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Abstract 

Process control and monitoring of wastewater treatment plants are essential, but have proven 

to be slow, expensive and dearth. It is currently achieved by examining effluent wastewater 

quality and adjusting the treatment process. This justifies the need to develop robust 

mathematical modelling tools known for high accuracy to predict the performance of 

wastewater treatment plants for future purposes. 

A comparative study on the prediction of biological wastewater treatment performance of 

industrial wastewater, biodiesel- (BDWW), textile- (TTWW), polymer- (PWW), as well as pulp 

and paper wastewater (PPWW) using artificial neural networks (ANN), was carried out based 

on historical data from previous studies. Industrial wastewater was characterised by high 

levels of pollutants represented by the chemical oxygen demand (COD) since it is one of the 

important parameters used to evaluate the performance of wastewater treatment systems. 

Three ANN-based models, namely, nonlinear autoregressive neural network model with 

exogenous inputs (NARX), feedforward backpropagation (FFB) and cascade feedforward 

backpropagation (CFBP), were developed to predict the COD of the effluent using the 

Levenberg-Marquardt (LM) backpropagation algorithm. The ANN models were developed 

using a three-layered ANN architecture, including the input, hidden and output layer. The best 

ANN architecture from the three models was chosen after several steps of training, testing 

and validation using a trial-and-error method altering the number of neurons ranging from 2 to 

11 in the hidden layer.  

Based on all three model performances and prediction capabilities, the most appropriate ANN 

model was found to be the NARX for all four industrial wastewater and treatment methods with 

a mean square error (MSE) of 0.0239, 0.303, 0.0719, 0.343 and an overall model correlation 

coefficient (𝑅) for training, validation, and testing of 0.988, 0.838, 0.964, 0.809 for the BDWW, 

TTWW, PWW and PPWW, respectively. According to the MSE and 𝑅 values obtained, it was 

concluded that the NARX performed better and could accurately predict COD effluent 

concentration, which proves that ANN-NARX can be employed successfully to estimate COD 

effluent concentration from biological wastewater treatment systems. The CFBP model also 

showed better prediction results compared to the FFB model with overall 𝑅 values of 0.947 for 

BDWW, 0.736 for TTWW, 0.837 for PWW and 0.739 for PPWW. However, the model showed 

poor performance with an MSE values of 0.1024, 0.444, 0.297 and 0.457, respectively, which 

could result in poor generalisation when presented with new data sets.  

Based on the results obtained from all the ANN methods, it can be concluded that ANNs are 

reliable modelling tools for successfully predicting biological wastewater treatment systems 

performance focused on the effluent COD. Proper selection of ANN input parameters resulted 
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in good prediction and network performance of the ANNs. The quality and quantity of the 

historical data had a significant influence on the network performance, poor quality and fewer 

data resulted in poor prediction and ANN performance.  
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baffles in series (Barber & Stuckey, 1999). 

Anaerobic Digestion (AD) The process during which organic matter is converted to 

methane in the absence of oxygen (Xu et al., 2018). 

Artificial Neural Networks 

(ANN) 

Mathematical modelling tool that works the same way as a 

human brain by learning, processing and storing information 

(Gupta & Raza, 2020).  

Correlation coefficient (𝑅) The statistical relationship between two variables (Zhou et 

al., 2016). 

Chemical Oxygen Demand 

(COD) 

The amount of oxygen consumed during the chemical 

oxidation of organic compounds (Hassan et al., 2018). 

Expanded Granular Sludge 

Bed Reactor (EGSB) 

A combination of an up-flow and fluidised reactor (Cruz-

Salomón et al., 2019). 

Extrapolation  The estimation of data based on the sequence of data 

beyond the existing training data (Bartley et al., 2019). 

Generalisation The ability to work and handle unseen data (Mitchell et al., 

1986). 

Hidden Layer  The layer between the input and output layer where a set of 

weighted inputs generate output layers through an activation 

function (Di Franco & Santurro, 2021). 

Hydraulic Retention Time 

(HRT) 

The average time soluble particles remain in a reactor 

(Karaosmanoglu Gorgec & Karapinar, 2019). 

Mean Square Error (MSE) The difference between target and experimental output 

values (Yogitha & Mathivanan, 2018). 

MATLAB® A mathematical programming platform used to analyse and 

design systems developed by MathWorks (Maros & Juniar, 

2016). 

“Noisy” Data Corrupted data (i.e. meaningless) not used/read by 

mathematical programs (García et al., 2013). 

Normalisation  A technique used to prepare data in machine learning 

(Ahsan et al., 2021). 

Overfitting Poor generalisation of artificial neural network models due to 

noisy data and insufficient training data sets (Ying, 2019). 

Organic Loading Rate 

(OLR) 

The rate at which organic matter enters an anaerobic 

digestion system (Musa et al., 2018). 
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Outliers Data point measurements that are not representative of the 

general trend of the data, in the sense that they are 

numerically distant from the majority of data (Khamis et al., 

2005). 
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1.1 Background 

The necessity to treat wastewater is rapidly influenced by environmental concerns and water 

scarcity worldwide. This calls for the implementation and development of cost-effective 

methods to treat and manage wastewater (Aziz et al., 2019). This study is focused on the 

mathematical modelling of industrial biological wastewater treatment of biodiesel-, textile-, 

polymer- and pulp and paper wastewater.  

During the production and purification of biodiesel, large volumes of biodiesel wastewater 

(BDWW) with high concentrations of chemical oxygen demand (COD) (60 000 – 545 000 mg/l) 

oil and grease (O&G) (7 000 – 44 300mg/l), alcohol, soap, glycerol and low or high pH (8.5 – 

10) is generated. BDWW is difficult to bioremediate due to the low nitrogen and phosphorus 

concentrations, high pH and high levels of hexane-extracted oil (Daud et al., 2015a). 

Veljković et al. (2014) estimated that approximately 28 million m3 of BDWW was generated 

worldwide in 2011. In 2016, Brazil alone had an estimated 11.4 million m3 of BDWW generated 

(Ferreira et al., 2019).  

BDWW is generated from the washing process, this process is done to purify biodiesel fuel in 

order for its quality to meet the American Society Testing and Materials (ASTM) standard 

requirements. The washing process can be done using three different methods that include 

dry washing, wet washing and membrane extraction (Leung et al., 2010). In wet washing, 

residues such as soap, alcohol and sodium salts are removed from the biodiesel fuel using 

distilled water. This process is repeated (2 to 5 times) until clear colourless water is obtained 

(Veljković et al., 2014). Wet washing is more convenient although it may be time consuming 

and requires more energy (Chozhavendhan et al., 2020).  

In the dry washing technique, adsorbents and ion-exchange resins are used instead of water 

for the removal of impurities (Chozhavendhan et al., 2020). Therefore, in this process 

wastewater is not generated, although the end product never meets the European standard 

limits (Berrios & Skelton, 2008). The reduction of large volumes of excess water from biodiesel 

fuel brought about a new method, namely membrane extraction, to reduce the oil in the 

wastewater produced. The membrane extraction process is done to eliminate the 

emulsification process that could lead to less biodiesel fuel yield. Membrane extraction 

reduces the amount of water used in the production of BDWW (Leung et al., 2010). 

In the treatment process of biodiesel wastewater, anaerobic baffled reactors (ABR) produces 

less sludge (Kim et al., 2007). Phukingngam et al. (2011) reported on the performance of an 

ABR for treating biodiesel wastewater with organic waste removal efficiency of COD (100%), 

glycerol (100%), O&G (100%) and methanol (100%) which justifies excellent performance of 

the ABR system.  
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The manufacturing of wool, cotton and flax from textile industries produces large volumes of 

chemically contaminated wastewater, containing high concentrations of chemical oxygen 

demand (COD), biological oxygen demand (BOD), nitrogen, colour, surfactants  total 

dissolved solids (TDS), pH, colour, turbidity, but is mostly contaminated by dyes (Al-Mamun 

et al., 2019; Lafi et al., 2018). The textile industry focuses either on dry or wet fabric with 

operations such as desi zing, scouring, bleaching dyeing, printing, mercerisation, and finishing 

(Holkar et al., 2016). According to Sarayu & Sandhya (2012), about 50% of wastewater is 

generated from the desizing process in the textile finishing industry.  

Large consumption of water is widely used during the wet process in the dye house, which 

results in the production of wastewater (Paździor et al., 2019). Al-Mamun et al. (2019) and 

Syam Babu et al. (2020) reported that the world bank estimated about 17-20% of industrial 

wastewater from the textile industries, are generated from dyeing and finishing treatment 

processes (Holkar et al., 2016). Textile wastewater (TTWW) is harmful to human health and 

aquatic life as part of the food chain in the ecosystem (Al-Mamun et al., 2019), the discharged 

textile water inhibits direct sunlight in water streams which affect oxygen content resulting in 

the extinction of marine life (Lafi et al., 2018).  

The textile industry is one of the largest industries contributing to the economic growth of South 

Africa, however, the textile industry is in the top 80% of water users in the manufacturing 

stage. It was reported that about 36% of water used from the eThekwini municipality and 29% 

of water used in the City of Cape Town in textile manufacturing processes corresponds to the 

wastewater generated depending on the production process used in the textile industry (Le 

Roes-Hill et al., 2017).  

Polymers are natural and synthetic substances containing macromolecules used in municipal, 

industrial and agricultural industries. The metal coating and battery manufacturing industrial 

sector contributes to a large generation of polymer wastewater (PWW) (Nath et al., 2021).  

The large demand of paper has led to the growing of pulp and paper industries (Ping et al., 

2019; Krishna et al., 2014). According to Liang et al. (2021) in 2015, it was estimated that the 

production of paper was over 390 metric tonnes (Mt). Toczyłowska-Mamińska (2017) reported 

that the pulp and paper industries use about 5 to 100 m3 of water per 1 tonne of paper 

produced. The production of paper generates large volumes of pulp and paper wastewater 

(PPWW), globally contributing about 42% of three billion tonnes of industrial wastewater 

(Toczyłowska-Mamińska, 2017). PPWW is highly polluted with COD of about 10 000 mg/l or 

more and can be successfully treated using anaerobic treatment methods (Ravichandran & 

Balaji, 2020) with a removal efficiency of 60 to 97% of COD using an expanded granular sludge 

bed (ESGB) (Ping et al., 2019).  
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Pulp and paper industries consumes large volumes of water in the preparation of wood chips, 

cooking, pulp washing, screening, bleaching and dilution (Ravichandran & Balaji, 2020) which 

then generates wastewater (Vashi et al., 2018) depending on the on the type of production 

process used (Barapatre & Harit, 2016). The use of fresh water amounts to about 250 to 300 

m3 per tonne to paper produced (Nikjoo, 2018). 

To manage the quality of water, wastewater treatment methods are crucial. Due to 

environmental issues arising from wastewater discharged to municipal sewers, proper 

optimum operation and control of wastewater treatments plants is important (Hamed et al., 

2004). The current study focused on the prediction of biological wastewater treatment systems 

using anaerobic digestion (AD) for the treatment of biodiesel-, textile-, polymer- and pulp and 

paper wastewater. AD processes are known to be complex and nonlinear, as a result, 

mathematical modelling tools for the prediction of organic waste removal via biological 

treatment prior to discharge is preferred (Jain et al., 2015). Predicting organic waste removal 

such as COD is important because it determines whether the wastewater effluent can be 

discharged, thus predicting the downstream wastewater treatment plants (WWTP) 

performance. Prediction of organic waste effluent can be obtained from data driven modelling 

tools such as artificial neural networks (ANN) (Krivec et al., 2021). According to Elbisy et al. 

(2014), ANNs are excellent in prediction purposes for the water and wastewater treatment 

industry due to their nonlinearity, generalisation and adaptability.  

ANN modelling tools have been used over the past years because of their capability to identify, 

classify and solve real world problems. ANN are computer systems with process elements 

such as units and neurons or nodes (Ahmad et al., 2021). Three different types of ANN 

models, the feedforward backpropagation (FFB), the nonlinear autoregressive neural network 

model with exogenous inputs (NARX), and the cascade forward backpropagation neural 

network (CFBP) were developed to predict the biological wastewater treatment performance 

focusing on the chemical oxygen demand (COD) of the effluent. According to Ahmad et al. 

(2021); Gramatikov (2017) and Çoruh et al. (2014) FFB neural networks are the simplest and 

most commonly used ANN types. The FFB, NARX, and CFBP were employed to predict COD 

output from an ABR and EGSB reactor system using historical data obtained from previous 

biological biodiesel, polymer, pulp and paper and textile wastewater studies for the organic 

loading rate (OLR), and COD in the ANN as input parameters. 

 

1.2 Problem statement  

Many biodiesel, paper, polymer, and clothes-producing industries tend to dispose the 

untreated hazardous and chemically contaminated wastewater generated from purification 

processes into municipal drainage systems. This has a negative impact on the environment 
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due to the high levels of COD, BOD, fats, oil and grease (FOG), suspended solids (SS), 

alcohol, and other impurities present in industrial wastewater, which also has a potential of 

polluting surface and ground water. There has been water scarcity in the Western Cape, South 

Africa, since 2015. Individuals have been advised to reduce the amount of water used per 

day. Therefore, water-intensive industries such as biodiesel, textile, polymer and pulp and 

paper industries need to investigate methods that can be used to treat the wastewater 

generated to be reused for production or purification processes and to meet the City of Cape 

Town (CoCT) industrial effluent discharge limits. However, for acceptable wastewater quality 

prior to the discarding process, these industries need to predict the organic and inorganic 

waste removal efficiency and/or effluent concentration from the wastewater treatment 

approaches using mathematical modelling tools, which will determine treatment system 

performance and whether the wastewater can be discharged in future.  

 

1.3 Aim and objectives  

The main intent of this project was to evaluate the feasibility of ANNs to identify correlated 

patterns between data sets and corresponding target values of COD from biological 

wastewater treatment systems. 

The objectives of the project are to: 

a. Identify a suitable artificial neural network (ANN) model for biological wastewater 

treatment systems 

b. Investigate the impact of wastewater type on the ANN model development 

c. Investigate the impact the type of biological treatment system has on the ANN model 

development. 

 

1.4 Research questions 

The following research questions were answered by this study: 

a. How accurately can artificial neural networks (ANNs) predict the performance of 

biological wastewater treatment systems? 

b. How does the type of wastewater by treated influence the ANN model’s performance?  

c. Does the type of biological wastewater treatment influence the ANN model’s 

performance?  

 

1.5 Delineation  

During the prediction of biological wastewater treatment performance, the following were not 

covered: 
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a. Investigating the impact of reactor size. 

b. Biogas analysis. 

c. Manual selection of dividerand data sets in MATLAB®. 

d. Manual adjustments of ANN weights. 

e. Use of software(s) for data pre-processing. 

f. Adjustments of number of ANN layers. 

g. Investigating the effect of organic loading rate variation in ANNs. 

 

1.6 Significance of study 

This study outlines the importance of industrial wastewater treatment in biodiesel, textile, 

polymer and pulp and paper producing industries prior to discharging to municipal drains. 

Biological wastewater treatment methods were used to treat biodiesel-, textile-, polymer- and 

pulp and paper wastewater. This method is beneficial in accordance with the industrial effluent 

discharge standard limits in Cape Town (South Africa (Western Cape), 2013), as it has proven 

to be more efficient in organic and inorganic waste removal. The main purpose of this study 

was to develop mathematical modelling tools to successfully predict biological wastewater 

treatment performance. The study highlights a convenient and cost-effective method to predict 

COD effluent concentration from biological wastewater systems while introducing knowledge 

on the use of ANNs for analysis and prediction purposes. ANNs can determine whether the 

biological wastewater treatment plants will result in treated industrial wastewater acceptable 

for discharge.  

This study will benefit industrial wastewater treatment industries considering the 

implementation of mathematical modelling tools and provide clear information for future 

researchers interested in artificial intelligent (AI) models for wastewater treatment plant 

performance system prediction.   
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2.1 Introduction  

This chapter outlines important aspects with regards to industrial wastewater treatment of 

biodiesel (BDWW), textile (TTWW), polymer (PWW) and pulp and paper wastewater (PPWW) 

using biological wastewater treatment systems mainly focussing on anaerobic digestion (AD). 

Biological treatment methods have been proven to achieve high removal efficiencies with low 

chemical and energy consumption compared to chemical treatment techniques (Liu et al., 

2019a). It examines the necessity for proper operation and improved wastewater treatment 

methods and the use of cost effective empirical mathematical prediction modelling tools such 

as artificial neural networks (ANNs) published in literature over the last 10 years, which justifies 

the need for this research study. ANN is an artificial intelligence (AI) tool that works the same 

way as a human brain by processing and storing information to solve real problems (Hassen 

& Asmare, 2019). ANNs have been employed in modelling wastewater treatment methods 

due to their high accuracy and ability to solve nonlinear problems (Saleh, 2021).  

 

2.2 South Africa’s water crisis 

Water is a limited natural resource in South Africa, being a semi-arid country. In 1998, it was 

forecast that South Africa would experience extreme drought disasters by the 2025 with less 

than 1000 m3 per capita available for supply per year (Otieno & Ochieng, 1998). It was later 

predicted by Harding et al. (2017) that this would happen by 2040. According to Falizi et al. 

(2018) about 50% of the world population will be located in water stressed areas by 2025. The 

water demand has been anticipated to escalate by 32% due to population growth and 

industrial development by the year 2030 (Webster & Ras, 2016). Furthermore, there has been 

insufficient rainfall at about 500 mm per annum occurring in South Africa. The stress on water 

as a resource is further exacerbated by economic and population growth, migration of citizens 

from rural to urban areas and climate change (Wanjiru & Xia, 2018). 

Water scarcity poses an extreme threat to agriculture and the global economy (Alam, 2015). 

In 2015 is was reported that South Africa, particularly the Western Cape has been 

experiencing a water crisis since 1904 (Booysen et al., 2019). Households in the Western 

Cape were advised to reduce their use of water from 540 to 280 L per day to avoid the 

approach of dry tabs, day zero (Booysen et al., 2019). Drought as a natural disaster does not 

only affect the citizens, but agriculture as well (Alam, 2015). 

Bwapwa (2018) investigated the causes of the polluted water resources and demonstrated 

that power generation, urbanisation, mining and industries are the main causes of water 

pollution (Bwapwa, 2018). Bwapwa (2018) also observed that the pollution of water has a 
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negative environmental impact in South Africa and poses a threat to the agricultural sectors, 

marine life and human health (Bwapwa, 2018).  

South African citizens rely on sources of water such as lakes and dams. However, these sites 

are conventionally used for industrial and domestic wastewater discharge resulting in water 

pollution affecting most developing countries such as South Africa (Figure 2.1) (Rodríguez et 

al., 2017). The focus of this study was on the biological treatment of industrial wastewater, 

mainly biodiesel-, textile-, polymer- and pulp and paper wastewater. 

 

Figure 2.1: Types of wastewater, adapted from Rodríguez et al. (2017) 

 

Types of industrial wastewater include the following (Yuliasni et al., 2023): 

• Brewery  

• Petrochemicals and refineries  

• Mining 

• Cane sugar 

• Pharmaceutical  

• Dairy 

 

2.3  Overview of industrial wastewater 

Biodiesel wastewater (BDWW) is a liquid with an opaque white colour (Jaruwat et al., 2010), 

which is produced from the purification step of the biodiesel fuel production process. The 

purification process is repeated several times to ensure the fuel is impurity free, about 20-

120 L of wastewater is generated per 100 L of biodiesel produced (Daud et al., 2015a). In 

Wastewater 

Industrial Domestic

Blackwater

Urine Faeces

Greywater

Bathroom Laundry Kitchen

Stormwater 
Runoff
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Thailand, the production of about 350 000 L/day of biodiesel was reported to be associated 

with more than 70 000 L of BDWW per day. This BDWW was shown to be composed of among 

other components alcohol like methanol and soap which causes high chemical oxygen 

demand (COD) and oil and grease (O&G) (Ngamlerdpokin et al., 2011). Table 2.1 shows the 

quantities of BDWW produced as reported in literature 

Table 2.1: Volume of biodiesel produced daily and the corresponding biodiesel wastewater produced 

Production (L/day) Wastewater (L/day) References  

1 0.2-3 Veljković et al., 2014 

100 20-120 Daud et al., 2015 

350 000 70 000 Jaruwat et al., 2010 

6000 000 1200 000 Pitakpoolsil et al., 2014 

The production of pulp and paper and textile products as growing industries, consumes large 

volumes of clean water, which then generates large volumes of wastewater containing 

products of lignin, carbohydrates and extractives from wood preparation, pulping, pulp 

washing, coating and bleaching (Hubbe et al., 2016); and high concentrations of chemical 

oxygen demand (COD), biological oxygen demand (BOD), nitrogen, colour, surfactants  total 

dissolved solids (TDS), pH, colour, turbidity, but is mostly contaminated by dyes (Al-Mamun 

et al., 2019; Lafi et al., 2018) from desizing, scouring, bleaching dyeing, printing, 

mercerisation, and finishing (Holkar et al., 2016), respectively. These industries tend to reuse 

a small ratio of water for the production process (Toczyłowska-Mamińska, 2017). It was 

estimated that the textile industry consumes roughly 21 to 377 m3 of water per 1 tonne of 

textile product (Asghar et al., 2015). In Pakistan, it was estimated that textile wastewater 

contributes about 288 326 million gallons of industrial wastewater out of the 926 335 million 

gallons of wastewater produced (Fazal et al., 2018). According to a review paper by Hubbe et 

al. (2016) pulp and paper production process use about 70% clean water.  

 

2.3.1 Characteristics of industrial wastewater 

a) Chemical Oxygen Demand (COD) 

The chemical oxygen demand (COD) is used to characterise wastewater and is of significance 

in controlling wastewater treatment plants (Zheng et al., 2008). COD is measured chemically 

by analysing the organic matter present in wastewater (Abdalla & Hammam, 2014). High 

levels of COD in BDWW are caused by the presence of glycerol, soap, methanol, residual oil 

and methyl esters (Ngamlerdpokin et al., 2011). BDWW especially in oil industries has high 

levels of COD which results in environmental concerns (Yu et al., 2021). If untreated BDWW 

with high levels of COD is discharged to public/municipal drains, it will have a negative impact 
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to marine life and subsequently the environment (Lee et al., 2021). According to Hossain et 

al. (2018) textile wastewater has high COD and biological oxygen demand (BOD) 

concentrations from the sizing and desizing stages. Table 2.2 shows the quantities of COD 

present in different types of industrial wastewater as reported in literature. 

Table 2.2: Chemical oxygen demand quantities for different types of wastewater 

Feedstock Chemical Oxygen demand (COD) mg/L References  

Palm oil 5900 Daud et al., 2015 

Vegetable oil 312-588 Ngamlerdpokin et al., 2011 

Waste cooking oil 428 000 Siles et al., 2010 

Vegetable oil 19-37 Daud et al., 2014 

Industrial waste  34.980 Cheirsilp et at., 2011 

Textile  150-10000 Asghar et al., 2015 

Textile 250-8000 Fazal et al., 2018 

Textile 315-2607 Cinperi et al., 2019 

Textile 728-1033 De Jager et al., 2014 

Textile 1835-3828 Syam Babu et al., 2020 

Wood 500-115000 Toczyłowska-Mamińska, 2017 

Wood 5540 Bakraoui et al., 2019 

 

b) Oil and grease (O&G) 

Oil and grease (O&G) concentration in BDWW is dependent on the type of oils used as 

feedstock to produce biodiesel fuel (Table 2.3). O&G contains free fatty acids (FFA) such as 

triacylglycerols (TAG), phospholipids, sterols and esters depending on the source generating 

the oils. FFA content depends on the type of O&G, such that yellow grease contains less than 

15% FFA while brown grease contains more than 15% FFA (Abomohra et al., 2020). Owning 

to this, the disposal of BDWW into public sewers causes clogging of pipes, making it hard for 

water to flow through. The oil in the wastewater has toxic substances, these include phenols, 

petroleum hydrocarbons and polyaromatic hydrocarbons which may cause plants not to grow 

(Alade et al., 2011). Oily water is harmful to marine life, which means humans are also at risk 

as they form part of the food chain in the ecosystem (Alade et al., 2011). Table 2.3 shows the 

quantities of O&G present in different industrial wastewaters. 

 

 

 



 

12 | P a g e  

Table 2.3: Oil and grease in industrial wastewater 

Feedstock  Oil and grease (O&G) mg/L References 

Palm oil 2680 Daud et al., 2015 

Crude palm oil 6020 Chavalparit et al., 2009 

Vegetable oil (plant in Thailand) 18-22 Jaruwat et al., 2010 

Palm oil 4000-6000 Alade et al., 2011 

Canola oil 25252 Tanattı et al., 2018 

Textile 17 Rakkan et al., 2021 

 

c) Suspended solids (SS) 

Suspended solids (SS) are the mass and concentration of organic and inorganic matter 

present in water, lakes, reservoirs or rivers causing it not to move, be stationary or be in an 

unsteady motion. SS in wastewater causes ecological degradation of marine life and the 

treatment of water with high levels of SS is expensive. This characteristic of wastewater 

contains high organic content, which consumes all the oxygen present in water leading to the 

destruction of aquatic life (Bilotta & Brazier, 2008). Table 2.4 illustrates the quantities of SS in 

industrial wastewater as reported in literature. 

Table 2.4: Suspended solids in industrial wastewater 

Feedstock Suspended solids (SS) mg/L References  

Palm oil 348 Daud et al., 2015 

Vegetable oil 233-405 Daud et al., 2014 

Canola oil  12800 Tanattı et al., 2018 

Vegetable oil 1,500-28,790 Rattanapan et al., 2011 

Textile  100-700 Fazal et al., 2018 

Textile  325 Rakkan et al., 2021 

 

d) pH 

The pH level is used to determine the success of biological treatment systems such as an 

anaerobic baffled reactor (ABR) used for anaerobic digestion (AD). Optimum pH levels for 

biological processes range from 6.8 – 7.7 (Al Smadi et al., 2019). 

 

2.4 Different treatment techniques of industrial wastewater 

Types of wastewater treatment techniques include physical, chemical and biological treatment 

processes. Wastewater can be treated using one or a combination of two or more treatment 

techniques. Physical treatment includes sedimentation and screening and is normally used as 

a primary treatment method to remove solid particles and immiscible liquids prior to the 
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implementation of biological treatment. Chemical treatment methods include oxidation 

reactions to treat industrial wastewater. Biological treatment methods use microorganisms (i.e. 

bacteria) to break down organic compounds in wastewater. During this process, the bacteria 

multiplies as it feeds on nutrients present in the wastewater and the waste is then converted 

to CO2 and CH4 (Aljuboury et al., 2017). Table 2.5 illustrates the different types of wastewater 

treatment methods. 

 

2.4.1 Biological treatment of industrial wastewater  

Biological treatment methods can be categorised by suspended growth such as the activated 

sludge process, adding powdered activated carbon process for treated water of high quality, 

sequencing batch reactor (SBR), continuous stirred tank bioreactor (CSTB), membrane 

bioreactor (MBR) and fluidised bed bioreactors (FBB) (Jafarinejad et al., 2017). Biological 

treatment can be classified as anaerobic and aerobic biological treatment methods, these 

methods are affected and influenced by nutrients and oxygen supply, hydraulic retention time 

(HRT), pH and the physicochemical properties of the wastewater. The nutrients are essential 

to stabilise bacterial growth, while oxygen supply is dependent on the type of biological 

treatment method used (Shi et al., 2016).  

The pH and HRT are two of the most important controlling parameters in biological treatment. 

Unfavourable pH causes biomass washout in ABR systems. The acidic or alkaline pH has an 

effect on the microbial population, adaptability, sustainability and growth in biological systems 

(Shi et al., 2016). High HRT has a slow reaction outcome, which has a positive effect on the 

biomass capacity and also results in fast bacterial growth (Daud et al., 2015). Chen et al. 

(2020) reported on the treatment of glutamate-rich wastewater investigating the effect of HRT 

using an up-flow anaerobic sludge blanket (UASB) reactor and observed that the COD 

removal efficiency increased to 95% as the HRT increased from 4.5 to 6 hours. Shi et al. 

(2016) investigated the effect of pH and HRT in anaerobic baffled reactor (ABR) start up and 

discovered the HRT has an influence on the pH, short HRT causes sludge washout which 

results in loss of methanogens bacteria and fluctuating pH (Alepu, Odey et al., 2016).   

This study was focused on the anaerobic biological treatment process. Compared to aerobic 

biological treatment, anaerobic treatment has high organic removal efficiencies at a lower cost. 

Liang et al. (2021) reported that anaerobic treatment processes are capable of removing about 

70% of pollutants in pulp and paper wastewater with maximum COD of 7000 mg/l. Different 

types of reactors have been used for the treatment of industrial wastewater including the 

UASB reactor and 82% COD removal efficiency was obtained from the treatment of petroleum 

wastewater using an up-flow UASB reactor (Aljuboury et al., 2017). 



 

14 | P a g e  

Table 2.5: Different wastewater treatment methods 

Treatment method Brief description  References  

Coagulation  This treatment process is when a coagulant is added for the separation of particles which then 

flocculate into large particles in a solution. The large particles (i.e. flocs) reduce COD, SS, and 

colour. Coagulation is also capable of removing metals present in the wastewater and removing 

toxic waste. This treatment method is very expensive and the` wastewater produced requires 

further treatment because of its low quality.  

Daud et al., 2014; 

Ngamlerdpokin et al., 2011 

Electrocoagulation Electrocoagulation is a treatment method that utilises electrical current in the process of treating 

impurities present in wastewater. This method uses fewer chemical coagulants. Wastewater with 

phenols is one of the wastes treated using electrocoagulation. It produces less sludge; the waste 

requires less treatment time and operates in a simple equipment set-up. 

Daud et al., 2014; Butler et 

al., 2011 

Biological treatment  Biological treatment uses microorganisms to breakdown organic matter These methods are mostly 

used for the treatment of BDWW, although not much research has been done on it. 

Daud et al., 2014; 

Chowdhury et al., 2010  

Adsorption  This treatment method is mostly used in separating chemical compounds from BDWW. It does not 

produce sludge and the pH of the wastewater does not have to be adjusted. 

Daud et al., 2014 
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2.4.2 Biological wastewater treatment advantages  

The following advantages guarantees water purification through biological wastewater 

treatment processes (Khataee & Kasiri, 2011): 

a) Operation at ambient temperature.  

b) High energy recovery. 

c) Reduction in aquatic toxicity.  

d) Effective operational and capital costs. 

e) Oxidation of organic compounds in aerobic processes. 

f) Purification of wastewater by removing contaminants such as ammonia via 

denitrification. 

 

Table 2.6 shows organic waste removal efficiencies using biological treatment processes 

adapted from (Daud et al., 2015). 

Table 2.6: Removal efficiency of biodiesel wastewater contaminants (Daud et al., 2015) 

Treatment 

method  

Microorganism Wastewater Wastewater 

characteristics 

Parameters 

COD Other 

Algae plate Rhodotorula 

mucilagiinosa 

Raw BDWW; 

artificial 

wastewater 

Raw biodiesel fuel 

(BDF) wastewater; 

pH: 11; Oil: 15.1 g/L; 

Solids: 2.67 g/L 

- Oil: 98.0% 

Rotating 

biological 

contactor 

Bacillus cepacia Diesel – rich 

wastewater 

pH: 7.5; total COD 

(TCOD): 4512 mg/L; 

total petroleum 

hydrocarbons (TPH): 

4961 mg/L 

97.0% TPH: 

98.4% 

Batch reactor  Textile 

wastewater 

treatment 

inoculums  

Palm oil 

biodiesel 

wastewater  

pH: 11.1; 

COD: 3681mg/L; 

total organic carbon 

(TOC): 1700 mg/L; 

O&G: 387 mg/L 

90.0% TOC: 

21% 

 

2.5 The City of Cape Town (CoCT) wastewater and industrial effluent by-law (2013) 

It is stated in the Constitution of the Republic of South Africa Section 24 situated in 1996 that: 

“everyone has the right to an environment that is not harmful to their health and well-being 

and the right to have the environment protected through legislative and other measures that 

prevent pollution and ecological degradation”. The environmental legislation on industrial 

wastewater discharge is related to the National Environment Management Act (NEMA) 62 of 

2008 which was introduced and effective from 2009 in support of this right. The NEMA Act 



 

16 | P a g e  

107 of 1998 was implemented to ensure that every organisation obtains environmental 

authorisation before commencing any activities listed in the NEMA terms. Tables 2.7 and 2.8 

outlines the standard limit of wastewater discharge in Cape Town and several other countries 

including organisations such as the World Health Organisation (WHO) and United States 

Environmental Protection Agency (USEPA). 

 

Radelyuk et al. (2019) reported that WHO is regarded as the main international organisation 

for public health and water quality. WHO provides scientific national regulations to 

governments. According the WHO guidelines, treated wastewater must be within the standard 

limits before discharging to public drainage (Javadinejad et al., 2020; Vojtěchovská Šrámková 

et al., 2018).  

Table 2.7: Industrial wastewater discharge standard limits (City of Cape Town, 2013) 

 

Parameters Maximum standard discharge limit 

Suspended solids (SS) 1000 𝑚𝑔/𝐿 

Total dissolved solids (TDS) 4000 𝑚𝑔/𝐿 

Chemical oxygen demand (COD) 5000 𝑚𝑔/𝐿 

Fats, Oil, and grease (FOG) 400 𝑚𝑔/𝐿 

pH 12.0 

Electricity Conductivity (EC) 500 𝑚𝑆/𝑚 

Sodium (Na) 1000 𝑚𝑔/𝑠 

Total sulphides (S) 50 𝑚𝑔/𝐿 

Chloride (Cl) 1500 𝑚𝑔/𝐿 

Total sulphates (SO4) 1500 𝑚𝑔/𝐿 

Total phosphates (P) 25 𝑚𝑔/𝐿 

Total cyanides (CN) 20 𝑚𝑔/𝐿 

Total lead (Pb) 5 𝑚𝑔/𝐿 

Total zinc (Zn) 30 𝑚𝑔/𝐿 

Total iron (Fe) 50 𝑚𝑔/𝐿 

Total copper (Cu) 20 𝑚𝑔/𝐿 

Total chromium (Cr) 10 𝑚𝑔/𝐿 

Total mercury (Hg) 5 𝑚𝑔/𝐿 
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Table 2.8: Industrial wastewater discharge limits worldwide 

*European Countries: France, Germany and Poland 

 

  

 

 

Organisation / 

Country  

FOG (mg/l) COD (mg/l) pH BOD (mg/l) TDS (mg/l) SS (mg/l) References  

European 

Countries*  

50 200 - 40 - 50 Hessel et al., 

2007 

USEPA - 25-45 6-9 125 - 30-45 Mavinic et al., 

2018 

China - 100-1000 6.9 20-600 - 70-800 Hao et al., 2019 

United Kingdom <100 - 6-10 - - <400 Helmer & 

Hespanhol, 1997 

Canada - 25 6-9 25 - 25 Mavinic et al., 

2018 

India  - 250 5.5-9 30 150 2100 Islam & Mostafa, 

2019 
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2.6 Anaerobic baffled reactor (ABR) and expanded granular sludge bed (EGSB) for 

wastewater treatment  

Anaerobic baffled reactors (ABR) produce less sludge and can separate different phases of 

anaerobic catabolism (Kim et al., 2007). An ABR first was developed by McCarty in 1981 with 

advantages based on the way it was constructed, biomass and chambers that enhance the 

digestion process and organic matter removal (Shi et al., 2016). The most important 

advantage of ABRs is that it can keep the processes of acidogenesis and methanogenesis 

separate making the reactor a two-phase system and therefore cost effective (Barber & 

Stuckey, 1999). The expanded granular sludge bed (EGSB) reactor was developed from an 

UASB reactor (Miao et al., 2018). An ESGB was designed to allow sufficient mixing of the 

wastewater and anaerobic granular sludge due to its recirculation features that promotes 

sustainability and better reactor performance (Cruz-Salomón et al., 2020; Williams et al., 

2019). Li et al. (2019) mentioned that EGSBs are considered to be among the best anaerobic 

reactors due to highly efficient organic waste elimination and according to Yang et al. (2018) 

anaerobic sludge granulation has been receiving much attention for wastewater treatment 

compared to anaerobic sludge processes due to the high removal efficiency of contaminants 

and biogas production. 

Both the ABR and EGSB reactors have long start up periods ranging from 30 days up to 60 

days. However, for the EGSB reactor, the long start up period can be reduced by adding metal 

ions and granular activated carbon (GAC) (Yang et al., 2018). According to Phukingngam et 

al. (2011), the start up time for ABRs takes approximately two months for the microorganisms 

to stabilise in an ABR system. This is because of the slow growth of the methanogen microbes 

in the anaerobic reactor. During the start up period, ABRs have to be operated at low organic 

loading rates which guarantees high biogas production (Ramandeep, 2016).  

 

2.6.1 The concept of an ABR and EGSB wastewater treatment design 

ABR uses baffles for the wastewater to flow vertically from the influent to effluent (Bachmann 

et al., 1985). Table 2.9 illustrates ABR organic waste removal efficiencies for the treatment of 

various types of wastewater, while Table 2.10 lists the advantages and disadvantages of the 

different anaerobic methods used to treat wastewater as reported in literature. Most biodiesel 

producing industries that use the alkali-catalysis transesterification process produce large 

volumes of wastewater containing oils and alcohols which would be suitable to be treated 

using an ABR (Phukingngam et al., 2011). Figure 2.2 illustrates an example of an ABR system.
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Table 2.9: Treatment efficiencies of various anaerobic reactors  

Type of 

wastewater  

Type of reactor  Organic loading 

rate (kg/m3/day) 

COD inlet 

(g/L) 

COD removal (%) HRT (hours) References  

Slaughterhouse ABR 0.2 - 0.825  

 

- 29 - 92 42  Al Smadi et al., 

2019b 

Brewery  UASB 12 - 89.1 4  Dutta et al., 2018 

Dairy  Anaerobic filter (AF) 17 30 80 38.4 Karadag et al., 2015 

Dairy Anaerobic fluidised 

bed reactor (AFBR) 

15.6 0.2-0.5 94.4 1.992-7 Karadag et al., 2015 

Synthetic ESGB 1.80 426.6 62-82.3 6 Yang et al., 2018 

Slaughterhouse  EGSB 2 - 93 115.2 Williams et al., 2019 
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Table 2.10: Anaerobic treatment technologies (Shende & Pophali, 2021) 

Anaerobic treatment technology  Advantages of anaerobic 

treatment technology 

Disadvantages of anaerobic 

treatment technology 

Precautions  

ABR Two-phase system separating 

acidogenesis and methanogenesis. 

Long start up time resulting in the 

accumulation of VFA in the reactor 

OLR must be low to promote 

microbial growth, the recommended 

OLR is 1.2 COD/m3d. 

UASB High settleability forming the sludge 

blanket at the bottom while retaining 

the sludge.  

Long start up time.  Always maintain a high up-flow 

velocity of 0.6 to 0.9 m/hr in order to 

form granules and to wash out non-

flocculent sludge. 

AF Easily and locally available media.  Clogging of the reactor resulting in 

faulty connection of power 

lines/wires.  

Media balance between specific 

surface area and porosity.  

Anaerobic hybrid reactor (AHR) Cost effective media. High organic loading rate (OLR). Carefully place media on top of the 

reactor to avoid falling at the bottom.  

Anaerobic membrane bioreactor 

(AnMBR) 

Complete retention of biomass. Expensive.  Reduce membrane fouling by gas 

sparging.  
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Figure 2.2: Schematic diagram of an experimental ABR system:1 – wastewater feed tank, 2 – effluent 
collection tank, 3 – liquid sampling ports, 4 – sludge sampling ports, 5 – gas/water displacement system, 
6 – gas sampling port, adapted from Phukingngam et al. (2011) 

 

2.6.2 Advantages of anaerobic baffled reactor (ABR) and expanded granular sludge 

bioreactor (EGSB) 

According to Yang et al. (2018), Mortezaei et al. (2018) and Barber & Stuckey (1999) the 

following advantages apply to ABR and EGSB reactor systems:  

• Low sludge yield. 

• High solid retention time.  

• Low capital and operating costs. 

• Low hydraulic retention time (HRT). 

• Stable to organic shock. 

• ABRs can separate acidogenesis and methanogenesis in the reactor thereby behaving 

as a two-phase system. 

• Low energy requirements. 

• Simple and easy to design. 

• Easy to operate. 

• High removal efficiency of contaminants.  

• High removal efficiency of soluble pollutants.  

 

2.6.3 Disadvantages of anaerobic baffled reactors (ABR) and expanded granular 

sludge bed (EGSB) reactors 

ABRs being simple to design is an advantage, but also a disadvantage at the same time. For 

an even feed distribution of the liquid and gas velocities, a shallow reactor design must be 

used (Barber & Stuckey, 1999). Without a design expert, this could result in a delay in the start 
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up of the reactor and bacteria washout (Liu et al., 2010). A disadvantage of the EGSB reactor 

includes failure to meet standard effluent discharge limits and the ineffective removal of 

suspended solids (Mortezaei et al., 2018). 

 

2.6.4 Anaerobic digestion (AD)  

Anaerobic digestion (AD) is the conversion of organic matter to biogas in the absence of 

oxygen (Zhang et al., 2016). AD is alternatively called bio-gasification and serves as an 

important technology in most industries for industrial and municipal wastewater treatment and 

energy production (McAteer et al., 2020). Wastewater treatment processes tend to produce 

large amounts of sludge which is an expensive problem to solve. However the use of an 

anaerobic digester tends to reduce the volume of sludge production (Madsen et al., 2011). 

The main use of an AD process is to produce water and gas that can be reused in the absence 

of negative health implications to human beings and the environment (Kleerebezem et al., 

2015). 

In the AD reaction, the biogas produced contains 60-70% methane gas (Li et al., 2011). 

Organic and inorganic matter requires the following processes for the AD reaction to be 

complete, namely hydrolysis, acidogenesis, acetogenesis and methanogenesis. Figure 2.3 

shows the processes that occur during AD of organic material. 

The first reaction to take place during the AD process (Figure 2.3) is the hydrolysis reaction 

where complex organic polymers are broken down to simple soluble molecules by extracellular 

enzymes and proteins, while carbohydrate polymers are hydrolysed to amino acids, long-

chain fatty acids and sugar. This reaction determines the conversion effectiveness of the 

biomass (Li et al., 2011). The compounds which were reduced are then fermented by bacteria 

to short chain volatile fatty acids, carbohydrates, hydrogen and acetic acid, this phase is called 

the acidogenesis. The bacteria present in the acidogenesis phase is responsible for the 

degradation of the simple organic compounds from the hydrolysis phase to volatile acids (i.e. 

propionic acid), carbon dioxide and alcohols (Li et al., 2011).  

The volatile acids are then broken down to hydrogen gas by acetogenic microorganisms 

present in the acetogenesis phase. The final reaction which is methanogenesis is where 

methane is produced (Gude, 2016). This is where the methanogenetic bacteria consumes 

acetate, carbon dioxide and hydrogen to produce methane containing biogas as the final 

product and main focus of the AD process (Kleerebezem et al., 2015; Li et al., 2011)  
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Figure 2.3: Organic material through anaerobic digestion, adapted from Aziz et al. (2019) 

 

2.6.5 Activated sludge (AS) 

The activated sludge (AS) process for wastewater treatment, with the aim to remove organic 

compounds, was developed 100 years ago (Korzeniewska & Harnisz, 2018). According to 

Gao et al. (2016), the AS process is best used for the treatment of domestic and industrial 

wastewater because it contains various active microorganisms. AS has aerobic and anaerobic 

microorganisms including bacteria, Archaea, fungi and protists used for breaking down 

organic pollutants present in domestic and industrial wastewater (Shchegolkova et al., 2016).  

 

2.7 Anaerobic baffled reactor (ABR) and expanded granular sludge bed (EGSB) 

reactor operational parameters 

The following are conditions or parameters required by anaerobic bioreactors to operate in a 

desired manner, and includes the pH, temperature, hydraulic retention time (HRT) and organic 

loading rate (OLR). 
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2.7.1 The effect of pH on ABR and EGSB reactor systems 

pH is one of the most important factors in the AD process, by providing a suitable environment 

for the microorganisms present in the anaerobic digester.  Microorganisms prefer a neutral pH 

of 7 to function well. In the acidogenesis phase the pH value can range from 4.0 to 8.5 as the 

microorganisms are not too sensitive to the pH during this phase. However, for biogas 

production the pH value is required to range from 6.8 to 7.2 during the methanogenesis phase, 

(Hagos et al., 2017).  

In the early 2000s, Du (2007) discovered that the bacteria in anaerobic digestors can be used 

to generate both electricity and break down organic matter. ABRs consist of compartments 

with the pH to decrease from the first to the last compartment depending on the number of 

compartments. To prevent system failure the pH can be adjusted using either sodium 

hydroxide (i.e. NaOH) or sodium hydrogen carbonate (i.e. NaHCO3) (Ramandeep, 2016). 

Liu et al. (2019b) reported the effect of pH on hydrolytic acidification performance and bacterial 

community in an EGSB reactor and observed a stable average COD removal rate of 40% at 

a pH of 8, which decreased to 30.3% at a pH of 6 and 30.8% at a pH of 4. An Illumina MiSeq 

sequencing was used for microbial community and the best microbial community was 

observed at pH 6. 

 

2.7.2 Temperature  

According to Liao et al. (2018) temperature is a major parameter in bioreactors. The ABR 

treatment efficiency depends on temperature variation. However, previous studies 

(Khalekuzzaman et al., 2018) have observed that there is little to no effect on the ABR 

treatment efficiency when the influent temperature is at 25℃ to 35℃. In 2019, Al Smadi et al. 

conducted a study on the treatment of slaughterhouse wastewater using an ABR operating at 

temperatures ranging from 15℃ to 23℃ and later increased the temperature to 40℃, which 

resulted in an increase in COD and total suspended solid (TSS) removal efficiencies from 70% 

and 33% to 90% and 44%, respectively. Ramandeep (2016) also stated that, bacteria in ABRs 

require temperatures ranging from 25℃ to 35℃ for maximum growth, while a temperature of 

less than 25℃ prevents maximum organic removal efficiency (Yao et al., 2018, Xu et al., 

2018). 

 

2.7.3 The effect of organic loading rate (OLR) on COD removal efficiency  

COD is a parameter used to measure organic waste in anaerobic systems (Cruz-Salomón et 

al., 2020). OLR controls the performance of ABRs. High OLRs result in better ABR 
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performance with respect to COD removal and biogas production. A study on the treatment of 

municipal wastewater using a modified ABR operating at three OLRs of 0.258, 0.787, 2.471 

kg COD/m3/d showed an increase in COD removal from 95% to 99% as the OLR increased 

(Chelliapan et al., 2017). A slight decrease in COD removal was observed at an OLR of 0.787 

kg COD/m3/d, this was due to a sudden increase in OLR. The methanogenic bacteria 

responsible for the breakdown of organic matter experienced organic shock. This can be 

prevented by feeding the ABR with methane precursors, acetate, an acetate formate mixture 

or by adjusting the pH with either NaOH or phosphoric acid (i.e. H3PO4) in the first 

compartment of the ABR before increasing the OLR (Barber & Stuckey, 1999). Zhu et al. 

(2015) concluded that in order to achieve greater organic removal efficiency when treating low 

concentrated wastewater, the HRT should be low with a high OLR. However, when treating 

high concentrated wastewater, a low OLR is preferred to guarantee complete biodegradation 

of the organic matter.  

In ABRs, the OLR can be set at different levels for the removal of COD, O&G, glycerol and 

methanol. Phukingngam et al. (2011) studied the performance of an ABR treating BDWW and 

discovered that 82% of O&G was removed from the BDWW at an OLR of 0.5 to 1.5 kg 

COD/m3/d, but decreased to 43% when the OLR was increased (Phukingngam et al., 2011). 

According to Cruz-Salomón et al. (2020) EGSBs operate at high OLRs of up to 40 kg 

COD/m3/d. Maleki et al. (2018) used a submerged membrane bioreactor to investigate the 

effect of OLR and observed an increase in OLR ranging from 1.36 to 3.18 kg COD/m3/d 

resulted in a decrease in COD removal efficiency from 94.1 to 90.2%.  

 

Li et al. (2019) used an EGSB to treat cephalosporin wastewater at an OLR ranging from 5.70 

to 9.96 kg COD/m3/d. A high COD removal efficiency of 72% was achieved at an OLR of 9.96 

kg COD/m3/d. 

The organic loading rate (OLR) is the rate at which organic matter is introduced into a reactor 

and can be determined using Equation 1.  

𝑂𝐿𝑅 =
𝑂𝐶𝑓𝑒𝑒𝑑

𝐻𝑅𝑇 
        1) 

Where, 𝑂𝐿𝑅 is the organic loading rate (kg COD/m3/d); 𝑂𝐶𝑓𝑒𝑒𝑑 is the organic matter 

concentration of the feed substrate (kg COD/m3) and 𝐻𝑅𝑇 is the hydraulic retention time in 

days (Sukkasem et al., 2011).  
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2.7.4 The effect of hydraulic retention time (HRT) on the removal of chemical oxygen 

demand (COD) in ABRs and EGSBs 

ABRs and EGSB reactors are controlled by HRT which has a great influence on hydrogen 

transfer and the AD process (Cruz-Salomón et al., 2018). Thanwised et al. (2012) discovered 

that the COD removal increased when the HRT was decreased from 24 to 18 hours and 12 to 

6 hours. It was observed that COD was removed through the formation of gases (i.e. CO2 and 

H2) while the rest of the COD was converted to liquid intermediates (e.g. ethanol) where the 

acidogenesis phase was quite dominant (Thanwised et al., 2012). Thanwised et al. (2012) 

concluded that COD removal efficiency during acidogenesis was less than during 

methanogenesis. 

Li et al. (2019) treated wastewater using an EGSB and observed the effect of HRT on COD 

removal efficiency. When the EGSB operated at an OLR of 3.6 kg COD/m3/d with an HRT of 

24 hours the resulting COD removal efficiency was greater than 60% and suddenly decreased 

to 40% when OLR was increased to 4.32 kg COD/m3/d. An increase in the HRT to 25 hours 

resulted in the COD removal efficiency increasing back up to 60%. According to Cruz-Salomón 

et al. (2020) to obtain better COD removal efficiency in an EGSB, low strength wastewater 

must be treated at HRTs ranging from 0 to 2 days and high strength wastewater must be 

treated at HRT of up to 10 days. 

HRT is best defined as the average time that particles remain in the reactor and can be 

determined using Equation 2. 

𝐻𝑅𝑇 =
𝑉𝑤

𝑄𝑓𝑒𝑒𝑑
 2) 

Where, 𝐻𝑅𝑇 is the hydraulic retention time in days; 𝑉𝑤 is the reactor volume in litres and 𝑄𝑓𝑒𝑒𝑑 

is the feed flowrate in litres per day (Sukkasem et al., 2011). 

 

2.8 Artificial neural networks (ANN) 

An artificial neural network (ANN) is a type of computer system that works the same way as a 

human brain, by processing and storing information in the system (Wajeeh et al., 2018; 

Göçken et al., 2016; Deo & Mehmet, 2015; Platon et al., 2015; Lek & Gue, 1999); ). ANNs are 

of interest and applied in a wide range of problems in finance, medicine, engineering, geology, 

physics and biology (Ramchoun et al., 2017; Deo & Mehmet, 2015). These networks can 

predict patterns with corresponding target values and classify problems. ANNs consist of 

nonlinear data and can be used as a modelling tool when data is unknown. It is important that 

the networks are first trained to predict the commensurate outcome of an independent input 

data. ANN processes are suitable for complex data that are not precise (Jha, 2004). 
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Classification of ANNs include; pattern, sequence recognition, identification of new or 

unknown data and decision making (Prieto et al., 2016). ANNs consist of input layers, one or 

more hidden layers and output layers which are interconnected as neurons (Gonzalez-

Fernandez et al., 2018). Learning techniques used in neural networks are classified as deep 

and shallow learning. Shallow leaning is used on two or three layers whilst deep learning is 

used on complex layers. Both these learning techniques are from input data. A trial-and-error 

procedure as explained by Patki et al. (2021) is used to determine the number of neurons 

which will give better ANN performance according to how complex the problem is. Neurons 

and hidden layers have a great impact on ANN training, less or more neurons may be 

considered best or bad. A higher number of neurons results in great synthesising, but poor 

generalisation of ANNs; while less neurons may not fit the data which will result in the network 

not learning (Elshamy et al., 2021). Depending on how complex the problem is, one hidden 

layer is sufficient to evaluate and solve problems (Saleh, 2021). Alwosheel et al. (2018) stated 

that, ANNs require large numbers of data sets for network training. Theoretically ANNs 

consisting of a lot of parameters require large amounts of training data (Alwosheel et al., 

2018).   

Compared to other optimisation software model tools, such as response surface methodology 

(RSM), orthogonal experimental design (OED), support vector machine (SVM), and uniform 

design (UD), artificial neural networks (ANN) and SVM have proven to be the best modelling 

tools as they showed high model accuracy. Zhang et al. (2020) used ANNs to optimise and 

model microbial lipid fermentation from ethanol wastewater. It was observed that the mean 

square error (MSE) and correlation coefficients (𝑅) for the training and test data were 0.0043 

and 0.0105, and 0.9899 and 0.9758, respectively. Vinoth Arul Raj et al. (2021) used ANNs to 

optimise biodiesel production parameters to improve the yield. The ANN model tool was found 

to be a good fit as the 𝑅 value and root mean square error (RMSE) were 0.957 and 0.44, 

respectively. Figure 2.4 shows the steps required when developing an ANN model. 
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Figure 2.4: The ANN model development process, adapted from Ã et al. (2004) 

 

2.9 Different types of artificial neural networks 

ANNs can be classified as feedforward neural networks (FFNN) and feed backward neural 

networks (FBNN) or backpropagation. FFNNs is an algorithm with layers which are the same 

as human neuron processing, these layers are interconnected in relation to their units. The 

connection of the layers with their units is not equal due to the individuality of each connection 

such as the difference in weight and strength. The weight determines the potential knowledge 

of the neural network. FFNN sends information from input nodes to hidden nodes then to 

output nodes, hence it is called a feedforward neural network, information moves in one 
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direction (Abiodun et al., 2018). Advantages of using FFNNs include that they are less 

complex, fast and highly responsive. Other types of neural networks are as follows, as 

reported by Sewsynker-Sukai et al. (2017):  

a) Convolutional neural networks (CNN): These networks can be applied in image 

processing, speech recognition and machine translation. CNNs are used for deep 

learning and highly valuable in the presence of less parameters. 

b) Radial basis function neural networks (RBFNN): These can be classified as 

multilayered feedforward error-backpropagation networks consisting of three layers 

overall. Basher & Hajmeer (2000) classified RBFNNs as “special” because they are 

cable of being trained by various numbers of learning algorithms. 

c) Recurrent neural networks (RNN): These networks are used in text processing, 

sentiment analysis and text to speech processing. For these networks to be more 

precise, they can be used together with convolution layers. RNNs can send information 

in both backward and forward directions. 

d) Modular neural networks (MNN): These networks can be applied in stock market 

prediction analysis and can be useful for high level input data. MNN’s are efficient and 

can be trained independently.  

e) Hopfield neural networks: These are nonlinear interconnected recurrent networks 

which are more convenient when optimising problems (Basheer & Hajmeer, 2000). 

f) Kohonen neural networks: The type of networks which are unsupervised and used 

to recognise patterns from maps as the input and target data points are close together. 

 

2.10 Artificial neural network topology 

The selection of the input and output quantity parameters is the most crucial part of ANN 

topology (Elbisy et al., 2014). According to Vaferi et al. (2014) the most used topology in neural 

network development is the multilayer perceptron architecture (MLP). To obtain a superior 

ANN architecture the ANN model has to undergo training, validation and testing (Nagarajan 

et al., 2019). MLP neural networks are mostly applied in solving engineering problems (Stoffel 

et al., 2020) and are known to minimise errors while adjusting the neural network parameters 

(Badalians Gholikandi et al., 2014). Advantages of using MLP neural networks include the 

ability to learn, stability of the network performance after adding more data “noise”, 

nonlinearity, generalisation, the correspondence of data (Faris et al., 2016) and the production 

of accurate results (Shoaib et al., 2018). MLPs have effective generalisation abilities with the 

learning process highly dependent on the constraints of the architecture and learning algorithm 
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(Shi et al., 2021; Bansal et al., 2019). ANN topology has an impact on network performance 

(Kaviani & Sohn, 2021; Kaviani & Sohn, 2020). 

 

2.11 Selection of neural network type  

This study will focus on the development of three diverse types of ANNs to evaluate which 

network model is best suited for the prediction of COD output data from biological treatment 

systems.  

 

2.11.1 Feedforward backpropagation (FFB) 

Feedforward backpropagation (FFB) neural networks often referred to as an MLP employing 

a supervised learning process (Sewsynker-Sukai et al., 2017) are static and the most used 

network type (Basheer & Hajmeer, 2000). These networks are characterised by three layers: 

1.) an input layer with nodes constituting the input process variables; 2.) an output layer 

consisting of the predicted variables depending on the intent of the ANN model; and 3.) one 

or more hidden layers (Basheer & Hajmeer, 2000). The hidden layer is used to determine the 

correlation between the input and output data (Elbisy et al., 2014). FFBs are designed to send 

errors back from the output data to the hidden layer and then the input layer (Sewsynker-Sukai 

et al., 2017). FFB network topology can be expressed by Equation 3:  

𝑌𝑗
𝑘+1 = 𝑓(∑ 𝑋𝑖

𝑘𝑤𝑖𝑗
𝑘𝑁

𝑖=1 + 𝑏𝑖
𝑘) 3) 

Where, 𝑌𝑗
𝑘+1 represents the output vector; 𝑋𝑖

𝑘𝑤𝑖𝑗
𝑘  is the input and weight vector and 𝑏𝑖

𝑘 

represents the bias vector of ANN models (Moreno-Pérez et al., 2018). 

Türkmenler & Pala (2017) conducted a study on the prediction of biological wastewater 

treatment using a FFB ANN and concluded that ANN models can successfully predict BOD 

effluent concentration for biological systems with training and testing correlation coefficient 

values of 0.9413 and 0.9318, respectively. The model was also evaluated with a mean 

absolute percentage error (MAPE) for the training and testing values of 23.801 and 24.327, 

respectively. Hassen & Asmare (2018) utilised an FFB ANN to predict wastewater treatment 

plant performance and concluded the model was able to predict COD effluent concentration 

with an 𝑅 value of 0.969. Proving that an FFB ANN model can accurately predict effluent COD 

concentration when presented with new data sets. Gopi Kiran et al. (2021) used an FFB ANN 

model to accurately predict the effluent COD concentration for a rotating biological contactor 

treating heavily contaminated wastewater with 𝑅2 values ranging from 0.91 to 0.98 and 0.92 

to 0.98 for the training and testing data, respectively. A study by Antwi et al. (2018) used an 

FFB model to predict the performance of a UASB treating industrial starch processing 
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wastewater and observed that the network model was able to predict COD removal efficiency 

with training, testing and validation 𝑅 values 0.86, 0.98 and 0.83, respectively, indicating the 

FFB ANN model performed well. 

 

2.11.2 Nonlinear autoregressive model with exogenous input (NARX) 

Nonlinear autoregressive model with exogenous input (NARX) neural networks is a type of 

dynamic recurrent ANN mostly used to solve nonlinear and complex problems such as 

wastewater treatment for prediction purposes. These networks are known to have strong 

memory (Yang et al., 2021). Unlike FFB networks, NARX networks are also known for being 

able to generalise better and for fast convergence. The NARX model can be expressed by 

Equation 4: 

𝑦(𝑡) = 𝑓(𝑢(𝑡 − 𝑛𝑢), … . 𝑢(𝑡 − 1), 𝑢(𝑡), 𝑦(𝑡 − 𝑛𝑦), … 𝑦(𝑡 − 1) 4)  

Where, 𝑓 represents the nonlinear system function from ANNs; 𝑦(𝑡) and 𝑢(𝑡) represents the 

input and output data at time 𝑡; and 𝑛𝑢 and 𝑛𝑦 are the input and output order (Çoruh et al., 

2014).  

 

NARX networks are designed to regress output data sets on the actual target data during the 

training of the network and then feed back to the network to guarantee better learning and 

training of the network. Thus working the same way as the feedforward neural network but 

with time delay (TD) units (Çoruh et al., 2014). NARX neural networks are also best at 

minimising errors and weights to generalise a better network model. NARX ANNs have been 

used in a variety of problems and have shown great performance in monitoring, controlling, 

optimisation and simulation of wastewater treatment process plants (Sanayei et al., 2014). 

Yang et al. (2021) used NARX network modelling to predict wastewater effluent quality and 

achieved 𝑅 values ranging from 0.84 to 0.87 for COD effluent prediction for several TD values 

with the best results obtained with a TD value of 2. Studies conducted by Yang et al. (2019) 

and Wunsch et al. (2018) proved that a long TD resulted in poor prediction performance and 

overfitting of the network. According to Lee & Sheridan (2018) a TD from 2 to 4 presents the 

best modelling performance for NARX networks.  

 

2.11.3 Cascade forward backpropagation (CFBP) 

Cascade feedforward backpropagation (CFBP) neural networks are similar to the FFB 

network, but differ in the weights function (Moreno-Pérez et al., 2018). Weights are connected 

from the input layer to all the layers. CFBP ANNs are best at learning since the network has a 

link from the input layer to all the layers of the networks. The CFBP neural network is a general 
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network with three layers, meaning the first layer (i.e. input layer) has a link with the second 

layer (i.e. hidden layer) and the second layer has a link with the third layer (i.e. output layer). 

Layer one also  has a link with the third layer (Elshamy et al., 2021; Devi et al., 2016).  

CFBP neural networks are used to solve nonlinear periodic pattern problems. This network 

topology performance in highly influenced by the relationship between the selected input and 

output variables. Compared to an FFB neural network with a direct relationship between the 

input and output layers, a CFBP neural network uses both the direct connection from the FFB 

neural network and the indirect relationship between input and output layer. CFBP neural 

networks can represented by Equation 5 (Warsito et al., 2018): 

                               𝑦 =  ∑ 𝑓𝑖𝑤𝑖
𝑖𝑥𝑖 + 𝑓𝑜(∑ 𝑤𝑗

𝑜𝑓𝑗
ℎ(∑ 𝑤𝑗𝑖

ℎ𝑛
𝑖=1 𝑥𝑖))𝑘

𝑗=1
𝑛
𝑖=1  5) 

Where, 𝑓 represents the activation function and 𝑤𝑖
𝑖 represents the weights. The addition of 

bias (𝑤𝑏) would result in Equation 6: 

                                    𝑦 =  ∑ 𝑓𝑖𝑤𝑖
𝑖𝑥𝑖 + 𝑓𝑜(𝑤𝑏 ∑ 𝑤𝑗

𝑜𝑓𝑗
ℎ(∑ 𝑤𝑗𝑖

ℎ𝑛
𝑖=1 𝑥𝑖))  𝑘

𝑗=1
𝑛
𝑖=1  6) 

 

2.12 Artificial neural network training function algorithm  

Yogitha & Mathivanan (2018) reported on three types of training algorithms used in ANNs, 

namely the descent algorithm also known as TRAINGD, the conjugate gradient also known 

as TRAINSCG, and the quasi-Newton algorithm known as TRAINLM. TRAINLM is the most 

used and preferred training algorithm in ANNs, because it administrates better convergence 

results. 

 

2.13 Artificial neural transfer function 

Choosing the best transfer function is important in ANN models. The transfer function also 

known as the activation function is used to determine the firing intensity of a neuron (Basheer 

& Hajmeer, 2000). The three types of training functions mostly used in ANNs are PURELIN, 

TANSIG and LOGSIG (Prasad et al., 2012). PURELIN transfer functions are used in solving 

problems which are linear in the output layer, because of the slight difference from the hidden 

layer (Prasad et al., 2012). PURELIN transfer functions can be represented by Equation 7:  

𝐹(𝑥) = 𝑥 7) 

TANSIG transfer functions are used to solve nonlinear problems in the hidden layer of ANNs 

(Yogitha & Mathivanan, 2018). Mirarabi et al. (2019) stated that tan sigmoid transfer functions 

effectively escalates ANN model performance in nonlinear approximation. These transfer 
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functions are classified as hyperbolic tangent sigmoid transfer functions and can be 

represented by Equation 8:  

𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  8) 

LOGSIG transfer functions are also known as logistic sigmoid transfer functions and are used 

to solve nonlinear problems in both the output and hidden layers of ANNs. According to 

Yogitha & Mathivanan. (2018), LOGSIG transfer functions are preferably used in feedforward 

backpropagation neural networks. LOGSIG transfer functions can be represented by 

Equation 9:  

𝐿𝑜𝑔𝑠𝑖𝑔(𝑥) = 𝐹(𝑥) =
1

1+𝑒−𝑥  9) 

 

2.14 Artificial neural training function  

ANN performance is influenced by the learning algorithm used during the training process. 

Training guarantees the best weight connectivity of the processing elements of the network 

(Faris et al., 2016). Network training is done to guarantee a close or equal prediction of target 

values by minimising the errors computed by the output values. Hamed et al. (2004) stated 

that the Levenberg-Marquardt (LM) algorithm is the most used and preferred training function 

for optimisation, simulation and prediction purposes. During the training process, the ANN 

model must undergo the learning process depending on the interconnection between neurons. 

These ANN learning paradigms can be classified as either supervised or unsupervised 

learning (Hamed et al., 2004). 

 

2.14.1 Supervised learning  

Supervised learning is a machine learning technique used in ANNs to learn and gain 

knowledge from given historical input and output data to predict target data. This type of 

training process is best used in the gradient-based method known as FFB or MLP network 

models and the most preferred learning technique (Faris et al., 2016). Error signals play an 

important role in the adjustment of the interconnected weights in supervised learning (Sathya 

& Abraham, 2013). According to Dongare et al. (2012) supervised learning learns with both 

the input and output data represented in vector data (Mishra & Gupta, 2017). The supervised 

learning process has four steps that need to be considered: 1.) determining the training 

examples (Prasad et al., 2012); 2.) obtaining data sets that describe the problem that needs 

to be solved; 3.) expressing the training data to the preferred ANN model; and lastly 4.) 

learning and testing the ANN performance using the validation data sets (Zakaria et al., 2014). 
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2.14.2 Unsupervised learning  

Unsupervised learning is a machine learning technique also known as self-organisation 

learning (Hamed et al., 2004). This is the opposite of supervised learning as it does not require 

error signals to solve the problem at hand. This type of learning learns by using information 

computed from the neurons in the ANN model (Sathya & Abraham, 2013). Mishra & Gupta 

(2017) reported on literature that unsupervised learning learns with input data only. The input 

process variables train with the aim of achieving a cluster of pattern responses. The ANN 

model development process has its own representation of input stimuli, hence the patterns do 

not need to be classified into categories (Dongare et al., 2012). According to Zakaria et al. 

(2014) unsupervised learning is best suitable in estimating statistical modelling, separation 

and clustering problems with respect to how the given data is organised. 

 

2.15 Overfitting and overtraining of data of neural networks  

Bilbao & Bilbao (2018) and Alkinani et al. (2020) stated that ANN models are considered overfit 

when the model tends to accurately fit almost all the data; thus resulting in zero error and an 

almost perfect fit which indicates that the model has noisy data. A learning model with high 

training prediction can learn complex data, but result in network overfit which may tend to the 

network memorising non predictive features of training data. Overfitting is when the model 

shows high training accuracy with less error, but simultaneously shows low validation and 

testing accuracy with high errors between the predicted and target data (Hagan et al., 1997). 

According to Saleh (2021) this means the network was able to descriptively learn, but would 

show poor generalisation when presented with new data. Network overfit is caused by the 

network size, high network variance due to the presence of outliers, the use of complex 

algorithms, the use of large amounts of data during network training and a large number of 

neurons in the hidden layer (Zhang & Friedrich, 2003). 

 

2.16 Artificial neural network data preparation 

It is crucial to prepare data prior to developing an ANN model. This is due to the fact that input 

data influences the data analysis results. Prepared data guarantees data quality, great ANN 

performance and data analysis efficiency; while unprepared data results in poor data analysis 

and it is therefore almost impossible to result in good ANN performance (Yu et al., 2007). 

According to Nguyen et al. (2020) ANNs perform better, with high prediction accuracy when 

created with a significant number of parameters compared to when the network was 

developed with only one or two input parameters.  
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ANNs are data driven models and can be classified in three categories of data sets including 

training, validation and testing data sets. In MATLAB® the “dividerand” function is used to 

divide the data sets (Jain et al., 2015). MATLAB® data division functions include the 

divideblock, divideint and divideind (Hassen & Asmare, 2018). In this study the dividerand 

function will be used in MATLAB® as it is set to divide the data by default. Meaning 70% of the 

data is randomly selected and used for training, 15% is used for validation and lastly, 15% is 

used for testing the network to make up 100% of the available data (Gramatikov, 2017). The 

training data sets are used to find the correlation between the input and output data and 

adjusting the network weights in relation to the errors The testing data sets are used to 

determine and assess the optimal generation of the developed neural network (Saleh, 2021; 

Zounemat-Kermani et al., 2019). The validation data set is used to generalise the network and 

ensures network training. Iteration stops when generalisation of the network stops and the 

performance decreases (Pasini, 2015). When the neural network being developed overfits the 

data the validation set error increases, although the training error will most likely decrease 

when the training is initiated (Gramatikov, 2017). 

 

2.17 Data normalisation  

It is important to normalise the data before introducing it to the MATLAB® toolbar, this is to 

prevent the overriding of larger numbers to small numbers and the premature saturation of the 

hidden nodes (Basheer & Hajmeer, 2000). The selected data must be normalised using the 

mapminmax function in the MATLAB® toolbar. The mapping can be represented by Equations 

10 - 12 (Zhang et al., 2020):  

f: x → y =
x−xmin

xminmax
  10) 

 

[y, ; ps]; =; mapminmax(x, : ymin. ; ymax) 11) 

 

Y =
(ymax; −ymin)×(x;−xmin)

xmax\;−xmin
+ ymin 12) 

Where, 𝑥 is the original data before normalisation; 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 represents the range 

parameters of the mapping with default values of -1 and 1; 𝑦 represents the normalised data 

and 𝑝𝑠 is the structure holding the normalised mapping (Zhang et al., 2020). 

The performance of ANNs is evaluated by the root mean square error (RMSE), which can 

predominately be the mean square error (MSE). The MSE is the measurement of the mean 

squared errors from the trained neural network. The error is the difference between the target 
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and experimental output values (Yogitha & Mathivanan, 2018). MSE and RMSE can be 

expressed by Equations 13 and 14, respectively: 

MSE =
1

n
∑ (Zî − Zi)n

i=1
2 13) 

 

 RMSE = √
1

n
∑ (Zî − Zi)2n

i=1   14) 

Where, Zî is the experimental value; 𝒵𝑖 is the algorithm estimated value and 𝑛 is the total 

number of runs (Hamada et al., 2018; Yogitha & Mathivanan, 2018). The coefficient of 

determination for regression (𝑅2) (i.e. correlation coefficient) can be evaluated using Equation 

15:  

𝑅2 = 1 − ∑ (𝒵𝑖 − 𝒵�̂�)𝑛
𝑖=1 (𝒵𝑖 − 𝒵𝑚)⁄  15) 

Where, 𝒵𝑚 represents the average experimental value (Vinoth Arul Raj et al., 2021; 

Miraboutalebi et al., 2016). 

 

2.18 Types of software for artificial neural network (ANN) 

2.18.1 Freeware software (e.g. NNIGnets) 

Freeware software is a computer system used in the research, teaching or business 

applications in ANNs (lliadis & Jayne, 2011). NNIGnets was constructed specially for 

engineering problems, it was tested with different skill frameworks and proved to be easy to 

use in ANNs (Fontes et al., 2011).  

 

2.18.2 Commercial software (e.g. MATLAB®, neural network toolbar) 

In this study, the commercial software MATLAB® was used to predict the target values. 

MATLAB® is a mathematical tool used to analyse data, the data analysed is accessible in 

terms of interpolation, statistical analysis, equation solvers and optimisation. With this toolbar, 

the ANNs can be tested and trained. ANN networks can easily provide outputs corresponding 

to the inputs and provide proof that they are correct, they are also capable of drawing training 

error functions (Taylor, 2006).  

ANNs were invented by Dr Robert Hecht-Nielsen and require a large number of runs to 

determine the best solution, Table 2.11 shows the advantages and disadvantages of using 

ANNs.  
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Table 2.11: Advantages and disadvantages of ANNs, adapted from Mustafa et al. (2021)  

Advantages  Disadvantages  

The ability to solve nonlinear and complex 

structures. 

ANNs can overfit data.  

ANNs easily predict interactions between input 

and output data. 

Extrapolation of data.  

The final output is not affected by the training 

which may contain errors. 

ANNS require sufficient training data.  

ANNs can train for an exceedingly long time 

depending on the main factor such as the number 

of weights present in the network, training 

examples and setting of various learning 

algorithm parameters. 

Training data must be closely related to the 

predicting parameters. 

High prediction accuracy.  ANNs require large amounts of data.  

 

The major components of artificial neurons are nodes, weights, bias, input and output patterns. 

Input layers transmit signals to the neurons in the hidden layers, which then extracts significant 

patterns from the signal received and directs them to the output layer which is the final result 

of the model production (Hatem et al., 2011). ANNs are arranged in layers with interconnected 

nodes containing activation functions, these networks contain a learning rule that is 

responsible for moderating the weights of the connections according to the input patterns. 

Diverse types of learning rules are used by ANNs, including the delta rule where the learning 

rule is supervised in every cycle (Ellacott, 1990). Figure 2.5 is an illustration of an ANN design 

adapted from Shenfield et al. (2018). 

 

Figure 2.5: General MLP artificial neural network design, adapted from Shenfield et al. (2018) 
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Figure 2.6 illustrates an example of a basic artificial neuron, where 𝑋1, 𝑋2, and 𝑋3 represents 

the input nodes; 𝑊1, 𝑊2 and 𝑊3 represent the weights; Σ represents the sum of the input, 

weights and bias; and 𝑓(𝑥) represents the activation function of the neural network model 

(Zhang et al., 2019).  

 

 

 

 

 

 

 

 

 

Figure 2.6: Basic artificial neuron 

 

The product of input data points with their corresponding weights is added and applied to a 

transfer function to predict the output, summarised by Equation 16:  

𝑍 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑑𝑛
𝑖−1 ) 16) 

Where, 𝑍 is the output; 𝑥𝑖 represents the input values with the corresponding weights (𝑤𝑖,); 𝑑 

is the bias value and 𝑓 is the transfer function (Elbisy et al., 2014). 

 

2.19 Artificial neural networks for biological wastewater treatment   

Wastewater treatment plants (WWTP) require proper operation, controlling and monitoring for 

better performance (Hamed et al., 2004). According to Yang et al. (2021) ANN mathematical 

modelling tools have been developed for wastewater treatment purpose to predict organic 

waste removal efficiency, effluent concentration and bioreactor performance (Nadiri et al., 

2018), because of their high prediction and accuracy capabilities compared to other modelling 

tools. 

Hassen & Asmare (2018) used ANNs to predict the effluent water quality of Habesha 

brewery’s WWTP and concluded that ANNs can successfully predict WWTP performance (i.e. 

water quality parameters) when an 𝑅 value of up to 0.969 was obtained between the target 
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and predicted effluent COD concentration. Gheytaspour & Bigdarvish (2018) also used ANNs 

to predict WWTP performance and obtained an 𝑅 value of 0.920 for the COD concentration of 

the effluent. 

Zeinolabedini & Najafzadeh (2019) used two types of neural networks (i.e. FFB and RBFNN) 

to determine which performed best in predicting the quantity of sewage sludge produced in a 

WWTP. It was observed that both neural network models provided high accuracy results with 

an 𝑅 value of 0.99 for the FFB neural network and 0.90 for the RBFNN. Table 2.12 shows the 

correlation coefficients (𝑅) of biological wastewater treatment systems using ANN models. 
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Table 2.12: Application of artificial neural networks (ANN) in wastewater treatment 

Type of wastewater Type of ANN 

architecture used  

Treatment methods  Input  Output 𝑹 References  

Brewery wastewater Feedforward, 

backpropagation (FFB) 

Up-flow anaerobic sludge 

blanket (UASB) and an 

aerobic reactor  

COD, pH, 

total nitrogen 

(TN) 

Prediction of the 

Habesha 

brewery 

wastewater 

plant 

performance 

0.969 Hassen & Asmare, 2018 

Municipal 

wastewater 

Feedforward, 

backpropagation (FFB) 

Membrane bioreactor 

technology (MBR) 

NH4
+-N, COD, 

pH, PO4
3- -P 

Prediction of 

NH4
+-N, COD, 

and PO4
3- -P 

effluent 

concentrations  

NH4
+-N – 

0.9995; 

COD - 

0.9942 and 

PO4
3- -P – 

0.9998 

Giwa et al., 2016 

- Feedforward, 

backpropagation (FFB) 

Konya wastewater treatment 

plant  

COD, pH, 

temperature, 

BOD, flow 

rate and TSS 

TSS, Konya 

wastewater 

treatment plant 

performance 

prediction 

0.99 Paquin et al., 2015 

Synthetic wastewater  Multilayered 

perceptron neural 

network  

Anaerobic baffled rector 

employing electrolysis 

system (EABR) 

COD, pH, 

HRT, voltage,  

Optimisation of 

EABR 

performance  

0.99 Gholikandi & 

Amouamouha, 2018 

Municipal 

wastewater  

Feedforward, 

backpropagation (FFB) 

Anaerobic baffled reactor 

(ABR) 

COD, BOD, 

TSS, TDS, 

total 

phosphorous 

(TP), pH, 

VFA, 

temperature 

Optimising ABR 

design, 

configuration 

and 

performance 

0.974 Badalians Gholikandi et 

al., 2014 
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3.  Introduction  

To meet the objectives of this research study, data was obtained and pre-processed from four 

previous biological wastewater treatment studies treating biodiesel- (Grobbelaar, 2019), 

textile-, polymer- and pulp and paper (Sheldon et al., 2012) wastewater. The biodiesel- and 

textile wastewater were individually treated using a six-compartment anaerobic baffled reactor 

(ABR) designed in a manner similar to that of Phukingngam et al. (2011). The ABR was 

operated for 7 and a half months and 3 months for the treatment of the biodiesel- and textile 

wastewater, respectively. The polymer- and pulp and paper wastewaters were both 

individually treated using an expanded granular sludge bed (EGSB) reactor with the column 

design based on Zang et al. (2008). For both the polymer- and pulp and paper wastewater 

treatment, the EGSB was operated for 6 months, respectively. 

 

3.1 Artificial neural network (ANN) analysis and procedure  

Neural networks, used to study the behaviour of a system, are sets of processing elements 

(i.e. nodes, neurons, units) that determines output values from the input values, connectivity, 

activation functions and training algorithms (Rodríguez et al., 2019). When using neural 

networks, there are essential steps that need to be considered: 1.) the behaviour of the 

process and predicted output values with respect to the constructed neural network model, 

and 2.) the control variables need to be modified to control and optimise the output values 

(Kalogirou et al., 2014).  

The input values are the measurements of the variables specific to the equipment, 

measurement of the dimensions and controlled variables modified by the operator (Ibrić et al., 

2012). Training data (i.e. available data) for the identification of variables are important for the 

performance of neural networks and checking errors from the data. In order to verify if the 

variables reflect the known information, graphs have to be drawn (Kalogirou et al., 2014).  

For artificial neural network (ANN) problems to be solved, the selection of a suitable learning 

rate, momentum, the number of neurons from each of the hidden layers and the activation 

function is crucial (Montesinos López et al., 2022). Therefore, the collected data must be 

prepared in a Microsoft Excel spreadsheet format with input and output columns. A training 

file is then created with samples of the whole problem domain to select the required 

parameters. Three data sets are used: a training data set, test data set and validation data 

set. When the training process takes place, the neural network will be tested against the 

testing data to determine accuracy, and training will be stopped when the mean average error 

remains the same for a period of time (Alwosheel et al., 2018b). This is done in order to avoid 

overtraining, in which case, the network learns the training patterns perfectly but is unable to 



 

43 | P a g e  

make predictions when an unknown training set is presented (Kalogirou et al., 2014). Figure 

2.4 in chapter 2, section 2.8 shows the steps used to develop three ANN models.  

 

3.2 Artificial neural networks (ANNs): Selection of input and output process variables 

The main intent of this research study was to evaluate the feasibility of three ANNs in the 

identification of correlated patterns between data sets and corresponding target values for 

biological wastewater treatment systems using an ABR for the treatment of BDWW and 

TTWW; as well as an EGSB reactor treating PWW and PPWW, respectively. The impact of 

all the anaerobic process parameters including COD, OLR, HRT, volatile fatty acids (VFA), 

total suspended solids (TSS), FOG, nitrogen and pH for an ABR and EGSB system were 

studied before the selection of the appropriate process variables for the implementation of the 

ANN models. The ANN models were developed to predict the COD output (i.e. effluent COD) 

from BDWW, TTWW, PWW and PPWW, given the feed COD (i.e. influent COD) as input and 

effluent COD concentration data from the published and unpublished previous studies as the 

target COD (refer to Appendix E). The selected input variables were the COD as the 

operational parameter determining the level of water purification, and OLR. 

 

3.3 Description of the artificial neural network (ANN) method 

Three network algorithms were employed in the development of the ANN model using 

MATLAB® (2021a) software under the Department of Chemical Engineering’s licence at Cape 

Peninsula University of Technology (CPUT) and was also used for the modelling and 

simulation of the artificial neural networks. MATLAB® (2021a) software was chosen due to its 

high interactive performance in scientific and engineering computations. The network 

algorithms were selected to evaluate which model performed best in the prediction of effluent 

COD. Historical data sets for the prediction of COD removal efficiency were obtained from 

previous published (Grobbelaar, 2019; Sheldon et al., 2012) and unpublished studies based 

on the biological treatment of industrial wastewater using bioreactors including an ABR and 

EGSB system. After carefully investigating and pre-processing the obtained data, variables 

such as the HRT and the number of compartments from the ABR were eliminated, because 

the HRT and number of compartments remained constant throughout the experimentation 

period for the biodiesel and textile wastewater treatment in the ABR. Since the focus of this 

study was the COD of the effluent, further variables such as the TSS, oil and grease (O&G), 

pH and TDS were eliminated as these variables have little to no effect on COD prediction 

(Ruben et al., 2017; Talib & Amat, 2012). The remaining variables (i.e. COD and OLR) were 

then normalised using Equation 12 in Chapter 2. After data preparation, the selected input (i.e. 

influent COD and OLR) and target data (i.e. effluent COD) were loaded from the Microsoft 
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Excel spreadsheet to the MATLAB® (2021a) software workspace (i.e. transposed) as 

input_data (𝑖) and target_data (𝑡𝑑). Before the training of the neural network, the original input 

and target data, mean, and standard deviation (Std. Dev.) were determined prior to the 

network simulation. 

For ANN simulation, the three selected ANN types, namely nonlinear autoregressive neural 

network model with exogenous inputs (NARX), feedforward back propagation (FFB) and 

cascade feedforward backpropagation (CFBP) were trained, validated, and tested using the 

previously obtained published (Grobbelaar, 2019; Sheldon et al., 2012) and unpublished data. 

In the MATLAB® (2021a) software command window, nntool was typed in order to import the 

input and target data values in the Data Manager tab from MATLAB® (2021a) workspace. 

Input_data (𝑖) and target_data (𝑡𝑑) were imported under the input and target workspaces, 

respectively. To create the neural network architecture, three different network types were 

chosen. FFB also known as the multilayer perceptron (MLP) neural network architecture, was 

selected for the ANN model, because of its ability to learn, minimise errors, generalise well 

and maintain the stability of the network after adding more data (Faris et al., 2016). As 

previously mentioned in Chapter 2, Hassen & Asmare (2018) utilised the FFB ANN to predict 

wastewater treatment plant performance and concluded that the model was able to predict 

COD effluent concentration with correlation coefficient (𝑅) of 0.969 which proved that the FFB 

model can accurately predict COD effluent concentration when presented with new data sets. 

Gopi Kiran et al. (2021) conducted a study to determine effluent COD concentration from a 

rotating biological contactor treating heavily contaminated wastewater using an FFB ANN and 

observed that the model accurately predicted the COD concentration of the effluent with the 

𝑅2 value ranging from 0.91 to 0.98 and 0.92 to 0.98 for the training and testing data, 

respectively. NARX and CFBP then followed due to the selection of the training function, 

learning function (i.e. supervised learning), performance function, TRAINLM, LEARNGDM and 

mean square error (MSE), respectively. To train the networks, a trial-and-error method (Patki 

et al., 2021) was used to achieve the best network performance and regression graphs, this 

was done by randomly choosing and adjusting the number of neurons in the hidden layer to 

randomly range from 2 to 11. Tables 3.1, 3.2, 3.4, 3.5, 3.7, 3.10 and 3.11 illustrates the 

statistical raw data from the different industrial wastewater biological treatment systems 

obtained from  previous published (Grobbelaar, 2019; Sheldon et al., 2012) and unpublished 

studies. Tables 3.3, 3.6, 3.9 and 3.12 illustrates the statistical values of the normalised data. 
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Table 3.1: Raw operational data of the biodiesel wastewater influent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 5373 33450 14129.38 8847.464 

ORL kg COD/m3.days  0.58 3.46 1.23023 1.043071 

Time  Days  6 225 - - 

 

Table 3.2: Raw operational data of the treated biodiesel wastewater effluent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 1745 11158 5868.299 3177.904 

Time Days 6 225 - - 

 

Table 3.3: Normalised biodiesel wastewater operational data 

Variable Units  Min Max Mean Std. Dev. 

CODin mg/L -0.9897 2.18375 -7.1463E-17 1 

CODout mg/L -1.2974 1.66452 7.40149E-17 1 

OLR kg COD/m3.days -0.6234 2.13769 1.50072E-15 1 

 

Table 3.4: Raw operational data of the textile wastewater influent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 100 5910 830.7258 1049.1969 

ORL kg COD/m3.days  0.184606 0.544587 0.299538 0.119824 

Time  Days  9 84 - - 

 

Table 3.5: Raw operational data of the treated textile wastewater effluent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 100 2600 1067.0967 652.51376 

Time Days 9 84 - - 
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Table 3.6: Normalised textile wastewater operational data 

Variable Units  Min Max Mean Std. Dev. 

CODin mg/L -0.47725 0.49731 -3.2232E-17 1 

CODout mg/L -0.03386 -0.01087 1.43926E-16 1 

OLR kg COD/m3.days -0.95918 2.04507 4.58415E-16 1 

 

Table 3.7: Raw operational data of the polymer wastewater influent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 1460 46325 15527.73 6028.349 

ORL kg COD/m3.days  0.58 24.09 9.26 4.04 

Time  Days  3 122 - - 

 

Table 3.8: Raw operational data of the treated polymer wastewater effluent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 226 22600 7774.718 4663.313 

Time Days 3 122 - - 

 

Table 3.9: Normalised polymer wastewater operational data 

Variable Units  Min Max Mean Std. Dev. 

CODin mg/L -2.15195 0.42255 6.8572E-17 1 

CODout mg/L -1.47796 -0.38700 7.4450E-17 1 

OLR kg COD/m3.days -2.04510 2.13769 -1.2016E-16 1 

 

Table 3.10: Raw operational data of the pulp and paper influent wastewater 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 180 3427.5 1780.43 573.40 

ORL kg COD/m3.days  2.97 5.52 3.66 0.68 

Time  Days  0 175 - - 
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Table 3.11: Raw operational data of the treated pulp and paper wastewater effluent 

Variable  Units  Min Max Mean Std. Dev. 

COD mg/L 10 1210 696.69 393.66 

Time Days 0 175 - - 

 

Table 3.12: Normalised pulp and paper wastewater operational data 

Variable Units  Min Max Mean Std. Dev. 

CODin mg/L -0.45418 1.11539 3.58908E-17 1 

CODout mg/L -0.30276 1.30395 1.16286E-16 1 

OLR kg COD/m3.days -1.00741 2.72783 2.70665E-15 1 

 

3.4 Model evaluation  

To determine which of the three network types, FFB, NARX or CFBP performed best, the MSE 

between the predicted and target effluent COD output data sets for training, validation and 

testing (Saleh, 2021) (refer to Equation 13 in Chapter 2) and the correlation coefficient (𝑅) 

(refer to Equation 12 in Chapter 2) were used to evaluate the performance of each network. 

A low to zero MSE value is preferred and the overall goal for this study, because a zero to low 

error value between the target and predicted effluent COD data indicates the network that 

performed best (Abba & Elkiran, 2017). An (𝑅) value of 1 between the target and predicted 

effluent COD data was the main goal for this study, as a value of 1 shows a close correlation 

between the predicted and target effluent COD data and indicates the network has a high 

prediction accuracy (Ruben et al., 2017). 
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4.1 Introduction  

The complicated operation, which leads to poor quality effluent from biological wastewater 

treatment systems, due to the variety of wastewater strengths, physical and chemical 

composition has led to the implementation of robust computer based mathematical models to 

optimise, simulate and predict wastewater treatment plant (WWTP) performance (Nasr et al., 

2012). Three ANNs, FFB, NARX and CFBP (refer to section 2.11 in Chapter 2 and section 3.3 

in Chapter 3) were developed to predict biological wastewater treatment performance, the 

main aim of this study was to evaluate the feasibility of ANNs to identify correlated patterns 

between data sets and corresponding target values of effluent COD from biological 

wastewater treatment systems.  

According to Mirarabi et al. (2019), ANNs are data driven. Historical data was obtained from 

previous published (Grobbelaar, 2019; Sheldon et al., 2012) and unpublished studies on 

industrial biological wastewater treatment systems. The pre-processed raw data of influent 

and effluent from biological treatment systems for biodiesel wastewater (BDWW), textile 

wastewater (TTWW), polymer wastewater (PWW) and pulp and paper wastewater (PPWW) 

brought about the development of three types of ANN models for the evaluation of biological 

wastewater treatment performance and the prediction of the COD of the wastewater effluent 

from historical data. The performance of the three ANN models, namely FFB, NARX with a 

time delay(TD) value of 2 and CFBP were assessed by adjusting the number of neurons in 

one hidden layer to range from 2 to 11 in the same manner as explained by Patki et al. (2021) 

in order to determine which network architecture would be able to accurately predict the COD 

of the wastewater effluent when presented with new training data sets after learning, training 

and using the Levenberg-Marquardt (LM) algorithm set by default on MATLAB® (2021a). All 

model architecture consisted of three layers namely input, hidden and output. According to 

Valente et al. (2014), one hidden layer is enough for solving engineering problems with ANNs. 

Additional hidden layers can lead to network over training and thus the tendency to memorise 

the training pattern which then results in poor network performance. Linear and tan sigmoid 

transfer functions were selected by default by MATLAB® (2021a) for the output and hidden 

layers, respectively. According to Yogitha and Mathivanan. (2018), tan sigmoid functions are 

most preferred in ANNs for solving nonlinear engineering problems. Examples of FFB, NARX 

and CFBP architectures are presented in Figures A.1, A.5 and A.8 of Appendix A, respectively.  
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4.2 Network 1: Feedforward backpropagation (FFB) 

4.2.1 Anaerobic baffled reactor (ABR) treating biodiesel wastewater (BDWW) 

The feedforward backpropagation (FFB) algorithm was created as the first network type to 

train, validate and test data sets for the prediction of wastewater effluent COD as an output 

variable from historical data sets (Grobbelaar, 2019). Before developing the FFB network 

model using MATLAB® (2021a) software the correlation between the initial raw data of the 

wastewater influent COD (i.e. feed) and wastewater effluent COD (i.e. product and target) 

after biological treatment was determined. Looking at Figure 4.1 it is evident that the COD 

removal efficiency is on average 79.84% and that as the feed COD increases, so does the 

product COD, although the COD of the product keeps fluctuating throughout the treatment 

period and is not a constant value. This is due to the organic loading rate (OLR) changing 

which resulted in the anaerobic baffled reactor (ABR) system experiencing organic shock. 

According to Barber and Stuckey (1999), organic shock could have been avoided by adjusting 

the pH in the first compartment of the ABR system by feeding the reactor with either sodium 

hydroxide (NaOH) or phosphoric acid (H3PO4) before introducing wastewater influent with an 

increased COD concentration. Figure 4.1 shows the relationship between the feed and product 

COD raw data. The calculated correlation coefficient (𝑅) is 0.903 which is a positive correlation 

although the considered 𝑅2 value of this study was 1, since an 𝑅 value of 1 indicates close 

correlation between input and output data and thus a high prediction accuracy of the ANN 

models (Ruben et al., 2017).  

 

Figure 4.1: Wastewater influent COD and wastewater effluent COD following biological treatment 

Figure 4.2 illustrates the comparison between the feed and target COD effluent from the FFB 

ANN model developed using MATLAB® (2021a). Before developing the ANN model for the 
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ABR system treating biodiesel wastewater (BDWW), the raw data sets were normalised using 

Equation 12 from Chapter 2 in order to fit the range of 0 to unity to ensure equality of the data 

sets and to promote accuracy in ANN models (Zounemat-Kermani et al., 2019). Figure 4.2 

shows the COD data set predicted by the FFB ANN model corresponding closely to the 

wastewater effluent (i.e. product and target) COD data set.  There appears to be some errors 

when predicting some data points, this is due to the fluctuating COD and according to Gopi 

Kiran et al. (2021) ANNs cannot elucidate microbial activity. A trial-and-error method (Patki et 

al., 2021) was implemented in the development of the best ANN model topology mainly 

through changing the number of neurons in the hidden layer for training, validating, and testing 

the data sets to determine which number of neurons would give maximum correlation and 

better performance of the FFB network. Figure A.3 in Appendix A shows the effect of the 

number of neurons on the MSE. Starting from 2 neurons there was less of an error between 

the target and predicted COD data sets. However, as the number of neurons increased, so 

did the MSE peaking at 6 neurons and then decreasing as the number of neurons increased.  

 

Figure 4.2: Comparison between the target and predicted effluent COD data (FFB ANN model for 
BDWW) 

Table 4.1 shows the statistical performance of the FFB network for the different number of 

neurons. According to Table 4.1, the FFB network architecture with 8 neurons performed 

better with a high prediction accuracy for training, testing and validation (i.e. 0.937, 0.910 and 

0.975, respectively). From the results in Table 4.1 the highest number of neurons resulted in 

the lowest MSE of 0.109 and an overall 𝑅  of 0.943. The preferred  𝑅 value is 1, which indicates 

a perfect relationship between the target and predicted COD data sets (Ruben et al., 2017). 

Table 2.12 in Chapter 2, literature review, shows FFB regressions results with high prediction 

accuracy from different types of wastewater and treatment methods ranging from 0.974 to 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250

Ef
fl

u
en

t 
C

O
D

 (
m

g/
L)

 

Operation Time (Days)

Target data Predicted data



 

52 | P a g e  

0.999, this is due to the difference in input parameters, impact of input parameters on the 

target variables, number of input parameters, quality and quantity of data sets.  

Table 4.1: Performance statistics of effluent COD prediction (FFB ANN model for BDWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

2 0.11794 0.920 0.936 0.986 0.939 

4 0.12356 0.931 0.942 0.972 0.936 

6 0.14519 0.946 0.951 0.928 0.941 

8 0.10964 0.937 0.910 0.975 0.943 

Figure A.2 in Appendix A shows the COD regression results for the correlation between the 

target and predicted COD data sets. The validation regression data set shows accurate and 

an acceptable correlation between the target and predicted COD data with an 𝑅 value of 

0.9754 which is a good fit compared to the testing 𝑅  value of 0.919 and training data 𝑅 value 

of 0.937 with an overall 𝑅 coefficient of 0.943. These results mean the FFB network would be 

able to accurately predict COD wastewater effluent values when presented with a new set of 

data from training, validating, and testing neural networks.   

 

4.2.2 Anaerobic baffled reactor (ABR) treating textile wastewater (TTWW) 

Figure 4.3 represents the relationship between the feed and product COD data from a previous 

biological wastewater treatment study of textile wastewater using an ABR system. Figure 4.3 

shows the product COD fluctuating constantly and increasing when compared to the COD of 

the feed, which means the textile wastewater needed to be further treated to decrease the 

COD of the effluent. As a result, the poor quality of data had a robust effect on the ANN model’s 

performance and prediction capabilities.  

 

Figure 4.3: Comparison between the feed and product COD of the TTWW treated with an ABR 
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The comparison of the predicted and target COD data for the biological treatment of textile 

wastewater using an ABR is illustrated in Figure 4.4. Based on Figure 4.4, the FFB neural 

network did not perform well in predicting the COD of the effluent, this is because the network 

was presented with poor historical data quality and quantity with only a total of 31 data sets 

including training, validation, and testing data. According to literature, ANNs require large 

amounts of data over 100 for training in order to show maximum prediction accuracy, to have 

weak extrapolation and perform best (Platon et al., 2015; Abdalrahman & Abdalrahman, 

2021). Table 4.2 shows the statistical performance of the FFB network. The trial-and-error 

method (Patki et al., 2021) of increasing the number of neurons in the hidden layer did not 

improve the network performance and COD prediction. The network performed slightly better 

with the lowest MSE value of 0.505 and overall 𝑅 value of 0.714 when trained with 8 neurons 

in the hidden layer. The poor testing, training and validation results could have been improved 

by the provision of more data for training and validation (Du & Swamy, 2006). Figure B.1 in 

Appendix B shows the regression graph which has too many outliers because the data points 

fall outside the linear graph area.  

 

Figure 4.4: Comparison between the target and predicted effluent COD data (FFB ANN model for 
TTWW) 

 
Table 4.2: Performance statistics of effluent COD prediction (FFB ANN model for TTWW) 
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Training 
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All 

𝑹  

2 0.58786 0.741 0.359 0.732 0.640 

4 3.16439 0.126 0 0 0.077 
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8 0.50547 0.752 0.690 0.881 0.713 
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4.2.3 Expanded granular sludge bed (EGSB) reactor treating polymer wastewater 

(PWW) 

The comparison of feed and product COD of PWW treated with an EGSB reactor is illustrated 

in Figure 4.5. Based on Figure 4.5, the data quality appears to be superior as the COD of the 

effluent decreased following treatment, which justifies the benefits of treating industrial 

wastewater with biological systems like the EGSB. However, there are some data points 

visible in the product COD that are high and continuously fluctuating due to the different OLRs 

used when operating the EGSB reactor. Good quality data has been proven to result in the 

best network performance and high accuracy (Chen et al., 2021). However, based on the 

results in Table 4.3, the network shows poor training sets with the 𝑅  value ranging from 0.7823 

to 0.7964 when using different numbers of neurons (a range of 2 to 8 neurons) in the hidden 

layer. Poor training means the network was unable to learn. Figure C.1 in Appendix C shows 

the relationship between target and predicted COD data, where the training, testing and 

validation regression graphs have too many outliers.  

 

Figure 4.5: Comparison between the feed and product COD of PWW treated with an EGSB 

 

Table 4.3: Performance statistics of effluent COD prediction (FFB ANN model for PWW) 
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the FFB network had a total of 85 data points after data pre-processing. Based on the 

statistical performance in Table 4.3, the lowest MSE of 0.375 and highest overall 𝑅  value of 

0.816 was obtained for 8 neurons in the hidden layer. These MSE and 𝑅 values indicate that 

the network performed poorly, which means the network did not generalise the date well and 

would not be able to make an accurate prediction when presented with new data even though 

the MSE and 𝑅 values decreased and increased, respectively as the number of neurons 

increased. Poor performance of the FFB network occurred due to missing data, on some days 

the COD effluent or influent COD values were not recorded which resulted in the elimination 

of data in these rows. According to Emmanuel et al. (2021) missing data has a negative impact 

on ANN development as it may result in biased outcome, network performance degradation 

and analysis issues. Figure 4.6 illustrates the comparison between the target and predicted 

COD of the PWW. The linear regression and MSE plot for the FFB network for PWW is 

presented in Figures C.1 and C.2 in Appendix C. 

 

 

Figure 4.6: Comparison of the target and predicted effluent COD data (FFB ANN model for PWW) 
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Figure 4.7: Comparison of the feed and product COD of PPWW treated with an EGSB 

A FFB network model was developed using the trial-and-error method (Patki et al., 2021) of 

changing the number of neurons in the hidden layer to determine the best network architecture 

for the prediction of the effluent COD. Table 4.4 presents the statistical performance results of 

the FFB network model. Based on Table 4.4, the FFB network model generalised with an MSE 

of 0.472 and 𝑅  coefficient of 0.725, this means a network architecture consisting of 3 layers, 

namely an input, hidden and output layer with 8 neurons would result in poor accuracy and 

generalisation when presented with a new set of data for the prediction of effluent COD. The 

historical data obtained from a previous published study (Sheldon et al., 2012) for the PPWW 

treated with an EGSB had some missing data points for the feed (i.e. influent) and product 

(i.e. effluent) COD which led to the elimination of data rows which justifies the poor network 

performance and correlation depression of the learning algorithm stage (Gill et al., 2007). 

Figure 4.8 presents the comparison between the target and predicted effluent COD.  

Table 4.4: Performance statistics of effluent COD prediction (FFB ANN model for PPWW)  

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

2 0.56839 0.694 0.665 0.825 0.660 

4 0.53903 0.646 0.803 0.767 0.677 

6 0.54584 0.639 0.772 0.717 0.671 

8 0.47215 0.729 0.821 0.702 0.725 
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Figure 4.8: Comparison between the target and predicted effluent COD data (FFB ANN model for 
PPWW) 

 

4.3 Network 2: Nonlinear autoregressive neural network model with exogenous 

inputs (NARX) 

4.3.1 Anaerobic baffled reactor (ABR) treating biodiesel wastewater (BDWW) 

The nonlinear autoregressive neural network with exogenous inputs (NARX) known for 

accurate prediction was developed as the second ANN model for the prediction of effluent 

COD concentration from historical BDWW treatment data sets (Grobbelaar, 2019). The 

training function, learning function (i.e. supervised learning) and performance function were 

selected by default to be TRAINLM, LEARNGDM and MSE respectively on the MATLAB® 

(2021a) software. The trial-and-error method (Patki et al., 2021) was used  to determine the 

number of neurons that would represent an optimum network architecture and give maximum 

accuracy between the predicted and target COD concentration data, as well as better network 

performance. The performance statistics of the target and predicted effluent COD 

concentration in Table 4.5 shows that high accuracy and better network performance was 

achieved when the NARX network was trained with 5 neurons in the hidden layer. The overall 

correlation coefficient (𝑅) after training, validating, and testing the NARX network was found 

to be 0.988 with an MSE of 0.02396. Increasing the number of neurons did not affect the 

prediction accuracy of the network as it remained high, although the MSE kept increasing 

NARX still showed superior network performance. Increasing the neurons in the hidden layer 

results in great synthesising, but could result in poor generalisation of ANNs (Elshamy et al., 

2021). 
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Table 4.5: Performance statistics of effluent COD prediction (NARX ANN model for BDWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹   
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.02900 0.980 0.989 0.991 0.985 

5 0.02396 0.988 0.961 0.992 0.987 

7 0.02509 0.987 0.989 0.986 0.987 

9 0.02862 0.985 0.995 0.982 0.985 

Figure 4.9 shows the predicted COD data corresponds to the target COD data although it can 

be observed there is a significant difference in data on day 81 of operation with a target COD 

of 2833 mg/L and the predicted COD concentration to be 4255 mg/L, according to Grobbelaar 

(2019) this was due to the change in organic loading rate. 

 

Figure 4.9: Comparison between the target and predicted effluent COD concentration (NARX ANN 
model for BDWW) 

The regression graph in Figure A.7 in Appendix A shows accurate correspondence between 

the target and predicted COD concentration of the effluent with a perfect fit although some 

data points do not fall in the linear regression graph, these data points are called outliers, 
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A.7 that the regression analysis of the training and validation subsets show a good fit with 

𝑅 values of 0.989 and 0.992, respectively, while the testing subsets show slightly low 

regression results compared to the training and validation subsets with an 𝑅 value of 0.961. 

This could be the result of network overfitting, Alkinani et al. (2020) and Bilbao & Bilbao (2018) 

mention that, overfitting may be caused by a large number of neurons and hidden layers or 

network overtraining. However, this was not the case in this study because the network had a 
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minimum number of neurons (i.e. 5) and hidden layers (i.e. 1). It can be concluded that the 

COD regression results are acceptable since the 𝑅 value (i.e. 0.988) is close to 1.  

 

4.3.2 Anaerobic baffled reactor (ABR) treating textile wastewater (TTWW) 

NARX known for high accuracy in prediction purposes showed poor performance in the 

prediction of the effluent COD concentration of textile wastewater biologically treated with an 

EGSB reactor. This is evident in Table 4.6 which shows the statistical performance of NARX. 

The network could only predict the effluent COD concentration with an overall  𝑅 value of 0.838 

and a network architecture consisting of 3 layers (i.e. input, hidden and output layers) with 3 

neurons in the hidden layer. The network having a low number of neurons could not 

differentiate complex patterns which then resulted in a linear estimate of the trend (Göçken et 

al., 2016). The network performed poorly with an MSE of 0.303 which means it did not 

generalise well and will not be able to accurately predict effluent COD concentration when 

provided with a new data set for training, validation and testing (Willemink et al., 2020). The 

negative 𝑅 coefficient of the testing data set indicates the network extrapolated. This could be 

solved by providing more data for training and validation (Jiang et al., 2019; Hagan et al., 

1997).  

Table 4.6: Performance statistics of effluent COD prediction (NARX ANN model for TTWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  
3 0.30298 0.849 0.954 0.749 0.838 

5 0.47617 0.934 -0.747 0.936 0.756 

7 0.79691 0.999 -0.514 0.944 0.586 

9 0.57534 0.936 -0.813 0.843 0.677 

 

Figure 4.10 represents the relationship between target and predicted effluent COD 

concentration data. As mentioned before the data quality obtained from a previous 

unpublished study of the biological treatment of TTWW with an EGSB was poor which resulted 

in poor network performance.  



 

60 | P a g e  

 

Figure 4.10: Comparison between the target and predicted effluent COD concentration (NARX ANN 
model for TTWW) 

 

4.3.3 Expanded granular sludge bed (EGSB) reactor treating polymer wastewater 

(PWW) 

Figure 4.11 represents the relationship between the target and predicted effluent COD 

concentration from the NARX neural network model. Figure 4.11 shows an accurate prediction 

of the effluent COD when compared to the target effluent COD concentration obtained from a 

previous unpublished study, this is supported by the statistical performance analysis of NARX 

in Table 4.7.  

 

Figure 4.11: Comparison between the target and predicted effluent COD for PWW (NARX ANN model 
for PWW) 
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The trial-and-error method (Patki et al., 2021) by changing the number of neurons in the 

hidden layer to range from 3 to 9 neurons was applied in order to determine which network 

architecture would give optimum network performance and the highest accuracy in predicting 

the COD concentration of the PWW effluent. The best performance was recorded with 9 

neurons in the hidden layer with an 𝑅 value of 0.964 and an MSE of 0.0719 (refer to Table 4.7). 

Based on the statistical performance in Table 4.7, the training and testing subsets could 

accurately predict the COD concentration of the PWW effluent with the 𝑅  value ranging from 

0.942 to 0.982 and 0.924 to 0.946, respectively, for training and testing of the NARX network. 

An increase in the number of neurons in the hidden layer resulted in the optimum prediction 

and best network performance although it may cause overfitting of the network. The data set 

also shows good validation with 𝑅 values ranging from 0.9 to 0.932. It may therefore be 

concluded that the NARX network will show high accuracy when presented with new sets of 

data. This indicates superior network performance. Based on Figure C.4 in Appendix C, the 

regression graph shows sufficient results, with almost all the data points falling within the 

regression line. 

Table 4.7: Performance statistics of effluent COD concentration prediction (NARX ANN model-for 

PWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.13014 0.941 0.923 0.900 0.930 

5 0.14246 0.940 0.909 0.902 0.924 

7 0.14729 0.922 0.916 0.942 0.923 

9 0.07187 0.981 0.946 0.931 0.963 

 

4.3.4 Expanded granular sludge bed (EGSB) reactor treating pulp and paper 

wastewater (PPWW) 

Comparison between the target (Sheldon et al., 2012) and predicted COD concentration of 

the effluent data for the biological treatment of PPWW with an EGSB is presented in Figure 

4.12.  
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Figure 4.12: Comparison between the target and predicted effluent COD concentration for PPWW 
(NARX ANN model for PPWW) 

Table 4.8 shows the statistical performance (i.e. prediction accuracy and network 

performance) of the NARX network for predicting the COD concentration of effluent produced 

from the treatment of PPWW with an EGSB. After the trial-and-error method (Patki et al., 2021) 

was used to determine the optimum network architecture for network performance and COD 

prediction, it is evident from Table 4.8 that the NARX network performed better with 5 neurons 

as indicated by an MSE of 0.343 and  𝑅  value of 0.809. The training data set shows high 

accuracy with the correlation coefficient ranging from 0.801 to 0.928 but shows poor testing 

with the correlation coefficient ranging from 0.173 to 0.663 for the different number of neurons 

in the hidden layer. This is due to too many data points not falling within the regression line as 

presented in Figure D.1 in Appendix D. According to Saleh (2021) network overfitting occurred 

and therefore good generalisation will not occur when presented with new data sets. Based 

on Table 4.8, the NARX network also seems to have extrapolated, because it shows good 

training and validation (i.e. the correlation coefficient ranges from 0.334 to 0.833) results but 

poor testing data results with regard to the coefficient of determination  𝑅2.      

Table 4.8: Performance statistics of effluent COD prediction (NARX ANN model for PPWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.48363 0.800 0.172 0.832 0.719 

5 0.34288 0.839 0.651 0.876 0.809 

7 0.37011 0.836 0.662 0.830 0.799 

9 0.54379 0.927 0.284 0.334 0.683 
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4.4 Network 3: Cascade feedforward backpropagation (CFBP) 

4.4.1 Anaerobic baffled reactor (ABR) treating biodiesel wastewater (BDWW) 

The cascade forward backpropagation (CFBP) network model architecture was developed as 

the third ANN model for the prediction of the COD concentration of effluent from historical 

biological wastewater treatment data sets (Grobbelaar, 2019). The training function, learning 

function (i.e. supervised learning) and performance function were selected to be TRAINLM, 

LEARNGDM and MSE, respectively. Figure 4.13 represents the relationship between the 

target and predicted COD concentration of the effluent and shows good correspondence 

between the predicted and target data sets.  

 

Figure 4.13: Comparison between the target and predicted effluent COD concentration for BDWW 
treated with an ABR (CFBP ANN model) 

Table 4.9 shows the statistical performance of the CFBP network trained using different 

numbers of neurons in the hidden layer. The network shows a fluctuating or rather deficient 

performance as the number of neurons increases. An acceptable network performance was 

achieved when the network was trained, validated and tested with 11 neurons in the hidden 

layer with an MSE of 0.1024. The 𝑅  value was found to be 0.947 as recorded in Table 4.9 

which indicates high accuracy and a good overall fit. This is supported by the regression graph 

in Figure A.9 of Appendix A which shows a sufficient number of data points falling within the 

linear regression line with minimal outliers.  
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Table 4.9: Performance statistics of effluent COD prediction (CFBP ANN model for BDWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.11270 0.934 0.952 0.965 0.941 

5 0.10634 0.935 0.962 0.981 0.945 

7 0.1226 0.933 0.942 0.947 0.936 

9 0.15428 0.936 0.946 0.957 0.938 

11 0.10237 0.958 0.922 0.941 0.947 

Figure A.9 in Appendix A represents the regression graphs for the three subsets, namely 

training, validation and testing. The difference in 𝑅 values between the subsets means network 

overfitting or extrapolation. The training regression with the correlation coefficient (𝑅) ranging 

from 0.934 to 0.958 shows accurate prediction with minimum variation as few data points are 

outliers. The validation and testing regression graphs with 𝑅 values ranging from 0.941 to 

0.982 and 0.922 to 0.963, respectively show a high correspondence between the target and 

predicted effluent COD concentration data. The CFBP network showed high accuracy, but 

poor network performance with an MSE ranging from 0.1024 to 0.1543. It can therefore be 

concluded that the CFBP network would result in acceptable generalisation when presented 

with new feed (i.e. wastewater influent) COD data sets.  

 

4.4.2 Anaerobic baffled reactor (ABR) treating textile wastewater (TTWW) 

The quality and quantity of the historical data used in ANNs has a huge effect on successful 

network model development (Platon et al., 2015). The poor quality of the TTWW historical 

data available for developing the CFBP network resulted in poor model accuracy and network 

performance. Figure 4.14 illustrates the poor correspondence between the target and 

predicted effluent COD data supporting the statement by Platon et al. (2015).  
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Figure 4.14: Comparison between the target and predicted effluent COD for TTWW treated with an 
ABR (CFBP ANN model for TTWW) 

After the trial-and-error method (Patki et al., 2021) to identify which CFBP network architecture 

would result in optimum model accuracy, the statistical performance of CFBP model in Table 

4.10 indicates that the CFBP network would predict best when the network architecture 

consists of 5 neurons with an MSE of 0.444 and 𝑅  value of 0.736. All the results recorded for 

training, testing and validation are poor with correlation coefficient values ranging from 0.663 

to 0.814, 0.532 to 0.849 and 0.290 to 0.989, respectively. As seen in Figure B.6 of Appendix 

B showing the regression graphs for testing, training and validation, too many data points fall 

outside the linear graph and are regarded as outliers. 

Table 4.10: Performance statistics of effluent COD prediction (CFBP ANN model for TTWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.65272 0.663 0.531 0.639 0.627 

5 0.44396 0.746 0.385 0.988 0.736 

7 0.50376 0.747 0.620 0.816 0.713 

9 0.45113 0.814 0.848 0.290 0.751 

11 0.44555 0.758 0.741 0.703 0.747 

 

4.4.3 Expanded granular sludge bed (EGSB) reactor treating polymer wastewater 

(PWW) 

Figure 4.15 shows the relationship between the target and predicted effluent COD for PWW 

treated with an ABR. With good quality data, the network was able to relate the predicted 

effluent COD data to the target effluent COD data.  
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Figure 4.15: Comparison between the target and predicted effluent COD for PWW treated with an ABR 
(CFBP ANN model for PWW) 

Based on Table 4.11, showing the statistical performance analysis of CFBP network, the 

network was able to accurately predict the COD concentration of the PWW effluent. After the 

trial-and-error method (Patki et al., 2021) was used to determine the appropriate number of 

neurons in the hidden layer, a CFBP network architecture consisting of 9 neurons in the hidden 

layer was identified. Table 4.11 shows the training, validation and testing 𝑅 values ranging 

from 0.737 to 0.827, 0.799 to 0.917 and 0.740 to 0.962, respectively. Increasing of the number 

of neurons in the hidden layer resulted in high network prediction with a correlation coefficient 

of 0.837 and an MSE of 0.297 between the target and predicted effluent COD data. The CFBP 

network shows poor generalisation for untrained data due to too neurons in the hidden layer 

(Göçken et al., 2016). Based on Figure C.7 in Appendix C, the CFBP network accurately 

predicted the COD concentration of the PWW effluent, but due to the poor performance 

represented by the MSE ranging from 0.297 to 0.364 in Table 4.11, the network did not 

generalise well and will continue to perform poorly when presented with new wastewater data 

sets. 

Table 4.11: Performance statistics of effluent COD prediction (CFBP ANN model for PWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.35956 0.737 0.961 0.798 0.797 

5 0.36400 0.781 0.740 0.947 0.796 

7 0.31611 0.826 0.830 0.864 0.828 

9 0.29693 0.827 0.903 0.819 0.837 

11 0.32650 0.815 0.850 0.917 0.821 
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4.4.4 Expanded granular sludge bed (EGSB) reactor treating pulp and paper 

wastewater (PPWW) 

As observed in Figure 4.16 representing the relationship between the target (Sheldon et al., 

2012) and predicted COD effluent concentration data of the treatment of PPWW with an EGSB 

reactor, the CFBP network did not perform well and shows poor effluent COD prediction.  

 

Figure 4.16: Comparison between the target and predicted effluent COD concentration of PPWW 
treated with an EGSB reactor (CFBP ANN model) 

Increasing the number of neurons in the hidden layer did not affect the CFBP network 

performance, although better network performance is observed when the CFBP network was 

developed with 5 neurons in the hidden layer as shown in Table 4.12. The MSE was found to 

be 0.453 with an overall correlation coefficient (𝑅) of 0.739, a training 𝑅 value of 0.723, 

validation 𝑅  value of 0714 and testing 𝑅  value of 0.893. All results which include the training, 

validation and testing data sets show poor network accuracy, this may be due to the smaller 

number of hidden layers as changing the number of neurons in the hidden layer showed 

almost no effect on the MSE and 𝑅  values. As seen in Figure D.7 of Appendix D the regression 

graphs for testing, training and validation have too many data points falling outside the linear 

graph and are therefore regarded as outliers. 

Table 4.12: Performance statistics of effluent COD prediction (CFBP ANN model for PPWW) 

Number of neurons 𝐌𝐒𝐄 
Training 

𝑹  
Testing 

𝑹  
Validation 

𝑹  
All 

𝑹  

3 0.50450 0.737 0.702 0.710 0.702 

5 0.45267 0.722 0.893 0.714 0.739 

7 0.50425 0.729 0.694 0.674 0.702 

9 0.45393 0.788 0.530 0.722 0.736 

11 0.45666 0.708 0.777 0.876 0.734 
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4.5 Summary 

4.5.1 Anaerobic baffled reactor (ABR) treating biodiesel wastewater (BDWW) 

When comparing the predicted COD concentration of the effluent from the FFB, NARX and 

CFBP artificial neural network models Figure 4.17 shows that all the network models were 

able to accurately predict the COD concentration of the effluent as the output data points lie 

close to that of the COD concentration of the target data. It was observed that the NARX 

network model performed better for BDWW biological treatment when compared to the FFB 

and CFBP network models for BDWW treatment with an ABR system. Figure 4.17 shows the 

NARX network model’s predicted COD output data points are located close to the effluent 

COD target (i.e. product COD) data points obtained from a previous published study 

(Grobbelaar, 2019). 

 

Figure 4.17: Target effluent COD data and predicted effluent COD data associated with the cascade 
feedforward backpropagation (CFBP), feedforward backpropagation (FFB) and nonlinear 
autoregressive neural network with exogenous inputs (NARX) network models for BDWW treatment 
with an ABR system 

Table 4.13 shows a summary of the statistical performance of the FFB, NARX and CFBP 

network models. All three network models show an acceptable network performance in 

relation to the accurate prediction of effluent COD output, although there is a difference 

observed in network performance with regards to the error between target and predicted 

effluent COD data. Comparing the three networks, NARX performed better at predicting the 

effluent COD output with an 𝑅 value of 0.988 and MSE of 0.0239. The NARX network model 

is most likely to generalise well when presented with new input data (i.e. influent wastewater). 
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Table 4.13: Performance comparison between the feedforward backpropagation (FFB), nonlinear 
autoregressive neural network with exogenous inputs (NARX) and cascade feedforward 
backpropagation (CFBP) network models for the prediction of BDWW effluent COD concentration 

Model performance  FFB NARX CFBP 

MSE 0.10964 0.02396 0.10237 

𝑅  0.943 0.987 0.947 

 

4.5.2 Anaerobic baffled reactor (ABR) treating textile wastewater (TTWW) 

Figure 4.18 illustrates the comparison between the target effluent COD concentration of 

TTWW treated by an ABR system and the effluent COD concentration data as predicted by 

the FFB, NARX and CFBP neural networks. Poor prediction and network performance, is 

observed in Figure 4.18 although, based on the statistical performance in Table 4.14, the 

NARX network seems to have been able to mimic the behaviour/trend of the target COD 

effluent concentration data. The NARX network performed and predicted the COD 

concentration of the TTWW effluent better when compared to the FFB and CFBP networks 

with an 𝑅 value of 0.838 and an MSE of 0.303. As mentioned before, the poor network 

performances were attributed to the poor quality and quantity of the historical data used to 

train the networks which led to poor network generalisation.  

 

Figure 4.18: Target effluent COD data and predicted effluent COD data associated with FFB, NARX 
and CFBP for TTWW treated with an ABR system 
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Table 4.14: Performance comparison between the FFB, NARX and CFBP network models for predicting 
the COD concentration of TTWW effluent 

Model performance  FFB NARX CFBP 

MSE 0.50547 0.30298 0.44396 

𝑅  0.713 0.838 0.736 

 

4.5.3 Expanded granular sludge bed (EGSB) reactor treating polymer wastewater 

(PWW) 

Figure 4.19 represents the graphs comparing the target effluent COD concentration for PWW 

treated with an EGSB reactor to the predicted effluent COD concentration by the FFB, NARX 

and CFBP neural networks. Based on the statistical performance of the FFB, NARX and CFBP 

neural networks shown in Table 4.14, the NARX neural network performed better when 

compared to the FFB and CFBP neural networks with an MSE of 0.0719 and an 𝑅 value of 

0.964. Thus, indicating the NARX neural network is most likely to accurately predict the COD 

concentration of the PWW effluent when presented with a new set of data.  

 

Figure 4.19: Target effluent COD data and predicted effluent COD data associated with the FFB, NARX 
and CFBP neural network models for PWW treated with an EGSB 

Table 4.15: Performance comparison between the FFB, NARX and CFBP neural network models for 
predicting the effluent COD concentration of PWW 

Model performance  FFB NARX CFBP 

MSE 0.37542 0.07187 0.29693 

𝑅  0.816 0.963 0.837 
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4.5.4 Expanded granular sludge bed (EGSB) reactor treating pulp and paper 

wastewater (PPWW) 

Figure 4.20 shows the FFB, NARX and CFBP neural network model prediction of the effluent 

COD concentration for PPWW treated using an EGSB reactor, as well as the target effluent 

COD concentration data set.  

 

Figure.4.20: Target effluent COD data and predicted effluent COD data associated the FFB, NARX and 
CFBP neural network models for PPWW treated with an EGSB reactor 

From Table 4.16 it may be concluded that the. NARX neural network model performed better 

compared to FFB and CFB neural network models with an MSE of 0.343 and with an 𝑅 value 

of 0.809 has a higher prediction accuracy when compared to the other neural network models. 

Although the NARX neural network model may have accurately predicted the COD 

concentration of the PPWW effluent, is shows deficient performance which means it will most 

likely poorly predict effluent COD when presented with a new set of data.  

Table 4.16: Performance comparison between feedforward backpropagation (FFB), cascade 
feedforward backpropagation (CFBP) and nonlinear autoregressive neural network with exogenous 
inputs (NARX) network models for the COD concentration of the PPWW effluent 

Model performance  FFBP NARX CFBP 

MSE 0.47215 0.34288 0.45267 

𝑅  0.725 0.809 0.739 
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5.1 Conclusions  

Based on the results obtained in Chapter 4, artificial neural networks (ANNs) are a reliable 

modelling tool for successfully predicting the performance of biological wastewater treatment 

systems, as well as predicting the COD of the effluent. The prediction and network 

performance obtained was due to the correct selection of ANN input parameters COD and 

OLR since COD effluent is dependent on the organic loading rate (OLR). The results 

demonstrate that the quality and quantity of data strongly influence prediction and ANN 

performance. The quality of the training data constraints ANN model quality. The textile 

wastewater treatment data had fewer data points (i.e. poor), which resulted from missing data 

and the elimination of unpaired data points. This resulted in the inaccurate prediction of the 

effluent COD concentration and, therefore, poor network performance. Out of all three ANN 

models developed (i.e. FFB, NARX and CPFB), NARX showed high prediction accuracy for 

biological wastewater treatment systems. The COD treatment efficiency or output 

concentrations from all wastewater treatment types and systems had a significant influence in 

the three model performances, higher COD removal efficiency or output concentration 

resulted in high ANN model prediction and performance, vice versa. The type of wastewater 

and biological treatment did not have an impact on ANN model development. 

 

5.1.1 How accurately can artificial neural networks (ANN) predict the performances of 

biological wastewater treatment systems? 

Based on the statistical performance of the three ANNs developed; namely the autoregression 

neural network with exogenous input (NARX) ANN, the cascade feedforward backpropagation 

(CFBP) ANN and the feedforward backpropagation (FFB) ANN, for predicting the effluent COD 

of biodiesel- (BDWW), textile- (TTWW), polymer- (PWW) and pulp and paper wastewater 

(PPWW) following biological treatment, NARX predicted the effluent COD more accurately 

and performed better when compared to CFBP and FFB with Pearson correlation coefficient 

(𝑅) values of 0.988, 0.838, 0.964 and 0.809, respectively and a mean square error (MSE) of 

0.0239, 0.303, 0.0719 and 0.343, respectively. This means the network was able to generalise 

well with high predictive performance. Therefore, when presented with a new set of data NARX 

is most likely to generalise well, showing high prediction accuracy.  

 



 

74 | P a g e  

5.1.2 Does the type of wastewater biological treatment system impact the artificial 

neural network (ANN) model development? 

When comparing both the four types of wastewater (i.e. BDWW, TTWW, PWW and PPWW) 

and the different biological treatment systems (i.e. anaerobic baffled reactor (ABR) and 

expanded granular sludge bed reactor (EGSB)), based on the ANN simulation results, 

correlation coefficient and MSE, it can be concluded that the ANN models were not influenced 

by the type of wastewater or the biological wastewater treatment technique. It was observed 

that the model performances and accuracy is mainly influenced by the quality and quantity of 

the data sets available for each biological wastewater treatment system. In conclusion ANNs 

can successfully predict biological wastewater treatment performance as long as the correct 

input parameters are selected, and the quality and quantity of the data sets are sufficient for 

the development of a model with high prediction accuracy. According to Nguyen et al. (2020) 

ANNs perform better, with a high prediction accuracy when created with a significant number 

of parameters compared to when the network was developed with only one or two input 

parameters. 

 

Wastewater management is a crucial challenge in industries, these leads to (e.g. water and 

air contamination and soil erosion). The results obtained from the three ANN model 

performances shows accurate and cost-effective industrial wastewater management methods 

prior to discharge. 

 

5.2 Recommendations 

To improve and achieve high prediction accuracy and better ANN model performance, the 

following recommendations are suggested for further studies: 

• Use large amounts of data sets for ANN model development preferably over 100 points 

to ensure better model performance. 

• Use data pre-processing software such as Minitab statistical analysis to investigate 

missing data, outliers and the completeness of the raw data (Hassen & Asmare, 2018). 

• For missing data, do not leave the cell blank rather: 

a) Replace the missing value with zero. 

b) Replace the missing value with the mean value obtained from the raw data set. 

c) Use multiple imputation procedures to estimate and predict the missing data 

value. 

• Investigate the impact of the different training algorithms on ANNs for biological 

wastewater treatment systems such as the: 
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a) Bayesian regularisation (BR), and 

b) The scaled conjugate gradient (SCG). 

• Minimise network overfitting by using large training data points. 

• Improve network generalisation by restricting the number of weights and neurons in 

the hidden layer.  

• Stop the training in order to restrict the magnitude of the weights (i.e. early stopping). 

• Use more input parameters that influence the effluent COD (Hamed et al., 2004). 

• Use sensitivity analysis (SA) to investigate the relationship of each input parameter to 

the effluent and identify insignificant variables (Mrzygłód et al., 2020; Guinter et al., 

2016). 

• Identify and handle “noisy” data to improve model accuracy for future predictions 

(Gupta & Gupta, 2019).  
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Appendix A: ANN MATLAB® Figures  
 

         Biodiesel wastewater  

A.1 FFB 

 

Figure A.1: FFB network architecture 

 

 

Figure A.2: Regression graph (BDWW) 
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Figure A.3: Mean square error: FFB-BDWW 

 

 

Figure A.4: Network performance (BDWW) 

 

A.2 NARX 

 

Figure A.5: NARX Network architecture 
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Figure A.6: Network performance (BBDW) 

 

 

Figure A.7: Linear Regression graph (BDWW) 
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A.3 CFBP 

 

Figure A.8: CFBP Network architecture 

 

 

Figure A.9: Regression graph (BDWW) 
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Figure A.10: Network performance (BDWW) 
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Appendix B: ANN MATLAB® Figures 
 

Textile Wastewater  

B.1 FFB 

 

Figure B.1: Regression graph (Textile: FFB) 

 

 
Figure B.2: Network Performance (Textile FFB) 
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Figure B.3: Mean square error (FFBP ANN model-Textile WW) 

 

B.2 NARX 

 

Figure B.4: Regression graph (Textile: NARX)  
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Figure B.5: Network Performance (Textile- NARX) 

 

B.3 CFBP 

 

Figure B.6: Network Performance (Textile: CFBP ANN)  
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Figure B.7: Regression graph (Textile: CFBP ANN) 

 

 

Figure B.8: Mean square error (CFBP ANN model-Textile) 
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Appendix C: ANN MATLAB® Figures 
 

Polymer wastewater 

C.1 Feedforward backpropagation 

 

Figure C.1: Network Performance (Polymer: FFB ANN) 

 

 

Figure C.2: Regression graph (Polymer: FFB ANN) 

 



 

109 | P a g e  

 

Figure C.3: Mean square error (FFBP ANN model-Polymer WW) 

 

C.2 NARX  

 

Figure C.4: Regression graph (Polymer: NARX ANN) 

 

 

Figure C.5: Mean square error (NARX ANN model-Polymer WW) 
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Figure C.6: Network Performance (Polymer WW: NARX ANN) 

 

C.3 CFB 

 

Figure C.7: Regression graph (Polymer WW: CFBP ANN) 
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Figure C.8: Network Performance (Polymer: CFBP ANN) 

 

 

Figure C.9: Mean square error (CFBP ANN model-Polymer WW) 
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Appendix D: ANN MATLAB® Figures 
 

Pulp and paper wastewater 

D.1 Feedforward backpropagation 

 

Figure D.1: Regression graph (Pulp and paper: FFB ANN) 

 

 

Figure D.2: Network Performance (Pulp and paper: FFB ANN) 
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Figure D.3: Mean square error (FFB ANN model-Pulp and paper) 

 

D.2 NARX  

 

Figure D.4: Regression graph (Pulp and paper WW: NARX ANN) 
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Figure D.5: Network Performance (Pulp and paper: NARX ANN) 

 

 

Figure D.6: Mean square error (NARX ANN model-Pulp and paper) 
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D.3 CFBP  

 

Figure D.7: Network Performance (Pulp and paper: CFBP ANN) 

 

 

Figure D.8: Regression graph (Pulp and paper WW: CFBP ANN) 
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Figure D.9: Mean square error (CFBP ANN model-Pulp and paper) 
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Appendix E: Historical Raw data 
 

E.1 Biodiesel wastewater treatment raw data 

Table E.1: BDWW Raw Data 

Days since 
inoculation 

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

6 0.58 5373 1745 

8 0.58 5493 1653 

11 0.58 5525 2218 

13 0.58 5760 1890 

15 0.58 5588 2678 

18 0.58 5423 2225 

20 0.58 5433 2625 

22 0.58 5720 2655 

25 0.58 6265 2953 

27 0.58 6133 2655 

29 0.58 5558 1703 

32 0.58 5793 1605 

34 0.58 5315 1745 

36 0.58 5390 1763 

39 0.58 5213 1953 

41 0.58 6083 2065 

43 0.58 10110 2175 

46 0.58 9200 2113 

48 0.58 8735 2198 

50 0.58 10458 3263 

53 0.58 11478 2998 

55 0.58 8743 3735 

57 0.58 9478 3960 

60 0.58 9473 3625 

62 0.58 9580 4048 

64 0.58 9350 4400 

67 0.58 9225 4190 

69 0.58 8850 4415 

71 0.58 9228 3618 

74 0.58 9853 3990 

76 0.58 10448 4373 

78 0.58 11465 4850 

81 0.58 11570 2333 

83 0.58 11965 4543 

85 0.58 12400 4815 

88 0.58 13068 5160 

90 0.58 13383 6125 

92 0.58 12403 6500 
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95 0.58 12816 6755 

97 0.58 13248 7358 

99 0.58 11788 6870 

102 0.58 13920 6948 

104 0.58 11695 6725 

106 0.58 12373 6763 

109 0.58 11603 7123 

111 0.58 10693 7843 

113 0.58 10808 7305 

116 0.58 9090 5615 

125 0.58 9328 5858 

127 0.58 8640 5363 

130 0.58 11050 5668 

132 0.58 11800 5713 

134 0.58 9600 5853 

137 0.58 11770 5785 

139 0.58 9250 5523 

141 1.15 12330 5828 

144 1.15 11645 5638 

146 1.15 11313 5490 

148 1.15 11783 6130 

151 1.15 11495 6098 

153 1.15 11150 5853 

155 1.15 11473 5648 

158 1.15 10868 5688 

160 1.15 10861 5620 

174 1.98 13590 4785 

176 1.98 19190 5275 

179 1.98 16790 6223 

181 1.98 14580 7790 

183 1.98 14535 8090 

186 1.98 19530 7893 

188 1.98 23665 7418 

190 1.98 23490 7325 

193 1.98 23705 8288 

195 1.98 25140 11068 

197 3.46 21845 12063 

200 3.46 33053 13590 

202 3.46 33405 12233 

204 3.46 33968 11698 

207 3.46 37230 12325 

209 3.46 31920 11690 

211 3.46 32783 11693 

214 3.46 33645 10958 

216 3.46 34440 11955 

218 3.46 30563 11175 
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221 3.46 33593 11820 

223 3.46 32228 11410 

225 3.46 33450 11158 

 

E.2 Polymer wastewater treatment raw data 

Table E.2: PWW raw data  

Days since 
inoculation 

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

3 1.000622556 2555 882.5 

5 0.579027719 1460 226 

8 1.849454729 4707.5 907.5 

10 2.046694417 4542.5 950 

12 2.488283002 5422.5 1250 

15 2.156994934 4452.5 720 

17 3.071686078 5854.5 892.5 

19 4.300880892 8290 975 

22 4.084670739 8132.5 6397.5 

24 4.491275351 8842.5 2370 

26 10.06488869 19575 4082.5 

29 4.418811038 9525 3192.5 

31 4.588920616 9700 1125 

33 7.771889471 16825 1055 

36 9.735910076 20025 3055 

38 8.157813396 16375 4715 

40 9.087669326 18525 5465 

43 10.73757079 21800 6110 

45 12.49880198 25075 8820 

47 11.89632235 23625 18425 

50 12.00357974 24250 22600 

52 10.76792 20625 21550 

54 7.618531201 14650 19125 

57 7.982836613 15700 16075 

59 8.275197526 16225 11275 

61 7.121123677 13900 9200 

64 24.08729945 46325 8950 

65 9.054975723 17375 9675 

66 10.10813411 19525 10825 

67 9.206241943 17725 10075 

68 9.577823537 18575 11300 

69 10.14341385 19650 11050 

70 11.41612407 21700 11650 

71 11.32136355 21750 11525 

72 10.68745143 21000 9475 

73 11.24396181 21850 11540 

74 8.584724653 17050 9475 
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75 10.64875219 20600 10875 

76 7.967182189 15725 16475 

77 10.02409972 19950 10075 

78 12.21666334 23650 17950 

79 7.195379124 14325 10325 

80 8.137585532 16700 10350 

81 7.11876616 14500 9725 

82 9.124914669 18150 10025 

83 8.532087438 16950 12650 

84 7.826267029 15445 11325 

85 9.661239597 18900 12400 

86 6.493001231 12670 5830 

87 10.03613992 19300 11500 

88 8.292511519 16150 10500 

89 6.260575803 12740 5680 

90 8.811625053 17840 4260 

91 7.003921588 14200 4300 

92 8.621692483 17480 5860 

93 4.946267914 10060 4320 

94 9.510565093 17320 8840 

95 10.14025021 15480 8800 

96 11.3166611 17760 9580 

97 11.77447039 17800 5120 

98 7.734769423 11640 5480 

99 8.215862981 12920 5020 

100 8.434175643 13700 7080 

101 7.678636257 12000 6720 

102 6.969770809 11150 6940 

103 6.306753657 10260 5950 

104 7.358919263 12032.5 5645 

105 10.54665904 17015 5475 

106 7.728339342 12500 5880 

107 10.89431712 17890 7032.5 

108 9.226147619 14580 6875 

109 6.376550305 9650 6750 

110 11.88333782 15425 5932.5 

111 14.69100209 14840 6470 

112 14.31014739 14435 6430 

113 14.57859626 14770 6140 

114 15.71783931 15810 6495 

115 11.06570931 11245 7385 

116 13.3155528 13470 6507.5 

117 13.33986361 13495 6250 

118 15.37744072 15550 6702.5 

119 16.28885065 16325 5485 

120 17.23647876 17075 6275 
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121 17.30226674 17125 6215 

122 18.29220035 18075 5970 

 

E.3 Pulp and paper wastewater treatment raw data 

Table E.3: PPWW raw data  

Days since 
inoculation  

OLR (kg 
COD/m3/d) 

COD Influent 
(mg/L) 

COD Effluent 
(mg/L) 

Feed Flow rate 
(L/d)  

0 4.033333 2420 1210 40 

1 4 2400 1285 40 

5 3.575 2145 880 40 

6 3.658333 2195 845 40 

7 3.066667 1840 920 40 

8 3.333333 2000 735 40 

9 3.158333 1895 940 40 

10 3.341667 2005 840 40 

14 2.258333 1355 725 40 

16 3.333333 2000 865 40 

18 1.716667 1030 780 40 

19 2.566667 1540 975 40 

20 1.891667 1135 1015 40 

22 1.991667 1195 890 40 

24 1.683333 1010 845 40 

26 1.708333 1025 855 40 

29 4.516667 2710 1065 40 

30 4.425 2655 1070 40 

31 3.116667 1870 65 40 

32 4.2 2520 1075 40 

33 3.241667 1945 260 40 

34 3.991667 2395 795 40 

35 3.058333 1835 140 40 

36 3.941667 2365 760 40 

37 0.3 180 45 40 

38 3.8 2280 765 40 

39 2.741667 1645 180 40 

40 3.425 2055 795 40 

41 2.158333 1295 45 40 

42 2.983333 1790 1005 40 

43 1.458333 875 80 40 

44 2.891667 1735 870 40 

45 1.575 945 30 40 

46 2.575 1545 1190 40 

47 1.208333 725 45 40 

48 0.941667 565 84 40 

49 0.733333 440 95 40 

50 0.425 255 90 40 



 

122 | P a g e  

51 0.558333 335 85 40 

52 0.433333 260 76 40 

53 0.3 180 10 40 

54 3.45 2070 290 40 

55 3.741667 2245 70 40 

57 3.208333 1925 395 40 

58 3.225 1935 1130 40 

59 3.283333 1970 1285 40 

60 2.816667 1690 1135 40 

63 5.53 2370 1810 56 

64 3.943093 1942.5 587.5 48.71774618 

65 3.753156 1875 460 48.04039972 

66 4.316872 1937.5 795 53.47351296 

67 4.139785 1957.5 612.5 50.75598727 

68 4.631842 2105 920 52.80959655 

69 3.620222 1675 165 51.87184233 

70 4.369344 2069.5 725 50.67129889 

75 5.215475 2202.5 752.5 56.83150464 

76 5.449794 2412.5 1302.5 54.21556562 

77 4.932998 2425 1387.5 48.82142643 

78 5.222876 2567.5 1692.5 48.82142643 

79 4.182292 2007.5 1352.5 50 

80 5.126563 2412.5 987.5 51 

81 5.632229 2430 1315 55.62695163 

82 5.787925 2657.5 1415 52.27100894 

83 4.838034 2067.5 1050 56.16098005 

84 4.939524 2187.5 710 54.19363376 

85 4.79546 2212.5 827.5 52.0185477 

86 3.774629 1677.5 837.5 54.00364054 

87 3.48495 1670 897.5 50.08310685 

88 2.412035 1182.5 347 48.95461581 

91 4.450449 1925 297.5 55.48612059 

92 4.116175 1880 313 52.54691711 

93 4.110171 1795 555 54.95492969 

94 4.326249 1842.5 380 56.35277191 

95 3.833293 1577.5 409.5 58.31951696 

96 3.725947 1625 374 55.02937527 

98 4.047978 1697.5 1673 57.23209329 

99 3.748657 1692.5 628 53.15673381 

100 3.235519 1605 552.5 48.38159376 

101 3.773158 1663 674 54.45327372 

102 3.305215 1522.5 430 52.10190835 

104 2.859095 1422.5 525 48.23780405 

106 3.591613 1445 550 59.65307993 

108 2.880769 1280 419 54.01442479 

110 2.870565 1347.5 367.5 51.12694652 
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112 5.506127 2265 945 58.34307132 

114 4.927927 2207.5 922.5 53.57655239 

116 4.854414 2140 655 54.44202252 

117 5.190013 2287.5 627.5 54.45259593 

118 3.32825 1957.5 607.5 40.80613222 

121 5.047726 1932.5 447.5 62.68845002 

123 3.062279 1315 395 55.8894978 

125 6.387615 2627.5 1325 58.34548658 

127 5.66413 2452.5 1155 55.42879247 

129 5.44561 2317.5 1202.5 56.39466447 

131 4.033826 1740 587.5 55.63897617 

133 3.964255 1840 495 51.70767434 

135 4.616855 2057.5 607.5 53.85396349 

137 4.643605 2049 611 54.39068859 

139 3.70721 1870 535 47.57916693 

141 4.915856 1870 1190 63.09120152 

146 9.218415 3427.5 682.5 64.54907383 

147 5.900033 2201 778 64.33475253 

149 5.3278 2020 767.5 63.30059323 

151 5.006649 1860 772.5 64.60192711 

153 4.568032 1862.5 765 58.86323119 

154 3.467348 1720 482.5 48.38159376 

155 4.650977 1767.5 697.5 63.1532905 

157 4.733263 1886 605.5 60.23240272 

160 3.914357 1485 532.5 63.26233064 

163 3.785874 1425 579 63.76209268 

165 4.954026 1705 505 69.73408394 

167 3.515182 1191.5 544 70.8051697 

169 2.817403 1385 577.5 48.82142643 

170 3.295446 1620 468.5 48.82142643 

173 5.587951 1735 444.5 77.29730885 

175 4.714338 1520 577.5 74.43692101 
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E.4 Textile treatment raw data 

Table E.4: TTWW raw data 

Days since 
inoculation  

OLR (kg 
COD/m3/d) 

COD Influent 
(mg/L) 

COD Effluent 
(mg/L) HRT (days) 

9 0.300556 1352.5 1045 4.5 

12 0.351111 1580 602.5 4.5 

13 0.129444 582.5 660 4.5 

14 0.147222 662.5 502.5 4.5 

16 0.377778 1700 2375 4.5 

19 0.228889 1030 930 4.5 

21 0.06 270 150 4.5 

23 0.071111 320 270 4.5 

28 0.075 270 100 3.6 

30 0.305556 1100 390 3.6 

33 0.183333 660 1120 3.6 

35 0.294444 1060 1100 3.6 

37 0.186111 670 330 3.6 

40 0.169444 610 215 3.6 

42 0.419444 1510 710 3.6 

47 0.152444 490 1880 3.214285714 

49 0.252 810 1270 3.214285714 

51 0.224 720 470 3.214285714 

54 0.152 380 1850 2.5 

56 0.166 415 1260 2.5 

58 2.364 5910 1340 2.5 

61 0.072 180 2140 2.5 

63 0.236 590 950 2.5 

65 0.04 100 1830 2.5 

68 0.06 120 920 2 

70 0.05 100 1340 2 

72 0.665 1330 1100 2 

77 0.275333 420 1290 1.525423729 

79 0.144222 220 2600 1.525423729 

82 0.170444 260 1280 1.525423729 

84 0.216333 330 1060 1.525423729 
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Appendix F: Historical Normalised data 
 

F.1 Biodiesel wastewater treatment normalised data 

Table F.1: BDWW normalised data 

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

-0.623380127 -0.989705004 -1.29749008 

-0.623380127 -0.976141795 -1.32643998 

-0.623380127 -0.972524939 -1.14864983 

-0.623380127 -0.945963655 -1.25186252 

-0.623380127 -0.965404255 -1.00390034 

-0.623380127 -0.984053667 -1.14644712 

-0.623380127 -0.982923399 -1.020578 

-0.623380127 -0.950484725 -1.01113781 

-0.623380127 -0.888885152 -0.91736531 

-0.623380127 -0.903804682 -1.01113781 

-0.623380127 -0.968795057 -1.31070634 

-0.623380127 -0.942233773 -1.34154427 

-0.623380127 -0.996260555 -1.29749008 

-0.623380127 -0.987783549 -1.29182597 

-0.623380127 -1.007789282 -1.23203813 

-0.623380127 -0.909456019 -1.19679478 

-0.623380127 -0.454297338 -1.16218077 

-0.623380127 -0.557151671 -1.18169048 

-0.623380127 -0.609709105 -1.15494329 

-0.623380127 -0.414964033 -0.81981674 

-0.623380127 -0.299676759 -0.90320503 

-0.623380127 -0.608804891 -0.67129117 

-0.623380127 -0.525730238 -0.60048978 

-0.623380127 -0.526295372 -0.70590518 

-0.623380127 -0.51420151 -0.57279857 

-0.623380127 -0.54019766 -0.46203374 

-0.623380127 -0.554326003 -0.52811503 

-0.623380127 -0.59671103 -0.45731365 

-0.623380127 -0.553986923 -0.70810789 

-0.623380127 -0.483345211 -0.5910496 

-0.623380127 -0.4160943 -0.47052991 

-0.623380127 -0.301146106 -0.32043097 

-0.623380127 -0.289278299 -1.11246246 

-0.623380127 -0.244632737 -0.41703553 

-0.623380127 -0.195466105 -0.33144452 

-0.623380127 -0.119964243 -0.2228824 

-0.623380127 -0.08436082 0.080776875 

-0.623380127 -0.195127025 0.198779182 

-0.623380127 -0.148446981 0.279020752 
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-0.623380127 -0.09961943 0.468768462 

-0.623380127 -0.264638469 0.315208126 

-0.623380127 -0.023665461 0.339752606 

-0.623380127 -0.275149956 0.269580567 

-0.623380127 -0.198517827 0.281538134 

-0.623380127 -0.285548416 0.394820349 

-0.623380127 -0.388402749 0.62138478 

-0.623380127 -0.375404674 0.452090803 

-0.623380127 -0.569584613 -0.07970626 

-0.623380127 -0.542684249 -0.00324077 

-0.623380127 -0.620446646 -0.15900381 

-0.623380127 -0.348052203 -0.0630286 

-0.623380127 -0.263282149 -0.04886833 

-0.623380127 -0.511940976 -0.00481413 

-0.623380127 -0.266672951 -0.02621188 

-0.623380127 -0.551500334 -0.10865616 

-0.076916975 -0.203377977 -0.01268095 

-0.076916975 -0.280801293 -0.07246879 

-0.076916975 -0.318326171 -0.11904037 

-0.076916975 -0.265203603 0.082350239 

-0.076916975 -0.297755304 0.072280709 

-0.076916975 -0.336749529 -0.00481413 

-0.076916975 -0.300241892 -0.06932206 

-0.076916975 -0.36862307 -0.05673515 

-0.076916975 -0.369414257 -0.0781329 

0.718810071 -0.060964285 -0.3408847 

0.718810071 0.571985457 -0.18669502 

0.718810071 0.300721282 0.111614811 

0.718810071 0.050932187 0.604707121 

0.718810071 0.045845984 0.699108967 

0.718810071 0.610414548 0.637118421 

0.718810071 1.077780116 0.487648831 

0.718810071 1.058000437 0.458384259 

0.718810071 1.082301186 0.761414185 

0.718810071 1.244494557 1.636204626 

2.137696851 0.87207145 1.949304082 

2.137696851 2.138875147 2.429809479 

2.137696851 2.178660559 2.002798462 

2.137696851 2.242294614 1.834448503 

2.137696851 2.610987838 2.031748361 

2.137696851 2.010815851 1.83193112 

2.137696851 2.108357927 1.832875139 

2.137696851 2.205786977 1.601590616 

2.137696851 2.295643235 1.915319418 

2.137696851 1.857438565 1.669874618 

2.137696851 2.199909586 1.872838587 
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2.137696851 2.045628087 1.74382273 

2.137696851 2.183746763 1.66452518 

 

F.2 Polymer wastewater treatment normalised data  

Table F.2: TTWW normalised data  

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

-2.04511 -2.15195389 -1.47797 

-2.14955 -2.333595658 -1.61875 

-1.83482 -1.794890962 -1.4726 

-1.78596 -1.822261639 -1.46349 

-1.67657 -1.676284693 -1.39916 

-1.75864 -1.8371911 -1.51281 

-1.53204 -1.604623283 -1.47582 

-1.22753 -1.200615496 -1.45813 

-1.28109 -1.226742052 -0.29533 

-1.18037 -1.108965198 -1.15899 

0.200387 0.671372956 -0.79176 

-1.19832 -0.995750123 -0.98261 

-1.15618 -0.966720617 -1.42596 

-0.36766 0.215194999 -1.44097 

0.118889 0.746020258 -1.0121 

-0.27205 0.140547697 -0.65613 

-0.0417 0.497195917 -0.4953 

0.367031 1.040462393 -0.35698 

0.803341 1.583728869 0.22415 

0.654088 1.343198674 2.283845 

0.680659 1.446875482 3.179131 

0.374549 0.845549994 2.953969 

-0.40565 -0.145600294 2.433952 

-0.3154 0.028576744 1.779911 

-0.24297 0.115665263 0.7506 

-0.52887 -0.270012464 0.305637 

3.674161 5.108740354 0.252027 

-0.0498 0.30643059 0.407496 

0.2111 0.663078811 0.654102 

-0.01233 0.364489603 0.493272 

0.079726 0.505490062 0.755961 

0.21984 0.683814173 0.702351 

0.535129 1.023874104 0.831015 

0.511654 1.032168249 0.80421 

0.354615 0.907756079 0.364608 

0.492479 1.048756538 0.807426 

-0.16629 0.25251865 0.364608 

0.345028 0.841402921 0.664824 
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-0.31928 0.032723816 1.865687 

0.190282 0.733579041 0.493272 

0.733446 1.347345746 2.181986 

-0.51048 -0.199512235 0.546882 

-0.27706 0.194459637 0.552243 

-0.52946 -0.170482728 0.418218 

-0.03247 0.434989832 0.48255 

-0.17933 0.23593036 1.045455 

-0.35419 -0.013723394 0.761322 

0.100391 0.559402002 0.991845 

-0.68448 -0.474048423 -0.41702 

0.193265 0.62575516 0.798849 

-0.23868 0.103224046 0.584409 

-0.74206 -0.462436621 -0.44919 

-0.11008 0.383566135 -0.7537 

-0.55791 -0.220247596 -0.74512 

-0.15714 0.323848294 -0.41059 

-1.06765 -0.907002775 -0.74083 

0.063064 0.297307031 0.228439 

0.219056 -0.007917493 0.219861 

0.510489 0.370295504 0.387124 

0.623902 0.37693082 -0.56928 

-0.37685 -0.644907804 -0.49208 

-0.25767 -0.4325777 -0.59072 

-0.20359 -0.303189043 -0.14898 

-0.39076 -0.585189962 -0.22617 

-0.56637 -0.726190421 -0.179 

-0.73062 -0.873826196 -0.39129 

-0.46996 -0.579798768 -0.4567 

0.319736 0.246712748 -0.49315 

-0.37845 -0.502248515 -0.4063 

0.405861 0.39186028 -0.15916 

-0.00739 -0.157212097 -0.19294 

-0.71333 -0.975014761 -0.21974 

0.650872 -0.017041052 -0.39504 

1.346415 -0.114082545 -0.27978 

1.252066 -0.181265117 -0.28836 

1.318568 -0.125694347 -0.35055 

1.600793 0.046823862 -0.27442 

0.44832 -0.710431546 -0.08357 

1.005675 -0.341342109 -0.27174 

1.011697 -0.337195036 -0.32696 

1.516466 0.00369431 -0.22993 

1.74225 0.132253552 -0.49101 

1.977006 0.256665722 -0.3216 

1.993304 0.264959867 -0.33447 
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2.23854 0.422548615 -0.387 

 

F.3 Pulp and paper wastewater treatment normalised data  

Table F.3: PPWW normalised data  

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

0.231459 1.115396778 1.303958877 

0.207968 1.080517138 1.494479281 

-0.09155 0.635801722 0.465669097 

-0.03282 0.723000823 0.376759575 

-0.44979 0.103887205 0.567279979 

-0.26186 0.382924329 0.097329648 

-0.38519 0.199806216 0.618085421 

-0.25598 0.391644239 0.364058214 

-1.01945 -0.741944076 0.071926927 

-0.26186 0.382924329 0.427565016 

-1.40118 -1.308738234 0.211641891 

-0.80216 -0.419307402 0.706994943 

-1.27785 -1.125620121 0.808605825 

-1.20738 -1.0209812 0.491071817 

-1.42467 -1.343617874 0.376759575 

-1.40706 -1.317458144 0.402162295 

0.572083 1.621151565 0.935619428 

0.507482 1.525232554 0.948320788 

-0.41455 0.156206666 -1.60465263 

0.348916 1.289794981 0.961022149 

-0.32646 0.287005317 -1.10929958 

0.202095 1.071797228 0.249745972 

-0.45566 0.095167295 -1.41413223 

0.166858 1.019477767 0.16083645 

-2.39956 -2.791122953 -1.65545807 

0.067021 0.871239295 0.17353781 

-0.67883 -0.236189289 -1.31252135 

-0.19726 0.47884334 0.249745972 

-1.08992 -0.846582997 -1.65545807 

-0.50852 0.016688104 0.783203104 

-1.58324 -1.579055447 -1.56654855 

-0.57312 -0.079230907 0.440266376 

-1.50102 -1.456976705 -1.69356215 

-0.79628 -0.410587492 1.253153436 

-1.75943 -1.84065275 -1.65545807 

-1.94736 -2.119689874 -1.55638746 

-2.09418 -2.337687627 -1.52844447 

-2.31147 -2.660324301 -1.54114583 

-2.2175 -2.520805739 -1.55384719 
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-2.3056 -2.651604391 -1.57670964 

-2.39956 -2.791122953 -1.7443676 

-0.17964 0.50500307 -1.03309142 

0.025911 0.810199924 -1.59195127 

-0.34995 0.252125677 -0.76636285 

-0.3382 0.269565497 1.100737112 

-0.29709 0.330604868 1.494479281 

-0.62597 -0.157710098 1.113438472 

1.286217 1.028197677 2.828122113 

0.167863 0.282645362 -0.27736048 

0.034008 0.164926576 -0.60124517 

0.43128 0.273925452 0.249745972 

0.30648 0.308805093 -0.21385368 

0.653251 0.566042441 0.567279979 

-0.05968 -0.183869829 -1.35062543 

0.468259 0.504131079 0.071926927 

1.064559 0.736080688 0.141784409 

1.229693 1.102316913 1.538934043 

0.865487 1.124116688 1.754857168 

1.069775 1.372634127 2.529640146 

0.336436 0.396004194 1.665947646 

1.001899 1.102316913 0.738748343 

1.358262 1.132836598 1.570687443 

1.467987 1.529592509 1.824714649 

0.798563 0.500643115 0.897515347 

0.870086 0.709920958 0.033822847 

0.768559 0.753520508 0.332304814 

0.049141 -0.179509874 0.357707534 

-0.15501 -0.192589739 0.510123858 

-0.91113 -1.042780975 -0.88829591 

0.525417 0.252125677 -1.01403938 

0.289841 0.173646486 -0.97466516 

0.28561 0.025408014 -0.35991932 

0.437888 0.10824716 -0.80446693 

0.090484 -0.353908076 -0.72952891 

0.014833 -0.27106893 -0.81970857 

0.24178 -0.144630233 2.480104841 

0.030837 -0.153350143 -0.17447946 

-0.33079 -0.30594857 -0.36627 

0.048104 -0.204797613 -0.05762695 

-0.28167 -0.449827087 -0.67745333 

-0.59607 -0.62422529 -0.43612748 

-0.07984 -0.584985694 -0.37262068 

-0.5808 -0.872742728 -0.70539632 

-0.58799 -0.755023941 -0.83622033 

1.269393 0.845079565 0.630786781 
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0.861913 0.744800598 0.573630659 

0.810106 0.627081812 -0.10589212 

1.046615 0.88431916 -0.1757496 

-0.26544 0.308805093 -0.22655504 

0.94634 0.265205542 -0.63299857 

-0.45288 -0.811703357 -0.76636285 

1.890611 1.477273048 1.596090164 

1.380743 1.172076194 1.164243914 

1.226744 0.936638621 1.284906836 

0.231806 -0.070510997 -0.27736048 

0.182777 0.103887205 -0.51233565 

0.642689 0.483203295 -0.22655504 

0.661541 0.468379448 -0.21766409 

0.001628 0.156206666 -0.41072476 

0.853407 0.156206666 1.253153436 

3.885582 2.872458666 -0.03603464 

1.546993 0.733464715 0.206561347 

1.143719 0.417803969 0.17988849 

0.917392 0.138766845 0.19258985 

0.608282 0.1431268 0.17353781 

-0.16741 -0.105390638 -0.54408905 

0.666736 -0.022551492 0.002069446 

0.724726 0.184110378 -0.23163558 

0.147612 -0.515226413 -0.41707544 

0.057066 -0.619865334 -0.29895279 

0.880306 -0.131550368 -0.48693293 

-0.1337 -1.027085137 -0.38786232 

-0.62545 -0.689624615 -0.3027632 

-0.28856 -0.27978884 -0.57965286 

1.327057 -0.079230907 -0.64061939 

0.711389 -0.454187042 -0.3027632 
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F.4 Textile wastewater treatment normalised data  

Table F.4: TTWW normalised data  

OLR (kg COD/m3/d) COD Influent (mg/L) COD Effluent (mg/L) 

0.061342 0.497308148 -0.033864074 

0.184912 0.714140649 -0.712010693 

-0.35689 -0.23658647 -0.623889946 

-0.31344 -0.16033768 -0.865264166 

0.250092 0.828513837 2.004407119 

-0.11383 0.189930206 -0.210105568 

-0.52663 -0.53443332 -1.405482659 

-0.49947 -0.48677782 -1.221578491 

-0.48997 -0.53443332 -1.482109395 

0.073564 0.256647899 -1.037674323 

-0.22518 -0.16272046 0.081076031 

0.046405 0.218523503 0.050425336 

-0.21839 -0.15318936 -1.129626407 

-0.25912 -0.21037595 -1.305867901 

0.351935 0.647422956 -0.547263209 

-0.30068 -0.32474914 1.245802427 

-0.05734 -0.01975397 0.310956241 

-0.12578 -0.10553386 -0.915071545 

-0.30176 -0.42959123 1.199826385 

-0.26754 -0.39623238 0.295630893 

5.104885 4.841106502 0.418233672 

-0.4973 -0.62021321 1.644261457 

-0.09645 -0.22943815 -0.179454873 

-0.57552 -0.696462 1.16917569 

-0.52663 -0.6773998 -0.225430915 

-0.55107 -0.696462 0.418233672 

0.95213 0.475863175 0.050425336 

-0.00031 -0.39146683 0.341606935 

-0.32077 -0.58208881 2.349227434 

-0.25668 -0.54396441 0.326281588 

-0.14452 -0.47724672 -0.010876053 
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Appendix G: Sample calculations 
 

G.1 Determination of organic loading rate (OLR) 

To determine the organic loading rate using Equation 1 in Chapter 2: 

𝑂𝐿𝑅 =
𝑂𝐶𝑓𝑒𝑒𝑑

𝐻𝑅𝑇 
      

=  
𝑂𝐶𝑓𝑒𝑒𝑑 × 𝑄

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
 

=
1780.43 × 40

24
 

= 2.967
𝑘𝑔 𝐶𝑂𝐷

𝑚3
. 𝑑𝑎𝑦 

 

G.2 Data normalisation 

First find the mean and standard deviation for all the data. 

𝑀𝑒𝑎𝑛 =
𝐶𝑂𝐷𝑠𝑢𝑚

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 

=
5373 + 5493

2
 

= 5433 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 = √
∑(𝑥𝑖 − 𝜇)2

𝑁
 

= 84.85 

 

G.2.1 COD data normalisation  

Using Equation 12 in Chapter 2: 

Y =
(ymax; −ymin) × (x; −xmin)

xmax\; −xmin
+ ymin                                              

=
5373 − 5433

84.85
 

= −0.7071 

 

 


