individual data point that needs to be 
identified. KNN's partial mandate is to establish locations that can be identified near to each other. The k 
training samples nearest to the element in the resource space are made known through the use of KNN 
algorithms. These datasets act as the main KNN algorithm adjustment parameters and also have a strong 
impact on spatial prediction. The KNN classification algorithm is frequently utilized in remote sensing 
with abundant data applications (Aldoski et al., 2013).  
 
KNN is a non-parametric machine learning algorithm (MLA) that does not assume anything regarding the 
main data set. In order to classify a pixel within a KNN is determined by its known class ID (da Penha 
Pacheco et al., 2021). These classification systems become questionable when common statistical 
assumptions are present, such as those that underlie linear regression models, which are also used along 
with nonlinear, heterogeneous, and noisy data. The similarity indices – which are used by KNN to 
recognize new cases, and which are from the contributing instances in the dataset – are also often referred 
to as distance functions. Cases are categorized when utilizing neighbour class voting and these usually 
create the best-case scenario with the highest similarity indexes. The ideal number of neighbours (K) are 
established by the metrics used for regression and classification. For ongoing variables, Euclidean 
distance is the most well-known distance metric. For discrete variables, however, the overlap metric also 
known as the Hamming distance is frequently used. Additionally, used as metrics are correlation 
coefficients like the Pearson and Spearman correlation, like correlation coefficients are additions utilised 
as metrics (De Winter et al., 2016). A variable K value can be used depending on the dataset which was 
selected. An introduced empirical rule of thumb which makes parameter adjustment problematic for 
various applications is that K is equal to the square root of the number of samples (Shahabi et al., 2020).  
 
Samaniego and Schulz (2009) used KNN to classify agricultural land cover at test sites in the Parthe-
catchment in Leipzig, Germany. The study used Landsat 5 and Landsat 7 and reported overall 
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classification accuracies of between 70% and 98% with higher accuracies noted for multitemporal 
datasets. Sun and Huang (2010) used KNN in an adaptive algorithm to overcome the limitation of the 
traditional k-nearest neighbour algorithm (KNN) which usually identifies the same number of nearest 
neighbours for each test example, while Dudani (1967) used KNN rule to weight distance function for the 
purpose of assigning a class to an unclassified sample.  
 
The figure below indicates how classes are grouped together to make a decision: 

            
 Figure 2.1 K-Nearest Neighbour examples. (Source: Chailan 2015) 
 
In Figure 2.1 is shown how KNN utilises proximity to a known point to predict the same colour circles to 
represent the point to be classified. The red points are the closest 3 points that will be used to determine 
its class.  

2.6.2 Random Forest (RF) 

Random forest is a set of decision trees initially displayed by Leo Breiman and Adele Cutler (2012), also 
known as random trees. RF uses a string of simple decisions to assign class labels based on the results of 
sequential tests. (Berhane et al., 2018). The leaves, which are composed of a set of decision sequences 
where tests are applied at the nodes of the trees, represent the class labels of the branches of a decision  
tree. In random forest, the input feature vector is classified with every tree in the forest where the last 
forecast is based on a greatest voting system. The trees are trained with the same parameters with 
different sets of training instances. For each training set, the same number of vectors as in the original set 
are randomly selected with replacements and are determined by using a bootstrap procedure on the 
original training dataset (Breiman 2001). A random subset of the variables is used at each node of the 
trained trees in order to find the best split for all the nodes and trees by a training parameter. The size of 
subsets generated at each node is fixed and none of the trees that are built are pruned. The out of bag error 
for each tree is estimated from vectors that were discarded during the training phase of the individual tree 
classifiers by sampling with replacement.  
 
For parameters, the only requirements by Random Forest are number of trees which are required to 
produce a complete forest which then consists of the number of randomly selected predictor variables, the 
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quantity of predictor variables to be chosen at random. In general, out-of-bag errors decrease as the 
number of trees increase. When the number of trees is greater than a predetermined threshold, the error is 
convergent according to the Law of Large Numbers (Da Penha Pacheco et al, 2021). It is always of great 
value to determine out-of-bag errors against the number of trees, despite the forest having sufficient tress 
or not. If there is low number of randomly selected predictor variables it will display a weak prediction 
for the future, but there is little correlation between them, which can lessen the generalization error. In 
Random Forest, the number of randomly selected predictor variables can be determined through the 
utilization of the square root of the input variable calculation or a third of the count. Random Forest is a 
cost-effective method to compute where there is an indifference to the settings utilized to determine it and 
its outliers (Georganos et al., 2021). Furthermore, choosing the right parameters is simple compared to 
individual decision trees, over-fitting is less of a problem, and there is no need to prune the trees, which is 
a laborious task (Feng et al., 2015). 
 
Lefulebe, Van der Walt & Xulu (2022) utilised random forest to classify and detect LULC changes as 
part of a study to map urban forests over the City of Cape Town between 2016 and 2021. The study 
reported an overall accuracy of 94.8% and a kappa accuracy of 0.92. An assessment of the effectiveness 
of a random forest classifier for land cover classification was done (Rodriguez-Galiano et al., 2012). 
Another study was done for Prediction with Confidence Based on a Random Forest Classifier by 
Devetyarov and Nouretdinov (2010) to represent formal predictor for a new flexible framework that 
outputs region predictions with a guaranteed error rate 
 
The Figure below shows how Random Forest filters down to it’s decision: 
 

 
Figure 2.2 Random Forest examples. (Source: Shih et al., 2019) 
 
In Figure 2.2 uses a string of simple decisions to assign class labels based on the results of sequential 
tests. The class labels of the branches of a decision tree are represented by the leaves, which are made up 
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of a collection of decision sequences where tests are used at the tree's nodes. In random forest, each tree 
in the forest classifies the input feature vector, and the most recent forecast is based on a largest voting 
mechanism. 

2.6.3 Support Vector Machine (SVM) 

The support vector machine (SVM) was initially developed by Vladimir Vapnik and is a classifier 
originating from statistical learning theory. SVM separates any two classes of interest by identifying an 
optimal linear separating hyperplane (Figure 2.3). A kernel function is utilised to forecast non-linearly 
separable classes from the initial feature gap to an elevated dimensional space and this is where the non-
linearly dividing classes cannot be distinguished by a linear hyperplane (Lee et al., 2012). SVM takes into 
consideration the maximum margin concept, which fully extends the gap between the dividing hyperplane 
and the nearest feature vectors to select the optimal separating hyperplane between two classes (Cervantes 
et al., 2020). When the location of other feature vectors does not compromise the hyperplane, it means 
that these feature vectors are called ‘support vectors’. This particular hyperplane maximizes the ability of 
the SVM in order to envision the correct class of previously unseen selected samples. Furthermore, a 
gentle margin buffer which allows some data points to infiltrate the separation through the hyperplane 
without disturbing the end result is presented in SVM with outliers in the data. Therefore, the gentle 
margin parameter determines an exchange between the hyperplane and the size of the margin (de Castro 
Paes et al., 2022). It is important to consider for the normalization of the feature variables by their 
covariance or average variance as the SVM classifier is reliant on a distance measure. All-in-one 
classifiers are a widely used and simplified generalization method to train multiple samples and to apply 
SVM to multi-class problems. According to a standard ten-fold cross-validation method during the 
training phase of the classifier, optimal SVM parameters are selected. Decreasing the risk of over-fitting 
is used less often than a k-fold cross-validation (Jie et al., 2015).  
 
Fan et al., (2018) has done a comparison study between SVM and Extreme Gradient Boosting in order to 
predict daily global solar radiation by means of temperature and precipitation in humid subtropical 
climates. A review on landslide susceptibility mapping using SVM and compared to four other methods 
which was done by Huang and Zhao (2018), and the results would determine that SVM is the best 
classifier out of the rest. Another study was done to apply SVM machine learning models for forecasting 
solar and wind energy resources and using the model for fast and accurate results (Zendehboudi et al., 
2018) which would prove a viable model to use. Figure 2.3 below shows the relationship between classes 
and the hyperplane. 
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Figure 2.3 Support Vector Machine (Source: Bhandari et al., 2021) 

 
The illustration above demonstrates how SVM may discover the best linear separating hyperplane 
between any two classes of interest. From the initial feature gap to an elevated dimensional space, where 
the non-linearly splitting classes cannot be separated by a linear hyperplane, non-linearly separable 
classes are predicted using a kernel function. In order to choose the best separating hyperplane between 
two classes, SVM takes into account the maximum margin concept, which fully expands the distance 
between the dividing hyperplane and the closest feature vectors. 

2.7 Change Detection 

The surface of the earth changes continuously due to the natural phenomena or human activities. The 
process of identifying the changes which have occurred over time on the earth surface is called change 
detection. Change detection of earth’s surface is carried out effectively in the field of remote sensing 
using various techniques (Mishra et al., 2017). Common change detection methods include change vector 
analysis (Basak and Haque, 2017); principal components analysis (Zhu, 2017); and comparison of land 
cover classifications (Viana et al., 2019). Further techniques include the use of images in a deeply 
supervised image differencing network for change detection in high resolution bi-temporal remote 
sensing images by Zang et al. (2020); in land use land cover change detection, and monitoring of urban 
growth using remote sensing and GIS techniques (Das and Angadi , 2021); and vegetation index 
differencing (Wu et al.,2017). Change detection has also been done by combining automatic processing 
and visual interpretation (Mas et al., 2017). 
 
 
There are numerous practical applications that utilise information derived from change detection in land-
cover (LC) and land-use (LU) (also referred to as LULC) (Asokan et al., 2019). These include city 
planning, management of land resources, damage assessment, disaster monitoring as well as 
deforestation. It is necessary for the LULC data to be updated, given the fact that the LULC constitutes an 
important source of vital data for decision making. The framework of change detection, which makes use 
of a multi-temporal dataset, involves qualitative examination of the temporal repercussions of an event as 
well as quantifying the changes. There has been a lot of interest in research on LULC change detection. 
Change detection is an active topic of study with new approaches being created for improved detection 
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outcomes (Ardila et al., 2012; Chen et al., 2013; Kim et al., 2013), many of which have previously been 
developed over the past forty years (Demir et al., 2012; Volpi et al., 2013).  
 
Change detection mapping will provide the visual changes over the PHA and determine which feature 
class has grown the most against the agriculture sector of the area. CD does not only show visual changes 
but also statistical changes. e.g. acreage of changes, timeline of changes or which years had the most 
change. 
 

2.8 Summary 

 
This study utilised several recommended algorithms based on the preceding studies. These included the 
use of vegetation indices, feature selection and machine learning. The use of higher resolution imagery 
was used to determine change detection over a period of 7 years within the Philippi Horticultural Area. A 
previous study done by Musungu and Mkhize (2019) utilised images from the years 1990 to 2016 using 
maximum likehood algorithm, minimum distance and spectral mapping to classify images, whereas this 
study aims to use 7 years from 2015 to 2021, is classified using RF, KNN and SVM classifiers, as well as 
machine learning and feature selection. The results of this study shows an increase in urban fabric and an  
eventual decrease towards the final year for vegetation.
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Chapter 3 Research methodology 

This section introduces the study area as well as the methodology used in this study. The PHA is located 
Southeast of the City of Cape Town (Figure 3.1). 

3.1 Study area 

 

 
Figure 3.1 Locality map of the Philippi Horticultural Area (PHA). (Source: GeoEye) 
 
The PHA study area is delineated by roads to the North, West and East. To the south by the urban 
township of Strandfontein and farms. The unique areas in the PHA are noted below:  
  

1. The Highlands Estate (Area 2).  
This greater PHA area includes a broad range of both formal and informal land uses and              
comprises 3,168.65ha (excluding Highlands Estate) (Setplan, 2017). The dominant land use 

              classes in the PHA are illustrated in Figure 3.2 as:  
       a. A dominance of agriculture and smallholdings, with smallholdings being inclusive of   
 lifestyle/ residential/ mixed-use smallholdings (e.g. Schaapkraal: Area 1) and small  
     commercial farms; 

b.  Occurrence of urban land uses (including residential, industrial, business, etc.) in 
 Schaapkraal, Knole Park and Schaapkraal Estate (Area 1), the northern area abutting the 
  Lansdowne Industrial Area (Area 3), Highlands residential area (Area Highlands) and west of 
          Weltevreden Road (Area 4).  
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      c.       Area 5 is predominantly thicket and grassland-covered dunes together with mining. 
      d.  Area 6 is predominantly agriculture and smallholdings, together with dune and grassland
 chapter. 
 

 
Figure 3.2 Map showing the predominant land use around the PHA prior to 1967 (City of Cape Town 
2012).  
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Figure 3.3 The outer boundary represented by the red line indicates the reduction of the PHA core owing 
to a sequence of planning decisions (City of Cape Town 2012). 

3.2 Data collection 

The study used multispectral planet data. The three most commonly used satellites are Sentinel, Landsat 
and SPOT. The PlanetScope satellite produces good resolution of between 3.7 and 4 meters native 
resolution while Landsat has a moderate resolution of about 15 – 30 meters. The data was eventually 
downloaded from the Planet website. Each Planet Scope satellite is a CubeSat 3U form factor (10 cm by 
10 cm by 30 cm). The complete Planet Scope constellation, which consists of approximately 130 
satellites, is able to image the entire land surface of the Earth every day (equating to a daily collection 
capacity of 200 million km²/day). This satellite was chosen because it has a high resolution and it can be 
applied to applications like monitoring rapid changes in vegetation and land use and detailed vegetation 
mapping, which compliments this study quite well. (Planet (2021). Available from 
https://www.planet.com/ (Accessed: 01/10/2021). The data has already been pre-processed for 
atmospheric correction.  
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Table 3.1 below displays the description of the bands used as well as when the imagery was captured. 

3.2.1 Data 

The tables below indicate the satellite data used and its attributes. The PS2 instrument was utilised for this 
study. The differences between these instruments are the accessibility of the imagery and the 
enhancement of the telescopes over time. 
 
Table 3.1 Constellation overview and sensor specification: PlanetScope. 
Mission 
Characteristics 

Sun-synchronous Orbit   

Instrument PS2 PS2.SD PSB.SD 
Instrument description Name: Dove Classic 

 
This equipment, which 
was constructed using a 
telescope known as 
"PS2," records red, 
green, blue, and near-
infrared channels. It 
generates scene 
products that are 
roughly 25 x 11.5 
square kilometers. From 
July 2014 to April 29, 
2022, when the earliest 
imagery was accessible. 

Name: Dove-R 
 
This instrument, which 
was constructed using 
the same "PS2" 
telescope but updated 
Bayer pattern and pass-
band filters, records red, 
green, blue, and near 
infrared channels. It 
creates items called 
Scene that are roughly 
25 x 23 square 
kilometers. The earliest 
imagery that was 
accessible was between 
March 2019 and April 
22, 2022. 

Name: SuperDove 
 
This device, which uses 
the same "PSB" telescope 
and filter response as 
PS2.SD, collects red, 
green, blue, near infrared, 
as well as a new red 
edge, green I, coastal 
blue, and yellow channel. 
It creates goods called 
Scene that are roughly 
32.5 x 19.6 sq km. The 
earliest imagery that is 
now trackable is from 
mid-March 2020. 

Orbit Altitude 
(reference) 

475 km (~98° 
inclination) 

  

Max/Min Latitude 
Coverage 

±81.5° (depending on 
season) 

  

Equator Crossing 
Time 

9:30 - 11:30 am (local 
solar time) 

  

Sensor Type Four-band frame Imager 
with a split-frame 
VIS+NIR filter 

Four-band frame imager 
with butcher-block filter 
providing blue, green, 
red, and NIR stripes 

Eight-band frame imager 
with butcher-block filter 
providing coastal blue, 
blue, green I, green II, 
yellow, red, red-edge, 
and NIR stripes 

Spectral Bands Blue: 455 - 515 nm 
Green: 500 - 590 nm 
Red: 590 - 670 nm  

Blue: 464 - 517 nm 
Green: 547 - 585 nm 
Red: 650 - 682 nm 

Blue: 465 - 515 nm 
Green: 547 - 585 nm 
Red: 650 - 680 nm 
Coastal Blue: 431 – 452 
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nm 
Green I: 513 – 549 nm 
Red Edge: 697 – 713 nm 
Yellow: 600 – 620 nm 

Band 4 NIR: 780 – 860 nm NIR: 846 – 888 nm NIR: 845 – 885 nm 
Ground Sample 
Distance (nadir) 

3.7 m (approximate) 3.7 m (approximate) 3.7 m (approximate) 

Frame Size 24 km x 8 km 
(approximate) 

24 km x 16 km 
(approximate) 

32.5 km x 19.6 km 
(approximate) 

Maximum Image Strip 
per orbit 

20,000 km² 20,000 km² 20,000 km² 

 

Table 3.2 Indicates the sensor, bands and resolution. 
Date  Sensor Bands Captured Ground resolution (m) 
12 April 2015  PlanetScope Red, Green Blue and NIR 3.7 
05 April 2016 PlanetScope Red, Green Blue and NIR 3.7 
24 April 2017 PlanetScope Red, Green Blue and NIR 3.7 
17 April 2018 PlanetScope Red, Green Blue and NIR 3.7 
19 April 2019 PlanetScope Red, Green Blue and NIR 3.7 
06 April 2020 PlanetScope Red, Green Blue and NIR 3.7 
29 April 2021 PlanetScope Red, Green Blue and NIR 3.7 

3.2.2 Research equipment 

The equipment that was utilised was a desktop computer running Quantum GIS version 3.8 on a 
Windows 10 operating system. 

3.3 Vegetation indices 

This study assessed the performance of vegetation indices in improving classification. In total, 20 
vegetation indices were created. The list of indices is shown under section 2.3 in Table 2.1. The indices 
were created in QGIS using the Raster calculator algorithm. The figure below shows a screenshot of the 
methodology. Vegetation indices were created using the raster calculator tool in QGIS. The 
corresponding bands were subtracted, added or ratioed deposing on the equations in table 3.4. The results 
were saved as GeoTiff files and added to the project for feature selection. 
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Figure 3.4 Raster calculation example of vegetation indices. 

3.4 Feature selection 

A shapefile was created and sample polygons of the classes of interest were created over the satellite data. 
There were 6 classes created, namely urban, water, vegetation, natural vegetation bare ground and bare 
ground-sand. The shapefile was split into two processing methods using the vector manipulation and 
training geoprocessing tools in QGIS. Seventy percent of the polygons were used as the training sample 
and 30% were retained as an independent validation sample. A total of 3 383 points were used as training 
points with a spacing of four meters in QGIS (See figure below). They were created using the ‘random 
points in the polygon’ algorithm. The choice of four meters was to ensure that the spacing between the 
points was more than the spatial resolution of the satellite data which was 3.7 meters.   

 
As mentioned, twenty vegetation indices were created based on the list in table 2.2. The reflectance 
values of both the indices and the satellite bands were sampled by intersecting the 3 383 random points 
with the bands and indices. The data at each point consisted of corresponding reflectance values of bands 
and indices. The training and validation data were exported to spreadsheets with rows corresponding to 
the points and columns corresponding to reflectance values of bands and indices. A sample of the 
reflectance values is shown in Table 3.3. 
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Figure 3.5: Map indicating training and validation samples done in the QGIS software. 
 

 
Table 3.2 Sampled reflectance values which was generated through QGIS software using the raster 
sampling tool. 
 
 The Feature selection was done in R Studio using the Boruta library. The Boruta package and 
corresponding packages was installed on the R Studio application as well as the libraries attached to 
process the application. The Excel spreadsheets which had the training and validation data were imported 
into the R studio application. The feature selection was then done using Boruta and converted. All 18 
indices were assessed, and the top 4 indices were selected. The data was then plotted to display the 
outcome (refer to figure 4.2 for the results). 
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3.5 Classification 

TSeveral remote sensing plugins, such as the semi-automatic categorization (Luca, 2020) and Dzetsaka 
(Karasiak, 2017) were utilised within Quantum GIS. These open-source plugins have been utilized in a 
number of urban studies, including those by Leroux et al. (2018), Sejati, Buchori, and Rudiarto (2019) 
and Sejati et al. (2020). These applications were utilized during the pre-processing, classification, and 
derivation of classification accuracy. In this study, the primary features to be classified were urban, water, 
natural vegetation, vegetation and sand or bare ground. These classes were predominantly present within 
the area and would speak well to the classification and end results being determined. 

3.5.1 Classification imaging process 

Pre-processing Satellite Imagery using QGIS and Semi-Automatic Classification Plugin 
 
The flow chart below describes the process of the classification done. 
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Figure 3.6: Flow chart indicating the classification process done on the images. 

3.5.2 Selecting classifiers 

Three classifiers were tested in this study. Only the data corresponding to the most important features was 
used in selecting a classifier. The assessment was done using the Caret library in R Studio. Classification 
models were built for Random Forest, SVM and KNN in R-Studio using the sampled reflectance data. 
The results of all 3 classifiers were compared to ascertain classification accuracy and kappa hat accuracy. 
(Refer to Appendix K). It was then concluded that Random Forest was the best classifier for this dataset 
due to it producing the highest accuracy levels of the three classifiers used (refer to figure 4.1 for the 
results). 

3.5.3 Classification using machine learning 

The classification process was done in QGIS software. First samples were created of 6 classes. In that 
process shapefiles were created, and each assigned with a feature name. These shapefiles were created 
over the PHA image. The shapefiles created were drawn over the specified feature on the image. Once 
there was a sufficient number of shapefiles created for the area the Dzetsaka classification tool was used 
to train and predict models for the feature classes. In the training algorithm the raster image was selected 
of the area as well as the classes created. A field was selected from the column of the shapefiles attribute 
table. Then the type of classification was selected from the three classifications selected for this study. 
Once that was done a pixel percentage was allocated. After all the inputs the training algorithm was run. 
After this the prediction model process was next. The raster for the area was selected again and the 
training model created was inserted into the process. Once this process had been completed the bands 
created were named and symbolized. 

3.5.4 Accuracy assessment 

After creating new raster outputs, the accuracy assessment took place in order to determine the accuracy 
of the classifications. This process was done for each year over a 7-year period. The semi-automatic 
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classification plugin tool was used. In this process the classified image was used together with the training 
shapefile. From this process resulted a percentage to indicate the accuracy out of 100. Once the results 
were computed the raster calculation was done in conjunction with the vegetation indices to improve the 
accuracy levels of the classification. 

3.5.5 Change Detection 

The images that were classified together with the indices calculated were processed through the QGIS 
software utilising the land cover change tool. Two consecutive years were selected (e.g. 2015 and 2016) 
and run in the program. The program then processed the images, and the output created a percentage 
difference between each class. The output shows the change per class i.e., the regions that stayed the same 
and regions that changed from one class to another and corresponding acreages. Image differencing 
method was used for this study as in Viana et al., (2019) The outputs of the maps could distinguish 
between the different years and displaying a change in the area. 
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4. Results 

In this chapter the results of the classifications and accuracies computed through the Quantum GIS 
software programme are presented. 

4.1 Choosing classifiers 

The figure below shows the comparison of the training accuracies of the classification models. There 
were three classifiers used in this research, namely Random Forest (RF), K-Nearest Neighbour (KNN) 
and Support Machine Vector (SVM). The figure below shows the results for training the classification 
models using random forest, k nearest neighbour and support vector machines respectively. 
 

 
Figure 4.1 Classification model accuracy for all three classifiers used.  
 
This figure indicates which classifier performed the best out of the three selected. On the left the figure 
indicates the overall accuracy and on the right the figure indicates the kappa accuracy Random Forest had 
the highest accuracies.  

4.2 Identifying the best indices 

The results in figure 4.2 below show the output from RStudio showing the relative feature importance as 
per the method described in section 3.6.2. There were 20 vegetation indices used in total to determine 
which ones were best suited to incorporate into the methodology to determine accuracy. The most 
relevant indices were MSAVI, RDVI, RG and GNDVI. 
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Figure 4.2 Results from Boruta showing feature importance. This figure displays which indices performed 
best when coding was applied. 
 

4.3 Classification maps 

4.3.1 Maps for 2015 

The figures below show classification maps for the years 2015 – 2021. 
 

 
Figure 4.3. Map showing the classified image from 2015 for the layer stack of only original bands.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  s. 
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Figure 4.4. Map showing the classified image from 2015 for the layer stack of original bands and best 
indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.2 Maps for 2016 

 
Figure 4.5. Map showing the classified image from 2016 for the layer stack of only original bands. These 
classifications were done without vegetation indices and indicated the difference in accuracy levels. 
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Figure 4.6. Map showing the classified image from 2016 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.3 Maps for 2017 

 
Figure 4.7. Map showing the classified image from 2017 for the layer stack of only original bands. These 
classifications were done without vegetation indices and indicated the difference in accuracy levels. 
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Figure 4.8. Map showing the classified image from 2017 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.4 Maps for 2018 

 
Figure 4.9. Map showing the classified image from 2018 for the layer stack of only original bands. These 
classifications were done without vegetation indices and indicated the difference in accuracy levels. 
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Figure 4.10. Map showing the classified image from 2018 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.5 Maps for 2019 

 
Figure 4.11. Map showing the classified image from 2019 for the layer stack of only original bands. 
These classifications were done without vegetation indices and indicated the difference in accuracy 
levels. 
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Figure 4.12. Map showing the classified image from 2019 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.6 Maps for 2020 

 
Figure 4.13. Map showing the classified image from 2020 for the layer stack of only original bands. 
These classifications were done without vegetation indices and indicated the difference in accuracy 
levels. 
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Figure 4.14. Map showing the classified image from 2020 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  

4.3.7 Maps for 2021 

 
Figure 4.15. Map showing the classified image from 2021 for the layer stack of only original bands. 
These classifications were done without vegetation indices and indicated the difference in accuracy 
levels. 
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Figure 4.16. Map showing the classified image from 2021 for the layer stack of only original bands and 
best indices.  
 
The classification is based on the layer stack including the most relevant vegetation indices to improve 
the classification outputs of the original process.  
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4.4 Classification statistics 

The tables below show the error statistics for the study period.  

4.4.1 Classification accuracies after using Random Forest 

Table 4.1 Classification accuracies Random Forest 

 
In the table above, 1 denotes urban, 2 denotes water, 3 denotes vegetation, 4 denotes natural vegetation, 5 
denotes bare ground and 6 denotes bare ground-sand.  
 
The table below shows that layer stack (LS) are the ones with best indices and has had indices added to 
the process.  
 
Table 4.2 Overall classification accuracies of all six classes during the 7-year period. 
Year Urban 

Fabric 
Water Vegetation Natural 

Vegetation 
Bare Ground Bare 

Ground-
Sand 

2015 96.1 99.7 100 97.2 97.3 100 
2015LS 97.8 99.7 100 98.2 97.5 100 
2016 98.5 99.5 88.9 71.4 81.9 96.7 
2016LS 99.6 99.9 99.1 94.4 98.8 98.4 
2017 87 99 44.5 74.2 44.4 71.8 
2017LS 99.2 99.8 90.1 96.3 96.8 99.4 
2018 77.8 99.1 79.5 80.6 76.9 99.6 
2018LS 99.1 99.9 99.3 95.6 99.3 100 
2019 99.1 84.6 91.8 98.6 97.4 98.9 
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2019LS 99.4 99.7 93.8 99.4 97.3 98.3 
2020 96.12 69 54.2 92.1 65.7 88.6 
2020LS 99.7 99.8 96.7 99.4 97.9 94.4 
2021 96.9 72.1 71.8 93.3 94.5 96.6 
2021LS 98.8 100 98.7 99.6 100 99.4 
 

 
Figure 4.17 Chart indicating the various class accuracies over the 7 year period. 

4.4.2 Acreage 

 

 
 Figure 4.18 Chart indicating the various class acreages over the 7 year period. 
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4.4.3 Impact of indices 

Table 4.3 Overall Accuracy assessment  
Year Classification without indices Classification with indices 
2015 98.4% 98.8% 
2016 92.2% 98.9% 
2017 70.4% 97.9% 
2018 87.0% 97.89% 
2019 97.23% 98.8% 
2020 80.6% 99.3% 
2021 91.8% 99.6% 
 
The table above shows the overall accuracy statistics for classification of layer stacks with indices and 
layer stacks of only the original bands. 
 

4.5 Change Detection 

 

Figure 4.19   Change detection map for years 2015 to 2016.  
 
Emphases were given to urban fabric and vegetation. The colour composite for the maps are as follows: 
Yellow indicates urban fabric, red is the colour that has changed from the existing feature and green is for 
vegetation. The black was to map the other features.  
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Figure 4.20 Land cover between 2015 and 2016.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred.   
 

 
Figure 4.21   Change detection map for years 2016 to 2017. Emphases were given to urban fabric and 
vegetation. 
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Figure 4.22   Land cover between 2016 and 2017.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred. 
 

 
 
Figure 4.23   Change detection map for years 2017 – 2018. Emphases were given to urban fabric and 
vegetation. 



4. Results 

 

- 39 - 

 
Figure 4.24   Land cover between 2017 and 2018.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred. 
 

 
Figure 4.25   Change detection map for years 2018 – 2019. Emphases were given to urban fabric and 
vegetation. 
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Figure 4.26   Land cover between 2018 and 2019.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred. 
 

 
Figure 4.27   Change detection map for years 2019 – 2020. Emphases were given to urban fabric and 
vegetation. 
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Figure 4.28   Land cover between 2019 and 2020.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred. 
 

 
Figure 4.29   Change detection map for years 2020 – 2021. Emphases were given to urban fabric and 
vegetation. 
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Figure 4.30 Land cover between 2020 and 2021.  
 
The percentages being displayed in the pie chart indicates the amount of changes that occurred. 
 

Chapter 5 Discussion 

5.1 Vegetation Indices 

It was found that the overall classification accuracy improved with the inclusion of indices for each year. 
In 2015 the accuracy was found to increase by 0.3%, in 2016 the accuracy improved by 6.6%, in 2017 the 
accuracy improved by 27.5%, in 2018 the accuracy increased by 10.8%, in 2019 the accuracy increased 
by 1.6%, in 2020 the accuracy improved by 18.6% and in 2021 the accuracy increased by 7.8%.. Even 
with variable changes the indices have proven to be an effective inclusion in order increase the accuracy 
of the initial classification process.  The four most relevant indices for the classification of these classes 
was MSAVI, RDVI, RG and GNDVI. MSAVI for instance addresses the limitation NDVI is applied to 
high degree of bare soil (references?). RDVI does not operate well in dry areas and suppresses the effects 
of sun and soil. RG provides pigmentation information on leaves, which is a basic indicator of crop health 
and is useful to determine the stage of crop growth. GNDVI is used to assess the variability of crop 
development both in conditions of dense vegetation cover and in conditions of sparse vegetation (Bannari 
et al., 1995). 

5.2 Comparison of classifiers 

Of the three classifiers used, two classifiers, that is, Random Forest (RF) and Support Machine Vector 
(SVM) had similar accuracy statistics. Although the two classifiers showed high accuracies, Random 
Forest (RF) generally outperformed Support Vector Machines. The results suggest that both the SVM and 
RF classifiers have the potential to produce high accuracy classifications for mapping the agricultural and 
urban edge. Evidently, the study area affects the performance of the classifiers. For instance, Lefulebe et 
al (2022) found that KNN outperformed RF, SVM and NB in their urban forests study. Also, Mazarire et 
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al (2020) found SVM outperformed RF in mapping heterogenous agricultural landscapes. However, 
studies such as Colette el al (2020) showed similar accuracies for SVM and RF.  

5.3 Classification 

5.3.1 Classification maps 

With the results of the classifications done over the 7-year period an increase in land use change can be 
seen in the northern, eastern and western parts of the PHA. Parts of the vegetation areas is becoming bare 
ground as well, presenting a need to monitor and protect the areas left for agricultural purposes. The 
acreages figure 4.18 shows a steady growth in urban fabric over the 7 year period and reaches it’s highest 
point in 2021. Vegetation has shown an unstable trend over the 7 years ending with it’s lowest growth 
point in 2021. 

5.3.2 Accuracies per class 

As per the accuracies of vegetation and urban classes shows that accuracy levels for urban fabric 
maintained high values between 80% and 90%, while vegetation showed poor accuracies in 2017 and 
2020 (Refer to table 4.2). Nonetheless, the high accuracies of the urban fabric classification along with 
the underlying land cover pie charts show the increasing urbanisation of the PHA. The accuracies 
assessments for the classifications with and without indices has indicated a steady and stable percentage 
for the accuracies with indices proving it to be a valuable addition to the process. 
 
The pie charts in section 4.5 also show a steady increase in urban land cover within the PHA. There were 
14 maps in total created with 7 having indices included with the classified images. These maps were the 
steppingstone for the inclusion of change detection maps which ultimately produced the final visual 
results. 

5.4 Change detection 

In figure 4.19 and 4.21 changes can be seen southern part of the PHA showing an increase in urban fabric 
as well as vegetation. In figures 4.23 and 4.25 visual changes can be seen occurring to the western part of 
the PHA indicating an increasing in urban fabric. In figures 4.27 and 4.29 urban fabric is shown more 
predominantly over the western and southern parts of the PHA. The changes can be seen visually in 
figures 4.18 to 4.29. The urban fabric has slowly filtered onto the vegetation area and has disturbed the 
agricultural sector. These maps can determine visually how the area has changed and what impact the 
urbanization has had on the agricultural sector. Figure 4.19 shows that the changes generally occurred in 
close proximity to main roads. Changes has happened over the most parts of the PHA, some being slight 
changes while others showing a bit more. Overall, the changes can be visually seen on the maps. The 7 
years has shown an increase within the urban fabric sector. 

5.5 Sensors 

This study found that PlanetScope data is a viable option for mapping urban areas. The resolution of 3.7 
meters makes image interpretation possible and the spectral resolution also led to high accuracies of 
classification and it supports 20 vegetation indices. PlanetScope has proven to display good results for 
urban mapping as well as vegetation mapping. The resolution and availability of aerial images makes 
work for researchers easier. The sensors that can create different bands are Red, Green, Blue and Near 
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Infrared. These bands can be improve agriculture and can produce a clearer view of what’s happening on 
the ground. The bands can also assist with tracking urban growth in an area. PlanetScope can assist in 
tracking the pattern of growth for urban structures over a period of time. Spectral resolution helps 
characterize samples based on fine wavelengths of the electromagnetic spectrum. Spatial resolution 
focuses on measuring image quality while temporal resolution looks at the amount time required to visit 
and obtain data for a specified location. 
  

Chapter 6 Conclusions and recommendations  

6.1 Conclusions 

6.1.1 Vegetation indices 

With the assistance and input of vegetation indices within the machine learning realm, the accuracy and 
true reflection of a land use for this paper or similar outcomes have proven to be vital. The indices have 
enhanced the efficiency of the classifiers and made it a more unique and distinct version of providing 
accurate outcomes. Indices improve accuracy (Overall and Kappa) as well as producer vs user accuracies. 
All the indices has shown an improvement in the accuracy levels to a degree, but the four top indices 
were MSAVI, RDVI, RG and GNDVI which showed the most significant changes to the accuracies. 

6.1.2 Classifiers 

The study found that Random Forest outperformed Support Vector Machines and K Nearest Neighbour in 
the classifications. Nonetheless, SVM and KNN also performed well. Random Forest edged out Support 
Vector Machine between 1% – 18% over the 7 year period. Compared to findings from (Musungu and 
Mkhize 2019) the results has shown similar results, although over the last 6 years urban growth has 
increased slightly and vegetation has shown a decrease over this period. Other studies have used 
maximum likelihood, minimum distance and spectral angle mapping (Musungu and Mkhize 2019). 
Although this study showed similar results for vegetation, the later and updated imagery from 
PlanetScope, with the addition of vegetation indices, showed an improvement to the accuracies and also 
indicated an increase in urban fabric for this study. 

6.1.3 Land cover 

The study found that there is increasing urbanisation in the PHA. The urban cover between the year of 
2015 – 2021 had increased from 30% of the area land cover to 36% of the land cover. There was a 
decrease in vegetation in the year 2021 from the year 2015. With the assistance of the vegetation indices 
changes could be indicated more precisely. The land cover change for Musungu and Mkhize 2019 has 
shown a decrease for urban fabric and for vegetation, however with the later results from this study has 
shown an increase in urban fabric and a decrease in vegetation cover. 

6.1.4 Sensors 

The study found that the constellation of PlanetScope satellites provide sufficient data for urban land 
cover mapping. The spatial resolution of 3.7 meters coupled with the four available spectral bands Red, 
Green Blue and NIR facilitated the creation of several urban and vegetation indices. Studies from 
Musungu and Mkhize 2019 had used Landsat imagery which produced good results, however later 
imagery with updated sensors have provided an increase in accuracies. 
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6.1.5 Change Detection 

The change detection maps clearly indicate a pattern whereby urban fabric has increased over the time 
period and the vegetation areas has shown an unstable period over the years. This mapping exercise has 
been a vital step to display visual changes within the area in question. The change detection method 
indicated that there was a visual change in urban structures over the 7-year period within the PHA and 
that vegetation has decreased from the start of 2015. Other studies have shown a decrease in both urban 
fabric and vegetation whereas this study has shown an increase in urban fabric. Other features such as 
bare ground has also been seen to increase over the years due to vegetation decreasing. This study and 
method have definitely proven to be effective when change detection is required for an area. 

6.2 Recommendations 

6.2.1 Sensors 

The study found that the constellation of PlanetScope satellites provide sufficient data for urban land 
cover mapping. Thus, it is recommended that other studies test the capabilities of PlantScope in urban 
mapping. The latest constellation has more bands and has almost real-time data available. With easier 
access, finer scales and better coverage, mapping urban features and agriculture would present improved 
results for future studies.  Sentinel imagery also produces high resolution for vegetation and water. This 
satellite would not have produced the accurate results for urban fabric as this study has shown with 
PlanetScope. 

6.2.2 Indices 

Secondly, it was found that adding vegetation indices improved the performance of all the classifiers. 
Thus, it is recommended that optimised vegetation indices are included in the classification of urban 
scenes. Since the PlanetScope satellites have been updated, it provides more bands, scholars can assess an 
even wider range of indices. 

6.2.3 Frequency 

This study has proven that satellite imagery combined with remote sensing techniques can prove valuable 
tool to an organization or public entity. This process and outcomes can serve as a valid decision-making 
tool for projects, service delivery etc in an area. It can also look at using annual average of indices instead 
of singel dates in order to mitigate against any errors. Using annual composites and indices gives a better 
understanding of the land cover. 
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Appendices 

Appendix A. Accuracy results 

 
The figure below shows the classifiers used in this study and the results over a 7 year period. 
 

  
  

Figure A.2 Accuracy graph of how each class has performed over the 7 year period. 
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Appendix B.  Effect of Indices 

Figure B.1 below shows the difference in accuracies for classifications with and without indices for the 7-
year period. 
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Appendix C. Results of Random Forest error matrix calculations 

The figures below show results from Random Forest Layer Stack classification between 2015 and 2021. 

 
Figure C.1 Error Matrix for the April 2015 dataset 
 

 
Figure C.2 Error Matrix for the April 2016 dataset 
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Figure C.3 Error Matrix for the April 2017 dataset 
 

 
Figure C.4 Error Matrix for the April 2018 dataset 
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Figure C.5 Error Matrix for the April 2019 dataset 
 
 

 
Figure C.6 Error Matrix for the April 2020 dataset 
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 Figure C.7 Error Matrix for the April 2021 dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6 Conclusions and recommendations 

 

- 61 - 

Appendix D. Results of K-Nearest Neighbor error matrix calculations 

K-Nearest Neighbors 2015 – 2021 

 
 Figure D.1 Error Matrix for the April 2015 dataset 
 

 
Figure D.2 Error Matrix for the April 2016 dataset 
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Figure D.3 Error Matrix for the April 2017 dataset 
 

 
Figure D.4 Error Matrix for the April 2018 dataset 



Chapter 6 Conclusions and recommendations 

 

- 63 - 

 
Figure D.5 Error Matrix for the April 2019 dataset 
 

 
Figure D.6 Error Matrix for the April 2020 dataset 
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Figure D.7 Error Matrix for the April 2021 dataset 
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Appendix E. Results of Support Vector Machine error matrix calculations 

Support Vector Machine 2015 – 2021 

Figure E.1 Error Matrix for the April 2015 dataset  
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Figure E.2 Error Matrix for the April 2016 dataset 
 

 
Figure E.3 Error Matrix for the April 2017 dataset 
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Figure E.4 Error Matrix for the April 2018 dataset 
 
 
 

 
Figure E.5 Error Matrix for the April 2019 dataset 
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Figure E.6 Error Matrix for the April 2020 dataset 
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Figure E.7 Error Matrix for the April 2021 dataset 
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Appendix F. Computing classifiers in R studio 

 
Figure F.1 period Error Matrix for the April 2021 dataset. 
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Appendix G. Computing classifiers with indices in R studio 

 
 

 
 
 
Appendix H. Producing graphs from indices in R studio 
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Appendix I. Error matrix for years 2015 with and without indices 

 
Accuracy assessments with and without indices over the 7 years (2015 – 2021) 
 
Accuracy without indices 2015> ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 304 0 0 0 7 0 311 
2 0 55 0 0 0 0 55 
3 0 16 558 2 0 0 576 
4 0 0 0 212 6 0 218 
5 6 0 0 4 280 0 290 
6 0 0 0 0 0 112 112 
Total 310 71 558 218 293 112 1562 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1  0.1138 0.0000 0.0000 0.0000 0.0026 0.0000 10210700.0000 0.1165 
2  0.0000 0.4668 0.0000 0.0000 0.0000 0.0000 40926800.0000 0.4668 
3  0.0000 0.0016 0.0541 0.0002 0.0000 0.0000 4899700.0000 0.0559 
4  0.0000 0.0000 0.0000 0.1145 0.0032 0.0000 10320400.0000 0.1177 
5  0.0046 0.0000 0.0000 0.0031 0.2147 0.0000 19491200.0000 0.2223 
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0208 1822000.0000 0.0208 
Total  0.1184  0.4684  0.0541  0.1177  0.2205  0.0208  87670800.0000  
Area  10384143 41062903 4746584 10322209 19332960
 1822000 87670800 
SE  0.0021 0.0004 0.0004 0.0020 0.0029 0.0000 
SE area  184484 33579 35552 176532 253581 0 
95% CI area 361589 65815 69682 346003 497018 0 
PA  [%]  96.1165 99.6686 100.0000 97.2307 97.3420 100.0000 
UA  [%]  97.7492 100.0000 96.8750 97.2477 96.5517 100.0000 
Kappa hat 0.9745 1.0000 0.9670 0.9688 0.9558 1.0000 
 
Overall accuracy [%] = 98.4726 
Kappa hat classification = 0.9782 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Accuracy with indices 
 
--------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 306 0 0 0 1 0 307 
2 0 55 0 0 0 0 55 
3 0 16 558 2 0 0 576 
4 0 0 0 213 8 0 221 
5 4 0 0 3 284 0 291 
6 0 0 0 0 0 112 112 
Total 310 71 558 218 293 112 1562 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1244 0.0000 0.0000 0.0000 0.0004 0.0000 10943900.0000 0.1248 
2 0.0000 0.4679 0.0000 0.0000 0.0000 0.0000 41020700.0000 0.4679 
3 0.0000 0.0015 0.0510 0.0002 0.0000 0.0000 4618800.0000 0.0527 
4 0.0000 0.0000 0.0000 0.1248 0.0047 0.0000 11348500.0000 0.1294 
5 0.0028 0.0000 0.0000 0.0021 0.2005 0.0000 18008700.0000 0.2054 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0197 1730200.0000 0.0197 
Total 0.1272  0.4694  0.0510  0.1271  0.2056  0.0197  87670800.0000  
Area 11155794 41149000 4474462 11139389 18021954 1730200
 87670800 
SE 0.0015 0.0004 0.0004 0.0020 0.0025 0.0000 
SE area 128186 31654 33514 178781 218972 0 
95% CI area 251244 62042 65687 350410 429185 0 
PA  [%] 97.7810 99.6882 100.0000 98.1894 97.5227 100.0000 
UA  [%] 99.6743 100.0000 96.8750 96.3801 97.5945 100.0000 
Kappa hat 0.9963 1.0000 0.9671 0.9585 0.9697 1.0000 
 
Overall accuracy [%] = 98.8320 
Kappa hat classification = 0.9834 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix J. Error matrices for 2016 with and without indices 

Accuracy without indices 2016 
 
----------------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 621 0 0 3 44 5 673 
2 0 204 0 13 0 0 217 
3 0 0 1214 33 27 0 1274 
4 1 17 58 675 76 0 827 
5 8 0 0 44 608 0 660 
6 14 0 0 0 0 614 628 
Total 644 221 1272 768 755 619 4279 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1620 0.0000 0.0000 0.0008 0.0115 0.0013 15389100.0000 0.1755 
2 0.0000 0.4489 0.0000 0.0286 0.0000 0.0000 41868000.0000 0.4776 
3 0.0000 0.0000 0.0673 0.0018 0.0015 0.0000 6195000.0000 0.0707 
4 0.0001 0.0025 0.0084 0.0975 0.0110 0.0000 10469200.0000 0.1194 
5 0.0014 0.0000 0.0000 0.0078 0.1081 0.0000 10291400.0000 0.1174 
6 0.0009 0.0000 0.0000 0.0000 0.0000 0.0386 3458100.0000 0.0394 
Total 0.1644  0.4514  0.0757  0.1365  0.1321  0.0399  87670800.0000  
Area 14414541 39574986 6637478 11968375 11580079 3495341
 87670800 
SE 0.0019 0.0077 0.0011 0.0080 0.0024 0.0006 
SE area 166212 678029 100032 699487 211892 54905 
95% CI area 325775 1328936 196063 1370994 415308 107613 
PA  [%] 98.5120 99.4562 88.9380 71.3964 81.8696 96.7290 
UA  [%] 92.2734 94.0092 95.2904 81.6203 92.1212 97.7707 
Kappa hat 0.9075 0.8908 0.9490 0.7871 0.9092 0.9768 
 
Overall accuracy [%] = 92.2424 
Kappa hat classification = 0.8918 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Accuracy with indices 2016 
 
--------------------- 
 
ErrMatrixCode Reference Classified PixelSum 
1 1 1 639 
10 1 4 1 
15 1 5 2 
21 1 6 2 
5 2 2 217 
14 2 4 4 
13 3 3 1269 
19 3 4 3 
12 4 2 2 
18 4 3 13 
24 4 4 742 
29 4 5 11 
11 5 1 2 
28 5 4 8 
32 5 5 745 
16 6 1 2 
36 6 6 617 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 639 0 0 0 2 2 643 
2 0 217 0 2 0 0 219 
3 0 0 1269 13 0 0 1282 
4 1 4 3 742 8 0 758 
5 2 0 0 11 745 0 758 
6 2 0 0 0 0 617 619 
Total 644 221 1272 768 755 619 4279 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1587 0.0000 0.0000 0.0000 0.0005 0.0005 14003900.0000 0.1597 
2 0.0000 0.4752 0.0000 0.0044 0.0000 0.0000 42049000.0000 0.4796 
3 0.0000 0.0000 0.0537 0.0005 0.0000 0.0000 4753000.0000 0.0542 
4 0.0002 0.0006 0.0005 0.1204 0.0013 0.0000 10785100.0000 0.1230 
5 0.0004 0.0000 0.0000 0.0022 0.1501 0.0000 13391600.0000 0.1527 
6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0306 2688200.0000 0.0307 
Total 0.1594  0.4759  0.0542  0.1276  0.1519  0.0311  87670800.0000  
Area 13975032 41721904 4747488 11183990 13319314 2723072
 87670800 
SE 0.0006 0.0031 0.0003 0.0032 0.0009 0.0004 
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SE area 52459 272397 27978 283078 80901 31382 
95% CI area 102820 533897 54836 554833 158567 61509 
PA  [%] 99.5832 99.8636 99.1009 94.3979 98.8184 98.4004 
UA  [%] 99.3779 99.0868 98.9860 97.8892 98.2850 99.6769 
Kappa hat 0.9926 0.9826 0.9893 0.9758 0.9798 0.9967 
 
Overall accuracy [%] = 98.8761 
Kappa hat classification = 0.9840 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix K. Error matrix for 2017 with and without indices 

Accuracy without indices 2017 
 
----------------------------- 
 
ErrMatrixCode Reference Classified PixelSum 
1 1 1 21763 
3 1 2 62 
6 1 3 76 
10 1 4 90 
15 1 5 1385 
21 1 6 108 
2 2 1 25 
5 2 2 1858 
9 2 3 61 
14 2 4 305 
20 2 5 65 
4 3 1 133 
8 3 2 495 
13 3 3 20097 
19 3 4 2222 
25 3 5 1782 
30 3 6 275 
7 4 1 27 
12 4 2 117 
18 4 3 765 
24 4 4 14706 
29 4 5 1524 
11 5 1 1339 
17 5 2 796 
23 5 3 1024 
28 5 4 522 
32 5 5 13502 
35 5 6 494 
16 6 1 395 
22 6 2 19 
36 6 6 3488 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 21763 25 133 27 1339 395 23682 
2 62 1858 495 117 796 19 3347 
3 76 61 20097 765 1024 0 22023 
4 90 305 2222 14706 522 0 17845 
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5 1385 65 1782 1524 13502 0 18258 
6 108 0 275 0 494 3488 4365 
Total 23484 2314 25004 17139 17677 3902 89520 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1415 0.0002 0.0009 0.0002 0.0087 0.0026 13480758.0000 0.1540 
2 0.0090 0.2684 0.0715 0.0169 0.1150 0.0027 42309900.0000 0.4834 
3 0.0003 0.0002 0.0815 0.0031 0.0042 0.0000 7814043.0000 0.0893 
4 0.0006 0.0019 0.0140 0.0927 0.0033 0.0000 9840321.0000 0.1124 
5 0.0109 0.0005 0.0140 0.0120 0.1064 0.0000 12592143.0000 0.1439 
6 0.0004 0.0000 0.0011 0.0000 0.0019 0.0136 1484631.0000 0.0170 
Total 0.1627  0.2712  0.1829  0.1248  0.2394  0.0189  87521796.0000  
Area 14240668 23736131 16011571 10926257 20955792
 1651376 87521796 
SE 0.0012 0.0042 0.0030 0.0016 0.0036 0.0006 
SE area 104672 363680 262816 140004 315258 56805 
95% CI area 205156 712813 515120 274407 617905 111337 
PA  [%] 86.9930 98.9514 44.5345 74.2191 44.4366 71.8397 
UA  [%] 91.8968 55.5124 91.2546 82.4096 73.9511 79.9084 
Kappa hat 0.9032 0.3896 0.8930 0.7990 0.6575 0.7952 
 
Overall accuracy [%] = 70.3985 
Kappa hat classification = 0.6199 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
 
 
Accuracy with indices 2017 
 
-------------------------- 
 
ErrMatrixCode Reference Classified PixelSum 
1 1 1 2071 
6 1 3 3 
10 1 4 2 
15 1 5 13 
21 1 6 1 
2 2 1 1 
5 2 2 185 
9 2 3 3 
14 2 4 6 
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4 3 1 1 
8 3 2 3 
13 3 3 2194 
19 3 4 21 
25 3 5 23 
7 4 1 2 
12 4 2 1 
18 4 3 18 
24 4 4 1501 
29 4 5 15 
11 5 1 4 
17 5 2 1 
23 5 3 11 
28 5 4 7 
32 5 5 1573 
27 6 3 2 
36 6 6 350 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 2071 1 1 2 4 0 2079 
2 0 185 3 1 1 0 190 
3 3 3 2194 18 11 2 2231 
4 2 6 21 1501 7 0 1537 
5 13 0 23 15 1573 0 1624 
6 1 0 0 0 0 350 351 
Total 2090 195 2242 1537 1596 352 8012 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1715 0.0001 0.0001 0.0002 0.0003 0.0000 15095900.0000 0.1722 
2 0.0000 0.4566 0.0074 0.0025 0.0025 0.0000 41115800.0000 0.4690 
3 0.0001 0.0001 0.0986 0.0008 0.0005 0.0001 8788000.0000 0.1002 
4 0.0002 0.0005 0.0017 0.1195 0.0006 0.0000 10724100.0000 0.1223 
5 0.0010 0.0000 0.0017 0.0011 0.1180 0.0000 10684400.0000 0.1219 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0144 1262600.0000 0.0144 
Total 0.1728  0.4573  0.1095  0.1240  0.1219  0.0145  87670800.0000  
Area 15152708 40094747 9596555 10873427 10686482 1266881
 87670800 
SE 0.0004 0.0055 0.0043 0.0025 0.0025 0.0001 
SE area 33699 479142 376308 222637 222908 6630 
95% CI area 66051 939119 737563 436369 436900 12995 
PA  [%] 99.2417 99.8480 90.0558 96.3166 96.8407 99.3782 
UA  [%] 99.6152 97.3684 98.3416 97.6578 96.8596 99.7151 
Kappa hat 0.9953 0.9515 0.9814 0.9733 0.9642 0.9971 
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Overall accuracy [%] = 97.8600 
Kappa hat classification = 0.9701 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix L. Error matrices for 2018 with and without indices 

Accuracy without indices 2018 
 
----------------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 3081 2 0 10 178 1 3272 
2 26 277 10 14 9 0 336 
3 1 1 1380 36 314 0 1732 
4 4 30 4 1032 53 0 1123 
5 85 4 4 28 1607 0 1728 
6 7 0 0 0 4 329 340 
Total 3204 314 1398 1120 2165 330 8531 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1593 0.0001 0.0000 0.0005 0.0092 0.0001 14830400.0000 0.1692 
2 0.0375 0.3997 0.0144 0.0202 0.0130 0.0000 42508300.0000 0.4849 
3 0.0000 0.0000 0.0589 0.0015 0.0134 0.0000 6483300.0000 0.0740 
4 0.0004 0.0030 0.0004 0.1021 0.0052 0.0000 9744600.0000 0.1111 
5 0.0072 0.0003 0.0003 0.0024 0.1363 0.0000 12849600.0000 0.1466 
6 0.0003 0.0000 0.0000 0.0000 0.0002 0.0138 1254600.0000 0.0143 
Total 0.2047  0.4032  0.0741  0.1268  0.1773  0.0139  87670800.0000  
Area 17950374 35346916 6495259 11114439 15545269 1218543
 87670800 
SE 0.0072 0.0101 0.0046 0.0054 0.0045 0.0001 
SE area 627425 885045 400260 473188 397188 12880 
95% CI area 1229754 1734689 784510 927448 778488 25245 
PA  [%] 77.7961 99.1431 79.5300 80.5706 76.8712 99.6280 
UA  [%] 94.1626 82.4405 79.6767 91.8967 92.9977 96.7647 
Kappa hat 0.9266 0.7058 0.7805 0.9072 0.9149 0.9672 
 
Overall accuracy [%] = 87.0224 
Kappa hat classification = 0.8208 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Accuracy with indices 2018 
 
-------------------------- 
 
ErrMatrixCode Reference Classified PixelSum 
1 1 1 3179 
10 1 4 1 
15 1 5 24 
5 2 2 310 
14 2 4 4 
13 3 3 1393 
19 3 4 2 
25 3 5 3 
7 4 1 4 
12 4 2 3 
18 4 3 2 
24 4 4 1104 
29 4 5 7 
11 5 1 13 
28 5 4 2 
32 5 5 2150 
36 6 6 330 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 3179 0 0 4 13 0 3196 
2 0 310 0 3 0 0 313 
3 0 0 1393 2 0 0 1395 
4 1 4 2 1104 2 0 1113 
5 24 0 3 7 2150 0 2184 
6 0 0 0 0 0 330 330 
Total 3204 314 1398 1120 2165 330 8531 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1905 0.0000 0.0000 0.0002 0.0008 0.0000 16786900.0000 0.1915 
2 0.0000 0.4691 0.0000 0.0045 0.0000 0.0000 41522600.0000 0.4736 
3 0.0000 0.0000 0.0558 0.0001 0.0000 0.0000 4901600.0000 0.0559 
4 0.0001 0.0004 0.0002 0.1153 0.0002 0.0000 10191700.0000 0.1162 
5 0.0016 0.0000 0.0002 0.0005 0.1467 0.0000 13065500.0000 0.1490 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0137 1202500.0000 0.0137 
Total 0.1922  0.4695  0.0562  0.1206  0.1477  0.0137  87670800.0000  
Area 16850342 41161248 4930834 10577181 12948695 1202500
 87670800 
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SE 0.0004 0.0026 0.0002 0.0026 0.0005 0.0000 
SE area 37422 229765 17306 231499 41512 0 
95% CI area 73347 450340 33919 453737 81364 0 
PA  [%] 99.0936 99.9110 99.2646 95.5764 99.3312 100.0000 
UA  [%] 99.4681 99.0415 99.8566 99.1914 98.4432 100.0000 
Kappa hat 0.9934 0.9819 0.9985 0.9908 0.9817 1.0000 
 
Overall accuracy [%] = 99.1102 
Kappa hat classification = 0.9873 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix M. Error matrices for 2019 with and without indices 

Accuracy without indices 2019 
 
----------------------------- 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 33454 9 5 39 60 5 33572 
2 0 2876 0 18 0 0 2894 
3 19 25 10624 245 318 0 11231 
4 61 111 301 15210 37 3 15723 
5 80 0 415 30 13096 9 13630 
6 2 0 0 1 0 1638 1641 
Total 33616 3021 11345 15543 13511 1655 78691 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.2986 0.0001 0.0000 0.0003 0.0005 0.0000 14078898.0000 0.2996 
2 0.0000 0.0141 0.0000 0.0001 0.0000 0.0000 664632.0000 0.0141 
3 0.0002 0.0003 0.1379 0.0032 0.0041 0.0000 6850008.0000 0.1458 
4 0.0012 0.0022 0.0058 0.2954 0.0007 0.0001 14346135.0000 0.3053 
5 0.0013 0.0000 0.0065 0.0005 0.2052 0.0001 10032624.0000 0.2135 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0215 1014399.0000 0.0216 
Total 0.3013  0.0166  0.1503  0.2995  0.2105  0.0218  46986696.0000  
Area 14156782 780800 7061994 14070678 9892439 1024003 46986696 
SE 0.0002 0.0002 0.0006 0.0005 0.0004 0.0001 
SE area 11054 10177 26045 22951 20838 3065 
95% CI area 21665 19947 51048 44983 40843 6008 
PA  [%] 99.1003 84.5925 91.7558 98.6311 97.4437 98.8810 
UA  [%] 99.6485 99.3780 94.5953 96.7373 96.0822 99.8172 
Kappa hat 0.9950 0.9937 0.9364 0.9534 0.9504 0.9981 
 
Overall accuracy [%] = 97.2613 
Kappa hat classification = 0.9635 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
 
Accuracy with indices 2019 
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-------------------------- 
 
ErrMatrixCode Reference Classified PixelSum 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 2991 3 0 2 3 1 3000 
2 0 258 1 0 0 0 259 
3 2 4 979 8 20 0 1013 
4 3 6 19 1390 5 1 1424 
5 6 0 27 1 1201 0 1235 
6 1 0 0 0 0 155 156 
Total 3003 271 1026 1401 1229 157 7087 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1808 0.0002 0.0000 0.0001 0.0002 0.0001 15900300.0000 0.1814 
2 0.0000 0.4684 0.0018 0.0000 0.0000 0.0000 41225500.0000 0.4702 
3 0.0002 0.0004 0.0893 0.0007 0.0018 0.0000 8102900.0000 0.0924 
4 0.0003 0.0006 0.0020 0.1483 0.0005 0.0001 13316300.0000 0.1519 
5 0.0005 0.0000 0.0021 0.0001 0.0916 0.0000 8256400.0000 0.0942 
6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0099 869400.0000 0.0099 
Total 0.1818  0.4696  0.0952  0.1492  0.0941  0.0100  87670800.0000  
Area 15942336 41170332 8348288 13079631 8251734 878478
 87670800 
SE 0.0003 0.0018 0.0020 0.0007 0.0007 0.0001 
SE area 30661 161858 173960 59274 57051 12108 
95% CI area 60095 317241 340961 116178 111820 23731 
PA  [%] 99.4371 99.7474 93.8029 99.3786 97.3020 98.3322 
UA  [%] 99.7000 99.6139 96.6436 97.6124 97.2470 99.3590 
Kappa hat 0.9963 0.9927 0.9629 0.9719 0.9696 0.9935 
 
Overall accuracy [%] = 98.8255 
Kappa hat classification = 0.9834 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix N. Error matrices for 2020 with and without indices 

Accuracy without indices 2020 
 
----------------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 3013 2 28 3 186 0 3232 
2 0 245 1 59 0 0 305 
3 9 2 595 47 263 3 919 
4 15 31 135 1245 63 3 1492 
5 34 2 254 54 723 2 1069 
6 8 0 0 0 0 155 163 
Total 3079 282 1013 1408 1235 163 7180 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.2903 0.0002 0.0027 0.0003 0.0179 0.0000 14660900.0000 0.3114 
2 0.0000 0.0161 0.0001 0.0039 0.0000 0.0000 945600.0000 0.0201 
3 0.0014 0.0003 0.0936 0.0074 0.0414 0.0005 6808300.0000 0.1446 
4 0.0031 0.0064 0.0278 0.2560 0.0130 0.0006 14443400.0000 0.3068 
5 0.0065 0.0004 0.0487 0.0104 0.1387 0.0004 9653600.0000 0.2051 
6 0.0006 0.0000 0.0000 0.0000 0.0000 0.0114 566600.0000 0.0120 
Total 0.3019  0.0234  0.1729  0.2779  0.2109  0.0129  47078400.0000  
Area 14214208 1101628 8138720 13084669 9931055 608119 47078400 
SE 0.0020 0.0013 0.0042 0.0035 0.0042 0.0006 
SE area 94149 60210 198564 162740 196680 26467 
95% CI area 184531 118011 389185 318970 385492 51875 
PA  [%] 96.1536 68.9507 54.1607 92.1101 65.7438 88.5996 
UA  [%] 93.2240 80.3279 64.7443 83.4450 67.6333 95.0920 
Kappa hat 0.9029 0.7986 0.5738 0.7707 0.5898 0.9503 
 
Overall accuracy [%] = 80.6212 
Kappa hat classification = 0.7422 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Accuracy with indices 2020 
 
-------------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 3072 0 0 0 6 0 3078 
2 0 271 0 0 0 0 271 
3 0 1 985 10 8 0 1004 
4 4 9 9 1397 10 3 1432 
5 3 1 19 1 1211 0 1235 
6 0 0 0 0 0 160 160 
Total 3079 282 1013 1408 1235 163 7180 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1902 0.0000 0.0000 0.0000 0.0004 0.0000 16708600.0000 0.1906 
2 0.0000 0.4752 0.0000 0.0000 0.0000 0.0000 41662500.0000 0.4752 
3 0.0000 0.0001 0.0766 0.0008 0.0006 0.0000 6846500.0000 0.0781 
4 0.0004 0.0010 0.0010 0.1478 0.0011 0.0003 13279500.0000 0.1515 
5 0.0002 0.0001 0.0015 0.0001 0.0974 0.0000 8706700.0000 0.0993 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0053 467000.0000 0.0053 
Total 0.1909  0.4763  0.0791  0.1486  0.0994  0.0056  87670800.0000  
Area 16734273 41759830 6934345 13030173 8717359 494820
 87670800 
SE 0.0003 0.0003 0.0006 0.0007 0.0006 0.0002 
SE area 25858 29425 50674 58727 50706 16051 
95% CI area 50682 57673 99321 115105 99384 31459 
PA  [%] 99.6520 99.7669 96.8647 99.4226 97.9368 94.3777 
UA  [%] 99.8051 100.0000 98.1076 97.5559 98.0567 100.0000 
Kappa hat 0.9976 1.0000 0.9795 0.9713 0.9784 1.0000 
 
Overall accuracy [%] = 99.2519 
Kappa hat classification = 0.9893 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Appendix O. Error matrices for 2021 with and without indices 

Accuracy without indices 2021 
 
----------------------------- 
 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 34981 23 29 48 761 32 35874 
2 96 2691 20 900 0 0 3707 
3 7 11 8609 946 46 0 9619 
4 97 466 2005 15051 210 0 17829 
5 502 17 0 35 11692 15 12261 
6 0 0 0 0 25 1158 1183 
Total 35683 3208 10663 16980 12734 1205 80473 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.3511 0.0002 0.0003 0.0005 0.0076 0.0003 16974441.0000 0.3600 
2 0.0007 0.0210 0.0002 0.0070 0.0000 0.0000 1364994.0000 0.0290 
3 0.0001 0.0001 0.0832 0.0091 0.0004 0.0000 4381623.0000 0.0929 
4 0.0016 0.0075 0.0322 0.2420 0.0034 0.0000 13512366.0000 0.2866 
5 0.0088 0.0003 0.0000 0.0006 0.2042 0.0003 10095462.0000 0.2141 
6 0.0000 0.0000 0.0000 0.0000 0.0004 0.0170 816975.0000 0.0173 
Total 0.3622  0.0291  0.1159  0.2592  0.2160  0.0175  47145861.0000  
Area 17077291 1373948 5462200 12220805 10184415 827202
 47145861 
SE 0.0005 0.0004 0.0007 0.0009 0.0006 0.0001 
SE area 24309 19485 34914 40632 25982 5385 
95% CI area 47646 38190 68431 79638 50924 10554 
PA  [%] 96.9235 72.1193 71.7943 93.3405 94.5264 96.6765 
UA  [%] 97.5107 72.5924 89.4999 84.4186 95.3593 97.8867 
Kappa hat 0.9610 0.7177 0.8812 0.7897 0.9408 0.9785 
 
Overall accuracy [%] = 91.8383 
Kappa hat classification = 0.8893 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
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Accuracy with indices 2021 
 
-------------------------- 
 > ERROR MATRIX (pixel count) 
 > Reference 
V_Classified 1 2 3 4 5 6 Total 
1 3183 0 0 2 1 1 3187 
2 1 289 0 0 0 0 290 
3 0 0 953 6 0 0 959 
4 0 1 9 1504 0 0 1514 
5 7 0 0 0 1147 0 1154 
6 0 0 0 0 0 115 115 
Total 3191 290 962 1512 1148 116 7219 
 
 > AREA BASED ERROR MATRIX 
 > Reference 
V_Classified 1 2 3 4 5 6 Area Wi 
1 0.1954 0.0000 0.0000 0.0001 0.0001 0.0001 17149700.0000 0.1956 
2 0.0016 0.4697 0.0000 0.0000 0.0000 0.0000 41321300.0000 0.4713 
3 0.0000 0.0000 0.0625 0.0004 0.0000 0.0000 5514100.0000 0.0629 
4 0.0000 0.0001 0.0008 0.1348 0.0000 0.0000 11900400.0000 0.1357 
5 0.0008 0.0000 0.0000 0.0000 0.1230 0.0000 10847100.0000 0.1237 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0107 938200.0000 0.0107 
Total 0.1977  0.4698  0.0633  0.1354  0.1230  0.0108  87670800.0000  
Area 17336460 41186673 5550343 11867059 10786684 943581
 87670800 
SE 0.0017 0.0016 0.0003 0.0003 0.0003 0.0001 
SE area 145030 142704 27394 29485 25381 5381 
95% CI area 284258 279700 53693 57791 49747 10547 
PA  [%] 98.7986 99.9809 98.7254 99.6186 99.9501 99.4297 
UA  [%] 99.8745 99.6552 99.3743 99.3395 99.3934 100.0000 
Kappa hat 0.9984 0.9935 0.9933 0.9924 0.9931 1.0000 
 
Overall accuracy [%] = 99.6089 
Kappa hat classification = 0.9944 
 
Area unit = metre^2 
SE = standard error 
CI = confidence interval 
PA = producer's accuracy 
UA = user's accuracy 
 
 
 
 
 


