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ABSTRACT  

Essential mineral nutrients play a crucial role in the growth and survival of plants. The lack of 

nutrients in plants threatens global food security and affects farmers who solely depend on 

producing healthy crops. Traditionally the identification of nutrient deficiencies in a crop is done 

manually by experienced farmers.  Deep learning (DL) has shown promise in image 

classification. However, the lack of understanding regarding the accuracy and explainability of 

specific DL models for the identification of plant nutrient deficiencies is a hindrance to making 

informed decisions about the suitability of these algorithms for practical implementation.  

 

This study aimed to assess the performance and explainability of these models to facilitate 

better decision-making in agriculture. To achieve this, the study formulated four objectives: 1) 

identify the features that are essential to determine plant nutrient deficiencies; 2) determine 

the requirements of explainable DL for nutrient deficiency identification; 3) explore how 

explainable DL could be applied to a plant image dataset to identify plant nutrient deficiencies; 

and 4) determine the performance and explainability of selected DL algorithms when used for 

plant nutrient deficiencies. 

 

The study used a deductive approach to achieve the aforementioned objectives, using a 

quantitative research methodology and an experimental research design to investigate the 

performance and interpretability of three machine learning (ML) models based on two plant 

datasets: rice and banana. The three DL models were a Convolutional Neural Network (CNN), 

and two pre-trained models: Inception-V3 and Visual Geometry Group (VGG-16). For the 

explainability of the models, the study used two XAI techniques: Shapley Additive exPlanations 

(SHAP) and Gradient-weighted Class Activation Mapping (Grad-CAM). The study found that 

the choice of DL models has a significant impact on the performance of nutrient deficiency 

identification in different plant datasets. Inception-V3 achieved a very good F1-Score of 92% 

for the banana dataset. VGG-16 follows with a good F1-Score of 81% and the CNN, while not 

as strong as the other models, achieves an acceptable  F1-Score of 68%. 

 

Based on these findings, Inception-V3 is effective in detecting nutrient deficiency in banana 

plants. Regarding explainability using SHAP, the CNN and VGG-16 models were found to rely 

on a limited set of prominent features. However, Inception-V3 appears to rely on a broader 

range of features, with many features making significant contributions to the final prediction. 

When Grad-CAM was used to assess explainability, for the banana and rice datasets, it was 

noted that the Grad-CAM heatmap of the CNN model highlights the contours of the plant leaf, 

while the other two models (Inception V-3, and VGG-16) focus on the leaf itself. VGG-16 

accurate localisation of the affected regions proved to be more reliable due to the quality of its 
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heatmap. The result of this study shows that Inception-V3 is the most accurate model, but it 

may not be the most explainable model due to its complex architecture. On the other hand, the 

VGG-16 has a simpler architecture that tends to offer a better explanation. Therefore, 

balancing accuracy and explication when selecting a model for a particular task is essential. 

 

The study contributes to the literature by incorporating explainable deep learning in the context 

of plant nutrient deficiency identification. Moreover, unlike prior research that primarily 

evaluated accuracy without considering explainability, the study addressed this gap by 

comparing the explainability of GRAD-CAM and SHAP techniques, shedding light on how 

these models arrive at their predictions. The research successfully addressed its objectives, 

providing valuable insights into both the theoretical and practical aspects of this domain. The 

study's holistic approach and valuable findings pave the way for the integration of XAI 

techniques in agriculture, adding value to the field and opening avenues for future research 

and innovation. 

 

Keywords: explainable artificial intelligence; Machine learning; SHAP; nutrient deficiency; 

deep learning; transfer learning; convolutional neural network; Grad-CAM 
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CHAPTER ONE  

            INTRODUCTION 

1.1 Motivation for the Study 

 

Essential mineral nutrients play a crucial role in the growth and survival of plants, and they are 

required in varying quantities as macronutrients and micronutrients. Minni & Rehna (2016) 

state that macronutrients are nutrients that are needed in significant amounts, while 

micronutrients are required in smaller quantities. Potassium (K), Phosphorus (P), Sulphur (S), 

Nitrogen (N), Magnesium (Mg), and Calcium (Ca) are the six macronutrients that are essential 

for plant growth and development (Shete, Gosavi, Bulbule, Patil & Pawar, 2020). 

Micronutrients consist of Ferrum (Fe), Manganese (Mn), Zinc (Zn), and Cuprum (Cu) (also 

known as copper). In the absence of the aforementioned nutrients, plants cannot complete 

their lifecycle and accomplish their physiological functions (Yi, Krusenbaum, Unger, Hüging, 

Seidel, Schaaf & Gall, 2020).  

 

Traditionally the identification of nutrient deficiencies in a crop is done manually by experienced 

farmers. According to Singh (2017), the process is expensive, time-consuming, and laborious. 

Moreover, identifying nutrient deficiencies is difficult without the right facilities (Singh & Misra, 

2017). To understand the deficiencies in plants, non-invasive methods like computer vision 

and sensors have been created. According to Inácio (2018), machine learning (ML) has been 

used to monitor plant nutrient deficiencies accurately.  

Recent advancements in deep learning (DL) have seen significant progress in the field of 

Artificial Intelligence (AI) (Lecun, Bengio & Hinton, 2015). DL has advanced well beyond 

traditional machine learning (ML) methods in domains such as natural language processing 

(NLP)  (Mccann, Bradbury, Xiong & Socher, 2017), image classification (Krizhevsky, Sutskever 

& Hinton, 2012), and audio recognition (Chiu, Sainath, Wu, Prabhavalkar, Nguyen, Chen, 

Kannan, Weiss & Rao, 2018). The use of DL models in agriculture is vast and varied. These 

models have been applied to plant identification, as demonstrated by Ghazi, Yanikoglu & 

Aptoula (2017). Additionally, DL models have been utilised for yield forecasting, as evidenced 

by Wolanin, Mateo-Garciá, Camps-Valls, Gómez-Chova, Meroni, Duveiller, Liangzhi & 

Guanter (2020). Furthermore, they have been used for disease detection, as shown by 

Mohanty, Hughes & Salathé (2016).  

According to Liu, Wang, Liu & Alsaadi (2016), DL is a novel advancement in ML that generates 

ground-breaking outcomes in various fields such as computer vision (CV). Due to its deep 

architecture, DL can manage much more challenging tasks (Wang, 2017). DL has the 
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advantages of automation, speed, and low cost (Lu, Han, Chen, Yu & Xue, 2021). Moreover, 

recent studies such as Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría 

& Fadhel (2021), have shown that DL’s performance has surpassed human performance on 

tasks such as image classification. 

According to Gerlings, Shollo & Constantiou (2021), diverse types of algorithms that people 

may not completely understand are being used increasingly to help or entirely automate 

important decisions. The term used to describe this is the “AI black box”. As black box models 

have critical implications, the right to explanation becomes crucial for the acceptance of AI in 

society. Providing explanations that make the AI algorithm more expressive can enhance 

human comprehension, boost confidence in decision-making, and foster impartial and fair 

decisions (Das & Rad, 2020).  

This study presents a novel approach in the field of agriculture by focusing on the comparative 

analysis of the performance and explainability of DL models in the identification of plant nutrient 

deficiencies. The intricacies of the agricultural domain, including diverse plant types, seasonal 

variations, and environmental factors, demand transparent and understandable models.  

To address this need, the study used two different plant datasets to explore the  performance 

and explainability of DL models in identifying nutrient deficiencies in plants. By leveraging 

these models, the researcher aimed to uncover crucial insights into how these essential 

features in the data influence the prediction of nutrient deficiencies. As highlighted by Schmidt, 

Jensen & Husted (2016), Nutrient deficiencies can significantly impact plant growth and yield, 

and timely identification and correction are crucial for optimal plant performance.  

1.2 Background 

Human nutrition is affected by the nutritional value of plant products, whether directly or 

indirectly, as stated by Kihara, Bolo, Kinyua, Rurinda & Piikki (2020). Agriculture has seen the 

automation of various tasks through the application of image analysis techniques, including 

plant species identification, nutrient deficiency detection, and image-based plant disease 

detection, as reported by Watchareeruetai, Noinongyao, Wattanapaiboonsuk, Khantiviriya & 

Duangsrisai (2018), and Mohanty, Hughes & Salathé (2016). 

 

Visual signs of nutrient deficiencies can be seen in several sections of the plant, particularly 

the leaves. Visual symptoms include altered leaf colour, necrosis, and chlorosis (Leena, 2018). 

The early-stage diagnosis of nutrient deficiencies is an important task. The final plant produced 

can be affected by nutrient shortages in plants. According to Mohanty et al. (2016), the lack of 

nutrients in plants threatens global food security and affects smallholder farmers who solely 
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depend on producing healthy crops. Identifying nutrient deficiencies is crucial to ensuring that 

all plants are developed according to specifications for nutrients like nitrogen.  

 

Kali (2006), published a paper in the International Encyclopedia of Education journal that first 

introduced the concept of DL. The fundamental idea behind DL is to use "deeper" neural 

networks that apply various convolutions to provide a hierarchical representation of the input. 

DL's automatic feature extraction from raw data is a significant advantage. Kamilaris (2018),  

states that DL is highly efficient and fast in solving more complex problems. 

 

In general, DL models are complex and not easily understandable by humans. Barredo (2020) 

notes that the demand for transparency among AI stakeholders is increasing, particularly as 

black-box models are employed to make important predictions in critical situations. The 

absence of transparency and accountability surrounding prediction models can have 

disastrous results in some circumstances. XAI refers to techniques for obtaining the intelligible 

output of an ML model and presenting it in a manner that is understandable to humans 

(Gerlings, Shollo & Constantiou, 2021). Páez (2019), highlights that one of the crucial 

objectives of XAI is to establish trust in the model. ML models need to provide not only output 

but also understandable explanations behind the rationale of the machine.  

 

The identification of plant nutrient deficiencies through the implementation of ML techniques 

has been explored in the existing literature such as Tran, Choi, Le & Kim (2019). However, 

there is still a significant research gap in the comparative analysis of the explainability of DL 

models in identifying nutrient deficiencies in plants. While some studies have looked into the 

use of ML for this purpose, there has not been much research done on the effectiveness and 

potential benefits of using explainable DL. Addressing this gap is essential to gaining a 

comprehensive understanding of the most effective and explainable approach for nutrient 

deficiency identification in plants.  

1.3 Research Problem 

Deep learning (DL) models’ inability to provide sufficient justification is what leads to the 

models being called black boxes. According to Rudin (2019), several ML model predictions 

cannot be understood by humans due to their nature of being a black box. According to 

Sparrow, Howard & Degeling (2021), we need to understand why the machine-learning model 

performs the way it does. 

 

According to Barredo (2020), practical implementation of explainability is imperative. However, 

it is currently one of the main barriers to AI. In some cases, not understanding model 

predictions may result in financial losses. The lack of understanding regarding the accuracy 
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and explainability of specific DL models hinders researchers from selecting the appropriate 

algorithm for detecting nutrient deficiencies in plants.  

 

The lack of understanding regarding the accuracy, and explainability of specific DL models for 

the identification of plant nutrient deficiencies is a hindrance to making informed decisions 

about the suitability of these algorithms for practical implementation.  

1.4 Aim, Objectives, and Research Questions 

The study aims to compare the performance of deep learning algorithms when applied to plant 

nutrient deficiency and to ascertain the level of their explainability. 

 

1.4.1 Research Objectives  

To achieve the aim of this study, the following objectives were formulated: 

i. To identify the features that are essential to determine plant nutrient 

deficiencies.  

ii. To determine the requirements of explainable deep learning for nutrient 

deficiency identification.  

iii. To explore how explainable deep learning could be applied to a plant image 

dataset to identify plant nutrient deficiencies.  

iv. To determine the performance of selected deep learning algorithms when used 

for plant nutrient deficiencies and their explainability. 

 

1.4.2 Research Questions  

The main research question is:  

RQ1: What is the relative performance and explainability of deep learning algorithms 

when applied to plant nutrient deficiency?  

Some sub-research questions were formulated to enable the answering of the main 

research question. These are:   

RSQ1: What are the features essential to determine plant nutrient deficiencies?  

RSQ2: What are the requirements of explainable deep learning for plant nutrient 

deficiencies identification? 

RSQ3: How can explainable deep learning be applied to a plant image dataset for plant 

nutrient deficiency identification?  
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RSQ4: What is the rating of the performance and explainability of selected deep 

learning algorithms for plant nutrient deficiency identification?  

1.5 Significance of the Study  

The research has multiple benefits for various stakeholders. Firstly, it can aid plant health 

professionals in identifying nutrient deficiencies in plants, simplifying their work. Secondly, 

farmers can use the research findings to identify nutrient deficiencies that may be affecting 

their crop yield and quality, enabling them to make informed decisions based on the data. 

Additionally, the study's findings can contribute to the body of literature, benefiting academics 

and upcoming researchers. The research offers new methods of using XAI in agriculture, 

adding value to the existing literature. 

 

1.6 Delineation of Study 

The study compared the performance of deep learning algorithms when applied to plant 

nutrient deficiency and to ascertain their explainability. This study focussed on three deep 

learning models: standard CNN, VGG-16, and Inception-v3.  The research was limited to two 

plant types: rice and banana. 

1.7 Structure of the Thesis  

The organisation of the rest of this thesis is described as follows.    

 

Chapter 2 presents a review of the literature. The chapter is divided into four sections, which 

include the challenges of identifying nutrient deficiencies, deep learning techniques, XAI, and 

a summary of related work. Chapter 3 covers the research approach, methodological 

approach, research design, and research strategy. Additionally, the study's ethical 

considerations are discussed in detail. Chapter 4 presents the implementation details for the 

model and the datasets used in this research. It provides sufficient information for other 

researchers to replicate the findings of the study. Chapter 5 presents the experimental results. 

The final chapter, Chapter 6, provides a summary of the findings and proposes possible future 

work.  

1.8 Chapter Summary  

In this chapter, the research problem is outlined, along with the study’s aim and objectives, as 

well as the derived research questions aimed at addressing the problem. Additionally, the 

chapter introduces the topic and offers a comprehensive background of the study. Moreover, 

the author substantiates the significance of the research.  
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CHAPTER TWO  

             LITERATURE REVIEW 

This chapter presents a  review of the literature. The chapter is divided into four sections, which 

include the challenges of identifying nutrient deficiencies, deep learning techniques, XAI, and 

a summary of related work. 

 

2.1 Relationship between plant nutrient deficiency and plant diseases  

McCauley (2013) states that nutrient deficiency occurs when a growing plant's needs are not 

met due to the absence of a crucial nutrient in sufficient amounts. Spann and Schumann (2010) 

state that the way each nutrient affects a plant’s response to a disease, be it positive or 

negative, is unique to each complex of plant diseases. Different nutrients affect plant diseases 

differently (Bhaduri, Rakshit & Chakraborty, 2014). Moreover, crops that receive appropriate 

nutrients become more tolerant or resistant to disease, and plants that lack nutrients are more 

sensitive to diseases. According to Timothy and Arnold (2009), the two organisms’ genotypes, 

the age of the plant, and environmental changes all play a role in resistance. 

 

According to Bhaduri et al. (2014), it is challenging to discern disease symptoms since they 

typically reflect the plant’s changing nutritional status. When there is a lack of nutrients, 

bacteria and fungi create more enzymes that dissolve some of the plant tissue (Pandey, 

Shamim, Srivastava, Dwivedi, Awasthi & Singh, 2015). Plants are more vulnerable to bacterial 

attacks if N levels are low, but K and Ca are essential for creating an efficient defence against 

diseases (Bhaduri et al., 2014). This resistance is lowered by potassium shortages brought on 

by excessive dolomite or magnesium application. On the other hand, a lack of zinc can make 

plants more vulnerable to powdery mildew, a fungus that damages the leaves and stems of 

plants. The following subsection provides an overview of how vital nutrients affect disease 

resistance or severity:  

 

i. Potassium (K): When K is added, plants’ sensitivity to diseases is often reduced to the 

level necessary for healthy growth. Proteins, starches, and cellulose are produced by 

plants using K. According to Bhaduri et al. (2014), since cellulose makes up the majority 

of cell walls, a K deficiency results in leaky cell walls, which leads the leaf apoplast to 

have large quantities of sucrose (a precursor to starch) and amino acids (protein 

building blocks). Common scabs in potatoes and Phytophthora root rot in citrus are two 

diseases that are made worse by K’s unfavourable interactions with Ca (Pandey et al., 
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2015). Moreover, it has frequently been noted that K lowers the prevalence of several 

diseases including bacterial leaf blight and black rust in rice (Pandey et al., 2015). 

 

ii. Nitrogen (N):  For plant growth, nitrogen is the most crucial nutrient. It is so simple to 

explain how nitrogen contributes to disease resistance, there exists an extensive 

collection of literature that discusses the influence of nitrogen on diseases (Timothy & 

Arnold, 2009). N is a crucial ingredient in amino acids. According to Timothy and Arnold 

(2009), the way that the plant assimilates the two types of nitrogen NO3 – and NH4+ 

can have a significant impact on how diseases develop. However, the first one is more 

easily susceptible to leaching. Bhaduri et al. (2014) state that some disease-causing 

fungal species, including Fusarium and Phytophthora, are poisonous to nitrate (NO2-), 

which are created in the soil by beneficial soil bacteria from ammonium nitrogen 

throughout the N cycle. N makes diseases including powdery mildew of wheat, rusts, 

and grey leaf spots of corn as well as seed infection in cereals more severe. Early blight 

is more likely to affect potatoes with low N levels (Pandey et al., 2015). 

 

iii. Phosphorus (P): According to Bhaduri et al. (2014), P is a crucial nutrient that ranks 

second in importance after N. It is important for a plant’s development, including energy 

storage and root growth. It is present in various organic compounds in cells, such as 

DNA, ribonucleic acids, and phospholipids, and plays a vital role in metabolic activities 

in both plants and pathogens. Moreover, phytic acid is the form in which P is stored in 

seeds. Plant enzymes are activated as a result (Pandey et al., 2015). Aye and Masih 

(2023), state that the plants may display signs including stunted growth, and purple 

discolouration on leaves when they do not have enough P. According to Timothy and 

Arnold (2009), when used to treat seedlings for fungal illnesses, P has been proven to 

be most effective because rapid root growth enables plants to fend off sickness. Scab 

incidence rises as a result of O, but diseases like powdery mildew, and smut decrease 

in wheat (Pandey et al., 2015).  

 

iv. Calcium (Ca):  Cell walls and membranes include calcium, which is present in the form 

of Ca polygalacturonates. Ca deficiency consequently leads to cell structure 

disturbance, which makes plants less able to fend off infection by the pathogens that 

cause several diseases (Bhaduri et al., 2014). According to Pandey et al. (2015), Ca is 

believed to provide defence against certain diseases through mechanisms such as 

binding to oxalic acid or thickening the cell wall.  
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2.2 Nutrient deficiency symptoms in plants 

Plant nutrients can be classified as micronutrients and macronutrients. Kamelia, Rahman, 

Saragih & Haerani (2020) state that three methods of analysing deficiencies exist: visual 

observation, plant analysis, and soil analysis. Plants exhibit signs of nutrient inadequacy in 

their leaves as a result of shortage (Goyal, Amit, Gupta, Piuri, Ganzha & Paprzycki, 2021). 

Using information from the leaf, the agriculturist primarily assesses the state of the plant’s 

nutrition. The human eye often fails to detect these nutrients until the plant has already suffered 

damage. Therefore, the development of technology is crucial to enable farmers and experts to 

identify these deficiencies at an early stage. 

 

Plants are traditionally mashed and chemically treated to detect nutrient deficiencies (Sharma, 

Nath, Kumar & Chaudhary 2022). However, completing this task is expensive, requires a lot 

of patience, and must be repeated frequently. As a result, the annual nutrient deficiency might 

not be accurate. Moreover, the plant’s condition may deteriorate, and the plant test results will 

not be known for days or weeks (Kamelia et al., 2020). 

 

Ibrahim (2022) states that the initial indications of nutrient deficiency manifest in the leaves, 

such as yellowing, stunted roots, and reduced leaf size (Table 2.1). Furthermore, Jose, 

Nandagopalan, Ubalanka & Viswanath (2021) state that these symptoms result in stunted 

growth and inadequate flowering. 

 

Table 2.1: List of minerals that are important for plant growth. 

Deficient 

Nutrient 

Symptoms of Deficiency  Example 

Primary Nutrients 

Nitrogen (N) General light green to yellow 

(chlorotic) or light brown 

especially on older leaves 

(Billericay Fertiliser Services, 

2015). 

 

(Nutifafa, 2020) 
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Phosphorous (P) The leaves develop brown 

spots and necrosis. Plants’ 

growth is stunted (Sawyer, 

2004). 

 

(Nutifafa, 2020) 

Potassium (K)  Tip burn and inter-venial 

marginal necrosis  (Jose et al., 

2021). 

 

(Nutifafa, 2020) 

Secondary Nutrients 

Calcium (Ca) The form or distortion of new 

leaves. 

 

Magnesium (Mg) Within the veins of young 

leaves, yellowing occurs. 

Leaves may also drop off. 

 

(Jeyalakshmi, 2017) 
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Sulfur (S) Leaves turn yellow first. 

Symptoms resemble those of 

nitrogen deficiency  

 

(Nutifafa, 2020) 

Micronutrients 

Boron (B) Leaf tips turn yellow followed by 

necrosis (Billericay Fertiliser 

Services, 2015).  

 

(Nutifafa, 2020) 

Iron (Fe) Bronzing of leaves with tiny 

brown spots.  

 

Manganese (Mn) Yellowing on young leaves and 

brown spots on older leaves 

 

(Billericay Fertiliser Services, 2015) 
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Zinc (Zn) Yellowing occurs between the 

veins of the new leaves. 

Symptoms appear on older 

leaves first 

 

(Nutifafa, 2020) 

 

 

2.3 Deep Learning   

Deep learning (DL) is a subfield of machine learning (ML) that involves the use of artificial 

neural networks (ANN) to learn and make predictions (Kamilaris, 2018). The structure of DL is 

shown in Figure 2.2. DL relies on algorithms to learn from data, and the availability of high-

quality labelled datasets has contributed to its popularity (Chandra, Desai, Guo & 

Balasubramanian, 2020). The term "deep" in DL refers to the deep architecture of learning, 

which involves multiple layers of neural networks (Chandra et al., 2020). DL models such as 

VGG16, Inception V3, and DenseNet169 are equipped with pre-trained weights, signifying that 

their networks have been trained on different datasets, particularly Imagenet. Transfer learning 

technique is the term used to describe these pre-trained weights procedures, as illustrated in 

Figure 2.1 (Moujahid, Cherradi, AL-Sarem, Behatti, Alsaeedi & Saeed, 2022).  

 

 

Figure 2.1: Transfer learning process (Moujahid et al., 2022) 
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According to Alzubaidi, Zhang, Humaidi, Duan, Santamaria, Fadhel & Farhan (2021), DL 

techniques may be categorised as unsupervised, partially supervised (semi-supervised) and 

supervised. Liu, Zhang, Hou, Wang, Mian, Zhang & Tang (2020) state that “self-supervised 

learning” was first introduced in robotics. The aim of supervised learning is to reduce the total 

classification error of the model (O’Shea & Nash, 2015).  

 

 

Figure 2.2: Machine learning structure (Sarker, 2021) 

2.3.1 Importance of deep learning  

Due to its distinct qualities and capabilities, DL has become important in many domains, 

including agriculture. This section emphasises the significance of DL by highlighting its 

universal learning approach, robustness, generalisation, and scalability.  

 

i. Universal learning approach:  The term “universal learning” is occasionally used to 

describe DL because it can function in all application fields (Alzubaidi et al., 2021). 

ii. Robustness: Model robustness describes how much a model performs differently 

when trained on new data compared to being used on training data.  

iii. Generalisation: When a DL model generalises, it can accurately predict the pattern of 

previously unseen data that comes from the same distribution that was used to build 

the model (Alzubaidi et al., 2021).  

iv. Scalability: Scalability is the ability of DL applications to manage large amounts of data 

and conduct numerous computations efficiently and quickly.  

 

2.3.2 Classification of deep learning approaches  

DL approaches can be categorised into three groups: supervised, semi-supervised or partially 

supervised, and unsupervised. According to Zahangir, Tarek, Christopher, Stefan & Paheding 

(2018), another learning method is deep reinforcement learning (DRL), sometimes referred to 
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as Reinforcement Learning (RL), which is typically seen as falling under the category of 

partially supervised learning.  

 

i. Supervised Learning 

Supervised learning is the one that is frequently used form of machine learning. It is trained 

using well-labelled data. According to Alzubaidi et al. (2021), a set of inputs and their matching 

outputs (𝑥𝑡, 𝑦𝑡)~𝑝 are present in the environment when using supervised learning. There are 

various supervised learning methods for DL, including DNNs, RNNs and CNNS. The need for 

a large number of datasets with labels for training is a significant disadvantage of supervised 

learning. Several uses for supervised learning include text recognition, Image classification, 

and speech recognition. 

 

ii. Semi-supervised Learning  

This approach uses semi-labelled datasets as the foundation for the learning process. 

Compared to supervised learning, which can only use labelled data, semi-supervised learning 

can enhance learning performance by using more unlabelled examples. According to Zahangir 

et al. (2018), generative adversarial networks (GANs), another type of generative network, can 

be used as a semi-supervised learning technique. 

  

iii. Unsupervised Learning  

Without access to labelled data, unsupervised learning enables the implementation of the 

learning process. Frequently, unsupervised learning methods include dimensionality 

reduction, generative, and clustering techniques. According to Wang (2017), clustering is 

among the most frequently used techniques for unsupervised learning. Several uses for 

unsupervised learning include recommender systems, customer segmentation and product 

segmentation.  

 

iv. Deep Reinforcement Learning 

AI and reinforcement learning frameworks are combined in DRL to assist software agents in 

learning how to accomplish their objectives. DL has been identified by Wang (2017) as a 

solution to address problems associated with high-dimensional state spaces. DL's ability to 

learn multiple levels of abstraction from data allows reinforcement learning to tackle more 

complex problems with less prior information. According to Zahangir et al. (2018), the success 

of DeepMind in teaching the system to play Atari games without prior knowledge of the rules 

has led to the widespread adoption of DRL. 
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2.3.3 Convolutional Neural Networks 

 

A Convolutional Neural Network (CNN) is a special type of multilayer neural network, which is 

one of the different DL algorithms (Ghosh, Sufian, Sultana, Chakrabarti & De, 2019). It is 

recognised as one of the most important algorithms in the field of computer vision. According 

to Wang (2017), the three concepts that make up CNN architectures are local receptive field, 

shared weights, and spatial subsampling. CNNs recognise visual patterns from images with 

minimal processing. When it comes to different visual problems, CNN has been utilised 

successfully (Kamilaris, 2018).  

Canziani, Paszke & Culurciello (2016), explain that CNN is composed of three different types 

of layers: convolutional, pooling, and fully connected layers, as illustrated in Figure 2.3. The 

convolutional layer is responsible for extracting input images and determining the output of 

neurons. 

 

Figure 2.3 Conceptual model of CNN (Ghosh et al., 2019) 

Ghosh et al. (2019), state that the feature maps generated after convolutional operations are 

sub-sampled using pooling layers. Additionally, learnable features are reduced. There are two 

primary types of pooling: max pooling and average pooling. The maximum number from each 

submatrix of the action map is taken by max pooling and forms a separate matrix from it (Ghosh 

et al., 2019). Some information is lost in the pooling layer; however, they help limit the risk of 

overfitting. 

2.3.3.1 CNN Layers  

 

The layered design of CNN is one of the main factors in its strength. The various types of layers 

that make up the fundamental components of a CNN will be examined in this section along 

with their functions. 
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i. Convolution Layers 

According to Alzubaidi et al. (2021), the collection of convolutional filters that make up the 

convolutional layer is the most crucial component. Convolution is used to condense images 

into a format that is simpler for the computer to manage while simultaneously ensuring that no 

essential elements are lost for accurate prediction. According to Chandra, Desai, Guo & 

Balasubramanian (2020), CNN convolves the whole image with different kernels, generating 

various feature maps. According to Bhatt, Patel, Talsania, Patel, Vaghela, Pandya, Modi & 

Ghayvat (2021), the convolutional layer utilises a 3x3 or 5x5 filter to process an image input, 

as illustrated in Figure 2.4. To extract features, a filter that is configured on the input layer is 

used in the convolution process, producing a feature map. 

 

 

Figure 2.4: Convolution layer (Bhatt et al., 2021) 

ii. Pooling Layers 

The pooling layers aim to slowly shrink the representation (O’Shea & Nash, 2015). According 

to Bhatt, Patel, Talsania, Vaghela, Pandya, Modi & Ghayvat (2021), dimensionality reduction 

through pooling, either maximum or average, reduces the computer power needed to process 

data. Additionally, pooling helps prevent over-fitting and reduces training time (Bhatt et al., 

2021). 

 

Pooling layers are a type of layer commonly used in CNNs, which are a class of deep learning 

algorithms designed for processing grid-like data such as images. CNN pooling layers are used 

to down-sample the input data and reduce its dimensionality, which has several advantages. 

 

Pooling layers in a CNN, offer several benefits, including a reduction in the network's 

computational complexity. By decreasing the number of parameters that the network needs to 
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learn, training becomes more efficient and faster. Moreover, pooling layers can help to prevent 

overfitting, which happens when a model performs well on the training data but poorly on 

unseen data. 

 

iii. Activation Function  

Activation functions are essential in mapping inputs to outputs in neural networks (Alzubaidi et 

al., 2021). These functions can be classified into two types: linear and non-linear activation 

functions. The ability to differentiate is a crucial requirement for an activation function (Alzubaidi 

et al., 2021). Non-linear activation functions are preferred as they enable the model to create 

complex mappings between the network's inputs and outputs (Bhatt et al., 2021). The most 

commonly used activation functions in CNNs and other deep neural networks is the one listed 

below (Alzubaidi et al., 2021). 

 

• Sigmoid: The sigmoid function has a limited input domain of real numbers and an 

output range of zero to one. Alzubaidi et al. (2021), described the s-shaped curve of 

the sigmoid function using the following equation: 

𝑓(𝑥)𝑠𝑖𝑔𝑚 =  
1

1+ 𝑒−𝑥     (2.1) 

 

• Tanh: The Tanh function is similar to the sigmoid function in that it accepts a real 

number as input, even though its output is limited to the range between -1 and 1 

(Alzubaidi et al., 2021). The following equation can be used to represent the Tanh 

function:           

     𝑓(𝑥) tanh =  
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥       (2.2) 

 

• ReLU:  The ReLU function converts all input values to positive numbers and applies 

this process to each of the filtered images. This function requires less calculation 

Figure 2.5: Sigmoid function (Airola et al., 2017) 
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compared to other functions, as noted by Alzubaidi et al. (2021). The following equation 

can be used to represent the ReLU function: 

   𝑓(𝑥)𝑅𝑒𝐿𝑢 = max (0, 𝑥)     (2.3) 

  

 

 

iv. Fully Connected Layers  

The layer of neurons is connected to the neurons in the two adjacent layers, as stated by 

O’Shea and Nash, (2015). Bhatt et al. (2021) explain that these fully connected layers are 

located at the bottom of the network. This layer is responsible for converting the 2D feature 

maps into a 1D feature vector (Chandra et al., 2020). 

2.3.3.2 CNN architectures  

 

 

Figure 2.7: CNN architectures timeline (Source: Researcher) 

i. LeNet-5  

LeNet-5 is one of the earliest CNN architectures as depicted in Figure 2.7, introduced by 

Bengio (1998). At that time, it trained with the backpropagation algorithm for handwritten digit 

Figure 2.6: ReLu function (Airola et al., 2017) 
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recognition tasks. Khan, Anabia, Umme & Aqsa (2020) reported that LeNet-5 comprises seven 

trainable layers, which include two convolutional layers, two fully connected layers, and an 

output layer with a Gaussian connection. CNN may be said to have started with LeNet-5, which 

details its basic building blocks. Zahangir et al. (2018) claim that CNNs gained popularity as 

computer hardware’s capability began to advance.  

 

ii. AlexNet  

In the past years, various CNNs have been suggested, including AlexNet, which was created 

by Krizhevsky, Sutskever & Hinton (2012), and emerged as the winner of the ImageNet large-

scale visual recognition challenge in the same year. It gained an advantage because the top-

5 error fell from 26% to 15.3%. According to Wang (2017), AlexNet’s triumph can be attributed 

to its unique architectural design as well as its innovative training mechanism. Krizhevsky et 

al. (2012), reported that the architecture comprises 5 Conv layers and 3 fully connected layers, 

containing a total of 60 million parameters.  

 

AlexNet underwent training on two NVIDIA GTX 580 GPUs during the ILSVRC (ImageNet 

Large Scale Visual Recognition Competition), and the process took 5 to 6 days to complete. 

To enhance the applicability of CNN, AlexNet increased the number of feature extraction 

stages from five (as in LeNet) to seven and also incorporated a 1000-way softmax classifier 

as noted by (Alzubaidi et al., 2021) 

 

iii. VGGNets 

VGGNet by Simonyan (2015) was proposed by the Visual Geometry Group (VGG). It is one of 

the popular CNN architectures because it uses small-sized filters (Ghosh et al., 2019). 

Between each of the 33 convolutional layers, Simonyan and Zisserman (2015) used maximum 

pooling (maxpool) layers to decrease the volume size. This type of model is known for being 

easy to use and highly effective. Khan et al. (2020) suggest that boosting the depth of neural 

networks is beneficial for improving the network's ultimate performance. In ILSVRC 2014, 

VGGNet finished second with an error state of 7.32%. Figure 2.8 provides a graphic depiction 

of the VGG architecture of different layers depths (Simonyan & Zisserman, 2015).  
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Figure 2.8: VGG architectures layers (11,13,16 and 19) (Simonyan & Zisserman, 2015)   

iv. ResNet  

He, Zhang, Ren & Sun (2016) proposed ResNet, a residual network consisting of 34 layers. It 

addresses the problem of disappearing gradients in deep networks by using skip connections 

to learn residuals. ResNet outperformed the GoogLeNet Inception v3 in the 2015 ILSVRC 

image classification with an error rate of 3.6% (Khan et al., 2020). Figure 2.9 provides a graphic 

depiction of the ResNet residual block (Airola, Hager & Alfredsson, 2017) 

 

 

Figure 2.9: ResNet residual block (Airola et al., 2017) 
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2.3.4 Pre-trained model: Inception-V3 

 

This model was developed by researchers at Google and introduced in the 2015 paper titled 

"Rethinking the Inception Architecture for Computer Vision" by Szegedy, Liu, Jia, and 

Sermanet. According to Reed, Anguelov, Vanhoucke & Rabinovich (2015), the InceptionV3 

model is a deep CNN that was trained on the ImageNet dataset. 

 

Figure 2.10: Architecture of the inception model (Biswas, Klingensmith & Umbaugh 2021) 

The InceptionV3 model is built upon the Inception architecture, which was developed to 

address the issue of the increasing depth of CNNs leading to higher computational cost and 

decreased efficiency (Alzubaidi et al., 2021). The Inception architecture introduces the concept 

of modules, which are collections of convolutional and pooling layers that operate on different 

scales and at different resolutions (Khan et al., 2020). By enabling the model to acquire 

characteristics at various levels, it diminishes the number of parameters and computational 

expenses, while enhancing its efficiency. 

Khan et al. (2020) stated that the InceptionV3 model is composed of a set of modules, where 

each module is comprised of a sequence of convolutional and pooling layers as depicted in 

Figure 2.10. The first module uses large filters to learn coarse-scale features, while subsequent 

modules use smaller filters to learn increasingly fine-scale features. The last module employs 

global average pooling to condense the acquired features and input them into a fully connected 

layer to classify. 

One key innovation of the InceptionV3 model is the use of batch normalisation and rectified 

linear units (ReLU) for improved training and regularisation. Batch normalisation is utilised to 

normalise the inputs to each layer, which stabilises the distribution of activations and enhances 

the convergence of the model, as Rawat and Wang (2017) noted. Meanwhile, ReLU is 

employed as the activation function, which has been proven to enhance the performance of 



34 

 

deep learning models by providing a computationally efficient non-linearity that can learn 

complex functions, according to (Khan et al., 2020). 

Khan et al. (2020) reported that the InceptionV3 model achieved state-of-the-art performance 

on the ImageNet dataset, with a top-5 error rate of 3.46% in the 2015 ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) image classification task, surpassing the previous 

state-of-the-art result of 4.94%. 

2.3.5 Pre-trained model: VGG-16 

Simonyan and Zisserman (2015), from Oxford University, proposed the use of VGGNet. The 

ILSVRC object identification method won in 2014. The model attained an accuracy of 92.7% 

in the top-5 test by utilising ImageNet. It is one of the popular CNN architectures because it 

uses small-sized filters (Ghosh et al., 2019). The architecture of the vgg-16 model is depicted 

in Figure 2.11, as presented by Kogilavani, Prabhu, Sandhiya, Kumar, Subramaniam, Karthick, 

Muhibbullah & Imam (2022). 

 

Figure 2.11: VGG-16 architecture (Kogilavani et al., 2022) 

This type of model is known for being easy to use and highly effective. The model is composed 

of 13 conv layers with a filter size of 3 x 3, 3 dense layers with 4096 neurons each, and 5 

pooling layers. Khan et al. (2020) suggest that boosting the depth of neural networks can be 

beneficial in improving the final performance of the network. After each convolution, a rectified 

linear unit (ReLU) action is applied to reduce the spatial dimension, and a max pooling 

operation is performed at the end of each block, as stated by Leonardo, Carvalho, Rezende, 

Zucchi & Faria (2019). Nevertheless, the model comes with a disadvantage in that it requires 

a greater expense for evaluation and a substantial amount of memory and parameters 

(Leonardo, Carvalho, Rezende, Zucchi & Faria, 2019).  

2.4  Explainable AI 

Explainable AI referrers to the methods and techniques applied within the field of AI, which 

enables human users to comprehend and trust the results created by the ML model (Mohseni 

et al., 2021).  For the AI model to be applied in agriculture, it is essential to comprehend how 

the final results were arrived at. So that the user may trust in the prediction, the model needs 
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a minimum of interpretability. The use of AI in agriculture is complicated, for instance, due to 

the different plant types, and the various climate change and other interfering elements. 

According to Wei, Chen, Zhang, Fan, Wu, Liu & Chen (2022a), it is crucial to enhance the 

interpretability of these models. 

 

Traditional assessment measures such as the classification report fail to sufficiently capture 

the underlying process undertaken by the AI system to reach a result and lack provisions for 

interpreting the outcome. To assist practitioners in effectively using DL techniques to address 

classification problems in the domain of agriculture, Wei et al. (2022a) investigated the 

application of XAI by employing DL models such as VGG, ResNet and GoogleNet for the 

identification of leaf disease classification.  

2.4.1 Machine learning explainability 

Over the past 20 years, ML has advanced quickly, which has resulted in the adoption of 

computerised decision-making systems (Lipton, 2018). According to Adadi (2018), interested 

researchers and practitioners can gain insight into the young and rapidly growing body of 

research related to XAI through their work, which serves as an entry point. Arrieta, Díaz-

Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia & Molina (2020), emphasise the 

importance of comprehending how AI approaches are utilised to produce such results, 

particularly when automated decisions have an impact on individuals. Gerlings (2021)  refers 

to explainable AI as methods and techniques that provide humans with understandable 

results/output that they can trust. The lack of transparency in the algorithm has emphasised 

the necessity for AI that can be explained. Gunning (2019), highlights the importance of trust 

in AI output, through the Defense Advanced Research Projects Agency (DARPA). The 

following Figure 2.12 explains the concept of XAI.  
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Figure 2.12: Concept of XAI (Rodrigo, 2020) 

The misunderstanding and debate surrounding key ideas like interpretability, transparency, 

and explanation are some of XAI’s main limitations (Kim, Atakishiyev, Babiker, Farruque, 

Goebel, Zaïane, Motallebi & Rabelo, 2021). The terms interpretability and explainability in the 

field of XAI are being used interchangeably because the field is not yet standardised (Gunning, 

2019). Widely varying definitions have been used. Arrieta et al. (2020) define interpretability 

as the capacity to convey significance in terms that are understandable to humans. 

Interpretability is defined by Akata (2020) as an abstract concept translated into insights useful 

for domain knowledge. This section will clarify several taxonomies in XAI.  

i. Transparency: If a model can understand itself, it can be considered transparent. 

Transparency can be divided into three distinct categories, overall model 

(simulatability), individual components (decomposability) and the complexity of the 

training process (algorithmic transparency) (Mohseni et al., 2021). Lipton (2018) 

defines a model as simulatable if it can be replicated by human calculation within a 

reasonable timeframe. Decomposability is concerned with the explainability of each 

part of the model. The final category, algorithmic transparency focuses on the user’s 

ability to understand the whole model’s process and to get the output from its input data 

(Lipton, 2018). 

 

ii. Interpretability: It is the capacity of a model to be understood by humans. 

Interpretability can be categorised as transparency and post-hoc interpretability (Lipton, 

2018). Humans can get explanations or the ability to comprehend terms simultaneously 

thanks to interpretability. Another factor to consider when designing for interpretability 

is the user’s background knowledge.  
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iii. Explainability:   The capacity to communicate the model’s logic to a person in a way 

that they can understand it (Guidotti, Monreale, Ruggieri, Turini, Giannotti & Pedreschi 

2018). Explainability can improve a user’s trust in critical decision-making systems.  

 

iv. Understandability: Denotes a user’s understanding of how the model functions, 

without understanding its internal structure (Guidotti et al., 2018). 

The aforementioned phrases are frequently used interchangeably by academics from various 

fields without considering their varying meanings. Arrieta et al. (2020), summarises the findings 

of XAI literature as follows: “Given an audience, an explainable Artificial Intelligence produces 

details or reasons to make its functioning clear or easy to understand.”  

2.4.2 XAI design goals with user groups  

Mohseni, Zarei & Ragan (2021) address the three major user groups that XAI is intended to 

help and outline its design objectives. As illustrated by Mohseni et al. (2021), in Figure 2.13, 

there are eight design goals divided into three categories: data experts, AI experts, and AI 

novices.  

i. AI Novices 

According to Mohseni et al. (2021), social media and e-commerce end-users are 

examples of people who use AI products in their daily lives but have limited 

experience with ML systems. 

ii. Data Experts  

According to Mohseni et al. (2021), individuals who use ML for analysis or research 

and have expertise in the relevant domain are known as data experts. 

iii. AI Experts  

AI experts are ML scientists and engineers who design ML algorithms and 

interpretability for XAI systems, according to Mohseni et al. (2021). 
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Figure 2.13: Design goals and evaluation measures (Mohseni et al., 2021). 

 

2.4.3 Methods for XAI system  

In their 2021 study, Mohseni et al. (2021) explore six prevalent categories of justifications used 

in XAI system designs, presented in Table 2.2, to gain a better understanding of the demands 

of designing XAI systems for different scenarios. 

 

Table 2.2: Designing XAI systems for different scenarios (Mohseni et al., 2021). 

Type of 

Explanation 

Description approaches 

How Explanations This exemplifies how the model 

functions.  

Decision boundaries, 

model graphs by 

Lakkaraju, Bach & 

Leskovec (2016), and 

visual representations are 

used. 

Why Explanations  Explains the rationale behind a 

prediction. 

According to Ribeiro et al. 

(2016), Model-

independent or model-

agnostic are viable 

solutions. 

 

Why-not 

Explanations 

Mohseni et al. (2021), suggest 

aiding individuals in 

Feature importance 
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understanding why certain 

outputs were excluded from the 

system's output. 

What-If Explanations Focuses on how different 

algorithmic parameters and 

inputs result in different outputs. 

Tune model directly  

How-to-Explanations Mohseni et al. (2021) suggest 

explaining how altering the 

model or input could result in a 

distinct output. 

Ad-hoc and model-

agnostic  

What-else 

Explanations  

According to Mohseni et al. 

(2021), users should be given 

input examples that resemble 

the ones used by the model and 

produced comparable or 

indistinguishable outcomes. 

Explanation by example 

 

2.4.4 Local Interpretable Model-Agnostic Explanations (LIME) 

The distinct types of explanation models include global methods, local methods, and 

introspective methods. Global methods help in understating how a model makes decisions for 

the overall structure. Additionally, we can explain the model’s entire behaviour. In contrast, the 

use of local techniques can assist in understanding the decision-making process of the model 

for a specific instance. 

 

 

Figure 2.14: LIME explanation for object identification in images (Garreau & Von Luxburg, 2020) 

Figure 2.14 shows how the LIME explanation is represented visually. Garreau and von Luxburg 

(2020) used Inception as the black-box model. The original image (a) shows a turtle and a 

strawberry. (b) outlines how this prediction was made by LIME. The superpixels with the top 
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five coefficients in the surrogate linear model are represented by the areas of the image that 

are highlighted. For (c) the same experiment was conducted for a strawberry.  

 

Ribeiro et al. (2016) introduced LIME, a model-agnostic explanation technique that can be 

used post-hoc. LIME treats every model like a black box. It is independent of the original 

classifier which means it can be used for explaining any classifier. Misheva, Osterrieder, Hirsa, 

Kulkarni & Lin (2021) claim that Lime uses test data points to try to fit a local model. 

Mathematically, local surrogate models with interpretability constraints can be expressed as 

follows:  

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) =  arg min𝑔𝜖𝐺𝐿 (𝑓, 𝑔, 𝜋𝑥) +  Ω (𝑔);               (2.4) 

• Where 𝑔 is the group of models that may be understood, including decision trees 

(Misheva et al., 2021). 

• 𝑔𝜖𝐺: An explanation considered as a model (Misheva et al., 2021) 

• 𝑓 : Explaining the primary classifier. 

• 𝜋𝑥 (𝑧) : Distance between instance z and instance x (Misheva et al., 2021)  

• Ω (𝑔) : A metric for evaluation of how complicated an explanation is 𝑔𝜖𝐺.  

 

Minimising the locality-aware loss L is the objective (e.g., mean squared error) without making 

any assumption about the original model (e.g., Radom Forest model). 

 

2.4.5 Shapley Additive exPlanations (SHAP) 

 

Lundberg and Lee (2017) developed a strategy called Shapley Additive exPlanations (SHAP). 

SHAP uses a feature-relevant explanation approach. Any ML model may be understood and 

explained using SHAP. DL architectures, among other complex ML approaches, exhibit a 

black-box nature. The foundation of SHAP values is Shapley values, a notion borrowed from 

the work of Linardatos, Papastefanopoulos & Kotsiantis (2021) in game theory. Singh et al. 

(2021), state that SHAP utilises Shapley values to provide an interpretation and explanation of 

any machine learning model, as shown in Figure 2.15.  
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Figure 2.15: SHAP values (Knapič, Malhi, Saluja & Främling  2021) 

SHAP is not concerned with the model we use. Today, SHAP is regarded as a fundamental 

advancement in the field of XAI. Shapley values have been demonstrated as the only approach 

that preserves two crucial characteristics, local accuracy, and consistency, for determining the 

relevance of a feature, as shown by Lundberg and Lee (2017).  

i. Local accuracy – Antwarg, Miller, Shapira & Rokach (2020) state that the explanation 

model should, at the very least, replicate the outcomes of the original model. 

                        

                   𝑓(𝑥) =  𝑔(𝑧′) =  ∅0 + ∑ ∅𝑗𝑍′
𝑗

𝑀

𝑗=1

                                     (2.5) 

o The model 𝑔(𝑍′) matches the original model 𝑓(𝑥) when 𝑥 = ℎ𝑥(𝑥′) (Lundberg & Lee, 

2017) 

 

ii. Consistency – Changing a model to depend more on a feature should not decrease 

the significance of that feature, regardless of other features (Antwarg et al., 2020). 

 

Let 𝑓𝑥(𝑧′) = 𝑓 (ℎ𝑥(𝑧′)) and 𝑧′\𝑖 denotes setting 𝑧′𝑖 = 0  . For any two models 𝑓 and 𝑓′  , 

if  𝑓′
𝑥

(𝑧′) −  𝑓′
𝑥

(𝑧′\𝑖) ≥ 𝑓𝑥(𝑧′) −  𝑓𝑥(𝑧′\𝑖) 

 

For all inputs 𝑧′ ∈ {0,1}𝑀, then ∅𝑖(𝑓′, 𝑥) ≥  ∅𝑖 (𝑓, 𝑥) (Lundberg & Lee, 2017). 

 

2.4.6 Gradient-weighted Class Activation Mapping (Grad-CAM) 

 

To enhance the transparency of decisions made by CNN-based models, Selvaraju, 

Cogswell, Das, Vedantam, Parikh & Batra (2017) introduced a method called Gradient-

weighted Class Activation Mapping (Grad-CAM) for presenting “visual explanations” 
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heatmap to understand the decisions made by these models. The fundamental motivation 

for the creation of Grad-CAM is to leverage the information present in the convolutional 

layer to identify the significant parts of image classification. According to Panesar (2022), 

Grad-CAM combines feature maps using gradients such that the original network does not 

need to be changed. 

 

In Figure 2.16 the Grad-CAM technique is employed to classify a dog and cat. (a) The 

original image of a dog and cat, (b,c) an illustration of a dog image produced using the 

Grad-CAM method. This method highlights the areas of the input image that the model 

focuses on during the classification process. The heatmap’s important regions are 

highlighted in red, while unimportant regions are highlighted in blue (Setiawan & 

Rulaningtyas, 2023). Moreover, according to Panesar (2022), this suggests that the feature 

maps created in the final convolutional layer contain the spatial information necessary for 

identifying the visual pattern.  

 

Grad-CAM heatmaps are becoming a popular visualisation technique in the agriculture 

sector. For instance, Xu, Tan, Zhang, Zha, Yang & Yang (2022) used a Grad-CAM-based 

approach to improve maize seed classification, while Morshed, Ahmed, Ahmed, Islam & 

Rahman (2022) employed the same approach to gain insights into the fruit quality 

assessment. Additionally, Chopra and Whig (2021) identified tomato leaf disease using the 

same method. These studies demonstrate the versatility of Grad-CAM in agriculture and 

their potential to improve crop yield and quality assessment. 

  

 

Figure 2.16: An illustration of a dog image produced using the Grad-CAM method 

According to Panesar (2022), the importance weights for each position in the feature map are 

obtained by globally averaging the gradients that flow into the last convolutional layer across 

the width and height dimensions represented by 𝑖 and 𝑗 , using the formula (Panesar,2022):  
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                                ∝
𝑐

𝑘
 =  

1

𝑍
 ∑ ∑   

𝜕𝑦𝑐

𝜕𝐴 𝑗𝑖
𝑘𝑗𝑖                                         (2.6) 

 

∝
𝑐

𝑘
  =  important weight of class 𝑐 gradient 𝑘  

𝑍       = Dimension ( 𝑖 𝑥 𝑗)  

𝑦𝒄       = Score of class 𝑐 

𝐴𝑖 𝑗
𝑘    = vector (𝑖, 𝑗) of feature map 𝑘  

𝜕𝑦𝑐

𝜕𝐴 𝑗𝑖
𝑘    =  Derivative of gradient score class 𝑐 for feature map 𝑘 

 

2.4.7 Explainable Artificial Intelligence (XAI) Evaluation Measures  

The understandability of an ML system is believed to be influenced by two main factors, the 

characteristics of the system itself and the human’s ability to comprehend it (Zhou, Gandomi, 

Chen & Holzinger, 2021). Various methods have been suggested for assessing the quality of 

an explanation. Figure 2.17 illustrates the three categories in which evaluations of explainable 

ML can be classified. 

 

Figure 2.17: Taxonomy of Interpretability Evaluation (Doshi-Velez & Kim, 2017) 

i. Functionally grounded: Human experiments are not necessary for functionally 

grounded evaluation. Doshi-Velez and Kim (2017) propose a formal definition of 

interpretability as a substitute for the quality of an explanation. This type of assessment 

is appropriate once a class of models or regularising has been validated, for example, 

through human-grounded experiments (Doshi-Velez & Kim, 2017). 

 

ii. Application-grounded: Human experiments within a practical application are 

conducted as part of the application-grounded evaluation (Bodria, Giannotti, Guidotti, 
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Naretto, Pedreschi & Rinzivillo, 2021). They are frequently used in particular contexts. 

For instance, if the model is a tool to help doctors make decisions, the doctors conduct 

the validation (Doshi-Velez & Kim, 2017).  

 

iii. Human-grounded: Conducting more basic human-subject experiments while 

maintaining the core functionality of the intended application is known as human-

grounded evaluation (Doshi-Velez & Kim, 2017). Normal people can conduct 

evaluations, expanding the pool of potential test subjects. Moreover, this validation is 

most suitable for general testing ideas about the quality of an explanation (Bodria et 

al., 2021). 

 

2.5 Evaluation Criteria   

There are several measures used to evaluate the performance of DL models, such as 

Precision, F1-score, and accuracy. Through the use of multiple evaluation metrics, the study 

achieved an understanding of the model’s performance and made informed decisions about 

its effectiveness. Table 2.3 shows the equations for the evaluation metrics.  

 

Table 2.3: Evaluation Criteria 

 Evaluation focus Formula 

Precision It focuses on what proportion out 

of all predictions was correct. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
  𝑡𝑝

𝑡𝑝+𝑓𝑝
                  (2.7) 

Accuracy It is used to measure the 

percentage of correct 

classifications (Liu, Zhou, Wen & 

Tang, 2014). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
  𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
          (2.8) 

F1 Score The harmonic mean of precision 

and recall is represented by it (Liu 

et al., 2014). 

                                                                    (2.9) 

𝑓1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
= 2 ∗ 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

=  
𝑡𝑝

𝑡𝑝 + 
1
2

(𝑓𝑝 + 𝑓𝑛)
 

 

 

Recall  Describes the precision of a 

model, which is the ratio of true 

positives to all predicted 

positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
  𝑡𝑝

𝑡𝑝+𝑓𝑛
                         (2.10) 

 

Explanation of the terms associated with the evaluation parameters:  
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• True Positive (TP): The model correctly predicts that the image contains the nutrient. 

• True Negatives (TN): The model correctly predicts that the image does not contain the 

nutrient. 

• False Positives (FP): The model incorrectly predicts that the image contains the nutrient 

when it does not. 

• False Negatives (FN): The model incorrectly predicts that the image does not contain 

the nutrient when it does. 

 

There are different ways to interpret the F1-Score and AUC Score. This study followed the 

general rule by Allwright (2022) :  

Table 2.4 F1-Score interpretation 

F1-Score  Interpretation 

>0.9  Very good 

0.8 – 0.9 Good 

0.5 – 0.8 Ok 

<0.5  Not good  

 

Table 2.5 AUC Score Interpretation 

AUC Score  Interpretation 

> 0.8 Very good performance 

0.7 – 0.8 Good performance 

0.5 – 0.7 Ok performance 

0.5 As good as a random choice 

 

2.6 Cross-validation (CV) 

Stone (1974) introduced cross-validation, which has since become a widely used statistical 

tool for estimating the generalisation risk of learning algorithms. Accurate evaluation of a 

model’s performance is vital in ML, enabling informed decisions about its effectiveness. It 

serves not only as an estimator of generalisation performance but also as a means to uncover 

issues related to selection bias and overfitting (Soper, 2021).  

 

F-fold cv is a commonly employed technique for model selection, where the final model is 

selected based on achieving the minimum cross-validation error, as demonstrated by Zhong, 

He & Chalise (2020). According to Nti, Nyarko & Aning (2021), in k-fold CV, the dataset is 

partitioned into k subsets called folds. During each iteration, one-fold serves as the testing 
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data, while the remaining folds are used for training, as depicted in Figure 2.18, providing an 

overview of the k-fold CV process.  

 

 

Figure 2.18: K-Fold Cross-Validation (Nti et al., 2021) 

2.7 Related work  

The following section provides an overview of the use of deep learning for plant nutrient 

deficiency identification. 

Watchareeruetai, Noinongyao, Wattanapaiboonsuk, Khantiviriya & Duangsrisai (2018) 

proposed a method that uses CNNs to identify plant nutrient deficiencies, including Mg, Ca, 

and N, among others. The proposed experiment was conducted on a set of black gram plants. 

To assess how well the experiment performed, the researcher compared the results with two 

trained humans. Compared to the two people’s accuracy performance (27.37%), the proposed 

model performed with 43.02% more accuracy. The experiment revealed that if there are 

diverse types of nutrients to identify, it becomes difficult to accurately identify the nutrients.  

Tran, Choi, Le & Kim (2019) accurately predicted nutrient deficiencies to increase crop 

production and prevent tomato pathology caused by a lack of nutrients such as Calcium, 

Nitrogen, and Potassium. Noon, Amjad, Qureshi & Mannan (2020) conducted a review of 45 

DL techniques proposed for 33 different crops using 14 well-known convolutional neural 

architectures. Meanwhile, Xu, Guo, Zhu, He, Zhao, Han & Subedi (2020) explored the 

accuracy of various DCNNs for diagnosing nutrient deficiencies in rice. Abade, Ferreira & Vidal 

(2020) conducted a systematic review of the literature to determine the current state of the art 

in using CNNs for identifying and classifying plant diseases. Their findings demonstrate the 

potential of DL, particularly CNNs, in the field of agriculture and plant disease detection, while 

also highlighting trends and gaps in the research. 
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The performance of palm leaf nutrient deficiency detection using CNN was evaluated by 

Ibrahim, Hasan, Sabri, Abu & Rahimi (2022) through a confusion matrix. The results showed 

an overall mean accuracy of 94.29%, a sensitivity of 80%, and a specification of 96.67%.  

Another vision-based monitoring system was proposed by Claudio (2020). The experiment 

aimed to identify tomato plants that were deficient in the main nutrients such as nitrogen. 

Furthermore, the implementation of such systems can increase the quantity and quality of 

plants. The proposed CNN model had an accuracy rate of 86.57%. Zeng, Song, Li, Chusap & 

Liu (2021) introduced a human-in-the-loop method that utilises verbatim neighbourhood 

manifestation to explain ML models. Similarly, Veldhuis, Ariëns, Ypma, Abeel & Benschop 

(2022) draw on XAI techniques in their 2022 study to aid users in comprehending the reasoning 

behind particular predictions. 

Rodrigo (2020) addressed the issue of CNN-based solutions' lack of explainability by utilising 

the CNN model and YOLOv3 to generate easily understandable outcomes for nutrient 

deficiencies. During the study, the model was trained to detect nutrient deficiencies in lettuce, 

specifically nitrogen, magnesium, and calcium. The training data resulted in a mean average 

precision of 94.38%. In a similar vein, another author Humaion, Salman, Shafi, Samanta, 

Rabeya & Mehedi (2022) used three pre-trained CNN models to detect plant leaf disease. 

Among the three models, EfficientNetV2L demonstrated a remarkable accuracy of 99.63%. To 

explain the predictions made by EfficientNetV2L, the author used the classification XAI 

framework LIME.  

In their 2022 study, Wei et al. (2022) delved into the interpretability of DL models across various 

agricultural classification tasks. Their findings indicate that the ResNet model outperformed all 

other models with an accuracy of above 99.11% in all experiments conducted. Additionally, 

the study compared three visualisation methods and concluded that the GradCAM method is 

the most appropriate for agricultural classification tasks. 

Rakesh and Indiramma (2022), focus on the use of the DL model with XAI for crop disease 

detection. The experimental results show that both Inception-V3 and ResNet-9 achieved high 

accuracy, 98.18% and 99.2% respectively. The study showcases the potential of XAI in 

enhancing the transparency of DL models. Additionally, the author employs XAI tools such as 

LIME and Grad-CAM to offer visual interpretations for the model's predictions. 

Ghosal, Blystone, Singh, Ganapathysubramanian, Singh & Sarkar (2018) show the capability 

of DCNN to recognise and categorise a variety of foliar stressors in soybean. By studying more 

than 25,000 photos, the researcher was able to accurately identify and categorise several 

diseases and nutritional deficiencies. The availability of a reliable and fast explainable model 

would significantly impact both scientific research and agricultural production. To evaluate the 
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nitrogen content of wheat, the researchers Singh, Roy, Setia & Pateriya (2021) suggested 

using machine learning and XAI. Six machine-learning regression models were used by the 

author to forecast the nitrogen of wheat. The gradient-boosting regression and random forest 

combination outperformed (𝑅2> 0.85) previous combinations. To provide local and global 

explanations, SHAP values were used. According to Singh et al. (2021), based on the findings, 

it appears that using XAI as a tool to explain machine learning models is a promising idea.  

Summarily, this study distinguishes itself from the previous related work in various aspects. 

Table 2.4 presents a comparison of the classification performance between the study and other 

ML models that used the same two datasets as this study. The related work mostly focuses on 

one plant type such as tomato and maize. This study expands on the limitations of previous 

studies by looking at a more diverse range of plants. By doing so the study provides a more 

comprehensive analysis. 

 

Additionally, most of the previous research assesses the accuracy of the DL models, but they 

do not consider the explainability of the models. While some related work considers XAI 

techniques, they do not compare the different XAI techniques to understand how these models 

arrive at their predictions. Therefore, an integrated approach that considers both performance 

and explainability is lacking in the existing body of work. This study seeks to fill the gap by 

comparing the explainability of two prominent XAI techniques, GRAD-CAM, and Shapley 

Additive exPlanations.  

Table 2.6 Compares the accuracy of the two datasets. 

Previous Studies Dataset Accuracy %  Model XAI 

Han, Maneerat, Sepsirisuk & 

Hamamoto (2023) 

Banana 87.89% ConvNextTiny No 

Sathyavani, Jaganmohan & 

Kalaavathi (2023) 

Rice 96.13% Xception No 

Simul, Talukder & Sarkar (2022) Rice 86.66% InceptionV3 No 

 

2.8 Chapter Summary 

This chapter presented literature related to explainable DL models for the identification of plant 

nutrient deficiencies. The research looks at the importance of understanding the relationship 

between plant nutrient deficiency and plant diseases. It introduces the significance of DL and 

how they are applied in the agriculture sector. Furthermore, the research highlights the 

importance of XAI, and it delves into different XAI tools such as LIME, SHAP, and GRAD-CAM  
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Table 2.7: Summary of research literature 

Title  Plant Nutrient(s)/ 

Disease(s) 

Architecture  Best Accuracy Research Gap 

Watchareeruetai,Noinongyao, 

Wattanapaiboonsuk, Khantiviriya & 

Duangsrisai (2018) 

Black gram Nutrients: 

Calcium, 

phosphorus, iron, 

potassium, 

magnesium, and 

nitrogen 

AlexNet, ResNet50, 

MobileNet, MobileNet-

v2, Xception, Inception-

v3, and VGG16  

65.44% -The study used 

only one plant, 

which could affect 

the generalisation of 

the results. 

-Lack of model 

explainability 

Tran, Choi, Le & Kim (2019) Tomato Nutrients: 

Calcium, nitrogen, 

and potassium  

CNN 87.27% -Limited data set  

-Lack of model 

explainability 

Xu, Guo, Zhu, He, Zhao, Han & Subedi 

(2020) 

Rice Nutrients: 

Nitrogen, 

manganese, 

calcium, 

magnesium, 

potassium, 

DCNN: Dense Net, 

ResNet, Inception-v3, 

and NasNet-large  

97.44% - 

DenseNet121 

-The study used 

only one plant, 

which could affect 

the generalisation of 

the results. 
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phosphorus, zinc, 

iron, and Sulfur. 

-Limited data set; 

the study used a 

total of 1818 images 

-Lack of model 

explainability 

Claudio (2020) Tomato Nutrients: 

Nitrogen, 

Phosphorus, and 

potassium 

CNN 86.57% -There is no 

comparison with 

other models.  

- The study used 

only one plant 

(tomato) 

-Lack of model 

explainability 

Rodrigo (2020) Lettuce  Nutrients: 

Calcium, 

Nitrogen, and 

Magnesium  

CNN 94.38% -There is no 

comparison with 

other models. 

- The study used 

only one plant 

(tomato) 
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Singh, Roy, Setia & Pateriya (2021) Wheat Nutrients: 

Nitrogen 

Six regression models 

(i.e., Random Forest) 

XAI tool: SHAP 

(R2 = 0.89) Random 

Forest 

-The study used 

only one plant and 

one nutrient, which 

could affect the 

generalisation of the 

results. 

-The study does not 

compare different 

XAI approaches 

Sabri, Kassim, Ibrahim, Roslan & Abu 

(2020) 

Maize  Nutrients: 

Nitrogen, 

Magnesium, and 

Potassium 

Random Forest 78.35%  -There is no 

comparison with 

other models. 

-Limited data set. 

-Lack of model 

explainability. 

Ghosal, Blystone, Singh, 

Ganapathysubramanian, Singh & Sarkar 

(2018) 

Soybean Nutrients: 

Potassium. 

Diseases: Frog-

eye leaf spot, 

bacterial blight, 

DCNN 94.13% -There is no 

comparison with 

other models.  
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Septoria brown 

spot, and 

herbicide injury  

Wei, Chen, Zhang, Fan, Wu, Liu & Chen 

(2022) 

 

Mixed Diseases: 34 

categories of fruit 

leaf diseases 

VGG, GoogLeNet and 

ResNet 

XAI tool: Grad-CAM, 

SmoothGrad and LIME 

99.89% Resnet -Limited data set  

 

Rakesh and Indiramma (2022) Mixed Diseases: 

Seventeen 

diseases caused 

by fungi 

Inception-V3 and 

ResNet-9 

XAI tool: LIME and 

Grad-CAM 

99.2% ResNet-9 -Limited data set  

 

Humaion, Salman, Shafi, Samanta, 

Rabeya & Mehedi (2022) 

Mixed Diseases: Thirty-

eight types of leaf 

diseases 

EffecientNetV2L, 

MobileNetV2, and 

ResNet152V2 

XAI tool: LIME 

99.63% Effi-

cientNetV2L 

-The study does not 

compare different 

XAI approaches 
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CHAPTER THREE  

                RESEARCH METHODOLOGY 

This chapter presents the research methodology employed for this study. This chapter covers 

the research approach, methodological choice, research strategy, and research design. The 

study's ethical considerations are also elaborated on in this chapter. 

 

3.1  Research Approach 

According to  Creswell (2014), research approaches encompass a range of strategies and 

methods used to conduct studies, which can vary from general hypotheses to specific 

techniques for collecting, analysing, and interpreting data. Two variables must be considered 

while choosing a research approach: the topic’s features and the available time for the study 

(Pandey & Pandey, 2016). According to Jonathan (2010), there are two widely used research 

approaches in research, inductive and deductive. However, a hybrid method known as 

abductive is also available. Different methods of approach can be used to acquire knowledge 

that does not yet exist. 

 

3.1.1 Deductive approach 

According to Jonathan (2010), a deductive approach is the process of creating a hypothesis 

based on an established theory. Saunders, Lewis & Thornhill (2007) identified several 

significant qualities that are encompassed by the deductive approach. The effort to understand 

the causes of the correlations between variables comes first. To fulfil the objective of the 

research, a deductive research approach was chosen. To achieve the aim of this study, the 

use of a structured and systematic approach to test pre-defined hypotheses based on existing 

theories and literature is necessary. The deductive approach works from general to specific. 

The researcher first examines existing theories related to the phenomenon under investigation 

and then evaluates the hypotheses that arise from those theories. As a result, this study 

employed the deductive approach.  

 

3.2 Quantitative research methodology 

According to Aramay (2014), methodology refers to the way the researcher deploys the whole 

research design. The construction of the research methodology is explained by Saunders, 

Lewis & Thornhill (2019), through their theoretical concept of the research onion. The research 

methodology outlines the procedures and techniques utilised to determine the data to be 
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collected, and to conduct data processing and evaluation. Qualitative, quantitative, or mixed-

method research methodologies are the three categories that research methods fall under 

(Daniel, 2016).  

Saunders et al. (2007) assert that quantitative research is centred on measuring quantity or 

amount. It employs analytic tools like graphs or diagrams to provide accurate results. 

Quantitative research, in contrast to qualitative research, is frequently linked to a deductive 

approach (Jonathan, 2010). The primary focus of quantitative research is on the “when”, 

“where”, “what”, and how frequently a particular phenomenon occurs. It is vital to remember 

that this method is crucial since it enables generalisation from a sampling of populations. 

Based on these facts Håkansson (2013) states that experiments and testing are supported by 

quantitative research methods.  

The study's objectives will be achieved by using a quantitative research methodology. The 

study involves the use of collecting and analysing numerical data. The quantitative research 

methodology will make it easier to measure and compare the performance of the three DL 

models using standardised metrics. Moreover, to validate the study’s findings and 

conclusions, it is crucial to use a quantitative methodology that enables other researchers to 

reproduce the findings.   

3.3 Research Strategy  

McNabb (2010) describes the research strategy as a way of collecting data and how we 

produce answers to the research question. According to Creswell (2014), the strategy offers 

a precise orientation for the methods used in a research plan. Saunders et al (2007) state that 

there are several research strategies such as surveys and experiments. Therefore, 

Johannesson and Perjons (2014) suggest that a research strategy needs to be appropriate 

for the task at hand, otherwise, it will not be able to assist the researcher in answering the 

issue they are trying to answer. Surveys and experiments are the key tools used in quantitative 

methodology. According to Pandey (2016), experiments are typically employed to address 

“how” and “why” questions. As a result, an experimental research strategy has been selected 

for this study. 

 

Kapur (2018) states that experimental research uses two sets of variables and a scientific 

approach to conduct the study. Two essential characteristics define experiments. The first 

involves the systematic manipulation of the independent variable’s level by the researchers. 

The researcher controls the experiment, which is its second component. The objective is to 

change the independent variable and then observe how it changes the dependent variable 

(Jonathan, 2010). According to Saunders et al. (2007), it is necessary for an experiment to 
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clearly define its variables to enable readers to comprehend which groups are undergoing the 

experimental process and which outcomes are being monitored.  

3.4  Experimental Design of the Study  

Research design, according to Robinson (2015), is the road map for data collection, 

measurement, and analysis. Robinson (2015) states that there is not a single design that 

works in every situation. Each researcher must develop his or her design. Naturally, a variety 

of factors will influence the design(s) you choose. These include your research goal, its 

timetable, its methodology, and the data’s accessibility (Håkansson, 2013).  Figure 3.1 

illustrates the experimental research design of this study. According to McNabb (2010), 

Experimental design (ED) is a process of designing, conducting, and evaluating the results of 

all types of experiments. 

Research design is necessary because it makes it easier for various research activities to go 

smoothly, which maximises the amount of information that can be obtained with the least 

amount of time, effort, and money (Kothari, 2004). Additionally, according to Robinson (2015), 

a significant factor affecting the validity of the obtained result is the research design. However, 

how any of these can be accomplished largely relies on the research purpose. 

The experimental design was selected for this study because it is essential for the 

development and implementation of ML algorithms and models. By carefully planning, 

implementing, and analysing the results of experiments, researchers can ensure the validity 

and reliability of their findings and can make confident conclusions about the research 

question or hypothesis under investigation. 
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Figure 3.1:  Overview of the experimental design of this study (Source Researcher) 

3.5  Ethical Considerations   

McNabb (2010), refers to ethics as a part of philosophy, which focuses on the moral behaviour 

of humans in society. The research ethics guidelines of the Cape Peninsula University of 

Technology, South Africa were followed during the study. The study was conducted using 

publicly available datasets, adhering to their respective terms and conditions.  

The study did not interfere with the procedures for gathering and analysing data. Another 

consideration in the study was to accept the terms and conditions for using Python software 

and all its libraries. The experiment did not make use of external participants; therefore it did 

not need to do informed consent enrolment.  

3.6  Chapter Summary 

This chapter provided an overview of the research methodology used for this study. It included 

the research approach, methodological choice, research strategy and research design. 

Additionally, this chapter covers the ethical considerations taken into account to ensure that 

the research process was conducted appropriately.  
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CHAPTER FOUR  

             EXPERIMENTATION 

The procedures used for the experiments that produced the findings of this study are 

described in this chapter. This chapter presents details of the models’ configurations and the 

dataset that was used.  

4.1   System infrastructure  

Table 4.1 shows the hardware setup that was used to perform experiments on the selected 

machine-learning models: 

Table 4.1 Workstation setup 

Operating System Windows 10 Enterprise 

CPU  Intel Core i7-1185G7  

System Type 64-bit OS 

GPU Intel(R) Iris(R) Xe Graphics (7.8GB)  

RAM 16.0 GB  

Environment Google Colab 

 

4.1.1 Software and Frameworks 

Google Collaboratory (Google Colab), served as the integrated development environment 

(IDE) for the experimental process. Google Colab is a free cloud-based, setup-free Jupyter 

Notebook environment. It is a web-based platform that enables users to create and execute 

code, save, and distribute their findings, and utilise robust computing resources. The Google 

Cloud Platform hosts the Google Colab infrastructure (Carneiro, Nobrega, Nepomuceno, Bian, 

Albuquerque & Filho, 2018). The study used the normal Colab version, which provides access 

to a GPU, to satisfy the intensive computing needs of neural networks. Python (version 3.9.19) 

was used for the code development and implementation. The following is a discussion of the 

software environment, which comprises frameworks and the main Python libraries that were 

employed in the experimental process, Table 4.2 highlights the library version used.  

 

TensorFlow: The Google Brain team, a group of researchers and engineers within Google, 

developed an open-source library called TensorFlow to research ML and DNN. As per Pang, 

Nijkamp & Wu (2020), TensorFlow is the most extensively used deep-learning library among 
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several others. It only accepts tensors, which are multi-dimensional arrays with more 

dimensions, as the type of data. 

 

NumPy: Numerical Python is known as NumPy. It is a fundamental package for working with 

arrays (Hao & Ho, 2019). Due to its efficiency and speed, it is ideal for calculation in science 

or mathematics.  

 

Pandas:  It is a NumPy-based open-source library that is widely utilised for data analysis and 

machine learning purposes. 

 

Matplotlib:  Matplotlib, the Python visualisation library, is not only fantastic but also simple to 

use. It consists of a variety of plots and is built on NumPy arrays, making it compatible with 

other SciPy stack libraries. 

 

PyTorch: It is an open-source machine learning framework that utilises the Torch library and 

is implemented in Python. It was created in 2017 by the Facebook AI research team. PyTorch 

has strong GPU computation. As a result, people frequently choose it for fast experimentation.  

 

Scikit-learn (Sklearn): Sklearn is the most comprehensive machine learning package. It 

supports Python numerical libraries such as NumPy and includes a variety of algorithms like 

SVM and RF.  

Table 4.2: Libraries used 

Library  Version 

Pandas 1.3.5 

NumPy 1.21.6 

Matplotlib 3.2.2 

TensorFlow 2.9.2 

Cv2 4.6.0 

 

4.2 Dataset  

 

According to Kairuz, Crump & Brien (2007), the researcher chooses a method of data 

collection and considers the strengths and limitations when evaluating the results. For this 

study, two open-access datasets were used. Sample images from the different datasets are 

shown in Figure 4.1   
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Figure 4.1: Images from the two datasets (a) Banana, (b) Rice 

4.2.1 Dataset Details  

i. The rice dataset  

The dataset is available on the Kaggle data science community 

(https://www.kaggle.com/datasets/guy007/nutrientdeficiencysymptomsinrice). There are 

1156 images of rice in this dataset each varying in size. Showing three distinct types of nutrient 

deficiency: Potassium (K), Nitrogen (N), and Phosphorus (P). The distribution of the dataset 

classes is depicted in Figure 4.2 

 

Figure 4.2: Rice dataset class distribution 

ii. Banana dataset  

The banana dataset is available on Mendeley data 

(https://data.mendeley.com/datasets/7vpdrbdkd4/1). The dataset comprises banana 
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leaves from different banana types such as Robusta, Poovan, and Monthan. The 

dataset consists of three classes: calcium, iron, and healthy leaves. Figure 4.3 shows 

how the three classes are distributed. 

 

Figure 4.3: Banana dataset class distribution 

4.3 Image Pre-processing  

Images need to be pre-processed before being used for model training and testing (Kumar & 

Debika, 2018). Images may be pre-processed using a variety of techniques for, example, 

scaling images, making them grayscale, and enhancing images. This study's dataset 

comprises images of rice and banana in the JPEG — Joint Photographic Experts Group — 

format (.jpg), categorised into various classes  

 

4.3.1 Data Augmentation  

As per the research done by  Kumar and Debika (2018), data augmentation is an ML technique 

that involves applying various transformations to the original images to increase the size of 

the training dataset. This technique is utilised for pre-processing purposes. The use of dataset 

augmentation is a common approach to expand datasets and enhance the diversity of data, 

thereby improving the performance of DL models under various conditions. It serves as a 

regulariser and reduces overfitting when training a model. In this study, a Keras image data 

generator class ‘ImageDataGenerator’ was used for data augmentation. The data 

augmentation parameters are shown in Table 4.3.   
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Table 4.3: Data Augmentation Parameters 

Augmentation 

Technique  

Parameter Setting Outcome 

Rescaling rescale=1. / 255 It normalises the pixel 

values of the images to 

the range [0,1]. 

Rotation rotation_range=15 The images are randomly 

rotated by a maximum of 

15 degrees clockwise or 

counterclockwise. 

Width Shift width_shift_range=0.1 This allows the images to 

be randomly shifted 

horizontally by a 

maximum of 10% of the 

image width.  

Height Shift height_shift_range =0.1 This allows the images to 

be randomly shifted 

vertically by a maximum of 

10% of the image height. 

Zoom zoom_range=0.2 Images can be randomly 

zoomed in or out by a 

maximum of 20%. 

Shear Transformation shear_range=0.2 Applies the random shear 

transformation to the 

images. 

Brightness 

Adjustment 

brightness_range=[0.8, 1.2] Randomly adjusts the 

brightness of the images. 

Horizontal Flip horizontal_flip=True Random horizontal 

flipping of the images. 

Vertical Flip vertical_flip=True Random vertical flipping 

of the images. 
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After applying the transformations to the training data, the augmented data is combined with 

the original training data and labels, and the resulting dataset is returned. This augmented 

dataset can be used to train a machine learning model, providing diverse and additional data 

for the model to learn from.  

 

4.4 Model Training and Testing  

To train and test the machine learning models the study used a built-in function called “train-

test-split” from the Sklearn model selection module. The function divides the dataset into 

training and test sets with an 80:20 ratio. The split choice is based on the proposal by Mohanty 

et al. (2016). The study used a standard CNN and two pre-trained models (Inception-V3 and 

VGG-16). Using pre-trained CNN models primarily revolves around the rapid and effortless 

training of a CNN by using randomly initialised weights (Deniz, Şengür, Kadiroğlu, Guo, Bajaj 

& Budak, 2018). Moreover, the study used one-hot encoding for our categorical labels.  

 

Two callbacks were used in the model's training and validation processes. Monitoring the 

validation loss and learning rate decrease by a factor of 0.5 was done using the first callback. 

To stop early, a second callback was used. Both callbacks were applied within 30 epochs as 

well to prevent the model from over-fitting. In the following sections, the conventional CNN, 

along with two pre-trained models, namely Inception-V3 and VGG-16 are outlined. 

 

4.4.1  Convolutional Neural Networks 

CNN is one of the most important algorithms in the computer vision field used for image 

classification (Alzubaidi et al., 2021). Figure 4.4 shows the plot of the CNN model architecture 

used for this study. 

 

The first layer is a Conv2D layer with 32 filters, a kernel size of (5,5), and a ReLu activation 

function. The input shape is the height and width of the input image, and 3 represents the 

number of colour channels (RGB). The second Conv2D layer has the same parameters as 

the first, followed by a MaxPool2D layer with a pool size of (2,2) and a Dropout layer with a 

rate of 0.25. 

 

The third and fourth layers are similar to the second layer but with 64 filters instead of 32. The 

fifth layer is a Flatten layer that converts the output of the previous layers into a 1D array. The 

sixth layer is a Dense layer with 256 units and a ReLu activation function, followed by a 

Dropout layer with a rate of 0.5. The final layer is a Dense layer with the number of units equal 

to the number of classes, and a softmax activation function. In total, all the layers of this CNN 
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model are trainable, and it comprises 22,514,211 parameters. Table 4.4 shows the parameters 

used to train the CNN model.  

Table 4.4: CNN Parameters 

Parameter CNN 

Cross-Validation k-fold (k=10)  

Epochs 30 

Batch Size 32 

Early Stopping Patience =10 

Initial learning rate 0.001 

Optimizer Adam 

Loss Categorical Crossentropy 

 

 

Figure 4.4: CNN Model plot 
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4.4.2   Pre-trained Inception-V3 

The Inception v3 model's configuration comprises multiple layers of different types, such as 

convolutional, input, batch normalisation, pooling, and activation layers. 

 

In this configuration of the Inception v3 model, there are several layers of diverse types. These 

include input layers, convolutional layers, pooling layers, batch normalisation layers, and 

activation layers. 

 

The input layer: This layer accepts the input images and passes them on to the next layer 

(Szegedy et al. 2015). The input images are 224x224 pixels in size and have three colour 

channels (RGB), as indicated by their output shape (None, 224, 224, 3). 

 

The convolutional layer: This layer is where the convolution operation is performed (Szegedy 

et al. 2015). The input data undergoes a series of filters, each of which is tailored to identify a 

particular pattern within the data. In this configuration, the convolutional layer applies thirty-

two filters of size 3x3 to the input data. 

 

The batch normalisation layer: According to Szegedy et al. (2015), the normalisation layer 

is used to standardise the output of the convolutional layer, resulting in a mean of zero and a 

standard deviation of one. This process can enhance the model's performance. 

 

The activation layer: The output of the batch normalisation layer is passed through an 

activation function in this layer (Szegedy et al. 2015). ReLU is commonly used as the activation 

function in CNNs. 

 

The pooling layer: According to Szegedy et al. (2015), this layer is utilised to decrease the 

data's size. It does this by applying a "pooling" operation, which typically involves taking the 

maximum or average value of a group of pixels in the input data. Reducing the amount of data 

that the next layer needs to process can accelerate the overall processing time. 

 

The fully connected layer: The "fully connected" layer, where all neurons are connected to 

those in the previous layer, is responsible for the final classification or prediction based on the 

input data. This layer uses the output of the previous layers to make the ultimate prediction 

(Szegedy et al. 2015). For training the Inception-v3, the utilised parameters are presented in 

Table 4.5. 
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Table 4.5: Inception-v3 Parameters 

Parameter Inception-V3 

Epochs 30 

Cross-Validation k-fold (k=10)  

Batch Size 32 

Early Stopping Patience =10 

Initial learning rate 0.001 

Optimizer Adam 

Loss Categorical Crossentropy 

 

4.4.3 Pre-trained VGG-16  

This study used the pre-trained VGG-16 CNN as the backbone architecture for the image 

classification task. First, the VGG-16 architecture was imported from the Keras applications 

library. Also, the necessary layers and the model object were imported. 

 

This study defined the input tensor with the desired image size of 150x150 and 3 channels 

(RGB) and then passed this input tensor to the VGG-16 architecture, setting the weights 

argument to 'imagenet' to use the pre-trained weights. All the layers in the VGG-16 model 

were made to be non-trainable to avoid retraining the existing weights of the architecture.  

 

Utilising the VGG-16 architecture with pre-trained weights, defining input and output layers, 

creating a model object, and compiling it using the categorical crossentropy loss function, 

Adam optimizer, and accuracy metrics. For training the VGG-16 model, the parameters used 

are presented in Table 4.6. 

 

Table 4.6: VGG-16 Parameters 

Parameter VGG-16 

Epochs 30 

Cross-Validation k-fold (k=10)  

Batch Size 32 

Early Stopping Patience =10 

Initial learning rate 0.001 

Optimizer Adam 

Loss Categorical Crossentropy 
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4.5  Chapter Summary 

This chapter describes the procedures used in the experiments that produced the findings of 

the study. Further outlining the system infrastructure used, and model parameters, including 

the software and libraries used. Additionally, the chapter delves into the architecture of the 

standard CNN model and pre-trained Inception-V3  and VGG-16 
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CHAPTER FIVE  

                    EVALUATION 

This chapter examines the effectiveness of the three models used in the study and their 

explainability. To gauge the effectiveness of the models, the study used standard metrics like 

accuracy, precision, and F1-score. Subsequently, the study explores the use of SHAP and 

GRAD-CAM for model explainability.  

 

5.1 Evaluation of Models’ Performance  

The study assessed the performance of three well-known CNN architectures: standard CNN, 

VGG-16, and Inception-v3. These architectures were tested on two different datasets, rice and 

banana. The performance of each model was measured using four standard classification 

metrics which are accuracy, precision, recall, and the F1-Score.  

5.1.1 Classification Performance on Rice Dataset 

Table 5.1 shows the performance of each model when applied to the rice dataset. The three 

models performed well across all metrics, with Inception-V3 and Inception-V3 achieving the 

highest scores of 93% for all metrics Accuracy, precision, recall, and F1-score.  

 

Table 5.1 Rice dataset evaluation 

  
Rice Dataset 

  
Mean 

Classifiers Accuracy Precision Recall F1-Score 

CNN 84% 84% 84% 84% 

VGG-16 93% 93% 93% 93% 

Inception-V3 93% 93% 93% 93% 
 

The graphical representation of the different models’ accuracy on each fold using a 10-fold 

cross-validation approach is shown in Figure 5.1 – 5.3  
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Figure 5.1: Performance accuracy of CNN on each fold 

 

Figure 5.2: Performance accuracy of VGG-16  on each fold 
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Figure 5.3: Performance accuracy of Inception-V3 on each fold 

 

5.1.2 Classification Performance on the Banana Dataset 

As shown in Table 5.2, Inception-V3 achieved the best performance, achieving 92%  across 

all evaluation metrics. With an accuracy of 82%, VGG-16 performed better than the CNN 

model with a score of 68%. According to these results, Inception-V3 outperforms the other 

models, making it the preferred choice for classifying the banana dataset. Figure 5.4 to 5.6 

depicts the graphical representation of the models used using a 10-fold cross-validation 

approach for each fold.  

 

Table 5.2 Banana dataset evaluation 

  
Banana Dataset 

  
Mean 

Classifiers Accuracy Precision Recall F1-Score 

CNN 68% 68% 68% 68% 

VGG-16 82% 81% 82% 81% 

Inception-V3 92% 92% 92% 92% 
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Figure 5.4: Performance accuracy of CNN on each fold 

 

Figure 5.5: Performance accuracy of VGG-16 on each fold 
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Figure 5.6: Performance accuracy of Inception-V3 on each fold 

Table 5.1 to Table 5.2 highlight that Inception-V3 appears to be the most suitable model for 

the given datasets, as it consistently achieves the highest performance. VGG-16 also performs 

well and is competitive, but it falls short of Inception-V3. Therefore, Inception-V3 stands out 

as the preferred model for the given datasets.  

 

5.1.3 Confusion Matrix 

A helpful instrument for assessing the effectiveness of ML models is the confusion matrix. It 

provides a detailed breakdown of how many instances were classified correctly or incorrectly 

for each class. To assess the efficiency of standard CNN, VGG-16, and Inception-V3 

architectures, they underwent testing on two distinct datasets. 

 

i. Rice dataset 

The confusion matrix for the three models when applied to the rice dataset is shown in Tables 

5.3 to 5.5  The confusion matrix for the CNN model shows that it predicted Nitrogen correctly 

75 times, while incorrectly predicting Phosphorus 7 times and Potassium 6 times. Similarly, 

the model predicted Phosphorus correctly 59 times but incorrectly predicted Nitrogen 6 times 

and Potassium 13 times. Finally, for the Potassium class, the model correctly predicted it 60 

times but incorrectly predicted Nitrogen 2 times and Phosphorus 4 times. The model's 

accuracy rate is 84% in total. 
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The VGG-16  model's confusion matrix shows a higher accuracy compared to the CNN model. 

It correctly predicted Nitrogen 84 times, Phosphorus 57 times, and Potassium 74 times. The 

model's accuracy rate is 93% in total. 

 

The overall accuracy of the Inception-V3 model is 93%, as indicated by its confusion matrix. 

The model correctly predicted Nitrogen 94 times, Phosphorus 56 times, and Potassium 66 

times.  

 

Table 5.3 CNN rice dataset confusion matrix 

Tr
u

e 
La

b
el

s 

 
Nitrogen Phosphorus Potassium  

Nitrogen 

75 6 2 

Phosphorus 

7 59 4 

Potassium  

6 13 60 

 

 

Table 5.4 VGG-16 rice dataset confusion matrix 

Tr
u

e 
La

b
el

s 

 Nitrogen Phosphorus Potassium  

Nitrogen 
84 0 2 

Phosphorus 
2 57 5 

Potassium  
4 4 74 

 

 

Table 5.5 Inception-V3 rice dataset confusion matrix 

Tr
u

e 
La

b
el

s 

 Nitrogen Phosphorus Potassium  

Nitrogen 
94 3 1 

Phosphorus 
5 56 2 

Potassium  
1 4 66 
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ii. Banana Dataset  

The banana dataset underwent evaluation using three ML models – CNN, VGG-16, and 

Inception-V3. The corresponding confusion matrix outputs for each model are depicted in 

Tables 5.6 to 5.8, respectively. Overall, all three models performed well on the banana dataset, 

as indicated by the relatively high number of correct predictions compared to 

misclassifications.  

 

Table 5.6 CNN banana dataset confusion matrix 

Tr
u

e 
La

b
el

s  Calcium healthy  iron  

Calcium 109 50 28 
healthy  48 132 14 
iron  20 8 129 

 

Table 5.7 VGG-16 banana dataset confusion matrix 

Tr
u

e 
La

b
el

s 

 Calcium healthy  iron  

Calcium 
126 28 20 

healthy 
22 156 8 

iron 
12 9 157 

 

Table 5.8 Inception-v3 banana dataset confusion matrix 

Tr
u

e 
La

b
el

s 

 Calcium healthy  iron  

Calcium 
154 16 13 

healthy  
5 182 3 

iron  
5 0 160 

 

 

5.1.4 Receiver Operating Characteristic (ROC) Curve  

 

According to Chicco and Jurman (2023), the receiver operating characteristic curve is a 

performance measure used in ML for assessing the efficacy of binary classification models. 

When there are issues with class imbalance, such as when one class is significantly more 
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prominent than the other, the AUC (Area Under the Curve) will be used. On the y-axis of the 

ROC curve is the true positive rate and, on the x-axis is the false positive rate. The ROC AUC 

is a widely used statistical measure in scientific research for evaluating binary classifications 

(Chicco & Jurman, 2023). It quantifies the performance of a classifier ranging from 0 (indicating 

the worst result) to 1 (representing the perfect result). 

 

The ROC curve of each of the three models is shown in Figure 5.7 – 5.9. All three models 

demonstrated very good performance in image classification, achieving high AUC values for 

the three different nutrient classes: 1- Nitrogen, 2- Phosphorus, and 3- Potassium. The rice 

dataset results suggest that DL models like VGG-16 and Inception-V3 are well-suited for multi-

class classification tasks. 

 

The banana dataset as depicted in Figure 5.10 – 5.12, shows that the AUC values are 

constantly above 0.9 when classifying the “healthy” and “Iron” classes for all three models, 

indicating excellent discrimination between positive and negative samples. Based on the AUC- 

Scores, the scores fall within the very good performance range according to the AUC- Score 

interpretation scale. While all three models performed well, Inception-V3 stands out as the 

most robust model, exhibiting high AUC values across the two datasets, as depicted in Table 

5.9.  

 

 

Figure 5.7: Rice dataset - CNN ROC Curve 
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Figure 5.8: Rice dataset - VGG-16 ROC Curve 

 

Figure 5.9: Rice dataset - Inception-V3 ROC Curve 

 

Figure 5.10: Banana dataset - CNN ROC Curve 
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Figure 5.11: Banana dataset - VGG-16  ROC Curve 

 

Figure 5.12: Banana dataset - Inception-V3 ROC Curve 

Table 5.9 AUC  scores of the DL models on the two datasets  

RICE Dataset 

  CNN VGG-16 Inception- V3 

Nitrogen 0.96 1.00 0.99 

Phosphorus 0.90 0.98 0.99 

Potassium  0.94 0.98 0.99 

Banana Dataset  

  CNN VGG-16 Inception- V3 

Calcium 0.74 0.88 0.95 

healthy  0.85 0.94 0.99 

Iron 0.92 0.96 0.99 
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5.2 Analysis of explainability using SHAP  

Notwithstanding the remarkable accuracy of the three models, there exists a lack of 

transparency in these models. To explain any ML model, there are a few generalised XAI 

methods. For this study, two XAI algorithms, SHAP and Grad-CAM, were used. In this section, 

the SHAP output of the three models when applied to two different datasets were examined.  

5.2.1 Explainability of ML models using SHAP  - Rice Dataset 

The input image is displayed on the left in Figure 5.13, while the SHAP output of the CNN 

model is highlighted in red and blue pixels. Red tones show positive contributions and blue 

tones show negative contributions to the prediction of this category. The model displays the 

three categories that it deems to be associated with the image.  

 

The probability of phosphorus prediction is shown to increase in the first explanation image 

through the display of a red tone. The explanations for nitrogen and potassium contain fewer 

red colours. Overall, the figure suggests that the CNN model relies heavily on a few prominent 

features to make its predictions. Figure 5.14 shows the SHAP output of the VGG-16 model. 

This model also appears to rely on a limited set of notable features, similar to the CNN model. 

However, the contribution of each feature is more evenly distributed, with fewer features 

having an extremely positive or negative contribution 

 

The SHAP output of the Inception-v3 model is displayed in Figure 5.15. Inception-V3 appears 

to be more reliant on a broader set of features than CNN, with many features making a 

significant positive or negative contribution to the final prediction. 

 

Figure 5.13: CNN (rice) SHAP output 
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Figure 5.14: VGG-16 (rice) SHAP output 

 

Figure 5.15: Inception-V3 (rice) SHAP output 

5.2.2 Explainability of ML models using SHAP  - Banana Dataset 

By analysing the SHAP output from the CNN model as shown in Figure 5.16, it is obvious that 

the most influential regions on the banana leaf are on the sides of the leaf. Compared to the 

other models, the VGG-16 in Figure 5.17 distribute the SHAP values across the whole leaf. 

The Inception-V3 models in Figure 5.18 rely on broader context clues, resulting in different 

patterns of SHAP values across the banana leaf.  

 

Figure 5.16: CNN (banana) SHAP output 
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Figure 5.17: VGG-16 (banana) SHAP output 

 

Figure 5.18: Inception-V3 (banana) SHAP output 

Overall, the SHAP output of these three deep learning models suggests that each model relies 

on a distinct set of key features to make predictions as summarised in Table 5.10. The CNN 

model appears to be the most reliant on a small number of features, while Inception-V3 and 

VGG-16 rely on a broader set of features. The implication is that the selection of the model 

can influence which features are deemed crucial for the prediction. 

 

Table 5.10 Summary of Explainability of ML Models based on SHAP 

Models Rice Dataset Banana Dataset 

CNN Relies heavily on prominent 

features, especially for 

phosphorus prediction  

Influential regions on the 

sides of the leaf. 
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Inception-V3 Relies on a broader set of 

features  

Relies on broader context 

clues, resulting in a different 

pattern of SHAP values 

VGG-16 Similar to CNN, but with 

more evenly distributed 

feature contributions 

Distributes SHAP values 

across the whole leaf. 

 

5.3  Analysis of explainability using Grad-CAM   

 

For each of the three models, a GRAD-CAM visualisation technique is used to debug the 

prediction process and emphasise the intriguing areas of the plant picture that determine the 

final decision.  

 

CNN possess a complex architecture often referred to as a “black box,” resulting in a lack of 

transparency regarding its internal operations. However, Grad-CAM is a technique proposed 

by Selvaraju et al. (2017) that can be used to debug almost any CNN model by locating and 

processing the gradient of the target for the last convolutional layer. 

 

According to Setiawan and Rulaningtyas (2023), visual explanation provides an overview by 

generating a heatmap where pixels with high to low intensity are coloured from red, yellow, 

green, and blue. This technique can be used to determine whether the model accurately 

predicts the absence of potassium based on the infected region of the plant. 

 

5.3.1 Explainability of ML models using Grad-CAM - Rice Dataset 

 

The CNN GRAD-CAM heatmap reveals that the model mainly focuses on the tip of the leaf, 

where the nutrient deficiency is prominent. The VGG-16 considers a similar part of the leaf. 

However, the heatmap shows a more accurate part of the plant compared to the CNN model. 

The way that VGG-16 localised the defected region shows that the model can be trusted. 

People can better understand how VGG-16 uses image classification to identify the lack of 

nutrients in plants by examining the highlighted area.  
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Inception-V3 GRAD-CAM heatmap shows a different pattern compared to the first two models. 

The model highlights various broader areas rather than a single dominant area. The approach 

used in the study for nutrient deficiency identification is consistent with the findings of Chopra 

and Whig (2021). The results presented in Figure 5.19 demonstrate the effectiveness of Grad-

CAM in providing these models’ transparency and interpretability. 

 

 

Figure 5.19: Rice Grad-CAM output 

 

5.3.2 Explainability of ML models using Grad-CAM - Banana Dataset 

 

Figure 5.20 illustrates the use of the Grad-CAM approach when applied to the three models 

to construct the class activation mapping. According to Selvaraju et al. (2017), this mapping 

helps to localise the specific region of the plant that predominantly influenced the decision. In 

this instance, the CNN model tends to highlight the contours of the banana leaf. However, the 

other two models focus on the leaf itself. The Inception-V3 model heatmap lacks a precise 

overlap with the object of interest.  
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Figure 5.20: Banana Grad-CAM output 

 

In conclusion, Grad-CAM is a powerful tool that helps understand the decision-making process 

of CNN models such as standard CNN, VGG-16 and Inception-V3. The results presented in 

Table 5.11 demonstrate the effectiveness of Grad-CAM in providing transparency and 

interpretability of these models. This visual explanation enables a better understanding of how 

the model performs image classification. Moreover, Grad-CAM is a potential approach for 

improving the interpretability and transparency of CNN models, offering practitioners and 

researchers insightful information about their internal working and decision-making processes.  
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Table 5.11 Summary of Explainability of ML Models based on Grad-CAM 

Models Rice Dataset Banana Dataset 

CNN Grad-Cam heatmap 

focuses on the tip of the 

leaf. 

Highlights banana leaf 

contours. 

Inception-V3 Highlights various broader 

areas. 

Lacks precise overlap with 

the object of interest 

VGG-16 Localises defected region. Focuses on the leaf itself 

 

5.4  Discussion of Results   

This study compared the performance and explanation of three CNN-based architectures for 

the identification of plant nutritional deficiencies. The study used two datasets for conducting 

experiments on the models. The rice dataset was used to classify images based on three 

classes. Additionally, the banana dataset was used to assess the model's robustness based 

on three classes.  

 

Based on the results obtained for the rice dataset, the Inception-V3 and VGG-16 models 

outperformed the CNN model in terms of performance scores both achieving 93% accuracy, 

which is consistent with the findings of Ibrahim et al. (2022). The study employed CNN to 

address palm leaf nutrient deficiencies and achieved an overall accuracy of 94.29%.  

 

Precision and recall values provide an overview of the effectiveness of each model in 

identifying different nutrient deficiencies. As far as precision is concerned, the VGG-16 

outperformed the other two models for nitrogen and phosphorus deficiencies, 93% and 93%, 

respectively. While Inception-V3 has the highest accuracy (96%) for potassium deficiencies.  

 

Based on the F1-Scores, both the VGG-16 and Inception-V3 achieved a good score, both 

getting 93% F1-score for the rice dataset, while the CNN model demonstrated an ok score, 

achieving an 84% F1-score. 

 

For the banana dataset, Inception-V3 excels once more, achieving a very good F1-Score of 

92%. VGG-16 follows with a good F1-Score of 81%. And the CNN, while not as strong as the 

other models, achieves an ok F1-Score of 68%. Based on these findings, it appears that 
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Inception-V3 is effective in detecting nutrient deficiency in banana plants. The high 

performance in terms of accuracy of the Inception-V3 model on both datasets can be attributed 

to its deeper architecture and better feature extraction capabilities. 

 

Although the studies in Table 2.6 focus on the performance of the models, the explainability 

factor added an extra layer of understanding of the results. The explainability of the models is 

also a crucial factor to consider. This study used two XAI algorithms, SHAP and Grad-CAM. 

Regarding SHAP, the CNN and VGG-16 models often rely on a limited set of prominent 

features. However, Inception-V3 appears to rely on a broader range of features, with many 

features making significant contributions to the final prediction.  

 

For the banana and rice datasets, it was noted that the CNN model Grad-CAM heatmap 

highlights the contours of the plant leaf, while the other two models focus on the leaf itself. 

VGG-16 accurate localisation on the affected region proved to be more reliable due to its 

heatmap’s quality. Overall, the visual explanations allowed for a better understanding of how 

these models identify the absence of nutrients by examining the highlighted areas.  

 

Inception-V3 is the most accurate model, but it may not be the most understandable model 

due to its complex architecture. On the other hand, the VGG-16 has a simpler architecture 

that can explain it more. Therefore, it is important to balance accuracy and explication when 

selecting a model for a particular task. 

5.5  Chapter Summary  

This chapter provided a thorough analysis of the model’s performance and explainability, 

which added insightful information to the comparative research of explainable deep learning 

models for the detection of nutrient deficiencies in plants. The results of the chapter provide a 

foundation for improving the model's accuracy, interpretability, and practical applicability in the 

agriculture sector.  
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CHAPTER SIX  

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

Based on the observations made in Chapter 5, this chapter provides a comprehensive 

overview of the study’s findings, conclusions, contributions, and recommendations.  The first 

to the fourth objectives are covered in the summary section. Furthermore, this chapter serves 

as the conclusion of the study, offering specific insights into the research implications. It 

elaborates on the study’s input and suggests recommendations based on the findings and 

conclusions, which the researcher deems potentially valuable for future research.   

6.1 Summary 

The research aimed to compare the performance of deep learning algorithms when applied to 

plant nutrient deficiency and to ascertain the level of their explainability.  The study comprised 

six chapters, each making a distinct contribution to the overall research.  

 

Chapter 1 discussed the research problem, along with the study’s aim, research questions 

and objectives. Additionally, the chapter introduced the topic and offered a comprehensive 

background of the study, highlighting the delineation and significance of the study. In Chapter 

2,  the study presented literature related to explainable DL models for the identification of plant 

nutrient deficiencies. The research looked at the importance of DL and how they are applied 

in the agricultural sector. Additionally, the study highlighted the importance of XAI, and 

different XAI tools such as LIME, SHAP, and Grad-CAM.  Chapter 3 provided an overview of 

the research methodology, including the research approach, research strategy and research 

design. Chapter 4 described the process used in the experiments that produced the findings 

in the study. Chapter 5 provided a thorough analysis of the model’s performance and 

explainability. The final chapter, Chapter 6, presents the summary, recommendations, and 

conclusion of the study.  

 

The following describes how the study’s objectives were met: 

 

i. Objective 1: To identify the features that are essential to determine plant nutrient 

deficiencies.  

 

Through a thorough analysis of the literature (Chapter 2), pertinent characteristics for 

identifying plant nutrient deficiencies were identified to achieve objective 1.  There are 

several methods of analysing deficiencies in plants, such as visual observations, plant 
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analysis, and soil analysis. Plants exhibit signs of nutrient inadequacy in their leaves 

as a result of nutrient shortage.  

 

Nutrient deficiencies in plants often exhibit initial visual symptoms on their leaves, 

which include yellowing, and reduced leaf size. For instance, a general look of light 

green to yellow is indicative of a Nitrogen (N) deficiency and is most obvious on older 

leaves. Lack of Phosphorous (P) causes brown spots and necrosis to appear on 

leaves, which is followed by reduced plant growth. Similar to this, Potassium (K) 

deficiency causes brown spots. Lack of Calcium (Ca) results in irregular or distorted 

development of new leaves. The last sign of Magnesium (Mg) shortage is yellowing of 

the veins of young leaves and in extreme cases, leaf drop.  

 

ii. Objective 2: To determine the requirements of explainable deep learning for 

nutrient deficiency identification.  

 

This objective was achieved by doing extensive research on machine learning and 

deep learning to understand the prerequisites and criteria for implementing explainable 

deep learning in the agriculture sector. In addition, the significance of XAI was 

highlighted, spotlighting the necessity for interpretable models in the agriculture sector.  

To improve model explainability, various XAI techniques have been explored by 

different authors in the literature. These include Local Interpretable Model-Agnostic 

Explanations (LIME), Shapley Additive exPlanations (SHAP), and Gradient-weighted 

Class Activation Mapping (Grad-Cam).  

 

iii. Objective 3: To explore how explainable deep learning could be applied to a 

plant image dataset to identify plant nutrient deficiencies.  

To achieve this objective of applying explainable deep learning to identify plant nutrient 

deficiencies, the study used two datasets. The datasets contained two different plant 

types, namely rice and banana. Each plant exhibits distinct nutrient deficiency 

symptoms. With the use of different datasets, the study was able to assess how well 

the chosen DL models worked with various plant types and nutrients.  

For this study, three different DL models were used, including Convolutional Neural 

Networks (CNNs) and two pre-trained CNN models: Inception-V3 and VGG-16. CCNs 

were a good option for our objective because they have proven to be very successful 

in image-related tasks.  
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Two XAI techniques, namely Grad-CAM and SHAP were then applied to the Dl models. 

Through this, the visual explanations that helped in understanding how these models 

make predictions and gain insight into their decision-making processes were obtained.  

 

iv. Objective 4: To determine the performance of selected deep learning algorithms 

when used for plant nutrient deficiencies and their explainability. 

 

This objective was achieved in two aspects, by evaluating the model's performance in 

identifying plant nutrient deficiencies and their level of explainability through the two 

XAI techniques that were applied (Grad-CAM and SHAP).  

 

The study used standard evaluation metrics like accuracy, precision, recall, F1-Score, 

and AUC-Score to assess the model's effectiveness in identifying nutrient deficiencies 

in plants. These metrics provided a quantifiable assessment of the model’s 

effectiveness, allowing the researcher to evaluate how well each model identified 

certain nutrient deficiencies across different datasets.   

 

In addition to the performance evaluation, the study also focused on the models’ 

explainability. The model predictions were visually explained using XAI techniques, 

Grad-Cam and SHAP. By using heatmaps and feature attributions, these visual 

explanations highlighted the areas of the input images that affected the model's 

predictions. 

 

By evaluating both performance and explainability, the researcher gained a 

comprehensive understanding of the DL models’ strengths and limitations in identifying 

nutrient deficiencies in plants.  

6.2  Contributions of the Study 

This study made valid theoretical and practical contributions which are outlined below.  

 

6.2.1 Theoretical Contribution 

The study contributes to the literature by incorporating explainable deep learning in the context 

of plant nutrient deficiency identification. Moreover, unlike prior research, as highlighted in 

Table 2.6, that primarily evaluated accuracy without considering explainability, the study 

addressed this gap by comparing the explainability of GRAD-CAM and SHAP techniques, 

shedding light on how these models arrive at their predictions. Bringing attention to the 
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importance of a holistic approach that considers both performance and explainability in the 

agriculture sector will enhance trust and usability in the models’ predictions.  

 

6.2.2  Practical Contribution 

The practical contribution of this thesis is in the practical implementation of explainable deep 

learning in identifying plant nutrient deficiencies. The study demonstrates their effectiveness 

in real-world scenarios by applying the models and XAI techniques to a diverse range of 

plants.  This study has important applications for the agriculture sector, as it offers trustworthy 

and understandable solutions for quick and accurate detection of nutrient deficiencies in 

plants.  This will contribute to the improvement of crop management, productivity, and 

sustainability in agricultural practices.  

 

6.3 Limitations of the study 

The study focuses on Grad-CAM and SHAP, two well-known XAI techniques. Even though 

these techniques have been explored and implemented, the research does not consider any 

new or alternative approaches for explainable deep learning. Additionally, the AI models are 

used differently by various users, hence the explanations they offer are susceptible to different 

interpretations. The study does not include a usability evaluation that focuses on the 

experiences of farmers, or agronomists in their attempt to use the machine learning models in 

practice. 

 

The study is also limited by the unavailability of plant nutrient deficiency image datasets, 

particularly in Africa. Despite searching extensively, even well-known open-source 

repositories lacked such datasets. Consequently, the study had to rely on only two available 

datasets.   

6.4 Conclusion  

In evaluating the performance of three deep learning models (CNN, Inception-V3, and VGG-

16), the study found that these models exhibited varying degrees of effectiveness in identifying 

nutrient deficiencies in rice and banana plants. This variation in model performance 

emphasizes the importance of selecting the right model for a particular task in agriculture. 

Crucially, the study also addressed the often-neglected aspect of model explainability, offering 

visual insights that enhance transparency and trust in model decision making.  

 

The research successfully addressed its objectives, providing valuable insights into both the 

theoretical and practical aspects of this domain. The study's holistic approach and valuable 
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findings pave the way for the integration of XAI techniques in agriculture, adding value to the 

field and opening avenues for future research and innovation. 

 

6.5 Recommendations and Future Work 

For future work, it will be crucial to conduct a user study to assess the effectiveness of 

implemented DL models and explainability for the lack of nutrients in plant diagnosis among 

farmers. Moreover, it will help to determine whether the models are perceived as trustworthy 

and comprehensible by farmers and whether they are deemed useful tools for improving their 

diagnostic process. To assist farmers in identifying nutrient deficiencies on the spot in the field, 

future work should investigate the viability of deploying the models using edge devices such 

as smartphones or tablets. Finally, future studies can explore the possibility of implementing 

explainable DL models in various agricultural domains, including but not limited to yield 

prediction and disease identification. 
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