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ABSTRACT 
 
Background: The prevalence of diabetes has reached an alarming level worldwide. 

Individuals with diabetes experience impaired glucose metabolism, which results in an 

augmented inflammatory response and heightened oxidative stress, contributing to the 

upregulation of inflammatory and pro-apoptotic genes. These effects ultimately exacerbate 

complications associated with diabetes, which significantly compromise patients’ quality of life 

and life expectancy. Thus, there is an urgent need to identify safe and effective drugs that 

provide anti-diabetic benefits while protecting against complications of diabetes. Furthermore, 

alternative biomarkers are required to facilitate early identification of complications and risk 

management to improve the quality of life. Circulating miRNAs have emerged as potential 

contributors to disease etiology and progression, including diabetes; hence, they can be of 

significant use as novel markers with the potential for innovative diagnostic and therapeutic 

tools. Additionally, the aberrant expression of miRNAs may be implicated in various pathways, 

such as glucose metabolism, inflammation, oxidative stress, and apoptosis. The therapeutic 

effects of natural compounds have been widely recognized for centuries. This study aimed to 

investigate the effect of RES on oxidative stress, inflammation, apoptosis, and glucose 

metabolism under high glucose-induced conditions as well as investigate the effect of high 

glucose levels and evaluate the influence of RES on high glucose-induced miRNA 

dysregulation. 

 

Methods: HepG2 liver cells were divided into six groups: control, High glucose (40 mM), Low 

resveratrol (LR) (25 µM), High resveratrol (HR) (50 µM), HG+LR, and HG+HR. The 

supernatant was collected after 48 and 72 hours of exposure; total RNA and miRNAs were 

extracted according to the manufacturer's instructions. Total RNA was reverse transcribed into 

cDNA and used for gene expression analyses. The extracted total miRNAs were used for 

miRNA expression analyses using quantitative Polymerase Chain Reaction (qPCR). The 

collected supernatant was utilized for ELISA, Bioplex, and lactate dehydrogenase (LDH) 

assays. All statistical analyses were performed using GraphPad Prism version 8.0.0 

(GraphPad Software, San Diego, California, USA). The Student’s t-test and one-way analysis 

of variance (ANOVA) were used. All assays were performed in triplicate, and differences were 

considered statistically significant at p<0.05. 

 

Results: A significant reduction was observed in the expression levels of miR-126-3p, miR-

182-5p, and miR-30a-5p when HepG2 cells were exposed to high glucose conditions. 

Intriguingly, resveratrol treatment reversed the reduction of miR-126-3p, miR-182-5p, and miR-

30a-5p caused by high glucose in HepG2 cells. Moreover, our research demonstrates that 
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high glucose resulted in an increase in Neuronal Differentiation 1 (Neurod1) expression in 

HepG2 cells. Conversely, the expression of Neurod1 was found to be reduced in response to 

resveratrol. There was a significant increase in the mRNA expression of nuclear factor kappa 

B (NF-kB), IkB kinase α (IKKα), and IkB-α when HepG2 cells were exposed to high glucose. 

Resveratrol treatment markedly reduced NF-kB, IKKα, and IkB-α expression levels. A notable 

increase in Sprouty-related EVH1 domain containing 1 (SPRED1) expression was observed 

in cells treated with high glucose, leading to augmented expression levels of tumour necrosis 

factor-alpha (TNF-α), Interleukin-6 (IL-6), Cyclooxygenase 2 (COX2), and Interleukin-1 beta 

(IL-1β). Nevertheless, resveratrol treatments reduced the expression levels of SPRED1, TNF-

α, IL-6, COX2, and IL-1β in HepG2 cells. In cells treated with high glucose, there was a 

significant increase in the expression of FOXO1. This increase subsequently led to an increase 

in the expression of genes associated with gluconeogenesis, namely phosphoenolpyruvate 

carboxykinase (PEPCK) and Glucose-6-phosphate (G6P). Simultaneously, there was a 

concurrent reduction in the expression of glucokinase (GCK). In contrast, resveratrol treatment 

reduced FOXO1, PEPCK, and G6P expression while increasing GCK expression. A significant 

reduction in nuclear factor erythroid 2–related factor 2 (Nrf2) expression, (p<0.0001) and 

antioxidant enzymes (SOD, Superoxide dismutase; GPx1, Glutathione peroxidase 1; CAT and 

NQO1, NAD(P)H quinone oxidoreductase 1) were observed when HepG2 cells were exposed 

to high glucose. Remarkably, resveratrol increased Nrf2 expression, subsequently triggering 

an increase in genes associated with antioxidant enzymes (SOD, CAT, GPx1, and NQO1). 

High glucose exposure notably decreased B-cell lymphoma 2 (BcL-2) gene expression, 

whereas resveratrol treatment significantly increased BcL-2 expression. Prolonged exposure 

of HepG2 cells to high glucose (72 h) increased LDH release. Intriguingly, resveratrol treatment 

showed a noteworthy reduction in LDH release. High glucose exposure reduced Oxoguanine 

glycosylase-1 (OGG1) expression, while resveratrol significantly increased OGG1 mRNA 

levels (p<0.0001). 

 

Conclusion: Data obtained from this study showed that high glucose levels influence miR-

126-3p, miR-182-5p, and miR-30a-5p in HepG2 liver cells. While resveratrol treatment 

reversed high glucose-induced downregulation of miR-126-3p, miR-182-5p, and miR-30a-5p 

in HepG2 cells. Thus, suggesting a promising role for resveratrol in regulating miRNA 

expression patterns implicated in diabetes. Our findings demonstrated that high glucose 

disrupts pathways (glucose metabolism, inflammation, oxidative stress, and apoptosis) related 

to diabetes. Moreover, our findings demonstrated that resveratrol may ameliorate the 

pathologic processes involved in DM complications by reducing inflammation and oxidative 

stress, increasing anti-apoptotic and DNA-repair genes, and regulating glucose metabolism. 
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CHAPTER 1: INTRODUCTION 
 
1.1 Introduction 
Diabetes mellitus (DM) is a chronic metabolic, non-communicable disease characterized by 

elevated blood glucose levels due to impaired insulin secretion or action (Firdous et al., 2018). 

It is a major social and economic issue of the twenty-first century with serious public health 

challenges (Zimmet et al., 2016). The global prevalence of DM is rapidly increasing and has 

reached epidemic proportions (Firdous et al., 2018). The International Diabetes Federation 

(IDF) estimated that 536.6 million individuals (undiagnosed and diagnosed) worldwide had 

diabetes in 2021 (Sun et al., 2022). Projections indicate a potential surge to 783.2 million 

diabetes patients by 2045 if drastic prevention initiatives are not implemented (Sun et al., 

2022). In Africa, it was estimated that 24 million individuals were living with diabetes in 2021, 

and this is projected to rise to 55 million by 2045 (Sun et al., 2022). In South Africa, the 

prevalence of diabetes increased from 4.5% in 2010 to 12.7% in 2019. Furthermore, in 2019, 

4.58 million individuals aged between 20-79 years were estimated to have diabetes, of which 

52.4% were undiagnosed (International Diabetes Federation, 2021). Globally, 87.5% of all 

undiagnosed diabetes cases occur in low and middle-income nations, with low-income 

countries having the highest proportion (50.5%). However, even in high-income countries, 

nearly one-third (28.8%) of people with diabetes have not been diagnosed (International 

Diabetes Federation, 2021). Alarmingly, diabetes resulted in the loss of approximately 4 million 

adult lives in 2017, equating to 1 death every 8 seconds (International Diabetes Federation, 

2017). Given this escalating global prevalence, there is an urgent need to explore biomarkers 

that facilitate early detection of complications and effective management of diabetes. 

 

Maintaining normal blood glucose levels relies on a delicate balance between insulin secretion 

and functioning within the body. The liver is a vital organ responsible for regulating glucose 

homeostasis by regulating various glucose metabolism pathways, such as glycogenesis, 

glycogenolysis, glycolysis, and gluconeogenesis (Han et al., 2016). However, insulin 

resistance in the liver disrupts glucose metabolism, leading to elevated blood glucose levels in 

patients with diabetes (Demir et al., 2021). This metabolic dysfunction of glucose significantly 

impacts other cells, tissues, and processes, all contributing to the development of diabetes. 

Furthermore, inflammation arises from various pathological stimuli and tissue injuries 

associated with diabetes, playing a role in the induction of insulin resistance (Huang et al., 

2020). Oxidative stress has also been shown as a key mechanism of insulin resistance (Hurrle 

& Hsu, 2017). 

Oxidative stress is the imbalance between oxidants and antioxidants (Francisqueti et al., 

2017). The excessive generation of reactive oxygen species (ROS) has been associated with 

metabolic disorders, including diabetes (Shradha et al., 2010). Excessive ROS production 

results in oxidative damage to proteins, lipids, and genetic material, thereby disrupting 
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signalling and causing cellular malfunction, resulting in cell death (Costantini, 2019). ROS can 

also function as signalling molecules, facilitating cellular proliferation and apoptosis (Finkel, 

1998). One example is oxidative stress-induced ROS production due to elevated glucose 

levels triggering apoptosis (Sun et al., 2012; Xu et al., 2012). 

 

Diabetes increases the risk of developing life-threatening health complications, resulting in 

higher medical costs, reduced quality of life, and increased mortality (Baena-Díez et al., 2016). 

Diabetes mellitus is a leading cause of cardiovascular disease (CVD), including heart disease, 

stroke, renal failure, and blindness (due to diabetic retinopathy). Chronic hyperglycaemia leads 

to complications, such as neuropathy, nephropathy, and retinopathy, and an increased CVD 

risk (Danaei et al., 2011). Managing diabetes entails reducing blood glucose levels through 

lifestyle adjustments and anti-diabetic interventions. Unfortunately, current treatments may 

cause serious side effects, such as weight gain, hypoglycaemia, gastrointestinal discomfort, 

and contraindications that restrict their use (Öztürk et al., 2017; Su et al., 2022). 

 

Recent advances in diabetes research highlight the crucial role of circulating miRNAs in the 

onset and progression of the disease, suggesting their therapeutic and diagnostic potential 

(Bartel, 2004). MiRNAs, intrinsic noncoding RNAs, regulate gene expression at the 

posttranscriptional stage, either by degradation of messenger RNAs (mRNAs) or translation 

inhibition (Bartel, 2004; Lewis et al., 2005). Due to their involvement in various biological 

processes, the aberrant expression of miRNAs may contribute to various pathophysiological 

conditions, making them promising targets for intervention/prevention of complications of DM 

(Mirra et al., 2018).  

 

Resveratrol (RES; 3,4’,5-trihydroxystilbene) is a naturally occurring phytoalexin that has anti-

inflammatory, anti-platelet aggregation, anti-carcinogenic, cartilage-protective, and anti-aging 

properties (Timmers et al., 2013; Zhu et al., 2017). Extensive research has demonstrated the 

role of RES in managing diabetes and its complications (Soufi et al., 2012; Turan et al., 2012; 

Singh et al., 2013; Vallianou et al., 2013) and researchers have demonstrated that RES can 

reduce blood glucose levels (Oyenihi et al., 2016; Brasnyó et al., 2011; Bhatt et al., 2012; 

Crandall et al., 2012; Szkudelski & Szkudelska, 2015). Previous research has demonstrated 

RES’s efficacy in mitigating oxidative stress and apoptosis in various cell types (Liu et al., 2014; 

Kitada & Koya, 2013; Hoca et al., 2021; Do et al., 2012). Resveratrol has an antihyperglycemic 

effect that improves blood glucose parameters, inflammation, and insulin resistance (Imamura 

et al., 2017). Despite the potential benefits of RES in managing diabetes and its symptoms, 

including hyperglycemia, its effect on hyperglycemia-related miRNAs remains an under-

researched area. Investigating how RES affects miRNA expression and regulates gene and 

protein expression may provide novel insights into disease onset and progression.  
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1.2 Problem statement / Rationale 
 
The prevalence of diabetes has reached an alarming level worldwide. In 2021, it was estimated 

that 24 million people in Africa had diabetes, with 4.2 million originating from South Africa (Sun 

et al., 2022). The liver, a central regulator of glucose homeostasis, regulates critical glucose 

metabolic pathways, such as glycogenesis, glycogenolysis, glycolysis, and gluconeogenesis 

(Han et al., 2016). However, insulin resistance in the liver leads to elevated blood glucose 

levels, disrupting glucose metabolism in individuals with diabetes (Demir et al., 2021). Diabetic 

liver damage is driven by a cascade of inflammatory response events and increasing oxidative 

stress, leading to upregulation of pro-apoptotic gene transcription and consequent hepatocyte 

impairment (Mohamed et al., 2016). The complications associated with diabetes significantly 

compromise patients’ quality of life and life expectancy. Diabetes management relies on blood 

glucose reduction through lifestyle modifications and anti-diabetic medications. There is an 

urgent need to identify safe and effective drugs that provide anti-hyperglycemic benefits while 

protecting against complications of diabetes (Gupta et al., 2017). Furthermore, a biomarker is 

needed for the early identification of complications of DM and risk management to improve 

patients’ quality of life. Circulating miRNAs have emerged as potential contributors to the 

etiology and progression of several diseases, including DM. Early identification of 

complications of DM and prediction of disease progression using biomarkers can offer 

profound insights into the intricate mechanisms underlying disease development. However, 

further research is needed to determine how miRNA expression and activity are disrupted in 

diabetes (McClelland & Kantharidis, 2014). Furthermore, the underlying mechanisms of 

diabetes development should be investigated to facilitate the design of therapeutic strategies. 

This knowledge will provide clinicians and scientists with advanced techniques for exploiting 

molecular targets as potential therapeutic interventions. The aberrant expression of miRNAs 

may be implicated in various pathways, such as glucose metabolism, inflammation, oxidative 

stress, and apoptosis. The therapeutic effects of natural products have been widely recognized 

for centuries. Hence, this study aimed to examine the influence of elevated glucose levels and 

RES (3,5,4-trihydroxy-trans-stilbene), a polyphenol phytoalexin compound, on key aspects of 

diabetes, including glucose metabolism, inflammation, oxidative stress, apoptosis, and miRNA 

regulation associated with diabetes. 

 
1.3 Significance/Implications 
Diabetes has placed a heavy burden on global healthcare systems due to its rising incidence 

and prevalence and is now an urgent public health threat. Treatment management and 

interventions required for diabetes are associated with high costs and adverse side effects. 

Given this scenario, researchers must urgently investigate cost-effective natural compounds 
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with anti-diabetic activity and fewer to no side effects. Several studies have demonstrated the 

beneficial effects of RES in managing diabetes (Soufi et al., 2012; Turan et al., 2012; Singh et 

al., 2013; Vallianou et al., 2013). In addition, RES possesses antioxidant, anti-inflammatory 

and antiapoptotic effects. Yet, it is still necessary to conduct additional research on the effects 

of RES on glucose metabolism, inflammation, oxidative stress, and apoptosis under 

hyperglycemic conditions. Additionally, comprehending the fundamental molecular pathways 

may aid in developing novel strategies to combat diabetes. Although RES may be beneficial 

for managing diabetes and its symptoms, including hyperglycemia, its effect on hyperglycemia-

related miRNAs has yet to be thoroughly researched. The results of this study have the 

potential to establish a cornerstone for future research in ethnopharmacology, concentrating 

on the potential benefits of RES on miRNAs associated with diabetes. 

 

1.4 Aims  
1. To investigate the effect of RES on oxidative stress, inflammation, apoptosis, and 

glucose metabolism under high glucose-induced conditions.  

2. To investigate the effect of high glucose levels and evaluate the influence of RES on 

high glucose-induced miRNA dysregulation. 

1.5 Objectives 
-To investigate the expression of inflammatory markers and glucose metabolism-related genes 

in HepG2 cells exposed to high glucose and RES for 48 and 72 hours. 

-To assess high glucose-induced oxidative stress and apoptosis in HepG2 cells over 48 and 

72 hours and evaluate the potential therapeutic effect of RES in this model. 

-To identify upregulated or downregulated miRNAs in HepG2 cells using quantitative PCR 

(qPCR). 

-To determine if RES could modulate the expression of miRNAs in HepG2 cells exposed to 

high glucose conditions. 

 

1.6 Hypothesis 
Exposing HepG2 cells to high glucose conditions with RES may alter their biochemical and 

miRNA profiles, thereby ameliorating adverse effects induced by high glucose conditions. 
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CHAPTER 2: LITERATURE REVIEW 

 
2.1 Diabetes mellitus (DM) 
The classification of DM is based on its etiology and clinical presentation (Piero, 2015). 

Patients with diabetes have either type 1 or type 2 DM, and some have other types of diabetes, 

such as monogenic diabetes, Maturity Onset Diabetes of the Young (MODY), Neonatal 

diabetes mellitus (NDM), and gestational diabetes mellitus (GDM). 

 
2.1.1 Type 1 diabetes mellitus (T1DM) 
T1DM, also known as insulin-dependent DM (IDDM) or juvenile diabetes, is a form of diabetes 

caused by the autoimmune destruction of pancreatic beta cells, resulting in insulin deficiency 

(Mishra & Ndisang, 2014; American Diabetes Association, 2017). Anti-glutamic acid 

decarboxylase, islet cells, or insulin antibodies are thought to play a role in these autoimmune 

processes, causing beta-cell destruction and inhibiting insulin development and secretion. As 

a result, all T1DM patients must rely solely on insulin therapy to maintain normoglycemic 

conditions (Baynest, 2015). The combinations of genetic susceptibility and environmental 

factors, such as viral infection, toxins, or dietary factors, are triggers for autoimmunity (Goyal 

& Jialal, 2023). Type 1 diabetes accounts for 10-15% of all diabetes cases worldwide (Paschou 

et al., 2018), and is known to affect all age groups, but is commonly diagnosed in children and 

adolescents (American Diabetes Association, 2015). Furthermore, T1DM can be managed or 

treated using exogenous insulin (Grundlingh et al., 2022).  

 
2.1.2 Type 2 diabetes mellitus (T2DM) 
T2DM is a metabolic disorder caused by insulin secretion and/or action defects (Hurtado & 

Vella, 2019). T2DM is one of the most common chronic diseases that has become a growing 

global burden on modern society (Arora et al., 2021; Rosenberg et al., 2019; Shaw et al., 

2010). T2DM is characterized by hyperglycemia resulting from inadequate insulin production 

and the body’s reduced responsiveness to insulin, a condition called insulin resistance. During 

insulin resistance, the efficiency of insulin is compromised, leading to an initial compensatory 

response of increased insulin production to counteract elevated glucose levels. However, over 

time, this can progress to a state of relative inadequate insulin production (International 

Diabetes Federation, 2017) The first diabetes case was reported approximately three thousand 

years ago in Egypt (Leylabadlo et al., 2020). Epidemiological data in the year  2017 shows that 

approximately 425 million people (aged 20 to 79) have diabetes, with this number expected to 

rise to 629 million in the future (Wong & Sabanayagam, 2019). According to the IDF, it is 

estimated that the worldwide prevalence of T2DM among adults was 536.6% million (10.5%) 

in 2021, and this is projected to increase to 783.2 million (12.2%) by 2045 (Sun et al., 2022). 

The disorder is mainly caused by changes in the gene sequence (genetic factor) or an 

imbalance in lifestyle (environmental factor) (Azevedo & Alla, 2008), such as smoking and 
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alcohol consumption, unhealthy diet or a lack of physical activity (Liu et al., 2020). Obesity is 

a major contributor, accounting for approximately 55% of diabetes cases (Hu et al., 2001), 

particularly in teenagers and children, as obesity among the young is increasing alarmingly. 

Type 2 diabetes can be inherited, especially if first-degree relatives have the disease (Arora et 

al., 2021).  

 

2.2 Global burden of diabetes  
Diabetes represents a significant global public health concern, substantially burdening public 

health and socioeconomic development (Lin et al., 2020). Though some countries have 

observed a decline in the incidence rates, the prevalence of diabetes has notably increased in 

the past few decades across developed and developing countries (Patterson et al., 2019); 

(Wang et al., 2017; Dwyer-Lindgren et al., 2016). In 2019, diabetes ranked as the eighth most 

prevalent cause of mortality and morbidity globally (Vos et al., 2020). The escalating 

prevalence of diabetes worldwide is predictably accompanied by a corresponding rise in 

healthcare expenditure dedicated to treating or managing the disease (Sun et al., 2022). 

According to previous research, it was estimated that approximately 463 million individuals had 

diabetes worldwide in 2019 (Aschner et al., 2021; Teo et al., 2021; Williams et al., 2020). 

Furthermore, the IDF reported that the global prevalence of diabetes was estimated to be 

approximately 536.6 million in 2021. As mentioned, the figure is projected to increase to 643 

million by 2023 and to 783.2 million by 2045 (Ogurtsova et al., 2022; Sun et al., 2022). Globally, 

it has been observed that approximately 50% of diabetes cases remain undiagnosed. This 

prevalence is particularly prominent in low-income and middle-income countries (Pheiffer et 

al., 2018). 

 
2.3 Diabetes in South Africa 
According to IDF, in 2021, 42 million individuals had diabetes in Africa, and this figure is 

projected to rise to 55 million by 2025. Furthermore, it was estimated that 54% of individuals 

with diabetes are undiagnosed. The IDF reported that diabetes was responsible for 416,000 

deaths in Africa (International Diabetes Federation, 2021). The prevalence of diabetes in South 

Africa has demonstrated a significant surge, nearly tripling from 4.5% in 2010 to 12.7% in 2019. 

In 2019, the IDF approximated that out of the 4.48 million individuals with diabetes aged 

between 20 and 79 years, approximately 52.4% remained undiagnosed (International Diabetes 

Federation, 2020). The statistical data demonstrated that diabetes emerged as the second 

greatest underlying factor contributing to mortality in South Africa between 2016 and 2017 

(Stats SA, 2017). According to IDF, South Africa exhibited the highest prevalence of diabetes, 

with a rate of 12.7% among all the African countries in 2019 (International Diabetes Federation, 

2019). It was also reported that South Africa had the highest number of deaths associated with 

diabetes, with 89,900 fatalities (International Diabetes Federation, 2019). The health 

complications resulting from diabetes have significant implications for individuals and their 
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families, as they can hinder employment opportunities and limit financial resources. 

Additionally, the decrease in income adversely affects the national economy. 
 
2.4 Complications of diabetes 
Uncontrolled diabetes can lead to metabolic abnormalities, which can have serious 

consequences that necessitate immediate medical attention (Ahmed et al., 2020). Diabetes 

complications are classified as acute or chronic (Kaura Parbhakar et al., 2020). Diabetes 

ketoacidosis (DKA), hyperglycaemic hyperosmolar state (HHS), lactic acidosis (LA), and 

hypoglycemia are all examples of acute complications. These are severe complications of 

diabetes that can be fatal (Rewers, 2021). Patients with T1DM are more likely to develop DKA 

and severe hypoglycemia, whereas patients with T2DM are more likely to develop HHS without 

ketoacidosis (Negera et al., 2020; Rewers, 2021). Chronic complications are classified as 

macrovascular or microvascular. Retinopathy, nephropathy, and neuropathy are 

microvascular complications, while heart, peripheral vascular, and cerebrovascular diseases 

are examples of macrovascular complications (Table 2.1). 

 

Table 2.1: The major microvascular and macrovascular complications linked with DM (Ahmed 

et al., 2020). 

Microvascular Macrovascular 
Eye: 
Hyperglycemia and hypertension can cause 

damage to blood vessels, resulting in 

retinopathy, cataracts, and glaucoma. 

Brain: 
Increased risk of stroke and cerebrovascular 

disease, including transient ischemic attacks 

and cognitive impairment. 

Kidney:  
High blood pressure destroys small blood 

vessels, and high blood glucose overloads 

the kidneys, causing nephropathy.           

Heart: 
Hypertension and insulin resistance both 

increase the risk of coronary heart disease. 

Neuropathy: 

Hyperglycemia affects peripheral nerves. 

This can cause discomfort or numbness. 

Infected foot wounds may result in 

gangrene. 

Extremities: 
Peripheral vascular disease is caused by 

blood vessel narrowing, which increases the 

risk of reduced or absent blood flow in the 

legs. Foot wounds are likely to take a long 

time to heal, which could lead to gangrene. 
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2.5 Management of diabetes 
It was previously believed that once patients develop diabetes, they will remain diabetic for life; 

however, DM can go into remission (Panunzi et al., 2016). The primary goals of diabetes 

treatment are to maintain normal blood sugar levels and to avoid diabetic complications. DM 

can be managed by altering one's diet, engaging in physical activity, maintaining healthy body 

weight, monitoring lipid profiles, and using appropriate medications when necessary. Diet 

modification is an effective method for managing diabetes (Alam et al., 2021). Blood sugar 

control can be achieved through the consumption of low glycaemic foods, as well as a high 

content of protein and polyunsaturated fatty acids. Moderate physical activity has been found 

to contribute to reducing blood glucose levels by facilitating insulin-independent glucose 

transport into muscle. Gestational diabetes mellitus is a significant risk factor for postpartum 

T2DM development. Breastfeeding for three months reduces the risk of postpartum T2DM by 

40% and improves early postpartum glucose tolerance (PGT) (Ziegler et al., 2012). Patients 

with T1DM and 25–30% of those with T2DM require insulin (Martin et al., 1992; Tisch & 
McDevitt, 1996). Inadequate insulin dosing can occasionally result in hypoglycemia, a more 

dangerous condition than hyperglycemia. To combat this phenomenon, patients with diabetes 

who are prescribed insulin therapy are frequently advised to keep some sugar or chocolate on 

hand (Alam et al., 2021). Certain medications are frequently prescribed to treat T2DM. The 

most frequently used medications include a class of biguanides, thiazolidinediones, α-

glucosidase inhibitors, and a glucagon-like peptide-1 agonist. Proton pump inhibitors are 

believed to have some effects on diabetes management (Takebayashi, 2015). The various 

classes of drugs exhibit a distinct mechanism of action, yet collectively they play a role in 

regulating blood glucose levels within the physiological range. Nonetheless, several of these 

medications are associated with metabolic side effects. For example, thiazolidinediones 

(TZDs) have a well-defined set of adverse effects associated with their action in adipocytes as 

a peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist. As a result, 

proper use of these prescription medications will benefit diabetes control (Lai et al., 2012). 

Hence, it is imperative to research natural therapeutic agents that do not exhibit any 

detrimental side effects. 

 
2.6 Diagnosis of diabetes 
Since untreated diabetes can result in significant complications, early screening for diabetes 

or pre-diabetes enables earlier intervention and may help prevent serious complications. The 

primary symptoms of diabetes are high blood glucose levels over an extended period, frequent 

urination, increased thirst, and increased hunger, among other things (Alam et al., 2021) In the 

current guidelines, four diabetes diagnostic tests are recommended: measurement of fasting 

plasma glucose; 2-hour post-load plasma glucose after performing a 75 g oral glucose 

tolerance test (OGTT); glycated haemoglobin A1c (HbA1c); and a random blood glucose test 

in the presence of diabetes-related signs and symptoms (World Health Organization, 2019). 
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Additionally, numerous questionnaires have been created to screen for the risk of undiagnosed 

diabetes, including the Finnish Cardiovascular Risk Study (FINRISK), the Australian T2DM risk 

assessment tool (AUSDRISK), and The Indian Diabetes Risk Score (IDRS) (Chen et al., 2010; 

Lindström & Tuomilehto, 2003; Mohan et al., 2007). Individuals with fasting plasma glucose 

levels of ≥ 7.0 mmol/L (126 mg/dL), 2-hour post-load plasma glucose levels of ≥ 11.1 mmol/L 

(200 mg/dL), HbA1c levels of ≥ 6.5 % (48 mmol/mol), or random blood glucose levels of ≥ 11.1 

mmol/L (200 mg/dL) in the presence of signs and symptoms are classified as having diabetes 

(World Health Organization, 2011; International Diabetes Federation, 2017) (Figure 2.1). If 

elevated values are found in asymptomatic people, it is recommended that they be tested 

again as soon as possible on a subsequent day, preferably with the same test to confirm the 

diagnosis (World Health Organization, 2011). Despite their advantages, a constraint inherent 

in existing methodologies is their dependence on a singular measurement, which may not 

adequately capture an individual’s comprehensive glucose regulation. Moreover, it should be 

noted that these techniques may lack the necessary sensitivity to accurately identify the initial 

phase of diabetes or pre-diabetes. Hence it is imperative to explore novel methodologies that 

can offer enhanced precision and comprehensive assessment, thereby facilitating improved 

disease management. A diabetes diagnosis has significant ramifications for individuals, not 

just their health but also their work, health, life insurance, driving status, social prospects, and 

other cultural, ethical, and human rights issues (World Health Organization, 2019). Recent 

advancements in diabetes research have demonstrated the role of miRNAs circulating in the 

blood as crucial in its onset and progression. Hence, they possess immense therapeutic and 

diagnostic potential. 

 
Figure 2.1: Diagnostic criteria for diabetes (International Diabetes Federation, 2017; International 

Diabetes Federation, 2021). 
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2.7 MicroRNAs (miRNAs) 
 
2.7.1 History  
Lin-4 was the first miRNA to be discovered in 1993 by collaboration between the laboratories 

of Ambros and Ruvkun (Lee et al., 1993; Wightman et al., 1993). Years before, lin-4 was 

characterized by Horvitz's lab as one of the genes that regulate the temporal development of 

Caenorhabditis Elegans (C. Elegans) larvae (Horvitz & Sulston, 1980; Chalfie, 1981). Seven 

years later, after identifying the first miRNA (in C. Elegans), the first miRNA was identified in 

humans (let-7) (Reinhart et al., 2000). Since then, miRNAs have been discovered in 

vertebrates, plants, and some viruses; some are highly conserved across species (Davis & 
Hata, 2010; Li et al., 2010; Friedländer et al., 2014). It is estimated that thousands of miRNAs 

have been identified in humans and other animals, and these can be found in online sequence 

repositories for miRNAs (Griffiths-Jones et al., 2007; Griffiths-Jones et al., 2006). More than 

2,500 miRNAs are cited in the global miRNA database, miRbase (http://www.mirbase.org/). 

New miRNAs are often discovered, and their importance in gene regulation is well understood 

(de Rie et al., 2017).  

 
2.7.2 Overview 
MiRNAs are a group of small non-coding ribonucleic acid (RNA) molecules with a length 

ranging from 19 to 24 nucleotides (Krol et al., 2010); (Chandrasekaran et al., 2012). They are 

fundamental for post-transcriptional gene expression regulation and regulate multiple 

biological functions, including proliferation, cellular metabolism, differentiation, and apoptosis 

(Satake et al., 2018). MiRNAs suppress targeted gene expression by binding to messenger 

RNA (mRNA) via their 3′-untranslated regions (3′-UTR), whereas other miRNAs promote the 

expression of targeted genes (O’Brien et al., 2018). Targeted gene expression is suppressed 

by mRNA degradation, induction of "decapping" (the process of eliminating the m7GpppN 

mRNA cap), triggered adenylation, mRNA sequestration, and altered binding of cap proteins 

(Mohr & Mott, 2015; Charenton & Graille, 2018). These effects may change the expression of 

insulin or insulin receptors in target tissues, leading to T2DM development and diabetic 

complications (Hall et al., 2014).   

 

MiRNAs are abundant in tissues and are present in trace amounts in biological fluids, implying 

that miRNA may be a helpful biomarker (Necula et al., 2019). Therefore, these molecules may 

be used in disease screening instead of specific protein biomarkers with low specificity and 

sensitivity. Nearly 4000 human miRNAs have been identified, and new ones are continuously 

being discovered (Kilic et al., 2018; Satake et al., 2018). These miRNAs have been shown to 

regulate most protein-coding genes, thereby regulating various developmental and cellular 

processes in the eukaryotic organism (Pordzik et al., 2019). Additionally, miRNAs have been 
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shown to regulate hundreds of mRNAs. Approximately 200 different mRNAs can be regulated 

by a single miRNA, and each act on a different signalling pathway; similarly, a single mRNA 

can be controlled by multiple miRNAs (Oliveto et al., 2017). Thus, it is unsurprising that 

miRNAs are involved in nearly every biological process and that their dysregulation can result 

in various diseases, including diabetes and its associated complications (Soifer et al., 2007). 

 
2.7.3 Biogenesis  
The biogenesis, maturation, function, and secretion of miRNAs is a highly complex molecular 

mechanism still being investigated (Sebastiani et al., 2017). The biogenesis of miRNAs begins 

with the transcription of the miRNA gene in the nucleus, generating long primary miRNA 

transcripts (pri-miRNA) with the help of RNA polymerase II or RNA polymerase III (Figure 2) 

(Ha & Kim, 2014; Mansoori et al., 2019). The pri-miRNA is approximately 1000 bases long with 

a cap structure and poly (A) tails, distinctive characteristics of class II gene transcripts (Lee et 

al., 2003). The pri-miRNA then folds into a 60–70 nucleotide long hairpin structure and is 

cleaved by the microprocessor complex, called Drosha (ribonuclease III enzyme) and 

DiGeorge Syndrome Critical Region 8 (DGCR8) to produce the precursor-miRNA (pre-miRNA) 

(Church et al., 2017; Astamal et al., 2020). The pre-miRNA has an imperfect stem-loop 

structure (Lee et al., 2003). The maturation step is performed outside of the nucleus; therefore, 

this short 60–70 bp long pre-miRNA is exported out of the nucleus to the cytoplasm by exportin-

5 in the presence of a Ras-related nuclear protein-guanosine-5' triphosphatase (Ran-GTPase) 

(Wu et al., 2018). Exportin-5 is a Karyopherin family member involved in the nuclear transport 

of structured RNA molecules, such as transfer RNA (tRNA), pre-tRNAs with introns, and pre-

miRNAs (Köhler & Hurt, 2007). In the cytoplasm, an RNase III enzyme called Dicer cleaves 

the loop of pre-miRNA, resulting in an asymmetrical miRNA duplex of 20–25 nucleotides 

(Dastmalchi et al., 2020). After cleavage by Dicer, miRNA duplexes unwind and produce the 

mature miRNA guiding strand and the miRNA passenger strand. The mature guiding strand is 

then incorporated with an RNA-induced Silencing Complex (RISC), which is driven by the 

Argonaute 2 (AGO2) protein (Gregory et al., 2005; Fan et al., 2019).  The miRISC complex 

can bind to the 3’ untranslated region (UTR) to target a specific messenger RNA (mRNA) for 

inhibition of translation or degradation while the passenger strand is degraded (Jonas & 

Izaurralde, 2015). However, it has been shown that miRNAs can bind to the 5’ end of the 

coding sequence and repress the mRNA by inhibiting translation (Lytle et al., 2007). As a 

result, increased miRNA levels result in decreased expression of their target gene(s) and 

potentially reduced protein levels. Moreover, decreased miRNA levels also result in increased 

levels of their target gene(s)/protein(s) (Friedman et al., 2009). 
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Figure 2.2: Biogenesis of miRNAs. It begins with the transcription of the miRNA gene into pri-miRNAs 
in the nucleus by Pol II. Microprocessor complexes cleave pri-miRNAs to form pre-miRNAs. Thereafter, 

exportin-5 transports pre-miRNA into the cytoplasm, cleaving it by dicer to create an asymmetrical 

miRNA duplex. The passenger strand is released and degraded, while the mature strand is incorporated 

into RISC, inhibiting translation and increasing mRNA degradation. (Image created by author) 

 
2.7.4 MicroRNAs and Diabetes 
 
2.7.4.1 Role of circulating microRNAs  
MiRNAs are a new class of signalling molecules that mediate intercellular communication and 

are released into the bloodstream or expressed in blood cells. Furthermore, miRNA profiles 

may change under different pathophysiological conditions, affecting the pathogenesis and 

progression of diseases, such as diabetes (Zhang et al., 2018). Circulating miRNAs may be 

isolated from various cell-free matrices, including blood (serum and plasma), saliva, urine, 

cerebrospinal fluid (CSF), faeces, follicular fluid, synovial fluid, pancreatic juice, bile, and 

gastric juice (Grillari et al., 2021; Godoy et al., 2018). The discovery of these miRNAs has 

expanded their use as disease biomarkers and created the possibility of using them for 

therapeutic purposes in the future (Condrat et al., 2020; Song et al., 2018). It has been shown 

that extracellular miRNAs are highly stable even under adverse conditions, surviving RNase 

digestion and adverse conditions, such as boiling, several freeze-thaw cycles, and high 

(pH=13) or low (pH=1) pH; as a result, they are ideal materials for monitoring disease 

progression (Chen et al., 2008; Kroh et al., 2010; Chien et al., 2015). Studies suggested that 

once released, miRNAs remain in circulation in a stable condition and reflect the underlying 

pathological/physiologic processes (Gilad et al., 2008; Ai et al., 2010; Mendell, 2005). Serum 

and plasma can be stored at -20 ºC or -80 ºC for several months without any notable 

degradation of miRNAs (Mraz et al., 2009). This also suggests that these non-coding RNAs 

can be used as biomarkers. This remarkable stability of circulating miRNAs may be due to 

protective mechanisms against ubiquitous extracellular RNases. First, miRNAs are enveloped 
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in a lipid membrane coating within extracellular vesicles (EVs), such as exosomes, 

microvesicles, or apoptotic bodies (Gallo et al., 2012; Iftikhar & Carney, 2016). Second, 

miRNAs may be complexed with proteins and protein particles, particularly AGO-2 (Gallo et 

al., 2012), high-density lipoprotein (HDL) (Vickers et al., 2011; Tabet et al., 2014), or 

nucleophosmin 1 (NPM1) (Arroyo et al., 2011; Turchinovich et al., 2012), which aid in 

preventing degradation.  

 

In vitro studies have shown that miRNAs transported by exosomes or HDL can be transferred 

to recipient cells in an active form, allowing them to regulate the translation of target genes, 

implying that circulating miRNAs can act as extracellular communicators (Vickers et al., 2011; 

Valadi et al., 2007; Creemers et al., 2012). Circulating miRNAs may be used as biomarkers 

because of their stability, and this possibility is now being investigated in various diseases, 

including diabetes (Chien et al., 2015; Guay & Regazzi, 2013). These circulating miRNAs 

possess several characteristics which make them useful as biomarkers: 1) they can be 

detected in blood and different biological fluids, such as urine, saliva, amniotic fluids, and 

breast milk; 2) they are detectable using quantitative real-time PCR; and 3) they are highly 

conserved (Weber et al., 2010). Due to these properties, circulating miRNAs have become 

popular over recent years.  

 

2.7.4.2 Role of microRNAs in diabetes pathogenesis 
The dysregulation of miRNAs has been linked with several disorders, including DM (Dumortier 

et al., 2013; Guay & Regazzi, 2013). MiRNAs are broadly distributed throughout the human 

body, except for miR-375, which is highly enriched in pancreatic islets and controls the 

expression of genes involved in hormone secretion and beta-cell expansion in response to 

insulin resistance (Poy et al., 2009). MiRNA profiles are altered in beta cells and tissues 

affected by insulin in T1DM and T2DM patients, which results in impaired function under 

disease states (Kumar et al., 2012; Shantikumar et al., 2012). A study of non-obese diabetic 

(NOD) mice, a model of T1DM, demonstrated elevated levels of several miRNAs, such as miR-

21, miR-34a, miR-29, and miR-146a, which affect beta-cell function (Roggli et al., 2010; Roggli 

et al., 2012). In a mouse model, the expression of miR-29 and miR-34a was elevated in tissues 

targeted by insulin, which contributes to insulin resistance (Herrera et al., 2010; Trajkovski et 

al., 2011). The dysregulation of miR-143 and miR-802 has been identified in insulin-targeted 

tissues in ob/ob mice, obese, and diabetic Goto-Kakizaki rat models. These miRNAs have also 

been linked to the development of insulin resistance (Trajkovski et al., 2011; Jordan et al., 

2011; Herrera et al., 2010;Kornfeld et al., 2013). Changes in miRNA profiles have also been 

linked to the development of diabetes. In human skeletal muscle biopsy samples of patients 

with T2DM, over 600 differentially expressed miRNAs have been detected, in which two 

miRNAs, miR-206 and miR-1388a, were downregulated and miR-143 was upregulated. 
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Around 15% of miRNAs have been altered in individuals with impaired glucose tolerance, 

indicating that miRNAs are active in the early stages of disease (Gallagher et al., 2010).  

 
2.7.4.3 MicroRNAs as diabetes Biomarkers 
Biomarkers are molecules or conditions that can be used to predict, diagnose, and monitor the 

pathological state of a disease (Vaishya et al., 2018). Many types of biomarkers, such as 

proteins and mRNAs, are used to diagnose various conditions, including T2DM, cancer, and 

neurological disorders (Graves & Haystead, 2002). Researchers are still exploring the potential 

of miRNAs as biomarkers and have high hopes for discoveries that could use miRNAs in 

theranostic applications (Chaudhary et al., 2018; Chong et al., 2020). Cancer research was 

the first to introduce and demonstrate the use of miRNAs as disease biomarkers. Several new 

studies have been published following the initial research linking blood circulating miRNAs and 

cancer status. Some of these studies attempt to discover a signature associated with diabetes 

(Guay & Regazzi, 2013; Chen et al., 2008; Mitchell et al., 2008). Previous research has linked 

abnormally expressed miRNA signatures to various serious diseases, including cancer and 

cardiovascular and cerebrovascular diseases (Wang et al., 2017; Khanmi et al., 2015). Several 

studies have suggested that certain circulating miRNAs may be linked to diabetic conditions 

(Vasu et al., 2019). Circulating miRNAs were indicated as possible biomarkers for diabetes 

when it was observed that miRNA profiles were dysregulated in various biological fluids of 

patients with diabetes compared with healthy controls. There has been an observation in 

differential miRNA profiles between T2DM patients and healthy controls in whole blood 

(Karolina et al., 2011; Zhou et al., 2013), serum (Kong et al., 2011; Liu et al., 2014; Yang et 

al., 2014), and plasma (Zhang et al., 2013). Previous research has shown that miRNAs can 

be beneficial biomarkers for DM since they are often tissue-specific and remain stable in 

circulation for a long time (Romaine et al., 2015). It is now clear that altered miRNA expression 

plays a role in the development and progression of DM. 

 

2.7.4.4 Glucose Metabolism and microRNAs 
Maintaining normal blood glucose levels requires a delicate balance with normal insulin 

secretion and action. The dysfunction of glucose metabolism significantly impacts other cells, 

tissues, and processes, all of which contribute to the development of diabetes. MiRNAs have 

become known as novel regulators of these phenomena and are thus appropriately referred 

to as "ribo-regulators of glucose homeostasis" (Gauthier & Wollheim, 2006; Pandey et al., 

2009). Numerous let-7 target genes are found to be involved in the regulation of glucose 

metabolism in various tissues (Frost & Olson, 2011). Zhu et al. discovered that overexpression 

of Lin-28a/b inhibited the activity of let-7 and increased the movement of the insulin-

phosphatidylinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) pathway and 

insulin sensitivity, implying that it can promote glycaemic stability and DM resistance (Zhu et 

al., 2011). PI3K/AKT signalling can increase glucose uptake by promoting glucose transporter 
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4 (Glut4) translocation, while mTOR signalling can increase glucose uptake by altering Glut4 

expression and translocation (Brugarolas et al., 2003; Buller et al., 2008). Further, Zhu et al. 

showed that let-7 and lin-28a/b co-ordinately regulated the insulin-PI3K-mTOR pathway, 

influencing glucose metabolism (Zhu et al., 2011). It was also reported that miR-223 can 

regulate glucose uptake in muscle tissue by inhibiting glucose transporter 4 (GLUT4). 

Additionally, miR-33a and miR-33b have been shown to regulate the insulin pathway through 

the insulin receptor substrate 2 (IRS2), sirtuin 6 (SIRT6), and AMP-activated protein kinase 1 

(AMPK1) pathways (Lu et al., 2010; Dávalos et al., 2011). Glucose tolerance was shown to be 

improved by miR-130a and miR-204 through the inhibition of Growth Factor Receptor Bound 

Protein 10 (GRB10) and glucagon-like peptide-1 receptor (GLP1R), respectively (Xiao et al., 

2014; Jo et al., 2018). Furthermore, the liver plays a fundamental role in maintaining glucose 

homeostasis through the regulation of glucose metabolism. One key player in this process is 

the enzyme glucokinase (GCK), which holds a prominent position, and its involvement in the 

glycolytic process underscores its significance in regulating hepatic glucose production (Irwin 

& Tan, 2014). Previous research has discovered that in the Goto-Kakizaki rat islets, GCK 

protein levels were decreased in correlation with the increased expression of miR-130a, miR-

130b, and miR-152 (Ofori et al., 2017). The discovery of miRNAs as regulators of GCK levels 

may represent a different strategy and hold more therapeutic promise (Mirra et al., 2018). 

Additionally, the regulatory function of miR-182-5p in maintaining glucose homeostasis has 

been suggested by targeting Forkhead box O1 (FOXO1), a gene involved in gluconeogenesis 

(Kaur et al., 2020). Nonetheless, it is undeniable that abnormal expression and function of 

miRNAs disrupt glucose homeostasis, resulting in pathogenic conditions (Feng et al., 2016; 

Hashimoto & Tanaka, 2017). Therefore, understanding the role of miRNAs in glucose 

metabolism may provide valuable insight for developing therapeutic strategies to manage 

diabetes. 

 

2.7.4.5 Inflammation and miRNAs linked to diabetes. 
MiRNA disruption can cause chronic inflammation in patients with diabetes, pancreatic cell 

dysfunction, and insulin resistance in metabolic tissues (McClelland & Kantharidis, 2014). 
Chronic inflammation in insulin-responsive tissues causes insulin resistance by increasing 

reactive oxygen species (ROS) levels, which activate stress-related signalling pathways, in 

turn activating protein kinases like c-Jun N-terminal kinases (JNKs), Protein kinase C (PKC), 

glycogen synthase kinase-3 (GSK-3), and Nuclear factor kappa B (NF-κB) (Henriksen et al., 

2011; Zeinali et al., 2020). MiR-122 is predominantly expressed in the liver and has been 

shown to play a role in the accumulation of lipids. Upregulation of miRNA-122 expression aided 

in the resolution of inflammation in a human liver organoid model through the suppression of 

tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels (Sendi et al., 2018). MiR-

126, which targets the inflammatory protein Sprouty-related EVH1 domain containing 1 
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(SPRED1), may be a critical factor in ameliorating inflammation. Increased SPRED1 

expression promotes the production of IL-6, TNF- α, and ROS in people with diabetes due to 

miR-126 suppression, resulting in endothelial cell dysfunction (Li et al., 2016). Therefore, 

further studies are needed to investigate the link between miRNAs and inflammation, which 

will therefore aid in developing therapeutic targets. 

 
2.8 Resveratrol (RES) 
Resveratrol (RES; 3,4’,5-trihydroxystilbene) is a naturally occurring phytoalexin that has anti-

inflammatory, anti-platelet aggregation, anti-carcinogenic, cartilage-protective, and anti-aging 

properties (Timmers et al., 2013; Zhu et al., 2017). In 1939, Michio Takaoka was the first to 

isolate RES from Veratrum grandiflorum (Takaoka, 1939). RES is present in approximately 72 

species; plants synthesize it as a protective mechanism against harmful environmental factors, 

including ultraviolet radiation and attacks from pathogens, such as fungi, bacteria, and viruses 

(Gerszon et al., 2014). RES is found in high concentrations in the skins of red grapes. It was 

reported that berries, nuts, apples, and dark chocolate contain RES at varying concentrations 

(Figure 3) (Catalgol et al., 2012; Shaito et al., 2020). It is also found in low concentrations in 

grape-derived products like red wine and grape juices, as shown in Table 2 (Weiskirchen & 
Weiskirchen, 2016). 
 

 

 
Figure 2.3: Sources of Resveratrol (https://www.istockphoto.com/photos/resveratrol). 
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Table 2.2: The most common resveratrol sources and their estimated concentrations 
(Mukherjee et al., 2010; Oyenihi et al., 2016). 
Sources of resveratrol Resveratrol concentration 
Grapes 0.16–3.54 μg/g 
Dry grape skin ~24.06 μg/g 
100% Natural peanut butter  ~0.65 μg/g 
Bilberries  ~16 ng/g 
Blueberries  ~32 ng/g 
Boiled peanuts  ~5.1 μg/g 
Cranberry raw juice  ~0.2 mg/L 
Peanut butter  0.3–1.4 μg/g 
Peanuts  0.02–1.92 μg/g 
Pistachios  0.09–1.67 μg/g 
Ports and sherries  <0.1 mg/L 
grape juice  ~0.50 mg/L 
Red wines  0.1–14.3 mg/L 
Roasted peanuts  ~0.055 μg/g 
White grape juice  ~0.05 mg/L 
White wines  <0.1–2.1 mg/L 
Cocoa powder  ∼1.85 𝜇g/g 
Dark chocolates  ∼0.35 𝜇g/g 

 

 
2.8.1 Structure and Composition 
RES has the same molecular properties as oestrogen diethylstilbesterol, with a formula of 

C14H12O3 and a molecular weight of 228.25 g/mol (Chan et al., 2019). RES is a polyphenolic 

compound with three hydroxyl groups and two aromatic rings bound by a methylene bridge in 

its structure (Figure 4A). This structure enables RES to donate electrons to various free 

radicals (FR), attenuating biomolecule damage (García-Martínez et al., 2021). It has been 

reported that RES exists in both cis- and trans-stereoisomeric forms (Figure 7B and C).  

Although cis-RES is less prevalent and extremely unstable, the trans-form is more biologically 

active and provides the most potent therapeutic benefits (Cottart et al., 2010); Catalgol et al., 

2012; Wu & Liu, 2013). A styrene double bond connects two phenol rings to form 3,4’,5-

trihydroxystilbene. Under ultraviolet (UV) light, the trans-isomer can be converted to the cis-

form. Trans-RES is commercially available and is relatively stable when protected from high 

pH and light (Soleas et al., 1997). The trans-isomer displays absorbance at 307 nm, while the 

cis-isomer displays absorbance at 288 nm, allowing for isolation and detection of the two 

isomers using High-Performance Liquid Chromatography (HPLC) and a C18 reverse-phase 

column. 
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Figure 2.4: The chemical structure of (A) resveratrol, (B) trans-resveratrol, (C) cis-resveratrol. 
 
 
2.8.2 Resveratrol biological activities 
 
2.8.2.1 Anti-diabetic effect of resveratrol 
Several researchers have demonstrated the protective role of RES in DM in several studies. 

For example, RES reportedly lowers glucose levels in human and rodent obesity models 

(Oyenihi et al., 2016). Resveratrol beneficially impacts both the action of insulin and pancreatic 

β cells and the prevention of disease complications (Szkudelski & Szkudelska, 2015). 
Furthermore, anti-diabetic studies have demonstrated that RES can lower fasting 

hyperglycemia and hemoglobin A1c in patients with diabetes or age-related glucose 

impairment, as well as prevent and improve systemic insulin resistance and lowering glucose 

levels (Brasnyó et al., 2011; Timmers et al., 2011; Bhatt et al., 2012; Crandall et al., 2012; 

Szkudelski & Szkudelska, 2015). Although studies have demonstrated that RES has beneficial 

effects on DM, there has been a conflict of results. Possible causes include RES dosage and 

absorption (Su et al., 2022). Further research is essential to fully understand the effect of RES 

on DM and its potential as a therapeutic option. 
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Figure 2.5: A schematic diagram illustrating how resveratrol protects against diabetic complications. 
Glu, glucose; AGEs, advanced glucose end-products; SIRT1, Sirtuin 1; AMPK, adenosine 
monophosphate-activated kinase; Nrf2, nuclear factor erythroid 2-related factor 2; SOD, superoxide 
dismutase; CAT, catalase; GSH, reduced glutathione; GPx, glutathione peroxidase; NF-κB, nuclear 
factor-kappa B; IL, interleukin; TNF-α, tumor necrosis factor; SP1, specificity protein 1; Bax, bcl-2-like 
protein 4; Bcl-2, B-cell lymphoma 2 (Image created by author). 
 

 
2.8.2.2 Anti-inflammatory effect of resveratrol 
Inflammation occurs due to numerous pathological stimuli and tissue injuries associated with 

diabetes, which is thought to contribute to the development of diabetes by causing insulin 

resistance (Huang et al., 2020). When exacerbated in hyperglycemia, inflammation can 

potentially cause long-term diabetic complications (Olatunji et al., 2018; Ni et al., 2019). 

Studies have established that resveratrol has significant anti-inflammatory properties (Meng et 

al., 2020). Resveratrol demonstrates anti-inflammatory effects in patients with DM, owing 

primarily to its inhibition of the nuclear factor kappa B (NF-κB) pathway (Sadeghi et al., 2017). 

NF-κB controls proinflammatory cytokine expression and the apoptosis cascade (Lawrence, 

2009; Huang et al., 2020). Resveratrol inhibited inflammation through the downregulation of 

high mobility group box 1 (HMGB1) and inhibition of NF-κB and Janus kinase (JAK) and 

activator of transcription (STAT) signalling pathways (Meng et al., 2020; Ma et al., 2015). 

Additionally, RES prevented the activity of NF-κB and reduced elevated pro-inflammatory 

protein levels, resulting in decreased neuroinflammation and protection of diabetic neuropathy 

patients from functional and behavioral deficiencies (Kumar & Sharma, 2010). Resveratrol’s 

anti-inflammatory effect has also been linked to Nrf2 (Huang et al., 2020). RES administration 

activates AMPK, which accelerates Nrf2 nuclear translocation and prevents the production of 

proinflammatory cytokines. Heme oxygenase (decycling)-1 (HO-1) is an antioxidant enzyme 

activated by RES and regulated by Nrf2. Inhibiting HO-1 can counteract the inhibitory effect of 

RES on proinflammatory cytokine production (Soeur et al., 2015); Iwasaki et al., 2013; Hassan 
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et al., 2019). Lastly, RES was shown to inhibit the activation of extracellular signal-regulated 

protein kinase 1/2 (ERK1/2), resulting in elevated Myeloid differentiation factor 88 (MyD88) 

Short expression, a negative regulator of inflammation (Andrews et al., 2016). 

 

2.8.2.2.1 The Nuclear factor-kB pathway 
Nuclear factor-kB is involved in various biological processes, including inflammation, immune 

response, survival, and apoptosis (Girard et al., 2009). The NF-kB family comprises five distinct 

members, namely P50, p52, RelA (p65), RelB, and c-Rel (Moynagh, 2005; Hoffmann et al., 

2006). Nuclear factor-kB is activated by different stimuli, such as chemicals produced by 

pathogens, intercellular inflammatory cytokines, and many enzymes (Pasparakis et al., 2006; 

Basak et al., 2007). The presence of IkB proteins in the cytoplasm prevents the activity of NF-

kB under normal or basal physiological conditions (Kadhim et al., 2001). PRRs activate 

IkappaB kinase (IKK) through similar signalling pathways. IKK consists of two kinase subunits 

(IKKα and IKKβ) and one regulatory subunit (IKKγ). It controls NF-kB pathway activation by 

phosphorylating IkB (Lawrence, 2009). The proteasome degrades IkB when phosphorylated, 

releasing NF-kB for nuclear translocation and gene transcription activation (Hayden & Ghosh, 
2012). This pathway contributes to the inflammatory response by producing pro-inflammatory 

cytokines and recruiting inflammatory cells (Chen et al., 2018). 

 
Figure 2.6: The NF-κB signalling pathway (image created by the author). 

TLRs and inflammatory like TNF-α and IL-1 kickstart a pathway. This pathway activates RelA/p50 
complexes, which control the production of more inflammatory molecules. To get this pathway going, 

IKK subunits are needed. They control the pathway by phosphorylating IκB. 
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2.8.2.3 The antioxidant effect of resveratrol. 
Oxidative stress is a frequent and significant factor linking hyperglycemia and diabetes 

complications. It is an imbalance between ROS production and antioxidant defence (Huang et 

al., 2020; Galiniak et al., 2019). Reactive oxygen species encompass oxygen-derived radicals, 

such as the hydroxyl radical (OH•), superoxide anion (O2
•−), and peroxynitrite (ONOO−). 

Additional derivatives of oxygen that are not classified as radicals are also recognized as ROS, 

including hydrogen peroxide (H2O2), owing to its ability to readily produce free radicals.  ROS 

are produced as a result of regular metabolic processes in a cell and play a significant role in 

various biological functions. Reactive oxygen species play a crucial role in sustaining life; 

however, their inherent chemical reactivity renders them capable of causing harm to 

macromolecules such as lipids, proteins, and nucleic acids. Consequently, cellular defence 

mechanism is initiated to regulate the generation of ROS and prevent oxidative damage. Most 

defence mechanism against ROS consist of enzymes that effectively eliminate surplus ROS. 

These enzymes include Superoxide Dismutase (SOD), Catalase (CAT), peroxiredoxins, 

thioredoxins, and glutathione peroxidase (Burgos-Morón et al., 2019). 

 

 
Figure 2.7: Mechanism of oxidative stress in diabetes (image created by author). 
Hyperglycemia prompts the overproduction of ROS, overwhelming the antioxidant defense enzymes. 

This imbalance results in damage to various cellular components, including mitochondrial DNA 

(mtDNA), lipid membranes, proteins, and nuclear DNA. 
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Resveratrol has been shown to defend against oxidative stress, a fundamental cause of many 

diseases (Meng et al., 2020). Resveratrol was found to possess antioxidant activity in diabetic 

animal models as determined by variations in oxidative stress markers, including lipid 

peroxidation, malondialdehyde, and antioxidant enzymes, such as SOD, CAT, and Glutathione 

(GSH). Antioxidant enzymes are the backbone of the antioxidant defence system, scavenging 

excess free radicals and reversing oxidative stress (Sadi et al., 2018; Prabhakar, 2013; Sadi 
& Konat, 2015); (Huang et al., 2020). RES increased the expression of phosphatase and tensin 

homolog (PTEN), inhibiting the phosphorylation of Akt, resulting in an increase in the levels of 

antioxidant enzymes, including CAT and SOD (Inglés et al., 2014). Additionally, resveratrol 

may strengthen the antioxidant defence system by regulating antioxidant enzymes and 

preventing ROS-induced activation of extracellular signal-regulated kinase (ERK) (Singh & 
Vinayak, 2017). Nuclear factor erythroid 2-related factor 2 is critical for alleviating oxidative and 

electrophilic stress in cells, where it controls the redox state and energy metabolism (Zhang et 

al., 2018; Liao et al., 2017). RES may protect against oxidative stress through Nrf2 pathway 

regulation. Nrf2 is a transcription factor that controls the activity of several antioxidant 

enzymes, including HO-1, Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH), 

and quinine oxidoreductase-1 (NQO1). Moreover, Nrf2 is now recognized as a key RES 

mediator in reducing oxidative stress damage (Zhang et al., 2018; Liao et al., 2017; Yadav et 

al., 2018; Huang et al., 2020). Resveratrol activity on Nrf2 requires the activation of several 

cellular signalling pathways, including PI3K/Akt and AMPK pathways (Iwasaki et al., 2013). 

These pathways are activated by RES, resulting in the nuclear translocation of Nrf2, thereby 

activating antioxidant enzyme expression and increasing SOD (Hui et al., 2018; Shen et al., 

2016). 

 
2.8.2.3.1 Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway  
Nuclear factor erythroid 2-related factor 2 controls the production of antioxidant genes and aids 

in protecting cells against detrimental effects caused by oxidative stress (Gu et al., 2021). The 

antioxidant properties arise from activating genes that contain antioxidant response elements 

(AREs) (Teixeira et al., 2017). Without external stimulation, Nrf2 resides in the cytoplasm, 

interacting with the inactive Kelch-like ECH-associated protein 1 (KEAP1). When ROS 

accumulation occurs, KEAP1 undergoes conformational changes, causing it to detach from 

Nrf2 and enter the nucleus (Menshchikova et al., 2013). The musculoaponeurotic fibrosarcoma 

(Maf) protein and Nrf2 form a heterodimer, which then interacts with the ARE to promote phase 

II antioxidant gene expression, resulting in the production of antioxidant enzymes (Kou et al., 

2013). When the Nrf2/ARE pathway is activated, the proteins eliminate ROS and 

exogenous/endogenous harmful substances (Gu et al., 2021) 
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Figure 2.8: The Nrf2 signaling pathway (image created by the author). 

An illustration of how reactive oxygen species (ROS) activate the antioxidant response element (ARE) 

pathway through nuclear factor erythroid 2-related factor 2 (Nrf2). Under normal circumstances, Nrf2 is 

constitutively linked to the protein Keap1 in the cytoplasm. Keap1 inhibits Nrf2 signaling pathway by 

promoting Nrf2 ubiquitination and subsequent degradation through the proteasomal pathway. Mild 

oxidative stress and Nrf2 activators result in the dissociation of Nrf2-Keap1 complex, phosphorylation of 

Nrf2, and nuclear translocation. In the nucleus, Nrf2 binds to the ARE in the target gene promoter regions 
to facilitate the transcriptional activation of detoxifying and antioxidant enzymes.  

 
2.8.2.4 Anti-apoptotic effects of RES 
Previous research has provided evidence that RES could effectively alleviate oxidative stress 

and apoptosis in various types of cells (Liu et al., 2014; Kitada & Koya, 2013; Hoca et al., 2021; 

(Do et al., 2012). Apoptosis is a programmed cell death initiated in response to prolonged 

stress. Apoptosis in mammalian cells is facilitated by two distinct pathways: (i) the Extrinsic 

pathway, which is alternatively referred to as the death-receptor mediated pathway; and (ii) the 

Intrinsic pathway, which is also denoted as the Bcl-2 regulated or mitochondrial pathway (Wali 

et al., 2013) (Figure 9).  The activation of the extrinsic pathway occurs when ligands from the 

TNF super-family, such as FasL, bind to cell surface death receptors like Fas or TNFR. This 

leads to the recruitment of FAS-associated death domain (FADD), followed by the recruitment 

of caspase-8 and the subsequent activation of downstream effector caspases-3, 6, and 7. 

Ultimately, this process leads to the activation of proteases, fragmentation of DNA, and 

subsequent cell death (Hotchkiss et al., 2009; Strasser, 2005; Wali et al., 2013). The activation 

of the intrinsic pathway occurs in response to a range of cellular stresses, including exposure 

to radiation and withdrawal of growth factors (Wali et al., 2013).  The regulation of this pathway 
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is determined by the equilibrium between pro- and anti-apoptotic members of the Bcl-2 family. 

The BH3-only proteins, which are members of the pro-apoptotic family, are characterized by 

possessing a single Bcl-2 homology domain. Various cellular stresses elicit the activation of 

distinct BH3-only proteins within a tissue, exhibiting specificity towards the particular stimulus. 

The anti-survival proteins, include Bcl-2, Bcl-xl, Bcl-w, and Mcl-1 (Lee et al., 2014). The 

activation of the pro-apoptotic Bcl-2 family members and the suppression of anti-apoptotic 

proteins is triggered by cellular stress, leading to the translocation of Bax and Bak to the outer 

mitochondrial membrane. This translocation ultimately leads to the formation of pores. This 

process induces the translocation of cytochrome c from the mitochondria to the cytoplasm, 

leading to the subsequent activation of caspase-9 and subsequent activation of caspase-3,6, 

and 7, ultimately resulting in the initiation of apoptosis (Hotchkiss et al., 2009; Strasser, 2005; 

Thomas et al., 2009). Bcl-2 is an anti-apoptotic protein that prevents apoptosis by inhibiting 

Bax/Bak oligomerization, which enhances mitochondrial membrane permeability and inhibits 

the Cyto-C release. Previous research has demonstrated reduced Bcl2 expression in response 

to diabetes stimulus (Ren et al., 2020). Resveratrol has been shown to effectively inhibit 

apoptosis in retinal Müller cells exposed to high glucose. The protective effect was shown to 

be mediated by miR-29b. Furthermore, the expression levels of Bax and specificity protein 1 

(SP1) were reduced upon RES treatment, whereases the Bcl-2 expression was increased 

(Zeng et al., 2017). Further investigations is required to explore the anti-apoptotic effect of 

RES. 
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Figure 2.9: Apoptosis pathways (image created by the author). 

The two pathways of apoptosis. Intrinsic pathway: This is triggered by cellular stresses like high glucose 

or growth factor deprivation. BH-3only proteins like Bim and Puma initiate signaling by binding to pro-

survival Bcl2 proteins. This leads to mitochondrial outer membrane permeabilization, cytochrome c 

release, and activation of caspases, culminating in apoptosis. Extrinsic pathway: Initiated by activation 

of death receptors like Fas, containing intracellular death domains. This leads to the formation of death-
inducing signalling complexes, activating initiator caspase-8 through FAS-associated death domain 

(FADD). This activates the caspase cascade and induces apoptosis. Bid protein facilitates cross-talk 

between the two pathways. 

 
2.8.2.5 Resveratrol effect on glucose uptake and metabolism 
Individuals with DM demonstrated impairment in glucose metabolism. Maintaining optical 

glucose metabolism is imperative to preserve the body’s physiological equilibrium (Su et al., 

2022). Skeletal muscles are the primary contributors to the body’s glucose metabolism balance 

(Schram et al., 2004; Karaman et al., 2012). There is enough evidence that glucose transporter 

4 (GLUT4) is essential for glucose uptake in skeletal muscle cells (Su et al., 2022). The 

enhancement of glucose uptake induced by RES primarily depends on the expression of 

GLUT4 and the translocation of GLUT4. In fat and muscle cells, GLUT4 is primarily 

translocated from the intracellular to the cell membrane (Chi et al., 2007; Tan et al., 2012; 

Chen et al., 2011). Research has shown that RES-fed db/db mice greatly increased glucose 

absorption, boosting the level of GLUT4 (Do et al., 2012). Furthermore, RES has been 
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demonstrated to enhance the phosphorylation of AMPK through the activation of binding to an 

estrogen receptor (ER), leading to improved GLUT4 expression and translocation, thus 

affecting glucose uptake by skeletal muscle cells (Rogers et al., 2009; Klinge et al., 2008). In 

addition, the liver also plays a fundamental role in regulating glucose homeostasis by 

regulating multiple glucose metabolic pathways, including glycogenesis, glycogenolysis, 

glycolysis, and gluconeogenesis (Han et al., 2016). These metabolic pathways are often 

disrupted in individuals with DM. Previous research has demonstrated that RES can enhance 

nutrient-sensing systems and improve renal function in elderly patients with T2DM. 

Additionally, RES was found to reduce the production and activity of glucose-6-phosphatase 

(G6P), a gluconeogenesis enzyme (Ma & Zhang, 2022). It is important to understand the 

mechanism by which RES confers protection against disrupted glucose homeostasis and its 

potential role in modulating the activity of enzymes implicated in glucose metabolism. Hence 

additional investigation is required to explore the precise functions of RES in glucose 

metabolism, to develop an innovative therapeutic approach that effectively targets and 

addresses impaired glucose metabolism. 

 
2.8.3 Resveratrol and microRNAs 
Although RES may be beneficial for managing diabetes and its symptoms, including 

hyperglycemia, its effect on hyperglycemia-related miRNAs has yet to be thoroughly 

researched. Previous research has demonstrated that the expression of certain miRNAs, 

including miR-133a-3p, miR-188- 5p, miR-206-3p, miR-18a-5p, miR-382-5p, miR541-5p, and 

miR-714, changed after RES treatment in the renal cortex of db/db mice. Furthermore, they 

reported that miR-18a-5p was significantly upregulated after RES treatment in db/db mice. 

Overexpression of miR-18a-5p in podocytes resulted in significant inhibition of cleaved-

caspase-3 protein and increased the ratio of LC3-II/LC3, suggesting that kidney protection by 

RES occurred via upregulation of miR-18a-5p (Xu et al., 2017). Furthermore, researchers 

observed a decrease in pro-inflammatory TNF-α and IL-6 cytokine expression as well as 

miRNAs involved in inflammatory response regulation (i.e., miR181b, miR21, miR30c2, 

miR34a, miR155, and miR663) in 35 hypertensive patients with T2DM-associated coronary 

artery disease (Tomé-Carneiro et al., 2013).  

 

Further research is required to investigate the effect of RES on miRNAs associated with DM. 

A key target of resveratrol's effects on diabetes may be regulating miRNA expression. 

Consequently, gaining knowledge about the specific miRNAs influenced by RES could offer 

valuable understanding regarding its potential therapeutic advantages for individuals with DM. 
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CHAPTER 3: The effect of resveratrol on hyperglycemia-related microRNAs in 

HepG2 cells (Submitted to Biochimica et Biophysica Acta – Molecular Basis of 
Disease, currently under review). 
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Abstract 
Background: The disruption in the normal functioning of specific microRNAs (miRNAs), 

namely miR-30a-5p, miR-126-3p, and miR-182-5p, is closely linked to the initiation and 

advancement of type 2 diabetes mellitus. Therapeutic interventions involving endogenous and 

exogenous substances can restore miRNA regulation. This study examines the effect of high 

glucose (HG) on HepG2 cells and assesses the effects of resveratrol (RES), a polyphenol 

phytoalexin, on HG-induced miRNA dysregulation.  
Methods: We investigated the expression levels of three miRNAs (miR-30a-5p, miR-126-3p, 

and miR-182-5p) and their target genes (SPRED1, FOXO1, G6P, Neurod1) in HepG2 cells 

treated with high glucose (40 mM) and resveratrol (25 and 50 µM). The expression levels of 

the miRNAs and mRNAs were measured using qPCR, after 48 and 72 hours (h).  

Results: Exposure to HG for 48 and 72 h decreased the expression of miR-126-3p and 

increased the expression of its target gene SPRED1 in HepG2 cells. Conversely, RES 

treatment increased the expression of levels of miR-126-3p and reduced the expression of 

SPRED1. The HG treatment decreased miR-182-5p and enhanced the expression of FOXO1 

and G6P. RES treatment increased miR-182-5p expression, concomitant with a reduction of 

FOXO1 and G6P levels. Furthermore, HG decreased miR-30a-5p levels, which subsequently 

increased Neurod1 expression. Conversely, treatment with RES increased miR-30a-5p while 

simultaneously reducing Neurod1.  

Conclusion: Treatment with resveratrol showed a potential therapeutic application by 

increasing miR-30a-5p, miR-126-3p, and miR-182-5p expression levels. In addition, 

resveratrol may mitigate the effects exerted by miRNAs on their respective target genes. 

  

Keywords: Hyperglycemia, MicroRNAs, Resveratrol, miR-126-3p, miR-182-5p, miR-30a-5 
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1. Introduction 
Diabetes mellitus (DM) is a metabolic condition in which disruptions in insulin production or 

function, resulting from genetic and environmental factors, lead to a disease affecting glucose 

metabolism (Huang et al., 2020). In Africa, an estimated 24 million individuals were living with 

diabetes in 2021, and this is projected to rise to 55 million by 2045 (Sun et al., 2022). In South 

Africa, the prevalence of diabetes increased from 4.5% in 2010 to 12.7% in 2019. Furthermore, 

in 2019, 4.58 million individuals aged between 20-79 were estimated to have diabetes, of which 

52.4% were undiagnosed (International Diabetes Federation, 2021). Notably, low-income 

countries face an even higher percentage of undiagnosed cases at 50.5%, while the global 

average of middle- and low-income countries remains at 87.5% (International Diabetes 

Federation, 2021). 

 

Unfortunately, current diabetes treatments suffer from serious side effects, such as weight 

gain, hypoglycemia, gastrointestinal discomfort, or contraindications that restrict their use 

(Öztürk et al., 2017; Su et al., 2022). Improper treatment or diet control diminishes the quality 

of life for patients with diabetes and often leads to serious complications, including diabetic 

nephropathy, neuropathy, retinopathy, and cardiomyopathy (Dow et al., 2018). Early diagnosis 

and effective treatment of diabetes are both critical components to improving patient outcomes. 

Therefore, researchers must aim to create safer drugs that enhance the quality of life while 

decreasing the risks associated with this condition. 

 

Drug therapy remains the most effective means of delaying T2DM progression (Guo & Smith, 

2021). Anti-diabetic medications are designed to target specific tissues, such as fat and 

muscle, to decrease insulin resistance, regulate liver glucose production, or stimulate 

pancreatic release of insulin (Chaudhury et al., 2017). Although existing diabetes medications 

effectively treat symptoms, they do not completely halt the progression of the condition (Dahlén 

et al., 2022). Specific microRNAs (miRNAs) that regulate genes involved with insulin 

resistance and pancreatic beta cell function may serve as promising pharmacological targets 

to treat diabetes (Chen et al., 2014). 

Recent advancements in diabetes research have demonstrated the role of miRNAs circulating 

in the blood as crucial in its onset and progression. Hence, they possess immense therapeutic 

and diagnostic potential. MiRNAs, which are intrinsic noncoding RNAs, function to regulate 

gene expression at the posttranscriptional stage by either promoting the degradation of 

messenger RNAs (mRNAs) or preventing their translation into proteins (Bartel, 2004; Lewis et 

al., 2005). MiRNAs are highly stable molecules present in tissues and trace amounts in 

biological fluids (Necula et al., 2019). Numerous research endeavors focusing on miRNAs 

have been conducted in Africa. For example, Weale et al. showed that dysregulation of certain 
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miRNAs, such as miR-30a-5p, miR-126-3p, and miR-182-5p, is associated with both the 

development and progression of T2DM in a South African population (Weale et al., 2020; 

Weale et al., 2021). These miRNAs were identified as being significantly overexpressed in 

those with prediabetes or T2DM, suggesting that they may serve as useful biomarkers for the 

early detection of pre-diabetes or T2DM in patients. This study served as a foundational 

framework for our research. 

Furthermore, the dysregulation of these miRNAs has been linked to diabetes-related 

pathways. For example, miR-182 has been shown to influence glucose metabolism, primarily 

by targeting Forkhead box protein O1 (FOXO1) (Karolina et al., 2011; Zhou et al., 2014) 

FOXO1 can stimulate the transcription of downstream genes involved in gluconeogenesis, 

such as glucose-6-phosphate (G6P) (Barthel et al., 2005; Gross et al., 2008) Therefore, 

decreased miR-182 levels can cause hyperglycemia, as it allows the FOXO1 to increase G6P 

transcription and thus increase gluconeogenesis. Mir-126 plays a key role in regulating 

vascular development and homeostasis by targeting specific mRNAs, including CXCL12, 

VCAM-1, SPRED-1, and PIK3R2, which contributes to the endothelial dysfunction linked to 

diabetes and its complications (Wang et al., 2008; Sessa et al., 2012). Additionally, miR-30a-

5p targets protein kinase B to promote chondrocyte apoptosis in osteoarthritis patients (Fu et 

al., 2018). Further research must be conducted to develop therapeutic strategies targeting 

miRNAs that are dysregulated in those living with DM.  

Treating diabetes involves lowering blood glucose levels through lifestyle adjustments and 
anti-diabetic medication. Clinical practice medications commonly used include insulin 

secretagogues, metformin, sodium-glucose transporter 2 (SGLT-2) inhibitors, GLP1 receptor 

agonists, and a-glycosidase inhibitors (Accili et al., 2023). However, many drugs containing 

insulin come with unwanted side effects, including hypoglycemia, digestive disorders, and 

urinary infections. There is an urgent need to identify safe and effective drugs that provide anti-

hyperglycemic benefits while protecting against complications of diabetes (Gupta et al., 2017).  

Natural products have long been acknowledged for their therapeutic effects. Resveratrol (RES) 

is a polyphenol phytoalexin, known as trans-3,4,5-trihydroxystilbene, that is found in many 

plants, such as grapes, peanuts, and berries (Summerlin et al., 2015). Numerous studies have 

investigated the role of RES in managing diabetes and its complications (Soufi et al., 2012; 

Turan et al., 2012; Singh et al., 2013; Vallianou et al., 2013) and researchers have 

demonstrated that RES can reduce blood glucose levels (Oyenihi et al., 2016; Brasnyó et al., 

2011; Bhatt et al., 2012; Crandall et al., 2012; Szkudelski & Szkudelska, 2015). Although RES 

may be beneficial for managing diabetes and its symptoms, including hyperglycemia, its effect 

on HG-related miRNAs has yet to be thoroughly researched. Resveratrol's effects on diabetes 

may involve modulating miRNA expression, which regulates gene expression and, in turn, 
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protein expression, thus contributing to disease onset and progression. Therefore, this study 

aimed to determine miR-30a-5p, miR-125-3p, and miR-182-5p expression levels in HepG2 

cells exposed to HG concentrations and observe the effects of RES on these miRNAs during 

HG and control conditions. Moreover, we aimed to determine the effect of glucose-induced 

miRNA dysregulation on specific genes (mRNA expression) associated with glucose 

metabolism and the onset and progression of DM.   

2. Materials and Methods 

2.1. Materials 

Tissue culture consumables and reagents were purchased from Sigma–Aldrich (St. Louis, MO, 

USA). HepG2 cells were kindly donated by Prof JL Marnewick (Cape Peninsula University of 

Technology, South Africa). D-glucose and resveratrol were purchased from Sigma–Aldrich. 

PCR primer mixtures, kits, and reagents used for miRNA extraction and real-time quantitative 

Polymerase Chain Reaction (qPCR) were purchased from Qiagen (Hilden, Germany). 

Reagents used for gene expression were purchased from Bio-Rad (Hercules, CA, USA), and 

primer sequences were manufactured by Inqaba Biotechnical Industries (Pretoria, South 

Africa). Primers were verified for specificity BLAST database. 

2.2. Methods 

2.2.1. Study design 

Cells were categorized into six groups: Control (cultured in normal complete culture medium 
(CCM)), Low resveratrol (LR; cultured in normal CCM + 25 µM RES), High resveratrol (HR; 

cultured in normal CCM + 50 µM RES), High glucose (HG; cultured in normal CCM + 40 mM 

glucose), LR+HG (cultured in normal CCM + 25 µM RES + 40 mM glucose), and HR+HG 

(cultured in normal CCM + 50 µM RES + 40 mM glucose). A literature search was conducted 

to determine the concentrations and exposure periods for the glucose and resveratrol 

treatments. For the resveratrol treatment, studies by Baselga-Escudero et al., and Khan et al. 

reported the use of 50 μM and 25 μM resveratrol, respectively (Baselga-Escudero et al., 2014; 

Raghubeer et al., 2015; Khan et al., 2013) .Similarly, several studies reported the use of 40 

mM glucose to represent “hyperglycemic” or high glucose (HG) conditions (Chu et al., 2011; 

Leinninger et al., 2004; Varma et al., 2005; Kapoor & Kakkar, 2012). 

2.2.2. Cell culture 

HepG2 cells were cultured in 25 cm3 flasks, in a monolayer (106 cells per flask), using Eagle's 

minimum essential medium (EMEM) supplemented with 10% fetal bovine serum (FBS), 1% 

penstrepfungizone (PSF), and 1% L-glutamine. The cells were cultured in a 37 °C humidified 
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incubator (5% CO2). Cells were washed with 0.1 M phosphate-buffered saline (PBS). Once 

70-80% confluent, cells were treated with RES (25 µM and 50 µM) and HG (40 mM) and 

incubated for 48 and 72 h. Thereafter, cells were removed using trypsin and counted using the 

trypan blue exclusion method of cell counting. Briefly, cell suspensions were diluted (1:5) with 

60 µL CCM + 20 µL cell suspension + 20 µL trypan blue solution and incubated at room 

temperature for 5 min. Then, a 22 x 22 cm coverslip was placed on a clean hemocytometer, 

10 µL of a well-mixed counting solution was dispensed into the middle bar of the 

hemocytometer, and capillary action was used to move the suspension between the coverslip 

and the hemocytometer. The number of living cells was then determined using a microscope. 

The cell viability was determined using the standard equation (Live cell average x 5 (dilution 

factor) x 10,000 = cells/mL).            

2.2.3. Resveratrol treatments 

Resveratrol stock solutions (20 mM) were prepared in 100% dimethyl sulphoxide (DMSO). 

RES treatment concentrations were determined based on a 50% inhibitory concentration (IC50) 

from previous studies (Baselga-Escudero et al., 2014; Raghubeer et al., 2015 (Khan et al., 

2013) 

2.2.4. miRNA isolation 

Total RNA, encompassing miRNA, was isolated using the miRNeasy Tissue/Cells Advanced 
Minikit (Qiagen) following the provided guidelines. The extracted total RNA was quantified 

using Nanodrop spectrometry (Nanodrop one C, Thermo Fisher Scientific, Wilmington, DE, 

USA). For cDNA synthesis, the miRCURY LNA RT kit (Qiagen) was employed per the 

manufacturer's instructions. Once cDNA synthesis was completed successfully, the samples 

were stored at -20 °C until they were needed for qPCR assays. 

2.2.5. microRNA analysis 

The quantification of miRNA expression was performed using the miRCURY LNA SYBR Green 

PCR kit (Qiagen) according to the manufacturer’s protocol using Applied BiosystemsTM 

QuantStudioTM 7 Flex (Thermo Fisher Scientific). Pre-designed primers for each miRNA were 

used to quantify target miRNAs. Primers used were hsa-miR-182-5p (CAT no: YP00206070), 

hsa-miR-30a-5p (CAT no: YP00203695), and hsa-miR-126-3p (CAT NO: YP00204227) 

(Qiagen). Data were obtained as Ct values and normalized against an endogenous control (U6 

snRNA). The miRNA expression level in each sample was determined using the 2−ΔCt method, 

and the 2−ΔΔCt value was used to compare the miRNA expression level in each sample to the 

control (Livak & Schmittgen, 2001). 
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2.2.6. RNA extraction and Gene expression analysis 

Total RNA was isolated using a Trizol reagent according to the manufacturer’s protocol. The 
isolated total RNA was quantified using Nanodrop spectrometry (Nanodrop one C, Thermo 

Fisher Scientific, Wilmington, DE, USA). The iScript cDNA synthesis kit (Bio-Rad) was utilized 

for cDNA synthesis by the manufacturer’s guidelines. Once cDNA conversion was completed 

successfully, the amplification of mRNA was performed using Applied BiosystemsTM 

QuantStudioTM 7 Flex (Thermo Fisher Scientific, USA) with the following reaction mixture: 

5 µL SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad), 1.5 µL cDNA, 0.5 µL 

forward and reverse primers, and 2.5 µL nuclease-free water, resulting in a reaction volume of 

10 µL. The primers (purchased from Inqaba Biotechnical Industries) used in this study are 

shown in Table 1. Beta actin was utilized as a housekeeping gene, with three replicates per 

treatment. The mRNA expression level in each sample was determined using the 2−ΔCt 

method, and the 2−ΔΔCt value was used to compare the mRNA expression level in each sample 

to the control (Livak & Schmittgen, 2001). 

Table 31: Primers used in this study. 

Gene name Forward  Reverse  

Beta actin 5´ 
TGACGGGTCACCCACACTGTGCC
CAT 3´ 

5´CTAGAAGCATTTGCGGTGGACGA
TGGAGGG 3´ 

Neurdod1 5´ 
CTCCGGGGTTATGAGATCGTCAC 
3´ 

5´ GCCTTCATGCGCCTTAATTT 3´ 

FOXO1 5´ AAGCTCCCAAGTGACTTGGATG 
3´ 

5´ CTGCTCACTAACCCTCAGCCTGA 
3´ 

G6P 5´ TTTCCCCACCAGGTCGTGGCT 
3´ 

5´ CCCATTCTGGCCGCTCACAC 3´ 

 

2.2.7. Statistical analysis 

All data analyses were conducted using GraphPad Prism version 8.0.0 (GraphPad Software, 

San Diego, California, USA). The statistical methods employed included the Student's t-test 

and one-way analysis of variance (ANOVA). All experiments were conducted in triplicates, and 

statistical significance was determined at a threshold of p<0.05. 
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3. Results 

3.1. Expression levels of miR-126-3p and SPRED1 in HepG2 cells treated with high 
glucose and resveratrol 

HepG2 cells were exposed to HG (40 mM) for 48 and 72 h. Thereafter, RNA was isolated, and 
cDNA was synthesized. Real-time PCR was used to measure the expression levels of miR-

126-3p and SPRED1 mRNA expression. We observed that miR-126-3p showed a significant 

decrease compared to controls after exposure to HG over 48 and 72 h (Figure 1 A and B) 

(p<0.0001). The findings of our study showed that high levels of glucose may lead to a 

decrease in the expression of certain miRNAs, which may contribute to the development of 

DM. Furthermore, we investigated the effect of two different RES concentrations (25 and 50 

µM) on the expression of miR-126-3p after exposure over 48 and 72 h. miR-126-3p showed 

no significant differences after exposure to LR (25 µM) over 48 and 72 h as compared to 

controls; however, miR-126-3p was significantly decreased over 48 and 72 h, respectively, 

after exposure to HR (50 µM) (p<0.001; p=0.0015) (Figure 1 A and B). Since HG exposure 

reduced miR-126-3p expression levels, we aimed to determine if RES could reverse the effects 

of HG on this miRNA. Cells were treated with HG+LR and HG+HR over 48 and 72 h (Figure 1 

A and B). The qPCR results show that the expression levels of miR-126-3p increased 

significantly after exposure to HG+LR and HG+HR over 48 (p<0.001) and 72 h (p=0.0001 and 

p=0.0008) (Figures 1 A and B) as compared to HG alone. 
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Figure 3.1: Expression of miR-126-3p (A and B) and SPRED1 (C and D) in HepG2 cells treated with 
high glucose (40 mM) and resveratrol (25 µM and 50 µM) over 48 h and 72 h. The expression levels of 

miR-126-3p and SPRED1 were quantified using qPCR. The expression of the miRNAs was normalized 

to the relative expression of U6 snRNA and the housekeeping gene (Beta actin) was used to normalize 

SPRED1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, 
###p<0.001, ####p<0.0001 versus HG. LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, 

Resveratrol; SPRED1, Sprouty-related EVH1 domain containing 1. 

It is widely recognized that miRNAs carry out their biological role by repressing the expression 

of specific target genes. The miRDB-microRNA target prediction Database shows that miR-

126-3p targets SPRED1 (http://www.mirdb.org/). In the present study, we investigated the 

mRNA expression of SPRED1. The mRNA expression levels of SPRED1 exhibited a 

statistically significant increase following treatment of cells with HG over 48 and 72 h (Figure 

1 C and D), as compared to controls (p<0.0001). The findings of our study indicated that 

reduction in miR-126-3p significantly enhances the mRNA expression of SPRED1 in HepG2 
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cells. When cells were treated with LR and HR alone for 48 h, the mRNA expression of 

SPRED1 decreased significantly (p=0.002; p=0.0019). When treated for 72 h with LR and HR, 

no significant expression was observed in cells treated with LR; however, a significant 

reduction was observed in cells treated with HR (p<0.0001) as compared to controls. 

Interestingly, when cells were treated with HG+LR and HG+HR over 48 and 72 h, the mRNA 

expression of SPRED1 was significantly decreased (Figure 1 C and D) (p<0.0001) as 

compared to HG alone. These results provide additional evidence that elevated levels of miR-

126-3p are associated with a reduction in the expression of SPRED1. 

3.2. Expression of miR-182-5p and its target gene (FOXO1) in HepG2 cells 

It has been observed that the treatment of cells with HG significantly reduced the expression 

level of miR-182-5p (p<0.0001) while increasing the mRNA expression of FOXO1 over 48 and 

72 h (p=0.0141; p<0.0001, respectively) as compared to controls (Figure 2). When cells were 

treated with LR and HR alone for 48 h, LR showed no significant influence on miR-182-5p 

expression, while HR significantly decreased miR-182-5p expression (p<0.0001) as compared 

to the control. When treated for 72 h with LR and HR alone, there was a significant reduction 

in miR-182-5p expression (p=0.0003; p<0.0001, respectively) as compared to the control 

(Figure 2 A and B). A notable decrease in FOXO1 expression was observed when cells were 

treated with LR and HR over 48 and 72 h (p<0.0001) as compared to the control (Figure 2 C 

and D). To determine the effect of resveratrol in the presence of HG on the expression of miR-

182-5p and FOXO1, HepG2 cells were treated with HG+LR and HG+HR for over 48 and 72 h. 

A significant increase in miR-126-3p expression was observed when cells were treated with 

HG+LR and HG+HR for over 48 and 72 h, respectively (p<0.0001) as compared to the HG 

group alone (Figure 2 A and B). FOXO1 also showed a significant increase when cells were 

treated with HG+LR and HG+HR over 48 (p=0.0475; p=0.0002, respectively) and 72 h 

(p<0.0001) as compared to the HG group alone (Figure 2 C and D). Our study shows that 

increased miR-182-5p resulted in decreased expression of FOXO1 mRNA expression (Figure 

2). 
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Figure 3.2. Expression of miR-182-5p (A and B) and FOXO1 (C and D) in HepG2 cells treated with high 

glucose (40 mM) and resveratrol (25 µM and 50 µM) over 48 and 72 h. The presence of high glucose in 

HepG2 cells led to a reduction in the expression of miR-182-5p and an increase in the expression of 
FOXO1. However, when resveratrol was introduced in the presence of HG, there was an increase in the 

expression of miR-182-5p and a decrease in the expression of FOXO1. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG. LR, Low 

resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; FOXO1, Forkhead box O1. 

3.3. Increased mRNA expression of FOXO1 increases the mRNA expression of G6P in 
HepG2 cells.  

FOXO1 governs the transcription of downstream enzymes integral to gluconeogenesis, 

including PEPCK and G6P (Barthel et al., 2005; Gross et al., 2008). In this study, we 

investigated the mRNA expression of G6P. G6P showed a significant increase when cells were 

treated with HG over 48 and 72 h (p<0.0001) as compared with the control (Figure 3). When 

cells were treated with LR and HR alone over 48 and 72 h, we observed a significant decrease 

(p<0.0001) as compared to the control. Furthermore, when cells were treated with HG+LR and 
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HG+HR over 48 and 72 h, a remarkable decrease in the expression of G6P was observed 

(p<0.001) as compared to the HG group alone (Figure 3). Our study shows that increased 

expression of FOXO1 (Figure 2 C and D) resulted in increased expression of G6P (Figure 3) 

while decreased expression level of FOXO1 resulted in decreased expression of G6P. 

 

Figure 3.3: The mRNA expression of G6P in HepG2 cells treated with high glucose (40 Mm) and 
resveratrol (25 µM and 50 µM) over 48 (A) and 72 h (B). High glucose increases the expression of G6P, 

whereas resveratrol decreases the expression of G6P. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG. LR, Low resveratrol; HR, 

High resveratrol; HG, High glucose, RES, Resveratrol; G6P, Glucose-6-phosphatase. 

3.4. Expression of miR-30a-5p and Neurod1 in HepG2 cells. 

The miRDB-microRNA target prediction Database shows that miR-30a-5p targets Neurod1 

(http://www.mirdb.org/). We investigated the effect of high glucose and resveratrol on the 

expression of miR-30a-5p and Neurod1 in HepG2 cells. We observed that cells treated with 

HG significantly decreased miR-30a-5p over 48 and 72 h (p<0.0001) as compared to the 

control (Figure 4 A and B). Neurod1 was significantly increased when cells were treated with 

HG for 72 h (p<0.0001), however, we did not observe any statistical significance when treated 

over 48 h (Figure 4 C And D). When cells were treated with LR and HR alone for 48 h, the LR 

group did not show any statistical difference in the expression of miR-30a-5p; however, HR 

significantly reduced miR-30a-5p (p=0.0002) as compared to controls (Figure 4 A and B). 

Neurod1 significantly decreased when cells were exposed to LR and HR alone over 48 and 72 

h (p<0.0001) as compared to controls (Figure 4 C and D). miR-30a-5p increased significantly 

when cells were treated with HG+LR and HG+HR over 48 and 72 h (p<0.0001) as compared 

to HG alone (Figure 4 A and B). A significant reduction in Neurod1 mRNA expression was 
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observed in cells treated with HG+LR and HG+HR over 48 and 72 h (p<0.0001) as compared 

to HG alone. The findings of our study indicate that a decrease in miR-30a-5p levels led to an 

increase in Neurod1 expression, while an increase in miR-30a-5p resulted in a significant 

reduction of Neurod1 mRNA expression. 

 

Figure 3.4: Expression of miR-30a-5p (A and B) and Neurod1 (C and D) in HepG2 cells treated with 
high glucose (40 mM) and resveratrol (25 µM and 50 µM) over 48 and 72 h. High glucose significantly 

decreased the expression of miR-30a-5p while increasing Neurod1 mRNA expression. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 

versus HG. LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; Neurod1, 

Neuronal differentiation 1. 

4. Discussion 

Despite recent advancements in understanding and managing DM, the disease prevalence 

continues to rise, with debilitating and life-reducing consequences for the global population. 

Due to their involvement in various biological processes, the aberrant expression of miRNAs 

may contribute to various pathophysiological conditions, making them promising targets for 

prevention or intervention of DM. Here, we assessed miR-126-3p, miR-182-5p, and miR-30a-
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5p expression levels and their target genes in HepG2 cells exposed to high glucose (HG) and 

determined the effects of resveratrol (RES) exposure.  

Our findings revealed significant downregulation of miR-126-3p, miR-182-5p, and miR-30a-5p 
expression levels in HepG2 cells following high glucose (HG) exposure for 48 and 72 h. These 

results align with previous research demonstrating reduced expression of miR-126-3p and 

miR-182-5p in conditions associated with diabetes (Arevalo-Martinez et al., 2021; Nyawo et 

al., 2021). MiR-126-3p has been identified as an essential regulator of vascular development 

and homeostasis, and its downregulation is associated with endothelial dysfunction in diabetes 

(Weale et al., 2021; Ait-Aissa et al., 2020). MiR-182-5p has been implicated in type 2 diabetes 

mellitus pathogenesis (Weale et al., 2021). However, our study revealed that miR-30a-5p 

downregulation is not widely researched regarding diabetes-related mechanisms. Additional 

investigation of this gene will likely help elucidate its precise role. 

Resveratrol (RES), a polyphenol phytoalexin, has been studied for its potential therapeutic 

effects in diabetes (El-Sayed et al., 2022). We demonstrated that treatment with RES reversed 

the downregulation of miR-126-3p, miR-182-5p, and miR-30a-5p caused by high glucose (HG) 

in HepG2 cells, suggesting it may protect against miRNA dysregulation associated with 

diabetes. Furthermore, previous research demonstrated the effects of RES against oxidative 

stress, apoptosis, and glucose metabolism associated with diabetes. However, further 

investigation is required to identify how RES may impact miRNA dysregulation in diabetes. 

Zeinali et al. (Zeinali et al., 2021) reported that miR-126-3p levels are associated with 
inflammation in patients suffering from pre-diabetes and T2DM. Their studies demonstrated 

that this miRNA is significantly lower in patients with pre-diabetes or T2DM compared with 

healthy individuals. Zampetaki et al. (Zampetaki et al., 2010) found that the levels of miR-126 in 

the plasma of diabetes patients had decreased, suggesting that endothelial dysfunction and 

inflammation were contributing factors. MiR-126 influences angiogenesis signalling and has 

been shown to target SPRED1 (Zeinali et al., 2021). Increasing SPRED1 expression in diabetes 

patients by suppressing miR-126 expression would promote IL-6, TNF-α, and ROS production, 

resulting in endothelial dysfunction (Li et al., 2016). This study aimed to conduct a further 

investigation into the mRNA expression of SPRED1. It has been observed that high glucose 

levels have a substantial impact on the mRNA expression of SPRED1. Conversely, treatment 

with RES has been shown to reduce the expression of SPRED1. Our study agrees with prior 

research, which indicates that a decrease in miR-126-3p expression leads to an increase in 

SPRED1 expression. Additionally, augmented expression of miR-126-3p led to a decrease in 

the expression of SPRED1. 

Based on these findings, the upregulation of miR-126-3p by RES in the present study suggests 
a plausible mechanism by which RES exerts its beneficial effects in diabetes. Resveratrol has 
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been noted for its anti-inflammatory properties and modulation of miRNA expression.  A study 

by Mahjabeen et al. demonstrated a significant upregulation in the expression of miR-126 

among individuals with T2DM following supplementation with resveratrol (Mahjabeen et al., 

2022). Therefore, RES' upregulation of miR-126-3p may contribute to its anti-inflammatory 

benefits and potentially improve endothelial function in diabetes patients. 

Additionally, the upregulation of miR-182-5p by RES is noteworthy, given its association with 

T2DM development (El-Sayed et al., 2022). While miR-182-5p's role in inflammation and 

diabetes remains poorly understood compared to that of miR-126-3p, its upregulation by RES 

suggests a possible underlying mechanism in treating diabetes. 

The regulatory function of miR-182-5p in maintaining glucose homeostasis is thought to occur 

via FOXO1, a gene involved in gluconeogenesis (Kaur et al., 2020). MiR-182-5p may contribute 

to hyperglycemia in diabetes by increasing the expression of FOXO1, leading to upregulated 

gluconeogenesis. This study investigated the mRNA expression of FOXO1 and G6P.  

Intriguingly, our findings demonstrated that reduced miR-182-5p expression correlated with 

increased FOXO1 expression as well as heightened G6P mRNA expression, accentuating 

gluconeogenesis. Furthermore, the present study revealed that RES treatment significantly 

increased miR-182-5p expression. This elevation, in turn, precipitated a reduction in FOXO1 

mRNA expression thereby reducing G6P mRNA expression, ultimately dampening 

gluconeogenesis. This suggests that RES may play an essential role in glucose homeostasis 

by modulating miR-182-5p and its target genes, such as FOXO1. Our observations of an 

upregulated miR-182-5p by RES correlate well with previous research by Zuo et al. (Zuo et al., 

2021), who demonstrated that miR-182-5p directly targets and suppresses FOXO1 expression, 

leading to decreased hepatic lipid accumulation due to alcohol-related liver disease (ALD). 

Their results demonstrate that RES may modulate miR-182-5p and its downstream targets to 

improve glucose metabolism and homeostasis in diabetes patients. 

MiR-30a-5p upregulation by RES is particularly interesting as its involvement has been 

implicated in diabetes pathogenesis and beta-cell dysfunction (Kim et al., 2013). Glucotoxicity, 

associated with the gradual degradation of beta cell function characteristic of T2DM, has been 

found to upregulate miR-30a-5p expression in beta cells. In vitro studies have revealed that 

excessive expression of miR-30a-5p results in dysfunctional beta cells characterized by 

reduced insulin levels and weakened insulin secretion stimulated by glucose. The induction of 

miR-30a-5p, triggered by glucotoxicity-induced beta cell dysfunction, inhibits Beta2/NeuroD 

gene function regulation in beta cell therapy. The findings of our study indicate that high 

glucose levels resulted in increased Neurod1 mRNA expression. Our study showed that RES 

treatment increased expression levels for miR-30a-5p while decreasing the mRNA expression 

of Neurod1 in HepG2 cells. Although further investigation of the specific implications of miR-
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30a-5p upregulation by RES in diabetes requires further study, this evidence indicates that 

RES may alter miR-30a-5p expression and may influence beta cell function and glucose 

homeostasis. Further research is required to determine the exact mechanism underlying RES 

function, as well as the therapeutic applications in diabetes.  

Overall, our findings suggest that RES could effectively regulate miRNA dysregulation in 

hyperglycemia-related diseases. By countering HG-induced downregulation of miR-126-3p, 

miR-182-5p, and miR-30a-5p and potentially contributing to their restoration, RES may 

regulate miRNA levels and assist in managing or preventing complications related to diabetes. 

Moreover, RES demonstrated the capability to counteract the impact imposed by miRNAs on 

their target genes. It is important to note that our study was conducted in vitro, and further 

research must be performed in animal models, such as diabetes-induced mice, to validate 

these findings. Furthermore, RES may be included in a community study with diabetes patients 

to determine if RES improves glucose management. Our findings illustrate the potential of RES 

as a therapeutic agent to manage diabetes by modulating miRNA expression and its target 

genes. Future studies may help validate the mechanisms of RES underlying miRNA regulation 

in both in vitro and in vivo models. Furthermore, novel therapeutic strategies targeting miRNA 

dysregulation may offer new avenues to prevent and treat diabetes and its arising complexities. 

This study has several strengths and limitations. First, an in vitro model allows for controlled 
experimental conditions and focused analysis. Second, these findings align with previous 

research, adding to our existing knowledge of how miRNAs may become dysregulated during 

diabetes-related conditions. Regarding the limitations, our study focused solely on HepG2 

cells. Therefore, it may not adequately represent the complexity of miRNA regulation within 

diabetes pathophysiology. Additionally, this study used 40 mM as a high glucose 

concentration, other studies may use 25 mM or 30 mM as a high glucose concentration to 

better reflect the clinical relevance for diabetes patients. Furthermore, no investigation was 

made into the functional implications of downregulated miRNAs or their specific roles within 

diabetes-related mechanisms; however, this research will be conducted in subsequent studies 

by our research group. Further investigations using diverse cell models and experimental 

methods are recommended to gain a comprehensive understanding of the roles played by 

these miRNAs within the pathophysiology of diabetes. 

5. Conclusions 

This study provides evidence supporting the role of three specific miRNAs, namely miR-126-

3p, miR-182-5p, and miR-30a-5p, as potential biomarkers for diabetes. The downregulation of 

these microRNAs in HepG2 cells exposed to high glucose levels indicates their involvement in 

the development or progression of diabetes. Moreover, this study presents supplementary 

findings that support the notion that miR-126-3p affects SPRED1 expression, miR-182-5p 
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affects FOXO1, and miR-30a-5p influences Neurod1. This suggests that the dysregulation of 

miRNA expression caused by high glucose levels may contribute to the disruption of metabolic 

processes associated with diabetes. Moreover, the findings highlight the therapeutic potential 

of resveratrol. To our knowledge, this study is the first attempt to study the link between 

resveratrol and diabetes-specific miRNAs in HepG2 cells. Interestingly, resveratrol was found 

to reverse the downregulation of microRNAs induced by high glucose, indicating its potential 

as a therapeutic approach for treating diabetes. This study not only improves our 

understanding of the molecular mechanisms underlying diabetes but also uncovers a 

promising avenue for therapeutic intervention through the modulation of miRNA expression. 

The identification of these specific miRNAs as potential biomarkers for diabetes provides 

valuable insights for the development of diagnostic tools and personalized treatment 

strategies. Further research is warranted to explore the precise mechanisms by which these 

miRNAs and resveratrol exert their effects and to evaluate their clinical applicability in the 

management of diabetes. The intricate interplay between glucose metabolism, microRNA 

regulation, and resveratrol's therapeutic effects may pave the way for novel therapeutic 

approaches in combating diabetes and its complications. 
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Abstract 
Diabetes mellitus (DM) is characterized by impaired glucose and insulin metabolism, resulting 

in chronic hyperglycemia. Hyperglycemia-induced inflammation is linked to the onset and 

progression of diabetes. Resveratrol (RES), a polyphenol phytoalexin, is studied in diabetes 

therapeutics research. This study evaluates the RES effect on inflammation and glucose 

metabolism in HepG2 cells exposed to high glucose. Inflammation and glucose metabolism-

related genes were investigated using quantitative polymerase chain reaction (qPCR).  

Further, inflammatory genes were analyzed by applying enzyme-linked immunoassay (ELISA) 

and Bioplex. High glucose significantly increases inhibitory-kB kinase alpha (IKK-α), IkB-alpha 

(IKB-α), and nuclear factor-kB (NF-kB) expression than the controls. NF-kB’s increased 

expression was followed by increased expression of pro-inflammatory cytokines such as 

Tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin-1 beta (IL-β), and 

cyclooxygenase-2 (COX2). RES treatment significantly reduced the expression of NF-kB, 

IKKα, and IKB-α, as well as pro-inflammatory cytokines. High glucose levels reduced the 

expression of transforming growth factor-beta 1 (TGFβ1), while treatment with RES increased 

the expression of TGFβ1. As glucose levels increased, Phosphoenolpyruvate carboxylase 

(PEPCK) expression was reduced, and glucokinase (GCK) expression was increased in 

HepG2 cells treated with RES. Further, HepG2 cells cultured with high glucose showed 

significant increases in Kruppel-like factor 7 (KLF7) and hypoxia-inducible factor 1 Alpha 

(HIF1A) but decreased in Sirtuin 1 (SIRT1). Moreover, RES significantly increased SIRT1 

expression and reduced KLF7 and HIF1A expression levels. Our results indicated that RES 

could attenuate high glucose-induced inflammation and enhance glucose metabolism in 

HepG2 cells.  
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1.Introduction 
Diabetes Mellitus (DM) has imposed a significant burden on global healthcare systems due to 

its increasing incidence and prevalence, a trend projected to rise in the future (Lin et al., 2023); 

(Goyal, 2018). Type 2 DM (T2DM) is a metabolic condition characterized by chronic 

hyperglycemia resulting from relative insulin deficiency (Wu et al., 2014; Mukai et al., 2022). It 

accounts for about 90-95% of all diabetes cases. Chronic hyperglycemia often results in 

microvascular complications, such as nephropathy, neuropathy, and retinopathy (Faselis et 

al., 2019). 

 

To fulfil the energy needs of vital organs and maintain a healthy metabolism, glucose 

homeostasis is strictly regulated. In this regard, the liver plays a vital role by regulating multiple 

glucose metabolic pathways, including glycogenesis, glycogenolysis, glycolysis, and 

gluconeogenesis (Han et al., 2016). Research has demonstrated that abnormal glucose 

metabolism in the liver is one of the primary causes of T2DM. Individuals with diabetes often 

have disrupted glycogenesis and glycogenolysis, with glycogenesis playing a particularly 

important role (Rines et al., 2016). Enzymes responsible for gluconeogenesis and 

glycogenesis are often elevated in hyperglycemic livers, whereas glycolysis enzymes are 

attenuated (Zhou et al., 2015). Phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-

phosphatase (G6P) are the main enzymes in the liver that regulate the conversion of non-

sugar substances into glucose in the process of gluconeogenesis (Zhu et al., 2021). The 

elevated expression of these enzymes is linked to increased gluconeogenesis (Rui, 2014). 

Glycolysis is the pathway by which glucose is broken down into pyruvate/lactate after glucose 

uptake by the cells and glucose phosphorylation. Glucokinase (GCK) is an important regulatory 

enzyme in glycolysis (Guo et al., 2012). The reduced activity of GCK has been associated with 

individuals with T2DM (Caro et al., 1995; Clore et al., 2000; Basu et al., 2001). Therefore, 

understanding the regulation of GCK and PEPCK activity and their function in glycolysis and 

gluconeogenesis is essential for the development of efficient treatment for individuals with 

T2DM.  

 

Previous research has shown inflammation to be a critical factor in the pathogenesis of T2DM 

(Phillip James White and André Marette, 2008). Nuclear factor-kB (NF-kB) activation is linked 

with inflammatory response activation (Jeon et al., 2010). It regulates the expression of pro-

inflammatory genes. Tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, interleukin (IL)-8, 

interleukin-1 beta (IL-1β), and cyclooxygenase-2 (COX2) are mediated by NF-kB (Tak & 

Firestein, 2001). NF-kB is activated by high glucose levels, which activates the expression of 

inflammatory cytokines, including TNF-α and IL-6 (Yun et al., 2011; Miao et al., 2004). To 

mitigate the ongoing inflammatory response, the strategic inhibition of pro-inflammatory 

cytokine production and secretion has been postulated as a prospective approach to halt the 



 79 

onset of diabetes (Tsalamandris et al., 2019). Previous research has shown that transforming 

growth factor-beta 1 (TGFβ1) has demonstrated substantial regulatory characteristics within 

inflammation (Li & Flavell, 2008). Prior research has established that TGFβ1 possesses anti-

inflammatory characteristics by neutralizing pro-inflammatory cytokines (Park et al., 2000). 

 

Sirtuin 1 (SIRT1), an extremely conserved NAD+-dependent deacetylase, is a critical enzyme 

in aging and metabolism, including adapting gene expression and metabolism to the cellular 

energy state(Rai et al., 2012; Takeda-Watanabe et al., 2012). Furthermore, SIRT1 functions 

as a suppressor of NF-kB activity. It inhibits transcription by deacetylating the NF-kB subunit 

RelA/p56 at lysine 310 (Yeung et al., 2004; Yang et al., 2012). Kruppel-like factor 7 (KLF7), 

the first discovered transcriptional factor amongst the KLF family, has been reported to play a 

fundamental role in regulating glucose and lipid metabolism and inflammation (Qiu et al., 2022) 

KLF7 can promote pro-inflammatory IL-6 cytokine expression and prevent glucose metabolism 

in human Islet and HepG2 cells (Kawamura et al., 2006Hafidi et al., 2019) Hypoxia-inducible 

factor 1 Alpha (HIF1A) is another transcriptional factor involved in inflammation and glucose 

metabolism. It is vital in regulating pro-inflammatory gene expression and cytokine production 

(Fitzpatrick et al., 2018) Therefore, a natural compound with the capability to regulate these 

transcriptional genes may be valuable in managing inflammatory diseases and metabolic 

disorders. 

 

Currently, there are several chemical agents for glycemic control utilized in T2MD therapy. 

However, they are associated with severe side effects such as hypoglycemia and weight gain 

or contraindications that restrict their use which necessitates the search for an effective T2DM 

treatment method (Bain et al., 2016; Zhu et al., 2017). In this regard, natural compounds with 

anti-diabetic activity and fewer side effects can be effective for T2DM treatment (Ku et al., 

2015). Several indigenous plants have been utilized for the management or treatment of 

diabetes. Some have been investigated, and their active ingredients have been isolated (Li et 

al., 2013). 

 

Resveratrol (RES) is a polyphenol phytoalexin known as trans-3,4,5-trihydroxystilbene. 

Studies have shown that RES has an antihyperglycemic effect resulting in improved blood 

glucose parameters, inflammation, and insulin resistance (Imamura et al., 2017). Due to this, 

RES has been implicated in the management of T2DM. This study aims to evaluate the effects 

of resveratrol on glucose metabolism and inflammation in high glucose-induced HepG2 cells. 

Understanding its potential as a treatment for diabetes and comprehending the basic molecular 

pathway may aid in developing novel strategies to combat glucose dysregulation and 

inflammation in diabetes.  
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2. Methods 
 
2.1. Study design 
Cells were categorized into six groups: Control (cultured in normal complete culture medium 

(CCM)), Low resveratrol (LR; cultured in normal CCM + 25 µM RES), High resveratrol (HR; 

cultured in normal CCM + 50 µM RES), High glucose (HG; cultured in normal CCM + 40 mM 

glucose), LR+HG (cultured in normal CCM + 25 µM RES + 40 mM glucose), and HR+HG 

(cultured in normal CCM + 50 µM RES + 40 mM glucose). A literature search was employed 

to determine the concentrations and exposure periods for glucose and resveratrol treatments. 

For resveratrol treatment, research conducted by Baselga-Escudero et al. and Raghubeer et 

al. reported the use of 50 µM and 25 µM resveratrol, respectively  (36; 37). Similarly, several 

research demonstrated the use of 40 mM glucose to represent “hyperglycemic” or high glucose 

(HG) conditions(Chu et al., 2011; Leinninger et al., 2004; Varma et al., 2005; Kapoor & Kakkar, 

2012).  Therefore, in this study, 40 mM was used as a high glucose concentration, and for 

resveratrol, 25 µM, and 50 µM were used. Resveratrol was prepared in 100% dimethyl 

sulphoxide (DMSO). 

 

2.2. Cell culture 
The HepG2 cell line was purchased from Merck (Darmstadt, Germany; catalogue number 

85011430). Eagle's minimum essential medium (EMEM) supplemented with 10% fetal bovine 

serum (FBS), 1% penstrepfungizone (PSF), and 1% L-glutamine was utilized for culturing 

HepG2 cells in 25 cm3 flasks in a monolayer (106 cells per flask) in a 37 °C humidified 

incubator (5% CO2).  Phosphate-buffered saline (PBS) (0.1 M) was used to wash the cells. 

Cells were treated with RES (25 µM and 50 µM) and HG (40 mM) upon reaching 70-80% 

confluent and incubated for 48 and 72 h. Afterward, trypsin was used to remove the cells, and 

cells were counted using the trypan blue exclusion method of cell counting. Briefly, 60 µL CCM 

+ 20 µL cell suspension + 20 µL trypan blue solution was incubated for 5 minutes at room 

temperature. A coverslip (22 x 22 cm) was placed on a clean hemocytometer. Then 10 L of 

well-mixed counting solution was distributed into the middle bar of the hemocytometer. The 

number of living cells was then determined using a microscope. The cell viability was evaluated 

using the standard equation (Live cell average x 5 (dilution factor) x 10,000 = cells/mL).   

 

2.3. RNA isolation and gene expression analysis 
Total RNA was isolated using a Trizol reagent according to the manufacturer's protocol. The 

isolated total RNA was quantified using Nanodrop spectrometry (Nanodrop one C, Thermo 

Fisher Scientific, Wilmington, DE, USA). The iScript cDNA synthesis kit (Bio-Rad) was utilized 

for cDNA synthesis by the manufacturer’s guidelines. Once cDNA was completed successfully, 

the amplification of mRNA was performed using Applied BiosystemsTM QuantStudioTM 7 Flex 

(Thermo Fisher Scientific, USA) with the following reaction mixture: 5 μL SsoAdvanced™ 
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Universal SYBR® Green Supermix (Bio-Rad), 1.5 μL cDNA, 0.5 μL forward and reverse 

primers, and 2.5 µL nuclease-free water was made up to 10 µL. The primers (purchased from 

Inqaba Biotechnical Industries (Pretoria, South Africa)) used are shown in Table 1. GAPDH 

was utilized as a housekeeping gene, with three replicates per treatment. The mRNA 

expression level in each sample was determined using the 2−ΔCt method, and the 2−ΔΔCt value 

was used to compare the mRNA expression level in each sample to the control (Livak & 

Schmittgen, 2001). 

 
Table 4.1: Primers used in this study. 

Gene 
names 

Forward  Reverse Annealing 
temperature °C 

GAPDH 5ʹ 
TCCACCACCCTGTTGCTGTA 
3ʹ 

5ʹ ACCACAGTCCATGCCATCAC 
3ʹ 

 

SIRT1 5’ 
TGCCGGAAACAATACCTCCA 
3ʹ 

5ʹ AGACACCCCAGCTCCAGTTA 
3ʹ 

55 

IkB-α 5ʹ 
TGCACTTGGCCATCATCCAT 
3ʹ 

5ʹ TCTCGGAGCTCAGGATCACA 
3ʹ 

60 

NFk-B 5ʹ 
ATGTGGAGATCATTGAGCAG
C 3ʹ 

5ʹ CCTGGTCCTGTGTAGCCATT 
3ʹ 

58 

IKKα 5ʹ GGCTTCGGGAACGTCTGTC 
3ʹ 

5ʹ 
TTTGGTACTTAGCTCTAGGCGA 
3ʹ 

60 

COX2 5ʹ 
TAAGTGCGATTGTACCCGGA
C 3ʹ 

5ʹ 
TTTGTAGCCATAGTCAGCATTG
T 3ʹ 

55 

IL-6 5ʹ 
ACTCACCTCTTCAGAACGAAT
TG 3ʹ 

5ʹ 
CCATCTTTGGAAGGTTCAGGTT
G 3ʹ 

55 

TNF-α 5ʹ 
GCTGCACTTTGGAGTGATCG 
3ʹ 

5ʹ TCACTCGGGTTCGAGAAGA 
3ʹ 

55 

GCK 5ʹ 
TGGACCAAGGGCTTCAAGGC
C 3ʹ 

5ʹ 
CATGTAGCAGGCATTGCAGCC 
3ʹ 

55 

PEPCK 5ʹ 
CTTTTTCGGTGTCGCTCCTG 
3ʹ 

5ʹ GACACCTGAAGCTAGCGGCT 
3ʹ 

55 

HIF1A 5ʹ 
GAACGTCGAAAAGAAAAGTC
TCG 3ʹ 

5ʹ 
CCTTATCAAGATGCGAACTCAC
A 3ʹ 

55 

KLF7 5ʹ 
GGTGAGCCAGACAGACTGAC
AA 3ʹ 

5ʹ 
GAAGTAGCCGGTGTCGTGGA 
3ʹ 

55 

 

 
2.4. Enzyme-linked Immunosorbent Assay (ELISA) 
The culture supernatant was collected 48 and 72 h after treatment of HGR, LR, HR, LR+HG, 

and HR+HG. The ELISA kits used to detect human TNF-α (CAT no: DY210-05) and IL-1β 

(CAT no: DY201-05) were purchased from R&D Systems Biotechnology Company 
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(Minneapolis, Minnesota, United States). The assay was performed in accordance with the 

manufacturer's protocol. 

 

2.5. Multiplex cytokines assay 
The supernatant collected after 48 and 72 h treatments were used in the Bio-Plex 200 system 

(Bio-Rad) to detect the concentration of the cytokines. The Bio-plex Pro Human Cytokine Grp 

1 Panel 27-Plex (Bio-Rad, USA) was used per the manufacturer’s protocol. In this study, only 

two cytokines (IL-6 and IL-1β) were analyzed using Bio-plex Manager Software. 

 

2.6. Statistical analysis 
All data analyses were conducted using GraphPad Prism version 8.0.0 (GraphPad Software, 

San Diego, California, USA). The statistical methods employed included the Student's t-test 

and one-way analysis of variance (ANOVA). All experiments were conducted in triplicate, and 

statistical significance was determined at a threshold of p<0.05. 

 

3.Results 
 

3.1. Resveratrol reversed the increased pro-inflammatory cytokines caused by high 
glucose in HepG2 cells. 
HepG2 cells were cultured under various conditions for 48 and 72 h, and the mRNA expression 

levels of TNF-α, IL-6, and COX2 were analyzed using qPCR (Figure 1). Furthermore, human 

TNF-α and IL-1β ELISA were performed using collected supernatant (Figure 2). Interestingly, 

as shown in Figure 1, the expression patterns of the three inflammatory cytokines were similar. 

In HepG2 cells cultured with LR and HR for 48 h and LR for 72 h, no statistical difference was 

observed in the expression levels of TNF-α, and IL-6 as compared to control cells (Figure 1A, 

C, and D). The TNF-α and IL-6 mRNA expression levels, were significantly reduced 

(p<0.00001; p=0.0109, respectively) when cells were cultured with HR for 72 h. When cells 

were cultured with LR and HR over 72 h, the expression of COX2 was significantly decreased 

as compared to control group (p=0.0008 and p<0.0001, respectively) (Figure 1F). In ELISA 

results, when cells were cultured with LR and HR over 48 and 72 h, no statistical difference 

was observed in the concentration of TNF-α and IL-1β as compared to the control (Figure 2). 

The mRNA expression levels of TNF-α, IL-6, and COX2 were increased significantly 

(p<0.0001) in the HG group compared to the control group (Figure 1). Similar to ELISA’s 

results, the expression levels of TNF-α and IL-1β increased significantly in the HG group as 

compared to control cells (p<0.0001) (Figure 2). These results indicate that high glucose levels 

can lead to an increase in pro-inflammatory cytokine expression.  
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Figure 4.1: The expression levels of pro-inflammatory cytokines in HepG2 cells cultured with high 

glucose (40 mM) and resveratrol (25 µM AND 50 µM) over 48 and 72 h. (A) Expression of TNF-α cultured 

over 48 h. (B) Expression of TNF-α cultured over 72 h. (C) Expression of IL-6 cultured over 48 h. (D) 

Expression of IL-6 cultured over 72 h. (E) Expression of COX2 cultured over 48 h. (D) Expression of 

COX2 cultured over 72 h. GAPDH was utilized as the housekeeping gene. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG.  

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; TNF-α, Tumor necrosis 

factor alpha; IL-6, interleukin-6; COX2, Cyclooxygenase-2. 

 

According to our qPCR and ELISA findings, HG levels increased the expression of pro-

inflammatory cytokines in HepG2 cells. To investigate the anti-inflammatory effect of RES, 

HepG2 cells were exposed to HG in the presence of RES. The mRNA expression levels of 

TNF-α, IL-6, and COX2 were significantly decreased (p<0.0001) when HepG2 cells were 

cultured with LR+HG and HR+HG as compared to HG alone (Figure 1). Similarly, to the qPCR 

results, in our Elisa results, we observe that the concentration of TNF-α and IL-1β were 

significantly decreased when cells were cultured with LR and HR in the presence of HG as 

compared to HG alone (p<0.0001). These results suggest that RES has a potential anti-

inflammatory effect on HepG2 cells exposed to HG. Furthermore, the significant decrease in 

TNF-α, IL-6, COX2, and IL-1β expression levels indicates that RES may have a role in 

mitigating the pro-inflammatory response induced by HG levels in HepG2 cells.  
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Figure 4.2: The ELISA for TNF-α (A and B) and IL-β (C and D) after high glucose treatment (40 mM), 

Low resveratrol (25 µM), High resveratrol (50 µM), High glucose + Low resveratrol (40 mM + 25 µM), 

and High glucose + High resveratrol (40 mM + 50 µM) treatments. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG.   

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; TNF-α, Tumor necrosis 

alpha; IL-1β, Interleukin-1 beta 

 
3.2. IL-6 and IL-1β cytokines levels 
In agreement with ELISA and qPCR results, the Bio-Plex assay revealed that when HepG2 

cells were cultured with HG, the concentration of IL-6 and IL-1β cytokines were significantly 

higher as compared to control cells over 48 h (p<0.0001) and 72 h (p<0.0001; p=0.0109) 

(Figure 3). IL-6 was significantly reduced when HepG2 cells were cultured with HR in the 

presence of HG over 48 and 72 h (p=0.206; p=0.0013, respectively); however, no statistical 

difference was observed when HepG2 cells were cultured with LR+HG over 48 and 72 h 

(Figure 3A and B). We observed that IL-1β was significantly reduced when HepG2 cells were 

cultured with both LR and HR in the presence of HG over 48 h (p<0.0001) and 72 h (p=0.0435) 

as compared to the HG group alone (Figure 3C and D). 
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Figure 4.3: The Bio-Plex cytokines assay. A) IL-6 48h, B) IL-6 72 h, C) IL-1β 48 h and D) IL-1β 72 h. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, 
####p<0.0001 versus HG. LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, 

Resveratrol. 
 

 
3.3. The expression levels of NF-kB, IKKα, and IkB-α in HepG2 cells 
As shown in Figure 4 E and F, when HepG2 cells were cultured with HG, the NF-kB mRNA 

expression was significantly increased compared to control cells (p<0.0001). Moreover, the 

mRNA expression of IKKα and IkB-α was significantly increased in the HG group (p<0.0001; 

Figure 4 A, B, C, and D), suggesting activation of NF-kB signaling pathway. To explore the 

anti-inflammatory effect of RES, HepG2 cells were cultured with LR and HR concentrations in 

the presence and absence of HG. Interestingly, NF-kB, IKKα, and IkB-α mRNA expressions 

were significantly decreased when exposed to LR and HR in the presence of HG over 48 and 

72 h (p<0.0001). When cells were exposed to LR and HG in the absence of HG, no statistical 

difference was observed in the expression of NF-kB as compared to control cells. IKKα and 

IkB-α did not show any statistical difference when cells were cultured to LR and HR over 48 h; 

However, IKKα was significantly decreased when cells were cultured with LR and HR 

(p<0.0001; p=0.0255, respectively). A significant decrease was also observed when cells were 

cultured with HR over 72 h (p<0.0001). The decrease in NF-kB, IKKα, and IkB-α expression 

with RES treatment indicates its potential to modulate the NF-kB signaling pathway. 
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Figure 4.4: The mRNA expression of IKKα (A and B), IkB-α (C and D), and NF-kB (E and F) after high 

glucose (40 mM) and resveratrol (25 µM and 50 µM) treatment over 48 and 72 h. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG. 
LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; IKK-α, inhibitory-κB 

kinase alpha; IKB-α, IkB-alpha; NF-kB, nuclear factor-kB. 

 
3.4. Resveratrol effectively mitigated decreased expression of TGFβ1 induced by high 
glucose in HepG2 cells. 
HG levels reduced the expression of TGFβ1 in HepG2 cells. No statistically significant 

differences were observed when HepG2 cells were exposed to HG for 48 h compared to the 

control group (Figure 5A). However, when the exposure was extended 72 h, a significant 

reduction in the expression of TGFβ1 was observed (p=0.0043, Figure 5B). The HepG2 cells 

were exposed to LR and HR treatment for 48 and 72 h, respectively. The levels of TGFβ1 

expression exhibited a significant increase in HepG2 cells following exposure to LR (p<0.0001) 

and HR (p<0.0001; p=0.0016) for 48 and 72 h. The expression levels of TGFβ1 were 

significantly increased when HepG2 cells were exposed to RES in the presence of HG for 48 

and 72 h as compared to HG alone (p<0.0001). 
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Figure 4.5: The mRNA expression of TGFβ1 exposed to high glucose and resveratrol over 48 and 72 
h. High glucose decreased the expression levels of TGFβ1, whereas resveratrol treatment increased 

the expression levels of TGFβ1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and 
#p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG. 

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; TGFβ1, Transforming 

growth factor beta 1. 

 

3.5. Effect of high glucose and resveratrol on the expression of GCK and PECK. 
The effect of HG and RES on the expression of glycogenesis and gluconeogenesis-related 

genes in HepG2 liver cells was evaluated. When compared to the control group, HepG2 cells 

cultured with HG over 48 and 72 h showed a significant decrease in the expression of GCK 

(p=0.0002 and p=0.0001, respectively) (Figure 6 A and B). A significant increase in the mRNA 

expression levels of PEPCK was observed in HepG2 cells culture with HG over 48 and 72 h 

as compared to the control group (p<0.0001; p=0.0003) (Figure 6 C and D). These results 

indicate impaired glucose metabolism in HepG2 cells. HepG2 cells were also treated with LR 

and HR alone. When compared to the control group, no statistical difference was observed in 

the expression of GCK when cells were cultured with LR and HR over 48 h and with HR over 

72 h; however, a statistical difference was observed when HeG2 cells treated with LR over 72 

h (p<0.0001) (Figure 6 A and B). PEPCK showed no significant difference when HepG2 cells 

were cultured with HR over 48 h compared to the control group; however, a significant 

decrease was observed when cells were cultured with LR for 48 h (p<0.0001) and when 

cultured with LR and HR for 72 h (p=0.0034; p=0.0003, respectively) (Figure 6 C and D). 

To detect the efficiency of RES on the expression of GCK and PECK, HepG2 cells were 

cultured with RES in the presence of HG. The mRNA expression of GCK was significantly 

increased in HepG2 cells treated with both LR and HR in the presence of HG (p<0.0001) 

(Figure 6 A and B) as compared to HG alone. Furthermore, PEPCK showed a significant 

decrease when HepG2 cells were treated with LR+HG and HR+HG (p<0.0001) (Figure 6 A 
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and B), as compared to HG group. The increased GCK and reduced PEPCK expression level 

may indicate the potential role of RES in regulating glucose metabolism in liver cells under HG 

conditions. 

 

 
Figure 4.6: High glucose significantly reduced the expression of GCK and increased the expression of 

PEPCK in HepG2 cells. Resveratrol treatment increased GCK and decrease PEPCK expression levels. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, 
####p<0.0001 versus HG. 

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; GCK, Glucokinase; 

PEPCK, Phosphoenolpyruvate carboxylase. 

 
3.6. The expression of glucose metabolism and inflammation-related genes  
KLF7, HIF1A, and SIRT1 are involved in glucose metabolism and inflammation. In this study, 

we explored the effect of HG on these genes (Figure 7). The qPCR results show that when 

HepG2 cells were exposed to HG over 48 and 72 h, the expression levels of KLF7 and HIF1A 

were significantly increased (p<0.0001) (Figure 7 A, B, C, and D). The expression levels of 

SIRT1 were significantly decreased when cells were exposed to HG over 72 h (p=0.0003; 

Figure 7E); however, we did not observe any statistical difference when cells were exposed to 
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HG over 48 h (Figure 7F). To investigate the involvement of RES in the expression of these 

mRNAs, HepG2 cells were cultured with RES in the presence and absence of HG. When 

HepG2 cells were cultured with LR and HR over 48 and 72 h, no statistical difference was 

observed in the expression of KLF7 compared to the control; however, we observed a 

significant decrease when exposed to HR over 48 h (Figure 7 A and B). The expression of 

HIF1A was significantly decreased when cells were exposed to LR and HR over 72 h 

(p=0.0001 and p<0.0001, respectively) and when exposed to LR over 48 h (p=0.0287); 

however, no statistical difference was observed when cells were exposed to HR over 48 h 

(Figure 6 C and D). SIRT1 showed a significant increase when cells were exposed to LR and 

HR over 48 h (p=0.0004 and p<0.0001, respectively) and HR over 72 h (p=0.0002); however, 

when cells were exposed to LR for 72 h, the mRNA expression of SIRT1 decreased slightly, 

but no statistical difference was observed. When HepG2 cells were exposed to LR and HR in 

the presence of HG over 48 and 72 h, the expression levels of KLF7 and HIF1A were 

significantly decreased (p<0.0001) compared to the HG group (Figure 7 A, B, C, and D). SIRT1 

showed a significant increase when cells were exposed to LR and HR in the presence of HG 

(p<0.0001) as compared to HG alone (Figure 7 E and F). 

 

 
Figure 4.7: KLF7, HIF1A, and SIRT1 expression in HepG2 cells treated with high glucose (40 mM) and 

resveratrol (25 µM and 50 µM) over 48 and 72 h. High glucose significantly the expression of KLF7 and 

HIF1A over 48 and 72 h, whereas the expression level of SIRT1 was significantly decreased following 

exposure to high glucose. Resveratrol reversed the dysregulation caused by high glucose. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 

versus HG. 
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LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; KLF7, Kruppel-like 

factor 7; HIF1A, hypoxia-inducible factor-1 Alpha; SIRT1, Sirtuin 1.  

 

4. Discussion 
Impaired glucose metabolism and associated inflammation results in chronic hyperglycemia 

leading to the development and progression of T2DM. Resveratrol (RES), a polyphenol 

phytoalexin, is a natural compound with anti-diabetic effects (Imamura et al., 2017). In this 

study, the role of RES in glucose metabolism and inflammation in high glucose-induced HepG2 

cells was examined. 

 

In hyperglycemic conditions, the NF-kB signaling pathway is mainly implicated in the 

inflammatory response (Baker et al., 2011). This study demonstrated that high glucose 

activates the NF-kB pathway, as evidenced by elevated mRNA expression of IKKα and IkB-α 

(Figure 4). These results are consistent with those of Ramana et al. where they studied 

vascular smooth muscle cells (Ramana et al., 2004). The activation of NF-kB triggers the 

expression of pro-inflammatory cytokines. Herein, a significant increase was observed in the 

expression of TNF-α, IL-6, COX2, and IL-1β in HepG2 cells exposed to high glucose (Figure 

1-3). Panahi et al. also reported similar results. They observed high glucose levels significantly 

increased the expression of TNF-α and IL-6 in HepG2 cells (Panahi et al., 2018). From these 

findings, it can be inferred that high glucose may induce inflammation in liver cells resulting in 

the development of diabetes. Furthermore, targeting the NF-kB pathway may be a therapeutic 

potential to manage high glucose-induced inflammation. 

 

Interestingly, the current study revealed that RES reduced the expression of IKKα and IkB-α, 

thereby decreasing NF-kB activity (Figure 4). It was also demonstrated that treating HepG2 

cells with RES in the presence of high glucose significantly reduced the expression of pro-

inflammatory cytokines (Figure 1-3). These results align with previous research.  One study 

demonstrated a significant reduction in TNF-α and IL-6 in diabetic rats upon treatment with 

RES (Prabhakar, 2013). Another study reported similar results in diabetic mice wherein RES 

treatment decreased the expression of TNF-α and IL-1β while inhibiting the NF-kB activity 

(Zhang et al., 2021). These findings provide further evidence that RES has significant anti-

inflammatory effects in diabetic conditions, by decreasing the expression of pro-inflammatory 

cytokines and preventing NF-kB activity. Therefore, RES might be a promising therapeutic 

agent for treating inflammation in patients with diabetes. 

 

The expression of TGFβ1 mRNA was also investigated. TGFβ1 is a versatile cytokine that 

plays a role in various cellular processes, including cell growth, migration, proliferation, 

differentiation, and apoptosis (Ghadami et al., 2000). In addition, studies have shown that 

TGFβ1 exhibits anti-inflammatory properties by inhibiting the expression of TNFα or 
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counteracting the pro-inflammatory effects of IL-1b and IFNγ (Park et al., 2000). The present 

study observed that treatment with RES resulted in the upregulation of TGFβ1 expression in 

high glucose-induced HepG2 cells (Figure 5). It was also correlated with the downregulation 

of pro-inflammatory cytokines. 

 

This study further demonstrated that gluconeogenesis PEPCK gene was significantly 

increased and glycolysis gene GCK was significantly decreased in HepG2 cells treated with 

high glucose (Figure 6). These findings agree with previous research by Zhu et al., which 

demonstrated similar results in the liver tissue of STZ-diabetic mice (Zhu et al., 2017). These 

findings imply that high glucose levels can result in elevated gluconeogenesis and reduced 

glycolysis in liver cells. This dysregulation of glucose metabolism may contribute to developing 

hyperglycemia and insulin resistance. However, when HepG2 cells were treated with RES in 

the presence of high glucose, the expression level of PEPCK was significantly reduced while 

the expression of GCK increased (Figure 6). This indicates that RES treatment can potentially 

restore the balance between gluconeogenesis and glycolysis in the liver cells exposed to high 

glucose, implying that RES could have therapeutic potential in treating hyperglycemia and 

insulin resistance associated with dysregulated glucose metabolism. 

 

SIRT1, abundant in mammals, is implicated in fundamental biological processes such as 

stress response, glucose metabolism, and inflammation (Zhang et al., 2015; Lu et al., 2023). 

Patients with poor glycemic control have consistently lower SIRT1 levels than those with good 

glycemic control (Balestrieri et al., 2013). The protein expression of SIRT1 was observed to be 

significantly reduced in mouse microvascular endothelial cells following high glucose exposure 

(Arunachalam et al., 2014). Furthermore, SIRT1 has been shown to mediate NF-kB 

deacetylation and inhibit its function (Jia et al., 2015). This study demonstrated that high 

glucose significantly reduced the mRNA expression of SIRT1 in HepG2 cells (Figure 7 E and 

F). This further supports the role of SIRT1 in mediating the effects of high glucose on cellular 

processes. Additionally, the reduction of SIRT1 in HepG2 cells may have implications for NF-

kB activity and its role in inflammation. Our results further demonstrate that RES treatment 

significantly increased the expression of SIRT1 in HepG2 cells (Figure 7 E and F), as shown 

by previous research (Goh et al., 2014). Increased expression of SIRT1 by RES treatment 

highlights its potential as a therapeutic intervention for mitigating the detrimental effects of high 

glucose on cellular function.  

 

This study also explored the effect of high glucose and RES on the expression of KLF7 and 

HIF1A in HepG2 cells. KLF7 and HIF1α play a crucial role in regulating inflammation and 

glucose metabolism (Qiu et al., 2022; Matoba et al., 2013). Shao et al. found that the levels of 

HIF1α in serum of patients with T2DM were significantly increased compared to the control 
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group (Shao et al., 2016). Additionally, the protein and mRNA expressions of HIF1A have been 

shown to increase in hyperglycemic conditions (Isoe et al., 2010). Consistent with these 

findings, the current study demonstrated that high glucose significantly increased the 

expression of HIF1Α in HepG2 cells (Figure 7 A and B). A significant increase in the mRNA 

expression of KLF7 was also observed (Figure 7 C and D). Upon treatment with RES, mRNA 

expression of HIF1α and KLF7 was reduced. This suggests that RES may have potential 

therapeutic effects in reducing the expression of KLF7 and HIF1α in hyperglycemic conditions. 

The current findings highlight the importance of exploring the role of RES in the regulation of 

KLF7 and HIF1A expression and its potential implications for managing inflammatory diseases 

and metabolic disorders. 

 

There are few limitations of this study.  Firstly, it relied on an in vitro model to establish 

controlled experimental conditions and enable focused analysis. It would be beneficial to 

extend our investigations by using appropriate animal models, such as diabetes-induced mice.  

Secondly, our research was confined to examining genes associated with inflammation and 

glucose metabolism, protein expression analysis was not conducted. Future studies should 

consider assessing functional protein expression to establish potential correlations with gene 

expression. Quantifying protein expression can provide insights into the intricate process of 

genes transforming into functional proteins, and it can also help explore the influence of various 

factors on protein synthesis. 

 

Our findings suggest that resveratrol has multifaceted therapeutic potential for diabetes. It can 

mitigate inflammation, restore balanced glucose metabolism, enhance SIRT1 expression, and 

reduce the expression of key transcriptional factors. Although these results are promising, 

further research is necessary to fully understand the underlying mechanism and practical 

implications of using resveratrol as a treatment for diabetes. The diverse effects of resveratrol 

on glucose metabolism and inflammation make it a valuable tool in the fight against the global 

diabetes epidemic. 
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CHAPTER 5: The protective role of resveratrol against high glucose-induced 

oxidative stress and apoptosis in HepG2 cells  
(Published in Food Science & Nutrition, https://doi.org/10.1002/fsn3.4027). 
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Abstract 
High glucose concentrations result in oxidative stress, which may cause damage to cellular 

components like DNA, proteins, and lipids, ultimately resulting in apoptosis. Resveratrol, a 

polyphenol phytoalexin, has been studied for its potential therapeutic effects on diabetes. This 

study examined the effect of high glucose (HG) on HepG2 cells and assessed the resveratrol 

effect on high-glucose-induced oxidative stress and apoptosis. HepG2 cells were treated for 

48 and 72 hours with high glucose (40 mM), low resveratrol (25 µM), high resveratrol (50 µM), 

high glucose + low resveratrol, and high glucose + high resveratrol. After exposure, oxidative 

and apoptosis-related gene expression was assessed using real-time quantitative polymerase 

chain reaction (qPCR), and Lactate dehydrogenase (LDH) release was measured using 

supernatant. In cells treated with high glucose, all antioxidant enzymes (SOD, Superoxide 

dismutase; GPx1, Glutathione peroxidase 1; CAT, Catalase; Nrf2, Nuclear factor erythroid 2–

related factor 2 and NQO1, NAD(P)H quinone oxidoreductase 1) were significantly reduced; 

however, when HepG2 cells were treated with resveratrol (25 µM and 50 µM) in the presence 

of high glucose, the expression levels of all antioxidant enzymes were increased. Anti-

apoptotic gene (B-cell lymphoma 2; Bcl2) and the DNA repair gene (Oxoguanine glycosylase-

1, OGG1) were significantly decreased following high glucose exposure to HepG2 cells. 

Surprisingly, the expression of Bcl2 and OGG1 significantly increased after resveratrol 

treatment. Furthermore, high glucose increased the LHD release in HepG2 cells, whereas 

resveratrol treatment reduced the LDH release. Our results demonstrate that resveratrol 

protects against high glucose-induced oxidative stress and apoptosis in HepG2 cells. 

Therefore, resveratrol may serve as a promising strategy to combat antioxidant response 
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dysfunction caused by high glucose levels characteristic of diabetes conditions and metabolic 

disorders. 

Keywords: Hyperglycemia, high glucose, Oxidative stress, apoptosis, resveratrol 

 

1. Introduction 
Diabetes mellitus (DM) is a group of metabolic conditions characterized by increased blood 

glucose levels and inadequate insulin production or action (Solis-Herrera et al., 2018). 

According to the International Diabetes Federation (IDF), 537 million people worldwide had 

diabetes in 2021, expected to increase to 643 million by 2030 and 745 million by 2045 (Sun et 

al., 2022). This has become an urgent public health threat due to its rising incidence. 

Hyperglycemia is accompanied by micro- and macrovascular complications and multi-organ 

damage (Kapoor and Kakkar, 2012). Hence, it is severely essential for hyperglycemia to be 

treated effectively to inhibit these complications and improve the patient’s outcome. 

 

The liver serves as the primary organ responsible for glucose metabolism and regulation. 

Consequently, it is of considerable interest to investigate the impacts of hyperglycemia on liver 

cells cultured in vitro. The HepG2 cell line, derived from human hepatoma, has been widely 

employed in vitro to investigate hyperglycemia (Chandrasekaran et al., 2010). Moreover, 

HepG2 cells exhibit certain physiological characteristics akin to those of the human liver 

(Knowles et al., 1980). In Hyperglycemia, high glucose levels can increase reactive oxygen 

species (ROS), overwhelming the body’s antioxidant defense and producing oxidative stress 

(Bhatti et al., 2022). Oxidative stress has been implicated in the onset and progression of DM 

(Subramaniyan & Kumar, 2017). Aging, obesity, and poor diet are common risk factors that 

initiate an oxidative environment that can change insulin sensitivity by either elevating insulin 

resistance or lowering glucose tolerance (Hamed et al., 2011). The most reactive oxygen 

species that cause damage to cells during oxidative stress are superoxide anion radicals (O2 

-), hydrogen peroxide (H2O2), hydroxyl radicals (OH-), and singlet oxygen (1O2) (Nimse and 

Pal, 2015). These species are volatile and can react and cause damage to various cellular 

components such as lipids, proteins, and DNA (Iside et al., 2020).  

 

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor that controls the 

expression of anti-electrolyte and antioxidant genes (Kovac et al., 2015; Valenzuela et al., 

2017). During normal conditions, Keap1 attaches Nrf2 within the cytoplasm. During oxidative 

stress, Nrf2 is detached from the complex and translocated to the nucleus, where it binds to 

the antioxidant response element (ARE), activating gene transcription for NAD(P)H quinone 

oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) among others (Slocum et al., 2016). 

Furthermore, under normal conditions, the body has a potent endogenous antioxidant system 

consisting of Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH), Glutathione 

Peroxidase (GPx), and Glutathione Reductase (GR) that protects it from the deleterious effects 
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of excessive production of reactive ROS (Bhattacharyya et al., 2014; Hong & Lee, 2009). 

These antioxidants work together to neutralize and eliminate ROS, preventing oxidative 

damage to cells and tissues.  

 

Oxidative stress-induced DNA damage results from an imbalance between DNA repair and 

DNA damage (Tao et al., 2021; Pang et al., 2012). This imbalance can accumulate DNA 

lesions and impair the cell’s ability to maintain genomic stability. 8-oxo-7,8-dihydroguanine (8-

oxoG) is the most studied DNA oxidation product, which is repaired by the 8-oxoG 

glycosylase1-initiated base excision repair (BER) pathway (OGG1-BER) (Wang et al., 2018). 
The OGG1-BER pathway plays a vital role in maintaining genomic stability by repairing DNA 

damage caused by oxidative stress. Dysregulation of this pathway can result in the 

accumulation of 8-oxoG lesions, leading to increased susceptibility to DM complications. 

 

Research has shown that ROS may be a signal molecule to promote cell proliferation and 

apoptosis (Finkel, 1998). Thus, apoptosis is one of the cellular responses to oxidative stress 

and ROS production that results from high glucose (Sun et al., 2012; Xu et al., 2012). 

Apoptosis, also known as programmed cell death, plays a significant role in maintaining cellular 

homeostasis. It serves as a protective mechanism to eliminate damaged or dysfunctional cells, 

preventing the spread of potential harm throughout the organism. Apoptosis is controlled by 

the balance involving pro- and anti-apoptotic proteins. The BCL2 family comprises pro-

apoptotic proteins (Bax and Bak) and anti-apoptotic proteins (Bcl-2 and Bcl-x). These proteins 

cooperate to determine whether cells undergo apoptosis or survival (Hagenbuchner et al., 

2012). This process is essential in maintaining cellular homeostasis and inhibiting disease 

development. Bcl-2 is an anti-apoptotic protein that prevents apoptosis by inhibiting Bax/Bak 

oligomerization, which enhances mitochondrial membrane permeability and inhibits the Cyto-

C release. Previous research has demonstrated reduced Bcl2 expression in response to 

diabetes stimulus (Ren et al., 2020). Thus, decreased expression of Bcl-2 may increase an 

apoptosis process due to the reduced ability to inhibit Bax/Bak oligomerization following the 

release of Cyto-C from the mitochondria. Understanding the regulation of Bcl-2 expression in 

response to diabetic stimuli could provide valuable insights into the development and 

progression of diabetes-related complications.  

 

Managing hyperglycemia with chemical drugs or insulin causes numerous complications, 

including insulin-induced fatty liver (Zhang & Liu, 2011; Kandhare et al., 2012). Therefore, 

silencing or quenching excess ROS using various natural antioxidants may be a cost-effective 

and efficient method for better hyperglycemia management. These natural antioxidants are 

risk-free and readily absorbed by cellular systems. 
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Resveratrol (RES), a natural polyphenol found in various fruits and plants, has been 

extensively studied for its anti-diabetes, anti-obesity, anticancer, anti-inflammatory, 

antioxidant, and cardioprotective properties, and potential health benefits (Faal et al., 2022; 

Elshaer et al., 2018). Previous research has demonstrated that RES can effectively mitigate 

oxidative stress and apoptosis in different cell types (Liu et al., 2014; Kitada and Koya, 2013; 

Hoca et al., 2021; Do et al., 2012). However, its protective effects against high glucose-induced 

damage in HepG2 cells have not been fully elucidated. Therefore, this study seeks to fill this 

knowledge gap and present valuable perceptions of the therapeutic potential of RES in 

managing oxidative stress and apoptosis. In addition, the findings may aid in creating novel 

strategies for preventing or treating diabetic complications. 

 

2. Materials and Methods 
 
2.1. Materials 
Tissue culture consumables and reagents were purchased from Sigma–Aldrich (St. Louis, MO, 

USA). HepG2 cells were kindly donated by Prof JL Marnewick (Cape Peninsula University of 

Technology, South Africa). D-glucose and resveratrol were purchased from Sigma–Aldrich. All 

quantitative polymerase chain reaction (qPCR) consumables and reagents were purchased 

from Bio-Rad (Hercules, CA, USA), and primer sequences were manufactured by Inqaba 

Biotechnical Industries (Pretoria, South Africa). 

 

2.2. Methods 
 
2.2.1. Study design 
The glucose and resveratrol treatment concentrations were selected based on the literature. 

Previous studies established hyperglycemia at 50 mM and 40 mM (Chandrasekaran et al., 

2010; Chu et al., 2011; Leinninger et al., 2004; Varma et al., 2005; Kapoor and Kakkar, 2012). 

In this study, we used 40 mM to establish hyperglycemia. The resveratrol (RES) concentrations 

were determined using previous studies ( Poonprasartporn and Chan, 2022; Cheng et al., 

2012; Khan et al., 2013). This study used 25 µM and 50 µM concentrations for RES prepared 

in 100% dimethyl sulphoxide (DMSO). Cells were categorized into six groups: Control groups 

were cultured in normal complete culture medium (CCM), Low resveratrol (LR; cultured in 

normal CCM with 25 µM RES), High resveratrol (HR; cultured in normal CCM with 50 µM RES), 

High glucose (HG; cultured in normal CCM with 40 mM glucose), LR+HG (cultured in normal 

CCM with 25 µM RES and 40 mM glucose), and HR+HG (cultured in normal CCM with 50 µM 

RES and 40 mM glucose).  

 
2.2.2. Cell culture  
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The human hepatoma G2 (HepG2) cell line is derived from human hepatoma tissue. Many 

studies have used the HepG2 cell line to study hyperglycemia in vitro (Chandrasekaran et al., 

2010; Zhou et al., 2021; Shokrzadeh et al., 2016). Moreover, they are reliable, easy to culture 

and well characterized. Our study used the HepG2 cell line to establish hyperglycemia. HepG2 

cells were cultured in monolayers (106 cells per flask) in Eagle's minimum essential medium 

(EMEM) supplemented with 10% fetal bovine serum (FBS), 1% penstrepfungizone (PSF), and 

1% L-glutamine in 25 cm3 flasks. The cells were cultured in a humidified incubator at 37 °C 

with 5% CO2. The cells were washed with phosphate-buffered saline (PBS) containing 0.1 M 

phosphate. After the cells reached 70-80% confluence, they were treated with RES (25 µM 

and 50 µM) and HG (40 mM) and incubated for 48 and 72 hours (h). The cells were then 

removed using trypsin and counted using the trypan blue exclusion technique. Cell 

suspensions were diluted (1:5) with 60 µL CCM + 20 µL cell suspension + 20 µL trypan blue 

solution and incubated for 5 min at room temperature (RT). Then, a 22 x 22 cm coverslip was 

placed on a clean hemocytometer, and 10 µL of a well-mixed counting solution was dispensed 

into the hemocytometer. Using a microscope, the number of living cells was determined using 

the standard equation (Live cell average x 5 (dilution factor) x 10,000 = cells/mL). 

 
2.2.3. RNA isolation and cDNA synthesis 

Total RNA was isolated using a QIAzol extraction reagent (Qiagen, Hilden, Germany) and a 

previously published protocol based on the manufacturer’s instructions. Briefly, a 1:1 ratio of 

QIAzol and PBS was added to the flask, followed by incubation at RT for 2 min. Cells were 

then scraped off the surface of the flask using a cell scraper, transferred into a microcentrifuge 

tube, and frozen at -80 °C. Next, samples were thawed, and 100 µL of chloroform was added 

to each tube. The tubes were shaken vigorously for 15 seconds, incubated for 2-3 min at RT, 

and centrifuged (15 min, 4 °C, 12 000 × g). Thereafter, the aqueous phase was transferred to 

a new tube, 250 µL of isopropanol was added, and tubes were mixed and incubated overnight 

at -80 °C. Next, samples were thawed and centrifuged (4 °C, 12 000 × g, 20 min), and the 

pellets were retained. Pellets were washed using 500 µL of cold 75% ethanol. The tubes were 

then flicked to loosen the pellet and centrifuged at 4 °C, 7400 × g for 15 min. Ethanol was 

removed using a pipette without agitating the pellet. The samples were allowed to dry for 1.5 

h. The pellet was then resuspended in 15 µL nuclease-free water and incubated for 2-3 min at 

RT. Thereafter, the purity and integrity of the RNA samples were evaluated using the Nanodrop 

system (Nanodrop Technologies, Wilmington, USA), and the A260/A280 ratio was used to 

evaluate RNA integrity. For cDNA synthesis, the iScript cDNA synthesis kit (Bio-Rad) was 

employed as per the manufacturer's instructions (4 µL 5× iScript reaction mix, 1 µL iScript 

reverse transcriptase, 14 µL nuclease-free water, and 1 µL of each RNA sample). After cDNA 

synthesis, 80 µL of nuclease-free water was added to each tube, and the samples were stored 

at -20 °C until they were needed for qPCR. 
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2.2.4. Quantitative polymerase chain reaction (qPCR) 
Gene expression was assessed using qPCR. A reaction mixture of 5 μL SsoAdvanced™ 

Universal SYBR® Green Supermix (Bio-Rad), 1.5 μL cDNA, 0.5 μL forward and reverse 

primers, and 2.5 µL nuclease-free water was made up to 10 µL. All primers were acquired from 

Inqaba Biotechnical Industries (Pty) Ltd. The mRNA expression of Gpx1 (Forward 5’ 

AAGGTGCTGCTCATTGAGAATG 3’; reverse 5’ CGTCTGGACCTACCAGGAACTT 3’), CAT 

(forward5’ACGAGATGGCACACTTTGACAG 3’; reverse 5’ TGGGTTTCTCTTCTGGCTATGG 

3'), SOD (forward 5' AGGATTAACTGAAGGCGAGCAT 3’; reverse 5’ 

TCTACAGTTAGCAGGCCAGCAG 3’), Nrf2 (forward 5’ AGTGGATCTGCCAACTACTC 3’; 

reverse 5’ CATCTACAAACGGGAATGTCTG 3’), BCL-2 (forward 5’ 

TGTGGAGAGCGTCAACCGGGAG 3’; reverse 5’ ATCAAACAGAGGCCGCATGCTG 3’), 

NQO1 (forward 5’ GAAGAGCACTGATCGTACTGGC 3’; reverse 

5’GGATACTGAAAGTTCGCAGGG 3’), and OGG1 (forward 5’ 

GCATCGTACTCTAAGCCTCCAC 3’; reverse 5’ AGGACTTTGCTCCCTCCAC 3’) were 

investigated. GAPDH (forward 5’ TCCACCACCCTGTTGCTGTA 3’; reverse 5’ 

ACCACAGTCCATGCCATCAC 3’) was used in this assay as a house-keeping gene, with three 

replicates per treatment. The initial denaturation occurred at 95 °C (2 min). This was followed 

by 40 cycles of denaturation (95 °C; 15 s), annealing (40 sec; CAT, S0D, GPx, OGG1—60 °C; 

Nrf2, NQO1, Bcl-2—55 °C), and extension (72 °C; 30 s). Changes in relative mRNA expression 

were determined using the Livak and Schmittgen method, where 2−ΔΔCt represents the 

observed fold change in mRNA expression (Livak and Schmittgen, 2001). 

 
2.2.5. Lactate dehydrogenase (LDH) assays 
The LDH cytotoxicity Detection Kit (Roche, Mannheim, Germany) evaluated the extracellular 

LDH released levels. A 96-well microtiter plate was filled with 100 µL of control and treated cell 

supernatants in triplicate. The substrate mixture (100 µL) was added to the supernatant and 

incubated for 25 min at room temperature with a catalyst (diaphorase/NAD+) and dye solution 

(INT/sodium lactate). The optical density at 490 nm was measured using the Elisa microplate 

reader (Thermo Fisher Scientific; USA). The findings are presented in the form of mean optical 

density. 

 
2.2.6. Statistical analysis 
All data analyses were done using GraphPad Prism version 8.0.0 (GraphPad Software, San 

Diego, CA, USA). The statistical methods employed were One-way analysis of variance 

(ANOVA) and Student's t-test were employed. All experiments were conducted in triplicates, 

and p<0.05 was considered statistically significant. 
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3. Results 
 
3.1 High glucose decreased the expression of antioxidant enzymes. 
Oxidative stress results from the excessive accumulation of ROS caused by high glucose 

concentrations in the cells. SOD and CAT are the two main antioxidant enzymes that protect 

cells from damaging ROS-mediated effects (Wang et al., 2020). This study evaluated the 

mRNA expression of SOD, GPx1, and CAT using qPCR. HepG2 cells were exposed to high 

glucose (HG) (40 mM) for 48 and 72 h. Results showed that when HepG2 cells were exposed 

to HG for 48 h, SOD, GPx1, and CAT expression levels significantly decreased (p=0.0046; 

p=0.0045 and p=0.0011, respectively) (Figure 1A; 1C and 1E). When cells were exposed to 

HG for 72 h, we observed that the expression levels of SOD and GPx1 were significantly 

decreased (p=0.0017 and p=0.043, respectively) (Figure 1B and 1D), whereas no statistical 

difference was observed in the expression level of CAT as compared to the normal cells 

(p=0.3358; Figure 1F). The results suggest that the effects of HG on antioxidant enzymes are 

time-dependent, with longer exposure resulting in greater decreases in SOD, GPx1, and CAT 

expression levels, indicating that prolonged exposure to HG conditions will gradually reduce 

the antioxidant potential of cells and allow ROS and RNS to accumulate and damage cellular 

components. These findings may provide information about oxidative stress-related cellular 

damage observed in patients with diabetes. 

 

 

 
Figure 5.1: Expression of antioxidant enzyme genes in HepG2 cells treated with high glucose (40 Mm) 

and RES (25 µM and 50 µM) over 48 and 72 h. The mRNA expression was quantified using qPCR.  (A) 
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Expression of SOD over 48 h. (B) Expression of SOD over 72 h. (C) Expression of GPx over 48 h. (D) 

Expression of GPx1 over 72 h. (E) Expression of CAT over 48 h. (F) Expression of CAT over 72 h. High 

glucose significantly decreases all the antioxidant enzymes. Conversely, resveratrol increases the 

expression levels of all the antioxidant enzymes. GAPDH was used as the housekeeping gene. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 

versus HG.  
LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; SOD, superoxide 

dismutase; GPx1, glutathione peroxidase 1; CAT, Catalase 

 

3.2. Resveratrol increased gene expression of antioxidant enzymes. 
Since exposure to high glucose decreased the expression of SOD, GPx1, and CAT, we 

investigated whether RES could reverse the effects of high glucose on these mRNAs. HepG2 

cells were treated with HG+LR and HG+HR over 48 and 72 h (Figure 1). The qPCR results 

show that the expression levels of SOD increased significantly after exposure to HG+LR and 

HG+HR over 48 and 72 h (Figure 1A and 1B) (p<0.0001) as compared to HG alone. GPx1 

increased significantly after exposure to both HG+LR and HG+HR over 72 h (p<0.0001) 

(Figure 1D); however, a significant difference was not observed after exposure to HG+HR over 

48 h (p=0.0525) as compared to HG (Figure 1C). We observed that CAT was significantly 

increased after exposure to both HG+LR and HG+HR over 48 h (p<0.0001) (Figure 1E) and 

when exposed to HG+LR for 72 h (p=0.0069); however, a significant difference was not 

observed after exposure to HG+HR over 72 h (p=0.9700) as compared to HG (Figure 1F). 

These findings suggest that RES has the potential to reverse the negative effects of high 

glucose on the expression of these antioxidant enzymes. 

 

We investigated the effect of two RES concentrations (25 and 50 µM) on the expression of 

SOD, GPx1, and CAT (Figure 1) after exposure over 48 and 72 h. The expression levels of 

GPx1 and SOD were significantly increased after exposure to LR (25 µM) and HR (50 µM) 

over 72 h as compared to the control (p<0.0001) (Figure 1B, 1D, and 1E). We did not observe 

any statistical difference in GPx1 and CAT expression levels when exposed to LR and HR over 

48 h compared to the control (Figure 1B and 1C). However, SOD was significantly increased 

when treated with HR for 48 h (p=0.0066) (Figure 1A).  

 

3.3. qPCR analysis of antioxidant response element. 
The mRNA expression of Nrf2 and NQO1 was evaluated using qPCR. When treated with HG 

for 48 and 72 h, the expression of Nrf2, an antioxidant defense regulator, was significantly 

decreased (p<0.0001 and p=0.0010, respectively) relative to the control (Figure 2A and 2B). 

Nrf2 showed no significant difference when treated with LR and HR over 48 h; however, Nrf2 

appeared to increase when treated with LR over 72 h (p<0.0001) compared to the control 

(Figure 2A and 2B). HG+LR and HG+HR significantly increased Nrf2 expression over 48 h 
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compared to HG alone (p<0.0001) (Figure 3A). Nrf2 significantly increased when treated with 

HG+LR and HG+HR for 72 h (p=0.0125 and p<0001, respectively) (Figure 2B). High glucose 

significantly decreased the expression of NQO1 over 48 h (p=0.0055); however, no statistical 

difference was observed when treated with HG over 72 h (p=0.3578) (Figure 2C and 2D). 

NQO1 showed no statistical difference when treated with LR over 48 h; however, NQO1 

significantly increased when treated with LR and HR for 72 h compared to the control 

(p=0.0042 and p<0.0001) (Figure 2C and 2D). When treated with HG+LR and HG+HR over 

48 and 72 h, the NQO1 expression level significantly increased compared to HG alone 

(p<0.0001; Figure 2C and 2D) 

 

 
Figure 5.2: Expression of Nrf2 and NQO1 in HepG2 cells treated with high glucose (40 mM) and 

resveratrol (25 µM and 50 µM) over 48 and 72 h. High glucose significantly decreased the expression 

of Nrf2 and NQO1; however, when treated with resveratrol, the expression of Nrf2 and NQO1 was 

significantly increased. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, 
##p<0.01, ###p<0.001, ####p<0.0001 versus HG. 

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; Nrf2, Nuclear factor 

erythroid 2-related factor 2; NQO1, NAD(P)H quinone oxidoreductase 1 

 

3.4. Effect of high glucose and resveratrol on BCL2 and OGG1 genes. 
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The expression levels of the Bcl-2 gene related to apoptosis were explored using qPCR. The 

qPCR results showed that the expression of Bcl-2 was significantly decreased when treated 

with high glucose over 48 h (p<0.0001) but not significantly expressed when treated over 72 h 

(p=0.1279) as compared to the control (Figure 3A and 3B). These findings indicated that high 

glucose levels may have a negative impact on the regulation of Bcl-2 in HepG2 cells. Bcl-2 

increased when treated with HG+LR and HG+HR over 48 h (p<0.0001) compared to HG. 

When treated with HG+HR for 72 h, Bcl-2 was significantly increased (p=0.005); however, no 

statistical difference was observed during exposure to HG+LR over 72 h compared to HG 

(Figure 3A and 3B). In addition, no statistical difference was observed in Bcl-2 when treated 

with HG+HR over 48 and 72 h as compared to HG. These findings suggest that resveratrol 

may have a protective effect on HepG2 cells by increasing Bcl-2 levels. 

 

The involvement of a DNA repair-related gene was also explored. The qPCR results showed 

that when HepG2 cells were exposed to HG over 48 and 72 h, the expression levels of OGG1 

were significantly decreased (p=0.0108 and p=0.0003, respectively) (Figure 3C and 3D). This 

suggests that exposure to HG may lead to impaired DNA repair mechanisms, specifically 

affecting the expression of OGG1. OGG1 was significantly increased when treated with 

HG+LR and G+HR over 48 72 h (p<0.0001) compared to HG alone (Figure 3C and 3D). This 

finding suggests that resveratrol may positively impact OGG1 levels, potentially indicating its 

role in DNA repair and oxidative stress response.  
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Figure 5.3: Expression of Bcl-2 and OGG1 in HepG2 cells treated with high glucose (40 mM) and 

resveratrol (25 µM and 50 µM) over 48 and 72 h. (A) Bcl-2 expression during 48 h exposure. (B) Bcl-2 

expression during 72 h exposure. (C) OGG1 expression during 48 h exposure. (D) OGG1 exposure 

during 72 h exposure. High glucose reduced the expression of Bcl-2 and OGG1, whereas resveratrol 

increased the expression level of Bcl-2 and OGG1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus 
controls and #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 versus HG. 

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol; Bcl-2, B-cell 

lymphoma 2; OGG1, Oxoguanine glycosylase-1 

 

 

3.5. LDH activity-based cytotoxicity assay 
The measurement of LDH release using culture supernatant was employed to determine the 

integrity of cell membranes. Compared to the control cells, we did not observe any statistical 

in the LDH released in HepG2 cells cultured with HG, LR, HR, HG+LR, and HG+HR over 48 h 

(Figure 4A). Furthermore, no significant difference was observed after exposure to LR and HR 

over 72 h compared to the control cells. However, a significant increase was observed when 

HepG2 cells were treated with HG over 72 h compared to control cells (p<0.0001) (Figure 4B). 

Consequently, our results suggest prolonged exposure to high glucose in HepG2 cells may 

lead to increased cell damage and death. Interestingly, a significant decrease in the LDH 
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released was observed when HepG2 cells were treated with HG+LR and HG+HR over 72 h 

as compared to HG alone (p<0.0001 and p=0.0314, respectively) (Figure 4B). These results 

suggest that RES may protect against high glucose-induced cell damage and death in HepG2 

cells. 

 
Figure 5.4: Lactate dehydrogenase release after HepG2 cells were cultured with high glucose (40 mM), 

Low resveratrol (25 µM), High resveratrol (50 µM), High glucose + Low resveratrol (40 Mm + 25 µM), 

and High glucose + high resveratrol (40 mM + 50 µM). The results were expressed as the fold change 

relative to untreated cells. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus controls and #p<0.05, 
##p<0.01, ###p<0.001, ####p<0.0001 versus HG. 

LR, Low resveratrol; HR, High resveratrol; HG, High glucose, RES, Resveratrol 

 

 

 
4. Discussion 
Hyperglycemia-induced oxidative stress has been demonstrated to play a vital role in the 

development and progression of diabetes. In this study, we investigated the expression of 

oxidative stress and apoptosis-related genes in HepG2 cells exposed to high glucose and 

assessed the effect of resveratrol (3,5,4′-trihydroxy-trans-stilbene), a polyphenol phytoalexin, 

on these genes. 

 

Oxidative stress is the imbalance between oxidant and antioxidant substances (Francisqueti 

et al., 2017). The overproduction of ROS is linked with the onset of several metabolic diseases, 

including diabetes (Shradha et al., 2010). In this study, we measured the mRNA expression of 

CAT, SOD, Gpx1, Nrf2, and NQO1 antioxidant. Our findings showed a significant reduction in 

the mRNA expression of SOD, CAT, GPx1, Nrf2, and NQO1 in HepG2 cells following high 

glucose exposure for 48 and 72 h. These results align with previous research demonstrating 

reduced expression of SOD, CAT, GPx, Nrf2, and NQO1 (Ahmadvand et al., 2023; 
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Subramaniyan and Kumar, 2017; Wang and Guo, 2019). Antioxidant defenses such as SOD, 

CAT, and GPx are known to neutralize superoxide anions, lipids, and hydroperoxides in order 

to protect cells from oxidative stress (Shi et al., 2020). Nrf2 is thought to play a fundamental 

role in regulating the antioxidant defense system due to its ability to bind to the antioxidant 

response element on active antioxidant enzymes (Shi et al., 2020). Furthermore, NQO1 is 

implicated in the detoxification of quinones and defense against oxidative stress. The reduced 

expression of these antioxidant enzymes and Nrf2 suggest a potential impairment in the 

cellular defense against oxidative damage caused by high glucose levels. 

 

Resveratrol, a polyphenol phytoalexin, has been studied for its potential therapeutic effects in 

diabetes (El-Sayed et al., 2022). Our results demonstrated that treatment with resveratrol 

reversed the reduction of SOD, CAT, GPx1, Nrf2, and NQO1 mRNA expression caused by 

high glucose in HepG2 cells treated with resveratrol, suggesting that it may protect against 

high glucose-induced oxidative stress in a variety of diseases. Previous research has also 

demonstrated increased SOD, CAT, GPx, and Nrf2 expression after resveratrol treatment (Hu 

et al., 2022; Bagul et al., 2012). These findings suggest that resveratrol’s ability to upregulate 

antioxidant enzymes and activate the Nrf2 signaling pathway may also contribute to its 

potential therapeutic effects in other oxidative stress-related diseases. Furthermore, the 

observed reversal of the high glucose-induced reduction in antioxidant enzyme expression 

highlights the potential of resveratrol as a protective agent against oxidative stress in diabetes 

and other conditions associated with elevated glucose levels. However, further investigations 

are required on the mechanism underlying resveratrol’s effects on antioxidant enzymes and 

its potential clinical application. 

 

It has been previously shown that oxidative stress-induced DNA damage is the main cause of 

cell death. 8-oxo-7,8-dihydroguanine (8-oxoG) is the most studied DNA oxidation product, 

which is repaired by the 8-oxoG glycosylase1-initiated base excision repair (BER) pathway 

(OGG1-BER) (Wang et al., 2018). Previous research has demonstrated a reduction the in the 

expression of OGG1 in the presence of high glucose. This finding provides a mechanism for 

the DNA damage caused by oxidative stress in diabetes (Simone et al., 2008). Moreover, high 

glucose inhibited OGG1 expression in vivo and in vitro studies (Xie et al., 2020). Consistent 

with previous research, our findings demonstrated that high glucose reduced the expression 

of OGG1. Intriguingly, OGG1 mRNA levels increased significantly after treatment with 

resveratrol, demonstrating enhanced DNA repair. According to our findings, resveratrol may 

be a potential therapeutic agent for diabetic complications by enhancing DNA repair by 

upregulating OGG1 expression.  

 



 113 

Apoptosis is a programmed cell death triggered by prolonged stress and is strongly controlled 

by several signaling pathways, including the B-cell lymphoma 2 (Bcl-2) family and 

mitochondrial pathways (Liu et al., 2011). The BCL2 family, including the pro-and anti-

apoptotic genes (Bax, Bak, Bcl-2, and Bcl-x1), are important regulators of apoptosis (Rojas-

Rivera, 2010). Our study assessed the mRNA expression of Bcl-2 in HepG2 cells. Our findings 

revealed that Bcl-2 was significantly reduced when HepG2 cells were exposed to high glucose. 

These results align with the previous research demonstrating that Bcl-2 expression was 

reduced in HepG2 cells exposed to high glucose (Jiang et al., 2015). Our study further revealed 

that in HepG2 cells treated with resveratrol in the presence of high glucose, the expression of 

Bcl-2 was significantly increased. Based on these findings, the increased expression of Bcl-2 

by resveratrol could be its ability to regulate apoptotic pathways. Additionally, our results 

revealed that the LDH activity was significantly increased in HepG2 cells over 72 h, whereas 

when HepG2 cells were in high glucose over 48 h, no statistical difference was observed. 

Previous research also demonstrated increased LDH activity following exposure to high 

glucose (50 mM) to HepG2 cells (Chandrasekaran et al., 2010). Our results suggest that 

exposure to HepG2 in a high glucose concentration for prolonged periods, i.e., 72 h is toxic to 

HepG2 cells. Surprisingly, HepG2 cells treated with resveratrol in the presence of high glucose 

significantly decreased the LDH released compared to the high glucose group alone. These 

findings demonstrated the protective effect of resveratrol against the toxicity induced by high 

glucose in HepG2 cells. Further studies are needed to elucidate this protective effect's 

underlying mechanisms and explore the potential therapeutic applications of resveratrol in 

managing high glucose-induced toxicity in liver cells. 

 

Our research demonstrates that resveratrol displays antioxidant and antiapoptotic properties. 

This research has certain limitations. This study was conducted in vitro using HepG2 cells and 

would benefit from further investigations using appropriate animal models, such as diabetes-

induced mice. Moreover, this study only focused on genes implicated in oxidative stress and 

apoptosis. Consequently, it is imperative to assess functional protein expression in order to 

determine a correlation with gene expression. Studies in humans, such as clinical trials or 

dietary supplementation, may provide further insights into resveratrol's antioxidant and 

antiapoptotic functions. Future research must investigate the potential clinical applications of 

resveratrol in humans. In addition, it would be intriguing to investigate the synergistic effects 

of resveratrol when combined with other antioxidants or antiapoptotic agents. 

 
5. Conclusion 
The findings of this study demonstrated the potential of resveratrol to mitigate oxidative stress 

injury and apoptosis in HepG2 cells induced by high glucose levels. The antioxidative stress-

protective effect of resveratrol was observed through its ability to enhance intracellular 

antioxidants. In the interim, it impeded the process of apoptosis triggered by elevated glucose 
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levels through upregulation of Bcl-2 mRNA expression. Furthermore, the administration of 

resveratrol resulted in an upregulation of the DNA repair gene known as OGG1.  Hence, it is 

plausible that RES could be a viable approach in addressing the impairment of antioxidant 

response resulting from elevated glucose levels commonly observed in diabetes and metabolic 

disorders. 
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CHAPTER 6: DISCUSSION 
 
This chapter presents a comprehensive overview of the key findings derived from our study. 

Additionally, it delves into the study's limitations and provides recommendations for future 

research endeavors. 

 

6.1 Summary of Manuscript Findings 
 
6.1.1 Manuscript 1 
This section examined the impact of high glucose and resveratrol treatment on HepG2 cells. 

Specifically, we quantified the expression levels of three established miRNAs (miR-126-3p, 

miR-182-5p, and miR-30a-5p) previously associated with diabetes. Through quantitative PCR 

analysis, we observed a significant reduction in the expression levels of miR-126-3p, miR-182-

5p, and miR-30a-5p when HepG2 cells were exposed to high glucose conditions. Intriguingly, 

our findings revealed that the dysregulation induced by high glucose was effectively countered 

by resveratrol treatment. This suggests a promising role for resveratrol in regulating miRNA 

expression patterns implicated in diabetes.  

 

It is widely recognized that miRNAs carry out their biological role by repressing the expression 

of specific target genes. In this study, we used an online database (miRDB-microRNA target 

prediction Database, http://www.mirdb.org/) to identify target genes of miR-126-3p, miR-182-

5p, and miR-30a-5p. miR-126-3p reportedly targets SPRED1. Specifically, we observed that a 

decrease in miR-126-3p levels, induced by high glucose, resulted in an increase in SPRED1 

gene expression. Conversely, an increase in miR-126-3p expression due to resveratrol 

treatment, led to a significant reduction in SPRED1 gene expression. Similarly, the 

downregulation of miR-182-5p due to high glucose treatment led to an upregulation of its 

corresponding target gene, FOXO1. The upregulation of FOXO1 led to a concomitant 

upregulation of G6P expression. On the contrary, the upregulation of mi-182-5p led to a 

decrease in the expression of FOXO1 and G6P. Furthermore, it has been demonstrated that 

miR-30a-5p exhibits targeting capabilities towards Neurod1. Decreased miR-30a-5p led to an 

increase in the expression of the Neurod1 gene, while increased miR-30a-5p resulted in a 

significant reduction in the expression of Neurod1 gene. These findings shows that the 

dysregulations of miRNAs can have a significant impact on the expression levels of their target 

genes. Moreover, our study suggest that resveratrol could potentially serve as a therapeutic 

agent for mitigating the dysregulation of miRNAs, thereby restoring the normal expression of 

their target genes. 
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6.1.2 Manuscript 2 
Herein, we presented compelling evidence showcasing the mitigating effects of resveratrol on 

inflammation induced by high glucose levels and its potential to enhance glucose metabolism 

in HepG2 cells. Employing quantitative PCR (qPCR), we investigated the NF-kB pathway at 

the genetic level. NF-kB is a pivotal player in activating inflammatory responses (Jeon et al., 

2010). Our investigation demonstrated a substantial rise in the mRNA expression of NF-kB, 

IKKα, and IkB-α under high glucose conditions. Notably, resveratrol administration markedly 

reduced NF-kB, IKKα, and IkB-α levels. Moreover, we assessed the expression profiles of 

TNF-α, IL-6, COX2, and IL-1β using a combination of qPCR, ELISA, and Bio-Plex techniques. 

We observed a significant surge in the expression levels of these pro-inflammatory cytokines 

in response to high glucose stimulation. However, the introduction of resveratrol led to a 

significant decline in the levels of these cytokines. Furthermore, we investigated the mRNA 

expression of TGFβ1, an anti-inflammatory cytokine. We observed that high glucose reduced 

the expression of TGFβ1; however, resveratrol recovered its expression. These findings further 

substantiate resveratrol's potential as an anti-inflammatory agent, particularly concerning 

diabetes, by modulating pro-inflammatory cytokine expression and curtailing NF-kB activity. 

Consequently, resveratrol is a promising therapeutic candidate for alleviating inflammation in 

individuals with diabetes.  

 

The research underscores abnormal glucose metabolism in the liver as a primary instigator of 

type 2 diabetes (T2DM). Notably, disrupted glycogenesis and glycogenolysis play pivotal roles, 

with glycogenesis assuming particular significance (Rines et al., 2016). Our investigation 

unveiled an increase in gluconeogenesis PEPCK gene expression and a concurrent decline in 

glycolysis gene GCK expression in HepG2 cells under high glucose conditions. In contrast, 

resveratrol administration yielded a reduction in PEPCK expression coupled with an elevation 

in GCK expression within HepG2 cells. These revelations suggest the potential therapeutic 

utility of resveratrol in addressing hyperglycemia and insulin resistance linked to disrupted 

glucose metabolism. 

  

In addition, we investigated the expression of KLF7, HIF1A, and SIRT1 related to glucose 

metabolism and inflammation. We observed that high glucose increased the expression of 

KLF7 and HIF1A and reduced the expression of SIRT1. Conversely, resveratrol increased the 

expression of SIRT1 and reduced the expression of KLF7 and HIF1A. These findings exhibited 

a putative protective influence by elevating the expression of SIRT1 while suppressing the 

expression of KLF7 and HIF1A, thereby potentially ameliorating the adverse consequences of 

elevated high glucose levels. 
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6.1.3 Manuscript 3 
This study scrutinized the protective role of resveratrol against oxidative stress and apoptosis 

induced by high glucose in HepG2 cells. Our approach involved utilizing qPCR to assess the 

expression of key genes involved in the oxidative stress response (SOD, CAT, GPx, Nrf2, and 

NQO1), apoptosis (BcL2), and DNA repair (OGG1). Nrf2, a transcription factor orchestrating 

the expression of antioxidant and anti-electrolyte genes, holds relevance in this context (Kovac 

et al., 2015; Valenzuela et al., 2017). Our investigation unveiled a significant reduction in the 

gene expression of Nrf2 and antioxidant enzymes (SOD, CAT, GPx, and NQO1) under high 

glucose conditions. Remarkably, the introduction of resveratrol led to an elevation in Nrf2 

expression, subsequently triggering an increase in genes associated with antioxidant enzymes 

(SOD, CAT, GPx, and NQO1). These observations highlight resveratrol's potential in activating 

the Nrf2 signaling pathway at the transcription level and enhancing antioxidant enzyme 

expression, potentially extending its therapeutic application to other oxidative stress-related 

ailments. 

 

Additionally, we explored the impact of resveratrol on apoptotic pathways at the transcriptional 

level. High glucose exposure notably decreased BcL-2 expression, whereas resveratrol 

treatment significantly increased BcL-2 expression. This augmentation in BcL-2 levels may 

signify resveratrol's involvement in apoptotic pathway regulation. 

 

Employing the LDH cytotoxicity Detection Kit, we evaluated LDH release. Notably, prolonged 

exposure of HepG2 cells to high glucose (72 h) led to a substantial increase in LDH release. 

Intriguingly, resveratrol administration reduced LDH release, underscoring its protective effect 

against high glucose-induced toxicity in HepG2 cells. 

 

Furthermore, the gene expression of OGG1 was assessed. High glucose exposure reduced 

OGG1 expression, while resveratrol treatment significantly increased OGG1 mRNA levels. 

This upregulation indicated enhanced DNA repair potential. These findings imply resveratrol's 

prospective therapeutic application in managing diabetic complications by fostering DNA repair 

through OGG1 upregulation. 

 
6.2 MiR-126-3p and Inflammation 
The potential role of miR-126, which targets SPRED1, in inflammation resolution has been 

explored (Zeinali et al., 2021). Research indicates that pro-inflammatory agents can disrupt 

insulin-signaling pathways integral to glucose metabolism regulation, ultimately contributing to 

type 2 diabetes (Tsalamandris et al., 2019). Enhancing SPRED1 expression by suppressing 

miR-126 may incite IL-6, TNF-α, and ROS production, thereby causing endothelial dysfunction 

(Li et al., 2016). Our study reports suppressive effects of high glucose levels on miR-126-3p 

expression, leading to an elevation in SPRED1. Increased SPRED1 expression led to an 
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elevation in the levels of pro-inflammatory cytokines, TNF-α and IL-6. This sheds light on the 

potential role of miR-126-3p dysregulation in fueling the pro-inflammatory state observed in 

diabetes. Consequently, miR-126-3p is a therapeutic target for mitigating inflammation in 

diabetes patients. Resveratrol treatment augmented miR-126-3p expression, correlating with 

decreased SPRED1 and the pro-inflammatory cytokines, TNF-α and IL-6 expression. These 

insights suggest the viability of resveratrol-mediated miR-126-3p targeting to alleviate 

inflammation in diabetes. 

 
6.3 MiR-182-5p and Glucose Metabolism 
MicroRNAs (miRNAs) have emerged as pivotal regulators of hepatic glucose metabolism 

(Mirra et al., 2018). Prior studies have underscored their role in modulating insulin signaling, 

glucose uptake, glycogen synthesis, and gluconeogenesis in the liver (Mirra et al., 2018). 

Notably, miR-182 has been implicated in the modulation of glucose homeostasis, 

predominantly through its interaction with FOXO1 (Karolina et al., 2011); (Zhou et al., 2014); 

(Zhang et al., 2016). FOXO1 governs the transcription of downstream enzymes integral to 

gluconeogenesis, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-

phosphatase (G6Pase) (Barthel et al., 2005; Gross et al., 2008). Dysregulation of metabolic 

flexibility and glucose homeostasis can result from elevated FOXO1 levels triggered by miR-

182 downregulation (Zhang et al., 2016). 

 

Our investigation highlighted the downregulation of miR-182-5p under high glucose conditions. 

Consistent with previous studies, diminished miR-182 levels correlated with FOXO1 

upregulation, activating gluconeogenesis enzymes, PEPCK and G6P. Our findings 

demonstrated that reduced miR-182-5p expression correlated with heightened gene 

expression of PEPCK and G6P, accentuating gluconeogenesis. These insights highlight the 

potential therapeutic relevance of targeting miR-182-5p to ameliorate impaired glucose 

metabolism. However, further investigations are imperative to validate these initial findings. 

 

Prior research has showcased the positive impact of miR-182 overexpression on glucose 

metabolism (Zhang et al., 2016). In alignment with this trajectory, our study unearthed 

resveratrol's capability to elevate miR-182-5p expression within HepG2 cells. This elevation, 

in turn, precipitated a reduction in FOXO1, PEPCK and G6P expression, ultimately dampening 

gluconeogenesis. Our results posit that resveratrol enhances glucose metabolism by 

modulating miR-182-5p expression in HepG2 cells. These observations suggest that 

harnessing resveratrol-mediated miR-182-5p modulation could be a prospective therapeutic 

strategy to rectify glucose metabolism impairment. It is important to note that further 

investigations are warranted to corroborate these preliminary findings. 
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6.4 Strengths and Limitations of the Study 
The current study boasts a blend of strengths and limitations that warrant consideration. Our 

in vitro model provides a controlled platform conducive to meticulous experimentation and 

precise analyses. Moreover, our findings are consistent with established research, improving 

the existing understanding of potential miRNA dysregulation in diabetes-related conditions. 

Notably, prior investigations have underscored the presence of compromised glucose 

metabolism, escalated pro-inflammatory markers, heightened oxidative stress, and 

augmented apoptosis rates in individuals with diabetes. 

 

However, certain limitations should be considered. Our study's exclusive focus on HepG2 cells, 

therefore, it may not adequately represent the complexity of miRNA regulation within diabetes 

pathophysiology. Due to severe budget constraints, our exploration was confined to genetic 

expression, and we were unable to perform certain proteomic analyses. Notably, protein 

expression analysis was not in the scope of this particular study and will be considered in future 

research. 

 
6.5 Recommendations for Future Studies 
Subsequent research endeavors should prioritize an expanded repertoire of cell models and 

experimental methodologies to comprehensively unravel the multifaceted roles enacted by 

these microRNAs within the realm of pathophysiology. The present study was performed in 

vitro employing HepG2 cells; it would be advantageous to conduct additional investigations 

utilizing suitable animal models, such as diabetes-induced mice. This expansion would offer a 

more holistic view of the intricate mechanisms associated with diabetes and its associated 

complications. 

 

Additionally, to establish a substantive linkage between gene and protein expression, future 

investigations should incorporate the assessment of functional protein expression. This 

interplay is vital in deciphering the underlying mechanisms governing diverse biological 

processes. Quantifying protein expression can offer profound insights into the intricate 

transformation of genes into functional proteins while also investigating the impact on protein 

synthesis. 

 

Achieving translational significance involves human-centric studies, such as clinical trials or 

dietary supplementation studies, to glean deeper insights into resveratrol's antioxidant, anti-

inflammatory, and antiapoptotic properties, as well as its effects on glucose metabolism. 

Exploring the clinical implications of resveratrol in human trials will provide important insights 

and may produce potential therapeutic targets.  
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Moreover, investigating the potential synergistic interplay between resveratrol and other 

compounds boasting antioxidant, anti-inflammatory, and antiapoptotic traits is an interesting 

avenue. These synergistic explorations may highlight further therapeutic applications for 

resveratrol that may surpass its standalone attributes. 

 

Taken together, these prospective investigations, marked by diverse models, intricate protein-

gene relationships, human-centric approaches, and exploration of synergistic dynamics, may 

reveal novel therapeutic applications for resveratrol, improving scientific understanding and 

the practical application in clinical settings. 

 
6.6 Conclusion 
This study offers compelling evidence that resveratrol effectively counteracts the dysregulation 

of miR-126-3p, miR-182-5p, and miR-30a-5p induced by high glucose conditions. This 

interesting discovery highlights a promising avenue for therapeutic intervention, hinging on the 

modulation of miRNA expression through resveratrol administration. However, it is important 

to recognize that our study has certain limitations, necessitating cautious interpretation of the 

data and underscoring the need for further investigation. 

 

Furthermore, our research substantiates the multifaceted attributes of resveratrol, reinforcing 

its capacity for counteracting inflammation, harnessing antioxidant potential, mitigating 

apoptosis, and regulating glucose metabolism within the intricate framework of diabetes. The 

intricate interplay between glucose metabolism, inflammation, oxidative stress microRNA 

regulation, and resveratrol's therapeutic effects could pave the way for novel therapeutic 

approaches in combating diabetes and its complications.  
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