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ABSTRACT 
 

The Fourth Industrial Revolution changed how people work, live, and interact with each other 

and technology with a shift towards automation and data exchange that requires software to 

be portable, interoperable, configurable, and reusable between multiple Original Equipment 

Manufacturers (OEMs). The interoperability challenge is overcome by the adherence to 

governing standards by the producers of the different software programming environments that 

are used to develop the control systems. PLCOpen function blocks, Codesys integrated 

development environment, the IEC 61499 Standard, and the EtherCAT network topology, are 

all examples of software aspects that are used to improve the integration between automation 

hardware from different vendors. 

 

In this thesis, the MATLAB/Simulink software engineering environment is used to develop a 

mathematical model of a DC motor control system that is used to control the azimuth and 

altitude positional movements of a radio antenna dish. A full-state feedback controller is 

designed to increase the response time of the positional movements to a set point change. 

Integral control is also added to the system to compensate for the steady-state error caused 

by using a full-state feedback controller.  

 

The developed simulation model is tested in the Simulink software environment by analysing 

the results of a step response input to the system. The response of the DC motor open-loop 

system, a DC motor system with a controller, and a DC motor control system with added 

integral control, is compared and analysed. The effects of the network-induced delays are also 

analysed before implementing the controller on the hardware. The effects show that an 

increase in network delays leads to an increase in system instability. 

 

The thesis findings contribute to detailing the transformation process for the developed 

controller from the Simulink simulation environment to the TwinCAT 3 programming 

environment to allow for the real-time implementation of an actual DC motor. The transformed 

simulation model interacts with the DC motor from a PLC, through an EtherCAT network, to a 

remote motor controller. 

 

The real-time hardware-in-the-loop implementation results are compared to the results 

acquired by the simulations done in Simulink. The results show that the effects of network 

delays are the same in real-time as in the simulation model. The addition of Beckhoff’s time 

compensation feature in TwinCAT 3 reduced the effects of time delays and resulted in a stable 

system. The control system is also stress-tested to record the limitations of the positional 

movements.  
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The thesis findings and deliverables further contribute to the enlarging of the knowledge base 

in the field of IEC 61499 standard-based control systems and can be used for education to 

continue further research. The state-space method used in the mathematical model for the 

design of the controller can be implemented in other similar applications that require a change 

in angular position. The hardware-in-the-loop test rig can also be used in future research work 

by postgraduate students at universities or research institutions. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Introduction 
 
With the industry moving into its 4th generation, the need for distributed control in industrial 

control systems is necessary as field devices become more intelligent and data transfer 

between devices becomes larger. Currently, most systems are controlled centrally with a 

Programmable Logic Controller (PLC) using the IEC 61131-3 standard. The cyclic nature of 

these systems prevents adequate control in large systems that consist of multiple Intelligent 

Electronic Devices (IEDs) networked via Fieldbus communication protocols such as 

Ethernet/Internet Protocol (Ethernet/IP). To overcome this problem, it is necessary to design 

systems in a distributed manner.  

 

The IEC 61499 standard-based systems allow for the distribution of control using event-driven 

function blocks and can therefore be used to distribute control in a decentralized system. The 

standard also increases the portability of software between different vendors by standardizing 

the format used by developers when creating software tools. This led to hardware 

interoperability between devices from different vendors making it possible to communicate 

between IEDs from different vendors.  

 

An increase in portability, interoperability, configurability, and reusability between different 

vendor’s software tools and hardware devices in industrial control systems decreases the 

complexity of trying to integrate and communicate between them. Development time will be 

more focused on the control system and the end product rather than setting up 

communications. Also, being able to use any product from any vendor will make the market 

more competitive which will lead to cost savings as vendors will not be able to sell their 

propriety software at whatever price they like.  

 

This research work focuses on the application of the IEC 61499 standard to show the 

capabilities of the standard when applied to an industrial control system. The research 

contributes to the 4th Industrial Revolution that is leading the path to holonic systems in 

industrial automation. 

 

The following sections describe the awareness of the problem, statement of the problem, the 

research aim and objectives, research questions and hypothesis, delimitation of the research, 

deliverables of the project, complete chapter breakdown, and a conclusion.  
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1.2 Awareness of the problem 
 
The problem with control systems in industry is the use of a centralized point of control. 

Centralized control is not sufficient in certain industrial practices today as the cyclic nature of 

how events are handled is not quick enough to control distributed devices. To overcome this 

problem, it is necessary to design systems in a distributed manner. IEC 61499 standard-based 

systems allow for the distribution of control using event-driven function blocks and can 

therefore be used to convert from centralized to decentralized control.  

 

The second problem can be found in networked control systems that are connected via a 

Fieldbus such as Profinet, Ethernet, Modbus, etc. These networks are affected by network 

delays that are caused by increased network traffic, the distance between IEDs, and the size 

of the network system. These network delays can be scaled down when distributing the control 

as not all the IEDs will have to communicate through a central hub but can instead 

communicate directly with the intended target. Modeling and analysing these delays allow for 

better controller design and validation before implementing the control system on a lab-scale 

plant.  

 

A third problem with automation systems today is the lack of interoperability, portability, and 

configurability between the software tools and hardware components of the different vendors. 

Using software packages that are IEC 61499 standard compliant when developing control 

systems promises a more open environment where switching or communicating between 

vendors is easier and simpler. An ideal control system allows for the project repositories and 

software libraries to be portable between any vendors’ software environments, and any 

software tool can configure any vendors’ IEDs. This allows for better communication between 

different vendors’ IEDs, increasing interoperability over any Fieldbus network. 

 

1.3 Statement of the problem 
 
The main problem in industry is that centralized PLC control systems cannot sufficiently control 

intelligent devices on a distributed network system. Distributed systems have become too 

complex to be controlled from a central point, therefore distributed control is required. This is 

due to an increase in smart devices that have increased the amount of information that is sent 

between the controller and the IEDs. The use of a fieldbus to transmit all this extra information 

has also introduced a new variable of network delays that also needs to be considered when 

designing a control system. The smart devices can also be from different vendors; therefore 

another problem is present when trying to communicate with different vendors using one 

controller from a different manufacturer. These issues are split into sub problems 1 and 2 to 

be listed and solved separately. 
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1.3.1 Sub-problem 1  
 
Network delays in distributed control systems are non-deterministic and are therefore it is not 

possible to calculate or work out. It is necessary to model these delays when designing a 

system to show what effects these delays have before implementing the system in real-time. 

Once the effects of a range of time delays are known, the system can be optimized by changing 

software or hardware aspects to reduce the effects introduced by these delays. This will 

increase the stability of the controller and increase the system’s reaction time to any form and 

length of network delay. 

 

1.3.2 Sub-problem 2  
 
The portability of software between vendors is a huge issue in automating control systems as 

switching from one software platform to another is often complex if not impossible. By using 

software packages that are IEC 61499 standard compliant, the PLC code can easily be 

transferred between different programming environments. This code includes library 

repositories and developed function blocks.  

 

1.4 Research Aim and Objectives 
 
1.4.1 Aim 
 
The aim of this research is to design and implement a control system for a radio antenna’s 

azimuth and altitude positional movements by using modern control design methods and 

utilizing the portability and reusability aspects of the IEC 61499 standard.  

 
 
1.4.2 Objectives 
 
The main objective of this research is the implementation of the developed control system for 

the radio antenna’s DC motors in a real-time network control system. This can further be sub-

divided into theoretical and practical objectives. 

 

1.4.2.1 Objectives: Theoretical analysis 

 To conduct a literature review in the area of IEC 61499 standard-based systems 

 To conduct a literature review in the area of network control systems 

 To investigate radio antennas and the DC motor in different applications 

 To develop the formulation of the mathematical model for the plant  

 To formulate the design of the controller using modern controller design methods 

(state-space) 
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1.4.2.2 Objectives: Practical implementation 

 Simulation of the proposed system within the MATLAB/Simulink software environment. 

 Analyzing the effects of network delays on the simulation model of the plant. 

 Transforming the developed model from the MATLAB/Simulink to the TwinCAT 3 

programming environment. 

 Configuration of hardware devices for real-time implementation  

 Real-time hardware-in-the-loop implementation of the transformed model. 

 Testing and validation of the real-time implemented control system with the simulated 

results by comparing the system responses. 

 Performance and conformance testing of the designed control system. 

 

1.5 Research Questions 
 
The research investigations in this thesis attempt to provide solutions to the following 

questions: 

 

 Can modern control methods be used to achieve the desired response for the positional 

set points of the azimuth and altitude movements of a radio antenna? 

 Can the network delays be modelled and simulated before implementation of the 

system? 

 What length delays reduces the performance of the system? 

 What methods can be used to account for the network delays in real-time? 

 Is the developed controller interoperable, portable, configurable, and reusable between 

the different vendor automation software packages? 

 

1.6 Hypothesis 
 
The hypotheses for this research are as follows: 

 State space techniques can be used to create a controller that meets the desired 

system response. 

 Network delays can be modelled and analysed using transport delay function blocks in 

Simulink before real-time implementation. 

 Functions within the TwinCAT 3 programming environment can be used to reduce the 

effects of network induced delays. 

 The developed code will be able to port between different vendor’s software packages. 
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1.7 Delimitation of the research 
 
The delimitations of this research are as follows: 

 Literature reviews will only be done on the IEC 61499 standard and distributed network 

systems. 

 State space methods will be used to design the controller 

 Simulation of the controller and plant will be done in MATLAB/Simulink. 

 Simulation of networked induced delays will be done in MATLAB/Simulink. 

 Real-time implementation of the controller and plant will be done using TwinCAT 

programming environment and Beckhoff hardware solutions. 

 

1.8 Assumptions of the project 
 

 It is assumed that state space methods can be used to control the position of a DC 

motor as this modern control technique is used in control systems with feedback loops. 

 It is assumed that DC motor can be modelled and simulated in MATLAB/Simulink as 

the programming environment is used for modelling and simulating control systems. 

 It is assumed that the MATLAB/Simulink model can be transformed to TwinCAT 3 

because both programming environments have IEC 61499 standard capabilities. 

 It is assumed that the TwinCAT axis control will be able to change the position of the 

motor as well as read the feedback from the encoder as the programming environment 

allows for axis control of a wide range of motors. 

 It is assumed that the network delays will effect the position output of the model in 

simulation and real-time implementation as a delay in transmission of information will 

cause a delay in receival of information. 

 

1.9 Deliverables of the project 
 
The deliverables for this research are as follows: 

 Literature review on the IEC 61499 standard and networked control systems 

 Mathematical modelling of the plant and controller 

 Simulation of the model of the plant and controller 

 Simulation and analysis on the effects of networked induced delays in the developed 

control system 

 Transformation of the Simulink model to TwinCAT 3 programming environment 

 Real-time implementation of the developed controller controlling the actual DC motor 

 Comparative analysis of the simulated and implemented results  
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1.10 Chapter breakdown 
 
This thesis has 8 chapters including an introduction, literature review, theory based on antenna 

and the DC motor, development and simulation of the plant, state feedback controller design, 

Transformation of Simulink model to TwinCAT object, implementation chapter, and a 

conclusion.  

 

Chapter 1 presents the problem statement and the different research investigations that are 

done. The project statement includes the aims and objectives of the research, the statement 

of the problem including sub problems, hypotheses, delimitations in the research, project 

assumptions, and project deliverables.  

 

Chapter 2 presents two separate literature reviews related to the IEC 61499 standard and 

networked control systems. The literature review on the IEC 61499 standard focus on the 

standard before and after the release of the second edition. Other factors such as execution 

methods, function block design, and portability are also described. The literature reviewed 

regarding networked control systems focuses on delays in systems with networks between the 

sensor and controller, and the controller and actuator.  

 

Chapter 3 presents the plant considered in this thesis. The history of radio antennas, different 

types of antennas, current control systems for antennas, are all presented in this chapter. Due 

to radio antennas positional movements being controlled by DC motors, the history, operation, 

and construction of the DC motor is also described. 

 

Chapter 4 describes the derivation of the mathematical models of the electrical and mechanical 

components of the DC motor. The transfer function of the complete electromechanical is 

described and simulated as an open loop system in MATLAB/Simulink. The open loop system 

is converted to its equivalent state space representation. The step response of the plant in 

state space form and the plant in transfer function form are simulated and compared to ensure 

that the conversion to state space is successful.  

 

Chapter 5 describes the state feedback controller design. The pole placement design 

technique is used to move the poles of the system to allow for a faster response to position set 

point change. The gain matrix K is determined and used in the simulation of the closed loop 

system with state feedback control. Integral control is added to the system to reduce the steady 

state error caused by using a state feedback controller. The integral gain is calculated and 

added to the system for simulation. Four case studies are considered and compared using a 

step input to the system to simulate each controller’s step response.  
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 Case 1: Step response of a DC motor closed-loop system. 

 Case 2: Step response of a DC motor closed-loop system with state feedback 

controller. 

 Case 3: Step response of a DC motor closed-loop system with state feedback controller 

with added integral control. 

 Case 4: Step response of a DC motor closed-loop system with state feedback controller 

with added integral control with a larger set point to show the system has the same 

response to bigger changes in position set point. 

 

Networked induced delays are added to the system to analyse the effects on the system 

response. Two network delays are looked at including sensor-to-controller delays, and 

controller-to-actuator delays. Multiple lengths of these two delays are added to the system 

using a transport delay function block in Simulink, and the responses are compared in two 

separate case studies. Firstly, sensor-to-controller delays are considered in 4 cases with 

different delay times: 

 

 Case 1: Position output with 100ms delay between sensor and controller 

 Case 2: Position output with 400ms delay between sensor and controller 

 Case 3: Position output with 800ms delay between sensor and controller 

 Case 4: Position output with 1200ms delay between sensor and controller 

 

Secondly, controller-to-actuator delays are considered in 4 cases with different delay time: 

 

 Case 1: Position output with 50ms delay between controller and actuator 

 Case 2: Position output with 100ms delay between controller and actuator 

 Case 3: Position output with 125ms delay between controller and actuator 

 Case 4: Position output with 150ms delay between controller and actuator 

 

The chapter concludes with an analysis and discussion of each of the different cases. 

 

Chapter 6 presents the methods used to transform the Simulink model to a TwinCAT object 

that can be used in the TwinCAT 3 programming environment. A description of each software 

package is provided including the installation procedures that are described in detail in the 

Appendix. How to sign Windows drivers to allow for the transformation is also described. A 

description of the Beckhoff TE1400 transformation tool is described, and the necessary 

MATLAB code that needs to be run to complete the transformation is provided. A test is done 

using Beckhoff’s Scopeviewer software to prove that the transformation is successful. 
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Chapter 7 presents the hardware-in-the-loop implementation section of the thesis. All required 

hardware is described including the Beckhoff controller and motor terminals, the Omron 

encoder, and the DC motor. A description of the EtherCAT fieldbus technology is also 

described. A photo and an electrical diagram of the complete test rig is shown. The PLC 

software in TwinCAT 3, which uses standard programming software environment CodeSYS, 

and standard motion function block library PLCopen, is described step-by-step. The 

transformed Simulink model in function block form is described. How to scan for EtherCAT 

devices as well as how to activate the PLC project on the controller for real-time 

implementation is described. The complete control system is first analysed with the current 

networked induced delays caused by the EtherCAT fieldbus. Then, time delay compensation, 

which is a TwinCAT 3 feature, is added to the system to reduce these delays. A step response 

is used to test the response of the system without time delay compensation, and then with time 

delay compensation. The implementation results are compared with the simulation results to 

ensure the results are correct. Lastly, the developed control system limitations are discussed 

and implemented in real-time. 

 

Chapter 8 presents the conclusion, deliverables of the thesis, results of the work completed, 

future work that could add on to this thesis, and the publications emanating from this research. 

The references and appendices follow Chapter 8. 

 

1.11 Conclusion 
 
This chapter presented the introduction to this thesis including the awareness of the problem, 

the problem statement, aims and objectives, a hypothesis, possible research questions, 

delineation of the research, assumptions and deliverables of the project, and a complete 

chapter breakdown of the research work.  

 

The next chapter focuses on the literature review, which consists of a more in-depth look at 

the IEC 61499 standard as well as networked control systems. 
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CHAPTER 2 
LITERATURE REVIEW 

 
2.1 Literature Review on the IEC 61499 Standard 
 
2.1.1 Introduction 
 
The International Electrotechnical Commission (IEC) 61499 Standard is used in this thesis to 

design and implement a controller in a distributed environment.  This literature review focuses 

on the fundamentals of the IEC 61499 Standard from the release of the first edition in 2002 to 

the current second edition which was released in 2012. This review also focuses on the 

numerous case studies done by researchers, looking at the advancements and results of their 

papers which contributed to the refinement of the first edition to the second edition of the IEC 

61499 Standard.  

 

Section 2.1.2 describes the keywords used as well as the sources searched to complete the 

literature review. Section 2.1.3 gives a summary of all the literature reviewed on the IEC 61499 

Standard in a tabular form. Two tables are presented: the literature reviewed before the second 

edition of the standard was released, and the literature reviewed after the second edition of 

the standard was released. Section 2.1.4 gives a summary of the literature reviewed, focusing 

on distributed controller design, portability, execution methods, and modeling and verification 

when using the IEC 61499 Standard. Section 2.1.5 highlights comparisons between the 

literature reviewed, followed by a conclusion to the chapter in Section 2.1.6.  

 

2.1.2 Literature Search 
 
The main source of literature obtained is the IEEE Xplore database. The following keywords 

and phrases are used in searching this database: IEC 61499 Standard; distributed control 

systems; Designing IEC 61499 Standard systems; IEC 61499 Standard implementations; IEC 

61131-3 to IEC 61499. A collection of papers regarding these keywords are read and further 

research papers are found from the references in these articles. References found led to 

various websites and articles from ResearchGate. 

 

A total of 44 papers are reviewed using the above-mentioned keywords. Figure 2.1 illustrates 

a bar graph of the number of papers reviewed versus when the papers were published. The 

paper’s publication dates range from 2004 - 2023. More papers were found before 2012 as the 

IEC 61499 Standard was still new and many authors had comments to make on the first 

edition. After the release of the second edition in 2012, the articles are more about the 

implementation of the standard and not about its semantics as all ambiguities in the first edition 

were corrected. A gap is shown for the years 2019 and 2020 which could be due to the 

pandemic that occurred globally. To the best of my knowledge, there weren’t any articles 
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related to this literature review that could be summarized and described. The years 2021-2023 

shows an increase in literature regarding the IEC 61499 Standard with multiple articles being 

published.  

 

 

 

Figure 0.1: Bar graph showing the number of publications, categorized by year published, 
reviewed on IEC 61499 Standard in distributed control systems 

 

 

The following subsection summarizes the reviewed articles into Table 2.1 and 2.2. The review 

summary describes articles written on the first and second editions of the IEC 61499 standard 

focusing on the aim of the project, the system overview, the hardware/software required, and 

the authors conclusions.  
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2.1.3 Literature Review Summary 
 
 

Table 0.1: Literature Review of IEC61499 Standard first edition 

Paper (Reference) Aim of the project System Overview Hardware/Software 
Required 

Author’s Conclusions 

Design of distributed 
control systems based on 
new international 
standards. 
(Koziorek, 2004). 

To give an overview of a distributed 
control system design method that is 
based on the IEC 61499 and IEC 61131 
standard. This method can be used to 
design a new control system or to adapt 
an existing system. 

Investigative Paper No specific hardware or 
software is used as the 
paper depicts a generic 
control system. 

The paper added to the development phase of 
control systems. The processes described in this 
paper that are used to design and develop control 
system models would be demonstrated by the 
second half of 2004. 

Functional design for IEC 
61499 distributed control 
systems using Unified 
Modeling Language (UML) 
activity diagrams. 
(Panjaitan and Frey, 
2005). 

Use UML Activity diagrams to make 
designing a distributed control system 
easier and allow software components to 
be reusable. 
The UML diagrams must also increase 
the flexibility of system design to allow 
for easier reconfiguration and 
configuration of old and new systems. 

Feeder Station Function Block 
Development Kit (FBDK) 
from Rockwell used for 
the IEC 61499 function 
block creation. 
NETMASTER controller 
with a TINI 
microcontroller is used 
as the hardware. 

By using UML activity diagrams, this paper 
achieved flexibility and reusability when designing 
distributed control systems. 
It is shown that it is easier to design and 
understand distributed control systems when using 
the IEC 61499 Standard as the creation of function 
blocks enables a plug-and-play design. 

Intuitive control 
engineering for 
mechatronic components 
in distributed automation 
systems based on the 
reference model of IEC 
61499 
(Sunder et al., 2005). 

To model a mechatronic component into 
a single autonomous part that can be 
used in a distributed control system.  
This allows the local control device to 
interact with the component through 
services while keeping the mechatronic 
component's control separate. 

Control of a linear 
servo drive through 
IEC 61499 

The hardware consists of 
a micro-controller and a 
linear servo drive. 
No specific software is 
mentioned but it does 
have IEC 61499 
capabilities. 

It is possible to control a linear servo drive through 
Motion service commands sent from the local 
controller.  
This keeps the mechatronic component separate 
from the main controller, allowing better 
distribution of control through the system. The 
mechatronic components model is also reusable if 
more linear servo drives are needed. 

Systematic design and 
implementation of 
distributed controllers in 
industrial automation 
(Vyatkin et al., 2006). 

Comparing different approaches to 
distributed system design in automation 
systems.  

A distribution 
station consisting 
of a magazine and 
feeder unit is used 
to transport work 
pieces from 
storage 

No specific hardware or 
software is mentioned 
but it should be IEC 
61499 compliant  

Function block applications are sufficient when 
used to implement distributed controllers. 

Applying the IEC 61499 
model to the shoe 
manufacturing sector 
(Colla et al., 2006). 

Use IEC 61499 Standard to design an 
automation system for a plant that 
contributes to the preservation of shoe-
manufacturing activities in Europe. 

A manufacturing 
system that moves 
semi-finished 
shoes over 
innovative 

MATrix LABoratory  
(MATLAB) environment 
for simulations 
Custom tool made with 
Eclipse to import and 

The development phase is faster due to IEC 61499 
using modular function blocks that can be used 
reused. 
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transport lines from 
one station to 
another on a 
predefined 
operation 
schedule. 

convert Real-time 
Unified Modeling 
Language (RT-UML). 
specification to IEC 
61499 model. 

As systems get more complicated, the design 
approach is not usually identified immediately. 
Depending on the software used for developing 
IEC 61499 code, take into consideration the 
method used for executing control code as this 
could generate undesired effects. 

Formal Modeling of 
Function Block 
Applications Running in 
IEC 61499 Execution 
Runtime 
(Goran Čengić et al., 
2006). 

To prove that different logical behaviour 
of function blocks is shown when 
different execution methods are used. 

Carriage transport 
system for work 
pieces. 

Simulation and function 
block application 
execution by free 
software Fiber. supports 
IEC 61499 runtime. 

Using different execution run time environments, 
which use different execution methods, led to the 
different behaviour of function blocks.  

Deployment of IEC 61499 
compliant distributed 
control applications 
(Hussain and Frey, 2007). 

To find feasible and optimal deployment 
methods for distributed control systems 
that are IEC 61499 compliant. 

The proposed 
concepts are 
carried out on two 
separate systems. 
1) FESTO Modular 
Production System 
(MPS) didactic 
model. 
2) Lift control 
system. 

No specific hardware or 
software is mentioned 
but should be IEC 61499 
compliant. 

Worst-case scenarios are taken into consideration 
when doing the feasibility analysis which showed 
results that are not as feasible as predicted.  
The algorithm will continue to be tested in future 
work.  

Design and 
implementation of 
heterogeneous distributed 
controllers according to the 
IEC 61499 Standard - a 
case study 
(Hirsch et al., 2007). 

Present solutions to re-usability and 
integration between heterogeneous 
controllers in a distributed control system 
Illustrate how to integrate controllers 
using the IEC 61499 standard into 
systems previously based on 
Programmable Logic Controller (PLC) 
distributed control. 

Testbed built up of 
4 different stations: 
distribution, testing, 
drilling, handling. 

Various hardware 
modules are used to 
show the hardware 
independency of the IEC 
61499 Standard. 
1) Netmaster 2nd series 
device based on SNAP 
Java microprocessor. 
2) Siemens Simatic S7 
PLC. 
3) W2-FBC with SNAP 
microprocessor. 
FBDK used to design 
and implement 
controllers and 
visualization. 

Integration of IEC 61499 standard systems into 
existing IEC 61131 systems are inevitable in the 
future as distributed control becomes the norm.  
 
The integration and development of these systems 
and new control technologies do not require as 
much effort as anticipated by the authors. The 
modularity of the design allows for the results of 
smaller systems to be scaled to bigger and more 
complex industrial systems. 

Hierarchical distributed 
controllers - design and 
verification 
(Missal et al., 2007). 

Use a multi-layered architecture to 
design and implement the IEC 61499 
Standard distributed control system to 
enhance the reusability of controllers. 

Testbed used to 
drill holes in work 
pieces and monitor 
if the drilled holes 

No specific hardware or 
software is mentioned 
but should be IEC 61499 
compliant. 

Designing controllers based on modular and 
hierarchical design allows for fast redesign and 
formal verification of distributed control systems. 
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are correct. The 
system is split into 
multiple modules: 
table, drilling, and 
testing. 

 
SESA software tool is 
used for closed-loop 
verification. 

A control software 
development method using 
IEC 61499 function blocks, 
simulation, and formal 
verification 
(Goran Čengić and Knut 
Åkesson, 2008).  

To use control software to simulate a 
system without using the real hardware. 

The ball sorting 
process used to 
sort steel balls 
through a system 
of lifts and 
distributed to 
different levels 
based on weight. 

Simulation and function 
block application 
execution by free 
software Fiber. supports 
IEC 61499 runtime. 

The control software described allows the 
development and simulation of the entire system to 
be tested before deployment to real hardware.  
This approach leads to shorter development time, 
and it makes the control system less prone to 
incorrect behaviour which could destroy equipment 
in a real process. 

A synchronous approach 
for IEC 61499 function 
block implementation 
(Yoong et al., 2009). 

To show the feasibility and ease of 
verification when using a synchronous 
approach for the development of IEC 
61499 function blocks.  

Cruise control 
system. 

Esteral Studio and V7 
Esteral compiler are 
used for software. 
 
FBDK is used on a test 
bench to compare the 
Esteral results with 
 
No specific hardware is 
mentioned but should be 
IEC 61499 compliant. 
 

There is no need for a runtime environment when 
using a synchronous approach. 
 
Execution speed is increased due to no runtime 
being used as all decisions are made during 
compile-time. 
 

The IEC 61499 Standard 
and its semantics 
(Vyatkin, 2009). 

Investigation of the semantics of IEC 
61499 Standard, code portability, as well 
as function blocks and function block 
networks. 

Pneumatic cylinder 
test bed with two 
modes of 
operation.  
The modes are 
linked to two set 
positions for the 
pneumatic cylinder 
to move to as a 
reference. 
Safety curtains are 
also added to the 
system to prevent 
movement when 
triggered 

A Central Processing 
Unit (CPU) that is IEC 
61499 compliant with 
peripheral I/O 
(Input/Output) including 
a start and mode button, 
as well as a 7-segment 
(Light Emitting Diode) 
LED display to show 
which mode is active. 
 
ISaGRAF used for 
function block 
development 

By defining a limited number of models for function 
block network execution, the investigation has 
progressed the portability of function block 
applications in distributed control systems.  
 
These differences in execution models can be 
seen as future research topics. 

Closed-loop modeling in 
future automation system 

Describe new methodologies for 
validating and designing distributed 
control systems. 

Control of a 
storage system 

Floating Point 
Benchmark (FBench) 
used to model the 

The work done contributes to the grand challenge 
of completely automating the design and validation 
process by enabling correct-by-construction 
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engineering and validation 
(Vyatkin et al., 2009). 

Describe how these techniques are 
made possible by advanced technologies 
and the IEC 61499 Standard. 

mechatronic system into 
function blocks. 
Plant models are created 
in Visual NCES Editor 
(ViEd) 
Visual Verifier (Vive) 
used to check and 
analyze models. 
Simulink used to apply 
graphical models 

models. There is still lots of work to be done to 
solve the grand challenge, but the author states 
they will continue their efforts and recommends 
other researchers to help 

Design and 
implementation of 
LabVIEW-based IEC 
61499 compliant device 
(Polaków, 2009) 

To develop a run-time environment that 
can be uploaded to a PAC to convert the 
device to a compliant IEC 61499 device. 

Simulation of event 
generation and 
dispatching. 

The run-time 
environment is 
developed in the 
LabVIEW platform. 
 

Full functionality of the system is achievable 
theoretically, but the run-time is currently in the 
development phase 

Improving verification and 
reliability of distributed 
control systems design 
according to IEC 61499 
(Lapp et al, 2010) 

Use Net Condition/Event Systems 
(NCES) as formal models to improve the 
verification and reliability of distributed 
control systems. 

Investigative Paper 
 

 

No specific hardware or 
software is mentioned 
but should be IEC 61499 
compliant. 
 

By using the approach in this paper to model 
systems, there is an increase in validity and 
reliability, which allows the use of IEC 61499 to be 
used in engineering practices. 

Intelligent component-
based automation of 
baggage handling systems 
with IEC 61499 
(Black and Vyatkin, 2010) 

Create a decentralized control system 
using a multi-agent approach for a 
Baggage Handling System (BHS) using 
IEC 61499 function blocks. 

Baggage handling 
system, 
concentrating on 
creating a single 
component 
function block for a 
conveyor. 
Testbed using 
FESTO MPS500 
used for final 
testing 

FBDK used for function 
block design. 
 
Netmaster controller 
specified hardware 

Creating these autonomous conveyor sections has 
led to the easier setup of reconfigurable BHS 
systems. This system performs the same function 
as the previous centralized control application but 
is instead distributed over multiple embedded 
intelligent devices.  
 
Holonic control is achieved which allows for easier 
setup when there is an environmental change such 
as layout changes due to baggage flow increase 

IEC 61499 Function Block 
Model - Facts and 
Fallacies 
(Thramboulidis, 2010) 

Look at the semantics of IEC 61499 
function blocks to discuss facts and 
fallacies to determine why the standard 
has not been accepted by the industry 
yet. 

Review paper 
illustrating and 
analysing multiple 
case studies 

Multiple IEC 61499 
compliant hardware and 
software presented. 

Many issues are investigated which led to the 
conclusion that a major revision of the standard Is 
needed to allow it to be considered for industrial 
use. 
The standard does not apply certain basic 
engineering practices, which has led to many 
ambiguities during the initial phase of 
development. 

IEC 61499 as an enabler 
of distributed and 
intelligent automation: a 
state-of-the-art review 

Review the current work done and in 
progress regarding the IEC 61499 
Standard in distributed control systems. 

Review paper 
illustrating and 
analysing multiple 
case studies. 

Multiple IEC 61499 
compliant hardware and 
software is looked 
presented. 

IEC 61499 has become more popular due to the 
increase in smart devices causing more distributed 
systems. The standard is being used more with 
other standards such as IEC 61850 and IEC 
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(Vyatkin, 2011) 62424 which is enabling a means where the 
control system is automatically generated by 
importing design documentation into specific 
software.  
 
This decreases the development time drastically. 
The IEC 61499 has added great amounts of 
knowledge regarding distributed control systems 
that are not previously satisfied by IEC 61131-3. 

Distributed execution and 
cyber-physical design of 
baggage handling 
automation with IEC 61499 
(Yan and Vyatkin, 2011) 

To reduce the design and validation 
steps by developing efficient design 
methods for BHS. This results in 
improved robustness and adaptability in 
these systems. 
 
Also, to prove that designing a fully 
distributed system, which uses IEC 
61499 function blocks, is feasible. 

Baggage handling 
system, consisting 
of numerous 
conveyors 
connected via an 
Ethernet network 
of 50 control nodes 

48 Netburner devices 
(embedded controllers) 
Controller Operating 
System: 
C/OS-II Real-Time  
 
Controller Runtime: 
ISaGRAF runtime 
 

Feasibility is confirmed for implementing BHS 
control in a distributed system. 
  
By using a cyber-physical method, the goal of 
simple reconfiguration of BHS systems is possible. 
Future work will look at the automatic generation of 
function blocks through visual techniques to allow 
system designers to easily create new BHS 
systems. 
 
 

Design and execution 
issues in IEC 61499 
distributed automation and 
control systems 
(Strasser et al., 2011) 

To discuss and present different 
execution models of function blocks, 
Composite Function Blocks (CFBs), and 
sub-applications, in IEC 61499 devices. 

Investigative Paper No specific hardware or 
software is mentioned 
but should be IEC 61499 
compliant. 
 

This paper contributes to the ongoing goal of 
achieving an IEC 61499 distributed control system 
that is portable, configurable, interoperable, and 
distributed. 

On the use of model-
based IEC 61499 
controller design 
(Preuße et al., 2011) 

Review existing ways of modeling and 
verification of IEC 61499 compliant 
function blocks. 
State further challenges for formal 
technique developments of IEC 61499.  

Review paper 
illustrating and 
analysing multiple 
case studies 

Multiple IEC 61499 
compliant hardware and 
software presented 

It is shown that IEC 61499 has reached a point 
whereby it is realistic to apply in real-life industrial 
applications. The problem is that there is no 
pressure on vendors to take advantage of these 
technologies to develop new control systems. This 
could lead to all the research being stuck in limbo, 
only being displayed on test benches and not in 
the field. Companies must also be willing to 
migrate from IEC 61131-3 PLC-based automation 
to new technologies. This will probably be a 
phased transition, resulting in many 
heterogeneous systems. 

Redesign distributed PLC 
control using IEC 61499 
function blocks 
(Dai and Vyatkin, 2012)  

Propose methodologies for the 
conversion of PLC control (IEC 61131-3) 
to event-driven control which uses IEC 
61499 function blocks. 

Airport baggage 
handling system  

NXTStudio development 
environment used to 
create the function 
blocks. 

Distributed control logic is not easily implemented 
when designing IEC 61131-3 PLC systems.  
 
Three approaches are looked at when considering 
migration from IEC 61131-3 to IEC 61499 function 
blocks: object-oriented reuse, object-oriented 
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No specific hardware is 
mentioned but should be 
IEC 61499 compliant. 
 
 

conversion, and class-oriented approach. Object-
oriented conversion: used when a state machine is 
used for the original code. Object-oriented reuse: 
used when state machine code isn’t easily 
recovered. 
 
Class-oriented approach: use when converting 
data-intense systems. 
Reuse of IE C61131-3 code is suggested when 
migrating to IEC 61499 as this accelerates the 
transition process. 

Distributed control design 
of medical devices using 
plug-and-play IEC 61499 
function blocks 
(Sorouri et al., 2012) 

Reducing the complexity of current 
medical devices by using IEC 61499 
Standard function blocks to apply 
distributed control architectures. 

A robot to assist 
people who have 
lost the ability to 
move certain limbs 
due to having a 
stroke.  

Control system design in 
NXTStudio IDE using 
IEC 61499 Standard 
function blocks. 
Beckhoff CX101 
controller used for 
deployment 

Using the IEC 61499 Standard architecture 
reduced the development time and complexity by 
using plug-and-play software components. 
The proposed approach of this simple system can 
be used for fast implementation on more complex 
systems. 

 
 

Table 0.2: Literature review of IEC61499 Standard second edition 

Paper (Reference) Aim of the project System Overview Hardware/Software 
Required 

Author’s Conclusions 

The IEC 61499 Function 
Block Standard: Overview 
of the second edition 
(Christensen et al., 2012) 

Presents improvements of the IEC 61499 
Standard to its second edition which will 
be released in late 2012. 

Investigate Paper No hardware or software 
is presented as the 
entire IEC 61499 
Standard is looked at 

After listing all the new additions that form the IEC 
61499 standard second edition, it is said stated 
that the standard will be refined to be more clear, 
unambiguous, and industrially useful.  
The conclusion is that all vendors should seriously 
consider developing software tools, runtime 
platforms, or control hardware so that they can 
enter a growing market. 

The IEC 61499 Function 
Block Standard: Launch 
and Takeoff 
(Strasser et al., 2012) 

Discuss the start of the take-off phase of 
the IEC 61499 Standard.  
Look at processes that will lead to a 
successful take-off of the standard. 

Investigate Paper No hardware or software 
is presented as the 
entire IEC 61499 
Standard is looked at 

IEC 61499 take-off phase has started. 
The standard can serve a great payoff if early 
adapters focus on addressing complaint profiles 
and trained personnel as soon as possible. 

Virtual Smart Metering in 
Automation and 
Simulation of Energy-
efficient Lighting System 
(Pang et al., 2013) 

Use function blocks based on IEC 61499 
Standard to create virtual smart metering 
systems that are easily reusable to 
reduce laborious work when creating 
building automation and control systems.  

Prototype lighting 
control system to 
simulate a virtual 
smart metering 
system that 
measures and 

SCADA developed in  
NXTStudio 
Digital Addressable 
Lighting Interface (DALI) 
protocol is used for 
communication. 

The research found that intelligent lighting control, 
compared to normal lighting control, has much 
better energy efficiency. 
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monitors energy 
efficiency in a 
building 

IEC 61499 Standard 
used for function blocks 
of the DALI Light 
 

A Portability Study of IEC 
61499: Semantics and 
Tools 
(Pang et al., 2014) 

A study of portability issues in IEC 61499 
tools such as FBDK, 4DIAC, ISaGRAF 
and  NXTStudio. 
The main outline is with the compatibility 
issues because of different execution 
semantics. 

Investigative Paper FBDK, 4DIAC, ISaGRAF 
and NXTStudio are all 
compared and tested for 
compatibility 

IEC 61499 second edition has solved many of the 
execution issues since its release. 
Full portability and interoperability can only be 
reached once it is possible to formally analyze and 
validate against runtime platforms.  

Cyber-physical 
Components for 
Heterogeneous Modeling, 
Validation, and 
Implementation of Smart 
Grid Intelligence 
(Zhabelova et al., 2014) 

To show that using Cyber-physical 
systems can improve design, validation, 
and verification in smart grid automation. 

Load balancing 
cyber-physical 
system 

A distributed network is 
modeled with MATLAB. 
 
NXTStudio used for IEC 
61499 environment. 
 
Cyber-physical systems 
executed on an ARM 
board 

Load balancing test application shows that IEC 
61499 allows for the execution of Cyber-physical 
systems on industrial hardware applications.  

Bridging Service-oriented 
Architecture and IEC 
61499 for Flexibility and 
Interoperability 
(Dai et al., 2015) 

Describe a method of modeling that uses 
SOAs in a distributed control system 

Section of a 
baggage handling 
system where a 
single infeed 
conveyor is split 
into two screening 
lines  

BHS emulator - 
Glidepath Group 
FBSRT used for the 
function block service 
runtime. Beaglebone 
Black board used for 
hardware, with 
specifications AM335x 
1Ghz CPU, 512M DDR3 
Random Access 
Memory (RAM), and 
4GB Read-only Memory 
(ROM). 
FORTE runtime used as 
a test reference running 
a similar implementation. 

Using SOAs with the IEC 61499 Standard allows 
the ability to reconfigure, update or delete FB 
instances without stopping the system's normal 
execution runtime.  

Formal Verification of 
IEC61499 Function with 
Abstract State Machines 
and SMV - modeling 
(Patil et al., 2015) 

Use abstract state machines to propose 
rules that can be used to formally model 
IEC 61499 function blocks 

A generic basic 
function block is 
used for modeling 

FB developed in 
ISaGRAF 
No hardware as paper 
focuses on simulation 
only 

A formal model of IEC61499 is presented and 
proved that it can be used to verify and simulate 
using SMV. 
 

Formal Verification of 
IEC61499 Function with 
Abstract State Machines 

Present the IEC 61499 Standards 
execution semantics ambiguities as well 

Investigative Paper No hardware or software 
is presented as the 

Presented the model checking for an industrial 
automation control system.  
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and SMV - Execution 
Semantics 
(Dubini and Vyatkin, 2015) 

as describe the rules for SMV model 
transformation. 

entire IEC 61499 
Standard is looked at 

Demonstrated how their auto generator can 
support different execution semantics 

Complementing Testing of 
IEC61499 Function Blocks 
with Model-checking 
(Glatz et al., 2016) 

Use Uppaal model checker to prove the 
usefulness of an automated translation 
approach to generate models for IEC 
61499 function blocks. 

A segment of a 
building that has an 
automated system 

No specific hardware or 
software is mentioned 
but should be IEC 61499 
compliant. 
 

The presented approach to automate IEC 61499 
function blocks to Uppaal processes, to allow 
testing with model checking, helps improve 
verification of these systems.  

Open Architecture for 
Cost-Effective Protection 
and Control of Power 
Distribution 
(Zhabelova et al., 2017) 

Demonstrate an execution platform for 
developing protection functions using 
open standards. Test the functions and 
the reaction times. Investigate verification 
methods for the functions as well as how 
to do remote upgrades. 

Investigate Paper No hardware or software 
is presented as the 
entire IEC 61499 
Standard is looked at 

 

Distributed Home 
Automation System Based 
on IEC61499 Function 
Blocks and Wireless 
Sensor Networks 
(Abrishambaf et al., 2017) 

Design and implement a fully distributed 
wireless sensor network with IEC 61499 
function blocks as the architecture.  

Building 
automation project 
which measures 
the temperature 
and humidity in 
various rooms and 
sends the data to 
the cloud 

 Systems simulated in 
Cooja platform of 
Contiki-OS 
TelosB platforms used 
for implementation. 
NXTStudio used for 
function block layout and 
HMI development. 
 
Ubidots used as a cloud 
service to capture and 
post data to the Internet 

A fully distributed system is developed and 
implemented to show the flexibility and 
reconfigurability of using the IEC61499 Standard 
for function blocks 

Estimation, Measurement, 
and Improvement of 
Distributed Automation 
Applications Performance 
(Väänänen and Vyatkin, 
2017) 

Determine the performance of IEC 61499 
Standard distributed systems to add to 
the research field of improving end-to-
end response times of said systems. 

Function block 
system to 
determine time 
delays in I/O 
latching 

4DIAC WCET analysis 
tool to determine 
response times. 
4DIAC IDE to develop 
function blocks. 
No hardware specified 
but should be 61499 
Standard compliant 

A mathematical model is presented to determine 
the performance of distributed automation 
systems. 
More research should be done to determine end-
to-end response times of systems to improve 
overall performance 

Toward self-Manageable 
and Adaptive Industrial 
Cyber-Physical Systems 
with Knowledge-driven 
Autonomic Service 
Management 
(Dai et al., 2017) 

Integrate service-oriented architecture 
with an automatic service manager in an 
IEC 61499 Standard distributed control 
system. 

Baggage Handling 
system 

BHS simulator is used 
for the simulation of the 
control system. 
SQWRL language is 
used to set rules for 
automatic service 
managers. 

Interoperability and flexibility are achieved when 
using service-based agents in service-oriented 
execution environments at the device level. 
Self-optimization as a self-management feature 
can improve efficiency when trying to utilize 
resources. 
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No hardware specified 
but should be 61499 
Standard compliant. 

Refactoring of IEC 61499 
Function Block Application 
– A Case Study 
(Patil et al., 2018) 

Propose methods to refactor existing 
function blocks to increase readability, 
maintainability, reuse-ability, and 
debugging. 

Festo didactics’ 
distribution station 
code used 

NXTStudio development 
environment used to 
create the function 
blocks. No specific 
hardware is mentioned 
but should be IEC 61499 
compliant 

The paper proves that refactoring is possible on 
IEC 61499 function blocks.  
The refactoring methods presented contribute to 
the field that is not yet extensively researched and 
used in function block development. 

Multi-Agent Modeling of 
Cyber-Physical Systems 
for IEC 61499 Based 
Distributed Automation 
(Lyu et al., 2021) 

Model industrial cyber-physical systems 
using a two-layer architecture: high level 
uses a multi-agent computer model, 
whereas low level uses the IEC 61499 
Standard function block model. 

Generic System to 
show the functions 
of the two-layer 
architecture 

Smart Python Agent 
Development 
Environment (SPADE) is 
used to develop multi-
agent models. 
Eclipse 4diac used to 
develop the IEC 61499 
Standard function 
blocks. 
The agents are spread 
out between a Jetson 
Nano, Raspberry Pi 
microcontrollers 

Future work needs to be done for both layers in 
the architecture proposed. 
Multi-agent modelling requires the development of 
self-learning and machine learning capabilities. 
IEC 61499 Standard function block modelling 
requires an easier method of deploying control 
applications to microcontrollers such as the 
Raspberry Pi 

Simulation and Control of 
a Cyber-Physical System 
under IEC 61499 
Standard 
(Santos and da Silva, 
2021) 

Use a low-cost device to implement a 
modular control system. 

Festo conveyor 
project kit 

Eclipse 4diac used to 
develop the IEC 61499 
Standard function 
blocks. 
Raspberry Pi used as 
hardware for runtime.  
 
Siemens s7-1200 used 
as plant controller for 
conveyor 

The method used to validate and simulate a cyber-
physical system is proven to be successful as a 
single element or in a network combination 

Towards IEC 61499-
Based Distributed 
Intelligent Automation: A 
Literature Review 
(Lyu and Brennan, 2021) 

Compose a detailed literature review of 
the IEC 61499 Standard. 

Review paper 
illustrating and 
analysing multiple 
case studies 

Multiple IEC 61499 
compliant hardware and 
software presented 

Detailed literature review sectioned into the three 
main issues with the IEC 61499 Standard. These 
issues include how to transition code from IEC 
61131-3 to IEC 61499, how the standard has 
enabled distributed control in industrial systems, 
and how to implement the standard in engineering 
environments. 

Design of Integrated 
Energy System Based on 

To showcase a method using the IEC 
61499 Standard and OPC UA 
communications to apply cyber-physical 

A photovoltaic 
simulated system 
connected through 

Simulation of the 
photovoltaic system is 

The simulation results show that the integration 
with OPC UA is successfully applied on the 
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IEC 61499 and OPC UA 
(Wang et al., 2022) 

system technology in Internet energy 
systems. The proposed design is 
modular to allow for reconfigurability, 
interoperability and reusability.  

a gateway to an 
electricity meter for 
monitoring. 

done in 
MATLAB/Simulink.  
 
Hardware consists of a 
Raspberry Pi equipped 
with an embedded Linux 
operating system. The 
programming software 
used to create the 
function blocks is 
4DIAC. 

photovoltaic system to communicate with the IEC 
61499 function blocks.  
 
The author predicts that component-based and 
modular systems will be the new trend in Internet 
energy systems by using the IEC 61499 Standard 
as well as the OPC UA technologies.  
 
Future work involves validating the proposed 
approach as well is applying it to more complex 
real-world scenarios. 

Validating Effect of 
Refactoring of IEC 61499 
Function Block in 
Distributed Control 
Systems (Cruz et al., 
2022) 

Propose methods to refactor IEC 61499 
Standard function blocks in an existing 
material handling system to allow for 
easier portability and reusability. These 
methods allow for easier generation of 
code for automated systems.  

Material handling 
system 

Simulation model of the 
material handling system 
is created using 
NXTStudio and 
designed and controlled 
using IEC 61499 
Standard function 
blocks. 

By refactoring existing function blocks, it is easier 
to reuse code when creating new projects. The 
authors conclude that they recommend distributed 
control design when creating automation platforms 
and optimizing existing platforms by refactoring 
existing designs.  

Model-aware Simulation of 
IEC 61499 Designs 
(Mehlhop and Walter, 
2022) 

To extract information from IEC 61499 
Standard simulated models to analyse 
system events for verification. This is 
done by transforming models into 
SystemC models that can be analysed by 
third party software for debugging. 

D-flip-flop model 
created with IEC 
61499 Standard 
function blocks 

4Diac is used to create 
the initial IEC 61499 
Standard function 
blocks. SystemC is used 
for debugging the 
extracted transform 
4DIAC function blocks. 
 
FORTE is used as the 
runtime platform. 

The authors methods proved feasible through trials 
completed on the D-flip-flop system. The function 
blocks are successfully extracted and transformed 
to SystemC for analysing of the events. The ability 
to follow traces of events between function blocks 
is proven insightful.  
 
Future work looks to increase the accuracy of the 
time model, as well as develop more rigorous test 
cases. 

Structuring Cyber-Physical 
Systems for Distributed 
Control with IEC 61499 
Standard (Cruz et al., 
2023) 

To propose a cyber-physical model that 
reduces the complexity of control 
software by distributing the software over 
numerous small devices. The IEC 61499-
based model is also validated and tested 
using a case study. 

Material handling 
system consisting 
of 3 cylinders 
controlled by 
separate 
controllers that 
have IEC 61499 
Standard 
capabilities. 

NXTStudio IDE is used 
for development of IEC 
61499 Standard function 
blocks and 
communication links.  
 
Distributed Control 
System (DCS) mini 
Schneider controller 
used as the hardware 
platform for the 
deployment of the 
created function blocks 
and software. 

The proposed methods are proven to be more 
modular, reusable, and adaptable than the usual 
requirements for such systems. This is done by 
doing simple extensions and adaptations that help 
with reusing the models. 
 
Future works looks to add the communication 
protocol OPC UA to the models to allow for 
information to be sent to the cloud. 
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Automatic Information 
Model Generation for 
Industrial Edge 
Applications Based on IEC 
61499 and OPC UA (Dai 
et al., 2023) 

The aim of the authors is to present an 
automated generation model to help 
reduce the development time when 
creating information systems that are 
based on the IEC 61499 Standard. The 
use of OPC UA architectures is present 
in the case study used to test the 
proposed models when transforming 
between design time and runtime. 

A white-body 
welding simulation 
line used by an 
automotive 
company is used 
as a case study. 

FB Builder is used to 
create the IEC 61499 
Standard function 
blocks, and FBSRT is 
used for the runtime. 
 

The case study resulted in an increase in 
efficiency, flexibility, and interoperability in design 
time and runtime when automatically generating 
the information models. The improvement in 
efficiency shows a significant reduction in time 
when combining control and information models. 
 
Future work consists of improvements in the 
automatic generation process. 
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2.1.4 Literature review based on the IEC 61499 Standard 
 
2.1.4.1 Distributed controller design based on the IEC 61499 Standard 
 
Control systems are becoming more distributed due to an increase in smart devices in the 

industry. Before, all control was done in a centralized PLC using the IEC 61131-3 standard as 

all the peripheral I/O devices did not have any or had very little intelligence. The IEC 61131-3 

standard was not designed for distributed control, and with the increase in the distribution of 

control devices, the standard is subject to problems with performance, spatial distribution, and 

ease of integration and reuse (Vyatkin et al., 2006). According to (Dai and Vyatkin, 2012), this 

traditional way of designing automation control systems with PLCs using the IEC 61131-3 

standard is becoming a serious bottleneck when attempting to implement decentralized 

control. 

 

One of the main advantages of the IEC 61499 Standard is that it allows for distributed controller 

design. Distributed control allows for a decrease in hardware cost while simultaneously 

increasing communication power (Thramboulidis, 2010). These systems also require less 

wiring, have more fault diagnostic information, and allow distributed components to be 

autonomous. These systems are also less complex compared to centralized control, as the 

functionality is spread over many sub-processing units (Hirsch et al, 2007). (Hirsch et al, 2007) 

mentions three different approaches to controller design: Centralized approach, distributed 

approach with master controller, and pure distributed approach. IEC 61499 Standard fits best 

with the pure distributed approach as the flexibility and reusability nature of the function blocks 

allow for control to be easily distributed. (Vyatkin, 2006) suggests a layered approach to 

distributed controller design as shown in Figure 2.2. The sensors/actuators layer consists of 

the direct interface with the plant. The operation layer consists of the operations defined to 

control the interfaced components of the plant. Lastly, the applications layer consists of 

intelligent code developed on decentralized controllers. 

 
 

 

Figure 0.2: Layered approach to distributed controller design (Vyatkin, 2006) 
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(Missal et al, 2007) approaches distributed controller design by splitting the controllers in 

multiple master controllers. The result is a composition of distributed controllers over a layered 

system as shown in Figure 2.3. The physical layer is either a model of a plant or the plant itself. 

The task layer consists of controllers that only control the specific plant that it is linked to. 

These controllers do not interact with the rest of the system and therefore work independently. 

The coordination layer consists of the master controllers that use communication mediums to 

control the distributed controllers in the task layer. 

 
 

 

Figure 0.3: Information flow between a multi-layered networked  

architecture (Missal et al, 2007)  

 

 

Communication between the different layers in any of this distributed system is done through 

events. The following subsection describes the different execution methods in which these 

events take place. 

 

2.1.4.2 Execution methods 
 
Before the release of the IEC 61499 second edition, there were great ambiguities regarding 

the execution methods of function blocks when using this standard. This led to runtime 

environments from different software developers taking different approaches to how the 

execution of events should be handled (Lapp et al., 2010). With there being no real 

specification of event execution, all the developed execution models became compliant.  

 

There are three main execution models of IEC 61499 Standard function blocks: sequential, 

cyclic, and synchronous. Each of these methods has a different way of handling simultaneous 

input events, as the IEC 61499 Standard syntax does not allow for events to invoke the function 

block at the same time (Vyatkin, 2011). Sequential execution of events is the method of 
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executing the events in a preserved order from when it invoked the function block (Vyatkin, 

2009). The stored events occur on a First-In-First-Out (FIFO) basis and are only active once 

the previous event has been processed by the function block (Preuße et al., 2011). The cyclic 

execution model is like the IEC 61131-3 standard in which events cyclically invoke the function 

blocks (Vyatkin, 2009). Synchronous execution uses global events called ticks to align the 

execution speeds with a time constant. It is like cyclic execution as it moves away from event-

driven to a more event-scan-based control (Preuße et al., 2011). The issue with having 

different execution methods is that portability between software tools becomes almost 

impossible. It also influences the case studies performed by researchers as different results 

are shown depending on which software tools are used as execution methods are different 

(Čengić et al., 2006). Certain researchers perform their experiments according to more than 

one execution method just to prove their results conform to the standard (Hussain and Frey, 

2007). 

 

2.1.4.3 Portability 
 
In the automation industry, the need to migrate code from one hardware platform to another 

arises very often (Vyatkin, 2009). With the IEC 61131-3 standard, this is usually a difficult and 

complex task, and the code is not automatically read in another software platform without 

adjusting or copying the code line by line. This is normally due to semantics and different 

syntax between software platforms. The IEC 61499 Standard aims to move away from 

heterogeneous systems as these systems, consisting of devices from multiple vendors which 

can become time-consuming and are more prone to errors (Goran Čengić and Knut Åkesson, 

2008). Function block systems that are developed using the IEC 61499 Standard should be 

reusable across all IEC 61499 compliant devices. This is one of the major requirements of the 

standard and allows for ease of portability, interoperability, configurability, and reusability. 

Figure 2.4 below shows the relationship between these requirements in a distributed control 

system. 

 
 

 

Figure 0.4: Flow chart showing portability, configurability, and interoperability in a distributed 
control system (http://www.holobloc.com/papers/iec61499/overview.htm) 



 25

Software is portable when it can be interpreted by multiple different software tools (Strasser et 

al., 2011). The IEC 61499 Standard eases portability as all the code is encapsulated in function 

blocks. This makes the code independent from the event command sequences outside of the 

blocks (Vyatkin, 2011). The configurability of a device depends on if its software components 

can be configured by other software tools from various vendors (Strasser et al., 2010). 

Interoperability in distributed control systems is when communication between the embedded 

devices allows them to perform functions together for distributed applications. Lastly, 

reusability is the ability to use function blocks in different systems under a different context 

(Missal et al., 2007). Reusability is achieved by standardizing inputs, outputs, and means of 

communication of a function block (Hirsch et al., 2007).  

 
2.1.4.3 Modeling and verification 
 

Control systems should be verified before being connected to a plant (Lapp et al, 2010). This 

is done by modeling the system using various techniques available. Examples of a few formal 

modeling techniques include Event System, Finite-State Machine, Discrete-Time/Event 

approach (DT/DE), Timed Net Condition, Time Automata, Petri next, etc. (Santos and da Silva, 

2021). Using these methods to formally verify a control system is advantageous as the 

performance of the system is quantified by estimating end-to-end response times, through 

simulations, before deployment (Dai et al., 2017). 

 

Formal verification is the most efficient way to prove a system is correct as the given 

specifications are used to verify the algorithms in the control code (Patil et al., 2015). State-

space generation helps identify failures in a system that may prevent the system from being 

considered safe. Dynamic verification, on the other hand, focuses on monitoring and unit 

testing only certain devices in a system (Glatz et al., 2016). This form of verification is less 

time-consuming but could put the system at risk if certain bugs are not found due to multiple 

devices not being modeled and verified. Verification of IEC 61499 Standard control systems is 

very important as there is a difference in execution semantics depending on which vendor is 

used. These systems should be tested for interoperability and portability in different 

environments to prove or disprove behavior for verification (Patil et al., 2015).  

 

To verify an IEC 61499 distributed control system, it is necessary to convert all devices, 

resources, Service Interface Blocks (SIFBs), and scheduling functions into formal models 

(Lapp et al, 2010). By modeling all components of the distributed system, verification and 

validation are ensured as code is tested, debugged, and simulated. This modeling process is 

often challenging as all aspects of the system need to be considered, including all control 

nodes and variable communication times (Zhabelova et al., 2014). Although challenging, 

modeling needs to be done to ensure the correctness of the control system. 
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2.1.4.4 The IEC 61499 Standard second edition 
 

The IEC 61499 Standard was updated from the first to the second edition in 2012. The new 

edition comes after 120 editorials and 40 technical comments were written in response to the 

first edition’s semantics (Christensen et al., 2012). The first edition had many ambiguities which 

confused developers and programmers who were using the standard. (Thramboulidis, 2010) 

found the learning curve very steep and mentioned that there were not enough reference 

implementations to show the advantages of the technology, therefore stating that a major 

revision should seriously be considered. 

 

(Vyatkin, 2011) stated that by 2011 the use of the IEC 61499 Standard was very low in the 

industry due to “the lack of mature engineering tools, reliable embedded control hardware, 

proven design methodologies, and trained engineers”. (Vyatkin, 2011) also said that the 

standard does not accompany the arrival of multiple events after one another, which could lead 

to a loss of event inputs.  

 

The second edition refined how event inputs to function blocks should be executed. 

(Christensen et al., 2012) explains that the way around event execution is to prevent the 

resource from sending more than one event to the input of a function block at the same time. 

The IEC 61499 Standard systems’ interaction with PLCs, the addition of temporary variables 

in function blocks, as well as the simplification of ‘READ’ and ‘WRITE’ commands, are all 

factors that are changed in the second edition due to the editorial and technical comments 

made since the release of the first edition (Christensen et al., 2012).  

 

Subsection 2.1.4 summarized and discussed the literature reviewed on the IEC 61499 

standard. The next subsection compares the similarities and differences between the articles 

reviewed. 

 

2.1.5 Comparisons between literature reviewed on the IEC 61499 Standard 

 

After the release of the IEC 61499 Standard first edition, there were many articles written on 

how to design distributed systems based on the standard. Earlier published articles were more 

investigative papers, not having many practical examples or case studies. As shown in Table 

2.3, Articles 1 and 2 have no hardware or software required as these papers were more 

theoretical than practical. When looking at more recent articles, such as Article 3, which was 

published in 2021, a case study is designed and implemented with the specified software and 

hardware. This shows the improvement in the development of IEC 61499 compliant software 

tools in the short period from 2004 to 2021. 
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Table 0.3: Comparison of papers published on IEC 61499 Standard distributed control systems 

No. Paper 
(Reference) 

Aim of the project System 
Overview 

Hardware/Software 
Required 

Author’s Conclusions 

1 Design of 
distributed 
control 
systems 
based on 
new 
international 
standards 
(Koziorek, 
2004) 

To give an overview of 
a distributed control 
system design method 
that is based on the 
IEC 61499 and IEC 
61131 standards. This 
method can be used to 
design a new control 
system or to adapt an 
existing system. 

Investigate 
Paper 

No specific hardware 
or software is used as 
the paper depicts a 
generic control 
system. 

The paper added to the 
development phase of 
control systems. The 
processes described in this 
paper that are used to 
design and develop control 
system models would be 
demonstrated by the 
second half of 2004. 

2 Systematic 
design and 
implementati
on of 
distributed 
controllers in 
industrial 
automation 
(Vyatkin et 
al., 2006) 

Comparing different 
approaches to 
distributed system 
design in automation 
systems. 

A distribution 
station 
consisting of 
a magazine 
and feeder 
unit is used 
to transport 
workpieces 
from 
storage. 

No specific hardware 
or software is 
mentioned but should 
be IEC 61499 
compliant. 

Function block applications 
are sufficient when used to 
implement distributed 
controllers. 

3 Multi-Agent 
Modeling of 
Cyber-
Physical 
Systems for 
IEC 61499 
Based 
Distributed 
Automation 
(Lyu et al., 
2021) 

Model industrial cyber-
physical systems using 
a two-layer 
architecture: high level 
uses a multi-agent 
computer model, 
whereas low level uses 
the IEC 61499 
Standard function block 
model. 

Generic 
System to 
show the 
functions of 
the two-layer 
architecture. 

SPADE is used to 
develop multi-agent 
models. 
Eclipse 4Diac is used 
to develop the IEC 
61499 Standard 
function blocks. 
The agents are 
spread out between a 
Jetson Nano, and 
Raspberry Pi 
microcontrollers. 

Future work needs to be 
done for both layers in the 
architecture proposed. 
Multi-agent modeling 
requires the development 
of self-learning and 
machine learning 
capabilities. 
IEC 61499 Standard 
function block modeling 
requires an easier method 
of deploying control 
applications to 
microcontrollers such as 
the Raspberry Pi. 

 

 

Due to ambiguities in the execution methods of IEC 61499 Standard function blocks in the first 

edition, different software environments handled event inputs differently. Authors from articles 

1 and 2 in Table 2.4 concluded that different execution methods cause different results on the 

same IEC 61499 Standard function blocks. Multiple execution methods led to authors writing 

articles, such as article 3 in Table 2, comparing different execution methods and the behavior 

it has on the IEC 61499 Standard function blocks.  

 

These different execution methods prevent portability of IEC 61499 function blocks; therefore, 

most authors suggested a major revision of the standard is needed. The major revision of the 

IEC 61499 standard was issued in 2012, fixing most ambiguities noticed by researchers of the 

standard. The new revisions focus on the initial goal of the IEC 61499 standard which looks to 

make programming software more portable, interoperable, reusable, and easily configurable.  
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Table 0.4: Comparison of papers published on executions methods of IEC 61499 Standard 
function blocks 

No. Paper 
(Reference) 

Aim of the project System 
Overview 

Hardware/Software 
Required 

Author’s Conclusions 

1 Formal 
Modeling of 
Function Block 
Applications 
Running in 
IEC 61499 
Execution 
Runtime 
(Čengić et al., 
2006) 

To prove that different 
logical behavior of 
function blocks is 
shown when different 
execution methods are 
used. 

Carriage 
transport 
system for 
workpieces. 

Simulation and 
function block 
application execution 
by free software 
Fiber. Supports IEC 
61499 runtime. 

Using different execution run 
time environments, which 
use different execution 
methods, led to the different 
behavior of function blocks.  

2 IEC 61499 
Function Block 
Model - Facts 
and Fallacies 
(Thramboulidi
s, 2010) 

Look at the semantics 
of IEC 61499 function 
blocks to discuss facts 
and fallacies to 
determine why the 
standard has not been 
accepted by the 
industry yet. 

Review 
paper 
illustrating 
and 
analyzing 
multiple 
case 
studies. 

Multiple IEC 61499 
compliant hardware 
and software are 
presented. 

Many issues are 
investigated which led to the 
conclusion that a major 
revision of the standard Is 
needed to allow it to be 
considered for industrial 
use. 
The standard does not apply 
certain basic engineering 
practices, which has led to 
many ambiguities during the 
initial phase of development. 

3 Design and 
execution 
issues in IEC 
61499 
distributed 
automation 
and control 
systems 
(Strasser et 
al., 2011) 

To discuss and 
present different 
execution models of 
function blocks, CFBs, 
and sub-applications, 
in IEC 61499 devices. 

Investigate 
Paper 

No specific hardware 
or software is 
mentioned but 
should be IEC 61499 
compliant. 
 

This paper contributes to the 
ongoing goal of achieving an 
IEC 61499 distributed 
control system that is 
portable, configurable, 
interoperable, and 
distributed. 

 
 
Many articles are written on the lack of portability between the different IEC 61499 Standard 

programming environments. Article 1, in Table 2.5, compared the differences and similarities 

between these software tools by testing their portability between them. Figure 2.5 shows a 

summary of the results of the study, comparing FBDK, 4DIAC, NXTStudio, and ISAGRAF. The 

study found that library repositories and function blocks are not fully portable between different 

vendors, which defeated the point of using the IEC 61499 Standard. This lack of portability is 

mainly due to the different execution methods used by the different vendors. 

 
 

Table 0.5: Summary of a portability study on IEC 61499 Standard software tools published by 
(Pang et al., 2014) 

No. Paper 
(Reference) 

Aim of the project System 
Overview 

Hardware/Software 
Required 

Author’s Conclusions 

1 A Portability 
Study of IEC 
61499: 
Semantics 
and Tools 
(Pang et al., 
2014) 

A study of portability 
issues in IEC 61499 
tools such as FBDK, 
4DIAC, ISaGRAF, 
and NXTStudio. 
The main outline is 
with the compatibility 
issues because of 
different execution 
semantics. 

Investigate 
Paper 

FBDK, 4DIAC, ISaGRAF, 
and NXTStudio are all 
compared and tested for 
compatibility. 

IEC 61499 second edition has 
solved many of the execution issues 
since its release. 
Full portability and interoperability 
can only be reached once it is 
possible to formally analyze and 
validate against runtime platforms.  
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Figure 0.5: Comparison of IEC 61499 Standard programming environments (Pang et al., 2014) 

 
 
The IEC 61499 Standard became more popular after the release of the second edition in 2012. 

Articles 1 and 2, in Table 2.6, both conclude that the use of the IEC 61499 Standard in the 

industry will increase, and that vendors and early adaptors should start investing in this means 

of controlling distributed systems. Both these articles are investigative, focusing on how the 

standard has improved and become more industry useful. 

 

Table 0.6: Comparison of papers published on the release of the IEC 61499 Standard second 
edition 

No. Paper 
(Reference) 

Aim of the project System 
Overview 

Hardware/Software 
Required 

Author’s Conclusions 

1 The IEC 
61499 
Function 
Block 
Standard: 
Overview of 
the second 
edition 
(Christensen 
et al., 2012) 

Presents 
improvements of the 
IEC 61499 Standard 
to its second edition 
which will be 
released in late 
2012. 

Investigate 
Paper 

No hardware or software is 
presented as the entire IEC 
61499 Standard is looked at. 

After listing all the new additions that 
form the IEC 61499 Standard 
second edition, it is said stated that 
the standard will be refined to be 
more clear, unambiguous, and 
industrially useful.  
The conclusion is that all vendors 
should seriously consider 
developing software tools, runtime 
platforms, or control hardware so 
that they can enter a growing 
market. 

2 The IEC 
61499 
Function 
Block 
Standard: 
Launch and 
Takeoff 
(Strasser et 
al., 2012) 

Discuss the start of 
the take-off phase of 
the IEC 61499 
Standard. 
Look at processes 
that will lead to a 
successful take-off 
of the standard.  

Investigate 
Paper 

No hardware or software is 
presented as the entire IEC 
61499 Standard is looked at. 

IEC 61499 take-off phase has 
started. 
The standard can serve a great 
payoff if early adapters focus on 
addressing compliant profiles and 
training personnel as soon as 
possible. 

 
 

This subsection discussed the similarities and difference between multiple articles written on 

the IEC 61499 Standard. The next section of Chapter 2 describes the literature review on 

networked control system.. 
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2.2 Literature Review on Networked Control Systems 
 
2.2.1 Introduction 
 
The proposed control system in this thesis consists of a Direct Current (DC) motor being 

controlled via an Ethernet for Control Automation Technology (EtherCAT) fieldbus network. The 

EtherCAT network is a replacement for the usual hardwired system. Due to this, a literature 

review on Network Control Systems (NCSs) assists in gaining the necessary knowledge before 

designing and implementing the system. This review focuses on the advantages and 

disadvantages of NCSs, as well as the network-induced delays that occur in these real-time 

networks. Multiple authors’ methods to overcome these delays are also discussed. 

 

Section 2.2.2 describes the keywords used as well as the sources searched to complete the 

literature review. Section 2.2.3 gives a summary of all the literature reviewed on NCSs in a 

tabular form. Section 2.2.4 gives a summary of the literature reviewed, focusing on an overview 

of NCSs and the delays that are caused by using a fieldbus in the network. Section 2.2.5 

highlights comparisons between the literature reviewed, followed by a conclusion to the 

chapter in Section 2.2.6.  

 

2.2.2 Literature Search 
 
The main source of literature is obtained from the IEEE Xplore database. The following 

keywords and phrases were searched in this database: Network control systems; delays in 

network control systems; distributed network control systems; stability in network control 

systems. A collection of papers regarding these keywords areread and further research papers 

are found from the references in these articles. References found led to various websites and 

articles from ResearchGate. 

 

A total of 20 papers are reviewed on the above-mentioned keywords. Figure 2.6 illustrates a 

bar graph of the number of papers reviewed verses when the papers were published. The 

paper’s publication dates range from 2005 - 2023. 
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Figure 0.6: Bar graph showing the number of publications, categorized by  

year published, reviewed on networked control systems 
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2.2.3 Literature Review Summary 
 

Table 0.7: Literature Review of Networked Control Systems 

Paper (Reference) Aim of the project System Overview Hardware/Software 
Required 

Author’s Conclusions 

A New Method for 
Stabilization of Networked 
Control Systems with 
Random Delays 
(Zhang et al., 2005) 

To analyse the stabilization problem of a 
discrete-time plant with random network-
induced delays. 
To model the two network delays as 
Markov chains and then design a state-
feedback controller to reduce the 
concern of stability.  

A cart with an 
inverted pendulum 
example is used as 
a closed-loop 
system in the 
numerical 
example. 

No specific hardware or 
software is mentioned in 
this paper, but a 
graphing-simulating tool 
is used to display the 
results of the illustrative 
example. 

Results from the numerical example prove that the 
closed-loop system is stochastically stable when 
using the methods developed in this paper. 

Output Feedback 
Stabilization of Networked 
Control Systems with 
Random Delays Modeled 
by Markov Chains 
(Shi et al., 2009) 

To propose methods to guarantee 
stability and performance in NCSs when 
designing the controller. 
Use Markov chains to model network-
induced delays. 

A cart with an 
inverted pendulum 
example is used as 
a closed-loop 
system in the 
numerical 
example. 

No specific hardware or 
software is mentioned in 
this paper, but a 
graphing-simulating tool 
is used to display the 
results of the illustrative 
example. 

Results from the simulations of the proposed 
system example proves that the methods used are 
effective.  
 

Network Control Systems 
– Overview and Research 
Trends (Gupta and Chow, 
2010) 

 To summarize trends and history of 
networked control systems and the 
different research areas, such as 
network delays, real-time network 
security, allocation of resources, and 
integrating network components. Future 
areas of research are also discussed and 
looked at. 

Investigative paper Investigative paper The authors research shows the importance of 
development and research of networked control 
systems as most systems today are connected via 
some sort of network. The paper lists all the main 
research topics that are being investigated, and 
also challenging problems that haven’t been 
solved for future research.  

Effect of Network-induced 
Delays in Control Systems 
– DC motor application 
(Kolla and Mainoo, 2012) 

Compare the effects of network induced 
time delays in different position 
controllers for a DC motor. 

Simulation of a DC 
motor 

MATLAB/Simulink used 
for  

The authors experiments prove that an increase in 
network delays leads to an increase in network 
stability. The analysis are completed on two 
different controllers and both are influenced 
negatively by these delays, which occur either 
from the sensor to the controller, or from the 
controller to the actuator. The linear quadratic 
regulator performed better that the Proportional 
Integral Derivative (PID) controller when subjected 
to network delays. 

Modelling and Stabilization 
for Singular Networked 
Cascade Control Systems 
with State Delay 

To use Linear Matrix Inequalities (LMI) to 
model a singular networked cascade 
controller that is stable.  

An example 
singular networked 
cascade control 
system with state 

MATLAB LMI toolbox is 
used to generate the 
state response graph as 
well as the desired gains 

The authors use Lyapunov stability theory to 
derive sufficient conditions for the systems.  
The proposed methods show applicability and 
usefulness developed and can be used for 
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(Zhaoping et al., 2013) Network-induced delays and data packet 
loss are also considered in the controller 
design. 

delay and 
disturbance. 
 

for the corresponding 
systems. 

controller design of systems with time delay and 
packet loss. 

Networked Predictive 
Control for Linear Systems 
with Unknown 
Communication Delay 
(Sun et al., 2014) 

To propose a control scheme, for 
controller design, that can predict 
unknown communication delays in a 
linear system. 

Two examples are 
used in this paper 
to apply the 
formulas 
developed.  
Example 1 is a 
cart-pendulum 
system. 
Example 2 is a 
servo control 
system. 

No specific hardware or 
software is mentioned in 
this paper, but the 
results are displayed in 
graph form using a 
simulation tool. 

The author uses switched Lyapunov function 
method to deal with network-induced delays and 
achieve stability.  
Graphs comparing system output and time, of both 
examples, show the effectiveness of this method. 

Experimental 
Investigations for 
Distributed Networked 
Control Systems 
(Mahmoud and Sabih, 
2014) 

Experiment and simulate on available 
software and hardware to create further 
fields of research for distributed 
networked systems. 

Two PCs are used 
to simulate the 
controller and the 
plant. A data 
interface is used to 
gather information 
from the actual 
plant. 
  

LabVIEW simulations of 
a tank level control 
system distributed over 
two PCs on an Ethernet 
network. 
 
MATLAB/Simulink  

 

Fuzzy Speed Control of 
Networked Motion Control 
Systems 
(Zhang et al., 2015) 

To model the control of an induction 
motor in a network control system. 
To compensate for time delays by 
designing and using a state predictor. 
To illustrate the effectiveness of the 
approach through simulations and 
experiments. 

An NCS that 
includes an 
induction motor 
with a feedback 
sensor, a 
controller, an 
actuator, and a 
local controller, all 
connected via a 
communications 
network. 

Simulations are done 
using MATLAB/Simulink 
software tool, utilizing 
the TrueTime toolbox. 
Control Area Network 
(CAN) protocol is used 
as the Fieldbus for 
communication. 

The authors use the Lyapunov-Krasovskii function 
to calculate the maximum allowed time delay for 
the system to be stable. The theorem is also used 
to calculate the limit of packet dropouts. 
Feedback time delay is minimized by the state 
predictor using the feedback time-stamped 
messages. 
The fuzzy PI controller works better than the 
Proportional (P) and PI controller, as this controller 
shows a better stead-state performance. This 
controller is more robust to variation in the network 
Quality of Service (QoS). 

Distributed Control of 
Large-Scale Networked 
Control Systems with 
Communication 
Constraints and Topology 
Switching 
(Zhang et al., 2017) 

To suggest and prove methods that allow 
for large-scale networked closed-loop 
systems to be more stable and have an 
H∞ disturbance attenuation level. 
Methods such as event-based 
communication and logarithmic 

Two Continuous 
Stirred Tank 
Reactors (CTSRs) 
connected via a 
communication 
network are used 

No specific hardware or 
software is mentioned in 
this paper, but a 
graphing-simulating tool 
is used to display the 
results of the illustrative 
example. 

To reduce the size of information transmitted in the 
communication network, methods such as event-
based control and logarithmic quantization are 
introduced. 
The authors use Lyapunov stability theory and a 
switched system approach to propose sufficient 
conditions that allow the closed-loop system 
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quantization are tested during controller 
design. 

as an illustrative 
example.  

example to be exponentially stable and have an 
H∞ disturbance attenuation level. 
A graphical simulation is created which 
demonstrates how effective the proposed 
controller design is. 
 

Stability and H Infinity 
Performance of nonlinear 
Fuzzy Network Control 
Systems with Time 
Varying Delay (Lu et al., 
2018) 

To develop a controller for nonlinear 
models which includes time-varying 
delays.  

Developed 
theorems are 
tested on a fuzzy 
network control 
system 

MATLAB Toolbox for the 
calculations. 

The author completes the proof by using the 
theorems developed on an example model. The 
results show the system is stable. 

Stability Criterion for 
Networked Control 
Systems Based on T-S 
Model with Time-Varying 
Delays (Liu and Liu, 2018) 

Create methods to proof stability of 
networked control systems that have 
time-varying delays. 

Developed 
theorems are 
tested on a T-S 
fuzzy network 
control system 

No software or hardware 
mentioned in the article. 

The author completes the proof by using the 
theorems developed on an example model. The 
results show the system is stable even though the 
system is not conventional and pulse free. 

Observer Based 
Incremental Predictive 
Control of Networked 
Multi-agent Systems with 
Random Delays (Pang et 
al., 2020) 

To compare the effects of network 
induced delays and random packet 
losses between a networked system 
without compensation and a system with 
an incremental networked predictive 
controller. 

A networked multi-
motor control test 
rig  

No software mentioned 
in the article. Siemens 
control equipment used 
on the test rig. 

The graphed results show the experimental 
outputs of the system without compensation and 
the system with incremental networked predictive 
control. The results show the effectiveness and 
applicability of the introduction of this type of 
controller to overcome networked induced delays 
and random packet dropouts. The methods are 
tested on 3 different motors to further prove the 
effectiveness of the developed control. 

Delay-dependent Stability 
Analysis of Networked-
controlled DC Motor with 
Time-invariant Delays 
(Subramanian and Kokil, 
2020) 

To analyse the effects of delay margins, 
phase margins, and gain margins on 
networked control systems.   

A DC motor 
networked control 
system is used for 
analysing. 

MATLAB/Simulink is 
used to simulate the 
model and graph the 
output responses. 

The simulations show that gain and phase margins 
influence the system responses, such as rise time 
and overshoot. The results show that an increase 
in gain and phase margins decreases the delay 
margins in a closed-loop system. Using a 
proportional controller helps tune a controller to be 
stable when time delays are present. 

Networked DC Motor 
Control with Time-Varying 
Delays and Application to 
a Mobile Robot (Xie et al., 
2020) 

To test the performance and stability of a 
networked DC motor performing position 
control while under the effect of time-
varying delays.  

A DC motor test 
system consisting 
of two DC motors 
with encoder 
feedback to a 
controller via a 4G 
network adapter 

M091760 Maxon 
encoder with a National 
Instruments myRIO 
controller for data 
acquisition.  
 
MATLAB/Simulink is 
used to simulate and 
graph the results. 

The author tested a networked DC motor system 
with a range of time-varying delays to show the 
impact on the stability of the system. The pole 
placement method is used to compensate for 
these delays to a certain point until the delays are 
so large that the system remains unstable. 
 
Future work will consider disturbances and 
uncertainties, incorporating predictive control and 
sliding mode control into the investigations. 
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Robust Stability of 
Networked Linear Control 
Systems with 
Asynchronous Continuous 
and Discrete Time Event 
Triggering Schemes (Xiao 
et al., 2021) 

Analyse and simulate continuous-time 
and discrete time systems to test event-
triggered approaches when transmitting 
data over networks. 

A numerical 
example is used to 
test the developed 
theorems. 

No software or hardware 
mentioned in the article. 

The authors methods show that the event-
triggered approaches to data transmission reduces 
the traffic on a network in a networked control 
system. The methods are tested in a numerical 
example that applies to many continuous-time or 
discrete-time systems, as well as time-varying 
delays. 

Event-triggered Optimal 
Control for the NCSs with 
Time Delays (Li et al., 
2021) 

To develop theorems to be used in 
event-triggered networked control 
systems that are subjected to network-
induced delays.  

A numerical 
example is used to 
test the developed 
theorems. 

No software or hardware 
mentioned in the article. 

By using an event-trigger generator, the authors 
reduced the amount of bandwidth used on the 
network hence reducing the network-induced 
delays. The rest of the delay is compensated by 
introducing a network predictive controller. 

Observer-based Controller 
Design for a Class of 
Networked Control 
Systems with 
Transmission Delays and 
Packet Losses (Asl et al., 
2021) 

Analyse the effects of network delays, 
between zero and two times the 
sampling rate, on an observer-based 
network control system. 

A simulation 
example is used to 
test the developed 
theorems. 

No software or hardware 
mentioned in the article. 

By using LMI to determine the controller and 
observer gains, the proposed methods could 
stabilize the networked control system as well as 
improve the performance.  

The Effect of Observer 
Position on Networked 
Control Systems with 
Random Transmission 
Delays and Packet 
Dropouts (Asl et al., 2022) 

To analyse the effects of observer 
placement in networked control systems 
that have time-varying delays. 

A numerical 
example is used to 
test the developed 
theorems. 

No software or hardware 
mentioned in the article. 

Two models are tested and compared. The first 
model the observer is inserted on the system side, 
whereas the second model has the observer on 
the controller side. Both models are tested with a 
numerical example and the results showed that the 
second model performed better than the first, even 
though the first did stabilize the system. 

Design of Predictive 
Controller for Networked 
Control Systems (Chen 
and Zhou., 2023) 

To analyses the stability and system 
performance of a networked control 
system with communication delay as well 
as data packet loss, not just one of the 
two.  

A simulation 
example is used to 
test the developed 
theorems. 

A Dc motor simulated 
plant is used for testing. 

The proposed method of using a model predictive 
controller resulted in the networked control system 
having the same response as a closed-loop 
system without network induced delays.  
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2.2.4 Literature review based on network control systems 
 
2.2.4.1 Overview of network control systems 
 
A Network Control System (NCS) is a system where all components are connected as nodes 

via a communications protocol instead of hardwired connections (Kolla and Mainoo, 2012). 

Unlike classic control systems, communication networks are used to close the control loops 

instead (Mamoud et al., 2014). 

 

The advantages of these networks include the reduction in wiring costs, weight and space 

reduction of the system, simple installation and diagnosis for maintenance, and an overall 

increase in reliability and agility (Zhang et al., 2005), (Shi et al., 2009). (Gupta and Chow, 2010) 

states that these networks are designed to replace the existing 4-20mA analog signal standard 

and termed them as “shared networks”. 

 

Today, NCSs are becoming more distributed as there is an increase in complexity in modern 

engineering systems (Zhang et al., 2017). With the sensors, actuators, and controllers being 

distributed over a communications network, instead of being hardwired, the performance of 

the system degrades due to network-induced delays (Gupta and Chow, 2010).  These delays 

need to be considered when designing the controller in an NCS to prevent the system from 

underperforming and becoming unstable (Shi et al., 2009). 

 

2.2.4.2 Delays in networked control systems 

 

One of the biggest issues in NCSs are the network-induced delays between the sensor and 

controller, as well as between the controller and actuator (Zhang et al., 2005). As shown in 

Figure 2.7, these delays are random, but can also be constant or time varying. The overall 

network-induced delays can be calculated by adding the sensor-to-controller delay (𝜏௞) and 

the controller-to-actuator delay (𝑑௞). A computation delay is found in systems with multiple 

controllers (Zhaoping et al., 2013). This delay would exist between the primary and second 

controller.  

 

There are many causes of such delays in networked systems, including data transmission, 

protocol conversion, a selected protocol for communication, and distance between nodes (Yu 

et al., 2014). Any of these constraints increases the time delays and packet dropouts in NCSs, 

bringing difficulties in the analysis of these systems (Shi et al., 2009). Another cause is the use 

of multiple sensors in the same NCS as a mixture of different delays are present and need to 

be considered (Xiao et al., 2021). 
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Figure 2.7: Networked control system with random delays (Zhang et al., 2005) 

 

 

Time delays need to be considered when designing controllers to prevent a decrease in 

stability and performance of the overall system (Yu et al., 2014), (Zhang et al., 2015), (Lu et 

al., 2018), (Zhaoping et al., 2013). (Chen and Zhou, 2021) state that data loss exists in NCSs 

and therefore considering these delays during controller design is important. Designs could 

include some form of time stamping to reduce data loss during communication transmissions. 

 

To prevent such delays, the communications networks need to become part of the control loop 

(Yu et al., 2014).  There are two main methods which researchers use to accomplish this task 

(Shi et al., 2009). The first method is to design a controller without considering network induced 

delays and then determining the maximum delays allowed before the system is unstable. The 

second is to incorporate the network-induced delays using models when initially designing the 

controller. The latter method, known as Model Predictive Control (MPC), is more efficient as 

the models can predict the systems behaviours and reduce the effects of delays in real-time. 

Other methods include the time delay method, robust control method, and stochastic control 

method. 

 

There are many techniques used by researchers to model network-induced delays. (Zhang et 

al., 2005) and (Shi et al.,2009) used Markov chains to model the two random delays in NCSs. 

Once modeled, the controllers are calculated using the iterative Linear Matrix Inequality (LMI) 

approach. (Yu et al., 2014) used the MPC scheme to compensate for the delays of a test bench 

which consisted of industrial-grade devices and controllers connected via a communications 
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network. The authors proved that this scheme is a viable solution that can be used in industrial 

control systems. 

 

(Zhang et al, 2015) used a fuzzy logic controller, with a set of heuristic decision rules, to 

compensate for network-induced delays on non-linear systems. The authors also used a state 

predictor between the sensor and controller to alleviate the possibility of time delays during 

data transmission. Stability is analyzed using the Lyapunov-Krasovskii Theorem to compute 

the allowed maximum and minimum bounds of the time delays and packet dropouts. (Zhang 

et al., 2017) also uses the Lyapunov direct method to achieve a closed-loop system which is 

exponentially stable. 

 

(Asl et al., 2021) designed an observer-based controller to reduce transmission delays and 

random packet loss. Observers are used in this practical example as not all the states are 

normally available. (Asl et al., 2021) then analysed the effects of observer-based control when 

designing NCSs. Two models with different observer locations are tested under the same 

conditions. The results showed that the model with an observer on the controller side stabilized 

the system. 

 

There are methods to compensate for network-induced delays that do not require any input in 

the controller design process. These are related to the network infrastructure of the NCS. 

Delays can be minimized depending on which network protocol is used in the NCS (Mahmoud 

et al., 2014). Distributing the control by using an event-triggered approach when programming 

decreases network traffic as data requests are less (Xiao et al., 2021). (Zhang et al., 2017) 

also suggests event-based control in NCSs and further adds that signal quantization reduces 

the communication rate.  

 

This subsection discussed multiple techniques to overcome network delays in NCSs. The next 

subsection compares literature reviewed on NCSs.  

 

2.2.5 Comparison between literature reviewed on network control systems 

 

Many authors have used similar methods when trying to solve problems in NCSs. These 

methods and theorems are usually developed years prior to current research but are used on 

newer issues that researchers come across. These newer issues include phenomena such as 

network-induced delays and network time delays, which were never a problem before a 

communication link was added into the control system between the different nodes in an 

automation system.  
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In the case of articles 1 and 2, in Table 2.3, both used Markov chains to model the network-

induced delays in a network control system. The same example of a cart with an inverted 

pendulum is used to create a closed-loop system for testing. The articles both illustrate the 

results of a numerical example using a graphing tool which shows the stability of the system 

when subjected to network-induced delays. The outcome of each paper showed effective 

results as both systems remained stable when subjected to random network-induced delays. 

The results showed no decrease in performance in the system proving that using Markov 

chains when modeling is beneficial when dealing with these delays. 

 
 

Table 0.8 Comparison of papers published on random delays in network control systems  

No. Paper 
(Reference) 

Aim of the project System Overview Hardware/Software 
Required 

Author’s 
Conclusions 

1 A New 
Method for 
Stabilization 
of Networked 
Control 
Systems with 
Random 
Delays 
(Zhang et al., 
2005) 

To analyse the 
stabilization 
problem of a 
discrete-time plant 
with random 
network-induced 
delays. 
To model the two 
network delays as 
Markov chains and 
then design a state-
feedback controller 
to reduce the 
concern of stability.  

A cart with an 
inverted pendulum 
example is used as 
a closed-loop 
system in the 
numerical example. 

No specific 
hardware or 
software is 
mentioned in this 
paper, but a 
graphing-simulating 
tool is used to 
display the results 
of the illustrative 
example. 

Results from the 
numerical 
example prove 
that the closed-
loop system is 
stochastically 
stable when using 
the methods 
developed in this 
paper. 

2 Output 
Feedback 
Stabilization 
of Networked 
Control 
Systems with 
Random 
Delays 
Modeled by 
Markov 
Chains 
(Shi et al., 
2009) 

To propose 
methods to 
guarantee stability 
and performance in 
NCSs when 
designing the 
controller. 
Use Markov chains 
to model network-
induced delays. 

A cart with an 
inverted pendulum 
example is used as 
a closed-loop 
system in the 
numerical example. 

No specific 
hardware or 
software is 
mentioned in this 
paper, but a 
graphing-simulating 
tool is used to 
display the results 
of the illustrative 
example. 

Results from the 
simulations of the 
proposed system 
example proves 
that the methods 
used are effective.  
 

 
 

Articles 1, 2, 3 and 4, in Table 2.4, all investigate network-induced delays in NCSs. Each author 

uses a different method to incorporate the delays into the closed-loop system, but all four prove 

effectiveness in their methods.  Stability is achieved in all the examples by using the Lyapunov-

Krasovskii method to calculate sufficient conditions for the system. The use of the 

MATLAB/Simulink software tool is used in Articles 1 and 3 to simulate and illustrate the results 

of the controller’s response to network-induced delays in the control loop.  
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Table 0.9: Comparison of papers published on methods to incorporate network-induced delays 
in NCSs 

No. Paper  Aim of the 
project 

System 
Overview 

Hardware/S
oftware 
Required 

Author’s Conclusions 

1 Fuzzy 
Speed 
Control of 
Networked 
Motion 
Control 
Systems 
(Zhang et 
al., 2015) 

To model the 
control of an 
induction motor in 
a network control 
system. 
To compensate 
for time delays by 
designing and 
using a state 
predictor. 
To illustrate the 
effectiveness of 
the approach 
through 
simulations and 
experiments. 

An NCS that 
includes an 
induction 
motor with a 
feedback 
sensor, a 
controller, an 
actuator, and a 
local 
controller, all 
connected via 
a 
communicatio
ns network. 

Simulations 
are done 
using 
MATLAB/Si
mulink 
software 
tool, utilizing 
the 
TrueTime 
toolbox. 
CAN 
network 
protocol is 
used as the 
Fieldbus for 
communicati
on. 

The authors use the Lyapunov-
Krasovskii function to calculate 
the maximum allowed time delay 
for the system to be stable. The 
theorem is also used to calculate 
the limit of packet dropouts. 
Feedback time delay is minimized 
by the state predictor using the 
feedback time-stamped 
messages. 
The fuzzy PI controller works 
better than the Proportional (P) 
and PI controller, as this controller 
shows a better steady-state 
performance. This controller is 
more robust to variation in the 
network Quality of Service (QoS). 

2 Distributed 
Control of 
Large-
Scale 
Networked 
Control 
Systems 
with 
Communica
tion 
Constraints 
and 
Topology 
Switching 
(Zhang et 
al., 2017) 

To suggest and 
prove methods 
that allow for 
large-scale 
networked closed-
loop systems to 
be more stable 
and have an H∞ 
disturbance 
attenuation level. 
Methods such as 
event-based 
communication 
and logarithmic 
quantization are 
tested during 
controller design. 

Two 
Continuous 
Stirred Tank 
Reactors 
(CTSRs) 
connected via 
a 
communicatio
n network are 
used as an 
illustrative 
example.  

No specific 
hardware or 
software is 
mentioned in 
this paper, 
but a 
graphing-
simulating 
tool is used 
to display 
the results of 
the 
illustrative 
example. 

To reduce the size of information 
transmitted in the communication 
network, methods such as event-
based control and logarithmic 
quantization are introduced. 
The authors use Lyapunov 
stability theory and a switched 
system approach to propose 
sufficient conditions that allow the 
closed-loop system example to be 
exponentially stable and have an 
H∞ disturbance attenuation level. 
A graphical simulation is created 
which demonstrates how effective 
the proposed controller design is. 
 

3 Modelling 
and 
Stabilizatio
n for 
Singular 
Networked 
Cascade 
Control 
Systems 
with State 
Delay 
(Zhaoping 
et al., 2013) 

To use LMI to 
model a singular 
networked 
cascade controller 
that is stable.  
Network-induced 
delays and data 
packet loss are 
also considered in 
the controller 
design. 

An example 
singular 
networked 
cascade 
control system 
with state 
delay and 
disturbance. 
 

MATLAB 
LMI toolbox 
is used to 
generate the 
state 
response 
graph as 
well as the 
desired 
gains for the 
correspondin
g systems. 

The authors use Lyapunov 
stability theory to derive sufficient 
conditions for the systems.  
The proposed methods show 
applicability and usefulness 
developed and can be used for 
controller design of systems with 
time delay and packet loss. 

4 Networked 
Predictive 
Control for 
Linear 
Systems 
with 
Unknown 
Communica
tion Delay 
(Sun et al., 
2014) 

To propose a 
control scheme, 
for controller 
design, that can 
predict unknown 
communication 
delays in a linear 
system. 

Two examples 
are used in 
this paper to 
apply the 
formulas 
developed.  
Example 1 is a 
cart-pendulum 
system. 
Example 2 is a 
servo control 
system. 

No specific 
hardware or 
software is 
mentioned in 
this paper, 
but the 
results are 
displayed in 
graph form 
using a 
simulation 
tool. 

The author uses switched 
Lyapunov function method to deal 
with network-induced delays and 
achieve stability.  
Graphs comparing system output 
and time, of both examples, show 
the effectiveness of this method. 

 
 
This subsection discussed the comparisons between the literature reviewed on NCSs. The 

next subsection concludes Section 2.2.  
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2.3 Conclusion 
 
The IEC 61499 Standard has become more popular since the second edition was released in 

2012. The standard has started the path to Industry 4.0, allowing the development of 

distributed control systems that are portable, interoperable, configurable, and reusable. These 

factors allow developed software to run on different hardware platforms from multiple vendors, 

which relaxes hardware and software dependencies in automation systems (Zhabelova et al., 

2017). This allows for feasible alternatives as standard PLCs are overpriced and can be 

substituted by industrial PCs and embedded controllers distributed in a controlled environment 

(Vyatkin 2011). 

 

The adoption of the IEC 61499 Standard in the industry lead to heterogeneous control systems. 

The two standards (IEC 61499 and IEC 61311-3) must co-exist, for now, making the adaptation 

of existing systems to distributed systems a challenge. This challenge of engineering 

heterogeneous systems is said to be “not as big as expected” as the two standards are similar 

in most ways (Hirsch et al, 2007). The PLC code used in existing systems can be reused in 

IEC 61499 function blocks, leading to a shorter learning curve when migrating from one 

standard to the other (Dai and Vyatkin, 2012). 

 

The goal of Industry 4.0 is to achieve distributed control and intelligent automation. This can 

be done by creating software that uses the IEC 61499 Standard at the low-level physical 

modules and linking these modules with intelligent software systems at a high-level (Lyu et al., 

2021). These systems are termed “Cyber-physical" where the physical parts of a system are 

used to automatically generate the cyber parts (Yan and Vyatkin, 2011).  

 

The IEC 61499 Standard is leading the path to holonic systems in industrial automation. With 

the rapid growth of technology, the future of self-adapting and self-organizing distributed 

control systems could be sooner than expected.  

 

Developing control distributing control systems also has some disadvantages that have lead 

to an increase in research and development topics. Distributed systems are usually controlled 

via a network instead of hardwired connections. This networked topology has added the effects 

of networked induced delays into the control system. Many researches have studied and 

experimented what causes these delays, and how to design control systems that can negate 

the effects that can cause instability when using a network. 

 

In most reviewed papers, the experimental and simulation results are proven to be effective. 

(Mahmoud et al., 2014) suggests that researching in a co-experimental simulation environment 

improves results and contributes to expanding the knowledge base in the community of control 
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systems. For NCSs to become more realistic for the industrial environment, more physical 

designs need to be built to validate these results. (Yu et at., 2014) mentions that more lab-

scale systems with industrial-grade instruments need to be built and tested on, and more focus 

should be put on what causes these delays in a physical environment.   

 

Although there are many advantages to upgrading an existing control system to be networked, 

the initial development and conversions are costly, time consuming and inconvenient (Gupta 

and Chow, 2010). The existing systems must be redesigned, with some devices being 

replaced, to allow for communication over a data network instead of being hardwired. These 

initial costs are what causes companies not to progress into smarter, more distributed systems. 

 

NCSs allow for a simpler setup of control systems as devices are becoming plug-and-play, and 

therefore reducing the complexity of the design and building phases in projects. Even though 

there are disadvantages in NCSs such as network-induced delays, there are many researched 

methods that can be used when designing the controller to mitigate these delays. Correct 

controller design and the correct use of the communication capabilities of networked systems 

can increase the overall performance of the solution (Zhang et al., 2017).  

 

This chapter reviewed literature based on the IEC 61499 Standard and networked control 

systems. The following chapter describes the theory based on the plant that is used in this 

thesis.  
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CHAPTER 3 
THEORY BASED ON ANTENNAS AND THE DC MOTOR 

 
3.1 Introduction 
 
This chapter discusses the plant which has been selected to be controlled in this thesis. The 

plant is a radio antenna which is used to locate celestial objects in the sky. This thesis focuses 

on the development of the controller that guides the dish to specific position set points 

accurately and does not focus on the actual tracking of celestial objects in the sky. 

 

The following sections describe the plant in more detail. The radio antenna is described in 

Section 3.2. The DC motor is described in section 3.3. Radio antenna and DC motor 

discussions are described in section 3.4. The chapter is concluded in section 3.5. 

 

3.2 Antenna Theory 
 
An antenna is a component that converts guided waves into free-space waves when 

transmitting, or free-space waves into guided waves when receiving (Balanis, 1992). This 

defines an antenna as a transducer because the device converts energy from one form to 

another. As shown in Figure 3.1, the system consists of a parabolic dish, which collects all the 

electromagnetic (EM) waves into a focal point, an antenna to convert the received waves into 

current, and two DC motors for azimuth and altitude positional movements. The motors are 

coupled to servo drives which receive the necessary positional set points from a Programmable 

Logic Controller (PLC). 

 

   

 

Figure 0.1: Azimuth and elevation of a radio antenna 
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Antennas can either transmit EM waves or receive them, depending on the type. When 

transmitting, the antenna receives a current from a source device and then radiates the 

generated waves at specific frequencies through the air toward other antennas. When 

receiving, the antenna intercepts the waves that are airborne and converts them to a current 

which is sent to a device for processing. It is possible for antennas to both receive and transmit 

EM waves by means of a transceiver (Sheldon, 2023). 

 

We need antennas to allow for the transmission of signals where hard-wired connections are 

not possible. The use of antennas for wireless communications is more feasible for applications 

where cables are not required (Administrator, 2019). Selection of which antenna to use is 

application dependant. Figure 3.2 shows several different types of antennas including wire 

dipole, loop, wire monopole, Yagi-Uda array, horn, microstrip patch, corner reflector, parabolic 

reflector (dish), and slot. 

 

 

 

Figure 0.2: Several types of Antennas  

(Dhillon and Kumar, 2017) 

 

 

The simplest antenna design is a wire antenna. This is the most used antenna and can be 

found in cars, ships, buildings, and aircraft. The wire dipole, loop, wire monopole and Yagi-

Uda array antennas are all designed based on the same functionality as the wire antenna. One 

end of each of these antennas is connected to either a receiver or a transmitter, and the rest 

of the antenna captures the airborne EM signals that are travelling in free space. The Yagi-

Uda is the most complex wire antenna but was most popular for receiving television signals 

before dish antennas were used. 
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Microstrip patch antennas are small antennas printed into circuit boards to allow for wireless 

communications in mobile devices (Sheldon, 2023). Corner reflectors reflect EM waves back 

towards the source, which is useless for calibrations of radar systems. Slot antennas are like 

dipole antennas but are cut into a surface instead of a wire made up of material.  

 

Figure 3.3 shows a radio antenna system that is used to obtain EM waves from celestial radio 

sources. The system includes a parabolic reflector (dish) as well as a horn antenna. The 

parabolic structure of the dish reflects EM waves to a focal point, which causes the waves to 

bounce back off a sub reflector and into the horn antenna. The horn antenna converts the EM 

waves into a current signal that is fed into the connected receiver for processing and analyzing. 

 

 

 

Figure 0.3: Radio Antenna collecting EM waves from a celestial radio source 

 
 
The radio antenna is selected  as the plant for this thesis because the azimuth and altitude 

positional movement control system of the antenna works as a good case study for testing of 

a multi-variable control system. The following sections describe the radio antenna in more 

detail, considering the history of radio antennas, types of radio antennas, and current control 

systems of antennas. 

 

3.2.1 History of Radio Antenna 

 
The history of radio antennas begins with the discovery of EM radiation by Heinrich Hertz in 

1886 (Rubin, 2018). The German physicist, Heinrich Hertz, set out to prove Maxwell’s theory 

of electromagnetism by building the test rig shown in Figure 3.4. He made use of  a capacitor 

(C) and an induction coil (T) to generate a spark between a spark gap (S) formed by two 

spheres. This spark, in turn, generated EM waves, which were then enhanced by an antenna 

(A). A receiving antenna (RA) was placed across the transmitting antenna to capture the 
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oscillating EM waves that were being produced. The received waves were concentrated into 

the receiving gap (C) causing a spark, proving that radiation was being detected. Due to the 

limitations in frequencies, the concepts and proofs developed by Hertz were not used until after 

World War 2 when microwave frequencies were discovered. 

 

 

 

Figure 0.4: Heinrich Hertz's radio antenna experiment  

(Faccio et al, 2006) 

 

 

The first use of radio telescopes to observe EM waves produced from space was Karl Jansky, 

1933 (Rahmat-Samii et al ,2009).  He built a radio antenna that detected radio waves from the 

Milky Way but found little support from most astronomers regarding his theories and could not 

get enough funding for his research. His work was revisited in 1937 by Grote Reber, who built 

a 9.5m parabolic reflector radio antenna in his backyard. This was the first antenna used for 

astronomical research, and his sky surveys created the field of radio astronomy (Wielebinki, 

2007).  

 

Parabolic antennas became widely used during the 1960’s for microwave communication 

systems. The first radio antenna used for satellite communications was built in 1962 at 

Goonhilly earth station, in Cornwall, UK. This antenna as the first to transmit live video signals 

across the world, revolutionised global telecommunications. 

 

Although other types of antennas are used in radio astronomy, dish antennas of parabolic 

reflectors are the most common type used for radio telescopes today (Mirghani, 2017). Due to 

the discoveries by Heinrich Hertz, Grote Reber, and Karl Jansky, there are multiple radio 

telescopes around the world that are being used to better understand the universe by detecting 

small waves from space.   



 47

 

3.2.2 Types of Radio Antennas 

 
Radio antennas consist of two components, a reflective surface, and a feed antenna to collect 

EM waves at a focal point (Nikolova, 2016). The reflective surface is normally a parabolic dish 

made of some reflective material, and the antenna is application dependent, for example a 

horn antenna could be used. As shown in Figure 3.5, there are four different types of radio 

antennas, namely axial-feed, off-axis feed, Cassegrain, and Gregorian. The antennas are 

distinguished by how EM waves travel from free space to guided space, meaning from the air 

into the antenna.  

 

 

 

Figure 0.5: Different types of parabolic radio antennas 

(Stroski, 2019) 

 

 

The axial-feed parabolic reflector reflects EM waves to focal point which contains a feed 

antenna to collect the concentrated signals. The main disadvantage with this type of parabolic 

radio antenna is the support structure blocks a portion of the incoming EM waves. This can be 

solved by using an off-axis feed system, where the feed antenna is slightly off center of the 

dish, preventing any blocking of signals from occurring. This type of dish is used mostly for 

home satellite television systems.  

 

The Cassegrain and Gregorian feed antennas are similar as both have a secondary reflector 

concentrating the EM waves toward the feed antenna. The only difference is that Cassegrain 

antennas have a convex secondary reflector, whereas Gregorian antennas have a concave 

secondary reflector. There are minimal losses in information when the incoming EM waves are 

passed through either a convex or concave reflector as the feed antenna is mounted physically 
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closer to the receiver (Wolff, 1997). The main disadvantage is the issue of the support structure 

interfering with the signals being received.  An example of a Cassegrain antenna is the 

Hartebeesthoek Radio Astronomy Observatory (HartRAO) radio antenna found in South Africa 

as shown in Figure 3.6. 

 

 

 

Figure 0.6: 26m dish of HartRAO radio antenna  

(Mirghani, 2017) 

 
 
3.2.3 Radio Antenna Control Systems  
 
The positional movement of a radio antenna is necessary to locate celestial objects in the sky. 

To do this, a closed loop control system is required that consists of a positional set point and 

position feedback. Figure 3.7 shows a simple feedback control loop system. A potentiometer 

is used to send a required set point to the radio antenna. The difference between the set point 

and the feedback from the potentiometer connected to gear 3 is amplified and used to turn the 

motor. Once the error between the potentiometer feedback and input set point is zero, the 

motor will not rotate and the set position will have been reached (Ahlawat et al, 2019).  

 



 49

 

Figure 0.7: Closed loop position control of an antenna’s azimuth angle 

(Okumus et al, 2012) 

 
 
The detailed setup is illustrated in Figure 3.8 as a block diagram. The summing junction shows 

the subtraction of the input set point and the potentiometer feedback (kpot), before the error is 

fed into the preamplifier (K). The signal then passes through the power amplifier and into the 

motor, load, and gears before changing the azimuth angular position of the antenna. This 

system does not include a controller, and therefore the response cannot be altered to improve 

the position control performance.  

 

 

 

Figure 0.8: Block Diagram of the closed loop position control of an antenna’s azimuth angle 

(Okumus et al, 2012) 

 

The problem with not using a controller to optimize the performance of the plant is that the 

system could experience a non-stable response, causing components to saturate and be 

damaged leading to massive costs in repairs and replacements (Xuan, 2009). Many authors 

have simulated different control systems to control the azimuth or altitude position of a radio 

antenna. Table 3.1 summarizes a few articles regarding these control systems, comparing the 

software and hardware used, as well as the results that the authors found. 
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Table 0.1: Summary of articles written regarding position control of radio antennas.  

Author(s) Title Control System Software/Hardware Results 
Xuan, 2009 Antenna 

Azimuth 
Position Control 
Analysis and 
Controller 
Implementation 

Control of a DC servo motor 
with a discrete PID controller. 

MATLAB was used 
for system simulation.  

No physical system 
was implemented. 

The author’s system reaches 
steady state with some 
overshoot when using a 
discrete PID controller and 
recommends this controller for 
its response times and stability 
performance. 

Okumus et 
al, 2012 

Antenna 
Azimuth 
Position Control 
with Classical 
PID and Fuzzy 
Logic 
Controllers 

Two position controllers for a 
DC motor are looked at and 
compared. 

1. PID controller 
2. Fuzzy logic controller 

MATLAB/Simulink 
was used for system 
simulation. 

No physical system 
was implemented. 

The author concludes that the 
fuzzy logic controller, with 
several fuzzy rules and 
functions, gives the most 
convenient response for the 
system compared to the 
classical PID controller. 

Temekovski 
and 
Achkoski, 
2014 

Modelling and 
Simulation of 
Antenna 
Azimuth 
Position Control 
System 

No controller is presented. 
The actual position of the 
azimuth position is fed back 
into the system using a 
potentiometer.  

The feedback is subtracted 
from the input set point and 
fed into the plant through a 
power amplifier. 

MATLAB/Simulink 
was used for system 
simulation. 

No physical system 
was implemented. 

The author compares the open 
loop step response with the 
closed loop step response.  

The closed loop system 
overshoots the set point but 
eventually settles back down 
with no stead state error, 
whereas the open loop system 
never settles as there is no 
feedback.  

Uthman 
and Sudin, 
2018 

Antenna 
Azimuth 
Position Control 
System using 
PID Controller & 
State-Feedback 
Controller 
Approach 

Two position controllers for a 
DC motor are looked at and 
compared. 

1. PID controller 
2. State feedback controller 

with pole placement 
methods 

MATLAB/Simulink 
was used for system 
simulation. 

No physical system 
was implemented but 
is mentioned for 
future work. 

The author observed that the 
state feedback controller 
performed the best compared to 
the PID controller. The results 
showed little settling time and 
overshoot with not steady state 
error. 

Ahlawat et 
al, 2019 

Antenna 
Azimuthal 
Position Control 
Using Model 
Predictive 
Control 

Two position controllers for a 
DC motor are looked at and 
compared. 

1. PID controller 
2. MPC 

MATLAB was used 
for system simulation. 

No physical system 
was implemented. 

The author concluded that the 
MPC performed better than the 
PID controller, especially when 
some transport delay was 
inflicted on the system. The 
delays did not affect the 
response times of the MPC 
controller as it did with the PID 
controller. 

 
 
Temekovski and Achkoski, (2014) approached the antenna control without a controller. Their 

results show that when there is a change in position set point, the system does stabilize over 

time leaving no stead state error. With no controller, they are not able to change the response 

of the system. (Xuan, 2009) instead used a PID controller to control the position of the DC 

motor that is coupled to the radio antenna. The controller is used to meet the requirements for 

overshoot and rise time, while achieving zero steady state error. 

 

At first, these authors (Okumus et al, 2012), (Uthman and Sudin, 2018) and (Ahlawat et al, 

2019) have utilized a PID controller to control the DC motor’s position. This was carried out to 

provide a point of reference for simulations and conducted on an alternative controller. The 

authors results described when using a fuzzy logic controller, state feedback controller, and 
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MPC controller,  shows an improvement in response times. All the authors use 

MATLAB/Simulink to simulate the controllers and display results. As shown by the articles in 

Table 3.1, the use of a DC motor for the radio antenna position control is very common. The 

next section will focus on motor theory, which includes a brief history of the DC motor, and a 

description on the operation and construction of the DC motor. 

 

3.3 Motor Theory 
 
A DC motor is selected to control the rotational angular position of the radio antennas dish in 

both the azimuth and altitude plane in this thesis. DC motors are often used in industrial 

applications because of their simplicity, reliability, ease of application and cost effectiveness 

(Maung et al, 2018). These motors are usually used with gears to provide high torque outputs 

from the motor shaft to the output of the required gearbox. The high torque provided by DC 

motors is one of the main reasons why these motors are preferred over other types of motors 

(Aloo et al, 2016). Another advantage of DC motors is the fast response times to rotational 

changes as the motors can operate at high speeds (Eze, 2021). 

 

In summary, the DC motor is the most suited motor for use in the control systems of radio 

antennas due to their high torque capabilities, affordability, simplicity, and ability to provide 

precise and accurate control of the antennas position when used in a feedback system. The 

next subsection describes the history, operation, and construction of the DC motor. 

 
3.3.1 History of the DC Motor 
 
The DC motor was designed to convert electrical energy to mechanical energy. DC motors 

can be found in electrical home appliances, automobiles, and most industrial equipment. Over 

the period 1820 – 1835, many scientists were involved with the development of the DC motor 

that is known today. The main contributions came from Christian Oersted, Andre Maria 

Ampere, Michael Faraday, Joseph Henry, and William Sturgeon (Seale, 2016). 

 

Christian Oersted and Andre Maria Ampere (1820) started the revolution by discovering that 

an electric current, passing through a conductor produces a magnetic field. In 1821, Michael 

Faraday wanted to prove and demonstrate this theory. He placed a magnet in a dish of mercury 

with a wire hanging down into it as shown in Figure 3.9. He then connected the positive side 

of a battery to the other end of the wire and connected the negative to the mercury portion of 

the experiment. This caused the wire to rotate around the magnet, creating motion from 

electrical energy. 
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Figure 0.9: Michael Faraday’s DC motor setup  

(Sarkar, 2020) 

 

 

There was no practical use for Faraday’s experiment, but it led to the creation of Joseph 

Henrys’ invention 10 years later (Figure 3.10). The lab experiment used an electromagnet that 

freely rocked on a reciprocating beam. Once charged with a current, the electromagnet rocked 

up and down as each coil repels off the North Pole magnetic field. The experiment rocked at a 

pace of 75 cycles per minute. 

 

 

 

Figure 0.10: Electro-magnetic engine by Joseph Henry  

(Henry, 1831) 
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Just a year later in 1832, William Sturgeon was accredited with making the first rotary motor, 

which is like the DC motor used today. This was made possible when he invented the 

commutator, a means of constantly supplying a DC voltage to the electromagnet, causing it to 

rotate. Sturgeon overcame the problem where the motion of the magnets would stop once the 

poles repelled, leading to a revolutionary invention for all automation.  

 

3.3.2 Operation of a DC Motor 
 
Figure 3.11 shows that a DC motor consists of an armature, stator, commutator, and brushes. 

The stator, which is the stationary part of the motor, is built up of two magnets. The South pole 

of one magnet is pointed at the North pole of the other magnet which creates an external 

magnetic field across the armature (Sarkar, 2020). This magnetic field is permanent and flows 

from the North to the South pole.  

 

 

 

Figure 0.11: Construction of a DC motor 

(Bzdigian, 2022) 

 

 

When an electric current passes through the armature coil, it creates an electromagnetic force 

around the current-carrying conductor. When the magnetic field created by the armature is 

placed in the external magnetic field created by the stator, the armature starts to rotate. The 

direction of force is based on Fleming’s left-hand rule; hence the left side of the armature is 

pushed by an upward force and the right side of the armature moves down due to a downward 

force. The armature is also known as the rotor, as it is the rotating part of the motor. The 

electromagnetic force produced by the current flowing through the armature is known as the 
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Lorentz force (Britannica, 2023). The rotational field is produced by the charged particles 

traveling through the conductor. The magnitude of the force produced can be calculated with 

Equation (3.1).  

 

𝐹⃗ = 𝑞(𝐸ሬ⃗ +  𝑣⃗ × 𝐵ሬ⃗ )        (3.1) 

  

Where,  

 

 𝐹⃗ = Magnetic Force 

 𝐵ሬ⃗  = Magnetic Field 

 𝐸ሬ⃗  = Electric Field  

 𝑞 = Charge 

 𝑣 = velocity of the charged particle 

 

Therefore, 

 

 𝑞 ∗ 𝐸ሬ⃗    = electrical force on the charged particle 

 𝑞 ∗ (𝑣⃗ × 𝐵ሬ⃗ ) = magnetic force of the charged particle  

 

Hence the sum of the electrical force and magnetic force equals the force a charged particle 

experiences when placed in an electromagnetic field. 

 

3.3.3 Construction of a DC Motor 

 
The internal construction of a DC motor is presented in Figure 3.12. The most important 

internal components of the DC motor are the armature, brush, commutator, permanent 

magnet, and a shaft.   

 

Through brushes, the commutator establishes a permanent electrical connection between the 

armature and the DC power source. This allows the armature to rotate freely without losing 

connection. The brushes are spring-loaded so that contact with the commutator is always 

maintained. The commutator also reverses the current direction to the armature to allow it to 

continue rotating in one direction. A single armature coil has two commutators attached to each 

respective end in the form of a split ring (Roderick, 2021). 
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Figure 0.12: Dissected view of a DC motor  

(Roderick, 2021) 

 

 

The current supplied by the DC supply flows through the wire, through the brush, through the 

commutator ring, forms a loop within the armature, and out through the second commutator, 

brush, and wire. As mentioned before, this causes an electromagnetic field across the 

armature. As the commutator spins, the gap between the commutator rings is reached and the 

direction of flow of current in the armature is switched, causing the polarity of the 

electromagnetic field to switch. The commutator ring has the same effect as switching the wires 

of the input DC supply.  

 

The motor in Figure 3.12 has more than one set of commutator rings. Multiple commutator 

rings prevent the brushes from meeting halfway between commutator segments which can 

cause irregularities in the rotation of the armature. The shaft is also shown, which allows for 

the transfer of the produced mechanical energy to the process that needs to be rotated. 

 

DC motors are very advantageous regarding torque capabilities (Tan Kiong Howe, 2003). The 

startup torque of these motors is very high, which is needed when speed must be constant and 

consistent in applications. Also, the relationship curve between speed and torque is more linear 

than in most other motors. Other advantages include no harmonic effects, quick installation, 

minimal maintenance, and low cost.  

 

3.4 Discussions on Radio Antennas and DC Motors 

 
This section discusses the use of DC motors being used in radio antennas control systems. 

Table 3.1 in Section 3.2.2 shows a few articles in which authors have studied different radio 
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antenna control systems. In most cases, a DC motor is used in a feedback control system to 

allow for positional movements of the azimuth or altitude planes of the dish. Only one author 

did not use a controller in the feedback loop, but the others used controllers such as model 

predictive control, PID control, fuzzy logic control and state feedback control. 

 

MATLAB/Simulink was used by all the authors to simulate their models. No physical systems 

were mentioned or built to compare results but there were a few mentions of future work being 

done on implementation of the designed systems. The next section will conclude the chapter 

by discussing and summarizing the main points regarding the theory of antennas and radio 

antennas.    

 

3.5 Conclusion 

 
This chapter gave a theoretical overview of antennas and the DC motor. Antenna theory is 

discussed, including a brief history, different types of antennas, and several radio antenna 

control systems. The multiple articles regarding radio antenna systems are discussed and 

compared to see which control systems were used more and which has better results. It was 

shown that in all the articles DC motors were used for the positional control of the radio antenna 

dish. 

 

The DC motor operation, construction and history is also discussed. Finally, Section 3.4 

discusses the correlation between the DC motor and the radio antenna to show the importance 

of the two for this research work. The use of DC motors in radio antenna systems is shown to 

be common in this chapter. The high torque-to-inertia ratio, cost effectiveness, and precision 

are all factors that motivate the use of a DC motor for positional control of the parabolic dish. 

The plant is considered linear and therefore the disturbance of wind and any other external 

factors will not be considered. The load, consisting of the dish, will be included in the system 

calculations by means of a gearbox model.  

 

Chapter Four describes the formulation of the mathematical model of the plant, combining the 

electrical and mechanical components of the DC motors used for azimuth and altitude 

positional movements of the antenna dish.  

 

 



 57

 
CHAPTER 4 
DEVELOPMENT AND SIMULATION OF THE PLANT 

 
4.1 Introduction 
 
The mathematical modelling of the DC motor and radio antenna system are discussed in this 

chapter. To develop an understanding of the system's behaviour driven by the DC motor, the 

antenna system model is evaluated. In control systems, it is necessary to first design and 

simulate the appropriate model of the plant before applying the controller to the actual 

hardware. The simulations are used to prove the behaviour of the system when parameters 

are changed. To model a system, it is necessary to find its transfer function (relating the output 

to the input) and then develop its MATLAB script or a Simulink block diagram. This allows for 

easier implementation of the practical model as many input sources and graphing tools are 

available to test the system during the simulation. 

 

Radio antenna systems are non-linear because external factors such as wind usually influence 

the systems response. In this thesis the radio antenna is considered as linear when calculating 

the mathematical models, ignoring the external factors. The plant considered in this research 

has two DC motors controlling the antenna dish's azimuth and altitude positional movements. 

Therefore, it is necessary to model these DC motors to allow for simulations before applying 

the controller to the real hardware. A single DC motor is modelled, as the calculations can then 

be duplicated for the second DC motor.  

 

The mathematical model of a DC motor is obtained in Section 4.2. This section describes the 

Modelling of a DC motor's electrical and mechanical components. Both models are combined 

to form the DC motor's electromechanical open loop transfer function. The state space 

representation of the DC motor is described in Section 4.3. The model of the antenna system 

is described in 4.4, followed by a conclusion in Section 4.5. 

  

4.2 Modelling of a DC Motor 

 
The electro-mechanical diagram of a DC motor can be seen in Figure 4.1. The system is 

comprised of a coupled electrical and mechanical subsystem. By using the laws of physics, it 

is possible to obtain the system equations. These system equations are then used to find the 

transfer function which is mathematically easier to work with and simulate. Obtaining the 

transfer function allows for the use of tools and graphing techniques in the MATLAB/Simulink 

software environment to help better understand the behaviour of the system.  
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4.2.1 Transfer Function of the Electrical Component of a DC Motor 

 

The electrical part of a DC motor is modelled using Kirchhoff’s voltage law, which states that 

the sum of potential differences in a closed circuit is equal to zero (Iswanto et al, 2021). The 

balance equation is defined by  

 

𝑉௔(𝑡) − 𝑅௔𝑖௔(𝑡) − 𝐿௔
ௗ௜ೌ

ௗ௧
− 𝑒௕ = 0       (4.1) 

 

where 𝑉௔ is the voltage source, 𝑅௔ is the resistance of the armature, 𝐿௔ is the inductance of the 

armature, 𝑒௕ is the back Electromotive Force (emf) generated from the load, and 𝑖௔(𝑡) is the 

armature current that flows through the circuit with time. 

 

From Equation 4.1, the voltage source is expressed as 

 

𝑽𝒂(𝒕) = 𝑹𝒂𝒊𝒂(𝒕) + 𝑳𝒂
𝒅𝒊𝒂

𝒅𝒕
+ 𝒆𝒃       (4.2) 

 

The back emf is expressed as 

 

𝑒௕   = 𝐾஻ ∗ 𝜃̇௠          (4.3) 

 

where 𝐾஻ is the emf constant of the DC motor, and 𝜃̇௠ is the angular velocity.  

 

Substituting Equation 4.3 into Equation 4.2 yields 

 

𝑉௔(𝑡) = 𝑅௔𝑖௔(𝑡) + 𝐿௔
ௗ௜ೌ

ௗ௧
+ 𝐾஻𝜃̇௠         (4.4) 

 

Figure 0.1 Electro-mechanical diagram of a DC motor with a fixed magnetic field  

(Mikova et al, 2016) 
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To solve for the transfer function of the DC motor, it is necessary to convert all differential 

equations to the frequency domain which allow for easier algebraic manipulation of equations. 

The conversion makes it easier to converge the electrical and mechanical equations into one 

equation and is necessary for conversion to block diagram form in Simulink. Taking the Laplace 

transform of Equation 4.4, we obtain 

 

𝑉௔(𝑠) = 𝑅௔𝐼௔(𝑠) + 𝐿௔𝑠𝐼௔(𝑠) + 𝐾஻𝑠𝜃௠(𝑠)      (4.5) 

 

where 𝜃௠(𝑠) is the angular position of the DC motor in the s-domain , and 𝑠 is a complex 

frequency domain parameter.  

 

Rearranging Equation 4.5 results in Equation 4.6. 

 

𝑉௔(𝑠) − 𝐾஻𝑠𝜃௠(𝑠)  = 𝐼௔(𝑠)(𝑅௔ + 𝐿௔(𝑠))      (4.6) 

 

Equation 4.6 is used to find the transfer function of the electromechanical model of the DC 

motor. The next section determines the transfer function of the mechanical component of the 

DC motor. 

 

4.2.2 Mechanical Transfer Function of a DC Motor 
 
It is important to model the mechanical part of the DC motor because the output rotational 

movement of the shaft is related to the current input from the electrical part. A relationship 

between the electrical and mechanical parts must be found to calculate the complete transfer 

function of the system that can be used in the final model. 

 

The electrical current flowing through the circuit causes a fixed magnetic field due to a magnet 

component in the DC motor. This magnetic field applies a force on the inertial mass that causes 

an input torque which is defined using Newton’s 2nd law. The balance equation is defined by  

 

𝑇௠ − 𝐵௠𝜃̇௠ = 𝐽௠𝜃̈௠          (4.7)  

 

where 𝑇௠ is the input torque to the load, 𝐵௠ is the damping coefficient, 𝜃̇௠ is the angular velocity 

of the DC motor, 𝜃̈௠ is the angular acceleration of the DC motor, and 𝐽௠ is the initial moment 

of inertia. 

 

The initial torque generated is expressed as  

 

𝑇௠ = 𝐾் ∗ 𝑖௔(𝑡)          (4.8) 
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where 𝐾் is the DC motor torque constant, and 𝑖௔(𝑡) is the armature current that flows through 

the circuit with time. 

 

Substituting Equation 4.8 into Equation 4.7 yields 

 

𝐾்𝑖௔(𝑡) − 𝐵௠𝜃̇௠ = 𝐽௠𝜃̈௠         (4.9) 

 

This substitution is crucial as it allows the like term of 𝑖௔(𝑡) to be in both the electrical and 

mechanical balance equations. Taking the Laplace transform of Equation 4.9, to obtain 

 

𝐾்𝐼௔(𝑠) − 𝑠𝐵௠𝜃௠(𝑠) = 𝐽௠𝑠ଶ𝜃௠        (4.10) 

 

Rearranging Equation 4.10 finds the balance equation of the mechanical part of the DC motor 

which is defined by 

 

𝐾்𝐼௔(𝑠) = 𝑠(𝐽௠𝑠 + 𝐵௠)𝜃௠(𝑠)         (4.11) 

 

Equation 4.6 and 4.11 describes the balance equations of the electrical and mechanical parts 

of the DC motor in the frequency domain. The next section will determine the open loop transfer 

function of the complete DC motor, consisting of both electrical and mechanical parts. 

 

4.2.3 Open loop transfer function of DC motor without load 
 

It is necessary to obtain the complete electro-mechanical transfer function of a DC motor to 

simulate the system. The electrical and mechanical parts’ system equations, as described in 

Equations 4.6 and 4.11 respectively, are combined to formulate the full system. This is done 

by using the like term of 𝐼௔(𝑠)  which is found in both transfer functions. By making 𝐼௔(𝑠) the 

subject of each formula and then making the two equations equal to each other Equation 4.12 

is obtained. 

 

𝑉௔(𝑠) − 𝐾஻𝑠𝜃௠(𝑠) =
(௅ೌ௦ାோೌ)(௃೘௦ା஻೘)

௄೅
∗ 𝑠𝜃௠(𝑠)        (4.12) 

 

Rearranging Equation 4.12 results in, 

 

𝑉௔(𝑠) = ቂ
(௅ೌ௦ାோೌ)(௃೘௦ା஻೘)ା௄మ

௄೅
ቃ ∗ 𝑠𝜃௠(𝑠)         (4.13) 

 

Rearranging Equation 4.13 to find the transfer function for input acceleration to output voltage 

we obtain 
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ఏ̇೘(௦)

௏ೌ (௦)
=

௄ಳ

(௃೘௦ା஻೘)(௅ೌ௦ାோೌ)ା௄ಳ∗௄೅
         (4.14) 

 

 

Since position control of a DC motor is the aim of this thesis, the relationship between position 

and voltage is considered. This is achieved by integrating both sides of Equation 4.14 to obtain  

 

ఏ೘(௦)

௏ೌ (௦)
=

௄ಳ

௦[(௃೘௦ା஻೘)(௅ೌ௦ାோೌ)ା௄ಳ∗௄೅]
         (4.15) 

 

Equation 4.15 is the input-over-output transfer function form that is needed when trying to 

model a system (voltage being the input and position being the output). 

 

Considering that armature inductance 𝐿௔ in a fixed motor is negligible, 

 

ఏ೘(௦)

௏ೌ (௦)
=

௄ಳ

ோೌ௃೘௦మା௦[ோೌ஻೘ା௄ಳ∗௄೅]
          (4.16) 

 

Simplifying Equation 4.16 finds the combined transfer function of the electrical and mechanical 

parts of the DC motor defined by: 

 

ఏ೘(௦)

௏ೌ (௦)
=

಼ಳ
ೃೌ

௃೘௦మା௦[
ೃೌಳ೘శ಼ಳ∗಼೅

ೃೌ
]
          (4.17) 

 

To reduce the complexity of the transfer function to allow for easier modelling of the system, 

new variables  𝐾௠ and 𝑎௠ are substituted into Equation 4.17 to obtain  

 

ఏ೘(௦)

௏ೌ (௦)
=

௄೘

௦(௦ା௔೘)
           (4.18) 

 

where 

 

𝐾௠ =
௄ಳ

ோೌ௃೘
            (4.19) 

 

and 

 

𝑎௠ =
ோೌ஻ା௄ಳ∗௄೅

ோೌ௃೘
           (4.20) 
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Table 0.1: DC motor parameters 

Parameters Symbol Values Unit of Measurement 

𝑅௔ Armature resistance 14.3 ohm 
𝐿௔ Armature inductance 0 henry 
𝐾஻  Electromotive force constant 0.425 volt/(rad/sec) 
𝐾்  Torque constant 2.3 N-m/ampere 
𝐽௔ Moment of inertia of the armature 0.013 Kg/ m² 
𝐽௅ Moment of inertia of the load 0.001 Kg/ m² 

𝐵௔ Motor damping coefficient  0.00001 Ns/m 

𝐵௅ Load damping coefficient 1 Ns/m 

𝑁1 Number of gears teeth N1 1 N-m 

𝑁2 Number of gears teeth N2 270 radians 

 

 

The motor parameters shown in Table 4.1 is substituted into Equation 4.18 to obtain the 

complete transfer function for the specified DC motor. The motor used is a 6000 RPM 12V DC 

motor with a 1:270 gearbox. The load moment of inertia and damping ratios are from the 

incremental encoder that is mechanically connected to the shaft of the motor through a 1:1 

gear ratio. 

 

The total moment of inertia is defined as  

 

𝐽௠ = 𝐽௔ + 𝐽௅ ∗ ቀ
ேభ

ேమ
ቁ

ଶ
        (4.21) 

 

where 𝐽௔ is the moment of inertia of the armature, 𝐽௅ is the moment of inertia of the load, 𝑁ଵ is 

the number of gear teeth on the motor side of the gearbox, and 𝑁ଶ is the number of gear teeth 

on the load side of the gearbox. Substituting the parameters from Table 4.1 yields  

 

𝐽௠ = 0.013   Kg-m²/rad         (4.22) 

 

The total damping coefficient is defined as  

 

𝐵௠ = 𝐵௔ + 𝐵௅ ∗ (
ேభ

ேమ
)ଶ          (4.23) 

 

where  𝐵௔ is the motor damping coefficient, and 𝐵௅  is the load damping coefficient. Substituting 

the parameters from Table 4.1 yields  

 

 𝐵௠ = 0.00002   N-m/(rad/sec)       (4.24) 
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The values for the armature resistance, the armature inductance, the electromotive force 

constant, the torque constant, the moment of inertia of motor and load, and the damping ratio 

of mechanical system, are substituted into equations 4.19, 4.20 to obtain  

 

𝐾௠ =
଴.ସଶହ

ଵସ.ଷ∗଴.଴ଵଷ
         (4.25) 

 

𝐾௠ = 2.2862         (4.26) 

 

𝑎௠ =
ଵସ.ଷ∗଴.଴଴଴଴ଶ (଴.ସଶହ∗ଶ.ଷ)మ

ଵସ.ଷ∗଴.଴ଵଷ
        (4.27) 

 

𝑎௠ = 5.26          (4.28) 

 

Finally, the values for 𝐾௠ and 𝑎௠ are substituted into Equation 4.18 to obtain the final DC 

motor transfer function defined as 

 

ఏ(௦)

௏ೌ (௦)
=

ହ.ଶ଺

௦(௦ାଶ.ଶ଼଺ଶ)
          (4.29) 

 

The open loop transfer function is simulated and validated in the next section using MATLAB 

and Simulink. 

 

4.2.4 Simulation and Validation 

 

The open loop response of the DC motor without load is simulated in MATLAB and Simulink. 

The calculations to determine the values for 𝐾௠ and 𝑎௠ are done in MATLAB and can be seen 

in Appendix A4.1. The transfer function is configured in Simulink using a transfer function block 

as shown in Figure 4.2. A step input is used to test the response of the system. The step value 

is 1 and the time at which the step occurs is at 1 second. Figure 4.3 shows the graphical open 

loop response from the scope in Simulink. 

 

 

 

Figure 0.2: Simulink block diagram of a step input to a DC motor transfer function 
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Figure 0.3: Open loop step response of a DC motor 

 

The response in Figure 4.2 illustrates an exponential increase in the motor position. This 

occurs because the measured position is not fed back into the control system. A closed loop 

system with measured position feedback is discussed in section 4.4. This thesis focuses on 

modern control theory and therefore the state space representation is required before the 

controller can be developed. The next section will formulate the state space equations of a DC 

motor. 

 

4.3 State space representation of open loop system of a DC motor 

 

Working with differential equations and transfer functions when trying to model systems 

becomes more difficult as the systems become more complex. Therefore, it is necessary to 

use state space representation to allow for easier design and modelling of systems. State 

space representation of a physical system consists of a set of inputs, outputs and state 

variables in a mathematical model which is related by first order differential equations (Rowell, 

2002). The states which change with time in a DC motor are position, velocity, and armature 

current. In this case, only position and velocity are considered. The state space equations of a 

plant is expressed as  

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢           (4.30) 

 

𝑦 = 𝐶𝑥 + 𝐷𝑢         (4.31) 
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where A is the state matrix, B is the input matrix, C is the output matrix, and D is the 

feedthrough matrix. The A matrix captures the dynamics of the linear system, which includes 

how the energy of the system is captured, stored, and moved. The B matrix determines how 

the system responds to inputs. All four matrices can be calculated by finding the derivatives of 

the states of the system.  

 

Rearranging Equation 4.18, the angular position is obtained as shown in Equation 4.32. 

 

𝜃௠(𝑠) =
௄೘

௦(௦ା௔೘)
∗ 𝑉௔(𝑠)         (4.32) 

 

Taking the inverse Laplace transform of Equation 4.32: 

 

𝑠ଶ𝜃௠(𝑠) + 𝑠𝜃௠(𝑠)𝑎௠ = 𝐾௠𝑉௔(𝑠)         (4.33) 

 

This transformation is done as the state space representation requires the model of the plant 

to be in the time domain. Rearranging Equation 4.33 results in the angular acceleration being 

obtained as shown in Equation 4.34. 

 

𝜃̈௠(𝑠) = −𝜃̇௠(𝑠)𝑎௠ + 𝐾௠𝑉௔(𝑠)         (4.34) 

 

The states of the system are expressed as   

 

𝑦 = 𝜃௠ = 𝑋ଵ          (4.35)  

 

and 

       

𝑦̇ = 𝜃̇௠ = 𝑋̇ଵ = 𝑋ଶ         (4.36) 

 

and  

      

𝑦̈ = 𝜃̈௠ = 𝑋̈ଵ = 𝑋̇ଶ = −𝜃̇௠(𝑠)𝑎௠ + 𝐾௠𝑉௔(𝑠)       (4.37) 

 

Where 𝑋ଵ and 𝑋ଶ are vector components. These components make it easier to formulate the 

derivatives of the states. Once all the derivatives are found, it is possible to find the state 

space equations by making the derivatives the subject of the formula expressed as  

 

𝑋̇ଵ = 𝑋ଶ            (4.38) 
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and 

 

𝑋̇ଶ = −𝑋ଶ𝑎௠ + 𝐾௠𝑉௔(𝑡)          (4.39) 

 

The output equation is expressed as 

 

𝑦 = 𝑋ଵ            (4.40) 

 

Therefore, the matrices of the state space models are expressed as 

 

,  𝐴 = ൤
0 1
0 −𝑎௠

൨, 𝐵 = ൤
0

𝐾௠
൨,   𝐶 = [1 0] ൤

0
𝐾௠

൨,   𝐷 = 0 

 

Finally, the state space model of the plant is expressed as  

 

൤𝜃̇
𝜃̈

൨ = ൤
0 1
0 −𝑎௠

൨ ቂ
𝜃
𝜃̇

ቃ + ൤
0

𝐾௠
൨ 𝑢(𝑡)      (4.41)  

 

𝑦(𝑡) = [1 0] ൤
0

𝐾௠
൨       (4.42) 

 

 

Substitute the values for 𝑎௠ and 𝐾௠ for the complete state space equation of an open loop DC 

motor we obtain 

 

൤𝜃̇
𝜃̈

൨ = ቂ
0 1
0 −5.26

ቃ ቂ
𝜃
𝜃̇

ቃ + ቂ
0

2.2862
ቃ 𝑢      (4.43)  

 

𝑦(𝑡) = [1 0] ቂ
0

2.2862
ቃ        (4.44)  

 

4.3.1 Simulation and Validation 

 

The open loop response of the DC motor without a load in the state space form is simulated in 

MATLAB and Simulink. The values for matrix A, B, and C are calculated in MATLAB and can 

be seen in Appendix A4.2.  The state space equations are illustrated in Simulink using a gain 

block for the matrixes, an integrator to convert between states, and a summing junction that 

adds matrix A as feedback into the system. A step input is used to test the response of the 

system. The step value is 1 and the time at which the step occurs is at 1 second. Figure 4.5 

shows the graphical open loop response from the scope in Simulink. 
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Figure 0.4: Simulink block diagram of a step input to a DC motor that is represented in state 

space form 

 

 

 

Figure 0.5: Open loop step response of a DC motor that is represented in state space form 

 

 

The open loop step response of the DC motor in state space form is the same as the open 

loop step response of the DC motor transfer function shown in Figure 4.3. This verifies that the 

conversion to state space form is correct and that the state space equations can now be used 

in future models and simulations. The next section describes the full model of the plant. 

 

4.4 Model of a radio antenna control system 
 
The model for the radio antenna consists of two separate models for the azimuth and altitude 

positional movements. The load of the antenna is not included in the block diagram as the gear 

ratios are already included in the transfer function. The addition of the postion output being fed 
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back into the system through a summing junction, as shown in Figure 4.6, represents the 

encoder position feedback from the motor. The difference between the input and the output is 

the steady state error, which causes the system to move towards the set point. Equations 4.43 

and 4.44 represent the state space model of the closed loop system.  

 

൤𝜃̇
𝜃̈

൨ = ቂ
−5.26 −2.2862

1 0
ቃ ቂ

𝜃
𝜃̇

ቃ + ቂ
2
0

ቃ 𝑢(𝑡)     (4.43)  

 

𝑦(𝑡) = [0 1.1431]        (4.44)  

 

 

 

Figure 0.6: Simulink block diagram of the radio antenna control system 

 

 

A step input of 1 with an initial value of 0 is used to see the response of both DC motors. The 

outputs, showing the angular position of the motor, shows the same results on both scopes as 

the same motors and gear ratios are used for both the altitude and azimuth movements. As 

seen in Figure 4.7, the system takes 12 seconds to reach the set position and achieve a steady 

state. 

.  
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Figure 0.7: Step response of the radio antenna plant with step value of 1 

 

 

Another step input with the value 10 is also used to validate the response of the closed-loop 

system. As seen in Figure 4.8, the new set point also takes 28 seconds to reach and achieve 

a steady state. This response is very slow and can be compensated by developing and using 

a controller to decrease the rise time.  

 

 

 

Figure 0.8: Step response of the radio antenna plant with step value of 10 
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4.5 Conclusion 

 

The mathematical model of the DC motors used for the positional movements of the dish is 

presented in this chapter. The models are derived using the laws of physics, namely Kirchhoff’s 

voltage law and Newton’s law of motion. These system equations of the electrical and 

mechanical components of the motor are then substituted and rearranged to derive the 

electromagnetic model. This model is represented in both the transfer function and the state 

space form.  

 

The open loop step response of the motor is simulated using MATLAB/Simulink. The response 

shows an unstable system as the set position is never reached over time. Both the transfer 

function and state space representation of the open loop step response have the same results 

which verifies that the state space conversion was correct. The state space representation is 

required in the next chapter for the controller design. 

 

The radio antenna plant is also modelled and tested by means of a step response. It is shown 

that the system is stable but that the system performance is very slow. The next chapter 

focuses on the design of the controller for the plant to decrease the overall rise time. A state 

feedback gain controller with integral action and observer is proposed. The issue of network 

induced delays is also investigated. 
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CHAPTER 5 
STATE FEEDBACK CONTROLLER DESIGN 
 
5.1 Introduction 
 
This chapter is based on state feedback controller design techniques. This technique is 

generally used to shape the system's behavior and dynamics to achieve desired performance 

and stability. It is used to design control systems that provide control inputs based on the full 

state information of a dynamic system.  A state feedback controller allows the movement of 

the system poles to any desired location. Moving the poles of a system results in different 

responses in factors such as rise time, overshoot, frequency, gain, and settling time. Poles can 

be moved from the right-hand plane to the left, causing the system to become stable. This is 

done by multiplying each state by a certain gain K and feeding the result back into the system.  

Many advantages such as reduction in design complexity, reduction in hardware, and overall 

adaptivity are a direct result of applying a state feedback controller to a system (Ruderman et 

al, 2018). 

 

This study focuses on modern controller design techniques using a state feedback controller 

approach. The designed parameters are later used to control the position movement of a radio 

antennas azimuth plane. The step response of the closed-loop system as discussed in the 

previous chapter is fundamentally used to prove the requirement for the designed controller. 

The stability of the system is proven, as there is no steady-state error, but the time taken by 

the system to get to a steady state is too long. To decrease the rise time, it is necessary to 

introduce a controller, hence the introduction of this chapter  Each set of motors will have a 

state feedback controller; therefore, this chapter only discusses the controller design for the 

motor used for Azimuth position movement. The same controller is then used for the Altitude 

motor.   

 

A state feedback controller is designed in Section 5.2. The addition of integral control to the 

controller is implemented in Section 5.3. Observer control for the current controller is described 

in Section 5.4. The effects of network delays in the developed control system are discussed in 

Section 5.5, followed by the conclusion in Section 5.6. 

 

5.2 State Feedback Controller Design Using Pole-Placement Approach 
 
The pole placement technique is used to change the behaviour of a system by moving its poles 

to a desired location. As indicated in the previous chapter the current system poles are situated 

at a position that causes the system to have a slow rise time. The graphical record based on 

the step response as presented in Chapter 4 are the results of the poles of the system that are 

situated at -0.486 and -4.78 as shown in Figure 5.1. To achieve a faster rise time, it is 

necessary to move these poles further into the left-hand side of the s-plane. Figure 5.1 shows 
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the MATLAB output of the root locus of the DC motor closed-loop system described by the 

state space equations that are formulated in the previous chapter.  

 

 

 

Figure 0.1: Root Locus of the closed-loop system 

 

The following subsections describe the process involved in  designing a state feedback 

controller with pole placement feedback. The control law for state feedback is first described 

followed by a test to see if the system is controllable. The state feedback gain is then calculated 

and tested through simulations. 

 

5.2.1 Control Law 

 

To determine how a system responds to input signals and regulates its output signals to 

achieve its desired objective, it is necessary to determine its control law. The control law is a 

mathematical representation that shows the behaviour of a control system. Developing a 

control law is very beneficial when designing a system, performing optimization, analysing 

stability, testing model compatibility, and preventing rework. Determining the control law before 

designing the control system establishes a solid foundation for the overall system performance. 

The state space equations for a plant is defined as  

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢           (5.1) 

 

𝑦 = 𝐶𝑥 + 𝐷𝑢         (5.2) 



 73

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the 

feedthrough matrix.  

 

The first step is to determine the control law for a full-state feedback controller. Because the 

system is regarded as linear, it can be said that the C matrix is equal to the identity matrix, and 

the D matrix is equal to zero. Therefore, by inserting this logic into Equation 5.2,  

 

𝑦(𝑡) = 𝑥(𝑡)         (5.3) 

 

Therefore, the control law for a full state feedback controller is given by 

 

𝑢(𝑡) = −𝐾𝑥(𝑡)         (5.4) 

 

where 𝐾 is the gain matrix. 

 

Substituting Equation 5.4 into equation 5.1 results in Equation 5.5. 

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵(−𝐾𝑥(𝑡))       (5.5) 

 

Rearranging Equation 5.5 the closed-loop state space representation of the system is 

obtained as shown in Equation 5.6. 

 

𝑥̇(𝑡) = (A − 𝐵𝐾)𝑥(𝑡)        (5.6) 

 

The A matrix in a closed loop system is defined as   

 

𝐴஼௅  = 𝐴 − 𝐵𝐾         (5.7) 

 

where 𝐴஼௅ is the closed-loop A matrix 

 

Substituting Equation 5.7 into Equation 5.6 yields   

 

𝑥̇(𝑡) = 𝐴஼௅ . 𝑥(𝑡)        (5.8) 

 

 This closed-loop A matrix governs the behaviour of the system as changing the value of 𝐾 

results in the movement of the eigenvalues. In the next subsection, the first task is to evaluate 

the controllability of the control system before using the state feedback controller to optimize 

the response of the system. 
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5.2.2 Controllability  
 
A DC motor system model needs to be in a controllable state to use a state feedback controller 

with pole placement (Iswanto et al, 2021). To check controllability, it is necessary to test if the 

system model is already in controllable canonical form. The test for controllability is expressed 

as  

 

𝑃஼ = [𝐴 𝐴𝐵]         (5.9) 

 

where 𝑃஼ is the controllability matrix.  

 

Substituting the A and B matrices of the closed-loop system into Equation 5.9 yields 

 

𝑃஼ = ቈቂ
−5.26 −2.2862

1 0
ቃ ቂ

−5.26 −2.2862
1 0

ቃ ቂ
2
0

ቃ቉    (5.10) 

 

Simplifying Equation 5.10 results in Equation 5.11. 

 

𝑃஼ = ቂ
2 −10.5201
0 2

ቃ        (5.11) 

 

As shown in Equation 5.11, the second row of the matrix 𝑃஼ is not dependent on the first row 

and therefore the rank is 2, proving that the system is controllable. 

 

The DC motor system model is proven to be controllable and therefore a controller can be 

designed to change the response of the system. The next section uses the state feedback 

control law and the positions of the desired poles to solve for the gain matrix 𝐾.  

 

5.2.3 Solve for Gain Matrix K 
 
This section describes how to solve for the gain matrix 𝐾 when designing a state feedback 

controller. The value of the gain matrix 𝐾 is used to move the poles of a system to a desired 

location. It is necessary to move the poles of the system to decrease the current system’s rise 

time. The gain matrix 𝐾 is multiplied by the input matrix B, and then subtracted from the state 

matrix A. This shows that the value of 𝐾 has a direct effect on the states of the system. 

 

Before moving the poles to a desired location, it is necessary to find the characteristic equation 

of the closed loop system with state feedback control. This is done by finding the value of 
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matrix 𝐴஼௅ and then finding the eigenvalues of the closed-loop matrix. The values for matrices 

A, B, and 𝐾 are substituted into Equation 5.7 to obtain 

 

𝐴஼௅ = ቂ
−5.26 −2.2862

1 0
ቃ − ቂ

2
0

ቃ [𝐾ଵ 𝐾ଶ]     (5.12) 

 

where 𝐾ଵ and 𝐾ଶ are vectors of the matrix 𝐾. 

 

Simplifying Equation 5.12 through matrix multiplication Equation 5.13 is obtained.  

 

𝐴஼௅ = ቂ
−5.26 −2.2862

1 0
ቃ − ቂ

2𝐾ଵ 2𝐾ଶ

0 0
ቃ     (5.13) 

 

Simplifying Equation 5.13 through matrix subtraction results in Equation 5.14.  

 

𝐴஼௅ = ቂ
−5.26 − 2𝐾ଵ −2.2862 − 2𝐾ଶ

1 0
ቃ     (5.14) 

 

The next step is to find the eigenvalues of matrix 𝐴஼௅. The formula used to calculate the 

eigenvalues of a system is expressed as  

 

0 = det (λ𝐼 − 𝐴஼௅)        (5.15) 

 

where 𝐼 is a 2x2 identity matrix, and λ is a mathematical constant. 

 

Substituting Equation 5.14 into 5.15 yields 

 

0 = det ቀቂ
λ 0
0 λ

ቃ − ቂ
−5.26 − 2𝐾ଵ −2.2862 − 2𝐾ଶ

1 0
ቃቁ    (5.16) 

 

Simplifying Equation 5.16, 

 

0 = det ቀቂ
λ − (−5.26 − 2𝐾ଵ) −(−2.2862 − 2𝐾ଶ)

−1 λ
ቃቁ    (5.17) 

 

Simplifying Equation 5.17, 

 

0 = det ቀቂ
λ + 5.26 + 2𝐾ଵ) 2.2862 + 2𝐾ଶ)

−1 λ
ቃቁ     (5.18) 

 

Finding the determinant of Equation 5.18 results in Equation 5.19. 
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0 = (λ + 5.26 + 2𝐾ଵ)λ − (−1((2.2862 + 2𝐾ଶ))    (5.19) 

 

Simplifying Equation 5.19 obtains the characteristic equation of the closed-loop system and 

is expressed as 

 

0 =  λଶ + 5.26λ + 2𝐾ଵλ + 2.2862 + 2𝐾ଶ     (5.20) 

 

To achieve a faster rise time, the poles -2 and -6 are selected. These poles are known as the 

desired poles and is expressed as the desired characteristic equation  

 

0 =  λଶ + 8λ + 12        (5.21) 

 

The values for 𝐾ଵ and 𝐾ଶ are solved by equating the coefficients of the like terms in the closed 

loop and desired characteristic equations shown in Equations 5.20 and 5.21. The equated 

characteristic equations are expressed as  

 

5.26 + 2𝐾ଵ =  8        (5.22) 

 

and 

 

2.2862 + 2𝐾ଶ =  12        (5.24) 

 

Substituting 𝐾ଵ and 𝐾ଶ into the gain matrix 𝐾 yields  

 

𝐾 =  [1.37 4.8569]        (5.25) 

 

Substituting the gain matrix 𝐾 back into Equation 5.14, the closed-loop A matrix is expressed 

as  

 

𝐴஼௅ = ቂ
−8 −12
1 0

ቃ        (5.26) 

 

The state space model of the closed-loop system with full state feedback controller is 

expressed as  

 

൤𝜃̇
𝜃̈

൨ = ቂ
−8 −12
1 0

ቃ ቂ
𝜃
𝜃̇

ቃ + ቂ
2
0

ቃ 𝑢       (5.27)  

 

𝑦(𝑡) = [0 1.1431]        (5.28)  



 77

 

The new closed loop system shown in Equations 5.27 and 5.28 has poles at the desired 

location to achieve a faster rise time. The next section presents the simulation and validation 

of the behaviour and response of the closed loop system using MATLAB/Simulink. 

 
5.2.4 Simulation and Validation 
 

This section presents the simulation and performance evaluation of the DC motor control 

system being controlled with a state feedback controller. It is necessary to simulate and 

validate the state space equations that are developed in the previous section to prove that the 

equations are correct before applying the controller to a real-world system.  

 

The MATLAB software environment is used to define and calculate the closed loop state space 

representation of the system. The software is also used to prove controllability, define the 

desired poles, calculate the values of 𝐾 using Ackerman’s formula, and lastly determining the 

new state space model of the system. Appendix A5.1 presents the MATLAB code used to find 

the new state space model or gain control model parameters. The new root locus response 

can be seen in Figure 5.2, showing the desired poles at -2 and -6. Therefore, it is proven that 

the calculated values of the gain matrix 𝐾 are correct. 

 

 

 

Figure 0.2: Root locus of closed loop system with new desired poles 
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The Simulink block diagram can be seen in Figure 5.3. The state gain matrix 𝐾 is shown being 

multiplied by the output of the integrator, which is also the states of the system. The states 

multiplied by 𝐾 are then subtracted from the input and multiplied by the closed loop matrix 𝐵஼௅.  

 

 

 

Figure 0.3: Simulink block diagram of closed loop system with state feedback controller 

 

 

The considered closed loop system with state feedback controller is simulated and the step 

response is shown in Figure 5.4. The rise time has decreased from 28 seconds to 4 seconds. 

Hence the state feedback controller made the system react 7 times faster than the open loop 

system.  Note that the position reached at a steady state is not the same as the unit step input 

which has the value of 1. The steady-state error that is present is the main disadvantage of 

using a full-state feedback controller. 

 

 

 

Figure 0.4: Step response for closed loop system with state feedback controller 
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The next section shows how to compensate for the error in position by applying integral control 

to the controller. 

 
5.3 State Feedback with Integral Control  
 
This section focuses on designing a controller that can compensate for the steady-state error 

encountered in the results in Section 5.2. The step response shown in Figure 5.4 shows that 

the introduction of full state feedback control has the disadvantage of having a huge steady 

state error. Steady state error can cause low accuracy as the set point of the controller is never 

reached. The system considered in this research requires zero steady state error; therefore, it 

is necessary to add integral control to the controller to reduce the current steady state error.  

 
The following subsections describe the process to be followed when designing a state 

feedback controller with integral control. The new control law for state feedback is first 

described. The state feedback gain and integral gain is then calculated and tested through 

simulations. 

 

5.3.1 Control Law 
 
Integral control feeds the error between the input (𝑟(𝑡)) and output (−𝐶𝑥(𝑡)) of the plant back 

into the system through an integrator. This new control structure adds an additional state, 𝑥௜, 

to the system due to the output from the integrator (Equation 5.32). The new state is then 

multiplied by a gain 𝐾௜ and subtracted from the full-state feedback controller’s input. The 

equation for the new state is shown is expressed as 

 

𝑥̇௜ = −𝐶𝑥(𝑡) + 𝑟(𝑡)        (5.29) 

 

where  𝑟(𝑡) is the input to the controller and 𝑥̇௜ is the input state of the integrator. 

 

The new control law is expressed as  

 

𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝐾௜𝑥௜(𝑡)       (5.30) 

 

where  𝐾௜ is the integral gain and 𝑥௜(𝑡) is the output state of the integrator 

 

Substituting Equation 5.30 into the output equation of a state space system, the state space 

model of the plant with full statefeedback and integral control is expressed as 

 

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵(−𝐾𝑥(𝑡) + 𝐾௜𝑥௜(𝑡))        (5.31) 
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Simplifying Equation 5.31, 

 

𝑥̇ = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝐾௜𝑥௜(𝑡)         (5.32) 

 

Therefore, the state space model of a closed-loop system with a full state feedback controller 

and integral control is expressed as 

 

൤
𝑥̇

𝑥௡
൨ = ቂ

𝐴 − 𝐵𝐾 𝐵𝐾௜

−𝐶 0
ቃ ቂ

𝑥
𝑥௡

ቃ + ቂ
0
1

ቃ 𝑟(𝑡)      (5.33) 

 

𝑦 = [𝐶 0] ቂ
𝑥

𝑥௡
ቃ        (5.34) 

 

The next subsection solves for the new state feedback gain 𝐾 and the integral control gain 𝐾௜ 

to allow for the movement of the system poles to a desired location and remove the steady 

state error. Once the values for the gains are solved, the system is tested in MATLAB/Simulink. 

 

5.3.2 Solve for Gains 𝑲 and 𝑲𝒊 

 

The previous controller design without integral control is not sufficient as the result showed a 

huge steady state error. Therefore, it is necessary to add integral control into the system to 

decrease the current steady state error. Integral control is added to the system by integrating 

and multiplying the input matrix B with a gain value 𝐾௜.  

 

It is necessary to solve for 𝐾 and 𝐾௜ to achieve the desired transient response of the DC motor 

system. This is done by moving the poles to desired locations. Before moving the poles, it is 

necessary to find the characteristic equation of the closed loop system with state feedback and 

integral control. This is done by finding the value of 𝐴𝑐𝑙, 𝐵𝑐𝑙 and 𝐶, then substituting these into 

the state space model.  

 

𝐴𝑐𝑙 is expressed as  

 

𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾 = ቂ
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ

−1 0
ቃ    (5.35)  

 

𝐵𝑐𝑙 is expressed as  

 

𝐵𝑐𝑙 =  𝐵𝐾௜ = ቂ
2
0

ቃ ∗ 𝐾௜        (5.36) 

 



 81

𝐶 is expressed as  

 

𝐶 = [0 1.1431]        (5.37) 

 

Substituting Equations 5.35, 5.36, and 5.37 into 5.33 yields  

 

൥

𝑥̇ଵ

𝑥̇ଶ

𝑥௜

൩ = ൥
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ 2𝐾௜

1 0 0
0 1.1431 0

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥௜

൩ + ቂ
0
1

ቃ 𝑟(𝑡)   (5.38)  

 

The next step is to find the eigenvalues of matrix 𝐴஼௅. Substituting into Equation 5.15 results 

in Equation 5.39. 

 

0 = 𝑑𝑒𝑡 ൭൥
λ 0 0
0 λ 0
0 0 λ

൩ − ൥
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ 2𝐾௜

1 0 0
0 1 0

൩൱   (5.39)  

 

Simplifying Equation 5.39,  

 

0 = 𝑑𝑒𝑡 ൭൥
λ + 5.26 + 2𝐾ଵ 2.286 + 2𝐾ଶ −2𝐾௜

−1 λ 0
0 −1.1431 λ

൩൱    (5.40)  

 

Finding the determinant of Equation 5.40 yields 

 

0 = λଷ + 5.26λଶ + 2λଶ𝐾ଵ + 2.286λ + 2λ𝐾ଶ − 2.2862𝐾௜   (5.41) 

 

The order of the system has increased due to the addition of another state after the integrator 

output. Therefore, another pole must be added when calculating the desired characteristic 

equation. The poles -2, -6 and -8 are chosen to achieve a faster rise time. The desired 

characterstic equation is expressed as  

 

0 = λଷ + 16λଶ + 76λ + 96       (5.42)  

 

The values for 𝐾ଵ, 𝐾ଶ and 𝐾௜ are solved by equating the coefficients of the like terms in the 

closed loop and desired characteristic equations shown in Equations 5.41 and 5.42. The 

equated characteristic equations are expressed as 

 

16 = 5.26 + 2𝐾ଵ        (5.43)  
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and  

76 = 2.286 + 2𝐾ଶ        (5.44)  

 

and 

 

96 = −2𝐾௜         (5.45)  

 

Therefore the values for 𝐾 and gain 𝐾௜ are expressed as  

 

𝐾 = ቂ
5.37

36.8569
ቃ         (5.46)  

 

𝐾௜ = −41.9915         (5.47) 

 

Substituting the gain matrix 𝐾 and gain 𝐾௜ back into Equation 5.38 to get the state space model 

of the closed loop system with full state feedback and integral control yields 

 

቎
𝜃̇
𝜃̈
𝜃௜

቏ = ൥
−5.26 −2.2862 0

1 0 0
0 −1.1431 0

൩ ൥

𝜃
𝜃̇
𝜃௜

൩ + ൥
2
0
0

൩ 𝑟(𝑡)     (5.48) 

 

𝑦(𝑡) = [0 1.1431 0] ቂ
𝑥

𝑥௡
ቃ       (5.49) 

 
The new closed loop system shown in Equations 5.48 and 5.49 has poles at the desired 

location to achieve a faster rise time and no steady state error. The next section presents the 

simulation and validation of the behaviour and response of the closed loop system using 

MATLAB/Simulink. 

 
5.3.3 Simulation and Validation 
 
This section presents the simulation and performance evaluation of the DC motor control 

system being controlled with a state feedback controller with integral control. It is necessary to 

simulate and validate the state space equations that are developed in the previous section to 

prove that the equations are correct before applying the controller to a real-world system.  

MATLAB functions are used to define and calculate the closed loop state space representation 

of the system. The software is also used to determine the desired poles, calculate the values 

of gain matrix 𝐾 and gain 𝐾௜ using Ackerman’s formula, and lastly display the root locus of the 

system. The root locus response can be seen in Figure 5.5, showing the desired poles at -2,  

-6 and -8. Therefore, it is proven that the calculated values of gain matrix 𝐾 and gain 𝐾௜ are 

correct. 
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Figure 0.5: Root locus of closed loop system with desired poles at -3, -5, and -20 

 
 
The Simulink block diagram can be seen in Figure 5.6. The state gain matrix 𝐾 is shown being 

multiplied by the output of the integrator, which is also the states of the system. The states 

multiplied by 𝐾 are then subtracted from the input and multiplied by closed loop matrix 𝐵஼௅. 

The addition of the integral gain is shown multiplied by an integrator before the summing 

junction.  

 
 

 
Figure 0.6: Simulink block diagram of a state feedback controller with integral control 

 
 
The step response of the plant with full state feedback and integral control is shown in Figure 

5.7. The step input of value 1 is reached in the same rise time as the state feedback controller 

without integral control but with zero steady state error. The resultant controller has achieved 

zero steady state error; therefore, the addition of integral control has worked.  
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Figure 0.7: Step response state feedback controller with integral control 

 

 

The next subsection focuses on a case study testing the response of the system. Response 

factors such as rise time, settling time, steady state-state error and overshoot are compared 

between different system inputs to test the performance and stability of the developed full state 

feedback controller with integral action. 

 
5.3.4 Case Study 
 
This subsection is composed of a case study comparing the different systems, with and without 

controllers, that have been developed in this research so far. The controllers are the same for 

both the azimuth and altitude position systems and therefore the results can be used for either. 

This case study only looks at the control of one DC motor to prevent duplication of results. 

 

Four cases are discussed and compared based on the different system responses and 

characteristics. Case 1 describes the step response of the closed loop DC motor system that 

is developed in Section 4.4. Case 2 describes the step response of the closed loop DC motor 

system with state feedback control that is developed in Section 5.2. Case 3 and 4 describes 

the step response of the DC motor system with state feedback and integral control. The 

difference between case 3 and 4 is the change in the input set point to compare the controller 

response to multiple inputs. 

 

Figure 5.8 shows the step input responses for cases 1, 2, 3 and 4. In each case, the set point 

is compared to the angular position feedback of the DC motor. As shown, Case 1 has the 

slowest rise time as there is no addition of a controller to the system. Adding a full state 

feedback controller causes Case 2 to have a faster rise time than Case 1, but the steady-state 
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error is huge. The addition of integral control to the system reduces the steady state error to 0 

which can be seen in Case 3 and 4.  

 

The output graphs of the 4 cases are developed in MATLAB with the code found in Appendix 

A5.3. The ‘To-Workspace’ function block is used to extract the positions and set points from 

Simulink to MATLAB to allow for custom plotting of the results.  

 

 

 

Figure 0.8: Developed controllers’ response to step inputs 

 
 
The response characteristics of each case is shown and compared in Table 5.1. The results 

show the difference in step input, rise time, settling time, steady-state error, and overshoot. 
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Table 0.1: Characteristics of the step response of the different DC motor control systems 

 Description Step 
Input 

Rise time Settling 
time 

Steady-state 
error 

Overshoot 

Case 1 Closed loop DC motor 
system without a 
controller 

1 4.013s 9.164s 0 0% 

Case 2 Closed loop DC motor 
system full state 
feedback control 

1 0.966s 2.714s 9.84 0% 

Case 3 Closed loop DC motor 
system full state 
feedback and integral 
control with a small input 
set point 

1 1.244s 3.303s 0 0% 

Case 4 Closed loop DC motor 
system full state 
feedback and integral 
control with a large input 
set point 

100 1.244s 3.303s 0 0% 

 
 
The results prove that adding a full state feedback controller to a closed loop system does 

decrease the rise time as shown by the difference between Case 1, which has a rise time of 

4.013s, and Case 2, which has a rise time of 0.966s. The decrease in rise time results in a 

decrease in settling time and improves the overall response of the system. To reduce the 9.84 

steady-state error shown in case 1, integral control is used for Case 3 and 4. This results in 

similar rise and settling time, but zero steady state error. A step input of 100 is input into Case 

4 to prove that the system reacts the same to larger values inputs. This is shown by Case 3 

and 4 having the same rise time and settling time responses.  

 

The final test done to show the full potential of the designed controller is shown in Figure 5.9. 

A random number generator is used as an input to the model to see how the system responds 

when the set point changes over time. The results shown has proven that the system is stable 

and can respond to changes in position set point with the same settling time as Case 3 and 4. 

 
 

 

Figure 0.9: Final Control System Response to Random Number Generator 
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To use state feedback control, it is necessary to measure every state in the system. This can 

become very costly as additional measuring hardware is required. To overcome this issue, it 

is possible to add an observer to the control system to estimate the values of certain states. 

The next section simulates the effect of network induced delays on the DC motor control 

system. 

 

5.4 Communication Delays 

 

This subsection simulates the effect of network delays on the DC motor control system 

developed in Chapter 5.3. Network delays need to be considered when designing a system 

which has some fieldbus separating different components. This hardware implementation uses 

the EtherCAT fieldbus protocol to communicate between the controller and the plant. The 

network delays associated with this configuration can be implemented in the Simulink model 

to analyse the effects on the overall system. 

 

The two important delays which occur in networked control systems is the sensor-to-controller 

time (𝑇௦௖) delay and the controller-to-actuator time (𝑇௖௔) delay. These delays are added to the 

Simulink block diagram by using a transport delay block as shown in Figure 5.12. The 𝑇௦௖ delay 

is added in the feedback line to simulate a delay in the encoder position feedback from the 

motor to the controller. A value of 200ms is used as an example. The 𝑇௖௔ delay is added 

between the controller and the input to the B matrix of the state space form of the motor. A 

value of 100ms is used as an example. This simulates a delay in command transmission from 

the controller to the plant. 

 

 

 

Figure 0.10: Simulink block diagram with added transport delay blocks 

 
 
Simulating the delays in Simulink help understand the limits of the system when designing 

network-controlled systems. These delays can be analysed beforehand which can lead to a 
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change in controller design, or a change in the hardware used. Critical delays which can cause 

the system to become unstable can also be found and dealt with before implementation. The 

following subsections describe the effects of the 𝑇௦௖ and 𝑇௖௔ delays on the system through case 

studies. Various delays are added to the system and compared to the model which does not 

have delays. 

 

5.5.1 Sensor to controller delays 
 
𝑇௦௖ delays can occur in closed-loop control systems depending on the hardware and fieldbus 

protocol used. In this thesis, these delays occur due to the time taken for the encoder feedback 

to register in the motor terminal controller. Depending on the magnitude of the delay, the 

system could become unstable. In other cases, the delay might not be critical, causing the 

system to decrease in performance, but remain stable. Table 5.2 compares the system with 

no delays to four cases of systems with different sensor to controller delays.  

 

The results show that an increase in 𝑇௦௖ leads to a reduction in rise time. This happens due to 

the controller trying to compensate for the delay in feedback by commanding the motor to run 

faster. The motor climbs to the set point quicker, but this can cause an overshoot as seen in 

Case 2 and 3. The settling time also increases as 𝑇௦௖ increases due to the long duration that 

the system takes to reach the set point. The results in Case 4 show an unstable system as the 

set point is never reached and therefore the settling time, steady state error and overshoot is 

infinite.  

 

Table 0.2: Comparison between different sensor to controller delays in DC motor system 

 𝑻𝒔𝒄 
 

Rise Time Settling 
Time 

Steady-State Over-shoot 

No delays 0ms 1.24s 3.30s 0 0% 
Case 1 100ms 0.99s 2.74s 0 0% 
Case 2 400ms 0.70s 5.56s 0 25.48% 
Case 3 800ms 0.53s 9.91s 0 128.55% 
Case 4 1200ms 6.96s Infinite Infinite Infinite 

 

 

The tabular results are graphed using Simulink and shown in Figure 5.13 using a step input of 

10mm. Each case is compared to the system with zero delay between the sensor and controller 

(𝑇௦௖). The overshoot described for Cases 2 and 3 can clearly be seen. The first three cases 

are shown to eventually reach steady state and achieve the desired set point. The position in 

Case 4 will continue to increase and decrease at an unstable rate, never reaching steady state.  
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Figure 0.11: Case Study on the effects of sensor-to-controller delays 

 
 

The effects of 𝑇௦௖ delays in the DC motor control system have been analysed in this subsection. 

The following subsection shows the simulation results of the system with different controller to 

actuator, 𝑇௖௔ delays. 

 

5.5.2 Controller to actuator delays 

 
Delays from the controller to the actuator can occur in closed-loop control systems. In this 

system these delays occur between the controller and the DC motor. Like 𝑇௦௖ delays, an 

increase in 𝑇௖௔ delays cause stability and performance issues in a control system. Table 5.3 

shows the results when an increase in 𝑇௖௔ delays is added to the DC Motor Simulink model 

using a transport delay block. Noticeably, small 𝑇௖௔ delay examples are used for simulation as 

even a small increase in this type of delay has major negative effects on the system.  

 

Table 0.3: Comparison between different controller to actuator delays in DC motor system 

 𝑻𝒄𝒂 
 

Rise Time Settling Time Steady-State Over-shoot 

No delays 0ms 1.244s 3.303s 0 0% 
Case 1 50ms 1.225s 3.314s 0 0% 
Case 2 100ms 1.175s 3.331s 0 0% 
Case 3 125ms 1.227s 7.467s 0 2.464% 
Case 4 150ms 1.867s Infinite Infinite Infinite 
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The larger the 𝑇௖௔ delay, the longer the system takes to reach the set point as shown by the 

increase in rise time values between Case 1 to 4. A small overshoot is present when the delay 

is 125ms, but steady state is still reached over time. Case 4 shows that a 𝑇௖௔ delay of 150ms 

or more causes the system to become unstable, preventing the motor from ever reaching 

steady state. The motor continuously turns forward and then reverse and then forward in an 

ever-increasing endless cycle. 

 

 

 

Figure 0.12: Case Study on the effects of controller-to-actuator delays 

 

 

This section analysed the effects of 𝑇௦௖ and 𝑇௖௔ delays in the developed control system. It is 

shown that an increase in either delay leads to instability and performance decrease. In some 

cases, the system can recover, but at certain critical delays the system becomes completely 

unstable. It is also not good practice to have a system overshoot the set point and recover, 

depending on the desired characteristic response. The next section concludes the chapter on 

controller design. 
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5.5 Discussions and analysis 

 

The simulation results of the designed state feedback controller for the DC motor closed-loop 

system is proven to be effective. The aim of adding the controller was to decrease the rise time 

of the step response of the system. This would cause the DC motor to react quicker to changes 

in angular position when commanded. The controller reduced the rise time response to a 

quarter of the rise time that the system with no controller performed.  

 

The disadvantage is that a huge steady state error is present when using state feedback. To 

overcome this, integral control is added to the system. Integral control reduced the steady state 

error from 9.84mm to zero. This is done by multiplying the integrated input by a gain big enough 

to have zero steady state. There is also no overshoot present and the rise time is slightly 

affected but still much faster than the closed-loop system without a controller. The system is 

tesed using a random set point generator over time to test the robustness. The controller 

performed as desired, showing stability and validated the controller design. 

 

Since a fieldbus protocol will be used in the implementation to create the communication link 

between the controller and plant, the imposed delays were analysed in a case study. This is 

done to have results that show the effects of sensor-to-controller and controller-to-actuator 

delays on the response of the system. The results help identify if different hardware or control 

techniques should be considered before implementation studies can commence. 

 

The case study proved that the network induced delays do have an effect on the performance 

and stability of the system. It is shown through Simulation simulations that an increase in either 

sensoer-to-controller or controller-to-actuator delays leads to a decrease in system 

performance. The delays in position feedback causes the controller to overshoot the set point. 

In some cases the plant eventually reaches steady state, but for longer delays then system 

becomes unstable.  

 

5.6 Conclusion 

 

This chapter focused on the design of a full state feedback controller for the closed-loop DC 

motor control system. Pole placement technique is used to shift the poles of the system by 

using a gain K in the feedback loop. Shifting the poles is important as it allows for the change 

in system response to a desired response. In this section the desired response was to have a 

faster rise time than the DC motor closed-loop system with no controller while still having good 

performance and stability. 
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 A step-by-step process is described showing the control law, testing controllability, and 

showing how to solve for the gain matrix K. The addition of state feedback causes a huge 

steady state error in the output of the control system, therefore integral control is also added. 

The integral control law is used to solve for the gains K and Ki that speed up the response of 

the system while also achieving a faster rise time, no overshoot, and zero steady state error.  

 

A case study is completed comparing the step response of the closed loop system without a 

controller, the system with state feedback control, and the system with state feedback and 

integral control. The full state feedback with added integral controller showed the best 

response by achieving the desired position output. A random set point generator is used to 

test the agility and robustness of the controller to rapid changes in position set point. The effect 

of network delays is also analysed and discussed. 

 

The control system has been simulated and analysed and is therefore ready for 

implementation. The next section shows how to transform the developed Simulink block 

diagram to the Windows Control and Automation Technology (TwinCAT) programming 

environment to allow for real-time implementation of the control system.   
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CHAPTER 6 

TRANSFORMATION FROM SIMULINK MODEL TO TWINCAT OBJECT 
 

6.1 Introduction 

 
This chapter describes the transformation of Simulink models into objects that are used in the 

Beckhoff TwinCAT 3 software programming environment. The application of the transformation 

is necessary to enable the utilization of the controller formulated in Chapter 5 for the regulation 

of the actual DC motor that is connected to the Beckhoff EtherCAT remote interface. The 

Simulink block diagram is converted to C++ code which can be read and used by TwinCAT. 

The transformation assesses the portability of the code from Simulink to TwinCAT, 

encompassing the transition from a continuous-time application to an active real-time control 

environment. A successful transformation is in-line with the IEC 61499 standard which aims to 

increase the portability, interoperability, and reusability of software components between 

vendors. 

 

Initially, a comprehensive description detailing the characteristics of every necessary software 

package is provided, alongside a step-by-step manual explaining the installation process for 

each development environment. The software required includes MATLAB/Simulink, TwinCAT 

3, Visual Studio, and the TE1400 Target. Once all software packages are installed, a step-by-

step guide is shown on how to use and configure the installed tools to achieve a successful 

transformation from the Simulink to TwinCAT 3 software environments. An overview of the 

common installation errors is examined, and corresponding solutions are supplied to rectify 

these issues. To validate the success of the transformation, a real-time numerical generator is 

formulated within TwinCAT. This generator uses identical inputs as the Simulink random 

number generator output shown in Figure 5.9 within Section 5.3.4, facilitating a comparative 

assessment of the system's behaviors. The object’s response to the random set points is 

plotted using Scope Viewer, which is a plotting tool included in the TwinCAT 3 package. 

 

Section 6.2 describes all the necessary software packages needed to set up the engineering 

computer for development. Section 6.3 describes how to export the developed controller model 

in the Simulink software environment. Section 6.4 describes how to import the Simulink model 

into the TwinCAT programming environment. In Section 6.5 the Simulink model and TwinCAT 

objects are simulated and compared to confirm that the transformation is successful. Lastly, 

the discussion and conclusion to the chapter is presented in Section 6.6. 
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6.2 Software Descriptions 
 
This section describes the installation of the prerequisite software that is needed for the 

transformation of Simulink models to the TwinCAT 3 programming environment. Table 6.1 

shows the versions, with download links, of the software that is used to complete the 

implementation section of this research. All the listed software packages are installed on the 

same Personal Computer (PC) which is referred to as the engineering PC in this thesis. 

Windows 11 Home version 22H2 is the installed operating system on the engineering PC.  

 

Table 0.1: Software installation download links 

No. Software Download Link 
1 Visual Studio 2019 

Community 
https://visualstudio.microsoft.com/vs/community 

2 TwinCAT 3 XAE 
v3.1.4024.47 

https://www.beckhoff.com/en-en/support/download-
finder/software-and-tools/ 

3 MATLAB/Simulink 2023a https://www.mathworks.com/products/matlab.html 
4 TE1400 Target https://www.beckhoff.com/en-

us/products/automation/twincat/texxxx-twincat-3-
engineering/te1400.html 

 

The following subsections give a summary of each software environment that is required to be 

installed on the engineering PC. The summaries include information regarding the software 

packages, as well as a guide on certain parts of the individual installations. 

 

6.2.1 MATLAB/Simulink software description 
 
MATLAB/Simulink is a software environment that combines programming, simulation, and 

visualization tools to facilitate the development and analysis of complex engineering and 

scientific systems. The MATLAB/Simulink programming environment has already been used 

in Chapters 4 and 5 to develop the block diagram of the full state feedback controller with 

integral control that needs to be exported to TwinCAT 3. The installation procedure for 

MATLAB/Simulink is shown in Appendix B6.1. It is recommended to select all products when 

installing to allow for the full functionality of the MATLAB and Simulink programming 

environments.  

 
The MATLAB and Simulink Coders, which are automatically installed, are used to convert the 

script files and block diagrams to C++ code for TwinCAT 3 to understand. This conversion 

process is described in Section 6.3. The rest of the installation of MATLAB/Simulink software 

is straightforward and is completed by clicking next until the products start downloading and 

installing. The next subsection describes how to install Visual Studio 2019 with all its necessary 

components.  

 

 



 95

6.2.2 Visual Studio 2019 software description 
 
Older versions of the TwinCAT software required the installation of Visual Studio to serve as 

the programming shell for the software. TwinCAT 3 includes shell software called TwinCAT 

eXtended Automation Engineering (XAE) where the user can program and interact with the 

software tools. Unfortunately, this new shell program does not include the development tools 

needed to run C++ objects. Therefore, it is needed to install Visual Studio 2019 Community to 

add the desktop development kit. This is done during the installation of Visual Studio 2019. 

Appendix B6.2 describes the installation procedure for Visual Studio 2019. This software is 

important as the Simulink block diagram is converted to C++ code when transformed to 

TwinCAT and therefore the necessary tools to read the C++ language are required. 

 

It is important to note that Visual Studio must be installed before the TwinCAT software to 

integrate the two software programs together. If TwinCAT 3 is already installed on the 

engineering PC, it is necessary to uninstall it, then install Visual Studio, and then reinstall 

TwinCAT 3 software. The rest of the Visual Studio 2019 software installation process is 

straightforward and is followed by the installation of TwinCAT 3 software which is described in 

the next subsection. 

 
6.2.3 TwinCAT 3 software description 
 
The Windows Control and Automation Technology (TwinCAT) 3.1 software is Beckhoff’s 

integrated programming platform that enables the development, configuration, and control of 

automation systems, offering real-time control, data processing and visualization capabilities. 

This software package is used as the gateway between the Simulink model and the hardware 

components. The installation of the TwinCAT software is straightforward and assistance is 

provided by the installation guide on the Beckhoff website if necessary. 

 

The full version of TwinCAT is installed on the engineering PC, which includes the engineering 

environment as well as the run time software. The installation procedure for TwinCAT 3 is 

described in Appendix B6.3. Once the installation is complete it is required to restart the 

engineering PC to allow for all the new system drivers to activate. The next subsection 

describes the creation of self-signed certificates to register the engineering PC drivers to 

enable the use of the TwinCAT software tools.  
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6.2.4 Drive signing 
 
TwinCAT systems use a process called drive signing to ensure that device drivers are 

authentic by providing a trusted and secure environment for communication between the 

hardware and software components. This is done by creating certificates that are used during 

the TwinCAT build process to authenticate the necessary drivers. Usually, a driver needs to 

be co-signed by Beckhoff through a certificate creation process, but for testing purposes it is 

possible to create a test certificate that is self-signed. 

 

 Below are the steps for successful signing of drivers on Windows. 

 

1) Create a test certificate that is used by TwinCAT to allow for projects to be 

authenticated when building. Open Developer Command Prompt 2019 as an 

administrator and execute the command ‘makecert -r -pe -ss PrivateCertStore -n 

CN=MyTestSigningCert MyTestSigningCert.cer’ as shown in figure 6.1. After 

executing, the message “Succeeded” shows if the certificate creation was successful. 

The command prompt is found in the Windows search bar and should be run as an 

administrator otherwise the certificate will not be created. Developer Command Prompt 

2019 is installed automatically when installing Visual Studio 2019. 

 

 

Figure 0.1: Developer Command Prompt 2019 Interface 

 

 

2) Check if the certificate was created successfully. Search ‘mmc’ with the Windows run 

function to open Microsoft Management Console (MMC). When the software opens, 

navigate to ‘File’ and then ‘Add/Remove Snap-in’ as shown in Figure 6.2, labelled 1 

and 2 respectively. Shortcut keys Ctrl+M can also be used for this step. 
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Figure 0.2: MMC - Add/Remove Snap-in  

  
  
The menu shown in Figure 6.3 will open. Click certificates (3), and then add to add console 

root (4) to the selected snap-ins. Click OK (5) to confirm selection and the menu shown in 

Figure 6.4 will appear. Select the radio button for my user accounts (6) and click finish (7). 

Lastly, check that ‘Certificates – Current User’ option is available under Console Root (8-9), as 

shown in Figure 6.5. Click OK (10) and the configured settings open a new MMC window to 

view all created certificates as shown in Figure 6.6. ‘MyTestSigningCert’ should be created 

under submenu ‘PrivateCertStore – Certificates’ (11-12). 

 

 

Figure 0.3: MMC - Add/Remove Snap-in Step 2 
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2 
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Figure 0.4: MMC - Add/Remove Snap-in Step 3 

 
 

 

Figure 0.5: MMC - Add/Remove Snap-in Step 4 
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Figure 0.6: MMC - Certificates 

 

 

3) Start Windows operating system in Test Mode. Self-signed certificates are only active 

when running Windows in Test Mode. To change to Test Mode, enter the following 

command in Windows command prompt: ‘bcdedit /set testsigning yes’. It is necessary 

to run Windows command prompt as an administrator to allow for the successful 

transition to Test Mode. Windows command prompt is accessed by searching ‘cmd’ 

using the Windows search function. After restarting the PC, Windows should be in Test 

Mode. To confirm, there should be white text in the bottom right corner of the Windows 

desktop stating that that Windows is now in Test Mode. To revert to the normal 

operating mode, use the command ‘bcdedit /set testsigning no’ in Windows command 

prompt and then restart the PC. 

 

This section configured the necessary self-signed certificates needed to authenticate the x64 

drivers for TwinCAT. The next subsection describes the installation of the TE1400 target that 

must be installed for the transformation of Simulink block diagrams to TwinCAT objects. 

 

6.2.5 TE1400 Target 
 
This section describes the installation of the TE1400 target that is installed in Simulink. 

Beckhoff Automation has developed targets such as the TE1400 to allow for a seamless 

transition between two software development environments. In this research, the target allows 

for the efficient integration of the developed Simulink model into the TwinCAT automation 

system by converting the block diagrams to C++ code. The C++ code is automatically 

converted and imported into TwinCAT when running a series of MATLAB commands that uses 

11 

12 
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the target functionality. Using the TE1400 target to generate TwinCAT objects from Simulink 

block diagrams requires a license. The license must be installed on the engineering PC where 

the module generation takes place. It is possible to use the target without a license but with 

limited features. These limitations are on the design and complexity of the Simulink models 

that are transformed. Only models with less than 100 blocks, 5 input signals, and 5 output 

signals can be transformed without a license.  

 

The TE1400 target is added to the TwinCAT functions after installing the installation file that 

can be downloaded from the link of item number 4 in Table 6.1. The target function can be 

accessed in the MATLAB software by navigating to the C: > TwinCAT > Functions > TE14xx-

ToolsForMatlabAndSimulink path (1) and running the setup file (2) as shown in Figure 6.7. The 

installation takes a few seconds and if successful, the message shown in Figure 6.8 is 

displayed in the MATLAB command window (3). Instructions on how to use the target as well 

as a few sample projects are also displayed in the same MATLAB command window (4).  

 

 

 

Figure 0.7: Navigation to TE1400 TwinCAT function 

 

 

Section 6.2 described the installation of all the prerequisite software required for the 

transformation of Simulink block diagrams to TwinCAT objects. The installation of 

MATLAB/Simulink, Visual Studio 2019 Community, TwinCAT 3, and the TE1400 target are all 

discussed. The use of certificates to self-sign Windows drivers for authentication with TwinCAT 

to allow for successful compiling of TwinCAT projects is also described.  

 

1 
2 
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Figure 0.8: Status of TwinCAT TE140x installation from the MATLAB Command Window 

 
 

Now that the engineering PC is set up and all necessary software is installed, the software 

tools are used to start the transformation process. The next section describes the steps taken 

in Simulink for the transformation to take place, followed by Section 6.4 which describes the 

steps taken in TwinCAT to simulate and test that the transformation is successful. 

 

6.3 Simulink Configuration 

 

This section shows how to generate TwinCAT objects from the developed Simulink block 

diagrams. A revised iteration of the comprehensive Simulink diagram established in Chapter 5 

is shown in Figure 6.9. The variables for state feedback gain, integral gain, and the A, B and 

C matrices, which were previously calculated in a MATLAB script, are all hard coded into the 

Simulink block diagram. This is done because the transformation process from Simulink to 

TwinCAT only uses the Simulink blocks and cannot include the MATLAB script files. Lastly, 

the step and scope Simulink blocks are removed and replaced with an input labelled “set point” 

and an output labelled “position” which is used in TwinCAT to interface with the model. 

 

 

 

Figure 0.9: Updated controller block diagram with added input and output blocks 
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Appendix A6.1 contains code developed that assists with the generation of the TwinCAT 

objects. When run, the code performs a few tasks which changes the Simulink models’ 

parameters and then saves and builds the project using the Simulink coder. The model 

parameters can also be set up manually beforehand. These parameters include changing the 

solver type, the system target file, and the TwinCAT 3 object name. All the parameters that 

need to be changed are found in the Simulink model which can be opened by using the 

keyboard shortcut Cntrl-E. Figures 6.10, 6.11, and 6.12 are all screenshots from the model 

settings page. 

 

Figure 6.10 shows the settings page for the type of solver used (2). A fixed-step type is required 

(3), with a fixed-step size of 0.01ms (4). The solver itself is set to automatic or to whichever 

solver is preferred. Figure 6.11 changes the target system file to “TwinCatGrt.tlc” (4) which is 

the TE1400 target installed in section 6.2.5. Lastly, Figure 6.12 shows the naming conventions 

of the object that is created once transformed to TwinCAT 3 (7). As mentioned before, if the 

MATLAB script in Appendix A6.1 is run, all these settings are automatically updated, and the 

object is immediately available for use in TwinCAT 3.  

 

 

 

Figure 0.10: Model configuration - Solver menu 
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Figure 0.11: Model configuration - Code Generation submenu 

 
 

 

Figure 0.12: Model configuration - TC General submenu 
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Table 6.2 shows a list of errors and solutions to issues found when trying to generate the 

TwinCAT objects from Simulink. The errors are found in the MATLAB diagnostics window when 

trying to build the code found in Appendix A6.3. Once all the errors are cleared using the 

supplied solution, the build is successful and the TwinCAT object is available for use in the 

TwinCAT XAE programming environment. 

 

Table 0.2: Possible errors during Simulink Coder compiling 

Error Solution 
Simulink Real-Time model build cannot use a 
file path with spaces for model build directory 

The file location of the Simulink model on 
Windows had a space in one of the folder 
names. Delete all spaces and replace them with 
underscores to prevent this error. 

Publish Procedure Failed When running the certificate creation task in the 
command prompt, the command is run twice so 
two certificates are created. The two certificates 
are clashing as the same name is used. Make 
sure there is only one certificate in the mcc to 
prevent this error.  

Error using tlc_new This occurs when trying to compile the Simulink 
block diagram with the Simulink Coder without 
configuring the steps shown in Figures 6.13, 
6.14, and 6.15. 

 

 

6.4 TwinCAT Configuration 
 
This section describes the process of adding the generated TwinCAT object from Section 6.3 

into the TwinCAT XAE environment. The new object which consists of the Simulink block 

diagram is used to control the DC motors that are connected to the Beckhoff terminal card. 

Therefore, it is necessary to first develop and test the software before mapping the inputs and 

outputs of the object to the hardware.  

 

Figure 6.13 shows the menu that is used to configure a new project with the TwinCAT 3 

programming environment. The “TwinCAT XAE Project” is selected as a base starting project 

for development. Click on the required starting project (1) and then click the OK button (2) to 

start developing. 
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Figure 0.13: TwinCAT 3 new project window 

  

Once a new project is created, the converted Simulink block diagram is added. Figure 6.14 

shows how to open the list of TwinCAT Component Object Model (TcCom) Objects that can 

be added to the project for interfacing (3). This list is accessed from the Solutions Explorer tab 

in TwinCAT 3 programming environment. A new item can also be added by using the insert 

button on the keyboard (4).  

 

 

 

Figure 0.14: How to add a new TcCom object 
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A new window, shown in Figure 6.15, appears when trying to add a new item. Navigate to 

TE140x Module Vendor (5) to find all the objects that are generated using the TE1400 target 

for Simulink. If a Simulink block diagram is generated twice, the version will update and be 

displayed next to the object name. Older versions are accessed via the small plus sign next to 

the object name. Once an object is selected, click OK (6) to add the item to the current 

TwinCAT project. The item is added to the solutions explorer under TcCom objects as shown 

in Figure 6.16 (7). The objects' inputs and outputs are now accessible by the rest of the 

TwinCAT project. The object’s block diagram can also be viewed under the block diagram 

submenu. 

 

 

 

Figure 0.15: List of available TcCom objects 

 
 

 

Figure 0.16: Simulink block diagram successfully transformed to TwinCAT 3 

 

 

Before activating the created TcCom object it is necessary to create and assign a task to set 

the cycle at which the object is processed. A task is added by right-clicking on ‘Tasks’ in the 

solution explorer. The only changes needed to be made to the default task are the name and 
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the cycle ticks. Because the fixed step cycle time is set to 0.01 seconds in Simulink, a cycle 

ticks value of 10 is necessary. This creates a task cycle time of 0.01 seconds as shown in 

Figure 6.17 (8). 

 

 

 

Figure 0.17: Adding a new task 

 

 

The next step is to assign the new task to the created TcCom object. This is done under the 

object properties, under the context submenu as shown in Figure 6.18 (9). Simply click on the 

drop-down menu under task (10) and select the new task that is created. The task name 

updates as an indication that the object will now cycle at the same speed as the set cycle of 

the task. The object is now completely set up and ready for activation.  

 

 

 

Figure 0.18: Assigning a task to a TcCom Object 

 

 

8 
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The last step to finish setting up the project is to activate the required licenses. Figure 6.19 

shows the TwinCAT licensing menu (11) and the submenu which shows the current installed 

licenses. Licenses are removed or added under the manage licenses menu. The license called 

TC1220 allows the usage of the PLC, MATLAB, Simulink, and C++ functions. A trial license 

can be run for 7 days if development needs to be started before receiving the actual license. 

Once the license is activated it is possible to run the TwinCAT project. 

 

 

 
Figure 0.19: TwinCAT 3 Licensing Menu 

 
 
Table 6.3 shows a list of errors and solutions to issues found when trying to activate the 

developed TwinCAT project. The errors are found in the TwinCAT error list. Once all the errors 

are cleared using the supplied solution, the project is active and in a running state.  

 
 

Table 0.3: Possible errors when activating a TwinCAT project 

Error Solution 

Task assignment to context 0 is not valid No task is added to the created TcCom object. 
Figure 6.20 shows how to add a task and Figure 
6.21 shows how to assign a task to an object. 

No certificate found in PE image file This error occurs if the operating system is not in 
test mode, or if the driver signing process is not 
completed correctly. Either reboot in test mode 
or go through the driver signing process again to 
make sure no steps were skipped.  

AdsWarning: 4115 (0x1013, RTIME: System 
clock setup fails.) 

Hyper-V needs to be disabled as the service 
permanently runs in the background and 
crashes with certain TwinCAT drivers. 
Deactivate the service in the windows features 
menu. 

 
 

11 
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This section describes the configuration of the TwinCAT project. The TcCom objects are 

inserted into the project, a new cycle task is created, the project is licensed, and all possible 

errors were looked at that prevented the project from activating. Now that the project is active 

and running, the following section describes how to set up the Scope Viewer to monitor the 

real-time response of the radio antenna control system. 

 
6.5 Scope Viewer 
 
This section describes the configuration of the Beckhoff Scope Viewer to create graphs to 

show the response of the TcCom object created in section 6.4. The graphical response is 

necessary to compare with the Simulink response obtained in Chapter 5 to prove that the 

transformation from Simulink to TwinCAT is successful. If the responses are the same, then 

the controller can be connected to the physical system for testing as the simulations are 

successful. A license is required to use all the features of Scope Viewer, but for this research, 

it is not necessary, as a demo license is used. 

 

A new scope view can be created by selecting ‘YT Scope Project’ (1) when creating a new 

project, as shown in Figure 6.23. A YT scope graph shows the relationship between two 

variables across the Y and X axis. The two variables that need to be plotted are time and 

position. Time is on the X-axis and position is on the Y-axis. 

 

 

 

Figure 0.20: Create a new scope viewer project 

 
 

1 
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To confirm that the transformation from Simulink to TwinCAT is successful, a PLC program is 

used to generate the same random numbers as a set point input as the random number 

generator indicated in Section 5.3.5 in Chapter 5. Figure 6.21 shows the response in Simulink, 

whereas Figure 6.22 shows the response in TwinCAT Scope Viewer. Characteristics such as 

rise time, overshoot, settling time, and steady state error of the responses of both graphs are 

the same and therefore the transformation is successful.  

 

 

 

Figure 0.21: Random set point generator in Simulink 

 

 

 

Figure 0.22: Random set point generator in Scope Viewer 

 

 

This section described how to configure Scope Viewer to view real-time values of different 

variables. The section also proved that the transformation of Simulink block diagrams to 

TwinCAT is possible by comparing the response of the controller in both programming 

environments. The next section concludes the chapter, discussing the results that this chapter 

has produced.  
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6.6 Discussions  

 

This section discusses the process, challenges, and significance of the successful 

transformation of the Simulink model to TwinCAT object. The transformation of components 

from one software vendor to another is a major factor to consider in terms of one of the 

deliverables in this thesis and therefore this chapter is very important. From installing the 

software to testing the response of the model with Scopeviewer, the entire process had some 

challenges. 

 

Once all the requisite software is installed, the challenge is finding all the necessary tools 

required to do the transformation. Software packages such as MATLAB/Simulink and TwinCAT 

have an abundance of tools so finding the correct features is the difficult part. Features such 

as the TE1400 target have minimal documentation and therefore using the functionality takes 

time as more effort is put into figuring out how to use the tool than using the tool itself.  

 

A big challenge is finding the correct MATLAB commands that need to be run to start the 

transformation process (Appendix A6.1). If a script is not used, it is necessary to set up each 

model to be in the correct format required for the TwinCAT software environment. When 

running the script, the code automatically uses the Simulink code builder, instead of the default 

MATLAB code builder. Also, each time a model is generated, a new version number is added 

to the name atuomatically, which could lead to confusion when trying to revert back to older 

versions. 

 

Licensing is a major issue when trying to use features in the TwinCAT programming 

environment. A license is required for most features, but a 7 day trial is activated when using 

features that are unlicensed. The main license issue is that when using the TE1400 target, a 

signed certificate from Beckhoff is required to run Simulink models on the PLC. It is possible 

to do driver signing, as discussed in this chapter, to create a test certificate, but this will not 

allow the downloading of Simulink models to the PLC. 

 

Finding support for the errors found while trying to compile software in MATLAB/Simulink and 

TwinCAT was not easy. Both software packages have information systems that show how to 

use most of their features, but lacks documentation on trouble shooting and error handling. 

 

Even with the challenges faced, the results are significant as it is demonstrates that portability 

and interoperability between different software vendors is possible. Any developed Simulink 

model can now be used in TwinCAT 3 for real-time implementation purposes. An added 

advantage is using the Scopeviewer to see results of the real-time graphs.  
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6.7 Conclusion 

 

This chapter described how to transform Simulink block diagrams into TwinCAT 3 TcCom 

objects to allow for real-time simulation in the TwinCAT programming environment. All the 

prerequisite software tools needed for this transformation are discussed, including installation 

guidelines and configuration steps. These software platforms include Visual Studio 2019, 

MATLAB/Simulink v2023a, TwinCAT 3.1 Runtime (XAR), and the TE1400 Target. Each one is 

installed on the same engineering PC, including the TwinCAT run time software which 

automatically installs when installing the TwinCAT XAR software.  

 

Once the PC is set up, the Simulink block diagram is altered to allow for inputs and outputs for 

interfacing with the TwinCAT programming environment after the transformation is complete. 

The TE1400 Target software is used to transform the updated Simulink block diagram, and 

automatically add the item to the TcCom objects list in TwinCAT by running the set of MATLAB 

commands shown in Appendix A6.1.   

 

A task is created to allow the TwinCAT object to execute during run time. The task is allocated 

under the objects properties and executes once the run time is activated after a successful 

build. The TC1220 license is required to build and run the TwinCAT project as this license 

allows the usage of the PLC, MATLAB, Simulink, and C++ functions.   

 

Lastly, the transformation is tested by comparing the response of both the models in TwinCAT 

and Simulink by using the same random number set point generator as the input to each 

system. The graph outputs compared in Section 6.5 prove that the transformation is successful 

and that the setup guide is accurate.  

 

The transformation from one programming platform to the other resonates with parts of the 

IEC 61499 standard requirements such as portability and interoperability. Another factor of the 

IEC 61499 standard shown is the reusability of software components between platforms 

without any modifications of the configuration files needed.  

 

The next section describes how to implement the transformed Simulink model to control an 

actual DC motor in real time. The input and output variables of the Simulink model is mapped 

to a motor terminal card which controls and monitors the DC motor as required.  
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CHAPTER 7 

HARDWARE-IN-LOOP IMPLEMENTATION FOR IEC 61499 COMPATIBILITY 
 

7.1 Introduction 

 
This chapter presents the real-time implementation of the transformed Simulink model. The 

model is used to control an actual DC motor. The motor is connected to a remote motor 

terminal card which communicates to the PLC over an EtherCAT network. The controller 

(transformed model) runs on the PLC and controls the plant (DC motor) by mapping the input 

and output variables for monitoring and control. The hardware equipment required for the 

control system is described before presenting the complete test rig used for implementation. 

 

The CodeSYS PLC software which connects the transformed model, and the actual hardware 

is discussed. The code uses the PLCopen software function blocks to command the DC motor 

to change its position. PLC code that is programmed using a CodeSYS programming 

environment can be used in other vendors software packages. This means that Beckhoff’s 

TwinCAT 3 software is IEC 61499 compliant as the PLC code can be reused and ported to 

other vendors. This is very advantageous as reprogramming is not necessary when using a 

different PLC. 

 

How to activate the developed code onto the PLC runtime is also shown. The code cyclically 

runs on the PLC, waiting for a change in position set point via push buttons. Navigating and 

setting up the axis controller is shown to link the CodeSYS PLC software with the actual DC 

motor. The Beckhoff NC control features are used to configure the axis and the parameters of 

the encoder, drive, and controller. A full list of all configured parameters is provided for the 

successful implementation of the DC motor control system. 

 

The closed loop system implemented on the hardware is analyzed with an input step response. 

The transient response and the effects of network delays of the system is discussed and 

compared to the same system with added time compensation.  

 

Section 7.2 describes the hardware involved with the implementation of the DC motor position 

control. Section 7.3 describes the PLC code and interface with the Simulink controller module 

and the hardware. Section 7.4 describes the motion interface of the TwinCAT programming 

environment and how to set up the required axis for motion control. Section 7.5 presents the 

analysis of the implementation results of the closed-loop system. 
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7.2 Hardware Description 

 

This section describes the hardware used to implement the designed controller. The hardware 

consists of a Beckhoff C6015 PLC, Beckhoff EK1100 EtherCAT remote module, Beckhoff 

EL7342 terminal motor controller, a DC motor, and an Omron incremental encoder for position 

feedback. Each item has a crucial role in the closed loop system. Once each component of the 

system is described, the complete test rig is shown. An electrical diagram is also provided for 

the setup. 

 

7.2.1 Beckhoff C6015 

 

The Beckhoff C6015 Industrial Personal Computer (IPC) is a Windows based PLC that is used 

for real-time control. The IPC hosts a 2 core Intel Atom processor which makes it capable of 

managing resource intensive tasks. Some of these tasks include axis control, short cycle times, 

high-volume data handling, hosting Human Machine Interface (HMI) applications, Internet-of-

Things (IoT) connectivity, and a range of automation configurations (Beckhoff, 2023).  

 

The IPC uses an Ethernet port for communication to other Ethernet based devices such as a 

programming PC or HMI interface. The second Ethernet port is configured to be used as an 

EtherCAT fieldbus system to communicate with other EtherCAT devices. In this case the IPC 

is the master EtherCAT device, and the other devices are the slaves. Ethernet port 1 and 2 

are shown in Figure 7.1 as X102 and X103 respectively. Table 7.1 summarizes the interface 

ports that are used to interact with the IPC. 

 
 

 

Figure 0.1: Beckhoff C6015 PLC front view 

(Beckhoff, 2023) 
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Table 0.1: Beckhoff C6105 interface list and functional purpose 

Terminal 
Number 

Description Purpose in test rig 

X101 Power supply Terminal connection to connect 24-volt supply 
to power the PLC 

X102 Network LAN connection 1 Ethernet port for connection of programming 
PC for downloading and online viewing of the 
runtime 

X103 Network LAN connection 2 EtherCAT port to communicate to EtherCAT 
devices on the network 

X104 Display port for video feed Not used 
X105 USB 2.0 port Not used 
X106 USB 3.0 port Not used 

 
 
In this work, the Beckhoff IPC hosts the TwinCAT 3.1 software configuration by using the 

Beckhoff automation run-time software. The IPC is also the gateway between the transformed 

Simulink model and the remote EtherCAT terminals which creates the connection to the DC 

motor and encoder feedback. PLC code is written to bridge the model and hardware together 

to close the control system loop. This PLC code runs on the IPC during run-time. 

 
7.2.2 EtherCAT 

 
EtherCAT is a fieldbus protocol that is based on a master-slave architecture. One device is the 

system serves as the master and is the only devices which can send an EtherCAT data frame 

over the network. The slave devices then read the necessary information from the data frame 

according to the hardware and software requirements, and then attach necessary information 

onto the data frame. This transaction is known as “processing on the fly” and is a great 

advantage for the protocol as it reduces network delays and network traffic (Stubbs, 2011).  

 

EtherCAT uses a distributed clock system that allows the master to determine the time taken 

for the transmission of information to the slave devices. This is done when the slave devices 

timestamp the data frame every time it receives data. The master can then calculate the 

transmission rates to each slave to help with real time operation and avoid delays. 

 

Other advantages of EtherCAT are the rapid response times, minimal data requirements for 

each device, and low cost of implementation. Another positive part is that no external Ethernet 

switch is required as EtherCAT device have two Ethernet ports available. One port is used for 

receiving the data frame from the master and the other port is used to transmit the data frame 

to the next EtherCAT device. The test rig built for this research work only has one master and 

one slave device. The slave device connected in a line topology as the Master only has one 

EtherCAT port. This slave device is described in the next subsection. 
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7.2.3 EK1100 

 

The Beckhoff EK1100 is a gateway device between the EtherCAT master and the terminal 

cards that are connected on the same backplane when mounted on the slot next to it. This 

device takes the EtherCAT telegrams sent from the EtherCAT master and converts it to 

whatever signal is required from the connected terminal cards. This conversion also works the 

other way for when the terminal card needs to transmit data back to the EtherCAT master. 

Examples of terminal cards that can slot onto the EK1100 backplane are digital inputs, digital 

outputs, analogue inputs, analogue outputs, etc. This module allows for remote connection of 

any device which needs information sent back to a central IPC.  

 

As shown in Figure 7.2, the EtherCAT master connects to the input EtherCAT port. The 

EtherCAT signal output port can be used to create a daisy chain to the next device. The green 

and orange lights on the left of the RJ45 ports (1) indicate if the link is active to another device 

when flashing. These lights are off if no connection is present. The status of the remote 

interface is shown on the Light Emitting Diodes (LEDs) and the power connections can connect 

to the red plus (24V) and blue minus (0V) marked terminals. The module is earthed via the PE 

labelled terminals.  

 

 

 

Figure 0.2: Beckhoff EK1100 interface ports and indication lights 

(Beckhoff, 2023) 

 

 

In this research project, the EK1100 is used as an interface between the IPC and the remote 

terminal modules that control the motor and feedback signals. The EtherCAT gateway allows 

the programming software to control the DC motor over a networked control system. The next 

subsection describes the terminal card use for motor control.  

1 
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7.2.4 Beckhoff EL7342 

 

The Beckhoff EL7342 is part of Beckhoff’s compact drive technology range which allows for 

the direct integration of motors in the Input/Output (I/O) system. The range of terminal control 

cards caters for most types of motors, such as DC, AC, stepper, and servo motors. The EL7342 

specifically controls DC motors and is therefore used in this research work for the control of 

the two DC servo motors for azimuth and altitude control of a radio antenna dish.  

 

The EL7342 can operate DC motors with a voltage up to 50 Vdc and a current of up to 3.5 A. 

The motors are connected directly onto terminals A1 and A2, or B1 and B2, as shown in Figure 

7.3. Incremental encoders can be connected to the terminal card to realize a simple servo axis 

for each motor. In this research, an incremental encoder is used to send feedback of the 

position count of the actuated DC motor. 

 

 

 

Figure 0.3: Beckhoff EL7342 interface ports and indication lights 

(Beckhoff, 2023) 
 

 

7.2.5 DC Motor 

 

As described in Chapter 3, DC motors are used to control the movements of a radio antenna. 

The DC motor used in Chapter 4 for modelling has part number GB37Y360. The DC motor is 

rated at 12 Vdc and 1.6 A. The rated speed of the motor is 6000 RPM, but with the gearbox 

ratio of 1:270, the motors shaft output rated speed is 270 RPM.  
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7.2.6 Omron Encoder 

 
An incremental encoder is used to measure the angular position of the shaft of the DC motor. 

Specifically, an Omron E6C2-CWZ5B 100 pulse encoder is used. The wiring diagram for the 

encoder is shown in Figure 7.4, where the blue, brown, black, and white wires are connected 

directly to the EL7342 which is described in Section 7.2.4. The EL7342 does not have the 

functionality to measure the Z phase of an incremental encoder and therefore the orange wire 

is not connected. 

 

 

 

Figure 0.4: Omron encoder wiring diagram  

(Omron, 2023) 

 

 

An incremental encoder sends pulses through the A and B phase wires to the inputs of the 

EL7342. The A and B channels pulse at an offset to determine which way the motor is rotating. 

For example, if the A phase pulses before the B phase, then the motor is turning in one 

direction, whereas if B pulses before A, then the motor is turning in the opposite direction. The 

terminal controller then counts the rising edge of the pulses to determine how far the motor 

has rotated and displays a scaled angular position value in the IPC. The scaled value is based 

on how many pulses equal one rotation of the motor.  

 

For this research work, the two phases are viewed as a quadrature encoder by counting the 

rising and falling edges of both A and B phases. This increases the resolution of the encoder 

by four times. Therefore, since the encoder pulses 100 times per revolution, the scaled value 

is calculated by a pulse rate of 400 pulses per revolution. The higher the resolution of the 

encoder, the more accurate the position feedback is. 

 

The previous subsections discussed all the hardware components for the test rig that is built 

for this research work. The next subsection describes the complete test rig.  
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7.2.5 Complete Test Rig 

 
Figure 7.5 shows the complete test rig used to implement the controller and plant. The rig is 

built up of all the previously described hardware components. Each component is numbered 

and described in the list below. A wiring diagram for the test rig is shown in Appendix C7.1. 

 

1- AC voltage distribution breakers 

2- 24 Vdc power supply 

3- 12 Vdc power supply 

4- Beckhoff C6015 IPC 

5- Beckhoff EK1100 EtherCAT coupler 

6- GB37Y360 12V DC motor 

7- Omron E6C2-CWZ5B incremental encoder 

8- Push buttons 

 
 

 
  

1 
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8

Figure 0.5: DC Motor Control System Test Rig 
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7.3 PLC software 

 

This section describes the PLC code which interfaces the transformed Simulink model and the 

actual DC motor. A PLC configuration is added to the TwinCAT XAE programming environment 

by right clicking on PLC in the solutions explorer window and adding a new item as shown in 

Figure 7.6. The PLC item is made up of various subfolders that can be used for configuring the 

project, such as Data Unit Types (DUTs), Global Variable Lists (GVLs), and Program 

Organization Units (POUs). This project only uses GVLs and POUs.  

 

 

 

Figure 0.6: PLC configuration in Solution Explorer 

 

 

The GVL is where all the PLC variables are declared by name and datatype. These variables 

can be used in any part of the PLC code as they are listed as global. The PLC code is found 

in the POU called “Axis_Control”. This is the main and only POU of the program and runs 

cyclically according to the PLC task period.   

 

Subsection 7.3.1 describes the PLC programming environment used, whereas subsection 

7.3.2 describes the function block libraries that is used to control the DC motor. Subsection 

7.3.3 describes the flow and functionality of the developed PLC code found in POU 

“Axis_Control”. Subsection 7.3.4 describes the converted controller function block. Subsection 

7.3.5 describes how to activate and download the code to the IPC for real-time implementation. 
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7.3.1 CodeSYS 

 

Controller Development System (CodeSYS) is a programming environment used to program, 

configure, and manage PLCs and other automation devices. This proprietary development 

platform is used is used by various PLC manufacturers making it more flexible and versatile 

than any other programming environment.  Suppliers such as Beckhoff Automation, WAGO, 

Phoenix Contact, Eaton, and Turck, all use CodeSYS as the basis of their PLC programming 

software. 

 

The premise of CodeSYS is in line with the IEC 61499 standard as code can be ported between 

the various vendors’ programming software packages without any changes being made. The 

benefits of this portability allows developers to easily port software between different hardware 

components. If a vendor does not have stock of a certain PLC, the developer can use any 

other PLC that is Codesys compliant. Other advantages include the robustness of the PLC 

environment, the cross-platform compatibility, inclusion of visualization for HMI development 

in the same environment, possibility for simulation, and the means to integrate third-party 

libraries and components.  

 

The TwinCAT programming environment uses the CodeSYS environment as a basis for PLC 

development. The next subsection describes the library that needs to be installed to allow for 

servo motion control of the DC motor. 

 

7.3.2 PLCopen Motion Control 

 

The DC motor is controlled as a servo motor via the TwinCAT software environment. This is 

done using PLCopen motion control blocks to enable, reset, move, and stop the axis which 

controls the DC motor. The PLCopen motion control library is an open-source standardized 

repository that is used by most PLC suppliers for motion control. The library is interoperable 

between these suppliers, therefore a change in code is not necessary when porting from one 

software environment to another. The library is used to simplify PLC code by encapsulating all 

the necessary code for various motion commands into easy-to-use function blocks. Other 

advantages of using the PLCopen motion control library include safety assurance as the 

function blocks have been tested thoroughly, there is lots of online support, and scalability as 

the function blocks can be used on as many axes as the controller can support.  

 

It is necessary to install the required libraries to TwinCAT 3 to use the functionalities. Figure 

7.7 shows how to add a library as a reference in a PLC project in TwinCAT 3. The PLCopen 

library used in this project is called TC_MC2. As shown in Figure 7.7, right click on references 
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(1) and add a library. Then search for the required library (2) and highlight it to approve 

selection. Click OK to add the library as a reference. The library and its functionality are now 

available for use with the PLC project. 

 

 

 

Figure 0.7: Adding a library reference to TwinCAT 3 

 

 

The PLC programming environment and all necessary libraries are now installed and therefore 

the PLC code development can start. The next subsection describes the flow and functionality 

of the developed PLC code to control the position of the DC motor via the mapped variables 

from the transformed Simulink model. 

 
7.3.2 PLC code functionality 

 

The PLC code runs cyclically according to the PLC task time. To prevent code from executing 

incorrectly, a sequence step is used to only run sections of the program at once until certain 

conditions are met. Figure 7.8 illustrates a flow chart of how the PLC program executes and 

what conditions are required before moving to the next step in the DC motor position control 

sequence. The sequence starts from the initial start of the PLC and continuous through the 

step cycle during runtime. 

 

Four steps are used for the position control. The first step, step 0, rehomes the axis to zero the 

position. Step 1 waits for a change in set point before executing the PLCopen relative move 

function blocks in step 2. Steps 3 and 4 are used to stop and autocorrect the position 

respectively. Steps 0 – 4 are described in more detail in subsection 7.3.2.1 to 7.3.2.4. All PLC 

code associated with the different steps are described and analysed in detail to show the 

functionality of the angular position control of the DC motor.  

1

2

3

4
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Figure 0.8: PLC step sequence flow chart 
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7.3.2.1 Step 0: Homing the axis 
 

Step 0 is the initial step that is active when the PLC goes into run mode. This is because the 

variable Sequence_Step is not retentive and therefore cannot save a value when the PLC 

switches off or goes into stop mode, resetting the variable to zero. In Figure 7.9, the sequence 

step is equal to zero and therefore the MC_SetPosition block is executed. This PLCopen 

standard block sets the position of the referenced axis to whatever position set point is 

allocated. In this case, the axis position is set to zero to force the axis to take the current 

position as its home. Once the MC_SetPosition done bit is activated, a value of one is moved 

into sequence step, as shown in line 12. The axis is now at a zero point and ready for positional 

movements based on an angular position set point change. 

 

 

 

Figure 0.9: Ladder logic for step 0 

 

 

7.3.2.2 Step 1: Waiting for a change in position set point  
 

In step 1, shown in Figure 7.10, the axis is at a standstill and waiting for a change in position 

set point. The condition to go to the next step is for the set point to be different from the axis 

actual position feedback. On startup both the set point and feedback are at zero due to the 

homing of the axis in the previous step. By pushing either the forward or reverse push buttons 

on the test rig, the contact for input1_enable or input2_enable switches. The causes the set 

point to either increase by 10, or decrease by 10, depending on which direction the motor 

needs to travel. An R_TRIG function is used to only allow the change in set point to occur on 

a rising edge of the button input. This is done to prevent any debounce or multiple additions 

from the ADD block. If either button is pushed, the set point value is not equal to the actual 

value, and therefore the condition to move to step 3 is met. The next step moves the actual 

axis to the new set point value.  
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Figure 0.10: Ladder logic for step 1 

 

 
7.3.2.3 Step 2: Moving the axis 
 

When the sequence is at step 2, the axis begins to move by commands from two 

MC_MoveRelative function blocks, as shown in Figure 7.11. The two blocks are alternated by 

means of a toggle bit which activates every 20 milliseconds. The busy bit of each relative move 

block is used as a condition to execute the latter to prevent both moves from executing 

together.  

 

The velocity, acceleration, deceleration, and jerk inputs are all mapped from the outputs of the 

transformed Simulink model to allow for the axis to respond in the exact same way as the 

model. The distance input is a scaled value calculated by subtracting the actual position of the 

DC motor from the set point. As the DC motor moves closer to the set point, the distance 

required to travel decreases and therefore the distance input decreases. As the relative blocks 

are toggled, the input variables constantly update to change the response of the motor. The 

motor continues to turn until the velocity input reaches zero, preventing the motor from running 

as a zero input means the motor must be at a standstill position.   

 

The MC_MoveRelative block is not able to execute when any of the input variables are 

negative values. Therefore, the inverted values are used as inputs, which are calculated by 

multiplying the actual values by -1 if the Simulink model outputs any negative variables. This 

makes sure that the velocity, acceleration, deceleration, and jerk are always positive numbers. 

A quick time delay is added before checking for zero velocity as there is a delay before the 

relative move blocks initiate a response on the actual motor. 

 

The condition to go to the next step is having a zero-velocity output from the Simulink model. 

This occurs once the model has reached the angular positional set point and therefore the axis 

are also at standstill and have reached the set point. 
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Figure 0.11: Ladder logic for step 2 

 

 

7.3.2.4 Step 3 and 4: Stop the axis and autocorrect position 

 

Steps 3 and 4 occur after the motor has reached the position set point. These two steps are 

added for safety in the event of any oscillation or stability issues with the motor. Step 3 forces 

the motor into a stop mode to prevent any further movement of the motor. Step 4 then moves 

the current axis position into the set point variable using a move function block. This is done 

to compensate for any minor deviation of the actual position and the set point that could have 

occurred due to any nonlinearities during the movement of the DC motor.  

 

A short time delay is added to make sure there is no deviation between the actual position 

feedback and the position set point before moving back to step 1 as shown in Figure 7.12 line 

24. Since in step 1 the condition to continue is a difference between the actual position and 

the set point, the code is looped back to step 1 and waits for another change in the set point. 

A change in set point can be achieved by pushing either of the push buttons for forward or 

reverse movement as previously discussed in step 1.  
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Figure 0.12: Ladder Logic for steps 3 and 4 

 
 
Subsection 7.3.2 describes the PLC code that interfaces between the transformed Simulink 

model and the actual DC motor. The next subsection describes how to use the transformed 

Simulink model in the CodeSYS programming environment. 

 
7.3.4 Interfacing with the transformed Simulink model 

 

The Simulink model described in Chapter 5 is used in the CodeSYS environment to control the 

DC motor. The DC motor angular position set point is measured in millimetres and therefore 

the Simulink model is updated to include the conversion of all the set points and feedback 

signals from radians per second to millimetres per second. This conversion is shown in Figure 

7.13, where the position set point, encoder feedback, actual position, actual velocity, actual 

acceleration, actual deceleration, and actual jerk are all scaled as necessary. Equation 7.1 is 

used to convert the set points to radians, whereas Equation 7.2 is used to calculate the 

feedback signals back to millimetres per second.  

 

𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = (
௠௜௟௟௜௠௘௧௘௥௦ ௣௘௥ ௦௘௖௢௡ௗ

ଵ଴଴଴∗௚௘௔௥ ௥௔ௗ௜௨௦
)         (7.1) 

𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 ∗ 1000 ∗ 𝑔𝑒𝑎𝑟 𝑟𝑎𝑑𝑖𝑢𝑠     (7.2) 

 

Another change to this model is a saturation block (1) on the actual velocity signal to prevent 

the controller from trying to turn the motor at a velocity that is not possible. The DC motor used 

has a maximum velocity of 565 mm/s. The acceleration, deceleration, and jerk are derived 

from the output velocity by using the derivative blocks (2) within Simulink.   
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Figure 0.13: Updated Simulink block diagram of the DC motor with full state feedback and 
integral control 

 
 
Figure 7.14 shows the transformed Simulink block diagram in CodeSYS function block form. 

The function block has the same inputs, outputs, and functionality as the Simulink block 

diagram in Figure 7.13. All that is required is to map the necessary PLC variables to the pins 

of the block to create a link between the Simulink function blocks and the PLC code within the 

Beckhoff IPC. The PLC variables created in the GVL are used, as well as the actual position 

that is directly linked to axis 1 for encoder feedback. 

 

 

 

Figure 0.14: Transformed Simulink model in CodeSYS function block form 

 

 

This subsection describes the functionality of the PLC code for positional control of a DC motor. 

The PLC code is ready to be deployed to the PLC for real-time testing. The next section 

describes how to activate the PLC code of the Beckhoff C6015 IPC.   

1

2
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7.3.5 Activating the PLC Configuration 

 

Deploying PLC code to the Beckhoff C6015 is called “Activating the Configuration” in the 

TwinCAT 3 software environment. This is done once the PLC code is complete and ready for 

testing in the real-time environment. To activate the current configuration onto the PLC, click 

the first symbol on the task bar after the current build description, as shown in Figure 7.15. It 

is also possible to click project and then activate this configuration. The configuration is 

downloaded, and the green gear symbol activates showing that the run time is now active.  

 

Figure 7.15 also shows the taskbar status when there is no connection to the PLC. The 

symbols shown at (2) from left to right are the login, start PLC, stop PLC, and logout buttons. 

The login button is available to interact with which means that the programming environment 

is not currently logged in to the PLC. Figure 7.16 shows the status of the connection at (3) 

once the login button is pushed. The connection is successful as the option to put the PLC in 

run mode is available. If the run button is clicked, the run button fades and the stop button 

becomes available as shown in Figure 7.17 at (4).  

 

 

Figure 0.15: Taskbar when not connected to the PLC 

 

 

Figure 0.16: Taskbar when connected to the PLC which is in stop mode   

 

 

Figure 0.17: Taskbar when connected to the PLC which is in run mode   

 
 
The PLC code is now active on the IPC in real-time. When the PLC is in run mode, the code 

interacts with all the mapped variables that were created. These variables include the 

interfacing variables to the Simulink model as well as the variables linked to the axis through 

the terminals on the EtherCAT coupler. The Simulink model and PLC side have been 

configured, but the link to the axis has not. The next section describes the configuration of the 

axis using Beckhoff’s motion control technology.  

1 2 

3 

4 
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7.4 Motion Control 

 

Beckhoff’s motion control in the Twincat 3 software environment is used to configure the axis 

that is used to interface with the DC motor. Motion control allows for precise and synchronized 

motion of the DC motor according to a specific set point. Since the DC motor follows the 

transformed Simulink model, motion control is necessary to achieve the same response. 

 

First, it is necessary to scan the EtherCAT network to find and configure the slave hardware 

device that interfaces with the DC motor and encoder feedback. Subsection 7.4.1 describes 

how to scan for EtherCAT devices on the network. Subsection 7.4.2 describes the navigation 

of the motion portion in the solution explorer, as well as the important parameters that are set 

to control the current DC motor. Subsection 7.4.3 describes the linking of the configured axis 

to the PLC software which is shown in Section 7.3.  

 

7.4.1 Scanning for EtherCAT device 

 

The EtherCAT coupler and motor terminal controller discussed in sections 7.2.3 and 7.2.4 must 

be added to TwinCAT 3 to allow for interfacing with the modules. This can be done by 

completing a network scan shown in Figure 7.18 (1) through the EtherCAT master. Figure 7.19 

shows the EK1100 (2) and EL7342 (3) appear after doing a network scan. These devices can 

now be configured as well as used in the rest of the PLC project. By scanning and adding the 

EL7342, TwinCAT automatically adds two new axes to the motion tab. These are discussed in 

the next subsection. 

 

 

Figure 0.18: Menu navigation to scan the EtherCAT network 

1 2 

3 
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7.4.2 Navigation and parameter settings 

 

The Motion section in the Solution Explorer section in TwinCAT 3 software is used to configure 

the axes that interface with the DC motors. As shown in Figure 7.19, each axes has menus to 

configure the axis itself, the encoder, the drive, and the control mode. Each heading has 

multiple parameters that can be configured depending on the type of DC motor used, the type 

of encoder, and the method of control that is needed. The inputs and outputs associated with 

each axis which can be linked to the rest of the TwinCAT project are also shown.  

 

Settings for the two tasks that run the axes are also available under the heading NC-Task 

Sentence Execution (SAF) and Sentence Preparation (SVB). The SAF task handles the cyclic 

communication with the drives and executes the servo blocks. The SVB task prepares the 

execution commands to allow for them to be executed quickly by the SAF task. Both tasks are 

set to 1 millisecond in this project. 

 

 

 

Figure 0.19: TwinCAT 3 motion navigation in solution explorer 

 
 

Table 7.2 shows a summary of the parameters that are set for this project to allow for accurate 

position control of a DC motor through axis 1. A description is given for each parameter that is 

needed as well as the value that the parameters are set to. These values are calculated from 

the motor parameters as well as the type of encoder used.   
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Table 0.2: Parameters changes for Axis 1 

Heading Parameter Description Value 
Axis 1 Reference Velocity Rated speed of the motor 84.78 
Axis 1 Maximum Velocity Maximum allowed speed for the motor 84.78 
Encoder  Scaling Factor 

Numerator 
Numerator for the scaled encoder value 18.84 

Encoder Scaling Factor 
Denominator 

Denominator for the scaled encoder value 400.0 

Encoder Filter Time for Actual 
Position 

Time between samples of the actual position  0.001 

Encoder Filter Time for Actual 
Velocity 

Time between samples of the actual velocity 0.001 

Encoder Filter Time for Actual 
Acceleration 

Time between samples of the actual acceleration  0.001 

Ctrl Proportional Factor 
Kv (standstill) 

Proportional gain factor of the P-controller at 
standstill 

20.0 

Ctrl Proportional Factor 
Kv (moving) 

Proportional gain factor of the P-controller while 
moving 

15.0 

Ctrl Proportional Factor 
Ka 

Proportional gain factor for acceleration  0.15 

 

The axis is configured and can be linked to the PLC code developed in section 7.3 The next 

subsection describes how to create this link.  

 

7.4.3 Linking axis to PLC code 

 
Now that the axis is set up it is required to link the axis to the PLC code. Figure 7.21 shows 

the configuration menu used to link an axis to a peripheral inside the TwinCAT 3 project. Select 

axis 1 as shown in Figure 7.20 (1) and open the settings tab in the submenu. It is possible to 

configure the link to I/O and the link to the PLC (2) under this tab. The axis is linked to the 

EL7342 EtherCAT remote terminal and is also linked to a variable in the PLC code called 

GVL.Axis_1. This variable is defined in the GVL that is described in Section 7.3. Once the link 

is made, any change in variables mapped to the EL7342 motor terminal, or the PLC variable, 

will affect the axes. For example, using a velocity move on the PLC variable causes the axes 

to move, in turn causing the motor linked to the hardware to move.  

 
It is now possible to control the actual DC motor from the PLC code which is linked to the 

transformed Simulink model. The following section describes the implementation of the full- 

state feedback controller and analyses the effects of the network induced delays. The 

simulation results and implementation results of the actual DC motor are compared and 

discussed. 
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Figure 0.20: Linking an axis to peripherals 

 

 

7.5 Implementation of closed loop system with controller 

 

This section provides the implementation of the developed control systems on the hardware 

components that are described in sections 7.2, 7.3 and 7.4.  A simplified block diagram of the 

control system is shown in Figure 7.21 showing the information sent between the different 

hardware components. The position set point is sent from the CodeSYS PLC software to the 

Simulink transformed model to initiate a change in position of the DC motor. The model returns 

the velocity, acceleration, deceleration, and jerk values that are needed for the actual DC motor 

to achieve the same response times as the simulation. These values are scaled and sent to 

the NC axis control where the data is packaged and sent over EtherCAT to the EK1100 motor 

terminal controller. The motor terminal controller outputs an analog voltage value to the DC 

motor which causes the motor to rotate. The encoder counts the rotations in pulses and feeds 

this information back into the EK1100. The EK1100 converts the pulses into EtherCAT data 

packages and sends them back to the C6015 IPC. Lastly, the IPC converts the EtherCAT data 

packages into a scaled position feedback value which is used by the PLC code to determine 

how far the motor has travelled. Once the motor reaches the set point, the system is at standstill 

until another positional set point command is sent to the Simulink transformed model. 

 

 

1 

2

3
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Figure 0.21: Block diagram showing the information transmitted between the components of 
the DC motor control system 

 

 

The following subsections implements and analyses the DC motor control system with and 

without time delay compensation. The section is concluded with subsection 7.5.3 which 

compares the simulated results from Chapter 5 with the implementation results from this 

chapter. 

 

7.5.1 Analysis of the control system with delays 

 

An EtherCAT fieldbus connection is used to connect the controller and the plant in this research 

project. It is necessary to compare and analyse the effects of this type of topology to make 

sure that the system can handle the effects of network delays. In some cases, these delays 

can cause instability and a decrease in system performance. If the delays cause issues in the 

system, steps need to be taken to reduce the effects, such as slowing the controller down, 

decreasing traffic on the network, or considering using a different type of network and hardware 

devices. 

 

Figure 7.22 shows the response of the actual DC motor to a position set point change of 10 

mm. The blue line represents the scaled set point output from the Simulink model. The green 

line represents the actual position set point sent from the NC terminal controller to the DC 

motor. The pink line represents the actual position of the DC motor which is fed back by the 

encoder. The response is recorded using Scopeviewer within the TwinCAT 3 programming 

environment in real-time.  
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Figure 0.22: Step response of actual DC motor control system 

 
 
Figure 7.23 shows a panned image of the DC motor step response shown in Figure 7.22. A 

delay of 75 ms is shown between the Simulink positional command and the actual position of 

the DC motor. This delay is caused by the delay in the feedback from the encoder to the 

EK1100 motor terminal controller as well as for the transmission of the data back to the IPS 

over the EtherCAT network. This delay can be considered as the sensor-to-controller delay.  

 

There is also a 5 ms delay between the Simulink model output set point command and the NC 

command sent to the DC motor. This delay is considered as the controller-to-actuator delay 

and is caused by cycle times in the IPC as well as the rate of transmission of the commands 

over EtherCAT from the IPC to the EK1100. The combined 75 ms and 5 ms delays equate to 

a combined 80 ms delay in the overall system. 
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Figure 0.23: Panned in X and Y axis of the actual DC motor step response 

 
 
The effects of these delays can be seen in Figure 7.22 where the actual motor position tries to 

catch up to the set point resulting in an overshoot. The controller then decreases the position 

set point to compensate for the fast rise time of the position of the actual DC motor. The delay 

is small enough to not cause the controller to become unstable, but the initial simulated 

response is not achieved and therefore the controller does not perform with the desired 

characteristics as designed. Figure 7.24 shows the simulated response of the DC motor with 

an 80 ms delay. As shown, the response is like the implementation results where the actual 

motor position has an increased rise time and overlaps the desired response.  

 

 

 

Figure 0.24: Simulink step response with 80 ms network delay 
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It is not possible to increase or decrease the delay shown in Figure 7.22 as this is an EtherCAT- 

based system, and it is not possible to influence the data transfer on the network as there is a 

direct connection between the IPC and the remote EtherCAT coupler. If however, an Ethernet 

system is used, an additional Ethernet port is available to allow for an external source such as 

PC to flood the system with data to increase the delay times by using up the available 

bandwidth. 

 

This subsection presents the network-induced delays caused by the EtherCAT fieldbus in the 

DC motor control system. The effects are compared with the Simulink response with added 

sensor-to-controller and controller-to-actuator delays. The next subsection describes how to 

minimize the network delays in the system by using features provided within the TwinCAT 3 

programming environment.  

 

7.5.2 Analysis of the control system with time delay compensation 

 
The TwinCAT 3 software has features that can be used to decrease the delays shown in the 

results discussed in subsection 7.5.1. These delays that affect the system1’s response are 

referred to as dead time in the TwinCAT programming environment. The software measures 

the system’s response time by monitoring a control input and the corresponding feedback 

response. Specific algorithms are used to predict the desired output using the system’s 

characteristics and adjusts the control signals to account for the dead time in real-time. This 

improves the accuracy and stability of the system and is crucial in systems that require high 

precision and synchronization. 

 

There are two methods to add time compensation to the system to decrease the effects of 

delays caused by transmission rates in the network. The encoder method uses time 

compensation to compensate for the conversion of all the feedback data from the terminal 

controller to the PLC, such as the actual position of the DC motor. The drive method uses time 

compensation to compensate for the conversion of command signals sent from the PLC to the 

terminal controller, such as the set position, velocity, acceleration, deceleration, and jerk. In 

this project, both time and drive compensation are used to predict the velocity and acceleration 

delayed responses. Figure 7.25 shows where to activate the time compensation mode for the 

encoder (1). The same method can be used to activate the setting for the drive. 
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Figure 0.25: Activating time compensation in TwinCAT 3 

 

Figure 7.26 shows a panned screenshot of the step response of the DC motor control system 

with time compensation for the drive and encoder. As in Figure 7.24, the blue line represents 

the scaled set point output from the Simulink model, the green line represents the actual 

position set point sent from the NC terminal controller to the DC motor, and the pink line 

represents the actual position of the DC motor which is fed back by the encoder. Unlike in 

Figure 7.2.4, the actual motor position is not delayed as the time compensation feature has 

predicted what the motors response would have been if there were no delays in the network. 

This prevents the motor from trying to run at a faster rate on startup as the feedback is where 

it should be in normal conditions without delays.  

 

 

 

Figure 0.26: Step response with time compensation 

 
 
Figure 7.27 shows the full graph of the step response with time compensation for an input 

position set point change of 10 mm. The actual feedback does not overlap the position 
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command output as seen when there are delays present. This prevents the system from 

overshooting the position set point and allows the response to be the same as the system with 

no delays. The addition of time compensation has prevented an unwanted response and 

reduced the effects of delays caused by the EtherCAT network and the signal processing 

between the controller and the motor terminal card.  

 

 

 

Figure 0.27: Step response with time compensation 

 

 

A ripple effect is seen for the feedback response of the DC motor position. This effect is caused 

by running the motor at a low speed to get to the position set point at the rate that the Simulink 

model sets. A much higher current for the motor to overcome initial torque is needed to turn 

the gearbox but the EK1100 is only rated at 3.5 A and therefore a higher current output is not 

possible. To overcome oscillations due to mechanical and electrical constraints, a high- 

efficiency DC motor can be used as running at low speeds is possible. An encoder with a 

higher resolution can also be considered to allow for the motor to run at low speeds as sufficient 

feedback is returned. 
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7.5.3 Positional Set Point Limitations 

 
A positional set point change of 10 mm has been used in this work for testing and simulation 

purposes. Depending on the application, a higher or lower set point change would be required. 

For this work, the DC motors are used to control the azimuth and altitude movements of a radio 

antenna dish. The dish would generally only need to turn at a 270-degree angle for azimuth 

and a 90-degree angle for altitude. If a full rotation of the motor is 18.41 mm then the motor 

would only need to move within a 13.81 mm range for azimuth and a 4.6 mm range for altitude. 

Figure 7.28 shows the DC motor system response to a set point change of 5 mm. Due to 

factors mentioned in the previous section such as a low efficiency motor, low pulse encoder, 

and low current output from the controller, the motor’s feedback ripple effect can clearly be 

seen when trying to rotate at lower speeds. Since the range of the altitude movement is less 

than 5 mm, the DC motor oscillates for any change in position. To overcome this problem, a 

high efficiency DC motor should be used with a higher resolution encoder. 

 

 

 

Figure 0.28: System response to position set point changes of 5mm 

 
 
Figure 7.29 shows the response of the control system to a position set point that is double the 

rotation of the motor. The results show that the DC motor still reaches the position while 

remaining stable with no oscillations. Once the system is stable at double the necessary 

position set point, an additional 2:1 gearbox can be used for the altitude movement. This allows 

the motor to run at twice the speed, minimizing the ripple effect while still allowing the motor to 

move at set points lower than 5 mm. Another advantage is cost savings as there is no need 

for a better motor or encoder any longer. 
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Figure 0.29: System response to position set point changes of 40mm 

 

 

Figure 7.30 shows the response of the control system to a change of 18.41 mm, which is a full 

360 degree turn of the motor shaft. The system is stable and the set point reaches steady state 

in the forward and reverse direction. Initially, the actual motor position and the Simulink model’s 

positions are in sync as the motor does not need to turn at a low velocity. Closer to the set 

point the system starts decelerating and causing minor ripples as described in Section 7.5.2. 

The results show that a full 360-degree range of the motor is possible, and therefore the 270-

degree range for azimuth, and 90-degree range for altitude is possible. 
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Figure 0.30: System response to position set point changes of 18.41mm 

 

 

A final test to show the positional change limit is shown in Figure 7.31 where the set point of 

60 mm is input to the control system. As shown, the motor is not able to accelerate fast enough 

and therefore the controller overshoots the set point to compensate for the position feedback. 

The DC motor eventually reaches a steady state, but the overshoot would cause the radio 

antenna dish to move past the required position and then move back to the set point. This is 

not ideal for the real-life implementation. The motor is limited to a maximum angular position 

set point change of 720 degrees and therefore cannot reach a set point that is higher without 

leading to instability. To overcome this issue, a limit on the allowed positional change should 

be set. 
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Figure 0.31: System response to position set point change of 60mm 

 

 

This subsection discussed the results of the real-time implementation of the DC motor control 

system. The next subsection discusses the results and findings of the work completed in this 

thesis. 

 

7.5 Discussions 

 

The main objective of the hardware-in-the-loop implemnentaion is to use the Simulink model 

of the controller to control an actual DC motor via the Beckhoff IPC. This objective aims to 

prove that portability of software components from one vendor’s programming environment to 

another is possible. The PLC code developed using CodeSYS programming environment and 

PLCopen function blocks also allows for reusability of the code with different vendor’s 

hardware. The factors of portability and reusability show that the transformation is successful 

and that aspects of the IEC 61499 standard are possible. 

 

The DC motor response to a position change is exactly like the simulation of the modelled 

motor in Simulink. This is possible by using Beckhoff’s time compensastion feature to 

overcome the challenge of networked induced delays. Without this feature, the real-time 
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system with 80 ms network induced delays reacted the same as the Simulink model with delays 

in the loop. This proves that the modelling of the system is correct as both the simulated and 

real-time systems respond the same under certain conditions. 

 

The system’s limitations and robustness to position set point changes are tested. A very small 

change in position is sent to the motor, but due to the motor not being very efficient and the 

current limitations of the motor terminal card, the motor tends to oscillate at low speeds. A test 

is done to run the motor for two revolutions in one set point change and the results show that 

the control system is still stable. Therefore if a smaller positional movement is required for the 

DC motor, as is needed for the altitude movements, then the motor can be run at twice the 

speed using a 2:1 gearbox.  

 

Other factors of the IEC 61499 standard can be looked at for further improvements of the 

control system. The use of IEC 61499 standard function blocks will allow the PLC code to be 

interoperable between different software vendors. The TwinCAT 3 programming environment 

does not support IEC 61499 standard function blocks or event-based execution methods of 

PLC code at this time, and therefore this option was not explored. Other software packages 

such as nxtStudio and 4DIAC could be used to create a similar system to compare with the 

current design. 

 

The work done in this thesis creates a basis for future work and development projects that can 

contribute to the ongoing growth of the IEC 61499 standard in the industry. The test rig can be 

used to test portability, reusability, configurability, and interoperability between different 

software vendors by adding other IEC 61499 compliant hardware to the system. Distributed 

the plant and controller over different hardware platforms can also be explored to prove the 

benefits of using the IEC 61499 standard. 

 

This section discussed the objectives, challenges, outcomes, and contributions of the work 

done in this thesis. The next section concludes the chapter.  
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7.6 Conclusion 

 

This chapter presented the real-time implementation of the DC motor control system. All the 

hardware and software components used to control the DC motor using the built test rig are 

described. The hardware includes the C6015 IPC, EK1100 EtherCAT coupler, EL7342 motor 

terminal controller, DC motor, Omron encoder, and the electrical components used to connect 

everything. The software includes the CodeSYS PLC code, Beckhoff’s motion interface to 

control the axis, the PLCopen blocks to command the axis, and the transformed Simulink block 

of the modelled DC motor and controller. An electrical diagram and photo of the complete test 

rig are also shown. 

 

The control system is tested by giving the DC motor a new set point position. The results are 

recorded using Scopeviewer, and compared with simulation results from MATLAB/Simulink. 

The system is first tested with no delay compensation techniques. A delay of 80 ms is present 

due to the EtherCAT fieldbus connection between the IPC and the motor terminal controller. 

This delay is shown to cause the motor to run faster than the intended set point, leading to an 

overshoot. The MATLAB/Simulink response shows the same results when influenced by the 

same delay.  

 

Time compensation is used in the Beckhoff programming environment to predict the response 

of the motor when no feedback has been received. This allows the system to reduce the delays 

to zero by simulating a feedback from the motor that has not yet been received by the IPC 

through the EtherCAT network. This method of adding time compensation reduces the 

overshoot and allows the DC motor to respond exactly like the simulation results that do not 

have network delays included in the model. Lastly, the limitations of the system are tested 

regarding changes in positional set point. 

 

The results in this chapter show that the system is stable when given a change in position and 

time compensation is used to negate the network delays. The next chapter concludes the 

thesis. 
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CHAPTER 8 

CONCLUSION AND FUTURE DIRECTION OF RESEARCH 
 

8.1 Introduction 

 

Distributed control systems are inevitable in the industry for the foreseeable future. With smart 

devices adding huge amounts of data traffic to networked systems, these networks must be 

considered when designing control systems. These smart devices should also be easy to 

import into any vendors’ software packages to allow for quick integration and simple 

communication. Standards such as the IEC 61499 standard, PLCopen function blocks, and 

CodeSYS programming environment, are all good examples of a future of software in 

automation that is portable, interoperable, and reusable. Using these standards to create 

control systems that are distributed and coupled by communication networks instead of 

hardwired systems provided the motivation for this study. The purpose of this research is to 

design and implement a control system for a radio antenna’s azimuth and altitude positional 

movements by using modern control design methods and utilizing the portability and reusability 

aspects of the IEC 61499 standard. 

 

This chapter presents the deliverables and the conclusion to the thesis.. Section 8.2 provides 

the deliverables and the objectives that were achieved. Section 8.3 shows table of developed 

software programmes to achieve the results of the completed work. Section 8.4 presents 

possible applications of the research work in the industrial and academic fields. Section 8.5 

presents possible future work directions for the content of this research. Section 8.6 details the 

publications emanating from this research. Section 8.7 concludes this work. 

 

8.2 Thesis Deliverables 

 
This section describes the thesis deliverables that have been achieved. 
 

8.2.1 Literature Review 
 

Two literature reviews encompassing the IEC 61499 standard and networked control systems 

is completed.  

 

The literature review on the IEC 61499 standard spans over 19 years, from 2004 to 2023. The 

review covers articles written on the first edition of the standard, as well as the the second 

edition which was published in 2012. The first review covers distributed controller design based 

on the standard, the different types of execution methods of standard function blocks, the 

portability capabilities of software tools which are IEC 61499 standard compliant, and 
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modelling and verification of systems that use the standard. The changes in the second edition 

that saw an increase of use of the standard in the industry, and comparisons between different 

articles regarding the standard, are also focused on in the review.  

 

Due to the nature of the distributed control systems being networked, a second literature review 

is conducted in the area of networked control systems. The review provides an overview of 

networked control systems, describes the issue of delays induced by using networks, and 

compares articles from multiple authors on how these delays were dealt with and which 

methods were more effective.   

 

8.2.2 Mathematical Modelling of the Plant and Controller 
 

In this thesis, the model of the closed-loop DC motor is derived using Kirchhoff and Newton’s 

laws of physics. The balance equations of the electrical and mechanical parts are combined 

to describe an electro-mechanical system. The load of the dish is also added to the system by 

means of a gearbox model. A simplified transfer function showing the relationship between 

angular position and armature voltage is described. 

 

The transfer function is converted to state space representation to reduce the complexity when 

trying to model the system. Converting to state space also allows for the addition of a state 

feedback controller which is based on modern control theory. The state feedback controller is 

designed for a faster response time of the DC motor to a change in angular position. An 

integrator is added before the controller to reduce the steady state error of the response. The 

complete transfer function of the DC motor with statefeedback and integral control is modelled 

and simulated in MATLAB/Simulink. 

 

8.2.3 Simulation of the Model of the Plant and Controller 
 

The open-loop model of the DC Motor without a controller is simulated and verified using 

MATLAB/Simulink software tools. The step responses of the model shows that with no 

feedback, the motor continues to turn with time. Because of this, a feedback loop is added for 

the motor to reach steady state. 

 

The closed-loop system of the DC motor without a controller, with a state feedback controller, 

and with integral control added, are all simulated in MATLAB/Simulink. The step responses of 

each system is compared and validated. The results show that the system with statefeedback 

and integral control had the best transient response compared to the other systems. The 

control system has zero overshoot and reaches steady state within 3 seconds. These 

simulated results are compared to the real-time implementation results later.  
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8.2.4 Simulation and Analysis on the Effects of Networked Induced Delays 
 

The effects of networked induced delays are analyzed using the developed controller. Two 

network induced delays are looked at: sensor-to-controller and controller-to-actuator delays. 

Different magnitudes of time delays are tested using a delay function block in Simulink. The 

effects of each delay can clearly be seen negatively effecting the performance and stability of 

the control system. The greater the delay, the more unstable the system becomes when trying 

to reach an angular position set point.  

 

Sensor-to-controller delays of 100ms, 400ms, 800ms, 1200ms are simulated and the results 

are graphed using MATLAB scripts. The results for the controller-to-actuator delays of 50ms, 

100ms 125ms, and 150ms, are also tabulated and graphed. 

 

8.2.5 Transformation of the Simulink model to TwinCAT 3 
 

The Simulink model is successfully transformed to TwinCAT 3 using the Beckhoff TE1400 

target. The model is converted to a TcCom object that is used within the CodeSYS PLC 

software environment to interact with the developed PLC code and PLCopen axis function 

blocks. A MATLAB script is developed to allow for an easy transformation by just compiling 

and running the code. Descriptions of the software required and installation procedures is also 

presented in this thesis. 

 

8.2.6 Real-time Hardware-in-the-loop Test-bed Implementation of the Developed 
Controller 
 

A complete test bench is built for the real-time implementation of the simulated controller and 

plant. The test rig components allow for the interaction between the transformed Simulink 

model and the actual DC motor. A Beckhoff IPC hosts the run-time application and serves as 

the EtherCAT hub for the system. A Beckhoff EK1100 allows for the conversion of EtherCAT 

signals sent from the IPC to the EL7342 motor terminal card. The motor terminal card controls 

the voltage supplied to the motor, and returns the encoder feedback through the EtherCAT 

back to the IPC for position monitoring.  

 

The test rig has a 24V DC power supply to power the Beckhoff components, and a 12V DC 

power supply for the motor supply. Two push buttons are added to the test rig to allow for an 

easier interface to change the angular position set point. The motor and encoder are connected 

via a mechanical 1:1 gearbox. The test rig requires 230V AC supply in order to power all the 

components.  
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8.2.7 Comparisons between the Simulated and Implemented Results 

 

The first test on the real-time system is to see the system’s response to a change in position 

set point. The first results showed that there is a delay due to the EtherCAT network being 

used. The response of the system is proven to be the exact same as the simulation results 

which showed that a delay causes some overshoot. Beckhoff’s Scopeviewer feature is used 

to view the real-time response of the DC motor control system. 

 

Beckhoff’s delay time compensation feature is activated in the system and the same test is 

carried out. Delay time compensation predicts the feedback of the motor and estimates an 

initial response which counters the starting delay of the actual position. This feature prevents 

the actual position from overshooting the position of the simulation model. The real-time 

system and the model simulation results are the same for a change in angular position. 

 

The control system’s limitations are also tested such as maximum change in set point allowed, 

minimum velocity of the DC motor, and the system response to consecutive changes. The 

results show that the system is stable for a full 720 degree set point change. This range covers 

the initial requirements for the 90 degee and 270 degree turns of the azimuth and altitude 

positional movements respectively. 

 

8.3 Software Development 

 

Table 0.1: Summary of the software programmes developed in this research 

Number Filename Application Description Appendix 
1 App_A_41.m DC motor parameters Appendix A4.1 

2 App_A_42.m Open loop system in state 
space form 

Appendix A4.2 

3 App_A_51.m Full State Feedback 
Controller 

Appendix A5.1 

4 App_A_52.m Full State Feedback 
Control with Integral Gain 

Appendix A5.2 

5 App_A_53.m Case study 5.3.4 graph 
outputs for step responses 

Appendix A5.3 

6 App_A_54.m Observer gain Appendix A5.4 

7 App_A_551.m Sensor to controller delay 
graph outputs 

Appendix A5.5.1 

8 App_A_552.m Controller to actuator delay 
graph output 

Appendix A5.5.2 

9 App_A_61.m TwinCAT transformation 
commands 

Appendix A6.1 

10 App_A_71.m Position output of control 
system with and without 
delay 

Appendix A7.1 
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8.4 Application of the Developed Algorithms and Methods 

 

The control system developed for the DC motors can be used for both academic and industrial 

applications as indicated. 

 

8.4.1 Industrial Applications 

 Using the IEC 61499 standard for a DC motor control system that operates an antenna 

dish azimuth and altitude positional movements of a radio antenna dish 

 Any other application that requires movement within a 360 degree rotation 

 Using the IEC 61499 standard in applications that require software that has increased 

modularity, scalability, and interoperability to allow for faster development times. 

 Applications that require fast response times as the IEC 61499 standard application 

function blocks allow for distributed control which has faster response times than 

central controllers. 

 

8.4.2 Academic Applications 

 

This research can be used to train undergraduate students or retrain researchers at the 

postgraduate level. 

 How to mathematically model DC motors 

 How to convert from transfer function to state space equations 

 How to apply a state feedback controller with integral gain 

 The constructed test rig can be used for future research work by postgraduate 

students. 

 

8.5 Future Work 

 Methods could be applied to reduce the network induced delays in the model 

therefore not using time compensation in TwinCAT 3. 

 To distribute the plant and controller over two different PLC vendors that are both IEC 

61499 Standard compliant. 

 To change the manual set point push buttons to a automatic tracking system that can 

track celestial objects in the sky 

 To build the actual radio antenna with two DC motors for azimuth and altitude 

movements to continue testing. 
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8.6 Publications Related to the Thesis 

 Love K., Kriger C., Tshemese-Mvandaba N. (2023) ‘Design and Simulation of a Full 

State Feedback Controller for a DC Motor’, International Journal of Electrical and 

Electronic Engineering & Telecommunications (IJEEET) (submitted for publication). 

 Love K., Kriger C., Tshemese-Mvandaba N. (2023) ‘Hardware-in-the-loop real-time 

simulation and implementation for a DC motor’, Submitted to the Southern African 

Universities Power Engineering Conference (SAUPEC 2024).  

 

8.7 Conclusion 

 

This chapter described all the deliverables that were proposed and achieved. The applications 

where this work can be implemented in industry and academia is described. A list of the 

developed software is provided. Possible future work that could arise from this project are 

described. Submitted publications emanating from this research are also listed. 
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APPENDICES 

APPENDIX A: MATLAB SCRIPT FILES 

 

Appendix A4.1: DC Motor Parameters 

 

Calculates all the motor parameters needed for the Simulink block diagrams. The code 

calculates the state space matrices from the motor parameters. 

 
%Calculate DC motor open loop variables 
%Kevin Love – 2022 
 
%Define motor and plant parameters 
Kb = 0.425;      %Electromotive force constant 
Kt = 2.2;     %Torque constant 
Ra = 14.3;      %Armature resistance 
Ja = 0.013;     %Moment of inertia of the armature 
Jl = 0.001;     %Moment of inertia of the load 
Ba = 0.0001;     %Motor damping coefficient 
Bl = 1;      %Load damping coefficient 
N1 = 1;      %Number of gears teeth N1 
N2 = 270;     %Number of gears teeth N2 
 
%Calculate motor and load moment of inertia 
Jm = Ja+Jl*(N1/N2)^2 
 
%Calculate motor and load damping coefficient  
Bm = Ba+Bl*(N1/N2)^2 
 
%Substitute parameters into Km and Am 
Km = Kb/(Ra*Jm) 
Am = ((Ra*Bm)+(Kb*Kt))/(Ra*Jm) 
 
 
Appendix A4.2: Open Loop System in State Space Form 
 
%Calculate DC motor open loop state space matrices 
%Kevin Love - 2022 
 
%Transfer Function of Motor  
num = [Am];    %Declare numerator of open loop transfer function 
den = [1 Km 0];   %Declare denominator of open loop transfer function 
Motor_TF = tf(num,den);  %Declare complete transfer function 
 
   
%State Space Representation of Motor 
Motor_SS = ss(Motor_TF);  %Convert transfer function to state space 
 
%Create variables A,B,C,D from state space reference 
A = Motor_SS.A;   
B = Motor_SS.B; 
C = Motor_SS.C; 
D = Motor_SS.D; 
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Appendix A5.1: Full State Feedback Controller 

 

Calculates the root locus as well as the state space equations of the closed loop system. 

Includes the test for controllability as well as the calculation to work out the gain matrix. 

 

%Develop full state feedback controller 
%Kevin Love - 2023 
 
%Root locus of open loop system 
rlocus(OL_Motor_SS); 
 
%Closed loop transfer function of motor 
CL_motor_TF = feedback(OL_motor_TF,1); 
 
%Closed loop state space 
CL_Motor_SS = ss(CL_motor_TF); 
 
%Declare closed loop matrices 
Acl = CL_Motor_SS.A; 
Bcl = CL_Motor_SS.B; 
Ccl = CL_Motor_SS.C; 
Dcl = CL_Motor_SS.D; 
 
%Check for controllability 
control=ctrb(Acl,Bcl); 
Rank=rank(control) 
 
%Desired poles 
J = [-2 -6];  
 
%Acker formula to determine K gain matrix 
K = acker(Acl,Bcl,J); 
 
%Add state feedback controller  
A_ClosedLoop = Acl - Bcl*K; 
eig(A_ClosedLoop); 
 
syscl = ss(A_ClosedLoop,Bcl,Ccl,Dcl); 
 
%Root locus of closed loop system with full state feedback controller 
rlocus(syscl) 
 

 

 

Appendix A5.2: Full State Feedback Controller with Integral Gain 

 

Calculates the gain matrix and integral gain for the new closed loop system. A root locus is 

also done to test if the poles are at the correct position. 

 

%Develop full state feedback controller with integral control 
%Kevin Love - 2023 
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%Determine new closed loop system with integrator 
Aint=[Acl zeros(2,1);-Ccl 0]; 
Bint=[Bcl;0]; 
Cint=[Ccl 0]; 
 
%Set new desired poles 
Pint= [-2 -6 -8];  
 
%Calculate integrator matrix Ke 
Ke =acker(Aint,Bint,Pint); 
 
%New closed loop system 
Anew = Aint-Bint*Ke; 
Br=[0;0;1]; 
Bnew=Bint+Br; 
sysclosed = ss(Anew,Bnew,Cint,Dcl); 
rlocus(sysclosed) 

 

 

Appendix A5.3: Case Study 5.3.4 Graph Outputs 

 
Plots all the responses that are developed in Simulink. These responses are for the closed-

loop system without controller, closed-loop system with state feedback, and closed-loop 

system with state feedback with integral control. The plot for the random number generator is 

also included in this code.  

 
%%Case Study 5.3.4 Plots 
%Kevin Love - 2023 
 
%Case 1 
figure('Name', 'Case Study 5.3.4'); 
subplot(2,2,1) 
xlim([0 20]) 
ylim([0 1.2]) 
hold on 
plot(out.Time, out.ClosedLoopStepResponse, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 1" + newline + "Step Response of a Closed Loop DC Motor System") 
plot(out.Time, out.ClosedLoopStepResponse_SP, 'LineWidth',1) 
legend('Position (θ)', 'Set Point') 
grid on 
hold off 
 
%Case 2 
subplot(2,2,2) 
xlim([0 20]) 
ylim([0 0.2]) 
hold on 
plot(out.Time, out.ClosedLoopWithStateFeedback, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
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title("Case 2" + newline + "Step Response of a Closed Loop DC Motor System with State 
Feedback") 
plot(out.Time, out.ClosedLoopWithStateFeedback_SP, 'LineWidth',1) 
legend('Position (θ)', 'Set Point') 
grid on 
hold off 
 
 
%Case 3 
subplot(2,2,3) 
xlim([0 20]) 
ylim([0 1.2]) 
hold on 
plot(out.Time, out.AddedIntegral1, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 3" + newline + "Step Response of a Closed Loop DC Motor System with State 
Feedback and Integral Control") 
plot(out.Time, out.AddedIntegral1_SP, 'LineWidth',1) 
legend('Position (θ)', 'Set Point') 
grid on 
hold off 
 
%Case 4 
subplot(2,2,4) 
xlim([0 20]) 
ylim([0 110]) 
hold on 
plot(out.Time, out.AddedIntegral2, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 4" + newline + "Step Response of a Closed Loop DC Motor System with State 
Feedback and Integral Control") 
plot(out.Time, out.AddedIntegral2_SP, 'LineWidth',1) 
legend('Position (θ)', 'Set Point') 
grid on 
hold off 
 
%Extra Case Testing robustness of controller 
figure ('Name', 'Response Test') 
xlim([0 24]) 
hold on 
plot(out.Time, out.RandomGenerator, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title('System Response to Random Number Generator Input') 
plot(out.RandomGenerator_SP, 'LineWidth',1) 
legend('Position (θ)', 'Set Point') 
grid on 
hold off 
 
%Generate charateristics of the different cases for Table 5.1 
stepinfo(out.ClosedLoopStepResponse,out.Time) 
stepinfo(out.ClosedLoopWithStateFeedback,out.Time) 
stepinfo(out.AddedIntegral1,out.Time) 
stepinfo(out.AddedIntegral2,out.Time) 
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Appendix A5.4: Observer Gain 

 

Checks that the system is observable and calculates the observer gain.  

 
 
%Calculate Observer Gain 
%Kevin Love - 2023 
 
 
%Check for observability 
observe=obsv(Acl,Ccl) 
Rank=rank(observe) 
 
%State Feedback Observer Gain Matrix 
L = acker(Acl',Ccl',J*4)' 

 
 
Appendix A5.5.1: Sensor to Controller Delay Graph Outputs 
 
MATLAB code that creates the graphs for section 5.5.1 showing the effects of sensor to 

controller network delays on the step responses of the different control systems developed 

 

%Section 5.5.1 – sensor to controller delays  
%Kevin Love - 2023 
 
%Case 1 
figure('Name', 'Case Study 5.5.1'); 
subplot(2,2,1) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 1" + newline + "Position output with 100ms delay"+ newline +"between sensor 
and controller") 
plot(out.Time, out.Position_Delayed_100ms, 'LineWidth',1) 
legend('Ts-c = 0ms', 'Ts-c = 100ms') 
grid on 
hold off 
 
 
%Case 2 
subplot(2,2,2) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 2" + newline + "Position output with 400ms delay"+ newline +"between sensor 
and controller") 
plot(out.Time, out.Position_Delayed_400ms, 'LineWidth',1) 
legend('Ts-c = 0ms', 'Ts-c = 400ms') 
grid on 
hold off 
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%Case 3 
subplot(2,2,3) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 3" + newline + "Position output with 800ms delay"+ newline +"between sensor 
and controller") 
plot(out.Time, out.Position_Delayed_800ms, 'LineWidth',1) 
legend('Ts-c = 0ms', 'Ts-c = 800ms') 
grid on 
hold off 
 
%Case 4 
subplot(2,2,4) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 4" + newline + "Position output with 1200ms delay"+ newline +"between sensor 
and controller") 
plot(out.Time, out.Position_Delayed_1200ms, 'LineWidth',1) 
legend('Ts-c = 0ms', 'Ts-c = 1200ms') 
grid on 
hold off 
 
%Generate characteristics of the different cases for Table 5.1 
stepinfo(out.Position_Delayed_100ms,out.Time) 
stepinfo(out.Position_Delayed_400ms,out.Time) 
stepinfo(out.Position_Delayed_800ms,out.Time) 
stepinfo(out.Position_Delayed_1200ms,out.Time) 
 

 

Appendix A5.5.2: Controller to Actuator Delay Graph Outputs 

 

MATLAB code that creates the graphs for section 5.5.2 showing the effects of controller to 

actuator network delays on the step responses of the different control systems developed 

 

%Section 5.5.2 – controller to actuator delays 
%Kevin Love - 2023  
 
%Case 1 
figure('Name', 'Case Study  5.5.2'); 
subplot(2,2,1) 
%xlim([0 20]) 
%ylim([0 1.2]) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 1" + newline + "Position output with 50ms delay"+ newline +"between controller 
and actuator") 
plot(out.Time, out.Position_Delayed_50ms, 'LineWidth',1) 
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legend('Tc-a = 0ms', 'Tc-a = 50ms') 
grid on 
hold off 
 
%Case 2 
subplot(2,2,2) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 2" + newline + "Position output with 100ms delay"+ newline +"between controller 
and actuator") 
plot(out.Time, out.Position_Delayed_100ms, 'LineWidth',1) 
legend('Tc-a = 0ms', 'Tc-a = 100ms') 
grid on 
hold off 
 
%Case 2 
subplot(2,2,3) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 3" + newline + "Position output with 125ms delay"+ newline +"between controller 
and actuator") 
plot(out.Time, out.Position_Delayed_125ms, 'LineWidth',1) 
legend('Tc-a = 0ms', 'Tc-a = 125ms') 
grid on 
hold off 
 
%Case 2 
subplot(2,2,4) 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 4" + newline + "Position output with 150ms delay"+ newline +"between controller 
and actuator") 
plot(out.Time, out.Position_Delayed_150ms, 'LineWidth',1) 
legend('Tc-a = 0ms', 'Tc-a = 150ms') 
grid on 
hold off 
 
%Generate characteristics of the different cases for Table 5.2 
stepinfo(out.Position_Delayed_50ms,out.Time) 
stepinfo(out.Position_Delayed_100ms,out.Time) 
stepinfo(out.Position_Delayed_125ms,out.Time) 
stepinfo(out.Position_Delayed_150ms,out.Time) 
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Appendix A6.1: TwinCAT Transformation Commands 

 

MATLAB code to be executed in the MATLAB command window to create a TwinCAT object 

from the Simulink block diagram in the current folder path.  

 

%%Convert Simulink block diagram to TwinCAT object 
%Kevin Love - 2023 
 
%Open the model that needs to be converted 
modelName = 'DCMotorCLSSSFBIC1'; 
open_system(modelName); 
 
%Change the solver type to fixed step 
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Sol
verType','Fixed-step'); 
 
%Change the system target file to TwinCatGrt 
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Sy
stemTargetFile','TwinCatGrt.tlc'); 
 
%Change the vendoer name to the project name underscore VendorName 
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Tc
Project_VendorName'); 
 
%Save project and build using Simulink Coder 
save_system(modelName); 
slbuild(modelName); 

 

 

Appendix A7.5.1: Position output of control system with and without delay   

 

MATLAB code to graph the outputs of the closed-loop control system with delay vs without 

delay.  

 

%Chapter 7 Graph Ouputs 
%Kevin Love 2023 
 
%Delay vs No Delay Graph 
figure('Name', 'Delay vs No Delay'); 
hold on 
plot(out.Time, out.Position, 'LineWidth',1) 
xlabel('Time (s)') 
ylabel('Position (θ)') 
title("Case 1" + newline + "Position output without delay verse with delay"+ newline) 
plot(out.Time, out.Position_Delayed, 'LineWidth',1) 
legend('Position (θ)', 'Position (θ) with delay') 
grid on 
hold off 
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APPENDIX B: Installation Procedures 

Appendix B6.1: MATLAB/Simulink installation procedure 
 

1. Download the setup file from https://www.mathworks.com/products/matlab.html  

2. Save the setup file to the desired location on the PC. 

3. Run MATLAB setup file from the selected location. 

4. The setup extracts and the product installer start. 

5. Enter an email address linked to a MathWorks account, then click on “Next”. 

6. Enter password for the email address used, then click on “Next”. 

7. Accept the terms of the license agreement, then click on “Next”. 

8. Configure required licensing and confirm user, then click on “Next”. 

9. Select the default destination for file storage, then click on “Next”. 

10. Select MATLAB and Simulink products to be installed. 

11. Also select any MATLAB and Simulink add-ons, then click on “Next”. 

 

 

 

 

 

12. The installation manager installs all the selected software. 

13. Click on “Close” once the installation is complete. 
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Appendix B6.2: Visual Studio 2019 installation procedure 
 
 

1. Download the setup file from https://www.mathworks.com/products/matlab.html  

2. Save the setup file to the desired location on the PC. 

3. Run Visual Studio 2019 setup file from the selected location 

4. The setup extracts and the Visual Studio Installer starts. 

5. Once extraction completes, select the below software packages by ticking the box 
 
 

 

 
 

6. Click on “Install” once all the required packages are selected 

7. The installer will download and install the packages automatically 

8. Restart the PC after installation is complete 
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Appendix B6.3: TwinCAT 3 installation procedure 
 
 

1. Download he setup file from https://www.beckhoff.com/en-en/support/download-       
finder/software-and-tools/  
2. Save the setup file to the desired location on the PC. 

3. Run TwinCAT 3 setup file from the selected location as an administrator  

4. Accept the terms of the license agreement, then click on “Next”. 

5. Accept the terms of the 2nd license agreement, then click on “Next”. 

6. Select “Complete” installation setup, then click on “Next”. 

7. Click on “Install” to begin installing all the necessary software. 

8. Click on “Finish” once the installation is complete 

9. Restart the PC after installation is complete 

10. The TwinCAT 3 set file automatically runs again 

11. Select the version of Visual Studio installed on the PC for integration 

12. Click on “Next” to being the Visual Studio Shell installation 

 
 

 

 

 
13. Click on “Next” to being the Visual Studio Shell installation 

14. Restart the PC after installation is complete. 
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APPENDIX C: Wiring Diagrams 

Appendix C7.1: Test rig wiring diagram 
 
 

 


