

Design and Implementation of IEC 61499 standard-based controllers in a

distributed control environment

by

Kevin Love

Thesis - 100% research project submitted in fulfillment of the requirements for

the degree

Master of Technology/Doctor of Technology: Electrical Engineering

in the Faculty of Electrical Engineering

at the Cape Peninsula University of Technology

Supervisor: Dr C Kriger

Co-supervisor: Dr N Tshemese-Mvandaba

Bellville, Cape Town

November 2023

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific, or technical journals),

or as a whole (as a monograph), unless permission has been obtained from the University

Updated November 2023

 ii

DECLARATION

I, Kevin Love, declare that the contents of this thesis represent my unaided work, and that the

thesis/dissertation has not previously been submitted for academic examination towards any

qualification. Furthermore, it represents my own opinions and not necessarily those of the

Cape Peninsula University of Technology.

 12/11/2023

_____________________________ ________________________________

 Signed Date

 iii

ABSTRACT

The Fourth Industrial Revolution changed how people work, live, and interact with each other

and technology with a shift towards automation and data exchange that requires software to

be portable, interoperable, configurable, and reusable between multiple Original Equipment

Manufacturers (OEMs). The interoperability challenge is overcome by the adherence to

governing standards by the producers of the different software programming environments that

are used to develop the control systems. PLCOpen function blocks, Codesys integrated

development environment, the IEC 61499 Standard, and the EtherCAT network topology, are

all examples of software aspects that are used to improve the integration between automation

hardware from different vendors.

In this thesis, the MATLAB/Simulink software engineering environment is used to develop a

mathematical model of a DC motor control system that is used to control the azimuth and

altitude positional movements of a radio antenna dish. A full-state feedback controller is

designed to increase the response time of the positional movements to a set point change.

Integral control is also added to the system to compensate for the steady-state error caused

by using a full-state feedback controller.

The developed simulation model is tested in the Simulink software environment by analysing

the results of a step response input to the system. The response of the DC motor open-loop

system, a DC motor system with a controller, and a DC motor control system with added

integral control, is compared and analysed. The effects of the network-induced delays are also

analysed before implementing the controller on the hardware. The effects show that an

increase in network delays leads to an increase in system instability.

The thesis findings contribute to detailing the transformation process for the developed

controller from the Simulink simulation environment to the TwinCAT 3 programming

environment to allow for the real-time implementation of an actual DC motor. The transformed

simulation model interacts with the DC motor from a PLC, through an EtherCAT network, to a

remote motor controller.

The real-time hardware-in-the-loop implementation results are compared to the results

acquired by the simulations done in Simulink. The results show that the effects of network

delays are the same in real-time as in the simulation model. The addition of Beckhoff’s time

compensation feature in TwinCAT 3 reduced the effects of time delays and resulted in a stable

system. The control system is also stress-tested to record the limitations of the positional

movements.

 iv

The thesis findings and deliverables further contribute to the enlarging of the knowledge base

in the field of IEC 61499 standard-based control systems and can be used for education to

continue further research. The state-space method used in the mathematical model for the

design of the controller can be implemented in other similar applications that require a change

in angular position. The hardware-in-the-loop test rig can also be used in future research work

by postgraduate students at universities or research institutions.

 v

ACKNOWLEDGEMENTS

I wish to thank:

 My supervisor Dr Carl Kriger and co-supervisor Dr Nomzamo Tshemese-Mvandaba for

their support, advice, guidance, and contribution to this thesis. Thank you very much

for the time you have taken to assist me in this journey.

 My partner Tamika Devon for her support, encouragement, understanding, and

patience during my time studying. Thanks for always being by my side.

 My employer Dave Grobler for his generosity gave me the opportunity to do this thesis.

He will be missed. Rest in peace.

 My friends at Beckhoff Automation, Dane Potter, and Shaun Potter, for their continuous

support and assistance when needed.

 vi

DEDICATION

This thesis is dedicated to my mom and dad, Patricia Anne Swanepoel and Anthony Macaulay

Swanepoel, for their continuous support and guidance throughout my entire life up until now. I

appreciate everything you’ve done for me. I love you both.

 vii

TABLE OF CONTENTS

DECLARATION .. ii
ABSTRACT ... iii
ACKNOWLEDGEMENTS .. v
DEDICATION .. vi
TABLE OF CONTENTS ... vii
LIST OF FIGURES ... x
LIST OF TABLES ... xii
LIST OF APPENDICES ... xiii
GLOSSARY OF TERMS ... xiv
LIST OF SYMBOLS ... xv
CHAPTER 1 ...1

INTRODUCTION ..1
1.1 Introduction ...1
1.2 Awareness of the problem ..2
1.3 Statement of the problem ...2
1.3.1 Sub-problem 1 ..3
1.3.2 Sub-problem 2 ..3
1.4 Research Aim and Objectives ..3
1.4.1 Aim ...3
1.4.2 Objectives ..3
1.5 Research Questions ...4
1.6 Hypothesis ..4
1.7 Delimitation of the research ..5
1.8 Assumptions of the project ...5
1.9 Deliverables of the project ..5
1.10 Chapter breakdown ..6
1.11 Conclusion ..8

CHAPTER 2 ...9
LITERATURE REVIEW ..9

2.1 Literature Review on the IEC 61499 Standard ...9
2.2 Literature Review on Networked Control Systems .. 30
2.3 Conclusion ... 41

CHAPTER 3 .. 43
THEORY BASED ON ANTENNAS AND THE DC MOTOR .. 43

3.1 Introduction .. 43
3.2 Antenna Theory .. 43
3.3 Motor Theory .. 51
3.4 Discussions on Radio Antennas and DC Motors ... 55
3.5 Conclusion ... 56

CHAPTER 4 .. 57

 viii

DEVELOPMENT AND SIMULATION OF THE PLANT ... 57
4.1 Introduction .. 57
4.2 Modelling of a DC Motor .. 57
4.3 State space representation of open loop system of a DC motor ... 64
4.4 Model of a radio antenna control system ... 67
4.5 Conclusion ... 70

CHAPTER 5 .. 71
STATE FEEDBACK CONTROLLER DESIGN .. 71

5.1 Introduction .. 71
5.2 State Feedback Controller Design Using Pole-Placement Approach 71
5.3 State Feedback with Integral Control ... 79
5.4 Communication Delays .. 87
5.5 Discussions and analysis ... 91
5.6 Conclusion ... 91

CHAPTER 6 .. 93
TRANSFORMATION FROM SIMULINK MODEL TO TWINCAT OBJECT 93

6.1 Introduction .. 93
6.2 Software Descriptions .. 94
6.3 Simulink Configuration ... 101
6.4 TwinCAT Configuration .. 104
6.5 Scope Viewer ... 109
6.6 Discussions .. 111
6.7 Conclusion ... 112

CHAPTER 7 .. 113
HARDWARE-IN-LOOP IMPLEMENTATION FOR IEC 61499 COMPATIBILITY 113

7.1 Introduction .. 113
7.2 Hardware Description ... 114
7.3 PLC software .. 120
7.4 Motion Control .. 130
7.5 Implementation of closed loop system with controller ... 133
7.5 Discussions .. 143
7.6 Conclusion ... 145

CHAPTER 8 .. 146
CONCLUSION AND FUTURE DIRECTION OF RESEARCH .. 146

8.1 Introduction .. 146
8.2 Thesis Deliverables .. 146
8.3 Software Development ... 149
8.4 Application of the Developed Algorithms and Methods ... 150
8.5 Future Work ... 150
8.6 Publications Related to the Thesis ... 151
8.7 Conclusion ... 151

APPENDIX A: MATLAB SCRIPT FILES ... 159
Appendix A4.1: DC Motor Parameters ... 159
Appendix A4.2: Open Loop System in State Space Form ... 159

 ix

Appendix A5.1: Full State Feedback Controller ... 160
Appendix A5.2: Full State Feedback Controller with Integral Gain .. 160
Appendix A5.3: Case Study 5.3.4 Graph Outputs ... 161
Appendix A5.4: Observer Gain .. 163
Appendix A5.5.1: Sensor to Controller Delay Graph Outputs.. 163
Appendix A5.5.2: Controller to Actuator Delay Graph Outputs .. 164
Appendix A6.1: TwinCAT Transformation Commands .. 166
Appendix A7.5.1: Position output of control system with and without delay 166

APPENDIX B: Installation Procedures .. 167
Appendix B6.1: MATLAB/Simulink installation procedure ... 167
Appendix B6.2: Visual Studio 2019 installation procedure .. 168
Appendix B6.3: TwinCAT 3 installation procedure .. 169

APPENDIX C: Wiring Diagrams .. 170
Appendix C7.1: Test rig wiring diagram ... 170

 x

LIST OF FIGURES

Figure 2.1: Bar graph showing the number of publications, categorized by year published, reviewed on
IEC 61499 Standard in distributed control systems .. 10
Figure 2.2: Layered approach to distributed controller design (Vyatkin, 2006) 22
Figure 2.3: Information flow between a multi-layered networked .. 23
Figure 2.4: Flow chart showing portability, configurability, and interoperability in a distributed control
system (http://www.holobloc.com/papers/iec61499/overview.htm) .. 24
Figure 2.5: Comparison of IEC 61499 Standard programming environments (Pang et al., 2014) 29
Figure 2.6: Bar graph showing the number of publications, categorized by ... 31
Figure 3.1: Azimuth and elevation of a radio antenna... 43
Figure 3.2: Several types of Antennas .. 44
Figure 3.3: Radio Antenna collecting EM waves from a celestial radio source 45
Figure 3.4: Heinrich Hertz's radio antenna experiment ... 46
Figure 3.5: Different types of parabolic radio antennas .. 47
Figure 3.6: 26m dish of HartRAO radio antenna ... 48
Figure 3.7: Closed loop position control of an antenna’s azimuth angle... 49
Figure 3.8: Block Diagram of the closed loop position control of an antenna’s azimuth angle (Okumus
et al, 2012) ... 49
Figure 3.9: Michael Faraday’s DC motor setup ... 52
Figure 3.10: Electro-magnetic engine by Joseph Henry ... 52
Figure 3.11: Construction of a DC motor .. 53
Figure 3.12: Dissected view of a DC motor ... 55
Figure 4.1 Electro-mechanical diagram of a DC motor with a fixed magnetic field 58
Figure 4.2: Simulink block diagram of a step input to a DC motor transfer function 63
Figure 4.3: Open loop step response of a DC motor .. 64
Figure 4.4: Simulink block diagram of a step input to a DC motor that is represented in state space
form ... 67
Figure 4.5: Open loop step response of a DC motor that is represented in state space form 67
Figure 4.6: Simulink block diagram of the radio antenna control system.. 68
Figure 4.7: Step response of the radio antenna plant with step value of 1 ... 69
Figure 4.8: Step response of the radio antenna plant with step value of 10 ... 69
Figure 5.1: Root Locus of the closed-loop system .. 72
Figure 5.2: Root locus of closed loop system with new desired poles .. 77
Figure 5.3: Simulink block diagram of closed loop system with state feedback controller 78
Figure 5.4: Step response for closed loop system with state feedback controller 78
Figure 5.5: Root locus of closed loop system with desired poles at -3, -5, and -20 83
Figure 5.6: Simulink block diagram of a state feedback controller with integral control 83
Figure 5.7: Step response state feedback controller with integral control .. 84
Figure 5.8: Developed controllers’ response to step inputs .. 85
Figure 5.9: Final Control System Response to Random Number Generator 86
Figure 5.10: Simulink block diagram with added transport delay blocks .. 87
Figure 5.11: Case Study on the effects of sensor-to-controller delays ... 89
Figure 5.12: Case Study on the effects of controller-to-actuator delays ... 90
Figure 6.1: Developer Command Prompt 2019 Interface ... 96
Figure 6.2: MMC - Add/Remove Snap-in .. 97
Figure 6.3: MMC - Add/Remove Snap-in Step 2 ... 97
Figure 6.4: MMC - Add/Remove Snap-in Step 3 ... 98
Figure 6.5: MMC - Add/Remove Snap-in Step 4 ... 98
Figure 6.6: MMC - Certificates .. 99
Figure 6.7: Navigation to TE1400 TwinCAT function .. 100
Figure 6.8: Status of TwinCAT TE140x installation from the MATLAB Command Window 101
Figure 6.9: Updated controller block diagram with added input and output blocks 101
Figure 6.10: Model configuration - Solver menu ... 102
Figure 6.11: Model configuration - Code Generation submenu .. 103
Figure 6.12: Model configuration - TC General submenu ... 103
Figure 6.13: TwinCAT 3 new project window .. 105
Figure 6.14: How to add a new TcCom object .. 105
Figure 6.15: List of available TcCom objects .. 106
Figure 6.16: Simulink block diagram successfully transformed to TwinCAT 3 106
Figure 6.17: Adding a new task ... 107
Figure 6.18: Assigning a task to a TcCom Object ... 107

 xi

Figure 6.19: TwinCAT 3 Licensing Menu .. 108
Figure 6.20: Create a new scope viewer project ... 109
Figure 6.21: Random set point generator in Simulink ... 110
Figure 6.22: Random set point generator in Scope Viewer .. 110
Figure 7.1: Beckhoff C6015 PLC front view .. 114
Figure 7.2: Beckhoff EK1100 interface ports and indication lights .. 116
Figure 7.3: Beckhoff EL7342 interface ports and indication lights .. 117
Figure 7.4: Omron encoder wiring diagram ... 118
Figure 7.5: DC Motor Control System Test Rig ... 119
Figure 7.6: PLC configuration in Solution Explorer ... 120
Figure 7.7: Adding a library reference to TwinCAT 3 .. 122
Figure 7.8: PLC step sequence flow chart .. 123
Figure 7.9: Ladder logic for step 0... 124
Figure 7.10: Ladder logic for step 1 .. 125
Figure 7.11: Ladder logic for step 2 .. 126
Figure 7.12: Ladder Logic for steps 3 and 4 ... 127
Figure 7.13: Updated Simulink block diagram of the DC motor with full state feedback and integral
control .. 128
Figure 7.14: Transformed Simulink model in CodeSYS function block form 128
Figure 7.15: Taskbar when not connected to the PLC .. 129
Figure 7.16: Taskbar when connected to the PLC which is in stop mode .. 129
Figure 7.17: Taskbar when connected to the PLC which is in run mode .. 129
Figure 7.18: Menu navigation to scan the EtherCAT network .. 130
Figure 7.19: TwinCAT 3 motion navigation in solution explorer .. 131
Figure 7.20: Linking an axis to peripherals ... 133
Figure 7.21: Block diagram showing the information transmitted between the components of the DC
motor control system ... 134
Figure 7.22: Step response of actual DC motor control system ... 135
Figure 7.23: Panned in X and Y axis of the actual DC motor step response 136
Figure 7.24: Simulink step response with 80 ms network delay ... 136
Figure 7.25: Activating time compensation in TwinCAT 3 .. 138
Figure 7.26: Step response with time compensation .. 138
Figure 7.27: Step response with time compensation .. 139
Figure 7.28: System response to position set point changes of 5mm .. 140
Figure 7.29: System response to position set point changes of 40mm .. 141
Figure 7.30: System response to position set point changes of 18.41mm ... 142
Figure 7.31: System response to position set point change of 60mm .. 143

 xii

LIST OF TABLES

Table 2.1: Literature Review of IEC61499 Standard first edition .. 11
Table 2.2: Literature review of IEC61499 Standard second edition.. 16
Table 2.3: Comparison of papers published on IEC 61499 Standard distributed control systems 27
Table 2.4: Comparison of papers published on executions methods of IEC 61499 Standard function
blocks .. 28
Table 2.5: Summary of a portability study on IEC 61499 Standard software tools published by (Pang et
al., 2014) .. 28
Table 2.6: Comparison of papers published on the release of the IEC 61499 Standard second edition
 ... 29
Table 2.7: Literature Review of Networked Control Systems ... 32
Table 2.8 Comparison of papers published on random delays in network control systems 39
Table 2.9: Comparison of papers published on methods to incorporate network-induced delays in
NCSs ... 40
Table 3.1: Summary of articles written regarding position control of radio antennas. 50
Table 4.1: DC motor parameters ... 62
Table 5.1: Characteristics of the step response of the different DC motor control systems 86
Table 5.2: Comparison between different sensor to controller delays in DC motor system 88
Table 5.3: Comparison between different controller to actuator delays in DC motor system 89
Table 6.1: Software installation download links .. 94
Table 6.2: Possible errors during Simulink Coder compiling .. 104
Table 6.3: Possible errors when activating a TwinCAT project ... 108
Table 7.1: Beckhoff C6105 interface list and functional purpose .. 115
Table 7.2: Parameters changes for Axis 1 .. 132
Table 8.1: Summary of the software programmes developed in this research 149

 xiii

LIST OF APPENDICES

Appendix A4.1: MATLAB code for inserting DC motor parameters 159
Appendix A4.2: MATLAB code for an open loop system in state space

form
159

Appendix A5.1: MATLAB code for a full state feedback controller 160
Appendix A5.2: MATLAB code for a full state feedback controller with

integral control
160

Appendix A5.3: MATLAB code to generate graph outputs for step
responses of Case study 5.3.4

161

Appendix A5.4: MATLAB code to find observer gain matrix 163
Appendix A5.5.1: MATLAB code to generate graph outputs for step

responses of Case study 5.5.1
164

Appendix A5.5.2: MATLAB code to generate graph outputs for step
responses of Case study 5.5.2

164

Appendix A6.1: MATLAB code to generate TwinCAT object from
Simulink block diagrams

165

Appendix A7.1: MATLAB code to generate graph outputs for step
responses of case studies in Chapter 7

166

Appendix B6.1: Installation procedure for MATLAB/Simulink software 167
Appendix B6.2: Installation procedure for Visual Studio 2019 software 168
Appendix B6.3: Installation procedure for TwinCAT 3 software 169
Appendix C7.1: Test rig wiring diagram 170

 xiv

GLOSSARY OF TERMS

Abbreviations Definition/Explanation
BHS Baggage Handling System
CAN Control Area Network
CFBs Composite Function Blocks
CPU Central Processing Unit
DALI Digital Addressable Lighting Interface
DC Direct Current
DCS Distributed Control System
DT/DE Discrete Time/Event Approach
EM Electromagnetic
emf Electromotive Force
EtherCAT Ethernet for Control Automation Technology
FBench Floating Point Benchmark
FBDK Function Block Development Kit
FIFO First-in-first-out
HartRAO Hartebeesthoek Radio Astronomy Observatory
IEC International Electrotechnical Commission
I/O Input/Output
LED Light Emitting Diode
LMI Linear Matrix Inequalities
MATLAB MATrix LABoratory
MPC Model Predictive Controller
MPS Modular production system
NCES Net Condition/Event System
NCS Networked control system
OEMs Original Equipment Manufacturers
PC Personal Computer
PID Proportional Integral Derivative
PLC programmable logic controller
UML Unified Modeling Language
RAM Random Access Memory
ROM Read-only memory
RT-UML Real-time Unified Modeling Language
SIFB Service Interface Function Block
SPADE Smart Program Agent Development Environment
TcCom TwinCAT Component Object Model
TwinCAT Windows Control and Automation Technology
ViEd Visual NCES Editor
Vive Visual Verifier
XAE eXtended Automation Engineering
XAR TwinCAT Runtime

 xv

LIST OF SYMBOLS

𝐹⃗ Magnetic Force

𝐵ሬ⃗ Magnetic Field

𝐸ሬ⃗ Electric Field

𝑞 Charge
𝑣⃗ Velocity of a charged particle
𝑉௔ Armature voltage
𝑅௔ Armature Resistance
𝑖௔ Armature current
𝐿௔ Armature inductance
𝑒௕ Back electromotive force
𝐾஻ Electromotive torque constant
𝜃௠ Angular position

𝜃̇௠ Angular velocity

𝜃̈௠ Angular acceleration

𝑇௠ Input torque
𝐵௠ Damping coefficient
𝐽௠ Moment of inertia
𝐾் Torque constant
𝐽௔ Moment of inertia of the armature
𝐽௅ Moment of inertia of the load
𝐵௔ Motor damping coefficient
𝐵௅ Load damping coefficient
𝑁1 Number of gears teeth on the motor side
𝑁2 Number of gears teeth on the load side
𝐾 State feedback gain matrix
𝐴஼௅ Closed loop A matrix
𝑃஼ Controllability matrix
Λ A constant
𝐼 Identity matrix
𝐾௜ Integral matrix
𝐿 Observer gain matrix
𝑃ை Observability matrix
𝑇௦௖ Sensor-to-controller delay
𝑇௖௔ Controller-to-actuator delay

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

With the industry moving into its 4th generation, the need for distributed control in industrial

control systems is necessary as field devices become more intelligent and data transfer

between devices becomes larger. Currently, most systems are controlled centrally with a

Programmable Logic Controller (PLC) using the IEC 61131-3 standard. The cyclic nature of

these systems prevents adequate control in large systems that consist of multiple Intelligent

Electronic Devices (IEDs) networked via Fieldbus communication protocols such as

Ethernet/Internet Protocol (Ethernet/IP). To overcome this problem, it is necessary to design

systems in a distributed manner.

The IEC 61499 standard-based systems allow for the distribution of control using event-driven

function blocks and can therefore be used to distribute control in a decentralized system. The

standard also increases the portability of software between different vendors by standardizing

the format used by developers when creating software tools. This led to hardware

interoperability between devices from different vendors making it possible to communicate

between IEDs from different vendors.

An increase in portability, interoperability, configurability, and reusability between different

vendor’s software tools and hardware devices in industrial control systems decreases the

complexity of trying to integrate and communicate between them. Development time will be

more focused on the control system and the end product rather than setting up

communications. Also, being able to use any product from any vendor will make the market

more competitive which will lead to cost savings as vendors will not be able to sell their

propriety software at whatever price they like.

This research work focuses on the application of the IEC 61499 standard to show the

capabilities of the standard when applied to an industrial control system. The research

contributes to the 4th Industrial Revolution that is leading the path to holonic systems in

industrial automation.

The following sections describe the awareness of the problem, statement of the problem, the

research aim and objectives, research questions and hypothesis, delimitation of the research,

deliverables of the project, complete chapter breakdown, and a conclusion.

 2

1.2 Awareness of the problem

The problem with control systems in industry is the use of a centralized point of control.

Centralized control is not sufficient in certain industrial practices today as the cyclic nature of

how events are handled is not quick enough to control distributed devices. To overcome this

problem, it is necessary to design systems in a distributed manner. IEC 61499 standard-based

systems allow for the distribution of control using event-driven function blocks and can

therefore be used to convert from centralized to decentralized control.

The second problem can be found in networked control systems that are connected via a

Fieldbus such as Profinet, Ethernet, Modbus, etc. These networks are affected by network

delays that are caused by increased network traffic, the distance between IEDs, and the size

of the network system. These network delays can be scaled down when distributing the control

as not all the IEDs will have to communicate through a central hub but can instead

communicate directly with the intended target. Modeling and analysing these delays allow for

better controller design and validation before implementing the control system on a lab-scale

plant.

A third problem with automation systems today is the lack of interoperability, portability, and

configurability between the software tools and hardware components of the different vendors.

Using software packages that are IEC 61499 standard compliant when developing control

systems promises a more open environment where switching or communicating between

vendors is easier and simpler. An ideal control system allows for the project repositories and

software libraries to be portable between any vendors’ software environments, and any

software tool can configure any vendors’ IEDs. This allows for better communication between

different vendors’ IEDs, increasing interoperability over any Fieldbus network.

1.3 Statement of the problem

The main problem in industry is that centralized PLC control systems cannot sufficiently control

intelligent devices on a distributed network system. Distributed systems have become too

complex to be controlled from a central point, therefore distributed control is required. This is

due to an increase in smart devices that have increased the amount of information that is sent

between the controller and the IEDs. The use of a fieldbus to transmit all this extra information

has also introduced a new variable of network delays that also needs to be considered when

designing a control system. The smart devices can also be from different vendors; therefore

another problem is present when trying to communicate with different vendors using one

controller from a different manufacturer. These issues are split into sub problems 1 and 2 to

be listed and solved separately.

 3

1.3.1 Sub-problem 1

Network delays in distributed control systems are non-deterministic and are therefore it is not

possible to calculate or work out. It is necessary to model these delays when designing a

system to show what effects these delays have before implementing the system in real-time.

Once the effects of a range of time delays are known, the system can be optimized by changing

software or hardware aspects to reduce the effects introduced by these delays. This will

increase the stability of the controller and increase the system’s reaction time to any form and

length of network delay.

1.3.2 Sub-problem 2

The portability of software between vendors is a huge issue in automating control systems as

switching from one software platform to another is often complex if not impossible. By using

software packages that are IEC 61499 standard compliant, the PLC code can easily be

transferred between different programming environments. This code includes library

repositories and developed function blocks.

1.4 Research Aim and Objectives

1.4.1 Aim

The aim of this research is to design and implement a control system for a radio antenna’s

azimuth and altitude positional movements by using modern control design methods and

utilizing the portability and reusability aspects of the IEC 61499 standard.

1.4.2 Objectives

The main objective of this research is the implementation of the developed control system for

the radio antenna’s DC motors in a real-time network control system. This can further be sub-

divided into theoretical and practical objectives.

1.4.2.1 Objectives: Theoretical analysis

 To conduct a literature review in the area of IEC 61499 standard-based systems

 To conduct a literature review in the area of network control systems

 To investigate radio antennas and the DC motor in different applications

 To develop the formulation of the mathematical model for the plant

 To formulate the design of the controller using modern controller design methods

(state-space)

 4

1.4.2.2 Objectives: Practical implementation

 Simulation of the proposed system within the MATLAB/Simulink software environment.

 Analyzing the effects of network delays on the simulation model of the plant.

 Transforming the developed model from the MATLAB/Simulink to the TwinCAT 3

programming environment.

 Configuration of hardware devices for real-time implementation

 Real-time hardware-in-the-loop implementation of the transformed model.

 Testing and validation of the real-time implemented control system with the simulated

results by comparing the system responses.

 Performance and conformance testing of the designed control system.

1.5 Research Questions

The research investigations in this thesis attempt to provide solutions to the following

questions:

 Can modern control methods be used to achieve the desired response for the positional

set points of the azimuth and altitude movements of a radio antenna?

 Can the network delays be modelled and simulated before implementation of the

system?

 What length delays reduces the performance of the system?

 What methods can be used to account for the network delays in real-time?

 Is the developed controller interoperable, portable, configurable, and reusable between

the different vendor automation software packages?

1.6 Hypothesis

The hypotheses for this research are as follows:

 State space techniques can be used to create a controller that meets the desired

system response.

 Network delays can be modelled and analysed using transport delay function blocks in

Simulink before real-time implementation.

 Functions within the TwinCAT 3 programming environment can be used to reduce the

effects of network induced delays.

 The developed code will be able to port between different vendor’s software packages.

 5

1.7 Delimitation of the research

The delimitations of this research are as follows:

 Literature reviews will only be done on the IEC 61499 standard and distributed network

systems.

 State space methods will be used to design the controller

 Simulation of the controller and plant will be done in MATLAB/Simulink.

 Simulation of networked induced delays will be done in MATLAB/Simulink.

 Real-time implementation of the controller and plant will be done using TwinCAT

programming environment and Beckhoff hardware solutions.

1.8 Assumptions of the project

 It is assumed that state space methods can be used to control the position of a DC

motor as this modern control technique is used in control systems with feedback loops.

 It is assumed that DC motor can be modelled and simulated in MATLAB/Simulink as

the programming environment is used for modelling and simulating control systems.

 It is assumed that the MATLAB/Simulink model can be transformed to TwinCAT 3

because both programming environments have IEC 61499 standard capabilities.

 It is assumed that the TwinCAT axis control will be able to change the position of the

motor as well as read the feedback from the encoder as the programming environment

allows for axis control of a wide range of motors.

 It is assumed that the network delays will effect the position output of the model in

simulation and real-time implementation as a delay in transmission of information will

cause a delay in receival of information.

1.9 Deliverables of the project

The deliverables for this research are as follows:

 Literature review on the IEC 61499 standard and networked control systems

 Mathematical modelling of the plant and controller

 Simulation of the model of the plant and controller

 Simulation and analysis on the effects of networked induced delays in the developed

control system

 Transformation of the Simulink model to TwinCAT 3 programming environment

 Real-time implementation of the developed controller controlling the actual DC motor

 Comparative analysis of the simulated and implemented results

 6

1.10 Chapter breakdown

This thesis has 8 chapters including an introduction, literature review, theory based on antenna

and the DC motor, development and simulation of the plant, state feedback controller design,

Transformation of Simulink model to TwinCAT object, implementation chapter, and a

conclusion.

Chapter 1 presents the problem statement and the different research investigations that are

done. The project statement includes the aims and objectives of the research, the statement

of the problem including sub problems, hypotheses, delimitations in the research, project

assumptions, and project deliverables.

Chapter 2 presents two separate literature reviews related to the IEC 61499 standard and

networked control systems. The literature review on the IEC 61499 standard focus on the

standard before and after the release of the second edition. Other factors such as execution

methods, function block design, and portability are also described. The literature reviewed

regarding networked control systems focuses on delays in systems with networks between the

sensor and controller, and the controller and actuator.

Chapter 3 presents the plant considered in this thesis. The history of radio antennas, different

types of antennas, current control systems for antennas, are all presented in this chapter. Due

to radio antennas positional movements being controlled by DC motors, the history, operation,

and construction of the DC motor is also described.

Chapter 4 describes the derivation of the mathematical models of the electrical and mechanical

components of the DC motor. The transfer function of the complete electromechanical is

described and simulated as an open loop system in MATLAB/Simulink. The open loop system

is converted to its equivalent state space representation. The step response of the plant in

state space form and the plant in transfer function form are simulated and compared to ensure

that the conversion to state space is successful.

Chapter 5 describes the state feedback controller design. The pole placement design

technique is used to move the poles of the system to allow for a faster response to position set

point change. The gain matrix K is determined and used in the simulation of the closed loop

system with state feedback control. Integral control is added to the system to reduce the steady

state error caused by using a state feedback controller. The integral gain is calculated and

added to the system for simulation. Four case studies are considered and compared using a

step input to the system to simulate each controller’s step response.

 7

 Case 1: Step response of a DC motor closed-loop system.

 Case 2: Step response of a DC motor closed-loop system with state feedback

controller.

 Case 3: Step response of a DC motor closed-loop system with state feedback controller

with added integral control.

 Case 4: Step response of a DC motor closed-loop system with state feedback controller

with added integral control with a larger set point to show the system has the same

response to bigger changes in position set point.

Networked induced delays are added to the system to analyse the effects on the system

response. Two network delays are looked at including sensor-to-controller delays, and

controller-to-actuator delays. Multiple lengths of these two delays are added to the system

using a transport delay function block in Simulink, and the responses are compared in two

separate case studies. Firstly, sensor-to-controller delays are considered in 4 cases with

different delay times:

 Case 1: Position output with 100ms delay between sensor and controller

 Case 2: Position output with 400ms delay between sensor and controller

 Case 3: Position output with 800ms delay between sensor and controller

 Case 4: Position output with 1200ms delay between sensor and controller

Secondly, controller-to-actuator delays are considered in 4 cases with different delay time:

 Case 1: Position output with 50ms delay between controller and actuator

 Case 2: Position output with 100ms delay between controller and actuator

 Case 3: Position output with 125ms delay between controller and actuator

 Case 4: Position output with 150ms delay between controller and actuator

The chapter concludes with an analysis and discussion of each of the different cases.

Chapter 6 presents the methods used to transform the Simulink model to a TwinCAT object

that can be used in the TwinCAT 3 programming environment. A description of each software

package is provided including the installation procedures that are described in detail in the

Appendix. How to sign Windows drivers to allow for the transformation is also described. A

description of the Beckhoff TE1400 transformation tool is described, and the necessary

MATLAB code that needs to be run to complete the transformation is provided. A test is done

using Beckhoff’s Scopeviewer software to prove that the transformation is successful.

 8

Chapter 7 presents the hardware-in-the-loop implementation section of the thesis. All required

hardware is described including the Beckhoff controller and motor terminals, the Omron

encoder, and the DC motor. A description of the EtherCAT fieldbus technology is also

described. A photo and an electrical diagram of the complete test rig is shown. The PLC

software in TwinCAT 3, which uses standard programming software environment CodeSYS,

and standard motion function block library PLCopen, is described step-by-step. The

transformed Simulink model in function block form is described. How to scan for EtherCAT

devices as well as how to activate the PLC project on the controller for real-time

implementation is described. The complete control system is first analysed with the current

networked induced delays caused by the EtherCAT fieldbus. Then, time delay compensation,

which is a TwinCAT 3 feature, is added to the system to reduce these delays. A step response

is used to test the response of the system without time delay compensation, and then with time

delay compensation. The implementation results are compared with the simulation results to

ensure the results are correct. Lastly, the developed control system limitations are discussed

and implemented in real-time.

Chapter 8 presents the conclusion, deliverables of the thesis, results of the work completed,

future work that could add on to this thesis, and the publications emanating from this research.

The references and appendices follow Chapter 8.

1.11 Conclusion

This chapter presented the introduction to this thesis including the awareness of the problem,

the problem statement, aims and objectives, a hypothesis, possible research questions,

delineation of the research, assumptions and deliverables of the project, and a complete

chapter breakdown of the research work.

The next chapter focuses on the literature review, which consists of a more in-depth look at

the IEC 61499 standard as well as networked control systems.

 9

CHAPTER 2
LITERATURE REVIEW

2.1 Literature Review on the IEC 61499 Standard

2.1.1 Introduction

The International Electrotechnical Commission (IEC) 61499 Standard is used in this thesis to

design and implement a controller in a distributed environment. This literature review focuses

on the fundamentals of the IEC 61499 Standard from the release of the first edition in 2002 to

the current second edition which was released in 2012. This review also focuses on the

numerous case studies done by researchers, looking at the advancements and results of their

papers which contributed to the refinement of the first edition to the second edition of the IEC

61499 Standard.

Section 2.1.2 describes the keywords used as well as the sources searched to complete the

literature review. Section 2.1.3 gives a summary of all the literature reviewed on the IEC 61499

Standard in a tabular form. Two tables are presented: the literature reviewed before the second

edition of the standard was released, and the literature reviewed after the second edition of

the standard was released. Section 2.1.4 gives a summary of the literature reviewed, focusing

on distributed controller design, portability, execution methods, and modeling and verification

when using the IEC 61499 Standard. Section 2.1.5 highlights comparisons between the

literature reviewed, followed by a conclusion to the chapter in Section 2.1.6.

2.1.2 Literature Search

The main source of literature obtained is the IEEE Xplore database. The following keywords

and phrases are used in searching this database: IEC 61499 Standard; distributed control

systems; Designing IEC 61499 Standard systems; IEC 61499 Standard implementations; IEC

61131-3 to IEC 61499. A collection of papers regarding these keywords are read and further

research papers are found from the references in these articles. References found led to

various websites and articles from ResearchGate.

A total of 44 papers are reviewed using the above-mentioned keywords. Figure 2.1 illustrates

a bar graph of the number of papers reviewed versus when the papers were published. The

paper’s publication dates range from 2004 - 2023. More papers were found before 2012 as the

IEC 61499 Standard was still new and many authors had comments to make on the first

edition. After the release of the second edition in 2012, the articles are more about the

implementation of the standard and not about its semantics as all ambiguities in the first edition

were corrected. A gap is shown for the years 2019 and 2020 which could be due to the

pandemic that occurred globally. To the best of my knowledge, there weren’t any articles

 10

related to this literature review that could be summarized and described. The years 2021-2023

shows an increase in literature regarding the IEC 61499 Standard with multiple articles being

published.

Figure 0.1: Bar graph showing the number of publications, categorized by year published,
reviewed on IEC 61499 Standard in distributed control systems

The following subsection summarizes the reviewed articles into Table 2.1 and 2.2. The review

summary describes articles written on the first and second editions of the IEC 61499 standard

focusing on the aim of the project, the system overview, the hardware/software required, and

the authors conclusions.

 11

2.1.3 Literature Review Summary

Table 0.1: Literature Review of IEC61499 Standard first edition

Paper (Reference) Aim of the project System Overview Hardware/Software
Required

Author’s Conclusions

Design of distributed
control systems based on
new international
standards.
(Koziorek, 2004).

To give an overview of a distributed
control system design method that is
based on the IEC 61499 and IEC 61131
standard. This method can be used to
design a new control system or to adapt
an existing system.

Investigative Paper No specific hardware or
software is used as the
paper depicts a generic
control system.

The paper added to the development phase of
control systems. The processes described in this
paper that are used to design and develop control
system models would be demonstrated by the
second half of 2004.

Functional design for IEC
61499 distributed control
systems using Unified
Modeling Language (UML)
activity diagrams.
(Panjaitan and Frey,
2005).

Use UML Activity diagrams to make
designing a distributed control system
easier and allow software components to
be reusable.
The UML diagrams must also increase
the flexibility of system design to allow
for easier reconfiguration and
configuration of old and new systems.

Feeder Station Function Block
Development Kit (FBDK)
from Rockwell used for
the IEC 61499 function
block creation.
NETMASTER controller
with a TINI
microcontroller is used
as the hardware.

By using UML activity diagrams, this paper
achieved flexibility and reusability when designing
distributed control systems.
It is shown that it is easier to design and
understand distributed control systems when using
the IEC 61499 Standard as the creation of function
blocks enables a plug-and-play design.

Intuitive control
engineering for
mechatronic components
in distributed automation
systems based on the
reference model of IEC
61499
(Sunder et al., 2005).

To model a mechatronic component into
a single autonomous part that can be
used in a distributed control system.
This allows the local control device to
interact with the component through
services while keeping the mechatronic
component's control separate.

Control of a linear
servo drive through
IEC 61499

The hardware consists of
a micro-controller and a
linear servo drive.
No specific software is
mentioned but it does
have IEC 61499
capabilities.

It is possible to control a linear servo drive through
Motion service commands sent from the local
controller.
This keeps the mechatronic component separate
from the main controller, allowing better
distribution of control through the system. The
mechatronic components model is also reusable if
more linear servo drives are needed.

Systematic design and
implementation of
distributed controllers in
industrial automation
(Vyatkin et al., 2006).

Comparing different approaches to
distributed system design in automation
systems.

A distribution
station consisting
of a magazine and
feeder unit is used
to transport work
pieces from
storage

No specific hardware or
software is mentioned
but it should be IEC
61499 compliant

Function block applications are sufficient when
used to implement distributed controllers.

Applying the IEC 61499
model to the shoe
manufacturing sector
(Colla et al., 2006).

Use IEC 61499 Standard to design an
automation system for a plant that
contributes to the preservation of shoe-
manufacturing activities in Europe.

A manufacturing
system that moves
semi-finished
shoes over
innovative

MATrix LABoratory
(MATLAB) environment
for simulations
Custom tool made with
Eclipse to import and

The development phase is faster due to IEC 61499
using modular function blocks that can be used
reused.

 12

transport lines from
one station to
another on a
predefined
operation
schedule.

convert Real-time
Unified Modeling
Language (RT-UML).
specification to IEC
61499 model.

As systems get more complicated, the design
approach is not usually identified immediately.
Depending on the software used for developing
IEC 61499 code, take into consideration the
method used for executing control code as this
could generate undesired effects.

Formal Modeling of
Function Block
Applications Running in
IEC 61499 Execution
Runtime
(Goran Čengić et al.,
2006).

To prove that different logical behaviour
of function blocks is shown when
different execution methods are used.

Carriage transport
system for work
pieces.

Simulation and function
block application
execution by free
software Fiber. supports
IEC 61499 runtime.

Using different execution run time environments,
which use different execution methods, led to the
different behaviour of function blocks.

Deployment of IEC 61499
compliant distributed
control applications
(Hussain and Frey, 2007).

To find feasible and optimal deployment
methods for distributed control systems
that are IEC 61499 compliant.

The proposed
concepts are
carried out on two
separate systems.
1) FESTO Modular
Production System
(MPS) didactic
model.
2) Lift control
system.

No specific hardware or
software is mentioned
but should be IEC 61499
compliant.

Worst-case scenarios are taken into consideration
when doing the feasibility analysis which showed
results that are not as feasible as predicted.
The algorithm will continue to be tested in future
work.

Design and
implementation of
heterogeneous distributed
controllers according to the
IEC 61499 Standard - a
case study
(Hirsch et al., 2007).

Present solutions to re-usability and
integration between heterogeneous
controllers in a distributed control system
Illustrate how to integrate controllers
using the IEC 61499 standard into
systems previously based on
Programmable Logic Controller (PLC)
distributed control.

Testbed built up of
4 different stations:
distribution, testing,
drilling, handling.

Various hardware
modules are used to
show the hardware
independency of the IEC
61499 Standard.
1) Netmaster 2nd series
device based on SNAP
Java microprocessor.
2) Siemens Simatic S7
PLC.
3) W2-FBC with SNAP
microprocessor.
FBDK used to design
and implement
controllers and
visualization.

Integration of IEC 61499 standard systems into
existing IEC 61131 systems are inevitable in the
future as distributed control becomes the norm.

The integration and development of these systems
and new control technologies do not require as
much effort as anticipated by the authors. The
modularity of the design allows for the results of
smaller systems to be scaled to bigger and more
complex industrial systems.

Hierarchical distributed
controllers - design and
verification
(Missal et al., 2007).

Use a multi-layered architecture to
design and implement the IEC 61499
Standard distributed control system to
enhance the reusability of controllers.

Testbed used to
drill holes in work
pieces and monitor
if the drilled holes

No specific hardware or
software is mentioned
but should be IEC 61499
compliant.

Designing controllers based on modular and
hierarchical design allows for fast redesign and
formal verification of distributed control systems.

 13

are correct. The
system is split into
multiple modules:
table, drilling, and
testing.

SESA software tool is
used for closed-loop
verification.

A control software
development method using
IEC 61499 function blocks,
simulation, and formal
verification
(Goran Čengić and Knut
Åkesson, 2008).

To use control software to simulate a
system without using the real hardware.

The ball sorting
process used to
sort steel balls
through a system
of lifts and
distributed to
different levels
based on weight.

Simulation and function
block application
execution by free
software Fiber. supports
IEC 61499 runtime.

The control software described allows the
development and simulation of the entire system to
be tested before deployment to real hardware.
This approach leads to shorter development time,
and it makes the control system less prone to
incorrect behaviour which could destroy equipment
in a real process.

A synchronous approach
for IEC 61499 function
block implementation
(Yoong et al., 2009).

To show the feasibility and ease of
verification when using a synchronous
approach for the development of IEC
61499 function blocks.

Cruise control
system.

Esteral Studio and V7
Esteral compiler are
used for software.

FBDK is used on a test
bench to compare the
Esteral results with

No specific hardware is
mentioned but should be
IEC 61499 compliant.

There is no need for a runtime environment when
using a synchronous approach.

Execution speed is increased due to no runtime
being used as all decisions are made during
compile-time.

The IEC 61499 Standard
and its semantics
(Vyatkin, 2009).

Investigation of the semantics of IEC
61499 Standard, code portability, as well
as function blocks and function block
networks.

Pneumatic cylinder
test bed with two
modes of
operation.
The modes are
linked to two set
positions for the
pneumatic cylinder
to move to as a
reference.
Safety curtains are
also added to the
system to prevent
movement when
triggered

A Central Processing
Unit (CPU) that is IEC
61499 compliant with
peripheral I/O
(Input/Output) including
a start and mode button,
as well as a 7-segment
(Light Emitting Diode)
LED display to show
which mode is active.

ISaGRAF used for
function block
development

By defining a limited number of models for function
block network execution, the investigation has
progressed the portability of function block
applications in distributed control systems.

These differences in execution models can be
seen as future research topics.

Closed-loop modeling in
future automation system

Describe new methodologies for
validating and designing distributed
control systems.

Control of a
storage system

Floating Point
Benchmark (FBench)
used to model the

The work done contributes to the grand challenge
of completely automating the design and validation
process by enabling correct-by-construction

 14

engineering and validation
(Vyatkin et al., 2009).

Describe how these techniques are
made possible by advanced technologies
and the IEC 61499 Standard.

mechatronic system into
function blocks.
Plant models are created
in Visual NCES Editor
(ViEd)
Visual Verifier (Vive)
used to check and
analyze models.
Simulink used to apply
graphical models

models. There is still lots of work to be done to
solve the grand challenge, but the author states
they will continue their efforts and recommends
other researchers to help

Design and
implementation of
LabVIEW-based IEC
61499 compliant device
(Polaków, 2009)

To develop a run-time environment that
can be uploaded to a PAC to convert the
device to a compliant IEC 61499 device.

Simulation of event
generation and
dispatching.

The run-time
environment is
developed in the
LabVIEW platform.

Full functionality of the system is achievable
theoretically, but the run-time is currently in the
development phase

Improving verification and
reliability of distributed
control systems design
according to IEC 61499
(Lapp et al, 2010)

Use Net Condition/Event Systems
(NCES) as formal models to improve the
verification and reliability of distributed
control systems.

Investigative Paper

No specific hardware or
software is mentioned
but should be IEC 61499
compliant.

By using the approach in this paper to model
systems, there is an increase in validity and
reliability, which allows the use of IEC 61499 to be
used in engineering practices.

Intelligent component-
based automation of
baggage handling systems
with IEC 61499
(Black and Vyatkin, 2010)

Create a decentralized control system
using a multi-agent approach for a
Baggage Handling System (BHS) using
IEC 61499 function blocks.

Baggage handling
system,
concentrating on
creating a single
component
function block for a
conveyor.
Testbed using
FESTO MPS500
used for final
testing

FBDK used for function
block design.

Netmaster controller
specified hardware

Creating these autonomous conveyor sections has
led to the easier setup of reconfigurable BHS
systems. This system performs the same function
as the previous centralized control application but
is instead distributed over multiple embedded
intelligent devices.

Holonic control is achieved which allows for easier
setup when there is an environmental change such
as layout changes due to baggage flow increase

IEC 61499 Function Block
Model - Facts and
Fallacies
(Thramboulidis, 2010)

Look at the semantics of IEC 61499
function blocks to discuss facts and
fallacies to determine why the standard
has not been accepted by the industry
yet.

Review paper
illustrating and
analysing multiple
case studies

Multiple IEC 61499
compliant hardware and
software presented.

Many issues are investigated which led to the
conclusion that a major revision of the standard Is
needed to allow it to be considered for industrial
use.
The standard does not apply certain basic
engineering practices, which has led to many
ambiguities during the initial phase of
development.

IEC 61499 as an enabler
of distributed and
intelligent automation: a
state-of-the-art review

Review the current work done and in
progress regarding the IEC 61499
Standard in distributed control systems.

Review paper
illustrating and
analysing multiple
case studies.

Multiple IEC 61499
compliant hardware and
software is looked
presented.

IEC 61499 has become more popular due to the
increase in smart devices causing more distributed
systems. The standard is being used more with
other standards such as IEC 61850 and IEC

 15

(Vyatkin, 2011) 62424 which is enabling a means where the
control system is automatically generated by
importing design documentation into specific
software.

This decreases the development time drastically.
The IEC 61499 has added great amounts of
knowledge regarding distributed control systems
that are not previously satisfied by IEC 61131-3.

Distributed execution and
cyber-physical design of
baggage handling
automation with IEC 61499
(Yan and Vyatkin, 2011)

To reduce the design and validation
steps by developing efficient design
methods for BHS. This results in
improved robustness and adaptability in
these systems.

Also, to prove that designing a fully
distributed system, which uses IEC
61499 function blocks, is feasible.

Baggage handling
system, consisting
of numerous
conveyors
connected via an
Ethernet network
of 50 control nodes

48 Netburner devices
(embedded controllers)
Controller Operating
System:
C/OS-II Real-Time

Controller Runtime:
ISaGRAF runtime

Feasibility is confirmed for implementing BHS
control in a distributed system.

By using a cyber-physical method, the goal of
simple reconfiguration of BHS systems is possible.
Future work will look at the automatic generation of
function blocks through visual techniques to allow
system designers to easily create new BHS
systems.

Design and execution
issues in IEC 61499
distributed automation and
control systems
(Strasser et al., 2011)

To discuss and present different
execution models of function blocks,
Composite Function Blocks (CFBs), and
sub-applications, in IEC 61499 devices.

Investigative Paper No specific hardware or
software is mentioned
but should be IEC 61499
compliant.

This paper contributes to the ongoing goal of
achieving an IEC 61499 distributed control system
that is portable, configurable, interoperable, and
distributed.

On the use of model-
based IEC 61499
controller design
(Preuße et al., 2011)

Review existing ways of modeling and
verification of IEC 61499 compliant
function blocks.
State further challenges for formal
technique developments of IEC 61499.

Review paper
illustrating and
analysing multiple
case studies

Multiple IEC 61499
compliant hardware and
software presented

It is shown that IEC 61499 has reached a point
whereby it is realistic to apply in real-life industrial
applications. The problem is that there is no
pressure on vendors to take advantage of these
technologies to develop new control systems. This
could lead to all the research being stuck in limbo,
only being displayed on test benches and not in
the field. Companies must also be willing to
migrate from IEC 61131-3 PLC-based automation
to new technologies. This will probably be a
phased transition, resulting in many
heterogeneous systems.

Redesign distributed PLC
control using IEC 61499
function blocks
(Dai and Vyatkin, 2012)

Propose methodologies for the
conversion of PLC control (IEC 61131-3)
to event-driven control which uses IEC
61499 function blocks.

Airport baggage
handling system

NXTStudio development
environment used to
create the function
blocks.

Distributed control logic is not easily implemented
when designing IEC 61131-3 PLC systems.

Three approaches are looked at when considering
migration from IEC 61131-3 to IEC 61499 function
blocks: object-oriented reuse, object-oriented

 16

No specific hardware is
mentioned but should be
IEC 61499 compliant.

conversion, and class-oriented approach. Object-
oriented conversion: used when a state machine is
used for the original code. Object-oriented reuse:
used when state machine code isn’t easily
recovered.

Class-oriented approach: use when converting
data-intense systems.
Reuse of IE C61131-3 code is suggested when
migrating to IEC 61499 as this accelerates the
transition process.

Distributed control design
of medical devices using
plug-and-play IEC 61499
function blocks
(Sorouri et al., 2012)

Reducing the complexity of current
medical devices by using IEC 61499
Standard function blocks to apply
distributed control architectures.

A robot to assist
people who have
lost the ability to
move certain limbs
due to having a
stroke.

Control system design in
NXTStudio IDE using
IEC 61499 Standard
function blocks.
Beckhoff CX101
controller used for
deployment

Using the IEC 61499 Standard architecture
reduced the development time and complexity by
using plug-and-play software components.
The proposed approach of this simple system can
be used for fast implementation on more complex
systems.

Table 0.2: Literature review of IEC61499 Standard second edition

Paper (Reference) Aim of the project System Overview Hardware/Software
Required

Author’s Conclusions

The IEC 61499 Function
Block Standard: Overview
of the second edition
(Christensen et al., 2012)

Presents improvements of the IEC 61499
Standard to its second edition which will
be released in late 2012.

Investigate Paper No hardware or software
is presented as the
entire IEC 61499
Standard is looked at

After listing all the new additions that form the IEC
61499 standard second edition, it is said stated
that the standard will be refined to be more clear,
unambiguous, and industrially useful.
The conclusion is that all vendors should seriously
consider developing software tools, runtime
platforms, or control hardware so that they can
enter a growing market.

The IEC 61499 Function
Block Standard: Launch
and Takeoff
(Strasser et al., 2012)

Discuss the start of the take-off phase of
the IEC 61499 Standard.
Look at processes that will lead to a
successful take-off of the standard.

Investigate Paper No hardware or software
is presented as the
entire IEC 61499
Standard is looked at

IEC 61499 take-off phase has started.
The standard can serve a great payoff if early
adapters focus on addressing complaint profiles
and trained personnel as soon as possible.

Virtual Smart Metering in
Automation and
Simulation of Energy-
efficient Lighting System
(Pang et al., 2013)

Use function blocks based on IEC 61499
Standard to create virtual smart metering
systems that are easily reusable to
reduce laborious work when creating
building automation and control systems.

Prototype lighting
control system to
simulate a virtual
smart metering
system that
measures and

SCADA developed in
NXTStudio
Digital Addressable
Lighting Interface (DALI)
protocol is used for
communication.

The research found that intelligent lighting control,
compared to normal lighting control, has much
better energy efficiency.

 17

monitors energy
efficiency in a
building

IEC 61499 Standard
used for function blocks
of the DALI Light

A Portability Study of IEC
61499: Semantics and
Tools
(Pang et al., 2014)

A study of portability issues in IEC 61499
tools such as FBDK, 4DIAC, ISaGRAF
and NXTStudio.
The main outline is with the compatibility
issues because of different execution
semantics.

Investigative Paper FBDK, 4DIAC, ISaGRAF
and NXTStudio are all
compared and tested for
compatibility

IEC 61499 second edition has solved many of the
execution issues since its release.
Full portability and interoperability can only be
reached once it is possible to formally analyze and
validate against runtime platforms.

Cyber-physical
Components for
Heterogeneous Modeling,
Validation, and
Implementation of Smart
Grid Intelligence
(Zhabelova et al., 2014)

To show that using Cyber-physical
systems can improve design, validation,
and verification in smart grid automation.

Load balancing
cyber-physical
system

A distributed network is
modeled with MATLAB.

NXTStudio used for IEC
61499 environment.

Cyber-physical systems
executed on an ARM
board

Load balancing test application shows that IEC
61499 allows for the execution of Cyber-physical
systems on industrial hardware applications.

Bridging Service-oriented
Architecture and IEC
61499 for Flexibility and
Interoperability
(Dai et al., 2015)

Describe a method of modeling that uses
SOAs in a distributed control system

Section of a
baggage handling
system where a
single infeed
conveyor is split
into two screening
lines

BHS emulator -
Glidepath Group
FBSRT used for the
function block service
runtime. Beaglebone
Black board used for
hardware, with
specifications AM335x
1Ghz CPU, 512M DDR3
Random Access
Memory (RAM), and
4GB Read-only Memory
(ROM).
FORTE runtime used as
a test reference running
a similar implementation.

Using SOAs with the IEC 61499 Standard allows
the ability to reconfigure, update or delete FB
instances without stopping the system's normal
execution runtime.

Formal Verification of
IEC61499 Function with
Abstract State Machines
and SMV - modeling
(Patil et al., 2015)

Use abstract state machines to propose
rules that can be used to formally model
IEC 61499 function blocks

A generic basic
function block is
used for modeling

FB developed in
ISaGRAF
No hardware as paper
focuses on simulation
only

A formal model of IEC61499 is presented and
proved that it can be used to verify and simulate
using SMV.

Formal Verification of
IEC61499 Function with
Abstract State Machines

Present the IEC 61499 Standards
execution semantics ambiguities as well

Investigative Paper No hardware or software
is presented as the

Presented the model checking for an industrial
automation control system.

 18

and SMV - Execution
Semantics
(Dubini and Vyatkin, 2015)

as describe the rules for SMV model
transformation.

entire IEC 61499
Standard is looked at

Demonstrated how their auto generator can
support different execution semantics

Complementing Testing of
IEC61499 Function Blocks
with Model-checking
(Glatz et al., 2016)

Use Uppaal model checker to prove the
usefulness of an automated translation
approach to generate models for IEC
61499 function blocks.

A segment of a
building that has an
automated system

No specific hardware or
software is mentioned
but should be IEC 61499
compliant.

The presented approach to automate IEC 61499
function blocks to Uppaal processes, to allow
testing with model checking, helps improve
verification of these systems.

Open Architecture for
Cost-Effective Protection
and Control of Power
Distribution
(Zhabelova et al., 2017)

Demonstrate an execution platform for
developing protection functions using
open standards. Test the functions and
the reaction times. Investigate verification
methods for the functions as well as how
to do remote upgrades.

Investigate Paper No hardware or software
is presented as the
entire IEC 61499
Standard is looked at

Distributed Home
Automation System Based
on IEC61499 Function
Blocks and Wireless
Sensor Networks
(Abrishambaf et al., 2017)

Design and implement a fully distributed
wireless sensor network with IEC 61499
function blocks as the architecture.

Building
automation project
which measures
the temperature
and humidity in
various rooms and
sends the data to
the cloud

 Systems simulated in
Cooja platform of
Contiki-OS
TelosB platforms used
for implementation.
NXTStudio used for
function block layout and
HMI development.

Ubidots used as a cloud
service to capture and
post data to the Internet

A fully distributed system is developed and
implemented to show the flexibility and
reconfigurability of using the IEC61499 Standard
for function blocks

Estimation, Measurement,
and Improvement of
Distributed Automation
Applications Performance
(Väänänen and Vyatkin,
2017)

Determine the performance of IEC 61499
Standard distributed systems to add to
the research field of improving end-to-
end response times of said systems.

Function block
system to
determine time
delays in I/O
latching

4DIAC WCET analysis
tool to determine
response times.
4DIAC IDE to develop
function blocks.
No hardware specified
but should be 61499
Standard compliant

A mathematical model is presented to determine
the performance of distributed automation
systems.
More research should be done to determine end-
to-end response times of systems to improve
overall performance

Toward self-Manageable
and Adaptive Industrial
Cyber-Physical Systems
with Knowledge-driven
Autonomic Service
Management
(Dai et al., 2017)

Integrate service-oriented architecture
with an automatic service manager in an
IEC 61499 Standard distributed control
system.

Baggage Handling
system

BHS simulator is used
for the simulation of the
control system.
SQWRL language is
used to set rules for
automatic service
managers.

Interoperability and flexibility are achieved when
using service-based agents in service-oriented
execution environments at the device level.
Self-optimization as a self-management feature
can improve efficiency when trying to utilize
resources.

 19

No hardware specified
but should be 61499
Standard compliant.

Refactoring of IEC 61499
Function Block Application
– A Case Study
(Patil et al., 2018)

Propose methods to refactor existing
function blocks to increase readability,
maintainability, reuse-ability, and
debugging.

Festo didactics’
distribution station
code used

NXTStudio development
environment used to
create the function
blocks. No specific
hardware is mentioned
but should be IEC 61499
compliant

The paper proves that refactoring is possible on
IEC 61499 function blocks.
The refactoring methods presented contribute to
the field that is not yet extensively researched and
used in function block development.

Multi-Agent Modeling of
Cyber-Physical Systems
for IEC 61499 Based
Distributed Automation
(Lyu et al., 2021)

Model industrial cyber-physical systems
using a two-layer architecture: high level
uses a multi-agent computer model,
whereas low level uses the IEC 61499
Standard function block model.

Generic System to
show the functions
of the two-layer
architecture

Smart Python Agent
Development
Environment (SPADE) is
used to develop multi-
agent models.
Eclipse 4diac used to
develop the IEC 61499
Standard function
blocks.
The agents are spread
out between a Jetson
Nano, Raspberry Pi
microcontrollers

Future work needs to be done for both layers in
the architecture proposed.
Multi-agent modelling requires the development of
self-learning and machine learning capabilities.
IEC 61499 Standard function block modelling
requires an easier method of deploying control
applications to microcontrollers such as the
Raspberry Pi

Simulation and Control of
a Cyber-Physical System
under IEC 61499
Standard
(Santos and da Silva,
2021)

Use a low-cost device to implement a
modular control system.

Festo conveyor
project kit

Eclipse 4diac used to
develop the IEC 61499
Standard function
blocks.
Raspberry Pi used as
hardware for runtime.

Siemens s7-1200 used
as plant controller for
conveyor

The method used to validate and simulate a cyber-
physical system is proven to be successful as a
single element or in a network combination

Towards IEC 61499-
Based Distributed
Intelligent Automation: A
Literature Review
(Lyu and Brennan, 2021)

Compose a detailed literature review of
the IEC 61499 Standard.

Review paper
illustrating and
analysing multiple
case studies

Multiple IEC 61499
compliant hardware and
software presented

Detailed literature review sectioned into the three
main issues with the IEC 61499 Standard. These
issues include how to transition code from IEC
61131-3 to IEC 61499, how the standard has
enabled distributed control in industrial systems,
and how to implement the standard in engineering
environments.

Design of Integrated
Energy System Based on

To showcase a method using the IEC
61499 Standard and OPC UA
communications to apply cyber-physical

A photovoltaic
simulated system
connected through

Simulation of the
photovoltaic system is

The simulation results show that the integration
with OPC UA is successfully applied on the

 20

IEC 61499 and OPC UA
(Wang et al., 2022)

system technology in Internet energy
systems. The proposed design is
modular to allow for reconfigurability,
interoperability and reusability.

a gateway to an
electricity meter for
monitoring.

done in
MATLAB/Simulink.

Hardware consists of a
Raspberry Pi equipped
with an embedded Linux
operating system. The
programming software
used to create the
function blocks is
4DIAC.

photovoltaic system to communicate with the IEC
61499 function blocks.

The author predicts that component-based and
modular systems will be the new trend in Internet
energy systems by using the IEC 61499 Standard
as well as the OPC UA technologies.

Future work involves validating the proposed
approach as well is applying it to more complex
real-world scenarios.

Validating Effect of
Refactoring of IEC 61499
Function Block in
Distributed Control
Systems (Cruz et al.,
2022)

Propose methods to refactor IEC 61499
Standard function blocks in an existing
material handling system to allow for
easier portability and reusability. These
methods allow for easier generation of
code for automated systems.

Material handling
system

Simulation model of the
material handling system
is created using
NXTStudio and
designed and controlled
using IEC 61499
Standard function
blocks.

By refactoring existing function blocks, it is easier
to reuse code when creating new projects. The
authors conclude that they recommend distributed
control design when creating automation platforms
and optimizing existing platforms by refactoring
existing designs.

Model-aware Simulation of
IEC 61499 Designs
(Mehlhop and Walter,
2022)

To extract information from IEC 61499
Standard simulated models to analyse
system events for verification. This is
done by transforming models into
SystemC models that can be analysed by
third party software for debugging.

D-flip-flop model
created with IEC
61499 Standard
function blocks

4Diac is used to create
the initial IEC 61499
Standard function
blocks. SystemC is used
for debugging the
extracted transform
4DIAC function blocks.

FORTE is used as the
runtime platform.

The authors methods proved feasible through trials
completed on the D-flip-flop system. The function
blocks are successfully extracted and transformed
to SystemC for analysing of the events. The ability
to follow traces of events between function blocks
is proven insightful.

Future work looks to increase the accuracy of the
time model, as well as develop more rigorous test
cases.

Structuring Cyber-Physical
Systems for Distributed
Control with IEC 61499
Standard (Cruz et al.,
2023)

To propose a cyber-physical model that
reduces the complexity of control
software by distributing the software over
numerous small devices. The IEC 61499-
based model is also validated and tested
using a case study.

Material handling
system consisting
of 3 cylinders
controlled by
separate
controllers that
have IEC 61499
Standard
capabilities.

NXTStudio IDE is used
for development of IEC
61499 Standard function
blocks and
communication links.

Distributed Control
System (DCS) mini
Schneider controller
used as the hardware
platform for the
deployment of the
created function blocks
and software.

The proposed methods are proven to be more
modular, reusable, and adaptable than the usual
requirements for such systems. This is done by
doing simple extensions and adaptations that help
with reusing the models.

Future works looks to add the communication
protocol OPC UA to the models to allow for
information to be sent to the cloud.

 21

Automatic Information
Model Generation for
Industrial Edge
Applications Based on IEC
61499 and OPC UA (Dai
et al., 2023)

The aim of the authors is to present an
automated generation model to help
reduce the development time when
creating information systems that are
based on the IEC 61499 Standard. The
use of OPC UA architectures is present
in the case study used to test the
proposed models when transforming
between design time and runtime.

A white-body
welding simulation
line used by an
automotive
company is used
as a case study.

FB Builder is used to
create the IEC 61499
Standard function
blocks, and FBSRT is
used for the runtime.

The case study resulted in an increase in
efficiency, flexibility, and interoperability in design
time and runtime when automatically generating
the information models. The improvement in
efficiency shows a significant reduction in time
when combining control and information models.

Future work consists of improvements in the
automatic generation process.

 22

2.1.4 Literature review based on the IEC 61499 Standard

2.1.4.1 Distributed controller design based on the IEC 61499 Standard

Control systems are becoming more distributed due to an increase in smart devices in the

industry. Before, all control was done in a centralized PLC using the IEC 61131-3 standard as

all the peripheral I/O devices did not have any or had very little intelligence. The IEC 61131-3

standard was not designed for distributed control, and with the increase in the distribution of

control devices, the standard is subject to problems with performance, spatial distribution, and

ease of integration and reuse (Vyatkin et al., 2006). According to (Dai and Vyatkin, 2012), this

traditional way of designing automation control systems with PLCs using the IEC 61131-3

standard is becoming a serious bottleneck when attempting to implement decentralized

control.

One of the main advantages of the IEC 61499 Standard is that it allows for distributed controller

design. Distributed control allows for a decrease in hardware cost while simultaneously

increasing communication power (Thramboulidis, 2010). These systems also require less

wiring, have more fault diagnostic information, and allow distributed components to be

autonomous. These systems are also less complex compared to centralized control, as the

functionality is spread over many sub-processing units (Hirsch et al, 2007). (Hirsch et al, 2007)

mentions three different approaches to controller design: Centralized approach, distributed

approach with master controller, and pure distributed approach. IEC 61499 Standard fits best

with the pure distributed approach as the flexibility and reusability nature of the function blocks

allow for control to be easily distributed. (Vyatkin, 2006) suggests a layered approach to

distributed controller design as shown in Figure 2.2. The sensors/actuators layer consists of

the direct interface with the plant. The operation layer consists of the operations defined to

control the interfaced components of the plant. Lastly, the applications layer consists of

intelligent code developed on decentralized controllers.

Figure 0.2: Layered approach to distributed controller design (Vyatkin, 2006)

 23

(Missal et al, 2007) approaches distributed controller design by splitting the controllers in

multiple master controllers. The result is a composition of distributed controllers over a layered

system as shown in Figure 2.3. The physical layer is either a model of a plant or the plant itself.

The task layer consists of controllers that only control the specific plant that it is linked to.

These controllers do not interact with the rest of the system and therefore work independently.

The coordination layer consists of the master controllers that use communication mediums to

control the distributed controllers in the task layer.

Figure 0.3: Information flow between a multi-layered networked

architecture (Missal et al, 2007)

Communication between the different layers in any of this distributed system is done through

events. The following subsection describes the different execution methods in which these

events take place.

2.1.4.2 Execution methods

Before the release of the IEC 61499 second edition, there were great ambiguities regarding

the execution methods of function blocks when using this standard. This led to runtime

environments from different software developers taking different approaches to how the

execution of events should be handled (Lapp et al., 2010). With there being no real

specification of event execution, all the developed execution models became compliant.

There are three main execution models of IEC 61499 Standard function blocks: sequential,

cyclic, and synchronous. Each of these methods has a different way of handling simultaneous

input events, as the IEC 61499 Standard syntax does not allow for events to invoke the function

block at the same time (Vyatkin, 2011). Sequential execution of events is the method of

 24

executing the events in a preserved order from when it invoked the function block (Vyatkin,

2009). The stored events occur on a First-In-First-Out (FIFO) basis and are only active once

the previous event has been processed by the function block (Preuße et al., 2011). The cyclic

execution model is like the IEC 61131-3 standard in which events cyclically invoke the function

blocks (Vyatkin, 2009). Synchronous execution uses global events called ticks to align the

execution speeds with a time constant. It is like cyclic execution as it moves away from event-

driven to a more event-scan-based control (Preuße et al., 2011). The issue with having

different execution methods is that portability between software tools becomes almost

impossible. It also influences the case studies performed by researchers as different results

are shown depending on which software tools are used as execution methods are different

(Čengić et al., 2006). Certain researchers perform their experiments according to more than

one execution method just to prove their results conform to the standard (Hussain and Frey,

2007).

2.1.4.3 Portability

In the automation industry, the need to migrate code from one hardware platform to another

arises very often (Vyatkin, 2009). With the IEC 61131-3 standard, this is usually a difficult and

complex task, and the code is not automatically read in another software platform without

adjusting or copying the code line by line. This is normally due to semantics and different

syntax between software platforms. The IEC 61499 Standard aims to move away from

heterogeneous systems as these systems, consisting of devices from multiple vendors which

can become time-consuming and are more prone to errors (Goran Čengić and Knut Åkesson,

2008). Function block systems that are developed using the IEC 61499 Standard should be

reusable across all IEC 61499 compliant devices. This is one of the major requirements of the

standard and allows for ease of portability, interoperability, configurability, and reusability.

Figure 2.4 below shows the relationship between these requirements in a distributed control

system.

Figure 0.4: Flow chart showing portability, configurability, and interoperability in a distributed
control system (http://www.holobloc.com/papers/iec61499/overview.htm)

 25

Software is portable when it can be interpreted by multiple different software tools (Strasser et

al., 2011). The IEC 61499 Standard eases portability as all the code is encapsulated in function

blocks. This makes the code independent from the event command sequences outside of the

blocks (Vyatkin, 2011). The configurability of a device depends on if its software components

can be configured by other software tools from various vendors (Strasser et al., 2010).

Interoperability in distributed control systems is when communication between the embedded

devices allows them to perform functions together for distributed applications. Lastly,

reusability is the ability to use function blocks in different systems under a different context

(Missal et al., 2007). Reusability is achieved by standardizing inputs, outputs, and means of

communication of a function block (Hirsch et al., 2007).

2.1.4.3 Modeling and verification

Control systems should be verified before being connected to a plant (Lapp et al, 2010). This

is done by modeling the system using various techniques available. Examples of a few formal

modeling techniques include Event System, Finite-State Machine, Discrete-Time/Event

approach (DT/DE), Timed Net Condition, Time Automata, Petri next, etc. (Santos and da Silva,

2021). Using these methods to formally verify a control system is advantageous as the

performance of the system is quantified by estimating end-to-end response times, through

simulations, before deployment (Dai et al., 2017).

Formal verification is the most efficient way to prove a system is correct as the given

specifications are used to verify the algorithms in the control code (Patil et al., 2015). State-

space generation helps identify failures in a system that may prevent the system from being

considered safe. Dynamic verification, on the other hand, focuses on monitoring and unit

testing only certain devices in a system (Glatz et al., 2016). This form of verification is less

time-consuming but could put the system at risk if certain bugs are not found due to multiple

devices not being modeled and verified. Verification of IEC 61499 Standard control systems is

very important as there is a difference in execution semantics depending on which vendor is

used. These systems should be tested for interoperability and portability in different

environments to prove or disprove behavior for verification (Patil et al., 2015).

To verify an IEC 61499 distributed control system, it is necessary to convert all devices,

resources, Service Interface Blocks (SIFBs), and scheduling functions into formal models

(Lapp et al, 2010). By modeling all components of the distributed system, verification and

validation are ensured as code is tested, debugged, and simulated. This modeling process is

often challenging as all aspects of the system need to be considered, including all control

nodes and variable communication times (Zhabelova et al., 2014). Although challenging,

modeling needs to be done to ensure the correctness of the control system.

 26

2.1.4.4 The IEC 61499 Standard second edition

The IEC 61499 Standard was updated from the first to the second edition in 2012. The new

edition comes after 120 editorials and 40 technical comments were written in response to the

first edition’s semantics (Christensen et al., 2012). The first edition had many ambiguities which

confused developers and programmers who were using the standard. (Thramboulidis, 2010)

found the learning curve very steep and mentioned that there were not enough reference

implementations to show the advantages of the technology, therefore stating that a major

revision should seriously be considered.

(Vyatkin, 2011) stated that by 2011 the use of the IEC 61499 Standard was very low in the

industry due to “the lack of mature engineering tools, reliable embedded control hardware,

proven design methodologies, and trained engineers”. (Vyatkin, 2011) also said that the

standard does not accompany the arrival of multiple events after one another, which could lead

to a loss of event inputs.

The second edition refined how event inputs to function blocks should be executed.

(Christensen et al., 2012) explains that the way around event execution is to prevent the

resource from sending more than one event to the input of a function block at the same time.

The IEC 61499 Standard systems’ interaction with PLCs, the addition of temporary variables

in function blocks, as well as the simplification of ‘READ’ and ‘WRITE’ commands, are all

factors that are changed in the second edition due to the editorial and technical comments

made since the release of the first edition (Christensen et al., 2012).

Subsection 2.1.4 summarized and discussed the literature reviewed on the IEC 61499

standard. The next subsection compares the similarities and differences between the articles

reviewed.

2.1.5 Comparisons between literature reviewed on the IEC 61499 Standard

After the release of the IEC 61499 Standard first edition, there were many articles written on

how to design distributed systems based on the standard. Earlier published articles were more

investigative papers, not having many practical examples or case studies. As shown in Table

2.3, Articles 1 and 2 have no hardware or software required as these papers were more

theoretical than practical. When looking at more recent articles, such as Article 3, which was

published in 2021, a case study is designed and implemented with the specified software and

hardware. This shows the improvement in the development of IEC 61499 compliant software

tools in the short period from 2004 to 2021.

 27

Table 0.3: Comparison of papers published on IEC 61499 Standard distributed control systems

No. Paper
(Reference)

Aim of the project System
Overview

Hardware/Software
Required

Author’s Conclusions

1 Design of
distributed
control
systems
based on
new
international
standards
(Koziorek,
2004)

To give an overview of
a distributed control
system design method
that is based on the
IEC 61499 and IEC
61131 standards. This
method can be used to
design a new control
system or to adapt an
existing system.

Investigate
Paper

No specific hardware
or software is used as
the paper depicts a
generic control
system.

The paper added to the
development phase of
control systems. The
processes described in this
paper that are used to
design and develop control
system models would be
demonstrated by the
second half of 2004.

2 Systematic
design and
implementati
on of
distributed
controllers in
industrial
automation
(Vyatkin et
al., 2006)

Comparing different
approaches to
distributed system
design in automation
systems.

A distribution
station
consisting of
a magazine
and feeder
unit is used
to transport
workpieces
from
storage.

No specific hardware
or software is
mentioned but should
be IEC 61499
compliant.

Function block applications
are sufficient when used to
implement distributed
controllers.

3 Multi-Agent
Modeling of
Cyber-
Physical
Systems for
IEC 61499
Based
Distributed
Automation
(Lyu et al.,
2021)

Model industrial cyber-
physical systems using
a two-layer
architecture: high level
uses a multi-agent
computer model,
whereas low level uses
the IEC 61499
Standard function block
model.

Generic
System to
show the
functions of
the two-layer
architecture.

SPADE is used to
develop multi-agent
models.
Eclipse 4Diac is used
to develop the IEC
61499 Standard
function blocks.
The agents are
spread out between a
Jetson Nano, and
Raspberry Pi
microcontrollers.

Future work needs to be
done for both layers in the
architecture proposed.
Multi-agent modeling
requires the development
of self-learning and
machine learning
capabilities.
IEC 61499 Standard
function block modeling
requires an easier method
of deploying control
applications to
microcontrollers such as
the Raspberry Pi.

Due to ambiguities in the execution methods of IEC 61499 Standard function blocks in the first

edition, different software environments handled event inputs differently. Authors from articles

1 and 2 in Table 2.4 concluded that different execution methods cause different results on the

same IEC 61499 Standard function blocks. Multiple execution methods led to authors writing

articles, such as article 3 in Table 2, comparing different execution methods and the behavior

it has on the IEC 61499 Standard function blocks.

These different execution methods prevent portability of IEC 61499 function blocks; therefore,

most authors suggested a major revision of the standard is needed. The major revision of the

IEC 61499 standard was issued in 2012, fixing most ambiguities noticed by researchers of the

standard. The new revisions focus on the initial goal of the IEC 61499 standard which looks to

make programming software more portable, interoperable, reusable, and easily configurable.

 28

Table 0.4: Comparison of papers published on executions methods of IEC 61499 Standard
function blocks

No. Paper
(Reference)

Aim of the project System
Overview

Hardware/Software
Required

Author’s Conclusions

1 Formal
Modeling of
Function Block
Applications
Running in
IEC 61499
Execution
Runtime
(Čengić et al.,
2006)

To prove that different
logical behavior of
function blocks is
shown when different
execution methods are
used.

Carriage
transport
system for
workpieces.

Simulation and
function block
application execution
by free software
Fiber. Supports IEC
61499 runtime.

Using different execution run
time environments, which
use different execution
methods, led to the different
behavior of function blocks.

2 IEC 61499
Function Block
Model - Facts
and Fallacies
(Thramboulidi
s, 2010)

Look at the semantics
of IEC 61499 function
blocks to discuss facts
and fallacies to
determine why the
standard has not been
accepted by the
industry yet.

Review
paper
illustrating
and
analyzing
multiple
case
studies.

Multiple IEC 61499
compliant hardware
and software are
presented.

Many issues are
investigated which led to the
conclusion that a major
revision of the standard Is
needed to allow it to be
considered for industrial
use.
The standard does not apply
certain basic engineering
practices, which has led to
many ambiguities during the
initial phase of development.

3 Design and
execution
issues in IEC
61499
distributed
automation
and control
systems
(Strasser et
al., 2011)

To discuss and
present different
execution models of
function blocks, CFBs,
and sub-applications,
in IEC 61499 devices.

Investigate
Paper

No specific hardware
or software is
mentioned but
should be IEC 61499
compliant.

This paper contributes to the
ongoing goal of achieving an
IEC 61499 distributed
control system that is
portable, configurable,
interoperable, and
distributed.

Many articles are written on the lack of portability between the different IEC 61499 Standard

programming environments. Article 1, in Table 2.5, compared the differences and similarities

between these software tools by testing their portability between them. Figure 2.5 shows a

summary of the results of the study, comparing FBDK, 4DIAC, NXTStudio, and ISAGRAF. The

study found that library repositories and function blocks are not fully portable between different

vendors, which defeated the point of using the IEC 61499 Standard. This lack of portability is

mainly due to the different execution methods used by the different vendors.

Table 0.5: Summary of a portability study on IEC 61499 Standard software tools published by
(Pang et al., 2014)

No. Paper
(Reference)

Aim of the project System
Overview

Hardware/Software
Required

Author’s Conclusions

1 A Portability
Study of IEC
61499:
Semantics
and Tools
(Pang et al.,
2014)

A study of portability
issues in IEC 61499
tools such as FBDK,
4DIAC, ISaGRAF,
and NXTStudio.
The main outline is
with the compatibility
issues because of
different execution
semantics.

Investigate
Paper

FBDK, 4DIAC, ISaGRAF,
and NXTStudio are all
compared and tested for
compatibility.

IEC 61499 second edition has
solved many of the execution issues
since its release.
Full portability and interoperability
can only be reached once it is
possible to formally analyze and
validate against runtime platforms.

 29

Figure 0.5: Comparison of IEC 61499 Standard programming environments (Pang et al., 2014)

The IEC 61499 Standard became more popular after the release of the second edition in 2012.

Articles 1 and 2, in Table 2.6, both conclude that the use of the IEC 61499 Standard in the

industry will increase, and that vendors and early adaptors should start investing in this means

of controlling distributed systems. Both these articles are investigative, focusing on how the

standard has improved and become more industry useful.

Table 0.6: Comparison of papers published on the release of the IEC 61499 Standard second
edition

No. Paper
(Reference)

Aim of the project System
Overview

Hardware/Software
Required

Author’s Conclusions

1 The IEC
61499
Function
Block
Standard:
Overview of
the second
edition
(Christensen
et al., 2012)

Presents
improvements of the
IEC 61499 Standard
to its second edition
which will be
released in late
2012.

Investigate
Paper

No hardware or software is
presented as the entire IEC
61499 Standard is looked at.

After listing all the new additions that
form the IEC 61499 Standard
second edition, it is said stated that
the standard will be refined to be
more clear, unambiguous, and
industrially useful.
The conclusion is that all vendors
should seriously consider
developing software tools, runtime
platforms, or control hardware so
that they can enter a growing
market.

2 The IEC
61499
Function
Block
Standard:
Launch and
Takeoff
(Strasser et
al., 2012)

Discuss the start of
the take-off phase of
the IEC 61499
Standard.
Look at processes
that will lead to a
successful take-off
of the standard.

Investigate
Paper

No hardware or software is
presented as the entire IEC
61499 Standard is looked at.

IEC 61499 take-off phase has
started.
The standard can serve a great
payoff if early adapters focus on
addressing compliant profiles and
training personnel as soon as
possible.

This subsection discussed the similarities and difference between multiple articles written on

the IEC 61499 Standard. The next section of Chapter 2 describes the literature review on

networked control system..

 30

2.2 Literature Review on Networked Control Systems

2.2.1 Introduction

The proposed control system in this thesis consists of a Direct Current (DC) motor being

controlled via an Ethernet for Control Automation Technology (EtherCAT) fieldbus network. The

EtherCAT network is a replacement for the usual hardwired system. Due to this, a literature

review on Network Control Systems (NCSs) assists in gaining the necessary knowledge before

designing and implementing the system. This review focuses on the advantages and

disadvantages of NCSs, as well as the network-induced delays that occur in these real-time

networks. Multiple authors’ methods to overcome these delays are also discussed.

Section 2.2.2 describes the keywords used as well as the sources searched to complete the

literature review. Section 2.2.3 gives a summary of all the literature reviewed on NCSs in a

tabular form. Section 2.2.4 gives a summary of the literature reviewed, focusing on an overview

of NCSs and the delays that are caused by using a fieldbus in the network. Section 2.2.5

highlights comparisons between the literature reviewed, followed by a conclusion to the

chapter in Section 2.2.6.

2.2.2 Literature Search

The main source of literature is obtained from the IEEE Xplore database. The following

keywords and phrases were searched in this database: Network control systems; delays in

network control systems; distributed network control systems; stability in network control

systems. A collection of papers regarding these keywords areread and further research papers

are found from the references in these articles. References found led to various websites and

articles from ResearchGate.

A total of 20 papers are reviewed on the above-mentioned keywords. Figure 2.6 illustrates a

bar graph of the number of papers reviewed verses when the papers were published. The

paper’s publication dates range from 2005 - 2023.

 31

Figure 0.6: Bar graph showing the number of publications, categorized by

year published, reviewed on networked control systems

 32

2.2.3 Literature Review Summary

Table 0.7: Literature Review of Networked Control Systems

Paper (Reference) Aim of the project System Overview Hardware/Software
Required

Author’s Conclusions

A New Method for
Stabilization of Networked
Control Systems with
Random Delays
(Zhang et al., 2005)

To analyse the stabilization problem of a
discrete-time plant with random network-
induced delays.
To model the two network delays as
Markov chains and then design a state-
feedback controller to reduce the
concern of stability.

A cart with an
inverted pendulum
example is used as
a closed-loop
system in the
numerical
example.

No specific hardware or
software is mentioned in
this paper, but a
graphing-simulating tool
is used to display the
results of the illustrative
example.

Results from the numerical example prove that the
closed-loop system is stochastically stable when
using the methods developed in this paper.

Output Feedback
Stabilization of Networked
Control Systems with
Random Delays Modeled
by Markov Chains
(Shi et al., 2009)

To propose methods to guarantee
stability and performance in NCSs when
designing the controller.
Use Markov chains to model network-
induced delays.

A cart with an
inverted pendulum
example is used as
a closed-loop
system in the
numerical
example.

No specific hardware or
software is mentioned in
this paper, but a
graphing-simulating tool
is used to display the
results of the illustrative
example.

Results from the simulations of the proposed
system example proves that the methods used are
effective.

Network Control Systems
– Overview and Research
Trends (Gupta and Chow,
2010)

 To summarize trends and history of
networked control systems and the
different research areas, such as
network delays, real-time network
security, allocation of resources, and
integrating network components. Future
areas of research are also discussed and
looked at.

Investigative paper Investigative paper The authors research shows the importance of
development and research of networked control
systems as most systems today are connected via
some sort of network. The paper lists all the main
research topics that are being investigated, and
also challenging problems that haven’t been
solved for future research.

Effect of Network-induced
Delays in Control Systems
– DC motor application
(Kolla and Mainoo, 2012)

Compare the effects of network induced
time delays in different position
controllers for a DC motor.

Simulation of a DC
motor

MATLAB/Simulink used
for

The authors experiments prove that an increase in
network delays leads to an increase in network
stability. The analysis are completed on two
different controllers and both are influenced
negatively by these delays, which occur either
from the sensor to the controller, or from the
controller to the actuator. The linear quadratic
regulator performed better that the Proportional
Integral Derivative (PID) controller when subjected
to network delays.

Modelling and Stabilization
for Singular Networked
Cascade Control Systems
with State Delay

To use Linear Matrix Inequalities (LMI) to
model a singular networked cascade
controller that is stable.

An example
singular networked
cascade control
system with state

MATLAB LMI toolbox is
used to generate the
state response graph as
well as the desired gains

The authors use Lyapunov stability theory to
derive sufficient conditions for the systems.
The proposed methods show applicability and
usefulness developed and can be used for

 33

(Zhaoping et al., 2013) Network-induced delays and data packet
loss are also considered in the controller
design.

delay and
disturbance.

for the corresponding
systems.

controller design of systems with time delay and
packet loss.

Networked Predictive
Control for Linear Systems
with Unknown
Communication Delay
(Sun et al., 2014)

To propose a control scheme, for
controller design, that can predict
unknown communication delays in a
linear system.

Two examples are
used in this paper
to apply the
formulas
developed.
Example 1 is a
cart-pendulum
system.
Example 2 is a
servo control
system.

No specific hardware or
software is mentioned in
this paper, but the
results are displayed in
graph form using a
simulation tool.

The author uses switched Lyapunov function
method to deal with network-induced delays and
achieve stability.
Graphs comparing system output and time, of both
examples, show the effectiveness of this method.

Experimental
Investigations for
Distributed Networked
Control Systems
(Mahmoud and Sabih,
2014)

Experiment and simulate on available
software and hardware to create further
fields of research for distributed
networked systems.

Two PCs are used
to simulate the
controller and the
plant. A data
interface is used to
gather information
from the actual
plant.

LabVIEW simulations of
a tank level control
system distributed over
two PCs on an Ethernet
network.

MATLAB/Simulink

Fuzzy Speed Control of
Networked Motion Control
Systems
(Zhang et al., 2015)

To model the control of an induction
motor in a network control system.
To compensate for time delays by
designing and using a state predictor.
To illustrate the effectiveness of the
approach through simulations and
experiments.

An NCS that
includes an
induction motor
with a feedback
sensor, a
controller, an
actuator, and a
local controller, all
connected via a
communications
network.

Simulations are done
using MATLAB/Simulink
software tool, utilizing
the TrueTime toolbox.
Control Area Network
(CAN) protocol is used
as the Fieldbus for
communication.

The authors use the Lyapunov-Krasovskii function
to calculate the maximum allowed time delay for
the system to be stable. The theorem is also used
to calculate the limit of packet dropouts.
Feedback time delay is minimized by the state
predictor using the feedback time-stamped
messages.
The fuzzy PI controller works better than the
Proportional (P) and PI controller, as this controller
shows a better stead-state performance. This
controller is more robust to variation in the network
Quality of Service (QoS).

Distributed Control of
Large-Scale Networked
Control Systems with
Communication
Constraints and Topology
Switching
(Zhang et al., 2017)

To suggest and prove methods that allow
for large-scale networked closed-loop
systems to be more stable and have an
H∞ disturbance attenuation level.
Methods such as event-based
communication and logarithmic

Two Continuous
Stirred Tank
Reactors (CTSRs)
connected via a
communication
network are used

No specific hardware or
software is mentioned in
this paper, but a
graphing-simulating tool
is used to display the
results of the illustrative
example.

To reduce the size of information transmitted in the
communication network, methods such as event-
based control and logarithmic quantization are
introduced.
The authors use Lyapunov stability theory and a
switched system approach to propose sufficient
conditions that allow the closed-loop system

 34

quantization are tested during controller
design.

as an illustrative
example.

example to be exponentially stable and have an
H∞ disturbance attenuation level.
A graphical simulation is created which
demonstrates how effective the proposed
controller design is.

Stability and H Infinity
Performance of nonlinear
Fuzzy Network Control
Systems with Time
Varying Delay (Lu et al.,
2018)

To develop a controller for nonlinear
models which includes time-varying
delays.

Developed
theorems are
tested on a fuzzy
network control
system

MATLAB Toolbox for the
calculations.

The author completes the proof by using the
theorems developed on an example model. The
results show the system is stable.

Stability Criterion for
Networked Control
Systems Based on T-S
Model with Time-Varying
Delays (Liu and Liu, 2018)

Create methods to proof stability of
networked control systems that have
time-varying delays.

Developed
theorems are
tested on a T-S
fuzzy network
control system

No software or hardware
mentioned in the article.

The author completes the proof by using the
theorems developed on an example model. The
results show the system is stable even though the
system is not conventional and pulse free.

Observer Based
Incremental Predictive
Control of Networked
Multi-agent Systems with
Random Delays (Pang et
al., 2020)

To compare the effects of network
induced delays and random packet
losses between a networked system
without compensation and a system with
an incremental networked predictive
controller.

A networked multi-
motor control test
rig

No software mentioned
in the article. Siemens
control equipment used
on the test rig.

The graphed results show the experimental
outputs of the system without compensation and
the system with incremental networked predictive
control. The results show the effectiveness and
applicability of the introduction of this type of
controller to overcome networked induced delays
and random packet dropouts. The methods are
tested on 3 different motors to further prove the
effectiveness of the developed control.

Delay-dependent Stability
Analysis of Networked-
controlled DC Motor with
Time-invariant Delays
(Subramanian and Kokil,
2020)

To analyse the effects of delay margins,
phase margins, and gain margins on
networked control systems.

A DC motor
networked control
system is used for
analysing.

MATLAB/Simulink is
used to simulate the
model and graph the
output responses.

The simulations show that gain and phase margins
influence the system responses, such as rise time
and overshoot. The results show that an increase
in gain and phase margins decreases the delay
margins in a closed-loop system. Using a
proportional controller helps tune a controller to be
stable when time delays are present.

Networked DC Motor
Control with Time-Varying
Delays and Application to
a Mobile Robot (Xie et al.,
2020)

To test the performance and stability of a
networked DC motor performing position
control while under the effect of time-
varying delays.

A DC motor test
system consisting
of two DC motors
with encoder
feedback to a
controller via a 4G
network adapter

M091760 Maxon
encoder with a National
Instruments myRIO
controller for data
acquisition.

MATLAB/Simulink is
used to simulate and
graph the results.

The author tested a networked DC motor system
with a range of time-varying delays to show the
impact on the stability of the system. The pole
placement method is used to compensate for
these delays to a certain point until the delays are
so large that the system remains unstable.

Future work will consider disturbances and
uncertainties, incorporating predictive control and
sliding mode control into the investigations.

 35

Robust Stability of
Networked Linear Control
Systems with
Asynchronous Continuous
and Discrete Time Event
Triggering Schemes (Xiao
et al., 2021)

Analyse and simulate continuous-time
and discrete time systems to test event-
triggered approaches when transmitting
data over networks.

A numerical
example is used to
test the developed
theorems.

No software or hardware
mentioned in the article.

The authors methods show that the event-
triggered approaches to data transmission reduces
the traffic on a network in a networked control
system. The methods are tested in a numerical
example that applies to many continuous-time or
discrete-time systems, as well as time-varying
delays.

Event-triggered Optimal
Control for the NCSs with
Time Delays (Li et al.,
2021)

To develop theorems to be used in
event-triggered networked control
systems that are subjected to network-
induced delays.

A numerical
example is used to
test the developed
theorems.

No software or hardware
mentioned in the article.

By using an event-trigger generator, the authors
reduced the amount of bandwidth used on the
network hence reducing the network-induced
delays. The rest of the delay is compensated by
introducing a network predictive controller.

Observer-based Controller
Design for a Class of
Networked Control
Systems with
Transmission Delays and
Packet Losses (Asl et al.,
2021)

Analyse the effects of network delays,
between zero and two times the
sampling rate, on an observer-based
network control system.

A simulation
example is used to
test the developed
theorems.

No software or hardware
mentioned in the article.

By using LMI to determine the controller and
observer gains, the proposed methods could
stabilize the networked control system as well as
improve the performance.

The Effect of Observer
Position on Networked
Control Systems with
Random Transmission
Delays and Packet
Dropouts (Asl et al., 2022)

To analyse the effects of observer
placement in networked control systems
that have time-varying delays.

A numerical
example is used to
test the developed
theorems.

No software or hardware
mentioned in the article.

Two models are tested and compared. The first
model the observer is inserted on the system side,
whereas the second model has the observer on
the controller side. Both models are tested with a
numerical example and the results showed that the
second model performed better than the first, even
though the first did stabilize the system.

Design of Predictive
Controller for Networked
Control Systems (Chen
and Zhou., 2023)

To analyses the stability and system
performance of a networked control
system with communication delay as well
as data packet loss, not just one of the
two.

A simulation
example is used to
test the developed
theorems.

A Dc motor simulated
plant is used for testing.

The proposed method of using a model predictive
controller resulted in the networked control system
having the same response as a closed-loop
system without network induced delays.

 36

2.2.4 Literature review based on network control systems

2.2.4.1 Overview of network control systems

A Network Control System (NCS) is a system where all components are connected as nodes

via a communications protocol instead of hardwired connections (Kolla and Mainoo, 2012).

Unlike classic control systems, communication networks are used to close the control loops

instead (Mamoud et al., 2014).

The advantages of these networks include the reduction in wiring costs, weight and space

reduction of the system, simple installation and diagnosis for maintenance, and an overall

increase in reliability and agility (Zhang et al., 2005), (Shi et al., 2009). (Gupta and Chow, 2010)

states that these networks are designed to replace the existing 4-20mA analog signal standard

and termed them as “shared networks”.

Today, NCSs are becoming more distributed as there is an increase in complexity in modern

engineering systems (Zhang et al., 2017). With the sensors, actuators, and controllers being

distributed over a communications network, instead of being hardwired, the performance of

the system degrades due to network-induced delays (Gupta and Chow, 2010). These delays

need to be considered when designing the controller in an NCS to prevent the system from

underperforming and becoming unstable (Shi et al., 2009).

2.2.4.2 Delays in networked control systems

One of the biggest issues in NCSs are the network-induced delays between the sensor and

controller, as well as between the controller and actuator (Zhang et al., 2005). As shown in

Figure 2.7, these delays are random, but can also be constant or time varying. The overall

network-induced delays can be calculated by adding the sensor-to-controller delay (𝜏௞) and

the controller-to-actuator delay (𝑑௞). A computation delay is found in systems with multiple

controllers (Zhaoping et al., 2013). This delay would exist between the primary and second

controller.

There are many causes of such delays in networked systems, including data transmission,

protocol conversion, a selected protocol for communication, and distance between nodes (Yu

et al., 2014). Any of these constraints increases the time delays and packet dropouts in NCSs,

bringing difficulties in the analysis of these systems (Shi et al., 2009). Another cause is the use

of multiple sensors in the same NCS as a mixture of different delays are present and need to

be considered (Xiao et al., 2021).

 37

Figure 2.7: Networked control system with random delays (Zhang et al., 2005)

Time delays need to be considered when designing controllers to prevent a decrease in

stability and performance of the overall system (Yu et al., 2014), (Zhang et al., 2015), (Lu et

al., 2018), (Zhaoping et al., 2013). (Chen and Zhou, 2021) state that data loss exists in NCSs

and therefore considering these delays during controller design is important. Designs could

include some form of time stamping to reduce data loss during communication transmissions.

To prevent such delays, the communications networks need to become part of the control loop

(Yu et al., 2014). There are two main methods which researchers use to accomplish this task

(Shi et al., 2009). The first method is to design a controller without considering network induced

delays and then determining the maximum delays allowed before the system is unstable. The

second is to incorporate the network-induced delays using models when initially designing the

controller. The latter method, known as Model Predictive Control (MPC), is more efficient as

the models can predict the systems behaviours and reduce the effects of delays in real-time.

Other methods include the time delay method, robust control method, and stochastic control

method.

There are many techniques used by researchers to model network-induced delays. (Zhang et

al., 2005) and (Shi et al.,2009) used Markov chains to model the two random delays in NCSs.

Once modeled, the controllers are calculated using the iterative Linear Matrix Inequality (LMI)

approach. (Yu et al., 2014) used the MPC scheme to compensate for the delays of a test bench

which consisted of industrial-grade devices and controllers connected via a communications

 38

network. The authors proved that this scheme is a viable solution that can be used in industrial

control systems.

(Zhang et al, 2015) used a fuzzy logic controller, with a set of heuristic decision rules, to

compensate for network-induced delays on non-linear systems. The authors also used a state

predictor between the sensor and controller to alleviate the possibility of time delays during

data transmission. Stability is analyzed using the Lyapunov-Krasovskii Theorem to compute

the allowed maximum and minimum bounds of the time delays and packet dropouts. (Zhang

et al., 2017) also uses the Lyapunov direct method to achieve a closed-loop system which is

exponentially stable.

(Asl et al., 2021) designed an observer-based controller to reduce transmission delays and

random packet loss. Observers are used in this practical example as not all the states are

normally available. (Asl et al., 2021) then analysed the effects of observer-based control when

designing NCSs. Two models with different observer locations are tested under the same

conditions. The results showed that the model with an observer on the controller side stabilized

the system.

There are methods to compensate for network-induced delays that do not require any input in

the controller design process. These are related to the network infrastructure of the NCS.

Delays can be minimized depending on which network protocol is used in the NCS (Mahmoud

et al., 2014). Distributing the control by using an event-triggered approach when programming

decreases network traffic as data requests are less (Xiao et al., 2021). (Zhang et al., 2017)

also suggests event-based control in NCSs and further adds that signal quantization reduces

the communication rate.

This subsection discussed multiple techniques to overcome network delays in NCSs. The next

subsection compares literature reviewed on NCSs.

2.2.5 Comparison between literature reviewed on network control systems

Many authors have used similar methods when trying to solve problems in NCSs. These

methods and theorems are usually developed years prior to current research but are used on

newer issues that researchers come across. These newer issues include phenomena such as

network-induced delays and network time delays, which were never a problem before a

communication link was added into the control system between the different nodes in an

automation system.

 39

In the case of articles 1 and 2, in Table 2.3, both used Markov chains to model the network-

induced delays in a network control system. The same example of a cart with an inverted

pendulum is used to create a closed-loop system for testing. The articles both illustrate the

results of a numerical example using a graphing tool which shows the stability of the system

when subjected to network-induced delays. The outcome of each paper showed effective

results as both systems remained stable when subjected to random network-induced delays.

The results showed no decrease in performance in the system proving that using Markov

chains when modeling is beneficial when dealing with these delays.

Table 0.8 Comparison of papers published on random delays in network control systems

No. Paper
(Reference)

Aim of the project System Overview Hardware/Software
Required

Author’s
Conclusions

1 A New
Method for
Stabilization
of Networked
Control
Systems with
Random
Delays
(Zhang et al.,
2005)

To analyse the
stabilization
problem of a
discrete-time plant
with random
network-induced
delays.
To model the two
network delays as
Markov chains and
then design a state-
feedback controller
to reduce the
concern of stability.

A cart with an
inverted pendulum
example is used as
a closed-loop
system in the
numerical example.

No specific
hardware or
software is
mentioned in this
paper, but a
graphing-simulating
tool is used to
display the results
of the illustrative
example.

Results from the
numerical
example prove
that the closed-
loop system is
stochastically
stable when using
the methods
developed in this
paper.

2 Output
Feedback
Stabilization
of Networked
Control
Systems with
Random
Delays
Modeled by
Markov
Chains
(Shi et al.,
2009)

To propose
methods to
guarantee stability
and performance in
NCSs when
designing the
controller.
Use Markov chains
to model network-
induced delays.

A cart with an
inverted pendulum
example is used as
a closed-loop
system in the
numerical example.

No specific
hardware or
software is
mentioned in this
paper, but a
graphing-simulating
tool is used to
display the results
of the illustrative
example.

Results from the
simulations of the
proposed system
example proves
that the methods
used are effective.

Articles 1, 2, 3 and 4, in Table 2.4, all investigate network-induced delays in NCSs. Each author

uses a different method to incorporate the delays into the closed-loop system, but all four prove

effectiveness in their methods. Stability is achieved in all the examples by using the Lyapunov-

Krasovskii method to calculate sufficient conditions for the system. The use of the

MATLAB/Simulink software tool is used in Articles 1 and 3 to simulate and illustrate the results

of the controller’s response to network-induced delays in the control loop.

 40

Table 0.9: Comparison of papers published on methods to incorporate network-induced delays
in NCSs

No. Paper Aim of the
project

System
Overview

Hardware/S
oftware
Required

Author’s Conclusions

1 Fuzzy
Speed
Control of
Networked
Motion
Control
Systems
(Zhang et
al., 2015)

To model the
control of an
induction motor in
a network control
system.
To compensate
for time delays by
designing and
using a state
predictor.
To illustrate the
effectiveness of
the approach
through
simulations and
experiments.

An NCS that
includes an
induction
motor with a
feedback
sensor, a
controller, an
actuator, and a
local
controller, all
connected via
a
communicatio
ns network.

Simulations
are done
using
MATLAB/Si
mulink
software
tool, utilizing
the
TrueTime
toolbox.
CAN
network
protocol is
used as the
Fieldbus for
communicati
on.

The authors use the Lyapunov-
Krasovskii function to calculate
the maximum allowed time delay
for the system to be stable. The
theorem is also used to calculate
the limit of packet dropouts.
Feedback time delay is minimized
by the state predictor using the
feedback time-stamped
messages.
The fuzzy PI controller works
better than the Proportional (P)
and PI controller, as this controller
shows a better steady-state
performance. This controller is
more robust to variation in the
network Quality of Service (QoS).

2 Distributed
Control of
Large-
Scale
Networked
Control
Systems
with
Communica
tion
Constraints
and
Topology
Switching
(Zhang et
al., 2017)

To suggest and
prove methods
that allow for
large-scale
networked closed-
loop systems to
be more stable
and have an H∞
disturbance
attenuation level.
Methods such as
event-based
communication
and logarithmic
quantization are
tested during
controller design.

Two
Continuous
Stirred Tank
Reactors
(CTSRs)
connected via
a
communicatio
n network are
used as an
illustrative
example.

No specific
hardware or
software is
mentioned in
this paper,
but a
graphing-
simulating
tool is used
to display
the results of
the
illustrative
example.

To reduce the size of information
transmitted in the communication
network, methods such as event-
based control and logarithmic
quantization are introduced.
The authors use Lyapunov
stability theory and a switched
system approach to propose
sufficient conditions that allow the
closed-loop system example to be
exponentially stable and have an
H∞ disturbance attenuation level.
A graphical simulation is created
which demonstrates how effective
the proposed controller design is.

3 Modelling
and
Stabilizatio
n for
Singular
Networked
Cascade
Control
Systems
with State
Delay
(Zhaoping
et al., 2013)

To use LMI to
model a singular
networked
cascade controller
that is stable.
Network-induced
delays and data
packet loss are
also considered in
the controller
design.

An example
singular
networked
cascade
control system
with state
delay and
disturbance.

MATLAB
LMI toolbox
is used to
generate the
state
response
graph as
well as the
desired
gains for the
correspondin
g systems.

The authors use Lyapunov
stability theory to derive sufficient
conditions for the systems.
The proposed methods show
applicability and usefulness
developed and can be used for
controller design of systems with
time delay and packet loss.

4 Networked
Predictive
Control for
Linear
Systems
with
Unknown
Communica
tion Delay
(Sun et al.,
2014)

To propose a
control scheme,
for controller
design, that can
predict unknown
communication
delays in a linear
system.

Two examples
are used in
this paper to
apply the
formulas
developed.
Example 1 is a
cart-pendulum
system.
Example 2 is a
servo control
system.

No specific
hardware or
software is
mentioned in
this paper,
but the
results are
displayed in
graph form
using a
simulation
tool.

The author uses switched
Lyapunov function method to deal
with network-induced delays and
achieve stability.
Graphs comparing system output
and time, of both examples, show
the effectiveness of this method.

This subsection discussed the comparisons between the literature reviewed on NCSs. The

next subsection concludes Section 2.2.

 41

2.3 Conclusion

The IEC 61499 Standard has become more popular since the second edition was released in

2012. The standard has started the path to Industry 4.0, allowing the development of

distributed control systems that are portable, interoperable, configurable, and reusable. These

factors allow developed software to run on different hardware platforms from multiple vendors,

which relaxes hardware and software dependencies in automation systems (Zhabelova et al.,

2017). This allows for feasible alternatives as standard PLCs are overpriced and can be

substituted by industrial PCs and embedded controllers distributed in a controlled environment

(Vyatkin 2011).

The adoption of the IEC 61499 Standard in the industry lead to heterogeneous control systems.

The two standards (IEC 61499 and IEC 61311-3) must co-exist, for now, making the adaptation

of existing systems to distributed systems a challenge. This challenge of engineering

heterogeneous systems is said to be “not as big as expected” as the two standards are similar

in most ways (Hirsch et al, 2007). The PLC code used in existing systems can be reused in

IEC 61499 function blocks, leading to a shorter learning curve when migrating from one

standard to the other (Dai and Vyatkin, 2012).

The goal of Industry 4.0 is to achieve distributed control and intelligent automation. This can

be done by creating software that uses the IEC 61499 Standard at the low-level physical

modules and linking these modules with intelligent software systems at a high-level (Lyu et al.,

2021). These systems are termed “Cyber-physical" where the physical parts of a system are

used to automatically generate the cyber parts (Yan and Vyatkin, 2011).

The IEC 61499 Standard is leading the path to holonic systems in industrial automation. With

the rapid growth of technology, the future of self-adapting and self-organizing distributed

control systems could be sooner than expected.

Developing control distributing control systems also has some disadvantages that have lead

to an increase in research and development topics. Distributed systems are usually controlled

via a network instead of hardwired connections. This networked topology has added the effects

of networked induced delays into the control system. Many researches have studied and

experimented what causes these delays, and how to design control systems that can negate

the effects that can cause instability when using a network.

In most reviewed papers, the experimental and simulation results are proven to be effective.

(Mahmoud et al., 2014) suggests that researching in a co-experimental simulation environment

improves results and contributes to expanding the knowledge base in the community of control

 42

systems. For NCSs to become more realistic for the industrial environment, more physical

designs need to be built to validate these results. (Yu et at., 2014) mentions that more lab-

scale systems with industrial-grade instruments need to be built and tested on, and more focus

should be put on what causes these delays in a physical environment.

Although there are many advantages to upgrading an existing control system to be networked,

the initial development and conversions are costly, time consuming and inconvenient (Gupta

and Chow, 2010). The existing systems must be redesigned, with some devices being

replaced, to allow for communication over a data network instead of being hardwired. These

initial costs are what causes companies not to progress into smarter, more distributed systems.

NCSs allow for a simpler setup of control systems as devices are becoming plug-and-play, and

therefore reducing the complexity of the design and building phases in projects. Even though

there are disadvantages in NCSs such as network-induced delays, there are many researched

methods that can be used when designing the controller to mitigate these delays. Correct

controller design and the correct use of the communication capabilities of networked systems

can increase the overall performance of the solution (Zhang et al., 2017).

This chapter reviewed literature based on the IEC 61499 Standard and networked control

systems. The following chapter describes the theory based on the plant that is used in this

thesis.

 43

CHAPTER 3
THEORY BASED ON ANTENNAS AND THE DC MOTOR

3.1 Introduction

This chapter discusses the plant which has been selected to be controlled in this thesis. The

plant is a radio antenna which is used to locate celestial objects in the sky. This thesis focuses

on the development of the controller that guides the dish to specific position set points

accurately and does not focus on the actual tracking of celestial objects in the sky.

The following sections describe the plant in more detail. The radio antenna is described in

Section 3.2. The DC motor is described in section 3.3. Radio antenna and DC motor

discussions are described in section 3.4. The chapter is concluded in section 3.5.

3.2 Antenna Theory

An antenna is a component that converts guided waves into free-space waves when

transmitting, or free-space waves into guided waves when receiving (Balanis, 1992). This

defines an antenna as a transducer because the device converts energy from one form to

another. As shown in Figure 3.1, the system consists of a parabolic dish, which collects all the

electromagnetic (EM) waves into a focal point, an antenna to convert the received waves into

current, and two DC motors for azimuth and altitude positional movements. The motors are

coupled to servo drives which receive the necessary positional set points from a Programmable

Logic Controller (PLC).

Figure 0.1: Azimuth and elevation of a radio antenna

 44

Antennas can either transmit EM waves or receive them, depending on the type. When

transmitting, the antenna receives a current from a source device and then radiates the

generated waves at specific frequencies through the air toward other antennas. When

receiving, the antenna intercepts the waves that are airborne and converts them to a current

which is sent to a device for processing. It is possible for antennas to both receive and transmit

EM waves by means of a transceiver (Sheldon, 2023).

We need antennas to allow for the transmission of signals where hard-wired connections are

not possible. The use of antennas for wireless communications is more feasible for applications

where cables are not required (Administrator, 2019). Selection of which antenna to use is

application dependant. Figure 3.2 shows several different types of antennas including wire

dipole, loop, wire monopole, Yagi-Uda array, horn, microstrip patch, corner reflector, parabolic

reflector (dish), and slot.

Figure 0.2: Several types of Antennas

(Dhillon and Kumar, 2017)

The simplest antenna design is a wire antenna. This is the most used antenna and can be

found in cars, ships, buildings, and aircraft. The wire dipole, loop, wire monopole and Yagi-

Uda array antennas are all designed based on the same functionality as the wire antenna. One

end of each of these antennas is connected to either a receiver or a transmitter, and the rest

of the antenna captures the airborne EM signals that are travelling in free space. The Yagi-

Uda is the most complex wire antenna but was most popular for receiving television signals

before dish antennas were used.

 45

Microstrip patch antennas are small antennas printed into circuit boards to allow for wireless

communications in mobile devices (Sheldon, 2023). Corner reflectors reflect EM waves back

towards the source, which is useless for calibrations of radar systems. Slot antennas are like

dipole antennas but are cut into a surface instead of a wire made up of material.

Figure 3.3 shows a radio antenna system that is used to obtain EM waves from celestial radio

sources. The system includes a parabolic reflector (dish) as well as a horn antenna. The

parabolic structure of the dish reflects EM waves to a focal point, which causes the waves to

bounce back off a sub reflector and into the horn antenna. The horn antenna converts the EM

waves into a current signal that is fed into the connected receiver for processing and analyzing.

Figure 0.3: Radio Antenna collecting EM waves from a celestial radio source

The radio antenna is selected as the plant for this thesis because the azimuth and altitude

positional movement control system of the antenna works as a good case study for testing of

a multi-variable control system. The following sections describe the radio antenna in more

detail, considering the history of radio antennas, types of radio antennas, and current control

systems of antennas.

3.2.1 History of Radio Antenna

The history of radio antennas begins with the discovery of EM radiation by Heinrich Hertz in

1886 (Rubin, 2018). The German physicist, Heinrich Hertz, set out to prove Maxwell’s theory

of electromagnetism by building the test rig shown in Figure 3.4. He made use of a capacitor

(C) and an induction coil (T) to generate a spark between a spark gap (S) formed by two

spheres. This spark, in turn, generated EM waves, which were then enhanced by an antenna

(A). A receiving antenna (RA) was placed across the transmitting antenna to capture the

 46

oscillating EM waves that were being produced. The received waves were concentrated into

the receiving gap (C) causing a spark, proving that radiation was being detected. Due to the

limitations in frequencies, the concepts and proofs developed by Hertz were not used until after

World War 2 when microwave frequencies were discovered.

Figure 0.4: Heinrich Hertz's radio antenna experiment

(Faccio et al, 2006)

The first use of radio telescopes to observe EM waves produced from space was Karl Jansky,

1933 (Rahmat-Samii et al ,2009). He built a radio antenna that detected radio waves from the

Milky Way but found little support from most astronomers regarding his theories and could not

get enough funding for his research. His work was revisited in 1937 by Grote Reber, who built

a 9.5m parabolic reflector radio antenna in his backyard. This was the first antenna used for

astronomical research, and his sky surveys created the field of radio astronomy (Wielebinki,

2007).

Parabolic antennas became widely used during the 1960’s for microwave communication

systems. The first radio antenna used for satellite communications was built in 1962 at

Goonhilly earth station, in Cornwall, UK. This antenna as the first to transmit live video signals

across the world, revolutionised global telecommunications.

Although other types of antennas are used in radio astronomy, dish antennas of parabolic

reflectors are the most common type used for radio telescopes today (Mirghani, 2017). Due to

the discoveries by Heinrich Hertz, Grote Reber, and Karl Jansky, there are multiple radio

telescopes around the world that are being used to better understand the universe by detecting

small waves from space.

 47

3.2.2 Types of Radio Antennas

Radio antennas consist of two components, a reflective surface, and a feed antenna to collect

EM waves at a focal point (Nikolova, 2016). The reflective surface is normally a parabolic dish

made of some reflective material, and the antenna is application dependent, for example a

horn antenna could be used. As shown in Figure 3.5, there are four different types of radio

antennas, namely axial-feed, off-axis feed, Cassegrain, and Gregorian. The antennas are

distinguished by how EM waves travel from free space to guided space, meaning from the air

into the antenna.

Figure 0.5: Different types of parabolic radio antennas

(Stroski, 2019)

The axial-feed parabolic reflector reflects EM waves to focal point which contains a feed

antenna to collect the concentrated signals. The main disadvantage with this type of parabolic

radio antenna is the support structure blocks a portion of the incoming EM waves. This can be

solved by using an off-axis feed system, where the feed antenna is slightly off center of the

dish, preventing any blocking of signals from occurring. This type of dish is used mostly for

home satellite television systems.

The Cassegrain and Gregorian feed antennas are similar as both have a secondary reflector

concentrating the EM waves toward the feed antenna. The only difference is that Cassegrain

antennas have a convex secondary reflector, whereas Gregorian antennas have a concave

secondary reflector. There are minimal losses in information when the incoming EM waves are

passed through either a convex or concave reflector as the feed antenna is mounted physically

 48

closer to the receiver (Wolff, 1997). The main disadvantage is the issue of the support structure

interfering with the signals being received. An example of a Cassegrain antenna is the

Hartebeesthoek Radio Astronomy Observatory (HartRAO) radio antenna found in South Africa

as shown in Figure 3.6.

Figure 0.6: 26m dish of HartRAO radio antenna

(Mirghani, 2017)

3.2.3 Radio Antenna Control Systems

The positional movement of a radio antenna is necessary to locate celestial objects in the sky.

To do this, a closed loop control system is required that consists of a positional set point and

position feedback. Figure 3.7 shows a simple feedback control loop system. A potentiometer

is used to send a required set point to the radio antenna. The difference between the set point

and the feedback from the potentiometer connected to gear 3 is amplified and used to turn the

motor. Once the error between the potentiometer feedback and input set point is zero, the

motor will not rotate and the set position will have been reached (Ahlawat et al, 2019).

 49

Figure 0.7: Closed loop position control of an antenna’s azimuth angle

(Okumus et al, 2012)

The detailed setup is illustrated in Figure 3.8 as a block diagram. The summing junction shows

the subtraction of the input set point and the potentiometer feedback (kpot), before the error is

fed into the preamplifier (K). The signal then passes through the power amplifier and into the

motor, load, and gears before changing the azimuth angular position of the antenna. This

system does not include a controller, and therefore the response cannot be altered to improve

the position control performance.

Figure 0.8: Block Diagram of the closed loop position control of an antenna’s azimuth angle

(Okumus et al, 2012)

The problem with not using a controller to optimize the performance of the plant is that the

system could experience a non-stable response, causing components to saturate and be

damaged leading to massive costs in repairs and replacements (Xuan, 2009). Many authors

have simulated different control systems to control the azimuth or altitude position of a radio

antenna. Table 3.1 summarizes a few articles regarding these control systems, comparing the

software and hardware used, as well as the results that the authors found.

 50

Table 0.1: Summary of articles written regarding position control of radio antennas.

Author(s) Title Control System Software/Hardware Results
Xuan, 2009 Antenna

Azimuth
Position Control
Analysis and
Controller
Implementation

Control of a DC servo motor
with a discrete PID controller.

MATLAB was used
for system simulation.

No physical system
was implemented.

The author’s system reaches
steady state with some
overshoot when using a
discrete PID controller and
recommends this controller for
its response times and stability
performance.

Okumus et
al, 2012

Antenna
Azimuth
Position Control
with Classical
PID and Fuzzy
Logic
Controllers

Two position controllers for a
DC motor are looked at and
compared.

1. PID controller
2. Fuzzy logic controller

MATLAB/Simulink
was used for system
simulation.

No physical system
was implemented.

The author concludes that the
fuzzy logic controller, with
several fuzzy rules and
functions, gives the most
convenient response for the
system compared to the
classical PID controller.

Temekovski
and
Achkoski,
2014

Modelling and
Simulation of
Antenna
Azimuth
Position Control
System

No controller is presented.
The actual position of the
azimuth position is fed back
into the system using a
potentiometer.

The feedback is subtracted
from the input set point and
fed into the plant through a
power amplifier.

MATLAB/Simulink
was used for system
simulation.

No physical system
was implemented.

The author compares the open
loop step response with the
closed loop step response.

The closed loop system
overshoots the set point but
eventually settles back down
with no stead state error,
whereas the open loop system
never settles as there is no
feedback.

Uthman
and Sudin,
2018

Antenna
Azimuth
Position Control
System using
PID Controller &
State-Feedback
Controller
Approach

Two position controllers for a
DC motor are looked at and
compared.

1. PID controller
2. State feedback controller

with pole placement
methods

MATLAB/Simulink
was used for system
simulation.

No physical system
was implemented but
is mentioned for
future work.

The author observed that the
state feedback controller
performed the best compared to
the PID controller. The results
showed little settling time and
overshoot with not steady state
error.

Ahlawat et
al, 2019

Antenna
Azimuthal
Position Control
Using Model
Predictive
Control

Two position controllers for a
DC motor are looked at and
compared.

1. PID controller
2. MPC

MATLAB was used
for system simulation.

No physical system
was implemented.

The author concluded that the
MPC performed better than the
PID controller, especially when
some transport delay was
inflicted on the system. The
delays did not affect the
response times of the MPC
controller as it did with the PID
controller.

Temekovski and Achkoski, (2014) approached the antenna control without a controller. Their

results show that when there is a change in position set point, the system does stabilize over

time leaving no stead state error. With no controller, they are not able to change the response

of the system. (Xuan, 2009) instead used a PID controller to control the position of the DC

motor that is coupled to the radio antenna. The controller is used to meet the requirements for

overshoot and rise time, while achieving zero steady state error.

At first, these authors (Okumus et al, 2012), (Uthman and Sudin, 2018) and (Ahlawat et al,

2019) have utilized a PID controller to control the DC motor’s position. This was carried out to

provide a point of reference for simulations and conducted on an alternative controller. The

authors results described when using a fuzzy logic controller, state feedback controller, and

 51

MPC controller, shows an improvement in response times. All the authors use

MATLAB/Simulink to simulate the controllers and display results. As shown by the articles in

Table 3.1, the use of a DC motor for the radio antenna position control is very common. The

next section will focus on motor theory, which includes a brief history of the DC motor, and a

description on the operation and construction of the DC motor.

3.3 Motor Theory

A DC motor is selected to control the rotational angular position of the radio antennas dish in

both the azimuth and altitude plane in this thesis. DC motors are often used in industrial

applications because of their simplicity, reliability, ease of application and cost effectiveness

(Maung et al, 2018). These motors are usually used with gears to provide high torque outputs

from the motor shaft to the output of the required gearbox. The high torque provided by DC

motors is one of the main reasons why these motors are preferred over other types of motors

(Aloo et al, 2016). Another advantage of DC motors is the fast response times to rotational

changes as the motors can operate at high speeds (Eze, 2021).

In summary, the DC motor is the most suited motor for use in the control systems of radio

antennas due to their high torque capabilities, affordability, simplicity, and ability to provide

precise and accurate control of the antennas position when used in a feedback system. The

next subsection describes the history, operation, and construction of the DC motor.

3.3.1 History of the DC Motor

The DC motor was designed to convert electrical energy to mechanical energy. DC motors

can be found in electrical home appliances, automobiles, and most industrial equipment. Over

the period 1820 – 1835, many scientists were involved with the development of the DC motor

that is known today. The main contributions came from Christian Oersted, Andre Maria

Ampere, Michael Faraday, Joseph Henry, and William Sturgeon (Seale, 2016).

Christian Oersted and Andre Maria Ampere (1820) started the revolution by discovering that

an electric current, passing through a conductor produces a magnetic field. In 1821, Michael

Faraday wanted to prove and demonstrate this theory. He placed a magnet in a dish of mercury

with a wire hanging down into it as shown in Figure 3.9. He then connected the positive side

of a battery to the other end of the wire and connected the negative to the mercury portion of

the experiment. This caused the wire to rotate around the magnet, creating motion from

electrical energy.

 52

Figure 0.9: Michael Faraday’s DC motor setup

(Sarkar, 2020)

There was no practical use for Faraday’s experiment, but it led to the creation of Joseph

Henrys’ invention 10 years later (Figure 3.10). The lab experiment used an electromagnet that

freely rocked on a reciprocating beam. Once charged with a current, the electromagnet rocked

up and down as each coil repels off the North Pole magnetic field. The experiment rocked at a

pace of 75 cycles per minute.

Figure 0.10: Electro-magnetic engine by Joseph Henry

(Henry, 1831)

 53

Just a year later in 1832, William Sturgeon was accredited with making the first rotary motor,

which is like the DC motor used today. This was made possible when he invented the

commutator, a means of constantly supplying a DC voltage to the electromagnet, causing it to

rotate. Sturgeon overcame the problem where the motion of the magnets would stop once the

poles repelled, leading to a revolutionary invention for all automation.

3.3.2 Operation of a DC Motor

Figure 3.11 shows that a DC motor consists of an armature, stator, commutator, and brushes.

The stator, which is the stationary part of the motor, is built up of two magnets. The South pole

of one magnet is pointed at the North pole of the other magnet which creates an external

magnetic field across the armature (Sarkar, 2020). This magnetic field is permanent and flows

from the North to the South pole.

Figure 0.11: Construction of a DC motor

(Bzdigian, 2022)

When an electric current passes through the armature coil, it creates an electromagnetic force

around the current-carrying conductor. When the magnetic field created by the armature is

placed in the external magnetic field created by the stator, the armature starts to rotate. The

direction of force is based on Fleming’s left-hand rule; hence the left side of the armature is

pushed by an upward force and the right side of the armature moves down due to a downward

force. The armature is also known as the rotor, as it is the rotating part of the motor. The

electromagnetic force produced by the current flowing through the armature is known as the

 54

Lorentz force (Britannica, 2023). The rotational field is produced by the charged particles

traveling through the conductor. The magnitude of the force produced can be calculated with

Equation (3.1).

𝐹⃗ = 𝑞(𝐸ሬ⃗ + 𝑣⃗ × 𝐵ሬ⃗) (3.1)

Where,

 𝐹⃗ = Magnetic Force

 𝐵ሬ⃗ = Magnetic Field

 𝐸ሬ⃗ = Electric Field

 𝑞 = Charge

 𝑣 = velocity of the charged particle

Therefore,

 𝑞 ∗ 𝐸ሬ⃗ = electrical force on the charged particle

 𝑞 ∗ (𝑣⃗ × 𝐵ሬ⃗) = magnetic force of the charged particle

Hence the sum of the electrical force and magnetic force equals the force a charged particle

experiences when placed in an electromagnetic field.

3.3.3 Construction of a DC Motor

The internal construction of a DC motor is presented in Figure 3.12. The most important

internal components of the DC motor are the armature, brush, commutator, permanent

magnet, and a shaft.

Through brushes, the commutator establishes a permanent electrical connection between the

armature and the DC power source. This allows the armature to rotate freely without losing

connection. The brushes are spring-loaded so that contact with the commutator is always

maintained. The commutator also reverses the current direction to the armature to allow it to

continue rotating in one direction. A single armature coil has two commutators attached to each

respective end in the form of a split ring (Roderick, 2021).

 55

Figure 0.12: Dissected view of a DC motor

(Roderick, 2021)

The current supplied by the DC supply flows through the wire, through the brush, through the

commutator ring, forms a loop within the armature, and out through the second commutator,

brush, and wire. As mentioned before, this causes an electromagnetic field across the

armature. As the commutator spins, the gap between the commutator rings is reached and the

direction of flow of current in the armature is switched, causing the polarity of the

electromagnetic field to switch. The commutator ring has the same effect as switching the wires

of the input DC supply.

The motor in Figure 3.12 has more than one set of commutator rings. Multiple commutator

rings prevent the brushes from meeting halfway between commutator segments which can

cause irregularities in the rotation of the armature. The shaft is also shown, which allows for

the transfer of the produced mechanical energy to the process that needs to be rotated.

DC motors are very advantageous regarding torque capabilities (Tan Kiong Howe, 2003). The

startup torque of these motors is very high, which is needed when speed must be constant and

consistent in applications. Also, the relationship curve between speed and torque is more linear

than in most other motors. Other advantages include no harmonic effects, quick installation,

minimal maintenance, and low cost.

3.4 Discussions on Radio Antennas and DC Motors

This section discusses the use of DC motors being used in radio antennas control systems.

Table 3.1 in Section 3.2.2 shows a few articles in which authors have studied different radio

 56

antenna control systems. In most cases, a DC motor is used in a feedback control system to

allow for positional movements of the azimuth or altitude planes of the dish. Only one author

did not use a controller in the feedback loop, but the others used controllers such as model

predictive control, PID control, fuzzy logic control and state feedback control.

MATLAB/Simulink was used by all the authors to simulate their models. No physical systems

were mentioned or built to compare results but there were a few mentions of future work being

done on implementation of the designed systems. The next section will conclude the chapter

by discussing and summarizing the main points regarding the theory of antennas and radio

antennas.

3.5 Conclusion

This chapter gave a theoretical overview of antennas and the DC motor. Antenna theory is

discussed, including a brief history, different types of antennas, and several radio antenna

control systems. The multiple articles regarding radio antenna systems are discussed and

compared to see which control systems were used more and which has better results. It was

shown that in all the articles DC motors were used for the positional control of the radio antenna

dish.

The DC motor operation, construction and history is also discussed. Finally, Section 3.4

discusses the correlation between the DC motor and the radio antenna to show the importance

of the two for this research work. The use of DC motors in radio antenna systems is shown to

be common in this chapter. The high torque-to-inertia ratio, cost effectiveness, and precision

are all factors that motivate the use of a DC motor for positional control of the parabolic dish.

The plant is considered linear and therefore the disturbance of wind and any other external

factors will not be considered. The load, consisting of the dish, will be included in the system

calculations by means of a gearbox model.

Chapter Four describes the formulation of the mathematical model of the plant, combining the

electrical and mechanical components of the DC motors used for azimuth and altitude

positional movements of the antenna dish.

 57

CHAPTER 4
DEVELOPMENT AND SIMULATION OF THE PLANT

4.1 Introduction

The mathematical modelling of the DC motor and radio antenna system are discussed in this

chapter. To develop an understanding of the system's behaviour driven by the DC motor, the

antenna system model is evaluated. In control systems, it is necessary to first design and

simulate the appropriate model of the plant before applying the controller to the actual

hardware. The simulations are used to prove the behaviour of the system when parameters

are changed. To model a system, it is necessary to find its transfer function (relating the output

to the input) and then develop its MATLAB script or a Simulink block diagram. This allows for

easier implementation of the practical model as many input sources and graphing tools are

available to test the system during the simulation.

Radio antenna systems are non-linear because external factors such as wind usually influence

the systems response. In this thesis the radio antenna is considered as linear when calculating

the mathematical models, ignoring the external factors. The plant considered in this research

has two DC motors controlling the antenna dish's azimuth and altitude positional movements.

Therefore, it is necessary to model these DC motors to allow for simulations before applying

the controller to the real hardware. A single DC motor is modelled, as the calculations can then

be duplicated for the second DC motor.

The mathematical model of a DC motor is obtained in Section 4.2. This section describes the

Modelling of a DC motor's electrical and mechanical components. Both models are combined

to form the DC motor's electromechanical open loop transfer function. The state space

representation of the DC motor is described in Section 4.3. The model of the antenna system

is described in 4.4, followed by a conclusion in Section 4.5.

4.2 Modelling of a DC Motor

The electro-mechanical diagram of a DC motor can be seen in Figure 4.1. The system is

comprised of a coupled electrical and mechanical subsystem. By using the laws of physics, it

is possible to obtain the system equations. These system equations are then used to find the

transfer function which is mathematically easier to work with and simulate. Obtaining the

transfer function allows for the use of tools and graphing techniques in the MATLAB/Simulink

software environment to help better understand the behaviour of the system.

 58

4.2.1 Transfer Function of the Electrical Component of a DC Motor

The electrical part of a DC motor is modelled using Kirchhoff’s voltage law, which states that

the sum of potential differences in a closed circuit is equal to zero (Iswanto et al, 2021). The

balance equation is defined by

𝑉௔(𝑡) − 𝑅௔𝑖௔(𝑡) − 𝐿௔
ௗ௜ೌ

ௗ௧
− 𝑒௕ = 0 (4.1)

where 𝑉௔ is the voltage source, 𝑅௔ is the resistance of the armature, 𝐿௔ is the inductance of the

armature, 𝑒௕ is the back Electromotive Force (emf) generated from the load, and 𝑖௔(𝑡) is the

armature current that flows through the circuit with time.

From Equation 4.1, the voltage source is expressed as

𝑽𝒂(𝒕) = 𝑹𝒂𝒊𝒂(𝒕) + 𝑳𝒂
𝒅𝒊𝒂

𝒅𝒕
+ 𝒆𝒃 (4.2)

The back emf is expressed as

𝑒௕ = 𝐾஻ ∗ 𝜃̇௠ (4.3)

where 𝐾஻ is the emf constant of the DC motor, and 𝜃̇௠ is the angular velocity.

Substituting Equation 4.3 into Equation 4.2 yields

𝑉௔(𝑡) = 𝑅௔𝑖௔(𝑡) + 𝐿௔
ௗ௜ೌ

ௗ௧
+ 𝐾஻𝜃̇௠ (4.4)

Figure 0.1 Electro-mechanical diagram of a DC motor with a fixed magnetic field

(Mikova et al, 2016)

 59

To solve for the transfer function of the DC motor, it is necessary to convert all differential

equations to the frequency domain which allow for easier algebraic manipulation of equations.

The conversion makes it easier to converge the electrical and mechanical equations into one

equation and is necessary for conversion to block diagram form in Simulink. Taking the Laplace

transform of Equation 4.4, we obtain

𝑉௔(𝑠) = 𝑅௔𝐼௔(𝑠) + 𝐿௔𝑠𝐼௔(𝑠) + 𝐾஻𝑠𝜃௠(𝑠) (4.5)

where 𝜃௠(𝑠) is the angular position of the DC motor in the s-domain , and 𝑠 is a complex

frequency domain parameter.

Rearranging Equation 4.5 results in Equation 4.6.

𝑉௔(𝑠) − 𝐾஻𝑠𝜃௠(𝑠) = 𝐼௔(𝑠)(𝑅௔ + 𝐿௔(𝑠)) (4.6)

Equation 4.6 is used to find the transfer function of the electromechanical model of the DC

motor. The next section determines the transfer function of the mechanical component of the

DC motor.

4.2.2 Mechanical Transfer Function of a DC Motor

It is important to model the mechanical part of the DC motor because the output rotational

movement of the shaft is related to the current input from the electrical part. A relationship

between the electrical and mechanical parts must be found to calculate the complete transfer

function of the system that can be used in the final model.

The electrical current flowing through the circuit causes a fixed magnetic field due to a magnet

component in the DC motor. This magnetic field applies a force on the inertial mass that causes

an input torque which is defined using Newton’s 2nd law. The balance equation is defined by

𝑇௠ − 𝐵௠𝜃̇௠ = 𝐽௠𝜃̈௠ (4.7)

where 𝑇௠ is the input torque to the load, 𝐵௠ is the damping coefficient, 𝜃̇௠ is the angular velocity

of the DC motor, 𝜃̈௠ is the angular acceleration of the DC motor, and 𝐽௠ is the initial moment

of inertia.

The initial torque generated is expressed as

𝑇௠ = 𝐾் ∗ 𝑖௔(𝑡) (4.8)

 60

where 𝐾் is the DC motor torque constant, and 𝑖௔(𝑡) is the armature current that flows through

the circuit with time.

Substituting Equation 4.8 into Equation 4.7 yields

𝐾்𝑖௔(𝑡) − 𝐵௠𝜃̇௠ = 𝐽௠𝜃̈௠ (4.9)

This substitution is crucial as it allows the like term of 𝑖௔(𝑡) to be in both the electrical and

mechanical balance equations. Taking the Laplace transform of Equation 4.9, to obtain

𝐾்𝐼௔(𝑠) − 𝑠𝐵௠𝜃௠(𝑠) = 𝐽௠𝑠ଶ𝜃௠ (4.10)

Rearranging Equation 4.10 finds the balance equation of the mechanical part of the DC motor

which is defined by

𝐾்𝐼௔(𝑠) = 𝑠(𝐽௠𝑠 + 𝐵௠)𝜃௠(𝑠) (4.11)

Equation 4.6 and 4.11 describes the balance equations of the electrical and mechanical parts

of the DC motor in the frequency domain. The next section will determine the open loop transfer

function of the complete DC motor, consisting of both electrical and mechanical parts.

4.2.3 Open loop transfer function of DC motor without load

It is necessary to obtain the complete electro-mechanical transfer function of a DC motor to

simulate the system. The electrical and mechanical parts’ system equations, as described in

Equations 4.6 and 4.11 respectively, are combined to formulate the full system. This is done

by using the like term of 𝐼௔(𝑠) which is found in both transfer functions. By making 𝐼௔(𝑠) the

subject of each formula and then making the two equations equal to each other Equation 4.12

is obtained.

𝑉௔(𝑠) − 𝐾஻𝑠𝜃௠(𝑠) =
(௅ೌ௦ାோೌ)(௃೘௦ା஻೘)

௄೅
∗ 𝑠𝜃௠(𝑠) (4.12)

Rearranging Equation 4.12 results in,

𝑉௔(𝑠) = ቂ
(௅ೌ௦ାோೌ)(௃೘௦ା஻೘)ା௄మ

௄೅
ቃ ∗ 𝑠𝜃௠(𝑠) (4.13)

Rearranging Equation 4.13 to find the transfer function for input acceleration to output voltage

we obtain

 61

ఏ̇೘(௦)

௏ೌ (௦)
=

௄ಳ

(௃೘௦ା஻೘)(௅ೌ௦ାோೌ)ା௄ಳ∗௄೅
 (4.14)

Since position control of a DC motor is the aim of this thesis, the relationship between position

and voltage is considered. This is achieved by integrating both sides of Equation 4.14 to obtain

ఏ೘(௦)

௏ೌ (௦)
=

௄ಳ

௦[(௃೘௦ା஻೘)(௅ೌ௦ାோೌ)ା௄ಳ∗௄೅]
 (4.15)

Equation 4.15 is the input-over-output transfer function form that is needed when trying to

model a system (voltage being the input and position being the output).

Considering that armature inductance 𝐿௔ in a fixed motor is negligible,

ఏ೘(௦)

௏ೌ (௦)
=

௄ಳ

ோೌ௃೘௦మା௦[ோೌ஻೘ା௄ಳ∗௄೅]
 (4.16)

Simplifying Equation 4.16 finds the combined transfer function of the electrical and mechanical

parts of the DC motor defined by:

ఏ೘(௦)

௏ೌ (௦)
=

಼ಳ
ೃೌ

௃೘௦మା௦[
ೃೌಳ೘శ಼ಳ∗಼೅

ೃೌ
]
 (4.17)

To reduce the complexity of the transfer function to allow for easier modelling of the system,

new variables 𝐾௠ and 𝑎௠ are substituted into Equation 4.17 to obtain

ఏ೘(௦)

௏ೌ (௦)
=

௄೘

௦(௦ା௔೘)
 (4.18)

where

𝐾௠ =
௄ಳ

ோೌ௃೘
 (4.19)

and

𝑎௠ =
ோೌ஻ା௄ಳ∗௄೅

ோೌ௃೘
 (4.20)

 62

Table 0.1: DC motor parameters

Parameters Symbol Values Unit of Measurement

𝑅௔ Armature resistance 14.3 ohm
𝐿௔ Armature inductance 0 henry
𝐾஻ Electromotive force constant 0.425 volt/(rad/sec)
𝐾் Torque constant 2.3 N-m/ampere
𝐽௔ Moment of inertia of the armature 0.013 Kg/ m²
𝐽௅ Moment of inertia of the load 0.001 Kg/ m²

𝐵௔ Motor damping coefficient 0.00001 Ns/m

𝐵௅ Load damping coefficient 1 Ns/m

𝑁1 Number of gears teeth N1 1 N-m

𝑁2 Number of gears teeth N2 270 radians

The motor parameters shown in Table 4.1 is substituted into Equation 4.18 to obtain the

complete transfer function for the specified DC motor. The motor used is a 6000 RPM 12V DC

motor with a 1:270 gearbox. The load moment of inertia and damping ratios are from the

incremental encoder that is mechanically connected to the shaft of the motor through a 1:1

gear ratio.

The total moment of inertia is defined as

𝐽௠ = 𝐽௔ + 𝐽௅ ∗ ቀ
ேభ

ேమ
ቁ

ଶ
 (4.21)

where 𝐽௔ is the moment of inertia of the armature, 𝐽௅ is the moment of inertia of the load, 𝑁ଵ is

the number of gear teeth on the motor side of the gearbox, and 𝑁ଶ is the number of gear teeth

on the load side of the gearbox. Substituting the parameters from Table 4.1 yields

𝐽௠ = 0.013 Kg-m²/rad (4.22)

The total damping coefficient is defined as

𝐵௠ = 𝐵௔ + 𝐵௅ ∗ (
ேభ

ேమ
)ଶ (4.23)

where 𝐵௔ is the motor damping coefficient, and 𝐵௅ is the load damping coefficient. Substituting

the parameters from Table 4.1 yields

 𝐵௠ = 0.00002 N-m/(rad/sec) (4.24)

 63

The values for the armature resistance, the armature inductance, the electromotive force

constant, the torque constant, the moment of inertia of motor and load, and the damping ratio

of mechanical system, are substituted into equations 4.19, 4.20 to obtain

𝐾௠ =
଴.ସଶହ

ଵସ.ଷ∗଴.଴ଵଷ
 (4.25)

𝐾௠ = 2.2862 (4.26)

𝑎௠ =
ଵସ.ଷ∗଴.଴଴଴଴ଶ (଴.ସଶହ∗ଶ.ଷ)మ

ଵସ.ଷ∗଴.଴ଵଷ
 (4.27)

𝑎௠ = 5.26 (4.28)

Finally, the values for 𝐾௠ and 𝑎௠ are substituted into Equation 4.18 to obtain the final DC

motor transfer function defined as

ఏ(௦)

௏ೌ (௦)
=

ହ.ଶ଺

௦(௦ାଶ.ଶ଼଺ଶ)
 (4.29)

The open loop transfer function is simulated and validated in the next section using MATLAB

and Simulink.

4.2.4 Simulation and Validation

The open loop response of the DC motor without load is simulated in MATLAB and Simulink.

The calculations to determine the values for 𝐾௠ and 𝑎௠ are done in MATLAB and can be seen

in Appendix A4.1. The transfer function is configured in Simulink using a transfer function block

as shown in Figure 4.2. A step input is used to test the response of the system. The step value

is 1 and the time at which the step occurs is at 1 second. Figure 4.3 shows the graphical open

loop response from the scope in Simulink.

Figure 0.2: Simulink block diagram of a step input to a DC motor transfer function

 64

Figure 0.3: Open loop step response of a DC motor

The response in Figure 4.2 illustrates an exponential increase in the motor position. This

occurs because the measured position is not fed back into the control system. A closed loop

system with measured position feedback is discussed in section 4.4. This thesis focuses on

modern control theory and therefore the state space representation is required before the

controller can be developed. The next section will formulate the state space equations of a DC

motor.

4.3 State space representation of open loop system of a DC motor

Working with differential equations and transfer functions when trying to model systems

becomes more difficult as the systems become more complex. Therefore, it is necessary to

use state space representation to allow for easier design and modelling of systems. State

space representation of a physical system consists of a set of inputs, outputs and state

variables in a mathematical model which is related by first order differential equations (Rowell,

2002). The states which change with time in a DC motor are position, velocity, and armature

current. In this case, only position and velocity are considered. The state space equations of a

plant is expressed as

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (4.30)

𝑦 = 𝐶𝑥 + 𝐷𝑢 (4.31)

 65

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the

feedthrough matrix. The A matrix captures the dynamics of the linear system, which includes

how the energy of the system is captured, stored, and moved. The B matrix determines how

the system responds to inputs. All four matrices can be calculated by finding the derivatives of

the states of the system.

Rearranging Equation 4.18, the angular position is obtained as shown in Equation 4.32.

𝜃௠(𝑠) =
௄೘

௦(௦ା௔೘)
∗ 𝑉௔(𝑠) (4.32)

Taking the inverse Laplace transform of Equation 4.32:

𝑠ଶ𝜃௠(𝑠) + 𝑠𝜃௠(𝑠)𝑎௠ = 𝐾௠𝑉௔(𝑠) (4.33)

This transformation is done as the state space representation requires the model of the plant

to be in the time domain. Rearranging Equation 4.33 results in the angular acceleration being

obtained as shown in Equation 4.34.

𝜃̈௠(𝑠) = −𝜃̇௠(𝑠)𝑎௠ + 𝐾௠𝑉௔(𝑠) (4.34)

The states of the system are expressed as

𝑦 = 𝜃௠ = 𝑋ଵ (4.35)

and

𝑦̇ = 𝜃̇௠ = 𝑋̇ଵ = 𝑋ଶ (4.36)

and

𝑦̈ = 𝜃̈௠ = 𝑋̈ଵ = 𝑋̇ଶ = −𝜃̇௠(𝑠)𝑎௠ + 𝐾௠𝑉௔(𝑠) (4.37)

Where 𝑋ଵ and 𝑋ଶ are vector components. These components make it easier to formulate the

derivatives of the states. Once all the derivatives are found, it is possible to find the state

space equations by making the derivatives the subject of the formula expressed as

𝑋̇ଵ = 𝑋ଶ (4.38)

 66

and

𝑋̇ଶ = −𝑋ଶ𝑎௠ + 𝐾௠𝑉௔(𝑡) (4.39)

The output equation is expressed as

𝑦 = 𝑋ଵ (4.40)

Therefore, the matrices of the state space models are expressed as

, 𝐴 = ൤
0 1
0 −𝑎௠

൨, 𝐵 = ൤
0

𝐾௠
൨, 𝐶 = [1 0] ൤

0
𝐾௠

൨, 𝐷 = 0

Finally, the state space model of the plant is expressed as

൤𝜃̇
𝜃̈

൨ = ൤
0 1
0 −𝑎௠

൨ ቂ
𝜃
𝜃̇

ቃ + ൤
0

𝐾௠
൨ 𝑢(𝑡) (4.41)

𝑦(𝑡) = [1 0] ൤
0

𝐾௠
൨ (4.42)

Substitute the values for 𝑎௠ and 𝐾௠ for the complete state space equation of an open loop DC

motor we obtain

൤𝜃̇
𝜃̈

൨ = ቂ
0 1
0 −5.26

ቃ ቂ
𝜃
𝜃̇

ቃ + ቂ
0

2.2862
ቃ 𝑢 (4.43)

𝑦(𝑡) = [1 0] ቂ
0

2.2862
ቃ (4.44)

4.3.1 Simulation and Validation

The open loop response of the DC motor without a load in the state space form is simulated in

MATLAB and Simulink. The values for matrix A, B, and C are calculated in MATLAB and can

be seen in Appendix A4.2. The state space equations are illustrated in Simulink using a gain

block for the matrixes, an integrator to convert between states, and a summing junction that

adds matrix A as feedback into the system. A step input is used to test the response of the

system. The step value is 1 and the time at which the step occurs is at 1 second. Figure 4.5

shows the graphical open loop response from the scope in Simulink.

 67

Figure 0.4: Simulink block diagram of a step input to a DC motor that is represented in state

space form

Figure 0.5: Open loop step response of a DC motor that is represented in state space form

The open loop step response of the DC motor in state space form is the same as the open

loop step response of the DC motor transfer function shown in Figure 4.3. This verifies that the

conversion to state space form is correct and that the state space equations can now be used

in future models and simulations. The next section describes the full model of the plant.

4.4 Model of a radio antenna control system

The model for the radio antenna consists of two separate models for the azimuth and altitude

positional movements. The load of the antenna is not included in the block diagram as the gear

ratios are already included in the transfer function. The addition of the postion output being fed

 68

back into the system through a summing junction, as shown in Figure 4.6, represents the

encoder position feedback from the motor. The difference between the input and the output is

the steady state error, which causes the system to move towards the set point. Equations 4.43

and 4.44 represent the state space model of the closed loop system.

൤𝜃̇
𝜃̈

൨ = ቂ
−5.26 −2.2862

1 0
ቃ ቂ

𝜃
𝜃̇

ቃ + ቂ
2
0

ቃ 𝑢(𝑡) (4.43)

𝑦(𝑡) = [0 1.1431] (4.44)

Figure 0.6: Simulink block diagram of the radio antenna control system

A step input of 1 with an initial value of 0 is used to see the response of both DC motors. The

outputs, showing the angular position of the motor, shows the same results on both scopes as

the same motors and gear ratios are used for both the altitude and azimuth movements. As

seen in Figure 4.7, the system takes 12 seconds to reach the set position and achieve a steady

state.

.

 69

Figure 0.7: Step response of the radio antenna plant with step value of 1

Another step input with the value 10 is also used to validate the response of the closed-loop

system. As seen in Figure 4.8, the new set point also takes 28 seconds to reach and achieve

a steady state. This response is very slow and can be compensated by developing and using

a controller to decrease the rise time.

Figure 0.8: Step response of the radio antenna plant with step value of 10

 70

4.5 Conclusion

The mathematical model of the DC motors used for the positional movements of the dish is

presented in this chapter. The models are derived using the laws of physics, namely Kirchhoff’s

voltage law and Newton’s law of motion. These system equations of the electrical and

mechanical components of the motor are then substituted and rearranged to derive the

electromagnetic model. This model is represented in both the transfer function and the state

space form.

The open loop step response of the motor is simulated using MATLAB/Simulink. The response

shows an unstable system as the set position is never reached over time. Both the transfer

function and state space representation of the open loop step response have the same results

which verifies that the state space conversion was correct. The state space representation is

required in the next chapter for the controller design.

The radio antenna plant is also modelled and tested by means of a step response. It is shown

that the system is stable but that the system performance is very slow. The next chapter

focuses on the design of the controller for the plant to decrease the overall rise time. A state

feedback gain controller with integral action and observer is proposed. The issue of network

induced delays is also investigated.

 71

CHAPTER 5
STATE FEEDBACK CONTROLLER DESIGN

5.1 Introduction

This chapter is based on state feedback controller design techniques. This technique is

generally used to shape the system's behavior and dynamics to achieve desired performance

and stability. It is used to design control systems that provide control inputs based on the full

state information of a dynamic system. A state feedback controller allows the movement of

the system poles to any desired location. Moving the poles of a system results in different

responses in factors such as rise time, overshoot, frequency, gain, and settling time. Poles can

be moved from the right-hand plane to the left, causing the system to become stable. This is

done by multiplying each state by a certain gain K and feeding the result back into the system.

Many advantages such as reduction in design complexity, reduction in hardware, and overall

adaptivity are a direct result of applying a state feedback controller to a system (Ruderman et

al, 2018).

This study focuses on modern controller design techniques using a state feedback controller

approach. The designed parameters are later used to control the position movement of a radio

antennas azimuth plane. The step response of the closed-loop system as discussed in the

previous chapter is fundamentally used to prove the requirement for the designed controller.

The stability of the system is proven, as there is no steady-state error, but the time taken by

the system to get to a steady state is too long. To decrease the rise time, it is necessary to

introduce a controller, hence the introduction of this chapter Each set of motors will have a

state feedback controller; therefore, this chapter only discusses the controller design for the

motor used for Azimuth position movement. The same controller is then used for the Altitude

motor.

A state feedback controller is designed in Section 5.2. The addition of integral control to the

controller is implemented in Section 5.3. Observer control for the current controller is described

in Section 5.4. The effects of network delays in the developed control system are discussed in

Section 5.5, followed by the conclusion in Section 5.6.

5.2 State Feedback Controller Design Using Pole-Placement Approach

The pole placement technique is used to change the behaviour of a system by moving its poles

to a desired location. As indicated in the previous chapter the current system poles are situated

at a position that causes the system to have a slow rise time. The graphical record based on

the step response as presented in Chapter 4 are the results of the poles of the system that are

situated at -0.486 and -4.78 as shown in Figure 5.1. To achieve a faster rise time, it is

necessary to move these poles further into the left-hand side of the s-plane. Figure 5.1 shows

 72

the MATLAB output of the root locus of the DC motor closed-loop system described by the

state space equations that are formulated in the previous chapter.

Figure 0.1: Root Locus of the closed-loop system

The following subsections describe the process involved in designing a state feedback

controller with pole placement feedback. The control law for state feedback is first described

followed by a test to see if the system is controllable. The state feedback gain is then calculated

and tested through simulations.

5.2.1 Control Law

To determine how a system responds to input signals and regulates its output signals to

achieve its desired objective, it is necessary to determine its control law. The control law is a

mathematical representation that shows the behaviour of a control system. Developing a

control law is very beneficial when designing a system, performing optimization, analysing

stability, testing model compatibility, and preventing rework. Determining the control law before

designing the control system establishes a solid foundation for the overall system performance.

The state space equations for a plant is defined as

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (5.1)

𝑦 = 𝐶𝑥 + 𝐷𝑢 (5.2)

 73

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the

feedthrough matrix.

The first step is to determine the control law for a full-state feedback controller. Because the

system is regarded as linear, it can be said that the C matrix is equal to the identity matrix, and

the D matrix is equal to zero. Therefore, by inserting this logic into Equation 5.2,

𝑦(𝑡) = 𝑥(𝑡) (5.3)

Therefore, the control law for a full state feedback controller is given by

𝑢(𝑡) = −𝐾𝑥(𝑡) (5.4)

where 𝐾 is the gain matrix.

Substituting Equation 5.4 into equation 5.1 results in Equation 5.5.

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵(−𝐾𝑥(𝑡)) (5.5)

Rearranging Equation 5.5 the closed-loop state space representation of the system is

obtained as shown in Equation 5.6.

𝑥̇(𝑡) = (A − 𝐵𝐾)𝑥(𝑡) (5.6)

The A matrix in a closed loop system is defined as

𝐴஼௅ = 𝐴 − 𝐵𝐾 (5.7)

where 𝐴஼௅ is the closed-loop A matrix

Substituting Equation 5.7 into Equation 5.6 yields

𝑥̇(𝑡) = 𝐴஼௅ . 𝑥(𝑡) (5.8)

 This closed-loop A matrix governs the behaviour of the system as changing the value of 𝐾

results in the movement of the eigenvalues. In the next subsection, the first task is to evaluate

the controllability of the control system before using the state feedback controller to optimize

the response of the system.

 74

5.2.2 Controllability

A DC motor system model needs to be in a controllable state to use a state feedback controller

with pole placement (Iswanto et al, 2021). To check controllability, it is necessary to test if the

system model is already in controllable canonical form. The test for controllability is expressed

as

𝑃஼ = [𝐴 𝐴𝐵] (5.9)

where 𝑃஼ is the controllability matrix.

Substituting the A and B matrices of the closed-loop system into Equation 5.9 yields

𝑃஼ = ቈቂ
−5.26 −2.2862

1 0
ቃ ቂ

−5.26 −2.2862
1 0

ቃ ቂ
2
0

ቃ቉ (5.10)

Simplifying Equation 5.10 results in Equation 5.11.

𝑃஼ = ቂ
2 −10.5201
0 2

ቃ (5.11)

As shown in Equation 5.11, the second row of the matrix 𝑃஼ is not dependent on the first row

and therefore the rank is 2, proving that the system is controllable.

The DC motor system model is proven to be controllable and therefore a controller can be

designed to change the response of the system. The next section uses the state feedback

control law and the positions of the desired poles to solve for the gain matrix 𝐾.

5.2.3 Solve for Gain Matrix K

This section describes how to solve for the gain matrix 𝐾 when designing a state feedback

controller. The value of the gain matrix 𝐾 is used to move the poles of a system to a desired

location. It is necessary to move the poles of the system to decrease the current system’s rise

time. The gain matrix 𝐾 is multiplied by the input matrix B, and then subtracted from the state

matrix A. This shows that the value of 𝐾 has a direct effect on the states of the system.

Before moving the poles to a desired location, it is necessary to find the characteristic equation

of the closed loop system with state feedback control. This is done by finding the value of

 75

matrix 𝐴஼௅ and then finding the eigenvalues of the closed-loop matrix. The values for matrices

A, B, and 𝐾 are substituted into Equation 5.7 to obtain

𝐴஼௅ = ቂ
−5.26 −2.2862

1 0
ቃ − ቂ

2
0

ቃ [𝐾ଵ 𝐾ଶ] (5.12)

where 𝐾ଵ and 𝐾ଶ are vectors of the matrix 𝐾.

Simplifying Equation 5.12 through matrix multiplication Equation 5.13 is obtained.

𝐴஼௅ = ቂ
−5.26 −2.2862

1 0
ቃ − ቂ

2𝐾ଵ 2𝐾ଶ

0 0
ቃ (5.13)

Simplifying Equation 5.13 through matrix subtraction results in Equation 5.14.

𝐴஼௅ = ቂ
−5.26 − 2𝐾ଵ −2.2862 − 2𝐾ଶ

1 0
ቃ (5.14)

The next step is to find the eigenvalues of matrix 𝐴஼௅. The formula used to calculate the

eigenvalues of a system is expressed as

0 = det (λ𝐼 − 𝐴஼௅) (5.15)

where 𝐼 is a 2x2 identity matrix, and λ is a mathematical constant.

Substituting Equation 5.14 into 5.15 yields

0 = det ቀቂ
λ 0
0 λ

ቃ − ቂ
−5.26 − 2𝐾ଵ −2.2862 − 2𝐾ଶ

1 0
ቃቁ (5.16)

Simplifying Equation 5.16,

0 = det ቀቂ
λ − (−5.26 − 2𝐾ଵ) −(−2.2862 − 2𝐾ଶ)

−1 λ
ቃቁ (5.17)

Simplifying Equation 5.17,

0 = det ቀቂ
λ + 5.26 + 2𝐾ଵ) 2.2862 + 2𝐾ଶ)

−1 λ
ቃቁ (5.18)

Finding the determinant of Equation 5.18 results in Equation 5.19.

 76

0 = (λ + 5.26 + 2𝐾ଵ)λ − (−1((2.2862 + 2𝐾ଶ)) (5.19)

Simplifying Equation 5.19 obtains the characteristic equation of the closed-loop system and

is expressed as

0 = λଶ + 5.26λ + 2𝐾ଵλ + 2.2862 + 2𝐾ଶ (5.20)

To achieve a faster rise time, the poles -2 and -6 are selected. These poles are known as the

desired poles and is expressed as the desired characteristic equation

0 = λଶ + 8λ + 12 (5.21)

The values for 𝐾ଵ and 𝐾ଶ are solved by equating the coefficients of the like terms in the closed

loop and desired characteristic equations shown in Equations 5.20 and 5.21. The equated

characteristic equations are expressed as

5.26 + 2𝐾ଵ = 8 (5.22)

and

2.2862 + 2𝐾ଶ = 12 (5.24)

Substituting 𝐾ଵ and 𝐾ଶ into the gain matrix 𝐾 yields

𝐾 = [1.37 4.8569] (5.25)

Substituting the gain matrix 𝐾 back into Equation 5.14, the closed-loop A matrix is expressed

as

𝐴஼௅ = ቂ
−8 −12
1 0

ቃ (5.26)

The state space model of the closed-loop system with full state feedback controller is

expressed as

൤𝜃̇
𝜃̈

൨ = ቂ
−8 −12
1 0

ቃ ቂ
𝜃
𝜃̇

ቃ + ቂ
2
0

ቃ 𝑢 (5.27)

𝑦(𝑡) = [0 1.1431] (5.28)

 77

The new closed loop system shown in Equations 5.27 and 5.28 has poles at the desired

location to achieve a faster rise time. The next section presents the simulation and validation

of the behaviour and response of the closed loop system using MATLAB/Simulink.

5.2.4 Simulation and Validation

This section presents the simulation and performance evaluation of the DC motor control

system being controlled with a state feedback controller. It is necessary to simulate and

validate the state space equations that are developed in the previous section to prove that the

equations are correct before applying the controller to a real-world system.

The MATLAB software environment is used to define and calculate the closed loop state space

representation of the system. The software is also used to prove controllability, define the

desired poles, calculate the values of 𝐾 using Ackerman’s formula, and lastly determining the

new state space model of the system. Appendix A5.1 presents the MATLAB code used to find

the new state space model or gain control model parameters. The new root locus response

can be seen in Figure 5.2, showing the desired poles at -2 and -6. Therefore, it is proven that

the calculated values of the gain matrix 𝐾 are correct.

Figure 0.2: Root locus of closed loop system with new desired poles

 78

The Simulink block diagram can be seen in Figure 5.3. The state gain matrix 𝐾 is shown being

multiplied by the output of the integrator, which is also the states of the system. The states

multiplied by 𝐾 are then subtracted from the input and multiplied by the closed loop matrix 𝐵஼௅.

Figure 0.3: Simulink block diagram of closed loop system with state feedback controller

The considered closed loop system with state feedback controller is simulated and the step

response is shown in Figure 5.4. The rise time has decreased from 28 seconds to 4 seconds.

Hence the state feedback controller made the system react 7 times faster than the open loop

system. Note that the position reached at a steady state is not the same as the unit step input

which has the value of 1. The steady-state error that is present is the main disadvantage of

using a full-state feedback controller.

Figure 0.4: Step response for closed loop system with state feedback controller

 79

The next section shows how to compensate for the error in position by applying integral control

to the controller.

5.3 State Feedback with Integral Control

This section focuses on designing a controller that can compensate for the steady-state error

encountered in the results in Section 5.2. The step response shown in Figure 5.4 shows that

the introduction of full state feedback control has the disadvantage of having a huge steady

state error. Steady state error can cause low accuracy as the set point of the controller is never

reached. The system considered in this research requires zero steady state error; therefore, it

is necessary to add integral control to the controller to reduce the current steady state error.

The following subsections describe the process to be followed when designing a state

feedback controller with integral control. The new control law for state feedback is first

described. The state feedback gain and integral gain is then calculated and tested through

simulations.

5.3.1 Control Law

Integral control feeds the error between the input (𝑟(𝑡)) and output (−𝐶𝑥(𝑡)) of the plant back

into the system through an integrator. This new control structure adds an additional state, 𝑥௜,

to the system due to the output from the integrator (Equation 5.32). The new state is then

multiplied by a gain 𝐾௜ and subtracted from the full-state feedback controller’s input. The

equation for the new state is shown is expressed as

𝑥̇௜ = −𝐶𝑥(𝑡) + 𝑟(𝑡) (5.29)

where 𝑟(𝑡) is the input to the controller and 𝑥̇௜ is the input state of the integrator.

The new control law is expressed as

𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝐾௜𝑥௜(𝑡) (5.30)

where 𝐾௜ is the integral gain and 𝑥௜(𝑡) is the output state of the integrator

Substituting Equation 5.30 into the output equation of a state space system, the state space

model of the plant with full statefeedback and integral control is expressed as

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵(−𝐾𝑥(𝑡) + 𝐾௜𝑥௜(𝑡)) (5.31)

 80

Simplifying Equation 5.31,

𝑥̇ = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝐾௜𝑥௜(𝑡) (5.32)

Therefore, the state space model of a closed-loop system with a full state feedback controller

and integral control is expressed as

൤
𝑥̇

𝑥௡
൨ = ቂ

𝐴 − 𝐵𝐾 𝐵𝐾௜

−𝐶 0
ቃ ቂ

𝑥
𝑥௡

ቃ + ቂ
0
1

ቃ 𝑟(𝑡) (5.33)

𝑦 = [𝐶 0] ቂ
𝑥

𝑥௡
ቃ (5.34)

The next subsection solves for the new state feedback gain 𝐾 and the integral control gain 𝐾௜

to allow for the movement of the system poles to a desired location and remove the steady

state error. Once the values for the gains are solved, the system is tested in MATLAB/Simulink.

5.3.2 Solve for Gains 𝑲 and 𝑲𝒊

The previous controller design without integral control is not sufficient as the result showed a

huge steady state error. Therefore, it is necessary to add integral control into the system to

decrease the current steady state error. Integral control is added to the system by integrating

and multiplying the input matrix B with a gain value 𝐾௜.

It is necessary to solve for 𝐾 and 𝐾௜ to achieve the desired transient response of the DC motor

system. This is done by moving the poles to desired locations. Before moving the poles, it is

necessary to find the characteristic equation of the closed loop system with state feedback and

integral control. This is done by finding the value of 𝐴𝑐𝑙, 𝐵𝑐𝑙 and 𝐶, then substituting these into

the state space model.

𝐴𝑐𝑙 is expressed as

𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾 = ቂ
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ

−1 0
ቃ (5.35)

𝐵𝑐𝑙 is expressed as

𝐵𝑐𝑙 = 𝐵𝐾௜ = ቂ
2
0

ቃ ∗ 𝐾௜ (5.36)

 81

𝐶 is expressed as

𝐶 = [0 1.1431] (5.37)

Substituting Equations 5.35, 5.36, and 5.37 into 5.33 yields

൥

𝑥̇ଵ

𝑥̇ଶ

𝑥௜

൩ = ൥
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ 2𝐾௜

1 0 0
0 1.1431 0

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥௜

൩ + ቂ
0
1

ቃ 𝑟(𝑡) (5.38)

The next step is to find the eigenvalues of matrix 𝐴஼௅. Substituting into Equation 5.15 results

in Equation 5.39.

0 = 𝑑𝑒𝑡 ൭൥
λ 0 0
0 λ 0
0 0 λ

൩ − ൥
−5.26 − 2𝐾ଵ −2.286 − 2𝐾ଶ 2𝐾௜

1 0 0
0 1 0

൩൱ (5.39)

Simplifying Equation 5.39,

0 = 𝑑𝑒𝑡 ൭൥
λ + 5.26 + 2𝐾ଵ 2.286 + 2𝐾ଶ −2𝐾௜

−1 λ 0
0 −1.1431 λ

൩൱ (5.40)

Finding the determinant of Equation 5.40 yields

0 = λଷ + 5.26λଶ + 2λଶ𝐾ଵ + 2.286λ + 2λ𝐾ଶ − 2.2862𝐾௜ (5.41)

The order of the system has increased due to the addition of another state after the integrator

output. Therefore, another pole must be added when calculating the desired characteristic

equation. The poles -2, -6 and -8 are chosen to achieve a faster rise time. The desired

characterstic equation is expressed as

0 = λଷ + 16λଶ + 76λ + 96 (5.42)

The values for 𝐾ଵ, 𝐾ଶ and 𝐾௜ are solved by equating the coefficients of the like terms in the

closed loop and desired characteristic equations shown in Equations 5.41 and 5.42. The

equated characteristic equations are expressed as

16 = 5.26 + 2𝐾ଵ (5.43)

 82

and

76 = 2.286 + 2𝐾ଶ (5.44)

and

96 = −2𝐾௜ (5.45)

Therefore the values for 𝐾 and gain 𝐾௜ are expressed as

𝐾 = ቂ
5.37

36.8569
ቃ (5.46)

𝐾௜ = −41.9915 (5.47)

Substituting the gain matrix 𝐾 and gain 𝐾௜ back into Equation 5.38 to get the state space model

of the closed loop system with full state feedback and integral control yields

቎
𝜃̇
𝜃̈
𝜃௜

቏ = ൥
−5.26 −2.2862 0

1 0 0
0 −1.1431 0

൩ ൥

𝜃
𝜃̇
𝜃௜

൩ + ൥
2
0
0

൩ 𝑟(𝑡) (5.48)

𝑦(𝑡) = [0 1.1431 0] ቂ
𝑥

𝑥௡
ቃ (5.49)

The new closed loop system shown in Equations 5.48 and 5.49 has poles at the desired

location to achieve a faster rise time and no steady state error. The next section presents the

simulation and validation of the behaviour and response of the closed loop system using

MATLAB/Simulink.

5.3.3 Simulation and Validation

This section presents the simulation and performance evaluation of the DC motor control

system being controlled with a state feedback controller with integral control. It is necessary to

simulate and validate the state space equations that are developed in the previous section to

prove that the equations are correct before applying the controller to a real-world system.

MATLAB functions are used to define and calculate the closed loop state space representation

of the system. The software is also used to determine the desired poles, calculate the values

of gain matrix 𝐾 and gain 𝐾௜ using Ackerman’s formula, and lastly display the root locus of the

system. The root locus response can be seen in Figure 5.5, showing the desired poles at -2,

-6 and -8. Therefore, it is proven that the calculated values of gain matrix 𝐾 and gain 𝐾௜ are

correct.

 83

Figure 0.5: Root locus of closed loop system with desired poles at -3, -5, and -20

The Simulink block diagram can be seen in Figure 5.6. The state gain matrix 𝐾 is shown being

multiplied by the output of the integrator, which is also the states of the system. The states

multiplied by 𝐾 are then subtracted from the input and multiplied by closed loop matrix 𝐵஼௅.

The addition of the integral gain is shown multiplied by an integrator before the summing

junction.

Figure 0.6: Simulink block diagram of a state feedback controller with integral control

The step response of the plant with full state feedback and integral control is shown in Figure

5.7. The step input of value 1 is reached in the same rise time as the state feedback controller

without integral control but with zero steady state error. The resultant controller has achieved

zero steady state error; therefore, the addition of integral control has worked.

 84

Figure 0.7: Step response state feedback controller with integral control

The next subsection focuses on a case study testing the response of the system. Response

factors such as rise time, settling time, steady state-state error and overshoot are compared

between different system inputs to test the performance and stability of the developed full state

feedback controller with integral action.

5.3.4 Case Study

This subsection is composed of a case study comparing the different systems, with and without

controllers, that have been developed in this research so far. The controllers are the same for

both the azimuth and altitude position systems and therefore the results can be used for either.

This case study only looks at the control of one DC motor to prevent duplication of results.

Four cases are discussed and compared based on the different system responses and

characteristics. Case 1 describes the step response of the closed loop DC motor system that

is developed in Section 4.4. Case 2 describes the step response of the closed loop DC motor

system with state feedback control that is developed in Section 5.2. Case 3 and 4 describes

the step response of the DC motor system with state feedback and integral control. The

difference between case 3 and 4 is the change in the input set point to compare the controller

response to multiple inputs.

Figure 5.8 shows the step input responses for cases 1, 2, 3 and 4. In each case, the set point

is compared to the angular position feedback of the DC motor. As shown, Case 1 has the

slowest rise time as there is no addition of a controller to the system. Adding a full state

feedback controller causes Case 2 to have a faster rise time than Case 1, but the steady-state

 85

error is huge. The addition of integral control to the system reduces the steady state error to 0

which can be seen in Case 3 and 4.

The output graphs of the 4 cases are developed in MATLAB with the code found in Appendix

A5.3. The ‘To-Workspace’ function block is used to extract the positions and set points from

Simulink to MATLAB to allow for custom plotting of the results.

Figure 0.8: Developed controllers’ response to step inputs

The response characteristics of each case is shown and compared in Table 5.1. The results

show the difference in step input, rise time, settling time, steady-state error, and overshoot.

 86

Table 0.1: Characteristics of the step response of the different DC motor control systems

 Description Step
Input

Rise time Settling
time

Steady-state
error

Overshoot

Case 1 Closed loop DC motor
system without a
controller

1 4.013s 9.164s 0 0%

Case 2 Closed loop DC motor
system full state
feedback control

1 0.966s 2.714s 9.84 0%

Case 3 Closed loop DC motor
system full state
feedback and integral
control with a small input
set point

1 1.244s 3.303s 0 0%

Case 4 Closed loop DC motor
system full state
feedback and integral
control with a large input
set point

100 1.244s 3.303s 0 0%

The results prove that adding a full state feedback controller to a closed loop system does

decrease the rise time as shown by the difference between Case 1, which has a rise time of

4.013s, and Case 2, which has a rise time of 0.966s. The decrease in rise time results in a

decrease in settling time and improves the overall response of the system. To reduce the 9.84

steady-state error shown in case 1, integral control is used for Case 3 and 4. This results in

similar rise and settling time, but zero steady state error. A step input of 100 is input into Case

4 to prove that the system reacts the same to larger values inputs. This is shown by Case 3

and 4 having the same rise time and settling time responses.

The final test done to show the full potential of the designed controller is shown in Figure 5.9.

A random number generator is used as an input to the model to see how the system responds

when the set point changes over time. The results shown has proven that the system is stable

and can respond to changes in position set point with the same settling time as Case 3 and 4.

Figure 0.9: Final Control System Response to Random Number Generator

 87

To use state feedback control, it is necessary to measure every state in the system. This can

become very costly as additional measuring hardware is required. To overcome this issue, it

is possible to add an observer to the control system to estimate the values of certain states.

The next section simulates the effect of network induced delays on the DC motor control

system.

5.4 Communication Delays

This subsection simulates the effect of network delays on the DC motor control system

developed in Chapter 5.3. Network delays need to be considered when designing a system

which has some fieldbus separating different components. This hardware implementation uses

the EtherCAT fieldbus protocol to communicate between the controller and the plant. The

network delays associated with this configuration can be implemented in the Simulink model

to analyse the effects on the overall system.

The two important delays which occur in networked control systems is the sensor-to-controller

time (𝑇௦௖) delay and the controller-to-actuator time (𝑇௖௔) delay. These delays are added to the

Simulink block diagram by using a transport delay block as shown in Figure 5.12. The 𝑇௦௖ delay

is added in the feedback line to simulate a delay in the encoder position feedback from the

motor to the controller. A value of 200ms is used as an example. The 𝑇௖௔ delay is added

between the controller and the input to the B matrix of the state space form of the motor. A

value of 100ms is used as an example. This simulates a delay in command transmission from

the controller to the plant.

Figure 0.10: Simulink block diagram with added transport delay blocks

Simulating the delays in Simulink help understand the limits of the system when designing

network-controlled systems. These delays can be analysed beforehand which can lead to a

 88

change in controller design, or a change in the hardware used. Critical delays which can cause

the system to become unstable can also be found and dealt with before implementation. The

following subsections describe the effects of the 𝑇௦௖ and 𝑇௖௔ delays on the system through case

studies. Various delays are added to the system and compared to the model which does not

have delays.

5.5.1 Sensor to controller delays

𝑇௦௖ delays can occur in closed-loop control systems depending on the hardware and fieldbus

protocol used. In this thesis, these delays occur due to the time taken for the encoder feedback

to register in the motor terminal controller. Depending on the magnitude of the delay, the

system could become unstable. In other cases, the delay might not be critical, causing the

system to decrease in performance, but remain stable. Table 5.2 compares the system with

no delays to four cases of systems with different sensor to controller delays.

The results show that an increase in 𝑇௦௖ leads to a reduction in rise time. This happens due to

the controller trying to compensate for the delay in feedback by commanding the motor to run

faster. The motor climbs to the set point quicker, but this can cause an overshoot as seen in

Case 2 and 3. The settling time also increases as 𝑇௦௖ increases due to the long duration that

the system takes to reach the set point. The results in Case 4 show an unstable system as the

set point is never reached and therefore the settling time, steady state error and overshoot is

infinite.

Table 0.2: Comparison between different sensor to controller delays in DC motor system

 𝑻𝒔𝒄

Rise Time Settling
Time

Steady-State Over-shoot

No delays 0ms 1.24s 3.30s 0 0%
Case 1 100ms 0.99s 2.74s 0 0%
Case 2 400ms 0.70s 5.56s 0 25.48%
Case 3 800ms 0.53s 9.91s 0 128.55%
Case 4 1200ms 6.96s Infinite Infinite Infinite

The tabular results are graphed using Simulink and shown in Figure 5.13 using a step input of

10mm. Each case is compared to the system with zero delay between the sensor and controller

(𝑇௦௖). The overshoot described for Cases 2 and 3 can clearly be seen. The first three cases

are shown to eventually reach steady state and achieve the desired set point. The position in

Case 4 will continue to increase and decrease at an unstable rate, never reaching steady state.

 89

Figure 0.11: Case Study on the effects of sensor-to-controller delays

The effects of 𝑇௦௖ delays in the DC motor control system have been analysed in this subsection.

The following subsection shows the simulation results of the system with different controller to

actuator, 𝑇௖௔ delays.

5.5.2 Controller to actuator delays

Delays from the controller to the actuator can occur in closed-loop control systems. In this

system these delays occur between the controller and the DC motor. Like 𝑇௦௖ delays, an

increase in 𝑇௖௔ delays cause stability and performance issues in a control system. Table 5.3

shows the results when an increase in 𝑇௖௔ delays is added to the DC Motor Simulink model

using a transport delay block. Noticeably, small 𝑇௖௔ delay examples are used for simulation as

even a small increase in this type of delay has major negative effects on the system.

Table 0.3: Comparison between different controller to actuator delays in DC motor system

 𝑻𝒄𝒂

Rise Time Settling Time Steady-State Over-shoot

No delays 0ms 1.244s 3.303s 0 0%
Case 1 50ms 1.225s 3.314s 0 0%
Case 2 100ms 1.175s 3.331s 0 0%
Case 3 125ms 1.227s 7.467s 0 2.464%
Case 4 150ms 1.867s Infinite Infinite Infinite

 90

The larger the 𝑇௖௔ delay, the longer the system takes to reach the set point as shown by the

increase in rise time values between Case 1 to 4. A small overshoot is present when the delay

is 125ms, but steady state is still reached over time. Case 4 shows that a 𝑇௖௔ delay of 150ms

or more causes the system to become unstable, preventing the motor from ever reaching

steady state. The motor continuously turns forward and then reverse and then forward in an

ever-increasing endless cycle.

Figure 0.12: Case Study on the effects of controller-to-actuator delays

This section analysed the effects of 𝑇௦௖ and 𝑇௖௔ delays in the developed control system. It is

shown that an increase in either delay leads to instability and performance decrease. In some

cases, the system can recover, but at certain critical delays the system becomes completely

unstable. It is also not good practice to have a system overshoot the set point and recover,

depending on the desired characteristic response. The next section concludes the chapter on

controller design.

 91

5.5 Discussions and analysis

The simulation results of the designed state feedback controller for the DC motor closed-loop

system is proven to be effective. The aim of adding the controller was to decrease the rise time

of the step response of the system. This would cause the DC motor to react quicker to changes

in angular position when commanded. The controller reduced the rise time response to a

quarter of the rise time that the system with no controller performed.

The disadvantage is that a huge steady state error is present when using state feedback. To

overcome this, integral control is added to the system. Integral control reduced the steady state

error from 9.84mm to zero. This is done by multiplying the integrated input by a gain big enough

to have zero steady state. There is also no overshoot present and the rise time is slightly

affected but still much faster than the closed-loop system without a controller. The system is

tesed using a random set point generator over time to test the robustness. The controller

performed as desired, showing stability and validated the controller design.

Since a fieldbus protocol will be used in the implementation to create the communication link

between the controller and plant, the imposed delays were analysed in a case study. This is

done to have results that show the effects of sensor-to-controller and controller-to-actuator

delays on the response of the system. The results help identify if different hardware or control

techniques should be considered before implementation studies can commence.

The case study proved that the network induced delays do have an effect on the performance

and stability of the system. It is shown through Simulation simulations that an increase in either

sensoer-to-controller or controller-to-actuator delays leads to a decrease in system

performance. The delays in position feedback causes the controller to overshoot the set point.

In some cases the plant eventually reaches steady state, but for longer delays then system

becomes unstable.

5.6 Conclusion

This chapter focused on the design of a full state feedback controller for the closed-loop DC

motor control system. Pole placement technique is used to shift the poles of the system by

using a gain K in the feedback loop. Shifting the poles is important as it allows for the change

in system response to a desired response. In this section the desired response was to have a

faster rise time than the DC motor closed-loop system with no controller while still having good

performance and stability.

 92

 A step-by-step process is described showing the control law, testing controllability, and

showing how to solve for the gain matrix K. The addition of state feedback causes a huge

steady state error in the output of the control system, therefore integral control is also added.

The integral control law is used to solve for the gains K and Ki that speed up the response of

the system while also achieving a faster rise time, no overshoot, and zero steady state error.

A case study is completed comparing the step response of the closed loop system without a

controller, the system with state feedback control, and the system with state feedback and

integral control. The full state feedback with added integral controller showed the best

response by achieving the desired position output. A random set point generator is used to

test the agility and robustness of the controller to rapid changes in position set point. The effect

of network delays is also analysed and discussed.

The control system has been simulated and analysed and is therefore ready for

implementation. The next section shows how to transform the developed Simulink block

diagram to the Windows Control and Automation Technology (TwinCAT) programming

environment to allow for real-time implementation of the control system.

 93

CHAPTER 6

TRANSFORMATION FROM SIMULINK MODEL TO TWINCAT OBJECT

6.1 Introduction

This chapter describes the transformation of Simulink models into objects that are used in the

Beckhoff TwinCAT 3 software programming environment. The application of the transformation

is necessary to enable the utilization of the controller formulated in Chapter 5 for the regulation

of the actual DC motor that is connected to the Beckhoff EtherCAT remote interface. The

Simulink block diagram is converted to C++ code which can be read and used by TwinCAT.

The transformation assesses the portability of the code from Simulink to TwinCAT,

encompassing the transition from a continuous-time application to an active real-time control

environment. A successful transformation is in-line with the IEC 61499 standard which aims to

increase the portability, interoperability, and reusability of software components between

vendors.

Initially, a comprehensive description detailing the characteristics of every necessary software

package is provided, alongside a step-by-step manual explaining the installation process for

each development environment. The software required includes MATLAB/Simulink, TwinCAT

3, Visual Studio, and the TE1400 Target. Once all software packages are installed, a step-by-

step guide is shown on how to use and configure the installed tools to achieve a successful

transformation from the Simulink to TwinCAT 3 software environments. An overview of the

common installation errors is examined, and corresponding solutions are supplied to rectify

these issues. To validate the success of the transformation, a real-time numerical generator is

formulated within TwinCAT. This generator uses identical inputs as the Simulink random

number generator output shown in Figure 5.9 within Section 5.3.4, facilitating a comparative

assessment of the system's behaviors. The object’s response to the random set points is

plotted using Scope Viewer, which is a plotting tool included in the TwinCAT 3 package.

Section 6.2 describes all the necessary software packages needed to set up the engineering

computer for development. Section 6.3 describes how to export the developed controller model

in the Simulink software environment. Section 6.4 describes how to import the Simulink model

into the TwinCAT programming environment. In Section 6.5 the Simulink model and TwinCAT

objects are simulated and compared to confirm that the transformation is successful. Lastly,

the discussion and conclusion to the chapter is presented in Section 6.6.

 94

6.2 Software Descriptions

This section describes the installation of the prerequisite software that is needed for the

transformation of Simulink models to the TwinCAT 3 programming environment. Table 6.1

shows the versions, with download links, of the software that is used to complete the

implementation section of this research. All the listed software packages are installed on the

same Personal Computer (PC) which is referred to as the engineering PC in this thesis.

Windows 11 Home version 22H2 is the installed operating system on the engineering PC.

Table 0.1: Software installation download links

No. Software Download Link
1 Visual Studio 2019

Community
https://visualstudio.microsoft.com/vs/community

2 TwinCAT 3 XAE
v3.1.4024.47

https://www.beckhoff.com/en-en/support/download-
finder/software-and-tools/

3 MATLAB/Simulink 2023a https://www.mathworks.com/products/matlab.html
4 TE1400 Target https://www.beckhoff.com/en-

us/products/automation/twincat/texxxx-twincat-3-
engineering/te1400.html

The following subsections give a summary of each software environment that is required to be

installed on the engineering PC. The summaries include information regarding the software

packages, as well as a guide on certain parts of the individual installations.

6.2.1 MATLAB/Simulink software description

MATLAB/Simulink is a software environment that combines programming, simulation, and

visualization tools to facilitate the development and analysis of complex engineering and

scientific systems. The MATLAB/Simulink programming environment has already been used

in Chapters 4 and 5 to develop the block diagram of the full state feedback controller with

integral control that needs to be exported to TwinCAT 3. The installation procedure for

MATLAB/Simulink is shown in Appendix B6.1. It is recommended to select all products when

installing to allow for the full functionality of the MATLAB and Simulink programming

environments.

The MATLAB and Simulink Coders, which are automatically installed, are used to convert the

script files and block diagrams to C++ code for TwinCAT 3 to understand. This conversion

process is described in Section 6.3. The rest of the installation of MATLAB/Simulink software

is straightforward and is completed by clicking next until the products start downloading and

installing. The next subsection describes how to install Visual Studio 2019 with all its necessary

components.

 95

6.2.2 Visual Studio 2019 software description

Older versions of the TwinCAT software required the installation of Visual Studio to serve as

the programming shell for the software. TwinCAT 3 includes shell software called TwinCAT

eXtended Automation Engineering (XAE) where the user can program and interact with the

software tools. Unfortunately, this new shell program does not include the development tools

needed to run C++ objects. Therefore, it is needed to install Visual Studio 2019 Community to

add the desktop development kit. This is done during the installation of Visual Studio 2019.

Appendix B6.2 describes the installation procedure for Visual Studio 2019. This software is

important as the Simulink block diagram is converted to C++ code when transformed to

TwinCAT and therefore the necessary tools to read the C++ language are required.

It is important to note that Visual Studio must be installed before the TwinCAT software to

integrate the two software programs together. If TwinCAT 3 is already installed on the

engineering PC, it is necessary to uninstall it, then install Visual Studio, and then reinstall

TwinCAT 3 software. The rest of the Visual Studio 2019 software installation process is

straightforward and is followed by the installation of TwinCAT 3 software which is described in

the next subsection.

6.2.3 TwinCAT 3 software description

The Windows Control and Automation Technology (TwinCAT) 3.1 software is Beckhoff’s

integrated programming platform that enables the development, configuration, and control of

automation systems, offering real-time control, data processing and visualization capabilities.

This software package is used as the gateway between the Simulink model and the hardware

components. The installation of the TwinCAT software is straightforward and assistance is

provided by the installation guide on the Beckhoff website if necessary.

The full version of TwinCAT is installed on the engineering PC, which includes the engineering

environment as well as the run time software. The installation procedure for TwinCAT 3 is

described in Appendix B6.3. Once the installation is complete it is required to restart the

engineering PC to allow for all the new system drivers to activate. The next subsection

describes the creation of self-signed certificates to register the engineering PC drivers to

enable the use of the TwinCAT software tools.

 96

6.2.4 Drive signing

TwinCAT systems use a process called drive signing to ensure that device drivers are

authentic by providing a trusted and secure environment for communication between the

hardware and software components. This is done by creating certificates that are used during

the TwinCAT build process to authenticate the necessary drivers. Usually, a driver needs to

be co-signed by Beckhoff through a certificate creation process, but for testing purposes it is

possible to create a test certificate that is self-signed.

 Below are the steps for successful signing of drivers on Windows.

1) Create a test certificate that is used by TwinCAT to allow for projects to be

authenticated when building. Open Developer Command Prompt 2019 as an

administrator and execute the command ‘makecert -r -pe -ss PrivateCertStore -n

CN=MyTestSigningCert MyTestSigningCert.cer’ as shown in figure 6.1. After

executing, the message “Succeeded” shows if the certificate creation was successful.

The command prompt is found in the Windows search bar and should be run as an

administrator otherwise the certificate will not be created. Developer Command Prompt

2019 is installed automatically when installing Visual Studio 2019.

Figure 0.1: Developer Command Prompt 2019 Interface

2) Check if the certificate was created successfully. Search ‘mmc’ with the Windows run

function to open Microsoft Management Console (MMC). When the software opens,

navigate to ‘File’ and then ‘Add/Remove Snap-in’ as shown in Figure 6.2, labelled 1

and 2 respectively. Shortcut keys Ctrl+M can also be used for this step.

 97

Figure 0.2: MMC - Add/Remove Snap-in

The menu shown in Figure 6.3 will open. Click certificates (3), and then add to add console

root (4) to the selected snap-ins. Click OK (5) to confirm selection and the menu shown in

Figure 6.4 will appear. Select the radio button for my user accounts (6) and click finish (7).

Lastly, check that ‘Certificates – Current User’ option is available under Console Root (8-9), as

shown in Figure 6.5. Click OK (10) and the configured settings open a new MMC window to

view all created certificates as shown in Figure 6.6. ‘MyTestSigningCert’ should be created

under submenu ‘PrivateCertStore – Certificates’ (11-12).

Figure 0.3: MMC - Add/Remove Snap-in Step 2

1

2

3

4

5

 98

Figure 0.4: MMC - Add/Remove Snap-in Step 3

Figure 0.5: MMC - Add/Remove Snap-in Step 4

6

7

8

9

10

 99

Figure 0.6: MMC - Certificates

3) Start Windows operating system in Test Mode. Self-signed certificates are only active

when running Windows in Test Mode. To change to Test Mode, enter the following

command in Windows command prompt: ‘bcdedit /set testsigning yes’. It is necessary

to run Windows command prompt as an administrator to allow for the successful

transition to Test Mode. Windows command prompt is accessed by searching ‘cmd’

using the Windows search function. After restarting the PC, Windows should be in Test

Mode. To confirm, there should be white text in the bottom right corner of the Windows

desktop stating that that Windows is now in Test Mode. To revert to the normal

operating mode, use the command ‘bcdedit /set testsigning no’ in Windows command

prompt and then restart the PC.

This section configured the necessary self-signed certificates needed to authenticate the x64

drivers for TwinCAT. The next subsection describes the installation of the TE1400 target that

must be installed for the transformation of Simulink block diagrams to TwinCAT objects.

6.2.5 TE1400 Target

This section describes the installation of the TE1400 target that is installed in Simulink.

Beckhoff Automation has developed targets such as the TE1400 to allow for a seamless

transition between two software development environments. In this research, the target allows

for the efficient integration of the developed Simulink model into the TwinCAT automation

system by converting the block diagrams to C++ code. The C++ code is automatically

converted and imported into TwinCAT when running a series of MATLAB commands that uses

11

12

 100

the target functionality. Using the TE1400 target to generate TwinCAT objects from Simulink

block diagrams requires a license. The license must be installed on the engineering PC where

the module generation takes place. It is possible to use the target without a license but with

limited features. These limitations are on the design and complexity of the Simulink models

that are transformed. Only models with less than 100 blocks, 5 input signals, and 5 output

signals can be transformed without a license.

The TE1400 target is added to the TwinCAT functions after installing the installation file that

can be downloaded from the link of item number 4 in Table 6.1. The target function can be

accessed in the MATLAB software by navigating to the C: > TwinCAT > Functions > TE14xx-

ToolsForMatlabAndSimulink path (1) and running the setup file (2) as shown in Figure 6.7. The

installation takes a few seconds and if successful, the message shown in Figure 6.8 is

displayed in the MATLAB command window (3). Instructions on how to use the target as well

as a few sample projects are also displayed in the same MATLAB command window (4).

Figure 0.7: Navigation to TE1400 TwinCAT function

Section 6.2 described the installation of all the prerequisite software required for the

transformation of Simulink block diagrams to TwinCAT objects. The installation of

MATLAB/Simulink, Visual Studio 2019 Community, TwinCAT 3, and the TE1400 target are all

discussed. The use of certificates to self-sign Windows drivers for authentication with TwinCAT

to allow for successful compiling of TwinCAT projects is also described.

1
2

 101

Figure 0.8: Status of TwinCAT TE140x installation from the MATLAB Command Window

Now that the engineering PC is set up and all necessary software is installed, the software

tools are used to start the transformation process. The next section describes the steps taken

in Simulink for the transformation to take place, followed by Section 6.4 which describes the

steps taken in TwinCAT to simulate and test that the transformation is successful.

6.3 Simulink Configuration

This section shows how to generate TwinCAT objects from the developed Simulink block

diagrams. A revised iteration of the comprehensive Simulink diagram established in Chapter 5

is shown in Figure 6.9. The variables for state feedback gain, integral gain, and the A, B and

C matrices, which were previously calculated in a MATLAB script, are all hard coded into the

Simulink block diagram. This is done because the transformation process from Simulink to

TwinCAT only uses the Simulink blocks and cannot include the MATLAB script files. Lastly,

the step and scope Simulink blocks are removed and replaced with an input labelled “set point”

and an output labelled “position” which is used in TwinCAT to interface with the model.

Figure 0.9: Updated controller block diagram with added input and output blocks

3

4

 102

Appendix A6.1 contains code developed that assists with the generation of the TwinCAT

objects. When run, the code performs a few tasks which changes the Simulink models’

parameters and then saves and builds the project using the Simulink coder. The model

parameters can also be set up manually beforehand. These parameters include changing the

solver type, the system target file, and the TwinCAT 3 object name. All the parameters that

need to be changed are found in the Simulink model which can be opened by using the

keyboard shortcut Cntrl-E. Figures 6.10, 6.11, and 6.12 are all screenshots from the model

settings page.

Figure 6.10 shows the settings page for the type of solver used (2). A fixed-step type is required

(3), with a fixed-step size of 0.01ms (4). The solver itself is set to automatic or to whichever

solver is preferred. Figure 6.11 changes the target system file to “TwinCatGrt.tlc” (4) which is

the TE1400 target installed in section 6.2.5. Lastly, Figure 6.12 shows the naming conventions

of the object that is created once transformed to TwinCAT 3 (7). As mentioned before, if the

MATLAB script in Appendix A6.1 is run, all these settings are automatically updated, and the

object is immediately available for use in TwinCAT 3.

Figure 0.10: Model configuration - Solver menu

2

3

4

 103

Figure 0.11: Model configuration - Code Generation submenu

Figure 0.12: Model configuration - TC General submenu

4

5

6

7

8

 104

Table 6.2 shows a list of errors and solutions to issues found when trying to generate the

TwinCAT objects from Simulink. The errors are found in the MATLAB diagnostics window when

trying to build the code found in Appendix A6.3. Once all the errors are cleared using the

supplied solution, the build is successful and the TwinCAT object is available for use in the

TwinCAT XAE programming environment.

Table 0.2: Possible errors during Simulink Coder compiling

Error Solution
Simulink Real-Time model build cannot use a
file path with spaces for model build directory

The file location of the Simulink model on
Windows had a space in one of the folder
names. Delete all spaces and replace them with
underscores to prevent this error.

Publish Procedure Failed When running the certificate creation task in the
command prompt, the command is run twice so
two certificates are created. The two certificates
are clashing as the same name is used. Make
sure there is only one certificate in the mcc to
prevent this error.

Error using tlc_new This occurs when trying to compile the Simulink
block diagram with the Simulink Coder without
configuring the steps shown in Figures 6.13,
6.14, and 6.15.

6.4 TwinCAT Configuration

This section describes the process of adding the generated TwinCAT object from Section 6.3

into the TwinCAT XAE environment. The new object which consists of the Simulink block

diagram is used to control the DC motors that are connected to the Beckhoff terminal card.

Therefore, it is necessary to first develop and test the software before mapping the inputs and

outputs of the object to the hardware.

Figure 6.13 shows the menu that is used to configure a new project with the TwinCAT 3

programming environment. The “TwinCAT XAE Project” is selected as a base starting project

for development. Click on the required starting project (1) and then click the OK button (2) to

start developing.

 105

Figure 0.13: TwinCAT 3 new project window

Once a new project is created, the converted Simulink block diagram is added. Figure 6.14

shows how to open the list of TwinCAT Component Object Model (TcCom) Objects that can

be added to the project for interfacing (3). This list is accessed from the Solutions Explorer tab

in TwinCAT 3 programming environment. A new item can also be added by using the insert

button on the keyboard (4).

Figure 0.14: How to add a new TcCom object

1

2

3
4

 106

A new window, shown in Figure 6.15, appears when trying to add a new item. Navigate to

TE140x Module Vendor (5) to find all the objects that are generated using the TE1400 target

for Simulink. If a Simulink block diagram is generated twice, the version will update and be

displayed next to the object name. Older versions are accessed via the small plus sign next to

the object name. Once an object is selected, click OK (6) to add the item to the current

TwinCAT project. The item is added to the solutions explorer under TcCom objects as shown

in Figure 6.16 (7). The objects' inputs and outputs are now accessible by the rest of the

TwinCAT project. The object’s block diagram can also be viewed under the block diagram

submenu.

Figure 0.15: List of available TcCom objects

Figure 0.16: Simulink block diagram successfully transformed to TwinCAT 3

Before activating the created TcCom object it is necessary to create and assign a task to set

the cycle at which the object is processed. A task is added by right-clicking on ‘Tasks’ in the

solution explorer. The only changes needed to be made to the default task are the name and

5

6

7

 107

the cycle ticks. Because the fixed step cycle time is set to 0.01 seconds in Simulink, a cycle

ticks value of 10 is necessary. This creates a task cycle time of 0.01 seconds as shown in

Figure 6.17 (8).

Figure 0.17: Adding a new task

The next step is to assign the new task to the created TcCom object. This is done under the

object properties, under the context submenu as shown in Figure 6.18 (9). Simply click on the

drop-down menu under task (10) and select the new task that is created. The task name

updates as an indication that the object will now cycle at the same speed as the set cycle of

the task. The object is now completely set up and ready for activation.

Figure 0.18: Assigning a task to a TcCom Object

8

9
10

 108

The last step to finish setting up the project is to activate the required licenses. Figure 6.19

shows the TwinCAT licensing menu (11) and the submenu which shows the current installed

licenses. Licenses are removed or added under the manage licenses menu. The license called

TC1220 allows the usage of the PLC, MATLAB, Simulink, and C++ functions. A trial license

can be run for 7 days if development needs to be started before receiving the actual license.

Once the license is activated it is possible to run the TwinCAT project.

Figure 0.19: TwinCAT 3 Licensing Menu

Table 6.3 shows a list of errors and solutions to issues found when trying to activate the

developed TwinCAT project. The errors are found in the TwinCAT error list. Once all the errors

are cleared using the supplied solution, the project is active and in a running state.

Table 0.3: Possible errors when activating a TwinCAT project

Error Solution

Task assignment to context 0 is not valid No task is added to the created TcCom object.
Figure 6.20 shows how to add a task and Figure
6.21 shows how to assign a task to an object.

No certificate found in PE image file This error occurs if the operating system is not in
test mode, or if the driver signing process is not
completed correctly. Either reboot in test mode
or go through the driver signing process again to
make sure no steps were skipped.

AdsWarning: 4115 (0x1013, RTIME: System
clock setup fails.)

Hyper-V needs to be disabled as the service
permanently runs in the background and
crashes with certain TwinCAT drivers.
Deactivate the service in the windows features
menu.

11

 109

This section describes the configuration of the TwinCAT project. The TcCom objects are

inserted into the project, a new cycle task is created, the project is licensed, and all possible

errors were looked at that prevented the project from activating. Now that the project is active

and running, the following section describes how to set up the Scope Viewer to monitor the

real-time response of the radio antenna control system.

6.5 Scope Viewer

This section describes the configuration of the Beckhoff Scope Viewer to create graphs to

show the response of the TcCom object created in section 6.4. The graphical response is

necessary to compare with the Simulink response obtained in Chapter 5 to prove that the

transformation from Simulink to TwinCAT is successful. If the responses are the same, then

the controller can be connected to the physical system for testing as the simulations are

successful. A license is required to use all the features of Scope Viewer, but for this research,

it is not necessary, as a demo license is used.

A new scope view can be created by selecting ‘YT Scope Project’ (1) when creating a new

project, as shown in Figure 6.23. A YT scope graph shows the relationship between two

variables across the Y and X axis. The two variables that need to be plotted are time and

position. Time is on the X-axis and position is on the Y-axis.

Figure 0.20: Create a new scope viewer project

1

 110

To confirm that the transformation from Simulink to TwinCAT is successful, a PLC program is

used to generate the same random numbers as a set point input as the random number

generator indicated in Section 5.3.5 in Chapter 5. Figure 6.21 shows the response in Simulink,

whereas Figure 6.22 shows the response in TwinCAT Scope Viewer. Characteristics such as

rise time, overshoot, settling time, and steady state error of the responses of both graphs are

the same and therefore the transformation is successful.

Figure 0.21: Random set point generator in Simulink

Figure 0.22: Random set point generator in Scope Viewer

This section described how to configure Scope Viewer to view real-time values of different

variables. The section also proved that the transformation of Simulink block diagrams to

TwinCAT is possible by comparing the response of the controller in both programming

environments. The next section concludes the chapter, discussing the results that this chapter

has produced.

Time (s)

P
o

si
ti

o
n

 (
𝜃

)

 111

6.6 Discussions

This section discusses the process, challenges, and significance of the successful

transformation of the Simulink model to TwinCAT object. The transformation of components

from one software vendor to another is a major factor to consider in terms of one of the

deliverables in this thesis and therefore this chapter is very important. From installing the

software to testing the response of the model with Scopeviewer, the entire process had some

challenges.

Once all the requisite software is installed, the challenge is finding all the necessary tools

required to do the transformation. Software packages such as MATLAB/Simulink and TwinCAT

have an abundance of tools so finding the correct features is the difficult part. Features such

as the TE1400 target have minimal documentation and therefore using the functionality takes

time as more effort is put into figuring out how to use the tool than using the tool itself.

A big challenge is finding the correct MATLAB commands that need to be run to start the

transformation process (Appendix A6.1). If a script is not used, it is necessary to set up each

model to be in the correct format required for the TwinCAT software environment. When

running the script, the code automatically uses the Simulink code builder, instead of the default

MATLAB code builder. Also, each time a model is generated, a new version number is added

to the name atuomatically, which could lead to confusion when trying to revert back to older

versions.

Licensing is a major issue when trying to use features in the TwinCAT programming

environment. A license is required for most features, but a 7 day trial is activated when using

features that are unlicensed. The main license issue is that when using the TE1400 target, a

signed certificate from Beckhoff is required to run Simulink models on the PLC. It is possible

to do driver signing, as discussed in this chapter, to create a test certificate, but this will not

allow the downloading of Simulink models to the PLC.

Finding support for the errors found while trying to compile software in MATLAB/Simulink and

TwinCAT was not easy. Both software packages have information systems that show how to

use most of their features, but lacks documentation on trouble shooting and error handling.

Even with the challenges faced, the results are significant as it is demonstrates that portability

and interoperability between different software vendors is possible. Any developed Simulink

model can now be used in TwinCAT 3 for real-time implementation purposes. An added

advantage is using the Scopeviewer to see results of the real-time graphs.

 112

6.7 Conclusion

This chapter described how to transform Simulink block diagrams into TwinCAT 3 TcCom

objects to allow for real-time simulation in the TwinCAT programming environment. All the

prerequisite software tools needed for this transformation are discussed, including installation

guidelines and configuration steps. These software platforms include Visual Studio 2019,

MATLAB/Simulink v2023a, TwinCAT 3.1 Runtime (XAR), and the TE1400 Target. Each one is

installed on the same engineering PC, including the TwinCAT run time software which

automatically installs when installing the TwinCAT XAR software.

Once the PC is set up, the Simulink block diagram is altered to allow for inputs and outputs for

interfacing with the TwinCAT programming environment after the transformation is complete.

The TE1400 Target software is used to transform the updated Simulink block diagram, and

automatically add the item to the TcCom objects list in TwinCAT by running the set of MATLAB

commands shown in Appendix A6.1.

A task is created to allow the TwinCAT object to execute during run time. The task is allocated

under the objects properties and executes once the run time is activated after a successful

build. The TC1220 license is required to build and run the TwinCAT project as this license

allows the usage of the PLC, MATLAB, Simulink, and C++ functions.

Lastly, the transformation is tested by comparing the response of both the models in TwinCAT

and Simulink by using the same random number set point generator as the input to each

system. The graph outputs compared in Section 6.5 prove that the transformation is successful

and that the setup guide is accurate.

The transformation from one programming platform to the other resonates with parts of the

IEC 61499 standard requirements such as portability and interoperability. Another factor of the

IEC 61499 standard shown is the reusability of software components between platforms

without any modifications of the configuration files needed.

The next section describes how to implement the transformed Simulink model to control an

actual DC motor in real time. The input and output variables of the Simulink model is mapped

to a motor terminal card which controls and monitors the DC motor as required.

 113

CHAPTER 7

HARDWARE-IN-LOOP IMPLEMENTATION FOR IEC 61499 COMPATIBILITY

7.1 Introduction

This chapter presents the real-time implementation of the transformed Simulink model. The

model is used to control an actual DC motor. The motor is connected to a remote motor

terminal card which communicates to the PLC over an EtherCAT network. The controller

(transformed model) runs on the PLC and controls the plant (DC motor) by mapping the input

and output variables for monitoring and control. The hardware equipment required for the

control system is described before presenting the complete test rig used for implementation.

The CodeSYS PLC software which connects the transformed model, and the actual hardware

is discussed. The code uses the PLCopen software function blocks to command the DC motor

to change its position. PLC code that is programmed using a CodeSYS programming

environment can be used in other vendors software packages. This means that Beckhoff’s

TwinCAT 3 software is IEC 61499 compliant as the PLC code can be reused and ported to

other vendors. This is very advantageous as reprogramming is not necessary when using a

different PLC.

How to activate the developed code onto the PLC runtime is also shown. The code cyclically

runs on the PLC, waiting for a change in position set point via push buttons. Navigating and

setting up the axis controller is shown to link the CodeSYS PLC software with the actual DC

motor. The Beckhoff NC control features are used to configure the axis and the parameters of

the encoder, drive, and controller. A full list of all configured parameters is provided for the

successful implementation of the DC motor control system.

The closed loop system implemented on the hardware is analyzed with an input step response.

The transient response and the effects of network delays of the system is discussed and

compared to the same system with added time compensation.

Section 7.2 describes the hardware involved with the implementation of the DC motor position

control. Section 7.3 describes the PLC code and interface with the Simulink controller module

and the hardware. Section 7.4 describes the motion interface of the TwinCAT programming

environment and how to set up the required axis for motion control. Section 7.5 presents the

analysis of the implementation results of the closed-loop system.

 114

7.2 Hardware Description

This section describes the hardware used to implement the designed controller. The hardware

consists of a Beckhoff C6015 PLC, Beckhoff EK1100 EtherCAT remote module, Beckhoff

EL7342 terminal motor controller, a DC motor, and an Omron incremental encoder for position

feedback. Each item has a crucial role in the closed loop system. Once each component of the

system is described, the complete test rig is shown. An electrical diagram is also provided for

the setup.

7.2.1 Beckhoff C6015

The Beckhoff C6015 Industrial Personal Computer (IPC) is a Windows based PLC that is used

for real-time control. The IPC hosts a 2 core Intel Atom processor which makes it capable of

managing resource intensive tasks. Some of these tasks include axis control, short cycle times,

high-volume data handling, hosting Human Machine Interface (HMI) applications, Internet-of-

Things (IoT) connectivity, and a range of automation configurations (Beckhoff, 2023).

The IPC uses an Ethernet port for communication to other Ethernet based devices such as a

programming PC or HMI interface. The second Ethernet port is configured to be used as an

EtherCAT fieldbus system to communicate with other EtherCAT devices. In this case the IPC

is the master EtherCAT device, and the other devices are the slaves. Ethernet port 1 and 2

are shown in Figure 7.1 as X102 and X103 respectively. Table 7.1 summarizes the interface

ports that are used to interact with the IPC.

Figure 0.1: Beckhoff C6015 PLC front view

(Beckhoff, 2023)

 115

Table 0.1: Beckhoff C6105 interface list and functional purpose

Terminal
Number

Description Purpose in test rig

X101 Power supply Terminal connection to connect 24-volt supply
to power the PLC

X102 Network LAN connection 1 Ethernet port for connection of programming
PC for downloading and online viewing of the
runtime

X103 Network LAN connection 2 EtherCAT port to communicate to EtherCAT
devices on the network

X104 Display port for video feed Not used
X105 USB 2.0 port Not used
X106 USB 3.0 port Not used

In this work, the Beckhoff IPC hosts the TwinCAT 3.1 software configuration by using the

Beckhoff automation run-time software. The IPC is also the gateway between the transformed

Simulink model and the remote EtherCAT terminals which creates the connection to the DC

motor and encoder feedback. PLC code is written to bridge the model and hardware together

to close the control system loop. This PLC code runs on the IPC during run-time.

7.2.2 EtherCAT

EtherCAT is a fieldbus protocol that is based on a master-slave architecture. One device is the

system serves as the master and is the only devices which can send an EtherCAT data frame

over the network. The slave devices then read the necessary information from the data frame

according to the hardware and software requirements, and then attach necessary information

onto the data frame. This transaction is known as “processing on the fly” and is a great

advantage for the protocol as it reduces network delays and network traffic (Stubbs, 2011).

EtherCAT uses a distributed clock system that allows the master to determine the time taken

for the transmission of information to the slave devices. This is done when the slave devices

timestamp the data frame every time it receives data. The master can then calculate the

transmission rates to each slave to help with real time operation and avoid delays.

Other advantages of EtherCAT are the rapid response times, minimal data requirements for

each device, and low cost of implementation. Another positive part is that no external Ethernet

switch is required as EtherCAT device have two Ethernet ports available. One port is used for

receiving the data frame from the master and the other port is used to transmit the data frame

to the next EtherCAT device. The test rig built for this research work only has one master and

one slave device. The slave device connected in a line topology as the Master only has one

EtherCAT port. This slave device is described in the next subsection.

 116

7.2.3 EK1100

The Beckhoff EK1100 is a gateway device between the EtherCAT master and the terminal

cards that are connected on the same backplane when mounted on the slot next to it. This

device takes the EtherCAT telegrams sent from the EtherCAT master and converts it to

whatever signal is required from the connected terminal cards. This conversion also works the

other way for when the terminal card needs to transmit data back to the EtherCAT master.

Examples of terminal cards that can slot onto the EK1100 backplane are digital inputs, digital

outputs, analogue inputs, analogue outputs, etc. This module allows for remote connection of

any device which needs information sent back to a central IPC.

As shown in Figure 7.2, the EtherCAT master connects to the input EtherCAT port. The

EtherCAT signal output port can be used to create a daisy chain to the next device. The green

and orange lights on the left of the RJ45 ports (1) indicate if the link is active to another device

when flashing. These lights are off if no connection is present. The status of the remote

interface is shown on the Light Emitting Diodes (LEDs) and the power connections can connect

to the red plus (24V) and blue minus (0V) marked terminals. The module is earthed via the PE

labelled terminals.

Figure 0.2: Beckhoff EK1100 interface ports and indication lights

(Beckhoff, 2023)

In this research project, the EK1100 is used as an interface between the IPC and the remote

terminal modules that control the motor and feedback signals. The EtherCAT gateway allows

the programming software to control the DC motor over a networked control system. The next

subsection describes the terminal card use for motor control.

1

 117

7.2.4 Beckhoff EL7342

The Beckhoff EL7342 is part of Beckhoff’s compact drive technology range which allows for

the direct integration of motors in the Input/Output (I/O) system. The range of terminal control

cards caters for most types of motors, such as DC, AC, stepper, and servo motors. The EL7342

specifically controls DC motors and is therefore used in this research work for the control of

the two DC servo motors for azimuth and altitude control of a radio antenna dish.

The EL7342 can operate DC motors with a voltage up to 50 Vdc and a current of up to 3.5 A.

The motors are connected directly onto terminals A1 and A2, or B1 and B2, as shown in Figure

7.3. Incremental encoders can be connected to the terminal card to realize a simple servo axis

for each motor. In this research, an incremental encoder is used to send feedback of the

position count of the actuated DC motor.

Figure 0.3: Beckhoff EL7342 interface ports and indication lights

(Beckhoff, 2023)

7.2.5 DC Motor

As described in Chapter 3, DC motors are used to control the movements of a radio antenna.

The DC motor used in Chapter 4 for modelling has part number GB37Y360. The DC motor is

rated at 12 Vdc and 1.6 A. The rated speed of the motor is 6000 RPM, but with the gearbox

ratio of 1:270, the motors shaft output rated speed is 270 RPM.

 118

7.2.6 Omron Encoder

An incremental encoder is used to measure the angular position of the shaft of the DC motor.

Specifically, an Omron E6C2-CWZ5B 100 pulse encoder is used. The wiring diagram for the

encoder is shown in Figure 7.4, where the blue, brown, black, and white wires are connected

directly to the EL7342 which is described in Section 7.2.4. The EL7342 does not have the

functionality to measure the Z phase of an incremental encoder and therefore the orange wire

is not connected.

Figure 0.4: Omron encoder wiring diagram

(Omron, 2023)

An incremental encoder sends pulses through the A and B phase wires to the inputs of the

EL7342. The A and B channels pulse at an offset to determine which way the motor is rotating.

For example, if the A phase pulses before the B phase, then the motor is turning in one

direction, whereas if B pulses before A, then the motor is turning in the opposite direction. The

terminal controller then counts the rising edge of the pulses to determine how far the motor

has rotated and displays a scaled angular position value in the IPC. The scaled value is based

on how many pulses equal one rotation of the motor.

For this research work, the two phases are viewed as a quadrature encoder by counting the

rising and falling edges of both A and B phases. This increases the resolution of the encoder

by four times. Therefore, since the encoder pulses 100 times per revolution, the scaled value

is calculated by a pulse rate of 400 pulses per revolution. The higher the resolution of the

encoder, the more accurate the position feedback is.

The previous subsections discussed all the hardware components for the test rig that is built

for this research work. The next subsection describes the complete test rig.

 119

7.2.5 Complete Test Rig

Figure 7.5 shows the complete test rig used to implement the controller and plant. The rig is

built up of all the previously described hardware components. Each component is numbered

and described in the list below. A wiring diagram for the test rig is shown in Appendix C7.1.

1- AC voltage distribution breakers

2- 24 Vdc power supply

3- 12 Vdc power supply

4- Beckhoff C6015 IPC

5- Beckhoff EK1100 EtherCAT coupler

6- GB37Y360 12V DC motor

7- Omron E6C2-CWZ5B incremental encoder

8- Push buttons

1

3

2

4

5

6

7

8

Figure 0.5: DC Motor Control System Test Rig

 120

7.3 PLC software

This section describes the PLC code which interfaces the transformed Simulink model and the

actual DC motor. A PLC configuration is added to the TwinCAT XAE programming environment

by right clicking on PLC in the solutions explorer window and adding a new item as shown in

Figure 7.6. The PLC item is made up of various subfolders that can be used for configuring the

project, such as Data Unit Types (DUTs), Global Variable Lists (GVLs), and Program

Organization Units (POUs). This project only uses GVLs and POUs.

Figure 0.6: PLC configuration in Solution Explorer

The GVL is where all the PLC variables are declared by name and datatype. These variables

can be used in any part of the PLC code as they are listed as global. The PLC code is found

in the POU called “Axis_Control”. This is the main and only POU of the program and runs

cyclically according to the PLC task period.

Subsection 7.3.1 describes the PLC programming environment used, whereas subsection

7.3.2 describes the function block libraries that is used to control the DC motor. Subsection

7.3.3 describes the flow and functionality of the developed PLC code found in POU

“Axis_Control”. Subsection 7.3.4 describes the converted controller function block. Subsection

7.3.5 describes how to activate and download the code to the IPC for real-time implementation.

 121

7.3.1 CodeSYS

Controller Development System (CodeSYS) is a programming environment used to program,

configure, and manage PLCs and other automation devices. This proprietary development

platform is used is used by various PLC manufacturers making it more flexible and versatile

than any other programming environment. Suppliers such as Beckhoff Automation, WAGO,

Phoenix Contact, Eaton, and Turck, all use CodeSYS as the basis of their PLC programming

software.

The premise of CodeSYS is in line with the IEC 61499 standard as code can be ported between

the various vendors’ programming software packages without any changes being made. The

benefits of this portability allows developers to easily port software between different hardware

components. If a vendor does not have stock of a certain PLC, the developer can use any

other PLC that is Codesys compliant. Other advantages include the robustness of the PLC

environment, the cross-platform compatibility, inclusion of visualization for HMI development

in the same environment, possibility for simulation, and the means to integrate third-party

libraries and components.

The TwinCAT programming environment uses the CodeSYS environment as a basis for PLC

development. The next subsection describes the library that needs to be installed to allow for

servo motion control of the DC motor.

7.3.2 PLCopen Motion Control

The DC motor is controlled as a servo motor via the TwinCAT software environment. This is

done using PLCopen motion control blocks to enable, reset, move, and stop the axis which

controls the DC motor. The PLCopen motion control library is an open-source standardized

repository that is used by most PLC suppliers for motion control. The library is interoperable

between these suppliers, therefore a change in code is not necessary when porting from one

software environment to another. The library is used to simplify PLC code by encapsulating all

the necessary code for various motion commands into easy-to-use function blocks. Other

advantages of using the PLCopen motion control library include safety assurance as the

function blocks have been tested thoroughly, there is lots of online support, and scalability as

the function blocks can be used on as many axes as the controller can support.

It is necessary to install the required libraries to TwinCAT 3 to use the functionalities. Figure

7.7 shows how to add a library as a reference in a PLC project in TwinCAT 3. The PLCopen

library used in this project is called TC_MC2. As shown in Figure 7.7, right click on references

 122

(1) and add a library. Then search for the required library (2) and highlight it to approve

selection. Click OK to add the library as a reference. The library and its functionality are now

available for use with the PLC project.

Figure 0.7: Adding a library reference to TwinCAT 3

The PLC programming environment and all necessary libraries are now installed and therefore

the PLC code development can start. The next subsection describes the flow and functionality

of the developed PLC code to control the position of the DC motor via the mapped variables

from the transformed Simulink model.

7.3.2 PLC code functionality

The PLC code runs cyclically according to the PLC task time. To prevent code from executing

incorrectly, a sequence step is used to only run sections of the program at once until certain

conditions are met. Figure 7.8 illustrates a flow chart of how the PLC program executes and

what conditions are required before moving to the next step in the DC motor position control

sequence. The sequence starts from the initial start of the PLC and continuous through the

step cycle during runtime.

Four steps are used for the position control. The first step, step 0, rehomes the axis to zero the

position. Step 1 waits for a change in set point before executing the PLCopen relative move

function blocks in step 2. Steps 3 and 4 are used to stop and autocorrect the position

respectively. Steps 0 – 4 are described in more detail in subsection 7.3.2.1 to 7.3.2.4. All PLC

code associated with the different steps are described and analysed in detail to show the

functionality of the angular position control of the DC motor.

1

2

3

4

 123

Figure 0.8: PLC step sequence flow chart

 124

7.3.2.1 Step 0: Homing the axis

Step 0 is the initial step that is active when the PLC goes into run mode. This is because the

variable Sequence_Step is not retentive and therefore cannot save a value when the PLC

switches off or goes into stop mode, resetting the variable to zero. In Figure 7.9, the sequence

step is equal to zero and therefore the MC_SetPosition block is executed. This PLCopen

standard block sets the position of the referenced axis to whatever position set point is

allocated. In this case, the axis position is set to zero to force the axis to take the current

position as its home. Once the MC_SetPosition done bit is activated, a value of one is moved

into sequence step, as shown in line 12. The axis is now at a zero point and ready for positional

movements based on an angular position set point change.

Figure 0.9: Ladder logic for step 0

7.3.2.2 Step 1: Waiting for a change in position set point

In step 1, shown in Figure 7.10, the axis is at a standstill and waiting for a change in position

set point. The condition to go to the next step is for the set point to be different from the axis

actual position feedback. On startup both the set point and feedback are at zero due to the

homing of the axis in the previous step. By pushing either the forward or reverse push buttons

on the test rig, the contact for input1_enable or input2_enable switches. The causes the set

point to either increase by 10, or decrease by 10, depending on which direction the motor

needs to travel. An R_TRIG function is used to only allow the change in set point to occur on

a rising edge of the button input. This is done to prevent any debounce or multiple additions

from the ADD block. If either button is pushed, the set point value is not equal to the actual

value, and therefore the condition to move to step 3 is met. The next step moves the actual

axis to the new set point value.

 125

Figure 0.10: Ladder logic for step 1

7.3.2.3 Step 2: Moving the axis

When the sequence is at step 2, the axis begins to move by commands from two

MC_MoveRelative function blocks, as shown in Figure 7.11. The two blocks are alternated by

means of a toggle bit which activates every 20 milliseconds. The busy bit of each relative move

block is used as a condition to execute the latter to prevent both moves from executing

together.

The velocity, acceleration, deceleration, and jerk inputs are all mapped from the outputs of the

transformed Simulink model to allow for the axis to respond in the exact same way as the

model. The distance input is a scaled value calculated by subtracting the actual position of the

DC motor from the set point. As the DC motor moves closer to the set point, the distance

required to travel decreases and therefore the distance input decreases. As the relative blocks

are toggled, the input variables constantly update to change the response of the motor. The

motor continues to turn until the velocity input reaches zero, preventing the motor from running

as a zero input means the motor must be at a standstill position.

The MC_MoveRelative block is not able to execute when any of the input variables are

negative values. Therefore, the inverted values are used as inputs, which are calculated by

multiplying the actual values by -1 if the Simulink model outputs any negative variables. This

makes sure that the velocity, acceleration, deceleration, and jerk are always positive numbers.

A quick time delay is added before checking for zero velocity as there is a delay before the

relative move blocks initiate a response on the actual motor.

The condition to go to the next step is having a zero-velocity output from the Simulink model.

This occurs once the model has reached the angular positional set point and therefore the axis

are also at standstill and have reached the set point.

 126

Figure 0.11: Ladder logic for step 2

7.3.2.4 Step 3 and 4: Stop the axis and autocorrect position

Steps 3 and 4 occur after the motor has reached the position set point. These two steps are

added for safety in the event of any oscillation or stability issues with the motor. Step 3 forces

the motor into a stop mode to prevent any further movement of the motor. Step 4 then moves

the current axis position into the set point variable using a move function block. This is done

to compensate for any minor deviation of the actual position and the set point that could have

occurred due to any nonlinearities during the movement of the DC motor.

A short time delay is added to make sure there is no deviation between the actual position

feedback and the position set point before moving back to step 1 as shown in Figure 7.12 line

24. Since in step 1 the condition to continue is a difference between the actual position and

the set point, the code is looped back to step 1 and waits for another change in the set point.

A change in set point can be achieved by pushing either of the push buttons for forward or

reverse movement as previously discussed in step 1.

 127

Figure 0.12: Ladder Logic for steps 3 and 4

Subsection 7.3.2 describes the PLC code that interfaces between the transformed Simulink

model and the actual DC motor. The next subsection describes how to use the transformed

Simulink model in the CodeSYS programming environment.

7.3.4 Interfacing with the transformed Simulink model

The Simulink model described in Chapter 5 is used in the CodeSYS environment to control the

DC motor. The DC motor angular position set point is measured in millimetres and therefore

the Simulink model is updated to include the conversion of all the set points and feedback

signals from radians per second to millimetres per second. This conversion is shown in Figure

7.13, where the position set point, encoder feedback, actual position, actual velocity, actual

acceleration, actual deceleration, and actual jerk are all scaled as necessary. Equation 7.1 is

used to convert the set points to radians, whereas Equation 7.2 is used to calculate the

feedback signals back to millimetres per second.

𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = (
௠௜௟௟௜௠௘௧௘௥௦ ௣௘௥ ௦௘௖௢௡ௗ

ଵ଴଴଴∗௚௘௔௥ ௥௔ௗ௜௨௦
) (7.1)

𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 ∗ 1000 ∗ 𝑔𝑒𝑎𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 (7.2)

Another change to this model is a saturation block (1) on the actual velocity signal to prevent

the controller from trying to turn the motor at a velocity that is not possible. The DC motor used

has a maximum velocity of 565 mm/s. The acceleration, deceleration, and jerk are derived

from the output velocity by using the derivative blocks (2) within Simulink.

 128

Figure 0.13: Updated Simulink block diagram of the DC motor with full state feedback and
integral control

Figure 7.14 shows the transformed Simulink block diagram in CodeSYS function block form.

The function block has the same inputs, outputs, and functionality as the Simulink block

diagram in Figure 7.13. All that is required is to map the necessary PLC variables to the pins

of the block to create a link between the Simulink function blocks and the PLC code within the

Beckhoff IPC. The PLC variables created in the GVL are used, as well as the actual position

that is directly linked to axis 1 for encoder feedback.

Figure 0.14: Transformed Simulink model in CodeSYS function block form

This subsection describes the functionality of the PLC code for positional control of a DC motor.

The PLC code is ready to be deployed to the PLC for real-time testing. The next section

describes how to activate the PLC code of the Beckhoff C6015 IPC.

1

2

 129

7.3.5 Activating the PLC Configuration

Deploying PLC code to the Beckhoff C6015 is called “Activating the Configuration” in the

TwinCAT 3 software environment. This is done once the PLC code is complete and ready for

testing in the real-time environment. To activate the current configuration onto the PLC, click

the first symbol on the task bar after the current build description, as shown in Figure 7.15. It

is also possible to click project and then activate this configuration. The configuration is

downloaded, and the green gear symbol activates showing that the run time is now active.

Figure 7.15 also shows the taskbar status when there is no connection to the PLC. The

symbols shown at (2) from left to right are the login, start PLC, stop PLC, and logout buttons.

The login button is available to interact with which means that the programming environment

is not currently logged in to the PLC. Figure 7.16 shows the status of the connection at (3)

once the login button is pushed. The connection is successful as the option to put the PLC in

run mode is available. If the run button is clicked, the run button fades and the stop button

becomes available as shown in Figure 7.17 at (4).

Figure 0.15: Taskbar when not connected to the PLC

Figure 0.16: Taskbar when connected to the PLC which is in stop mode

Figure 0.17: Taskbar when connected to the PLC which is in run mode

The PLC code is now active on the IPC in real-time. When the PLC is in run mode, the code

interacts with all the mapped variables that were created. These variables include the

interfacing variables to the Simulink model as well as the variables linked to the axis through

the terminals on the EtherCAT coupler. The Simulink model and PLC side have been

configured, but the link to the axis has not. The next section describes the configuration of the

axis using Beckhoff’s motion control technology.

1 2

3

4

 130

7.4 Motion Control

Beckhoff’s motion control in the Twincat 3 software environment is used to configure the axis

that is used to interface with the DC motor. Motion control allows for precise and synchronized

motion of the DC motor according to a specific set point. Since the DC motor follows the

transformed Simulink model, motion control is necessary to achieve the same response.

First, it is necessary to scan the EtherCAT network to find and configure the slave hardware

device that interfaces with the DC motor and encoder feedback. Subsection 7.4.1 describes

how to scan for EtherCAT devices on the network. Subsection 7.4.2 describes the navigation

of the motion portion in the solution explorer, as well as the important parameters that are set

to control the current DC motor. Subsection 7.4.3 describes the linking of the configured axis

to the PLC software which is shown in Section 7.3.

7.4.1 Scanning for EtherCAT device

The EtherCAT coupler and motor terminal controller discussed in sections 7.2.3 and 7.2.4 must

be added to TwinCAT 3 to allow for interfacing with the modules. This can be done by

completing a network scan shown in Figure 7.18 (1) through the EtherCAT master. Figure 7.19

shows the EK1100 (2) and EL7342 (3) appear after doing a network scan. These devices can

now be configured as well as used in the rest of the PLC project. By scanning and adding the

EL7342, TwinCAT automatically adds two new axes to the motion tab. These are discussed in

the next subsection.

Figure 0.18: Menu navigation to scan the EtherCAT network

1 2

3

 131

7.4.2 Navigation and parameter settings

The Motion section in the Solution Explorer section in TwinCAT 3 software is used to configure

the axes that interface with the DC motors. As shown in Figure 7.19, each axes has menus to

configure the axis itself, the encoder, the drive, and the control mode. Each heading has

multiple parameters that can be configured depending on the type of DC motor used, the type

of encoder, and the method of control that is needed. The inputs and outputs associated with

each axis which can be linked to the rest of the TwinCAT project are also shown.

Settings for the two tasks that run the axes are also available under the heading NC-Task

Sentence Execution (SAF) and Sentence Preparation (SVB). The SAF task handles the cyclic

communication with the drives and executes the servo blocks. The SVB task prepares the

execution commands to allow for them to be executed quickly by the SAF task. Both tasks are

set to 1 millisecond in this project.

Figure 0.19: TwinCAT 3 motion navigation in solution explorer

Table 7.2 shows a summary of the parameters that are set for this project to allow for accurate

position control of a DC motor through axis 1. A description is given for each parameter that is

needed as well as the value that the parameters are set to. These values are calculated from

the motor parameters as well as the type of encoder used.

 132

Table 0.2: Parameters changes for Axis 1

Heading Parameter Description Value
Axis 1 Reference Velocity Rated speed of the motor 84.78
Axis 1 Maximum Velocity Maximum allowed speed for the motor 84.78
Encoder Scaling Factor

Numerator
Numerator for the scaled encoder value 18.84

Encoder Scaling Factor
Denominator

Denominator for the scaled encoder value 400.0

Encoder Filter Time for Actual
Position

Time between samples of the actual position 0.001

Encoder Filter Time for Actual
Velocity

Time between samples of the actual velocity 0.001

Encoder Filter Time for Actual
Acceleration

Time between samples of the actual acceleration 0.001

Ctrl Proportional Factor
Kv (standstill)

Proportional gain factor of the P-controller at
standstill

20.0

Ctrl Proportional Factor
Kv (moving)

Proportional gain factor of the P-controller while
moving

15.0

Ctrl Proportional Factor
Ka

Proportional gain factor for acceleration 0.15

The axis is configured and can be linked to the PLC code developed in section 7.3 The next

subsection describes how to create this link.

7.4.3 Linking axis to PLC code

Now that the axis is set up it is required to link the axis to the PLC code. Figure 7.21 shows

the configuration menu used to link an axis to a peripheral inside the TwinCAT 3 project. Select

axis 1 as shown in Figure 7.20 (1) and open the settings tab in the submenu. It is possible to

configure the link to I/O and the link to the PLC (2) under this tab. The axis is linked to the

EL7342 EtherCAT remote terminal and is also linked to a variable in the PLC code called

GVL.Axis_1. This variable is defined in the GVL that is described in Section 7.3. Once the link

is made, any change in variables mapped to the EL7342 motor terminal, or the PLC variable,

will affect the axes. For example, using a velocity move on the PLC variable causes the axes

to move, in turn causing the motor linked to the hardware to move.

It is now possible to control the actual DC motor from the PLC code which is linked to the

transformed Simulink model. The following section describes the implementation of the full-

state feedback controller and analyses the effects of the network induced delays. The

simulation results and implementation results of the actual DC motor are compared and

discussed.

 133

Figure 0.20: Linking an axis to peripherals

7.5 Implementation of closed loop system with controller

This section provides the implementation of the developed control systems on the hardware

components that are described in sections 7.2, 7.3 and 7.4. A simplified block diagram of the

control system is shown in Figure 7.21 showing the information sent between the different

hardware components. The position set point is sent from the CodeSYS PLC software to the

Simulink transformed model to initiate a change in position of the DC motor. The model returns

the velocity, acceleration, deceleration, and jerk values that are needed for the actual DC motor

to achieve the same response times as the simulation. These values are scaled and sent to

the NC axis control where the data is packaged and sent over EtherCAT to the EK1100 motor

terminal controller. The motor terminal controller outputs an analog voltage value to the DC

motor which causes the motor to rotate. The encoder counts the rotations in pulses and feeds

this information back into the EK1100. The EK1100 converts the pulses into EtherCAT data

packages and sends them back to the C6015 IPC. Lastly, the IPC converts the EtherCAT data

packages into a scaled position feedback value which is used by the PLC code to determine

how far the motor has travelled. Once the motor reaches the set point, the system is at standstill

until another positional set point command is sent to the Simulink transformed model.

1

2

3

 134

Figure 0.21: Block diagram showing the information transmitted between the components of
the DC motor control system

The following subsections implements and analyses the DC motor control system with and

without time delay compensation. The section is concluded with subsection 7.5.3 which

compares the simulated results from Chapter 5 with the implementation results from this

chapter.

7.5.1 Analysis of the control system with delays

An EtherCAT fieldbus connection is used to connect the controller and the plant in this research

project. It is necessary to compare and analyse the effects of this type of topology to make

sure that the system can handle the effects of network delays. In some cases, these delays

can cause instability and a decrease in system performance. If the delays cause issues in the

system, steps need to be taken to reduce the effects, such as slowing the controller down,

decreasing traffic on the network, or considering using a different type of network and hardware

devices.

Figure 7.22 shows the response of the actual DC motor to a position set point change of 10

mm. The blue line represents the scaled set point output from the Simulink model. The green

line represents the actual position set point sent from the NC terminal controller to the DC

motor. The pink line represents the actual position of the DC motor which is fed back by the

encoder. The response is recorded using Scopeviewer within the TwinCAT 3 programming

environment in real-time.

 135

Figure 0.22: Step response of actual DC motor control system

Figure 7.23 shows a panned image of the DC motor step response shown in Figure 7.22. A

delay of 75 ms is shown between the Simulink positional command and the actual position of

the DC motor. This delay is caused by the delay in the feedback from the encoder to the

EK1100 motor terminal controller as well as for the transmission of the data back to the IPS

over the EtherCAT network. This delay can be considered as the sensor-to-controller delay.

There is also a 5 ms delay between the Simulink model output set point command and the NC

command sent to the DC motor. This delay is considered as the controller-to-actuator delay

and is caused by cycle times in the IPC as well as the rate of transmission of the commands

over EtherCAT from the IPC to the EK1100. The combined 75 ms and 5 ms delays equate to

a combined 80 ms delay in the overall system.

Time (s)

P
o

s
it

io
n

 (
m

m
)

 136

Figure 0.23: Panned in X and Y axis of the actual DC motor step response

The effects of these delays can be seen in Figure 7.22 where the actual motor position tries to

catch up to the set point resulting in an overshoot. The controller then decreases the position

set point to compensate for the fast rise time of the position of the actual DC motor. The delay

is small enough to not cause the controller to become unstable, but the initial simulated

response is not achieved and therefore the controller does not perform with the desired

characteristics as designed. Figure 7.24 shows the simulated response of the DC motor with

an 80 ms delay. As shown, the response is like the implementation results where the actual

motor position has an increased rise time and overlaps the desired response.

Figure 0.24: Simulink step response with 80 ms network delay

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 137

It is not possible to increase or decrease the delay shown in Figure 7.22 as this is an EtherCAT-

based system, and it is not possible to influence the data transfer on the network as there is a

direct connection between the IPC and the remote EtherCAT coupler. If however, an Ethernet

system is used, an additional Ethernet port is available to allow for an external source such as

PC to flood the system with data to increase the delay times by using up the available

bandwidth.

This subsection presents the network-induced delays caused by the EtherCAT fieldbus in the

DC motor control system. The effects are compared with the Simulink response with added

sensor-to-controller and controller-to-actuator delays. The next subsection describes how to

minimize the network delays in the system by using features provided within the TwinCAT 3

programming environment.

7.5.2 Analysis of the control system with time delay compensation

The TwinCAT 3 software has features that can be used to decrease the delays shown in the

results discussed in subsection 7.5.1. These delays that affect the system1’s response are

referred to as dead time in the TwinCAT programming environment. The software measures

the system’s response time by monitoring a control input and the corresponding feedback

response. Specific algorithms are used to predict the desired output using the system’s

characteristics and adjusts the control signals to account for the dead time in real-time. This

improves the accuracy and stability of the system and is crucial in systems that require high

precision and synchronization.

There are two methods to add time compensation to the system to decrease the effects of

delays caused by transmission rates in the network. The encoder method uses time

compensation to compensate for the conversion of all the feedback data from the terminal

controller to the PLC, such as the actual position of the DC motor. The drive method uses time

compensation to compensate for the conversion of command signals sent from the PLC to the

terminal controller, such as the set position, velocity, acceleration, deceleration, and jerk. In

this project, both time and drive compensation are used to predict the velocity and acceleration

delayed responses. Figure 7.25 shows where to activate the time compensation mode for the

encoder (1). The same method can be used to activate the setting for the drive.

 138

Figure 0.25: Activating time compensation in TwinCAT 3

Figure 7.26 shows a panned screenshot of the step response of the DC motor control system

with time compensation for the drive and encoder. As in Figure 7.24, the blue line represents

the scaled set point output from the Simulink model, the green line represents the actual

position set point sent from the NC terminal controller to the DC motor, and the pink line

represents the actual position of the DC motor which is fed back by the encoder. Unlike in

Figure 7.2.4, the actual motor position is not delayed as the time compensation feature has

predicted what the motors response would have been if there were no delays in the network.

This prevents the motor from trying to run at a faster rate on startup as the feedback is where

it should be in normal conditions without delays.

Figure 0.26: Step response with time compensation

Figure 7.27 shows the full graph of the step response with time compensation for an input

position set point change of 10 mm. The actual feedback does not overlap the position

1

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 139

command output as seen when there are delays present. This prevents the system from

overshooting the position set point and allows the response to be the same as the system with

no delays. The addition of time compensation has prevented an unwanted response and

reduced the effects of delays caused by the EtherCAT network and the signal processing

between the controller and the motor terminal card.

Figure 0.27: Step response with time compensation

A ripple effect is seen for the feedback response of the DC motor position. This effect is caused

by running the motor at a low speed to get to the position set point at the rate that the Simulink

model sets. A much higher current for the motor to overcome initial torque is needed to turn

the gearbox but the EK1100 is only rated at 3.5 A and therefore a higher current output is not

possible. To overcome oscillations due to mechanical and electrical constraints, a high-

efficiency DC motor can be used as running at low speeds is possible. An encoder with a

higher resolution can also be considered to allow for the motor to run at low speeds as sufficient

feedback is returned.

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 140

7.5.3 Positional Set Point Limitations

A positional set point change of 10 mm has been used in this work for testing and simulation

purposes. Depending on the application, a higher or lower set point change would be required.

For this work, the DC motors are used to control the azimuth and altitude movements of a radio

antenna dish. The dish would generally only need to turn at a 270-degree angle for azimuth

and a 90-degree angle for altitude. If a full rotation of the motor is 18.41 mm then the motor

would only need to move within a 13.81 mm range for azimuth and a 4.6 mm range for altitude.

Figure 7.28 shows the DC motor system response to a set point change of 5 mm. Due to

factors mentioned in the previous section such as a low efficiency motor, low pulse encoder,

and low current output from the controller, the motor’s feedback ripple effect can clearly be

seen when trying to rotate at lower speeds. Since the range of the altitude movement is less

than 5 mm, the DC motor oscillates for any change in position. To overcome this problem, a

high efficiency DC motor should be used with a higher resolution encoder.

Figure 0.28: System response to position set point changes of 5mm

Figure 7.29 shows the response of the control system to a position set point that is double the

rotation of the motor. The results show that the DC motor still reaches the position while

remaining stable with no oscillations. Once the system is stable at double the necessary

position set point, an additional 2:1 gearbox can be used for the altitude movement. This allows

the motor to run at twice the speed, minimizing the ripple effect while still allowing the motor to

move at set points lower than 5 mm. Another advantage is cost savings as there is no need

for a better motor or encoder any longer.

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 141

Figure 0.29: System response to position set point changes of 40mm

Figure 7.30 shows the response of the control system to a change of 18.41 mm, which is a full

360 degree turn of the motor shaft. The system is stable and the set point reaches steady state

in the forward and reverse direction. Initially, the actual motor position and the Simulink model’s

positions are in sync as the motor does not need to turn at a low velocity. Closer to the set

point the system starts decelerating and causing minor ripples as described in Section 7.5.2.

The results show that a full 360-degree range of the motor is possible, and therefore the 270-

degree range for azimuth, and 90-degree range for altitude is possible.

Time (s)

P
o

s
it

io
n

 (
m

m
)

 142

Figure 0.30: System response to position set point changes of 18.41mm

A final test to show the positional change limit is shown in Figure 7.31 where the set point of

60 mm is input to the control system. As shown, the motor is not able to accelerate fast enough

and therefore the controller overshoots the set point to compensate for the position feedback.

The DC motor eventually reaches a steady state, but the overshoot would cause the radio

antenna dish to move past the required position and then move back to the set point. This is

not ideal for the real-life implementation. The motor is limited to a maximum angular position

set point change of 720 degrees and therefore cannot reach a set point that is higher without

leading to instability. To overcome this issue, a limit on the allowed positional change should

be set.

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 143

Figure 0.31: System response to position set point change of 60mm

This subsection discussed the results of the real-time implementation of the DC motor control

system. The next subsection discusses the results and findings of the work completed in this

thesis.

7.5 Discussions

The main objective of the hardware-in-the-loop implemnentaion is to use the Simulink model

of the controller to control an actual DC motor via the Beckhoff IPC. This objective aims to

prove that portability of software components from one vendor’s programming environment to

another is possible. The PLC code developed using CodeSYS programming environment and

PLCopen function blocks also allows for reusability of the code with different vendor’s

hardware. The factors of portability and reusability show that the transformation is successful

and that aspects of the IEC 61499 standard are possible.

The DC motor response to a position change is exactly like the simulation of the modelled

motor in Simulink. This is possible by using Beckhoff’s time compensastion feature to

overcome the challenge of networked induced delays. Without this feature, the real-time

Time (s)

P
o

si
ti

o
n

 (
m

m
)

 144

system with 80 ms network induced delays reacted the same as the Simulink model with delays

in the loop. This proves that the modelling of the system is correct as both the simulated and

real-time systems respond the same under certain conditions.

The system’s limitations and robustness to position set point changes are tested. A very small

change in position is sent to the motor, but due to the motor not being very efficient and the

current limitations of the motor terminal card, the motor tends to oscillate at low speeds. A test

is done to run the motor for two revolutions in one set point change and the results show that

the control system is still stable. Therefore if a smaller positional movement is required for the

DC motor, as is needed for the altitude movements, then the motor can be run at twice the

speed using a 2:1 gearbox.

Other factors of the IEC 61499 standard can be looked at for further improvements of the

control system. The use of IEC 61499 standard function blocks will allow the PLC code to be

interoperable between different software vendors. The TwinCAT 3 programming environment

does not support IEC 61499 standard function blocks or event-based execution methods of

PLC code at this time, and therefore this option was not explored. Other software packages

such as nxtStudio and 4DIAC could be used to create a similar system to compare with the

current design.

The work done in this thesis creates a basis for future work and development projects that can

contribute to the ongoing growth of the IEC 61499 standard in the industry. The test rig can be

used to test portability, reusability, configurability, and interoperability between different

software vendors by adding other IEC 61499 compliant hardware to the system. Distributed

the plant and controller over different hardware platforms can also be explored to prove the

benefits of using the IEC 61499 standard.

This section discussed the objectives, challenges, outcomes, and contributions of the work

done in this thesis. The next section concludes the chapter.

 145

7.6 Conclusion

This chapter presented the real-time implementation of the DC motor control system. All the

hardware and software components used to control the DC motor using the built test rig are

described. The hardware includes the C6015 IPC, EK1100 EtherCAT coupler, EL7342 motor

terminal controller, DC motor, Omron encoder, and the electrical components used to connect

everything. The software includes the CodeSYS PLC code, Beckhoff’s motion interface to

control the axis, the PLCopen blocks to command the axis, and the transformed Simulink block

of the modelled DC motor and controller. An electrical diagram and photo of the complete test

rig are also shown.

The control system is tested by giving the DC motor a new set point position. The results are

recorded using Scopeviewer, and compared with simulation results from MATLAB/Simulink.

The system is first tested with no delay compensation techniques. A delay of 80 ms is present

due to the EtherCAT fieldbus connection between the IPC and the motor terminal controller.

This delay is shown to cause the motor to run faster than the intended set point, leading to an

overshoot. The MATLAB/Simulink response shows the same results when influenced by the

same delay.

Time compensation is used in the Beckhoff programming environment to predict the response

of the motor when no feedback has been received. This allows the system to reduce the delays

to zero by simulating a feedback from the motor that has not yet been received by the IPC

through the EtherCAT network. This method of adding time compensation reduces the

overshoot and allows the DC motor to respond exactly like the simulation results that do not

have network delays included in the model. Lastly, the limitations of the system are tested

regarding changes in positional set point.

The results in this chapter show that the system is stable when given a change in position and

time compensation is used to negate the network delays. The next chapter concludes the

thesis.

 146

CHAPTER 8

CONCLUSION AND FUTURE DIRECTION OF RESEARCH

8.1 Introduction

Distributed control systems are inevitable in the industry for the foreseeable future. With smart

devices adding huge amounts of data traffic to networked systems, these networks must be

considered when designing control systems. These smart devices should also be easy to

import into any vendors’ software packages to allow for quick integration and simple

communication. Standards such as the IEC 61499 standard, PLCopen function blocks, and

CodeSYS programming environment, are all good examples of a future of software in

automation that is portable, interoperable, and reusable. Using these standards to create

control systems that are distributed and coupled by communication networks instead of

hardwired systems provided the motivation for this study. The purpose of this research is to

design and implement a control system for a radio antenna’s azimuth and altitude positional

movements by using modern control design methods and utilizing the portability and reusability

aspects of the IEC 61499 standard.

This chapter presents the deliverables and the conclusion to the thesis.. Section 8.2 provides

the deliverables and the objectives that were achieved. Section 8.3 shows table of developed

software programmes to achieve the results of the completed work. Section 8.4 presents

possible applications of the research work in the industrial and academic fields. Section 8.5

presents possible future work directions for the content of this research. Section 8.6 details the

publications emanating from this research. Section 8.7 concludes this work.

8.2 Thesis Deliverables

This section describes the thesis deliverables that have been achieved.

8.2.1 Literature Review

Two literature reviews encompassing the IEC 61499 standard and networked control systems

is completed.

The literature review on the IEC 61499 standard spans over 19 years, from 2004 to 2023. The

review covers articles written on the first edition of the standard, as well as the the second

edition which was published in 2012. The first review covers distributed controller design based

on the standard, the different types of execution methods of standard function blocks, the

portability capabilities of software tools which are IEC 61499 standard compliant, and

 147

modelling and verification of systems that use the standard. The changes in the second edition

that saw an increase of use of the standard in the industry, and comparisons between different

articles regarding the standard, are also focused on in the review.

Due to the nature of the distributed control systems being networked, a second literature review

is conducted in the area of networked control systems. The review provides an overview of

networked control systems, describes the issue of delays induced by using networks, and

compares articles from multiple authors on how these delays were dealt with and which

methods were more effective.

8.2.2 Mathematical Modelling of the Plant and Controller

In this thesis, the model of the closed-loop DC motor is derived using Kirchhoff and Newton’s

laws of physics. The balance equations of the electrical and mechanical parts are combined

to describe an electro-mechanical system. The load of the dish is also added to the system by

means of a gearbox model. A simplified transfer function showing the relationship between

angular position and armature voltage is described.

The transfer function is converted to state space representation to reduce the complexity when

trying to model the system. Converting to state space also allows for the addition of a state

feedback controller which is based on modern control theory. The state feedback controller is

designed for a faster response time of the DC motor to a change in angular position. An

integrator is added before the controller to reduce the steady state error of the response. The

complete transfer function of the DC motor with statefeedback and integral control is modelled

and simulated in MATLAB/Simulink.

8.2.3 Simulation of the Model of the Plant and Controller

The open-loop model of the DC Motor without a controller is simulated and verified using

MATLAB/Simulink software tools. The step responses of the model shows that with no

feedback, the motor continues to turn with time. Because of this, a feedback loop is added for

the motor to reach steady state.

The closed-loop system of the DC motor without a controller, with a state feedback controller,

and with integral control added, are all simulated in MATLAB/Simulink. The step responses of

each system is compared and validated. The results show that the system with statefeedback

and integral control had the best transient response compared to the other systems. The

control system has zero overshoot and reaches steady state within 3 seconds. These

simulated results are compared to the real-time implementation results later.

 148

8.2.4 Simulation and Analysis on the Effects of Networked Induced Delays

The effects of networked induced delays are analyzed using the developed controller. Two

network induced delays are looked at: sensor-to-controller and controller-to-actuator delays.

Different magnitudes of time delays are tested using a delay function block in Simulink. The

effects of each delay can clearly be seen negatively effecting the performance and stability of

the control system. The greater the delay, the more unstable the system becomes when trying

to reach an angular position set point.

Sensor-to-controller delays of 100ms, 400ms, 800ms, 1200ms are simulated and the results

are graphed using MATLAB scripts. The results for the controller-to-actuator delays of 50ms,

100ms 125ms, and 150ms, are also tabulated and graphed.

8.2.5 Transformation of the Simulink model to TwinCAT 3

The Simulink model is successfully transformed to TwinCAT 3 using the Beckhoff TE1400

target. The model is converted to a TcCom object that is used within the CodeSYS PLC

software environment to interact with the developed PLC code and PLCopen axis function

blocks. A MATLAB script is developed to allow for an easy transformation by just compiling

and running the code. Descriptions of the software required and installation procedures is also

presented in this thesis.

8.2.6 Real-time Hardware-in-the-loop Test-bed Implementation of the Developed
Controller

A complete test bench is built for the real-time implementation of the simulated controller and

plant. The test rig components allow for the interaction between the transformed Simulink

model and the actual DC motor. A Beckhoff IPC hosts the run-time application and serves as

the EtherCAT hub for the system. A Beckhoff EK1100 allows for the conversion of EtherCAT

signals sent from the IPC to the EL7342 motor terminal card. The motor terminal card controls

the voltage supplied to the motor, and returns the encoder feedback through the EtherCAT

back to the IPC for position monitoring.

The test rig has a 24V DC power supply to power the Beckhoff components, and a 12V DC

power supply for the motor supply. Two push buttons are added to the test rig to allow for an

easier interface to change the angular position set point. The motor and encoder are connected

via a mechanical 1:1 gearbox. The test rig requires 230V AC supply in order to power all the

components.

 149

8.2.7 Comparisons between the Simulated and Implemented Results

The first test on the real-time system is to see the system’s response to a change in position

set point. The first results showed that there is a delay due to the EtherCAT network being

used. The response of the system is proven to be the exact same as the simulation results

which showed that a delay causes some overshoot. Beckhoff’s Scopeviewer feature is used

to view the real-time response of the DC motor control system.

Beckhoff’s delay time compensation feature is activated in the system and the same test is

carried out. Delay time compensation predicts the feedback of the motor and estimates an

initial response which counters the starting delay of the actual position. This feature prevents

the actual position from overshooting the position of the simulation model. The real-time

system and the model simulation results are the same for a change in angular position.

The control system’s limitations are also tested such as maximum change in set point allowed,

minimum velocity of the DC motor, and the system response to consecutive changes. The

results show that the system is stable for a full 720 degree set point change. This range covers

the initial requirements for the 90 degee and 270 degree turns of the azimuth and altitude

positional movements respectively.

8.3 Software Development

Table 0.1: Summary of the software programmes developed in this research

Number Filename Application Description Appendix
1 App_A_41.m DC motor parameters Appendix A4.1

2 App_A_42.m Open loop system in state
space form

Appendix A4.2

3 App_A_51.m Full State Feedback
Controller

Appendix A5.1

4 App_A_52.m Full State Feedback
Control with Integral Gain

Appendix A5.2

5 App_A_53.m Case study 5.3.4 graph
outputs for step responses

Appendix A5.3

6 App_A_54.m Observer gain Appendix A5.4

7 App_A_551.m Sensor to controller delay
graph outputs

Appendix A5.5.1

8 App_A_552.m Controller to actuator delay
graph output

Appendix A5.5.2

9 App_A_61.m TwinCAT transformation
commands

Appendix A6.1

10 App_A_71.m Position output of control
system with and without
delay

Appendix A7.1

 150

8.4 Application of the Developed Algorithms and Methods

The control system developed for the DC motors can be used for both academic and industrial

applications as indicated.

8.4.1 Industrial Applications

 Using the IEC 61499 standard for a DC motor control system that operates an antenna

dish azimuth and altitude positional movements of a radio antenna dish

 Any other application that requires movement within a 360 degree rotation

 Using the IEC 61499 standard in applications that require software that has increased

modularity, scalability, and interoperability to allow for faster development times.

 Applications that require fast response times as the IEC 61499 standard application

function blocks allow for distributed control which has faster response times than

central controllers.

8.4.2 Academic Applications

This research can be used to train undergraduate students or retrain researchers at the

postgraduate level.

 How to mathematically model DC motors

 How to convert from transfer function to state space equations

 How to apply a state feedback controller with integral gain

 The constructed test rig can be used for future research work by postgraduate

students.

8.5 Future Work

 Methods could be applied to reduce the network induced delays in the model

therefore not using time compensation in TwinCAT 3.

 To distribute the plant and controller over two different PLC vendors that are both IEC

61499 Standard compliant.

 To change the manual set point push buttons to a automatic tracking system that can

track celestial objects in the sky

 To build the actual radio antenna with two DC motors for azimuth and altitude

movements to continue testing.

 151

8.6 Publications Related to the Thesis

 Love K., Kriger C., Tshemese-Mvandaba N. (2023) ‘Design and Simulation of a Full

State Feedback Controller for a DC Motor’, International Journal of Electrical and

Electronic Engineering & Telecommunications (IJEEET) (submitted for publication).

 Love K., Kriger C., Tshemese-Mvandaba N. (2023) ‘Hardware-in-the-loop real-time

simulation and implementation for a DC motor’, Submitted to the Southern African

Universities Power Engineering Conference (SAUPEC 2024).

8.7 Conclusion

This chapter described all the deliverables that were proposed and achieved. The applications

where this work can be implemented in industry and academia is described. A list of the

developed software is provided. Possible future work that could arise from this project are

described. Submitted publications emanating from this research are also listed.

 152

REFERENCES

Abrishambaf, R. Bal, M. and Vyatkin, V. (2017) ‘Distributed home automation system based on
IEC61499 function blocks and wireless sensor networks, 2017 IEEE International Conference on
Industrial Technology (ICIT), pp. 1354-1359. DOI: 10.1109/ICIT.2017.7915561.

Administrator (2019) Different Types of Antennas & Characteristics of Antenna. Available at
https://www.electronicshub.org/types-of-antennas/ (Accessed: 18 April 2023)

Aloo, L. (2016) ‘DC Servomotor-based Antenna Positioning Control System using Hybrid PID-LQR
Controller’, European International Journal of Science and Technology, 5(2), pp. 17-31.

Antoneko, D. (2022) Centralized vs Decentralized vs Distributed Networking Explained. Available at:
https://www.businesstechweekly.com/operational-efficiency/computer-networking/centralized-vs-
decentralized-vs-distributed-networking-explained/ (Accessed: 3 August 2022)

Asl, E. M. Hashemzadeh, F. Baradarannia, M. Bagheri, P. (2021) ‘Observer-based Controller Design
for a Class of Networked Control Systems with Transmission Delays and Packet Loss’, 2021 7th
International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1-6, DOI:
10.1109/ICCIA52082.2021.9403532.

Asl, E. M. Hashemzadeh, F. Baradarannia, M. Bagheri, P. (2022) ‘The Effect of Observer Position on
Networked Control Systems with Random Transmission Delays and Packet Dropouts’, 2022 8th
International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1-6, DOI:
10.1109/ICCIA54998.2022.9737196

Balanis, C. A. (1992) ‘Antenna Theory: A Review’, Proceedings of the IEEE, 80(1), pp. 7-23. doi:
10.1109/5.119564.

Black, G. and Vyatkin, V. (2010) ‘Intelligent Component-Based Automation of Baggage Handling
Systems With IEC 61499’, IEEE Transactions on Automation Science and Engineering, 7(2), pp. 337–
351. DOI: 10.1109/TASE.2008.2007216.

Brennan, R.W., Lyu, G. (2019). ‘IEC 61499 and the Promise of Holonic Systems. In:, et al. Industrial
Applications of Holonic and Multi-Agent Systems,‘ HoloMAS 2019. Lecture Notes in Computer
Science, 11710(0). DOI.org/10.1007/978-3-030-27878-6_1.

Britannica, The Editors of Encyclopaedia (2023) Lorentz Force. Available at:
https://www.britannica.com/science/Lorentz-force (Accessed: 18 April 2023)

Bzdigian, A. (2022) 10. Output devices. Available at:
https://fabacademy.org/2022/labs/dilijan/students/ashod-bzdigian/Assignments/week11/ (Accessed: 18
April 2023)

Čengić, G. and Åkesson, K. (2008) ‘A Control Software Development Method Using IEC 61499
Function Blocks, Simulation and Formal Verification’, IFAC Proceedings Volumes 41(2), pp. 22-27.
DOI.org/10.3182/20080706-5-KR-1001.00003.

Čengić, G. Ljungkrantz, O. and Akesson, K. (2006) ‘Formal Modeling of Function Block Applications
Running in IEC 61499 Execution Runtime’, 2006 IEEE Conference on Emerging Technologies and
Factory Automation, pp. 1269-1276. DOI: 10.1109/ETFA.2006.355187.

 153

Chen F. and Zhou, X. (2023) ‘Design of Predictive Controller for Networked Control Systems’, 2023
IEEE 6th Information Technology, Networking, Electronics and Automation Control Conference
(ITNEC), pp. 1544-1547, DOI: 10.1109/ITENC56291.2023.10082208.

Christensen, J. H. (2022) A Standard for Software Reuse in Embedded, Distributed Control Systems.
Available at: https://holobloc.com/papers/iec61499/overview.htm (Accessed: 15 July 2022)

Christensen, J. Strasser, T. Valentini, A. Vyatkin, V. and. Zoitl, A. (2012) ‘The IEC 61499 function
block standard: Overview of the second edition’, ISA Autom. Week, 6, pp. 6–7.

Colla, M. Brusaferri, A. and Carpanzano, E. (2006) ‘Applying the IEC-61499 Model to the Shoe
Manufacturing Sector’, 2006 IEEE Conference on Emerging Technologies and Factory Automation,
pp. 1301-1308. DOI: 10.1109/ETFA.2006.355422.

Cruz, E. M. Carrillo, L. R. Salazar, L. A. C. (2023) ‘Structuring Cyber-Physical Systems for Distributed
Control with IEC 61499’, IEEE Latin America Transactions, 21(2), pp. 251-259. DOI:
10.1109/TLA.2023.10015217.

Cruz, E. M. Carrillo, L. R. G. Patil, S. Ceron, P. Ceron, J. F. (2022) ‘Validating effect of Refactoring of
IEC 61499 Function Block in Distributed Control Systems’, 2022 IEEE International Conference on
Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA). DOI:
10:1109/ICA-ACCA56767.2022.10005950.

Dai, W. and Vyatkin, V. (2012) ‘Redesign Distributed PLC Control Systems Using IEC 61499 Function
Blocks’, in IEEE Transactions on Automation Science and Engineering, 9(2), pp. 390-401. DOI:
10.1109/TASE.2012.2188794.

Dai, W. Vyatkin, V. Christensen, J. H. and Dubinin, V. N. (2015) ‘Bridging Service-Oriented
Architecture and IEC 61499 for Flexibility and Interoperability, IEEE Transactions on Industrial
Informatics, 11(3), pp. 771-781. DOI: 10.1109/TII.2015.2423495.

Dai, W. Dubinin, V. N. Christensen, J. H. Vyatkin, V. and Guan, X. (2017) ‘Toward Self-Manageable
and Adaptive Industrial Cyber-Physical Systems With Knowledge-Driven Autonomic Service
Management’, in IEEE Transactions on Industrial Informatics, vol. 13(2), pp. 725-736. DOI:
10.1109/TII.2016.2595401.

Dai, W. Zhang, Yi. Zhang, Yu. Kang, J. Huang, D. (2023) ‘Automatic Information Model Generation for
Industrial Edge Applications Based on IEC 61499 and OPC UA’, IEEE Transactions on Industrial
Informatics, 19(4), pp. 6093-6104. DOI: 10.1109/TII.2022.3191365.

Dhillon, M. Kumar, S. (2017) ‘Performance Analysis and Comparison of various Rectenna based RF
Energy Harvesting System’, Introduction to Mobile Communications.

Du, Z. Hu, S. and Li, J. (2013) ‘Modeling and stabilization for singular networked cascade control
systems with state delay’, Proceedings of the 32nd Chinese Control Conference, pp. 6704-6709.

Eze, P. C. Ugoh, A. C. (2021) ‘Positioning Control of DC Servomotor-Based Antenna Using PID Tuned
Compensator’, Journal of Engineering Sciences, 8(1), pp. E9-E16. doi: 10.21272/jes.2021.8(1).e2.

Faccio, D. Clerici, M. Tambuchi, D. (2006) ‘Revisiting the 1888 Hertz Experiment’, American Journal of
Physics, 74, pp. 992-994. doi: 10.1119/1.2238886.

Glatz, B. Cleary, F. Horauer, M. Schuster, H. and Balog, P. (2016) ‘Complementing testing of
IEC61499 function blocks with model-checking’, 2016 12th IEEE/ASME International Conference on

 154

Mechatronic and Embedded Systems and Applications (MESA), pp. 1-7. DOI:
10.1109/MESA.2016.7587151.

Goonhilly (2022) 60 years ago today, on 11th July 1962, Goonhilly made world history. Available at
https://www.goonhilly.org/60th-anniversary-of-a-world-first (Accessed: 20 April 2023).

Gupta, R. A. and Chow, M. (2010) ‘Networked control system: overview and research trends’, IEEE
Transactions on Industrial Electronics, 57(7), pp. 2527-2535. DOI: 10.1109/TIE.2009.2035462.

Hirsch, M. Gerber, C. Hanisch, H. and Vyatkin, V. (2007) ‘Design and Implementation of
Heterogeneous Distributed Controllers According to the IEC 61499 Standard - A Case Study’, 2007
5th IEEE International Conference on Industrial Informatics, pp. 829-834. DOI:
10.1109/INDIN.2007.4384881.

Hussain, T. and Frey, G. (2007) ‘Deployment of IEC 61499 compliant distributed control
applications’, 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA
2007), pp. 502-505. DOI: 10.1109/EFTA.2007.4416810.

Iswanto. Raharja, N. M. Ma’arif, A. Ramadhan, Y. Rosyady, P. A. (2021) ‘Pole Placement Based State
Feedback for DC Motor Position Control’, Annual Conference on Science and Technology Research
(ACOSTER) 2020. doi: 10.1088/1742-6596/1783/1/012057.

Kolla, S. R. and Mainoo, J. (2012) ‘Effect of network-induced delays in control systems: application to
dc motor control’, 2012 International Conference on Advances in Power Conversion and Energy
Technologies (APCET), pp. 1-6. DOI: 10.1109/APCET.2012.6302075.

Koziorek, J. (2004) ‘Design of Distributed Control Systems Based on New International Standards’,
IFAC Proceedings Volumes, 37(19), pp. 313-318. DOI: 10.1016/S1474-6670(17)30703-6.

Lapp, H. Gerber, C. and Hanisch, H. (2010) ‘Improving verification and reliability of distributed control
systems design according to IEC 61499’, 2010 IEEE 15th Conference on Emerging Technologies &
Factory Automation (ETFA 2010), pp. 1-8. DOI: 10.1109/ETFA.2010.5641247.

Lu, H. Guo, M. Hu, Y. and Guo, C. (2018) ‘Stability and H∞ performance of nonlinear fuzzy network
control systems with time varying-delay’, 2018 37th Chinese Control Conference (CCC), pp. 253-256.
DOI: 10.23919/ChiCC.2018.8482806.

Lyu, G. and Brennan, R. W. (2021) ‘Towards IEC 61499-Based Distributed Intelligent Automation: A
Literature Review’, in IEEE Transactions on Industrial Informatics, 17(4), pp. 2295-2306. DOI:
10.1109/TII.2020.3016990.

Lyu, G. Fazlirad, A. Brennan, R.W. (2020) ‘Multi-agent modeling of cyber-physical systems for IEC
61499 based distributed automation’, Procedia Manuf, 51, pp. 1200–1206. DOI:
10.1016/j.promfg.2020.10.168.

Li, G. Wang, L. Yang, R. (2021) ‘Event-triggered Optimal Control for the NCSs with Time Delays’,
Proceedings of the 40th Chinese Control Conference, pp. 4815-4818, DOI:
10.23919/CCC523632021.9550753.

Liu, T. and Liu, X. (2018) ‘Stability criterion for networked control systems based on T-S model with
time-varying delays’, 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS),
pp. 1085-1088. DOI: 10.1109/DDCLS.2018.8516056.

Mahmoud, M. S. and Sabih, M. (2014) ‘Experimental investigations for distributed networked control
systems’, IEEE Systems Journal, 8(3), pp. 717725. DOI: 10.1109/JSYST.2012.2228122.

 155

Mehlhop, S. Walter, J. (2022) ‘Model-aware Simulation of IEC 61499 Designs’, 2022 IEEE 27th
International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-4. DOI:
10.1109/ETFA52439.2022.9921452.

Mikova, L. Virgala, I. Kelemen, M. (2016) ‘Speed Control of DC Motor’, American Journal of
Mechanical Engineering, 4(7), pp. 380-384. doi. 10.12691/ajme-4-7-27

Mirghani, M. (2017) ‘Reuse of Obsolete Dish Antenna in Radio Astronomy’.

Niklova, N. K. (2016) ‘Lecture 19: Reflector Antennas’, Department of Electrical Engineering,
McMaster University.

Maung, M. M. Latt, M. M. New, C. M. (2018) ‘DC Motor Angular Position Control using PID Controller
with Friction Compensation’, International Journal of Scientific and Research Publications, 8(11), pp.
149-155. doi: 10.29322/IJSRP.8.11.2018.p8321

Missal, D. Hirsch, M. and Hanisch, H. (2007) ‘Hierarchical distributed controllers - design and
verification’, 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007),
pp. 657-664. DOI: 10.1109/EFTA.2007.4416832.

Pang, C. Patil, S. Yang, C. Vyatkin, V. and Shalyto, A. (2014) ‘A portability study of IEC 61499:
Semantics and tools’, 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp.
440-445. DOI: 10.1109/INDIN.2014.6945553.

Pang, C. Vyatkin, V. Deng, Y. and Sorouri, M. (2013) ‘Virtual smart metering in automation and
simulation of energy-efficient lighting system,’ 2013 IEEE 18th Conference on Emerging Technologies
& Factory Automation (ETFA), pp. 1-8. DOI: 10.1109/ETFA.2013.6648040.

Pang, Z. Luo, W. Liu, G. Han, Q. (2021) ‘Observer-Based Incremental Predictive Control of Networked
Multi-Agent Systems with Random Delays and Packet Dropouts’, IEEE Transactions on Circuits and
Systems II: Express Briefs, 68(1), pp. 426-430, DOI: 10.1109/TCSII.2020.2999126.

Panjaitan, S., Frey, G. (2005) ‘Functional design for IEC 61499 distributed control systems using UML
activity diagrams’, Int. Conf, Instrumentation, Communication and Information Technology, pp. 64–70.

Patil, S. Drozdov, D. Zhabelova, G. and Vyatkin, V. (2018) ‘Refactoring of IEC 61499 function block
application — A case study’, 2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 726-733. DOI:
10.1109/ICPHYS.2018.8390797.

Patil, S. Dubinin, V. and Vyatkin, V. (2015) ‘Formal Verification of IEC61499 Function Blocks with
Abstract State Machines and SMV -- Modelling’, 2015 IEEE Trustcom/BigDataSE/ISPA, pp. 313-320.
DOI: 10.1109/Trustcom.2015.650.

Patil, S. Dubinin, V. and Vyatkin, V. (2015) ‘Formal modeling and verification of IEC 61499 function
blocks with abstract state machines and SMV-execution semantics’, International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications. Springer pp. 300–315.

Polaków, G., Metzger, M. (2009) Design and Implementation of LabVIEW-Based IEC61499 Compliant
Device.’, Holonic and Multi-Agent Systems for Manufacturing. HoloMAS 2009. Lecture Notes in
Computer Science, 5696 (0). DOI.org/10.1007/978-3-642-03668-2_18.

Preuße, S. Missal, D. Gerber, C. Hirsch, M. and Hanisch, H. M. (2011) ‘On the use of model-based
IEC 61499 controller design’, International Journal of Discrete Event Control Systems, 1(1), pp. 115–
128

 156

Rahmat-Samii, Y. Densmore, A. (2009) ‘A History of Reflector Antenna Development: Past, Present
and Future’, 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference
(IMOC), pp. 17-23. doi: 10.1109/IMOC.2009.5427640

Roderick, A. (2021) Direct Current Generator Components. Available at
https://eepower.com/technical-articles/direct-current-generator-components/# (Accessed: 18 April
2023)

Rowell, D. (2002) ‘State-Space Representation of LTI Systems’, 2.14 Analysis and Design of
Feedback Control Systems.

Rubin, J. (2018) Heinrich Hertz, The Discovery of Radio Waves. Available at
https://www.juliantrubin.com/bigten/hertzexperiment.html (Accessed: 20 April 2023).

Santos, A. A. and da Silva, A. F. (2021) ‘Simulation and Control of a Cyber-Physical System under
IEC 61499 Standard’, Procedia Manufacturing, 55, pp. 72-79. DOI: 10.1016/j.promfg.2021.10.011.

Sarkar, R. (2020) Basics of DC Motor. Available at: https://www.electronicsforu.com/resources/dc-
motor-basics (Accessed: 18 April 2023)

Seale, E. (2016) DC Motors. Available at:
http://solarbotics.net/starting/200111_dcmotor/200111_dcmotor.html (Accessed: 20 March 2023).

Sorouri, M. Vyatkin V. and Xie S. (2012) ‘Distributed control design of medical devices using plug-
and-play IEC 61499 Function Blocks’, 2012 19th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), pp. 450-455.

Sheldon, R. (2023) antenna. Available at
https://www.techtarget.com/searchmobilecomputing/definition/antenna (Accessed: 18 April 2023)

Shi, Y. and Yu, B. (2009) ‘Output feedback stabilization of networked control systems with random
delays modeled by Markov Chains’, IEEE Transactions on Automatic Control, 54(7), pp. 1668-1674.
DOI: 10.1109/TAC.2009.2020638.

Strasser, T. J. Christensen, H. Valente, A. Chouinard, J. E. Carpanzano, A. Valentini, et al., (2012)
‘The IEC 61499 Function Block Standard: Launch and Takeoff’, presented at the ISA Automation
Week 2012, Orlando, US.

Strasser, T. J. Zoitl, A. Christensen, J. H. and Sünder, C. (2011) ‘Design and Execution Issues in IEC
61499 Distributed Automation and Control Systems’, IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 41(1), pp. 41-51. DOI:
10.1109/TSMCC.2010.2067210.

Stroski, P. N. (2019) Type of antennas (Part 2, reflecting antennas). Available at
https://www.electricalelibrary.com/en/2019/04/10/type-of-antennas-part-2-reflecting-antennas/
(Accessed: 20 April 2023)

Stubbs, J. (2011) ‘Ethernet protocol, EtherCAT, processes on the fly. Available at
https://www.controleng.com/articles/ethernet-protocol-ethercat-processes-on-the-fly/ (Accessed: 30
April 2023)

Subramanian, M. and Priyanka, K. (2020) ‘Delay-dependent Stability Analysis of Network-controlled
DC Motor with Time-invariant Delays’, 2020 IEEE 17th India Council International Conference
(INDICON), pp. 1-7, DOI: 10.1109/INDICON49873.2020.9342554.

 157

Sun, J. Chen, J. Dou, L (2014) ‘Networked Predictive Control for Linear Systems with Unknown
Communications Delay’, 2014 UKACC International Conference on Control, pp. 668-672. DOI:
10.1109/CONTROL.2014.6915219.

Sunder, C. Zoitl, A. Strasser, T. and Favre-Bulle, B. (2005) ‘Intuitive control engineering for
mechatronic components in distributed automation systems based on the reference model of IEC
61499’, INDIN ‘05 2005 3rd IEEE International Conference on Industrial Informatics, 2005, pp. 50-55.
DOI: 10.1109/INDIN.2005.1560351.

Thramboulidis, K. (2009) “IEC61499 Function Block Model: Facts and Fallacies,” IEEE Industrial
Electronics Magazine, 3(4), pp. 7-26.

Väänänen, E. and Vyatkin, V. (2017) ‘Estimation, measurement and improvement of distributed
automation applications performance’, IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society, pp. 5426-5431. DOI: 10.1109/IECON.2017.8216940

Vyatkin, V. (2011) ‘IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art
Review’, IEEE Transactions on Industrial Informatics, 7(4), pp. 768-781. DOI:
10.1109/TII.2011.2166785.

Vyatkin, V. Hanisch, H. Pang, C. and Yang, C. (2009) ‘Closed-Loop Modeling in Future Automation
System Engineering and Validation’, in IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 39(1), pp. 17-28. DOI: 10.1109/TSMCC.2008.2005785.

Vyatkin, V. Hirsch, M. and Hanisch, H. (2006) ‘Systematic Design and Implementation of Distributed
Controllers in Industrial Automation’, 2006 IEEE Conference on Emerging Technologies and Factory
Automation, pp. 633-640. DOI: 10.1109/ETFA.2006.355448

Vyatkin, V. (2009) ‘The IEC 1499 standard and its semantics’, IEEE Industry Electron Magazine., Vol
3(4), pp. 40-48. DOI: 10.1109/OJIES.2021.3138537

Wang, Y. Guo, N. Yan, G. Liu, J. (2022) ‘Design of Integrated Energy System Based on IEC 61499
and OPC UA’, Proceedings of the 41st Chinese Control Conference, pp 4270-4275. DOI:
10.23919/CCC55666.2022.990135.

Wolff, C. (1997) Gregory Antenna. Available at
https://www.radartutorial.eu/06.antennas/Gregory%20Antenna.en.html (Accessed: 20 April 2023).

Wielebinski, R., Kellermann, K.I., and Orchiston, W., eds. (2007). ‘The Early History of European
Radio Astronomy’, Astronomische Nachrichten. 328(5), 375–446.

Wikipedia. (2023) Karl Guthe Jansky. Available at https://en.wikipedia.org/wiki/Karl_Guthe_Jansky
(Accessed: 20 April 2023)

Xiao, F. Shi, Y. and Chen, T. (2021) ‘Robust stability of networked linear control systems with
asynchronous continuous- and discrete-time event-triggering schemes’, IEEE Transactions on
Automatic Control, 66(2), pp. 932-939. DOI: 10.1109/TAC.2020.2987649.

Xie, H. Zheng, J. Wang, M. Chai, R. (2020) ‘Networked DC Motor Control with Time-Varying Delays
and Application to a Mobile Robot’, 2020 IEEE 16th International Conference on Control & Automation
(ICCA), pp. 171-176, DOI: 10.1109/ICCA51439.2020.9264587.

 158

Yan, J. and Vyatkin, V. (2011) ‘Distributed execution and cyber-physical design of Baggage Handling
automation with IEC 61499’, 2011 9th IEEE International Conference on Industrial Informatics, 2011,
pp. 573-578. DOI: 10.1109/INDIN.2011.6034942.

Yoong, L. H. P. Roop, S. Vyatkin, V. and Salcic, Z. (2009) ‘A Synchronous Approach for IEC 61499
Function Block Implementation’, in IEEE Transactions on Computers, 58(12), pp. 1599-1614. DOI:
10.1109/TC.2009.128.

Yu, X. and Jiang, J. (2014) ‘Analysis and compensation of delays in FF H1 fieldbus control loop using
model predictive control’, IEEE Transactions on Instrumentation and Measurement, 63(10), pp. 2432-
2446. DOI: 10.1109/TIM.2014.2310093.

Zhabelova, G. et al., (2014) ‘Cyber-physical components for heterogeneous modeling, validation and
implementation of smart grid intelligence’, 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), pp. 411-417. DOI: 10.1109/INDIN.2014.6945548.

Zhabelova, G. Yang, C. Vyatkin, V. Etherden N. and Christoffersson, L. (2017) ‘Open architecture for
cost-effective protection and control of power distribution networks’, 2016 IEEE International
Conference on Smart Grid Communications (SmartGridComm), pp. 729-735. DOI:
10.1109/SmartGridComm.2016.7778848.

Zhang, D. Nguang, S. K. and Yu, L. (2017) ‘Distributed control of large-scale networked control
systems with communication constraints and topology switching’, IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 47(7), pp. 1746-1757. DOI: 10.1109/TSMC.2017.2681702.

Zhang, L. Shi, Y. Chen, T. and Huang, B. (2005) ‘A new method for stabilization of networked control
systems with random delays’, Proceedings of the 2005, American Control Conference, 2005, 1, pp.
633-637. DOI: 10.1109/ACC.2005.1470028.

Zhang, S. Zhao, D. Li, C. and Stobart, R. (2015) ‘Fuzzy speed control of networked motion control
systems’, Journal of Computational and Nonlinear Dynamics, 10(6), pp. 061013/1-061013/9.
DOI:10.1115/1.4029903.

Zhaoping, D.U. Songlin, H.U. Jianzhen, L.I. (2013) ‘Modeling and Stabilization for Singular Networked
Cascade Control Systems with State Delay’, Proceedings of the 32nd Chinese Control Conference, pp.
6704-6709.

 159

APPENDICES

APPENDIX A: MATLAB SCRIPT FILES

Appendix A4.1: DC Motor Parameters

Calculates all the motor parameters needed for the Simulink block diagrams. The code

calculates the state space matrices from the motor parameters.

%Calculate DC motor open loop variables
%Kevin Love – 2022

%Define motor and plant parameters
Kb = 0.425; %Electromotive force constant
Kt = 2.2; %Torque constant
Ra = 14.3; %Armature resistance
Ja = 0.013; %Moment of inertia of the armature
Jl = 0.001; %Moment of inertia of the load
Ba = 0.0001; %Motor damping coefficient
Bl = 1; %Load damping coefficient
N1 = 1; %Number of gears teeth N1
N2 = 270; %Number of gears teeth N2

%Calculate motor and load moment of inertia
Jm = Ja+Jl*(N1/N2)^2

%Calculate motor and load damping coefficient
Bm = Ba+Bl*(N1/N2)^2

%Substitute parameters into Km and Am
Km = Kb/(Ra*Jm)
Am = ((Ra*Bm)+(Kb*Kt))/(Ra*Jm)

Appendix A4.2: Open Loop System in State Space Form

%Calculate DC motor open loop state space matrices
%Kevin Love - 2022

%Transfer Function of Motor
num = [Am]; %Declare numerator of open loop transfer function
den = [1 Km 0]; %Declare denominator of open loop transfer function
Motor_TF = tf(num,den); %Declare complete transfer function

%State Space Representation of Motor
Motor_SS = ss(Motor_TF); %Convert transfer function to state space

%Create variables A,B,C,D from state space reference
A = Motor_SS.A;
B = Motor_SS.B;
C = Motor_SS.C;
D = Motor_SS.D;

 160

Appendix A5.1: Full State Feedback Controller

Calculates the root locus as well as the state space equations of the closed loop system.

Includes the test for controllability as well as the calculation to work out the gain matrix.

%Develop full state feedback controller
%Kevin Love - 2023

%Root locus of open loop system
rlocus(OL_Motor_SS);

%Closed loop transfer function of motor
CL_motor_TF = feedback(OL_motor_TF,1);

%Closed loop state space
CL_Motor_SS = ss(CL_motor_TF);

%Declare closed loop matrices
Acl = CL_Motor_SS.A;
Bcl = CL_Motor_SS.B;
Ccl = CL_Motor_SS.C;
Dcl = CL_Motor_SS.D;

%Check for controllability
control=ctrb(Acl,Bcl);
Rank=rank(control)

%Desired poles
J = [-2 -6];

%Acker formula to determine K gain matrix
K = acker(Acl,Bcl,J);

%Add state feedback controller
A_ClosedLoop = Acl - Bcl*K;
eig(A_ClosedLoop);

syscl = ss(A_ClosedLoop,Bcl,Ccl,Dcl);

%Root locus of closed loop system with full state feedback controller
rlocus(syscl)

Appendix A5.2: Full State Feedback Controller with Integral Gain

Calculates the gain matrix and integral gain for the new closed loop system. A root locus is

also done to test if the poles are at the correct position.

%Develop full state feedback controller with integral control
%Kevin Love - 2023

 161

%Determine new closed loop system with integrator
Aint=[Acl zeros(2,1);-Ccl 0];
Bint=[Bcl;0];
Cint=[Ccl 0];

%Set new desired poles
Pint= [-2 -6 -8];

%Calculate integrator matrix Ke
Ke =acker(Aint,Bint,Pint);

%New closed loop system
Anew = Aint-Bint*Ke;
Br=[0;0;1];
Bnew=Bint+Br;
sysclosed = ss(Anew,Bnew,Cint,Dcl);
rlocus(sysclosed)

Appendix A5.3: Case Study 5.3.4 Graph Outputs

Plots all the responses that are developed in Simulink. These responses are for the closed-

loop system without controller, closed-loop system with state feedback, and closed-loop

system with state feedback with integral control. The plot for the random number generator is

also included in this code.

%%Case Study 5.3.4 Plots
%Kevin Love - 2023

%Case 1
figure('Name', 'Case Study 5.3.4');
subplot(2,2,1)
xlim([0 20])
ylim([0 1.2])
hold on
plot(out.Time, out.ClosedLoopStepResponse, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 1" + newline + "Step Response of a Closed Loop DC Motor System")
plot(out.Time, out.ClosedLoopStepResponse_SP, 'LineWidth',1)
legend('Position (θ)', 'Set Point')
grid on
hold off

%Case 2
subplot(2,2,2)
xlim([0 20])
ylim([0 0.2])
hold on
plot(out.Time, out.ClosedLoopWithStateFeedback, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')

 162

title("Case 2" + newline + "Step Response of a Closed Loop DC Motor System with State
Feedback")
plot(out.Time, out.ClosedLoopWithStateFeedback_SP, 'LineWidth',1)
legend('Position (θ)', 'Set Point')
grid on
hold off

%Case 3
subplot(2,2,3)
xlim([0 20])
ylim([0 1.2])
hold on
plot(out.Time, out.AddedIntegral1, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 3" + newline + "Step Response of a Closed Loop DC Motor System with State
Feedback and Integral Control")
plot(out.Time, out.AddedIntegral1_SP, 'LineWidth',1)
legend('Position (θ)', 'Set Point')
grid on
hold off

%Case 4
subplot(2,2,4)
xlim([0 20])
ylim([0 110])
hold on
plot(out.Time, out.AddedIntegral2, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 4" + newline + "Step Response of a Closed Loop DC Motor System with State
Feedback and Integral Control")
plot(out.Time, out.AddedIntegral2_SP, 'LineWidth',1)
legend('Position (θ)', 'Set Point')
grid on
hold off

%Extra Case Testing robustness of controller
figure ('Name', 'Response Test')
xlim([0 24])
hold on
plot(out.Time, out.RandomGenerator, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title('System Response to Random Number Generator Input')
plot(out.RandomGenerator_SP, 'LineWidth',1)
legend('Position (θ)', 'Set Point')
grid on
hold off

%Generate charateristics of the different cases for Table 5.1
stepinfo(out.ClosedLoopStepResponse,out.Time)
stepinfo(out.ClosedLoopWithStateFeedback,out.Time)
stepinfo(out.AddedIntegral1,out.Time)
stepinfo(out.AddedIntegral2,out.Time)

 163

Appendix A5.4: Observer Gain

Checks that the system is observable and calculates the observer gain.

%Calculate Observer Gain
%Kevin Love - 2023

%Check for observability
observe=obsv(Acl,Ccl)
Rank=rank(observe)

%State Feedback Observer Gain Matrix
L = acker(Acl',Ccl',J*4)'

Appendix A5.5.1: Sensor to Controller Delay Graph Outputs

MATLAB code that creates the graphs for section 5.5.1 showing the effects of sensor to

controller network delays on the step responses of the different control systems developed

%Section 5.5.1 – sensor to controller delays
%Kevin Love - 2023

%Case 1
figure('Name', 'Case Study 5.5.1');
subplot(2,2,1)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 1" + newline + "Position output with 100ms delay"+ newline +"between sensor
and controller")
plot(out.Time, out.Position_Delayed_100ms, 'LineWidth',1)
legend('Ts-c = 0ms', 'Ts-c = 100ms')
grid on
hold off

%Case 2
subplot(2,2,2)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 2" + newline + "Position output with 400ms delay"+ newline +"between sensor
and controller")
plot(out.Time, out.Position_Delayed_400ms, 'LineWidth',1)
legend('Ts-c = 0ms', 'Ts-c = 400ms')
grid on
hold off

 164

%Case 3
subplot(2,2,3)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 3" + newline + "Position output with 800ms delay"+ newline +"between sensor
and controller")
plot(out.Time, out.Position_Delayed_800ms, 'LineWidth',1)
legend('Ts-c = 0ms', 'Ts-c = 800ms')
grid on
hold off

%Case 4
subplot(2,2,4)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 4" + newline + "Position output with 1200ms delay"+ newline +"between sensor
and controller")
plot(out.Time, out.Position_Delayed_1200ms, 'LineWidth',1)
legend('Ts-c = 0ms', 'Ts-c = 1200ms')
grid on
hold off

%Generate characteristics of the different cases for Table 5.1
stepinfo(out.Position_Delayed_100ms,out.Time)
stepinfo(out.Position_Delayed_400ms,out.Time)
stepinfo(out.Position_Delayed_800ms,out.Time)
stepinfo(out.Position_Delayed_1200ms,out.Time)

Appendix A5.5.2: Controller to Actuator Delay Graph Outputs

MATLAB code that creates the graphs for section 5.5.2 showing the effects of controller to

actuator network delays on the step responses of the different control systems developed

%Section 5.5.2 – controller to actuator delays
%Kevin Love - 2023

%Case 1
figure('Name', 'Case Study 5.5.2');
subplot(2,2,1)
%xlim([0 20])
%ylim([0 1.2])
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 1" + newline + "Position output with 50ms delay"+ newline +"between controller
and actuator")
plot(out.Time, out.Position_Delayed_50ms, 'LineWidth',1)

 165

legend('Tc-a = 0ms', 'Tc-a = 50ms')
grid on
hold off

%Case 2
subplot(2,2,2)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 2" + newline + "Position output with 100ms delay"+ newline +"between controller
and actuator")
plot(out.Time, out.Position_Delayed_100ms, 'LineWidth',1)
legend('Tc-a = 0ms', 'Tc-a = 100ms')
grid on
hold off

%Case 2
subplot(2,2,3)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 3" + newline + "Position output with 125ms delay"+ newline +"between controller
and actuator")
plot(out.Time, out.Position_Delayed_125ms, 'LineWidth',1)
legend('Tc-a = 0ms', 'Tc-a = 125ms')
grid on
hold off

%Case 2
subplot(2,2,4)
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 4" + newline + "Position output with 150ms delay"+ newline +"between controller
and actuator")
plot(out.Time, out.Position_Delayed_150ms, 'LineWidth',1)
legend('Tc-a = 0ms', 'Tc-a = 150ms')
grid on
hold off

%Generate characteristics of the different cases for Table 5.2
stepinfo(out.Position_Delayed_50ms,out.Time)
stepinfo(out.Position_Delayed_100ms,out.Time)
stepinfo(out.Position_Delayed_125ms,out.Time)
stepinfo(out.Position_Delayed_150ms,out.Time)

 166

Appendix A6.1: TwinCAT Transformation Commands

MATLAB code to be executed in the MATLAB command window to create a TwinCAT object

from the Simulink block diagram in the current folder path.

%%Convert Simulink block diagram to TwinCAT object
%Kevin Love - 2023

%Open the model that needs to be converted
modelName = 'DCMotorCLSSSFBIC1';
open_system(modelName);

%Change the solver type to fixed step
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Sol
verType','Fixed-step');

%Change the system target file to TwinCatGrt
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Sy
stemTargetFile','TwinCatGrt.tlc');

%Change the vendoer name to the project name underscore VendorName
TwinCAT.ModuleGenerator.Simulink.ModelExportConfig.ShowModelParam(modelName,'Tc
Project_VendorName');

%Save project and build using Simulink Coder
save_system(modelName);
slbuild(modelName);

Appendix A7.5.1: Position output of control system with and without delay

MATLAB code to graph the outputs of the closed-loop control system with delay vs without

delay.

%Chapter 7 Graph Ouputs
%Kevin Love 2023

%Delay vs No Delay Graph
figure('Name', 'Delay vs No Delay');
hold on
plot(out.Time, out.Position, 'LineWidth',1)
xlabel('Time (s)')
ylabel('Position (θ)')
title("Case 1" + newline + "Position output without delay verse with delay"+ newline)
plot(out.Time, out.Position_Delayed, 'LineWidth',1)
legend('Position (θ)', 'Position (θ) with delay')
grid on
hold off

 167

APPENDIX B: Installation Procedures

Appendix B6.1: MATLAB/Simulink installation procedure

1. Download the setup file from https://www.mathworks.com/products/matlab.html

2. Save the setup file to the desired location on the PC.

3. Run MATLAB setup file from the selected location.

4. The setup extracts and the product installer start.

5. Enter an email address linked to a MathWorks account, then click on “Next”.

6. Enter password for the email address used, then click on “Next”.

7. Accept the terms of the license agreement, then click on “Next”.

8. Configure required licensing and confirm user, then click on “Next”.

9. Select the default destination for file storage, then click on “Next”.

10. Select MATLAB and Simulink products to be installed.

11. Also select any MATLAB and Simulink add-ons, then click on “Next”.

12. The installation manager installs all the selected software.

13. Click on “Close” once the installation is complete.

 168

Appendix B6.2: Visual Studio 2019 installation procedure

1. Download the setup file from https://www.mathworks.com/products/matlab.html

2. Save the setup file to the desired location on the PC.

3. Run Visual Studio 2019 setup file from the selected location

4. The setup extracts and the Visual Studio Installer starts.

5. Once extraction completes, select the below software packages by ticking the box

6. Click on “Install” once all the required packages are selected

7. The installer will download and install the packages automatically

8. Restart the PC after installation is complete

 169

Appendix B6.3: TwinCAT 3 installation procedure

1. Download he setup file from https://www.beckhoff.com/en-en/support/download-
finder/software-and-tools/
2. Save the setup file to the desired location on the PC.

3. Run TwinCAT 3 setup file from the selected location as an administrator

4. Accept the terms of the license agreement, then click on “Next”.

5. Accept the terms of the 2nd license agreement, then click on “Next”.

6. Select “Complete” installation setup, then click on “Next”.

7. Click on “Install” to begin installing all the necessary software.

8. Click on “Finish” once the installation is complete

9. Restart the PC after installation is complete

10. The TwinCAT 3 set file automatically runs again

11. Select the version of Visual Studio installed on the PC for integration

12. Click on “Next” to being the Visual Studio Shell installation

13. Click on “Next” to being the Visual Studio Shell installation

14. Restart the PC after installation is complete.

 170

APPENDIX C: Wiring Diagrams

Appendix C7.1: Test rig wiring diagram

