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Abstract 

 

Background: An ever-increasing incidence of Type 2 Diabetes Mellitus (T2DM) in the global 

population, has caused a public health concern. MicroRNA are small non-coding RNAs which 

control gene expression and are involved in several pathophysiological processes, therefore 

allowing them (miRNA) to play a role in disease detection. The scarcity of studies which  

investigates the role of miRNA in T2DM, especially in a South African population, has 

encouraged studies such as the preliminary study conducted by Matsha et al. (2018), profiling 

miRNA in 1989 randomly selected participants where they found that the expression of hsa-

miR-486-5p and hsa-miR-novel-chr1_40444 were 2 of the most dysregulated miRNA in 

individuals with screen detected Type 2 diabetes mellitus (DM), in comparison to those 

individuals who were either on treatment or were normoglycaemic. This current study further 

investigates and validates the expression of hsa-miR-486-5p and hsa-miR-novel-chr1_40444 

in 1459 participants of the sample cohort who have participated in the miRNA profiling study. 

Methods: The Quantum Studio 7 (Life Technologies, USA) was used to perform quantitative 

reverse-transcription PCR (RT-qPCR) on 1459 whole blood samples provided by participants 

who partook in the Vascular and Metabolic Health study. All the participants underwent 

anthropometric measurements, and biochemical parameters were measured at an accredited 

pathology laboratory. Participant glycaemic status was determined using the oral glucose 

tolerance test (OGTT). 

Results: Hsa-miR-486-5p and hsa-miR-novel-chr1_40444 were significantly overexpressed 

in diabetics compared to both controls, and prediabetics (all p≤ 0.001). Moreover, multivariate 

regression analysis revealed independent associations between the expression of both 

miRNAs and the risk of diabetes, with significant retained in unadjusted and adjusted models 

(all p≤0.001).  

Conclusion: This study has demonstrated the potential capabilities of hsa-miR-486-5p and 

hsa-miR-novel-chr1_40444 in distinguishing between Type 2 diabetes (both newly-diagnosed 

and known diabetes) from normoglycaemia and early-stage hyperglycaemia (pre-diabetes). 

However, further investigation is required. 
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 Hyperglycaemia: A condition in which the blood plasma contains an excessive 

concentration of glucose. 

 Inflammation: A series of biological reactions which occur in the body in response to 
injury of healthy tissue or when there is an infection caused by virus, toxins or 
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 Ketosis: A metabolic state when the body is deprived of carbohydrates and therefore 
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Chapter 1 

 

1.1 Introduction 

The global incidence of diabetes mellitus (DM), which is estimated to be 537 million people 

between the ages of 20-79 years, has made this disease a cause for public health concern 

(International Diabetes Federation, 2021). This number is expected to increase to 783 million 

by the year 2045, with most cases presenting in developing countries (International Diabetes 

Federation, 2021). In addition to the burdening economic impact on healthcare systems and 

individuals, it is also a major contributor to mortality, morbidity, and a poor quality of life 

(Ibrahim, 2017). The rapid increase requires urgent prevention strategies (Zimmet et al., 2001), 

yet a complete understanding of the causes of the disease remains unclear (International 

Diabetes Federation, 2019). While a cure still does not exist, available therapy delays disease 

progression and could be improved by identifying individuals most at risk and implementing 

treatment in the initial stages of the disease (Guay and Regazzi, 2013).   

 

Diabetes is a multifactorial, chronic metabolic condition, which occurs due to the interplay 

between environmental, genetic, and epigenetic factors (Ibrahim, 2017). In this condition, the 

pancreas does not have the ability to produce enough insulin in response to an increase in 

glucose. It also occurs when the pancreas produces insulin in response to elevated glucose, 

but it is unable to perform its function (Saeedi et al., 2019). The immune system responds to 

the resultant hyperglycaemia, as well as mediators of inflammation and macrophages from the 

adipose tissue, by initiating an inflammatory response. Although this response is low and 

chronic, it causes progressive damage to the pancreatic β-cells, resulting in insufficient 

production of insulin, thus promoting hyperglycaemia (Berbudi et al., 2020). In addition to 

hyperglycaemia, an impairment in carbohydrate, protein and lipid metabolism occurs (Wu et 

al., 2014). The persistent hyperglycaemia and low-grade inflammation, results in various 

secondary micro- and macro-vascular complications such as neuropathy, nephropathy, stroke, 

and cardiovascular disease (Rangel et al., 2019). These complications can be avoided through 

early diagnosis and the initiation of prompt intervention measures (Ibrahim, 2017). 

 

Subclassifications of DM include Type 1 diabetes mellitus (T1DM), Type 2 diabetes mellitus 

(T2DM), gestational DM, monogenic diabetes, and steroid induced diabetes (Punthakee et al., 

2018; Solis-Herrera et al., 2000). These subtypes differ in presentation, pathophysiology, and 

treatment (World Health Organization, 2019). The most common subtypes affecting individuals 

are T1DM and T2DM (World Health Organization, 2019). Specific modifications of microRNA 

(miRNA) profiles in the bloodstream have been uncovered in diabetic individuals, which may 

be detected many years before disease manifestation (Guay and Regazzi, 2013).  
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There has been a growing interest in the use of these miRNAs as candidate biomarkers (Chen 

et al., 2014; He et al., 2017; Jiménez-Lucena et al., 2018). These small non-coding RNAs 

control gene expression and are involved in several pathophysiological processes (Dangwal 

and Thum, 2012; Wang et al., 2009). It is these behaviours which make them potentially useful 

for the early detection of disease, and the identification of individuals who are at risk of 

developing complications (Guay and Regazzi, 2013). A recent study conducted by Matsha et 

al 2018, compared the miRNA expression profiles among groups of varying glycaemic 

statuses. Using next generation sequencing (NGS) this study revealed several miRNAs, 

including hsa-miR-486-5p and hsa-miR-novel-chr1_40444, which were differentially 

expressed in the Type 2 diabetes and pre-diabetic groups when compared to the 

normoglycaemic group.  

 

1.2 The rationale of this study 

Due to the dramatic surge in the prevalence of DM and the overall burden DM poses in 

societies, there is an urgency to identify pre-DM, as this group is at the highest risk of 

developing T2DM (Sidorkiewicz et al., 2020). Although evidence of the diagnostic and 

prognostic role miRNA play in dysglycemia is growing, studies of this nature in a South African 

population are scarce (Matsha et al., 2018). Thorough validation of larger, independent clinical 

studies is needed to better our understanding of the association between DM and miRNA. 

 

1.3 Research aim 

This project aims to investigate and validate the aforementioned miRNAs previously identified 

by Matsha et al. (2018), in whole blood samples. 

 

1.4 Research objectives 

The research objectives were: 

1) To validate the miRNAs using quantitative reverse-transcription PCR (RT q-PCR) in a 

larger, independent sample size and to confirm their association with T2DM and/or 

pre-diabetes. 

 

2) To determine the expression patterns of hsa-miR-486-5p and hsa-miR-novel-

chr1_40444 and their capability of diagnosing dysglycaemia, with the intent of 

promoting their use as potential, non-invasive diagnostic markers for the early detection 

of Type 2 diabetes mellitus. 
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1.5 Hypothesis 

There is an association between glucose intolerance and dysregulation of circulating miRNAs 

(hsa-miR-486-5p and hsa-miR-novel-chr1_40444). 
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Chapter 2: Literature review 

 

2.1 Prevalence and burden of Diabetes 

Non-communicable diseases are amongst the top 10 causes of death in the world, and 

diabetes ranks 9th (World Health Organization, 2019). The prevalence of diabetes continues to 

increase worldwide, with the highest increases seen in the middle-income countries (Sun et 

al., 2022). This rapid increase is attributed to an ever-increasing population growth and a 

steady rise in the average age of individuals. Furthermore, the adoption of westernised 

lifestyles and rapid urbanisation has contributed to the increased prevalence in the developing 

world (Ibrahim, 2017). Diabetes is thus a global public health concern, which imposes a heavy 

burden on socio-economic and public health development (Lin et al., 2020). 

 

An estimated 537 million adults were living with diabetes in 2021, of which 6.7 million died that 

year (International Diabetes Federation, 2021). A further 46% increase of diabetes sufferers 

are expected by the year 2045, thus reaching a total of 6.4 billion people worldwide. The 

economic effect of this increase is a global health expenditure exceeding 1 trillion USD by 2045  

(Sun et al., 2022), especially as 240 million people remain undiagnosed. Most cases of 

impaired glucose tolerance (IGT) occur in low-income countries, with the global prevalence of 

IGT cases in adults (20-79 years) increasing from 541 million in 2021 to a predicted 730.3 

million in 2045 (International Diabetes Federation, 2021). These adults are at a greater risk of 

developing T2DM and hypertension and therefore require early intervention (Kabootari et al., 

2020). This further emphasizes the need for prompt detection to avoid the negative effects of 

diabetic complications. 

 

Africa had a prevalence of 24 million people with diabetes in 2021, which is predicted to 

increase by 129% by 2045. This accounts for 55 million people, with an additional 117 million 

predicted to have impaired glucose tolerance by 2045. More than half of the individuals in 

Africa are unaware that they have diabetes (53.6%) (International Diabetes Federation, 2021). 

This situation is unfavourable as it leads to a rise in complications, premature death, and 

increased healthcare costs (Asmelash and Asmelash, 2019). Further challenges in this region 

include a lack of research, limited access to healthcare and inequality which contribute to the 

rising disease burden (International Diabetes Federation, 2021; Mbanya et al., 2010; Pastakia 

et al., 2017)  

 

South Africa is among the top 5 countries in Africa with the highest prevalence of DM 

(International Diabetes Federation, 2021). This disease is the cause of many deaths in South 

Africa, having ranked fifth in 2013 to being the second leading cause of death in 2017 
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(Statistics South Africa, 2017). In the Western Cape, DM is the leading cause of death (7.5%), 

particularly in women of mixed ancestry (8.3%) and Asian (14%) descent (Statistics South 

Africa, 2017). A study by Erasmus et al on the prevalence of diabetes and metabolic syndrome 

in a population in Western Cape, Cape Town revealed that 18.1 %of their participants had 

undiagnosed diabetes. They attributed this to the inadequacy of the primary healthcare system 

to identify those at risk and those who have diabetes (Erasmus et al., 2012). These alarming 

statistics place a huge burden on the health of economically productive individuals, and with 

the manifestation of secondary microvascular and macrovascular complications, South Africa’s 

already strained health care systems and economy is unable to cope (Erzse et al., 2019; 

Ibrahim, 2017; Pheiffer et al., 2018). Most diabetes cases are classified into two major groups 

(T1DM and T2DM). However, based on aetiology, there are 4 major subtypes (Punthakee et 

al., 2018). These subtypes are Type 1 diabetes mellitus, Type 2 diabetes mellitus, Gestational 

diabetes and Other specific types of diabetes mellitus. 

 

2.2 Type 1 diabetes mellitus  

Type 1 diabetes mellitus is characterized by the cellular autoimmune destruction of pancreatic 

β-cells, which leads to a total insulin deficiency (Jospe, 2007). The mechanism by which this 

occurs is poorly understood, but a combination of genetic (overexpression of HLA molecules), 

immunologic and environmental factors are at play (Burrack et al., 2017; Paschou et al., 2018). 

Hyperglycaemia and ketosis occur as a result of the insulin deficiency (Jospe, 2007). 

Previously thought to be a disorder mainly occurring in children and adolescence, this is no 

longer the case however it accounts for 5-10% of cases in adolescents and children (Leslie, 

2010). These cases include those which occur because of the autoimmune destruction of 

pancreatic β-cells (Case et al., 2011), and those where the cause of the destruction is unknown 

(2017 SEMDSA Guideline for the Management of Type 2 Diabetes Guideline Committee, 

2017). Diagnosis is generally made late and when 80-85% of the β-cells have already been 

destroyed (Atkinson et al., 2014).  

 

The clinical manifestation of the disease is dependent on the rate of β-cell destruction. A more 

rapid loss of β-cell mass has been observed in infants when compared to adults (Klinke, 2008). 

The autoimmune process which leads to the β-cell destruction is identified by the presence of 

insulin, islet cell antibodies or anti-glutamic acid decarboxylase (Kharroubi and Darwish, 2015). 

The detection of genetic markers and the presence of autoantibodies against the β-cell 

antigens are used to assess at risk individuals for T1DM (Kahanovitz et al., 2017) and 

identification of more than 2 biomarkers places an individual in the high-risk category (Atkinson 

et al., 2014). These autoantibodies can also be used as a risk assessment tool and for 

diagnostic purposes in both the general population and first-degree relatives (Pihoker et al., 

2005). No biomarkers are detected in children with new onset of T1DM due to the presence of 
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many β-cells, therefore this method cannot be used to determine disease progression 

(Assmann et al., 2017; Goldenberg and Punthakee, 2013).  

 

Increased levels of glucose in the blood and urine with associated urinary fluid loss occur due 

to a defect in the transport of glucose from blood to tissue. This results in the classical 

symptoms of polydipsia, polyuria, and polyphagia (Mencher et al., 2019). Ketone bodies form 

as a product of fat metabolism, which occurs when low levels of insulin is present and can 

accumulate in blood resulting in metabolic acidosis. To compensate for the acidosis, 

hyperventilation occurs which results in respiratory alkalosis (Kahanovitz et al., 2017). If left 

untreated this condition will result in mental confusion, cerebral oedema, coma, 

unconsciousness, and death (Atkinson et al., 2014; Baynest, 2015). All patients with T1DM 

eventually have a lifetime dependence on insulin therapy to maintain normoglycaemia 

(Baynest, 2015). Poorly managed diabetes will result in long term complications such as 

damage to blood vessels, and an increased risk of stroke, heart disease, microvascular and 

peripheral vascular diseases (Atkinson et al., 2014; Baynest, 2015). 

 

2.3 Type 2 diabetes mellitus  

This is a multifactorial condition which occurs because of a combination of aetiologies (Ibrahim, 

2017). Individuals with T2DM include those with partial insulin deficiency and those with insulin 

resistance (American diabetes Association, 2015). The gradual development of T2DM 

encompasses an initial insulin resistant phase where normoglycaemia is maintained. This 

phase transitions to impaired glucose tolerance and/or impaired fasting glucose until diabetes 

manifests (Lundqvist et al., 2019). 

 

It is only those who cannot sustain the compensation of β-cells in response to hyperglycaemia, 

who will develop T2DM (Prentki and Nolan, 2006). More than 90% of all diabetes cases are 

T2DM, and it often occurs in middle aged adults with chronic hyperglycaemia. It is associated 

with a sedentary lifestyle, family history and obesity (International Diabetes Federation, 2019). 

Classic symptoms of the disease do not occur in the early stages and thus patients do not 

seek early medical attention and remain undiagnosed for many years (Baynest, 2015; 

Labuschagne et al., 2017). It’s asymptomatic nature (Beagley et al., 2014), results in a clinical 

diagnosis taking 4-6 years to be made (Porta et al., 2014). At the time of eventual diagnosis, 

20% of patients would have already suffered some disease complications (World Health 

Organization, 2019). 

 

The main pathological defect occurring in individuals with this condition is dysfunction of the 

pancreatic β-cells (American Diabetes Association, 2020). However, fat accumulation in the 

liver due to defects in the inhibition of adipose tissue lipolysis, is also characteristic of T2DM 
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(Longo et al., 2019). Obese individuals have a higher body fat percentage mainly distributed 

in the abdominal area (Elffers et al., 2017). The increased release of free fatty acids, 

inflammation, and adipokine deregulation in adipose tissue, promotes insulin resistance 

(Galicia-Garcia et al., 2020). Β-cell dysfunction stems from insulin resistance in skeletal muscle 

and adipose tissue, which leads to an initial increased insulin production (Fazakerley et al., 

2019). A failed response to the increased demand for insulin results in β-cell failure, glucose 

toxicity and hyperglycaemia (Mononen et al., 2019). The compensation by β-cells during T2DM 

progression, allows normoglycaemia to be maintained for years without inducing symptoms 

before progression to IGT or impaired fasting glucose (IFG) occurs (Vasu et al., 2019). It is for 

this reason that many people with diabetes are unaware, undiagnosed, and untreated 

(American Diabetes Association, 2010).  

 

Genetics, environmental and lifestyle factors contribute to the development of T2DM (Baynest, 

2015; Labuschagne et al., 2017). Normally in the presence of hyperglycaemia, the brain 

communicates via nerve impulse signalling to the pancreas and organs, to reduce the 

hyperglycaemia (Lundqvist et al., 2019). In T2DM, inflammation, endoplasmic reticulum stress 

and dysfunctional mitochondria causes damage to various neural circuits and brain segments 

and results in changes in signalling systems (De Felice and Ferreira, 2014). Endothelial 

dysfunction, inflammation (Maksymets et al., 2018), iron overload (Miranda and Lawson, 

2018), inconsistent circadian systems, adipocyte signalling, and incretin abnormalities are 

other factors contributing to the pathophysiology of T2DM (Guay and Regazzi, 2013). Intra-

abdominal obesity in the presence of insulin resistance, together with dyslipidaemia and 

hypertension, is commonly seen in these patients (Labuschagne et al., 2017). 

  

Diagnosis often occurs because of the development of diabetic complications and may also 

be incidental. Symptoms such as polydipsia, polyuria, polyphagia, weight loss, nephropathy 

and blurred vision are classic symptoms of T2DM (2017 SEMDSA Guideline for the 

Management of Type 2 Diabetes Guideline Committee, 2017). However, several parameters 

have been identified which can assist in determining the risk of developing T2DM. These 

include the waist-hip ratio, body mass index (BMI), gender, blood pressure, physical activity, 

glycated haemoglobin (HbA1c), glucose levels, triglycerides, C-peptide, and cholesterol 

(Banerjee et al., 2017). The diagnosis of T2DM is based on the WHO diagnostic criteria and is 

depicted in table 1. 

 

Measuring plasma glucose using the Oral glucose tolerance test (OGTT) is the gold standard 

in South Africa for the diagnosis of diabetes (Dias et al., 2019). Although more expensive than 

glycated haemoglobin (HbA1c) (Pheiffer et al., 2021), it is a more sensitive measurement of 

the body’s tolerance to glucose (Azzi et al., 2018). The procedure requires that an initial sample 
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is drawn after an overnight fast, followed by the oral ingestion of 75g of glucose. Two hours 

thereafter, a plasma glucose measurement is taken (Pheiffer et al., 2021). Additional 

disadvantages of the test are the inconvenience of the 2-hour test duration and the requirement 

to fast overnight (George, 2011). 

 

 

Table 1: Diabetes diagnostic criteria according to 2006 WHO recommendations (World Health 

Organization and International Diabetes Federation, 2006). 

 Fasting plasma 
glucose 

2hr plasma 
glucose after 

75g OGTT 

Single or both tests required for 
diagnosis 

Diabetes ≥7 mmol/L ≥ 11mmol/L Single in symptomatic individuals 

Impaired glucose 
tolerance (IGT) 

< 7 mmol/L ≥7.8mmol/L &  
<11.1mmol/L 

Both 

Impaired fasting 
glucose (IFG) 

6.1mmol/L – 
6.9mmol/L 

< 7.8mmol/L Single or both 

 

 

Progression of this disorder is often managed by lifestyle changes, but β-cell dysfunction 

continues regardless of management (Jiménez-Lucena et al., 2018). Insulin resistance and/or 

insufficiency in organs such as the liver, skeletal muscle and adipose tissue is thus inevitable 

(2017 SEMDSA Guideline for the Management of Type 2 Diabetes Guideline Committee, 

2017; He et al., 2017; Jiménez-Lucena et al., 2018). It is therefore essential to identify the 

condition early, and this was demonstrated by Herman et.al. (2015). In this study, a reduction 

in the time between the onset of diabetes and the time that clinical diagnosis was made, 

resulted in earlier treatment for cardiovascular complications and glycaemia (Herman et al., 

2015). 

 

2.4  Gestational diabetes 

Gestational diabetes is diagnosed when glucose intolerance is first recognised during 

pregnancy (Rani and Begum, 2016).  The detrimental effects of hyperglycaemia in pregnancy 

are macrosomia, caesarean delivery, babies being delivered pre-term and pre-eclampsia 

(Kaaja and Rönnemaa, 2008). Babies born in such conditions have an increased risk of future 

development of diabetes (Sheiner, 2020). Family history, polycystic ovarian syndrome, 

maternal age, and sedentary lifestyle are among the risk factors for gestational diabetes 

(Kharroubi and Darwish, 2015).   
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2.5 Other specific types of diabetes  

Single gene defects in the β cells of the pancreas result in other specific types of diabetes. 

This interferes with the functioning of the β cells or in a reduced number of β cells. This form 

of diabetes is called monogenic diabetes and its classification is based on the age of onset 

(Schwitzgebel, 2014). It could be classified as neonatal diabetes if the age of onset is before 

6 months or, if diagnosed before 25 years of age, it is classified as Maturity Onset Diabetes of 

the Young (Kharroubi and Darwish, 2015). Other specific types also include diabetes 

associated with the use of drugs or other diseases (Punthakee et al., 2018). 

 

2.6 Pathophysiology of Type 2 Diabetes 

2.6.1 Glucose homeostasis 

Glucose is an important source of energy for humans, thus making it vital for human health, 

and survival depends on the maintenance of adequate levels (Hruby, 1997). Glucose 

homeostasis is defined as the process of balancing the rate of glucose entering and removal 

from the circulation (Ang and Linn, 2014). Circulatory glucose is mainly derived from 

glycogenolysis (the breakdown of glycogen to glucose), absorption from the intestine in a fed 

state and gluconeogenesis (the formation of glucose). Pancreatic α-cells produce a hormone 

called glucagon, which is partially responsible for the control of glycogenolysis and 

gluconeogenesis (Aronoff et al., 2004).  

 

Multiple mechanisms ensure that plasma glucose is maintained within a narrow range (4-

6mmol/L) (Tilburg et al., 2001). The release of insulin occurs in 2 phases following a meal: In 

response to an elevated concentration of blood glucose there is a rapid release of endogenous 

insulin as well as an increased synthesis and secretion of insulin (Aronoff et al., 2004; Uluseker 

et al., 2018). Of the total glucose absorbed the brain uses 50%, intestines and liver 25% and 

muscle and adipose tissue 25% (DeFronzo, 2004). The muscles and adipocytes are stimulated 

to absorb glucose and convert it to glycogen or triglycerides. These processes result in the 

reduction of plasma glucose and the stimulus to secrete insulin is stopped (Hiriart et al., 2014). 

 

In a fasting state, insulin levels are low due to low levels of glucose. The liver controls 

glycogenolysis and gluconeogenesis and thus the body relies on it as a source of glucose 

(Hiriart et al., 2014). Glucagon, a hormone produced by pancreatic alpha cells, stimulates this 

process. The action by glucagon is supressed in the presence of hyperinsulinemia and 

hyperglycaemia (Gromada et al., 2007). In muscle cells and adipocytes, glucose is stored as 

glycogen. Insulin binds to its receptors on these cells and glucose uptake results. The uptake 

of glucose leads to the release of leptin and the inhibition of hunger (Aronoff et al., 2004). High 

levels of plasma insulin and glucose also inhibits hunger. Leptin is counteracted by Ghrelin 
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which the empty stomach secretes resulting in feeding (Sakata and Sakai, 2010). 

 

2.6.2 Glucose homeostasis in Type 2 diabetes mellitus 

Type 2 diabetes mellitus occurs because of a malfunction of the mechanisms involved in insulin 

action and insulin secretion. This results in plasma glucose concentrations which are 

abnormally high (Galicia-Garcia et al., 2020). In the early stages of diabetes, the action of β-

cells become abnormal and fail to respond. This results in a decreased availability of insulin, 

followed by hyperglycaemia (Aronoff et al., 2004). The progressive failure of β-cells initially 

presents as impaired glucose tolerance and eventually progresses to overt diabetes (Abdul-

Ghani, 2013).  

 

When cells of the body are unable to detect insulin and the sensitivity to insulin is lost, this is 

called insulin resistance (Himanshu et al., 2020). When insulin resistance is present, the 

uptake and metabolism of glucose in skeletal muscle, the suppression of glucose production 

in the liver and lipolysis in the adipocytes are impaired (DeFronzo et al., 1989). Inflammatory 

cytokines (Interleukin-6, tumour necrosis factor) and free fatty acids are increased in the 

circulation due to the inhibition of adipocyte activity. This alters insulin sensitivity and interrupts 

the metabolism of glucose (Besler et al., 2012). The progressive dysfunction of β-cells is more 

severe than Insulin resistance but, in the presence of both processes, the amplified 

hyperglycaemia results in progression of Type 2 diabetes mellitus (Galicia-Garcia et al., 2020). 
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Figure 2.1: Normal physiology vs pathophysiology of diabetes (Adopted from (Baynest, 2015) 

 
 

2.7  Pre-diabetes 

Prior to the development of T2DM, patients can be in a pre-diabetic state (Khan et al., 2019). 

This state is defined as individuals having an impaired fasting glycaemia (IFG) and impaired 

glucose tolerance (IGT), which are conditions of transition between normoglycaemia and 

diabetes (Roglic and World Health Organization, 2016). No uniformity exists between 

organizations who have attempted to define pre-diabetes (Bansal, 2015). The term is however 

used to categorize individuals who have abnormalities in their glucose parameters but do not 

fit the criteria of being diabetic, even though being at risk of developing T2DM (Kharroubi and 

Darwish, 2015). In addition to the presence of IGT and IFG, various individuals with 

abnormalities in their glucose metabolism can be identified with a more advanced stage of 

damage to the glucose homeostasis (Banerjee et al., 2017; Bansal, 2015). A diagnosis based 

on IGT and IFG alone has been challenged, as the cut-off points cannot predict the future 

development of diabetes (Genuth and Kahn, 2008). Furthermore, diabetes related pathology 

cannot be determined and reproducibility in adults and children is poor (Bansal, 2015). 

 

Peripheral insulin resistance is a key feature in the pathogenesis of pre-diabetes (Ahmed et 

al., 2017). An increase in pancreatic islet mass and an increase in insulin release occurs in 

pre-diabetes as the β-cells compensate for the insulin resistance from target tissue (Prentki 
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and Nolan, 2006). Adaptive processes are activated during conditions of chronic stress. This 

leads to eventual β-cell dysfunction and an increased IGT and/or IFG (Jiménez-Lucena et al., 

2018). The simultaneous abnormalities in insulin resistance and β-cell dysfunction, start before 

detectable changes in glucose concentration occur (Tabák et al., 2012). In IFG and IGT, the 

secretion of insulin in response to glucose, is impaired (Kabadi, 2017). Hyperinsulinaemia 

occurs in response to fasting hyperglycaemia (Abdul-Ghani et al., 2006). Although β-cell 

dysfunction occurs in both IFG and IGT (Yip et al., 2017), those with IGT display more insulin 

resistance in muscle than in the liver and those with IFG show more resistance in the liver than 

muscle (Abdul-Ghani et al., 2006). 

 

Not all pre-diabetic individuals progress to diabetes however, they are at high risk of 

progression (Sidorkiewicz et al., 2020). Therefore, the main concern of pre-diabetes is the 

increased risk of progression to overt diabetes and the high risk of cardiovascular disease 

(Huang et al., 2016). Erectile dysfunction, neuropathy, retinopathy, glucotoxicity, defects in 

insulin secretion, genetics, impaired incretin release (Kabadi, 2017), lipotoxicity, oxidative 

stress, inflammation and β-cell dysfunction are among the multiple factors involved in its 

development (Dorcely et al., 2017; Gounden, 2012). Individuals are at risk of developing 

diabetes within 5 years of having pre-diabetes if left untreated (Lee et al., 2019). Reverting to 

normoglycaemia is however possible (Huang et al., 2016). A continued high calorie diet, 

sedentary lifestyle, stress, and lack of exercise are among the contributing factors which will 

result in progression from pre-diabetes to type 2 diabetes mellitus (Indonesian Diabetes 

Association, 2014). Identifying pre-diabetes confers the opportunity for therapeutic and lifestyle 

interventions to effectively prevent the progression to diabetes (Aekplakorn et al., 2015). This 

type of intervention can reduce progression by up to 70%, which highlights the need for early 

detection (Okwechime et al., 2015). 

 

A diabetes risk model is a means of identifying those individuals who are at risk of diabetes 

development. It is based on parameters such as age, weight, body mass index, gender, family 

history etc. This diabetes prediction model is however not universally accepted as ethnicity is 

an influencing factor in diabetes risk. This means that prediction algorithms would have to be 

recalibrated when they are used with different populations (Noble et al., 2011). 

 

2.8 Metabolites as biomarkers for the diagnosis of diabetes 

The improvement of the diagnosis and prognosis of disease can be achieved by developing 

improved clinical tests through biomarker identification (Li and Kowdley, 2012). Biological 

markers (biomarkers) are molecules which can reflect both diseased and healthy states of the 

body. These markers can be measured in biological media (human fluids, tissue, and cells) 

and can also serve as indicators of normal and pathogenic biologic processes or the response 
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to therapeutic intervention (Mayeux, 2004). Two types of biomarkers exist. One being 

exposure biomarkers, which are used in risk prediction and the other a disease biomarker 

which is used to screen, diagnose, and monitor the progression of disease (Mandal, 2019). 

Specificity, sensitivity, and test reproducibility are the characteristics of a good biomarker 

(Yousef et al., 2014). 

 

2.8.1 Existing metabolites used for the diagnosis of T2DM 

Metabolites are end products or intermediates of a metabolic pathway. These compounds 

are low in molecular weight, and some have been demonstrated as risk factors for T2DM 

development (Goek et al., 2012). 

 

Albumin is  one of the most abundant proteins in human serum (Anguizola et al., 2013), and 

as such, measuring fructoseamine reflects the glycated albumin concentration (Welsh et al., 

2016). Glycosylated albumin is used to evaluate short term (2-3 weeks) glycaemia (Chume et 

al., 2019) and to indicate diabetic complications (Pan et al., 2014; Pu et al., 2007; Selvin et al., 

2014; Wang et al., 2016). The results however, have low accuracy due to interference from 

other plasma proteins such as bilirubin (Freitas et al., 2017). Furthermore, falsely low serum 

fructosamine levels are seen in children due to low protein levels and falsely high levels are 

seen in adults with conditions such as nephrotic syndrome (Danese et al., 2015; Suneja et al., 

2021). An increased BMI, visceral fat and body fat mass also produce a falsely low glycated 

albumin (Furusyo et al., 2011).  

 

Other biomarkers which have been used include Alpha hydroxybuterate (α-HB) which is a by-

product produced in the liver (Wang et al., 2011). An increased production occurs under 

oxidative stress such as insulin resistance and therefore this metabolite is useful to assess the 

dysfunction of β-cells (Montane et al., 2014) and dysglycaemia (Syed Ikmal et al., 2013). An 

increased concentration of lysophosphatidylcholine (LPC), as seen in diabetes is associated 

with insulin resistance and is a negative predictor of the risk of developing T2DM (Yang et al., 

2018). Branched chain amino acids (BCAA’s) are abundant in dietary protein (Lynch and 

Adams, 2014) and its long-term increase is negatively associated with insulin resistance and 

risk of T2DM (Yoon, 2016). The same result is seen with C-reactive protein, where an increase 

in its concentration is associated with insulin resistance and T2DM development (Hayfron-

Benjamin et al., 2020). An increase in concentration occurs in response to tissue damage and 

inflammation, as seen in T2DM (You et al., 2016). Free fatty acid (FFA) concentration has also 

been  associated with insulin sensitivity, impaired glucose tolerance and insulin resistance 

(Mandal, 2019). Changes in the concentration of free fatty acids (FFA) and changes in the 

regulation of FFA metabolism can result in insulin resistance and T2DM (Sobczak et al., 2019). 
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Low levels of bilirubin, an antioxidant of heme catabolism is linked to T2DM and the 

development of complications in individuals with impaired glucose metabolism. The result is 

however, influenced by ethnicity and age (Mandal, 2019).  

 

The early diagnosis of T2DM ensures a better quality of life for patients while the identification 

of hyperglycaemia in its infancy, will have a significant impact on the prevention of delayed 

diagnosis and disease related complications and mortality (Herman et al., 2015; Jiménez-

Lucena et al., 2018). Current biological tests used to screen and diagnose diabetes based on 

blood glucose levels are reliable, but the use of these tests cannot detect at-risk patients or 

monitor diabetes complications or disease progression (Rezk et al., 2016). They are time-

consuming, invasive and inconvenient for patients (Chume et al., 2019). Most of these tests 

are only useful once the disease has been established and not in pre-diabetic conditions. The 

eventual result of this is complications such as diabetic nephropathy, chronic heart disease 

and retinopathy (Vaishya et al., 2018). The alarming increase in the incidence of DM and the 

limitations of current diagnostic tests, places urgency on the need for more specific, stage-

related, non-invasive biomarkers (Dorcely et al., 2017). These biomarkers should be accurate 

in diagnosing the initiation and progression of T2DM, identify β-cell injury and assess the risk 

of disease (Banerjee et al., 2017; Jiménez-Lucena et al., 2018; Punthakee et al., 2018; Vaishya 

et al., 2018). Although there has been an increased interest in epigenetic biomarker research 

(Elliott et al., 2019; Kato and Natarajan, 2014; Shao et al., 2021), to date no biomarker perfect 

enough to suite all T2DM patients have been found (Ortiz-Martínez et al., 2022) thus further 

emphasising the need for continued epigenetic research focussing on population specific 

biomarkers. 

 

2.9 The discovery of microRNAs 

The human genome contains less than 25000 genes (Chi, 2016). Since its first discovery, the 

research focus regarding the regulation of this genome, has shifted from messenger RNA 

(mRNA) to miRNA (Ardekani and Naeini, 2010). The first miRNA discovered in 1993, was Lin-

4 in Caenorhabditis elegans, a nematode (Lee et al., 1993). This miRNA was associated with 

transformation of the larval stage and adult development of C. elegans, and its mutation lead 

to the inability of the organism to lay eggs (Verma et al., 2016). Seven years later, let-7, the 

second miRNA was discovered in the same organism (Reinhart et al., 2000). This miRNA 

played a role in the developmental timing of C. elegans (Verma et al., 2016). Since then, more 

than 2000 miRNAs have been discovered in eukaryotes, of which many have been implicated 

in human disease (Li and Kowdley, 2012; Shen et al., 2017).  

 

miRNAs are conserved, short, non-coding RNA’s. They are important regulators of 

approximately one third of the human genome (Hammond, 2015), and serve as role players in 
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mediating human disease (Ardekani and Naeini, 2010; Verma et al., 2016). They function post 

transcriptionally in major cellular processes such as growth, differentiation, apoptosis, 

development, and metabolism (Ardekani and Naeini, 2010). Gene expression is controlled by 

repressing the translation of and/or degradation of target mRNA (Catalanotto et al., 2016). This 

is achieved by binding to target mRNA sequences which are complementary to their sequence. 

They then interfere with the translational process, thus preventing or changing the occurrence 

of protein production (Bhaskaran and Mohan, 2014). Intercellular signalling is another role of 

miRNAs (Bayraktar et al., 2017). This is made possible by a large proportion of miRNAs 

migrating from the inside of the cell to the outside via extracellular vesicles or protein binding 

(exosomes and proteins) and are therefore readily available in body fluids (Bayraktar et al., 

2017). miRNAs are found in extracellular fluids such as blood, breast milk, urine, seminal fluid 

and saliva (Weber et al., 2010). Their existence as protein complexes, provides protection 

against degradation by extracellular enzymes and therefore they are stable in serum and 

plasma (Wang et al., 2010). Among the previously mentioned roles, is the mediation of cell-to 

cell communication. This is what makes miRNAs useful as potential biomarkers in human 

disease (Bayraktar et al., 2017; Condrat et al., 2020).  

 

2.10 Biogenesis and functioning of microRNAs 

miRNA genes are dispersed throughout the genome. Some of them are non-coding, while 

others are in an intron, an untranslated region of a protein coding gene (Bartel, 2004). miRNAs 

are 22 nucleotides long (Bartel, 2004) and biogenesis starts in the nucleus (O’Brien et al., 

2018). Most of the miRNA biogenesis occurs by the dominant canonical pathway, where 

deoxyribonucleic acid (DNA) is transcribed into primary miRNAs, followed by processing into 

precursor miRNAs and then mature miRNAs (O’Brien et al., 2018). The biogenesis can also 

occur in a non-canonical pathway (Ha and Kim, 2014). 

 

Most of the miRNAs in humans are processed from the introns and only a few from exons of 

protein coding and non-protein coding genes (O’Brien et al., 2018).  RNA polymerase II 

transcribes a non-coding miRNA gene to form primary miRNA (pri-miRNA). The pri-miRNA 

has a hairpin like structure for the embedding of miRNA sequences (Ha and Kim, 2014). Pri-

miRNA is then cleaved by an enzyme, DROSHA and its associated binding protein DGCR8 

(Di George syndrome critical region 8), which is required for the cleaving of the pri-miRNA 

(Han et al., 2004). Exportin 5 then transports the resultant precursor (pre-miRNA) transcript 

out of the nucleus, to the cytoplasm, where a mature miRNA duplex will be produced 

(Bhaskaran and Mohan, 2014). The pre-miRNA is then processed by Dicer (Ribonuclease 3 

enzyme) and its associated TRBP protein (TAR RNA binding protein) in mammals to form the 

RNA duplex. The duplex strands are separated into 2 strands (5P and 3P), where one is loaded 

onto an argonaute (AGO2) family protein containing miRNA- induced silencing complex 
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(miRISC) (Gregory et al., 2005). The other strand is degraded (Han et al., 2004). The miRNA 

molecule can now silence the complementary target mRNA. The RISC is directed by miRNA 

to either cleave the target mRNA or the repression of translation to achieve the downregulation 

of gene expression (Bartel, 2004). 

 

The canonical pathway of miRNA biogenesis involves the miRISC containing one of the duplex 

strands, acts by binding to the 3’-untranslated region of the target mRNA (Condrat et al., 2020). 

The non-canonical pathway involves miRISC-mRNA interaction which are not always 

complementary. It is via the non-canonical pathway that 1 miRNA may target multiple mRNA 

and a single mRNA can bind numerous miRNAs (Chevillet et al., 2014). This characteristic of 

miRNA allows for their involvement in many biological processes and pathways such as 

apoptosis, cellular signalling, cell proliferation and cell development (Sohel, 2016). 

 

2.11 MicroRNAs as biomarkers in disease 

The presence and role of miRNAs in human disease, make them important molecules to be 

understood (Ardekani and Naeini, 2010). The tissue specific expression pattern of miRNA 

(overexpression or under expression) provides information about a cell’s physiologic state (Lim 

et al., 2005). miRNAs do not only exist intracellularly, but also extracellularly as circulating 

miRNAs (Mori et al., 2019). These circulating miRNAs have been linked to the pathophysiology 

of many diseases such as cancer (Khan et al., 2019), nervous system disorders (Baloun et al., 

2020; Swarbrick et al., 2019), cardiovascular disease (Jones Buie et al., 2016), T2DM and 

others (Pordzik et al., 2019). In healthy and diseased states, organs such as the ovary, heart, 

mammary glands, brain, uterus, endothelial cells etc., release miRNAs into the bloodstream, 

making certain miRNAs specific for diseases and could therefore have value in predicting 

prognosis (Condrat et al., 2020; Li and Kowdley, 2012).  

 

Disease association occurs when there is a deviation from the tightly controlled biogenesis of 

miRNA (Sohel, 2016). Extracellular miRNAs have been the focus in disease association due 

to their stability in extracellular fluids and the ability to detect them easily (Mori et al., 2019). 

Not only have circulating miRNAs been associated with many diseases (Baloun et al., 2020; 

Jones Buie et al., 2016; Khan et al., 2019; Pordzik et al., 2019), but changes in their level have 

also been correlated with exercise and other lifestyle activities such as diet (Flowers et al., 

2015).  A combination of molecular biology techniques, bioinformatics, genomics, and animal 

models have suggested that miRNAs possess the potential to transition from laboratories to 

clinics and contribute to improving public health (Li and Kowdley, 2012). They possess all the 

traits of a good biomarker, and therefore they have gained increased popularity in diabetic 

research (Guay et al., 2011; Prattichizzo et al., 2016). 
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2.12 MicroRNAs and Diabetes 

The expression patterns of miRNAs in T2DM have been researched by many (Condrat et al., 

2020; Wang et al., 2014). The dramatic surge in the prevalence of T2DM, has evoked an 

urgency to identify pre-DM, as this group is at the highest risk of developing T2DM 

(Sidorkiewicz et al., 2020). New opportunities for the early diagnosis of diabetes have been 

created by the stability and the significant role miRNA plays in metabolic haemostasis (Pordzik 

et al., 2019). In T2DM, miRNA play vital roles in the control of the metabolic pathways involved 

in adipocyte differentiation, lipid metabolism, inflammation, insulin secretion, and energy 

homeostasis (Deng and Guo, 2019; Rome, 2013). Clinical hyperglycaemia can therefore occur 

due to the aberrant expression of miRNA as the regulation of homeostasis is achieved by the 

involvement of miRNA in producing and secreting insulin and in the survival of β-cells (Kim 

and Zhang, 2019).  

 

The changes which circulatory cells undergo in diseased states can be reflected by the profiling 

of miRNAs (Kim and Zhang, 2019). In a complex process, circulatory miRNA arises from 

various tissue sources during inflammatory and metabolic disease (Vasu et al., 2019). The 

complexity of this process prevents pre-diabetic conditions from being accurately diagnosed 

by singular miRNAs. Diagnosis by groups (signatures) of miRNAs is more accurate (Kim and 

Zhang, 2019). These signatures are specific for inflammatory or metabolic stress (Vasu et al., 

2019). Inflammation is involved in the pathogenesis of T2DM (Tsalamandris et al., 2019). The 

mechanism of inflammation can affect miRNA expression, just as changes in miRNA 

expression can affect the occurrence of inflammation in T2DM pathogenesis (Miao et al., 

2018). An alteration in the levels of miRNAs contribute to the inflammation seen in obese 

diabetics and contributes to insulin resistance in tissue and β-cell dysfunction (Landrier et al., 

2019). These primary events further lead to the development of diabetic complications 

affecting the eyes, kidney and heart (McClelland and Kantharidis, 2014).  

 

The regulation of inflammation during the development of T2DM is however, not well 

understood (Pordzik et al., 2019).  Previous research has demonstrated that miRNA is involved 

in inflammatory and metabolic stress (Barutta et al., 2017; Kamalden et al., 2017; Sebastiani 

et al., 2017). An example is miR-15a which originated in one cell type and induced cell injury 

and oxidative stress in another cell type (Miao et al., 2018). This miRNA has been found to 

play a significant role in β-cell insulin secretion. Furthermore, it was found that during T2DM 

development, miR-15a which originated in β-cells, contributed to retinal injury upon entering 

the bloodstream (Kamalden et al., 2017). 

 

The demonstration of changes in serum miRNAs in response to various phases of glycaemia 

have been conducted. However, less research has been conducted on miRNAs in pre-
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diabetes (Mononen et al., 2019). Studies which have focussed on pre-diabetes (Kong et al., 

2011; Liu et al., 2014) have identified low levels of miR-15a and miR-126 (Liu et al., 2014; Sun 

et al., 2011). Kong et al. (2015), further attempted to identify miRNAs which could distinguish 

between T2DM and pre-DM and demonstrated that miR-29a, miR-124a, miR-9, miR-30d, miR-

375, miR-34a, miR-146a, although playing a significant role in the functioning of β-cells, could 

not distinguish between T2DM and pre-DM susceptible participants with a normal glucose 

tolerance (Kong et al., 2011). However, Yang et al did identify miR-23a as a marker which 

could be utilised to detect pre-DM and early T2DM (Yang et al., 2014).   

 

A recent study conducted by Matsha et al. (2018), assessed miRNA expression profiles of 12 

individuals with pre-diabetes, 12 with screen-detected diabetes and 12 with normal glucose 

tolerance, using high throughput sequencing (Matsha et al., 2018). Differentially expressed 

miRNA profiles were identified between the study groups and a comparison was made. The 

comparison revealed dysregulation of novel miRNA expression profiles in pre-diabetic profiles, 

as compared to screen detected diabetic profiles. Amongst the dysregulated miRNA found 

was hsa-miR-486-5p and hsa-miR-novel-chr1_40444 (novel), which was found to be 

dysregulated in pre-diabetes and not screen-detected diabetes. These 2 miRNAs were found 

to be amongst those miRNAs which displayed over regulation (they were either over 

upregulated or over downregulated) (Matsha et al., 2018). 

 

The tumour suppressor role of hsa-miR-486-5p has been vastly explored in malignancies (Qi 

et al., 2019). These include cancers of the endometrium (Zheng et al., 2020), lung (J. Wang et 

al., 2014). and breast (Zhang et al., 2014). The involvement of hsa-miR-486-5p in the 

pathogenesis of T2DM has however not been thoroughly examined (Tian et al., 2018). 

Although there are few studies, Tian et al. found that the overexpression of hsa-miR-486-5p 

promoted cell proliferation, increased insulin sensitivity and inhibited apoptosis of β-cells by 

targeting Phosphatase and tensin homolog (PTEN) and Forkhead Box O1 (FOXO1) genes. 

These results highlight the protective role hsa-miR-486-5p plays in the pathogenesis of T2DM 

by preventing β-cell dysfunction (Tian et al., 2018). Another study found hsa-miR-486-5p to be 

involved in diabetic nephropathy, playing a regulatory role in inflammation, oxidative stress, 

and apoptosis (Kato and Natarajan, 2014). These 2 studies along with the study by Matsha et 

al. is indicative of the role which hsa-miR-486-5p plays in the pathogenesis of T2DM. The 

limiting factor is the small sample size (Matsha et al., 2018).  

 

The inconsistency of results among studies has led to the absence of standardized protocols 

for the use of miRNA in clinical practice (Wang et al., 2014). Factors contributing to inconsistent 

results include differences in biological source of the sample, measurement platform and 
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glucose tolerance  (Dias et al., 2017). Despite this, there is promise for the future use of 

miRNAs as a reliable tool for the diagnosis of diabetes (Condrat et al., 2020).   

 

Due to the limitations of current diagnostic tests (Sebastiani et al., 2017) and the surge in the 

prevalence of T2DM (International Diabetes Federation, 2019), there is an urgency to find a 

non-invasive biomarker to predict the onset of T2DM (Bansal, 2015). The early diagnosis of 

diabetes can result in early intervention, which can delay or prevent the development of T2DM 

(Hostalek, 2019). Thorough validation of larger, independent clinical studies is needed, as the 

knowledge and understanding of the association between miRNA and DM is still limited 

(Barutta et al., 2018; Chen et al., 2008). 

 

This study aims to investigate if hsa-miR-486-5p and hsa-miR-novel-chr1_40444 can 

differentiate between pre-diabetes and T2DM. We aim to investigate and validate these 

miRNAs in whole blood samples employing quantitative reverse transcription-polymerase 

chain reaction (RT-PCR) to confirm the association between the miRNA and T2DM and/or pre-

diabetes. The objectives of this study are to measure the expression of hsa-miR-486-5p and 

hsa-miR-novel-chr1_40444 in 1989 samples of individuals with normal glucose tolerance 

status, pre-diabetes and T2DM. This will be followed by comparing the expression of these 

miRNA with glucose tolerance status of these individuals and correlating the expression with 

routine biochemical analytes. 

 
 
 
 
 



20 
 

Chapter 3: Methodology 

 

3.1 Ethical clearance 

This project was a sub-study of the Cape Town Vascular and Metabolic Health (VMH) study, 

where approval was obtained from the Cape Peninsula University of Technology (CPUT) 

Research Ethics Committee, and the Stellenbosch University Research Ethics Committee 

(respectively, NHREC: REC - 230 408 – 014 and N14/01/003). The samples for this study were 

selected from participants who were recruited between 2014 and 2016. A written, Informed 

consent was obtained from these participants for genetic testing. Information about the 

participants and details about the study were kept confidential. Ethical clearance for this sub-

study was sought from and granted by the CPUT Research Ethics Committee (REC Approval 

Reference No: CPUT/HW-REC 2019/H3, CPUT/HW-REC 2019/H3 (renewal). The study was 

performed according to the Code of Ethics of the World Medical Association Declaration of 

Helsinki (World Medical Association, 2013).  

 

3.2  Study setting and population 

During April 2014 until November 2016, the total target of 1989 participants were enrolled for 

the VMH study. These participants were of mixed ancestry descent and reside in an urban 

township area in Cape Town South Africa, called Bellville South. This cross-sectional study 

used quantitative methods to explore the expression of known miRNAs (hsa-miR-486-5p and 

hsa-miR-novel-chr1_40444).  Although a total 1989 participants from the VMH study was 

enrolled, data from only 1459 participants were used for this study due to clinically available 

data. These participants were grouped according to the lab results which tested their glycaemic 

parameters. They included 974 normoglycaemic, 206 with pre-diabetes and 279 with Type 2 

diabetes. The 279 participants in the Type 2 diabetes group included those who were screen-

detected diabetics as well as known diabetics on treatment.   

 

3.2.1 Inclusion criteria 

 Participants who consented to participating in genetic testing. 

 Participants between 18 and 70 years, who were not ill or pregnant. 

 

3.2.2  Exclusion criteria 

 Individuals who did not consent to participating in genetic analysis. 

 Individuals who were too ill to participate, pregnant as to avoid the inclusion of gestational 

diabetes since T2DM is our focus, or less than 18 years of age as they cannot give 

consent. 
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3.3 Study procedure 

3.3.1 Anthropometric measurements 

The anthropometric measurements were performed in triplicate and the average value of the 

measurements were used for the final analysis. Height was measured using a portable 

stadiometer and recorded in centimetres (cm). The body weight of participants (to the nearest 

0.1 kg) was measured using a pre-calibrated Omron body fat meter HBF-511 digital bathroom 

scale. The body mass (Kg) of each participant was divided by their height (m) squared to 

determine their body mass index (BMI) (Zierle-Ghosh and Jan, 2022). A non-elastic tape was 

put around the natural waist (narrowest part of the torso as seen from the anterior view), to 

measure waist circumference. (Tolonen et al., 2002). Hip circumference was measured using 

a non-elastic tape, on the widest region at the maximal circumference of the buttocks, (Tolonen 

et al., 2002). 

 

3.3.2  Blood pressure 

The measurement of blood pressure was performed using a semi-automatic digital blood 

pressure monitor (Omron M6 comfort-preformed cuff BP Monitor). The World Health 

Organisation (WHO) guidelines were followed to conduct the blood pressure measurements 

(World Health Organization, 1999). Three readings at one-minute intervals were recorded, and 

the lowest reading was selected as the participant’s blood pressure. (Adams et al., 2002). 

 

3.3.3 Sample collection and biochemical testing 

Participants samples were collected using six blood tubes (three fasting and three 

postprandial). Medical records or medication was used to confirm those self- reported cases 

of T2DM as these participants had blood fasting samples, without 2-hour blood samples drawn. 

The tubes used were one sodium fluoride (grey capped) for the measurement of glucose, a 

tube absent of clotting factors (plain) for the isolation of serum for serological tests and a 

purple-capped tube for measuring glycosylated haemoglobin (HbA1c).  

 

Whole blood samples were collected in Tempus® Blood RNA Tubes containing 6 mL of 

stabilizing reagent. These tubes were used for the extraction of circulating miRNAs. Upon 

interaction with the stabilizing reagent, the whole blood would lyse while the proteins would 

remain in the solution. This resulted in a higher total ribonucleic acid (RNA) recovery yield.  

 

All participant blood samples were transported in an icebox for the analysis of biochemical 

parameters at an ISO 15189 accredited pathology laboratory (PathCare, Reference 



22 
 

Laboratory, Cape Town, South Africa). All the biochemical parameters except serum cotinine 

were analysed using the Beckman AU (Beckman Coulter, South Africa) automated analyser. 

Serum cotinine was measured on the Immulite 2000 (Siemens, South Africa). The following 

biochemical analytes were measured using standard operating procedures (SOP’s) followed 

by Pathcare: 

 

 Plasma glucose (mmol/L) using the Enzymatic hexokinase method which is based on 

phosphorylating and the catalysation of glucose by hexokinase, through a series of 

reactions. The resultant increased NADPH (Dihydronicotinamide-adenine 

dinucleotide phosphate) formation measured at 340nm is directly proportional to the 

glucose concentration (Sonagra and Motiani, 2022). 

 HbA1c (%) using high performance liquid chromatography, a method which separates 

the haemoglobin components based on differences in particle charges (Lorenzo-

Medina et al., 2014).   

 Insulin (mmol/L) using the Beckman DXI (Beckman Coulter, Miami, USA) analyser 

which employs the method as set by the manufacturer for the Access Immunoassay 

system. This method is based on the Paramagnetic Particle Chemiluminescence Assay  

 Total cholesterol (mmol/L) using enzymatic immune-inhibition which is based on the 

enzymatic measurement of cholesterol in serum or plasma. Cholesteryl esters are 

hydrolysed and the 3-OH group of cholesterol is oxidised. One of the by-products is 

hydrogen peroxide which is quantitatively measured in a reaction catalysed by 

peroxidase and subsequently produces a colour where the intensity is directly 

proportional to the concentration of the cholesterol in the sample. 

 High-density lipoprotein cholesterol (HDL-c) (mmol/L) using enzymatic immune-

inhibition where anti-human ß-lipoprotein antibody binds to all lipoproteins except high 

density lipoprotein (HDL). Cholesterol oxidase and esterase react with HDL-c with the 

subsequent production of hydrogen peroxide which produces a blue colour complex. 

The absorbance of this complex is measured at 600nm to obtain the sample HDL-c 

concentration. 

 Low density lipoprotein cholesterol (LDL) (mmol/L) using enzymatic selective 

protection. Low density lipoprotein (LDL) is protected from enzymatic reactions. 

Cholesterol oxidase (CO) and Cholesterol esterase (CHE) react with all lipoproteins 

except LDL with the production of hydrogen peroxide as a by-product. Hydrogen 

peroxide is subsequently decomposed by catalase. In a second reaction upon removal 

of the protecting agent from LDL, sodium azide (NaN3) inactivates catalase and CO 

and CHE only react with LDL-C. Hydrogen peroxide is subsequently produced and 

forms a colour complex with the oxidative condensation of 4-aminoantipyrine (4-AA) 

and N-(2-hydroxy-3sulfopropyl)-3,5-dimethoxyaniline (HDAOS).    
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 Triglycerides (TG) (mmol/L) using Glycerol Phosphate Oxidase-peroxidase which is 

based on hydrolysing the sample triglycerides to release fatty acids and glycerol. The 

glycerol is converted to glycerol-3-phosphate in the presence of glycerol kinase and 

ATP. Glycerol-3-phosphate is subsequently oxidised which results in the production of 

hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide reacts with 

N,N-bis(4-sulfobutyl)-3,5-dimethylaniline and 4-aminophenazone, disodium salt and 

produces a chromophore which  to produce a chromophore. The colour intensity of the 

chromophore is directly proportional to the concentration of triglycerides in the sample. 

 Ultra-sensitive (U-CRP) using Latex Particle Immunoturbidimetric method which is 

based on the latex agglutination principle. The serum sample containing C-reactive 

proteins is mixed with latex particles complexed with human anti-CRP, resulting in 

agglutination. The complexes formed scatter light relative to their shape, size, and 

concentration. The reduced incidence light is measured by turbidimeters 

(www.beckman coulter.com). 

 Serum Cotinine (ng/mL) using the Siemens Immulite 1000 which employed competitive 

chemiluminescence. The Nicotine Metabolite Assay kit produced by the manufacturers, 

was used and is based on a solid-phase competitive chemiluminescent immunoassay 

(Janakiraman et al., 2009). 

 

3.3.4 Oral glucose tolerance test (OGTT) 

All participants except those with self-reported diabetes were requested to fast overnight, 

which was followed by an OGTT test. The test was performed in accordance with the 

guidelines set by the WHO (World Health Organization, 1999) which guides as follows: Fasting 

blood samples were drawn. This was followed by the participant orally ingesting 75g of 

anhydrous glucose dissolved in 200-300 mL of water. After 2 hours, another sample was 

drawn.  

  

3.3.5 Classification of diabetes status 

Participants of the VMH sub study were diagnosed in accordance with the World Health 

Organization criteria (World Health Organization and International Diabetes Federation, 2006) 

and were categorized into the following groups according to their glycaemic status as revised 

by WHO criteria of 1999 (World Health Organization, 1999). These categories were: 

normoglycaemic, pre-diabetic (IGT and/or IFG), Type 2 diabetes (screen detected diabetics) 

and Known diabetics on treatment.  A history of diabetes, fasting and postprandial glucose 

concentrations were the basis upon which a diagnosis of diabetes was made. The 

specifications used were fasting plasma glucose ≥ 7mmol/L or 2-hour plasma glucose ≥ 
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11.1mmol/L. For the purposes of this study, the diabetes group consisted of known diabetics 

on treatment as well as screen detected diabetics. 

3.3.6 Isolation of total RNA 

Total RNA extraction and the quantification of target miRNAs were performed on 1459 

participants. Whole blood samples (3 mL) mixed with Tempus® stabilizing reagents and stored 

at -20C, was used for RNA isolation. The extraction of RNA was performed using the 

MagMAX™ for Stabilized Blood Tubes RNA Isolation Kit (Applied Biosystems, 2010). 

 

3.3.7 Preparation of reagents 

The isolation process required 300μL of prepared Wash Solution 1 concentrate, to which 8mL 

of 100% isopropanol was added, mixed, and stored at room temperature until it was required 

for use. A Wash Solution 2 concentrate was also prepared, to which 24mL of 100% ethanol 

was added, mixed, and stored at room temperature until required for use.  

 

3.3.8 Preparation of Tempus® stabilized blood sample 

Whole blood samples were collected for RNA analysis, in Tempus Blood RNA tubes, during 

2014-2016, for the VMH study. Those samples were then stored at -80°C until needed. Upon 

the commencement of this study, the Tempus whole blood samples were freeze-thawed, RNA 

was isolated, after which subsequent cDNA synthesis and qPCR was performed. Once 

thawed, the contents were mixed, followed by the addition of 3 mL of whole blood and 5 mL of 

Tempus® 1X phosphate buffered solution (PBS). Quality control was conducted by using a 

negative control (NC) containing 3 mL nuclease free water, and treating it in the same way as 

the samples.  

 

The 15 mL tubes were vortexed for 30 seconds to create pellets of crude RNA. This was 

followed by centrifugation at 7000 revolutions per minute (rpm) for 15 minutes at 4°C. A 4 mL 

Tempus® Pre-Digestion Wash was then added to each 15 mL tube. To re-pellet the RNA, the 

tube was vortexed and centrifuged at 7000 rpm for 10 minutes at 4°C. The resulting 

supernatant was removed and discarded, followed by centrifugation of the tube at 3000 rpm 

for 10 minutes to re-pellet the samples. Residual supernatant was drained, and the tubes were 

stored on ice until required for use.  

 

The washed crude RNA pellets were resuspended using Tempus® Resuspension Solution 

(117.5 μL) and Tempus® Proteinase (2.5 μL), to a total volume of 120 μL. This suspension was 

then added to an eppendorf tube, mixed well, and centrifuged for 2 to 3 seconds, followed by 

placing it on ice until required for use. The resuspension mixture (120 μL) was added to each 
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of the 15 mL sample tubes and vortexed to resuspend the crude RNA pellets. The contents of 

each tube were transferred to a 96-well Deep-Well Processing Plate. To each sample well 

containing the resuspended pellets, 10 μL of TURBO™ DNase was added. Adhesive film was 

then used to seal the plate, followed by 10 minutes of thorough mixing on an orbital plate-

shaker. 

3.3.9 Purification of RNA 

The following table (Table 2) demonstrates the setup of the MagMAX™ Express 96-well 

Standard Plates which were set up during the TURBO™ DNase incubation step. 

 

 

Table 3.1: Preparation of the MagMAX™ Express 96-well Standard Plate 

Plate 
 
Reagent Volume per well (µL) 

Name Position on 
processor 

Wash 1 2 Wash Solution 1 150 

Wash 1 3 Wash Solution 1 150 

Wash 2 4 Wash Solution 2 150 

Wash 2 5 Wash Solution 2 150 

Elution 6 Elution Buffer 50 

 

 

The RNA Binding Beads which were Stored at 4°C, were removed and vortexed until fully 

resuspended. The addition of 50 μl of Binding Solution Concentrate and 20 μl of RNA Binding 

Beads to each well of the 96-well Deep-Well processing plate, followed. After which the plate 

was sealed and placed on an orbital shaker for 1 minute to mix its contents. A P200 

multichannel pipette was used to dispense 200 μl of 100% isopropanol to each well, followed 

by sealing of the plate and storage on ice until required for use.  

3.3.10 KingfisherTM Flex processor for running plates 

Upon powering the machine on, the pre-loaded assay protocol (4451893_Tempus 96DW) was 

selected. An unused MagMAX™ Express 96-well Standard Plate was selected and combined 

with the MagMAX™ Express-96 Deep Well Tip Comb. The plate tray on the machine opened, 

and the processor prompted the loading of each plate into the loading stations/ positions, upon 

selecting the “Start” button on the processor. Once the loading was completed, the “Start” 

button was selected again to initiate the run. It took approximately 25 minutes for the run to 

complete. The eluted total RNA was found to be in position 6 of the processor.  
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The Nanodrop 1000 (Nanodrop Technologies, Wilmington, USA) was used to assess purity 

and integrity of the subsequent RNA samples. The only samples accepted for further 

processing, were those with an RNA concentration >15 ng/mL, and OD (optical density) ratios 

of A260/A280 >1.8. Purified RNA could be stored on ice at −20°C before immediate use, or they 

could be stored for up to 6 months, at −80°C. 

3.3.11 Conversion to cDNA  

The RNA required conversion to cDNA, before quantitative analysis. The samples were 

removed from storage at −20°C and thawed on ice. This was followed by reverse transcription, 

using the TaqManTM Advanced cDNA Synthesis Kit. The manufacturer’s specifications were 

followed (Applied Biosystems, 2015). The TaqManTM Advanced cDNA Synthesis Kit reagents 

were removed from storage at −20°C and thawed on ice. The number of required reactions 

was determined and adjusted based on the indicated single-reaction volumes. An extra 10% 

was added as a buffer for pipetting errors.  

3.3.12 Poly(A) tailing reaction 

The Poly(A) tailing reaction incorporated the addition of a 3’‑adenosine tail to the miRNA 

present in the total RNA samples. The enzyme, Poly(A) polymerase catalysed the reaction. 

The thawed RNA samples and cDNA synthesis reagents were vortexed and centrifuged. The 

table 3 below demonstrates the steps followed when preparing the Poly(A) Reaction Mix in a 

1.5 mL Eppendorf tube.   

 
 
Table 3.2:  Reaction mix for Poly(A) tailing 

  Component 1 Sample 96 samples 

10X Poly(A) Buffer 0.5 µL 48 µL 

ATP 0.5 µL 48 µL 

Poly(A) Enzyme 0.3 µL 28.8 µL 

RNase-free water 1.7 µL 163.2 µL 

Total Poly(A) 

Reaction Mix volume 
3 µL 288 µL 

(Indicated volumes include the 10% extra volume) 

 

 

The Poly(A) tailing reaction mix was vortexed and centrifuged. This was followed by the 

transfer of 3 μL of the mix into each well of a MicroAmp™ Optical 96-Well Reaction Plate. 

In addition, 2 μL of each total RNA sample was added to each well and the plate was sealed. 

The reaction plate was mixed and centrifuged, after which it was placed into a QuantStudio™ 

7 Flex Real-Time PCR System. This PCR system was programmed using the settings and 

standard cycling, for incubation. The incubation conditions included: polyadenylation for 45 
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minutes at 37°C; a stop reaction step for 10 minutes at 65°C, and an infinite hold at 4°C. Once 

incubation was completed, the plate was removed from the PCR system to proceed with the 

Adapter ligation reaction.  

3.3.13 Ligation 

Upon completion of poly(A) tailing, the miRNA with the poly(A) tails underwent adaptor ligation 

at their 5’ end. The adaptors played the role of the forward-primer binding sites for the miR-

Amp reaction which occurred later. Ligation Reaction Mix was prepared in a 1.5 mL Eppendorf 

tube, according to the following steps:  

 
 

Table 3.3: Preparation of the Adapter ligation reaction mix 

Component 1 Sample 96 samples 

5X DNA Ligase Buffer 3 µL 288 µL 

50% PEG 8000 4.5 µL 432 µL 

25X Ligation Adaptor 0.6 µL 57.6 µL 

RNA Ligase 1.5 µL 144 µL 

RNase-free water 0.4 µL 38.4 µL 

Total Ligation Reaction Mix volume 10 µL 960 µL 

(Indicated volumes include the 10% extra volume) 

 

 

Once the reaction mix was prepared, it was vortexed and centrifuged. 10 μl of the reaction mix 

was transferred into each well of the reaction plate containing the poly(A) tailing reaction 

product. The total volume of each well was 15 μl following the addition of the reaction mix. The 

reaction plate was sealed and mixed on an orbital plate-shaker set at 1,900 rpm for 1 minute. 

The plate was then centrifuged and placed in the QuantStudio™ 7 Flex for incubation with the 

following settings: 60-minute ligation at 16°C, followed by an infinite hold step at 4°C. Upon 

completion, the plate was removed, to proceed with the Reverse Transcription step. 

 

3.3.14 Reverse transcription (RT) 

A universal RT primer which was bound to the 3’ poly(A) tails of the miRNA, resulted in the 

miRNA being reverse transcribed into cDNA. The table 5 below displays the steps followed to 

prepare RT reaction mix in a 1.5 mL Eppendorf tube. This was prepared according to the 

required number of reactions 
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Table 3.4: Reaction mix for reverse transcription (RT) 

Component 1 Sample 96 samples 

5X RT Buffer     6 µL 576 µL 

dNTP Mix (25 mM each) 1.2 µL 115.2 µL 

20X Universal RT Primer 1.5 µL 144 µL 

10X RT Enzyme Mix 3 µL 288 µL 

RNase-free water 3.3 µL 316.8 µL 

Total RT Reaction Mix volume 15 µL 1440 µL 

(Indicated volumes include the 10% extra volume) 

 

 

Following the preparation, the RT reaction mix was vortexed and centrifuged. After 

centrifugation, 15 μL of the reaction mix was added to each well of the 96-well reaction plate 

containing the adapter ligation reaction product. After the addition of the reaction mix, the total 

volume in each well was 30 μL. The plate was sealed, centrifuged, and placed in the 

QuantStudio™ 7 Flex programmed with the following incubation settings: reverse transcription 

for 15 minutes at 42°C; a stop reaction step for 5 minutes at 85°C, and an infinite hold at 4°C. 

The plate was removed upon completion of incubation, to prepare for the the miR-Amp reaction 

step. 

 

3.3.15 Amplification 

The universal forward and reverse primers increased the number of cDNA templates present 

in each sample by amplification. In a 1.5 ml Eppendorf tube, miR-Amp Reaction Mix was 

prepared according to the required number of reactions. The following steps were followed: 

 

 
Table 3.5: Preparation of miR-Amp reaction mix 

(Indicated volumes include the 10% extra volume) 

 

 

Following preparation, the miR-Amp Reaction Mix was vortexed, centrifuged and 45 μl was 

transferred into a fresh 96-well reaction plate. The total volume in each well of the fresh 

Component 1 Sample 96 Samples 

2X miR-Amp Master Mix 25 µL 2400 µL 

20X miR-Amp Primer Mix 2.5 µL 240 µL 

RNase-free water 17.5 µL 1680 µL 

Total miR-Amp Reaction Mix 
volume 

45 µL 4320 µL 
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reaction plate was brought to 50 μl with the addition of 5 μl of the RT reaction product from the 

previous step. The plate was then sealed and mixed using a plate shaker, followed by 

centrifugation. The plate was then placed in the QuantStudio™ 7 Flex for incubation which was 

programmed to have the following cyclic conditions: 5 minutes of enzyme activation (1 cycle) 

at 95°C for; 14 denaturation cycles at 95°C for 3 seconds; 14 cycles of annealing/ extension 

at 60°C for 30 seconds; a stop reaction (1 cycle) at 99°C for 10 minutes; and an infinite hold 

(1 cycle) at 4°C. Once this process was complete and cDNA synthesis was achieved, the 

samples were stored at −20°C until they were required for quantitative PCR (qPCR) analysis. 

 

3.3.16 Real-time qPCR and miRNA quantification 

The target miRNAs present in each of the samples were quantified using Real-time qPCR. 

Pre-designed primers for each of the miRNAs investigated were used according to the 

TaqManTM miRNA Assays and protocol (Applied Biosystems, 2015) so that the miRNA could 

be quantified.  

 

3.3.17 Preparation of reagents 

Upon successful completion of cDNA synthesis, the samples were removed from storage at 

−20°C and thawed on ice. To ensure optimum quantitative analysis, the original cDNA samples 

were vortexed, and dilutions of 10-1  were made as per manufacturer instructions (Applied 

Biosystems, 2015).  

 

3.3.18 qPCR reaction plate 

Following the removal of the TaqManTM Advanced miRNA Assays from the −20°C storage, it 

was thawed on ice.  Once thawed, the vials were vortexed and centrifuged. The TaqManTM 

Fast Advanced Master Mix was removed from the 4°C storage, and gently inverted to mix. A 

fresh 1.5 ml Eppendorf tube was used to prepare qPCR Reaction Mix was prepared in a fresh 

1.5 ml Eppendorf tube using the steps below: 

 

 

 

 

 
 

 

 

 

 



30 
 

Table 3.6: qPCR reaction mix preparation 

Component 1 Sample 96 Samples 

TaqManTM Fast Advanced Master Mix (2X) 10 µL 960 µL 

TaqManTM Advanced miRNA Assay (20X) 1 µL 96 µL 

DNase/Rnase-free water 4 µL 384 µL 

Total PCR Reaction Mix volume 15 µL 1440 µL 

(Indicated volumes include the 10% extra volume) 

 

 

One position per reaction plate was reserved for an internal control (miR-16-5p). A separate 

reaction mix was used to prepare the control however, the same procedure and volumes as 

was used to prepare the TaqManTM Advanced miRNA Assays, were applied.  The use of an 

internal control or reference genes is advised in gene expression studies, as it serves to 

normalize or control for quantification errors (Jian et al., 2008). The expression level of 

reference genes is presumed to remain constant at various tissue levels, irrespective of what 

the study treatments and conditions are. In this way, the Internal control ensures that the qPCR 

results are reliable (Stephens et al., 2011).  

 
The qPCR and the internal control reaction mix was vortexed and centrifuged after being 

prepared. All wells except well H11 on the MicroAmp™ Optical 96-Well Reaction Plate 

was used to add 15μl of qPCR reaction mix. The well H11, had 15μl of internal contro l 

reaction mix was added to it. Each diluted cDNA sample was assigned a well, and 5 μl of each 

sample was added to their respective wells. The sample assigned to well H10 also served as 

a template in well H11, the position of the internal control. Well H12 had the negative template 

control (NTC) assigned to it to where instead of 5 μl of cDNA template added to it, 5μl of 

dNase/rNase-free water was used as a replacement. The reaction plate was then sealed, 

vortexed and centrifuged. Upon completion of the qPCR run, the NTC was assessed. An 

“undetermined” result flagged by the machine, indicated the absence of a DNA and thus no 

amplification occurred. This meant that there has been no cross contamination of DNA during 

the preparation of the reaction plate. Should DNA be present, amplification of the well would 

be visible upon analysis, which would produce a cycle threshold (Ct) value in the NTC well. 

This would happen when a possible cross-contamination occurred. The results produced from 

all the wells were not trustworthy and the preparation of the plate would be repeated.  
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3.3.19 Programming and Operation of the Real-time PCR instrument  

The QuantStudio™ 7 Flex Real-Time PCR System was used to run the RT-PCR. The machine 

was appropriately programmed for the experiment. A fast-cycling mode with a 0.1 cycle 

threshold, was selected, the reaction plate was loaded, and the required reaction volume was 

selected at 20 uL. The table below (table 8) provides additional details regarding the 

programming of the instrument cycles: 

 

 

Table 3.7: qPCR cycling conditions 

Reaction 
Step 

Temperature 
(°C) 

Time (seconds) Number of cycles 

Enzyme activation 95 20 1 

Denaturation 95 30  
  40 Annealing / Extension 60 30 

 

 

3.3.20 Data analysis 

Microsoft Excel (Microsoft Office Professional 2010) was used to capture the data generated 

by the QuantStudio™ 7 Flex Real-Time PCR System. The SPSS v.25 (IBM Corp, 2011) 

program was used for data analysis. Variables were assessed for normality using Normal QQ 

plots. Using these results, the general characteristics of the participants were presented as the 

median (25th-75th percentiles) and/or mean and standard deviation were used to identify and 

summarise the continuous and ordinal variables. The chi square test, Kruskal-Wallis and 

analysis of the variance (ANOVA) was used to compare the baseline characteristics among 

the subgroups of varying glycaemic status. The associations between the miRNAs and the 

investigated variables, were assessed using Partial Spearman’s correlations adjusted for body 

mass index (BMI), age and sex. The multivariate regression analysis was used to assess the 

relationship between two continuous variables. Multiple regression analysis was used in 

instances where there was a relationship between a continuous response variable and many 

other input variables. Thereafter, multiple correlations were used to measure the strength of 

these relations. Statistical significance in testing of the hypothesis was represented using a p-

value <0.05.  
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CHAPTER 4: RESULTS 

 

4.1 Descriptive characteristics of study participants 

The characteristics of the participants are depicted in table 9. It indicates that of the 1459 

participants included in this study, 974 were normoglycaemic with a median age of 46 years 

(32;57); 206 pre-diabetics with a median age of 55 (48;63); and 279 newly – diagnosed/screen-

detected as well as known Type 2 diabetics with a median age of 58 (51;66). In addition, 

females were over-represented in this population group (73.7% of all subjects) and the majority 

of participants were either overweight or obese (54.6% of all normoglycaemics, 76.0% of 

prediabetics and 81.1% of diabetics.  

 

4.1.1 Anthropometric measurements  

Weight (kg), height (cm), waist (cm), hip circumference (cm) and body mass index (BMI), were 

all significantly different between the normal and pre-diabetic group, as well as the normal and 

the diabetic groups (all, p < 0.001). In contrast, no significant differences were observed 

between the pre-diabetic and diabetic groups. As expected, there was a significant difference 

in blood pressure between the normal versus pre-diabetic and diabetic group (both, p < 0.001). 

However, no significant differences were observed between those who were pre-diabetic and 

those who were diabetic (p ≤ 0.760). 

 

4.1.2 Glucose parameters 

As anticipated, there was a significant increase in glycaemic measures such as Fasting Blood 

Glucose, 2hr Post Prandial Glucose, HbA1c, Fasting Insulin as well as 120min Insulin between 

normal and prediabetic subjects (all, p < 0.001). Similar notable differences were demonstrated 

between the pre-diabetic subgroup and the diabetic group for all glycaemic parameters (p < 

0.001), with the exception of Fasting Insulin which did not show any noteworthy differences, p 

= 0.149. 

 

4.1.3 Lipid profile 

Lipid markers such as: Total Cholesterol, Triglycerides and LDL-C exhibited marked 

differences between both the prediabetic and diabetic groups, compared to the 

normoglycaemic group (p ≤ 0.001), except for HDL-C, which was only significantly different 

between Normal versus Diabetes (p = 0.006).  Furthermore, of all markers of lipidaemia, only 

Triglycerides demonstrated observable differences between prediabetic and diabetic 

participants, with p = 0.002.  
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4.1.4 Inflammatory markers 

In line with expectations, the measurement of the inflammatory marker C-reactive protein 

(mg/L) increased with worsening diabetic status however, clinical significance was only 

observed in the normal versus diabetes as well as the normal versus pre-diabetes subgroups 

(both, p ≤ 0.001), with no notable differences observed between pre-diabetes and Diabetes. 

No clinical significance was observed in the pre-diabetes versus diabetes subgroup, 

 where p = 0.224. A similar trend was seen with serum gamma-glutamyltransferase (Gamma 

GT-S), another common marker of inflammation, with p < 0.001 for both normal versus pre-

diabetes and normal versus diabetes. Also, the renal function marker, serum creatinine 

(Creatinine-S), only showed significance between prediabetics and diabetics (p = 0.025). 

Similarly, the percentage of Mets individuals characterized with increased risk of 

cardiometabolic disease, where clinical significance was observed between the normal versus 

diabetes and pre-diabetes versus diabetes (both, p≤0.001). 
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Table 4.1: General characteristics of participants 

 

  

Normal (N=974) Pre-diabetes (N=206) Diabetes* (N=279) 
P-value: Normal vs 

Pre-diabetes 
P-value: Normal vs 

Diabetes 

P-value: Pre-
diabetes vs 

Diabetes 
Median (25th;75th 

percentiles) 
Median (25th;75th 

percentiles) 
Median (25th;75th 

percentiles) 

miR-486-5p 2-ΔCT 3.454 (1.620; 6.651) 3.010 (1.320; 5.685) 6.928 (2.565; 15.459) 0.038 <0.001 <0.001 
miR- novel-chr1_40444  2-ΔCT 0.061 (0.024; 0.125) 0.048 (0.023; 0.106) 0.135 (0.052; 0.285) 0.061 <0.001 <0.001 
Sex       0.003 0.003 0.783 
Female, %(N) 70.5(687) 80.6(166) 79.6(222)       
Male, %(N) 29.5(287) 19.4(40) 20.4(57)       
Age (Years) 46 (32; 57) 55 (48; 63) 58 (51; 66) <0.001 <0.001 0.011 
Weight (kg) 66.4 (56.3; 80.8) 74.9 (64.1; 90.4) 76.3 (65.3; 88) <0.001 <0.001 0.617 
Height (cm) 160 (155; 166.5) 157 (153.5; 162.3) 158 (153; 164) <0.001 <0.001 0.430 
Waist (cm) 85.5 (74.5; 99) 96.5 (86.1; 109.7) 98.5 (90; 108.9) <0.001 <0.001 0.135 
Hip (cm) 98.5 (88.9; 110.5) 105.8 (95.4; 119.2) 105.5 (97.5; 116.7) <0.001 <0.001 0.820 
Body Mass Index 25.8 (21.3; 31.8) 30.7 (25.4; 36) 30.5 (26.6; 35.4) <0.001 <0.001 0.979 
Body Mass Index       <0.001 <0.001 <0.001 
Normal, %(N) 45.4(439) 24(49) 18.9(52)       
Overweight, %(N) 22.2(215) 21.6(44) 29.5(81)       
Obese, %(N) 32.4(314) 54.4(111) 51.6(142)       
Systolic Blood Pressure (mmHg) 121 (107; 137) 130 (115.8; 152) 135 (118; 152) <0.001 <0.001 0.185 
Diastolic Blood Pressure (mmHg) 80 (71; 89) 85 (76; 94) 83 (77; 94) <0.001 <0.001 0.760 
Glucose Fasting Blood (mmol/L) 4.7 (4.4; 5.1) 5.3 (4.9; 5.8) 8.1 (6.1; 11.8) <0.001 <0.001 <0.001 
Glucose 2 HRs Post Prandial (mmol/L) 5.4 (4.5; 6.3) 8.6 (8; 9.6) 12.9 (11.4; 16.8) <0.001 <0.001 <0.001 
HbA1c (%) 5.6 (5.3; 5.9) 6 (5.6; 6.3) 7.7 (6.5; 10.1) <0.001 <0.001 <0.001 
Insulin Fasting (mIU/L) 5.8 (3.7; 8.9) 8.8 (5.3; 13.9) 9.3 (5.5; 15.6) <0.001 <0.001 0.149 
Insulin 120 Minutes (mIU/L) 30.5 (15.9; 53.6) 71.9 (42.8; 113.2) 51.2 (29.5; 82.5) <0.001 <0.001 <0.001 
Total Cholesterol (mmol/L) 4.9 (4.2; 5.7) 5.3 (4.7; 6) 5.3 (4.6; 6.3) <0.001 <0.001 0.657 
LDL-C (mmol/L) 3 (2.4; 3.6) 3.2 (2.7; 3.8) 3.2 (2.6; 4) <0.001 0.001 0.955 
HDL-C(mmol/L) 1.3 (1.1; 1.6) 1.3 (1.1; 1.5) 1.2 (1.1; 1.5) 0.548 0.006 0.125 
Triglycerides (mmol/L) 1.1 (0.8; 1.5) 1.4 (1; 1.8) 1.6 (1.1; 2.2) <0.001 <0.001 0.002 
Cotinine Serum (ng/mL) 121 (10; 286.5) 10 (10; 272.3) 10 (10; 160) 0.075 <0.001 <0.001 
us-CRP (mg/L) 3.3 (1.3; 7.7) 5.1 (2.2; 11) 5.3 (2.5; 11) <0.001 <0.001 0.224 
Gamma GT-S (IU/L) 27 (19; 42) 31 (22; 53.3) 36 (22; 67) <0.001 <0.001 0.145 
Creatinine-S (umol/L) 59 (52; 68.5) 57 (50; 68.3) 60.5 (52; 75) 0.215 0.056 0.025 
MetS JIS criteria       <0.001 <0.001 <0.001 
No, %(N) 68.7(663) 39.5(81) 22.1(61)       
Yes, %(N) 31.3(302) 60.5(124) 77.9(215)       
Alcohol use       0.085 <0.001 <0.001 
Non-drinker, %(N) 55.2(535) 63.5(129) 70.7(195)       
Past drinker, %(N) 12.2(118) 10.8(22) 16.7(46)       
Current drinker, %(N) 32.6(316) 25.6(52) 12.7(35)       
Tobacco use       0.011 <0.001 <0.001 
Non-smoker, %(N) 41.7(389) 51.5(105) 69(185)       
Current smoker, %(N) 58.3(544) 48.5(99) 31(83)       
       

Characteristics *Diabetes: Screened and known diabetes *Median (25th, 75th percentile); N, normal glucose tolerance, HDL, high-density lipoprotein, LDL, low-density lipoprotein, usCRP, 
ultrasensitive C-reactive protein, Gamma GT, Gamma-Glutamyltransferase, metS JIS criteria, Metabolic Syndrome criteria
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4.2 The relative expression of miRNA 

Both miRNAs were normalized to an endogenous control, miR-16-5p. As illustrated in Figure 

4.1, no significance was demonstrated in the expression of miR-16-5p between all the 

subgroups (all, p > 0.05), thus justifying the use of the reference gene as a control.  

 

 

 
Figure 4.1: Endogenous control- All miRNA were normalized to miR-16-5p. All data is 
demonstrated as mean ± standard deviation (SD) 

 
 

4.2.1 Relative expression of hsa-miR-486-5p and hsa-miR-novel-chr1_40444 

Due to the largely skewed data with multiple outliers, as illustrated by figure 4.2a and 4.3a, 

outliers were removed. As such, figures 4.2bb and 4.3b illustrate the corrected relative 

expression of the investigated miRNA (hsa-miR-486-5p and hsa-miR-novel-chr1_40444) 

according to glycaemic status. Significantly higher expression levels of hsa-miR486-5p (figure 

4.3b) was observed in the diabetes group in comparison to the pre-diabetes and normal (p < 

0.001). When comparing normotolerants to pre-diabetics, the expression of hsa-miR-486-5p 

was higher in normotolerants however, this was not significant (p = 0.038).  
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Figure 4.2a: The relative expression of hsa-miR-486-5p vs Diabetes status (all data), containing 
extreme outliers. [Normal vs PreDM, p = 0.056; Normal vs DM, p < 0.001; PreDM vs DM, p < 0.001].  

 
 
 

 
Figure 4.2b: The relative expression of hsa-miR-486-5p vs Diabetes status (Extreme outliers 
removed*) [Normal vs PreDM, p = 0.038; Normal vs DM, p < 0.001; PreDM vs DM, p < 0.001]. 

 

 

Hsa-miR-novel-chr1_40444 behaved similarly to hsa-miR-486-5p as significantly higher levels 

of expression was observed in diabetics compared to pre-diabetics (p < 0.001). Additionally, 

although the expression was higher in normoglycaemics than in pre-diabetics, this was not 

significant, as depicted by Figure 4.2b where p = 0.061.  Furthermore, minimally increased 

expression levels of hsa-miR-novel-chr1_40444 were seen in the normal group compared to 

pre-diabetes, however this was not significant (p = 0.123). 
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Figure 4.3a: The relative expression of hsa-miR-novel-chr1_40444 vs Diabetes status (all data) 
[Normal vs PreDM, p = 0.082; Normal vs DM, p < 0.001; PreDM vs DM, p < 0.001]. Extreme outliers 

are visible. 
 
 

 
 
  

Figure 4.3b: The expression of hsa-miR-novel-chr1_40444 vs Diabetes status (Extreme outliers 
removed*) [Normal vs PreDM, p = 0.061; Normal vs DM, p < 0.001; PreDM vs DM, p < 0.001] 

 

 

4.3 Partial Spearman’s correlation between hsa-miR-486-5p and hsa-miR-novel-

chr1_40444 and participants characteristics in accordance with glycaemic 

status 

Partial Spearman’s correlation coefficients adjusted for BMI, were performed to assess the 

relationship between hsa-miR-486-5p as well as hsa-miR-novel-chr1_40444 and the clinical 

variables as displayed in tables 10 and 11. Both miRNAs were significantly and positively 

correlated across all subgroups (both, r ≥ 0.743, p < 0.001). 
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4.3.1 Correlation between hsa-miR-486-5p and the clinical variables 

Table 4.2 shows that when all participants were included, hsa-miR-486-5p had a positive 

correlation with weight (r = 0.057, p = 0.032), however, no significant correlation was detected 

when each individual glycaemic group was analysed. A similar pattern was observed with SBP 

(r = 0.087, p < 0.001). The examination of glycaemic indices revealed that the expression of 

hsa-miR-486-5p was positively associated with glucose fasting blood (mmol/L) (r = 0.121, p < 

0.001), whereas in contrast, a negative correlation was observed with the 2 hours postprandial 

glucose in the pre-diabetes group (r = -0.277, p < 0.001). Fasting insulin (mIU/L) (r = 0.076, p 

= 0.005) and HbA1c (r = 0.112, p < 0.001) were both positively correlated when all participants 

were analysed, whereas no significant correlations were observed when insulin (mIU/L) at 120 

minutes was analysed. In addition, a positive correlation with triglycerides was observed when 

all participants were included (r = 0.071, p = 0.008) (Table 10).
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Table 4.2: Partial Spearman’s correlation coefficients for hsa-miR-486-5p  
 

  All Normal Pre-diabetes Diabetes 

  r p-value r p-value r p-value r p-value 

miR-486-5p 2^(-ΔCT) 1.000   1.000   1.000   1.000   

miR- novel-chr1_40444  2^(-ΔCT) 0.769 <0.001 0.743 <0.001 0.749 <0.001 0.779 <0.001 

Age (Years) 0.024 0.370 -0.051 0.112 0.090 0.204 -0.111 0.069 

Weight (kg) 0.057 0.032 0.052 0.109 0.040 0.571 -0.042 0.492 

Height (cm) 0.012 0.657 0.036 0.271 0.025 0.730 0.010 0.868 

Body Mass Index 0.044 0.096 0.030 0.348 0.025 0.728 -0.066 0.278 

Waist (cm) 0.019 0.480 -0.025 0.442 -0.018 0.796 -0.078 0.198 

Hip (cm) -0.006 0.834 -0.038 0.242 -0.007 0.917 -0.065 0.287 

Systolic Blood Pressure (mmHg) 0.087 <0.001 0.043 0.185 0.056 0.432 0.058 0.339 

Diastolic Blood Pressure (mmHg) 0.014 0.587 0.018 0.568 -0.078 0.268 -0.083 0.172 

Glucose Fasting Blood (mmol/L) 0.121 <0.001 -0.026 0.421 0.055 0.435 0.014 0.817 

Glucose 2 HRs Post Prandial (mmol/L) -0.002 0.935 -0.035 0.284 -0.277 <0.001 -0.061 0.562 

HbA1c (%) 0.112 <0.001 -0.037 0.251 -0.041 0.559 0.036 0.551 

Insulin Fasting (mIU/L) 0.076 0.005 0.069 0.036 -0.063 0.382 0.000 0.995 

Insulin 120 Minutes (mIU/L) -0.012 0.680 0.000 0.997 -0.114 0.112 0.123 0.254 

Total Cholesterol (mmol/L) 0.013 0.619 -0.045 0.162 0.106 0.134 0.000 0.997 

LDL-C (mmol/L) 0.000 0.993 -0.070 0.033 0.138 0.051 0.053 0.394 

HDL-C(mmol/L) 0.028 0.290 0.054 0.095 0.058 0.411 0.011 0.853 

Triglycerides (mmol/L) 0.071 0.008 0.028 0.391 0.021 0.763 -0.064 0.295 

Cotinine Serum (ng/mL) -0.046 0.087 -0.019 0.568 0.004 0.955 0.045 0.469 

us-CRP (mg/L) 0.009 0.736 0.000 0.989 -0.113 0.111 -0.043 0.481 

Gamma GT-S (IU/L) -0.007 0.786 0.007 0.818 -0.217 0.002 -0.072 0.234 

Creatinine-S (umol/L) -0.035 0.183 -0.036 0.264 -0.122 0.084 -0.025 0.677 
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4.3.2 Correlation between hsa-miR-novel-chr1_40444 and the clinical variables 

Hsa-miR-novel-chr1_40444 was positively associated with weight (r = 0.06, p = 0.018) and 

BMI (r = 0.055, p = 0.039) when all participants were included in the analysis. Similarly, highly 

significant positive correlations with HbA1c (r = 0,086, p = 0.001), fasting glucose (r = 0.100, p 

< 0.001), and fasting insulin (r = 0.098, p < 0.001) were observed. In contrast, when the Normal 

group was examined a significantly negative correlation with HbA1c was observed (r = -0.076, 

p = 0.020). The same observations were made when the 2 hours post prandial glucose 

(mmol/L) was analysed in the pre-diabetes group (r = -0.142, p = 0.045).  

 

LDL-Cholesterol demonstrated a significantly positive correlation with the miRNA in diabetes 

(r = 0.145, p = 0.021) but when analysing the Normal participants, a negative correlation was 

observed (r = -0.142, p = 0.045). HDL-Cholesterol was negatively correlated with the miRNA 

in the Normal group (r = -0.073, p = 0.026) while no association could be detected with 

triglycerides (Table 11). 
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Table 4.3: Partial Spearman’s correlation coefficients for miRNA hsa-miR- novel-chr1_40444 

 

  All Normal Pre-diabetes Diabetes 

  r p-value r p-value r p-value r p-value 

miR-486-5p 2^(-ΔCT) 0.769 <0.001 0.743 <0.001 0.749 <0.001 0.779 <0.001 

miR- novel-chr1_40444 2^(-ΔCT) 1.000 . 1.000 . 1.000 . 1.000 . 

Age (Years) 0.013 0.617 -0.063 0.053 0.021 0.764 -0.078 0.206 

Weight (kg) 0.063 0.018 0.024 0.460 0.124 0.080 0.025 0.682 

Height (cm) 0.001 0.983 0.004 0.897 -0.001 0.993 0.064 0.301 

Body Mass Index 0.055 0.039 0.019 0.551 0.113 0.111 -0.021 0.733 

Waist (cm) 0.030 0.253 -0.042 0.196 0.084 0.234 -0.014 0.822 

Hip (cm) 0.022 0.405 -0.032 0.332 0.083 0.243 0.023 0.707 

Systolic Blood Pressure (mmHg) 0.033 0.207 -0.031 0.345 -0.015 0.832 0.048 0.433 

Diastolic Blood Pressure (mmHg) -0.018 0.489 -0.056 0.087 -0.040 0.575 -0.048 0.434 

Glucose Fasting Blood (mmol/L) 0.100 <0.001 -0.053 0.104 -0.076 0.287 0.001 0.993 

Glucose 2 HRs Post Prandial (mmol/L) 0.000 0.995 -0.041 0.207 -0.142 0.045 -0.036 0.739 

HbA1c (%) 0.086 0.001 -0.076 0.020 -0.114 0.108 -0.026 0.677 

Insulin Fasting (mIU/L) 0.098 <0.001 0.051 0.125 0.085 0.241 0.034 0.591 

Insulin 120 Minutes (mIU/L) -0.012 0.675 -0.028 0.391 0.042 0.563 0.141 0.200 

Total Cholesterol (mmol/L) 0.049 0.066 -0.025 0.451 0.077 0.276 0.118 0.054 

LDL-C (mmol/L) 0.012 0.647 -0.073 0.026 0.073 0.308 0.145 0.021 

HDL-C(mmol/L) 0.033 0.211 0.067 0.040 0.032 0.648 0.042 0.496 

Triglycerides (mmol/L) 0.124 <0.001 0.070 0.032 0.117 0.100 0.004 0.953 

Cotinine Serum (ng/mL) -0.054 0.047 -0.020 0.537 -0.017 0.807 0.020 0.746 

us-CRP (mg/L) 0.008 0.769 -0.028 0.385 -0.032 0.653 -0.052 0.396 

Gamma GT-S (IU/L) 0.018 0.488 0.015 0.644 -0.113 0.110 -0.041 0.500 

Creatinine-S (umol/L) -0.025 0.358 -0.029 0.374 -0.104 0.142 -0.021 0.729 
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4.4 Multivariate regression analysis 

To further assess the associations between the expression patterns of hsa-miR-486-5p with 

pre-diabetes and Type 2 diabetes, multivariate regression analysis was performed (Table 4.4). 

Using the reference category as “Normal”, the expression of hsa-miR-486-5p was significantly 

associated with pre-diabetes in the crude or unadjusted model (model 1). Upon further 

adjustment (models 2 – 4), significance was not retained between the expression of the miRNA 

and pre-diabetes. Interestingly, when assessing the links between the miRNA and diabetes 

(screen detected and known diabetics), associations were observed with hsa-miR-486-5p 

independent of confounding variables (across the crude model and all the adjusted models), 

all p < 0.001. Furthermore, when investigating the associations between hsa-miR-486-5p and 

diabetes, using “pre-diabetes” as the reference group, similar significant associations were 

observed with the expression of miRNA in the crude model (model 1) as well as all the adjusted 

models, further highlighting the independent association between the miRNA and diabetes (all 

p < 0.001). 

 

 

Table 4.4: Multivariate regression analysis of log hsa-miR-486-5p for the presence of pre-
diabetes or diabetes. 
 

log miRNA 486-5p 
 

Odds 
ratio 

95% Confidence interval p-value 

Lower Upper  

Pre-diabetes*         

Model 1 0.782 0.628 0.972 0.027 

Model 2 0.817 0.651 1.024 0.079 

Model 3 0.807 0.647 1.007 0.058 

Model 4 0.835 0.65 1.073 0.160 

Diabetes*         

Model 1 4.185 2.987 5.863 <0.001 

Model 2 4.177 2.957 5.898 <0.001 

Model 3 4.462 3.133 6.354 <0.001 

Model 4 3.476 2.057 5.875 <0.001 

Diabetes#         

Model 1 5.355 3.654 7.847 <0.001 

Model 2 5.115 3.486 7.504 <0.001 

Model 3 5.526 3.722 8.204 <0.001 

Model 4 4.162 2.459 7.043 <0.001 
*Reference category: Normal; #Reference category: pre-diabetes; Model 1: Crude, Model 2: Age 
and sex, Model 3: LDL-C, HDL-C,Gamma GT, Creatinine, Model 4: Weight, BMI, Systolic blood 
pressure, Fasting blood glucose, HbA1c, Insulin fasting, Triglycerides, Cotinine. 
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When assessing the associations depicted in table 4.4 between the expression patterns of 

hsa-miR-novel-chr1_40444 in pre-diabetes using “Normal” as the reference category, no 

significant associations were observed between the expression of hsa-miR-novel-chr1_40444 

and pre-diabetes (see Table 4.5) across all variables (crude and adjusted models). These 

significant relations were retained throughout all the adjusted models (2 – 4), all p < 0.001). 

However, when assessing the associations between hsa-miR-novel-chr1_40444 and diabetes, 

using “pre-diabetes” as the reference category, significant associations were observed across 

all models (crude and adjusted), all p < 0.001. 

 

 

Table 4.5: Multivariate regression analysis of log miRNA hsa-miR-novel-chr1_40444 for the 
presence of pre-diabetes and diabetes. 

log miR-novel-
chr1_40444  

 
Odds ratio 

95% Confidence interval 
p-value 

Lower Upper 

Pre-diabetes*         

Model 1 0.849 0.646 1.116 0.240 

Model 2 0.890 0.673 1.179 0.418 

Model 3 0.900 0.674 1.202 0.476 

Model 4 0.937 0.681 1.288 0.687 

Diabetes*         

Model 1 4.305 3.107 5.965 <0.001 

Model 2 4.223 3.02 5.905 <0.001 

Model 3 4.191 2.949 5.956 <0.001 

Model 4 2.975 1.77 5.001 <0.001 

Diabetes#         

Model 1 5.071 3.416 7.530 <0.001 

Model 2 4.742 3.202 7.023 <0.001 

Model 3 4.655 3.106 6.979 <0.001 

Model 4 3.177 1.876 5.381 <0.001 

*Reference category: Normal; #Reference category: pre-diabetes; Model 1: Crude; Model 2: Age 
and sex; Model 3: Age, Weight, Diastolic blood pressure, LDL-C, HDL-C and Triglycerides; 
Model 4: Weight, BMI, Fasting blood glucose, HbA1c, Insulin Fasting, Total Cholesterol, 
Triglycerides, Cotinine 
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Chapter 5: Discussion 

 
The purpose of this study was to validate hsa-miR-486-5p and hsa-miR-novel-chr1_40444 as 

being potential specific biomarkers for pre-diabetes or for T2DM. The key findings are: (i)  The 

expression of both  miRNAs were significantly higher in  the diabetes group compared to the  

pre-diabetes and normotolerant groups; (ii) The increased expression was independently 

associated with the presence of T2DM, even after multiple regression analysis adjustments for 

age, sex, weight, diastolic blood pressure, LDL-C, HDL-C, triglycerides, BMI, fasting blood 

glucose, HbA1c, fasting insulin, total cholesterol and Cotinine. (iii) Both miRNAs were however 

not associated with pre-diabetes, even after adjustments. (iiii) Both miRNAs demonstrated 

significant positive correlations with each other and with weight, BMI, fasting insulin and 

triglycerides. Thus, the findings of this study suggests that both hsa-miR-486-5p and hsa-miR-

novel-chr1_40444 are involved in the pathogenesis of T2DM and therefore could be used to 

predict risk of diabetes. 

 

Hsa-miR-486-5p is abundantly found in skeletal muscle, an important site for regulating 

glucose metabolism (Jensen et al., 2011). Glucose metabolism is modulated by Insulin via the 

phosphatidyl inositol-3-kinase (PI3K)/Akt signaling pathway (Huang et al., 2018). This pathway 

contains the negative regulators, phosphatase and tensin homolog (PTEN) as well as 

Forkhead box O1 (FOXO1) which are downstream targets of hsa-486-5p in pancreatic β-cells 

(Small et al., 2010). Although PTEN is traditionally known as a tumour suppressor (Lee et al., 

2018), the altered expression of PTEN in T2DM, results in defective insulin signalling and a 

greater chance of insulin resistance (Li et al., 2020). In skeletal muscle, PTEN regulates 

glucose homeostasis by modulating the expression of the glucose transporter type 4 (GLUT4) 

(Simpson et al., 2001). The inhibition of PTEN, results in the activation of Akt/P13 signalling 

pathway, which stimulates GLUT4 activity and promotes glucose uptake (Ramachandran and 

Saravanan, 2015).  On the other hand, FOXO1 play vital roles in the differentiation, growth, 

and homeostasis of skeletal muscle (Ahmad et al., 2020). The activation of Akt/P13 signalling 

in muscle tissue results in the inhibition of FOXO1. This promotes protein breakdown and 

muscle growth (Margolis et al., 2018). The Impairment of glucose metabolism contributes to 

the pathogenesis of T2DM (Teng and Huang, 2019). Tian et al. (2018), reported on the 

inhibitory effect the overexpression of hsa-miR-486-5p had on PTEN and FOXO1 in β-cells. 

The result was an increased insulin secretion, increased β-cell proliferation and the inhibition 

of cell apoptosis (Tian et al., 2018). miRNA targets allow us to understand how miRNA play a 

part in T2DM development (Karolina et al., 2011). Thus, based on the important regulatory role 

hsa-miR-486-5p has on insulin release and glucose homeostasis, its upregulation as seen in 

our study suggests that its participation in T2DM pathogenesis can serve as a risk factor to 

assist in diagnosing T2DM. 
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Although basal miRNA are expressed at low levels, pathological stress results in their 

upregulation (Thum and Condorelli, 2015). Kong and colleagues demonstrate this in a study 

which investigates the expression of 7 diabetes related miRNAs. The participants were 

grouped into newly diagnosed T2DM, pre-diabetics and normotolerants who were susceptible 

to T2DM. They found the expression of miR30d-5p gradually increasing with worsening 

glycaemic states (Kong et al., 2011). Although the miRNA targets differed between Kong and 

co-workers’ study and our study, the observed trend was consistent in that in the current study, 

the increased expression of both hsa-miR-486-5p and hsa-miR-novel-chr1_40444 was directly 

proportional to worsening diabetes status. In addition, the involvement of both miRNAs in 

T2DM pathogenesis was later confirmed by the multivariate regression analysis which 

revealed independent associations with T2DM and not pre-diabetes. These findings are further 

supported by Kim and colleagues who through real-time PCR, found  that the exposure to 

elevated glucose concentrations, increased the expression of hsa-miR-486-5p (Kim et al., 

2012). Lastly, Karolina et al. used microarray and stem-loop real time RT-PCR methods to 

explore the miRNA expression patterns in T2DM and impaired fasting glucose (IFG) 

participants. Their results revealed the upregulation of a novel miRNA (miR-144) in T2DM in 

addition to the level of expression increasing with worsening glycaemic status. They concluded 

that the circulating miRNA could prove useful in indicating the development of the disease 

(Karolina et al., 2011). Overall, the abovementioned research endeavours aligned with our own 

findings, suggesting that both hsa-miR-486-5p and hsa-miR-novel-chr1_40444 are involved in 

the pathogenesis of T2DM. 

 

Almost all T2DM patients develop from pre-diabetes however, not all pre-diabetic patients 

progress to diabetes. Preventing T2DM or delaying its progression can be achieved by 

implementing interventions to one’s lifestyle such  as adopting healthier diets and physical 

exercise, as well as pharmacological intervention (Hostalek, 2019; Sidorkiewicz et al., 2020) 

such as metformin (Baker et al., 2021). Although there was a difference in miRNA expression 

levels between the normotolerant and pre-diabetic group, the difference was minimal. Only 

hsa-miR-novel-chr1_40444 displayed a statistically significant difference in expression 

between the two groups. It is mainly in T2DM as compared to pre-diabetes, that the altered 

expression of miRNA occurs (Kong et al., 2011). Furthermore, although miRNAs are important 

regulators of gene expression (Rani and Sengar, 2022),  during the pathogenesis of T2DM in 

“at risk” individuals, there is no significant change in the expression patterns of hsa-miR-novel-

chr1_40444 in the pre-diabetic stage, which possibly contributes to the ability to revert from 

pre-diabetes to normotolerant.  
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Obesity increases the risk of insulin resistance and T2DM development (Wu and Ballantyne, 

2020). In addition, the complications caused by obesity, negatively affects all bodily organs 

and contribute to a reduced quality of life (Katz et al., 2000). hsa-miR-486-5p has been 

associated with obesity (Cui et al., 2018; Duggineni, 2013; Prats-Puig et al., 2013) as was 

shown in a study by Prats-Pruig and colleagues where increased circulation of hsa-miR-486-

5p was observed in obese children (Prats-Puig et al., 2013), while another study concluded 

that the overexpression of circulating hsa-miR-486 can be used as a prognostic marker to 

screen children who are obese and at risk of developing diabetes in adulthood (Cui et al., 

2018). In our study the expression of both hsa-miR-novel-chr1_40444 and hsa-miR-486-5p 

was upregulated in the T2DM compared to the normotolerant group and significant correlations 

with weight, BMI, fasting insulin and triglycerides in the “all” group was evident. These 

correlations suggest that the expression of these miRNAs is associated with obesity (BMI) and 

insulin resistance (fasting insulin) (Duggineni, 2013). Additional positive correlations between 

hsa-miR-novel-chr1_40444 and hsa-miR-486-5p and fasting plasma glucose proves that their 

upregulation contributes to insulin resistance and therefore they can be used as a prognostic 

tool for T2DM progression. Similar findings were observed in a study by Zaki et al who found 

the expression of  miR-497 to be higher in their  Egyptian diabetic subjects than normotolerant 

control subjects and demonstrated significant positive correlations with fasting plasma glucose 

(FPG) (Bakr Zaki et al., 2019).  

 

Despite the results of our study correlating with other previous studies (Karolina et al., 2011; 

Wang et al., 2014)  which identified the expression of hsa-miR-486-5p in the pathogenesis of 

T2DM, we have found contradictions in other studies (Huang et al., 2018, 2015; Liu et al., 

2016). For example a study by Duggineni suggested that the dysregulation of miRNAs during 

obesity may play a fundamental role in regulating insulin resistance and inflammation 

(Duggineni, 2013). Another study by Regmi et al. showed the downregulation of hsa-miR-486-

5p when 4 serum miRNAs were measured in diabetic kidney disease (DKD) patients with 

T2DM compared to healthy controls (Regmi et al., 2019). This is in contrast to the upregulation 

observed in our study. In addition, a further study by Tian and colleagues explored the 

expression of miRNAs in the serum of participants with T2DM. Not only did they demonstrate 

downregulation of hsa-486-5p in T2DM, they also found negative correlations with blood 

glucose levels in T2DM participants (Tian et al., 2018). The lack of consistency of results 

among studies could be attributed to differences in pre-analytic and analytic procedures as 

well as differences in the inclusion and exclusion criteria (Greco et al., 2020). Differences in 

sample types can result in significant inconsistencies as was demonstrated by Mononen et al. 

They showed how the measurement of miRNA differed in different sample types and 

concluded that the inconsistent measurements was due to the interfering presence of other 

components of blood in  varying amounts (Mononen et al., 2019).  
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Inflammation is one of the main contributing factors to the development and progression of 

T2DM (Oguntibeju, 2019; Rehman and Akash, 2016). In our study, the levels of inflammation 

(u-CRP) were higher in pre-diabetes and diabetes than normotolerants and ¾ of the 

participants (table 9) in the pre-diabetes and diabetes group were obese, compared to the 

normal group. Adipocytes in the subcutaneous adipose tissue have a limited storage capacity 

(Hedbacker et al., 2020). While  the cell expands, it is simultaneously infiltrated by 

macrophages, and the development of fibrosis and obesity (Martinez-Santibañez and Lumeng, 

2014). These changes occurring within the adipocyte leads to an increase in circulating, 

monocytes, neutrophils and cytokines, which contributes to inflammation (Menendez et al., 

2022).  

 

Due to the lack of efficient biomarkers and the resultant inaccuracy of the early diagnosis and 

treatment of patients (Liu et al., 2021), the continual discovery of novel miRNA in disease make 

valuable contributions to the miRNA pool. For example, Vijayan et al, made valuable 

contributions to ischaemic stroke when they identified novel miRNAs (PC-3p-57664, PC-5p-

12969) which were upregulated in ischaemic stroke patients as compared to healthy 

controls(Vijayan et al., 2018). Another study by Liu et al used next generation sequencing and 

bioinformatic approaches and found the downregulation of novel miRNA, hsa-miR-526b-5p, 

hsa-miR-6516-5p associated with metabolic syndrome (Liu et al., 2021). Furthermore, the 

detection and overexpression of hsa-miR-nov7 and hsa-miR-nov3 in breast tissue of breast 

cancer patients was reported by Poduval et al. Although the expression of the miRNA was low, 

they were overexpressed and therefore concluded that these miRNA are involved in the 

development and progression of breast cancer (Poduval et al., 2020). Our findings on hsa-

miR-novel-chr1_40444 could therefore be important as it implies that its dysregulation is 

associated with pathophysiological states and that it may be a useful biomarker in patients with 

hyperglycaemia.  
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Chapter 6: Conclusion 

Advances in miRNA expression studies have contributed to the escalated growth in identifying 

the diagnostic and prognostic value of epigenetics as a tool in pathophysiology, especially 

miRNA in diabetes mellitus. The expression patterns of hsa-miR-486-5p have been broadly 

discussed in human diseases  such as cancer, cardiac disease, sepsis and T2DM however, 

studies within South Africa are few. To the best of our knowledge, there is no evidence of the 

involvement of hsa-miR-novel-chr1_40444 in disease, making this study the first of its kind to 

report on the expression of hsa-miR-novel-chr1_40444 in human disease. 

 

6.1 Strengths and limitations of this study  

Our study has provided additional evidence that miRNAs possess significant diagnostic and 

prognostic value in human disease. Compared to other studies, a strength of this study is its 

large sample size. However, this study is limited by the study population originating from a 

particular region and ethnic group, therefore (Matsha et al., 2018), making it a poor 

representation of South Africa as South Africa is diverse and multi-racial. There is also a 

difference in the number of male and female participants, with more females participating in 

the study, which is a common observation in studies of this nature. Another limitation is that 

we have placed those with known diabetes and those who were screen detected, in the 

diabetic group. This is due to the sample size per subgroup, which caused skewed data. While 

both groups have been amalgamated into 1 group, some of them could be on medication which 

could influence the regulation of the miRNA (Weale et al., 2021).  

 

6.2 Future recommendations 

The amalgamation of participants who were screen detected and those with known diabetes, 

creates an opportunity for future studies which places these groups into their own category to 

assess what influence the medication has on the expression of the miRNA. An additional 

opportunity for future studies is to detect which pathways hsa-miR-novel-chr1_40444 is 

involved in and which proteins it targets as this will provide deeper insight into what impact it 

has on the insulin signalling pathway or glucose homeostasis (Deng and Guo, 2019). This 

could be achieved using bioinformatic and enrichment analysis techniques (Ramani et al., 

2017) or cell type based enriched miRNA expression analysis (Pomper et al., 2020). 

Furthermore, the crossectional nature of this study creates an opportunity for future 

longitudinal studies exploring the changes in miRNA expression over time. 

 

6.3 Conclusion 

In conclusion, the results of this present study have validated the involvement of miRNA in 

T2DM in a South African population.  The overexpression of both hsa-miR-486-5p and hsa-



49 
 

miR-novel-chr1_40444 could be useful biomarkers when used concurrently with other risk 

factors to identify patients who are at risk of developing T2DM
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